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Abstract

Out of the large range of human actions, gestures performed with the hands play a very
important role during everyday life. Therefore, their automatic recognition is highly rel-
evant for constructing userfriendly human-machine interfaces. This dissertation presents
a new approach to the recognition of manipulative gestures that interact with objects
in the environment. The proposed gesture recognition can serve to realize pro-active
human-machine interfaces enabling technical systems to observe humans acting in their
environment and to react appropriately.

For observing the motions of natural hands, a non-intrusive vision-based technique is
required. For this purpose, an adaptive skin color segmentation approach that is capable
of detecting skin-colored hands in a wide range of lighting conditions is developed. The
adaptation step is controlled by using additional scene information to restrict updating
of the color model to image areas that actually contain skin areas. With the trajectory
data that results from detecting hands in a sequence of images, gesture recognition can
be performed.

To recognize gestures with context, a new method for incorporating additional scene
information in the recognition process is described. The context of a gesture model
consists of the current state of the hand and the object that is manipulated. The
current hand state is needed to capture the applicability of a gesture model while the
manipulated object needs to be present in the vicinity of the hand to enable recognizing
the gesture model. Through the proposed context integration, the developed recognition
system allows to observe gestures that are mainly characterized by their interaction with
the environment and do not have a characteristic trajectory. The performance of the
gesture recognition approach is demonstrated with gestures performed in a assembly
construction scenario and in a typical office environment.

The use of the recognition results for improving human-machine interfaces is shown
by applying the gesture recognition in a ’situated artifical communicator’ system that is
situated in an assembly construction domain. Here the information about the executed
gesture can be used for improving dialog interaction by providing information about the
hand contents. Besides this direct improvement of the human-machine interface, the
recognized gestures can also be used as context knowledge for other system components.
This is demonstrated with the observation of construction gestures that provide relevant
context information for the vision algorithms aiming at recognizing the objects and
assemblies in the construction scenario. In this way the gesture recognition results
improve the human-machine interface also indirectly.
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1 Introduction

How do humans interact with their environment?

Clearly, there is a huge number of different ways in which humans interact with their
environment. Concentrating on body motions, one answer is:

Humans interact with their environment by acting with their hands.

In everyday life, humans make intensive use of their hands to communicate with other
humans, or to manipulate their environment. We denote such hand motions as gestures.
An example for a communicative hand gesture is the fist with the thumb up meaning
’everything is alright’. While the usage of gestures for communicative purposes is a
very important aspect, many of the hand gestures performed by humans are intended to
physically change the environment. For example, we take a cup of coffee and lift the cup
to the mouth to drink (see Fig. 1.1). Although the primary goal of such a manipulative
gesture is the actual manipulation of the environment, other humans can observe the
gesture to reason about the acting person (’What is he/she doing’). This reasoning is
used by humans for a variety of purposes. For instance, to manage communication: if
a human enters a room to talk to somebody, he will usually first check what the person
is currently doing. In this way, he can make sure that the person will be able to pay
attention to him.

(a) start of gesture at t0 (b) taking the cup at t1 (c) drinking coffee at t2

Figure 1.1: Three pictures taken from an image sequence showing the manipulative ges-
ture ’drinking’.

This smoothness of human-human interaction is one of the goals pursued in research
on human-machine interfaces. If a technical system with gesture recognition capabilities
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1 Introduction

can infer what the human is doing by observing his gestures, it will provide a more natural
human-machine interface. Although this statement sounds obvious, the interaction of
current technical systems with the user is often limited to reactive behavior [102]. These
systems are constantly waiting for a communicative command from the user to start an
operation or to change their current status. A truly proactive system would try to gather
information about its environment, and/or the user, without being given information
explicitly [102]. Such a system would recognize gestures even if the human acts without
the intention to communicate. For example, if a human silently drinks a cup of coffee, a
proactive system could recognize the gesture and offer the human to play some relaxing
music or read out loud new e-mails while he/she is drinking.

Clearly, the recognition of human gestures is just one technique that can be used for
improving the interface of a technical system. Other important cues are, for example,
the analysis of natural language, prosody, or facial expression. Only the integration
of several of these modalities into a multi-modal human-machine interface will enable
the construction of systems with human-like communication capabilities that are easy
to instruct and use. The development of such artificial systems is believed to be a
prerequisite in order to enable users without technical background to utilize technical
systems. For example, Personal Robots that exhibit entertainment and interaction skills,
like the NEC PaPeRo r© [72], are intended to become a standard consumer product
similar to the personal computer. To enjoy owning such a robot and, therefore, ensure
its commercial success, the interaction with the personal robot needs to be very easy for
any non-trained person.

In addition to reasoning about the acting human based on observations of his manip-
ulative gestures, a robotic system could learn how to perform the manipulative gestures
by itself. This so-called imitation learning [4] is one method applied frequently by hu-
mans to learn new ways of interacting with their environment and opens up a very
interesting approach to instruct robots. Ultimately, it allows us to teach a robot a new
task by letting it observe a human performing the task. Many questions relating to, e.g.,
scalability, still need to be addressed, but first implementations already demonstrate the
principal feasibility of this approach [23, 45, 59]. In future robotic systems that are
capable of imitation learning in less artificial domains, a method for the recognition of
manipulative gestures will play an important role. If an observed action can be recog-
nized as an already learned action, the associated action procedures learned previously
can be directly started. This avoids performing a detailed analysis of the motion for
imitation learning and, more importantly, allows the use of stored procedures that have
been iteratively improved during a learning phase. In this way, gesture recognition en-
ables the transfer from the initial learning of an action to its later imitation based on
the learned parameters.

The application of a recognition system for manipulative gestures is not limited to
improving the human-machine interface. Rather, the recognized gestures can be used as
context knowledge for improving other components of a technical system. One domain
considered in this thesis is the construction of assemblies from a toy construction kit for
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1.1 Categorization of Gestures

children called baufix r©. If a human builds a complex assembly by connecting elementary
baufix r© parts, the construction actions leading to this assembly can be recognized with a
gesture recognition system. Observing the construction actions allows a technical system
to learn the symbolic construction plan for building the assembly, i.e., the sequence
of elementary construction actions. Moreover, the assembly structure resulting from
the construction plan can serve as a priori information for vision algorithms aiming at
recognizing the assembly.

Summarizing, the applications of a recognition system for manipulative gestures range
from improving proactive human-machine interfaces to the use as context knowledge in
other system components. The recognition of manipulative gestures could also form the
basis for the advanced instruction of robots through imitation learning.

1.1 Categorization of Gestures

As the recognition of gestures is an important technique for advanced human-machine
interfaces, there is a large variety of research activities approaching the recognition task
from different perspectives. We will focus here on the recognition of gestures carried
out with the hands although humans are capable of performing a much broader range of
gestures using the complete body. As already introduced above, human gestures can be
subdivided into two broad categories based on the aim of the gesture [76]: communicative
and manipulative gestures. Let us now take a closer look at the definition of these two
gesture types and their associated properties:

Communicative gestures are used by humans during everyday life for a wide range
of communication purposes. They are intended to be understood by other hu-
mans only through observing the hand motions performed by the gesturing person
and/or the hand posture. To assure a successful communication, the gesturing
person typically orients the motions and/or the posture towards the recipient of
the gesture [21]. This implies that communicative gestures are viewpoint depen-
dent and can only be successfully recognized by an observer if positioned at the
viewpoint expected by the gesturing person. Figure 1.2(a) depicts a sketch of the
communicative gesture ’waving’ consisting of a characteristic motion trajectory
but no posture.

Manipulative gestures are different in nature as their primary goal is the manipu-
lation of objects. As handling different objects does usually not result in a large
difference in the hand motion, the trajectories of manipulative gestures are often
very similar. This makes the recognition of the gesture based only on the sensory
trajectory information very unreliable or even impossible. However, a manipulative
gesture is always accompanied by one or several objects that are being manipu-
lated. For example, Fig. 1.2(b) depicts a symbolic sketch of the manipulative
gesture ’picking’ that moves a ’cup’ object.

3



1 Introduction

The manipulated objects represent symbolic information as their type is the rel-
evant feature that needs to be known. Therefore, two types of information are
relevant for the recognition of a manipulative gesture: sensory data describing the
hand motions, and symbols representing the manipulated objects.

(a) Communicative Gesture

Cup

Cup

(b) Manipulative Gesture

Figure 1.2: The two gesture types resulting from categorizing gestures based on their
aim.

The preceding classification of gestures into two types is motivated by the purpose of
the gesture. Another categorization focusing on the differences in gestures relevant for
their recognition is more appropriate from the perspective of a system designer aiming
at recognizing human gestures. For this purpose, we will now introduce a different
classification scheme proposed by A. Bobick [13] that divides human motions into three
different categories: movement, activity, and action. Bobick’s categorization aims at
allowing a better understanding of the underlying assumptions used in the approaches
published on recognizing human motions based on visual observations (for an overview
see e.g., [68, 1, 36]). The proposed categorization allows a better understanding what
kind of knowledge is used in a human motion understanding approach and where it is
used in the recognition process. The three different motion categories are equivalent to
different levels of knowledge:

Movement: A basic motion that can be reliably detected solely on the basis of low-level
images features is defined as a movement. This implies that the variation within
different instances of the movement is small, and the internal representation of a
movement for recognition depends only on the viewing condition. In particular,
the execution speed of different motions is assumed to vary only linearly, i.e., a
movement can be executed at different speeds but there are no speed variations
within a single movement. Note that the recognition of a movement requires no
context knowledge like previous movements or objects in the vicinity of the moving
human.

4



1.1 Categorization of Gestures

Activity: An activity describes a motion that is made up of a sequence of movements that
can be recognized with pattern matching approaches. In particular, the sequence of
movements of an activity can contain movements that are optional to this activity.
Moreover, an activity exhibits more complex temporal variations than the linear
scaling of movements. Like movements, activities do not refer to elements external
to the actor performing them.

Action: At the highest level of abstraction are actions. Bobick describes actions as being
”at the boundary of where perception meets cognition”. This view on actions
is due to the fact that different instances of the same action can have different
perceptual features. Only by linking the observed motion to its context, e.g., to a
manipulated object, it is possible to recognize actions. Therefore, the recognition
of actions necessarily needs some kind of symbolic information.

Figure 1.3 shows a symbolic sketch of a human performing three different hand mo-
tions relating to the three categories defined by Bobick. Note that only the information
represented by solid lines is available to the algorithms for performing motion under-
standing, indicating the human by a dotted line is done to facilitate an intuitive example.
The hand going up in Fig. 1.3(a) is a movement, as it can be represented by the motion
of the hand only. The gesture in Fig. 1.3(b) is an activity, as it consists of a sequence
of up and down hand movements, with arbitrary delays inbetween. Depending on the
context in which this gesture is executed, it can be associated with different activities
like, e.g., ’waving’, ’hitchhiking’, or ’exercising’. Finally, Fig. 1.3(c) depicts the same
hand motions, but now there is an additional symbolic information ’ball’ present. To
recognize this motion as action ’dribbling’, the trajectory data has to be linked to the
object ’ball’ in its vicinity.

(a) Movement (b) Activity

Ball

(c) Action

Figure 1.3: Examples for the three categories of human motion defined by Bobick [13].
The different motion categories are equivalent to different levels of knowledge
necessary for recognizing such motions.
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Note that it is possible to hypothesize the action ’dribbling’ from recognizing the ac-
tivity depicted in Fig. 1.3(b) without analyzing the symbolic information. However, in-
ferring actions based on activities is limited to domains containing no other gesture with
a similar trajectory. Given two gestures with similar hand motions like, e.g., ’exercising’
and ’dribbling’, these gestures can only be differentiated based on the presence/absence
of the symbolic information ’ball’.

Relating these three categories to the two gesture types introduced above can be done
easily for the manipulative gesture. As this gesture is always related to a symbol, i.e.,
some object that is manipulated, a manipulative gesture is in Bobick’s categorization an
action. In contrast, communicative gestures cannot be associated with a single category,
as humans use a large number of different communicative gestures covering the whole
range of categories. Fig. 1.3(a) and Fig. 1.3(b) have already shown two examples of
communicative gestures being a movement and an activity. A communicative gesture of
the action type is, for example, a deictic gesture. In such a gesture pointing at an object
there is a strong relation between the trajectory and the symbolic object information
emphasizing the action type of the communicative gesture.

A different categorization for describing arbitrary scenes containing moving objects
has been proposed by Nagel [71] at the beginning of image sequence analysis in 1988. He
introduced the terms ’change, event, verb, episode, history’ for denoting the intermedi-
ate levels of description between the difference in image appearance of two consecutive
images and the associated high-level description of ’what is happening’. Nagel’s cat-
egorization was part of his pioneering work on motion understanding and allowed to
focus more closely on the relation between image sequences and their natural language
descriptions. Therefore his categorization reflects different dimensions than those dis-
cussed in this thesis. Here we concentrate on a specific type of motions, the gestures
performed with the hand, and we are interested in bridging the gap between sensory and
symbolic information for recognizing these gestures. For this purpose, we use Bobick’s
categorization as it is more appropriate.

1.2 Recognition of Manipulative Gestures

In the previous section we have seen that the recognition of manipulative gestures re-
quires the analysis of symbols and sensory data. To highlight the different properties of
both data types, we will first take a closer look at them using the ’drinking’ example
from Fig. 1.1 before going into the details of actually recognizing gestures.

Consider a scenario where all gestures manipulate objects by translations or rotations,
and the information about how objects were moved is not relevant. In such a domain, it
is possible to base a recognition approach solely on the position changes of the objects
in the scene to deduce the actions that must have been executed. As such an approach
relies only on rules and symbols, i.e., on the symbolic object labels extracted from the
image data by an object recognition algorithm, we will call this approach symbol-based
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1.2 Recognition of Manipulative Gestures

action recognition. However, such a symbol-based approach relies on perfect object
recognition results. To give an example for the symbolic information that is available to
such a recognition approach, Fig. 1.4 depicts the object recognition results for the three
time instances of the drinking action shown in Fig. 1.1. Note that the time instances for
analyzing the symbols need to be chosen carefully and that the successful recognition
of an object during manipulation is not always possible due to, e.g., the hand occluding
the object.

HEAD

HAND

COFFEE
CUP

(a) symbols at t0

HEAD

HAND

COFFEE
CUP

(b) symbols at t1

HEAD

COFFEE
CUP

HAND

(c) symbols at t2

Figure 1.4: Symbolic information for the manipulative gesture ’drinking’.

Alternatively, if the information about what object was moved is not relevant, the
sensory data of the hand trajectory is sufficient, and the use of symbolic information
can be avoided. This is visible in Fig. 1.5 showing the hand trajectory for the ’drink-
ing’ gesture. The trajectory does not allow for discriminating between ’drinking’ and
’answering a phone call’ as the information about what object is being moved is crucial
to differentiate these two gestures. Nevertheless, the trajectory is sufficient to separate
between ’drinking’ and ’writing’ without having explicit information about the objects
that are manipulated. In a restricted domain with only these two gestures, a data-driven
activity recognition using the trajectories of the hand motions allows us to successfully
differentiate these two actions.

(a) sensory data at t0 (b) sensory data at t1 (c) sensory data at t2

Figure 1.5: Hand trajectory representing the sensory data for the manipulative gesture
’drinking’.

Obviously, the combined analysis of the symbolic object information and the sensory
data of the hand motions is often needed to recognize a wider range of manipulative
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gestures. As an illustrative example, the two types of information are depicted in Fig. 1.6
for the ’drinking’ gesture.

HEAD

HAND

COFFEE
CUP

(a) both data types at t0

HEAD

HAND

COFFEE
CUP

(b) both data types at t1

HEAD

COFFEE
CUP

HAND

(c) both data types at t2

Figure 1.6: Symbols and sensory data for the manipulative gesture ’drinking’.

Performing Gesture Recognition

The majority of the published research work on gesture recognition (overviews can be
found in [54, 76, 104]) deals with recognizing communicative gestures. All the gestures
considered fall into the movement or activity category defined by Bobick. In human-
machine interfaces, these communicative gestures are often used for the direct instruction
of systems [95, 12, 98].

In contrast, the recognition of manipulative gestures is a relatively unexplored topic.
As pointed out above, all manipulative gestures are of the action type as they require
symbolic information for their recognition. A few approaches aim at inferring human
actions based on evaluating only symbols extracted from the scene [89, 63, 67]. Ap-
proaches to action recognition that work directly with image data use the sensory hand
trajectory information only for focusing on the image areas relevant for action recog-
nition [77, 3]. The actions that are recognized are defined in terms of low-level image
features like, e.g., an intensity change if a cabinet is opened. In this way, the symbolic
information indicating a change in the state of an object (’cabinet opened’) is the only
feature used for recognition. Besides analyzing low-level image features, the closeness of
the hand to a predefined image area is also used for hypothesizing actions. Obviously,
there is no sophisticated analysis of the sensory data as the only purpose of the trajec-
tory information is the selection of the interesting image area for extracting the symbolic
information.

One noticeable approach to action recognition in an office environment that combines
the analysis of sensory data and symbolic context information provided by a scene
model is the work by Moore et al. [69]. In their work, the symbolic information about
the objects in the vicinity of a human hand comes into play after the analysis of the
sensory data from the hand motions. Their integration scheme performs a sequential
fusion by post-processing recognized activities to realize action recognition.
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1.2 Recognition of Manipulative Gestures

We argue that the parallel fusion of both cues in an integrated action recognition
approach improves the recognition quality, and allows for an easy implementation of
the developed techniques in different application domains. An important advantage of
an integrated action recognition system is the possibility to concentrate computational
resources on gestures possible with the objects available in the current scenario. For
example, a ’drinking’ gesture can only occur if some sort of jar containing a beverage
is present in the scene. Without the consideration of context knowledge, a recognition
algorithm would need to analyze the complete set of gestures. Especially in domains
with a large set of gestures, this can result in spending much computational time on
gestures currently impossible due to missing objects.

Extracting Symbols: Some Remarks on Object Recognition

Considering that the symbolic information needed for the recognition of manipulative
gestures is defined by the objects in the scene, we will point out some aspects relevant
to their extraction from vision data. In general, a manipulative gesture changes the
position, form, and appearance of the object that it manipulates. In the ’drinking’
example in Fig. 1.1, the person first changes the position of the cup by lifting it to the
mouth, and then changes the contents of the cup itself by removing the contained coffee.
As these changes of the object are directly related to the manipulative gesture, their
recognition is an important source of information for a gesture recognition system.

Research activities dealing with the problem of recognizing objects and their current
states show that this is a very demanding challenge [52]. Pure translational and rota-
tional motions do not change the object itself, but its appearance may change due to
a new viewing angle or a different lighting condition. The recognition of a rigid object
under different viewing angles and variations in lighting is already a challenging task for
state-of-the-art object recognition algorithms. It becomes an open problem if flexible
objects are considered whose form varies unpredictably. Even if the variations in the
object’s form can be modeled in the recognition algorithm, i.e., they are known before-
hand, the recognition task is still challenging. To our knowledge, there are no feasible
object recognition algorithms that actually tackle the problem of recognizing a number
of deformable objects based on 2D images from a color camera.

Consequently, we consider here only object manipulations that do not change the
objects or their appearance in a substantial way. In this thesis, we will use the term
manipulation to denote only translational and rotational motions with objects or relative
to objects. This includes manipulative gestures like the example in Fig. 1.1 that change
the objects contents but do not change substantially the visual appearance of the object
as seen by the camera. In general, only small changes in the object’s appearance that
do not prohibit the successful recognition of the object are allowed.
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Extracting Sensory Data: Hand Detection & Tracking

Due to its importance for recognizing communicative gestures, the detection and track-
ing of hands in image data is an active research field [91, 108, 78]. To observe the
motions of the hands, different types of sensor devices can be used. Basically, the hand
motions can be measured either through sensors attached directly to the hands, or via
some kind of remote sensing. While the use of attached sensors is easier to realize from
a technical point of view, it requires the human to wear special equipment. This re-
quirement conflicts with the goal outlined above to have user-friendly systems that are
easy to use. From the perspective of a system designer, remote sensing techniques are
much more appealing as they allow any user to immediately interact with the system
without any preparation. However, besides this pragmatic advantage, the non-intrusive
measurement of hand motions is especially important for recognizing manipulative ges-
tures that involve physical contact with the object. Only remote sensing techniques
allow the human to handle objects naturally without any constraints introduced by, for
example, data gloves that would make object manipulations more difficult or even im-
possible. Therefore, we will concentrate here on non-intrusive sensing techniques applied
to gesture recognition.

Instead of resorting to infrared cameras or laser range finders, we will focus on the
processing of color images provided by a standard video camera for obtaining the hand
motions. The choice of a video camera as input device is motivated by the goal of rec-
ognizing the hand gestures within their context. As ordinary objects do not exhibit any
infrared radiation, the context cannot be detected by infrared cameras. Laser range find-
ers are only appropriate if the objects are separable by depth information. Additionally,
laser range finders are expensive sensors that would prohibit the use of the proposed
gesture recognition approach in a commercial system where sensors must be cheap. In
contrast, video cameras are still becoming cheaper as there is a mass market for cameras
used in video-conferencing applications.

The images provided by a video camera have to be processed with vision algorithms to
obtain the hand motions. A prominent visual feature of a human hand is the color of the
skin. Given a color model for human skin, an image can be segmented into skin and non-
skin areas and the region descriptions of the skin-colored areas in the input image can
be extracted. Segmenting an image based on the color cue provides the positions of all
skin-colored objects in two-dimensional image coordinates. Due to the fact that the color
cue is scale-invariant, no depth information is available for the segmented areas. The
positions of the segmentation results of individual images can be associated over time
by using constraints enforcing the temporal coherence of the motions of the individual
regions found. This leads to trajectories describing the two-dimensional motions of the
skin-colored regions in the image sequence. If several trajectories have been found,
additional constraints depending on the domain may have to be applied to select the
trajectory of the hand performing the gestures.

The sensory trajectory data can be used together with the symbolic object information
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to recognize manipulative gestures. Many classification algorithms are available for
recognizing trajectory data by comparing the sensory data with known motion models of
human hands [54, 76, 104]. However, the incorporation of symbolic information into the
trajectory analysis is not straightforward. In the published action recognition approaches
applying symbolic information, the integration schemes are specifically designed for the
domain of interest, and fusion is performed independently of the trajectory analysis [77,
3, 69].

1.3 Contribution

The contribution of this thesis is the development of a novel approach for the recognition
of manipulative gestures that incorporates symbolic and sensory information during the
recognition process. The proposed approach is based on vision data obtained from a
camera observing the gesturing person. Due to the missing depth information in color
images, the described framework concentrates on the analysis of data describing the
sensory and symbolic information in the two-dimensional image coordinates.

One important source of information for gesture recognition is the trajectory of the
gesturing hand. To obtain the hand trajectory, we introduce an adaptive algorithm for
skin color segmentation that localizes human skin regions under varying lighting condi-
tions. Based on domain-dependent constraints, the trajectory belonging to the gesturing
hand is selected. This sensory data forms the input to a particle filtering algorithm that
is used for recognizing the gestures. To integrate symbolic context knowledge neces-
sary for classifying manipulative hand gestures, we extend the recognition algorithm for
sensory data (a version of the condensation-algorithm [12]). Our approach adds a pro-
cessing step that compares the expected symbolic context with the symbols currently in
the scene. To keep the computational complexity tractable, we define ’context areas’ for
manipulative gestures that are searched for the expected symbolic object context. The
proposed integration framework can be easily applied to different application domains.
We have tested our approach in two domains: assembly construction and usual office
behaviors.

The assembly construction domain is part of the Situated Artificial Communicator re-
search project described in more detail in Section 2.2. The objects are wooden parts from
the baufix r© construction kit that are used to form assemblies with ’pick’, ’place’, and
’connect’ actions. This domain serves to prove the benefit of recognizing manipulative
gestures without a direct communicative purpose. Monitoring the assembly construction
process with the integrated gesture recognition reveals the construction actions leading
to the actual scene. The integration of this context knowledge has been evaluated for
object and assembly recognition algorithms [18, 8]. Furthermore, the current state of
the scene and the construction process is used to improve speech understanding [7], and
to control the dialog with the user for resolving ambiguities [29]. The overall perfor-
mance of the integrated Situated Artificial Communicator system has been evaluated
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in several experiments [9] proving the relevance of the non-communicative information
from manipulative gesture recognition for the overall interaction quality.

Different from the assembly construction domain, the office domain contains more
manipulative gestures that interact with a wider range of objects. In this setup, the
camera observes a human sitting at an office desk and performing the actions ’pick up
phone’, ’hang up phone’, ’take cup’, ’stop drinking’, ’pick book’, ’stop reading’, and
’type on keyboard’. As the manipulated objects are spread out over the office desk, the
gestures performed in this domain exhibit more variations in the trajectory data due to
the different ways in which humans handle the objects. Therefore, these gestures can be
recognized correctly only by incorporating the symbolic context information describing
the objects on the table.

The evaluation of our integrated recognition approach in these two domains demon-
strates that the proposed framework is capable of recognizing manipulative gestures from
two-dimensional motion information extracted from vision data. With the applications
realized in the Situated Artificial Communicator, we show that our framework provides
the basis for improving the overall performance of systems interacting with humans who
gesture with their hands.

1.4 Outline

The contents of this thesis are organized as follows: We start in Chapter 2 with a
description of the assembly construction domain and the realized symbolic action detec-
tion approach to recognize assembly construction actions based on symbolic information.
After presenting the symbol-based recognition approach, we turn to the analysis of sen-
sory trajectory data for recognizing gestures. Chapter 3 introduces a model for human
activities, and gives an overview of relevant probabilistic recognition algorithms for rec-
ognizing human activities. Using such a data-driven activity recognition approach to
recognize manipulative gestures requires the availability of descriptive features for the
human hand performing the gestures. For detecting human hands and faces in color
images, we developed an adaptive skin color segmentation method that is described in
Chapter 4. Based on the detection of human hands, trajectories can be constructed and,
subsequently, a visual activity recognition can be performed. Chapter 5 covers the real-
ization of such an approach for the recognition of manipulative gestures in the assembly
construction domain.

With the symbolic action detection presented in Chapter 2, and the visual activ-
ity recognition described in Chapter 5, we have introduced two different recognition
approaches that use only a single type of information for recognizing manipulative ges-
tures. Based on these two approaches, the developed framework for fusing symbolic and
sensory information in an integrated action recognition system is described in Chapter 6.
Using the proposed framework for recognizing manipulative gestures is demonstrated in
the assembly construction domain and in an office domain. The developed action recog-
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nition system allows us to reason about the human by visually observing his actions.
Chapter 7 proves the benefit of utilizing this context knowledge with various applica-
tions increasing the overall performance of the human-machine interface in the Situated
Artificial Communicator. Chapter 8 summarizes the contents of this thesis and the
conclusions we draw from this work.
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2 Symbolic Action Detection

In the first computational approaches to image understanding, the image contents were
represented by symbols and logical operators used these symbols to reason about the
image. For example, Sussman [94] developed a system that learns actions in a blocks
world domain. In this system, the symbols are the positions of the different blocks and
the changes between two configurations of blocks are used to construct logical opera-
tors. These logical operators are applied to subsequent configurations and on finding a
contradiction the operators are changed appropriately.

Attempts to test these early approaches in real world environments revealed the basic
problem of symbolic approaches: how to relate symbols to the dynamic features of
a continuous world extracted, e.g., from vision data. This is also known as the symbol
grounding problem [40]. A system intended to perform image understanding using logical
operators can achieve symbol grounding in two different ways:

Separate Algorithms: Symbol grounding and image understanding are accomplished
separately. The extraction of symbols from sensory data is extensively studied in
the research work on pattern classification to develop, for example, object recog-
nition algorithms. Such a pre-programmed or learned mapping between sensory
data and symbols forms the basis of a subsequent symbolic image understanding
algorithm. However, dynamic environments as well as ambiguous sensory data
often cause errors in a hard-wired symbol grounding approach. Another more
important aspect is the fact that many environments contain a potentially huge
amount of different symbols. These symbols can represent physical objects like
persons or specific spatio-temporal properties of the observed scene. For example,
the symbol ’waving’ could be assigned to some characteristic hand motion. In
general, mapping spatio-temporal data to a symbol is more difficult than mapping
the visual observations of a static, physical object to a symbol. Consequently, the
selection of the appropriate set of basic symbols denoting basic motions is crucial
to perform correct symbol grounding and detect actions successfully.

Integrated Algorithm: Using an integrated approach for symbol grounding and image
understanding allows us to perform task-dependent symbol grounding. Through
applying vision algorithms tailored to the symbols relevant in the current context,
’early’ errors during symbol grounding that prevent a successful image under-
standing can be avoided. Therefore, such an integrated algorithm that exploits
the inherent dependencies between symbol grounding and image understanding is
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much more powerful. However, up to now no generic approach capable of perform-
ing in a wider range of application domains has been published. Instead, a few
applications with a high implementational effort have been developed that were
tailored to specific situations (e.g. [60]). Problems like, e.g., the scalability of an
architecture containing task-specific vision algorithms have been identified, but to
our knowledge no solution has been offered up to now.

In order to evaluate the potential of symbolic information for action recognition, we
chose to implement a rule-based method operating on appearing and disappearing ob-
jects in a scene to infer the construction actions executed with parts from the wooden
construction kit baufix r© for children. This assembly construction scenario is used as
experimental setting in a Collaborative Research Center1 for the development of Sit-
uated Artificial Communicators. Embedding our approach in this research project al-
lows the use of the action sequence recognized during assembly construction as context
knowledge for other modules in the system. Applying this information to improve the
human-machine interface will be described in Chapter 7.

The symbolic action detection for the Situated Artificial Communicator scenario
makes use of the symbolic information from object recognition algorithms. Besides
recognizing elementary baufix r© objects, more complex objects constructed by connect-
ing elementary objects have to be recognized. In the following, these complex objects
are denoted ’assemblies’ and we will use the term ’part’ to denote either an elementary
object or an assembly made from elementary objects. The changes in the scene over
time, i.e., the appearing and disappearing parts, are combined with a rule-based ap-
proach to infer the actions executed in the scene. Implementing the action recognition
separately from the symbol grounding offers two advantages: First, in the overall sys-
tem symbol grounding is already achieved since symbolic object labels are needed by
subsequent processing modules anyway, e.g., for realizing a dialog with the user about
the scene. Consequently, as the object recognition algorithm relates sensory data to
object labels, the symbol grounding problem can be viewed as ’solved’ for this domain.
Secondly, using already available symbolic data avoids the need for additional sensors
and additional computational cost for processing sensory data.

We will start in Section 2.1 with a review of some recent approaches to symbolic image
understanding for action recognition. The details of the assembly construction domain
and the algorithms for extracting the symbolic data are outlined in Section 2.2. Our
symbolic approach to action detection is presented in Section 2.3. The chapter concludes
with a summary in Section 2.4.

1funded by the German Research Foundation (DFG) as ’Sonderforschungsbereich 360: Situierte
Künstliche Kommunikatoren’
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2.1 Related Work

Recognizing human actions by means of symbolic reasoning has a long history in the
field of artificial intelligence. However, due to the inherent symbol grounding problems
described above the interest in purely symbolic approaches declined.

