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Prof.Dr.Mikko Laine





Contents

Published work from thesis 5

1. Introduction 6

2. Quantum field theory in a hot thermal bath 9
2.1. Perturbation theory at finite temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1. A short review of the imaginary-time formalism . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2. Scales and effective theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Hard Thermal Loops (HTL) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3. Perturbation theory close to the lightcone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.1. Thermal width and asymptotic mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2. A new class of diagrams: Collinear Thermal Loops (CTL) . . . . . . . . . . . . . . . . 20
2.3.3. A general power-counting for CTLs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4. The CTL self-energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3. Thermal particle production and the LPM effect 26
3.1. Thermal particle production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1. Particle production rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2. Particle abundances and Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . 31

3.2. The LPM effect and its role in thermal particle production . . . . . . . . . . . . . . . . . . . 32
3.3. An integral equation for the LPM effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.1. The basic strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2. The two-point functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.3. The recursion relation for amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.4. Integral equation for the CTL self-energy . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4. Photon production from a quark-gluon-plasma . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4. Thermal production of Majorana neutrinos 45
4.1. The origin of matter in the Universe: Baryogenesis . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2. Production rate and leading order contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3. Decay and recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.1. Tree-level contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.3.2. Multiple rescattering and LPM effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4. 2 ↔ 2 scattering contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.1. Processes involving quarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2. Processes involving gauge bosons: hard contribution . . . . . . . . . . . . . . . . . . . 53
4.4.3. Processes involving gauge bosons: soft contribution . . . . . . . . . . . . . . . . . . . . 56
4.4.4. Computation of Ahard, Asoft and B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.5. Collision term and yield of Majorana neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.1. The leading-order collision term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5.2. Solution of the Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.3. RG running of coupling constants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.6. Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.1. Approximate solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.6.2. The differential production rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.6.3. The Boltzmann collision term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.6.4. The yield of Majorana neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3



Contents

5. Summary and Outlook 72
5.1. Summary – what has been done already . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2. Outlook – what can be done next . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A. Notation and conventions 75

B. Finite-temperature propagators 76
B.1. Scalar propagator and asymptotic thermal mass . . . . . . . . . . . . . . . . . . . . . . . . . . 76
B.2. Fermion propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

B.2.1. The resummed finite-temperature fermion propagator . . . . . . . . . . . . . . . . . . 78
B.2.2. Propagator for lightlike momenta, asymptotic thermal mass . . . . . . . . . . . . . . . 79
B.2.3. HTL fermion propagator and HTL mass . . . . . . . . . . . . . . . . . . . . . . . . . . 81

B.3. Gauge boson propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.3.1. HTL gauge boson propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

B.4. Proof of (3.56) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

C. Some details for the recursion relation 88
C.1. The vertex factors for external gauge bosons and fermion loop . . . . . . . . . . . . . . . . . . 88
C.2. No need to remove external fermions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

D. Remarks on the integral equation for the current 91
D.1. Connected and disconnected contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
D.2. Towards an easier integral equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

E. Solving the equation for the LPM effect numerically 95
E.1. Formulation in Fourier space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
E.2. Solution of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

F. Proof of relations for the production rate of Majorana neutrinos 100

Bibliography 103

Acknowledgements 107

4



Published work from thesis

The new results contained in this thesis are also published in the following articles:

[1] D.Besak, D.Bödeker, ”Hard Thermal Loops with soft or collinear external momenta”
This article contains the derivation of the integral equation for the LPM effect in photon production. It serves
to introduce the new method that is used in this work. This paper thus contains the essence of sections 3.3
and 3.4 as well as the relevant appendices.

[2] A.Anisimov, D.Besak, D.Bödeker, ”The complete leading order high-temperature production rate of Ma-
jorana neutrinos”
This paper essentially contains what is presented in chapter 4 of this thesis. It presents the new results on the
high-temperature particle production rate of Majorana neutrinos and compares them to the zero-temperature
results.
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1. Introduction

Who is in that house? I opened the door to see.
Who is up the stairs? I’m walking up foolishly.
Katie Melua - The House

The very early universe is a system of extraordinary complexity and very rich phenomenology, making it an
ideal playground to test our understanding of the fundamental laws of nature and our ability to obtain precise
answers to all the questions that we can ask within the framework of theoretical physics. If we knew every-
thing that we need to know about the theories that govern the Universe in its present state and its history,
then we could, provided we could somehow get the correct initial conditions, in principle make a simulation
of everything that happened between the Big Bang and the present Universe–assuming sufficient machine
power or patience to wait for the answer. However, Nature is still successful in limiting our knowledge, while
our curiosity remains as unlimited as ever and we may hope that revealing all myths our Universe still has
kept will only be a question of time.
At present however, it is fair to say that everything which happened before the time of Big Bang Nucleosyn-
thesis (BBN) still has to be regarded as having speculative ingredients, with definite evidence still missing.
Yet, there is a wide consensus that we know at least how to describe the fundamental interactions (strong,
weak, electromagnetic and gravitational) and consequently we do have a theoretical framework to describe
the evolution of the Universe starting at a time sufficiently far away from the Planck scale such that the
lack of a consistent theory of quantum gravity is unproblematic and only a classical description in terms of
General Relativity is needed.
Based on the vast observational data that was accumulated in the past decades and on their interpretation
using our knowledge about the fundamental interactions, a ’mainstream’ picture about the evolution of the
Universe has emerged, sometimes called the ’Standard Model of Cosmology’. Within this standard paradigm,
it is assumed that shortly after the Big Bang there was a period of inflation which lead to an exponential
expansion of the Universe and left it in a state far from thermal equilbrium. After the period of inflation,
the so-called reheating set in, which served to thermalize the constituents of the early universe and lead to a
very hot and dense plasma. Its maximum temperature, the reheating temperature, is at present unknown. It
can in principle be very high, e.g. something in the range of 109GeV ∼ 1022 K.
This moment in the evolution of the Universe is exactly where the phenomena that are considered in this
work set in–particles which due to their weak coupling to the thermal bath have not yet come to equilibrium
are very efficiently produced (and destroyed) via various decay and scattering processes involving the thermal
bath, creating a population of these particles even if reheating was unable to do so, and eventually thermal-
izing them after a sufficiently long time. We speak of thermal particle production. It occurs not only
in the early universe but also e.g. in heavy-ion collisions where it is believed that a quark-gluon plasma in
thermal equilibrium is formed. Then thermal production of e.g. photons occurs and since they interact only
very weakly with the constituents of the plasma, they can basically escape freely and give us information on
the properties of the plasma that was formed. Computing thermal photon production from a quark-gluon
plasma thus helps us to understand how the plasma is formed and how it behaves.
In the case of thermal particle production in the early universe the interest in quantitative predictions is a
bit different, as they also help us to understand the state in which the Universe is now, when its temperature
and density are so low that it can be thought of as a vacuum state instead of a hot and dense plasma. This
is because it is crucial to understand and reproduce the observed amount of matter in the Universe from
theoretical considerations. As explained in more detail in the introduction to chapter 4, the matter in the
Universe consists predominantly of one (or several) unknown particle species, called Dark Matter, and of a
smaller amount of baryonic matter whose nature is of course well understood. Dark Matter particles can be
produced via various mechanisms in the early universe, one of them being thermal particle production. For
baryonic matter, the striking feature is the asymmetry between baryons and antibaryons which is generated
in the early universe by a mechanism called baryogenesis (for more details see again the introduction of
chapter 4). There are various realizations of this mechanism, out of which we focus on leptogenesis where
an asymmetry between leptons and antileptons is generated and later converted into a baryon asymmetry.
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1. Introduction

A successful implementation of leptogenesis requires the introduction of new particles, the right-handed Ma-
jorana neutrinos Ni, which are weakly coupled to the other particles in the plasma and are not in thermal
equilibrium. They are thus produced via thermal particle production and computing their resulting number
density is a necessary intermediate step in the computation of the final baryon asymmetry which can then be
compared with what we observe. Chapter 4, which can be regarded as the main part of this thesis, precisely
deals with calculating the number density of Majorana neutrinos produced in a hot thermal bath.
When doing such a calculation, one needs to take into account that the processes happen in a hot plasma
and that in addition the particles have relativistic energies and that the interactions can only be described
with quantum physics. The theoretical framework that is needed is thus finite-temperature quantum field
theory, which differs from the ’ordinary’ quantum field theory–needed e.g. for LHC phenomenology–that is
valid in absence of a thermal bath. As the latter, it is inherently too complicated to allow for exact solutions
to realistic problems and one has to resort to systematic approximations. Like for vacuum QFT, the method
of choice is perturbation theory and it works in a similar way–one can still draw Feynman diagrams and
translate them with a set of Feynman rules into mathematical expressions which can then be evaluated more
or less straightforwardly. However, the presence of a thermal bath induces new features in the perturbative
expansion that are not encountered at zero temperature and that render perturbation theory much more
complicated. Because of this, no attempt is made in this work to do calculations beyond leading order in
the relevant coupling constants. Even a leading order computation of the thermal production rate turns
out to be a huge task because it already requires the resummation of a (countably) infinite set of Feynman
diagrams. The physical phenomenon behind this is a quantum effect (with no classical analogue) which is
known as Landau-Pomeranchuk-Migdal (LPM) effect after the people who described it more than
50 years ago in the context of cosmic rays [3, 4]. Its relevance for the thermal photon production rate in a
quark-gluon plasma was discovered 10 years ago [5], and only one year later it was for the first time included
in the computation of the thermal photon production rate [6, 7].
A treatment of the LPM effect in the production of other particles like DM candidates or the aforementioned
Majorana neutrinos has not been performed so far. One of the main points of this work is to study the
relevance of the LPM effect in the production of Majorana neutrinos as an example how the LPM effect
modifies also the production rate of fermions. The method that is used to compute this modification is
new, conceptually easier and much more general than the one introduced in [6]. It can also be used without
conceptual modification to study how the LPM effect modifies the production rate of any other particles,
e.g. possible DM candidates. The work presented here can thus be regarded as only a starting point for
subsequent studies of particle production rates which are of phenomenological interest but which have been
omitted here in order to keep the work at a reasonable length.

This thesis is organized as follows. Chapter 2 mostly serves as a brief introduction to quantum field theory
in a thermal bath and the correct formulation of perturbation theory which is rendered more difficult than in
vacuum due to IR and collinear divergences that appear frequently and require a reorganization of the per-
turbative series in order to obtain finite and thus physically meaningful results. The chapter also introduces
the relevant set of Feynman diagrams needed for the computation of the LPM effect and puts them into a
broader context, thus opening another door for possible future studies which could finally result in a new
effective perturbation theory similar to the well-known HTL effective theory presented in section 2.2. Chapter
3 serves as a preparation for the computation in chapter 4. The master formula for the thermal production
rate in terms of a retarded self-energy is explicitly derived and the connection to the Boltzmann equation is
illustrated. Then the physics of the LPM effect is outlined and the relevance for the thermal particle pro-
duction rate is established, thus making a connection to the presentation in section 2.3. Finally, everything
is put together in section 3.3 where the new method to deal with the LPM effect is presented in detail (with
some intermediate calculations moved to the appendix) and a general integral equation for the LPM effect is
derived. As a consistency check, section 3.4 finally provides a proof that specifying the thermally produced
particle to be a photon indeed leads to the equations already derived in [6]. The presentation culminates
in chapter 4 where the complete leading-order thermal production rate of Majorana neutrinos is computed
in the high-temperature limit T � MN . The production rate includes both decay/recombination processes
(section 4.3) where the LPM effect needs to be taken into account and 2 ↔ 2 scattering processes (section
4.4) where it is irrelevant at leading order. Yet, these scattering processes also require some care due to IR
divergences that occur and HTL resummation is needed to obtain meaningful results. The results for both
parts of the production rate have never been reported in the literature so far. Subsequently, the Boltzmann
equation is used to study the evolution of the number density of Majorana neutrinos. The results are in
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1. Introduction

addition compared with what would be obtained by neglecting all finite-temperature effects and performing
all computations in vacuum, which is the approach chosen by many authors in leptogenesis calculations. In
chapter 5 we finally summarize and give an outlook how the work presented here can be used as a basis for
future investigations.
The appendices contain calculational details which would disturb the flow of reading if they were presented
in the main text. In appendix B we derive the finite-temperature propagators for scalars, spin 1/2-fermions
and gauge bosons in the kinematical limits that are needed for our purposes. Appendices C and D contain
technical details needed to derive the integral equation for the LPM effect and appendices E and F finally
contain some details that we need in order to obtain the production rate of Majorana neutrinos studied in
chapter 4.
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2. Quantum field theory in a hot thermal bath

36 Grad und es wird noch heißer.
2raumwohnung - 36 Grad

2.1. Perturbation theory at finite temperature

In this thesis we will be concerned with phenomena in the very early universe which is in a state of a hot
and dense plasma in thermal equilibrium. The conventional Feynman rules that can be found in standard
textbooks on quantum field theory [8] are valid in the vacuum and they need to be modified in the presence
of a thermal bath. There are two major formalisms that have been set up to deal with such a situation.
In the imaginary-time (Matsubara) formalism one considers all fields as functions of imaginary time. This
allows to use the conventional Feynman rules with only slight modifications. The disadvantage is that real-
time observables then cannot be computed directly but have to be extracted via analytical continuation to
the real time axis.
The real-time (Schwinger-Keldysh) formalism on the other hand is designed to compute everything in real
time right away, thus avoiding the need for an analytical continuation to real values. However, for consistency
it is necessary to double the degrees of freedom, thereby introducing 2x2 matrices as propagators and two
different kinds of vertices, which makes the Feynman rules and calculations more involved.
Which formalism one chooses to perform computations in thermal equilibrium is merely a matter of personal
taste while only the real-time formalism can be used for nonequilibrium phenomena. This is because the
temperature, which plays a central role in the imaginary-time formalism, is never needed explicitly. For the
phenomena that are the subject of this thesis, the imaginary-time formalism is sufficient and will be used
throughout.
In section 2.1, we give a short review of the imaginary-time formalism, mostly in order to set the conventions
and the notation that will be used throughout. In addition, we discuss important momentum (energy) scales
in a thermal bath. Pedagogical introductions to the imaginary-time (and real-time) formalism in general can
be found e.g. in [9, 10].

2.1.1. A short review of the imaginary-time formalism

The full information about a system of quantum fields is encoded in the set of all n-point Green functions

G(n)(x1, . . . , xn) ≡ 〈TC {φ(x1) . . . φ(xn)}〉 (2.1)

where 〈· · · 〉 denotes a thermal average and the time ordering is along a complex time contour C [9]. In a

thermal bath at temperature T which is described by the density matrix1 ρ̂ = 1
Z e

−βĤ with partition function

Z ≡ Tr e−βĤ , it has to start at some initial time ti (usually chosen as ti = 0) and go to a final time tf = ti−iβ
where β ≡ 1/T is the inverse temperature. The easiest possible contour for C is the Matsubara contour, which
is just a straight line. Along this time path, only the imaginary part of the time varies, which explains the
name ’imaginary-time formalism’ already mentioned before. This formalism is by construction applicable
only in thermal equilibrium with temperature T where the average that was written in (2.1) is given by

〈A〉 ≡ Tr[ρ̂A] =
1

Z
Tr[e−βĤA]. (2.2)

The meaning of the average constitutes the crucial difference between quantum field theory in a thermal
bath and quantum field theory in vacuum, where instead of (2.2) we only have a vacuum expectation value,
〈A〉T=0 ≡ 〈0|A|0〉.
1The generalization to nonzero chemical potential is straightforward and can be found in the cited literature. It is irrelevant

for the presentation here and we therefore always assume µ = 0 for simplicity.
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2. Quantum field theory in a hot thermal bath

By interpreting e−βĤ as time evolution operator in imaginary time, it is straightforward to derive a path
integral expression for the Green functions:2

G(n)(x1, . . . , xn) =

∫

φ(0,~xi)=φ(−iβ,~xi)
Dφφ(x1) . . . φ(xn)eiS

∫

φ(0,~xi)=φ(−iβ,~xi)
DφeiS (2.3)

Because of the trace in (2.2), the path integral is restricted to field configurations that are periodic in
imaginary time with period β.
We now take a closer look at the propagator (2-point function) in the Matsubara formalism. We can first
define the Wightman functions

D>(x, x′) ≡ 〈φ(x)φ(x′)〉, D<(x, x′) ≡ 〈φ(x′)φ(x)〉 (2.4)

which are both related due to the periodicity in imaginary time:

D>(t, ~x; t′, ~x′) = D<(t+ iβ, ~x; t′, ~x′) (2.5)

This periodicity reflects the so-called Kubo-Martin-Schwinger (KMS) relation [11, 12]. The ’usual’, real-time
Feynman propagator would then be

D(x, x′) ≡ Θ(t− t′)D>(x, x′) + Θ(t′ − t)D<(x, x′). (2.6)

In the Matsubara formalism, we define the imaginary-time (Matsubara) propagator by (suppressing the space
dependence)

∆(τ) ≡ D>(−iτ ; 0) τ ∈ [0;β]. (2.7)

So far we have written everything in position space, but computations are like at zero temperature more
conveniently performed in momentum space. Instead of the propagator (2.7) we should consider a propaga-
tor ∆(P ) obtained by a Fourier transformation. Here the periodicity in imaginary time has an important
consequence: For the time component of the momentum, we obtain discrete values, p0 = iωn with Matsubara
frequencies ωn = 2πnT, n ∈ N. This also means that instead of a Fourier transformation w.r.t. time we get
a discrete Fourier series while we still have a continous Fourier transformation for the spatial part. Conse-
quently, the free (scalar) propagator is obtained as a straightforward generalization of the zero temperature
result and reads

∆(P ) =
−1

P 2 −m2
(2.8)

where Pµ = (iωn, ~p). Note that it differs from the zero-temperature propagator by a factor of i, as explained
in appendix A. As the zeroth component only takes discrete values (which are in addition purely imaginary)
the ’physical’, real-time propagator is obtained after an analytical continuation to real and continuous values,
which is described below.
It is useful to introduce the so-called spectral function which is defined in momentum space via (suppressing
spatial components in the argument again)

ρ(p0, ~p) ≡ D>(p0, ~p)−D<(p0, ~p). (2.9)

Using (2.5), which in momentum space becomes D<(p0, ~p) = e−βp0D>(p0, ~p), we obtain

D>(p0, ~p) = (1 + fB(p0))ρ(p0, ~p), D<(p0, ~p) = fB(p0)ρ(p0, ~p) (2.10)

and by taking the Fourier transformation of (2.7) and inserting (2.10), we arrive at the spectral representation
of the propagator,

∆(iωn, ~p) =

∫ ∞

−∞

dω

2π

ρ(ω, ~p)

ω − iωn
, (2.11)

that will prove useful later on. As it stands, the relation is valid for discrete values p0 = iωn, but it is also
ideally suited for the analytical continuation to continuous, real values of p0 obtained by merely replacing
iωn → p0 ∈ R. In general, however, this continuation is not unique and an unambiguous result can only be
obtained under the following assumptions:

2At the moment we focus on scalar fields and postpone the modifications for fermions and gauge bosons to the end of this
subsection.
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2. Quantum field theory in a hot thermal bath

• For p0 → ∞, we have |∆(p0, ~p)| → 0

• Outside the real axis, the function ∆(p0, ~p) is analytic

The proof involves complex analysis and is given in [13].
From the analytical continuation of (2.11), we can see that the spectral function is given by the discontinuity
of the two-point function:

ρ(p0, ~p) = −iDisc∆(p0, ~p) ≡ ∆(p0 + iε, ~p)−∆(p0 − iε, ~p) (2.12)

In order to see this, one only needs to recall the useful relation

1

x± iε
= P

(
1

x

)

∓ iπδ(x) (2.13)

where P denotes the principal value and the limit ε → 0+ is implicitly understood. Defining the retarded
propagator by ∆ret(p0, p) ≡ limε→0+ ∆(p0 + iε, p), we can also write

ρ(p0, ~p) = 2 Im∆ret(p0, ~p). (2.14)

This relation can be interpreted as a fluctuation-dissipation relation which is valid only in thermal equilibrium
[14]. One can also easily deduce the spectral function of free scalar particles from (2.11):

ρ(p0, ~p) = 2π sgn(p0)δ(P
2 −m2) (2.15)

Computing thermal sums

With the modification of the propagator (2.8) we are already more or less done with changing the Feynman
rules compared to the T = 0 case. The essence of all vertex factors, remains unchanged, one only has to be
careful that they contain an additional factor −i, as explained in appendix A. The only fundamental change
is that as soon as we have loop diagrams, we need to perform a discrete sum over p0 instead of an integral:

∫
d4P

(2π)4
→ T

∑

p0=iωn

∫
d3p

(2π)3
(2.16)

We now turn to describe a method to deal with those so-called thermal sums. The most efficient way to

−→Re p0 Re p0

Im p0 Im p0

Figure 2.1.: Integration contour for the thermal summation formula (2.17).

compute thermal sums uses the method of residues to transform the sum into a complex contour integral.
We obtain

T
∑

p0=iωn

g(p0) =

∫

C

dp0
2πi

(
1

2
+ fB(p0)

)

g(p0) (2.17)

where the integration contour C is shown in figure 2.1 and consists of circles which enclose precisely one
pole of the integrand each. It is easy to show that

(
1
2 + fB(p0)

)
indeed has poles with residue T whenever

p0 = iωn, indicated by the blobs along the imaginary axis. The function g(p0) is assumed to be analytical
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2. Quantum field theory in a hot thermal bath

except for poles which lie on the real axis, and it has to vanish at infinity. Then we can deform the contour
as indicated in the rightmost part of figure 2.1 and close it with large half-circles at infinity, thereby enclosing
the poles of g(p0). The value of the integral is unchanged because the additional pieces of the integration
contour do not contribute. Then only the poles coming from g(p0) contribute and the integral in (2.17) can
easily be evaluated with the theorem of residues.
Let us look at some examples which will also be relevant for the calculations in this thesis. The easiest
example is the case that we have to perform the sum (and subsequently also the loop integral over the spatial
components) with one free propagator only. We take only a massless propagator, i.e. we set m = 0. This
amounts to dropping terms of order m/T which is reasonable as long as m ∼ gT is a thermal mass.3 In this
case, we get

T
∑

p0

∫
d3p

(2π)3
∆(P ) = −T

2

12
(2.18)

which can easily be proved using (2.17).4 The propagator has poles at p0 = ±p and therefore we get

T
∑

p0

∫
d3p

(2π)3
∆(P ) = −

∫
d3p

(2π)3
1 + 2fB(p)

2p
.

The temperature independent part is in fact UV-divergent and one needs to apply the usual renormalization
procedure to get a finite result. However, in this work we are exclusively interested in the high-temperature
limit which means that such temperature-independent parts are negligible compared to the rest of the sum-
integral, which behaves like T 2. We may therefore replace 1 + 2fB(p) → 2fB(p) and assume that the
zero-temperature part has been made finite by renormalization without the need to do this explicitly. It
is only necessary to know that it is always possible–which is clear if the theory we consider (e.g. QCD or
electroweak theory) is renormalizable. Performing the d3p integration then leads to (2.18).
However, when dealing with loop diagrams we will typically have products of at least two propagators
depending on p0. An important technique to deal with such thermal sums is by using the Saclay representation
of the propagators which is obtained via Fourier transformation w.r.t. imaginary time:

∆(τ, ~p) = T
∑

p0

e−p0τ∆(p0, ~p); ∆(p0, ~p) =

∫ β

0

dτep0τ∆(τ, ~p) (2.19)

An explicit representation for ∆(τ, ~p) can be derived by applying (2.17) to its definition:

∆(τ, ~p) = − 1

2E~p

[
(1 + fB(E~p))e

−E~pτ + fB(E~p)e
E~pτ
]

(2.20)

This also allows for a clear physical interpretation of the propagator in position space: It describes the
stimulated emission or absorption of scalar particles in a thermal bath and therefore clearly resembles its
vacuum counterpart.5

The trick to compute thermal sum-integrals involving several propagators is now to replace them by their
Saclay representations, which ultimately always leads to a trivial thermal sum of the form

T
∑

p0

ep0(τ−τ
′) = δ(τ − τ ′). (2.21)

The ’price’ for this simplification is that we have additional integrals over imaginary times. One of them is
always trivial because of the delta function obtained from the thermal sum, but the rest has to be performed
and can lead to cumbersome expressions if many propagators are involved. However, for the most important
case of a product of two propagators, the computational effort is rather modest and one gets e.g. the following

3Examples for thermal masses will be shown in section 2.2 and 2.3.
4The minus sign comes from the definition (2.8). When comparing it e.g. to [9] where all computations are performed in

Euclidean space instead of Minkowski space, one has to be careful because the overall sign of the propagator is different.
5Note that this interpretation is not restricted to the imaginary-time formalism–it also holds in real time.

12



2. Quantum field theory in a hot thermal bath

result:

T
∑

p0

∫
d3p

(2π)3
∆(P )∆(P −K) =

∫
d3p

(2π)3
1

4E1E2

[

(1 + fB(E1) + fB(E2))

(
1

k0 − E1 − E2
− 1

k0 + E1 + E2

)

+(fB(E1)− fB(E2))

(
1

k0 + E1 − E2
− 1

k0 − E1 + E2

)]

(2.22)
An additional complication may arise due to powers of p0, which come from the vertex factors, appearing in
the numerator. This can be dealt with via an integration by parts, e.g.

p0∆(p0, ~k) = −
∫ β

0

ep0τ
∂∆

∂τ
dτ. (2.23)

The surface term vanishes because of the periodicity properties of ∆(τ, ~p). If we have pn0 as prefactor, we get
(−1)n times the n-th derivative of ∆(τ, ~p) instead.
By using this additional trick, we can derive the following additional results that will be needed in this thesis,
e.g. in appendix B:

T
∑

p0

∫
d3p

(2π)3
p0∆(P )∆(P −K) =−

∫
d3p

(2π)3
1

4E2

[

(1 + fB(E1) + fB(E2))

(
1

k0 − E1 − E2
+

1

k0 + E1 + E2

)

−(fB(E1)− fB(E2))

(
1

k0 + E1 − E2
+

1

k0 − E1 + E2

)]

(2.24)

T
∑

p0

∫
d3p

(2π)3
p20∆(P )∆(P −K) =

∫
d3p

(2π)3
E1

4E2

[

(1 + fB(E1) + fB(E2))

(
1

k0 − E1 − E2
− 1

k0 + E1 + E2

)

+(fB(E1)− fB(E2))

(
1

k0 + E1 − E2
− 1

k0 − E1 + E2

)]

(2.25)
However, it can also happen that we need to compute 1-loop diagrams with resummed propagators, e.g.
the HTL resummed propagators that are introduced in section 2.2. In this case, it is difficult to find the
appropriate explicit representation that corresponds to (2.20). Therefore it is better to use the spectral
representation (2.11) since spectral functions are easier to determine than explicit results for the Saclay
representation of the full propagator. The dependence on p0 is given only by simple rational functions then
which also allows an efficient evaluation of thermal sums. It is also possible to combine the Saclay and
spectral representation as is done e.g. in appendix F. Which method is the most efficient one depends on
the concrete problem at hand and in the course of this thesis, all methods described here will be applied at
least once.

Fermions

The formalism developed so far is only valid for bosons, more precisely for spin 0-particles. For spin 1
bosons, no fundamental changes are needed, only in the propagators we need to take the Lorentz structure
into account, which is in general more complicated than in vacuum (see appendix B.3). For fermions,
however, some fundamental changes arise that we finally need to describe. The basic change is that, as
one can easily show [9], fermion fields need to be antiperiodic in imaginary time instead of periodic, i.e.
ψ(0, ~x) = −ψ(−iβ, ~x). In the KMS relation (2.5), we then also obtain a minus sign on the rhs. Both of this
ultimately results from the Grassmann nature of fermion fields. Therefore, we need to make the following
modifications to the previous results:

• Replace the integer Matsubara frequencies by half-integer ones:

ωn → ω̃n = 2π

(

n+
1

2

)

T (2.26)

• Replace fB → −fF with Fermi-Dirac distribution fF , e.g. in the formula (2.17) for the computation
of thermal sums or the explicit examples considered thereafter. This also leads to a difference in the
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2. Quantum field theory in a hot thermal bath

sum-integral over one free propagator by a factor of -1/2:

T
∑

p̃0

∫
d3p

(2π)3
∆(P ) =

T 2

24
(2.27)

With these two new rules for fermions, the modification of the Feynman rules is completed. However, in a
thermal plasma new phenomena appear that lead to the breakdown of naive perturbation theory and require
a more sophisticated treatment, which we turn to now.

2.1.2. Scales and effective theories

The naive perturbation theory described in section 2.1.1 only holds in certain kinematical regimes whereas
there may be substantial modifications otherwise. This is due to the ubiquitious IR and collinear divergences
that appear much more frequently in computations at finite temperature compared to the zero-temperature
case (whereas there are no new UV divergences as already shown before). Their appearance signals a sen-
sitivity to new physical phenomena, inherent to the hot and dense plasma, at a given order of perturbation
theory.
In order to correctly describe particles in a hot thermal bath it is therefore necessary to modify perturbation
theory more profoundly than outlined in the previous subsection. When doing so, one has to distinguish
different momentum scales:

• The hard scale, P ∼ T, P 2 ∼ T 2. This is the typical momentum scale of particles inside a plasma
and the only one where the simple generalization of perturbation theory described before is fully valid.
Particles with hard momenta are, at least at leading order in the perturbative expansion, not affected
in their propagation by the thermal bath and move essentially as free particles, subject only to weak,
perturbative interactions among themselves.

• The soft scale, P ∼ gT where g � 1 is the relevant coupling constant. This is the typical momentum
scale of collective excitations in a plasma. For momenta on this scale, the propagation of particles
is profoundly modified due to the interaction with the thermal bath which causes O(1) corrections
compared to the case that the particles propagate in vacuum. For a scalar particle, the dispersion
relation e.g. becomes ω2 = k2 +m2 where m ∼ gT is a thermal mass ; for fermions and gauge bosons
thermal masses appear as well but the dispersion relation is changed more drastically. Also vertices
have to be replaced by effective vertices as soon as all momenta meeting at the vertex are soft. The
corresponding effective theory is called Hard Thermal Loop (HTL) resummed perturbation theory and
we will outline its basics in section 2.2. However, since interactions among soft particles are still
perturbative, after one has performed the HTL resummation one can apply a (modified) perturbation
theory approach again.

• The ultrasoft scale, P ∼ g2T . This is the scale of magnetic screening, i.e. transverse polarizations of
gauge fields can be sensitive to this scale. At this scale, conventional perturbation theory breaks down
and one can find observables that become nonperturbative [15]. This is because occupation numbers
of (gauge) boson modes become ∼ 1/g2 and therefore very large which leads to a strong coupling
among the ultrasoft degrees of freedom. It is still possible to formulate effective theories that describe
physics at the ultrasoft scale [16, 17, 18], they usually need nonperturbative input, e.g. results from
lattice simulations, however. We will not deal with effects at the ultrasoft scale here and do not further
comment on the related effective theories.

• The lightcone scale, P ∼ T, P 2 ∼ g2T 2: If hard momenta approach the lightcone6 such that P 2 ∼ g2T 2,
then caution is needed again. In this case, collinear divergences can occur and one needs to consider
another sort of thermal masses, the so-called asymptotic masses, which modify the dispersion relation
always in the simple way ω2 = k2 +m2

∞. One has to be careful, however, that only for scalars thermal
mass and asymptotic mass coincide. See section 2.3 and appendix B for details.

6Note that in this thesis, we will only be concerned with the case of hard momenta near the lightcone. For soft momenta near
the lightcone, collinear singularities arise and the effective HTL perturbation theory has to be modified [19, 20]. This will
not be needed here and bears little resemblance to our treatment.
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2. Quantum field theory in a hot thermal bath

The appearance of IR and collinear divergences has a striking effect on perturbative computations: Certain
diagrams of higher order in the loop expansion turn out to be of the same order in the coupling constant. This
phenomenon which is a characteristic feature of finite-temperature calculations appears in different contexts.
The most prominent one is the HTL effective theory that we outline in section 2.2–in order to get the leading
order expression for the propagator of a soft particle, self-energy insertions have to be resummed. However,
such divergences do not exclusively appear at finite temperature. Even in zero-temperature QCD, IR and
collinear divergences can occur if e.g. soft and/or collinear (with respect to the emitting source) gluons are
radiated and they also require a resummation of Feynman diagrams to get finite results. Effective theories,
e.g. the soft-collinear effective theory (SCET), which deals with a very similar kinematical setup as the one
considered in this thesis [21, 22], need to be used and conventional perturbation theory becomes useless.

The next two sections describe the modification of perturbation theory needed for momenta at the soft
scale (section 2.2) and near the lightcone (section 2.3).

2.2. Hard Thermal Loops (HTL)

For soft momenta, the naive perturbation theory described in the previous section fails to include all con-
tributions of a given order in the coupling constant. Instead, propagators for particles with soft momenta
and vertices where all ingoing momenta are soft need to be replaced by effective, resummed counterparts. To
illustrate this phenomenon, we can look at a resummed scalar propagator with 1-loop self-energy insertions
as in figure 2.2.7

= +−Π −Π −Π + . . .

Figure 2.2.: Resummed scalar propagator with pure scalar self-interaction.

For a hard momentum P ∼ T , the resummed propagator is obviously suppressed compared to the bare one,
but for P ∼ gT 8, the resummed propagator is of the order

∆(P )(−Π(P ))∆(P ) . . . ∼ 1

(gT )2
(gT )2

1

(gT )2
. . . ∼ 1

(gT )2

where we assume the loop momentum to be hard, such that −Π(P ) ∼ g2
∑

k0

∫
d3k∆(K) ∼ g2T 2. It is

obviously of the same order as the bare propagator and therefore the resummation needs to be taken into
account. This is the easiest example of a so-called Hard Thermal Loop (HTL). A more explicit computation
can be found in appendix B.1.
HTLs in scalar theories are rather simple whereas gauge theories are more involved. A general power-counting
to establish which Green functions in gauge theories exhibit HTLs and require a resummation was established
in [23] while for Yukawa theories, HTLs were investigated in [24]. The power-counting for gauge theories is
rather involved and one needs to distinguish different cases. We do not reproduce it here since we will not
need the general framework, and only list the HTL corrections that are needed in gauge theories [9, 10, 23]:

• Scalar propagators, where the HTL is momentum-independent and contributes only a thermal mass,

Π(P ) = g2T 2

4 ≡ m2.

• Fermion and gauge boson propagators with momentum-dependent HTL self-energies which modify the
dispersion relations considerably (see below),

• N -gauge boson vertices and (N − 2)−gauge boson + two-fermion vertices.

7Note that the diagrams always correspond to −Π and not +Π. See appendix A for details.
8We assume a self-interaction of the form g2/4!φ4 and denote the scalar self-coupling different from the usual conventions by
g2 to get a more direct analogy to gauge theories.
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2. Quantum field theory in a hot thermal bath

Note that N -photon vertices are not induced for N ≥ 3.
In this thesis, we will never need the effective vertices and we can focus on the resummed propagators. The
self-energies in the HTL approximation can be derived either by a field-theoretic calculation [9] or via a
semi-classical approach using kinetic equations [14]. This dual approach is possible because the wavelength
of the collective plasma excitations is typically λ ∼ (gT )−1, which is much larger than the thermal de
Broglie wavelength λT ∼ T−1. Either calculation leads to the following results, that are derived with the
field-theoretic approach in appendix B:

• The imaginary-time gauge boson propagator in a covariant gauge reads

−∆µν(k0, ~k) =
PTµν

K2 −ΠT (k0, ~k)
+

PLµν

K2 −ΠL(k0, ~k)
+

ξ

K2

KµKν

K2
(2.28)

with transverse and longitudinal projectors P
T/L
µν and the corresponding self-energies

ΠL(k0, ~k) = −m
2
DK

2

k2
(1− xQ0(x)) , ΠT (k0, ~k) = m2

Dx
[
(1− x2)Q0(x) + x

]
(2.29)

where x ≡ k0/k and by

Q0(x) ≡
1

2
ln

∣
∣
∣
∣

x+ 1

x− 1

∣
∣
∣
∣
− iπ

2
Θ(1− x2)

we denote the Legendre function of the second kind. For K2 < 0, the self-energy has an imaginary part
which is associated with Landau damping, the absorption and emission of the particle by the thermal
bath. Finally, the thermal Debye mass is given by

m2
D =

g2T 2

6

(

C2(r) +
1

2
Nf +

1

4
NS

)

(2.30)

where Nf denotes the number of fermion flavours, NS the number of scalar particles and C2(r) the
Casimir invariant of the group representation r.

• The imaginary-time fermion propagator is given by

−S(p0, ~p) =
1

2
∆+(p0, ~p)(γ

0 − γip̂i) +
1

2
∆−(p0, ~p)(γ

0 + γip̂i) (2.31)

with

∆±(p0, ~p) =
1

p0(1 ∓ x)− m2
f

2p

[

(1∓ x) ln
(

1+x
1−x

)

± 2
] (2.32)

with x defined the same way as above and the HTL fermion mass

m2
f =

g2C2(r)T
2

8
. (2.33)

It is defined such that the limit p→ 0 of the HTL propagator equals that of a bare fermion propagator
with mass mf .

