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Summary
It is well-established that nucleo-cytoplasmic shuttling regulates not only the localization but
also the activity of many proteins like transcription factors, cell cycle regulators and tumor
suppressor proteins just to mention some. Also in plants the nucleo cytoplasmic partitioning
of proteins emerges as an important regulation mechanism for many plant-specific processes.
One requirement for a protein to shuttle between nucleus and cytoplasm lies in its nuclear
export activity. The widely used mechanism for export of proteins from the nucleus involves
the receptor Exportin 1 and the presence of a nuclear export signal (NES) in the cargo protein.
Given the big amount of sequence data available nowadays the possibility to use a computational
tool to predict the proteins potentially containing an NES would help to facilitate the screening
and experimental characterization of NES-containing proteins. However, the computational
prediction of NESs is a challenging task. Currently there is only one NES prediction tool and
that is unfortunately not accurate for predicting these signals in proteins of plants. In that
direction, this study aimed mainly at developing a prediction method for identifying NESs in
proteins from Arabidopsis and to validate its usefulness experimentally. It included also the
definition of the influence of the NES protein context in the nuclear export activity of specific
proteins of Arabidopsis.

Three machine-learning algorithms (i.e. k-NN, SVM and Random Forests) were trained with
experimentally validated NES sequences from proteins of Arabidopsis and other organisms.
Two kinds of features were included, the sequence of the NESs expressed as the score obtained
from an HMM profile constructed with the NES sequences of proteins from Arabidopsis, and
physicochemical properties of the amino acid residues expressed as amino acid index values.
The Random Forest classifier was selected among the three classifiers after evaluation of the
performance by different methods. It showed to be highly accurate (accuracy values over 85%,
classification error around 10%, MCC around 0.7 and area under the ROC curve around 0.90)
and performed better than the other two trained classifiers.

Using the Random Forest classifier around 5000 proteins from the total of protein sequences
from Arabidopsis were predicted as containing NESs. A group of these proteins was selected
by using Gene Ontologies (GO) and from this last group, 13 proteins were experimentally
tested for nuclear export activity. 11 out of those 13 proteins showed positive interaction with
the receptor Exportin 1 (XPO1a) from Arabidopsis in yeast two-hybrid assays. The proteins
showing nuclear export activity include 9 transcription factors and 2 DNA metabolism-related
proteins. Furthermore, it was established that the amino acid residues located between the
hydrophobic residues in the NES as well as the protein structure of the regions around the NES
can modify the nuclear export activity of some proteins.

In conclusion, this work presents a new prediction tool for NESs in proteins of Arabidopsis based
on a Random Forest classifier. The experimental validation of the nuclear export activity in a
selected group of proteins is an indicative of the usefulness of the tool. From the biological point
of view, the nuclear export activity observed in those proteins strongly suggest that nucleo-
cytoplasmic partitioning could be involved in the regulation of their functions. For the follow
up research the further characterization of the proteins showing positive nuclear export activity
as well as the validation of additional predicted NES-containing proteins is envisioned. In the
near future, the developed tool is going to be available as a web application to facilitate and
promote its further usage.

Keywords: Nuclear export signals (NESs),
Machine learning applications,
Random Forest,
Arabidopsis thaliana.
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CHAPTER 1

Motivation and overview

Transport between the cell nucleus and cytoplasm has captured the attention of
researchers ever since the discovery of the cell nucleus by Robert Brown in the
early 1830s. In eukaryotes, transcription and translation are spatially separated
by the double membranes of the nuclear envelope. This fact alone necessitates
a large amount of nuclear transport: the export of protein-encoding RNAs and
the import of transcription factors, to name a few. Transport into and out of the
nucleus generates a differential distribution of macromolecules that contributes to
the regulation of numerous cellular functions, including gene expression, protein
translation, cell division and nuclear dynamics.
The general mechanisms of nuclear transport are quite conserved among eukary-
otes. Nevertheless, it looks like many of the cargo proteins differ and are more
organism-specific: the transport system is the same but the passengers are differ-
ent. But, how does the system recognize the passengers? Most proteins travelling
into or out of the nucleus carry special signals that are recognized by receptor
proteins. These are generically called nuclear localization signals (NLSs) and nu-
clear export signals (NESs).
An increasing number of studies point out that regulation of nuclear transport
can be exerted at the level of the cargo. Hence, the identification of the pro-
teins containing nuclear import and export signals is an important step toward
the understanding of the interactions between all the components of the nucleo-
cytoplasmatic transport process.
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The need to analyse the massive accumulation of biological data generated by
high-throughput genome projects has stimulated the development of new and
rapid computational methods. Computational approaches for predicting and clas-
sifying protein functions are essential in determining the functions of unknown
proteins in a faster and more cost-effective manner, because experimentally de-
termining protein function is both costly and time-consuming. In some cases,
it is essential that the prediction methods are appropriately calibrated for their
respective target species, as the signals could differ between the organisms. In the
case of nuclear import and export signals, NLSs are more recognizable than NESs
and maybe because of that, nowadays there are some computational approaches
to identify NLSs in protein sequences but only one for NESs.