In the last years, important results on the computational perception of actions and
events have been achieved by R. Mann, A. Jepson, and J. Siskind. Siskind developed
a rich framework incorporating qualitative physics to link visually observed events with
spatial-motion verbs like pick, place, drop, and throw [89]. The visual observations consist
of contour and line segments which are automatically grouped to objects during the
analysis. For these objects, simple events like changing support, contact, and attachment
relations are extracted by kinematic constraints. The verbs are essentially aggregate
event descriptions that are recognized based on the truth values of the simple events
detected. However, this framework has been tested only with simulated contour and
line data to avoid the symbol grounding problem. To give an example for the type
of input data that can be processed by Siskind’s event perception system, several key
frames from a synthetic movie are depicted in Fig. 2.1.

Figure 2.1: Several example key frames from a ’dribbling ball’ sequence representing the
type of input used by Siskind’s event perception system [89].

In a joint work, Mann, Jepson, and Siskind developed an algorithm for interpretation
of real images to recognize events like ’picking a coke can’ [64]. Here the instantaneous
motion of object polygons observed at particular frames of an image sequence is used
as input data. The basic symbols, i.e., the object polygons, are extracted by a separate
algorithm that uses templates for finding the objects in an image. While Siskind [89]
used qualitative physics, Mann et al. [64] use Newtonian mechanics for extracting the
’force-dynamic’ properties of all objects detected in the image. Due to the analysis of
single images, each object has several plausible properties. Reasoning about the objects
with all their different possible force-dynamic descriptions leads to several interpretations
for a single scene. Using a preference hierarchy, all plausible interpretations are selected,
i.e., in their joint work there is no single recognition result but rather a set of results.

In later work, Mann and Jepson extended the instantaneous scene analysis system to
handle temporal information [63]. This extension reduces the number of plausible inter-
pretations, as only those interpretations that are consistent with the temporal context
are considered further. While their approach is theoretically well grounded, their system
depends on several manual steps to be applied to real world problems. For example, on
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initialization the templates describing objects of interest have to be manually selected
to enable the system to track the objects in the image sequence. Using an automatic
object recognition system, a large number of objects would be detected. With a grow-
ing number of objects, the scalability problem would become more important, as the
selection of the recognition result from the set of plausible scene interpretations becomes
much more difficult.

Another approach applying physics-based representations is the work by Ikeuchi et
al. [44, 45] extended later in cooperation with Miura [67]. In their approach, kinematic
relations between objects in the scene are extracted from data obtained by a laser-
range sensor. These kinematic relations are used in the so-called Assembly Plan from
Observation framework to generate robot control programs for assembly construction
automatically by observing a human constructor. However, the details of the human
hand motion itself are not analyzed. Observing the human hand is only performed to
detect whether an action has been executed. On detecting a large motion of the hand
in the scene, it is assumed that an action has been performed and the differences in the
kinematic relations of the objects are computed. Based on changed contact relations
between objects, the assembly actions that must have been executed are hypothesized.
To build an identical assembly with a robot, the robot must be controlled so that it
achieves the same differences in the contact relations as have been observed during the
human assembly construction.

In the work of Kuniyoshi et al. [60, 59], the spatio-temporal features to realize a
qualitative action recognizer are extracted by means of image processing. The recognizer
consists of an environment model representing the different elements in the scene and
an action model to capture the current state of action recognition. Both, environment
model and action model, have a hierarchical structure to capture the different levels of
detail that make up an action. For example, an action may be a sequence local motion -
transfer - local motion where the local motion itself is a sequence approach - fine motion
- depart. Each element in the different hierarchical levels of the environment model has
simple visual routines [97] attached to it that extract specific visual features relevant for
action recognition. For example, an element representing a hand has visual routines that
detect fast or slow motion of the hand. A hierarchical parallel automata is used to relate
action and environment model. The state transitions at the different hierarchical levels
are initiated based on the visually detected events associated with the elements in the
hierarchical environment model. Maintaining the correct motion context, i.e., to what
level of the hierarchy the current motion belongs, is achieved by taking advantage of the
hierarchical structure. If a visual event is detected, all automata at lower hierarchical
levels are forced to terminate because they process more detailed information that does
not need to be analyzed any more if a ’larger’ motion is detected. In this way, the focus
of attention is controlled and motion segmentation points are automatically generated.
Recognizing an action consists of detecting the associated sequence of states in the
automata at the highest hierarchical level where each state is detected if all states of its
corresponding automata at the next lower hierarchical level are successfully detected.

18



2.2 The Situated Artificial Communicator Domain

The approach has been demonstrated to successfully recognize the construction actions
of a human building towers and arches in a simple blocks world (see Fig. 2.2). However,
to our knowledge this system has not been applied to other problems and has not been
extended in any substantial way.

(a) (b) (c) (d)

Figure 2.2: Example images from the blocks world domain used by Kuniyoshi’s system
for recognizing construction actions (from [60]).

2.2 The Situated Artificial Communicator Domain

The symbolic action detection described in this chapter has been developed within the
Situated Artificial Communicator scenario. The system is intended to behave like a
human constructor with regard to its communication abilities and its actuators. Since
this general formulation of an Artificial Communicator has proven to be a very chal-
lenging goal, the research project focuses on developing an artificial communicator for
a special domain with restricted complexity [27]: the system is situated in an environ-
ment consisting of wooden, colored parts from the construction-kit baufix r© for children.
Consequently, it only has to understand instructions and execute actions related to the
construction of assemblies. The set of baufix r© parts available for construction and a
simple assembly are depicted in Fig. 2.3.

The scene in which all construction actions are carried out is limited to the area of a
table. Figure 2.4 gives an impression of our setup that is used to develop the perceptual
front-end of the system. Note that in this setup used for developing the perceptual
front-end of a Situated Artificial Communicator, no robotic manipulator is present for
actually executing actions. To obtain speech input with good signal quality, the human
instructor wears a headset. A static camera is mounted in an angle of 45 degrees above
the table to obtain images of the scene. Note that the static camera can only acquire
images of the table scene. The human instructor is observed by an active pan-tilt camera
that is positioned next to the static camera.
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7 h bar
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Figure 2.3: Several baufix r© parts and a simple assembly made from individual parts.

Figure 2.4: The Situated Artificial Communicator scenario with a human instructing the
system. The scene on the table is observed by the camera on the left and
the user actions are observed by the camera on the right.

2.2.1 The Assembly Model for baufix r© Parts

In the scenario described above, an assembly is constructed by connecting elementary
baufix r© parts. All assemblies considered here are of the bolt-nut-type where miscella-
neous parts like rings and bars can be put on bolts and are fastened using nut-type
parts like cubes or rhomb-nuts. Due to the multi-functional nature of the parts, the
number of different assemblies that can be built is enormous. This large number makes
it impractical to model every assembly in advance.
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To avoid modeling all possible assemblies, a functional assembly model was developed
by C. Bauckhage ([6], Ch. 3) that is based on the functional properties of the parts.
Each assembly is modeled to be composed of a bolt part, a nut part, and a number
of optional miscellaneous parts. The length of the thread of a bolt part and the size
of the miscellaneous parts determines how many miscellaneous parts can be put on a
bolt part. Each of the parts in an assembly can be an elementary baufix r© part or
an assembly itself, therefore the assembly model has a recursive nature. Written as a
grammar with terminals (baufix r© parts in lowercase letters) and variables (uppercase
letters), the recursive assembly model is ([6], page 31):

ASSEMBLY: BOLT PART MISC PART∗ NUT PART
BOLT PART: ASSEMBLY | round bolt | hexagon bolt
MISC PART: ASSEMBLY | 3 h bar | 5 h bar | 7 h bar | felly | socket | ring
NUT PART: ASSEMBLY | cube | rhomb nut

Due to the multifunctional nature of the elementary baufix r© parts that make up an
assembly, each assembly can be used as a component in a larger assembly. To function
as a BOLT PART, MISC PART, or NUT PART component in a larger assembly, an
assembly needs to contain free ’ports’ of the appropriate type. For example, an assembly
can only function as NUT PART if there is at least one free thread in the assembly.
Likewise, it can only function as MISC PART if there is at least one free hole in the
assembly.

Based on the compact model of bolted assemblies, it is possible to derive hierarchical
structural descriptions for every assembly that can be constructed. One disadvantage of
this structural description is the fact that it is not unique. Depending on the number
of bolts in the assembly, there exist several structural descriptions for one assembly.
Fig. 2.5 shows an example assembly together with a few structural descriptions.

bolt1

bolt3

bolt2

3 h bar

cube2

cube1

(a) ASSEMBLY: bolt2 MISC 1 NUT 1
MISC 1: bolt1 3 h bar cube1

NUT 1: bolt3 cube2

(b) ASSEMBLY: bolt3 NUT 1
NUT 1: bolt2 MISC 1 cube2

MISC 1: bolt1 3 h bar cube1

(c) ASSEMBLY: bolt1 MISC 1 cube1

MISC 1: bolt2 3 h bar NUT 1
NUT 1: bolt3 cube2

Figure 2.5: Example assembly together with three structural descriptions.
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The graphical representation of the structural descriptions listed in Fig. 2.5 is shown
in Fig. 2.6. The algorithm developed by C. Bauckhage [6] for automatic extraction of
these structures from image data will be presented after first describing the method for
recognizing elementary parts.

bolt1 bolt3

bolt1

bolt2

bolt3

bolt2

bolt1

bolt2

bolt3

MISC PART NUT PARTBOLT PART

3 h bar

MISC PARTBOLT PART

cube1

NUT PART

BOLT PART NUT PART

cube2

NUT PARTBOLT PART

MISC PART NUT PART

MISC PART NUT PART

3 h bar cube1

cube2

BOLT PART

BOLT PART

MISC 1 NUT 1

MISC PARTBOLT PART

cube1

3 h bar

MISC PART NUT PARTBOLT PART

NUT PARTBOLT PART

cube2

MISC 1

NUT PART

NUT 1

NUT 1

MISC 1

(a)

(c)(b) ASSEMBLY

ASSEMBLY

ASSEMBLY

Figure 2.6: Graphical representation of the three structural descriptions.

2.2.2 Object Recognition

To perform the recognition of elementary baufix r© parts from images depicting the table
scene, E. Braun combined multiple cues from segmentation and classification algorithms
in a recognition framework [18, 85]. In the following we will give a short overview of the
object recognition approach, the interested reader is referred to [85] for more details.

Currently the following modules provide segmentation or classification results that are
incorporated into the recognition approach:

Color-based region segmentation: Following the mean-shift algorithm introduced
by Comaniciu and Meer [19], the number of colors occurring in the image is reduced
problem-independently by clustering within the color space. Afterwards each pixel
is associated to a color class and regions of homogeneous color are extracted based
on neighboring pixels belonging to the same color class (Fig. 2.7(a)).
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2.2 The Situated Artificial Communicator Domain

Contour-based perceptual grouping: In a first step contours are extracted from
the results of a standard Sobel operator ([39], Ch. 3.7) by approximating edge
elements with straight line segments and elliptical arcs [62]. Then, these elements
are grouped with an approach developed by Massmann et al. [65] by applying
various Gestalt laws independent of the actual scenario. Beside others, hypotheses
for closed contours are generated based on collinearity, curvilinearity and proximity
and are used as hypotheses for object surfaces (Fig. 2.7(b)).

Hybrid object recognition: The first classification module developed by F. Kum-
mert et al. [58] provides hypotheses for elementary baufix r© parts based on regions
with baufix r© color. The center of gravity of each region serves as a point of in-
terest, where feature extraction and classification by an artificial neural network
takes place [42]. This result initializes the instantiation process of a semantic
network [86] exploiting knowledge about the fixed set of baufix r© parts and the fea-
tures of the color regions. As this module is optimized for the detection of isolated
baufix r© parts, its results are reliable only if elementary parts are totally visible or
just slightly occluded (Fig. 2.7(c)).

Holistic detection of object parts: Due to perspective occlusions often only sub-
parts of elements are visible. The goal of a second classification module developed
by G. Heidemann [43, 41] is to recognize them by first selecting interesting points
based on symmetry and color homogeneity. The image areas around these so-called
focus points are classified by a neural classifier to obtain hypotheses for object parts
(Fig. 2.7(d)).

(a) (b) (c) (d)

Figure 2.7: Results for the example assembly (a) Color-based region segmentation;
(b) Contour-based perceptual grouping; (c) Hybrid object recognition;
(d) Holistic detection of object parts;

Generally, the segmentation algorithms are not able to yield a single segment for each
object that has to be identified. Additionally, the object hypotheses generated from
the different classification modules may contradict each other because of classification
errors. Given this, deriving hypotheses for the baufix r© elements means to coherently
group and label the image segments that probably correspond to object regions. To
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2 Symbolic Action Detection

accomplish this task, the object recognition algorithm first constructs a unified rep-
resentation for the segmentation and classification results that is called segmentation
hierarchy (see Fig. 2.8).

...independent

similars

independentindependent

contains contains contains contains

partially overlap

contains contains contains

Figure 2.8: Hierarchy of segmentation results built from areas and their relations. Re-
lations that are dashed within the figure are not considered for extracting
object hypotheses.

In a second step, the segmentation hierarchy is analyzed. The procedure interpreting
the hierarchy examines each independent area sequentially starting with the smallest
segmentation results contained in an area. For each of these ’elementary’ areas at the
lowest hierarchical level of an independent area, a hypothesis is generated according to
the attached object label. In case of more than one label for an elementary area, the
most probable label is chosen by voting [75]. Subsequently, the next higher level of the
hierarchy is evaluated. For each area, the object labels already attached to it and the
results from the contained lower level areas are taken into account.

In processing higher levels the question arises whether an area and all its included
areas belong to one element or if this area represents several elements. As this question
cannot be answered based only on the local information, competing results are generated
at all levels of the hierarchy and serve as input for higher hierarchical levels. If results
contradict a set of geometry rules, they are pruned. For example, a bolt cannot contain
another element and a hole of a bar cannot contain more than one bolt. After evaluating
the hierarchy, several competing interpretations of the scene are available.

The selection of the best interpretation is performed by calculating a judgment for each
interpretation. This judgment is derived based on the segmentation and classification
data contained in the interpretation as well as on context knowledge. For example,
context knowledge can be used if individual baufix r© elements are likely to be part of an
assembly due to their proximity. In this case assemblage knowledge provides a measure
how well a specific element would fit into an assembly made out of the surrounding
elements.
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2.2 The Situated Artificial Communicator Domain

2.2.3 Assembly Recognition

An important functionality needed in the Situated Artificial Communicator is the ability
to recognize assemblies made of elementary baufix r© objects. Based on the functional
model for assemblies introduced in Section 2.2.1, a knowledge-based approach to rec-
ognize baufix r©-assemblies has been implemented by C. Bauckhage [6]. To realize the
assembly recognition, the recursive functional model was implemented as a semantic
network using the semantic network language ERNEST [86]. The input data are ele-
mentary baufix r© objects detected in the image data by the object recognition approach
described in the previous section.

To recognize the assembly structure of the assembly depicted in Fig. 2.5, the labeled
cluster of regions shown in Fig. 2.9(a) is sequentially analyzed as follows: since a bolt is
an obligatory component of every assembly in our scenario, the analysis of the cluster
starts with a region representing a bolt. After instantiating the bolt as the BOLT PART
of an assembly in the semantic network, the region is marked considered and the
neighboring region is examined. If it depicts a miscellaneous object, the corresponding
concept MISC PART is instantiated and the region is marked considered, too. This
process will be iterated until a region representing a nut-type object is found. If in such
a way all obligatory parts of an assembly were found but there are still regions in the
cluster which have not been marked yet, it is heuristically determined what kind of role
the just detected assembly may play as a subassembly and the analysis is continued
correspondingly.

(a) (b) (c)

Figure 2.9: (a) The results from object recognition depicted by colored polygons sur-
rounding the regions belonging to the elementary objects for the example
assembly in Fig. 2.5; (b) Intermediate result of assembly recognition after
analyzing the second bolt in the assembly. The different hierarchical levels of
the two subassemblies are depicted by a white and a black polygon; (c) Final
results of assembly recognition.

An intermediate result as well as the final assembly structure are depicted visually in
Fig. 2.9(b) and Fig. 2.9(c). The final recognition result corresponds to the hierarchical
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2 Symbolic Action Detection

description in Fig. 2.5(b), Fig. 2.6(b): there are three shapes, each including parts of a
subassembly. The innermost white shape (MISC1) includes the regions representing the
bolt, the bar, and the blue cube and belongs to the lowest level of the hierarchy. The
surrounding black shape (NUT1) includes this subassembly as well as the red bolt and
the green cube. The outermost white shape includes this subassembly and the yellow
bolt and represents the highest level of the hierarchy, i.e., the whole assembly.

While the basic processing strategy for assembly recognition outlined above is quite
simple, several implementational problems have to be solved for realizing a working
algorithm. For example, if there is more than one neighboring region, topological con-
siderations have to be taken into account to search for the correct region. Other problems
include the perspective distortion of large objects like, e.g., bars with five or seven holes
and the skipping of small unknown regions due to shades or not correctly recognized
objects. For a complete description of the assembly recognition method and further
details on the implementation, the reader is referred to [6].

2.3 Detecting Actions by Symbolic Inference

After introducing the Situated Artificial Communicator domain and the object and as-
sembly recognition algorithms for this domain, we now turn to the description of the
approach for recognizing the construction actions necessary for building assemblies. In
the Situated Artificial Communicator domain, the construction actions consist of pick-
ing baufix r© parts and mounting them together. These actions are therefore essentially
manipulative gestures as defined in Section 1.1. As it is not necessary to know how
the parts were moved, it is possible to base the recognition approach solely on symbolic
information representing changes of the object positions to detect the actions that must
have been executed.

In the Situated Artificial Communicator domain, parts are not simply moved but
instead connected together. The connecting of parts is carried out by the two hands and
is only possible if the two parts in the hands are ’compatible’. Therefore, not only the
temporal appearance and disappearance of parts but also the actual contents of the hands
have to be analyzed in a symbolic action detection approach for the Situated Artificial
Communicator. For this purpose, a two-hand model is introduced. It is assumed that
the parts in the scene are recognized by an object/assembly recognition algorithm taking
the actual view of the scene as input. Monitoring the detected objects over time gives
the appeared and disappeared parts in the scene. Together with the current state of the
two-hand model, a rule-based approach is used to infer the actions that have led to the
observed new/disappeared parts in the scene. In Fig. 2.10 the different components for
performing action detection are depicted, the details will be described in the following.

Out of the recent symbolic approaches to action recognition described in Section 2.1,
the approach of Kuniyoshi [60] is closest to our work. Similar to our work, it explicitly
defines an environment model to hold the current scene state. However, his aim is the
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Objects/assemblies
in the table scene

Part memory

Action detection

Recognized action
in the hands

Objects/assemblies

Two-hand
model

Assembly recognition

Object recognition

Image sequence

New/disappeared parts

Objects

Assemblies

Figure 2.10: A schematic drawing of the relations between the different modules for
action detection.

development of a generic action recognition theory. Therefore, an appropriate control
mechanism and specific image processing routines are directly integrated into his frame-
work. The detection of relevant events in the scene is implicitly accomplished by the
specialized visual feature detectors of the currently active environment elements. While
the basic idea is therefore very generic, the implementation becomes very specific due to
the visual feature detectors. As our approach aims at the recognition of actions in a spe-
cific scenario, we can use symbolic events that are detectable based on the development
of the overall scene without performing additional processing of the visual input.

2.3.1 Two-Hand Model to Capture Actual Hand Contents

For the detection of actions in the construction scenario we implemented the actions New,
Pick, Place, Put and Screw. As our approach is based on symbolic data alone, these
actions can be recognized independently of the constructor, i.e., differences between per-
sons in the way how they handle the baufix r© parts do not influence the recognition result.
Therefore, this approach can also be used to recognize actions that are executed by a
robot if the robot is compatible to the two-hand model, i.e., if it has two manipulators
that can hold baufix r© parts or assemblies and connect them together.
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2 Symbolic Action Detection

To have a suitable representation of the environment for the construction task, we
introduce a two-hand model that is used to hold the current states of the two hands.
Each of the two states in the two-hand model contains information what part, partial
assembly or complete assembly is currently in this hand. Through representing the
contents of the hands explicitly in the hand states, the symbolic action detection can
use this information for inferring actions. The following gives the formal definition for
the two identical sets of hand states in the two-hand model:

Contents of hand state 1: Empty | BOLT PART | MISC PART | NUT PART
| (BOLT PART - MISC PART+2) | ASSEMBLY

Contents of hand state 2: Empty | BOLT PART | MISC PART | NUT PART
| (BOLT PART - MISC PART+2) | ASSEMBLY

The hand states are updated each time an action is recognized that changes the
contents of the hands. Besides supporting the action detection, the two-hand model
allows other modules to incorporate the context knowledge available from the hand
contents. This is used in the Situated Artificial Communicator domain by the vision-
speech interaction module to resolve instructions that refer to parts in the hands of the
constructor. For example, resolving the instruction ’Put the bar on the red bolt’ requires
a bar and a bolt to be available. The parts currently laying on the table are provided
by the part memory (see Fig. 2.10). However, if the red bolt has already been taken by
the constructor, it is no longer visible in the image of the static camera looking at the
table. Consequently, it is not contained in the part memory. Only through observing
the actions in the scene and maintaining the current contents of the two hands in the
two-hand model, it is possible to resolve instructions referring to parts already taken by
the constructor like the red bolt.

2.3.2 Detecting Scene Changes with the Part Memory

Detecting the appearance and disappearance of parts is done by monitoring over time
the object and assembly recognition results. The object recognition results are gener-
ated based on the images from the static camera looking at the table. The results are
provided in the form of a stream [26] that is updated after each execution of the object
recognition algorithm described in Section 2.2.2. Based on the object recognition re-
sults, the assembly recognition is carried out if several new objects are detected at once.
The results of object and assembly recognition are monitored by a part memory that
stores all parts and provides the new and disappeared parts to the action detection (see
Fig. 2.10).

2This represents a partial assembly which is not yet tightened with a NUT PART to form a com-
plete assembly. The plus operator indicates the possibility to put at least one MISC PART on a
BOLT PART limited by its length.
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2.3 Detecting Actions by Symbolic Inference

Unfortunately, recognition results vary significantly between two consecutive images.
Besides normal removal and insertion of parts in the scene by the user, variations in the
detected parts occur due to

1. some parts being temporarily occluded due to a hand moving through the field of
view of the camera

2. erroneous elementary parts being temporarily detected by the object recognition
algorithm due to, for example, shades from a moving hand

3. varying object labels for an elementary part due to, for example, noisy image data

To prevent detecting a changed part in the first two cases, the recognition results are
low-pass filtered in the part memory. Unfortunately, in the third case using a low-pass
filter may only lead to a slower variation of the object labels, but it may not completely
eliminate the instability. To circumvent this problem, the object labels of a new image
feature, i.e., in our case an image region, are accumulated over the first Nrec recognition
phases. The dominant object label in this sequence is taken to be the ’true’ object label
and the part memory notifies the action detection module about a newly appeared part
X with the message X → new. If subsequently a different object label is received for
a region of the same color and at approximately the same position, the part memory
replaces it with the stored ’true’ object label.

If the part X is missing in the stream of recognition results for more than Tskip seconds,
the part memory notifies the action detection module about the disappeared part with
the message X → disappeared. In Fig. 2.11 an UML sequence diagram [14] depicts
the module interactions over time for detecting a Pick (X) action based on a part that
has disappeared for longer than Tskip in the object recognition results.
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Recognition
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Camera
Image

Camera
Image
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Camera
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Camera
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6 parts
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setHandContents()

Action: Pick (X)

getHandContents()
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Figure 2.11: An UML sequence diagram showing the module interactions over time.

29



2 Symbolic Action Detection

Notice that the time necessary for object recognition is not constant as the processing
times of the different segmentation and classification algorithms depend on the image
contents, e.g., how many homogeneously colored image regions are present. The rule-
based detection of actions based on the described messages provided by the part memory
will be covered in the following section.

2.3.3 Inferring Actions from Scene Changes

The two-hand model is used together with the information about new and disappeared
parts extracted by the part memory to infer the actions occurring in the scene. The rules
for action detection operate on the states of the two-hand model and the changes in the
scene, i.e., on the table. If a change in the scene is detected resulting in a part appearing
or disappearing, a rule with preconditions matching the observed scene change and the
current hand states is searched. If a suitable rule is found, that action is hypothesized
and the hand states are changed accordingly. Figure 2.12 shows the rules for the actions
currently implemented in our system. The presentation is similar to the notation for
planning operators. The functional properties (e.g., BOLT PART) of all complex parts
are extracted following the definition given in Section 2.2.1.

For example, two preconditions must hold to infer the Pick (X) action: a part X must
be on the table and one hand must be empty. If the part memory detects a part X to
be missing in the stream, it notifies the action detection module about the disappeared
part with X → disappeared. Now the Pick (X) action is inferred and the state of the
hand model is changed to capture the new state of the hand holding part X.

Note that the Put and Screw actions are not directly linked to changes in the scene
because mounting parts together does not lead to new or disappeared parts on the table.
Therefore, the Put and Screw actions are not directly observable and can only be inferred
if the next Pick action has happened:
If both hands contain parts X, Y and another part Z disappears, a Put or Screw action
is inferred if the two parts in the hands confirm to the preconditions of one of these
actions. In this case, it is assumed that the parts have been connected together to form
an assembly (X, Y ). Inferring the Put or Screw action changes the two-hand model:
now one hand contains the (partial) assembly (X,Y ) and the other hand is empty.
Consequently, the preconditions of the Pick action are satisfied and now the empty
hand can take the disappeared part Z.

The strategy described above is also applicable if a new assembly is detected on the
table but none of the hands contains a complete assembly that can be placed on the
table3. If the contents of the two hands can be connected together to form a complete
assembly, i.e., one hand holds a BOLT PART and one hand holds a NUT PART, the
appropriate Put or Screw action is inferred. Now the one hand holding the just completed
assembly can execute a Place action.

3Here a complete assembly means an assembly where all MISC PARTs are fastened with a NUT PART.
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New (X)
Preconditions: ¬ (hand: X) ∧ X → new

Effects: X on table

Pick (X)
Preconditions: hand: Empty ∧ X → disappeared

Effects: hand: X ∧ ¬ (X on table)

Put (X,Y)
Preconditions: hand 1a: X (BOLT PART) ∧

hand 2a: Y (MISC PART)
Effects: hand 1a: (X,Y) ∧ hand 2a: Empty

Screw (X,Y)
Preconditions: hand 1a: X (BOLT PART) ∧

hand 2a: Y (NUT PART)
Effects: hand 1a: (X,Y) ∧ hand 2a: Empty

Place (X)
Preconditions: hand: X ∧ X → new

Effects: hand: Empty ∧ X on table

aThe notation hand 1 and hand 2 is only used to indicate that two different hand states are used,
each of the two states of the two-hand model can be hand 1 or hand 2.

Figure 2.12: The rules for inferring actions based on the actual state of the two-hand
model and the changes in the scene.

To give an impression of the symbolic action recognition in the Situated Artificial
Communicator setting, Fig. 2.13 shows an example for the temporal development of a
table scene. In the left column the scene images obtained with the table camera together
with the recognized object labels are shown. In the middle column the detected object
changes for the left image compared to the previous image are listed. Based on these
object changes, the recognized actions as well as the resulting hand states are shown.
The right column depicts a virtual representation [99] of the actual scene. All parts
below the horizontal line in this virtual representation represent parts currently on the
table, i.e., contained in the part memory. For representing parts contained in the two
hand states of the two-hand model, two positions above the line at the top of the figure
are used.
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Hand state:

Hand 2: empty
Hand 1: empty

Initial situation:

Part Difference:
assembly � new

Part Difference:
assembly � disappeared

Pick (3 hole bar)
Action:

Part Difference:
3 hole bar � disappeared

Pick (round bolt)
Action:

Part Difference:
round bolt � disappeared

Pick (assembly1)
Put (round bolt, 3 hole bar)
Actions:

Hand state:

Hand 2: empty
Hand 1: empty

Hand state:

Hand 2: assembly1
Hand 1: round bolt, 3 hole bar

Hand state:

Hand 2: 3 hole bar
Hand 1: round bolt

Screw (round bolt, 3 hole bar, assembly1)
Place (assembly2)

Actions:

Hand 2: empty
Hand 1: round bolt
Hand state:

Resulting Scene StateScene with Recognition Results Symbolic Action Recognition

Figure 2.13: An example for an action sequence resulting from part changes during the
temporal development of a scene. A virtual representation [99] is used to
visualize the actual scene as hypothesized by the symbolic action recogni-
tion. The parts below the horizontal line are currently laying on the table,
while the parts above the line indicate the contents of the two-hand model.
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2.3.4 Limitations of the Symbolic Approach

Since the described symbolic action detection is based solely on the changes of the parts
in the scene, the user must obey some restrictions to avoid erroneously detected actions:

• Each hand may hold only one part or (partial) assembly. Although the flexibility
of the human hand allows to hold several parts at the same time, the human must
follow this restriction to enable the system to detect his actions correctly.

• No parts may be put down outside the visible table scene. This closed-world
assumption is necessary as the system cannot detect if a part is put down outside
the field of view of the table camera and will therefore assume that the part is still
in the hands of the human. Although removing parts from the scene is therefore not
possible, the New (X) action (see Fig. 2.12) allows the adding of parts4 resulting
in a partial closed-world restriction.

If the human obeys these restrictions and the new/disappearing parts in the scene are
reliably detected, the rule-based action detection works correctly. However, as noted in
Section 2.3.2 the results from object recognition may vary significantly over time. The
developed part memory can reduce the influence of varying object recognition results,
but it cannot assure a correct detection of new/disappeared parts. If a part is not
recognized and therefore missing in the object recognition results longer than Tskip,
it will be detected as ’disappeared’ and a Pick action will be recognized. The second
problem besides the stability of the object recognition results is the quality of the results.
If a part is labeled incorrectly as a different part with another function, a Put or Screw
action cannot be recognized. If the user connects this part to another part, the action
detection will fail to recognize the action as the two part functions are incompatible. In
this case the hand states are not changed and the system generates an error message.

2.4 Summary

In this chapter, the Situated Artificial Communicator domain for assembly construction
and the object and assembly recognition algorithms for this domain were introduced.
We presented our method for symbolic action detection that is based on the results
from the vision-based object and assembly recognition algorithms. Through extract-
ing the changes of the scene over time and applying a rule-based approach, actions are
hypothesized. To enable a correct action detection, the human actor must obey the re-
strictions imposed by the rule-based approach and the scene changes have to be detected
reliably. The latter is a crucial point as our action detection method is implemented

4This rule allows to add a new part as long as no similar parts (same type and color) are in the hands
during adding of a part. Otherwise the system will hypothesize that the hand holding a similar part
placed this part on the table with a Place action and is now empty.
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separately from symbol grounding. Using the symbolic information available from ob-
ject and assembly recognition avoids to perform symbol grounding and the associated
computational cost but makes our approach depending on the quality of these recogni-
tion algorithms. It would be desirable to have an action detection system that is not
as sensitive to object/assembly recognition errors and uses additional cues, e.g., visual
observations of the hands, to support the action recognition task.
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An alternative to the symbolic action detection presented in the previous chapter is the
recognition of gestures based on sensory trajectory data. Following Bobick’s categoriza-
tion of human motions (see Section 1.1), gestures that can be completely described by
trajectory information are activities. To recognize activities based on their trajectories,
we will first introduce a probabilistic model for describing human activities. This model
is the underlying assumption on which all of today’s dominant probabilistic recognition
techniques are based. Subsequently, three important approaches to activity recognition
will be presented in more detail. In Chapter 6 we will extend a probabilistic approach for
activity recognition by integrating symbolic information to obtain a structured frame-
work for action recognition. We will show there that incorporating the symbolic context
in the proposed framework allows for the successful recognition of manipulative gestures
in a wide range of domains.