The propagation of both fermions and gauge bosons is obviously drastically changed–they do not only get
a mass like a scalar particle does, their dispersion relation becomes much more complicated. We will study
this point in more detail for the fermions where some of the explicit results will be needed later on; for gauge
bosons one would obtain qualitatively similar results.
The most striking feature is the appearance of new fermionic excitations described by eigenstates of γ0+γip̂i.
This means that their ratio of helicity and chirality is opposite to ’normal’ fermions which are described by
spinors that are eigenstates of γ0 − γip̂i.9 The heat bath allows the presence of such quasiparticles, called

9Note that the presence of the thermal bath does not lead to a breakdown of chiral symmetry: The resummed fermion
propagator still anticommutes with γ5.
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2. Quantum field theory in a hot thermal bath

plasminos. The notion of quasiparticles can be understood by looking at the spectral function, which we first
give explicitly for both types of particles since we will need it in section 4.4.3:

ρ̃±(p0, p) = 2π [Z±(p)δ(p0 − ω±(p)) + Z∓(p)δ(p0 + ω∓(p))] +
π

p
m2
f (1∓ x)Θ(1 − x2)





(

p(x∓ 1)−
m2
f

2p
·
[

(1 ∓ x) ln

∣
∣
∣
∣

x+ 1

x− 1

∣
∣
∣
∣
± 2

])2

+
π2m4

f

4p2
(1∓ x)2





−1
(2.34)

where the residua are given by

Z±(p) =
ω±(p)2 − p2

2m2
f

(2.35)

while the dispersion relations p0 = ±ω±(p) follow from solving for the zeros of the denominator of ∆±.
Analytical solutions for ω± can be given in terms of Lambert W functions [25], a numerical plot is shown

1 2 3 4 5

p

m f

1

2

3

4

5

Ω

m f

Figure 2.3.: Dispersion relations of soft fermions. The upper curve represents the solution ω(p) = +ω+(p)
while the lower curve shows the solution ω(p) = −ω−(p). For comparison, the zero-temperature
(massless) dispersion relation ω(p) = p is plotted as well (dashed line).

in figure 2.3 where we see that in the limit p � mf the dispersion relations approach the usual massless
dispersion relation ω(p) = p.
We want to take a closer look at the notion of quasiparticles following [14]. Free particles not subject to any
interaction have a delta function-like spectral function, as shown in (2.15) (for free fermions, an additional
factor �p±m appears). If we switch on interactions, the spectral function contains two parts, as can be seen
from (2.34): A pole contribution and a continuum contribution. The question we want to tackle is in which
sense we can still keep up a particle-like interpretation of the field excitations. For this purpose, we introduce

Γ̃(p0, ~p) ≡ Σ>(p0, ~p)− Σ<(p0, ~p) = 2 ImΣret(p0, ~p) (2.36)

where Σ<,> and Σret are defined in analogy to D<,>,∆ret given in section 2.1. Using (2.14), we can write
the spectral function of a fermion as

ρ̃(p0, ~p) =
Γ̃(p0, ~p)

(p20 − E2
~p − ReΣret(p0, ~p))2 + (Γ̃(p0, ~p)/2)2

(2.37)

If the interactions are perturbative, then Γ̃ can be assumed to be ’small’ (in a sense to be made precise below)
and we can write [14]

ρ(p0 ' E~p, ~p) '
zp
2E~p

2γp
(p0 − E~p)2 + γ2p

(2.38)
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where

zp ≡ 1− 1

2E~p

∂Σret
∂p0

∣
∣
∣
∣
p0=E~p

, γp ≡
zp
4E~p

Γ̃(p0 = E~p, ~p) (2.39)

in the vicinity of p0 = E~p. The spectral function thus has a Lorentz shape and in the free-field limit
zp → 1, γp → 0 we recover a delta function. Note that to obtain this form, one has to assume that γp � E~p
which makes the statement that Γ̃ has to be small more precise. The retarded propagator then becomes

∆̃ret(p0 ' E~p, ~p) '
zp
2E~p

−1

p0 − E~p + iγp
, (2.40)

i.e. it has a pole at p0 = E~p − iγp. As long as zp, γp are only perturbatively small corrections to the free-
field values, one can see now that a particle-like description of the interacting degrees of freedom is still
reasonable. This is what is referred to as quasiparticles. Note that in this interpretation, there is nothing
more ’mysterious’ about the plasminos compared to ’normal’ fermions: both can in a well-defined sense be
referred to as particle-like excitations.
Finally we remark that in order to perform perturbative calculations at the soft scale, one often writes down
an effective Lagrangian, which then generates the HTLs at tree-level, i.e. one uses the Lagrangian

L = Leff − δL (2.41)

where Leff = L0 + δL and the final term is treated as counterterm to avoid overcounting. Here, L0 can be
e.g. the QCD Lagrangian and δL should be a gauge-invariant10 HTL lagrangian. It was derived in [26, 27]
and is given by

δL = −m2
D Tr

∫
dΩ

4π
Fµα

K̂µK̂α

K̂ ·D
F βµ + im2

f ψ̄

∫
dΩ

4π

�̂�K

K̂ ·D
ψ (2.42)

with covariant derivative Dµ and K̂ = (1, k̂). This effective Lagrangian is nonlocal due to the covariant
derivative in the denominator. It also leads to collinear divergences and has to be modified when momenta
approach the light-cone [20], but, as already mentioned, we do not go into detail here since these modifications
will not be needed.
By using this effective theory, IR divergences and gauge dependent results for physical quantities that ap-
peared in tree-level calculations could be successfully removed in many important applications. Examples
are the gluon damping rate in a QCD plasma [28, 29] (this was historically one of the major triggers for the
discovery of resummed perturbation theory), the production rates of photons [30] or the collisional energy
loss of heavy fermions in a plasma [31]. The computation in chapter 4 will provide another example where
the inclusion of HTL resummed propagators is crucial to obtain an IR finite result.

2.3. Perturbation theory close to the lightcone

2.3.1. Thermal width and asymptotic mass

In the previous section we have studied the modification of perturbation theory that is needed when momenta
become soft. We have explicitly seen that bare propagators need to be replaced by their resummed counter-
parts which contain HTL self-energy insertions (cf. figure 2.2). However, for that to happen in fact we do not
need to impose that all components of Pµ are of the order gT –all that is relevant is that P 2 ∼ g2T 2! This
means that an analogous resummation is also needed for momenta on the lightcone scale P ∼ T, P 2 ∼ g2T 2.
The outcome of this resummation, however, is qualitatively different. For illustration, we take again a scalar
particle. Its resummed propagator will be of the form

∆(K) =
−1

K2 −Π(k0, ~k)
. (2.43)

It can be parametrized with two quantities, the thermal width Γ(k0, ~k) and the thermal mass m as

∆(K) =
−1

(k0 + iΓ)2 − ~k2 −m2
. (2.44)

10The HTLs in gauge theories obey tree-like Ward identities [9, 23], therefore one should have manifestly gauge-invariant HTL
lagrangians.
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Comparing (2.44) to (2.43), we obtain, imposing11 Γ2 � m2,

ReΠ(k0, ~k) = m2, ImΠ(k0, ~k) = −2ik0Γ(k0, ~k). (2.45)

Since Π ∼ g2T 2, both m2 and k0Γ are of the order g2T 2 (which implies Γ ∼ g2T ) and therefore they are
equally important. However, for reasons that will become clear later, we can limit ourselves to hard loop
momenta and it turns out that we will obtain a purely real self-energy then. This means that we only need
to compute the asymptotic thermal mass. This is very fortunate because the thermal width turns out to
be an IR divergent quantity [32] (see also [9, 33]) which is thus not well-defined without putting a cutoff
on the loop integration that has to be cancelled by some other contribution. In our treatment in chapter
3.3 the width will indeed never appear alone but only together with terms coming from a certain class of
Feynman diagrams, the so-called ladder diagrams, which will cancel the IR divergence and give us a finite
and well-defined result. Because of the IR divergence, including the width alone at this stage is not very
useful. By restricting ourselves to hard loop momenta, we can avoid this and deal only with well-defined
quantities. The calculation in section 3.3 will provide us with a systematic attack on this problem and also
with a more rigorous justification why we take only hard loop momenta.
All what was said so far basically applies also to fermions and gauge bosons. However, while for scalar
particles there is only one thermal mass, for fermions and gauge bosons asymptotic thermal mass and HTL
mass are different and one needs to be careful not to confuse them. Explicit computations for scalars and
fermions are, like for the HTL resummed propagators studied before, moved to appendix B and here we list
only the results:

• The scalar propagator becomes

∆(K) =
−1

K2 −m2
(2.46)

with thermal mass m which equals the HTL thermal mass of a scalar particle (see section 2.2).

• The fermion propagator becomes

S(P ) = −�P − m2
∞

2p0
γ0

P 2 −m2
∞
. (2.47)

The asymptotic thermal mass is different from the HTL mass (2.33) and given by

m2
∞ =

g2C2(r)T
2

4
. (2.48)

Both fermionic thermal masses thus differ by a factor
√
2.

For the calculation in section 3.3 the equivalent form (B.34) of the fermion propagator will turn out to be
very useful. The gauge boson propagator at the lightcone scale will not be needed in this thesis and we omit
it.
We have mentioned in section 2.2 that in order to formulate a consistent perturbation theory at the soft scale,
one also needs to introduce effective vertices whenever all momenta that are involved are soft. This happens
because one-loop corrections with a hard loop momentum are of the same order as the bare vertex and may
therefore not be omitted. One may think that if all momenta meeting at a vertex are at the lightcone scale,
one has to add 1-loop corrections to the vertices as well, as illustrated in figure 2.4. This, however, is not the
case. This is easy to see for a generic hard loop momentum Q ∼ T,Q2 ∼ T 2 because we get two additional
powers of g and nothing can cancel them. Note that it does not help at all to assume that the loop momentum
is at the lightcone scale Q ∼ T,Q2 ∼ g2T 2 because the enhancement due to the propagator is cancelled by
a phase space suppression from the loop integral. The same happens if we consider a soft loop momentum
Q ∼ gT . The only interesting case is when all the momenta are not only at the lightcone scale, but also
collinear in the sense that Q · P,Q ·K ∼ g2T 2. In order to understand why this case is interesting, we need
to establish a power-counting that will enable us to see at which order in g such diagrams contribute. This
is what we turn to now.

11This condition is necessary to keep up a quasiparticle description of the interacting degrees of freedom in analogy to what we
described in section 2.2. If Γ is large, than we are dealing with broad resonances that no longer allow an interpretation in
terms of particles.
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QKK

P P

Figure 2.4.: Example for a bare vertex and a 1-loop vertex correction. If the external momenta are all soft,
then both contributions are of the same order whereas for external momenta at the lightcone
scale, the vertex correction is suppressed and need not be taken into account at leading order.

2.3.2. A new class of diagrams: Collinear Thermal Loops (CTL)

Now we turn to objects that we call Collinear Thermal Loops (CTLs) which should not be confused with
the collinear limit of the HTLs that was studied in [20]. They correspond to a different kinematic situation,
where the external momenta are not soft, as for the HTLs considered before, but rather at the lightcone
scale Pi ∼ T, P 2

i ∼ g2T 2. For the moment, we consider only 1-loop diagrams as depicted in figure 2.5 which
serve as a starting point for the construction of the full CTLs. The loop momentum is of the same kind,
K ∼ T,K2 ∼ g2T 2, which means that the propagator is a resummed one of the form shown in section 2.3.1.
Moreover, it is collinear with the external momentum, such that K · Pi ∼ g2T 2. This explains why we refer
to those objects as Collinear Thermal Loops : The loop momentum is hard and collinear with the external
momenta. The collinearity will soon turn out to be the crucial feature, while a consistent computation at
a given order in the coupling constant will force us to include diagrams with more than one loop where the
additional loop momenta are soft. This will be shown for the example of the two-point function in section
2.3.4.
In order to describe this setup, we define a lightlike four-vector

V µ ≡ (1, v̂) (2.49)

and split up the momenta into components parallel to v̂, denoted as k‖, pi,‖, and components perpendicular

to v̂, denoted by ~k⊥, ~pi,⊥. The collinearity of ~k, ~pi means that the longitudinal components are O(T ) and
the perpendicular ones O(gT ). The angle between the vectors is then ϑ ∼ O(g) and the scalar product is
Pi · K ∼ g2T 2.12 Finally, the fact that the momenta are nearly lightlike is expressed by demanding that
V · K ∼ g2T and the same for the Pi. In summary, we consider 1-loop n-point functions which obey the

P1

P2

Pm

Pn

K

. . .

...

Figure 2.5.: Generic 1-loop contribution to CTL n-point functions with particles of arbitrary spin.

constraints
Pi,K ∼ T, V · Pi ∼ g2T, V ·K ∼ g2T, Pi ·K ∼ g2T 2. (2.50)

When dealing with such objects, it is very convenient to introduce lightcone components p± = p0 ± p‖ and
describe the vector as

Pµ ∼ (p+, p−, ~p⊥). (2.51)

12This follows easily by writing K ·Pi = |~k||~pi|(1− cos ϑ) +O(g2T 2) where the additional terms depend on the thermal masses
and are automatically O(g2T 2), whereas for the first term it requires ϑ ∼ g.
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This amounts to expanding the vector as

Pµ =
1

2
V̄ · P V µ +

1

2
V · P V̄ µ + Pµ⊥ =

p+
2
V µ +

p−
2
V̄ µ + Pµ⊥ (2.52)

with V̄ µ ≡ (1,−v̂) and Pµ⊥ ≡ (0, p1, p2, 0) = (0, ~p⊥, 0). Clearly,

p+ ∼ T, ~p⊥ ∼ gT, p− ∼ g2T, (2.53)

thus providing us with a hierarchy of scales. This scale hierachy is reminiscent of the soft-collinear effective
theory (SCET) already mentioned at the end of section 2.1.2. In a very broad sense, an effective CTL-
resummed perturbation theory, once written down in analogy to the HTL-resummed perturbation theory
mentioned at the end of section 2.2, could be interpreted as a finite-temperature analogue of SCET.
Note that any momentum which obeys P ∼ T, P 2 ∼ g2T 2 can be described that way, it does not yet say
anything about the collinearity of the momenta that are involved. Only the fact that the preferred vector V µ

which defines the parallel direction is the same for all momenta Pi and the loop momentum K guarantees
that the diagrams obey the kinematics (2.50).
In most cases, however, such n-point functions will be suppressed compared to the bare n-point function or
the case where the loop momentum is not collinear with the external momenta. This is because, although
every propagator becomes of order 1/(g2T 2) if (2.50) holds and is thus large, the loop integral and also the
vertices will give additional powers of g which can overbalance the enhancement from the propagators and
therefore result in an overall suppression of the CTL contribution. We thus first want to provide a general
power-counting and determine for all n-point functions at which order in the coupling they contribute. This
will also help us to tackle the issue raised at the end of section 2.3.1. Later on we will focus on the simplest
case of the CTL self-energy, which is the most important one and which we will need in chapter 4 to
calculate the impact of the LPM effect in thermal particle production. We will then finally also show that
taking only the 1-loop diagrams shown in figure 2.5 is not sufficient if we want to get all relevant diagrams at
a given order in perturbation theory. Finding all contributions of higher loop order that need to be resummed
by a pure diagrammatic analysis will turn out to be an inefficient approach and difficulties will be outlined.
An efficient strategy for the computation is presented in section 3.3.1 and then subsequently applied to the
computation of the discontinuity of the CTL self-energy, whose relevance for physical applications is outlined
in section 3.2.

2.3.3. A general power-counting for CTLs

We now want to establish power-counting rules for the CTLs in order to determine at which order in the
coupling constant these diagrams contribute. It will prove convenient to absorb any possible Dirac and/or
Lorentz structure pertinent to the propagators into the vertices, thus formally dealing with ’scalar propa-
gators’ only 13. This will become clearer in the concrete calculation performed in section 3.3. The biggest
difficulty will then be to determine at which order the vertices contribute. We will consider only spin 1/2
fermions and spin 1 gauge bosons as external particles because they are the only ones that are needed in this
thesis.
We start with presenting the set of power-counting rules:

• The loop integral gives a g4 suppression,

• Every propagator is of order 1/(g2T 2),

• Every vertex involving a gauge boson gives an explicit factor of g,

• Every trilinear vertex is effectively suppressed by another factor of g.

Here, g is a gauge-boson coupling constant-either the strong coupling in a quark-gluon plasma or the weak or
electromagnetic coupling if we consider an electroweak plasma instead. It is always assumed to be the largest
coupling constant involved, which means that the photon coupling plays no role if we consider a QCD plasma
since gs � gem.14 Whenever we refer in general to ’gauge bosons’ in the following, this slightly different role

13One obviously still has to take care of half-integer Matsubara frequencies when fermion propagators are involved.
14Numerically, other coupling constants like e.g. the top Yukawa coupling, can be equally large or even larger. One should

therefore consider g to represent generically the set of coupling constants which are taken into account at leading order,
and this can include more than only gauge coupling constants. For notational simplicity, we will always refer to this set of
coupling constants with the letter g.
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2. Quantum field theory in a hot thermal bath

of photons has to be kept in mind. Note that we count only the powers of g but not those of other coupling
constants that may be involved. This is because nothing changes w.r.t. those if we go from collinear to
non-collinear momenta since collinearity is always defined in terms of g, like in equation (2.53).
Before we turn to the proof of the power-counting rules, let us summarize at which order in g a CTL N -point
function with n vertices involving gauge bosons (as external particles or inside the loop) and m = N − n
additional vertices15 contributes:

Π
(n+m=N)
CTL ∼ g4

(
1

g2

)N

gngN ∼ g4−m (2.54)

It is very remarkable that the power of the gauge boson coupling constant is independent of the number of
hard gauge boson vertices and only determined by all other particles. Setting m = 2, we obviously find that
the CTL self-energies without gauge bosons in the loop that will be studied in detail soon are expected to be
of second order w.r.t. the coupling constant–a result that will be confirmed with the explicit calculation in
section 3.3.
With the help of (2.54) we are now also able to understand why the 1-loop vertex correction shown in figure
2.4 is not of the same order as the bare trilinear vertex. Naively, one would have concluded that it is, because
one gets two explicit powers of g from the new vertices, an (1/g2)3 enhancement from the additional prop-
agators and finally a g4 phase space suppression. All additional powers of g thus seem to cancel. However,
this simple approach misses to correctly count the powers of g due to the vertices. The bare trilinear vertex is
suppressed by only one power of g, while the 1-loop correction is already suppressed by g3, which immediately
follows from (2.54) by setting m = 1. At leading order, the introduction of effective vertices analogous to
those considered in the HTL resummed perturbation theory is therefore not necessary.

Now it is time to prove the power-counting rules. The second and third rule are rather obvious. For
the phase space suppression belonging to the loop integral, one can use the lightcone components defined in
(2.51) and write

d4K ∼ dk+dk−d
2k⊥. (2.55)

We have left out a factor −i(1± 2f(k0)) coming from the thermal sum (an additional factor of 2 arises due
to the Jacobi determinant) since K is a hard momentum and even if we have fB(k

0) this will not affect the
power-counting. The g4 suppression now immediately follows from (2.53).

The vertices

Finally, we must prove the final rule, the suppression of trilinear vertices by one power of g.

• External gauge bosons: External, real gauge bosons couple always to two particles of the same
spin and they have transverse polarizations only. This means that even if a vertex has contributions
proportional to V µ which according to (2.52) are O(1), when summed over the polarizations of the
gauge boson this contribution will vanish. Only transverse components of the momenta can contribute
and we directly see that we get an O(g) suppression if the particle in the loop is a scalar or fermion.
If we couple it however to a gauge boson loop (which is obviously only possible if no photons are
involved), then we must think a bit more carefully since every vertex involves a Lorentz tensor of rank
3. However, we already said that we can absorb any nontrivial Lorentz structure of the propagators
into the vertices, which means that two out of three indices are contracted. In general, this does not
imply that at leading order every vertex is proportional to V µ, in which case only transverse momentum
components contribute and we get the same O(g) again. If several external gauge bosons are involved,
it can also happen that we get terms which involve gµν with µ, ν belonging to the external particles
and not to the particles in the loop. Any such terms must, however, come with prefactors that involve
scalar products of collinear momenta, which are of order O(g2T 2). Although the separate vertices for
themselves thus need not show any suppression, two of them grouped together will always be suppressed
by two powers of g, thus resulting ’effectively’ in an O(g) suppression of every vertex.

• External spin 1/2-fermion: External spin 1/2 fermions couple to two particles which differ by 1/2
in their spin, which means that one is again a spin 1/2 fermion and the other either a scalar or a gauge

15For this formula to hold in general every quadrilinear vertex has to be counted like two trilinear vertices. This is explained
below.
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boson. If we couple it to a fermion and a gauge boson, then there may be a contribution proportional
to V µ at a single vertex which is thus not suppressed by itself. But this contribution is contracted with
another such vertex factor16 and will finally result in something suppressed by two powers of g for the
very same reason as above. Once more, effectively every vertex is suppressed by O(g) in the sense that
every pair of vertices with external fermions involves a g2 suppression.
Finally we must look at a Yukawa coupling involving a scalar particle in the loop. The only nontrivial
structure comes from the numerator of the fermion propagator. Summing over the spins of the external
fermions will result in a scalar product of collinear momenta and for every pair of external fermions,
we will get a suppression by g2 again.

It remains to have a look at the possible quadrilinear couplings with four gauge bosons or two gauge bosons
and two scalars. They are momentum independent and involve only the metric tensor and the square of the
corresponding coupling constant. Therefore, there is no further suppression at the vertices, no matter if we
consider the loop momentum to be collinear or not with the external momenta. In order to get the powers
of g right, they still have to be counted like two trilinear vertices, because quadrilinear vertices reduce the
number of propagators by one each, thus removing one (1/g2) enhancement factor.

2.3.4. The CTL self-energy

After all the general considerations, we want to take a closer look at the simplest case, the CTL two-point
function, i.e. a self-energy including a summation over external spin states. We want to show that what
we looked at so far was still incomplete and that in order to get a consistent expression for a certain CTL
n-point function at leading order in the coupling constants, it is not sufficient to consider only the one-loop
diagrams shown in figure 2.5. In fact, there is an infinite set of additional diagrams, the so-called ladder
diagrams, which contribute at the same order provided we respect the kinematical constraints (2.50). This
is another example of the general statement about perturbation theory at finite temperature that we made
at the end of section 2.1. The generalization to n-point functions is in principle straightforward, in detail
subtleties might arise however. Since in this thesis, only the CTL self-energy will be needed we do not go
into detail here.
In order to understand this phenomenon, let us look at the diagram shown in figure 2.6 with one additional
virtual soft gauge boson.

P P
K

Q

Figure 2.6.: Contribution to CTL self-energy with one soft gauge boson rung.

The expression for this diagram is

Π1rung ∼ g2T
∑

p0

∫
d3p

(2π)3
T
∑

q0

∫
d3q

(2π)3
V (P,K,Q)∆(P )∆(P −Q)∆(P −K +Q)∆(P −K)∆(Q)

with V (P,K,Q) containing all the structure from the vertices (with possible Lorentz and/or spinor indices
as always suppressed) and an explicit g2 from the gauge boson vertices.17 We now have to count the powers
of g and compare with the diagram without the soft gauge boson:

• There is an explicit g2 suppression from the new gauge boson vertices,

16Note that external fermions always come in pairs.
17We have chosen a scalar loop for simplicity, but for the power counting, nothing changes if we use fermions instead, only the

expressions become more complicated.
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• There is a 1/g2 enhancement from each new propagator, provided we choose Q such that Q · P ∼ g2T .

• For this choice of Q, there is a g4 phase space suppression from each sum-integral.

There is of course still the g2 suppression from V (P,K,Q) which was discussed already at length in section
2.3.2. Note that there is no additional kinematical suppression at the soft gauge boson vertices because at
leading order the longitudinal polarizations contribute. The difference compared to the hard gauge bosons
studied in the power-counting scheme of section 2.3.3 is that a contraction of the form V µV ν∆µν where ∆µν

is the HTL propagator (2.28) does not vanish at leading order.
The second point is the crucial one here. A generic soft momentum will, of course, not obey this constraint,
but then the scalar propagators depending on Q will lack the 1/g2 enhancement and the resulting expression
will be suppressed compared to the more special case where Q · P ∼ g2T .
Finally we must look at the phase space suppression coming from the sum-integral over Q because the power-
counting proceeds a little bit different compared to the hard momentum K that we studied in 2.3.2. First of
all, note that Q · P ∼ g2T also implies q− ∼ g2T . Then we can write

T
∑

q0

∫
d3q

(2π)3
∼
∫

dq+dq−

(
1

2
+ fB(q

0)

)∫

d2q⊥

and since ~q⊥ ∼ gT, q+ ∼ gT, fB(q
0) ∼ 1/g we end up with four powers of g like for the hard momentum P .

Obviously, the Bose function is crucial here-taking soft fermions instead will fail to give the same order as
the 1-loop diagram.
Putting all powers of g together, we arrive at

Π1rung ∼ g2
︸︷︷︸

explicit

g2
︸︷︷︸

V (P,K,Q)

(
1

g2

)5

︸ ︷︷ ︸

propagators

(g4)2
︸ ︷︷ ︸

phase space

∼ g2 (2.56)

All additional powers of g have cancelled, leaving us with a contribution of second order in g again. The same
will be true for an arbitrary number of soft gauge boson rungs as depicted in figure 2.7. Every additional

P P· · ·

Figure 2.7.: Ladder diagrams to be taken into account in a consistent leading-order treatment.

· · ·P P

Figure 2.8.: Example for a diagram with crossed ladder rungs and vertex correction. Diagrams of that type
will turn out to be irrelevant at leading order.

gauge boson rung will give a g4 phase space suppression and introduce an additional explicit g2 from the
vertices, but this g6 suppression gets cancelled by the three new propagators which appear and which give
a 1/g2 enhancement each. This means that we need to include the complete set of such ladder diagrams
with soft gauge boson rungs in order to get the complete O(g2) expression. Note that this in fact leads to a
multifold resummation because the propagators in fig. 2.7 are already resummed quantities themselves–the
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2. Quantum field theory in a hot thermal bath

momenta are either at the soft or at the lightcone scale!
However, at this stage it is not yet obvious that this is all we need to include. One could e.g. also imagine that
diagrams with crossed ladder rungs or with additional vertex corrections as shown in figure 2.8 have to be
included. Finally, what we did for a soft gauge boson momentum Q can also be done at any Q ∼ gnT, n > 1
and we would naively obtain that this is of order g2. All those additional contributions are suppressed, but
there is no intuitive argument that dictates this. Although it is possible to prove that the leading order
only the ladder diagrams from figure 2.7 need to be taken into account [6], an analysis in terms of Feynman
diagrams is rather tedious. We will address this problem in the course of the calculation in section 3.3 and
in appendix D.
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3. Thermal particle production and the LPM
effect

Tell me
Why’d you have to go and make things so complicated?
Avril Lavigne - Complicated

3.1. Thermal particle production

Whenever we have a hot thermal bath and one particle species which is so weakly coupled that it is not in
equilibrium with its surrounding medium, it can be produced via decays or scattering of particles from the
thermal bath and then escape without substantial effects of the medium on its subsequent propagation. We
refer to this situation as thermal particle production and it plays an important role both in heavy-ion collisions
where a quark-gluon plasma may be formed [34, 35] and in the early universe. Well-studied examples are
photon production in a quark-gluon plasma or the thermal production of dark matter candidates shortly
after reheating in the early, radiation-dominated era of the cosmological evolution [6, 7, 36, 37, 38, 39].
The key quantity in this context is the particle production rate defined as the number of particles produced
per volume and time. The subject of this thesis is to study this quantity for certain interesting examples,
to leading order in the relevant coupling constants. Although this sounds like a rather straightforward task,
a careful analysis reveals that it is in fact highly nontrivial. A consistent treatment requires a formalism to
deal with the Landau-Pomeranchuk-Migdal (LPM) effect, a coherent quantum effect that will be explained
in section 3.2. Before we do this, we first present a derivation of a master formula for the thermal particle
production rate and outline the connection to the Boltzmann equation needed to study the time evolution of
the particle number density.

3.1.1. Particle production rate

Here we give a first principles-derivation of a master formula for the thermal particle production rate. This
derivation is usually not shown in the existing literature on the topic where the final result is often taken as
starting point or derived in a less rigorous way by arguing on the basis of S-matrix elements [9, 40]. The
presentation here basically follows [41].

General setting

The relevant hamiltonian is given by
H = Hsys +Hϕ (3.1)

where Hsys contains all particles in full equilibrium which provide the thermal bath, and ϕ is the weakly
interacting particle whose production we want to study and which is not in equilibrium with the thermal
bath. Its hamiltonian can be further split up into a free and an interaction contribution according to1

Hϕ ≡ H0 +Hint =

∫
d3p

(2π)3
E~p
∑

λ

a†(~p, λ)a(~p, λ) +

(∫

d3xϕ(x) · J(x) + h.c.

)

. (3.2)

We have used a compact notation where λ denotes the helicity states of fermions or gauge bosons (in case of
real scalars, the sum actually contains only one term) and the product ϕ(x) · J(x) may involve a contraction

1We perform the calculations in Minkowski space although we are mainly interested in thermal particle production in the
early universe. This is possible because the time-scale of interactions we will be interested in is t ∼ (g2T )−1 which is much
shorter than the expansion time scale H−1 ∼ (

√
g∗T 2/MPl)

−1 where MPl = 2.4 · 1018 GeV is the (reduced) Planck mass
and g∗ = O(100) is the number of relativistic d.o.f., because all processes we look at happen at temperatures T/MPl � g2.
This means that on the time scale of the interaction, the expansion of the Universe is irrelevant.
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of Lorentz, spinor and/or internal group indices, if present. Furthermore, the coupling constant is absorbed
in the definition of the interaction current J(x). The addition of the hermitian conjugate is not needed if the
current is hermitian by itself. As an example, in the case of a pure EM interaction we get

∫
d3xϕ(x) · J(x) ≡

e
∫
d3xAµ(x)J

µ(x) with Jµ = ψ̄γµψ which is hermitian. For the Yukawa interaction between Majorana

neutrinos Ni, leptons `k and the Higgs φ (that will be studied in detail in chapter 4), we get
∫
d3xϕ(x)·J(x) ≡

∑

k λik
∫
d3xN̄i(x)PL`k(x)φ

†(x) with lepton doublet `k (the indices i, k label fermion generations) and Higgs
doublet φ. In this case, the ’+h.c.’ in (3.2) will be taken into account.
The density matrix of the system is time-dependent because we have a nonequilibrium problem. As initial
condition at a time t = 0 it is assumed that

ρ̂(t = 0) ≡ ρ̂0 = ρ̂sys ⊗ |0〉〈0|, (3.3)

which means that initially we have no ϕ particles while the thermal bath is described with the canonical
ensemble

ρ̂sys =
1

Z
e−βHsys . (3.4)

The observable we want to study is described by the operator

dNϕ

d3xd3p
≡ 1

V

∑

λ

a†(~p, λ)a(~p, λ). (3.5)

Defining the differential production rate as

dΓϕ

d3p
≡ d〈Nϕ〉

d4xd3p
, (3.6)

with the average being taken w.r.t. the full density matrix, we obtain

dΓϕ

d3p
=

1

V

d

dt
Tr

[
∑

λ

a†(~p, λ)a(~p, λ)ρ̂(t)

]

. (3.7)

To continue, we need to solve for the time development of the density matrix. Its equation of motion is the
usual von Neumann-equation

i
dρ̂I(t)

dt
= [HI(t), ρ̂I(t)] (3.8)

with the formal solution2

ρ̂I(t) = ρ̂0 − i

∫ t

0

dt′[HI(t
′), ρ̂0] + (−i)2

∫ t

0

dt′
∫ t′

0

dt′′[HI(t
′), [HI(t

′′), ρ̂0]] + . . . . (3.9)

Here, we have transformed to the interaction picture

HI ≡ eiH0tHinte
−iH0t, ρ̂I ≡ eiH0tρ̂e−iH0t. (3.10)

Upon inserting into (3.7), we see that the first two terms do not contribute. For the first term, it is obvious
because it is constant in time, whereas the second one requires a closer inspection. Its contribution is of the
form3

Tr

[
∑

λ

a†(~p, λ)a(~p, λ)[HI(t), |0〉〈0|]
]

= 〈0|
∑

λ

a†(~p, λ)a(~p, λ)HI(t)−HI(t)
∑

λ

a†(~p, λ)a(~p, λ)|0〉 = 0

where we used the cyclic invariance of the trace and the fact that all states containing at least one particle
with arbitrary momentum are orthogonal to the vacuum state, such that finally only a vacuum expectation

2As discussed in [41], this series contains in general secular terms which grow with time and invalidate the perturbative
expansion. This can be related to the fact that at a certain time t = teq the particle ϕ has reached its equilibrium density.
For larger times t > teq the evolution of the number density has to be found by other means and the formula for the thermal
production rate derived here is no longer valid. Its usage is limited to times t� teq for which the density remains small.

3Here, the factor ρsys is irrelevant since it is independent of ϕ, therefore the trace can be factorized.
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value remains. It vanishes due to the creation operator acting on the bra and the annihilation operator acting
on the ket. The third term from (3.9) can be handled precisely the same way and we end up with (we write
t′ instead of t′′ for simplicity)

dΓϕ

d3p
= − 1

V

〈
∫ t

0

dt′〈0|
[

[
∑

λ

a†(~p, λ)a(~p, λ), HI(t)], HI(t
′)

]

|0〉
〉

β

(3.11)

with the thermal expectation value taken w.r.t. the equilibrium density matrix,

〈· · · 〉β ≡ Tr[· · · ρ̂sys]. (3.12)

In order to evaluate this expression, it is necessary to expand the field ϕ in creation and annihilation operators
(which is possible because on the time scale of the interaction the particle ϕ escapes freely and does not feel
the presence of the medium) and insert this expression in HI(t). This means, we write

ϕ(x) =

∫
d3p

√
(2π)32E~p

∑

λ

(a(~p, λ)χ(~p, λ)e−iPx + a†(~p, λ)ω(~p, λ)eiPx),

ϕ̄(x) =

∫
d3p

√
(2π)32E~p

∑

λ

(a†(~p, λ)χ̄(~p, λ)eiPx + a(~p, λ)ω̄(~p, λ)e−iPx),

(3.13)

where ϕ̄ is the conjugate field and the mode functions χ(~p, λ), ω(~p, λ) may again contain Lorentz- or spinor
indices.4 For scalar particles, this function is unity, for fermions it is a spinor and for gauge bosons a
polarization vector. The interaction hamiltonian then becomes

HI(t) =

∫

d3x

∫
d3q

√
(2π)32E~q

∑

λ′

(
[a(~q, λ′)χ(~q, λ′)e−iQx + a†(~q, λ′)ω(~q, λ′)eiQx]J̄(x)

+J(x)[a†(~q, λ′)χ̄(~q, λ′)eiQx + a(~q, λ′)ω̄(~q, λ′)e−iQx]
)
,

(3.14)

HI(t
′) =

∫

d3y

∫
d3r

√

(2π)32E~r

∑

λ′′

(
[a(~r, λ′′)χ(~r, λ′′)e−iRy + a†(~r, λ′′)ω(~r, λ′′)eiRy]J̄(y)

+J(y)[a†(~r, λ′′)χ̄(~r, λ′′)eiRy + a(~r, λ′′)ω̄(~r, λ′′)e−iRy]
)
,

(3.15)

The distinction between J and J̄ is very important if ϕ is a fermion while for production of e.g. photons, one
could do with an easier notation. In fact, the second half of the terms in (3.14) and (3.15) is absent there
because in the interaction hamiltonian we do not have any ’+ h.c.’.
The evaluation of the vacuum expectation value in (3.11) looks like a rather horrible task, but it is greatly
simplified by the fact that most terms vanish because they involve an annihilation operator acting on the ket
or a creation operator acting on the bra. There are only two terms where only annihilation operators act on
the bra and only creation operators on the ket, both of which have the number operator

∑

λ a
†(~p, λ)a(~p, λ)

sandwiched between the hamiltonians, thus producing terms of the form 〈0|aa†aa†|0〉 which are the only
nonzero ones. These two terms come with a minus sign which cancels the overall minus sign in (3.11). With
this in mind, one can immediately write down the following expression:

dΓϕ

d3p
=

1

V

〈
∫ t

0

dt′〈0|HI(t
′)
∑

λ

a†(~p, λ)a(~p, λ)HI(t) +HI(t)
∑

λ

a†(~p, λ)a(~p, λ)HI(t
′)|0〉

〉

β

4For Dirac fermions, the expression is of course not strictly correct since we should take into account that particles are
distinct from their antiparticles and consequently we must distinguish between two different sets of creation and annihilation
operators. However, here we will only be interested in the production of Majorana fermions which are their own antiparticles,
such that the distinction is not necessary. The generalization to Dirac fermions is straightforward and only introduces slightly
more complicated expressions.
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3. Thermal particle production and the LPM effect

To get the aforementioned nonzero contributions, we insert for HI(t), HI(t
′) only those terms from (3.14)

and (3.15) which produce the desired vacuum expectation values. This means, that we get

dΓϕ

d3p
=

1

V

〈
∫ t

0

dt′
∫

d3xd3y

∫
d3q

√
(2π)32E~q

∫
d3r

√

(2π)32E~r

∑

λ,λ′,λ′′

[
(χ(~r, λ′′)J̄(y) + J(y)ω̄(~r, λ′′))

〈0|a(~r, λ′′)a†(~p, λ)a(~p, λ)a†(~q, λ′)|0〉(ω(~q, λ′)J̄(x) + J(x)χ̄(~q, λ′))ei(Qx−Ry) + (χ(~q, λ′)J̄(x) + J(x)ω̄(~q, λ′))

〈0|a(~q, λ′)a†(~p, λ)a(~p, λ)a†(~r, λ′′)|0〉(ω(~r, λ′′)J̄(y) + J(y)χ̄(~r, λ′′))e−i(Qx−Ry)
]〉

β

.