This study was motivated by the need to identify proteins carrying NESs in Ara-
bidopsis thaliana and the fact that the only computational tool available at present
does not recognize them, reflecting the requirement of a species-specific prediction
tool. Thus, the main objective was to develop a computational prediction method
for NESs in proteins from Arabidopsis. The project scope also included the ex-
perimental verification of the nuclear export activity for some of the predicted
proteins as well as the experimental assessment of the nuclear export activity of
some NES-containing proteins. This last point was aimed at revealing special fea-
tures of true positives and false positives, inside and outside the NES that might
influence the nuclear export activity of a protein.

The following chapters describe the methodology used to reach the proposed goals,
the results obtained as well as the conclusions extracted from them. Chapter 2
gives an introduction into the concepts and terminology related to the biologi-
cal and computational aspects used in this dissertation. The process of nucleo-
cytoplasmic transport is explained in detail as well as the NESs. From the compu-
tational perspective, a brief introduction into the machine learning classification
approach is given together with the foundations of the supervised classification
algorithms used in this work.
Chapter 3 is dedicated to the explanation of the methodology used. It starts
with the general description of the computational approach, the data sets used for
the development of the predictor and the vector representation of the amino acid
sequences used. Next, the training, evaluation and selection process of the clas-
sifier are presented, followed by the the prediction of NES containing proteins in
the whole A. thaliana protein sequences. The second part of Chapter 3 describes
the most relevant experimental procedures used.
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Chapter 4 presents the body of results obtained in this work. It is divided
in two parts following the same order used in Chapter 3. The outcome from
the computational part concerning the development of the LR-NES predictor are
exposed in the first part and the experimental result in the second one.
Chapter 5 analyses and discusses the results as a whole and Chapter 6 outlines
the main contributions of this dissertation and presents and discusses possible
future directions of new aspects to be explored in follow up research.





CHAPTER 2

Background
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2.2.3 Hidden Markov Models and profiles 38

Overview

The objective of this chapter is to introduce the topic to the reader presenting the
main theoretical background and fundamental concepts that will be used through-
out this dissertation. It is divided into two main parts. Section 2.1 introduces
the major biological principles of nuclear transport of macromolecules across the
nuclear envelope and the proteins involved, it focuses then on the nuclear export
process and associated signals (nuclear export signals, NESs). It includes aspects
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of the regulation of the mechanisms of nuclear transport involving NESs as well
as the importance of nucleo-cytoplasmic partitioning as a regulatory tool for sig-
naling. Next, the facts already known about the nuclear export process in plants
are presented, followed by the description of the currently available approaches
to identify nuclear import and export signals in protein sequences. From this,
Section 2.2 leads the topic to the main concepts of machine learning and focuses
on the supervised classification algorithms that are used through this work. It
also includes the basic concepts of Hidden Markov Models (HMM) and profiles.
Details of the specific methods will be seen in Chapter 3.

2.1 Nucleo-cytoplasmic transport

In eukaryotic cells there is a physical separation of the nuclear genomic material
from the other intracellular compartments, which implies also that fundamental
processes like DNA replication and RNA biogenesis occurring in the nucleus are
separate from protein synthesis taking place in the cytoplasm. To accomplish this,
molecules such as RNAs, ribosomal subunits, transcription factors and many dif-
ferent proteins need to travel continuously between these two compartments. The
current list of proteins shuttling between the cytoplasm and the nucleus includes
transport receptors and adaptors, receptors of steroid hormones, transcription
factors, cell cycle regulators, and a large number of RNA-binding proteins (Gör-
lich and Kutay, 1999; Haché et al., 1999; Pines, 1999; Yang and Kornbluth, 1999;
Nakielny and Dreyfuss, 1999; Shyu and Wilkinson, 2000). The nucleo-cytoplasmic
distribution of such proteins calls for continuous regulation and coordination that
it needed for normal cellular functions. Often, it is found that the reasons of cancer
transformation of cells include distortions in the distribution of proteins between
the nucleus and cytoplasm (Poon and Jans, 2005). Also, the aberrant cytoplas-
mic localization of transcription factors and other proteins due to malfunction in
the regulation of nucleo-cytoplasmic transport, has been implicated in Alzheimer,
Parkinson, and Lewy body diseases as well as amyotrophic lateral sclerosis, and
human immunodeficiency virus encephalitis (Chu et al., 2007). This explains the
attention paid lately to the studies of the nucleo-cytoplasmic transport, its mech-
anisms and analyses of the regulation of protein partitioning between the nucleus
and the cytoplasm (Sorokin et al., 2007).