3.1 Modeling Human Activities

Let us assume that we want to model a human activity with statistical methods. The
human activity is given as a sequence ZT of T observation vectors1 at discrete time steps
where each observation vector zt consists of m measurement values:

ZT = (z1, . . . , zt, . . . , zT ) with zt = (zt1, . . . , ztm), zti ∈ R (3.1)

One well-known method for statistical modeling of sequences of observations origi-
nating from a parametric random process are Markov processes. The underlying idea is
that the parameters of the stochastic process leading to the observed temporal sequence
ZT can be estimated in a well-defined manner. For each time step t, the state of the
stochastic process giving rise to the observation zt is denoted by the random variable qt:

qt ∈ R (3.2)

For clarity of the presentation, we assume that qt is a scalar variable, but in general this
could be a vector. As an example, consider the activity ’waving’ depicted schematically

1In this thesis scalar values are represented by normal lower case letters while bold lower case letters
denote vectors. Normal upper case letters denote matrices and bold upper case letters represent a
sequence of matrices. An exception to this notation are the upper case letters T for the length of a
time sequence as well as M and N for numbers.
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in Fig. 3.1. If the human activity, i.e., his hand gesture, is observed with a camera, the
position of the hand could be extracted from every image of the image sequence showing
the activity. The measurement vector zt therefore consists of two measurement values,
the x- and y-position of the hand in image coordinates. The measured hand position
can be related to a variety of different types of states causing this measurement like,
e.g., the current arm muscle activation or the angle between the body and the arm. In
Fig. 3.1 the angle is assumed to be the state qt of the stochastic process leading to the
observation of the hand position.

qt
� αt

zt
� �

x � y �
+

Figure 3.1: Measurement vector zt (hand position) and process state qt (arm angle) of
the human activity ’waving’.

The development of the state qt over time is described by the system dynamics. If
the probability density function (pdf) of the current state depends only on the previous
state qt−1 and not on the complete state history Ωt−1 = {q1, q2, . . . , qt−1}, the system
dynamics are:

p(qt|qt−1) = p(qt|Ωt−1) (3.3)

This is the special case of a first-order Markov process. In a k-order Markov process,
the current state depends on the k most recent states. To give a practical example, the
system dynamics for the ’waving’ activity could model the fact that the arm angle varies
at a constant rate, i.e., the current value can be calculated by extrapolating the previous
value using its derivative.

At each time instance t, the state pdf can now be calculated from the previous state
pdf and the system dynamics:

p(qt) =

∫
p(qt|qt−1)p(qt−1) dqt−1 (3.4)

This equation does not incorporate any feedback from actual measurements, i.e., it is
an open-loop calculation without any ’grounding’ in actual observations. For successful
tracking of human activities, we have to incorporate the sequence of measurements ZT

that are extracted from observing the human activity. Instead of the density p(qt) from
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Eq. 3.4, we can calculate the a priori density p(qt|Zt−1) and the a posteriori density
p(qt|Zt) before and after incorporating the measurement at time t, respectively. Let us
assume that the conditional observation density p(zt|qt) for a measurement at time t is
independent of the observation history Zt−1, and depends only on the current state pdf:

p(zt|qt) = p(zt|qt, Zt−1) (3.5)

This allows us to determine the a posteriori density p(qt|Zt) from the a priori density
p(qt|Zt−1) using Bayes’ rule:

p(qt|Zt) = p(qt|zt, Zt−1) =
p(zt|qt, Zt−1) p(qt|Zt−1)

p(zt|Zt−1)

= c p(zt|qt, Zt−1) p(qt|Zt−1) (3.6)

= c p(zt|qt) p(qt|Zt−1)

In this equation c = 1/p(zt|Zt−1) is a normalization factor independent of qt, and
p(qt|Zt−1) is the prior from the accumulated observation history up to time t−1. This is
equivalent to the posterior at the previous time step p(qt−1|Zt−1) predicted to the actual
time step using the system dynamics (Eq. 3.3):

p(qt|Zt−1) =

∫
p(qt|qt−1)p(qt−1|Zt−1) dqt−1 (3.7)

Based on this model, a human activity can be tracked over time by calculating at every
time step first the a priori density p(qt|Zt−1) from Eq. 3.7 using the system dynamics,
and then evaluating the a posteriori density p(qt|Zt) with Eq. 3.6 based on the new
measurement zt. This method to track the state probability density function over time
with integration of measurements is known as recursive Bayesian filter (see Fig. 3.2).

Note that tracking and recognition are very similar, as recognizing a human activity
amounts to successful tracking of a motion with a model of the system dynamics that
describes the activity (Eq. 3.3). Stated differently, if the tracking of the motion failed,
the model of the system dynamics must have been inadequate to describe the activity.
Consequently, if several different models of the system dynamics are used, the model
belonging to the Bayesian filter with the highest overall probability indicates the human
activity that was executed, i.e., this activity has been recognized.

As a practical example, consider again the ’waving’ activity sketched in Fig. 3.1.
If we propagate two Bayesian filters with different system dynamics, one assuming a
steady increase in the angle value and one assuming a steady decrease, the differentiation
between the ’up’ and ’down’ motion can be done based on the overall probability of the
two filters.
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Figure 3.2: The individual steps of a recursive Bayesian filter.

3.2 Recognizing Activities

Depending on the properties of the state distribution, the system dynamics, and the mea-
surement process, different algorithms have been proposed to perform recursive Bayesian
filtering. The three dominant techniques used to track/recognize human activity that
are based on the probabilistic formulation given above will be reviewed in the following,
namely Kalman filters [5], Hidden Markov Models (HMM, [79]), and particle filtering [2].
A special form of particle filtering is better known in the computer vision community
under the name condensation (conditional density propagation) algorithm [48].

3.2.1 Kalman Filters

In a Kalman filter [5], the state pdf p(qt) is modeled as a single Gaussian with mean µt

and covariance σt. In general, the state pdf of a Kalman filter can be a vector, but for
simplicity we will consider here only the one-dimensional case (see Fig. 3.3).

The state qt is hidden, i.e., it is not directly observable, and it is related to the
observation zt by a transfer function ht that is a scalar value for the one-dimensional
case:

zt = htqt (3.8)

Given a state qt−1 at time t − 1, predictions of its Gaussian parameters (µ̂t, σ̂t) for
time t can be calculated using the system dynamics at and the uncertainty of the state
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p
�
qt �

qtµt

Figure 3.3: The unimodal Gaussian state probability density function modeled by a
Kalman filter.

prediction modeled with the covariance σq:

µ̂t = atµt−1 (3.9)

σ̂t = σt−1 + σq (3.10)

Similarly, the observation can be predicted to time t using the transfer function ht

and the uncertainty of the measurement process modeled with σz:

ẑt = htqt−1 + σz (3.11)

The parameters of the Gaussian density function can now be propagated over time by
fusing the predictions of the parameters (µ̂t, σ̂t) and the prediction of the observation ẑt

with the actual observation zt using the Kalman gain kt:

µt = µ̂t + kt(zt − htµ̂t) (3.12)

σt = σ̂t − kthtσ̂t

In this fusion process, the predictions and observations are weighted by their estimated
uncertainties. To minimize the a posteriori error covariance σt in Eq. 3.12 (see [5] for
details), the Kalman gain kt is chosen to2:

kt =
σ̂th

T
t

htσ̂thT
t + σz

(3.13)

The Kalman filter as introduced above is an optimal estimator if the state density
and the observation density are Gaussian and, consequently, all densities stay Gaussian
during the propagation. In this case, the Kalman filter results in an optimal estimator
for the error variance, and the state mean is equal to the most probable state.

However, in real applications the state density often exhibits multiple modes due to,
e.g., noise in the observations. The Kalman filter is not able to track state densities
containing multiple modes. Therefore, several extensions to the standard Kalman filter

2For a state vector q, the transfer function hT
t would need to be the matrix transpose HT

t of the
transfer function Ht but in the one-dimensional case is hT

t ≡ ht.
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3 Recognizing Human Gestures

have been proposed. These approaches for tracking of multiple hypothesis represent
multimodal distributions with a series of Kalman filters where each filter is responsible
for one hypothesis (see e.g. [5, 83]). In these ’multiple hypothesis tracking’ approaches,
specific functionalities are needed to add and remove Kalman filters if new hypotheses
arise or old hypotheses can be discarded.

3.2.2 Hidden Markov Models

While Kalman filters are used primarily for tracking, Hidden Markov Models (HMM)
are a well-known probabilistic technique for recognizing human activities. After the
development of the underlying theory in the 1970’s, the first important application area
was the automatic recognition of speech [79]. Following the successful use of HMM’s
for speech recognition, researchers have started to use this technique for the analysis
of vision data. The earliest approach was probably a system by Yamamoto [106] for
recognizing six different strokes of a tennis player. Over the years, researchers have
proposed numerous extensions to the basic theory in order to enable the application
of HMM’s for specific recognition problems (cf. e.g. [17, 37, 11]). To allow for an easy
comparison with Kalman filters and Particle filtering, we will concentrate in the following
on the basic algorithm.

An HMM can be described as a finite state machine with probabilistic state transitions.
The current state of an HMM consisting of N states will be denoted here with the
multinomial variable s:3

s = i with i ∈ {1 . . . N} (3.14)

Depending on the current state, the HMM generates an observation symbol with an
emission probability. Only the observation symbols can be observed while the actual
state s of an HMM is unknown, hence the name hidden Markov model. The observations
emitted by an HMM state can be either discrete or continuous. Following our model
of a human activity as outlined in Section 3.1, we will assume continuous observation
vectors zt. Figure 3.4 depicts the discrete modeling for the state probability of the
process generating the observations zt.

The introduction of discrete state positions qs is the only conceptual difference to
the Kalman filter, where q has continuous values and represents the mean of the state
distribution and the associated covariance matrix. The discrete nature of the state q in
an HMM has large implications: different from the Kalman filter, the HMM can deal
with nonlinear evolution of the state of the stochastic process. However, the underlying
process generating the observations must have discrete states to perfectly model it with
an HMM. Assuming a stochastic process taking on discrete states, the integration over
the state density p(qt) becomes a summation over the individual state probabilities

3In the classical notation of HMM’s, the multinomial label used to denote the individual states is
typically the letter ’q’. As this conflicts with our use of q to denote the state of the underlying
process generating the observations, we use s to denote the HMM states.
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Figure 3.4: The discrete state probability for six states modeled by an HMM.

Pr(qs
t ). Now the prediction (Eq. 3.7) and update (Eq. 3.6) equations of the recursive

Bayesian filter can be written as:4

Pr(qt|Zt) =
N∑

s=1

Pr((qt = qs
t |Zt) (3.15)

Pr(qt|Zt−1) =
N∑

s=1

Pr(qt = qs
t |Zt−1) (3.16)

The state-specific probabilities can be obtained from

Pr(qt = qs
t |Zt) =

Pr(zt|qt = qs
t , Zt−1) Pr(qt = qs

t |Zt−1)

Pr(zt|Zt−1)

=
Pr(zt|qt = qs

t ) Pr(qt = qs
t |Zt−1)

Pr(zt|Zt−1)
(3.17)

=
Pr(zt|qt = qs

t ) Pr(qt = qs
t |Zt−1)∑N

j=1 Pr(zt|qt = qj
t ) Pr(qt = qj

t |Zt−1)

with

Pr(qt = qs
t |Zt−1) =

N∑
j=1

Pr(qt = qs
t |qt−1 = qj

t ) Pr(qt−1 = qj
t |Zt−1) (3.18)

The preceding equations are only applicable to perform recursive Bayesian filtering
based on observations from a discrete process. An HMM can also be used to approximate
a continuous state pdf if the N positions in the state space are chosen carefully and the
state pdf exhibits Gaussian modes. However, to obtain a good approximation of a
continuous state space, a sufficient number of states is needed at the expense of a large
computational cost.

Let us now turn to the practical use of this framework for recognition purposes. In
the classical notation [79], an HMM consists of a tuple λ = (A,b, π) where A is an

4In the equations in this section, we will use the notation Pr(·) to emphasize the discrete nature of
the probabilities p(·).
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N ×N matrix containing the individual state transition probabilities aij, and b is an N
dimensional vector with the emission probability density functions for all states. The
notation used in the preceding equations is related to these HMM parameters by:

Pr(qt = qi
t|qt−1 = qj

t ) = aij ∀ i, j ∈ {1 . . . N} (3.19)

Pr(zt|qt = qi
t) = bi(zt) ∀ i ∈ {1 . . . N} (3.20)

For initialization of the stochastic process, the N dimensional vector π contains the
initial state probabilities:

Pr(q1 = qi
1|Z0) = πi ∀ i ∈ {1 . . . N} (3.21)

To generate an HMM, the parameter values (A,b, π) have to be determined. Usu-
ally the parameter values are learned automatically from training examples via the
Expectation-Maximization (EM) [22] optimization method. The application-dependent
design decision that has to be made by the designer before the training is to define the
number N of different states and the topology of the state transition network, i.e., which
transitions aij are allowed.

While the ’transition’ and ’emission’ probabilities in an HMM recovered by the training
algorithm are interpretable by a human system designer, the actual states s = 1 . . . N
to which the transition and emission probabilities belong do not always have a clear
interpretation. Even with a priori knowledge about the characteristics of the underlying
process generating the observations, it is difficult for a system designer to incorporate
this knowledge into the framework.

The recognition of a human activity is performed by computing for all HMM’s, where
each HMM represents one model, the most likely state sequence using the Viterbi al-
gorithm [79]. Computing the most likely state for each time step t individually does
not necessarily give the same result, as not all transitions between different states may
be allowed. Given an observation sequence, the most likely state sequence of a specific
HMM recovered by the Viterbi algorithm allows us to compute the associated maximal
emission probability of this HMM. The recognized activity is then given by the HMM
that generates the largest emission probability. Note that for any input sequence this
recognition scheme provides only the information which of the HMM’s best explains the
observed data, but there is no mechanism to indicate if an input is unknown. To avoid
false positives, a separate rejection method has to be implemented, for example by using
thresholds on the probability values for the most likely state sequence.
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3.2 Recognizing Activities

3.2.3 Particle Filtering

One alternative to HMM’s that recently gains increasing interest are approaches applying
particle filter algorithms [48, 2]. Particle filtering is a technique for implementing a
recursive Bayesian filter by Monte Carlo simulations. The basic idea is to represent the
posterior density p(qt|zt) from Eq. 3.6 by a set of N weighted samples, the particles, and
to compute estimates of the posterior based on these weighted samples (see Fig. 3.5).
Different from Kalman filters and HMM’s, a Particle filter allows us to model a non-
linear, non-Gaussian state pdf by approximating it with a set of weighted samples.

p
�
qt �

qt

Figure 3.5: The state probability density function modeled by a particle filter.

Each sample contains a vector in the m-dimensional feature space that is suitable to
describe the motion:

s(i) = (x) with x = (x1, . . . , xm) (3.22)

Together with its associated weight π
(i)
t , each sample s

(i)
t represents a support point

in the posterior pdf. The complete set of samples with their weights gives the sample
set: {

(s
(1)
t , π

(1)
t ), . . . , (s

(N)
t , π

(N)
t )

}
(3.23)

For N → ∞, the overall a posteriori probability p(Ωt|Zt) at time t given the se-

quence of states Ωt = {q1, q2, . . . , qt} and samples S
(i)
t = {s(i)

1 , s
(i)
2 , . . . , s

(i)
t } can then be

represented by [2]:

p(Ωt|Zt) ≈
N∑

i=1

π
(i)
t δ(Ωt − S

(i)
t ) (3.24)

The sequence of observations Zt = {z1, z2, . . . , zt} is implicitly contained in Eq. 3.24

as for every time step t the observation zt is used for calculating the weights π
(i)
t . The

temporal propagation of the N weighted samples is carried out through first propagating
the samples to the new time step t + 1 and then updating the weights. The state
propagation usually contains a deterministic drift based on the system dynamics and
some diffusion resulting from the uncertainty in the system dynamics (see Fig. 3.6).

The weights are chosen based on a technique called Importance Sampling: Let us
assume that there is a probability density p(y) that is difficult to sample but for which
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Figure 3.6: The propagation of the sample set in a particle filter.

a proportional pdf r(y) is available that can be evaluated:

p(y) ∝ r(y) (3.25)

If we have an importance density t(y) from which we can easily draw samples x(i), we
can calculate a weighted approximation to p(y) by:

p(y) ≈
N∑

i=1

π(i)δ(y − x(i)) with π(i) ∝ r(x(i))

t(x(i))
(3.26)

In this approximation, the weights π(i) compensate for the difference between the
importance density t(y) and the probability density p(y).

Using importance sampling, the weights in Eq. 3.24 can be calculated. This requires
an importance density t(Ωt|Zt) for drawing samples S

(i)
t giving:

π
(i)
t ∝ p(S

(i)
t |Zt)

t(S
(i)
t |Zt)

(3.27)

If only a filtered estimate p(qt|Zt) is needed at sequential time steps and the human
activity can be modeled by a first-order Markov process as stated in Section 3.1, it can
be shown (see [2]) that the weights can be calculated sequentially from:

π
(i)
t ∝ π

(i)
t−1

p(zt|s(i)
t )p(s

(i)
t |s

(i)
t−1)

t(s
(i)
t |s

(i)
t−1, zt)

(3.28)
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Using this sequential weight updating, the posterior filtered density p(qt|Zt) can now
be approximated for every time step t using:

p(qt|Zt) ≈
N∑

i=1

π
(i)
t δ(qt − s

(i)
t ) (3.29)

The method presented above to sequentially propagate a sample distribution over time
is known as Sequential Importance Sampling (SIS). After a few iterations of the weight
calculation using this type of importance sampling, a few samples will have high weights
while most of the samples will have negligible weights. This degeneracy phenomenon
cannot be avoided in the standard SIS approach and results in a waste of computational
power for updating a large amount of particles having small weights. To circumvent the
degeneracy phenomenon, either the importance density must be chosen very carefully or
a resampling of the sample distribution must be introduced. Today there exists a wide
range of particle filtering approaches that follow the basic SIS algorithm outlined above
but differ in the choice of importance density and/or resampling step [2].

Within the vision community, a specific particle filtering technique called Sampling
Importance Resampling (SIR) is better known as Conditional Density Propagation (Con-
densation) introduced by Isard and Blake [47] to track objects in noisy image se-
quences. In the SIR algorithm the importance density is chosen to be the prior density:

t(s
(i)
t |s

(i)
t−1, zt) = p(s

(i)
t |s

(i)
t−1) (3.30)

This leads to a simplification of the weight update equation 3.28:

π
(i)
t ∝ π

(i)
t−1p(zt|s(i)

t ) (3.31)

Resampling is performed in SIR at every time step, so that π
(i)
t−1 = 1/N and the weight

update becomes:
π

(i)
t ∝ p(zt|s(i)

t ) (3.32)

Notice that the importance density is independent of the observation zt and, conse-
quently, the state space is explored without any knowledge of the observation. Addition-
ally, resampling in every time step could result in a loss of diversity among the samples,
as the samples with high weights will be selected very often during resampling. If the
process noise is small, the samples selected several times during resampling will not dif-
fer very much after the sample propagation. Therefore, the sample set will eventually
contain multiple instances of the same sample. However, in computer vision applica-
tions the observations obtained from image data are usually very noisy so that sample
set degeneracy is very unlikely.

Following the original publication, this tracking framework has been extended to au-
tomatically switch between several movement models to provide a mechanism for classi-
fication of the movements [49]. For this purpose, a multinomial label µ is added to each
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sample s
(i)
t indicating the movement model the sample belongs to:

s(i) = (x, µ) with x = (x1, . . . , xm), µ ∈ {1 . . . l} (3.33)

A model specific sample propagation from time t to time t+1 is used to propagate the
samples depending on the model they represent. The recognition of a specific model is
realized by calculating at every time step t and for every model µ the model probability
Pt(µ = j) based on all samples belonging to this model:

Pt(j) =
∑

i ∈ Υj

π
(i)
t with Υj = {k | s(k)

t = (x, µ = j)} (3.34)

Now at every time step the highest model probability indicates which model is cur-
rently dominant in the state space and therefore best represents the observed data.

Following the first publication of particle filters in the vision community under the
name condensation [47], many vision applications have used the particle filtering
framework for analyzing image sequences. Applications range from the tracking of mul-
tiple objects based on laser range data acquired by a mobile robot [56] over the 3D-
tracking of a walking human based on 2D image data [88] to the recognition of hand
gestures drawing on a whiteboard with a specially colored marker [12].

3.3 Summary

In this chapter, we presented a model for human activities that assumes that the under-
lying process leading to the observations of an activity can be modeled by a first-order
Markov process. Under this assumption the observations can be used in a recursive
Bayesian filter to recognize the performed activity. Three algorithmic techniques that
are realizations of a recursive Bayesian filter were presented, namely Kalman filtering,
Hidden-Markov-Models, and Particle filtering. Each of these techniques can cope with
a different complexity of the state probability distribution function that describes the
current state of the process giving rise to the observations. With the introduction of
these techniques, we now have the background to deal with the recognition of activities
based on observations.
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4 Finding Human Hands in Color Images

The recognition of activities as outlined in the previous chapter depends on the avail-
ability of a sequence of features ZT = {z1, . . . , zt, . . . , zT} that characterizes the motion
of interest. For the recognition of a hand gesture the motion of the hand has to be
extracted from the image sequence depicting the gesture. This amounts to finding the
hand in each image and tracking the hand over the complete image sequence. In this
chapter, we concentrate on the image processing necessary for extracting the hand from
a single image to obtain the feature vector zt describing the position of the hand in this
image. Tracking the hand to obtain the feature sequence ZT will be covered within the
following chapter dealing with the actual recognition of gestures.

Today, there exists a variety of different methods for feature extraction from image
data, each with specific advantages and limitations. The cues commonly used can be
grouped into three categories: motion, shape, and color. Each of these cues has certain
strengths and weaknesses that make it suitable for specific applications. The cue chosen
for recognizing a gesture should enable the detection of the hand in the images of an
image sequence but not get distracted by other influences.

For example, the Motion cue does not only detect moving hands but also the motions of
manipulated objects as well as any non-static objects in the background. It is therefore
only useful in domains with static background. The Shape is only a good cue if the
hand that executes the motion exhibits a stable visual structure during the motion.
However, human hands usually exhibit a wide range of shapes during interacting with
the environment. Only if the hand shape variations are limited, e.g., if most of the
fingers are visible during the motion, an adaptive hand-shape tracker [47] could be used.

The Color cue is suitable for feature extraction in arbitrary domains with respect
to hand shape variations and motions in the background, as it is rotation and scale
invariant as well as motion independent. However, the variations in lighting conditions
pose major challenges to a color-based feature extraction. Even in a room without
windows, different lighting conditions are encountered at different positions in the room.
This is due to the individual light sources at the ceiling, and the shading introduced by
objects or moving persons. In a typical office environment with the different intensity
of the light passing through the window during the day, this becomes even worse.

Resulting from the changes in the color cue due to lighting changes, it is not possible
to use a static color model without restricting the environment. However, one can use a
dynamic color model and adapt it to the changing color of the object of interest. Such an
adaptive color segmentation allows us to extract features in arbitrary environments with
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varying lighting conditions. For the goal of extracting features for gesture recognition in
a wide range of domains, the color cue is therefore the best choice if an adaptive method
is applied.

Developing adaptive color segmentation methods gains interest during the last years as
color processing in general becomes more widely used and increasing processing power
starts to allow adaptive solutions. Especially the growth of mobile devices and their
widespread use has recently attracted interest in adaptive skin-color segmentation be-
cause lighting conditions are uncontrollable in mobile devices. For example, to enable
low-bandwidth video conferencing applications with camera-equipped cellular phones, it
is necessary to track the human face in arbitrary indoor and outdoor environments [90].

The purpose of this chapter is to present the adaptive skin-color segmentation algo-
rithm developed for feature extraction. The presented technique allows us to obtain
region descriptions for human hands and faces. These regions and their features are
the measurement values needed by the classification techniques introduced in the previ-
ous chapter to perform gesture recognition. To start with, the properties of skin color
relevant for its detection in camera images are outlined in Section 4.1. Subsequently,
Section 4.2 gives an overview of previous adaptive skin color segmentation methods
and their limitations. A general description of the individual image processing steps
that have to be performed is the topic of Section 4.3. Our method for adaptive skin
color segmentation is explained in Section 4.4. The performance is demonstrated in
Section 4.5 qualitatively with snapshots from image sequences containing varying light-
ing conditions. The presented approach for image segmentation based on skin-color is
summarized in Section 4.6.

4.1 Properties of Skin-color

Realizing an adaptive color segmentation approach that is able to deal with arbitrary and
varying backgrounds requires the incorporation of additional constraints. Segmenting an
image into areas with the color of interest requires to first classify each individual pixel.
After performing pixel classification on the complete image, the areas of homogeneous
color representing the color of interest can be constructed. Incorporating additional
constraints for an adaptive segmentation approach can therefore be done in the pixel
classification step as well as in the segmentation step.

In this section, we will concentrate on the pixel classification step. Obviously, the
properties of the color cue and its variations under different lighting conditions can
be exploited for adaptation. Several researchers have carried out basic studies on the
properties of skin color and methods to model skin color to perform pixel classification.
We will review in the following some important contributions to this field as these
findings form the basis of our adaptive skin-color segmentation method.
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4.1 Properties of Skin-color

Representing Skin-color

A basic paper by Yang et al. [107] analyzes the color properties of face images based on
a database containing about 1000 faces of people of different races. In their work three
properties important for modeling skin color are identified:

1. Skin color is clustered in a small region in a color space, i.e., the individual color
values are not randomly distributed. The clustering property is independent of a
specific color space, only the compactness of the cluster varies for different color
spaces (see also [50, 109]).

2. The variance of the skin color distribution can be reduced by intensity normaliza-
tion. Choosing a color space with intensity normalization is therefore advantageous
for modeling skin color. Yang et al. propose the normalized color space that is
obtained by removing the luminance from the color representation through nor-
malization of the individual RGB values:

r =
R

R + G + B
g =

G

R + G + B
b =

B

R + G + B
(4.1)

As the value for b can be calculated based on the values of r and g with b =
1 − r − g, it does not contain additional information and the normalized color
space is therefore in the following referred to as r-g color space. In the literature
this color space is also referred to as chromatic color space.

3. The skin color distribution for a specific lighting condition can be characterized
by a multivariate normal distribution in the normalized color space.

Another study focusing on skin color contained in isolated pictures collected over the
internet is the work by Jones and Rehg [51]. For their study, a total of 4675 images from
the internet containing skin were segmented manually. They compared two methods
for modeling normalized skin color, namely mixture models and color histograms. A
performance evaluation revealed that histogram models are superior to Gaussian mixture
models if a large training set is available. For modeling the skin with a histogram model,
32 bins/channel were found to give the best result for their training set. They point out
that the choice of the bin number is a crucial point in histogram models. A small
number of bins leads to over-generalization while a large number of bins results in a
model too specific for a slightly changed situation. Their work allows us to draw the
conclusion that Gaussian mixture models are a feasible approach to recognize human
skin in environments with limited training data but are outperformed by histogram
models otherwise.

Despite of this conclusion it must be noted that even modeling skin distributions with
a histogram does not result in a perfect pixel classification. To analyze the classification
quality of histogram modeling, Brand and Mason [16] used the data set collected by
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Jones and Rehg [51] to construct a histogram. Subsequently, they set the classification
threshold so that 95 % of the skin pixels were correctly classified. This threshold resulted
in an incorrect classification of around 20 % of non-skin pixels that were classified as
skin [16].

This high rate of false positive classification may be due to overlapping skin and
non-skin distributions in the training data. This assumption is supported by recent
work of Gomez and Morales [38] who constructed a rule-based classification system
for their training set. The resulting decision rules correctly classified 96 % of skin
with a false positive classification of only around 6%. Although these numbers are
a major improvement compared to the results of Brand and Mason [16], they show
that a completely correct classification of individual pixels may be impossible due to
overlapping skin and non-skin distributions.

Summarizing, most publications proposing to model skin color distributions with his-
togram models indicate a substantial amount of false positives. Only a recent publication
by Gomez et. al [38] working with another data set presents a reasonable low rate of
false classified pixels. However, the achieved classification quality does not allow to draw
inferences how the error rates at the pixel level influence the overall segmentation result
for an arbitrary image. What if under a certain lighting condition the complete face is
within the false negatives? Vice versa, what if the color of a wooden book shelf next to
a face is contained in the false positives?

Another, probably more important, aspect is the superior image quality of pictures
taken manually. The images of an image sequence taken automatically during observing
a human may exhibit, for example, heavy shading due to insufficient lighting. Therefore
the skin pixels contained in such images will cover a wider range of the color space
that has a larger overlap with non-skin pixels making a discrimination more difficult.
A solution to this problem is the use of a local skin color model that is adapted to the
current lighting situation.

Representing the Global Skin Distribution: the Skin Locus

Störring et al. concentrate in their work on the properties of skin color in faces of dif-
ferent ethnical subjects under changing lighting conditions [92, 93]. Their study verifies
a physics-based model of skin color that predicts the appearance of skin color under
varying lighting conditions. For this purpose images of different people under differ-
ent illumination conditions are captured. The test set consists of seven subjects from
around the world (Latvia, Denmark, Greece, Spain, China, Iran, India and Cameroun)
to capture all possible variations of skin type. Controlling the illumination conditions
and knowing the spectral sensitivity of the camera allows to prove the validity of a
theoretical framework modeling how skin color distributions are affected by changing
illumination conditions. The relation between changes in the lighting condition and the
resulting changes in the mean skin color chromaticity can be seen in Fig. 4.1. The means
of the skin color values for all training subjects and the area predicted by the theoretical
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model are depicted in Fig. 4.2(a) for four illumination conditions. The distribution of
the individual skin color values under the four illumination conditions for the Caucasian
skin type (from Latvia) can be seen in Fig. 4.2(b).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

red chromaticity

gr
ee

n 
ch

ro
m

at
ic

ity

25000K

6000K

3200K 2300K

1500K

Lightsource Locus

Skin−reflectance Locus
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eas calculated with a theoretical model for different color temperatures if the
camera is white balanced to a Blackbody radiator of T=3200K (from [92]).
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Figure 4.2: (a) The means of the skin color values for all seven training subjects together
with the skin color range predicted by the theoretical model. (b) The distri-
bution of the individual skin color values for the Caucasian skin type from
Latvia (both images from [92]).

Following the theoretical model, it is shown that the area occupied by the skin color
distribution of all different skin types under all possible lighting conditions occupies a
shell-shaped area in the r-g normalized color space. This area can be modeled by two
quadratic functions [90] and is referred to as the skin locus in the following.
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For real applications the area of the actual skin locus can be measured from labeled
training images for all relevant illumination conditions. This avoids knowing the spectral
sensitivity of the camera sensor. Using a measured skin locus allows us to realize a
preprocessing step in skin color segmentation approaches by discarding all pixel values
that are not contained in the measured skin locus [90]. Through this preprocessing step
an adaptive algorithm can be prevented from adapting to a color that is not skin-like.
The size of the measured skin locus depends on the skin color of the training subjects
and the illumination conditions of the training images.