Using the (anti-) commutation relations

[a(~p, λ), a†(~q, λ′)]± = δλλ′δ(~p− ~q), (3.16)

we immediately see that the vacuum expectation values simply give a factor of δλλ′δλλ′′δ(~p− ~q)δ(~p−~r) each,
and we end up with

dΓϕ

d3p
=

1

V

1

(2π)32E~p

〈
∫ t

0

dt′
∫

d3xd3y
∑

λ

[

(χ(~p, λ)J̄(y) + J(y)ω̄(~p, λ))(ω(~p, λ)J̄(x) + J(x)χ̄(~p, λ))eiP (x−y)

+(χ(~p, λ)J̄(x) + J(x)ω̄(~p, λ))(ω(~p, λ)J̄(y) + J(y)χ̄(~p, λ))e−iP (x−y)
]〉

β

. (3.17)

This formula is valid for the more general case where the interaction current is not hermitian and the hermitian
conjugate is added. Although it would be possible to apply this formula also e.g. to photon production, it
appears easier to simplify it already at this stage. All the computational steps remain unchanged, we only
have to omit all terms which involve the conjugate mode functions χ̄, ω̄ in the final result (cf. the remark
after equation (3.15)) and write J instead of J̄ . The starting point valid for the case where the interaction
hamiltonian is already hermitian by itself then becomes

dΓϕ,hermit.

d3p
=

1

V

1

(2π)32E~p

〈
∫ t

0

dt′
∫

d3xd3y
∑

λ

[

χ(~p, λ)J(y)ω(~p, λ)J(x)eiP (x−y)

+χ(~p, λ)J(x)ω(~p, λ)J(y)e−iP (x−y)
]〉

β

(3.18)

Up to now, the calculation was completely general. At this point, it is finally convenient to consider specific
examples separately by specifying the mode functions and the current.

Production of photons

We first consider the production of photons5, where we can start from (3.18). The mode functions carry a
Lorentz index and are given by polarization vectors, χ(~p, λ) → εµ(~p, λ), ω(~p, λ) → εν∗(~p, λ). Introducing the
retarded current-current-correlator

e2Π<µν(x) ≡ 〈Jµ(0)Jν(x)〉β , (3.19)

we get, due to translational invariance,

〈Jµ(x)Jν (y)〉β = e2Π<µν(y − x). (3.20)

A Fourier transform then yields

〈Jµ(x)Jν (y)〉β = e2
∫

d4Q

(2π)4
e−iQ(y−x)Π<µν(Q), 〈Jµ(y)Jν(x)〉β = e2

∫
d4Q

(2π)4
e−iQ(x−y)Π<µν(Q) (3.21)

5Note that the production rate for scalar particles (which we will not be interested in) follows as a simple corollary by replacing
εµ → 1 and omitting the Lorentz index on the currents.
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3. Thermal particle production and the LPM effect

which we insert into the result (3.18) and obtain

dΓγ

d3p
=
e2

V

1

(2π)32E~p

∑

λ

εµ(~p, λ)εν∗(~p, λ)

∫
d4Q

(2π)4
Π<µν(Q)

∫ t

0

dt′
∫

d3xd3y(ei(P−Q)(x−y) + ei(P−Q)(y−x)).

(3.22)
The spatial integrals give a factor (2π)3V δ(~p− ~q) each, and in the limit t→ ∞, the integral over t′ over the
sum of both gives another factor 2πδ(E~p− q0).6 Note that we need to integrate t′ from −∞ to +∞ to obtain
the delta function and not from 0 to ∞. This is achieved by taking t′ → −t′ in one of the two terms and
then writing them as a single integral.
With this in mind and with the computation above, we arrive at the standard textbook result

dΓγ

d3p
=

e2

(2π)32E~p

∑

λ

εµ(~p, λ)εν∗(~p, λ)Π<µν (P ). (3.23)

For practical calculations, it is often easier to use the following, equivalent formula:

dΓγ

d3p
=

e2

(2π)32E~p
fB(p

0)
∑

λ

εµ(~p, λ)εν∗(~p, λ) ImΠµν,ret(P ) (3.24)

One therefore needs to compute the imaginary part of the retarded gauge boson self-energy. In order to show
the equivalence, one first of all needs to remember that instead of the correlation function of currents, one
can also use the self-energy. To see this, consider e.g. the path integral representation of the full propagator
(omitting possible Lorentz indices):

D(x− y) = 〈ϕ(x)ϕ(y)〉 =
∫

Dϕϕ(x)ϕ(y)e−ig
∫
d4xJ·ϕeiS0 (3.25)

On the other hand, we have the geometric series which schematically looks like

D(P ) = ∆(P ) + ∆(P )(−iΠ(P ))∆(P ) + . . . . (3.26)

Since only the term of order g2 contributes to the production rate, we need to expand (3.25) to that order,
which then yields two free propagators and the two-point correlation function of the currents. This can,
using (3.26), be then identified with the self-energy of the ϕ field, which shows that the correlation function
of currents can be replaced by the correlation function of the field itself. The final step is then to use the
KMS relation which leads to the identity

Π<(P ) = fB(p
0)ρ(p0) (3.27)

with spectral function ρ(p0) (again emitting possible Lorentz indices). The spectral function can be identified
with twice the imaginary part of the retarded self-energy (see section 2.1.1), which completes the proof.

Production of Majorana neutrinos

Now we turn to the production of Majorana neutrinos which interact with leptons and Higgs bosons via

HI = λik

∫

d3xN̄i(x)PL`k(x)φ
†(x) + h.c. (3.28)

where i, k label the fermion generations.7 We will focus in the following on the production of the lightest
Majorana neutrino N1 because only this is relevant for the calculations in chapter 4. The index ’1’ will mostly
be suppressed to make the notation less clumsy.
In this case, we need to distinguish between J and J̄ and start from (3.17). The mode functions are given
by χ(~p, λ) → u(~p, s) and ω(~p, λ) → v(~p, s). Nonzero correlation functions are only obtained with one J and
one J̄ . To understand it, one may not forget that the interaction currents involve chiral projectors PL (in J)

6The infinite time limit is to be understood in the sense that t is much larger than the timescale of interactions.
7The λ that appears here is of course the Yukawa coupling matrix and bears no relation to the summation variable λ (which

is called s here) used before in the derivation of the photon production rate.
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3. Thermal particle production and the LPM effect

and PR (in J̄). Only expressions involving one PL and one PR are nonzero because they will lead to terms of
the form PLΣPR where Σ is one of the correlation functions that are introduced in a moment. An expression
like PLΣPL with two identical projectors is zero. This means that (3.17) becomes

dΓN1

d3p
=

1

V

1

(2π)32E~p

∫ t

0

dt′
∫

d3xd3y
∑

s

[

eiP (x−y) (u(~p, s)ū(~p, s)〈J̄(y)J(x)〉β + v(~p, s)v̄(~p, s)〈J(y)J̄(x)〉β
)

+e−iP (x−y) (u(~p, s)ū(~p, s)〈J̄(x)J(y)〉β + v(~p, s)v̄(~p, s)〈J(x)J̄ (y)〉β
)]

.

(3.29)

We can now perform the sum over the external spins which leads to the usual trace over gamma matrices.
When doing so, again one may not forget that the interaction currents involve chiral projectors which ’kill’
the mass term from the spin sums because PLmPR = 0. This means that for the summation over spins, it
does not matter here whether we have u- or v-spinors. The remaining traces involve only two Dirac matrices
each which means that γ5 does not contribute and we may replace the remaining P 2

L,R → 1
2 . Therefore, it is

more convenient to define the currents j, j̄ via

J =
∑

k

λ1k`kφ
†, J̄ =

∑

k

λ†1k
¯̀
kφ (3.30)

where the sum goes over the fermion generations, and to pull out an overall factor 1/2 from the chiral
projectors. Then we can write

dΓN1

d3p
=

1

V

|λ|2
2(2π)32E~p

∫ t

0

dt′
∫

d3xd3y

∫
d4Q

(2π)4

[

Tr[�PΣ
>(Q)]

(

ei(P+Q)(x−y) + e−i(P+Q)(x−y)
)

−Tr[�PΣ
<(Q)]

(

ei(P+Q)(x−y) + e−i(P+Q)(x−y)
)]

. (3.31)

Here we set |λ|2 ≡∑k(λ
†λ)1k and we introduced the current-current correlators

〈j(x)j̄(y)〉β =

∫
d4Q

(2π)4
e−iQ(x−y)Σ>(Q), (3.32)

〈j̄(x)j(y)〉β =−
∫

d4Q

(2π)4
e−iQ(y−x)Σ<(Q). (3.33)

Now we perform the integrals over dt, d3x and d3y like we previously did for the production rate of photons.
Due to the arising delta functions, we can integrate finally over d4Q and obtain

dΓN1

d3p
=

|λ|2
2(2π)32E~p

(
Tr[�PΣ

>(−P )]− Tr[�PΣ
<(P )]

)
. (3.34)

The final step is again to replace the current-current correlators by the imaginary part of the retarded self-
energy. This is done the same way as in the case of photon production, only that we must pay attention to
the additional minus signs:

Σ<(P ) = −2fF (p0) ImΣret(P ), Σ>(−P ) = 2(1− fF (−p0)) ImΣret(−P ) = 2fF (p0) ImΣret(−P )

The final result for the production rate of Majorana neutrinos therefore is

dΓN1

d3p
=

|λ|2
(2π)32E~p

(
Tr[�P ImΣret(−P )] + Tr[�P ImΣret(P )]

)
. (3.35)

3.1.2. Particle abundances and Boltzmann equation

We now want to obtain an equation for the particle number density. Integrating (3.11) over d3p, we obtain

d〈n̂ϕ〉
dt

= Cϕ (3.36)
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with the collision term

Cϕ ≡
∫

d3p
dΓϕ

d3p
(3.37)

and the particle density operator n̂ϕ = N̂ϕ/V . Due to the expansion of the Universe, V = V0a
3 and therefore

computing the total time derivative, we obtain

∂n

∂t
+ 3Hn = Cϕ (3.38)

with number density8 n ≡ 〈n̂ϕ〉 and Hubble parameterH ≡ ȧ/a. This clearly resembles the usual (integrated)
Boltzmann equation–provided we can identify the rhs with the conventional collision term [42]

Cϕ =

∫

dΠ
[
|M|2i+j+...→ϕ+a+b+...fifj . . . (1± fa)(1± fb) . . . (1± fϕ)

−|M|2ϕ+a+b+...→i+j+...fafb . . . fϕ(1± fi)(1± fj) . . .
]
.

(3.39)

Here, dΠ denotes the relativistic phase space element and the f ’s are either Bose-Einstein or Fermi-Dirac
distributions, except for fϕ which can be an arbitrary nonthermal distribution.
Both forms (3.37) and (3.39) are indeed equivalent under certain circumstances, as discussed at length in the
classic paper [43] which we do not want to reproduce here and whose results we take for granted. In general,
(3.39) contains more than the integral over the production rate does, however. Both lead to the same result
provided

• Disappearance processes which reduce the number of ϕ particles are neglected,

• Pauli blocking/Bose enhancement factors (1±fϕ) are replaced by 1 such that one can use an integrated
form of the Boltzmann equation instead of solving an integro-differential equation for the phase space
density fϕ.

Both conditions are in accord with our assumptions that went into the derivation of (3.24) and (3.35)–we
started with no ϕ particles at all and focused on early times t � teq, where teq denotes the time when ϕ
reaches its equilibrium density. If we stay within that setup, then both inverse processes and Pauli block-
ing/Bose enhancement are indeed negligible.
We already remark that both expressions (3.37) and (3.39) will be used in the computations of chapter 4
because sometimes the one and sometimes the other formula is more convenient and it is useful to switch
between both if this simplifies the computation.

3.2. The LPM effect and its role in thermal particle production

Whenever particles traverse a medium, their dynamics and properties may experience profound changes with
respect to the vacuum. We have already described such cases in chapter 2 and now we want to turn to a
very specific medium effect, named Landau-Pomeranchuk-Migdal (LPM) effect after the persons who
first described it [3, 4]. First discovered in the context of electromagnetic showering in high-energy cosmic
rays, it plays a role in many different contexts (for a review of experimental results and different theoretical
approaches on the LPM effect see [44]), but we will focus only on its relevance on thermal particle production
here. Since the discussion mostly borrows from [6, 45], all concrete statements will be about photon pro-
duction from a QGP, but they are analogously valid for other cases, including the production of Majorana
neutrinos from an electroweak plasma that will be studied in chapter 4.
Let us first recall how one usually deals with production and absorption of particles via decay and/or scat-
tering. Typically one sets up a set of Boltzmann equations, either of the type (3.38) or a more general version
where inverse processes are included and one solves for the phase-space density instead of the number density
(see e.g. [42]). The collision term of the Boltzmann equation contains all local interaction processes that may

8The identification of the expectation value of a number density operator with the classical number density is allowed as long
as occupation numbers of individual states do not become large. For the applications that are studied within this thesis, this
does not happen.
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3. Thermal particle production and the LPM effect

occur and that change the number and/or momentum distribution of the particles that we look at. The cru-
cial assumption is what Boltzmann has termed ’Stoßzahlansatz’ in his original treatment: All particles move
freely except for the moment they experience a collision. This implies that all collisions occur sequentially
and cannot influence each other–the particles are uncorrelated and once they have interacted they move away
from each other, ignorant to the subsequent evolution of their reaction partners. The very same assumptions
have also been put in into our calculation in section 3.1. Even more so–the propagation of the particles in
between two collisions is essentially classical and can be described by phase-space trajectories. This means,
that, in prose,

de Broglie wavelength � mean free path between collisions.

This is indeed correct since the de Broglie wavelength scales with momentum like 1/p whereas the mean free
path scales with the interaction cross section like 1/σ. Already at leading order the mean free path is thus
at most 1/(g2T ) and therefore much larger than the de Broglie wavelength, provided the momenta are larger
than the ultrasoft scale, p� g2T which is a safe assumption in phenomenologically relevant considerations.
In a hot plasma with gauge interactions, this simple picture in general breaks down. In order to understand
why, we must note that there is a second condition for the applicability of the Boltzmann equation:

scattering duration � mean free time between collisions

This condition ensures that collisions can indeed be considered sequentially and there is no quantum inter-
ference between them. It is precisely this condition that in general is not fulfilled in gauge theories.
Let us look at an emission process 1 → 2 + ϕ. The masses are all assumed to be m . gT , which is no
restriction if they are thermal masses. In that case, the emission occurs collinearly, with a relative angle of
order ϑ ∼ g. In order to see this, we write

P 2 = m2
1 = (Q+R)2 = m2

2 +m2
ϕ + 2Q ·R, (3.40)

which implies Q·R ∼ g2T 2 and thus 1−cos2 ϑ ∼ g2 ⇔ ϑ ∼ g. We thus precisely have the lightcone kinematics
that we considered in section 2.3. Note that we have assumed the particles to be on-shell which is relevant
e.g. for the production of Majorana neutrinos studied in chapter 4. If we look at the emission of photons
instead, then m1 = m2 = mq ∼ gT and mϕ = mγ ∼ eT � mq. This process cannot occur unless we set
p0 = E~p + δE and require that δE ∼ g2T . The emitting quark is thus required to be off-shell and one can
estimate the scattering duration (in this context also referred to as formation time) from the uncertainty
principle to be τ ∼ 1/δE ∼ (g2T )−1. This happens to be of the same order as the mean free time between
soft collisions. This follows immediately if we remember that the thermal width due to soft scattering is
Γ ∼ g2T , as explained in section 2.3.1.9

Having understood that the formation time of the photon is of the same order as the mean free time between
soft collisions in the plasma, we know that it is impossible to treat emission and prior or subsequent scattering
as independent processes. The usual Boltzmann picture of collisions breaks down here. This is illustrated
in figure 3.1 which shows the overlap of photon and quark wavefunction during the emission process. The
emitted photon still ’feels’ the presence of the source, which undergoes soft scattering processes and may
also emit another photon. The outgoing photons interfere with each other, thus modifying the emission rate.
This is the LPM effect. For photon production, the interference turns out to be destructive on average and
the LPM effect leads to a suppression of the production rate [7]. A central issue of chapter 4 is to study
how the LPM effect influences the production rate of Majorana neutrinos, i.e. of (a special form of) fermions.

Now that we have completed the task of explaining what the LPM effect is and why it is relevant for thermal
particle production we must explain how to compute it. If we want to keep a Boltzmann-like description, we
certainly need to modify the collision term such that it incorporates the LPM effect. In terms of Feynman
diagrams, the LPM effect manifests itself as nontrivial interference terms, as depicted in figure 3.2, with an
arbitrary number of soft gauge boson scatterings. But such interference terms are precisely generated by
cutting ladder diagrams of the form shown in figure 2.7. This means that in order to take the LPM effect into
account, we need to compute the production rate by taking the imaginary part of the CTL self-energy that

9Note that due to the width, the scattering duration cannot be larger than (g2T )−1 even if the on-shell emission is kinematically

allowed. This is because we must set p0 → p0 + iΓ and then even if p0 =
√

~p2 +m2, the four momentum P is not on-shell
and P 2 6= m2. This also means that there is no pole due to internal lines going on-shell, it is regulated by the thermal width,
provided we compute it with an IR regulator which drops out at the end if all relevant diagrams have been included.
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Figure 3.1.: Intuitive picture of the interference of produced photons due to the LPM effect. Picture taken
from [46].

Figure 3.2.: Example for two processes which lead to a nontrivial interference term that needs to be taken
into account for the leading order production rate of photons from a QGP. These interference
terms are generated by cutting diagrams of the type 2.7.

was introduced in section 2.3.4.10 Remember that there we have already shown that all ladder diagrams are
of the same order w.r.t. the coupling constant, without explaining what the physics behind those diagrams
is and what they are good for. In this section we have outlined an intuitive physical picture why they all
contribute at leading order provided the momenta are collinear and lightlike–their imaginary part gives the
particle production rate including the LPM effect, which as we have learned needs to be taken into account
at leading order. What remains to be understood is why diagrams of the form shown in figure 2.8 do not
contribute. The explicit calculation in section 3.3 and appendix D.1 proves that no such diagrams contribute

1 2 2 1

Figure 3.3.: Example for two processes whose interference term would be generated by cutting a ladder
diagram with two crossed gluon rungs like in 2.8 but which do not interfere with each other.
Time is running from left to right with the leftmost scattering event happening first. Adapted
from figure 11 in [47].

at leading order, without providing an intuitive physical picture, however. At least for crossed ladder rungs,
one can gain a physical intuition why they need not be taken into account [47]. Look at figure 3.3 which
illustrates what kind of interference term would result from cutting a self-energy diagram with two crossed

10Note that in contrast to that approach, it is far from obvious how to modify the reaction amplitudes in the version (3.39) of the
collision term in order to include the LPM effect. The approach via the relation (3.24) or (3.35) is much more straightforward
here.
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gluon rungs. The gluons have been labelled 11 in order to make the difference clear. We see that we would
have an interference between two processes where the order of soft scattering events is opposite to each other.
Such processes cannot interfere because the time scale between two interactions is 1/(g2T ) which is much
larger than the time scale 1/(gT ) over which soft gluons can at most interact due to Debye screening. This
is indicated by the length scales that were chosen in the figure. Note that this of course only provides a
very rough and qualitative picture of the complicated processes that happen in a hot plasma (a slightly more
elaborate but still qualitative analysis is given in [47]), but it helps to get a feeling why only the ladder
diagrams with uncrossed ladder rungs have to be included in the computation of the particle production rate.
The explicit computation performed in [1, 6] as well as this thesis proves this statement at a quantitative
level and thus confirmes that the intuitive picture that was put forth here is indeed reasonable.

3.3. An integral equation for the LPM effect

In the previous section we have shown that computing the leading order particle production rate in general
requires taking the discontinuity of the CTL self-energy. Here we present its computation with some lengthy
intermediate steps moved to appendices C and D.

3.3.1. The basic strategy

The crucial task is to set up a method how to perform the required resummation of ladder diagrams. Before
we go into the details of the computation, let us first present the strategy:

1. Start with 1-loop diagrams with two particles of the kind we want to study and an arbitrary number
of external soft gauge bosons12 in the kinematical limit where the loop momentum and the external
momenta are collinear, as explained in the previous section. Using approximations justified in this
kinematical regime, it is possible to set up a recursion relation that relates a given n-point function to
(n − 1)-point functions where one of the gauge bosons has been removed. Only the 2-point function
without any additional soft gauge bosons then needs to be computed explicitly for the case at hand.

2. Define a current as the first functional derivative of the generating functional which generates the 1-loop
diagrams computed in the first step. The current is much more convenient than the diagrams themselves
because one does not need to worry about summing over all possible permutations of external fields. It
is given by the integral over all external momenta of the n-point functions, contracted with the external
fields. It obeys an integral equation that can easily be found using the results from step 1.

3. Finally, integrate out the soft gauge boson background. The gauge bosons then only appear in self-
energy insertions (which generates a thermal width for the hard particles in the loop) and as rungs in
the ladder diagrams. This new current satisfies an integral equation that is straightforwardly obtained
from the one found in step 2. By taking a functional derivative w.r.t. the external field, we finally get
an integral equation for the CTL self-energy.

The rest of this section deals with precisely the program outlined above.

3.3.2. The two-point functions

In this section, we first compute the 2-point functions obeying the kinematical constraints (2.50), which serve
as a starting point for the construction of the CTL self-energy. This simple case will already enable us to
study the approximations that are allowed for the given kinematics.
Consider, then, the generic self-energy as depicted in figure 3.4. The thermal masses of the particles inside
the loop are denoted by ma and mb, where ma = mb is possible. It will be convenient to define a reduced
self-energy by taking out the spatial loop integral and also the factor associated with the vertex on the right,
where the momentum K ’starts’. The vertex factor is denoted by Φϕ, with possible Lorentz, spinor and/or

11Since the gluons have different momenta, they are not indistinguishable particles.
12The gauge boson background contains also hard gauge bosons, but they are already assumed to be integrated out in this step.

This leads to the appearance of asymptotic thermal masses which are studied in section 2.3.1 and appendix B.
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3. Thermal particle production and the LPM effect

ϕ ϕP P

K

K − P

Figure 3.4.: Generic two-point function with hard, lightlike external momentum collinear to the loop momen-
tum. The external particle is denoted by ϕ like in section 3.1.

group indices left implicit in order to be as general as possible. We then study the reduced self-energy Π̂(P,~k)
defined by13

Π(P ) = −
∫

d3k

(2π)3
Tr[Φϕ(K,K − P )Π̂(P,~k)] (3.41)

where the trace goes over internal degrees of freedom.
Let us first look at the propagators. What we need are propagators for a hard, lightlike momentum which
are dressed with an asymptotic mass. The corresponding propagators were already shown in section 2.3.1
and they are derived in appendix B: The scalar propagator is simply

∆(K) = − 1

K2 −m2
(3.42)

whereas the fermion propagator can be related to the scalar propagator, as shown in equation (B.34). Dia-
grams with gauge boson propagators will not be needed in this thesis and are therefore not considered here.
The nontrivial spinor structure of fermion propagators will for convenience be absorbed into the definition
of the vertex factor Φ. Then we can always use propagators of the form (3.42) and only have to be careful
whether we have integer or half-integer Matsubara frequencies.
The reduced self-energy is then given by

Π̂(P,~k) = T
∑

kσ
0

Φ†
ϕ(K,K − P )∆(K)∆(K − P ). (3.43)

Here we have introduced an index σ with σ = 0 for bosons (integer Matsubara frequencies) and σ = 1
for fermions (half-integer Matsubara frequencies). The thermal sum is performed via the usual complex
integration procedure (2.17):

Π̂(P,~k) =

∫

C

dk0
2πi

(
1

2
+ (−1)σfσ(k0)

)

Φ†
ϕ(K,K − P )∆(K)∆(K − P ). (3.44)

The poles are located at k0 = ±Ek and k0 = p0 ± Ek−p. Then we can write

Π̂(P,~k) =
∑

k0,pole=±Ek

(
1

2
+ (−1)σfσ(k0,pole)

)
[
Φ†
ϕ(K,K − P )∆(K − P )(k0 ± Ek)

−1
]∣
∣
k0=k0,pole

+
∑

k0,pole=p0±Ep−k

(
1

2
+ (−1)σfσ(k0,pole)

)
[
Φ†
ϕ(K,K − P )∆(K)(k0 − p0 ± Ek−p)

−1
]∣
∣
k0=k0,pole

To obtain expressions for the propagators, we first of all approximate the energies using

Ek =
√

k2‖ + k2⊥ +m2 =
∣
∣k‖
∣
∣+

k2⊥ +m2

2
∣
∣k‖
∣
∣

+O(g4T ). (3.45)

13A minus sign is inserted because with our conventions, the diagrams correspond to −Π and not to Π, see appendix A. The
reduced self-energy Π̂ is then free of this additional minus sign.

36



3. Thermal particle production and the LPM effect

We now look at the inverse propagator (∆(K − P ))−1 at k0 = ±Ek. We replace p0 using p− = p0 − p‖ and
obtain

(∆(K − P ))−1
∣
∣
k0=±Ek

=−
[

(k0 − p0)
2 − (~k − ~p)2 −m2

b

]

=−
[

E2
k +

(
p− + p‖

)2 ∓ 2
(
p− + p‖

)
Ek − ~p2 − ~k2 + 2~p · ~k −m2

b

]

≈−
[

2p‖(k‖ ∓
∣
∣k‖
∣
∣) + 2p−

(
p‖ ∓

∣
∣k‖
∣
∣
)
∓ p‖

~k2⊥ +m2
a∣

∣k‖
∣
∣

− (~p⊥ − ~k⊥)
2 + ~k2⊥ +m2

a −m2
b

]

where (3.45) was used and higher order terms were neglected. The first term is ∼ T 2, whereas all other terms
are ∼ g2T 2. In order to get an enhancement, we therefore have to impose the condition14

k‖ = ±|k‖|. (3.46)

The inverse propagator is then given by

(∆(K − P ))−1
∣
∣
k0=±Ek

≈ −
[

2p−(p‖ − k‖)−
p‖
k‖

(~k2⊥ +m2
a)− (~p⊥ − ~k⊥)

2 + k2⊥ +m2
a −m2

b

]

and after some simple algebra we arrive at the result

∆(K − P ))|k0=±Ek
=

Θ(±k‖)
2(k‖ − p‖)

[

p− −
~k2⊥ +m2

a

2k‖
+

(~k⊥ − ~p⊥)2 +m2
b

2(k‖ − p‖)

]−1

. (3.47)

A step function was included to guarantee the condition (3.46).
The procedure to approximate the other propagator is exactly the same and leads to the following result:

∆(K)|k0=p0±Ep−k
= −Θ(±(k‖ − p‖))

2k‖

[

p− −
~k2⊥ +m2

a

2k‖
+

(~k⊥ − ~p⊥)2 +m2
b

2(k‖ − p‖)

]−1

. (3.48)

The remaining factors in (3.45) can be easily evaluated. For the distribution functions we use that eβp0 =
(−1)σ+τ where τ is an index of the same form as σ and refers to the particle with momentum K − P in the
loop. This leads, again dropping all higher order terms, to

(−1)σfσ(±Ek) = (−1)σfσ(k‖); (−1)σfσ(p0 ±Ek−p) =
(−1)σ

eβp0e±βEk−p − (−1)σ
= (−1)τf τ (k‖ − p‖). (3.49)

For the factors (k0 ± Ek)
−1 and (k0 − p0 ± Ek−p)−1, we may use k0 = k‖, such that in the end the two

factors lead to identical contributions. Summing over both of them then just has the effect to remove the
step functions from the final result, since Θ(x) + Θ(−x) = 1.
For notational convenience, we will from now on use D(K) and D(K − P ) defined as

∆(K) ≡ 1

2k‖
D(K) (3.50)

(and the same for D(K−P )) as propagators and absorb the prefactors into the function Φϕ(K,K−P ). The
final result for the reduced 1-loop two-point function is then given by

Π̂(P,~k) =

[(
1

2
+ (−1)σfσ(k‖)

)

Φ†
ϕ(K,K − P )

∣
∣
k0=Ek

−
(
1

2
+ (−1)τf τ (k‖ − p‖)

)

Φ†
ϕ(K,K − P )

∣
∣
k0=p0+Ep−k

]

ε−1
ab (P,

~k)
(3.51)

with a relative minus sign coming from (3.47) and (3.48). Here we defined

εab(P,~k) ≡ p− −
~k2⊥ +m2

a

2k‖
+

(~k⊥ − ~p⊥)2 +m2
b

2(k‖ − p‖)
(3.52)

14Note that the sign refers to the sign of the two poles at k0 = ±Ek, otherwise the condition would be tautological.
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for convenience because this factor will frequently reappear in the following computation and also in the final
integral equation. It is nothing else but the difference of the pole locations of our two propagators and it is
of order g2T .
If we take the discontinuity w.r.t. p0, the result becomes even easier because we get a delta function
δ(εab(P,~k)). This means that the difference between the pole locations vanishes and we can factor out
Φ† as well. In that case, we obtain

Disc Π̂(P,~k) = 2i Im Π̂(p0 + iε, ~p,~k) = F(k‖, p‖) Φ
†
ϕ(K,K − P )

∣
∣
k0=Ek

2iπδ(εab(P,~k)). (3.53)

The combination of distribution function that appears here has also been given a name:

F(k‖, p‖) ≡ (−1)σfσ(k‖)− (−1)τf τ (k‖ − p‖) (3.54)

In the following, we will write equations directly for Π̂ and take the discontinuity only when we compute the
particle production rate. Still, we will make simplifications allowed by taking the locations of the poles to
vanish in order to get easier expressions. One has to keep in mind then that the integral equation we will
finally obtain is not a strict equality but we may only use it if we are interested in Disc Π̂ only. This allows
us to simply write

Π̂(P,~k) = F(k‖, p‖) Φ
†
ϕ(K,K − P )

∣
∣
k0=Ek

ε−1
ab (P,

~k). (3.55)

We should finally remark that whenever we have only bosonic external particles, there may also be a quadri-
linear vertex which leads to a totally different form of the self-energy. However, these diagrams have vertex
factors which are independent of the external momentum and therefore they are not interesting for our
purposes, although in a more complete treatment they should certainly be included.

3.3.3. The recursion relation for amplitudes

As outlined in section 3.3.1, the next step is to consider diagrams with n external gauge bosons as shown
in figure 3.5 and to find a recursion relation that relates the amplitude with n external gauge bosons to the
one with n− 1 gauge bosons. The external gauge bosons are all taken to have soft momenta–except for the
two photons in the case of the photon self-energy which always have hard, nearly lightlike momenta. In that
case, we also assume one of the photons to have a momentum Km, 1 ≤ m ≤ n− 1, i.e. we never explicitly
distinguish external photons and external gluons which proves to be unnecessary. To obtain a more compact
notation, we have finally defined K̃l ≡

∑l
j=0Kj .

The starting point for all the recursion relations is the following simple identity for the propagators, valid
both for the bosonic and the fermionic (and also a mixed) case:

D(K)D(K − P ) =
D(K)−D(K − P )

εab(P,~k)
(3.56)

It is proved in appendix B.4.
This result means that instead of the product of the two propagators meeting at the rightmost vertex in
figure 3.5, we get two contributions where in each of them only one of the propagators has remained. This
already suggests that one should try to relate the expression for the amplitude to the one with one of the
external particles removed, such that in total, one propagator less occurs. And this is precisely what can be
done.
First of all, we need to define a general amplitude including n soft gauge bosons with momenta Ki as a
generalization of the previous definitions:

Π(n)a1...an
µ1...µn

(P,K1, . . . ,Kn) = −
∫

d3k

(2π)3
Tr
[

Φϕ(K,K − P )Π̂(n)a1...an
µ1...µn

(P,K1, . . . ,Kn, ~k)
]

. (3.57)

Here, ai and µi refer to the soft gauge bosons. For the photon polarization tensor, there is an additional
Lorentz index in Π̂ (and one in Φϕ), which we simply assume to be one of the µi. This is because, as already
mentioned, we do not want to specify which of the external gauge bosons are the photons and which ones are
the gluons. Note that the gauge couplings are not written explicitly but instead are assumed to be absorbed
in the gauge boson fields.
In the following we will only have to consider n-point diagrams of the form shown in figure 3.5. One can
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. .
.

. . .

K

P

K1

K2

P

Km+1
Kn−1

Km−1

K − K̃1

K − K̃m−1

K − P − K̃m−1
K − P

Figure 3.5.: Generic n-point function with soft external gauge bosons

g g1/g2 1/g2 1/g2
�

g21/g2 1/g2

Figure 3.6.: Diagrams involving seagull vertices are suppressed compared to diagrams with only trilinear
vertices because one propagator is ’missing’ and cannot give a 1/g2 enhancement. The same
reasoning applies to four gauge boson-vertices.

of course also draw diagrams which involve a seagull vertex with soft gauge bosons or a four gauge boson
vertex, but they are suppressed at leading order, as illustrated in figure 3.6.
Now we can formulate our recursion relation. Using (3.56), we get, starting from an amplitude with n gauge
bosons, two terms proportional to amplitudes with n − 1 gauge bosons. Obviously we need to remove the
two external particles adjacent to the rightmost vertex, i.e. those with momenta K1 and Kn−1, and in one
case perform also a shift of the momentum (and summation variable), K → K −K1, as illustrated in figure
3.7. The resulting recursion relation is of the form

.
.
.

. . .

→

.
.
.

. . .

+

.
.
.

. . .

Figure 3.7.: Sketch of the desired recursion relation: A diagram with an arbitrary number n of external gauge
bosons is related to the sum of two diagrams, each of them with one gauge boson removed.
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Π̂(n)a1...an
µ1...µn

(P,K1, . . . ,Kn, ~k) =
1

εab(P,~k)

[

Π̂(n−1)a1...an−1

µ1...µn−1
(P,K1, . . . ,Kn−1, ~k)Vanµn

(K − P,K − P +Kn)

−Va1µ1
(K −K1,K)Π̂(n−1)a2...an

µ2...µn
(P,K2, . . . ,Kn, ~k − ~k1)

]

(3.58)
where the factors V arise from the corresponding vertices with the external gluons that were removed and
will be evaluated soon. They involve gauge bosons with a soft momentum and we denote them by V to avoid
confusion with the vertex factors Φϕ at the vertices with the particle whose production we want to study
and which involves only hard momenta. This means that even if the external particle itself is a gauge boson,
e.g. a photon, the factors V and Φϕ are not the same (see appendix C).
Note that we always assume that the two external particles to be removed are soft gauge bosons. This raises
the question how to deal with n-point amplitudes where all external soft gauge bosons couple to only one of
the particles inside the loop, where either the first or the last external particle is of the type whose production
we study and (3.56) suggests to remove one of them instead. This would not be a real problem if we consider
photon production where Φϕ and V have essentially the same structure (cf. appendix C) and we could just
use Φϕ in the recursion relation instead. But for the production of fermions, the corresponding factor Φϕ
is fundamentally different from V and one could be worried about how to formulate the recursion relation
to cover that case as well. However, in appendix C.2 we will show that those contributions to the recursion
relation where an external hard particle is removed can be left out at leading order. Thus (3.58) is the final
result for the recursion relation.

The soft vertex factors

We now need expressions for the vertex factors V in (3.58). They always involve one gauge boson with soft
momentum Ki and two other particles of identical spin, which are either scalars or spin 1/2 fermions and
which have a hard momentum K or K −P . Other types of vertices may arise depending on the context (for
the production of gravitinos one needs e.g. to consider also vertices with three gauge bosons), but they are
not relevant for this thesis and will be omitted.
We denote the vertex factors involving hard scalars and fermions temporarily by V(S) and V(F ), respectively.
It will turn out that at leading order they are equal and there is only one soft vertex factor V . The first one
can be trivially written down exactly:

Vµi

(S),ai
=

1

2k‖
(2Kµi)|k0=k‖ t

ai (3.59)

The prefactor 1/2k‖ can easily be understood by looking at (3.50) and (3.56). Depending on which part
of the loop the i-th gluon is coupled to, K must eventually be replaced by K − P . To avoid unnecessary
notational complications, we will always assume the hard momentum to be K in the following.
Determining the vertex factor for a fermion-antifermion-gauge boson vertex requires more work. As explained
before, the spinor structure in the numerator of the fermion propagators (B.34) is always absorbed in the
vertices such that we deal with propagators formally identical (up to the difference between integer and half-
integer Matsubara frequencies) to those for scalars. Since thermal masses do not break the chiral symmetry,
we may use, as explained in appendix B.2, spinors of definite chirality here, i.e. we consider left- and
righthanded contributions seperately which amounts to using two-component spinors and replacing γµ by
σµ = (1, σi) or σ̄µ = (1,−σi). The fermion trace then takes the form

Tr
[

η(K)η†(K)σ̄µ1η(K − K̃1)η
†(K − K̃1) . . . η

†(K − K̃n−2)σ̄
µn−1η(K − K̃n−1)η

†(K − K̃n−1)σ̄
µ
]

+

Tr
[

χ(K)χ†(K)σµ1χ(K − K̃1)χ
†(K − K̃1) . . . χ

†(K − K̃n−2)σ
µn−1χ(K − K̃n−1)χ

†(K − K̃n−1)σ
µ
]

where K̃l ≡
∑l

i=1Ki and both η and χ are left- or right-handed Weyl spinors defined as eigenspinors of ~σ · k̂.
Depending on the form of the interaction, it may also happen that only fermions of one chirality propagate
in the loop and not both. This happens e.g. for the production of Majorana neutrinos studied in chapter 4.
Since for the applications that we study, both chiralities (if present) give exactly the same result this does not
affect the argument at all. For us it is always sufficient to take spinors of one chirality (say, the left-handed
ones) and if necessary multiply the final result by 2. Thus, what we need to evaluate are expressions of
the form η†(K)σµiη(K − Ki).