The nucleo-cytoplasmic traffic has become functionally and mechanistically diver-
sified, serving not only to permit operation of the basal replication, transcription,
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and processing machinery but also to regulate the cell cycle, transcriptional activa-
tion and repression, circadian rhythms, and many other processes (Macara, 2001).
Additionally, since the nuclear transport system is involved in various stages of
cell differentiation, defects in nuclear transport may cause severe developmental
disorders (Yasuhara et al., 2009).

The transport between the nucleus and the cytoplasm occurs only through the
nuclear pore complexes (NPCs) (Feldherr, 1962; Feldherr et al., 1984; Richardson
et al., 1988; Dworetzky and Feldherr, 1988; Corbett and Silver, 1997; Görlich and
Kutay, 1999; Ryan and Wente, 2000), which are embedded in the nuclear envelope
(NE) that separates the nucleus from the cytoplasm. The NPC is a large pro-
teinaceous structure, which contains approximately 30 structural proteins called
nucleoporins (Nups) in yeast (Rout et al., 2000) and in vertebrates (Cronshaw
et al., 2002), and has a molecular mass ranging from 4466 MDa in yeast (Rout
and Blobel, 1993; Yang et al., 1998) to 60125 MDa in vertebrates (Reichelt et al.,
1990; Cronshaw et al., 2002). Studies of the NPCs in various organisms suggest
that these structures are well conserved among eukaryotes (Vasu and Forbes, 2001;
Cronshaw et al., 2002; Meier, 2005).

Nucleo-cytoplasmic transport comprises a multitude of substrates. Not only must
all nuclear proteins, such as histones and transcription factors, be imported from
the cytoplasm, but also transfer RNA (tRNA), ribosomal RNA (rRNA), and mes-
senger RNA (mRNA) that are synthesized by transcription in the nucleus need to
be exported to the cytoplasm where they function in translation. The biogenesis
of, for instance, ribosomes even involves multiple crossings of the NE: riboso-
mal proteins are first imported into the nucleus, assembled in the nucleolus with
rRNAs, and finally are exported as ribosomal subunits to the cytoplasm (Görlich
and Kutay, 1999). In addition, some molecules accomplish a cyclic movement
between the nucleus and the cytoplasm, a process known as nucleo-cytoplasmic
shuttling (Izaurralde and Adam, 1998). The transport used for these substrates
to cross the NPC could be grouped into two general mechanisms, passive diffusion
and receptor-mediated transport also called facilitated translocation.

Passive diffusion: This kind of transport can be used by molecules having a
size inferior to the effective diameter of the NPC (9 nm) (Moore and Horowitz,
1975; Görlich and Kutay, 1999), travelling in favor of the concentration gradient.
On a physiological scale, passive diffusion is exceedingly slow in the case of bovine
serum albumin (∼7 nm diameter, 68 kDa), negligible still for ovalbumin (∼6 nm
diameter, 46 kDa), and reasonably fast only for small proteins (size less than 20-
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30 kDa) (Görlich and Kutay, 1999). Yet even proteins or RNAs that are smaller
than 20-30 kDa, such as histones (Breeuwer and Goldfarb, 1990; Jäkel et al., 1999)
and tRNAs (Zasloff, 1983; Arts et al., 1998a,b; Kutay et al., 1998) normally cross
the NPC in an active and carrier-mediated fashion.

Receptor-Mediated Transport: This kind of active transport is used for the
majority of the molecules travelling through the NPC in both directions, to the
nucleus or to the cytoplasm. Active transport is a selective process triggered by
specific transport receptors and signals, it can proceed against concentration gra-
dients using energy. Active nucleo-cytoplasmic transport is mostly, but not in all
the cases, mediated by a family of homologous transport receptors belonging to the
importin β-like family, also called karyopherin β receptors or importins/exportins
if they participate in nuclear import (transport from cytoplasm to nucleus) or
nuclear export (transport from nucleus to cytoplasm), respectively (Görlich,
1997; Görlich and Kutay, 1999; Ström and Weis, 2001; Pemberton and Paschal,
2005).