4.2 Related Work

A large number of applications have been developed that segment images based on the
color cue to track human motions. Probably the most famous adaptive image segmen-
tation system is the Pfinder (”person finder”) system developed at MIT by Wren et
al. [103]. Pfinder can track a single human in real-time based on a multi-class statistical
model of the color and shape of body parts. For this purpose, a simple representation
of the human body with head, torso, arms, hands, legs and feet is used. The color of
each body part is modeled as Gaussian in the YUV color space [105] and its position as
Gaussian in image coordinates (x,y). To enable a foreground-background segmentation,
the statistics of each background pixel are learned during an initialization phase with-
out a human in the field of view. Based on the pixel statistics, each background pixel is
modeled by a Gaussian distribution that is slowly adapted to lighting changes.

After initialization, a large change in the background statistics of an image area is
interpreted as a human entering the scene. In this case, all pixels not belonging to
the background are used to initialize the color models of the individual body parts
following a simple model of the body configuration. During tracking each new image
is processed by calculating for each pixel whether the closest body model in image
coordinates or the corresponding background pixel model has the highest likelihood. All
pixels assigned to a body model are subsequently used to smoothly update its Gaussian
parameters allowing Pfinder to cope with smooth changes in lighting. Resulting from
the modeling of the background and the body parts, only a single, completely visible
human wearing homogeneously colored clothes is allowed to enter a scene with a nearly
static background. Despite these limitations, Pfinder has been applied very successfully
in many applications, for example in American sign language recognition [91].

The related LAFTER system by Oliver et al. [73] is intended to track and recognize
the face of a single user sitting in front of a computer. Here the overall background is
modeled by a mixture of Gaussians instead of modeling each pixel individually. This
accomodates varying backgrounds resulting from the use of a pan-tilt camera for ac-
tive face tracking. For modeling the face, the intensity-normalized r-g color space (see
Section 4.1) is used as it is well suited for representing skin color over a wide range of
lighting conditions [107]. The face color is represented by a mixture of Gaussians that
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is learned offline. Classification is performed by assigning each pixel to the class with
the highest probability. Performing a connected components analysis ([39], Ch. 2) on
this labeled image yields the skin-colored regions in the image. Adaptation of the face
color model consists of updating each class with the assigned pixels through an iterative
version of the EM-algorithm. As the distance between user and camera does not change
much, the region with shape and size similar to the expected face is selected to represent
the face.

A similar approach by Raja et al. [82, 80] also employs a mixture of Gaussians for
modeling skin color in r-g color space to track the face of a single person in real-time.
However, no background model is used as their approach aims at finding the face position
in cluttered, non-constant backgrounds. After manual initialization of the color model,
the skin probability image is computed by calculating for each image pixel its probability.
Assuming only a single skin-colored object in the image, the face position is obtained
by calculating the center of mass (COM) for the overall skin probability image. Here
the mixture model is updated based on all pixels within a bounding box around the
COM. In the example in [82], the active camera performs changes of pan, tilt, and zoom
while the tracked face of a human moving through an office undergoes large changes in
illumination.

Recently, Soriano et al. [90] proposed an adaptive algorithm that tracks single faces
on camera-equipped mobile phones. To reduce the computational load, their algorithm
employs a histogram representation for modeling the current skin color distribution in
r-g color space. During initialization, manually segmented skin regions are used to
construct the skin histogram S(r, g). A ratio histogram R(r, g) is obtained by dividing
every bin in S(r, g) by the corresponding bin in the histogram of the complete image
I(r, g). This results in small ratio values for colors that occur more often in I(r, g) than
in S(r, g), i.e., that are also present in the background. For color values that do only
occur in the skin histogram S(r, g), the ratio value is close to one. Consequently, the
ratio histogram contains for every pixel color the probability that is skin color and allows
us to directly compute the skin probability image for a new input image. Similar to Raja
et al. [82], the face is located by computing the COM of the skin probability image. The
pixels in a bounding box around the COM are used for updating the skin histogram and
calculating the new ratio histogram. To avoid tracking background objects, all non-skin
pixels contained in the bounding box are discarded using an empirically determined
global skin locus (see Section 4.1). Modeling the skin color distribution with a ratio
histogram requires a suitable choice of the histogram bin size. A large number of bins
leads to a sparse ratio histogram that is not able to cope with small lighting changes.
Vice versa, a small number of bins may result in segmenting background objects with
a color close to skin. The published results indicate that the approach is able to track
a single face positioned close to the camera, i.e., occupying a large area of the camera
image, using a ratio histogram with 32 bins/channel.
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4.3 Extracting Features with Image Processing

The extraction of relevant features from image data plays an important role in research
work on image understanding. A variety of different methods has been developed to
detect, e.g., lines, edges, or regions. For recognizing human hand motion in arbitrary
environments, we have pointed out above that the color cue is well-suited. The color
cue is shape and scaling invariant and, additionally, it is a simple feature as it is directly
available from the image sensor.

In image processing systems the feature extraction usually consists of several distinct
processing steps carried out sequentially:

1. Image Acquisition (quantization, digitalization)

2. Image Enhancement (filtering, color correction, ...)

3. Iconic Feature Extraction (color label, gradient, ...)

4. Segmentation (edges, regions, ...)

5. Image Feature Extraction (e.g., for regions: size, compactness, area, ...)

We will describe in the next paragraphs these general image processing steps more
precisely, concentrating on those aspects that are relevant for the task of finding skin-
colored objects. In this way, we set the stage for the description of our method for skin
color segmentation that will be introduced in Section 4.4 by referring to the different
processing steps explained in more detail in the following.

Image Acquisition

The image acquisition is done primarily with standard video cameras. In the camera the
spectral light distribution reflected from the scene is measured for each image position
with a spatial matrix of charge coupled devices (CCD). To obtain a color representation
of the scene, the incoming light spectrum is separated with filters in the three primary
colors red, green, and blue following the RGB color model [105]. Notice that the camera
sensor does not measure exactly one wavelength but integrates the spectral intensity
that passes the optic filter around the primary wavelength. Consequently, as this optic
filter is not identical for different cameras from different manufacturers, the RGB values
of a light spectrum observed by different cameras do not match perfectly.

Besides these differences between cameras, it is necessary to calibrate the gains of the
three different RGB values of a single camera to a common base value. This calibration
is called white-balancing and is done by showing a white object to the camera and cali-
brating all three color values to their maximum value. As the camera is white-balanced
to a specific illumination, a change in lighting will result in a wrong calibration and
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possibly in an inadequate dynamic range of the individual RGB color values. Therefore,
state-of-the-art video cameras are capable of performing automatic white-balancing.

For compatibility between different setups, the image acquisition step outlined above
is the most important. Depending on the sensitivity of subsequent processing steps with
respect to variations in the RGB values, it may therefore be necessary for an image
processing system to be adapted to the specific spectral characteristics of the camera
used in a given setup.

Image Enhancement

The image enhancement step is usually carried out to improve the quality of the image
data, i.e., it modifies the color values of the individual pixels. Besides the elimination of
measurement artifacts introduced by the image sensors like, e.g., pixel noise, this step is
used in color image processing to reduce the effects of shades or varying reflectances. As
the lighting conditions in real world environments are far from being constant, especially
if the camera or the observed object moves, the color values measured by the camera
exhibit large variations. Figure 4.3 illustrates schematically several aspects that influence
the light spectra observed from a specific object: the spectral characteristics of the
illumination sources; the distances and angles between sources, object and camera; the
object’s reflection and absorption characteristics; the light reflections from other objects
in the scene.
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Figure 4.3: A simplified illustration depicting different influences on the appearance of
an object.

Obviously, a change in the position of the object or the observer will very likely
result in a changed spectrum of the object as it is observed by the camera. However, a
human observer often does not notice this changed appearance: Under different lighting
conditions an object surface is observed as having a constant (i.e., the same) color.
Several different processes in human image processing are believed to be responsible
for this capability. With respect to color perception, the low-level stages of the human
visual system perform white-balancing and adapt the sensitivity of the receptors in the
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human retina (see [100], for example). Besides these physiological processes in the low-
level visual system of the human, color perception is believed to also consist of higher
level processes in the brain. One aspect is that the human observer extracts the color of
the illuminant out of the stimulus and automatically discounts it [24]. Another aspect
is the tendency of humans to see the color of familiar objects as we expect them to be.
Together with the poor color memory of humans, an introspective view therefore leads to
the assumption that humans are able to perform chromatic adaptation. However, while
the low-level processes are indeed resulting in a certain ability to perform chromatic
adaptation, there seems to be a substantial influence from the high-level processes on
how humans perceive color that depends heavily on the cognitive context.

To enable image processing systems to cope with variations in lighting conditions,
researchers have proposed a large variety of color constancy algorithms that aim at
mapping the observed color description to an illumination-independent description (cf.,
e.g., [28, 34, 84]). However, due to the different processes active in the human visual
system, it is an open question whether perception-based color constancy algorithms are
sufficient to cope with lighting variations [35].

Besides the qualitative aspects of color constancy algorithms, the computational effort
to perform the color correction of images is still too high to apply color constancy
algorithms in real-time systems. Additionally, many color constancy algorithms need
certain assumptions to be satisfied or need additional input data, for example the know-
ledge of the illumination conditions. Therefore, real-time image segmentation approaches
try to convert the raw color data into a color space that is less sensitive to changes in
lighting. Depending on the application domain and the processing steps performed on
the color data, a large number of different color space representations has been proposed.
A perceptually uniform color representation is the Lu∗v∗ color space [105] where the
Euclidean distances between different color tuples are proportional to the differences
observed visually by a human. One transformation that has proven to be well-suited for
reducing skin color differences due to lighting changes is the r-g color space (see 4.1).
However, a static color space transformation into a new color space is not sufficient to
cope with arbitrary changes in illumination. Therefore, additional measures have to be
taken in subsequent processing steps to cope with lighting variations.

Iconic Feature Extraction

Based on the enhanced image representation, the extraction of iconic features of the in-
dividual pixels can be carried out. This is an optional processing step, as the subsequent
segmentation step may be based directly on the enhanced image representation. For ex-
ample, the Lu∗v∗-representation of an image can be used directly in the segmentation
step to find regions of homogeneous color.

However, the example for direct color segmentation based on the Lu∗v∗-representation
does not apply to situations where specifically colored objects need to be found. In this
case, a model for the color of interest can be used to assign to each pixel a label indicating
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whether it belongs to this color model based on some distance criteria for the color value.
Such an iconic feature extraction transforms a color image into a label image. Instead
of directly assigning discrete labels to color pixels, it can be more advantageous to use
continuous values for every pixel indicating the likelihood that it belongs to a specific
color model. This results in a probability image for the specific color.

Note that a static color model for the color of interest is not sufficient to cope with
lighting variations. It is therefore necessary to either perform some adaptation of the
color model or to use several different color models depending on the current lighting
situation.

Segmentation

In the image segmentation step, the iconic features of the input image are spatially
grouped together to form some kind of high-level representation of the image contents.
Obviously, this processing heavily depends on the type of iconic features provided by the
previous processing step. If we concentrate on the color cue, the iconic features of the
individual pixels can be their color values in a certain color space, some labels indicating
specific color models, or continuous values indicating the likelihood of a color model.

For example, the Lu∗v∗ color values present in an image can be grouped into classes
based on their Euclidean distances in the color space (e.g., [20]). Now each pixel gets a
label assigned indicating the color class it belongs to. If every pixel has been assigned
to a color class resulting in a label image, a connected components analysis ([39], Ch. 2)
yields regions of homogeneous color.

Instead of such a data-driven image segmentation, a model-driven image segmentation
using specific color models representing the colors of interest can be carried out. In this
case, each iconic feature represents how the pixel color relates to the specific color model
resulting in a probability image. This probability image is converted in the segmentation
step into a label image by thresholding the probability values. However, such a thresh-
olding applies only to situations where there is only a single color of interest. Given
several probability images for different color models, i.e., a probability vector for each
pixel, more sophisticated classification approaches are needed. A typical classificator
used for color segmentation is Maximum-Likelihood classification that selects the model
giving the highest probability value. To remove spurious outliers from the label image
and generate a smoothed segmentation result, median filtering is typically applied to the
label image. Applying a connected components analysis to the smoothed label image
provides the image regions with the colors of interest.

Image Feature Extraction

After the segmentation step, the homogeneously colored image regions in an image are
available. Which image features are extracted from the segmented color regions depends
on the given application. Typically, the region size, its center of mass, the surrounding
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polygon, and some additional data like, e.g., the eccentricity are calculated for every
image region. These features provide a description for the homogeneously colored areas
contained in the image. For the analysis of isolated images to perform, for example,
object recognition, these image features are sufficient.

For our goal of recognizing gestures from image sequences, the features extracted from
an individual image can be linked to the features extracted in the previous images of
an image sequence. The exploitation of the temporal information is often accomplished
through applying Kalman filtering (see Section 3.2.1) to the positions of the regions
segmented in every image of an image sequence. In this way, trajectories that represent
the motion of homogeneously colored objects in image sequences can be extracted from
the individual image features. The extraction of these image sequence features will
be considered in more depth in the next chapter dealing with the actual recognition
of gestures. In this chapter, we will concentrate on the extraction of image features
describing human hands from isolated images. For this purpose, we will now introduce
the developed method for adaptive skin color segmentation that allows us to extract
image features representing human hands.

4.4 Adaptive Skin Color Segmentation

As pointed out on page 56, there are currently no color constancy algorithms available
that allow to tolerate arbitrary lighting changes [35]. Current approaches to color im-
age processing try to constantly adapt internal models of the interesting colors to the
observed changes in the image data. An adaptive algorithm needs to decide for every
image whether the image contains objects of interest that have changed somehow and
to whose changed appearance the algorithm should adapt. In other words, the question
that needs to be answered is: ’What parts of the new image belong to the previously
observed objects that are now illuminated with a different lighting and therefore have a
different appearance?’.

A major challenge in the actual implementation of adaptive strategies is the lack of
’ground truth’ in the color signal: it is impossible to decide whether a pixel still shows the
same object that now exhibits a different appearance based only on iconic information,
i.e., the color of an individual pixel. Consequently, an adaptive algorithm may adapt
the color models to ’wrong’ values. For example, if a tracked human hand moves over a
wooden desk with a color slightly different from skin color, the desk could be accidentally
segmented to belong to the hand region. Subsequently, the color model may be updated
not only with the pixels belonging to the hand but also with the pixels exhibiting wood
color.

In order to avoid such distractions, we propose to use domain-dependent context
knowledge to restrict the adaptation to ’valid’ color values. For example, in the assembly
construction domain introduced in Section 2.2, the hands manipulate baufix r© parts while
at the same time wooden parts may be present on the table. In this domain, the hand
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regions are moving while wooden parts are static. Therefore, adaptation can be restricted
to those segmented regions that exhibit motion. In a scenario where a mobile robot is
intended to track human faces based on skin color, a face detection algorithm can be
used to verify that a segmented skin-colored region actually represents a face [31]. Only
if a face is detected at the position of the skin-colored region, an image patch of face
size is used for adapting the skin color model.

Previous adaptive approaches do not apply any verification step and use a single
rectangular update area based on the COM of the segmentation result [82, 90]. Conse-
quently, in case of a wrong image segmentation the color model is adapted to this wrong
image patch. In contrast, our approach only adapts its color model to skin colored im-
age areas that exhibit motion or have been identified as face regions by a face detection
algorithm. Consequently, a wrong adaptation is avoided and the approach is suitable
for segmenting hands and faces of humans acting in a wide range of environments.

The principal processing steps of our approach for segmenting input images using an
adaptive skin color model are as follows (see Fig. 4.4):
Based on a domain-dependent initialization step, an initial skin color model is gener-

ated. From now on, every image is processed with the current skin color model to label
every pixel as either skin or non-skin pixel. For this purpose, the input image is first
transformed into the r-g color space. Based on the skin color model, the probability of
every pixel for being skin color is calculated. A classification threshold is applied to the
probability values to obtain a binary label image. An example label image is visible in
Fig. 4.4 on the left beneath the input image. This label image is smoothed through ap-
plying a median filter to eliminate spurious pixels with skin color. Skin-colored regions
are extracted from the smoothed label image by carrying out a connected components
analysis. These skin-colored regions represent image-specific information about the ob-
jects in the scene having skin color. Tracking the segmented skin-colored regions over
time provides the trajectories of the objects in the image sequence for further analysis,
e.g., for recognizing the performed gestures.

To select the skin-colored pixels that can be used for updating the skin color model,
two different types of context knowledge for determining the ’true’ skin areas are applied:

• If a tracked region exhibits motions, i.e., it is not a skin-colored background object,
it is considered an ’interesting’ region and an update region Rupdate is constructed
based on the segmentation result (see Section 4.4.6).

• If a region segmented in an individual image exhibits a face-like structure, an
elliptical update region Rupdate is constructed based on the size of the face as
determined by the face detection. If this face region is also an ’interesting’ region
due to its motions, the elliptical update region replaces the original update region.

Based on a pre-trained global skin locus similar to the one used by Soriano et al. [90],
all pixels in the update regions that are not skin-like are discarded. For the remaining
skin-like pixels lying inside the skin locus, the skin probability is calculated using the
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Figure 4.4: The image processing for adaptive skin color segmentation.

current skin color model. This probability is compared to a threshold that was acquired
in the previous skin color model training phase. All pixels with a probability value
exceeding this training threshold are used for adapting the skin color model. The updated
skin color model is used for segmenting the next input image.

The realized adaptive skin-color segmentation

1. imposes a minimal set of restrictions on the scenario

2. enables skin color segmentation in real-time on standard workstations

3. provides a polygonal region description for all skin-colored regions instead of only
the center of mass of a single skin-colored region
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A detailed description of the individual processing steps for performing adaptive skin
color segmentation is the content of the next paragraphs.

4.4.1 Modeling the Skin Color Distribution

Based on the findings by Yang et al. [107] described in Section 4.1, we chose to use the
normalized r-g color space for representing skin color. The empirical study by Yang et
al. suggests that a Gaussian mixture is well-suited to model skin color distributions.
We pointed out that more recent publications dealing with the representation of skin
color distributions given large amounts of training data argue for the use of histogram
models [51, 16] or rule-based classifiers [38]. However, histogram models exhibit a rela-
tively high rate of 20 % false positives, i.e., background pixels classified as skin [16], and
the low rate of 6 % false positives published by Gomez et al. has not been verified on
other test sets. Even a low rate of false positives can prohibit a successful segmentation
in scenarios with uncontrollable conditions with respect to background and human skin
types.

Another important aspect is the fact that the test sets used consist mainly of pho-
tographs that exhibit ’good’ lighting conditions, e.g., sufficient illumination. In contrast,
images from an image sequence captured with a video camera performing automatic
exposure control are likely to be of inferior quality due to, for example, insufficient illu-
mination. Therefore, the skin and non-skin color distributions of image sequences will
differ from the test sets used in the published studies.

Given the differences between single photographs and image sequences with respect
to background and lighting conditions, we argue for the use of adaptive, local models
of the skin color distribution instead of a global skin color model trained offline. Given
the small amount of training data available in an adaptive approach and the problem of
selecting the appropriate number of histogram bins to model the skin distribution [51],
the use of an adaptive histogram model is difficult. Instead, Gaussian models are used
very often in adaptive color segmentation approaches [103, 73, 82] as they allow to model
color distributions with a small parameter set.

Consequently, we use Gaussians to model skin color distributions. The skin likelihood
for a pixel with color value x = (r, g) can be calculated for a Gaussian G(i) with mean
µi and covariance Σi using:

pi(x) =
1√

2π detΣi

exp

{
−1

2
[x− µi]

TΣ−1
i [x− µi]

}
(4.2)

The remaining design decision is whether an unimodal Gaussian or a mixture of Gaus-
sians should be used to model a skin color distribution. Obviously, this depends on the
properties of the distribution, i.e., on the variations in lighting and skin types contained
in the distribution.
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Selecting the Appropriate Gaussian Model

The simplest modeling of a skin color distribution consists of an unimodal Gaussian.
For the special case of modeling the skin color distribution of a person’s face, a single
Gaussian has been shown to give good results [80]. Using an unimodal Gaussian has
implications for the goal of real-time performance, as calculating the Gaussian param-
eters of mixtures increases the computational load for performing adaptation. More
important, however, is the increase in the computational load in the classification step
which must be carried out for every image. The skin color probability of a pixel needs
to be calculated for every mixture component of a Gaussian mixture instead of once for
the single Gaussian. Therefore, the relation between the computational load for classi-
fication and the number of mixtures is nearly linear, i.e., a Gaussian mixture with two
components needs twice the computational power for classifying an image pixel.

While modeling a skin color distribution with a single Gaussian is computationally
less expensive, it results in a reduced ability to deal with color inhomogeneities. Color
inhomogeneities are encountered within a single skin-colored object (intra-region) due
to, e.g., partial shading as well as between objects (inter-region) due to, for example,
different skin types or lighting conditions. The most important situation where a skin-
colored hand or face exhibits large intra-region color variations are partial shading effects.
Figure 4.5 gives an example for intra-region color inhomogeneities. Here light comes
through a window on the left resulting in a partly shaded right side of the face and a
darker hand visible on the right compared to the hand on the left that is very bright.
For such situations, a good segmentation result can only be achieved through modeling
the skin color distribution with a mixture of Gaussians.

Figure 4.5: Example image depicting the inhomogeneous skin color due to shading.

Due to different lighting conditions at different locations in the scene, an image may
contain both, intra-region and inter-region color inhomogeneities. Consequently, if sev-
eral skin-colored regions are present in an image, the optimal solution is to model each
skin-colored region individually by a mixture of Gaussians. While this is the best solution
for the representation of different skin-colored regions, it is computationally too expen-
sive for the goal of developing an adaptive segmentation approach working in real-time.
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Therefore, we implemented two different methods for modeling skin color distributions
that are suitable for different environments:

Unimodal Gaussian for each region: Separate unimodal Gaussians allow for different
lighting on the individual hands or faces but not for color inhomogeneities within
a single skin-colored region as depicted in Fig. 4.5. If after initialization a portion
of a skin-colored object changes appearance due to, e.g., shades, only the part of
the object with stable visual appearance that is modeled by the Gaussian skin
color distribution will still be segmented correctly. While the boundary of the
hand or face region is therefore inaccurate, it is still possible to track this region
based on its unchanged part. However, updating of the skin model based only on
the segmented image area will result in a Gaussian not capable of modeling the
changed appearance. Therefore, modeling skin color with a single Gaussian for
each region is only applicable if the update area for a region can be determined
based on context, e.g., from face detection results. An important disadvantage of
using a single Gaussian for modeling the color of skin-colored regions containing
intra-region color inhomogeneities is the large variance resulting from the inhomo-
geneities. Classifying an image with an unimodal Gaussian having a large variance
results in labeling background pixels as skin due to the broad skin color distribu-
tion.

One mixture of Gaussians for complete image: The quality of modeling several skin
colored regions in an image with one mixture of Gaussians usually increases with
the number of mixture components used. The mixture allows for a better modeling
than the unimodal Gaussians if the number of components M is at least equal to
the number of skin-colored regions in the image and the different regions have
partially a similar color. For a single human, the potential differences between
the hands and the face will be related primarily to different lighting conditions.
Consequently, with a smaller inter-region variation due to similar skin appearance
of the hands and the face of a single human, a mixture of three Gaussians allows
us to also model intra-region variations due to shading. More important, however,
is the more precise modeling of the skin color distribution that reduces the number
of false positives in the background.

Selecting the appropriate modeling of the skin color distribution is depending on
the application domain and the available processing power. For example, in a domain
with a single acting human like the Situated Artificial Communicator, the mixture of
Gaussians is more appropriate as it allows for intra-region variations and a more precise
skin color modeling. Using standard workstations, the associated computational cost
can be handled in real-time.
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4.4.2 Measuring the Skin Locus

As pointed out in Section 4.1, the skin color of a large number of different human
subjects is distributed in normalized color space in a restricted area, the skin locus.
This skin locus can be used to ensure that only skin-like pixels are used for adapting
a skin color model [90]. The exact shape and placement of the locus depends on the
camera characteristics and on the lighting conditions used for acquiring the training
images. To generate the skin locus for our setup, we collected images containing skin
patches under different lighting conditions with a Sony EVI-D31 camera.

The first training set contained images of five different subjects. Figure 4.6 shows
original images of the five subjects before manual segmentation of the skin-colored areas.

(a) (b) (c) (d) (e)

Figure 4.6: The first training set consisting of images showing five different persons.

For every person and every lighting condition, two pictures were taken showing the
two different sides of the hands. Fig. 4.7 shows the complete set of images for one person.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.7: For each lighting condition two images were taken showing the two different
sides of the hands: (a),(b) camera white-balanced for outdoor conditions;
(c)-(h) camera white-balanced for indoor conditions.
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A total of four different lighting conditions was used:

The camera white-balanced for outdoor conditions :

1. Fig. 4.7 (a),(b): light coming through the window on a cloudy day

The camera white-balanced for indoor conditions:

2. Fig. 4.7 (c),(d): direct light from outside

3. Fig. 4.7 (e),(f): light from outside with partial shading due to blinds

4. Fig. 4.7 (g),(h): pure indoor lighting

All skin patches in the images were manually segmented to generate the global skin
color distribution in normalized color space that is depicted in Fig. 4.8(a).
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Figure 4.8: The measured skin locus distributions for (a) the first training set consisting
of faces and hands of five subjects and (b) faces of six persons partially
containing bright sunlight.

We obtained a second set of 440 face images from six different people with the help of
a face detection method (see Section 4.4.3). Here a bounding box around the detected
face position was used to automatically cut the image patch showing the face out of the
overall image. As can be seen in the images in Fig. 4.9, this resulted in a small amount
of background pixels contained in the training set. The images were taken in an office
environment with typical lighting conditions, some faces exhibited partial exposure to
bright sunlight. No time-consuming manual segmentation has been carried out and the
images were used directly for constructing the skin distribution depicted in Fig. 4.8(b).

Despite the different lighting conditions present in the two training sets, the over-
all skin color distribution constructed by merging the individual distributions is still
very focussed (see Fig. 4.10). Similar to [90] we have fitted two quadratic functions
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(a) (b) (c) (d) (e) (f)

Figure 4.9: Image patches obtained from face detection.
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Figure 4.10: Histogram of the global skin color distribution with the skin locus fitted to
the distribution.

to this distribution to obtain our setup-specific skin locus. The parameters of the two
quadratic functions that enclose 95% of the pixels in the empirically determined skin
color distribution are:

Au = −5.05 bu = 3.71 cu = −0.32 (4.3)

Ad = −0.65 bd = 0.05 cd = 0.36 (4.4)

The decision whether a specific pixel x = (r, g) is contained in the skin locus is now
readily available by calculating the values of the two quadratic functions based on the r
value

Fu = Aur
2 + bur + cu (4.5)

Fd = Adr
2 + bdr + cd (4.6)
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and checking for the g value to lie between the two calculated function values:

PixelInSkinlocus(r, g) =

{
1 , if (g < Fu) ∧ (g > Fd)
0 , else

(4.7)

With this simple classification rule, a preprocessing step to discard all pixels with
colors that are not contained in our training set can be realized. One remaining problem
is the fact that the skin locus contains also the color values for white colors resulting
from highlights in the skin-colored areas of the training images, i.e., reflections of the
illumination from the light sources. Often a scene contains several artificial objects with
a white color like, e.g., a door, a table, or a computer display. To avoid including the
color white in the skin locus, a small region around the white point in r-g color space at
(0.33, 0.33) is excluded from the skin locus. For this purpose, a rule checking whether a
pixel is white is used

PixelIsWhite(r, g) =

{
1 , if (0.327 < g < 0.339) ∧ (0.327 < r < 0.339)
0 , else

(4.8)

leading to the overall rule for classifying a pixel as skin-like:

PixelIsSkin(r, g) = PixelInSkinlocus(r, g) ∧ ¬ PixelIsWhite(r, g) (4.9)

This simple classification rule can now be used as a preprocessing step to select all
pixels with a skin-like color. Figure 4.11 gives a visual impression of the area in r-g color
space that is occupied by the skin locus. The area around the white point excluded from
the skin locus is visible as black rectangle.

Figure 4.11: The area of the skin locus in r-g color space with the white point excluded.
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4.4.3 Detecting Faces in Images

The face detection algorithm used to initialize and update the skin color model was
implemented by S. Lang [31] and is based on the eigenface method developed by Turk et
al. [96]. The underlying idea is that each graylevel image with a size of n×m pixel can
be considered as a point in an nm-dimensional space. Images of faces occupy only a part
of this space. By performing Principle Component Analysis (PCA) on a set of training
images depicting faces, the principle components of the distribution of face images can
be found. These principle components are called eigenfaces and span a subspace of
the image space representing possible face images. Any image of the same size as the
training images can be approximated by a linear combination of the eigenfaces. The
residual error occurring during the reconstruction of an image with eigenfaces is an
indicator for faces. It is small for images that are faces, large otherwise. Consequently,
an empirically determined threshold can be used to classify images into face and non-face
images.

The training set used to generate the eigenfaces for the face detection algorithm con-
sisted of face images with a size of 37 × 43 pixels. To compensate varying lighting
conditions, the images were preprocessed with a histogram equalization. With the ob-
tained eigenfaces after applying PCA, the face detection can be performed by repeatedly
extracting sub-images from the input image. A histogram equalization is carried out for
each sub-image before it is reconstructed by a weighted sum of eigenfaces. Depending on
the residual error, the image is classified as face or non-face. Several implementational
details have to be solved for the extraction of sub-images and the search for a face in a
skin-colored region, these details can be found in [31].

4.4.4 Initializing the Skin Color Model

Before skin-colored regions can be tracked in unknown lighting conditions, the Gaussian
skin color model has to be initialized to model the current appearance of the human skin.
Although the learned global skin locus restricts the normalized color space, its area is
so large that in most standard environments not only human skin but also some other
background image areas can posses ’skin-like’ pixel chromaticities. Therefore, filtering a
complete image with the skin locus is not sufficient to obtain skin-colored image patches
usable for initializing the skin color model. Instead, a more sophisticated approach is
needed to obtain the pixels in the image that are skin-colored and actually belong to
a human body. In the segmentation system, three different initialization methods are
available to acquire image pixels likely to represent human skin:

1. Skin example at fixed position (needs visual feedback):
This initialization method is the most simple as it only requires the human to hold
his face or hand at a fixed initialization area within the field of view of the camera
and activate the initialization process. To position the face or hand correctly
within the initialization area, a visual feedback is needed. Alternatively, the image
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region containing skin can be selected manually through a graphical user interface.
All image pixels within the initialization area that lie inside the global skin locus
are used for initializing the skin color model.

2. Waving hands (needs static camera/fixed background):
This method has been implemented by F. Lömker and is based on analyzing all
pixels that posses motion information derived by subtracting two consecutive im-
ages acquired with a static camera. During an initialization phase with a human
waving his hands for several seconds, all pixels with motion information are col-
lected for generating the initial skin color model. For the calculation all pixels
outside the skin locus are discarded in order to remove the background pixels that
contain motion due to their ’appearing’ after a hand occluding them has been re-
moved. Consequently, if the background contains objects with skin-like color that
are temporarily occluded by a hand, these pixels will also be used for generating
the skin color model. As a result, a skin color model is acquired that represents the
pixels contained in the skin locus and positioned in image areas exhibiting motion.
However, since this method requires a static camera as well as a human waving
his hands for a few seconds in front of a background without skin-like colors, its
use is limited to restricted environments.