15 This is done in appendix C where we show that indeed at leading order

15Note that the trace has a cyclic invariance which allows to move the first spinor to the very end.
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V(F ) = V(S) and we simply get
Vµa = V µta +O(g). (3.60)

3.3.4. Integral equation for the CTL self-energy

With the help of the recursion relation (3.58), it is now possible to formulate equations for the current. It
will give us a relatively simple method to integrate out the soft gauge bosons and therefore lead to the ladder
diagrams shown in section 2.3.4 and also generate a thermal width for the particles in the loop. Once the soft
gauge bosons are integrated out, the functional derivative of the new current gives us back the self-energy
we are interested in.

The current

First of all, we need to define the current for our particle ϕ. We write it in the form

Jϕ(P ) ≡ −
∫

d3k

(2π)3
Tr[Φϕ(K,K − P )Ĵϕ(P,~k)], (3.61)

leaving possible Lorentz and/or spinor indices implicit. The reduced current Ĵϕ is given by an expression of
the form

Ĵϕ(P,~k) =

∞∑

n=0

n∏

i=1

(∫
d4Ki

(2π)4
W ai
µi
(Ki)

)

(2π)4δ(K − K̃n)Π̂
(n)a1...an
µ1...µn

(K1, . . . ,Kn, ~k) (3.62)

where the external gauge fields are collectively denoted by Wµ ≡ taW a
µ and we used the notation K̃l ≡

∑l
i=1Ki again. The form above with only gauge fields appearing as external fields is valid for the photon

current, in general one of the external fields needs to be replaced by the corresponding fermion field ϕ instead
(for photons, ϕ is one of the gauge fields Wµ).
Using the recursion relations (3.58) and the explicit result (3.55) for the two-point function, we can write
down an integral equation for the reduced current. The explicit result for the two-point function is needed
because the recursion relation is only valid if there are more than two external fields. We get the following
integral equation:

Ĵϕ(P,~k) =
1

εab(P,~k)

{

Cϕ(K,P ) · ϕ(P ) +
∫

Q

[

Ĵϕ(P −Q,~k)V µWµ(Q)− V µWµ(Q)Ĵϕ(P −Q,~k − ~q)
]}

(3.63)
where due to (3.55), we have

Cϕ(K,P ) ≡ F(k‖, p‖)Φ
†
ϕ(K,K − P ) (3.64)

and we used (3.60). Furthermore, we wrote Q instead of K1 as in (3.58) and we introduced the compact
notation ∫

Q

≡ T
∑

q0

∫
d3q

(2π)3
. (3.65)

A subtlety arises again in the equation for the photon current since we treated photons and gauge bosons
on the same footing. It is related to the issue of removing external fermion lines raised after equation (3.58)
and is treated in passing in appendix C.2 where we show that only contributions where a soft external gauge
boson is removed contribute at leading order. This is why we need only the equation which has an explicit
photon field Aµ in the inhomogeneous term, and under the integral, we then only have gluon fields.

Integrating out the soft gauge boson background

The final step is to integrate out the soft gauge bosons. By this procedure, they disappear as external
particles and appear only in propagators, thereby generating the ladder diagrams introduced in 2.3.4 and
also the thermal widths of the hard particles inside the loop. Both of these two contributions taken for
themselves would be IR divergent, but combined together they will lead to a finite result.
Integrating out the soft gauge bosons means that we consider now the current

〈

Ĵϕ[ϕ]
〉

=

∫

DWµe
iS[Wµ,ϕ]Ĵϕ[Wµ, ϕ] (3.66)
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where for clarity we have written the currents as functionals of the fields instead of functions of momenta.
In order to formulate an equation for the current (3.66), we first iterate equation (3.63) once by inserting
the rhs under the integral. We throw away terms which have both an explicit field ϕ and an explicit gauge
boson Wµ which no longer corresponds to a current of real ϕ fields in a soft gauge boson background; those
terms would give no contribution after performing the path integral anyway. Therefore, what remains is

Ĵϕ(P,~k) =
1

εab(P,~k)

{

Cϕ(K,P ) · ϕ(P ) +
∫

Q

∫

Q′

[

1

εab(P −Q,~k)

(

Ĵϕ(P −Q−Q′, ~k)V µWµ(Q
′)−

V µWµ(Q
′)Ĵϕ(P −Q−Q′, ~k − ~q′)

)

V µWµ(Q)− V µWµ(Q)
1

εab(P −Q,~k − ~q)
·

(

Ĵϕ(P −Q−Q′, ~k − ~q)V µWµ(Q
′)− V µWµ(Q

′)Ĵϕ(P −Q−Q′, ~k − ~q − ~q′)
)]}

.

Now it is advantageous to take the trace over the group generators according to the definition of the currents,
because this allows to perform cyclic permutations and put the factors V µWµ together such that they can
be factored out:

Tr Ĵϕ(P,~k) =
1

εab(P,~k)

{

d(r)Cϕ(K,P ) · ϕ(P ) +
∫

Q

∫

Q′

1

εab(P −Q,~k)
Tr [V µWµ(Q)V µWµ(Q

′)

(

Ĵϕ(P −Q−Q′, ~k)− Ĵϕ(P −Q−Q′, ~k − ~q′)
)]

− 1

εab(P −Q,~k − ~q)
·

Tr
[

V µWµ(Q)V µWµ(Q
′)
(

Ĵϕ(P −Q−Q′, ~k − ~q)− Ĵϕ(P −Q−Q′, ~k − ~q − ~q′)
)]}

.

Here, d(r) results from the trace over a unit matrix and is the dimension of the corresponding group repre-
sentation.
Now it is time to integrate out the soft gauge bosons. In a very sketchy notation, leaving out all irrelevant
factors, we will get something like

Tr〈Ĵϕ〉 = Cϕ · ϕ+

∫

Q

Tr〈WWĴϕ〉

where the final term has two contributions:

〈WWĴϕ〉 = 〈WW 〉〈Ĵϕ〉+ 〈WWĴϕ〉connected (3.67)

The connected part is precisely made out of those contributions that cannot be factored into a W-propagator
and the current itself and it contributes to diagrams with crossed ladder rungs which we do not need. In
fact, at leading order, this part gives a vanishing contribution and can be left out. Details can be found in
appendix D.1.
We therefore discard the connected part and obtain, using the propagator16

〈W a
µ (Q)W b

ν (Q
′)〉 = g2δabδ(Q+Q′)∆µν(Q) (3.68)

and the Casimir invariant tata = C2(r)1, the following simplified form where the integral over Q′ which is
now trivial due to (3.68) is already performed:

Tr〈Ĵϕ(P,~k)〉 =
1

εab(P,~k)

{

d(r)Cϕ(K,P ) · ϕ(P ) + C2(r)g
2

∫

Q

V µV ν∆µν(Q)

(

1

εab(P −Q,~k)
+

1

εab(P −Q,~k − ~q)

)

Tr
[

〈Ĵϕ(P,~k)〉 − 〈Ĵϕ(P,~k − ~q)〉
]
}

.

(3.69)

Note that due to the propagator, the gauge coupling that was always left implicit so far now reappears.
This can still be simplified. Although in (3.52) all terms are of the same order, we still need to keep only

16The compact notation hides the fact that there may be several gauge bosons that contribute, as e.g. for the production of
Majorana neutrinos where both external weak gauge bosons and external photons may play a role. Therefore, when dealing
with specific cases one has to state carefully what kind of gauge bosons ∆µν stands for.
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1/(p− − q−) here. In order to understand this, we can explicitly look at the thermal sum over q0, where
the dominant contribution would be from the pole at q0 = q‖. If we keep the additional terms in (3.52),
their only effect would be to shift the pole to q0 = q‖ + X , where X ∼ g2T . Since q‖ ∼ gT � X , we can
neglect this contribution at leading order.17 For this it is crucial that the integrand, including the gauge
boson propagator, separately depends on q0 and q‖ and not just on q−. Therefore, we may finally write

Tr〈Ĵϕ(P,~k)〉 =
1

εab(P,~k)

{

d(r)Cϕ(K,P ) · ϕ(P ) + 2C2(r)g
2

∫

Q

V µV ν∆µν(Q)

p− − q−

Tr
[

〈Ĵϕ(P,~k)〉 − 〈Ĵϕ(P,~k − ~q)〉
]}

. (3.70)

The integrand still depends on the HTL resummed gauge boson propagator and is therefore rather com-
plicated. It is possible to find a much more explicit form for it, which requires a rather long and tedious
calculation that we show in appendix D.2. The final result then is

Tr〈Ĵϕ(P, k‖, ~k⊥)〉 =
1

εab(P,~k)

{

d(r)Cϕ(K,P ) · ϕ(P ) + ig2C2(r)T

∫
d2q⊥
(2π)2

K(~q⊥)

Tr
[

〈Ĵϕ(P, k‖, ~k⊥)〉 − 〈Ĵϕ(P, k‖, ~k⊥ − ~q⊥)〉
]}

(3.71)

with the kernel

K(~q⊥) ≡
1

q2⊥
− 1

q2⊥ +m2
D

(3.72)

which depends on the Debye mass mD defined in (B.81).18 Using this form, it is now easy to see that the
apparent logarithmic IR-divergence is in fact cancelled by the vanishing difference of the two currents. Each
of them separately, however, would lead to an IR divergence. Note that one can interpret those two terms
as generating self-energy insertions and therefore a width for the hard loop particle (first term) and the
ladder diagrams with soft gauge boson rungs (second term), respectively. This shows that both the width
and the ladder diagrams taken for themselves are not physically meaningful and only taken together give a
well-behaved result. For more details on the IR safeness of the integral equation and other general properties
see the discussion in [6] that we do not want to repeat here.
Finally, we can write an equation for the reduced self-energy by taking a functional derivative w.r.t. the
external field:

Π̂ϕ =
δ〈Tr Ĵϕ〉
δϕ

(3.73)

This leads to

Π̂ϕ(P, k‖, ~k⊥) =
1

εab(P,~k)

{

d(r)Cϕ(K,P ) + ig2C2(r)T

∫
d2q⊥
(2π)2

K(~q⊥)
[

Π̂ϕ(P, k‖, ~k⊥)− Π̂ϕ(P, k‖, ~k⊥ − ~q⊥)
]}

.

(3.74)
This equation is the main result of this section. It is still completely general, but we can now easily specify
certain cases by computing the explicit form of Cϕ which depends on the external vertex factor Φϕ.

Before we apply (3.74) in a context where the LPM effect has not been studied before, we finally want
to reproduce the equations for the production of photons from a quark-gluon plasma. This will serve as a
consistency check of our new method.

3.4. Photon production from a quark-gluon-plasma

Here we want to show that for photon production from a quark-gluon plasma the integral equation (3.74) is
equivalent to the one derived in [6, 47]. We will not review the computation of the complete leading-order
thermal production rate of photons which can be found in [7]. Rather we want to provide a consistency check

17Note, however, that p− may not be simply left out, even after the analytical continuation of p0, because we need to take the
discontinuity, i.e. set p0 → p0 ± iε.

18If there are several gauge bosons that contribute, e.g. photons and weak gauge bosons in the case of Majorana neutrino
production, we need to sum over all possibilities and take the different Debye masses into account.
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3. Thermal particle production and the LPM effect

that the new method to deal with the LPM effect leads to the correct result in a case where we already know
what it looks like before applying it to the production of Majorana neutrinos in the following chapter.
In this case, the external particle is represented by a Lorentz four-vector field Aµ and the reduced amplitude
as well as the vertex factor Φ both have a Lorentz index. Inside the loop, we have a pair of quarks, i.e. spin
1/2 fermions. Therefore, equation (3.74) can be written more explicitly as

Π̂ν(P, k‖, ~k⊥) =
1

ε(P,~k)

{

d(r)F(k‖, p‖)Φ
†
ν(K,K − P ) + ig2C2(r)T

∫
d2q⊥
(2π)2

K(~q⊥)

[

Π̂ν(P, k‖, ~k⊥)− Π̂ν(P, k‖, ~k⊥ − ~q⊥)
]}

.

(3.75)

with F(k‖, p‖) = fF (k‖)− fF (k‖ − p‖) and ε(P,~k) ≡ εqq̄(P,~k).

The computation of Φ†
ν(K − P,K) is done in appendix C where we show that in the circular basis ΦL,R ≡

1√
2
(Φ1 ± iΦ2), we get

ΦL(K,K − P ) =
kL

k‖ − p‖
, ΦR(K,K − P ) =

kR
k‖
. (3.76)

We want to write (3.75) in a form as close as possible to the one in [6, 47]. For this purpose, we define a

quantity ~f via
Π̂⊥ ≡ id(r)F(k‖, p‖)~f. (3.77)

Why we take only the perpendicular components will become clear in a moment. Using this definition, we
can recast the integral equation in the form

~Φ†
⊥(K,K − P ) = iε(P,~k)~f(P, k‖, ~k⊥) + g2C2(r)T

∫
d2q⊥
(2π)2

K(q⊥)
[

~f(P, k‖, ~k⊥)− ~f(P, k‖, ~k⊥ − ~q⊥)
]

. (3.78)

In order to show that this is indeed equivalent to the equations in [6, 47], we look at the production rate
(3.24). Using

Πµν(P ) = −
∫

d3p

(2π)3
Φµ(K,K − P )Π̂ν(K, ~p), (3.79)

together with (3.77) and summing over the external polarizations, equation (3.24) becomes

dΓ

d3p
=

d(r)e2

(2π)32p‖
fB(p‖)

∫

d3kF(k‖, p‖)Re(~Φ⊥(K,K − P ) · ~f(P,~k)). (3.80)

Here we explicitly see that we only need the perpendicular components of Π̂, or equivalently the two-
dimensional vector ~f .
Because of rotational symmetry, it is clear that

~f(P,~k) = Ψ(P,~k)~Φ†
⊥(K,K − P ) (3.81)

with a scalar function Ψ. Inserting the ansatz (3.81) and using the result (C.9) finally yields

dΓ

d3p
=
d(r)αEM
π2p‖

fB(p‖)

∫
d3k

(2π)3
Aγ(k‖, p‖)k

2
⊥ ReΨ(P,~k) (3.82)

with the kinematical factor

Aγ(k‖, p‖) =
k2‖ + (k‖ − p‖)

2

2k2‖(k‖ − p‖)2
F(k‖, p‖). (3.83)

We have multiplied by 2 to take both chiralities of the quark into account.
As one can now easily see, this is indeed equivalent to the equations from [6, 47] if we identify their quantity
~fAMY in terms of our quantity Ψ as ~fAMY (P,~k) ≡ 2~k⊥Ψ(P,~k).
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4. Thermal production of Majorana neutrinos

Who are you my tiny alien?
What are you here to do?
Katie Melua - Tiny Alien

4.1. The origin of matter in the Universe: Baryogenesis

Modern cosmological observations have provided us with rather precise figures about the composition of
the Universe. Its dominant contributions are Dark Energy, Dark Matter and baryonic matter with small
additional amounts of radiation (photons, neutrinos). From measurements, we infer the following fractions
of the energy density[48]:

ΩΛ = 0.734± 0.029, ΩDM = 0.222± 0.026, Ωb = 0.0449± 0.0028 (4.1)

There is an additional tiny amount Ωrad of radiation with a large relative uncertainty because of the cosmic
neutrino background which is largely inaccessible to observation.
While the composition of the Universe is rather well understood, we still have no clear understanding of the
figures (4.1). In fact it is fair to say that Ωtot − Ωrad ≈ 1 is still a mystery and requires physics beyond
the SM. For baryonic matter whose nature is–in contrast to (nonbaryonic) Dark Matter–well understood
this may appear suprising, but its origin is no less mysterious than that of Dark Matter. In fact, one can
only understand the number if we assume a tiny asymmetry between baryons and antibaryons because in a
baryon-symmetric universe one would expect a freeze-out abundance of baryons and antibaryons with the
value [42]

nb
nγ

=
nb̄
nγ

≈ 7 · 10−20. (4.2)

In a Universe with such a small amount of baryons, the structures we observe would have never formed and
our Universe would be radically different. The observed value is larger by about 10 orders of magnitude: [49]

nB
nγ

= (6.21± 0.16) · 10−10 (4.3)

Therefore we need an asymmetry between baryons and antibaryons-for roughly every 6 ·106 antibaryons there
should be 6 ·106+1 baryons. This asymmetry must be generated after reheating since inflation exponentially
dilutes any preexisting asymmetry which then may be assumed to vanish. We are obviously in need of a
mechanism to dynamically create such an asymmetry after the period of inflation.
Providing a theoretical model that can successfully explain the measured baryon-to-photon ratio is a chal-
lenging task although there are only three basic conditions needed to create a baryon asymmetry, as outlined
by Sakharov in his seminal paper [50]. Several different scenarios how to realize the Sakharov conditions have
been invented since then (for a review, see e.g. [51, 52]). In the last decade, leptogenesis [53] has become
the most popular and most widely used scenario. The basic idea of most leptogenesis models is to enlarge
the particle content of the SM with right-handed Majorana neutrinos that in the simplest realization interact
with the SM particles only via a Yukawa coupling to left-handed leptons and the Higgs boson:

Lint = λikNiPL`kφ̃
† + h.c. (4.4)

With Ni we denote the Majorana neutrinos (the indices i, j label the fermion generations) and ` and φ are the
lepton doublet and the Higgs doublet, respectively. Since only left-handed leptons couple to the Majorana
neutrino, a chiral projector PL was inserted. The contraction of SU(2) doublets in (4.4) is to be performed
with the ’SU(2) metric’ εab, i.e. (suppressing the additional generation index) `φ̃† ≡ εab`aφb with a, b ∈ {1, 2}.
Finally, λik is the Yukawa coupling matrix which in general need not be diagonal.
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4. Thermal production of Majorana neutrinos

The Majorana neutrinos are unstable and decay into leptons and antileptons, Ni → `k + φ†, Ni → ¯̀
k +

φ, creating an asymmetry between leptons and antileptons because CP is not conserved. The resulting
asymmetry is converted into a baryonic asymmetry via the sphalerons that conserve B − L but violate
B + L [54]. Finally the departure from thermal equilibrium occurs because the Yukawa coupling is small
and therefore the interaction rates of the Majorana neutrino are small compared to the expansion rate of the
Universe, which prevents the Majorana neutrino from thermalizing with the electroweak plasma. All three
Sakharov conditions are thus fulfilled and the model can be used to effectively create a baryon asymmetry.1

The computations of the resulting baryon-to-photon ratio have been performed with increasing complexity
in the past [56], taking more and more phenomena into account. The key parameter is the efficiency of
leptogenesis 0 < η < 1 defined by

η ≡ nB(T � MN)

nB,max(T �MN)
(4.5)

where

nB,max(T �MN ) = csphε nN (T �MN ). (4.6)

Here, csph is the sphaleron conversion factor2 and ε is the value of the CP asymmetry in the decay of the
lightest Majorana neutrino N ≡ N1, which we assume to be the dominant source of lepton asymmetry.
The computation of the efficiency for a given set of masses and coupling constants is performed by solving a
set of Boltzmann equations with collision terms that encode all relevant decay and scattering process that can
create and partially erase the lepton asymmetry. Due to the related complexity, the vast majority of work
published on this subject neglects finite-temperature effects coming from the hot electroweak plasma that sets
the stage for the decay and scattering processes . The cross sections are computed at zero temperature and
the distribution functions are usually assumed to be a Maxwell-Boltzmann distribution [56]. The collision
terms obtained that way can only be a rough approximation whose accuracy is a priori unknown.
The impact of finite-temperature effects on the computation of the collision term therefore calls for a thorough
investigation. There have been some attempts in the past to include finite-temperature effects, e.g. [57, 58],
but a completely rigorous, first principles treatment of thermal leptogenesis in a hot plasma is still an
unfulfilled task. It is currently even under debate whether the evolution of the lepton asymmetry can
be reliably tracked with the (classical) Boltzmann equation and whether quantum kinetic equations (e.g.
Kadanoff-Baym equations) should preferrably be used [59, 60, 61]. In this thesis, we will not attempt at
providing a fully fledged computation of the efficiency of leptogenesis taking all relevant finite temperature
effects into account–this is clearly an enormous task and progress needs to be done step by step. We focus on
calculating the production rate of a Majorana neutrino in a hot electroweak plasma that is fully equilibrated.
We restrict the computation to the leading order in the gauge coupling constant g, with g being either the
SU(2) or U(1) gauge coupling, and in the top quark Yukawa coupling constant λt. Also we perform the
computations in the high-temperature regime where MN � T such that all masses can formally be treated
as being (at most) of order ∼ gT , although the Majorana mass is not a thermal mass. This will also require
a treatment of the LPM effect using the method outlined in the previous chapter. We perform the complete
leading-order computation of the production rate and then solve the Boltzmann equation for the number
density of Majorana neutrinos with the collision term obtained via the integral (3.37) over the production
rate. Like the quantum kinetic approach, our approach thus relies on first principles. A comparison of the
final results obtained with both approaches, although it would be very interesting, will not be performed here
since it goes beyond the scope of this thesis.

4.2. Production rate and leading order contributions

As an application of the general formalism from the previous chapters, we will now compute the leading order
thermal production rate of the lightest Majorana neutrino N whose decay creates the lepton asymmetry. We
assume a high temperature T � MN since the thermal effects are dominant in this regime whereas their
influence becomes more and more negligible for smaller values of T/MN [58]. In contrast to the thermal
production of Dark Matter candidates where the leading order scattering contributions are already known

1Note that by using this scenario one can also naturally explain the small neutrino masses via the seesaw (type I) mechanism
[55] that we do not explain in detail here. This twofold virtue, explaining both the baryon asymmetry and the smallness of
the neutrino masses, is what makes leptogenesis particularly appealing.

2For the SM, its value is e.g. csph = 28/79.
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4. Thermal production of Majorana neutrinos

(e.g. [36, 39]), none of the analogous contributions to the production rate of the Majorana neutrinos has ever
been consistently computed within the full framework of thermal field theory.
The production rate of Majorana neutrinos with momentum p is given by3

dΓN

d3p
=

|λ|2
(2π)3p0

fF (p0) ImTr
[
(�P +MN)ΣN,ret(p0, ~p)

]
(4.7)

where ΣN,ret(p0, ~p) is the retarded, proper self-energy and |λ|2 ≡∑j |λ1j |2. This follows from (3.35) because
both terms contribute the same due to symmetry under time reflection. Among the leading order contributions

N N

N

`

φ N

φ

`

Figure 4.1.: Decay and recombination contributions to Majorana neutrino production and the 1-loop self-
energy whose cuts give the corresponding tree-level diagrams.

are, on the one hand, decay and recombination processes as depicted in figure 4.1. The Higgs decay is only
allowed if mφ ≥ MN + m` whereas for the recombination we need MN ≥ mφ + m`. At most one of the
conditions can be fulfilled which means that at a given temperature, only one of the two processes can
happen and for mφ−m` < MN < mφ+m`, both of them are forbidden. They are both characterized by the
momenta of the particles being collinear in the sense that the relative angle is small, ϑ ∼ g. This is due to the
fact that the masses that are involved are all (at most) of order gT and was already explained in section 3.2.
The Yukawa vertex is therefore effectively suppressed by a factor of g and the rate for the process is already
suppressed by two powers of the gauge coupling, as explained in section 2.3.3. It can also easily be seen by
inserting the self-energy shown in figure 4.1 into (4.7) and taking the trace. This means that it is sensitive
to the LPM effect and one has to treat this contribution with the formalism from section 3.3. The lepton
and the Higgs boson undergo an arbitrary number of scatterings off soft gauge bosons during the ’emission’
of the Majorana neutrino which still feels the presence of its ’source’. This leads to nontrivial interference
terms analogous to the ones shown in figure 3.2. In order to take this into account, one has to resum an
infinite set of diagrams, like in [6, 1, 47] for the case of photon production from a quark-gluon plasma. This
will be dealt with in section 4.3.
In addition, there are various 2 ↔ 2 scattering processes that can create a population of Majorana neutrinos.
They are shown in figure 4.2. For those processes, the LPM effect plays no role at leading order. However,
the computation is still not straightforward. In a naive treatment, IR divergences can occur if particles are
exchanged in the t- or u-channel. The correct treatment is due to Braaten and Yuan [62] and is performed by
introducing a cutoff gT � q∗ � T for the relative momenta. For relative momenta smaller than q∗, we have
to replace the bare propagator by a HTL resummed propagator which takes the modified dispersion relation

3Note that while we denoted the self-energy by Π in the general framework of section 3.3, here we stick to the usual convention
of denoting the self-energy of a fermion by Σ. Further note that in the literature, the production rate of a fermion is quoted
with an analogous expression, only with an opposite overall sign [36, 37, 38]. Our expression is consistent with those, however,
because the diagrams correspond to −Σ, as explained in appendix A.
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Figure 4.2.: Scattering contributions to Majorana neutrino production. Higgs bosons are denoted with a
dashed line and gauge bosons with a wiggled line. Fermions are represented by solid lines and
bear a label to distinguish leptons, quarks and Majorana neutrinos.

due to the interaction with the thermal bath into account (see section 2.2). External momenta are always
assumed to be hard and HTL effective vertices are therefore never needed. For relative momenta larger than
q∗, we may limit ourselves to bare propagators. We then obtain two contributions of the form

(
dΓ

d3p

)

q≥q∗
=Ahard(E) +B(E) ln

T

q∗
(

dΓ

d3p

)

q<q∗

=Asoft(E) +B(E) ln
q∗
m
.

(4.8)

where the coefficients on the rhs are, like the production rate on the lhs, in fact only functions of the energy
E = p0.
Both contributions alone would be divergent in the limit q∗ → 0, but if we sum them up before taking the
limit q∗ → 0, we obtain a finite result where the IR divergence is cut off by a thermal mass. This is done in
section 4.4 for the processes shown in figure 4.2.

4.3. Decay and recombination

We start with the decay and recombination contribution which involves also the suppression due to the LPM
effect. For this purpose, we have to formulate the general equation (3.74) for Majorana neutrinos interacting
with Higgs bosons and leptons via the Lagrangian (4.4). The LPM effect is described by an integral equation
of the form (3.74) where the self-energy carries a spinor index α. The two-point function contains a loop
with a boson and a fermion, which means that

F(k‖, p‖) = fB(k‖) + fF (k‖ − p‖). (4.9)

The vertex factor is easy to write down because the vertex itself is a Yukawa vertex which has a trivial
structure and we only need to take the spinor for the lepton in the loop into account. The correct factor
explicitly reads

Φ†
α(K − P,K) =

1
√
2k‖

η†α(K − P ) (4.10)
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where α is a spinor index and η a Weyl spinor. In order to get this form, we have used (B.34) for the lepton
propagator. In contrast to the vertex factor (C.6) for external photons, the factor (4.10) is not dimensionless.
The difference comes from the fact that a photon self-energy has dimension 2 while a fermion self-energy
only has dimension 1. This means that (3.57) and (3.74) are only consistent if the dimensions of Φ and Π̂
are −1/2 and −3/2, respectively.
Using this information, we can cast the integral equation in a form which closely resembles the one given in
section 3.4 and previously derived in [6, 47] for the production of photons from a quark-gluon plasma:

η†α(K − P ) = iε(P,~k)fα(P,~k) +
3∑

a=0

g2aC2(r)T

∫
d2q⊥
(2π)2

Ka(~q⊥)
[

fα(P,~k)− fα(P, k‖, ~k⊥ − ~q⊥)
]

(4.11)

The kernel is given by

Ka(~q⊥) =
1

~q2⊥
− 1

~q2⊥ +m2
D,a

(4.12)

with a = 0 referring to U(1) and a = 1, 2, 3 to SU(2) gauge bosons, and we have defined

Π̂α(P,~k) =
id(r)F(k‖, p‖)

√
2k‖

fα(P,~k) (4.13)

in analogy to equation (3.77). Finally, ε ≡ ε`φ.
Once the equation for fα has been solved, we can compute the production rate (4.7) which can be written as

dΓN

d3p
= −4Nf |λ|2

(2π)3p0
fF (p0)

∫
d3k

(2π)3
fB(k‖) + fF (k‖ − p‖)

2k‖
Re
[

(σ · P )αβηβ(K − P )fα(P,~k)
]

. (4.14)

where β is again a spinor index. Since only fermions of one chirality participate in the interaction, we wrote
everything consistently in two-component form and replaced �P → σ · P . A factor 4Nf which counts the
number of distinct contributions to the self-energy has been explicitly pulled out and written as a prefactor
of the integral. This factor takes into account that there areNf generation of fermions, every lepton and Higgs
has an antiparticle and finally that the Majorana neutrino interacts with the left-handed particle doublets,
which means there are in total four contributions (neutrino,antineutrino,charged lepton,charged antilepton)
for every fermion generation.

4.3.1. Tree-level contribution

Before we attempt at solving the full integral equation (4.11), we look at the contribution of the tree-level
decay and recombination processes shown in figure 4.1. This will allow us to study the importance of the
bremsstrahlung and multiple rescattering contribution to the production rate. The tree-level contribution is
found by solving (4.11) without the integral term, i.e. it satisfies a purely algebraic equation with the simple
solution

fα,tree−level(P,~k) =
−i

ε(P,~k)
η†α(K − P ). (4.15)

We can insert this into (4.14) and take the real part, which amounts to taking the imaginary part of 1/ε(P,~k)
according to the formula (2.13). We can use the emerging delta function to integrate over d2k⊥ = πd(k2⊥).
Writing

ε(P,~k) = α(k‖, p‖) + β(k‖, p‖)k
2
⊥,

where α and β can be read off from (3.52), we get

dΓN

d3p
=

Nf |λ|2
2(2π)4p0

fF (p0)

∫

dk‖
fB(k‖) + fF (k‖ − p‖)

k‖(k‖ − p‖)

1

|β(k‖, p‖)|

(

K · P −M2
N − m2

`

2(k‖ − p‖)
p‖

)∣
∣
∣
∣
~k2⊥=−α/β

(4.16)

where (B.33) was used to compute the trace and the factor 1/|β| and the condition ~k2⊥ = −α/β both come

from δ(ε(P,~k)). We have assumed that the delta function indeed contributes which means that ε(P,~k) = 0 has
a positive solution for k2⊥. This constraint will translate into nontrivial integration limits for the remaining

49



4. Thermal production of Majorana neutrinos

integral over the parallel component which we will turn to in a moment. Before that, we have to simplify the
expression:

(

K · P −M2
N − m2

`

2(k‖ − p‖)
p‖

)∣
∣
∣
∣
~k2⊥=−α/β

≡ (Ak2⊥ +B)
∣
∣
~k2⊥=−α/β = B − A

α

β

where to leading order

A =
p‖
2k‖

, B =

(
k‖
2p‖

− 1

)

M2
N + p‖

(

m2
φ

2k‖
− m2

`

2(k‖ − p‖)

)

.

Inserting the explicit definitions of A,B, α, β and performing some algebraic manipulations finally yields

dΓN

d3p
=

Nf |λ|2
2(2π)4p2‖

fF (p‖)

∫

dk‖
fB(k‖) + fF (k‖ − p‖)

|k‖ − p‖|
[
(m2

φ −M2
N )(k‖ − p‖)−m2

`k‖
]
. (4.17)

This is apparently singular at k‖ = p‖, but that point lies outside the integration range. To see this, we must
determine the integration limits. They are determined by the following two conditions:

• The equation ε(P,~k) = 0 must have a positive solution for k2⊥,

• The energy of the lepton must be positive.

The second condition means that for the Higgs decay φ† → ` + N where the lepton momentum is K − P ,
we must have k‖ ≥ p‖, whereas for the recombination process φ† + ` → N where the lepton momentum is
P −K, we get 0 ≤ k‖ ≤ p‖.
The first condition is a bit harder to study. Solving for k2⊥ with the help of (3.52), we get the condition

k2⊥ =

M2
N

p‖
k2‖ + (m2

φ −m2
` +M2

N )k‖ −m2
φp‖

k‖
≥ 0. (4.18)

Since k‖ > 0, the numerator of the rhs must be positive which can be translated into an allowed integration
range for k‖. Solving the resulting inequalities gives the integration range

X −
√
Y

2M2
N

p‖ ≤ k‖ ≤ X +
√
Y

2M2
N

p‖ (4.19)

where

X ≡ m2
φ +M2

N −m2
` , Y ≡ (mφ +m` +MN )(mφ −m` +MN )(mφ +m` −MN )(mφ −m` −MN) (4.20)

It is easy to see that Y ≥ 0 if either mφ ≥MN +m` orMN ≥ mφ+m`, in perfect agreement with the general
remarks from section 4.2. In addition, the lower integration limit is bigger than p‖ for all temperatures where
the Higgs decay/recombination is allowed–thus the singular point of the integrand lies outside the integration
range and the expression is well-defined.4

The expressions above are rather cumbersome if we keep a nonzero Majorana mass MN . If we set MN → 0,
then only the Higgs decay is allowed and the integration range simply becomes

k‖ ≥
m2
φ

m2
φ −m2

`

p‖ (4.21)

with no upper bound on k‖.

4If we simultaneously take k‖ → 0, p‖ → 0 then we do have a logarithmic divergence of the differential production rate
dΓN/dp‖, which is harmless however because the integral over a logarithm is finite and the total production rate has no
divergence left.
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4.3.2. Multiple rescattering and LPM effect

The full integral equation for fα can only be solved numerically. It is an integral equation for the two
components of a Weyl spinor and it is convenient to consider the two equations for the upper and lower
components separately because then we deal only with two scalar quantities and do not have to worry about
having a spinor integral equation to solve. It turns out to be most convenient to define the components ψ
and χ via

f(~k⊥) =

(

ψ(~k⊥)

− χ(~k⊥)
4(k‖−p‖)

)

(4.22)

In order to simplify the notation, we will from now on only write the perpendicular component ~k⊥ explicitly
as argument of the function for which we want to solve. Using (4.22) and (C.3), we obtain the two integral
equations

1 = iε(~k⊥)ψ(~k⊥) +
3∑

a=0

g2aC2(ra)T

∫
d2q⊥
(2π)2

Ka(~q⊥)
[

ψ(~k⊥)− ψ(~k⊥ − ~q⊥)
]

(4.23)

2(kx + iky) = iε(~k⊥)χ(~k⊥) +
3∑

a=0

g2aC2(ra)T

∫
d2q⊥
(2π)2

Ka(~q⊥)
[

χ(~k⊥)− χ(~k⊥ − ~q⊥)
]

. (4.24)

The production rate (4.14) can easily be expressed in terms of ψ and χ using once more (4.22) and (C.3):

dΓN

d3p
= −4Nf |λ|2

(2π)3p0
fF (p0)

∫
d3k

(2π)3
fB(k‖) + fF (k‖ − p‖)

2k‖

[

p−Reψ(~k⊥) +
p+

8(k‖ − p‖)2
Re((kx − iky)χ(~k⊥))

]

(4.25)
In order to solve (4.23) and (4.24) and then evaluate (4.25), it is very helpful to transform the integral
equations via a Fourier transformation into differential equations. The procedure how to do this and how to
solve the resulting ODE numerically is explained in appendix E. Plots of the numerical results both for the
tree-level contribution (4.17) and the rate (4.25) which includes bremsstrahlung and the LPM effect will be
presented in section 4.6.
Note that (4.25) contains only the contribution to the LPM effect but not the tree-level contribution. This is
because the small imaginary part that was needed to get the tree-level result (using (2.13)) is never included
in the derivation of the differential equations for ψ and h. This amounts to discarding the imaginary part of
1/ε which means that the tree-level contribution is not included.