2.1.1 Nuclear protein transport mediated by importin β-like
receptors

Members of the importin β-like family are diverse, and more than 22 members
have been identified in humans until now, including importins and exportins for
proteins and RNAs (Harel and Forbes, 2004). 14 importin β-like proteins are
encoded in the yeast genome (Ström and Weis, 2001; Weis, 2003) and Arabidopsis
thaliana contains 17 genes for proteins of this family, although this last group
has not been yet fully characterized (Bollman et al., 2003; Merkle, 2003). The
function of these proteins is restricted to either import or export, with the ex-
ception of two family members (one in yeast and one in human) that function in
both import and export (Fried and Kutay, 2003; Weis, 2003; Mosapparast and
Pemberton, 2004). There are many more cargoes than receptors, suggesting that
each receptor has multiple cargoes.
Inherent to the function of importin β-like nuclear transport receptors in nuclear
import and export is the ability of these proteins to bind their cargoes directly
or indirectly, interact with NPC proteins (Nups) and interact with the the small
GTPase Ras-related nuclear protein (Ran) in its GTP-bound form (RanGTP)
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(Fried and Kutay, 2003; Weis, 2003; Mosapparast and Pemberton, 2004).
The importin β-like receptors recognize signals in the cargo proteins that are
called nuclear localization signals (NLSs) in the case of nuclear import and nu-
clear export signals (NESs) for nuclear export.
The energy for nucleocytoplasmic transport is largely provided by a steep con-
centration gradient of the GTPase Ran, which also ensures the directionality of
nuclear transport (Izaurralde et al., 1997; Ossareh-Nazari et al., 2001). Ran is
highly enriched in the nucleus in its GTP-bound form, and GTP hydrolysis by
Ran is directly coupled to the import/export cycle (Weis, 2003). Nuclear import
complexes, upon arriving on the nucleoplasmic side of the NPC, are induced to
disassemble when RanGTP binds to the receptor. In contrast, RanGTP is used
to assemble export complexes which are in turn destabilized by hydrolysis of GTP
on Ran in the cytoplasm. Figure 2.1 illustrates the principles of nuclear import
and export mediated by importins/exportins, which will be explained below with
special emphasis in the nuclear export process.

Nuclear Import

Nuclear protein import mediated by the importin α/β heterodimer (Figure 2.1A)
was the first pathway to be understood in detail (Imamoto et al., 1995; Görlich
et al., 1995a,b; Yasuhara et al., 2009). In human, the importin α family has at
least 6 family members encoded by distinct genes, all of which interact with im-
portin β. On the other hand, importin β can act as a transport factor without
importin α due to the direct recognition of specific cargo molecules (Lam et al.,
1999; Nagoshi et al., 1999).
In addition to their function in nuclear import, both importins are also involved
in other cellular processes. Importin α plays a role in functions such as mitotic
spindle assembly (Gruss et al., 2001; Schatz et al., 2003; Ems-McClung et al.,
2004) and nuclear membrane formation (Askjaer et al., 2002; Geles et al., 2002).
Importin β can also function as a global regulator of cellular functions distinct
from nuclear transport, including mitotic spindle assembly, centrosome dynamics,
nuclear membrane formation, and NPC assembly (Harel and Forbes, 2004).

Importins bind to cargo proteins carrying NLSs. The first kind of characterized
NLS was a single cluster of basic amino acid residues (PKKKRKV) from the
simian virus SV40 large tumor (T-)antigen (Kalderon et al., 1984). The second
type was the bipartite NLS of nucleoplasmin, which has two clusters of basic
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Figure 2.1: The processes of nuclear import and export
Basic model of importin/Exportin-mediated nucleocytoplasmic transport of proteins. A: Nu-
clear Import: Importin α binds to the NLS within a protein cargo in the cytoplasm and forms a
ternary complex with importin β to enter into the nucleus. Some cargo molecules carrying NLS
can also bind directly to importin β. In the nucleus, binding of RanGTP (the GTP-bound form
of Ran) to importin β triggers the dissociation of the complex. B: Nuclear export: RanGTP
stimulates binding of Exportin (XPO) to an NES-containing protein in the nucleus and the
complex is exported to the cytoplasm, where hydrolysis of GTP on Ran results in complex
disassembly. NPC: nuclear pore complex, NLS: nuclear localization signal, NES: nuclear export
signal

amino acid residues with a spacer of conventionally 10-12 residues between them
(KRPAATKKAGQAKKKK) (Robbins et al., 1991). These two NLSs are con-
sidered as “classical” NLSs not only because they were described first but also
because they are the two ones that are known best (Lange et al., 2007). However,
more types of NLSs do exist and some of them are even recognized by a different
receptor (Fries et al., 2007; Wagstaff and Jans, 2009).