3. Frontal view of a face (needs human face):
The appearance of a human face is a feature which can be utilized to realize face
detection systems. The face detection algorithm (see Section 4.4.3) based on the
face texture needs only gray level images to detect faces. Therefore, this approach
can be used to bootstrap a skin color model. Searching for faces in a complete
image takes several seconds. However, the huge computational load imposed by
searching a face in a complete image without any spatial restrictions is tolerable,
since this search is only carried out during the initialization phase. If a face is
found, the approximate face size can be deduced from the scaling factor of the face
template used for matching the face. Subsequently, all pixels within an elliptical
region of similar size at the detected face position can be used to generate an initial
skin color model. An additional advantage of this method is its ability to initialize
different individual skin color models simultaneously if several people are in the
scene.

The choice of the initialization method depends on the application domain. Initializa-
tion based on (1) a fixed image patch or (2) waving hands requires interaction between
the segmentation algorithm and the user for constructing an initial skin color model.
Only the (3) structure-based initialization allows us to automatically generate a skin
color model in arbitrary environments if the user looks one time at the camera. As
soon as the face has been recognized, an acoustic feedback, e.g., a ’beep’, can be used
to inform the user that the initialization was successful. Other characteristics of the
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human appearance besides the face structure could also be used for initialization, e.g.,
a specific hand posture or the head-shoulder-contour.

4.4.5 Performing Skin Color Segmentation of Input Images

For segmentation of the input image, the processing steps outlined in Section 4.3 are
performed using the modeling and initialization methods described in the preceding
sections. Image acquisition is performed with a Sony EVI D31 video camera and a
Hauppauge WinTV multimedia TV card under Linux. The Video for Linux Two (V4L2)
framework is applied for accessing the video data from the TV card. Image enhancement
is carried out through calculating the normalized r-g color values (see Section 4.1) from
the RGB color values. For the iconic feature extraction, the skin likelihood is calculated
for each individual pixel based on its color and the current color model. Depending on
the type of modeling, the overall skin probability value for the pixel x is determined:

Unimodal Gaussian for each region: With an unimodal Gaussian for each individual
skin-colored area, the overall probability of a pixel is calculated as the maximum
of the skin likelihood of the individual Gaussians from Eq. 4.2:

p(x) = max
i

pi(x) (4.10)

In this calculation, no information about the previous position of a specific region
is incorporated. In a domain where the individual regions are tracked, the search
for the maximum value is restricted to the Gaussians belonging to regions in the
vicinity of the pixel position.

One mixture of Gaussians for complete image: If a mixture of Gaussians is used for
modeling the skin color, the M individual mixture components (see Eq. 4.2) have
to be added up with their weights ci to give the overall pixel probability:

p(x) =
M∑
i=1

ci pi(x) (4.11)

As a result, both types of modeling provide for every pixel its skin likelihood as iconic
feature giving a skin probability image for the complete input image. This probabil-
ity image is binarized using a classification threshold Sclass to obtain a label image
containing skin and non-skin pixels.

The value of the threshold Sclass has to be chosen carefully, a low threshold will
potentially classify a larger number of non-skin pixels with skin-like color (false positives)
while a high threshold may not classify all skin-colored pixels correctly (false negatives)
due to inhomogeneities caused by, for example, shades. The probability values p(x) that
are encountered in the probability image depend on the type of modeling. Especially
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when using a Gaussian mixture, the variances of the individual mixture components
influence the range of probability values that is occupied by skin pixels. It is therefore
advantageous to use an adaptive threshold that is based on the actual probability values
present in the training set. To obtain the classification threshold Sclass, the training
pixels used for constructing the Gaussian model are also used as test set for building a
histogram of the probability values generated by the Gaussian model. The probability
value histogram is analyzed starting at the bin representing the largest probability value
p(x). The bin counts are successively added up until the sum contains more than 98.5
% of all Ntrain training pixels (see Eq. 4.12). Setting the threshold to classify a fraction
of 98.5 % of the training pixels correctly has been determined empirically to ignore
spurious outliers contained within the last 1.5 % of the training pixels. The probability
value represented by the last histogram bin added is taken as the threshold Sclass for
skin color classification, i.e., all probability values below this threshold are classified as
non-skin.

Pr(Y > Sclass) = 0.985 ∗Ntrain, Y = p(x) (4.12)

To remove isolated pixels classified as skin and provide a more homogeneous result, a
median of size 5×5 is applied to smooth the label image. Next, a connected components
analysis is carried out in the segmentation step to obtain the region segmentation result.
Subsequently, the feature extraction step calculates polygonal descriptions of the image
regions and region features like, e.g., compactness, pixel size, center of mass.

For the example image depicted in Fig. 4.12, we trained an unimodal Gaussian and a
Gaussian mixture using the face initialization method (see page 69).

Figure 4.12: Example input image with face detection results.

Figure 4.13 and 4.14 depict the Gaussian model, the resulting label image, and the
median filtered label image for the unimodal Gaussian and a Gaussian mixture with
three components, respectively. Note that the unimodal Gaussian is a coarser model
for the actual skin color distribution, therefore the probability image contains more pixels
of the background classified as skin compared to the probability image for the mixture
of Gaussians. In the depicted example containing no larger skin-colored background
objects, the median filtering removes these isolated background pixels. However, if the
background contains areas with a color similar to skin (e.g., a wooden desk), an unimodal
Gaussian is more likely to classify many non-skin pixels as skin. If too many background
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(a) (b) (c)

Figure 4.13: Example of pixel classification using a single Gaussian: (a) the unimodal
Gaussian in r-g color space; (b) the label image; (c) the label image after
median filtering.

(a) (b) (c)

Figure 4.14: Example of pixel classification using a mixture of Gaussians: (a) the three
mixture components in r-g color space; (b) the label image with the color
indicating the component having the highest probability; (c) the label image
after median filtering.

pixels classified as skin are close to each other, median filtering does not result in removal
of this area but instead in smoothing of the area leading to a wrong label image.

The segmentation scheme described above operates on the iconic level to construct the
label image. Applying a threshold to the iconic probability value ignores information
that may have been present in the overall probability image. For example, a face or
hand results in an area of high probability in the probability image. This spatial relation
between the iconic probability values can be used for a segmentation scheme that focuses
on finding elliptical regions representing human hands and faces [98, 57]. In such a
scheme, a pixel that lies in an area with many pixels having high probability values and
forming an elliptical shape is assigned the ’skin’ label even if its probability value is below
the threshold. In this way, the influence of partial shadings or non-skin objects (e.g., a
ring on a finger, glasses) can be reduced and the form of the segmented region is closer to
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the ’expected’ elliptical form. Especially for performing face detection (see Section 4.4.3),
such a top-down segmentation scheme is advantageous as it provides segmented regions
whose form and COM is more suitable to initialize the search process. However, the
associated computational cost of fitting ellipses of arbitrary size and orientation to the
probability image is too high for real-time processing. Only in domains where the ellipses
can be restricted, for example to ’face’ ellipses with a fixed orientation and size, this
processing scheme may be applicable in real-time segmentation approaches.

4.4.6 Updating the Skin Color Model

To realize an adaptive skin color segmentation, the skin color model generated in the
initialization step has to be adapted to the current appearance of the skin-colored object.
In case of a perfect segmentation, all pixels belonging to a skin-colored object would have
been segmented correctly despite of a changed appearance. In this case, the segmented
object region R(i)segment and the image region for updating R(i)update would be identical,
i.e., all segmented pixels could be used to update the skin color model.

Under realistic circumstances, however, the appearance variations within a skin-
colored area are often so large that not all pixels are correctly segmented. Consequently,
the segmented region R(i)segment represents only those pixels that are sufficiently close
to the current skin color model. Therefore, it is advantageous to construct a larger
update region R(i)update that contains most or all of the pixels belonging to the object:

• If a face detection algorithm is active, every tracked skin colored region R(i)segment

is used as a search area for recognizing faces. If a face has been found at the position
of a skin-colored region, R(i)update has the form of an ellipse with the size equal to
the approximate face size that is available from the face detection algorithm. The
position of the detected face is taken to be the position of R(i)update.

• For skin-colored regions that exhibit motion, the update region R(i)update is gen-
erated by enlarging the segmented region R(i)segment. If the shape of the object is
known, e.g., a hand with fingers stretched out, this shape model could be matched
to the segmented region to construct R(i)update. For all skin-colored objects with
unknown or flexible shape, such a priori knowledge is not available and therefore
the polygon describing R(i)segment is stretched to describe a region with an area
two times the size of the segmented region. This enlarged region forms the update
region R(i)update.

For the example image shown in Fig. 4.12, the two different types of update regions
are shown in Fig. 4.15.

All pixels within R(i)update that do not lie inside the skin locus (Eq. 4.4-4.7) are
discarded. This step removes all pixels that are contained in the update area but have
no skin-like color like, e.g., glasses, rings, or parts of the background resulting from
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Figure 4.15: Example of the update regions Rupdate. The ellipse originating from the
recognized face is drawn in red while the segmented hand regions are drawn
in purple and the stretched update regions are drawn in yellow.

the update ara stretching. However, pixels from image areas having a color similar to
skin, e.g., a wooden desk, are not removed by skin locus filtering. To avoid adapting
the color model to background areas with skin-like color, we use a training threshold
Strain to select only those pixels that exhibit a skin color close to the current skin color
model. Similar to the classification threshold Sclass (see Eq. 4.12), the training threshold
is calculated from the probability value histogram of the previous training set. The
threshold value is chosen such that the probability values p(x) of all Ntrain training
pixels from the previous update step are above the threshold:

Pr(Y > Strain) = 1.0 ∗Ntrain, Y = p(x) (4.13)

Only those pixels in the current update area that have a skin probability above the
training threshold Strain are considered for updating the skin color model. In this way, we
enforce a smooth adaptation of the skin color model and can cope with hands and faces
in front of wooden furniture and other skin-like background objects. After applying the
skin locus filtering and the training threshold to remove all pixels that are not skin-like,
the remaining training pixels contained in R(i)update are used for updating the Gaussian
model:

Updating the Unimodal Gaussian

The mean and covariance of the unimodal Gaussian model can be calculated directly
from the training pixels xtraining,j in the update region:

µt =
1

N

N∑
j=1

xtraining,j (4.14)

Σt =
1

N

N∑
j=1

(xtraining,j − µt)(xtraining,j − µt)
T (4.15)
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Note that the values for Σt have to be constrained to lie between a minimum and a
maximum variance to prevent the Gaussian model from becoming either too specific or
too generic. We determined the variance boundaries empirically to σmin = 0.0002 and
σmax = 0.0008 for both, the variance Σrr of the r values and the variance Σgg of the g
values.

Updating the Mixture of Gaussians

For updating the mixture of Gaussians, the training pixels of all update regions R(i)update

are collected. Using this training set, the parameters of the individual components of
the Gaussian mixture are calculated using a k-means clustering algorithm from the
ESMERALDA toolset [25]. The number of mixture components M is selected based
on the application domain (see page 63). Clustering is done by choosing an initial set
of cluster centers based on the first M color values. Subsequently, the remaining color
values are processed one-by-one to update the initial cluster centers. For every training
pixel xtraining,j, the following three steps are performed:

1. assign the pixel xtraining,j to the closest cluster center.

2. calculate the new center of mass for this cluster.

3. update the cluster center with the calculated center of mass.

After processing all color values, the final clusters are used to compute the mean and
variance of the Gaussian mixture components similar to Eq. 4.14 and Eq. 4.15.

4.4.7 Faster Segmentation based on Regions of Interest

To reduce the time necessary for image processing, the segmentation can be restricted to
image areas known to contain skin-colored objects. To facilitate such a Region of Interest
(ROI) segmentation, all interesting skin-colored objects have to be selected during the
initialization phase. After initialization, these objects are tracked over time and only
the image areas in the vicinity of objects are analyzed in the segmentation step. For
this purpose, an image area ROI(i)classify is constructed for every object by calculating
the bounding box of the region R(i)segment segmented in the previous image.

To cope with moving objects, the area ROI(i)classify has to be enlarged to ensure
that it still contains the complete object. The enlargement is depending on the usual
speed of objects in the domain and the segmentation frequency. Only the pixels within
ROI(i)classify are classified using the associated skin color model. If object-specific
unimodal Gaussians are used, only the Gaussian G(i) belonging to ROI(i) is evaluated
and updated. The resulting partial label image is processed in the same way as the overall
label image, i.e., median filtering and a connected components analysis are performed
to obtain the segmentation result.
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While the selection of parts of the input image for segmentation reduces the computa-
tional cost, it prevents the system from detecting new skin-colored objects appearing in
image areas that are not in a region of interest. To enable the construction of additional
ROI’s for new objects, a special process would need to regularly scan the complete image
and construct new ROI’s. If object-specific unimodal Gaussians are used, one of the ini-
tialization methods described in Section 4.4.4 has to be performed for this purpose. As
such a detection of new objects has not been implemented, the ROI-based adaptive skin
color segmentation is currently only applicable in domains complying to a closed-world
assumption, i.e., where no new objects are introduced after initialization.

4.4.8 Compromises necessary for Real-Time Image Processing

An important design consideration for real-time skin color segmentation is the available
processing power. The performance of current general purpose workstations is not suf-
ficient to process images in full resolution in real-time, i.e., at a frame rate of 25 Hz. In
the trade-off between frame rate and image resolution, the more important aspect for
trajectory-based gesture recognition is the frame rate. Missing frames result in coarser
trajectories and perhaps even in missing details of the gesture. A lower image resolution
only poses a problem if the hand performing the gesture is very small and therefore
only represented by a few pixels. In this case, the misclassification of a few pixels could
already result in loosing the hand and therefore a larger image resolution should be used.

To obtain the complete trajectory, i.e., segment all frames of the image sequence in
real-time with 25 Hz, we use subsampled images resulting in a lower resolution. Our
approach works with a subsampling of 4 resulting in an image size of 192 x 144 pixels.
This is a reduction to 6,25% of the original number of pixels and is sufficient for capturing
the movements of hands in images showing a single human close to the camera which is
our primary concern for gesture recognition.

For some applications like hand posture recognition or in domains with a smaller zoom,
working with a higher resolution would be desirable. In order to allow the application of
the developed segmentation approach to other domains without real-time constraints or
with more computational power, all algorithms described in this chapter are implemented
resolution-independent and directly scale up to better resolutions. Last but not least, it
should be noted that not only the available computational power but also the transfer
of the image data from the frame grabber to the main memory is an important aspect
relevant for the real-time ability of the overall system.

The developed segmentation system processes images with 192 x 144 pixels in real-
time with 25 Hz using a Gaussian mixture with three components on a 1.133 GHz
Pentium r© III processor (402 SPECfp, 568 SPECint). Updating the mixture components
based on regions exhibiting motion (see Section 4.4.6) is performed in every time step.
The processor load performing segmentation and updating at 25 Hz is around 80 %,
leaving enough time for distributing the results to other machines for further processing.

Using the face detection algorithm (see Section 4.4.3) to determine the skin-colored
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regions that contain a face and are therefore suitable for updating the Gaussian mix-
ture reduces the frame rate due to the computational load of performing face detection.
The resulting frame rate depends on the number of skin-colored regions that are ex-
amined by the face detection algorithm. Segmentation, face detection, and adaptation
are performed for an average number of three skin-colored regions at a frame rate of
approximately 6 Hz on the 1.133 GHz Pentium r© III processor.

4.5 Results

The proposed adaptive segmentation approach aims at finding in real-time hands and
faces in image sequences with varying lighting conditions. In this section, we will present
the segmentation accuracy qualitatively as the effort of a quantitative evaluation does not
match its limited expressiveness: the often inferior lighting conditions in typical image
sequences and the adaptive nature of the proposed processing scheme would require
the evaluation of a large number of ’representative’ image sequences to obtain a well-
founded quantitative result. Even such a quantitative result is not comparable to the
evaluations performed on typical photographs (see Section 4.1), as the image quality
encountered in automatically acquired image sequences differs substantially from the
data used in [16, 51]. Moreover, the processing of image sequences for the extraction of
motion trajectories requires small processing times to obtain a high frame rate instead
of exact segmentation results.

The dynamic nature of image sequences makes the presentation of results difficult,
as only ’snapshots’ of the performance of the adaptive skin color segmentation can be
shown. Four images of a sequence depicting a human constructing an assembly in the
Situated Artificial Communicator domain are shown in the first row of Fig. 4.16 with
the segmentation results overlaid. In the image depicting the scene in the first column,
the red ellipse from face initialization is visible that was used to generate the initial
Gaussian mixture with three components that is depicted in the first column in the
second row. The third row shows the label image generated from assigning each skin-like
pixel the color of its associated mixture component. The label image after binarization
and applying a median filtering is provided in the fourth row.

A second example for the segmentation quality is given in Fig. 4.17 for a scene de-
picting a human drinking a cup of coffee in a typical office setting. Although the human
hand is not completely labeled as skin in the smoothed label image, the algorithm is
capable of keeping track of the hand and the variations in the skin color distribution of
the hand during the drinking action. Despite of the color of the wooden desk looking
similar to skin, the adaptation of the skin color model is not distracted. Comparing
the skin classification at the pixel level in this domain to the results in the assembly
construction domain depicted in Fig. 4.16 shows that here only a few background pixels
are classified as skin. This is due to the different lighting conditions in the office and
causes the skin color model to be located at a different position within the skin locus.

77



4 Finding Human Hands in Color Images

Figure 4.16: Exemplary skin segmentation results for the assembly construction domain.
First row: input images with update areas from face detection (red) and
motion (blue). Second row: resulting skin color model. Third row: label
image showing best mixture component. Fourth row: label image after
median filtering.

The adaptive skin color segmentation was also applied for the detection of persons
moving in an office environment [31]. In this domain, a mobile robot is used to observe
the persons and therefore the processing power is limited. Consequently, unimodal
Gaussians are used to model the skin color distributions of the individual faces. The
mobile robot is equipped with a special small-size computer containing a 500 MHz
Pentium r© III processor. On this system, the frame rate is roughly 3 Hz if on average
two skin-colored regions are present in the input images. For tracking humans moving
in front of the mobile robot, this frame rate is sufficient to perform skin color adaptation
and to realize a human-machine interface for interaction between humans and the robot.
We have successfully integrated the adaptive color segmentation into a framework that
allows the robot to track several humans [53] and detect the communication partner of
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Figure 4.17: Exemplary segmentation results for a scene depicting a person drinking a
cup of coffee.

the robot [61]. The evaluation of this integrated system for human-robot-interaction
demonstrates the relevance of segmenting skin color and subsequently detecting faces in
environments encountered by a mobile robot [30].

4.6 Summary

In this section, we presented our adaptive approach for segmenting human skin color
under varying lighting conditions. The properties of human skin that are relevant to
its modeling have been pointed out and the basic processing steps necessary for image
segmentation were outlined. The realization of the adaptive approach was described
in terms of the basic processing steps. The implemented segmentation system allows
us to switch between two different methods for skin color modeling: (1) using an uni-
modal Gaussian for each image region and (2) adapting a mixture of Gaussians for the
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4 Finding Human Hands in Color Images

complete image. The differences in segmentation quality for the two modeling methods
were demonstrated with example segmentation results. Depending on the properties of
the application domain, the appropriate modeling technique can be selected. We pre-
sented the segmentation results for two different domains qualitatively: (a) segmenting
the hands and face of a single human acting in the baufix r© construction domain and (b)
segmenting a human acting in an office environment. With the presented adaptive ap-
proach we therefore have now the basis for approaching the recognition of hand motions
in arbitrary domains with varying lighting conditions.
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5 Visual Activity Recognition

For the recognition of construction actions in the Situated Artificial Communicator
domain, the symbolic action detection presented in Chapter 2 relies on the reliable
detection of appearing and disappearing parts in the scene. The human must obey the
restrictions imposed by the rule-based approach to enable the recognition of his actions.
For example, placing parts outside the observed area directly leads to errors in the action
detection, as the symbolic data is extracted based on the observation of the table scene.

Most of the restrictions imposed by the rule-based approach can be avoided with a
method to visually monitor the construction actions. While in the symbolic approach
rules operate on symbols that have been extracted previously, the visual activity recogni-
tion approach applies pattern recognition techniques that operate directly on the sensor
data. This direct analysis of sensor data allows us to incorporate the influence of noise
in the input data in the recognition process and therefore makes a data-driven activity
recognition more robust.

In this chapter, we will present an activity recognition for the Situated Artificial Com-
municator domain that is based on visually observed motions of the hands to recognize
’pick/place’, and ’connect’ activities. The positions of all skin-colored objects in a sin-
gle image are obtained using the adaptive skin color segmentation method introduced
in the previous chapter. Tracking the segmentation results over time to construct the
motion trajectories is done using Kalman filters (see Section 3.2.1). Out of all tracked
skin-colored objects, the trajectory representing the hand motion is selected based on
the distance and duration of successful tracking. Using a recursive Bayesian filter to
recognize the activity based on the continuous trajectory data can be done either with
Hidden-Markov Models or with particle filtering. Reaching good recognition quality with
an HMM-based recognition approach requires the state pdf to exhibit Gaussian modes if
the underlying process has a continuous nature (see Section 3.2.2). In contrast, particle
filtering techniques do not impose any restrictions on the state pdf (see Section 3.2.3).
In order to realize a generic activity recognition approach, we therefore chose to apply a
variation of particle filtering for the analysis of the hand trajectory. The overall system
for the recognition of construction activities is designed to enable the easy application
of the approach in different domains.

Note that although the human performs construction actions, their classification based
only on sensory data allows us to recognize just his ’generic’ activities. For example,
moving the hand down to the table and then moving it up again is a generic activity and
only the knowledge of the construction domain allows us to call this motion a ’pick/place’
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5 Visual Activity Recognition

activity. Additionally, due to the missing symbolic information, the activity recognition
does not provide the information what part is being manipulated and, consequently,
whether it is a ’pick’ or a ’place’ activity.

The contents of this chapter are organized as follows: We will start in Section 5.1 with
a review of the research work on activity recognition, concentrating on the recognition
of gestures executed by the hands. The tracking of the skin-colored regions extracted
with the adaptive image segmentation is the topic of Section 5.2. Based on the obtained
motion trajectories, the application of the particle filtering algorithm to recognize two-
handed construction activities will be presented in Section 5.3. Results for the Situated
Artificial Communicator domain are given in Section 5.4. The Chapter concludes with
a summary of the visual activity recognition.

5.1 Related Work

The increasing processing power of standard workstations has resulted in a growing
interest in research on image sequence processing to develop systems that can reason
about dynamic scenes.

One research direction deals with the observation of large scale scenes. The list of
domains varies from the monitoring of people in an office environment [77, 3] through
the understanding of football scenes [46] to the tracking of interacting pedestrians in
an outdoor scene [74] and the analysis of large traffic scenes [55]. Due to the different
domains and the diverse aims of the analysis, a wide variety of vision techniques and
pattern matching algorithms is used in these approaches.

Another research direction is the recognition of gestures executed by a single human
through moving only his arms and hands, i.e., without changing his overall position in
the scene. As we are interested in recognizing gestures of a single human manipulating
the environment, we will concentrate here on these approaches. The majority of the
published work deals with gestures of the movement and activity type as they are char-
acterized by motion of the hands only. In this section, some well-known publications
highlighting different approaches towards visual activity recognition will be reviewed.
For more details on the large variety of algorithms for hand and body motion recogni-
tion, the reader is referred to one of the review articles (cf. e.g. [54, 76, 104, 68]).

An early work by Starner and Pentland concentrated on recognizing the gestures of
hands performing American Sign Language (ASL) [91]. Their method for recognizing
ASL with Hidden-Markov-Models (see Section 3.2.2) reaches a recognition accuracy of
over 91% on a set of 40 gestures. This rate can be increased to above 99% by using
a grammar for ASL sentences. In this approach, the image processing part is greatly
simplified to make the feature extraction easy. The subjects have to wear a yellow glove
on the right hand and an orange glove on the left hand. The segmentation and tracking
of the colored gloves is accomplished with the Pfinder system (’person finder’, see [103]
and also Section 4.2). Based on the trajectory data of the two hands, the activities are
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5.2 Tracking Skin-Colored Objects

recognized with standard HMM-techniques.
An approach utilizing spatio-temporal feature trajectories for matching observed mo-

tions to learned motion models is the VIGOUR system by Gong and Sherrah for tracking
multiple people and recognizing their activities [87]. In the presented examples, the sys-
tem can deal with three persons sitting in front of a camera. The head and the hands are
tracked for each person based on regions extracted with an adaptive skin-color segmen-
tation approach [81]. Gesture recognition is performed in a person-centered way based
on the x and y offsets of the tracked hands relative to the tracked head of a person. The
examples present the gestures ’waving’ and ’pointing’ to the left or right.

The approach by Black and Jepson [12] aims at recognizing gestures which are drawn
on a whiteboard. They concentrate in their approach on the trajectory recognition
aspects and simplify the image processing by requiring the user to make the gestures by
drawing with a distinctively colored ’phicon’ (physical icon). For the recognition of the
gestures a particle filtering method is applied. A detailed explanation of the recognition
algorithm can be found in Section 5.3, as we have applied an extension of the recognition
framework proposed by Black and Jepson for recognizing the two-handed construction
gestures.

The previously outlined publications demonstrate that there exists a large variety
of different techniques that have been applied for reaching a similarly large variety of
aims. However, only systems operating in very limited environments reach a performance
sufficient for their use in real application domains. Therefore some researchers consider
the field to be still in its early stage of development [68]. The direct comparison of the
different approaches is not possible, as they have been tailored to the specific applications
and use distinct preprocessing techniques. Especially the dependence of the different
techniques on certain properties of the preprocessing algorithms and the used example
domains results in the conclusion that there is no single approach that is well-suited for
a larger range of applications.

To enable gesture recognition in a wide range of domains, our approach is based on
the adaptive skin color segmentation presented in the previous chapter. The assembly
construction domain is chosen as this domain allows us to compare the results of the
activity recognition with the rule-based symbolic action detection and emphasizes the
need for the integration of symbols and sensory data to recognize manipulative gestures.

5.2 Tracking Skin-Colored Objects

For obtaining the motion trajectories of the hands in image sequences, we first obtain the
hand regions in individual images using the adaptive skin color segmentation outlined
in Chapter 4. The skin color of a single human constructing assemblies is modeled using
a Gaussian mixture with three components (see Section 4.4 for details). To extract the
motion of the hands in an image sequence, the regions segmented in the actual image have
to be linked to the regions in the previous image. This can be done by simply taking the
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last position of a region as prediction for the current position. However, incorporating
higher-order information about the speed or acceleration of a region allows us to better
predict its position in the actual frame and thereby resolve possible ambiguities.

For tracking all segmented regions over time, we developed a tracking module [32]
based on Kalman filtering (see Section 3.2.1). The system model of the Kalman filter
represents the kinematic motion equation of one point using a constant acceleration
model. The COM of each region is tracked individually using this system model. Track-
ing all segmented regions with Kalman filters requires the following two steps for each
new image segmentation result:

1. All previously initialized Kalman filters are associated with the region which is
closest to the predicted new position. A distance threshold is used to avoid assign-
ing a region which is too far away.

2. For every untracked region a new Kalman filter is initialized. There is no spatial
restriction to allow skin-colored regions to appear anywhere in the image. This
is especially important if skin-colored regions may be temporarily occluded, e.g.,
hands can be occluded by some objects between them and the camera.

As an example, consider the construction activity depicted with a snapshot in
Fig. 5.1(a). A bolt and a bar have been taken from the table by the two hands and have

(a) snapshot image (b) trajectories

Figure 5.1: Activity example and obtained trajectories for taking two parts, connecting
them together, taking a third part, and establishing a bolted connection to
form an assembly.

been put together. Subsequently, a cube has been taken and is now being connected to
the bolt to form an assembly. The trajectories resulting from tracking the skin-colored
regions during the complete construction activity including the placing of the assembly
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5.3 Recognition of Construction Activities

on the table are shown in Fig. 5.1(b). Note, as the face of the constructor is slightly
moving its region is tracked by a third Kalman filter. Different from the trajectory of
the face region, the trajectories of the two hand regions exhibit large motions. These
trajectories are drawn in blue to indicate that they represent potential hand candidates.
Selecting the trajectories of the hands will be covered in more detail in Section 5.3.

Coping with Merged Regions due to Interacting Hands

For monitoring human hands, a special problem is the joint manipulation of parts by
two hands. If the hands are next to each other or overlap, the image segmentation may
extract a single skin-colored region containing the area of both hands. Consequently,
the two Kalman filters previously tracking two individual regions are assigned to this
merged region. However, this assignment of two Kalman filters to the same region is
not restricted to the case of two adjacent hands. Other cases include a hand taking a
skin-colored object or coming close to a face.

In order to allow for individual tracking of two objects while their regions are merged,
an imaginary COM is calculated for each Kalman filter [101]. The two imaginary COMs
are obtained by dividing the merged region into two individual regions based on the
perpendicular bisector of the line between the two COMs from the previous image. For
each individual region its COM is calculated and used for updating the Kalman filter.
Fig. 5.2 shows an example for two merged hand regions.

Figure 5.2: A merged region (black) divided into two parts based on the perpendicular
bisector of the line between the two COM’s of the regions in the previous
time step (brown).

5.3 Recognition of Construction Activities

In the following we will show how the recognition of construction activities in the baufix r©-
scenario is carried out based on the hand trajectories extracted in the tracking step.

First of all, we need to select those two skin-colored image regions that represent the
two hands of the human constructor. In the field of view of the camera can be the face
of the constructor or body parts of additional people or, last but not least, objects with
skin-like color. Consequently, the regions found in the segmentation step and tracked by
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5 Visual Activity Recognition

the Kalman filters have to be analyzed to decide whether they represent hand regions.
To select the two trajectories representing the hand motions of the human constructor,
the ’history’ of all trajectories is analyzed. For the recognition of construction activities,
we consider the history to be comprised of

• the duration of successful tracking of a region, i.e., its lifetime

• the distance between the initialization point and the most distant point reached
during tracking

Using this formulation of history, we are able to incorporate the dynamic nature of
the hands for selecting the correct hand regions. Assuming that hands are acting in the
domain while all other skin-colored regions including the face are not moving very much,
the two regions with longest lifetime and largest distance from the initialization point
are selected to represent the hands. After obtaining the two trajectories representing
the hand motions, this data has to be analyzed to recognize activities. This is done with
the Condensation-based trajectory recognition algorithm introduced by Black and
Jepson [12] for recognizing commands drawn on a blackboard with a specially colored
marker. As pointed out in Section 3.2.3, the Condensation algorithm as introduced
by Isard and Blake [49] is a version of particle filtering where the importance density for
sampling is chosen to be the prior density.