4.4. 2 ↔ 2 scattering contribution

Next we study the scattering contributions from figure 4.2. The production rate for a process of the form

1 + 2 → 3 +N

can be written in general as 5 [42, 43]

dΓ

d3p
=

1

(2π)32E

∫
dΩp
4π

3∏

i=1

(∫
d3pi

(2π)32Ei

)

(2π)4δ(P1 + P2 − P3 − P )f1f2(1± f3)|M|2 (4.26)

where fi ≡ f(Ei). Since we start with a negligible density of Majorana neutrinos, we can neglect disappear-
ance processes and the Pauli blocking factor 1 − fN (E) can be approximated by unity, in accord with the
general statements from section 3.1.2. The amplitude squared can be calculated using zero-temperature field
theory as usually done in previous treatments of leptogenesis (for a review see e.g. [56]).
Formula (4.26) is only used for the hard contribution to (4.8) where the master formula (4.7) would require
the computation of the imaginary part of two-loop self-energy diagrams which is a very complicated task. It
is important to point out that the Braaten-Yuan prescription (4.8) is only needed for diagrams with a lepton

5We have added an angular average which gives only a factor of 1 on the lhs because the production rate depends only on
the energy of the Majorana neutrinos. This additional integral will soon prove to be convenient to perform the phase space
integration.
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in the t- or u-channel which means that always m ≡ m`. In fact, in the limit where all masses are negligible
w.r.t. the momenta, we find that only the diagrams with an intermediate lepton contribute and the sum of
the amplitude squared with intermediate Higgs and the interference term vanishes. This is easy to see from
the explicit results with nonzero mass of the Majorana neutrino[63]: 6

|M(a)(s)|2 = 6|λ|2λ2t
s(s−M2

N )

(s−m2
φ)

2
→ 6|λ|2λ2t , (4.27a)

|M(b)(t)|2 = 6|λ|2λ2t
t(t−M2

N )

(t−m2
φ)

2
→ 6|λ|2λ2t , (4.27b)

|M(c)(s, t)|2 = 4g2|λ|2C2(r)

[
t+ u

t
+
u(u−M2

N)

(u−mφ)2
+
t2 + s(t+ 2M2

N)

t(u−mφ)2

]

→ −4g2|λ|2C2(r)
s

t
, (4.27c)

|M(d)(s, t)|2 = 4g2|λ|2C(r)
[

s+ u

s
+
u(u−M2

N)

(u −m2
φ)

2
+
s2 + t(s+ 2M2

N)

s(u−m2
φ)

]

→ −4g2|λ|2C2(r)
t

s
(4.27d)

|M(e)(s, t)|2 = −4g2|λ|2C(r)
[
s+ t

t
+
s−M2

N

s
+
t2 + u(t+ 2M2

N)

st

]

→ −4g2|λ|2C2(r)
(

1 +
s

t

)

. (4.27e)

Here λt denotes the top quark Yukawa coupling, which is by far the largest of all quark Yukawa couplings.
Furthermore, g is either the U(1) or the SU(2) gauge coupling constant. To obtain the massless limit, we
have benefited from the relation s+ t+ u = 0.

4.4.1. Processes involving quarks

First we start with processes (a) and (b) where the prescription (4.8) is not necessary since no IR divergence
appears. In fact, we have seen that the amplitudes are both equal and just a constant which makes the phase
space integration in (4.26) rather simple. We present some of the technical details in appendix F and only
give the most relevant intermediate steps here.
We start from (4.26) and follow the procedure introduced in [36]. The key point is to use the momentum in
the CM frame,

~q = ~p+ ~p3 (4.28)

as integration variable. Writing

~q = q





0
0
1



 , ~p = E





0
sinϑ
cosϑ



 , ~p2 = E2





cosϕ sinχ
sinϕ sinχ

cosχ



 , (4.29)

we obtain

dΩp =dΦdcosϑ (4.30)

d3p1
(2π)32E1

δ(P1 + P2 − P3 − P ) =
Θ(E + E3 − E2)

(2π)32qE2
δ

(

cosχ− E2
2 + q2 − (E + E3 − E2)

2

2qE2

)

(4.31)

d3p2
(2π)32E2

=
E2

2(2π)3
dE2dϕd cosχ (4.32)

d3p3
(2π)32E3

=
Θ(E3)

2(2π)3
q

E
δ

(

cosϑ− E2 − E2
3 + q2

2qE

)

dE3dqdΩq. (4.33)

Performing all integrals that are now trivial leads to

dΓ
(quark)
N,2↔2

d3p
=

1

16(2π)6E2

∫

dE2dE3dqΩ(q, E,E2, E3)fF (E + E3 − E2)fF (E2)(1− fF (E3))|M|2. (4.34)

6If we keep a nonzero M1 it is necessary to use a massive Higgs propagator since otherwise further IR divergences from the
contributions with intermediate Higgs bosons arise. They are always of the generic form M2

1
ln(1/m2

φ
) and therefore vanish

in the limit M2

1
,m2

φ
→ 0.
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where |M|2 = 12|λ|2λ2t . The function Ω(q, E,E2, E3) gathers all restrictions imposed onto the phase space
due to the conditions | cosϑ| ≤ 1, | cosχ| ≤ 1. A straightforward calculation shown in appendix F reveals
that

Ω(q, E,E2, E3) = Θ(E2)Θ(E3)Θ(E + E3 − E2)Θ(q − |E − E3|)
(

Θ(E + E3 − q)−Θ(|2E2 − E3 − E| − q)

)

.

(4.35)
Performing the remaining integrals is now a straightforward, but tedious computation which can only be
partially done analytically and leads to the result

dΓ
(quark)
N,2↔2

d3p
=

3|λ|2λ2t fF (E)

4(2π)6β2E2

[
π2

3β

(

βE + ln
2

eβE − 1

)

+ 4

∫ ∞

E

dE′(fB(E
′) + fF (E

′ − E))

(

2 Li2

(

−e βE′

2

)

− Li2

(

−eβE′
)

− β2E′2

8

)] (4.36)

with E′ ≡ E + E3. The function Li2 is the dilogarithm or Spence function defined as

Li2(x) ≡
∞∑

k=1

xk

k2
= −

∫ x

0

dt
ln(1− t)

t
.

The remaining integral in (4.36) has to be subjected to a numerical treatment and we therefore leave it as it
stands.

4.4.2. Processes involving gauge bosons: hard contribution

The processes (c) and (e) have internal fermions in the t-channel and therefore require the Braaten-Yuan
prescription for a consistent treatment. Process (d) is free of this problem but still it is advantageous to treat
it in the same way because in the soft contribution that will be computed subsequently we cannot easily
distinguish between the separate processes and automatically obtain the sum over all three.
The procedure to compute the production rate starting from (4.26) is very similar to the previous subsection.
The crucial difference is that we introduce a cutoff gT � q∗ � T by adding another step function
Θ(|~p1 − ~p3| − q∗). Because of this, it is convenient to introduce here the relative momentum

~q = ~p1 − ~p3 (4.37)

as integration variable. We then use a coordinate system in which

~q = q





0
0
1



 , ~p = E





0
sinϑ
cosϑ



 , ~p3 = E3





cosϕ sinχ
sinϕ sinχ

cosχ



 (4.38)

such that in analogy to above

dΩp =dΦd cosϑ (4.39)

d3p1
(2π)32E1

=
Θ(E1)

2(2π)3
q

E3
δ

(

cosχ− E2
1 − E2

3 − q2

2qE3

)

dE3dqdΩq (4.40)

d3p2
(2π)32E2

δ(P1 + P2 − P3 − P ) =
Θ(E + E3 − E1)

(2π)32qE
δ

(

cosϑ− E2 + q2 − (E + E3 − E1)
2

2qE

)

(4.41)

d3p3
(2π)32E3

=
E3

2(2π)3
dE3dϕd cosχ. (4.42)

Now the amplitudes squared depend on the Mandelstam variables s and t, which in our coordinate system
take the form7

s = 2EE3(1− sinϑ sinχ sinϕ− cosϑ cosχ), t = (E1 − E3)
2 − q2. (4.43)

7Note the unusual feature that s depends on the angles whereas t does not.
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This means that we cannot trivially perform the integral over ϕ here but instead have the following starting
point:

dΓ
(gauge)
N,2↔2

d3p
=

1

16(2π)7E2

∫

dϕdE1dE3dqΩ̃(q, E,E1, E3)f(E1)f(E + E3 − E1)(1± f(E3))|M(s, t)|2 (4.44)

with (see appendix F)

Ω̃(q, E,E1, E3) ≡Θ(2E + E3 − E1 − q)Θ(E1)Θ(E3)Θ(E + E3 − E1)
[

Θ(q − q∗) (Θ(q∗ − |E1 − E3|)−Θ(q∗ − E1 − E3))

+Θ(q − |E1 − E3|)Θ(|E1 − E3| − q∗)−Θ(q − E1 − E3)Θ(E1 + E3 − q∗)

]
(4.45)

This function follows from the same argument as the function Ω did, only that in addition we haved traded
as many q’s for a q∗ as possible by cleverly combining the step functions. With the help of (4.43) (and the
cosines determined by the delta functions), the integrals over ϕ and q can be performed and are still free
of logarithmic divergences. The divergence shows up in the integral over E1 which has integration limits
depending on q∗.
Now we consider each of the three processes (c)-(e) separately.

Process (c)

The combination of distribution functions appearing here is denoted by

fFBB ≡ fF (E1)fB(E + E3 − E1)(1 + fB(E3)). (4.46)

Performing the integrals over ϕ and q using (4.43) results in

dΓ(c)

d3p
=
g2|λ|2C2(r)

4(2π)6E2

∫ ∞

0

dE3

∫ ∞

0

dE1Θ(E + E3 − E1)ω(q
∗, E,E1, E3)fFBB (4.47)

where ω(q∗, E,E1, E3) sums the different contributions due to (4.45). It consists of two pieces,

ω(q∗, E,E1, E3) = ω1(q
∗, E,E1, E3) + ω2(q

∗ = 0, E,E1, E3). (4.48)

The first part leads to a logarithmic dependence on the cutoff q∗ and would therefore diverge in the limit
q∗ → 0, whereas in the second part we may set q∗ = 0. Explicitly, we get

ω1(q
∗, E,E1, E3) =

[
2E1(E + E3 − E1)

E1 − E3
Θ(E1 − E3)−

2EE3

E1 − E3
Θ(E3 − E1)

]

Θ(|E1 − E3| − q∗) (4.49)

and
ω2(q

∗ = 0, E,E1, E3) = 4EE3δ(E1 − E3)− 2(E − E1)Θ(E − E1). (4.50)

The finite terms which are gathered in ω2 come from the middle line in (4.45) and the last term of (4.45).
The delta function arises because Θ(q∗ − |E1 − E3|) enforces E1 = E3 in the limit q∗ → 0 and the step
function in (4.50) guarantees that 2E + E3 − E1 ≥ E1 + E3.

8

Now it only remains to compute the integrals over E1.
9 The logarithmic dependence on q∗ is extracted via

integration by parts, using
1

E1 − E3
=

d

dE1
ln

|E1 − E3|
E3

.

8This has to be imposed because a function of the form Θ(a−x)Θ(x− b) vanishes everywhere if the condition a ≥ b is violated.
9When looking at intermediate results, one might be worried at a first look because there is apparently a divergence in the

integral over E3 coming from the singular behaviour of the Bose function at E3 → 0. However, an expansion of the complete
integrand in powers of E3 shows that it behaves at worst as lnE3 for small values of E3 and all singular terms are cancelled,
although many individual terms would diverge seperately. For this reason, it is better to leave the complete integral as it is
and not try to evaluate parts of it analytically. See also the discussion in section 4.5.

54



4. Thermal production of Majorana neutrinos

The integral over ω2 then only contributes to Ahard in (4.8) whereas the integral over ω1 contributes both to
Ahard and B. Explicitly, we obtain

(
dΓ(c)

d3p

)

ω2

=
g2|λ|2C2(r)

2(2π)6E2

∫ ∞

0

dE3fF (E + E3)(1 + fB(E3))

[

2EE3(1− fF (E3) + fB(E))+

π2

12β2
+
E

β
ln

2

e−β(E+E3) − 1
+

1

β2

(

Li2(−eβE)− Li2(e
−βE3) + Li2(e

−β(E+E3))
)]

(4.51)

from the part where we may set q∗ → 0. The part involving the logarithmic dependence on q∗ can first be
written as

(
dΓ(c)

d3p

)

ω1

=
g2|λ|2C2(r)

2(2π)6E

∫ ∞

0

dE3(1 + fB(E3))fF (E + E3)

[
∫ E+E3

E3+q∗

dE1
g1(E,E1, E3)

E1 − E3

+

∫ E3−q∗

0

dE1
g2(E,E1, E3)

E1 − E3

]

. (4.52)

where
g1(E,E1, E3) ≡ E1(E + E3 − E1)(1− fF (E1) + fB(E + E3 − E1)),

g2(E,E1, E3) ≡ −EE3(1− fF (E1) + fB(E + E3 − E1)).

Performing the integration by parts as mentioned above then turns the expression into

(
dΓ(c)

d3p

)

ω1

= −g
2|λ|2C2(r)

2(2π)6E2

[

2EfB(E)

∫ ∞

0

dE3(1 + fB(E3))fF (E3)E3 ln
q∗
E3

−
∫ ∞

0

dE3fF (E + E3)(1 + fB(E3))

(
E + E3

β
ln

E

E3

−
∫ E+E3

E3

dE1
∂g1
∂E1

ln
E1 − E3

E3
−
∫ E3

0

dE1
∂g2
∂E1

ln
E3 − E1

E3

)]

.

(4.53)

where we set q∗ → 0 everywhere where no divergence occurs.
The first term will then give a contribution to B and all the rest contributes to Ahard. Since

−g
2|λ|2C2(r)fB(E)

(2π)6E

∫ ∞

0

dE3(1+fB(E3))fF (E3)E3 ln
q∗
E3

=
g2|λ|2C2(r)fB(E)

29π4β2E

(

ln
T

q∗
+

1

3
ln 16π3 + 12ζ′(−1)

)

,

this means that

B(c) =
g2|λ|2C2(r)fB(E)

32(2π)4β2E
. (4.54)

Process (d)

Process (d) is easier to handle because it has the lepton in the s-channel and therefore does not show any
dependence on q∗. The expression for the rate is given by

dΓ(d)

d3p
=
g2|λ|2C2(r)

4(2π)6E2

∫ ∞

0

dE3

∫ ∞

0

dE1Θ(E+E3−E1)ω(E,E1, E3)fF (E1)fB(E+E3−E1)(1+fB(E3)) (4.55)

with ω(E,E1, E3) = 2EE+E3−E1

E+E3
− 2(E −E1)Θ(E −E1) and it contributes only to Ahard. Explicitly, we get

dΓ(d)

d3p
=
g2|λ|2C2(r)

2(2π)6β2E2

∫ ∞

0

dE3(1 + fB(E3))fF (E + E3)

[
π2

12

2E + E3

E + E3
− β2E(E + E3)

+ βE ln
(1 + eβE)(eβ(E+E3) − 1)

1− e−βE3
+ β2E2 ln

(1 + eβE)(eβ(E+E3) − 1)

eβE3 − 1

+Li2(−eβE)− Li2(e
−βE3) +

1

E + E3

(

E3 Li2(e
−β(E+E3))− E Li2(−eβ(E+E3))

)]

.

(4.56)
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Process (e)

Finally there is process (e) which has a different combination of distribution functions denoted by

fBBF ≡ fB(E1)fB(E + E3 − E1)(1− fF (E3)). (4.57)

It has the same logarithmic dependence on q∗ as process (c) but is free of the problem caused by fB(E3) that
was mentioned in the footnote above since fF (0) = 1/2 is not divergent. Here, we get

dΓ(e)

d3p
=
g2|λ|2C2(r)

4(2π)6E2

∫ ∞

0

dE3

∫ ∞

0

dE1Θ(E + E3 − E1)ω̃(q
∗, E,E1, E3)fBBF (4.58)

where ω̃ again has two parts, in analogy to ω from process (c). The explicit results here are

ω̃1(q
∗, E,E1, E3) =

[
2E3(E + E3 − E1)

E1 − E3
Θ(E1 − E3)−

2EE1

E1 − E3
Θ(E3 − E1)

]

Θ(|E1 − E3| − q∗) (4.59)

and
ω̃2(q

∗ = 0, E,E1, E3) = 4EE3δ(E1 − E3). (4.60)

The finite part is explicitly given by

(
dΓ(e)

d3p

)

ω̃2

=
g2|λ|2C2(r)

2(2π)6E

∫ ∞

0

dE3fB(E + E3)(1 − fF (E3))2E3(1 + fB(E3) + fB(E)). (4.61)

The part with the logarithmic cutoff dependence can be written the same way as for process (c) if we just
replace g1,2 by the functions

g̃1(E,E1, E3) ≡ E3(E + E3 − E1)(1 + fB(E1) + fB(E + E3 − E1)),

g̃2(E,E1, E3) ≡ −EE1(1 + fB(E1) + fB(E + E3 − E1)).

The contribution to B then turns out to be exactly the same, i.e.

B(e) = B(c) =
g2|λ|2C2(r)fB(E)

32(2π)4β2E
. (4.62)

4.4.3. Processes involving gauge bosons: soft contribution

To find the contribution to (4.8) with soft lepton momenta, we need to compute the imaginary part of the
following self-energy with a HTL resummed lepton propagator: 10 This gives the expression

ΠN (p0, ~p) ≡ −
∑

spin

ūN(P )ΣN (p0, ~p)uN(P ) = |λ|2T
∑

q0

∫
d3q

(2π)3
∆(P −Q)

∑

spin

ūN(P )S
HTL(Q)PLuN (P )

(4.63)

10At first sight, one might be worried that this would also contribute to a decay or recombination process with soft lepton
momentum which has to be subtracted by hand to isolate the soft contribution to the scattering rates. However, such a
decay or recombination process is kinematically forbidden as one can see by repeating calculation (3.40) with a soft momentum
Q:

P 2 = m2

φ = (K +Q)2 =M2

N +m2

` + 2k‖(q
0 − |~q| cosϑ)

This would imply q0 − |~q| cosϑ ∼ g2T , which however is impossible. To see this, we write

q0 − |~q| cosϑ = |~q|





√

1 +
m2

`

|~q|2
− cosϑ





The term in brackets cannot be of order O(g) because the cosine is at most one and the square root is larger than one by a
an amount of order O(1) since m`/|~q| is O(1) if Q is a soft momentum. Only if |~q| ∼ T the process is kinematically allowed
then while for |~q| ∼ gT it cannot occur and there is no overcounting. If, however, all momenta are soft, then the situation
changes because then k‖, q

0, ~q ∼ gT and the condition on the angle is just cosϑ ∼ 1. Such a decay/recombination processes
is allowed and the momenta are no longer collinear, which means the LPM effect is irrelevant at leading order [25]. Such
processes are not considered in this thesis where we focus on Majorana neutrinos with hard momenta.
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`(Q)

N(P )

Φ(P −Q)

N(P )

Figure 4.3.: One-loop self-energy diagram of the Majorana neutrino. The black dot indicates that the prop-
agator is HTL resummed.

where the resummed fermion propagator is given by (2.31). Performing the spin sum then results in

ΠN (p0, ~p) ≡ |λ|2
∫

d3q

(2π)3
[p0(S+ + S−)− ~p · q̂(S+ − S−)) (4.64)

where
S± ≡ T

∑

q0

∆±(Q)∆(P −Q). (4.65)

Computing the thermal sums directly is an almost forbidding task, but fortunately, we will only need the
imaginary part. Let us define

S(ω̃n) ≡ T
∑

ω̃n

∆1(iω̃n, ~q)∆2(i(ω − ωn), ~k) (4.66)

which is exactly of the form required for S± if ~k = ~p− ~q. The basic formula we need is

DiscS(p0) = 2i ImS(p0+iε) = −2πi
(

eβp
0

+ 1
)∫ ∞

−∞

dk0

2π

∫ ∞

−∞

dq0

2π
fF (q

0)fB(k
0)ρ̃1(q

0, ~q)ρ2(k
0, ~k)δ(p0−q0−k0)

(4.67)
where p0 = iω and we introduced the spectral functions ρ1,2 of the corresponding propagators. The proof is
given in appendix F.
We can now apply this to S±. The spectral functions are given by (2.15) and (2.34). Inserting them and
using the scalar spectral function to perform the trivial integral over k0, we get

DiscS±(p
0) =

−i
fF (p0)

fB(Eφ)

2Eφ

∫ ∞

−∞
dq0fF (q

0)ρ±(q
0, q)δ(p0 − q0 − Eφ) (4.68)

where Eφ ≡
√

k2 +m2
φ ≈ |~k|. We have thus arrived at the expression

DiscΠN (p0, ~p) =
−i|λ|2
fF (p0)

∫
d3q

(2π)3
fB(|~k|)
2|~k|

∫ ∞

−∞
dq0fF (q

0)
[
p0(ρ+(q

0, q) + ρ−(q
0, q))

−~p · q̂(ρ+(q0, q)− ρ−(q
0, q))

]
δ(p0 − q0 − |~k|).

(4.69)

It remains to put the cutoff q∗ in the integral over q and extract the analytic dependence on q∗. First we
can replace the distribution function inside the integral by 1/2 since the momentum is soft. Then we rewrite
the delta function in (4.69) in such a way that it allows us to perform the angular integral over dΩq, whereas
we do not yet perform the integral over q0 (the same procedure was used in a different context in [62]). To

achieve this, we use that ~q = ~p−~k is soft, but ~k, ~p are hard. Then we may write |~k| = |~p− ~q| ≈ |~p| − p̂ · ~q and
therefore

p0 − |~k| ≈ p̂ · ~q.
Writing ω instead of q0 to avoid confusion, we get

DiscΠN (p0, ~p) =
−i|λ|2
2fF (p0)

∫
d3q

(2π)3
fB(|~p| − p̂ · ~q)
2(|~p| − p̂ · ~q)

∫ ∞

−∞
dω
[
p0(ρ+(ω, q) + ρ−(ω, q))−

~p · q̂(ρ+(ω, q)− ρ−(ω, q))] δ(ω − p̂ · ~q).
(4.70)
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Next we perform the angular integrals by setting cosϑ ≡ p̂ · q̂, which leads to

DiscΠN (p0, ~p) =
−i|λ|2

2(2π)2fF (p0)

fB(|~p|)
2|~p|

∫ q∗

0

dqq

∫ q

−q
dω

[

p0(ρ+(ω, q) + ρ−(ω, q))− |~p|ω
q
(ρ+(ω, q)− ρ−(ω, q))

]

.

(4.71)
We now need to integrate over ω using sum rules for the fermion spectral functions [9]:

∫ ∞

−∞

dω

2π
ρ±(ω, q) = 1 (4.72a)

∫ ∞

−∞

dω

2π
ωρ±(ω, q) = ±q, (4.72b)

To leading order, we can set p0 = |~p| = E because we neglect all masses. Since the structure of the integral
is then the same as in [30], we can follow the procedure there. In the integration range −q ≤ ω ≤ q, only the
continuum part from (2.34) contributes while the pole contributions do not because of the delta functions.11

Integrating directly over the continuum part of the spectral functions is difficult. One can however use the
following trick: for ω > q, the continuum contributions ρ±,cont. vanish due to the step function in (2.34).
Then we can integrate between −∞ and ∞ instead and only have to subtract the contribution with |ω| > q,
which is simple because only the pole contributions in (2.34) survive. Using the sum rules (4.72) we easily see
that the integral taken from −∞ to ∞ over the integrand vanishes and only the subtracted part for |ω| > q
contributes. Using (2.34) and (2.35), we finally get

DiscΠN (P ) =
−i|λ|2

8πfF (p0)

fB(|~p|)
m2
`

∫ q∗

0

dq
[
(ω2

+(q)− q2)(ω+(q)− q)− (ω2
−(q)− q2)(q + ω−(q))

]
. (4.73)

We can use that [30]
(ω2

± − q2)(ω± ∓ q)

m2
`

= ω± − q
dω±
dq

(4.74)

and that [9, 30]

ω+(q)− ω−(q)
q�m`
=

2q

3
, ω+(q)− ω−(q)

q�m`
=

m2
`

q
. (4.75)

Inserting (4.74) into (4.73) and integrating by parts, we obtain

1

m2
`

∫ q∗

0

dq
[
(ω2

+(q)− q2)(ω+(q)− q)− (ω2
−(q)− q2)(q + ω−(q))

]
= 2

∫ q∗

0

dq (ω+(q)− ω−(q))−m2
` ,

where (4.75) was used for the boundary term. To extract the logarithmic divergence, we add zero in the form

0 = m2
` ln

(
q∗

m`

)2

− 2m2
`

∫ q∗

0

dq

q +m`

where for the integral we set q∗ +m` ≈ q∗. Then we get the final result (cf. [30]):

DiscΠN (p0, ~p) =
−i|λ|2fB(|~p|)
8πfF (p0)

m2
`

[

2 ln

(
q∗

m`

)

− 1 + 2

∫ ∞

0

dq

(
ω+(q)− ω−(q)

m2
`

− 1

q +m`

)]

. (4.76)

The upper integration limit was replaced by infinity since the integrand vanishes between q∗ and ∞ (up to
higher order corrections) due to (4.75).
The soft contribution to the production rate is obtained by supplying the necessary factors und using that
DiscΠN (P ) = 2i ImΠN (p0 + iε, ~p):

dΓsoft

d3p
=

|λ2|g2C2(r)fB(E)

32(2π)4β2E

[

2 ln

(
q∗

m`

)

− 1 + 2

∫ ∞

0

dq

(
ω+(q)− ω−(q)

m2
`

− 1

q +m`

)]

. (4.77)

For the factor in front of the bracket, we also explicitly inserted the HTL fermion mass (B.45). The result
for B is then consistent with the one obtained from the hard contribution.
11Note that this is in perfect agreement with the previous footnote because the pole contributions would precisely correspond

to decay and recombination contributions involving leptonic quasiparticles.
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4.4.4. Computation of Ahard, Asoft and B

It is now straightforward to compute Ahard and Asoft by gathering all results. The soft part can trivially be
read off from (4.77) to be

Asoft(E) =
|λ|2g2C2(r)fB(E)

32(2π)4β2E

[

2

∫ ∞

0

dq

(
ω+(q)− ω−(q)

m2
`

− 1

q +m`

)

− 1

]

. (4.78)

The coefficient B is also easy to read off from the previous results that consistently give

B(E) =
|λ|2g2C2(r)fB(E)

16(2π)4β2E
. (4.79)

The most cumbersome expression is obtained for Ahard for which we need to sum all contributions which are
finite for q∗ → 0:

Ahard(E) =
g2|λ|2C2(r)fB(E)

16(2π)4β2E

(
1

3
ln 16π3 + 12ζ′(−1)

)

+
g2|λ|2C2(r)

2(2π)6E2

{∫ ∞

0

dE3fF (E + E3)(1 + fB(E3))

[

2EE3(1 − fF (E3) + fB(E)) +
π2

12β2
+
E

β
ln

2

1− e−β(E+E3)
+

1

β2

(
Li2(−eβE)− Li2(e

−βE3)

+Li2(e
−β(E+E3))

)

+
E + E3

β
ln

E

E3
−
∫ E+E3

E3

dE1
∂g1
∂E1

ln
E1 − E3

E3
−
∫ E3

0

dE1
∂g2
∂E1

ln
E3 − E1

E3

+
π2

12β2

(

1 +
E

E + E3

)

− E(E + E3) +
E

β
ln

(1 + eβE)(eβ(E+E3) − 1)

1− e−βE3
+

1

β2

(
Li2(−eβE)− Li2(e

−βE3)
)

+E2 ln
(1 + eβE)(eβ(E+E3) − 1)

eβE3 − 1
+

1

β2(E + E3)

(

E3 Li2(e
−β(E+E3))− E Li2(−eβ(E+E3))

)]

+

∫ ∞

0

dE3fB(E + E3)(1 − fF (E3))

[

2EE3(1 + fB(E3) + fB(E)) +
E3

β
ln

E

E3

−
∫ E+E3

E3

dE1
∂g̃1
∂E1

ln
E1 − E3

E3
−
∫ E3

0

dE1
∂g̃2
∂E1

ln
E3 − E1

E3

]}

(4.80)
Now we can evaluate some of the integrals and also reorganize the remaining terms into a more compact
expression. With w = βE1, x = βE3, y = βE, we can then finally write

Ahard(y) =
g2|λ|2C2(r)fB(y)

16(2π)4βy

(

1 +
1

3
ln 16π3 + 12ζ′(−1)

)

+
g2|λ|2C2(r)

2(2π)6βy2

{∫ ∞

0

dxfF (x+ y)(1 + fB(x))

[

y ln
2(1 + ey)(ex+y − 1)

(1− e−x)(1 − e−(x+y))
+ 2Li2(−ey)− 2 Li2(e

−x) + Li2(e
−(x+y)) + (x+ y) ln

y

x

−
∫ x+y

x

dw
∂g1
∂w

ln
w − x

x
−
∫ x

0

dw
∂g2
∂w

ln
x− w

x
+
π2

12

(

2 +
y

x+ y

)

− y(x+ y)

+y2 ln
(1 + ey)(ex+y − 1)

ex − 1
+

1

(x+ y)

(

xLi2(e
−(x+y))− y Li2(−ex+y)

)]

+

∫ ∞

0

dxfB(x + y)(1− fF (x))

[

x ln
y

x
−
∫ x+y

x

dw
∂g̃1
∂w

ln
w − x

x
−
∫ x

0

dw
∂g̃2
∂w

ln
x− w

x

]}

(4.81)
where now g1 = w(x + y − w)(1 − fF (w) + fB(x + y − w)) etc. and fB(x) etc. is a sloppy notation for
1/(ex − 1) etc. The remaining integrals have to be done numerically.

4.5. Collision term and yield of Majorana neutrinos

4.5.1. The leading-order collision term

With the results of the previous sections, we are now in a position to compute the evolution of the Majorana
neutrino number density nN (t). Its time dependence is governed by the Boltzmann equation (3.38). By using
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this integrated form of the Boltzmann equation which emerges naturally in our approach (see the discussion
in section 3.1.2), we have implicitly assumed kinetic equilibrium which was indeed recently shown to be a
good approximation for the evolution of the Majorana neutrinos [64].
The collision term is obtained from summing up contributions (4.17), (4.25), (4.8) (with the coefficients given
by (4.78), (4.79) and (4.80)) and (4.36), and integrating over the energy of the Majorana neutrinos:

CN = C
1→2,2→1
N + C

LPM
N + C

2↔2,quarks
N + C

2↔2,gauge
N (4.82)

with

CN = 4π

∫ ∞

0

dEE2 dΓ

d3p
=

4π

β3

∫ ∞

0

dyy2
dΓ

d3p
. (4.83)

where we use the dimensionless variable y = βE.12 The decay and recombination contribution has been
splitted into two parts: The tree-level contribution where we neglect the multiple rescattering off soft gauge
bosons and a part termed ’LPM’ which precisely includes the multiple rescattering. This will allow us to
work out the impact of the LPM effect on the production of Majorana neutrinos.
First we look at the 2 ↔ 2 scattering contributions and start with processes (a) and (b) which involve external
quarks. After integrating (4.36) over y, we obtain

C
2↔2,quarks
N =

3|λ|2λ2t
2(2π)5β4

cquark (4.84)

with the result

cquark =
π2

36
(π2 + 6 ln2 2)− 1.80556 = 1.69056, (4.85)

with the analytical part coming from the simple integral and the numerical value from the double integral
involved.13

Now we look at the part involving gauge bosons. Here, we can first write the result in the form

C
2↔2,gauge
N =

4π

β3

∫ ∞

0

dyy2
(

Ahard(y) +Asoft(y) +B(y) ln
T

m`

)

. (4.86)

The by far easiest integral is the one over B(y) which due to (4.79) gives

4π

β3

∫ ∞

0

dyy2B(y) =
g2|λ|2C2(r)

8(2π)3β4

∫ ∞

0

dy
y

ey − 1
=
g2|λ|2C2(r)

384πβ4
. (4.87)

The integral over Asoft is complicated by the fact that it contains a subintegral where the integrand is not
given in terms of elementary functions. This integral only changes the prefactor while the integral over y is
the same as the one above. Thus, we can write

4π

β3

∫ ∞

0

dyy2Asoft(y) =
g2|λ|2C2(r)

384πβ4
csoft (4.88)

and from (4.78) we can read off that

csoft =

∫ ∞

0

dq

(
ω+(q)− ω−(q)

m2
`

− 1

q +m`

)

− 1

2
=

∫ ∞

0

du

(

f+(u)− f−(u)−
1

u+ 1

)

− 1

2
(4.89)

where q = m`u and ω± = m`f± to obtain dimensionless quantities. The integrand is determined by the
solution to the equation (cf. (2.32) )

f(u)− u− 1

2u

[(

1− f(u)

u

)

ln
f(u) + u

f(u)− u
+ 2

]

= 0 (4.90)

which has the two solutions f(u) = ±f±(u) that can be given analytically in terms of Lambert W functions
[25]. The result of the integration is

csoft = −0.653. (4.91)

12For the decay and recombination contribution, we have y = βp‖ instead to be consistent with the notation used before. For
a hard momentum P , both are of course equivalent at leading order.

13Numerical errors for the integrals are negligibly small throughout and will thus not be quoted.
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Finally we come to the integral over Ahard which is probably the most complicated one, not only because it
involves many terms but also because some of them would by themselves lead to divergent integrals and only
taken together give a finite result. Since the cancellation takes place between double (over E,E3) and triple
(over E,E3, E1) integrals, the expression has to be slightly rewritten first in order to get all terms under the
integral over E1.

14 For this purpose, one can simply “undo” integrals, i.e one reads e.g. the line

∫ E

0

(E − E1)(1 − fF (E1) + fB(E + E3 − E1)) =
π2

12β2
+
E

β
ln

2

e−β(E+E3) − 1

+
1

β2

(

Li2(−eβE)− Li2(e
−βE3) + Li2(e

−β(E+E3))
)

that appears in (4.51) from right to left. The surface term from the partial integrations that shows up in
(4.53) can also be put under the integral over E1 by adding a dummy integration of the form

1 =

∫ E

0

dE1

E
.

Finally, out of two remaining triple integrals in (4.53) only the one going from E3 to E + E3 is superficially
divergent whereas the other is unproblematic. After performing the shift E1 → E1 + E3, the integration
interval is mapped into [0, E] and all superficially divergent integrals can be combined to the expression

∫ y

0

dw

[

w − y +
x+ y

y
ln
y

x
−
(
∂g1
∂w

)∣
∣
∣
∣
w→w+x

ln
w

x

]

where we switched back to the dimensionless variables w, x, y.
A Taylor expansion of the integrand around the problematic point x = 0 shows that the leading term is a
constant w.r.t. x which might be dangerous because multiplied with 1 + fB(x) ≈ 1/x and integrated over x
it would diverge at the lower integration. However, the integral of this term over w is exactly zero, as can be
shown analytically. This means that we may even subtract it from our expression without changing the final
value, thereby removing the singular behaviour of the integrand and allowing a stable numerical evaluation.
The final outcome of this computation is

4π

β3

∫ ∞

0

dyy2Ahard(y) =
g2C2(r)|λ|2
(2π)5β4

chard (4.92)

where
chard = 2.752 + 1.429− 0.088 = 4.093 (4.93)

with the three contributions due to processes (c),(d) and (e).
Putting it all together, we can write the complete Boltzmann collision term for 2 ↔ 2 scattering as

C
2↔2
N =

[

αλ2t +
g21 + 3g22
768π

ln
β2↔2

g21 + 3g22

]

|λ|2T 4 (4.94)

with the numerical constants
α = 2.590 · 10−4, β2↔2 = 11.882. (4.95)

In order to get the numerical values, we use that C2(r) = 3/4 for SU(2) and C2(r) = 1/4 for U(1) and then
have to compare coefficients in the equation

(
chard
(2π)5

+
csoft
384π

+
1

768π
ln
T 2

m2
`

)
g21 + 3g22

4
=
g21 + 3g22
768π

ln
β2↔2

g21 + 3g22

with m` given by (B.45).
Now we turn to the tree-level decay/recombination contribution C

1→2,2→1
N . Here things are slightly different

because the lower integration limit in (4.19) introduces a logarithmic dependence on T in addition to the

14As remarked before, this additional difficulty only concerns the contributions from process (c). Those from processes (d) (where
all integrals over E1 can be done analytically and only double integrals remain) and (e) (which does not show superficially
divergent behaviour since the problematic Bose function is replaced by a Fermi function) can be treated straightforwardly.
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overall T 4 which has to appear for dimensional reasons. This means that if we want to write the corresponding
collision term in the same way as for scattering, the coefficients are not be constant but still have a nontrivial
dependence on temperature:

C
1→2,2→1
N =

(

αH(z)Λ + α1→2,2↔1
t (z)λ2t + (g21 + 3g22)β

1→2,2→1(z)− z2(J01(z)− J10(z)
)

|λ|2T 4, (4.96)

with Higgs self-coupling Λ and the integrals

Jmn(z) ≡
Nf
8π3

∫ ∞

0

dp̃p̃mfF (p̃)

∫ k̃max(z)

k̃min(z)

dk̃k̃n
fB(k̃) + fF (k̃ − p̃)

|k̃ − p̃|
(4.97)

where we have introduced rescaled quantities

k̃ ≡ k‖
T
, p̃ ≡ p‖

T
, z ≡ MN

T
(4.98)

to make everything dimensionless. In terms of those integrals, the coefficients in (4.96) are given by

αH(z) =
1

2
(J01(z)− J10(z)), α1→2,2↔1

t (z) =
1

2
αH(z), β1→2,2→1(z) = − 1

16
J10(z). (4.99)

In order to obtain this form, we have used the asymptotic Higgs and lepton masses (B.18) and (B.44)
and inserted them into (4.19). Comparing coefficients in front of the couplings then allows to deduce the
expressions given above.
Finally there is the multiple rescattering contribution that we have to add. Using (E.4) and introducing the
same rescaled momenta as above leads to

C
LPM
N = −Nf

2π3
|λ|2T 4

∫ ∞

0

dp̃p̃fF (p̃)

∫ ∞

0

dk̃
fB(k̃) + fF (k̃ − p̃)

k̃
lim
b→0

[
z2

2p̃
Reψ(b; k̃, p̃) +

p̃

2(k̃ − p̃)2
Imh(b; k̃, p̃)

]

.