Basic NLSs are generally recognized by importin α, which can enter the nucleus
with or without cargo (Miyamoto et al., 2002; Kotera et al., 2005) but usually
requires importin β, to deliver the cargo into the nucleus (Goldfarb et al., 2004).
The trimeric complex comprised of the cargo, importin α, and importin β, translo-
cates through the NPC docked to the cytoplasmic face of the NPC and targeted
to its core through the affinity of importin β for the NPC proteins (Nups) (Chi
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et al., 1995; Enenkel et al., 1995; Görlich et al., 1995a; Radu et al., 1995; Kraemer
et al., 1995; Nigg, 1997; Görlich, 1997). Once in the nucleus, dissociation of the
complex containing both importins and the cargo protein is triggered by binding
of Ran to importin β (Rexach and Blobel, 1995; Gilchrist et al., 2002) and the
importin α is released from the cargo with the help of the Nu Npap60 (Matsuura
and Stewart, 2005).

Nuclear Export

Similar to nuclear import, substrates exported from the nucleus use targeting se-
quences called nuclear export signal (NESs), and specific receptors (Exportins)
that recognize them. Of all characterized exportins, the export receptor Ex-
portin 1 (CRM1 (for chromosome region maintenance) in vertebrates; Crm1p/Xpo1p
in yeast) has the broadest known substrate range. Crm1p was originally identified
in the fission yeast Schizosaccharomyces pombe in a genetic screen unrelated to
nuclear transport (Adachi and Yanagida, 1989). The protein is encoded by an
essential gene originally identified as a protein required for chromosome region
maintenance (Adachi and Yanagida, 1989; Nishi et al., 1994) and it was shown
to be the target of the cytotoxic drug leptomycin B (LMB) (Nishi et al., 1994;
Wolff et al., 1997) which makes a covalent modification at a cysteine residue in
the central region of the protein (Kudo et al., 1998, 1999a). Human CRM1 was
identified based on its ability to bind nucleoporins and in particular CAN/Nup214
(Fornerod et al., 1997b). The low but significant sequence relatedness between
the N-terminal domains of CRM1 and the the emerging members of the karyo-
pherin/importin β family of import receptors suggested that CRM1 was likely
to be a transport receptor. This property together with the LMB sensitivity of
CRM1 in S. pombe, were consistent with the possibility that CRM1 could be
the NES receptor. Ultimately, studies from different laboratories demonstrated
that CRM1 directly interacts with NES-containing substrates in a RanGTP de-
pendent and LMB-sensitive manner (Fornerod et al., 1997a; Fukuda et al., 1997;
Stade et al., 1997).

Whereas Exportin 1 has a wide range of export substrates (proteins containing a
hydrophobic NES, explained below), some other receptors from the importin β-like
family are implicated in the nuclear export of specific cargoes. For example, CAS
(cellular apoptosis susceptibility, Cse1p in yeast) exports the receptor importin α
once it has carried in its protein cargo to the nucleus (Kutay et al., 1997; Herold
et al., 1998; Hood and Silver, 1998; Solsbacher et al., 1998). Exportin 4 functions
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as an export receptor for eukaryotic translation initiation factor eIF5A (Lipowsky
et al., 2000). Exportin 5 transports microRNA precursors to the cytoplasm by
recognizing the RNA hairpin structure with a 3’ overhang as the NES (Yi et al.,
2003; Kim, 2004; Zeng and Cullen, 2004) whereas Exportin 6/RanBP20 exports
profiling-actin complexes (Stüven et al., 2003). RanBP16, designated Exportin 7,
confines p50RhoGAP and 14-3-3 to the cytoplasm, in addition to export other
substrates from the nucleus by using a NES different to the one present in the
Exportin 1 cargoes (Mingot et al., 2004). Exportin-t exports tRNA by recognizing
a part of its structure as its NES (Lei and Silver, 2002; Rodriguez et al., 2004).
Concerning RNAs export, the case of mRNA is atypical in that it occurs by a
mechanism that is distinct from that of proteins, tRNA or microRNA. Bulk mRNA
is not exported by a member of the importin β-like family and does not rely on
the RanGTP gradient. Instead, the transport involves a heterodimer formed of
Nxf1 (metazoan; also known as TAP; Mex67 in yeast) and Nxt1 (metazoan; also
known as p15; Mtr2 in yeast) (Rodriguez et al., 2004; Cole and Scarcelli, 2006;
Carmody and Wente, 2009).

Exportin 1 is the major receptor for the export of proteins out of the nucleus
including cell cycle regulators, transcription factors, RNA binding proteins and
many others. This Exportin also contributes to nuclear export of different classes
of cellular RNAs or ribonucleoproteins (RNPs), for instance U snRNAs, ribosomal
RNAs, signal recognition particle (SRP) and certain mRNP complexes (Fridell
et al., 1996; Ciufo and Brown, 2000; Popa et al., 2002). More recently, Exportin 1
has also been associated with the export of mature microRNAs (Castanotto et al.,
2009). For the export of some cargoes, like the pre-60S ribosomal subunit, an NES-
containing adapter protein that bridges its interaction with the export receptor
is needed. In the case of the pre-60S ribosomal subunit this adapter protein is
designated NMD3 (for non-sense-mediated mRNA decay), which contains an NES
that recruits Exportin 1 (Zemp and Kutay, 2007). Another example of adapter
protein is the NES-containing protein PHAX (phosphorylated adaptor for RNA
export) (Ohno et al., 2000), which serves as a bridge between the cap binding
complex (CBC)-bound U snRNA and Exportin 1/RanGTP.