We will use in the following the notation as introduced in Section 3.2.3. Each gesture
model µ is represented by a parameterized activity model M (µ) consisting of a set of
feature vectors xt describing the motions of the hands during execution of the gesture
with duration T:

M (µi) = (x1, . . . ,xt, . . . ,xT ) (5.1)

For the recognition of two-handed construction actions, each feature vector contains
the x- and y-velocities of both hands and the distance d between them:

xt = (xL, yL, xR, yR, d) (5.2)

For the generation of a new model trajectory, several activity trajectories are recorded
and the mean trajectory as well as its deviation are calculated after manual segmenta-
tion. To enable the recognition of several different complex gestures comprised partly of
identical basic gestures, parent models R(ν) are used for complex gestures which consist
of concatenations of child models M (µk) for basic gestures:

R(ν) = {M (µ1), . . . ,M (µk)} (5.3)

The child models are linked together by transition probabilities a
(ν)
ij that are used to

determine the next child model after recognizing the current child model i:

a
(ν)
ij = Pr(µi → µj) ∀ 1 ≤ i, j ≤ k (5.4)
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The transition probabilities aij are set by hand but could be learned automatically
given sufficient training material. Defining the transition probabilities enables the con-
struction of different complex gestures with partly identical basic gestures. For the
recognition of construction activities, the transition probabilities are only used to define
the order of the child models resulting in:

a
(ν)
ij =

{
1 , if j = i + 1
0 , else

∀ 1 ≤ i, j ≤ k (5.5)

The overall recognition system is implemented to recognize the three complex activities
PickL/PlaceL, PickR/PlaceR, and Connect. The distinction between the left and the
right hand is necessary as the two hands exhibit different trajectories. Instead of vertical
trajectories pointing down on the table, the movement of each hand has a slight ’skew’
pointing to the center of the table (see also Fig. 5.1(b)). The activities are represented
as parent models consisting of the following child models:

PickL/PlaceL: R(1) = {Hand downL,Hand upL}
PickR/PlaceR: R(2) = {Hand downR,Hand upR}

Connect: R(3) = {Approach,Move away}

Recognition within the particle filtering framework is performed using a set of samples
s
(i)
t containing parameterized activity models. With the above defined complex activ-

ities, each sample vector must contain a parameter ν denoting the parent model and
a parameter µ indicating the current child model. The child model trajectory M (µ) is
parameterized with an amplitude scaling α and a scaling in the time dimension with ρ.
The current position within the model trajectory that is used for matching the model
with the observed data is defined by the time index φ. The influence of these parameters
on the model trajectory is sketched in Fig. 5.3.

x

w

amplitude scaling time scaling Matching atmodel

scaled model

input data

timetimetimetime

time window

φ

α φ

model position

µ ρ

Figure 5.3: Influence of the scaling parameters α, ρ and φ in the model µ for matching
with the observed data.

The complete representation of a sample is given by:

s
(i)
t = (νt, µt, αt, ρt, φt) (5.6)
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For tracking the observed data, the parameters in N samples of the sample set, having
associated weights π

(1)
t , are propagated over time to find the best matching between the

observed data and the model trajectories.{
(s

(1)
t , π

(1)
t ), . . . , (s

(N)
t , π

(N)
t )

}
(5.7)

The sample weights have to be calculated at every time step. Following the conden-
sation algorithm (see page 45), the sample weights are proportional to the conditional
observation density. This density is modeled by assuming independent elements in the
five-dimensional observation vector zt resulting in the calculation of the sample weights:

π
(i)
t ∝ p(zt|s(i)

t ) with p(zt|s(i)
t ) =

5∏
j=1

p(zt,j|s(i)
t ), (5.8)

The conditional observation density of each vector element, i.e., the fit between the
model data M (µ) and the velocities of both hands and the distance, is calculated from:

p(zt,j|st) =
1√

2πσj

exp


−

∑w−1
u=0

(
z(t−u),j − αM

(µ)
(x(φ−ρu),j)

)2

2σ2
j (w − 1)

 . (5.9)

Here w defines the size of the time window for comparing the model with the measured
data (see Fig. 5.3). The value αM

(µ)
(x(φ−ρu),j)

is the jth component of the trajectory of

the model µ interpolated at time φ − ρu and scaled by α. The values σj indicate the
standard deviations of the individual trajectories j of the model.

On initialization of the sample set, the parameters of each sample s(i) are initialized:

• The parent model ν is sampled uniformly from [1, . . . , νmax].

• The child model µ is sampled uniformly from [1, . . . , µmax].

• The position within the model φ is initialized using φ =
1−√y
√

y
with y sampled

uniformly from the interval [0, 1]. In this way, the initial value of the position is
biased towards small values.

• The scaling parameters α and ρ are sampled uniformly from the interval [αmin, αmax]
and [ρmin, ρmax] respectively.

For the recognition of assembly construction activities we have three parent models
(νmax = 3) and six child models (µmax = 6). Similar to Black and Jepson’s approach [12],
the scaling parameters α and ρ are both limited to the interval [0.7 . . . 1.3].

After initialization, the sample set is propagated by performing at each time step t
the following three steps:
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Select: Selection of N − M samples s
(i)
t−1 according to their respective weight π

(i)
t−1

from the sample set {(s(1)
t−1, π

(1)
t−1), . . . , (s

(N)
t−1, π

(N)
t−1)} of the previous time step.

This selection scheme implies a preference for samples with high probability,
i.e., they are selected more often. This is the resampling step of the SIR filter
(see page 45). A fraction of 10% of the samples (M = 0.1N) is initialized at
every time step in order to allow for the tracking of new models.

Predict: Prediction of the sample parameters s
(i)
t :

ν
(i)
t = ν

(i)
t−1

µ
(i)
i,t =

{
µ

(i)
i,t−1 , if φ < φmax

µj based on a
(ν)
ij , otherwise

φ
(i)
t = φ

(i)
t−1 + ρ

(i)
t +N (σφ)

α
(i)
t = α

(i)
t−1 +N (σα)

ρ
(i)
t = ρ

(i)
t−1 +N (σρ)

The N (σ) are normal distributions with zero mean and standard deviation σ.
The values of α and ρ are limited to the interval [αmin, αmax] and [ρmin, ρmax],
respectively. If sampling of a new value for α or ρ exceeds the interval consec-
utively for three times, a new sample s

(i)
t is initialized.

If φ ≥ φmax and µ
(i)
i,t is the last child model of the parent model ν, a new sample

s
(i)
t is initialized.

Update: Determination of the weights π
(i)
t based on the conditional observation den-

sity p(zt|s(i)
t ) (see Eq. 5.8 and Eq. 5.9).

Figure 5.4: The three steps for iterative propagation of the sample set.

1. Selection of the samples with high weights π
(i)
t−1 for propagation.

2. Propagation of the parameters of each selected sample s
(i)
t .

3. Calculation of the new sample weights π
(i)
t based on the observation zt.

A detailed description of these three steps is given in Fig. 5.4. Using this processing
scheme all samples s

(i)
t with a good fit of the model trajectory with the observed data

zt are propagated over time. By calculating for each model µk the mean values of the
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sample parameters from all samples belonging to this model the most likely state of this
model can be obtained. The actual classification of gestures is realized by calculating
for every parent model ν the so-called end probability Pend,t of its last child model µk,
indicating how many of the samples belonging to child model µk are close to the end of
its model trajectory:

Pend,t(µk) =
N∑

i=1

{
π

(i)
t , if µk ∈ s

(i)
t ∧ φ > 0.9φmax

0 , else
(5.10)

Summing only over the sample probabilities belonging to a sample with φ > 0.9φmax

assures that the counted samples have been successfully propagated in the sample dis-
tribution long enough to match 90% of the model trajectory to the observed data.

At every time step the end probabilities are calculated for all parent models. A
parent model is recognized if its end probability exceeds a recognition threshold Drec.
Note that the value of the end probability Pend,t(µk) equals the fraction of the sample
distribution that is populated by samples with φ close to φmax and belonging to the last
child model µk of the parent model ν. Therefore, the value of the recognition threshold
Drec depends on the total number of child models and the number of ’final’ child models.
For a recognition system with a total of R parent models with different final child models
and a total of S child models, the threshold is calculated from:

Drec = 0.2× R(different final child models)

S(total number of child models)
(5.11)

Figure 5.5 shows example trajectories for a sequence of complex construction activities
and Fig. 5.6 depicts the hand velocities as well as the end probabilities for this activity.
For classifying the activites, a threshold of Drec = 0.2× (3/6) = 0.1 was used.

Figure 5.5: Trajectories of the hands taking two parts, putting them together and placing
the assembly back on the table.
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Figure 5.6: Velocities of the (a) left and (b) right hand and (c) probabilities for the model
completion for the activity sequence PickR, PickL, Connect, and PlaceR de-
picted in Fig. 5.5.

5.4 Results

The complete system was tested with several people performing a typical gesture se-
quence in the baufix r© assembly construction scenario. The gesture sequence consisted
of picking a bolt and a bar, putting the bar onto the bolt, picking a cube, and securing
the parts with a cube screwed onto the bolt before placing the assembly back on the ta-
ble. The construction sequence therefore contained 6 parent models (3 Pick, 2 Connect,
1 Place) with a total of 12 child models.

For monitoring the construction activities, an image size of 192 x 144 pixels was used.
The images were processed in real-time at a rate of 25 Hz by the adaptive color segmen-
tation using an unimodal Gaussian on a DEC Personal Workstation 433au (SPECInt95
13.9). At the time of the experiments, the available processing capacity was not suf-
ficient to use a mixture of Gaussians. To enable a good skin color segmentation with
an unimodal Gaussian, no background objects with skin-like color were allowed in the
experiments. The resulting skin-colored regions were tracked with Kalman filters. Based
on the history of the tracked regions, the two hand trajectories were selected. The tra-
jectory information of the two hands was processed by the activity classification running
in real-time on a DEC AlphaServer ES40 (SPECInt95 27.3). To enable real-time oper-
ation, a sample set with N=3500 samples was used and the time window for comparing
the model trajectories with the observed trajectory was chosen to w = 10.
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The overall test set consisted of 36 performances of the construction sequence. The
gesture sequences were performed by 5 colleagues who were familiar with the capabilities
of the system, i.e., the necessity to lift parts up and connect them ’in the air’ instead of
directly ’on the table’. The classification results for the test set are given in Table 5.1.

Total Recognized
Activities Activities

# # %
Child models
Hand downL 57 51 89

Hand upL 57 54 95
Hand downR 87 78 90

Hand upR 87 86 99
Approach 72 64 89

Move away 72 70 97∑
432 403 93

Parent models
PickL/PlaceL 57 50 88
PickR/PlaceR 87 77 88

Connect 72 64 89∑
216 191 88

Table 5.1: Results for performing activity recognition on a test set of 36 gesture sequences
depicting assembly construction actions.

To differentiate the Connect activity into either putting a baufix r© element with a hole
on a screw (Put) or mounting a threaded element on a screw (Screw), several experiments
were carried out. The varying time scale of the screwing activity (depending on the
length of the bolt) was difficult to model in the activity models and resulted in a poor
recognition rate [33]. The variations between different persons in the way of turning
and regrasping parts were another factor that also made the creation of typical models
difficult. Therefore, we realized an additional postprocessing of the Connect activity to
discriminate between Put and Screw activities.

Postprocessing for Differentiating Connect Activities

The postprocessing is performed if a Connect activity has been successfully recognized.
For this purpose, the recording of trajectory data is started as soon as an Approach is
detected. If the next recognized child model is a Move away, a Connect is recognized
and the recorded data is used for postprocessing. If no complete Connect activity is
detected, the recorded trajectory data is discarded and no postprocessing is carried
out. As the characteristic of connecting a bolt with a thread is the repeated up and
down movement of at least one hand during regrasping the threaded bolt, we perform a
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Fourier transformation on the derivatives of the two Kalman trajectories, i.e., the hand
velocities (see Fig. 5.7). This computation is carried out only for the y-velocity, as the
hands execute the Connect activity usually in a horizontal orientation as depicted in the
example on page 84. During screwing, at least one hand moves slightly up and down
in the image while regrasping the bolt or the counterpart every half turn. Therefore, in
case of a Screw activity the transformation exhibits high amplitudes in the low-frequency
range (see Fig. 5.7(a)). For a hand which is not moving, the resulting transformation
exhibits no characteristic peak. This is the case when a Put activity occurs or the hand
holds the counterpart during a Screw activity (see Fig. 5.7(b)).

y-velocity

�
FFT

�

Mean

t

f

(a) Active hand

y-velocity

�
FFT

�

Mean

t

f

(b) Passive hand

Figure 5.7: Velocities and their Fourier transformations for a Screw activity with (a)
an active hand regrasping the bolt and (b) a passive hand just holding the
threaded part.

The difference in the FFT-magnitude between the maximum amplitude and the
mean value of each hand is used together with the duration of the activity as a three-
dimensional feature vector for classifying the activity. Reference feature vectors for the
activities Put, ScrewL, ScrewR, and ScrewLR (both hands move up and down) were cal-
culated based on 60 examples for each activity. An unknown activity is classified based
on the smallest Euclidean distance between its feature vector and the reference feature
vectors. An empirically determined threshold is used to reject the activity hypothesis
completely. This occurs if the hands move close to each other but do not exhibit tra-
jectory data that is characteristic for a mating activity. With the described approach,
the discrimination between Put and Screw∗ activities was successfully accomplished in
all of the 64 Connect activities in the test sequences.

Together with this postprocessing step, the results in table 5.1 indicate the possibility
to recognize hand motions related to assembly construction actions based only on the
sensory trajectory data. No additional information except for the skin-colored image
regions is required and, consequently, most of the restrictions of the symbolic action
detection (see Section 2.3.4) can be avoided. At the same time, the missing symbolic
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information prevents the activity recognition from providing the complete details of the
construction actions, i.e., what parts are manipulated and whether they are picked or
placed. Therefore, the recognized activities do not allow to construct a hypotheses of
the assembly that has been constructed by the observed manipulative gestures. Con-
sequently, the applicability of the extracted information for improving human-machine
interfaces is limited.

5.5 Summary

In this chapter, a visual activity recognition for the Situated Artificial Communicator
domain was presented. Using Kalman filters to track all hand hypotheses generated
by a skin color segmentation allows us to identify the hands out of several hypotheses
by analyzing the trajectories. This makes our approach quite stable even in cluttered
environments as the decision which regions represent the hands is made on the basis of
the motions over time. Based on the hand trajectories, the recognition of construction
activities is performed using a variation of the Condensation algorithm. To provide
detailed information about the type of Connect activity, a separate post-processing of
the trajectory data is performed to discriminate between Put and Screw activities.

With the described activity recognition, the classification of the gestures used for
assembly construction is achieved. However, the recognized activities do not allow to
obtain a detailed hypotheses of the assembly constructed, as symbolic information in-
dicating the manipulated parts is missing. We therefore propose in the next chapter
our approach to an integrated action recognition that combines the data-driven activity
recognition algorithm just presented with symbolic scene information to take advantage
of the mutual information present in the two different types of information.
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In the previous chapter, we have presented a data-driven approach using a priori defined
trajectory models to perform gesture recognition. Following Bobick’s categorization
outlined in the introduction, the described data-driven approach realizes an activity
recognition. The recognized activities are picking/placing of parts and connecting them
together. Especially picking/placing is a very generic activity that is not limited to the
baufix r©construction scenario in the Situated Artificial Communicator domain but rather
occurs in many scenarios.

However, the information that a generic ’pick/place’ activity has been recognized is not
very informative if there are many different objects that could be picked/placed. In such
a situation, the symbolic information what object has been manipulated is crucial and
needs to be incorporated into the recognition system to obtain a complete description of
the manipulative gesture performed, i.e., to recognize the action instead of the activity.
Additionally, only the use of both types of information, symbols and sensory data,
allows us to detect contradictory results from the individual cues. For example, a hand
motion may be recognized as ’picking/placing’ based on the trajectory although there is
currently no object in the scene that could be picked/placed. It is therefore necessary to
integrate both types of information into a single action recognition framework to perform
the recognition of manipulative gestures.

For avoiding recognition results contradictory to the scene context, the symbolic in-
formation about the context of an action, e.g., the objects currently in the scene, can
be integrated with a data-driven trajectory recognition in two ways:

• The symbolic context is used to post-process the results from a data-driven recogni-
tion algorithm by filtering out ’impossible’ results. This can be seen as a sequential
approach.

• The symbolic context is modeled in the data-driven recognition algorithm in such
a way that it influences the analysis of the trajectory data. This incorporation of
symbolic constraints during the recognition of trajectory data resembles a parallel
approach.

With the parallel integration of sensory data and symbolic constraints, generating
results violating the scene context can be made very unlikely instead of completely
ignoring ’impossible’ results. This is an important advantage of a parallel approach as
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one should avoid rejecting recognition results completely by relying on the results of one
type of information. For example, if an object is present in the scene but the object
recognition algorithm does not recognize it, the trajectory recognition algorithm should
still be able to generate the recognition result ’picking’ if this recognition result is the
most likely result. Clearly, depending on how the recognition result is used in other
algorithms, it may be necessary to verify the correctness of the result with additional
processing steps.

For the implementation of an action recognition approach enabling the parallel inte-
gration of symbolic and sensory information, we have to develop a suitable framework to
integrate both cues. A straightforward method is choosing one approach and extending
it with the information from the other. Using a single type of information for gesture
recognition has been demonstrated in Chapter 2 with a symbolic action detection, and
in Chapter 5 with a data-driven activity recognition for assembly construction actions.
Let us shortly get back to the drawbacks of both techniques to identify which one is
better suited to provide the basis for an integrated approach.

In symbolic approaches (see Section 2.1), the symbol grounding step is a major dif-
ficulty as the extraction of symbols from vision data is challenging, and many domains
contain a large number of symbols. An increasing number of symbols leads to an expo-
nentially growing number of different symbolic interpretations for a scene, and prohibits
the wide-spread use of symbolic methods for real-time gesture recognition.

Data-driven approaches are frequently used for recognizing gestures in real-time as
they can be easily adapted to the available computational power. As these approaches
usually lack the incorporation of symbolic constraints in a structured way, they are
primarily applied to the recognition of communicative gestures within well-defined envi-
ronments. Recognition of manipulative gestures is only accomplished by taking advan-
tage of specific properties of the domain in consideration. This has been demonstrated
in Chapter 5 for assembly construction actions. Obviously, relying on domain-specific
symbolic boundary conditions to recognize manipulative gestures results in approaches
that cannot be re-used for the recognition of gestures in other domains.

While the data-driven activity recognition approaches usually do not provide a generic
method for representing symbolic context, they are much better for meeting real-time
demands and contain intrinsically a reduced scalability problem by focusing only on the
motions of the hand and not on the complete scene. Therefore, they are more suited to be
used as basis for an integrated action recognition approach. In this chapter, we develop a
novel framework for the recognition of actions that incorporates symbolic constraints in
the particle filtering approach used for trajectory-based activity recognition. Based on
the proposed extension, the actual scene context can be incorporated during the analysis
of the trajectory data.

Before presenting our approach, we will review in Section 6.1 related literature dealing
with the recognition of manipulative gestures. The basic idea for incorporating symbolic
constraints in a particle filtering algorithm is presented in Section 6.2. The symbolic
constraints considered for manipulative gestures are the objects currently in the scene.
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The different ways in which objects are manipulated and an appropriate representation
for the object context of a manipulative gesture are the topic of Section 6.3. The
details of our extension to the standard particle filtering implementation for trajectory
recognition are outlined in Section 6.4. A quantitative evaluation of the method based
on construction actions in the Situated Artificial Communicator domain is presented in
Section 6.5 and the evaluation in an office environment is described in Section 6.6. Using
the framework to support task-based object recognition is sketched in Section 6.7 before
the chapter concludes with a summary of the proposed method.

6.1 Related Work

One of the first approaches exploiting hand motions and objects in parallel is the work of
Kuniyoshi [60] on qualitative recognition of assembly actions in a blocks world domain.
As already pointed out in Section 2.1, this approach features an action model capturing
the hand motion as well as an environment model representing the object context. The
two models are related to each other by a hierarchical parallel automata that performs
the action recognition. Kuniyoshi’s approach represents essentially a symbol-based ac-
tion recognizer as it does not apply a model for the motion of the hand, i.e., some kind of
trajectory model. Instead, the hand motion is used only to guide the focus of attention
of the visual feature detectors that recognize specific interactions between the hand and
the objects.

An approach dealing with the recognition of actions in an office environment is the
work by Ayers and Shah [3]. Here the head of a person is tracked based on detecting
the face and/or neck with a simple skin color model. Before operation, an accurate
description of the layout of the scene has to be provided to the system. Based on
entrance and exit areas defined in image coordinates, tracking of the head is started and
stopped. The position of the person is derived from the position of the head. The way
in which a person interacts with an object is defined in terms of intensity changes within
the object’s image area. For this purpose, the image areas containing objects need to
be defined before operation, too. By relating the tracked head to detected intensity
changes in its vicinity and using a finite state model defining possible action sequences,
the action recognition is performed. Similar to Kuniyoshi’s approach, no explicit motion
models are used.

In a similar approach, Peixoto et al. [77] use two cameras, a static camera and a
binocular camera head, to recognize actions in an office environment. The static camera
detects and tracks several people based on optical flow, i.e., motion in the image. The
active camera head focuses on a single person to track its position. Based on the position
of the person relative to ’context cells’ defined a priori in world coordinates, the actions
are recognized. Again, no explicit motion models are used and an action is simply the
relation between some tracked person and a context cell.

An approach that actually combines both types of information, sensory trajectory data
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and symbolic object data, in a structured framework is the work by Moore et al. [69].
In their object-centered approach called ObjectSpaces, a camera mounted on the ceiling
observes a human interacting with different objects. The evaluated domains are an office,
a kitchen, and a car. On initialization, a ’background image’ showing the static scene
is recorded and the image areas showing known articles are manually selected. During
operation, background subtraction is used to detect new foreground regions. The motion
and size of the regions differing from the background are analyzed over several frames
to differentiate between new persons and new objects in the scene. Similar to the above
described approaches, foreground regions belonging to new persons are analyzed with a
simple skin color model to find the hands and track them subsequently.

The image features of a foreground region representing an unknown object are com-
pared to the features of known objects to obtain image-based evidence for the type of
the unknown object. The representation of known objects includes for each object the
surrounding image area typically occupied by a hand during interaction (called activ-
ity zone) and the object manipulated previously. If a tracked hand comes close to an
unknown object, the knowledge of the previously manipulated object and in what ac-
tivity zones of known objects the hand is allows us to obtain object-based evidence for
the unknown object type. Finally, the trajectory of a tracked hand is analyzed with
Hidden-Markov-Models trained offline on different activities related to the known ob-
jects. Therefore the hand trajectory in the vicinity of a new foreground region provides
action-based evidence for the type of the unknown object that is combined with image-
based and object-based evidence to recognize objects.

While in the approach of Moore et al. the sensory trajectory information is used
primarily as an additional cue for object recognition, we present in the following an
approach for the oppositional goal of recognizing gestures with the help of symbolic
information. Our person-centered approach to gesture recognition is motivated by the
goal of extracting information about the acting human to improve the human-machine
interface. Different from the object-centered approach of Moore et al., our approach
supports the recognition of complex actions that involve a sequence of manipulative ges-
tures interacting with different objects. For example, preparing a cup of coffee involves
several gestures that interact with different objects. After the coffee pot is taken to fill
a cup of coffee, sugar and possibly also milk are added to the cup of coffee.

6.2 Extending Particle Filtering with Context
Information

The application of particle filtering (see Section 3.2.3) to the recognition of hand trajec-
tories has already been demonstrated in Chapter 5 for recognizing the ’pick/place’ and
’connect’ activities in the Situated Artificial Communicator domain. Based on the par-
ticle filtering algorithm as it is used for the activity recognition, we will present in this
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section the basic idea of our extension to this approach to enable the incorporation of
context knowledge. The implementational aspects of this integrated action recognition
approach are covered in the sections following.

Basically, in every iteration of a standard particle filtering algorithm, i.e., in each time
step t, there are three steps performed:

1. Select: Selection of N −M samples s
(i)
t−1 based on their weights π

(i)
t−1 and initial-

ization of M new samples.

2. Predict: Prediction of the individual parameters contained in the selected samples
s
(i)
t based on some model of the system dynamics.

3. Update: Determination of the new sample weights π
(i)
t based on the observations.

The sample vector st = (νt, µt, φt, αt, ρt) as defined in Eq. 5.6 for the recognition of
activities contains a reference to a specific activity model (ν and µ) as well as three
parameters (φ, α, ρ) that relate the static trajectory data defined in the activity model
to the actual trajectory data observed until time t. To integrate context knowledge into
particle filtering, the definition of an activity model needs to be extended to incorporate
symbolic information describing the context of a gesture.

Similar to the rules used for symbolic action detection (see Fig. 2.12 on page 31), a
gesture can posses preconditions that must hold for its recognition and it can have an
effect on the state of the scene. As a precondition of an action ’take cup’, the hand would
need to be empty and the effect of recognizing the action would be the hand holding the
object ’cup’.

Besides this symbolic information applying to the start and end of a gesture, the
trajectory model of the gesture can also posses symbolic context. The context associated
with the time steps of the trajectory model is denoted in the following as symbolic model
context CT consisting of a context definition ct for each time step in the trajectory model
(see Eq. 6.1). For example, a model for the action ’take cup’ would require the hand to
approach an object ’cup’ that must be present in the scene.

CT = (c1, . . . , ct, . . . , cT ) (6.1)

Adding the precondition, the symbolic model context, and the effect to the activity
model gives the definition of an action model:

M (µk) = (Precondition,XT , CT , Effect) (6.2)

The precondition is used in the select step of the particle filtering algorithm to initialize
and select only samples whose precondition matches the actual situation. This requires
the application-dependent representation of the current situation. For example, the
contents of the hand represent symbolic information about the current situation that is
relevant for the recognition of manipulative gestures. On recognizing an action, the effect
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defined in the action model of the recognized action changes the internal representation
of the current situation.

The definition of an action model in Eq. 6.2 yields static information about the sym-
bolic context of an action. However, similar to the parameters (φ, α, ρ) relating the
trajectory model XT to the observed motion data (see Fig. 5.3 on page 87), we need
to extend the sample vector with information about the relation between the symbolic
model context CT and the observed symbolic data. Using the example of the action ’take
cup’, the generic model context ’cup’ needs to be related to a specific object present in
the scene. Especially in a scene containing several cups, the information which cup is
manipulated by the gesture needs to be represented in the sample vector. Relating sym-
bolic data of the scene to the symbolic model context is done by adding the symbolic
sample data Ψ to the sample vector st giving:

st = (νt, µt, φt, αt, ρt, Ψt) (6.3)

The initialization and adaptation of the symbolic sample data Ψ needs to be done
based on the symbolic data extracted from the scene. If the symbolic information is
time-dependent, it has to be changed accordingly in the prediction step. Using the
extended sample vector shown in Eq. 6.3, the representation of symbolic information is
added to the particle filtering algorithm. However, we have not yet changed the way
in which the propagation is performed, i.e., the recognition is still unaffected by the
symbolic information contained in the sample vector.

In the implementation of particle filtering for activity recognition, the weights for the
sample set are determined in the update step based on the observed hand trajectories.
To incorporate symbolic context information, the observed symbols have to be taken into
account in the update step as well. For this purpose, the trajectory-based calculation of
the sample weights is extended to also consider how well the symbolic context contained
in the gesture models (denoted by µ and ν in the sample vector) matches the symbol-
based observations. In this way, samples belonging to models that are consistent with
the current scene context are chosen more often in the select step.

In our application, the value of the trajectory-based weight is directly related to the fit
between model trajectory and observed trajectory. In contrast, a symbol-based weight
is inherently non-proportional as it expresses how well the scene matches the expected
symbolic context. To fuse these two different sources of information to obtain a single
weight value, we extend the calculation of the sample weight from the observation data
z given in Eq. 5.8 with a multiplicative context factor psymb representing how well the
observed symbolic scene information Θt fits the expected context:

π
(i)
t ∝ p(zt|s(i)

t ) psymb(Θt|s(i)
t ) (6.4)

The proposed multiplicative fusion allows us to calculate the matching of the action
model with the observed scene separately for the sensory and symbolic data. Inserting
the sample vector definition from Eq. 6.3 into Eq. 6.4 and removing all parameters not
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relevant for the calculation of the trajectory-based weight and the context factor leads
to the weight update equation:

π
(i)
t ∝ p(zt|ν(i)

t , µ
(i)
t , φ

(i)
t , α

(i)
t , ρ

(i)
t ) psymb(Θt|ν(i)

t , C(µ
(i)
t ), Ψ

(i)
t ) (6.5)

For a successful incorporation of context knowledge into the particle filtering approach,
it must be carefully analyzed what values the context factor may take on: A small factor
may not increase the weights of the samples with correct context knowledge sufficiently
to counteract the high weights of other samples whose model trajectory temporarily fits
the observed trajectory better. A large factor leads to a loss of diversity in the sample
set after several iterations as the samples that contain the correct context knowledge
dominate the sample set and are primarily propagated.

Due to these consequences of small or large context factors, the range of values that is
suitable has to be determined empirically based on the application domain. Before we
turn to the technical implementation of the proposed extension to particle filtering, we
will consider in more detail in the next section what kind of symbolic information can
be applied to improve the recognition of manipulative hand gestures.

6.3 Extracting Context Information for Hand Gestures

The data-driven recognition of activities can be fused with a huge variety of symbolic
information that is available in every environment. Obviously, not each kind of sym-
bolic information is relevant to recognize a specific action that is made up of an activity
in a certain symbolic context. In other words, the actions that have to be recognized
determine what context information is needed. Our focus here is on the recognition
of manipulative gestures as outlined in Chapter 1. The symbolic context information
relevant for recognizing manipulative gestures are the objects that are being manipu-
lated. For the sake of simplicity, we assume that a manipulative gesture interacts with
a single object at a time. Before we turn to the definition of context knowledge and its
extraction, we will briefly get back to manipulative gestures and take a closer look at
how they manipulate objects.

6.3.1 Revisiting the Different Types of Gestures

In Section 1.1 on page 3 we have introduced the classification of hand motions into
communicative and manipulative gestures. Concentrating on the recognition of ma-
nipulative gestures, we pointed out that the recognition of the associated objects is
challenging and that we therefore consider only those manipulative gestures that do not
change the object’s appearance substantially.

Intuitively, manipulative gestures operate with objects by translating or rotating them
on a macroscopic scale like, for example, ’take cup’ or ’pick up phone’. However, a large
number of gestures performed during everyday life manipulate objects on a microscopic

101



6 Integrating Sensory and Symbolic Information for Action Recognition

scale. Especially the use of electric and electronic devices requires the user to press
buttons or switches. While these devices are operated with manipulative gestures, the
change applied to the devices is usually very small and often only temporarily. For
example, pressing a button is only visible for a very short period of time. Obviously, the
visual detection of the changed object appearance while the button is pressed down is
very difficult and may be even impossible, e.g., if the button is totally occluded by the
hand.

The scale of the object manipulation is therefore an important aspect for the visual
detection of objects and their changes due to manipulative gestures. In order to capture
the different nature of microscopic and macroscopic manipulative gestures, we define
two subcategories:

• A Touch Gesture (TG) denotes a manipulative gesture that operates on the mi-
croscopic scale, i.e., the overall object is not moved (see Fig. 6.1(a)). However, a
part of the object, i.e., a button or switch, may be temporarily or permanently
moved or changed. Note that this formulation of a touch gesture does not imply
that the changed object state can be detected visually.

• A Move Gesture (MG) is a manipulative gesture that actually translates or rotates
an object, i.e., the object is moved on a macroscopic scale (see Fig. 6.1(b)).