(4.100)
The functions ψ and h are solutions of differential equations which are given in appendix E.

4.5.2. Solution of the Boltzmann equation

Now we can finally solve the Boltzmann equation (3.38) with the collision term (4.82) which we write as
CN (T ) ≡ C̃N |λ|2T 4 in order to scale out the dominant temperature dependence. As usual, we introduce the
quantity

YN ≡ nN
s

(4.101)

where s ∼ T 3 is the entropy density in a radiation-dominated FRW universe [42]. Since H(T ) ∼ T 2, we have
dt = −dT/(H(T )T ) and the Boltzmann equation becomes

dYN (T )

dT
= −|λ|2 C̃N (T )T 4

H(T )s(T )T
= −|λ|2 C̃N (T )

s0H0T 2
(4.102)

where s(T ) = s0T
3, H(T ) = H0T

2. The constants s0, H0 are given by [42]

s0 =
4π2

90
g∗S, H0 =

√

π2

90
g∗

1

MPl
(4.103)

with (reduced) Planck mass MPl = (8πGN )−1/2 = 2.4 · 1018 GeV. The number of (entropy) degrees of
freedom, g∗(g∗S) depends on the particle content of the thermal bath; for the SM, we have g∗ = 106.75 and
in the early universe we have g∗S = g∗.
We switch to z =MN/T , which was already introduced in (4.98), as evolution variable which is more intuitive
because z grows with time whereas the temperature drops and higher values of T would correspond to earlier
times. The solution can be obtained by simply integrating over z:

YN (z) =
|λ|2

MNs0H0

∫ z

zR

C̃N (z′)dz′ (4.104)
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As initial temperature, we have chosen the reheating temperature TR , and we defined zR ≡ MN/TR. The
solution depends on |λ|,MN and zR which have to be treated as free parameters.
The quantity C̃N contains different contributions depending on the value of z because not all processes are
kinematically allowed at a given temperature. More explicitly, we can write

YN (z) =
|λ|2

MNs0H0

∫ z

zR

[C̃ 1→2
N (z′)Θ(z− − z′) + C̃

2→1
N (z′)Θ(z′ − z+) + C̃

LPM
N (z′) + C̃

2↔2
N (z′)]dz′ (4.105)

where by z± we denote the inverse temperature where the Higgs decay ceases to be kinematically allowed
and where the recombination sets in, respectively. They can be determined by solving the equations

z± = zφ(z±)± z`(z±) (4.106)

with zφ,` ≡ mφ,`/T and the thermal masses given by (B.18) and (B.44). As a rough approximation, one has
z− ≈ 0.2 and z+ ≈ 0.7; more precise values can only be found numerically.

4.5.3. RG running of coupling constants

The final ingredient that is needed in order to get numerical values are the renormalization group (RG)
equations for the coupling constants which must be evaluated at an appropriate scale. While the gauge
coupling constants obey very simple RG equations that can (at leading order) even be solved analytically,
the corresponding equations for the top Yukawa and Higgs self-coupling are more involved and require a
numerical treatment. The full set of renormalization group equations for the SM can be found e.g. in [65, 66]
with the former giving more general and the latter slightly simpler equations where the Yukawa couplings
of the first and second fermion generation are dropped. We use the equations as given in [66] and drop also
the tau and bottom Yukawa coupling because they are much smaller than the other couplings. The relevant
equations at 1-loop order are

u′1(τ) =
41

10

u21(τ)

8π2
(4.107a)

u′2(τ) = − 19

6

u22(τ)

8π2
(4.107b)

u′3(τ) = − 7
u23(τ)

8π2
(4.107c)

u′t(τ) =
ut(τ)

8π2

(
9

2
ut(τ)− 8u3(τ)−

9

4
u2(τ) −

17

20
u1(τ)

)

(4.107d)

Λ′(τ) =
1

16π2

(
27

200
u21(τ) +

9

20
u1(τ)u2(τ) +

9

8
u22(τ)−

9

5
u1(τ)Λ(τ) − 9u2(τ)Λ(τ) − 6u2t (τ)

+12ut(τ)Λ(τ) + 24Λ2(τ)

)

(4.107e)

where ui ≡ g2i , ut ≡ λ2t and τ ≡ ln(µ/µ0) with an arbitrary reference scale µ0. The scale where the coupling
constants are evaluated is chosen as µ = 2πT [58]. The running of the Majorana neutrino coupling λ is not
taken into account because its value is unknown (not even its order of magnitude) and has to be treated as
free parameter anyway. This means that we are ignorant of the correct initial conditions for its RG equation
and in order to simplify the computation, we thus assume its temperature dependence to be negligible.
In order to solve this system, we impose initial conditions at µ =MZ given by [67]

αEM (MZ) = 1/128, αs(MZ) = 0.117, sin2 ϑW = 0.23, mt = 171GeV, v = 246GeV (4.108)

For the bare Higgs mass, we take for definiteness a value of mH = 150 GeV, which lies within the experi-
mentally allowed range [67].
The values above can be translated into initial conditions for the functions in (4.107) as follows:

u1(τ0) =
4παEM (MZ)

cos2 ϑW
, u2(τ0) =

4παEM (MZ)

sin2 ϑW
, u3(τ0) = 4παs(MZ), ut(τ0) =

2m2
t

v2
, λ(τ0) =

m2
H

2v2

(4.109)
where τ0 ≡ ln(MZ/2πTR), i.e. we choose the reference scale to be the reheating temperature. Evaluating the
coupling constants at µ = 2πTR then means we must determine the value at τ = 0.
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4. Thermal production of Majorana neutrinos

4.6. Numerical results

In this section, we finally present some numerical solutions. We start in 4.6.2 with plotting the differential
production rate for the different contributions (decay/recombination with and without LPM effect, scatter-
ing). We then go in section 4.6.3 to the integrated rate which gives the collision term in the Boltzmann
equation and finally in section 4.6.4 we give plots for the yield YN (z) of Majorana neutrinos. The main two
points of this analysis are the following:

• To investigate how large the corrections due to the finite-temperature effects on the yield of Majorana
neutrinos are,

• To study whether leaving out the LPM effect in the finite-temperature computation introduces a sig-
nificant error or whether it is numerically pretty much irrelevant.

As mentioned after equation (4.104), there are three free parameters in the solution: The Majorana mass
MN , the Yukawa coupling |λ|2 and the reheating temperature TR. For the complete numerical analysis,
we will fix the reheating temperature to the sample value TR = 109 GeV and the coupling constant (when
needed) will be taken as |λ|2 = 10−8. For the Majorana mass MN , we will take several sample values to
study the dependence of the solutions on MN .

Before we show plots of the numerical solutions, we will make a short insertion with some preceding re-
marks about approximate solutions of the Boltzmann equation.

4.6.1. Approximate solutions

Before we dive into the details of the full solution, we want to mention two ways of obtaining an approximate
solution, both of which do not provide a control of the quantitative accuracy and only serve to illustrate
certain specific aspects.

Trivial temperature dependence

In order to study some qualitative features of the solution, we can as a rough approximation pretend that the
only temperature dependence of the collision term is the overall factor T 4 and assume CN (T ) to be constant
by evaluating it e.g. at T = TR and taking that value for all temperatures. This approximation is relatively
good if we consider only very light Majorana neutrinos such that we always have z � 1 15 and we can set
MN → 0 in the computation of the decay and scattering rates. Then C̃N depends on z only via the running
coupling constants, but this is only a very mild dependence. This means that if we take z to be small enough,
then we get the approximate solution

YN (z) ≈ |λ|2C̃N
MNs0H0

(z − zR) . (4.110)

We can use (4.110) to study qualitative features of the solution. First of all, compared to the analogous
result for gravitino production [36, 37], we clearly observe a different temperature dependence. Whereas
YG̃ is proportional to TR and essentially constant, YN grows with z and consequently with time. This is
because for gravitino production, which proceeds via a nonrenormalizable interaction, the collision term is
proportional to T 6/M2

Pl instead of T 4. Another feature we can recognize is that the solution is inversely
proportional to MN , which means that the lighter the Majorana neutrinos are, the bigger the yield will be
and the faster they will reach their equilibrium value. All other parameters being fixed, lighter particles are
easier to produce than heavier ones, as one would intuitively expect.

15One has to remember that the equations we write are only valid as long as the number density of Majorana neutrinos is
small. If the equilibrium density is already reached at z � 1, then it makes no sense to integrate the Boltzmann equation
(3.38) until z ∼ 1 where most of the lepton asymmetry is generated. Inverse processes which reduce the number of Majorana
neutrinos would have to be included then and instead of the integrated Boltzmann equation (3.38) one would have to solve an
integro-differential equation for the phase space density fN . This complicates the computation considerably and is beyond
the scope of this thesis.
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4. Thermal production of Majorana neutrinos

Neglecting finite-temperature effects

While the previous approximative approach only served to illustrate some qualitative features without aiming
at reliable quantitative estimates, we now look at another approximate approach which does aim at doing so.
The approximation merely consists of neglecting all finite-temperature effects when computing the collision
term and this approximation is very common in the existing literature (for a review, see either [56] or chapter
4 of [63] and references therein). It means that

• decay and scattering rates are computed in vacuum with no thermal effects (thermal masses etc.) taken
into account,

• one uses Maxwell-Boltzmann statistics for all particles .

This results in a very simple set of Boltzmann equations where even inverse processes and the full dependence
of the scattering rates on MN can be relatively easily investigated. In order to compare the results with our
finite-temperature approach, we will again drop all inverse processes with N1 in the initial state and compute
the scattering rates with the amplitudes given in (4.27) where all masses are set to zero.
Taking these limitations into account, the Boltzmann collision term can be written as 16 [63]

C
T=0
N = neqN 〈Γ〉+ 〈σ〉 (4.111)

where

〈Γ〉 ≡ K1(z)

K2(z)
Γ (4.112)

with total decay rate

Γ =
|λ|2
8π

MN (4.113)

and equilibrium number density (here computed with a Maxwell-Boltzmann distribution)

neqN =
T 3z2K2(z)

π2
, (4.114)

and where K1,2 denote Bessel functions of the second kind. Furthermore,

〈σ〉 ≡ T

32π4

∫ ∞

0

ds
√
sK1

(√
s

T

)

σ̂(s) (4.115)

where σ̂(s) denotes the reduced cross section

σ̂(s) =
1

8πs

∫ tmax

tmin

dt|M|2. (4.116)

Since we neglect the masses of external particles, tmin = −s and tmax = 0.
For the scattering processes with a massless lepton in the t-channel we face the same IR divergence as in
our finite-temperature approach. In the zero-temperature framework there is no consistent way to remove
it; we choose to proceed as in [63, 68] where the thermal lepton mass was put in as a regulator by replacing
t→ t−m2

` whereever one would otherwise get IR divergent terms.
Putting everything together and proceeding as in section 4.5.2 leads to

Y T=0
N (z) =

|λ|2
MNs0H0

∫ z

zR

dz′C̃ T=0
N (z′) (4.117)

where

C̃
T=0
N (z) =

z3K1(z)

8π3
+

3

16π5
λ2t −

g21 + 3g22
256π5

∫ ∞

0

dξξ2K1(ξ)

[

1− 4 ln
ξ2 + z2` (z)

z2` (z)

]

(4.118)

16Note that T = 0 as superscript always refers to thermal effects being neglected. For the evolution of YN (z) we obviously do
not set T → 0 which would mean that z → ∞.
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4. Thermal production of Majorana neutrinos

Figure 4.4.: Differential production rate due to decay of Higgs bosons (red, z = 0.1) and recombination of
Higgs bosons and leptons (black, z = 0.75)). Dashed lines give the production rate without the
inclusion of the LPM effect while the solid curves present the full solution.

with ξ ≡ √
s/T and z` ≡ m`/T as before.17 The first term is due to the recombination18 while the other two

clearly stem from scattering off quarks and off gauge bosons with the amplitudes given in (4.27).
In sections 4.6.3 and 4.6.4 we will include also the collision term (4.118) as well as the yield obtained with
that collision term as source in the Boltzmann equation, thereby checking how accurate neglecting the finite-
temperature effects actually is.

4.6.2. The differential production rate

We start with plotting the differential production rates for the different processes that are involved. We use
a fixed Majorana mass of MN = 107 GeV and we plot the dimensionless quantity

dΓ̃

dp̃
≡ 4π|λ|−2T−3p̃2

dΓ

d3p
(4.119)

which is also divided by the square of the unknown Yukawa coupling λ. The plots are given only for two sample
values of z, namely z = 0.1, where the Higgs decay occurs together with the 2 ↔ 2 scattering processes, and
z = 0.75 where the scattering processes are accompanied by the recombination of Higgs bosons and leptons.
The full temperature dependence will only be considered in section 4.6.3, where we study the collision terms
which are functions of temperature (or equivalently z) only. The plots do not show the region where p̃ � 1
because this would correspond to soft Majorana neutrinos and one can expect substantial modifications to
the rates that are computed here, especially for the scattering rates where we could no longer neglect the
masses of the external particles. For p̃ � 1 the rates become strongly suppressed and this region is not of
great interest. Therefore we have chosen to plot the differential production rates for the region 0.2 ≤ p̃ ≤ 5.0.
In figure 4.4 we show the rates due to decay or recombination and in figure 4.5 we present a plot of the
differential production rate due to 2 ↔ 2 scattering.
Let us first look at figure 4.4. We observe an overall suppression of the production rate due to the LPM
effect, like for photon production in a quark-gluon plasma [7]. The suppression is most pronounced for small
momenta, p̃ < 1, while for large momenta p̃ > 1 it becomes weaker and weaker and finally even turns into
a slight enhancement. However, this enhancement occurs in a region where the rate has already become
small and thus it is clear that the collision term which is the integral over the differential rate will be smaller
with the LPM effect than without it. Another thing one can already see is that the recombination process

17The remaining integral can be given analytically in terms of the so-called Meijer G function, which is not very illuminating
however and for practical purposes a numerical integration is to be preferred.

18Note that the Higgs decay is now always forbidden since we neglect thermal masses.
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4. Thermal production of Majorana neutrinos

Figure 4.5.: Differential production rate due to scattering off gauge bosons (red) and quarks (black). Dashed
lines give the production rate for high temperatures (z = 0.1) while the solid lines refer to low
temperatures (z = 0.75).

dominates over the decay of Higgs bosons. This will be even more apparent when we look at the collision
terms in section 4.6.3.
Now let us look at figure 4.5. First of all, we observe that the differential production rate due to scattering
is smaller than the production rate due to decay or recombination by up to one order of magnitude. This
indicates that of all the processes, the most important is the recombination of Higgs bosons and leptons.
This qualitatively agrees with what was found in the finite-temperature treatment of [58], but differs from
what is typically found in a zero-temperature treatment [63]. However, it is still too early to neglect the
scattering processes since they can occur at any temperature while decay and recombination cannot, at least
at tree-level (including the multiple rescattering off gauge bosons, they can, however). Especially at high
temperatures, the scattering off gauge bosons still gives a sizable contribution to the collision term because
the rate does not drop as fast with increasing momentum as the Higgs decay does.
Comparing the two classes of scattering processes with each other, we observe a remarkable qualitative
difference: while the production rate due to scattering off quarks goes to a constant for p̃� 1, the production
rate due to scattering off gauge bosons drops rapidly and tends towards zero. Why this happens can be
understood by looking at (4.45): If we set E → 0, then the function vanishes identically since only step
functions which give contradicting conditions on q remain. For the scattering off quarks, this does not
happen, but it is a bit subtle to see from (4.35). It is helpful to write down explicit inequalities. Then one
finds that if E > E3 and 2E2 − E − E3 < 0, then Θ(q − |E − E3|)Θ(2E2 − E − E3 − q) gives the condition
E −E3 ≤ q ≤ E +E3 − 2E2 ⇔ 2E2 ≤ 2E3, which is consistent with Θ(E +E3 −E2) from (4.35) in the limit
E → 0. Thus there is still some phase space available for scattering off quarks even for E → 0, while this is
not the case for scattering off gauge bosons.

4.6.3. The Boltzmann collision term

Now we turn to the Boltzmann collision terms which are obtained by integrating the differential rate over all
momenta. We will plot the quantity C̃N defined in section 4.5.2 because it is dimensionless and independent
of the unknown Yukawa coupling |λ|2.
Before presenting the complete collision term, we want to study how much it depends on the concrete value
of the Majorana massMN . For this it is sufficient to keep only tree-level processes and avoid the numerically
expensive computation of the LPM contribution for different masses MN . In fact, one should expect only
relatively small changes because C̃N can, for dimensional reasons, depend only on z and not onMN alone. As
long as we look at the same range of values for z, we should see only a minor change which is solely due to the
running coupling constants which depend not on z but rather on T/TR. This variation is at most logarithmic
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4. Thermal production of Majorana neutrinos

Figure 4.6.: Variation of the dimensionless collision term due to tree-level decay/recombination processes with
the Majorana mass MN . The curves show the results for MN = 106 GeV (red), MN = 107 GeV
(blue) and MN = 108 GeV (black).

and should be irrelevant compared to the linear dependence on MN that we see in (4.104). Therefore, for
the solution of the Boltzmann equation one should expect that computing the collision term once and using
this for all values of the mass MN is a relatively good approximation.
Looking at the plots 4.6 and 4.7, we indeed see our expectations confirmed. Even varying the Majorana
mass by a factor of 100 induces only an O(1) change in the collision term for a fixed value of z. Therefore it
is sufficient to compute the collision term for one value of the mass, say MN = 107 GeV and use this result
to solve the Boltzmann equation. This saves a lot of computational time since computing the collision term
for one value of MN can already take several hours, depending on the machine power.
We also see that the Higgs decay and 2 ↔ 2 scattering are more efficient for light Majorana neutrinos while
the recombination of Higgs bosons and leptons becomes more efficient if the mass of the Majorana neutrino
increases. Especially for the decay and recombination contributions, this is perfectly reasonable because a
light Majorana neutrino gives a large phase space for the decay while a heavy Majorana neutrino does the
same for the recombination process.
Now we can take all contributions into account and plot the complete collision term for 0.1 ≤ z ≤ 1. For values
z ≈ 1, the results for 2 ↔ 2 scattering cannot be fully trusted any more since we have completely neglected all
O(z) corrections in our computation in section 4.4. That is also why the contribution to C̃N from scattering
almost does not vary with z, as can be seen in figure 4.7. The full result together with the result where
the LPM effect is neglected is shown in figure 4.8. For comparison, we also plot the zero-temperature result
(4.118) (dotted line). We clearly see that, depending on the temperature, the inclusion of the LPM effect can
either lead to a suppression (for small or high temperatures where the tree-level decay and recombination
processes are kinematically allowed) or an enhancement (in the temperature regime where otherwise only
2 ↔ 2 scattering would occur). The suppression is most pronounced for small temperatures z ≈ 1 and one
should expect the biggest effect on the yield of Majorana neutrinos there. However, as we already mentioned,
for z close to 1 the 2 ↔ 2 scattering contribution (4.94) only gives a rough approximation because terms
of order O(z) have been neglected. It cannot be excluded that the correct result is substantially larger and
since it is unaffected by the LPM effect, the overall relative suppression would be much smaller. For z � 1
the suppression is milder and mostly lies in the range of 10− 20 % .
Finally we observe that the zero-temperature result is only a rough approximation to the correct result. For
very high temperatures or for temperatures T ≈ MN , it is too small by a factor of 2 or more, while for
the intermediate regime where the tree-level decay and recombination are kinematically forbidden, it slightly
overestimates the correct production rate. We should thus not expect the zero-temperature treatment to be
a very accurate approximation and the explicit solutions of the Boltzmann equation that we turn to now will
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Figure 4.7.: Variation of the dimensionless collision term due to 2 ↔ 2 scattering processes with the Majorana
mass MN . The curves show the results for MN = 106 GeV (red), MN = 107 GeV (blue) and
MN = 108 GeV (black).

Figure 4.8.: Complete collision term for MN = 107 GeV. The solid line represents the collision term (4.82)
which sums all finite-temperature contributions, while the dashed line gives the collision term
without the LPM effect. The dotted line finally gives the zero-temperature collision term (4.118).
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4. Thermal production of Majorana neutrinos

Figure 4.9.: Yield of Majorana neutrinos for MN = 107 GeV and |λ| = 10−4. The red lines give the solution
using the finite-temperature collision term (dashed: without LPM effect, solid: with LPM effect)
and the blue line the solution with the zero-temperature collision term. The dotted line gives
the equilibrium yield for comparison.

confirm that.

4.6.4. The yield of Majorana neutrinos

Below we finally show plots of YN (z) and compare with the value Y eqN which would be obtained if the Majorana
neutrinos had already reached thermal equilibrium and which is given by Y eqN = neqN /s where (the factor of
2 takes the spin degrees of freedom into account)

neqN (T ) = 2

∫
d3p

(2π)3
fF (p) =

3ζ(3)

2π2
T 3 (4.120)

with ζ(3) = 1.202. Note that since we consider only the production of Majorana neutrinos with hard mo-
menta and at temperatures where z . 1, we have neglected the mass in the argument of the Fermi function.
For the coupling we take the value |λ| = 10−4 to get concrete numbers. Obviously, the true value of that
coupling is unknown. One can still at least compare solutions e.g. with and without the LPM effect because
the unknown coupling always occurs as on overall factor |λ|2 which is the same for all contributions. As soon
as the yield of Majorana neutrinos exceeds the equilibrium value Y eqN ≈ 0.0039, the approximation to neglect
inverse processes with Majorana neutrinos in the initial state, which we used throughout, breaks down. That
is why we show the solutions only in a very limited temperature range.
We start in figure 4.9 with the solution for a mass of MN = 107 GeV, which we used most of the time. In
this case, the equilibrium yield is already reached at z ≈ 0.2 and the production occurs almost exclusively in
the region where both Higgs decay and 2 ↔ 2 scattering occurs. The suppression due to the LPM effect is
relatively small which means that its inclusion is only necessary if one aims at a precision better than about
10% . The solution using the zero-temperature collision term (4.118) is much smaller, as could already be
expected from looking at figure 4.8, and cannot be trusted.
Slightly more interesting is the case of a heavier Majorana neutrino where the equilibrium yield is reached
later and we also enter the temperature regime where recombination occurs. This is shown in figure 4.10
where the solution is plotted for MN = 108 GeV. We see that the LPM effect only gives a minor correction,
except for small temperatures z ≈ 1 where it gives a relatively large suppression of about 20% and more.
However, in this region O(z) corrections to the scattering contribution become important and might change
the relative suppression noticeably. In lack of a result for the rate due to scattering processes which gives the
full dependence on MN (and therefore z) one cannot at present say whether the correct solution would show
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Figure 4.10.: Yield of Majorana neutrinos for MN = 108 GeV and |λ| = 10−4. The meaning of the curves is
identical to the previous plot.

a stronger or weaker suppression than the one we can see here. Yet, one can already at this stage conclude
that totally ignoring the LPM effect while aiming at quantitative (and not just qualitative) predictions will
certainly introduce an error which is not negligible.
Finally, we see that using the zero-temperature collision term (4.118) gives indeed the correct qualitative
behaviour of the solution, but quantitatively it is inaccurate and underestimates the obtained yield of Ma-
jorana neutrinos. Leaving out finite-temperature effects completely while aiming at quantitative is thus not
the right approach. 19

19Interesting enough, including the LPM effect has however brought the two curves closer together, in particular for z ≈ 1.
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5. Summary and Outlook

Don’t tell me that it’s over, it’s only just begun.
Amy McDonald - Don’t tell me that it’s over

5.1. Summary – what has been done already

In this thesis, we have investigated the thermal particle production rate of right-handed Majorana neu-
trinos, which are an essential ingredient of most successful leptogenesis models, to leading order in the relevant
coupling constants. A central point of the investigation was the inclusion of the Landau-Pomeranchuk-
Migdal (LPM) effect, a coherent quantum phenomenon that constitutes a leading-order contribution to
the production rate. It requires a relatively sophisticated treatment and developing a formalism which is
conceptually more straightforward and more general than the one which was used in [6, 7, 47] to compute
the impact of the LPM effect in thermal photon and gluon production is the main conceptual task performed
in this work.
We started with an analysis of perturbation theory in a thermal bath, using the imaginary-time formalism.
Naive perturbation theory is of very limited use and a reorganization of perturbation theory is often needed.
Diagrams of higher order in the loop expansion turn out to be of the same order in the coupling constant
expansion and a resummation program is needed. We have explicitly described the necessary resumma-
tion at the soft (momentum) scale which leads to the well-known Hard Thermal Loop (HTL) resummation
[23, 26, 27]. In addition, we have studied perturbation theory for hard momenta near the lightcone, which
we have termed lightcone scale. Propagators need to be resummed again which leads to the appearance of
asymptotic masses, while vertices need not be replaced by effective counterparts.
For the study of the self-energy with the external momenta at the lightcone scale, a new class of diagrams
appears which we have called Collinear Thermal Loops (CTL) because the leading-order contribution comes
from loop momenta which are collinear with the external momenta, Pi ·Ki ∼ g2T 2 where g � 1 generically
denotes the relevant set of coupling constants. A resummation of multiloop-diagrams is needed to get the
complete leading-order result. The identification of the complete set of contributions by a purely diagram-
matic analysis was shown to be inefficient and a computation with the help of Feynman diagrams is hopelessly
complicated. Yet, it is possible to compute the CTL self-energy in a relatively simple and transparent way
by breaking the computation in several steps and studying the current (first derivative of the generating
functional) instead of individual diagrams. One first integrates out the background of hard gauge bosons,
which generates the aforementioned asymptotic masses but not the IR divergent thermal widths which are
only generated after soft gauge bosons have been integrated out. One can therefore avoid to deal with the
thermal width from the beginning, which is not the case in the framework that was introduced in [6, 47].
The resulting current, which still contains external soft gauge bosons, satisfies an integral equation that can
be derived with relatively little computational effort. Then in the next step one integrates out also the soft
gauge boson background, which generates thermal widths for the hard particles in the loop, but also ladder
diagrams with soft gauge boson rungs. Both taken together are free of IR and collinear divergences, while the
two individual contributions are not. This procedure thus generates the complete set of contributions to the
CTL self-energy which cannot be given explicitly, but as the solution to an integral equation. The external
particle only needs to be specified at the very end, as soon as one wants to solve the integral equation, and
no explicit reference to it is made in its derivation.
As we have shown explicitly, in order to include the LPM effect in the computation of thermal particle pro-
duction rates, one precisely needs to take the discontinuity of the CTL self-energy. As an application of the
general formalism, we study the thermal production rate of right-handed Majorana neutrinos in the early uni-
verse, as an example how the LPM effect affects the production rate of spin 1/2 fermions. The computation
of that rate is an important intermediate step to a full finite-temperature treatment of thermal leptogenesis
which is still missing to date. The Majorana neutrinos N can on the one hand be produced via the decay
of Higgs bosons or the recombination of Higgs bosons and leptons. Both processes are at leading order sen-
sitive to the LPM effect, provided we focus on high temperatures where MN � T such that the momenta
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of the particles are collinear and at the lightcone scale. They thus require the new general formalism that
was set up in this thesis. In addition we have studied 2 ↔ 2 scattering processes involving external quarks
or external gauge bosons which can also produce the right-handed Majorana neutrinos. While the former
turned out to be straightforward to compute, the latter require more care to obtain IR finite results. None
of those processes has ever been consistently computed within the framework of finite-temperature quantum
field theory. Previous treatments have either ignored corrections due to the thermal bath [56] or they were
only partially included [58]. The presentation here provides for the first time a systematic finite-temperature
approach.
After establishing the relevant equations, we perform numerical studies of the production rate and we com-
pute the obtained yield of Majorana neutrinos by solving the Boltzmann equation, which is greatly simplified
by neglecting both disappearance processes and Pauli blocking/Bose enhancement factors. The results are
then compared to those obtained previously in the literature and we show that neglecting finite-temperature
effects certainly does not lead to correct results. We also show that the LPM effect is indeed numerically
relevant and although it increases the complexity and the required computational effort consideraly, it may
not be omitted if one wants to get accurate results. However, since the most pronounced effect occurs for
temperatures T ≈ MN a more complete analysis which takes the full dependence of the scattering rates on
the Majorana mass into account would be needed to derive more solid conclusions. Yet, already with our
treatment we can show that ignoring the LPM effect introduced an error which is large enough not to be
irrelevant for quantitative predictions.

5.2. Outlook – what can be done next

The work that was performed here is only a starting point and can be generalized and extended in various
ways:

• An immediate extension is to include the results obtained here in a consistent finite-temperature treat-
ment of thermal leptogenesis. A consistent first-principles computation of the resulting lepton asymme-
try is believed to require the usage of nonequilibrium quantum field theory [59, 60, 61, 69]. A consistent
incorporation of gauge interactions in this framework is at present not available and the results obtained
here can be used to improve the recent investigations.

• Because the new approach to the computation of the LPM effect is sufficiently general, we can use
it to study the relevance of the LPM effect in the production of other particles, e.g. Dark Matter
candidates like gravitinos or axinos (see below). This will improve previous treatments [38, 70] that
failed to include the LPM effect and can thus not be expected to provide accurate results.

• From a theoretical perspective, an interesting extension would be to compute not only the discontinuity
of the CTL self-energy as was done here, but to derive full expressions for the CTL n-point functions
with n ≥ 2 and thus develop an effective perturbation theory at the lightcone scale, comparable to
the HTL effective perturbation theory valid at the soft scale. This does not require a completely new
concept because in the first steps of the computation in section 3.3, we in fact only assumed the external
momenta to be lightlike and collinear. Only in the final step we took exactly two momenta to be in
addition hard and all the rest to be soft, but nothing forced us to do so. One could take an arbitrary
finite number n ≥ 2 of external momenta to be hard and after integrating out the soft gauge bosons
one would obtain an equation for the CTL n-point function. While there is no immediately obvious
example where CTL n-point functions with n > 2 would be relevant at leading order, they might be
needed as soon as computations are pushed beyond leading order.
If one attempts at finding an effective Lagrangian that works in the same spirit as (2.42) and gener-
ates CTL n-point functions at 1-loop order, then a conceptually different approach would be needed,
however, since in our approach it is not clear how such an effective lagrangian could be found.

• Finally, all calculations that were performed here are only valid if we have a thermal bath in full equi-
librium. Genuine nonequilbrium situations, as they occur e.g. in heavy-ion collisions, cannot be treated
within the framework that was established here. In order to generalize our equations to nonequilibrium
systems, the first step would be to translate the results from the imaginary-time formalism that was
used here to the real-time formalism which is not restricted to systems in thermal equilibrium.
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5. Summary and Outlook

We finally want to provide a short and qualitative discussion of the second point mentioned above because
it is the subject of currently still ongoing research. At leading order, gravitinos1 are produced via 2 ↔ 2
scattering processes, which contribute at O(g2M−2

Pl ). Decay and recombination processes, e.g. involving a
gluon and a gluino, contribute only at higher order and are O(g4M−2

Pl ). This is easily understood: Since
the interaction is nonrenormalizable and comes from a dimension 6-operator suppressed by M−2

Pl , there must
be two more powers of the momenta in the numerator if we compare e.g. with the results for right-handed
Majorana neutrinos. Because of Lorentz invariance, only the square of one momentum or the scalar product
of two momenta can appear and because all masses are again . gT ,the momenta are at the lightcone scale
and the additional factor gives a g2 suppression compared to the analogous results derived in this thesis. For
gravitinos, the LPM effect thus constitutes a higher-order phenomenon and one might think it is negligible
and not worth the computational effort.
This, however, is not true. In [38], tree-level decay processes of gluons into a gluino and a gravitino were
investigated and it was found that although formally of higher order, they are still numerically relevant
and give sizable corrections that were later on included in phenomenological studies [71]. This is because
numerical prefactors are relative large and the strong coupling constant is not very small even at high
temperatures. Including only tree-level decay processes and neglecting the LPM effect which is of the same
order is not a consistent procedure and the conclusions that were drawn thus need to be checked by a more
complete analysis. Such an analysis should certainly attempt also at studying NLO corrections to the 2 ↔ 2
scattering processes which arise already at O(g3M−2

Pl ) and should be expected as soon as one studies e.g.
the production of soft gravitinos or NLO corrections to the gluon and gluino propagators, while a complete
analysis of the O(g4M−2

Pl ) (NNLO) contributions would be tremendously complicated and might require new
conceptual developments. Studying the NLO corrections together with corrections due to the LPM effect (as
an important subclass of NNLO contributions) is the subject of ongoing studies and results will be presented
in a future publication.

1All the qualitative statements that are made in this paragraph equally apply to axinos, one only has to replace the Planck
mass MPl by the Peccei-Quinn scale fa.
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A. Notation and conventions

’Cos the line between wrong and right is the width of a thread from a spider’s web.
Katie Melua - Spider’s Web

In this first appendix we want to summarize important conventions and explain our notation. We are doing
computations in the imaginary-time formalism of finite-temperature quantum field theory where some of the
usual ’ingredients’ of perturbative computations differ from their zero-temperature counterparts by constant
factors. Therefore one has to be careful not to introduce inconsistencies in the calculation which could lead
e.g. to a wrong sign of certain terms.
We do not perform the calculations in Euclidean space as often done in the literature and in textbooks [9, 10]
but instead in Minkowski space. We use a metric with signature (+,−,−,−), such that for on-shell particles
P 2 = +m2 and the denominator of a propagator takes the form P 2 − m2, where p0 = iωn with discrete
Matsubara frequency ωn. As one can see here, four-momenta are labelled by capital letters whereas their
components are referred to by small letters; in particular, p = |~p|.
Now we describe important relative factors between the imaginary-time expressions and their zero-temperature
QFT counterparts. They appear because the action becomes

S =

∫

d4xL → −i
∫ β

0

dτ

∫

d3xL (A.1)

with imaginary time τ = it and the lagrangian L like at T = 0. The additional factor of −i has two immediate
consequences:

• Compared to their zero-temperature counterparts, vertex factors get an additional factor −i,

• For propagators, which are given by the inverse of the quadratic part of the action, the relative factor
compared to the zero-temperature form is +i.

The second point explains why in this thesis, propagators do not have the usual factor i in the numerator,
but rather −1, as e.g. in (2.8). This also has an important consequence for the self-energy: It is given by
(−1) times the Feynman diagrams. In order to understand this, one has to use the well-known formula for
the geometric series:

−1

P 2 −Π
= −

(
1

P 2
+

1

P 2
Π

1

P 2
+

1

P 2
Π

1

P 2
Π

1

P 2
+ . . .

)

=
−1

P 2
+

−1

P 2
(−Π)

−1

P 2
+

−1

P 2
(−Π)

−1

P 2
(−Π)

−1

P 2
+ . . .

(A.2)
For the vertex factors, one can look in any textbook on zero-temperature QFT (e.g. [8]) and only has to
multiply with −i. For the vertices involving gauge bosons, there is one final convention that has to be fixed,
which concerns the covariant derivative. We choose it always with a minus sign, 1

Dµψ = (∂µ − igAaµt
a)ψ. (A.3)

In this case, the fermion-antifermion-gauge boson vertex is always positive:

eiS = ei(−i)
∫

β
0

dτ
∫
d3x(iψ̄�Dψ) ⇒ vertex factor i(−i)i(−ig) = +g

The same applies to scalar-gauge boson vertices since they involve i(−i)|Dµφ|2 which is again positive.

1Note that in [8] the conventions are different for abelian gauge bosons which have a +ieAµ and nonabelian gauge bosons which
have a −igAa

µt
a. Especially in chapter 4 it would be inconvenient to use such different conventions because both abelian and

nonabelian external gauge bosons occur.
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B. Finite-temperature propagators

I’ll be marching through the morning,
marching through the night,
moving ’cross the borders,
of my secret life
Leonard Cohen - In my secret life

In this appendix we will study the finite-temperature resummed propagators for scalars, spin 1/2-fermions
and gauge bosons including all 1-loop self-energy insertions. We do this both for soft as well as hard and
lightlike external momenta.

B.1. Scalar propagator and asymptotic thermal mass

We start with the resummed scalar propagator, which in this thesis we will need only for the case of a hard
and lightlike external momentum. Still we will easily be able to point out the result for a soft external
momentum and show explicitly that for scalars, the obtained thermal masses coincide. We will specify the
computation to the self-energy of a Higgs boson because it is relevant for the computation in chapter 4.
The resummed scalar propagator can be written as

∆(K) =
−1

K2 −Π(k0, ~k)
. (B.1)

We need the self-energy Π(k0, ~k) at 1-loop level to determine the resummed propagator. As already explained

in the main text (equation (2.44)), we can parametrize it with two quantities, the thermal width Γφ(k0, ~k)
and the thermal mass mφ. Focusing on hard loop momenta, the self-energy is expected to be purely real and
just give the asymptotic mass mφ. The explicit computation will indeed show that for hard loop momenta
the imaginary part vanishes and therefore also the thermal width. In the language of section 3.3, the thermal
width is only generated by integrating out gauge bosons, fermions and scalars with soft momenta and therefore
it never appears explicitly in 3.3. The same is true for the fermions and gauge bosons treated in the following
sections.
The interaction lagrangian for the Higgs boson in the early universe with unbroken gauge symmetry is given
by

Lint = Λ(φ†φ)2 + |Dµφ|2 +




∑

f=l,q

λf f̄PLφf + h.c.