2.1. Nucleo-cytoplasmic transport 13

XPO1

NES

Assembly Translocation trough the NPC Release from the NPC 

2

3

Nucleus Cytoplasm

XPO1

Cof

NES

Ran

GTP Ran

Cof
X
P
O

1
NES

GTP1

RanBP1

Cof
Ran

GDP

RanGAP1

NE

NPC

Figure 2.2: Nuclear export of proteins mediated by Exportin 1 receptor
The receptor Exportin 1 binds directly to a cargo protein containing a nuclear export signal
(NES), co-operatively with RanGTP that is abundant in the nucleus (step 1). For some car-
goes, an additional cofactor (Cof) is necessary to stabilize the complex. The export complex
docks to the nuclear pore complex (NPC), and is translocated to the cytoplasmic side via direct
interactions of Exportin 1 with FG-nucleoporins (step 2). On the cytoplasmic side, two regu-
lators of the Ran GTPase cycle, Ran-binding protein 1 (RanBP1) and Ran GTPase-activating
protein (RanGAP) that act together to hydrolyze GTP on Ran. As a result, the export complex
disassembles and the NES-containing cargo is released into the cytoplasm (step 3). NE, nuclear
envelope.

The nuclear export process mediated by the Exportin 1 (Figures 2.1B and 2.2),
involves three main steps:

• Assembly of nuclear export complexes

Assembly of cargo-Exportin 1 complexes requires the GTPase Ran. Ex-
portins are characterized by a high affinity to their cargo substrates in the
presence of RanGTP, which becomes a part of the export complex that
forms in the nucleus. The formation of the complex between Exportin 1
and RanGTP occurs only in the presence of the cargo, and interaction be-
tween Exportin 1 and cargo depends on RanGTP. Thus, Exportin 1, NES-
containing cargo, and RanGTP undergo cooperative binding, resulting in
the formation of a trimeric export complex.
Since the affinity of Exportin 1 for cargoes is generally low (explained below)
(Askjaer et al., 1999; Paraskeva et al., 1999; Maurer et al., 2001), additional
cofactors or accessory proteins, appears to be required to stabilize the in-
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teraction between Exportin 1 and some NES-containing substrates (Lindsay
et al., 2001; Englmeier et al., 2001; Dasso, 2002). One example of this kind
of proteins is the RanGTP-binding protein RanBP3 (Yrb2p in Yeast). The
binding of RanBP3 results in formation of a quaternary complex consisting
of RanBP3, RanGTP, Exportin 1 and the export NES-containing substrate
(Figure 2.2). While RanBP3 does not bind to export substrates like an
adaptor protein, it binds to Exportin 1 and increases its affinity for both
RanGTP and NES-containing cargo (Englmeier et al., 2001; Lindsay et al.,
2001). It has been suggested that RanBP3 has a function beyond the export
complex formation in the nucleus, possibly accompanying Exportin 1 to the
cytoplasm (Fried and Kutay, 2003).

• Translocation of the export complex through the NPC

This step involves interactions between Exportin 1 and a subset of NPC
proteins (FG nucleoporins) characterized by stretches of degenerative FG
repeats enriched in phenylalanine and glycine residues and separated by hy-
drophilic linkers. These FG repeats are likely to be critical for the process by
which transport receptor-cargo complexes gain selective access to the NPC
channel. All known nuclear transport receptors can bind to FG-containing
Nups, and interactions between transport receptors and FG repeats are es-
sential for translocation through the NPC (Weis, 2003). However, the bio-
physical details of how these FG filaments contribute to the selective perme-
ability of the NPC have been a matter of debate. Recently, Frey and Görlich
(2007) proposed the formation of a “saturated hydrogel” within the NPC,
in which all the FG domains engage in a maximum number of interactions
to form a highly ordered mesh with very even pore size. In this model, the
transport receptors are thought to dissolve the FG mesh and thus catalyze
the entry and translocation of cargo through the NPC channel. Although
this model answers some open questions concerning the NPC passage step
of the nuclear transport, the issue remains whether such a hydrogel exists
within the NPC and whether the model reflects the in vivo physiology of
nuclear transport (Meier, 2007).