Light
switch

(a) Touch Gesture (TG)

Cup

Cup

(b) Move Gesture (MG)

Figure 6.1: The categorization of manipulative gestures into two subcategories for cap-
turing the different nature of gestures manipulating objects either at (a) a
microscopic or (b) a macroscopic scale .

The introduced two subcategories for manipulative gestures are relevant for the visual
extraction of the symbolic information. For example, in a TG ’dialing numbers on a
phone’ the hand interacts with the static object ’phone’ for dialing the numbers. Here
the object ’phone’ needs to be recognized just once, as it does not change its position
during the gesture. In contrast, in an MG ’take cup’ the object ’cup’ changes its position
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during the gesture. This change in position can be either a translation or a complete
disappearance, depending on the quality of the object recognition algorithm and the
way in which the hand holds/occludes the ’cup’.

In this view on manipulative gestures, the recognition of touch gestures is much easier
as the object context can be extracted more reliably due to the objects remaining static.
However, to recognize the numbers that were dialed while executing the above mentioned
TG ’dialing numbers on a phone’, the internal structure of the object ’phone’, i.e., the
positions of the individual phone keys, need to be known. Depending on the resolution
of the camera images depicting the phone and the occlusions resulting from the hand
dialing, the recognition of such small touch gestures is very challenging.

In this thesis we restrict our considerations to move gestures and to touch gestures
that interact with objects without an internal structure. This allows us to concentrate
on the action recognition aspects and avoids dealing with the problems of insufficient
image resolution and occlusion of object details like, e.g., phone keys.

6.3.2 Relations between Hand Motions and Objects

Independent from the subcategory of the manipulative gesture, i.e., whether it is a touch
gesture or a move gesture, the hand trajectory has to be related to the object that is
manipulated. For this purpose, it is necessary to select those objects in the scene that can
be manipulated by the currently observed gesture. Obviously, these must be objects that
are close enough to the hand trajectory to be touched or picked for interaction. In limited
environments this general formulation of object relevance by having a small distance to
the hand trajectory may be sufficient [77, 3], but in more complex environments several
objects will fulfill such a simple distance criterion.

In order to avoid the computational complexity as well as the increase in ambiguity
associated with a larger number of relevant objects, it is advantageous to restrict the
set of relevant objects by a more sophisticated criterion. For this purpose, we define
a context area to be the image area that contains objects potentially relevant for a
specific manipulative gesture. The context area is currently defined as a segment of
a circle described by the radius cr and the start angle cα as well as the end angle cβ.
For interaction with objects that do not have a specific ’handling direction’ and can be
approached from different directions, defining the orientation corient of the context area
relative to the hand direction is appropriate. Most of the touch gestures fall into this
category. Two examples for the context area of the touch gesture from Fig. 6.1(a) are
given in Fig. 6.2(a). For objects that need to be approached from a specific direction
like the cup in Fig. 6.1(b) the context area is independent of the hand direction and
therefore has an absolute orientation (see Fig. 6.2(b)).

With the introduction of these two types of context areas it is now possible to define
for each point of time along the trajectory of a gesture model the context area in which
object context is expected. Defining the complete context including information about
the expected object type is the focus of the next section.
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Figure 6.2: The different orientations for defining the context area. The hand trajectory
(green) with its direction (dashed green) and the context area (blue) resulting
from the parameters cr, cα, and cβ (yellow). The red plus marks the object
position that is assumed to be detected by the object recognition.

6.3.3 Defining Object Context for Manipulative Gestures

With the definition of context areas given in the previous section, the image area that
contains symbolic information relevant to the recognition of a specific gesture is known.
Besides the definition of the context area for each point of time having a symbolic
context, a specific gesture model also needs to specify what context is expected. Here
we focus on objects as the type of the context.

First of all, symbolic context ct for a time step of a gesture model µ can be irrelevant,
necessary, or optional. Therefore the context contains a parameter cimp representing the
context importance. The context importance is essential as an object that is subject
to a manipulative gesture may be temporarily occluded by the hand manipulating it.
The ability to visually recognize the context with, for example, an object recognition
algorithm is expressed by the context importance. For example, in the gesture ’take cup’
the cup may be not detected by the object recognition as soon as the hand has taken it
because it is now visually occluded. In this gesture the presence of the cup is a necessary
context before the hand takes it, but it becomes optional afterwards to account for the
potential visual occlusion due to the hand.
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Besides defining the context area of a gesture, the object type ctype that is expected in
this context area needs to be described. As an image can contain several identical objects,
each object is given an identification number during recognition. This ID denotes a
specific object while the type identifies what kind of object it is, e.g., a ’cup’. For
defining the object context of a gesture model we only need the type but not the ID.
However, as we will see in the next section, the ID of an object is needed to identify
it during the course of a manipulative gesture. With the previously introduced context
parameters describing a context area and the expected context object, the definition of
the symbolic model context ct for time t is:

ct = (cimp, corient, cα, cβ, cr, ctype) (6.6)

To give an example, table 6.1 shows the complete symbolic context CT for all eight
time steps of the manipulative gesture ’take cup’ manipulating the object of type ’cup’.
In the depicted example, the first two time steps (t1, t2) do not contain any symbolic
context information, i.e., only the trajectory data is relevant for the gesture recognition
at these points of time. For the time steps t3 − t5, the model defines a necessary object
context, i.e., the ’cup’ must be present in an area oriented in an absolute coordinate
system with the current hand position as reference point. After the hand has come close
enough to the cup to pick it up, the context is from t6 until the end optional, as the
hand may occlude the cup during handling it.

Context Context area data Context
importance orientation start [deg] end [deg] radius object type

Time cimp corient cα cβ cr ctype

t1 irrelevant
t2 irrelevant
t3 necessary absolute 30 90 20 cup
t4 necessary absolute 30 90 20 cup
t5 necessary absolute 30 90 15 cup
t6 optional absolute 30 90 15 cup
t7 optional absolute 30 90 15 cup
t8 optional absolute 30 90 15 cup

Table 6.1: Example for the definition of object context for the manipulative gesture
model ’take cup’ consisting of a total of eight time steps.

Figure 6.3 shows images from a sequence depicting a hand taking a cup together with
the context areas of the ’take cup’ gesture model.

Through defining the symbolic context CT for a gesture model as described above,
we can use the symbolic information of the present scene to check at each point of time
of a gesture model whether its expected symbolic data matches the actual contents of
the context area. The algorithmic details of using the symbolic context information for
action recognition are covered in the next section.
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+ Cup + Cup Cup Cup+
+

Figure 6.3: The context area of four time steps (t3,t4,t5,t6) of the ’take cup’ gesture.

6.4 Integrated Action Recognition using Object Context

Given symbolic information about the current scene, the two additional steps necessary
to perform integrated action recognition instead of trajectory-based activity recognition
as outlined in Section 3.2.3 are the calculation of the context factor (see Eq. 6.4) and
the update of the symbolic sample data. The principal realization of these two steps will
be described in this section while the details of two example implementations are given
in subsequent sections.

In the previous section we noted that the model context CT of a gesture model contains
for every time step an object type ctype that is manipulated by this gesture. The symbolic
scene information Θt contains not only the type for each object Oj in the scene but also
an additional ID that uniquely identifies this object:

Θt = {O1, . . . , Oj, . . . , On} n ∈ N (6.7)

Oj = (typej, IDj) ∀ j ∈ {1, ..., n} (6.8)

To relate the context object type ctype to a specific context object Oj in Θt, the
symbolic sample data Ψ(i) is used to store the ID of the context object. Initialization of
the ID in Ψ(i) is performed the first time that an object context is expected by a gesture
model and an appropriate scene object is found. Through this binding of the model to
a specific object it can be assured that the manipulative gesture defined by this model
interacts with the same object in the following time steps by requiring an object with
this ID to be in the context area. If the end probability Pend,t(µ) of this gesture model
exceeds the recognition threshold Drec (see Eq. 5.10,Eq. 5.11), it is recognized.

To determine the object manipulated by the recognized gesture, all samples in the
sample set that were used for calculating Pend,t(µ) are analyzed. For every object Oj, an
object probability PO,t is calculated indicating the probability that this object has been
manipulated by the recognized gesture. The binary binding between a sample and an
object does not provide information about the quality of the binding, but the sample
weight represents the information how good the overall sample matches the observed
gesture. Therefore, the object probability PO,t is calculated for every object Oj based on
the weights of the samples belonging to the gesture model µ and containing this object
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in the symbolic sample data:

PO,t(Oj, µ) =
N∑

i=1

{
π

(i)
t , if Oj ∈ Ψ

(i)
t ∧ µ ∈ s

(i)
t ∧ φ > 0.9φmax

0 , else
∀ j ∈ {1, ..., n}

(6.9)
The object with the highest probability PO,t(Oj, µ) is selected to be the manipulated

object. This probabilistic formulation for determining the manipulated object allows
us to recognize gestures that manipulate an object in the vicinity of other objects with
the same type. While during binding of an object to a specific sample one of the other
objects within the context area may be chosen, the final decision on what object was
manipulated is based on the sample weights. These weights indicate which samples
model the interaction between the observed trajectory and the binded object best.

Besides binding a scene object to the gesture model µ using the ID, Ψ can be used to
represent information about the acting hand and the previously recognized actions. For
example, after recognizing a ’take cup’ action where the cup has been lifted to the mouth,
the recognition of a ’drinking from a cup’ action requires the knowledge that the hand
holds a visually occluded cup. Additionally, knowledge about the action history, i.e., the
previously recognized action ’take cup’, allows us to restrict the set of actions that are
considered for recognizing the next action. Equation 6.10 gives a generic description of
the symbolic information contained in Ψ for recognizing manipulative gestures. Notice
that except for the object ID the symbolic information represented by Ψ is application
dependent.

Ψ
(i)
t = (ID, state of the hand, history, . . . ) (6.10)

In general, updating of the symbolic information is performed in every time step
and depends on the currently observed objects in Θt, the current parent model ν, the
symbolic model context C of the gesture model µ, and the previous symbolic information:

Ψ
(i)
t = f(Θt, ν

(i)
t , C(µ

(i)
t ), Ψ

(i))
t−1) (6.11)

Now for each sample s
(i)
t the value of the context factor psymb can be calculated from

the symbolic scene data, the symbolic model context, and the updated sample-specific
context:

psymb = g(Θt, ν
(i)
t , C(µ

(i)
t ), Ψ

(i)
t ) (6.12)

As the symbolic data contained in Ψ
(i)
t is application-dependent, the implementation

of the weight value calculation depends on the application, too. In the most simple case,
the symbolic context of a gesture is only the manipulated object and the symbolic sample
data Ψ therefore contains only the ID. The calculation of the context factor psymb for this
simple context model is shown in pseudo-code in the algorithm on page 108. Here it is
assumed that for initial binding of the object ID one object within the context area with
correct type is randomly selected (lines 6-10). During normal operation the presence of
the expected object within the context area and the context importance cimp determine
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1: if cimp(µ) = Irrelevant then
2: psymb ⇐ Fnocontext

3: Ψt ⇐ Ψt−1

4: else /? model contains context ?/
5: Θt,contextarea ⇐ objects in context area with correct type
6: if ΨID,t

≤ 0 then /? initial object binding if first context occurrence ?/

7: if Θt,contextarea 6= ∅ then
8: ΨID,t

⇐ select randomly one object
9: end if

10: else /? object already binded ?/
11: Ψt ⇐ Ψt−1

12: end if
13: if ΨID,t

∈ Θt,contextarea then /? object with correct ID in context area ?/

14: if cimp(µt) = Necessary then
15: psymb ⇐ Fnecessary

16: else /? context optional ?/
17: psymb ⇐ Foptional

18: end if
19: else /? object missing ?/
20: psymb ⇐ Fmissing

21: end if
22: end if

Algorithm 1: Schematic algorithm for setting the context factor psymb

the value of the context factor (lines 14-22). In the depicted algorithm fixed weights F∗
are used for the context factor psymb based on the different context importances.

6.5 Evaluating the Recognition of Assembly
Construction Actions

For the evaluation of the proposed action recognition approach, the trajectory data
evaluated in Section 5.4 for the visual activity recognition is used. The symbolic scene
information Θt for the construction scene is manually generated, i.e., all object recogni-
tion results are correct to focus on the performance of the action recognition algorithm.
While in the activity recognition approach the gesture models contained the trajectory
data for both hands, we here use two individual recognizers to analyze the actions of
the two hands independently. This separate modeling and recognition is appropriate
for most everyday manipulative gestures, as only a single hand is usually interacting
with an object. In the construction actions in the Situated Artificial Communicator,
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however, the two hands interact during connecting two parts together. To also recognize
these cooperative manipulative gestures, the symbolic scene information Θt used in the
recognition algorithms contains baufix r© objects as well as the left (L) and right (R)
hands:

Θt = {O1, . . . , Oj, . . . , On, L, R} n ∈ N (6.13)

Oj = (typej, IDj) ∀ j ∈ {1, ..., n} (6.14)

typej ∈ {round bolt, hexagon bolt, 3 h bar, 5 h bar, 7 h bar, (6.15)

felly, socket, ring, cube, rhomb nut} ∀ j ∈ {1, ..., n}

In this way, a ConnectLR action can be modeled as a trajectory performed by the left
hand containing an object Oj and approaching the right hand R. Similarly, ConnectRL
can be modeled and if both connect actions are recognized at approximately the same
time, a Connect is recognized.

To keep track of the current contents of a hand, the symbolic sample data Ψ
(i)
t for

recognizing construction actions contains not only the ID of the object manipulated by
the gesture model µ(i) of this sample, but also the hand contents (HC) similar to one of
the states in the two-hand model (see page 28):

Ψ
(i)
t = (ID

(i)
t , HC

(i)
t ) (6.16)

Updating the hand contents HC
(i)
t of an individual sample is performed on completion

of the gesture model µ(i) of this sample. Note that the completion of the child model of
an individual sample i leads to updated hand contents only in the symbolic sample data
Ψ(i) of this sample. The new child model assigned subsequently to this sample inherits
the modified hand contents. Due to this local representation of the hand contents in
each individual sample, several competing hypotheses for the actual hand contents can
be present in the overall sample set.

For answering queries from other system components about the current hand contents
and for initializing the hand context HC

(i)
t of new samples i, it is necessary to have a

global representation of the hand contents. For this purpose, we introduce the global
hand contents (GHC) that are, just like the sample-specific hand contents, similar to a
state of the two-hand model. Only on a successful recognition of an action model, i.e., if
the parent end probability Pend(µk) (see Eq. 5.10) of the child model µk belonging to the
action model ν exceeds a threshold, the GHC are updated with the effect (see Eq. 6.2)
defined in the action model of the recognized action:

GHCt = Effect(µk) (6.17)

The set of recognized actions is essentially the same as for the activity recognition,
i.e., picking and placing of objects and connecting them together. However, in the
trajectory-based activity recognition it was not possible to differentiate between Pick
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6 Integrating Sensory and Symbolic Information for Action Recognition

and Place as the trajectories of these two gestures are similar. With the global hand
contents that are updated each time an action is recognized, the information whether a
hand is currently empty or holds an object is available while analyzing the trajectory.
This knowledge can be used in the integrated action recognition to separate between
picking and placing. Following Eq. 6.2, the action models differ from the models used for
activity recognition by containing additional symbolic information besides the trajectory
model XT . An action model can posses symbolic model context CT associated with the
trajectory model, in this case the context object type ctype, as well as a precondition P
on the GHC and an effect E changing the GHC. For recognizing assembly constructions
performed by the left hand, the following action models M(µ) are used:

M(1) = (P:GHC = ∅, Hand down, ctype = X, E:GHC = X)
M(2) = (P:GHC = X, Hand up)
M(3) = (P:GHC = X, Hand down, ctype = X, E:GHC = ∅)
M(4) = (P:GHC = ∅, Hand up)
M(5) = (P:GHC = X, ApproachL, ctype = R, E:GHC = unknown)
M(6) = (P:GHC = unknown, Move awayL, ctype = R)

The action models for the right hand are identical except for M(5) and M(6) having
different trajectory models and the left hand L as context object type. The Hand down
trajectory model is contained in two different action models, model M(1) with context
object type ctype=X for picking a baufix r© object X and model M(3) without context for
placing an object X. Similarly, two action models M(2) and M(4) contain the Hand up
trajectory model for the associated hand motion following picking/placing. The action
models M(5) and M(6) for connecting parts with the left hand have as model context
not an object but the symbol denoting the right hand. Together with the precondition
on the global hand contents, the action model M(5) is only recognized if the left hand
containing an object X approaches the right hand R. The context for the action model
M(6) defines a trajectory that points away from the right hand. The different trajectory
models of the left hand together with the context areas are depicted in Fig. 6.4. Note
that the models are defined by their velocities, for a better presentation these velocities
were multiplied with a scaling factor leading to trajectories that are larger than the
actual trajectories defined by the models. Therefore, the context areas are spread out
over a larger image area as they are associated with the individual points of the scaled
trajectories.

Based on these child models, the following three parent models R(ν) (see Eq. 5.3) are
defined for the left hand:

Pick(X): R(1) = { M(1), M(2)}
Place(X): R(2) = { M(3), M(4)}

ConnectLR(X): R(3) = { M(5), M(6)}
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R

X

R

Hand upHand down ApproachL Move awayL

Figure 6.4: The child models of the left hand together with the context areas.

Except for different actions models M(5) and M(6), the parent models for the right
hand are the same.

As recognizing the objects during the construction actions is very difficult, the state of
the GHC after the ConnectLR action is unknown. One of the two hands, i.e., one of the
two GHC’s in the different action recognizers, holds the connected parts afterwards and
the other one is empty. Different from the symbolic action detection in Section 2.3.3, we
can recognize the ConnectXX action based on the visual observation of the hand motions.
However, due to the visual occlusions it is not possible to extract the information what
hand holds the (partial) assembly resulting from connecting two parts. Therefore, we
can only update both GHC’s if the next Pick or Place occurs. To accomplish this,
we set each GHC to the state unknown after each hand executed the first child model
of the ConnectXX action to allow initialization of both child models M(1) and M(3)

for Pick and Place. If one of these two child models is recognized subsequently, the
information whether an object was binded to the model, i.e., whether a Pick or Place is
being performed, is used to update both GHC’s accordingly (see also page 30).

For the evaluation of the integrated action recognition in the assembly construction
domain, we used the empirically determined parameters Fnecessary = 1.05, Foptional =
1.00, Fmissing = 0.95 for the context factor psymb. All parameters were similar to the
parameters used for activity recognition (see page 91) except for the size of the sample
set. To account for the additional computation of the context factor, we used only 3000
samples instead of 3500. The recognition results for the proposed action recognition
using the data set from the visual activity recognition (see Section 5.4) are shown in
Table 6.2. To compare the results quantitatively, the right column depicts the results
from the trajectory-based activity recognition for comparison.

The table indicates that the gesture recognition quality of the integrated approach in-
corporating symbolic context is comparable to the results obtained without the extended
sample weight calculation (see page 92). More important, however, is the symbolic in-
formation associated with the recognized actions: the proposed approach provides the
recognized actions with the objects that are manipulated, e.g., Pick(bolt).
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Total Recognized Recognized
Actions Actions Activities

# # % % (see page 92)
Child models
Hand downL 57 52 91 89

Hand upL 57 53 93 95
Hand downR 87 82 94 90

Hand upR 87 85 98 99
ApproachL|R 72 67 93 89

Move awayL|R 72 66 92 97∑
432 405 94 93

Parent models
PickL 47 41 87

PlaceL 10 9 90
88

PickR 61 57 93
PlaceR 26 24 92

88

Connect 72 61 85 89∑
216 192 89 88

Table 6.2: Action recognition results obtained on the test set containing 36 gesture se-
quences depicting construction actions.

Comparison with Symbolic and Data-driven Recognition Approaches

Compared to the symbolic action detection, the combination of symbolic and sensory
data for recognition avoids relying completely on changes in the symbolic data of the
overall scene. While the integrated approach incorporates the actual trajectory of the
hand for determining the manipulated object, the purely symbolic approach is based
on the detection of new and disappeared objects anywhere in the observed scene for
inferring the actions. Obviously, objects can only appear/disappear in the vicinity of an
acting hand, but this information is not exploited in the symbolic action detection.

In contrast to the activity recognition, the integrated approach allows us to main-
tain symbolic information about the observed gestures. As noted above, a Pick action
is recognized with the object that was picked, while the activity recognition did not
provide this information. Therefore, only the use of the proposed action recognition in
the assembly construction domain provides information about the constructed assem-
bly structures similar to the symbolic action detection presented in Chapter 2. As will
be shown in Chapter 7, this symbolic information is highly relevant for improving the
human-machine interface of the Situated Artificial Communicator.
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6.6 Recognizing Manipulative Gestures in an Office Environment

6.6 Recognizing Manipulative Gestures in an Office
Environment

To demonstrate the applicability of the proposed framework for a wider range of ma-
nipulative gestures, we developed an action recognition system for an office environment
containing the manipulative gestures ’pick up phone’, ’hang up phone’, ’take cup’, ’stop
drinking’, ’pick book’, ’stop reading’, and ’type on keyboard’. Figure 6.5 depicts the
setup of the office scenario that was used in the evaluation. In this setup, we con-
centrate on recognizing the above mentioned manipulative gestures performed with the
right hand.

Figure 6.5: The scenario used for recognizing manipulative gestures performed in an
office environment.

The symbolic scene information Θt for the office domain contains the objects that can
be manipulated:

Θt = {O1, . . . , On, } n ∈ N (6.18)

Oj = (typej, IDj) ∀ j ∈ {1, ..., n} (6.19)

typej ∈ {cup, phone, keyboard, mouse, book} ∀ j ∈ {1, ..., n} (6.20)

Similar to the symbolic sample data used for recognizing construction actions, Ψ
(i)
t

contains the ID of the manipulated object and the current hand state (HS) that can be
either empty or hold an object:

Ψ
(i)
t = (ID

(i)
t , HS

(i)
t ) with HS

(i)
t = {∅|Oj} (6.21)

For the office domain, the precondition P and the effect E of the child models (see
Eq. 6.2) operate on the global hand state (GHS) that is defined similar to the hand state
in Eq. 6.21. The child models are defined as follows:
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M(1) = (P:GHS = ∅, reach left, ctype = phone, E:GHS = phone)
M(2) = (P:GHS = phone, lift left)
M(3) = (P:GHS = phone, place down left, E:GHS = ∅)
M(4) = (P:GHS = ∅, back from left)
M(5) = (P:GHS = ∅, reach middle, ctype = cup, E:GHS = cup)
M(6) = (P:GHS = cup, lift middle)
M(7) = (P:GHS = cup, place down middle, E:GHS = ∅)
M(8) = (P:GHS = ∅, back from middle)
M(9) = (P:GHS = ∅, reach right, ctype = book, E:GHS = book)
M(10) = (P:GHS = book, pick right)
M(11) = (P:GHS = book, place right, E:GHS = ∅)
M(12) = (P:GHS = ∅, back from right)
M(13) = (P:GHS = ∅, reach front, ctype = keyboard)
M(14) = (P:GHS = ∅, back from front, ctype = keyboard)

Based on these child models, the actions performed by a person sitting at an office
desk are defined as parent models R(ν) (see Eq. 5.3). Different from the previously

used parent models, the transition probabilities a
(ν)
ij (see Eq. 5.4) for some of the parent

models allow transitions in two different childs. Therefore, the transition probabilities
that are not zero are given explicitly in the definition of the action models:

pick up phone: R(1) = { M(1), M(2), M(6)}, a
(1)
12 = 0.5, a

(1)
16 = 0.5

hang up phone: R(2) = { M(3), M(4), M(8)}, a
(2)
34 = 0.5, a

(2)
38 = 0.5

take cup: R(3) = { M(5), M(6),M(2)} a
(3)
56 = 0.5, a

(3)
52 = 0.5

stop drinking: R(4) = { M(7), M(8), M(4)} a
(4)
78 = 0.5, a

(4)
74 = 0.5

pick book: R(5) = { M(9), M(10)} a
(5)
9,10 = 1.0

stop reading: R(6) = { M(11), M(12)} a
(6)
11,12 = 1.0

type on keyboard: R(7) = { M(13), M(14)} a
(7)
13,14 = 1.0

The trajectory models of several actions are depicted together with the context areas in
Fig. 6.6. As the trajectory models are defined in terms of x- and y-velocities, the depicted
trajectories have been obtained by multiplying the velocity values of all models with
the same constant to scale the models for better visual presentation. These trajectories
therefore do not match with the actual length of the trajectory resulting from performing
such an action.

Note that, except for type on keyboard, the overall office actions consist of two manip-
ulative gestures, one fetching and interacting with the object, and the second placing
the object back on the table. For example, the overall ’drinking’ action consists of take
cup and stop drinking. Through recognizing the two gestures defining the start and end
of the overall action individually, the information about the currently performed action
can be used by other modules. Getting back to the example given in the introduction,
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(a) reach front (b) reach left (c) reach middle (d) reach right

Figure 6.6: Several activity models together with the context areas for the actions rec-
ognized in the office environment.

the information that the human is currently drinking can be used to trigger his personal
computer to read out loud new e-mails.

We have evaluated the recognition quality of the integrated system for the above given
office actions with six test subjects. Each of the subjects performed every action ten
times, leading to a total of 60 examples per action. The parameters were identical to
the parameters used for the activity recognition (see page 91) using a sample set of 3000
samples to account for the calculation of the context factor. The results obtained are
given in Table 6.3.

Total Recognized
Actions Actions

# # %
take cup 60 58 97

stop drinking 60 53 88
pick up phone 60 59 98
hang up phone 60 58 97

pick book 60 60 100
stop reading 60 52 87

type on keyboard 60 52 87∑
420 392 93.3

Table 6.3: Recognition results for 60 gesture sequences depicting office behaviors.

The obtained results clearly demonstrate the suitability of the proposed integrated
recognition approach for recognizing manipulative gestures in the office domain. The
measured recognition quality has been obtained using a test set of six different people,
demonstrating that the approach can cope with the differences in the execution of the
gestures by different persons.

The three actions take cup, pick up phone, and pick book consisting of action models
with context objects are recognized with a high recognition rate. A similarily high recog-
nition rate was obtained for the hang up phone action that contains a very characteristic
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trajectory model. The type on keyboard had a lower recognition rate than the preceding
actions as the distance between the rest position of the hand and the keyboard was small
resulting in a short trajectory model. Therefore, most recognition failures resulted from
a recognition of the back from front child model while the person was still typing on
the keyboard. A similar problem caused the lower recognition quality of the two move
gestures stop drinking and stop reading. Both trajectory models are defined without a
context object, because the hand already holds the object that is going to be placed.
Therefore, the trajectories of these manipulative gestures compete with the other gesture
models that have the same precondition. Both, holding a cup for drinking and holding
a book for reading, are behaviors that are characterized by the hand performing some
motions during interacting with the object, i.e., taking a small sip or flipping pages. The
low recognition rates of stop drinking and stop reading were mostly due to an too early
recognition of these actions while the person was still interacting with the object.

If the motions that are performed during using the object would have characteristic
trajectories, the recognition quality could be improved by adding appropriate action
models, for example, a ’flipping page’ action. However, experiments revealed that the
differences between persons in the way they handle objects are quite large prohibiting the
construction of generic models. Additionally, the small scale of the object interactions,
i.e., how the pages are flipped or the hand holds the cup, does not result in characteristic
trajectories of a good quality. Consequently, interactions with office objects occuring at
a small scale like, e.g., ’flipping pages’ cannot be modeled appropriately with trajectory
models. To cope with such actions more successfully, an object recognition algorithm
would be needed that is capable of recognizing the object while the human is interacting
with it.

6.7 Task-based Object Recognition

In the description of the integrated action recognition given above, we assume the hand
trajectory data z and the symbolic scene information Θt to be available for processing.
In describing our recognition approach, the term ’integrated’ denotes the parallel use
of symbolic and sensory data for analyzing the observed manipulative gestures. The
extraction of the symbolic object information necessary for recognizing manipulative
gestures is not covered in this thesis, but in this section we will take a closer look at
the restrictions that the proposed action recognition framework provides to simplify the
object recognition task.

For the symbolic action detection we noted on page 15 that the extraction of symbols
for arbitrary scenes is computationally very difficult due to the potentially large number
of objects and similar appearances of different objects. It is therefore advantageous to
perform a task-based object recognition that aims at recognizing the objects that are
needed in the current task.

Other approaches to an integrated action recognition outlined in Section 6.1 use sim-
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ple visual feature detectors to extract symbolic information about the scene. In these
approaches, the trajectory of the hand or head indicates where to perform the visual
feature extraction. The visual routines are either identical for all objects [60] or are
directly related to the positions of the interesting image areas defined a priori [3, 77].
Obviously, the small sets of actions chosen for these approaches help to avoid the scala-
bility problem.

Similar to these approaches, we could use the trajectory data z to perform object
recognition in the vicinity of the hand. However, this would require the object recogni-
tion to search in the image area for any object out of the complete set of objects modeled
in the action recognition. Only if objects can be related to specific areas in the image
similar to [3, 77], the problems of scalability and appearance ambiguity can be avoided.
However, in many domains actions can not be related to specific scene areas. For exam-
ple, nearly all objects in an office that are manipulated by gestures can be positioned
anywhere on a table. It is therefore necessary to have a more generic definition of the
restrictions following from the task context. The context areas used in the proposed
action recognition framework for deriving symbolic context information could form the
basis for such a task-based object recognition approach. Different from analyzing the
complete area in the vicinity of the hand, the context area enables the analysis of an
even smaller image area based on the associated action.

For an individual sample s of the sample set, the model context cφ(µ) at the model
position φ defines the context area and the type of the expected object. In this local
view on the action recognition approach, a task-based object recognition would consist
of searching only for the expected object type ctype in the context area. This local
approach would solve the ambiguity problem as only the presence of the expected object
is verified. But looking at the sample set containing typically several thousand samples
reveals that performing local task-based object recognition is usually not adequate for
real-time action recognition as it requires to execute an object recognition algorithm for
every individual sample.

Instead, we propose to perform global task-based object recognition using unified con-
text areas that are constructed by merging context areas of individual samples. Merging
can be done either object-specific or classifier-specific: If objects need specific classifiers,
an individual unified context area is constructed for each object. For object recognition
approaches that are capable of extracting several object labels at once, a classifier-
specific unified context area associated with all the objects known by this classifier can
be constructed.

The advantages of the suggested task-based object recognition using unified context
areas are the reduction of the analyzed image area and the possibility to perform object-
specific analysis of small image areas. It should be noted, however, that applying dif-
ferent classifiers may lead to contradictory object recognition results for a single image
area. This is an important aspect that needs to be addressed in the implementation of
a task-based object recognition on the basis of unified context areas that applies several
different object classifiers.
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6.8 Summary

In this section the integrated action recognition approach to recognize manipulative
gestures was introduced. The extension to the particle filtering algorithm as used for
activity recognition consists of an additional context factor for the sample weight cal-
culation and the addition of symbolic context information to the sample representation.
For manipulative gestures, we presented a representation of the context in terms of the
object type that is manipulated and its position with respect to the acting hand. The
application of this object context for calculating the context factor to update the sample
weights was described. An evaluation of the proposed action recognition approach was
presented using the same test set of assembly construction actions that was evaluated
for activity recognition. As a second domain containing a wider range of manipulative
gestures, the recognition of actions in an office environment was demonstrated.