 (B.2)

where the sum runs over all fermions (both leptons and quarks) and the covariant derivative (for hypercharge
Y = 1/2) is given by

Dµ = ∂µ − igW
σa

2
W a
µ − i

gY
2
Bµ (B.3)

with the Pauli matrices σa.
There are several one-loop diagrams that contribute to the self-energy of the Higgs boson, as shown in figure
B.1. We start with the easiest contribution including the Higgs self-coupling, which is given by

−Πφ(k0, ~k) = 6T
∑

q0

∫
d3q

(2π)3
∆(Q). (B.4)

In order to get the overall multiplicity right, one has to take care that the field φ is a SU(2) doublet (φ)i, i = 1, 2
and count the number of possible Wick contractions in an expression containing the field structure

φ†iφj(φ
†
kφk)(φ

†
l φl).
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B. Finite-temperature propagators

1 loop

−Π =

+

+

+

Figure B.1.: One-loop Higgs self-energy

It is indeed found to be six:

δikδjlδkl + δilδjkδkl + δikδjkδll + δilδjlδkk = 6δij

The sum-integral is of course easily performed using (2.18) and we are left with

Πφ(k0, ~k) =
Λ

2
T 2. (B.5)

This holds exactly and is independent of the external momentum K.
Now we turn to the gauge boson contribution. For simplicity, we work in Feynman gauge where the gauge
boson propagator reads

∆ab
µν(Q) = −gµνδab∆(Q). (B.6)

The sum of both diagrams leads to the expression

−ΠV (k0, ~k) = g2V t
a
V t

b
V T
∑

q0

∫
d3q

(2π)3

[

(2K −Q)µ∆ab
µν(Q)(2K −Q)ν∆(K −Q) +

1

2
· (−2gµν)∆ab

µν(Q)

]

(B.7)
where the factor 1/2 is again a symmetry factor. We have chosen a compact notation where V denotes
either a SU(2) or a U(1) gauge boson and gV , tV denote the corresponding coupling constant and generator
matrices, respectively. Using (B.6), this simplifies to

−ΠV (k0, ~k) = g2V C2(r)T
∑

q0

∫
d3q

(2π)3
[
4∆(Q)− (2K −Q)2∆(K −Q)∆(Q)

]
(B.8)

with Casimir invariant C2(r).
Now we consider a hard and lightlike external momentum K. Writing

(2K −Q)2 = 2K2 −Q2 + 2(K −Q)2,

we get

ΠV (k0, ~k) = −g2V C2(r)T
∑

q0

∫
d3q

(2π)3
[
2∆(Q)− 2K2∆(Q)∆(K −Q) + ∆(K −Q)

]
. (B.9)

The term proportional to K2 can be neglected1 and the result reads

ΠV (k0, ~k) = −g2V C2(r)T
∑

q0

∫
d3q

(2π)3
[2∆(Q) + ∆(K −Q)] =

g2V C2(r)

4
T 2. (B.10)

Had we considered a soft external momentum instead, then (2K −Q)2 ≈ Q2 and we would have got

ΠV (k0, ~k) = −g2V C2(r)T
∑

q0

∫
d3q

(2π)3
[4∆(Q)−∆(K −Q)] (B.11)

1If one wants to be very precise then one should first do the thermal sum, perform the analytical continuation to real values
and only then argue that certain terms are suppressed. This is overly pedantic however because it is clear that this part will
remain proportional to K2 which, after the analytical continuation of k0 to the real axis, is of order g2T 2. Such terms will
then always be immediately dropped to avoid unnecessary computations of thermal sums.

77



B. Finite-temperature propagators

which leads to the same result.
Finally, we must take the diagram with a fermion loop into account. Defining Nc, l = 1, Nc,q = 3 as the
number of “colors”, we get

−Πf (k0, ~k) = −λ2fNc,fT
∑

q̃0

∫
d3q

(2π)3
Tr[PL��Q(��Q −��K)]∆(Q)∆(Q −K) (B.12)

with a minus sign from the closed fermion loop. The trace gives a contribution of

Tr[PL��Q(��Q−��K)] = 2Q · (Q−K) = Q2 + (Q −K)2 −K2

and the expression for the self-energy becomes

−Πf (k0, ~k) = −λ2fNc,fT
∑

q̃0

∫
d3q

(2π)3
[∆(Q) + ∆(Q−K)−K2∆(Q)∆(Q −K)]. (B.13)

Again, we may neglect the term proportional to K2 and we are left with

Πf (k0, ~k) = λ2fNc,fT
∑

q̃0

∫
d3q

(2π)3
[∆(Q) + ∆(Q −K)] = λ2fNc,f

T 2

12
, (B.14)

where the sum over half-integer Matsubara frequencies introduces a factor of -2 compared to the bosonic
sum-integral considered before, as one can see in (2.27). In the HTL approximation, the trace would give
just 2Q2 and the result would be

Πf (k0, ~k) = 2λ2fNc,fT
∑

q̃0

∫
d3q

(2π)3
∆(Q −K) (B.15)

which once more leads to the same result as for hard and lightlike momenta.
To finally get the thermal mass, we must add up all contributions. We neglect the contribution due to all
fermions except for the top quark because the other Yukawa couplings are too small to be relevant. The
Casimir invariants are easily computed:

tY =
1

2
1 ⇒ C2(rY ) =

1

4
(B.16)

taW =
1

2
σa ⇒ C2(rW ) =

3

4
(B.17)

This leads to the final expression

m2
φ =

8Λ + 4λ2t + 3g2W + g2Y
16

T 2. (B.18)

B.2. Fermion propagator

In this section we deal with the resummed fermion propagator both for soft and for hard and lightlike external
momenta. In contrast to the scalar case treated before, the masses in those two different kinematical regimes
will turn out to be different and for a soft external momentum we will also find a momentum-dependent
self-energy leading to the HTL fermion propagator (2.31).

B.2.1. The resummed finite-temperature fermion propagator

We start with general considerations about the resummed fermion propagator at finite temperature. The
general expression is

S(P ) =
−1

�P − Σ(p0, ~p)
(B.19)

with the self-energy Σ(p0, ~p) which is considered at one-loop level like for the scalar case treated previously.
We can make an ansatz [72]

Σ(p0, ~p) = ã(p0, ~p)�P + b̃(p0, ~p)�u (B.20)
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B. Finite-temperature propagators

where uµ is the four-velocity of the plasma. We perform the calculation in the plasma rest frame where
uµ = (1,~0) and the expression simplifies to

Σ(p0, ~p) = ã(p0, ~p)�P + b̃(p0, ~p)γ
0. (B.21)

The inverse propagator is thus given by

−S−1(P ) = (1− ã(p0, ~p))�P − b̃(p0, ~p)γ
0. (B.22)

The propagator itself can be written as

−S(P ) = (1− ã(p0, ~p))�P − b̃(p0, ~p)γ
0

D
(B.23)

where the denominator D is determined by S−1(P )S(P ) = 1. Explicitly, we get

−S(P ) = (1− ã(p0, ~p))�P − b̃(p0, ~p)γ
0

(1− ã(p0, ~p))2P 2 + b̃2(p0, ~p)− 2b̃(p0, ~p)(1 + ã(p0, ~p))p0
. (B.24)

Up to now we have been completely general, but now we want to consider the two specific cases that we need:
hard lightlike momenta (P ∼ T, P 2 ∼ g2T 2) and soft momenta (P ∼ gT ).

B.2.2. Propagator for lightlike momenta, asymptotic thermal mass

We start with the case that the momentum P is hard and lightlike. We need not keep all the terms in
(B.24) if we are just interested in the leading order expression. Since Σ(p0, ~p) ∼ g2T , we have (from (B.21))
ã(p0, ~p) ∼ g2 � 1 and we may replace (1− ã(p0, ~p)) by 1. The other coefficient is of the order b̃(p0, ~p) ∼ g2T
and the terms linear in b̃(p0, ~p) cannot be neglected but b̃2(p0, ~p) can. In the denominator this is obvious
because P 2 ∼ g2T 2. In the numerator, it is less obvious but from taking traces with other quantities one
may encounter terms that go like�P 2 = P 2 ∼ g2T 2 and therefore it is necessary to keep the additional term
in the numerator. Therefore, we use the approximate propagator

S(P ) ≈ (�P − b̃(p0, ~p)γ
0)∆(P ) (B.25)

with

∆(P ) =
−1

P 2 − 2b̃(p0, ~p)p0
. (B.26)

As for scalars, we should reproduce the standard form

∆(P ) =
−1

(p0 + iΓ)2 − ~p2 −m2
∞

(B.27)

which fixes b̃(p0, ~p):

b̃(p0, ~p) =
m2

∞
2p0

− iΓ(p0, ~p). (B.28)

As for scalars, we have imposed Γ2 � m2
∞. The real part of b̃(p0, ~p) is then connected to the asymptotic

thermal mass which we denote here by m∞ and the imaginary part gives the thermal width. However, as
for scalars, the width is due to the interaction with soft gauge bosons and does therefore not appear in the
propagators used in section 3.3. The subsequent explicit computation will also show that b̃(p0, ~p) is purely
real.
Taking the above into account, the fermion propagator can then be written as

S(P ) = −
�P − m2

∞

2p‖
γ0

P 2 −m2
∞
. (B.29)

where we set p0 = p‖ and dropped higher-order corrections.
For the recursion relations in section 3.3.3, it will prove convenient to rewrite this expression. First of all,
one can notice that since chiral symmetry is left unbroken, we may consider left- and right-handed fermions
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B. Finite-temperature propagators

separately. We then choose to consider only left-handed fermions; for photon production where both chiralities
contribute, we have to multiply by 2 at the end. Focusing on one chirality allows to replace γµ by σµ and
use two-component Weyl spinors. If the term m2

∞/2p‖ σ
0 would not appear, we could immediately write the

numerator in the convenient form σ · P . In order to write the numerator in this simple form, we define

P̃ =

(

p0 − m2
∞

2p‖

~p

)

(B.30)

which allows us to write

S(P ) = − σ · P̃
P 2 −m2

∞
. (B.31)

Now we can introduce a Weyl spinor η(P̃ ) as a normalized eigenspinor of ~σ · p̂ with negative eigenvalue and
another such Weyl spinor χ(P̃ ), only with positive eigenvalue. Since σ0 is diagonal, they are also eigenspinors
of σ · P̃ :

σ · P̃ η(P̃ ) = (p̃0 + |~p|)η(P̃ ); σ · P̃χ(P̃ ) = (p̃0 − |~p|)χ(P̃ ) (B.32)

It is now crucial, that the eigenvalue of χ(P̃ ) is zero (up to corrections of order O(g4T )), because P̃ 2 = 0 2,
whereas P 2 ∼ g2T 2 and the same type of reasoning that we use here would fail if the spinors would depend
on P . But then we can write

σ · P̃ = (p̃0 + |~p|)η(P̃ )η†(P̃ ) +O(g4T ) = 2|~p|η(P̃ )η†(P̃ ) +O(g4T ), (B.33)

i.e. we represent the matrix σ · P̃ in the basis of its eigenspinors and neglect the g4T contribution due to
χ(P̃ ). The asymptotic fermion propagator can then finally be written as

S(P ) = 2|~p|η(P̃ )η†(P̃ )∆(P ) = η(P̃ )η†(P̃ )D(P ) (B.34)

where at leading order, we have set |~p| = p‖ and we used (3.50).

As shown in section 3.3.3, the difference between P and P̃ is irrelevant for the recursion relations because
the soft vertex factors are always needed to order T , whereas the difference p0 − p̃0 ∼ g2T . There we may
thus set P̃ → P . For the trace over the fermion propagators, however, it is crucial not to leave out these
g2T corrections since due to the collinearity all contributions to the trace turn out to be of that order. This
means that the hard vertex factor Φ must be computed using P̃ and not P .

Asymptotic thermal mass

The asymptotic thermal mass m∞ still has to be determined, which means that we have to compute the
coefficient b̃(p0, ~p) explicitly. To determine it, we first define the traces (the factors of 1/4 are inserted for
convenience)

T1 ≡
1

4
Tr[�PΣ(p0, ~p)] (B.35)

T2 ≡
1

4
Tr[γ0Σ(p0, ~p)]. (B.36)

With the help of (B.21), we easily find that T1 = ã(p0, ~p)P
2 + b̃(p0, ~p)p

0 and T2 = ã(p0, ~p)p
0 + b̃(p0, ~p). This

gives a 2x2 system of linear equations for the unknown functions ã(p0, ~p) and b̃(p0, ~p) with the solution

ã(p0, ~p) =− 1

|~p|2 (T1 − p0T2) (B.37)

b̃(p0, ~p) =
1

|~p|2 (p
0T1 − P 2T2). (B.38)

Since P 2 ∼ g2T 2, the second term in (B.38) can be omitted and we only need to compute T1 using the
one-loop self-energy given in figure B.2. We use Feynman gauge (B.6) again and the self-energy is given by

2A subtlety arises here when we look at the two-point function where we have to perform a thermal sum and we get two different
pole contributions. Apparently, our reasoning only works for the pole coming from ∆(P ), whereas the other propagator gives
a different value for p0 and p̃0 − |~p| seems not to vanish any longer but rather get a nonzero g2T contribution. However, this

potentially harmful difference in the pole locations is nothing else but the quantity ε(P,~k) defined in (3.52). Due to (3.56)
we know that the discontinuity w.r.t. p0 that we need for the computation of the production rate will be proportional to
δ(ε(P,~k)) which means that p̃0 − |~p| still vanishes and the reasoning we applied here is indeed correct, provided we look only
at the discontinuity of the self-energy.
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B. Finite-temperature propagators

−Σ(P ) =
P PP −K

K

Figure B.2.: One-loop fermion self-energy

Σ(P ) = g2C2(r)T
∑

k0

∫
d3k

(2π)3
γµ(�P −��K)γµ∆(K)∆(P −K). (B.39)

Then we have

T1 = −g
2

2
C2(r)T

∑

k0

∫
d3k

(2π)3
Tr[�P (�P −��K)]∆(K)∆(P −K) (B.40)

and with the help of

Tr[�P (�P −��K)] = 4(P 2 − P ·K) = 2(P 2 + (P −K)2 −K2),

we can rewrite this as

T1 = −g2C2(r)T
∑

k0

∫
d3k

(2π)3
[
P 2∆(K)∆(P −K) + ∆(K)−∆(P −K)

]
. (B.41)

The first term is non-leading since P 2 ∼ g2T 2 and for the other two we can use the standard results (2.18)
and (2.27) again. Then we get from (B.38) the following result:

b̃(p0, ~p) =
p0

|~p|2 g
2C2(r)

T 2

8
(B.42)

From (B.28) and (B.42) we obtain, using that for lightlike momenta the difference between 1 and (p0)2/|~p|2
is

1− (p0)2

|~p|2 =
P 2

|~p|2 ∼ g2

and therefore negligible, finally the value of the asymptotic mass:

m2
∞ =

g2C2(r)T
2

4
(B.43)

Since C2(r) = 1/4 for the gauge group U(1) and C2(r) = 3/4 for the gauge group SU(2), we get as asymptotic
thermal lepton mass in total

m2
`,∞ =

3g2W + g2Y
16

T 2. (B.44)

B.2.3. HTL fermion propagator and HTL mass

Now we redo the computation assuming the external momentum P to be soft. In this case, we have to use
the full expression (B.24) since Σ(p0, ~p) ∼ gT and therefore ã(p0, ~p) = O(1) and b̃(p0, ~p) ∼ gT , such that no
term is negligible and we need to compute both traces T1,2. The result for T1 remains unchanged, i.e.

T1 =
g2C2(r)T

2

8
≡ m2

` (B.45)

where we have introduced the HTL thermal mass m` which will prove convenient later on. Although it
appears somehow arbitrary at this stage, it is reasonable to define the HTL thermal mass exactly that way
(and not e.g. larger by a factor of 2) because it turns out that in the limit ~p → 0, the HTL propagator
reduces to the form of a bare fermion propagator with mass m`. It is important to note that due to that
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B. Finite-temperature propagators

definition, it is in contrast to scalar particles different from the asymptotic thermal mass (B.44) by a factor
of

√
2!

For T2 we obtain from (B.39) the following thermal sum-integral to be performed:

T2 = −2g2C2(r)T
∑

k0

∫
d3k

(2π)3
(p0 − k0)∆(K)∆(P −K) ≈ 2g2C2(r)T

∑

k0

∫
d3k

(2π)3
k0∆(K)∆(P −K),

The thermal sum we need here is given by (2.24) with p0 ↔ k0 and fB(E2) → −fF (E2):

T
∑

k0

∫
d3k

(2π)3
k0∆(K)∆(P −K) = −

∫
d3k

(2π)3
1

4E2

[

(1 + fB(E1)− fF (E2))

(
1

p0 − E1 − E2
+

1

p0 + E1 + E2

)

−(fB(E1) + fF (E2))

(
1

p0 + E1 − E2
+

1

p0 − E1 + E2

)]

(B.46a)

In order to proceed, we need to extract the leading-order contribution. First of all,

E1 = k,E2 = |~p− ~k| =
√

k2 − 2kp cosϑ+ p2 ≈ k − p cosϑ (B.47)

since in the HTL approximation p/k � 1 and masses for the particles inside the loop would only give
higher-order corrections which we drop. From this also follows after a Taylor expansion

fB(E1) = fB(k), fF (E2) = fF (k)− p cosϑ
dfF (k)

dk
. (B.48)

In addition,
1

p0 − E1 − E2
+

1

p0 + E1 + E2
=

1

p0 − 2k
+

1

p0 + 2k
= − p0

2k2
∼ g

T

is subleading compared to

1

p0 + E1 − E2
+

1

p0 − E1 + E2
=

1

p0 + p cosϑ
+

1

p0 − p cosϑ
∼ 1

gT
.

Therefore we only need to take the term multiplying the sum of the two distribution functions into account.
Then we simply get

T2 = 2g2C2(r)

∫
d3k

(2π)3
fB(k) + fF (k)

4k

(
1

p0 + p cosϑ
+

1

p0 − p cosϑ

)

. (B.49)

The only remaining task is to evaluate the integrals. The two terms in the bracket can be combined by
replacing cosϑ→ − cosϑ in the second term. We then finally obtain

T2 =
g2C2(r)T

2

8p
Q0(x) (B.50)

with x ≡ p0/p and the Legendre function of the second kind, Q0(x) ≡ 1
2 ln

x+1
x−1 .

With the solutions at hand, we obtain for the two coefficients ã(p0, ~p), b̃(p0, ~p) the following expressions:

ã(p0, ~p) =
m2
`

p2
(1 − xQ0(x)), b̃(p0, ~p) = −m

2
`

p
(x + (1− x2)Q0(x)) (B.51)

Instead of blindly inserting this into (B.24) which produces rather tedious expressions, it is much easier to
reproduce the standard textbook result for the self-energy first, which can be written as

Σ(p0, ~p) = (ap0 + b)γ0 − a~γ · ~p = m2
`

p

[
Q0(x)γ

0 + (1− xQ0(x))~γ · p̂
]
. (B.52)

The inverse propagator (B.22) then becomes

−S−1(P ) = A0γ
0 −AS~γ · p̂ (B.53)
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where we adopted the notation from [9] with

A0 ≡ p0 − m2
`

p2
(1− xQ0(x)), AS ≡ p+

m2
`

p
(1− xQ0(x)). (B.54)

To show that the fermion propagator can indeed be written in the conventional form (2.31), one only needs
to multiply with the inverse propagator determined above and define (2.32) as ∆±(P ) ≡ (A0 ∓AS)

−1. With
some basic Dirac algebra one can easily prove that this particular form of the fermion propagator is indeed
equivalent to the one that was explicitly calculated here.

B.3. Gauge boson propagator

Finally we have to address the gauge boson propagator at finite temperature. Its tensor structure is in
general much more complicated than at zero temperature and to avoid unnecessary complications, we will
immediately focus on covariant gauges and go to the plasma rest frame: 3

∆µν(K) = PTµν∆T (K) + PLµν∆L(K) + ξ
KµKν

K2
∆(K) (B.55)

with scalar (timelike) propagator ∆(K), the longitudinal/transverse propagators

∆T (K) =
−1

K2 −ΠT (k0, ~k)
(B.56)

∆L(K) =
−1

K2 −ΠL(k0, ~k)
(B.57)

with the corresponding self-energies and finally the transverse and longitudinal projectors

PTij = δij − k̂ik̂j ;P
T
µ0 = 0

PLµν =
KµKν

K2
− gµν − PTµν .

In order to compute the resummed gauge boson propagator at a given order in perturbation theory, we first
define the polarization tensor

Πµν(k0, ~k) ≡ ∆−1
µν (K)−∆−1

µν,0(K) (B.58)

where the index 0 indicates the free propagator and the inverse propagators are defined by ∆µα∆−1
αν = gµν .

The polarization tensor has the same tensor structure as the propagator (B.55), only in addition it obeys the
Ward identity KµΠµν(K) = 0 which is only consistent if we can write

−Πµν(k0, ~k) = ΠT (k0, ~k)P
T
µν +ΠL(k0, ~k)P

L
µν . (B.59)

This explains why there are only two self-energy functions and the gauge-dependent term in (B.55) receives
no self-energy corrections.4

As soon as we have found an expression for the polarization tensor, we can then use (B.59) to determine the
transverse and longitudinal self-energy. By setting either µ = ν = 0 or by contracting with PTij , it is simple
to deduce from (B.59) the following explicit representations:

ΠL(k0, ~k) =− K2

k2
Π00(k0, ~k), (B.60)

ΠT (k0, ~k) =− 1

2
(δij − k̂ik̂j)Πij(k0, ~k) (B.61)

The task is now to compute Π00 and Πij . There are in total six one-loop diagrams that contribute, as shown
in figure B.3, two with scalar loops, two with gauge boson loops and one with ghost or fermion loop each.

3A very general discussion of gauge boson propagators at finite temperature for arbitrary plasma four-velocity uµ and for a
wide class of gauge fixing conditions can be found in [73].

4Note that at T = 0, things are even easier since ΠL = ΠT and the tensor structure is given by gµν − KµKν

K2 , but at finite
temperature, both self-energies are independent functions and need not be the same.
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−Πµν(K) =

1

(a)

+

(b)

+

(c)

+

(d)

+

(e)

+

(f)

Figure B.3.: One-loop gauge boson polarization tensor

B.3.1. HTL gauge boson propagator

Now we do the concrete calculation for a soft external momentum K ∼ gT . We go through all contributions
separately, labelling them with letters (a)-(f) as indicated in figure B.3 and using Feynman gauge for gauge
boson propagators.
The tadpole diagram gives a contribution of

−Π(a)
µν (k0,

~k) =
g2

2
T
∑

q0

∫
d3q

(2π)3
(−gρσ∆(Q))δcd

[
facef bde(gµνgρσ − gµσgνρ) + fadef bce(gµνgρσ − gµρgνσ)

]

(B.62)
where we have left out the term containing f cde because its contraction with δcd vanishes. The prefactor 1/2
is a symmetry factor. We can now simplify the expression above using

δcdfacef bde = facef bce = C2(r)δ
ab; δcdfadef bce = facef bce = C2(r)δ

ab.

Then we get, after performing the contraction of metric tensors,

Π(a)
µν (k0,

~k) = 3g2C2(r)δ
abgµνT

∑

q0

∫
d3q

(2π)3
∆(Q). (B.63)

We now turn to the second diagram involving the three gauge boson-vertex. The related vertex factor can be
simplified because we may neglect the external momentum K w.r.t. to the hard loop momentum Q. When
writing down the two vertex factors, it is important to pay attention to all momenta being incoming which
introduces some additional minus signs. Then we obtain (there is again a symmetry factor of 1/2)

−Π(b)
µν (k0,

~k) =
g2

2
facdf bcdT

∑

q0

∫
d3q

(2π)3
∆(Q)∆(Q−K) [2Qµgρσ −Qρgµσ −Qσgµρ] [Q

ρgσν +Qσgρν − 2Qνg
ρσ] .

(B.64)
The contraction of the structure constants gives the same result as for the tadpole diagram, only with an
additional minus sign due to the antisymmetricity of f bcd. Contracting the metric tensors finally results in

Π(b)
µν (k0,

~k) = −g2C2δ
abT

∑

q0

∫
d3q

(2π)3
(Q2gµν + 5QµQν)∆(Q)∆(Q −K). (B.65)

Now we turn to the diagrams with scalar loops. The tadpole diagram gives

−Π(c)
µν (k0,

~k) =
1

2
· (−2g2gµν)Tr[t

atb]NST
∑

q0

∫
d3q

(2π)3
∆(Q) (B.66)

where NS denotes the number of scalars that contribute and we have a symmetry factor 1/2 again. The trace
over the generator matrices simply gives

Tr[tatb] =
1

2
δab
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and we get

Π(c)
µν (k0,

~k) = g2gµνδ
abNS

2
T
∑

q0

∫
d3q

(2π)3
∆(Q). (B.67)

The second diagram with a scalar loop contributes

Π(d)
µν (k0,

~k) = −2g2δab
NS
2
T
∑

q0

∫
d3q

(2π)3
QµQν∆(Q)∆(Q −K) (B.68)

where we used the approximation (2Q−K)µ(2Q−K)ν ≈ 4QµQν and there is once more a symmetry factor
of 1/2.
Finally, there is only one contribution with scalar propagators left, the ghost diagram (e):

−Π(e)
µν (k0,

~k) = −g2facdf bcdT
∑

q0

∫
d3q

(2π)3
QµQν∆(Q)∆(Q −K). (B.69)

The external momentum was again neglected w.r.t. Q. Note that there is an additional minus sign due to
the loop over anticommuting fields. Contracting the structure constants finally gives

Π(e)
µν (k0,

~k) = g2C2δ
abT

∑

q0

∫
d3q

(2π)3
QµQν∆(Q)∆(Q −K). (B.70)

Finally we have to deal with the fermion loop. Denoting by Nf the number of fermion flavours, we get (again
there is an additional minus sign due to the closed fermion loop)

−Π(f)
µν (k0,

~k) = −g2Nf Tr[tatb]T
∑

q̃0

∫
d3q

(2π)3
Tr[γµ��Qγν(��Q −��K)]∆(Q)∆(Q −K) (B.71)

Now Tr[γµ��Qγν(��Q −��K)] ≈ Tr[γµ��Qγν��Q] = −4(Q2gµν − 2QµQν) and therefore

Π(f)
µν (k0,

~k) = −2g2Nfδ
abT

∑

q̃0

∫
d3q

(2π)3
(Q2gµν − 2QµQν)∆(Q)∆(K −Q). (B.72)

The complete one-loop HTL contribution to the gauge boson self-energy then is

Πµν(k0, ~k) = 2g2δab

[(

C2(r) +
NS
4

)

T
∑

q0

∫
d3q

(2π)3
(Q2gµν − 2QµQν)∆(Q)∆(Q −K)

−NfT
∑

q̃0

∫
d3q

(2π)3
(Q2gµν − 2QµQν)∆(Q)∆(K −Q)



 .

(B.73)

We now need to extract the HTL part of the sum-integrals. What we need for (B.60) and (B.61) is the HTL

part of I00 and 1
2 (δ

ij − k̂ik̂j)Iij (and the corresponding quantities with fermion propagators) where

Iµν ≡ −T
∑

q0

∫
d3q

(2π)3
(Q2gµν − 2QµQν)∆(Q)∆(Q −K) (B.74)

Using (2.18), we can rewrite this as

Iµν =
T 2

12
gµν + 2T

∑

q0

∫
d3q

(2π)3
QµQν∆(Q)∆(Q −K). (B.75)
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For the remaining sum-integrals, we use (2.22) and (2.25). We then obtain

I00 =

∫
d3q

(2π)3
E1

2E2

[

(1 + f1 + f2)

(
1

k0 − E1 − E2
− 1

k0 + E1 + E2

)

+(f1 − f2)

(
1

k0 + E1 − E2
− 1

k0 − E1 + E2

)]

+
T 2

12
(B.76)

Iij =

∫
d3q

(2π)3
qiqj

2E1E2

[

(1 + f1 + f2)

(
1

k0 − E1 − E2
− 1

k0 + E1 + E2

)

+(f1 − f2)

(
1

k0 + E1 − E2
− 1

k0 − E1 + E2

)]

+
T 2

12
δij (B.77)

where fi ≡ fB(Ei). The analogous results with fermion propagators are obtained as usual by replacing
fB → −fF .
We now separately extract the HTL contribution to the transverse and the longitudinal part.

Transverse self-energy

We first approximate the expression for Iij in the same way as we did in section B.2.3 for the HTL fermion
propagator by setting

E1 = q, E2 = q − k cosϑ; f1 = fB(q), f2 = fB(q)− k cosϑ
dfB(q)

dq
.

where cosϑ ≡ k̂ · q̂. Then we can write Iij as

Iij =
T 2

12
δij+

∫
d3q

(2π)3
qiqj
2q2

[

(1 + 2fB(q))

(
1

k0 − 2q
− 1

k0 + 2q

)

+ k cosϑ
dfB(q)

dq

(
1

k0 + k cosϑ
− 1

k0 − k cosϑ

)]

.

Dropping higher order corrections and temperature-independent terms, this simplifies to

Iij =
T 2

12
δij +

∫
q2dqdΩ

(2π)3
q̂iq̂j

[
k cosϑ

k0 + k cosϑ

dfB(q)

dq
− fB(q)

q

]

(B.78)

Performing the radial integral and contracting with 1
2 (δ

ij − k̂ik̂j) because of (B.61) gives

1

2
(δij − k̂ik̂j)Iij =

T 2

12

[

1− 1

8π

∫

dΩ(1− cos2 ϑ)

(

2
cosϑ

x+ cosϑ
+ 1

)]

(B.79)

where x ≡ k0/k. Looking at (B.78) where radial and angular integrations are completely decoupled, it is
easy to see that the result with fermion propagators where we have −fF instead of fB will give the same
result, up to a global factor of −1/2 due to the radial integral. Then it is easy to deduce the final result for
the transverse self-energy after performing the final angular integral and inserting the result into (B.73):

ΠT (k0, ~k) = m2
Dx[(1 − x2)Q0(x) + 1], x =

k0

k
(B.80)

with Debye mass

m2
D =

g2T 2

6

(

C2(r) +
Nf
2

+
Ns
4

)

(B.81)

and the usual Legendre function of the second kind Q0.

Longitudinal self-energy

Now we can treat I00 the same way. Without further explanation, we can write down the analogue of (B.78):

I00 =
T 2

12
+

∫
q2dqdΩ

(2π)3

[
k cosϑ

k0 + k cosϑ

dfB(q)

dq
− fB(q)

q

]

(B.82)
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Again, radial and angular integrations are decoupled and changing fB → −fF will only introduce an overall
factor of −1/2. After doing the radial integrals, we are left with

I00 =
T 2

12

[

1− 1

4π

∫

dΩ

(

2
cosϑ

x+ cosϑ
+ 1

)]

.

Performing the angular integrals, inserting into (B.73) and multiplying with K2/k2 from (B.60) gives the
final result

ΠL(k0, ~k) = −m
2
DK

2

k2
(1− xQ0(x)), x =

k0

k
(B.83)

with the Debye mass as defined in (B.81).

B.4. Proof of (3.56)

Here we finally want to prove (3.56) which lies at the heart of the recursion relation formulated in section 3.3.
We will approximate the propagators immediately here, even before performing the thermal sum, although
this strictly speaking undermines the power counting arguments that were used to isolate the leading order
terms. We will comment below why this is still possible.
We use the lightcone components already introduced in section 2.3.3 and write the propagators as5

∆(K) =
−1

k+k− − ~k2⊥ −m2
(B.84)

and the same for ∆(K −P ), only eventually with a different mass. Since k− ∼ g2T , we have to leading order
k+ ≈ 2k‖ ∼ T , since we may replace k0 by k‖, up to higher order corrections. Then we simply write

∆(K) =
1

2k‖

−1

k− − ~k2⊥+m2

2k‖

=
1

2k‖
D(K). (B.85)

Of course, we have ’lost’ one pole that would contribute to the thermal sum and at first sight the procedure
of approximating the propagators before performing the thermal sum appears dubious. However, the second
pole arises when k+ = 0, which would give k− = −2k‖ ∼ T . The second propagator would then behave
like T−2 instead of (gT )−2, which means that two powers of g would be missing in total and the expression
would be suppressed by g2 compared to the leading order result we are interested in. This means that we
may neglect this additional pole contribution and use the approximate form (B.85), which has only one pole
left. The same argument applies to ∆(K − P ) which can be approximated the same way.
With this in mind, it is now very simple to prove (3.56). The product of the propagators is given by

D(K)D(K − P ) =
1

ab

where a ≡ k− − ~k2⊥+m2
1

2k‖
, b ≡ k− − p− − (~k⊥−~p⊥)2+m2

2

2(k‖−p‖) . The only thing that remains is to use the partial

fractioning
1

ab
=

1

a− b

(
1

b
− 1

a

)

.

Then (3.56) is already proved and it is also clear that the quantity ε(K, ~p) is just the difference of the pole
locations of the two propagators.
Note that we could have used the same type of reasoning to provide a shortcut for the computation of the
two-point function in section 3.3.2 and it is easy to see that we would have obtained the same result. We
chose not to do so in order to show explicitly that a more careful calculation where we do perform the thermal
sum leads to the same result which strengthens the confidence in the procedure used here. For the recursion
relation, we do not want to do the thermal sum and use (3.56) only at the pole locations, because this results
in lengthy calculations with rather tedious intermediate results, which then seem to ’miraculously’ simplify
to a very compact recursion formula. Using (3.56) provides us with a much faster and more elegant approach.

5For the following derivation it is completely irrelevant whether we have integer or half-integer Matsubara frequencies as we do
not perform any thermal sums. The results then trivially hold for the denominators of both scalar and fermion propagators.

87



C. Some details for the recursion relation

C.1. The vertex factors for external gauge bosons and fermion loop

Here we compute the vertex factors Φµ and V needed for the vertices with external, transverse gauge bosons.
We take the case of a fermion loop; for a scalar loop, the result equals the soft vertex factor found in (3.60)
and it is trivial to see this. If we have a fermion loop, then we need to use (B.34) which means that we need
the spinor η(K). According to the definition, it is given by

~σ · k̂η(K) = −|~k|η(K). (C.1)

Inserting the explicit form of the Pauli matrices and choosing v̂ along the 3-direction, we get the system of
equations

k‖η1 + (k1 − ik2)η2 =− |~k|η1
(k1 + ik2)η1 − k‖η2 =− |~k|η2

(C.2)

with the normalized solution

η(K) =

(
η1
η2

)

=

(

1

−k1−ik2
2k‖

)

. (C.3)

The vertex factor for a gauge boson with momentum Ki coupling to two hard fermions with momenta K
and K − Ki is given by η†(K − Ki)σ̄

µ(K)ta. This holds both for the photon and the gluon vertices. The
difference between the soft (gluon) vertex factor Vµa and the external (photon) vertex factor Φµ is on the one
hand that the momentum Ki is in one case soft and therefore negligible whereas it is hard and not negligible
in the other. Besides that, the generator matrix ta is a unit matrix at the photon vertex. Finally, at the gluon
vertices longitudinal polarizations contribute while the photon only has transverse polarizations. Because of
that, the leading order contribution to Vµa is O(1) while the leading order contribution to Φµ is O(g).

Soft vertex factor

For the leading order contribution to the soft vertex factor, one can neglect the gluon momentum Ki and we
get

Vµa = η†(K)σ̄µη(K)ta. (C.4)

With our choice of the parallel direction, the leading order contribution which follows from (2.52) is found
to be

Vµa =
1

2
η†(K)(σ0 + σ3)η(K)ta. (C.5)

Inserting (C.3), we immediately get (3.60).

Vertex factor for hard transverse gauge bosons

The hard vertex factor for transverse gauge bosons, which is needed for the photon production rate in section
3.4 is given by

Φ†
µ(K,K − P ) = η†(K − P )σ̄µη(K) (C.6)

where now µ = 1 or µ = 2. Inserting the result (C.3) results in ugly expressions, but if we go to circular
polarizations by using the external polarization vectors εL,R ≡ (ε1 ± iε2)/

√
2 and consequently define1

pL,R ≡ 1√
2
(p1 ± ip2), ΦL,R ≡ 1√

2
(Φ1 ± iΦ2) (C.7)

1A notation with ± instead of L,R would look nicer, however it bears the danger of confusing it with the lightcone components
of the momenta that were defined in section 2.3.3.
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then we get rather simple results:

ΦL(K,K − P ) =
kL

k‖ − p‖
, ΦR(K,K − P ) =

kR
k‖

(C.8)

With this explicit result, it is simple to prove the relation

~Φ⊥(K,K − P ) · ~Φ†
⊥(K,K − P ) =Φ†

L(K,K − P )ΦR(K,K − P ) + Φ†
R(K,K − P )ΦL(K,K − P )

=
k2‖ + (k‖ − p‖)

2

k‖(k‖ − p‖)
k2⊥

(C.9)

needed in section 3.4 by inverting the defining equations for ΦL,R and using that k†L,R = kR,L as well as

2kLkR = k2⊥.