• Release of the export complex from the NPC

After translocation, the export complex reaches the cytoplasmic side of the
NPC and encounters two cytoplasmic regulators of the Ran GTPase cy-
cle, Ran-binding protein 1 (RanBP1) and Ran GTPase-activating protein
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(RanGAP) that act together to hydrolyze GTP on Ran (Figure 2.2). In
humans, the large nucleoporin RanBP2 (NUP358) performs a similar func-
tion to RanBP1 and is also localized at the cytoplasmic face of the NPC. As
a consequence of these topological arrangements, GTP hydrolysis on Ran
occurs when an export complex reaches the cytoplasmic side of the nuclear
envelope after its passage through the NPC. Since the affinity of exportins
for their cargo substrates is very low in the absence of RanGTP, GTP hy-
drolysis on Ran results in the dissociation of export complexes and hence
leads to the release of export cargo, RanGDP, and the Exportin 1. Ex-
portin 1 recycles back to the nucleus on its own due to its ability to interact
with FG-nucleoporins Merkle (2008).

2.1.2 Nuclear export signals (NESs)

Description

The best understood and widely distributed NES is the so-called leucine-rich NES
(LR-NES), which consist of a short leucine-rich stretch of amino acid residues in
which the leucine residues are critical for function (Mattaj and Englmeier, 1998;
Görlich and Kutay, 1999; Kaffman and O’Shea, 1999; Ossareh-Nazari et al., 2001).

The LR-NES was discovered originally in two proteins, the cellular protein kinase
inhibitor (PKI) that terminates PKA-dependent signaling to nuclear targets by
exporting PKA out of the nucleus (Wen et al., 1995), and the HIV-1 Rev protein
(Fischer et al., 1995). Rev binds to a cis-acting RNA sequence, the Rev responsive
element (RRE), which is present in unspliced and partially spliced viral mRNAs.
Rev facilitates nuclear export of these RNAs to the cytoplasm of infected cells, a
function that is necessary for viral protein expression and packaging of unspliced
RNA into virions. In the absence of Rev, these viral transcripts are retained
in the nucleus where they are either fully spliced or degraded. Two domains of
Rev are necessary for its export activity. The first domain directly contacts the
Rev-response element in the RNA, and the second domain contains an LR-NES
sequence similar to that found in PKI (Nigg, 1997). Deletion and mutational anal-
ysis of PKI and Rev revealed that these proteins contain a 10-amino acid sequence
essential for export function, which is enriched in hydrophobic residues, specially
leucines. These studies provided evidence that the LR-NES is a necessary, suffi-
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cient, and transferable signal capable of directing highly efficient nuclear export
(Fischer et al., 1995). Nuclear export mediated by the LR-NES was shown to be
saturable, suggesting it is a receptor-mediated process. This view was validated
with the discovery of Exportin 1 as the NES receptor (Fornerod et al., 1997a;
Fukuda et al., 1997; Stade et al., 1997).

By comparing several functional LR-NESs and by applying a randomization-
selection approach, a consensus for the LR-NES was initially proposed as:

[L]-x2-3-[F,I,L,V,M]-x2-3-L-x-[L,I] (Bogerd et al., 1996)

where x corresponds to any amino acid residue. With the description of new
proteins containing the LR-NES, it was evident that hydrophobic amino acid
residues other than leucines were also present in the first and/or third hydrophobic
position and the initial consensus was lightly modified (Fornerod and Ohno, 2002;
Engelsma et al., 2004; Kutay and Güttinger, 2005). In a more recent publication
a yeast selection method for the identification of proteins containing the LR-NES
in vivo was used (Kosugi et al., 2008). Based on the results, the authors proposed
three different consensus sequences which differ basically in the number of spacing
amino acid residues present between the hydrophobic ones and in the exclusion
of proline. The proposed consensus sequences for the LR-NES are summarized
in Figure 2.3 together with LR-NESs of some example proteins. It is worth to
mention that besides the canonical LR-NES, less well-defined sequences exist that
mediate interaction with Exportin 1 in a RanGTP-dependent manner (Klemm
et al., 1997; Paraskeva et al., 1999; Macara, 2001). This dissertation is focused on
the LR-NES that is exported by Exportin 1.