The proposed approach provides a ’complete’ recognition of manipulative gestures
including which objects were manipulated. In contrast, the activity recognition recog-
nizes gestures based only on the trajectory data and relies on assumptions about the
domain to match recognized activities to actions performed with objects. The proposed
framework can be used to perform task-based object recognition for the extraction of the
symbolic information from the scene by taking advantage of the defined context areas
for searching context objects.
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Communicator

In this chapter, we will demonstrate that the recognition of manipulative gestures can
substantially improve a human-machine interface. For this purpose, we have integrated
the action recognition within the assembly construction domain of the Situated Artificial
Communicator described in Section 2.2. The system components realize the perceptual
front-end of the Situated Artificial Communicator to allow the human to interact with
the system through using speech and gestures. However, no robotic manipulator is
present in the perceptual front-end for the automatic construction of the toy assemblies
based on the user’s instructions. Therefore, in our setup a human constructor executes
the instructions that have been given by the instructor. The manipulative gestures per-
formed by the human constructor are recognized with the action recognition framework
presented in Section 6.5.

In the following, we will demonstrate how the results from recognizing the construc-
tion actions can be used to improve the capabilities of the overall system. First, we will
show in Section 7.1 how the observation of the acting human can be used for improving
dialog interaction by providing information about the hand contents. Besides this direct
improvement of the human-machine interface through the action recognition results, the
recognized actions can also be used as context knowledge for other system components to
indirectly improve the human-machine interface. In the Situated Artificial Communica-
tor, the observation of the construction actions provides relevant context information for
the vision algorithms aiming at recognizing the baufix r© objects and assemblies. How the
action recognition results are combined with these algorithms is demonstrated in Sec-
tion 7.2 for the recognition of assemblies and in Section 7.3 for the recognition of objects.
The realized applications presented in this chapter for improving the human-machine
interface of the Situated Artificial Communicator are summarized in Section 7.4.

7.1 Improving the Human-Machine Interface

The architecture of the perceptual front-end of the Situated Artificial Communicator is
shown in Fig. 7.1. The components of the action recognition are drawn in black and
its interactions with other modules to improve the human-machine interface are drawn
in blue. All other components not relevant at this point are drawn in gray. In the
following sections, other versions of this figure will be used to depict the interaction
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between action recognition and object/assembly recognition. Figure 7.1 contains on the
left side the modules that are responsible for processing the speech input from the user
instructing the system. On the right, the components related to the image processing
tasks are depicted. The central module relating the spoken input to the visually observed
scene is drawn in the middle and denoted ’interrelated perceptions’.

speech
recognition

speech
understanding

assembly
recognition

liaison-graph fusion

manipulator
visualization/

recognition
object

dialog interrelated
perceptions

assembly
memory

part
memory

hand
states

action
recognition

instructor cameratable camera

(plans + names)
assembly database

speech data

stable
parts

stable
parts

hand contents

Figure 7.1: The basic system architecture of the Situated Artificial Communicator with
the action recognition components (black) and the module interactions for
improving the human-machine interface (blue).

Given an acoustic signal, the speech recognition extracts partial syntactic structures
that are transferred to the speech understanding component. Based on the syntactic
structures, a linguistic interpretation is generated that is passed to the dialog component.
For all instructions referring to parts, e.g., ’Put the bar on the red bolt’, the dialog queries
the component interrelating the vision data with the spoken input.

The parts currently laying on the table are provided to the interrelation module by the
part memory introduced in Section 2.3.2. The part memory is updated with information
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from the object and assembly recognition procedures each time a new image has been
processed. Instructions that refer to parts that are already in the hands of the human
constructor cannot be resolved by the interrelation module using only the information
from the part memory. For example, if the red bolt has already been taken, it is no longer
on the table and therefore it is not contained in the part memory. Through analyzing
the images captured by an additional camera observing the human constructor, the
construction actions carried out can be recognized with the proposed action recognition
system and the hand states can be updated accordingly. Similar to the information from
the part memory about the current table scene, the information from the hand states
about the current hand contents is provided to the interrelation module for resolving
instructions. In this way, the interrelation module is able to relate the red bolt from the
instruction to the part contained in the hand.

If an object or assembly matching the description is found either in the information
from the part memory or the hand states, it is returned to the dialog. If all parts
contained in the instruction have been related to parts on the table or in the hands,
the dialog generates an appropriate system output. In the realized system this amounts
to visualizing the intended action in a virtual environment [7] as can be also seen in
Fig. 2.13 on page 32. If the dialog cannot completely interpret an instruction, it asks
the user for more information.

Besides referencing elementary baufix r© parts, it is also possible to assign names to
assemblies. In the Situated Artificial Communicator domain, these names usually denote
a toy-airplane and its components. Naming assemblies can be done either implicitly
(’Take the bolt in front of the airplane’) or explicitly (’This is the airplane’). The names
given to assemblies are stored together with the structural descriptions from assembly
recognition in the assembly database. From now on, references to parts on the table
containing names are resolved using the assembly database, e.g., ’Take the airplane’.

Observing the construction actions leading to an assembly results in the assembly
construction plan. If a human is intended to learn how to construct an assembly whose
construction plan is contained in the assembly database, the action recognition can be
used for comparing the construction actions executed in the scene with the learned
construction plan [29]. In such a setup, the dialog can provide feedback about whether
the performed actions fit the given construction plan, i.e., whether a human constructor
constructs the assembly correctly.

In another setup used in the Situated Artificial Communicator project, several of
the above mentioned modules of the perceptual front-end are integrated with a robotic
manipulator [66]. In this setup, the dialog sends the interpreted instructions directly to
the robot for execution.

In the perceptual front-end of the Situated Artificial Communicator described above,
the interaction quality is directly improved through using the results from action recog-
nition, i.e., the contents of the hand states, for resolving instructions. In the next
two sections we will present the integration of action recognition results into the algo-
rithms for observing the assemblies and elementary parts contained in the visual scene.
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7 Action Recognition in the Situated Artificial Communicator

Through enabling the extended vision algorithms to provide better scene recognition
results, the action recognition serves in the following to improve the overall interaction
quality indirectly.

7.2 Fusing with Visual Assembly Recognition

An important functionality needed in the Situated Artificial Communicator is the ability
to recognize assemblies made of elementary baufix r©-parts. In Section 2.2.3 we introduced
the syntactic assembly recognition based on the functional model for assemblies. Based
on the results of an object recognition algorithm, the details of the connections can be
determined by visually analyzing the relations between the individual objects. However,
the information about the objects in the assembly can be incomplete due to perspective
occlusions. For example, some small parts may have been visually occluded and therefore
have been missed by the object recognition algorithm.

An alternative method to recognize an assembly follows from the fact that constructing
a complex part from a set of separate parts usually takes a sequence of construction
actions, i.e., in most cases constructing an assembly is a process of sequentially connecting
several components. This assembly construction process can be observed with the action
recognition approach proposed in this thesis. Recognizing the individual construction
actions provides the construction sequence necessary to build the assembly, i.e., the
construction plan. This construction plan is quite reliable regarding the types of parts
used and their order in the constructed assembly, but no details of the connections
are available. This follows from the fact that the action recognition observes only the
motions of the hands, but it is not possible to infer which holes or threads are used to
establish the connection between two parts. Only by recognizing the individual parts
and their orientation in space one could infer which holes or threads are used for a
connection, but this would require the object recognition algorithms to cope with the
visual occlusions due to the hands holding the parts.

Comparing the two different methods to recognize assembly structures based on the
visual structure (syntactic assembly recognition) and the process (action recognition)
shows that they provide complementary results. The syntactic assembly recognition
provides detailed information about the connections between the recognized individual
parts, e.g., the hole of a bar used for connecting it with a bolt and a cube. While there
may be some parts missing due to visual occlusion, these parts are contained in the
structure generated by the action recognition. However, the connection details are not
provided by action recognition as this detailed information is not inferable with current
vision algorithms.

Fusing the results allows to take advantage of the benefits of the two distinct ap-
proaches and can greatly enhance the quality of the extracted assembly structure. Fig-
ure 7.2 depicts how the different modules are connected with each other to implement
the merging of the different results. The principal processing steps for fusing assembly
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Figure 7.2: Incorporating action recognition results to improve the assembly structures
generated by the syntactic assembly recognition.

structures are as follows:
If an assembly is put down on the table, several new objects are detected by the object
recognition module. On receiving several new objects at a time, the part memory sends
the set of new objects to the assembly recognition. As the syntactic assembly recogni-
tion can become very time-consuming if the number of objects is large, the recognition
process is only performed if no visually similar assembly has been recognized previously.
To enable the search for known assemblies, a hierarchically-organized assembly memory
containing different visual representations of all previously recognized assemblies has
been developed together with C. Bauckhage [10]. Before the syntactic assembly recog-
nition is carried out, this assembly memory is searched for a match between the stored
assemblies and the visual appearance of the new set of objects (for details see [10, 70]).
If a match is found, the stored assembly structure is taken as recognition result, other-
wise the syntactical assembly recognition is started. If an assembly has been found, the
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7 Action Recognition in the Situated Artificial Communicator

structural description of the new assembly is sent to the fusion module. At the same
time, the complete set of new objects as received from the part memory is sent to the
action recognition.

The action recognition compares the set of new objects with the contents of the
hand states. If either one of the hand states contains a complete assembly or the parts
contained in both hand states can be connected to form a complete assembly, these
parts are compared to the set of new objects. Given perfect object recognition results,
the parts in the hand states would exactly match the objects recognized in the scene.
However, as visual occlusions cause object recognition errors or invisible objects not
recognized at all, the (partial) assembly contained in the hand state(s) is assumed to
have been put down in the scene if at least 75% of the objects from object recognition
are matched in the assembly contained in the hand state(s). In this case, the action
recognition sends the assembly structure to the fusion module. If only an incomplete
assembly is contained in one state of the two-hand model, a Connect action is inferred
before sending the assembly structure to the fusion module.

As the recursive assembly model introduced in Section 2.2.1 does not provide unique
descriptions of assemblies, it is advantageous for the fusion to first transform an assembly
structure into a unique representation. In this way, the comparison in the fusion module
between the different assembly structures from action recognition and syntactic assembly
recognition can be simplified. One method to represent assembled objects with a unique
representation is the liaison-graph, a concept introduced by Bourjault [15]. We will first
describe in the following the liaison-graph representation before going into the details of
the fusion process.

Liaison-graph Representation

For describing the structure of an assembly, the nodes of a liaison-graph represent the
parts of an assembly while the edges correspond to certain relations – generally physical
contacts – between the assembled objects. Here the liaison-graph is used to represent
visible physical contacts between the objects of an assembly. The direction of the edges
indicates the order in which the objects were put onto the corresponding bolts. Different
types of edges are used to determine which object is put onto which bolt.

For the example assembly shown on the left of Fig. 7.3, one structural description
based on the functional assembly model is depicted in the middle of Fig. 7.3 and the
liaison-graph describing the visible physical contacts is shown on the right of Fig. 7.3.

As pointed out above, the syntactic assembly recognition provides detailed information
about the connections between the individual parts, e.g., the hole of a bar used for
connecting it with a bolt and a cube. As this information is not provided by the action
recognition algorithm and is therefore not used in the fusion process, it is not drawn in
the depicted assembly representations for simplicity.

The textual representation for the liaison-graph depicted in Fig. 7.3 can be written as
follows:
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bolt1
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Figure 7.3: An example assembly consisting of several subassemblies with a correspond-
ing structural description derived on the basis of the functional assembly
model and the liaison-graph representation.

bolt1 - rhomb nut - 5 h bar - cube1

bolt2 - cube1

bolt3 - 5 h bar - cube2

Transforming a structural description of an assembly into a liaison-graph represen-
tation is done as follows: Obviously, all objects of a certain level of hierarchy in the
structural description are put onto the same bolt. Therefore, all hierarchical levels of
the structural description have to be parsed and subassemblies need to be replaced by
their functional parts to obtain the liaison-graphs containing all parts with physical
contacts. While MISC PART and NUT PART subassemblies must be replaced with
the respective part establishing the function, a BOLT PART subassembly has to be re-
placed with the complete set of parts from the lower level of the hierarchy, as all parts
of a BOLT PART subassembly have a physical contact with the bolt.

Fusing Different Liaison-graphs

In order to merge the distinct assembly structures from action recognition and syntactic
assembly recognition, we use the textual representation of the liaison-graph. In the
fusion module the liaison-graphs from assembly recognition and action detection are
compared to construct a merged liaison-graph. The merged liaison-graph is obtained by
enhancing the liaison-graph from assembly recognition based on the additional parts in
the liaison-graph from the action detection. The fusion process consists of three steps:

1. Completion of the liaison-graph from action detection by retrieving subassemblies
from the assembly database. If assemblies instead of elementary baufix r© parts are
used for construction actions, the internal structures of the subassemblies have
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7 Action Recognition in the Situated Artificial Communicator

to be retrieved from the assembly database. These subassemblies have been con-
structed previously and therefore the retrieved liaison-graphs are the result of a
previous fusion step.

2. Identification of liaison-graph lines from assembly recognition that match with
previously fused subassemblies retrieved from the assembly database.

3. Enhancement of the remaining liaison-graph lines from assembly recognition based
on the liaison-graph lines from action recognition if missing parts are small and
therefore may have been not recognized due to visual occlusion.

To give an example for the fusion process, consider the assembly depicted in Fig. 7.4(a).
The resulting object recognition results are shown in Fig. 7.4(b). Due to the perspective,
the rhomb nut was not recognized and consequently it is not contained in the recognized
assembly structure visible in Fig. 7.4(c).

(a) (b) (c)

Figure 7.4: (a) An example assembly with a rhomb nut partially occluded due to the
perspective; (b) The results from object recognition lacking the rhomb nut;
(c) Visual representation of the results from assembly recognition.

Therefore, the rhomb nut is also missing in the liaison-graph generated from the as-
sembly structure:

(A1) bolta - 5 h bar - cubea

(A2) boltb - 5 h bar - cubeb

(A3) boltc - cubeb

The following shows the liaison-graph from action detection (B1) and the subassem-
blies retrieved from the assembly database (B2−B4):

(B1) ASSEMBLY4 → ASSEMBLY1 - ASSEMBLY2 - ASSEMBLY3

(B2) ASSEMBLY1 → bolt1 - rhomb nut
(B3) ASSEMBLY2 → bolt2 - 5 h bar - cube1

(B4) ASSEMBLY3 → bolt3 - cube2
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7.2 Fusing with Visual Assembly Recognition

Comparing the two graphs given above shows that line A3 is identical to the
ASSEMBLY3 in line B4 and therefore boltc=bolt3 and cubeb=cube2. Now the re-
maining liaison-graph lines are:

(A1) bolta - 5 h bar - cubea

(A2) boltb - 5 h bar - cube2

(B1) ASSEMBLY4 → ASSEMBLY1 - ASSEMBLY2 - ASSEMBLY3

(B2) ASSEMBLY1 → bolt1 - rhomb nut
(B3) ASSEMBLY2 → bolt2 - 5 h bar - cube1

ASSEMBLY2 in line B3 contains cube1 and therefore only matches with line A1 giving
bolta=bolt2 and cubea=cube1. and resulting in the remaining liaison-graph lines:

(A2) boltb - 5 h bar - cube2

(B1) ASSEMBLY4 → ASSEMBLY1 - ASSEMBLY2 - ASSEMBLY3

(B2) ASSEMBLY1 → bolt1 - rhomb nut

To fuse the remaining line A2 with the lines B1 and B2, the subassemblies in line B1
are replaced by the parts used for the connection. This is accomplished by comparing
B1 with A2 and taking into account the knowledge which function a subassembly can
have depending on its position as outlined on page 125. This leads to the remaining
liaison-graphs:

(A2) boltb - 5 h bar - cubeb

(B1) bolt1 - rhomb nut - 5 h bar - cube2

For comparison of the remaining liaison-graphs, a heuristic is applied to deal with
small parts missing in the liaison-graph from assembly recognition due to perspective
occlusions. If a small part is contained in the liaison-graph from action recognition
and is missing in the result from assembly recognition, it is added to the fused liaison-
graph. Using this heuristic, the rhomb nut is inserted in line A2 giving the complete
liaison-graph for the assembly in Fig. 7.4(a):

(A1) bolta - 5 h bar - cubea

(A2*) boltb - rhomb nut - 5 h bar - cubeb

(A3) boltc - cubeb

While this graph depicts only the fused part sequence, the connection details generated
by the assembly recognition (e.g., which hole of 5 h bar in line A1 was used in the actual
construction step) are attached to the individual parts. This fused liaison-graph is now
stored in the assembly database to be used in subsequent processing steps.

127



7 Action Recognition in the Situated Artificial Communicator

7.3 Providing Hypotheses for Object Recognition

The previous section has shown how problems in assembly recognition due to visual
occlusion can be reduced by incorporating process knowledge to hypothesize occluded
objects within an assembly. The drawback of this fusion approach is the fact that it
comes into play after the assembly recognition has been carried out. Therefore, this
method works well only for small objects that are of the MISC PART type and do not
prevent the overall assembly structure from being recognized. If the elementary object
recognition fails to recognize a cube, for example, the assembly structure cannot be
detected and therefore the assembly fusion process described in the previous section
fails.

One obvious solution to this problem is the incorporation of the process knowledge
earlier in the recognition phase. From supervising the process of taking parts, connecting
them, and placing constructed (sub)assemblies back in the scene, the set of parts used
for building an assembly is available. This context knowledge can be exploited by the
recognition procedure as it provides expectations about the objects in the scene if several
new objects appear simultaneously, i.e., if an assembly has been put down. In the
following, we will briefly sketch the integration of action recognition results into the
baufix r© object recognition system described in Section 2.2.2. Based on an example
assembly, the influence of the context knowledge will be highlighted. More details on
the integration of the context knowledge into the object recognition system can be found
in [18].

Integrating Context Knowledge

The integration of the object recognition algorithm into the Situated Artificial Commu-
nicator architecture to incorporate context knowledge is shown in Fig. 7.5. If a newly
constructed assembly is placed in the scene, the ’place’ action is recognized by the ac-
tion recognition. In this case, it retrieves all objects contained in the assembly from
the hand states and provides these object hypotheses to the object recognition. If the
object recognition detects several new elements in the scene simultaneously, it assumes
that an assembly has been placed in the scene and incorporates the expectations from
action recognition into the recognition process. Comparing the competing results of the
object recognition system with the expectations influences the voting process and the
judgment for selecting the best scene interpretation.

Example Results

To demonstrate the integration of process knowledge into the recognition framework,
we use the example assembly shown in Fig. 7.6(d). We assume that the assembly was
constructed starting with the construction of ASSEMBLY1 consisting of the yellow bolt
connected to the green cube (see Fig. 7.6(a)). This assembly was placed back in the
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Figure 7.5: The incorporation of action recognition results as context knowledge for ob-
ject recognition.

scene before picking a 3-hole-bar and a red bolt (see Fig. 7.6(b)). After putting the bar
onto the bolt and tightening it with the previously built subassembly ASSEMBLY1, this
new subassembly ASSEMBLY2 has to be placed back in the scene also (see Fig. 7.6(c)).
This step is necessary to regrasp the assembly and to obtain the intermediate assembly
structure. Then a yellow bolt was taken to put this new subassembly onto it and tighten
it with a blue cube before placing it back on the table.

Constructing the assembly in this way leads to the following assembly structure con-
tained in one hand state:

ASSEMBLY3 → bolt1 ASSEMBLY2 cube1

ASSEMBLY2 → bolt2 3 h bar ASSEMBLY1

ASSEMBLY1 → bolt3 cube2

The objects contained in this assembly structure are the expectations sent to the
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(a) (b) (c)

bolt1

bolt3

bolt2

3 h bar

cube2

cube1

(d)

Figure 7.6: Example assembly with intermediate construction steps.

object recognition:

bolt bolt bolt 3 h bar cube cube

Note that each time an assembly is placed back in the scene, the object recognition is
carried out. Therefore, subassemblies in a larger assembly have been recognized several
times during intermediate object recognition and assembly structure fusion steps. In the
expectation data provided by the hand states, these subassemblies have been retrieved
from the assembly database, i.e., the results of previous recognition/fusion steps are
used.

For completeness, Fig. 7.7 depicts the results of the individual segmentation and
classification results that are used to construct the segmentation hierarchy (see page
24).

(a) (b) (c) (d)

Figure 7.7: Results for the example assembly: (a) Color-based region segmentation
(mean-shift algorithm); (b) Contour-based perceptual grouping; (c) Hybrid
object recognition; (d) Holistic detection of object parts;

In Fig. 7.8(a) an intermediate scene interpretation for the example assembly is shown
after evaluating the segmentation hierarchy without process knowledge. The blue area
has an evidence for bolt from the hybrid recognition module and one for cube from a
classified focus point (see Fig. 7.7(c),7.7(d)). In this situation, voting results in hypoth-
esizing bolt. The set of expected elements provided by the action recognition is matched
to this scene interpretation. This results in adding a new evidence cube for the area with
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the blue border while all other areas already contain the correct labels. Repeating the
voting procedure produces the label cube for the area with the blue border as now this
hypothesis has one evidence from the classified focus point and one from process knowl-
edge, while the label bolt has only one evidence from the hybrid recognition module. The
resulting scene interpretation is depicted in Fig. 7.8(b). Note that the resulting element
region does not exactly match the object region due to segmentation errors. Two other
scene interpretations generated by the segmentation hierarchy are shown in Fig. 7.8(c)
and Fig. 7.8(d).

(a) (b) (c) (d)

Figure 7.8: Example results. (a) Results without exploiting process knowledge. (b) Re-
sults after incorporating expectations from monitoring the construction pro-
cess. (c), (d) Competing scene interpretations contained in the segmentation
hierarchy that have low judgments.

Given the three competing results in Fig. 7.8 (b)-(d), these results are ranked using
the judgment procedure. The ranking is determined by comparing the elements in a
scene interpretation with the set of expected elements from action recognition. The
result shown in Fig. 7.8(c) gets a low judgment because the 3 h bar is missing. Like-
wise, the result depicted in Fig. 7.8(d) gets a low judgment because it contains one
additional element hypothesis (the yellow bolt) which could not be matched. Only the
result depicted in Fig. 7.8(b) contains exactly the same number and type of elements as
provided by action recognition in the form of the expectations. Consequently, it gets a
high judgment and is selected as recognition result.

For the performance evaluation, a small test set of 26 assemblies with a total of 119
elements was used. To measure the performance of the extended object recognition, the
information from process knowledge consisted of correct expectations only. To account
for the two stages in the recognition process, we measured the recognition rates for gener-
ating object hypotheses and selecting the best scene interpretation individually. For this
purpose the best result out of all scene interpretations was manually selected resulting in
a total of 72% correctly recognized elements compared to 70% without information from
process knowledge. When using this information for selecting the best interpretation,
the number of correct elements in the chosen scene interpretation increased from 66%
to 71%. Note that the majority of errors is due to wrong segmentations and classifica-
tions which cannot be undone by context knowledge. However, using context knowledge
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the generation of object hypotheses is slightly improved and the selection of the scene
interpretation results in a better overall recognition performance.

7.4 Summary

In this chapter, we demonstrated the use of action recognition results for improving
the human-machine interface of the Situated Artificial Communicator. On the one
hand, the observation of the acting human can be used for directly improving the dialog
interaction by providing information about the hand contents. On the other hand, the
observation of the construction actions provides relevant context information for vision
algorithms aiming at recognizing the objects and assemblies present in the scene. The
correct extraction of the current scene is a highly relevant source of information for
the human-machine interface of the Situated Artificial Communicator that shares the
interaction domain with the human. Therefore, using the recognized actions as context
knowledge results in an indirect improvement of the human-machine interface of the
Situated Artificial Communicator.

The applications of the action recognition results presented in this chapter empha-
size the need for analyzing non-communicative hand gestures to construct advanced
human-machine interfaces. Only the extraction of human actions allows a technical
system sharing the domain with the human to provide a sophisticated human-machine
interface. We expect that an important application area where the recognition of ma-
nipulative gestures is intensively used will be mobile robots. In a mobile robot domain,
the robot must observe the acting human and reason about him to react appropriately.
The recognition of actions in an office environment has already been presented in Sec-
tion 6.6, but due to a missing human-machine interface for a mobile robot we cannot
demonstrate here the benefit of recognizing manipulative gestures for improving the in-
teraction quality of a mobile robot. Nevertheless, the results obtained in the Situated
Artificial Communicator domain already prove the utility of the proposed recognition
framework for a system with a sophisticated human-machine interface.
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8 Summary and Conclusion

The topic of this thesis is the recognition of manipulative hand gestures. Looking at
the literature on gesture recognition shows that most of the published approaches deal
with communicative gestures. However, many gestures during everyday life change the
position of objects in their surrounding. These manipulative gestures are the primary
form of non-communicative interaction between humans and their environment. As
manipulative gestures are often considered to be irrelevant for communication between
two humans and, consequently, in human-machine interaction, their recognition has at-
tracted little attention up to now. This narrow view on communication ignores the fact
that often knowledge about the current situation is required to understand communi-
cation acts and is therefore needed by a technical system aiming at enabling a natural
human-machine interaction. We argue that the recognition of manipulative gestures in
a system realizing a human-machine interface improves the interaction quality substan-
tially by providing information about the current scene to other algorithms.

For the vision-based recognition of gestures, the image sequences depicting gestures
have to be analyzed. Communicative gestures are characterized solely by the motion
of the hand. Therefore, only sensory information in the form of the hand trajectories
is required to recognize communicative gestures. For the recognition of manipulative
gestures two types of information are relevant, the sensory hand trajectory data and the
symbolic information about the manipulated objects. Only through incorporating the
symbolic information it is possible to differentiate between gestures exhibiting similar
trajectories like, e.g., ’picking up the phone’ and ’taking a cup’. However, if certain
restrictions are met by the user and the domain of interest, manipulative gestures can
be recognized based only on one type of information.

In order to avoid relying on restrictions imposed by the type of information used, it is
advantageous to combine symbolic and sensory information in an integrated recognition
approach. We propose in this thesis a generic framework to perform integrated gesture
recognition that is based on particle filtering. Through incorporating both, symbolic
and sensory information, in the propagation phase of a particle filtering algorithm we
achieve a parallel integration of both cues during the analysis process. This parallel
integration facilitates the concentration of the computational resources on the gesture
hypotheses that are likely given the observed symbolic and sensory data. With the pro-
posed incorporation of symbolic information based on context areas, our approach allows
us to recognize manipulative gestures independently of the location of the manipulated
objects within the image. The developed integration scheme is domain-independent and
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can be applied easily to different domains. Additionally, it supports the recognition of
complex actions that involve a sequence of manipulative gestures interacting with dif-
ferent objects. For example, preparing a cup of coffee involves gestures interacting with
the coffee pot and with sugar and milk.

In developing the integrated approach, we have first studied separately the advantages
and limitations of symbolic and sensory information for recognizing manipulative ges-
tures. For this purpose, we implemented two individual recognition approaches in the
assembly construction domain. The symbolic action detection is a rule-based method to
infer the executed actions based on appearing/disappearing parts and their functional
properties. The symbolic information of the parts in the scene is provided by object and
assembly recognition algorithms already available for the assembly construction domain.
The realized symbolic action detection relies on the correct extraction of symbolic scene
changes and provides information about the contents of the hands.

A complementary cue for recognizing construction actions is the sensory data repre-
senting the motions of the hands. The extraction of the features describing the hand
motions is an important preprocessing step before a pattern recognition technique can
be applied to analyze the motions. We developed for this purpose an adaptive skin color
segmentation algorithm that allows us to detect hands and faces under varying lighting
conditions and in front of cluttered backgrounds. By incorporating face detection results,
the adaptation of the skin color model can be restricted to skin-colored faces. Similar-
ily, the motion of skin-colored regions can be used to restrict the adaptation to moving
hands to avoid distractions of the color model through skin-like background objects. The
hands detected in the images of an image sequence are tracked over time to form tra-
jectories describing the hand motions. These trajectories are analyzed using a particle
filtering algorithm that has been used previously to recognize communicative gestures.
As this approach is purely data-driven, it represents a visual activity recognition and is
only appropriate for recognizing manipulative gestures that have characteristic trajecto-
ries. While the approach allows us to discriminate between hand motions with distinct
trajectories, it does not provide any additional information about which objects were
manipulated and what objects are contained in the hands.

The benefit of using the developed recognition approach integrating symbolic and
sensory data is demonstrated by evaluating its recognition quality in the assembly con-
struction domain. The increase in computational cost due to the integration of symbolic
information is small. However, the additional information about the objects manipu-
lated by a recognized gesture is highly relevant. It is only this symbolic information
that allows us to generate an assembly construction plan from the recognized actions
and differentiate between the gestures ’Pick’ and ’Place’ that exhibit similar hand mo-
tions. The implemented gesture recognition approach is therefore capable of recognizing
manipulative gestures independent of their specific properties, i.e. without the restric-
tions imposed by the recognition approaches dealing with the individual information
cues. The comparison of the recognition quality with the results of the data-driven ac-
tivity recognition shows that the advantages of the proposed integration framework are
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obtained without reducing the recognition quality of the particle filtering algorithm.
To demonstrate the flexibility of the proposed approach, a recognition system for rec-

ognizing manipulative gestures in an office environment was developed. Different from
the assembly construction domain, there is a wider range of different gestures interact-
ing with the different objects contained in an office. With the increased ambiguity of
the hand trajectories, the symbolic information representing the manipulated objects
becomes more important in the office domain. Therefore this domain is well-suited to
demonstrate the benefit of combining both information types in an integrated frame-
work. The implemented recognition system based on the integration framework is able
to recognize the manipulative gestures despite of the ambiguities in the hand motions.

The relevance of recognizing manipulative gestures for improving human-machine in-
terfaces has been demonstrated with various applications that were realized within the
Situated Artificial Communicator setting. On the one hand, the knowledge of the cur-
rent contents of the hands allows us to understand instructions related to parts that
are contained in the hands. Recognizing manipulative gestures results here in a direct
improvement of the communicative capabilities. On the other hand, the sequence of
recognized construction actions can serve as context knowledge for vision-based object
and assembly recognition algorithms leading to an indirect improvement of the commu-
nicative capabilities.

The applications in the Situated Artificial Communicator domain using gesture recog-
nition results clearly demonstrate the importance of recognizing manipulative gestures
for improving human-machine interfaces. The proposed framework for performing ac-
tion recognition based on symbolic and sensory data proves the possibility to realize
integrated recognition systems capable of real-time performance. In order to apply the
proposed framework to the vision-based recognition of manipulative gestures, we devel-
oped an adaptive skin color segmentation approach. This approach enables the detection
of hands in images captured under varying lighting conditions encountered in ordinary
environments like, e.g., offices or homes. With the development of this image processing
component to extract the hand motion, gesture recognition can be accomplished in a
wide range of domains. We demonstrated the recognition of manipulative gestures in two
domains, assembly construction and usual office behavior. In both domains, the gestures
are recognized with a good precision and the symbolic context of the gestures, i.e., what
object was manipulated, is available for subsequent processing steps. The recognition
results demonstrate the suitability of our approach to recognize manipulative gestures.
The proposed framework can be applied easily to other domains and, as demonstrated
with the applications in the Situated Artificial Communicator, it improves the overall
performance of systems interacting with humans who gesture with their hands.
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