C.2. No need to remove external fermions

Here we come back to the issue raised after equation (3.58). If we consider production of fermions, then

. .
.

K

P

K1

K2

P

Km−1

K − K̃1

K − K̃m−1

K − P

Figure C.1.: Example for a problematic n-point function which might spoil the simple recursion relation
(3.58)

(3.58) is only valid if we exclude diagrams of the form shown in figure C.1 where all external gauge bosons
couple only to one of the particles in the loop. This is because in such a case, we need to remove one of the
external fermions and one of the loop particles, leaving us with an unphysical diagram and seemingly spoiling
the recursion relation and the resulting, simple integral equation for the current. However, as we will show
here, there is no such problem in fact because all such problematic terms do not contribute to the integral
equation (3.63).
We start with looking explicitly at the production of photons because we deal only with well-defined diagrams
here. If we remove one external hard photon instead of a soft gluon, then (3.63) remains valid. All fields
appearing on the rhs are now soft gluon fields, however, and also the external momentum p‖ is soft. We can

call this current Ĵ0 and the current we have looked at in section 3.4 would then be Ĵ1.
2 The point is to show

that we can write an equation for Ĵ1 (which is the current we are ultimately interested in) alone, without
a need for an additional equation for Ĵ0 which is coupled to the equation for Ĵ1. Now in the equation for
Ĵ0 the inhomogeneous term is suppressed by one power of g because for a soft p‖ the leading order term in

F(k‖, p‖) cancels. But then the whole solution for Ĵ0 is also suppressed. This is because an integral equation
of the form

J(P ) = f(P )−
∫

Q

F (Q)J(P −Q) (C.10)

2Note that Ĵn generates diagrams with n+ 1 external photons, because the interaction is of the form JµAµ.
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has the iterative solution J(P ) =
∑∞

N=0 JN (P ) where

J0(P ) = f(P )

J1(P ) = f(P )−
∫

Q

F (Q)f(P −Q)

J2(P ) = f(P )−
∫

Q

F (Q)

[

f(P −Q)−
∫

Q′

F (Q′)f(P −Q−Q′)

]

,

and so on, i.e. every term in the sequence that converges to the solution is manifestly of at least linear order
in the inhomogeneity. Therefore, it is really sufficient to consider only Ĵ1, as we did in section 3.4.
Now that we have understood what happens if we remove external hard photons, all that remains is to
understand why removing an external fermion is essentially the same. Again we can call the current with no
(one) explicit fermion field appearing on the rhs Ĵ0 (Ĵ1). Of course, Ĵ0 is not a physically well-defined object
in this case because n-point functions with only one external fermion do not exist–which would make it even
worse if they would appear in our equations. However, since we have removed one of the loop particles, the
function F(k‖, p‖) is now again a difference of either Bose or Fermi functions and since one of the soft gauge
bosons has taken the role of the fermion, the momentum p‖ is soft, as it was in the case considered before.

Then the leading order term in F vanishes again and the inhomogeneous term and thus the solution for Ĵ0 is
suppressed again. Such disturbing and physically meaningless terms therefore do not appear in the equation
for the current Ĵ1 which we need and we do not have to worry about them.
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current

D.1. Connected and disconnected contributions

Here we show that when integrating out the soft gauge boson background, we only need to keep the dis-
connected part in (3.67). It generates only the ladder diagrams shown in fig. 2.7, but no diagrams with
crossed ladder rungs or vertex corrections as illustrated in figure 2.8. This means that those diagrams do not
contribute at leading order, as mentioned in section 2.3.4.
If one performs the integrals over the gluon momenta in the imaginary time formalism, only the poles in the
spectral representation for the propagators contribute at leading order and for the thermal sum, the depen-
dence on spatial momenta is irrelevant. Therefore, for the present discussion, we may study the simplified
equation

p−Ĵϕ(P,~k) = Cϕ(P,K)ϕ(P ) +

∫

Q

V ·W (Q)Ĵϕ(P −Q,~k). (D.1)

One can write down a formal solution using the iterative procedure already described in the previous sub-
section:

p−Ĵϕ(P,~k) =
∞∑

N=0

N∏

m=1

(−1)N
(

V ·W (Qm)
1

p−m

)

Cϕ(Pm,K)ϕ(Pm) (D.2)

where Pm ≡ P −
∑m
j=1 qj .

If we now integrate out the external soft gauge bosons, then we get delta functions δ(kl+kM ) with l,M ≤ N
from the propagators. There are two distinct contributions that we have to discriminate:

• We only have terms such that M = l + 1.

• There are delta functions for which M > l + 1.

Without loss of generality we have assumed M > l; otherwise we only have to relabel indices. The first case
means that only neighbouring soft gauge boson fields are contracted. This is precisely the disconnected piece

〈WW 〉
〈

Ĵϕ

〉

that we have kept in section 3.3.4. The second case corresponds to the connected piece and we

want to show that it vanishes at leading order. For simplicity, let us pick l = 1 and look only at the thermal
sum over q01 ; for other choices of l the following argument remains unchanged. In this case, a thermal sum of
the form 

T
∑

q0
1

V µV ν∆µν(Q1)

p−1

1

p−2
. . .

1

p−M−1




1

(P −Q2 − . . .QM−1)−
· . . . (D.3)

needs to be computed, with M − 1 denominators depending on q01 . Performing the thermal sum is relatively
easy if one uses the spectral representation (2.11) for the gauge boson propagator and then applies (2.17).
We obtain contributions from each of the M poles, but only the one at q01 = ω ∼ gT needs to be kept since
the Bose function then gives a 1/g enhancement, fB(ω) ≈ T/ω ∼ 1/g, whereas at all other poles (coming
from the denominators p−m) there is no such enhancement and their contributions are therefore suppressed
by one power of the small coupling. When the thermal sum is performed, we may also analytically continue
p0 to the real axis and write p− = Re(p−) + iε. The expression (D.3) has then finally become

(
∫

dω

2πi
Disc∆µν(ω,~k

′)
T

ω

1

p−1 + iε

1

p−2 + iε
. . .

1

p−M−1 + iε

)

1

(P −Q2 − . . .QM−1)−
. . . (D.4)

All poles in the integrand lie above the real axis.1 Now we close the integration contour with a half-circle at
ω → −i · ∞. If M > 2, which means that the denominator is at least quadratic in ω, we immediately see

1There is no pole at ω = 0 since Disc(ω,~k) = 0 for ω = 0.
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that the result is zero. The half-circle gives no contribution because the integrand falls off rapidly enough
at infinity. The additional dependence of Disc∆µν on the integration variable does not spoil the argument,
since at leading order we may replace ω by q1,‖ in the argument of Disc∆µν , their difference being only of
the order of g2T .2 If, however, we have M = 2, then there is only one power in the denominator and the
integrand does not fall rapidly enough at infinity, so the argument fails. In fact, we will show in the next
section through an explicit computation that for this disconnected part we obtain a nonvanishing result.
The only thing that remains to be done is to establish a connection to the diagrammatic picture from section
2.3.4 and thus understand why only ladder diagrams (and self-energy insertions) are generated and nothing
of the form shown in figure 2.8. To understand that, it is useful to iterate the integral equation (D.1) using
(3.67) repeatedly. Since we have proved that only the disconnected part contributes, this will result in an
integral term of the form ∫

q1,q2,...

〈WW 〉1 〈WW 〉2 〈WW 〉3 . . .
〈

Ĵϕ

〉

with the gauge fields depending on different momenta (due to the delta function in the resulting gauge boson
propagator (3.68), every correlator depends only on one independent momentum). In every step, a new pair
of gauge fields appears which are contracted among each other. Since the current has to obey the integral

equation (D.1) and the number of possible iterations is unlimited, it is intuitively clear that
〈

Ĵϕ

〉

cannot

contain crossed ladder rungs or vertex corrections because this would mean it contains contractions of non-
adjacent gauge fields. For illustration, a possible iteration sequence is shown in figure D.1.
In conclusion, we have proved that at leading order, only the disconnected part in (3.67) contributes and
that this generates precisely those diagrams that are needed for the computation of the LPM effect. We now
turn to its computation.

Figure D.1.: Example for an iteration sequence of the integral term in equation (D.1). The shaded area
represents the current which still contains an infinite sum of diagrams. Adjacent gauge fields
that are contracted with each other are labelled by a common number.

D.2. Towards an easier integral equation

Here we present the computation that leads from the rather complicated integral expression found in (3.70)
to the easier one in (3.71). What we need to prove is that

∫

Q

V µV ν∆µν(Q)

p− − q−
=
i

2
T

∫
d2q⊥
(2π)2

K(~q⊥) (D.5)

with the kernel

K(q⊥) =
1

~q2⊥
− 1

~q2⊥ +m2
D

. (D.6)

The proof proceeds in three steps.

2We already mention that in the following section we will encounter a delta function which forces us to do the same replacement,
up to higher order corrections that are negligible.
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Step 1: Computation of the thermal sum

As in the previous section, we use the spectral representation of the HTL propagator,

∆µν(Q) =

∫
dω

2πi

1

ω − q0
Disc∆µν(ω, ~q), (D.7)

and then need to perform the following thermal sum:

T ≡ T
∑

q0

∫
dω

2πi
Disc∆µν(ω, ~q)

1

q0 − ω

1

q0 − q‖ − p−
(D.8)

It can be evaluated, like before, via complex contour integration using (2.17). The poles are at q0 = ω and
at q0 = q‖ + p−. As explained before, we may approximate fB(ω) ≈ T/ω � 1 and the other pole then gives
a O(1) contribution and is negligible. Writing q0 instead of ω for the integration variable, we get

T =

∫
dq0
2πi

Disc∆µν(Q)
1

q0 − q‖ − p−

T

q0
. (D.9)

The expression has become easier since we now only need the discontinuity of the gauge boson propagator.
We will deal with it in the next step. In addition, we need the discontinuity of Π(p0 + iε) for the production
rate. Then we set p− = Re(p−)± iε and use (2.13) to get

1

q0 − q‖ − p− − iε
= P

(
1

q0 − q‖ − p−

)

+ iπδ(q0 − q‖).

The real part does not contribute to the q0-integral
3, therefore we are allowed to replace the denominator

under the integral by the delta function and we get

∫

Q

V µV ν∆µν(Q)

p− − q−
=

1

4π

∫

dq0

∫

dq‖
T

q0
δ(q0 − q‖)

∫
d2q⊥
(2π)2

V µV ν Disc∆µν(Q) (D.10)

where we have written q0 again instead of ω.

Step 2: Computing the discontinuity of the gauge boson propagator

Here we profit from the results that were collected in section 2.2. Using the decomposition (2.28), we get

V µV ν Disc∆µν(Q) =

(

1− q20
q2

)

(Disc∆L(Q)−Disc∆T (Q)). (D.11)

This is because

V µV νPTµν = 1− (v̂ · ~q)2
q2

= 1−
q2‖
q2

= 1− q20
q2

(D.12)

where the last equality is due to the delta function in (D.10), and

V µV νPLµν =
(VµQ

µ)2

Q2
− V 2 −

(

1− q20
q2

)

= −
(

1− q20
q2

)

(D.13)

since the first term vanishes again due to the delta function and the second one according to the definition
of V µ. Finally, the last term in (2.28) gives no contribution due to the delta function in (D.10).
Since

∆L,T (Q) =
−1

Q2 −ΠL,T (Q)
, (D.14)

we have
Disc∆L,T (Q) = 2i Im∆L,T (Q) = −2i|∆L,T (Q)|2 ImΠL,T (Q). (D.15)

3Note that we may also here replace q0 by q‖ in the propagators even if there is no explicit delta function because we are only

interested in those momenta Q for which the difference q0 − q‖ ∼ g2T is negligible. For the same reason, we can neglect p−
inside the delta function-at leading order, it is irrelevant if we set q0 = q‖ or q0 = q‖ + p− because p− ∼ g2T � q‖ ∼ gT .
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D. Remarks on the integral equation for the current

The HTL self-energies to 1-loop order are well-known and we have shown the results already in (2.29).
We could use the explicit results to compute the integral kernel, which would result (after some algebraic
rearrangements) in the integral equations as they were written down e.g. in [6, 47]. There is, however,
an easier form of the integral kernel found later [74, 75], where only integrals only over the perpendicular
components remain, but those over the longitudinal and the zero-component can be evaluated explicitly. We
will use that approach and therefore note as new intermediate step the following:

∫

Q

V µV ν∆µν(Q)

p− − q−
= − i

2π
T

∫
dq0
q0

∫

dq‖δ(q0 − q‖)

∫
d2q⊥
(2π)2

(

1− q20
q2

)

(|∆L(Q)|2 ImΠL(q0 + iε, ~q)− |∆T (Q)|2 ImΠT (q0 + iε, ~q))

(D.16)

Step 3: Performing the integrals over q0 and q‖

It remains to do two of the remaining integrals analytically. The integral over q‖ is of course trivial due to
the delta function. The procedure to find an analytic result for the integral over q0 was already presented
in [75] and shall only be sketched here. We first introduce the integration variable x ≡ q0/|~q| and use the
Jacobian (

1− q20
q20 + q2⊥

)
dq0
q0

=
dx

x
.

for which it is important to remember that after integrating over q‖, the delta function enforces q0 = q‖.
4

Once this is done, we can write

∫

Q

V µV ν∆µν(Q)

p− − q−
= − i

2π
T

∫
d2q⊥
(2π)2

∫ 1

−1

dx

x

(
ImΠL(x, ~q)

(q2⊥ +ReΠL(x, ~q))2 + (ImΠL(x, ~q))2

− ImΠT (x, ~q)

(q2⊥ +ReΠT (x, ~q))2 + (ImΠT (x, ~q))2

) (D.17)

The limits are such because for |x| > 1 the imaginary part of the HTL self-energies (2.29) vanishes. The
integral can be evaluated with the sum rule

2

π

∫ 1

0

dx

x

ImΠ(x)

(z +ReΠ(x))2 + (ImΠ(x)2)
=

1

z +ReΠ(∞)
− 1

z +ReΠ(0)
(D.18)

that was proved in [74]. The integral from −1 to 0 gives exactly the same as from 0 to 1 which introduces
an overall factor of 2. We can then directly apply this to our expression and only need the results (2.29) for
the HTL self-energies in order to read off that

ReΠL(x = 0, ~q) = m2
D, ReΠT (x = 0, ~q) = 0

1

q2⊥ +ReΠL(x→ ∞, ~q)
− 1

q2⊥ +ReΠT (x→ ∞, ~q)
= 0

(D.19)

where the Debye mass mD is given by (2.30). Putting the results together, we have proved (D.5).

4Note that the current in fact depends only on ~q⊥ and not on q‖, which can be neglected w.r.t k‖.
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E. Solving the equation for the LPM effect
numerically

One and one is two,
And the one for me is you
Sarah Connor - 1 + 1 = 2

E.1. Formulation in Fourier space

Although it would be possible to solve the integral equations (4.23) and (4.24) directly by adopting the
approach used in [7], it is easier to go to Fourier space and then solve a differential equation instead of an
integral equation. This approach was pursued in [74, 75] and we can largely follow it.1 In fact, it is even
possible to write the equation (4.24) in a way which makes its analogy to the equation for production of
transversely polarized photons explicit. In order to do that, we introduce the auxilliary vector

~u =

(
1
i

)

(E.1)

which allows us to write kx + iky = ~u ·~k⊥. We can then introduce also a vector quantity ~f(~k⊥) by ~u · ~f ≡ χ.
The equation (4.24) has now taken the form

2~k⊥ = iε(~k⊥)~f(~k⊥) +
3∑

a=0

g2aC2(ra)T

∫
d2q⊥
(2π)2

Ka(~q⊥)
[

~f(~k⊥)− ~f(~k⊥ − ~q⊥)
]

. (E.2)

This is identical in form to the equation that one has to solve for the production rate of transverse photons
in a quark-gluon plasma [74, 75]. If ~f is a solution of this equation, then obviously ~u · ~f solves the original
equation for the component χ.
Following [74, 75], we now make a Fourier transformation 2

ψ(~k⊥) ≡
∫

d2be−i
~k⊥·~bψ(~b), (E.3)

and the same for ~f(~k⊥). This will allow us to get rid of the integral over d2k⊥ in (4.25) because ~k⊥ only
appears in an exponential and the integral then gives a delta function. The factors kx and ky can be removed
by replacing ki → i d

dbi
and integrating by parts. We obtain

∫
d2k⊥
(2π)2

Reψ(~k⊥) = Re

∫

d2bδ(~b)ψ(b) = lim
b→0

Reψ(b)

and
∫

d2k⊥
(2π)2

Re[(kx − iky)χ(~k⊥)] =

∫
d2k⊥
(2π)2

[kx Reχ(~k⊥) + ky Imχ(~k⊥)]

=−
∫

d2k⊥
(2π)2

[

Re

∫

d2be−i
~k⊥·~bi

dχ(~b)

dbx
+ Im

∫

d2be−i
~k⊥·~bi

dχ(~b)

dby

]

=− lim
~b→0

[

Re

(

i
dχ(~b)

dbx

)

+ Im

(

i
dχ(~b)

dby

)]

= lim
~b→0

[

Im
dχ(~b)

dbx
− Re

dχ(~b)

dby

]

.

1The numerical procedure that we use, however, is different from that proposed in [74, 75]. The method proposed in section
E.2 is conceptually a bit clearer and was found to be more reliable.

2We use the same symbol to denote the functions ψ, χ and their Fourier transformations.
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For ψ(b) we already used that due to rotational invariance in the transverse plane it can only depend on

b ≡ |~b|. A similar simplification can be done for χ(~b). In fact, we want to relate it to the solutions for ~f(~b)
which is the Fourier transformation of the vector quantity that appears in (E.2). Again due to rotational

invariance, it must be proportional to ~b and we can introduce a scalar function h(b) by writing

~f(~b) ≡ h(b)~b,

which means that χ(b) = ~u · ~f = (bx + iby)h(b). Using this form, we can simplify the expression obtained
above even further and write it in terms of h(b):

∫
d2k⊥
(2π)2

Re[(kx − iky)χ(~k⊥)] = lim
~b→0

[

2 Imh(b) + bx

(
d Imh(b)

dbx
− dReh(b)

dby

)

+ by

(
dReh(b)

dbx
+

d Imh(b)

dby

)]

=2 lim
b→0

h(b)

The drastic simplification in the last line can easily be explained. First of all, the terms involving the

derivatives of the real part cancel each other because h = h(b) = h(
√

b2x + b2y). Furthermore, if the limit

b → 0 is supposed to exist at all, then terms involving the derivatives of the imaginary part have to vanish
for ~b → 0. That this limit is indeed finite (and in addition nonzero) has to be assumed because otherwise
the production rate would be infinite (or zero, respectively). So even without any knowledge on the explicit

solution we can already say that only the first term in the brackets survives in the limit ~b → 0. In fact,
we will see below that the solutions of the differential equation for h(b) automatically satisfy the property
limb→0 Imh(b) = C with a nonzero constant C. The real part will turn out to be divergent for b→ 0, but it
is never needed and its singular behaviour for small b is thus irrelevant.
We have now managed to express (4.25) in the much easier form3

dΓN

d3p
= −2Nf |λ|2

(2π)4p0
fF (p0)

∫ ∞

0

dk‖
fB(k‖) + fF (k‖ − p‖)

k‖
lim
b→0

[

p−Reψ(b; k‖, p‖) +
p+

4(k‖ − p‖)2
Imh(b; k‖, p‖)

]

.

(E.4)
The functions ψ and h of course still parametrically depend on the large momentum components k‖, p‖ as
we have indicated explicitly. The remaining task is to formulate equations for the two unknown functions.
They obey second-order differential equations which are of the same form as those written down in [75] for
the production of longitudinal and transverse photons in a QGP. In order to find the desired differential
equations, we have to write

ε(~k⊥) ≡ α(k‖, p‖) + β(k‖, p‖)k
2
⊥ → −β(k‖, p‖)(∆~b −M2

eff ), M2
eff ≡ α(k‖, p‖)

β(k‖, p‖)
(E.5)

where ∆~b is the Laplace operator in Fourier space and we introduced an effective mass Meff .
4 The functions

α and β can be read off the definition (3.52):

α(k‖, p‖) =
M2
N

2p‖
+

m2
`

2(k‖ − p‖)
−
m2
φ

2k‖
, β(k‖, p‖) =

p‖
2k‖(k‖ − p‖)

(E.6)

We have expanded p− in α to leading order here.

The differential equations for ψ and ~f are now easily found from (4.23) and (E.2) by going to Fourier space:

−iβ(k‖, p‖)(∆~b −M2
eff )

~f(~b) +

3∑

a=0

g2aC2(ra)TD(mD,ab)~f(~b) = − i~∇~bδ(~b) (E.7)

−iβ(k‖, p‖)(∆~b −M2
eff )ψ(

~b) +

3∑

a=0

g2aC2(ra)TD(mD,ab)ψ(b) = δ(~b) (E.8)

3Note that the restriction on the integration range that we found in (4.17) does not apply here. The processes which involve
multiple scattering off gauge bosons are not restricted to happen only if the masses of the particles are such that the
corresponding tree-level process is kinematically allowed. They can always occur and thus open up a new kinematical regime
for the decay and recombination processes.

4Note that since α and β can have different signs, this mass can also become complex. It should not be thought of as a ’physical
mass’ but rather as a helpful auxiliary quantity that we introduced only to be in accord with the notation from [75].
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In order to obtain the rhs, we have used that the Fourier transformation of a constant gives a delta function.
The function D(x) which is the Fourier transformation of the kernel is given by [74, 75]

D(x) =
1

2π

[

γE + ln
x

2
+K0(x)

]

(E.9)

where γE ≈ 0.577 . . . is the Euler-Mascheroni constant and K0(x) a Bessel function of the second kind.
These two equations are second-order differential equations with a two-dimensional manifold of solutions, out
of which we have to pick the one we need. In order to find it, we have to impose two conditions. One of
those conditions is easy to find: The Fourier integrals can only be convergent if

lim
~b→∞

~f(~b) = 0, lim
b→∞

ψ(b) = 0. (E.10)

The second condition is less obvious and is related to the behaviour of the solutions at small ~b. Physically,
only solutions which give a finite and nonzero production rate make sense, which means that Reψ(b) and

Im ~f(~b) should be finite and nonzero for ~b→ 0. Unfortunately, this turns out not to be restrictive at all since
all solutions of (E.7) and (E.8) which vanish at infinity respect this constraint. Imposing the finiteness of

either the real or imaginary part for ~b→ 0 is not an efficient way to solve the problem. Still, it is possible to
find a unique solution of the given problem using both analytical input and numerical computations. This is
described in the following section and plots of the numerical results can be found in the main text, in section
4.6.
In summary, we have described how to trade a complicated way to compute a number (a two-dimensional
integral over a function that is the solution of an integral equation) by a much easier way to compute a
number (the value of a function which solves a differential equation in the limit where its argument goes to
zero). In section E.2 we will explain how to get that number.

E.2. Solution of the problem

We now describe how to solve (E.7) and (E.8). For arbitrary b it is not possible to give analytic solutions.
As one can easily check, the function D(x) behaves like x2 lnx for x � 1, which means that in the small b

limit, this function is irrelevant. In the limit ~b→ 0, also Meff becomes negligible and we only have to solve
the approximate equations

β(k‖, p‖)∆~b
~f(~b) = ~∇~bδ(~b) (E.11)

−iβ(k‖, p‖)∆~bψ(~b) = δ(~b). (E.12)

Both solutions can easily be found from the following theorem:

Let ~b ∈ R
2 and Φ(~b) be a weak solution of

∆~bΦ(
~b) = δ(~b) in R

2. (E.13)

Then Φ(~b) is (up to an additive constant) uniquely given by

Φ(~b) =
1

2π
ln |~b|. (E.14)

The proof is relatively simple and can be found e.g. in [76]. It gives us immediately the small b solution for

ψ(b), while the small b solution for ~f(~b) follows by taking a gradient w.r.t ~b. This means that

~f(~b) =
1

2πβ(k‖, p‖)

~b

b2
+O(~b) (E.15)

ψ(b) =
i

2πβ(k‖, p‖)
ln b+O(b0). (E.16)

We now see explicitly that both the real part of ψ and the imaginary part of ~f are automatically finite. Their
values are not determined yet, however. This is because we still have to use the boundary conditions (E.10).
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Since they are formulated at large b where the function D(mD,ab) cannot be neglected
5, we have to resort to a

numerical procedure. For b > 0, the delta functions can be dropped and we deal with homogeneous equations.
By exploiting the symmetry properties of ~f and ψ, we can even write ordinary differential equations by using

∆~bψ(b) = ψ′′(b) +
1

b
ψ′(b) (E.17)

and

∆~b
~f(~b) =

(

h′′(b) +
3

b
h′(b)

)

~b. (E.18)

Then we have to solve the two equations

−iβ(k‖, p‖)
(

ψ′′(b) +
1

b
ψ′(b)−M2

effψ(b)

)

+

3∑

a=0

g2aC2(ra)TD(mD,ab)ψ(b) = 0 (E.19)

−iβ(k‖, p‖)
(

h′′(b) +
3

b
h′(b)−M2

effh(b)

)

+

3∑

a=0

g2aC2(ra)TD(mD,ab)h(b) = 0. (E.20)

For a numerical treatment, it is convenient to deal with dimensionless quantities. In order to do so, we rescale
all momenta and masses by introducing (cf. (4.98))

k̃ ≡ k‖
T
, p̃ ≡ k‖

T
, zi ≡

zi
T
.

We also introduce a dimensionless variable
t ≡ Tb.

The equations can now be written as

−iβ̃(k̃, p̃)
(

ψ′′(t) +
1

t
ψ′(t)− M̃2

effψ(t)

)

+

3∑

a=0

g2aC2(ra)D(zD,at)ψ(t) = 0 (E.21)

−iβ̃(k̃, p̃)
(

h′′(t) +
3

t
h′(t)− M̃2

effh(t)

)

+

3∑

a=0

g2aC2(ra)D(zD,at)h(t) = 0. (E.22)

The functions α̃ and β̃ are given by

α̃(k̃, p̃) =
z2

2p̃
+

z2`
2(k̃ − p̃)

−
z2φ

2k̃
, β̃(k̃, p̃) =

p̃

2k̃(k̃ − p̃)
(E.23)

with z =MN/T .
This can now be solved numerically with the boundary condition that the solution vanishes at t → ∞. The
procedure is the same for both equations and will be described explicitly for ψ(t). The necessary changes for
the solution of h(t) will be described at the very end.
The solution of (E.21) can be written as

ψ(t) = c1ψ1(t) + c2ψ2(t). (E.24)

The fundamental solutions ψi(t) are of course not known analytically for arbitrary t. However, at small t we
can neglect the function D and the solution can be given analytically in terms of Bessel functions:

ψ(t) = c1Y0(−iM̃eff t) + c2J0(iM̃eff t) (E.25)

Since for small arguments, the function J0 goes to a constant while the function Y0 diverges logarithmically,
this is consistent with the limiting behaviour (E.16) which we of course have to reproduce. This means
on the one hand that by going from our original equation which was a partial differential equation with

5Note that due to the boundary condition which is formulated at large b where the Fourier transform of the kernel is important,
it plays a role for our solution although we are interested in the limit b → 0 where the kernel is irrelevant.
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E. Solving the equation for the LPM effect numerically

weak solutions to a homogeneous ordinary differential equation with continuous solutions we have neither
introduced spurious solutions nor lost any solutions of our original problem. On the other hand, it also allows
us to fix already one of the two constants: By comparing (E.25) and (E.16) we can immediately deduce that

c1 =
i

2πβ̃(k̃, p̃)
. (E.26)

The other constant is still unknown and has to be found from the boundary condition at infinity. For generic
values of c2, the solution will contain growing parts which violate (E.10). We want to find the value of c2
which makes the growing part of the solution disappear. Due to (E.25), we know the fundamental solutions
ψi explicitly for small t and we can use this information to find the constant c2 numerically. The procedure
is as follows:

1. Pick a small value t0, e.g. t0 = 10−5 and solve equation (E.21) twice, both times using one of the
fundamental solutions from (E.25) as initial condition. This means, we set

ψ(t0) = Y0(−iM̃eff t0), ψ
′(t0) =

d

dt
Y0(−iM̃eff t0)

∣
∣
∣
∣
t=t0

and solve (E.21). Then we do the same again and only replace the function Y0 by J0. The two solutions
correspond to the fundamental solutions ψi(t) to very good accuracy if t0 is chosen small enough such
that D(zD,at0) ∼ t20 ln t0 is strongly suppressed.

2. Once we have those two solutions, we can evaluate them at a large value t∗ ∼ O(102 − 103). The
boundary condition ψ(t∗) = 0 will give us a relation between c1 and c2:

c1ψ1(t∗) + c2ψ2(t∗) = 0

3. With the relation between c1 and c2 which is obtained numerically and the result (E.28) for c1 which
was gained from the analytical solution, one can fix c2 and then take its real part which is needed for
(E.4).

The same also works for h(t), only the explicit solution for small t looks a bit different and is given by

h(t) = c1
M̃effY1(−iM̃eff t)

t
+ c2

J1(iM̃eff t)

M̃eff t
. (E.27)

Comparing with (E.15) reveals that the constant c1 is in this case given by

c1 =
1

2πβ̃(k̃, p̃)
. (E.28)

The remaining constant c2 is then determined by the numerical procedure that is explained above.
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F. Proof of relations for the production rate of
Majorana neutrinos

Here we prove various equations used in section 4.4.

Proof of (4.31)

First, we use general properties of the invariant phase space element to obtain

d3p1
2E1

= d4P1δ(P
2
1 )Θ(E1) =

δ(E1 − |~p1|)
2|~p1|

Θ(E1)d
3p1dE1.

Now we include the delta function and perform the integrals, which results in E1 = E + E3 − E2 and
~p1 = ~p+ ~p3 − ~p2 = ~q − ~p2 due to the definition (4.28). This leads to

d3p1
2E1

δ(P1 + P2 − P3 − P ) =
Θ(E + E3 − E2)

2|~q − ~p2|
δ(E + E3 − E2 − |~q − ~p2|)

= δ
(
(E + E3 − E2)

2 − |~q − ~p2|2
)
Θ(E + E3 − E2).

Using (4.29), the argument of the delta function becomes

(E + E3 − E2)
2 − |~q − ~p2|2 = (E + E3 − E2)

2 − E2
2 − q2 + 2qE2 cosχ.

With the help of δ(ax) = 1
|a|δ(x) we then arrive at (4.31).

Proof of (4.33)

The proof of (4.33) proceeds more or less the same way. Only at the beginning, we need to insert a dummy
integration over ~q to get that variable into the game and then integrate over d3p3:

d3p3
2E3

= δ(P 2
3 )Θ(E3)dE3d

3p3 =

∫

d3qδ(~q − ~p− ~p3)δ(P
2
3 )Θ(E3)dE3d

3p3.

= δ(E2
3 − |~q − ~p|2)Θ(E3)dE3q

2dqdΩq.

Now we use (4.29) and arrive at the expression given in (4.33) the same way as we did for (4.31).

Proof of (4.35)

In order to prove (4.35), we need to investigate what restrictions the two delta functions introduce. By
demanding that | cosϑ| ≤ 1, we get two conditions:

cosϑ ≤ 1 ⇔E2 − E2
3 + q2 ≤ 2qE ⇔ |E − q| ≤ E3 ⇔ E − E3 ≤ q ≤ E + E3

cosϑ ≥ −1 ⇔E2 − E2
3 + q2 ≥ −2qE ⇔ E + q ≥ E3 ⇔ q ≥ E3 − E

It is important to remember that E, q are positive, therefore the absolute value is needed only for the
difference. Both conditions together can be summarized by the product Θ(q − |E − E3|)Θ(E + E3 − q).
Now we repeat the same procedure demanding that | cosχ| ≤ 1|. Here we give only the final results for the
conditions:

cosχ ≤ 1 ⇔ 2E2 − E3 − E ≤ q ≤ E + E3

cosχ ≥ −1 ⇔ q ≥ E + E3 − 2E2

In this case, both conditions are represented by a single step function, namely Θ(q − |2E2 − E3 − E|).
Therefore, all step functions together give

Ω(q, E,E2, E3) = Θ(E2)Θ(E3)Θ(E + E3 − E2)Θ(q − |E − E3|)Θ(E + E3 − q)Θ(q − |2E2 − E3 − E|).
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In order to obtain (4.35), we finally use that

Θ(E+E3−q)Θ(q−|2E2−E3−E|) = Θ(E+E3−q)(1−Θ(|2E2−E3−E|−q)) = Θ(E+E3−q)−Θ(|2E2−E3−E|−q),

since in the second term positivity of one of the arguments implies positivity of the other such that one step
function is redundant. Inserting this into Ω(q, E,E2, E3) then finally results in (4.35).

Proof of (4.45)

Again we need to figure out the constraints from the integration over the delta functions. Proceeding like we
did for the proof of (4.35), we obtain first of all

cosϑ ≤ 1 ⇔E1 − E3 ≤ k ≤ 2E + E3 − E1

cosϑ ≥ −1 ⇔ k ≥ E3 − E1

cosχ ≤ 1 ⇔E1 − E3 ≤ k

cosχ ≥ −1 ⇔E3 − E1 ≤ k ≤ E1 + E3

This is summarized by a factor Θ(k− |E1 −E3|)Θ(2E +E3 −E1 − k)Θ(E1 +E3 − k). All k dependent step
functions together then make up a factor of

Θ(k − k∗)Θ(k − |E1 − E3|)Θ(2E + E3 − E1 − k)Θ(E1 + E3 − k).

Now we want to trade as many of the k’s for a k∗ as possible. For this purpose we first rewrite the product
of four step functions as a sum of two products of three step functions:

Θ(k − k∗)Θ(k − |E1 − E3|)Θ(2E + E3 − E1 − k)Θ(E1 + E3 − k)

= Θ(k − k∗)Θ(k − |E1 − E3|)Θ(2E + E3 − E1 − k)[1−Θ(k − E1 − E3)]

= Θ(k − k∗)[Θ(k − |E1 − E3|)−Θ(k − E1 − E3)]Θ(2E + E3 − E1 − k)

where Θ(x − a)Θ(x − |a|) = Θ(x − a) was used. Now we multiply both terms with 1 in the form 1 =
Θ(x) + Θ(−x). The factor Θ(2E + E3 − E1 − k) will not be further manipulated and we leave it out:

Θ(k − k∗)

[

Θ(k − |E1 − E3|)−Θ(k − E1 − E3)

]

= Θ(k − k∗)

[

Θ(k∗ − |E1 − E3|) + Θ(|E1 − E3| − k∗)]Θ(k − |E1 − E3|)

− Θ(k − k∗)[Θ(k∗ − E1 − E3) + Θ(E1 + E3 − k∗)

]

Θ(k − E1 − E3)

This can now be simplified to the expression found in (4.45) since one of the step functions in each term is
redundant. We have for example

Θ(k − k∗)Θ(k∗ − |E1 − E3|)Θ(k − |E1 − E3|) = Θ(k − k∗)Θ(k∗ − |E1 − E3|)

Putting it all together we then arrive at (4.45).

Proof of (4.67)

Finally we prove (4.67). The proof uses the Saclay representation (2.19), only that instead of the analogue
of (2.20) for HTL resummed propagators, we express the propagators ∆(τ, ~p) in terms of the corresponding
spectral functions by using (2.10). The advantage is that we already know the spectral functions explicitly–for
the Higgs boson it is given by (2.15) and for the lepton by (2.34). This means that after performing the
thermal sum as explained in section 2.1.1, we have

S =

∫ β

0

dτeiωτ∆(τ,~k)∆(τ, ~q). (F.1)
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F. Proof of relations for the production rate of Majorana neutrinos

where

∆(τ,~k) =

∫ ∞

−∞

dk0

2π
e−k

0τD>(k0) =

∫ ∞

−∞

dk0

2π
e−k

0τ (1 + fB(k
0))ρ(k0, ~k) (F.2)

and analogously

∆(τ, ~q) =

∫ ∞

−∞

dq0

2π
e−q

0τS>(q0) =

∫ ∞

−∞

dq0

2π
e−q

0τ (1− fF (q
0))ρ̃(q0, ~q). (F.3)

Inserting this back into (F.1) and performing the integral over τ using eiωβ = −1 leads to

S = −
(

e−(k0+q0)β + 1
)∫ ∞

−∞

dk0

2π

∫ ∞

−∞

dq0

2π
(1 + fB(k

0))(1 − fF (q
0))

ρ(k0, ~k)ρ̃(q
0, ~q)

iω − k0 − q0
.

The discontinuity is then given by

DiscS(p0) = −2πi
(

e−(k0+q0)β + 1
)∫ ∞

−∞

dk0

2π

∫ ∞

−∞

dq0

2π
(1+ fB(k

0))(1− fF (q
0))ρ(k0, ~k)ρ̃(q

0, ~q)δ(p0 − k0 − q0)

(F.4)
Now we only need to use that

(

e−(k0+q0)β + 1
)

(1 + fB(k
0))(1 − fF (q

0))δ(p0 − k0 − q0) = (eβp
0

+ 1)fB(k
0)fF (q

0)δ(p0 − k0 − q0)

and we arrive at (4.67).
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