Remarkable features of the LR-NES

It has been shown that the consensus sequences alone do not provide a safe way
of predicting Exportin 1 substrates from protein sequences. One reason is that
leucine is statistically the most abundant amino acid residue in proteins, and the
probability of finding such leucine-rich motifs by chance in a given protein is high.
In addition, not all sequence motifs that look like an LR-NES also function as such
in their original protein context. For example, LR-NES-like sequences have been
suggested in yeast Importin β (Iovine and Wente, 1997) and in human Importin
α (Boche and Fanning, 1997), but they turned out to be not functional.
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Figure 2.3: Leucine-rich nuclear export signal (LR-NES)
The NES recognized by CRM1 is defined as a short amino acid sequence of regularly spaced
hydrophobic residues, of which leucine is statistically the most abundant. A: Sequence alignment
of identified natural LR-NESs (HIV-1 Rev (Fischer et al., 1995), MVM NS2, PKI (Wen et al.,
1995), MAPKK (Fukuda et al., 1996), Nmd3 (Thomas and Kutay, 2003), Xenopus An3 (Askjaer
et al., 1999), Ik Bα, Cyclin B1 and TFIIIA),together with the artificial LR-NES S1, which has a
high affinity for CRM1, binds independently of RanGTP and cannot be released in the cytoplasm
(Engelsma et al., 2004). The LR-NES consensus is included below the sequences. Hydrophobic
residues are shown in red in the sequences and as φ in the consensus, x denotes any amino
acid residue. B: Three classes of LR-NESs proposed by Kosugi et al. (2008), based on a yeast
selection method. [∧P][2,3]: any two or three amino acid residues except proline; φ: L, I, V, M,
F, C, W, A or T; X3: any three amino acid residues, where C, T, A and W are allowable only
at one of the four positions.

Another point to considerer is that not all LR-NESs are exactly alike and individ-
ual, isolated NES segments are exported by Exportin 1 with different efficiencies
(Henderson and Eleftheriou, 2000). In addition, different affinities of natural LR-
NESs for Exportin 1 have been reported together with qualitative differences in
the speed of the nuclear export (Askjaer et al., 1999; Heger et al., 2001). Thereby,
an excess of proteins containing a fast NES inhibited the export and the biologi-
cal activity of proteins containing a slower NES, but not vice-versa (Heger et al.,
2001), indicating a possible competition of different NES-containing substrates for
export factors (Fried and Kutay, 2003).



18 Chapter 2. Background

It has been shown that natural LR-NESs bind to Exportin 1 with relatively low
affinity. In fact, high-affinity NESs binding to Exportin 1 impairs the efficient
release of Exportin-NES cargo export complexes from the NPC (Fornerod and
Ohno, 2002; Kutay and Güttinger, 2005). In this sense, it was shown that al-
though some artificial LR-NES sequences exhibit Exportin 1 binding affinities in
the low nM range, 100 to 500-fold higher than the usual NES-Exportin affinity
(Askjaer et al., 1999; Paraskeva et al., 1999), they are too strong to be optimal
in vivo (Engelsma et al., 2004; Kutay and Güttinger, 2005). These high affinity
NES-Exportin complexes were trapped at the NPC when over-expressed in living
cells (Engelsma et al., 2004). The mentioned high-affinity NES (termed S1 and
shown in Figure 2.3) differs from a low affinity LR-NES (termed S0 in the same
study), only in a serine instead of a glycine occupying the penultimate amino acid
position. It has been proposed that the low affinity between LR-NESs and Ex-
portin 1 possibly enables clearance of the export receptor from the NPC (Kutay
and Güttinger, 2005). Nevertheless, in a recent publication, a high Exportin 1
affinity NES (called “supraphysiological” in that report) in a viral protein (MVM
NS2) that is required for viral nuclear export was identified in natural host cells
(Engelsma et al., 2008). In addition, NMD3, the nuclear export adaptor for 60S
pre-ribosomal proteins, has also been reported to behave in a manner reminiscent
of a unusual high Exportin 1 affinity NES (West et al., 2007). Hence, the authors
speculate that large cargoes (like a viral particle or a ribosomal subunit) require
an adaptor with high-affinity interaction for Exportin 1 in vivo in order to be
exported (Engelsma et al., 2008).

Proteins containing the LR-NES

As already mentioned, the LR-NES confer binding to Exportin 1 and export from
the nucleus. This signal functions in a great number of proteins executing quite
heterogeneous biological functions (Heger et al., 2001). Those include RNA trans-
port (Pollard and Malim, 1998; Sandri-Goldin, 1998; Krätzer et al., 2000), cell cy-
cle and transcriptional control (Toyoshima et al., 1998; Roth et al., 1998; Stommel
et al., 1999; Begitt et al., 2000), regulation of kinase activity (Wen et al., 1995;
Fukuda et al., 1996; Engel et al., 1998) or even the controlled localization of cy-
toskeletal proteins (Wada et al., 1998). Until 2003, at least 75 LR-NES-containing
proteins from viruses, yeast and vertebrates had been reported and experimen-
tally validated and they were collected in the database NESbase (la Cour et al.,
2003).
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LR-NESs are also present in a wide variety of cancer related proteins including
p53, c-Abl, FOXO-3A and survivin (Nishi et al., 1994; Altieri, 2006; Knauer et al.,
2007a), which use Exportin 1 as receptor. Many important tumor suppressors and
transcription factors protect cells by regulating cell growth and apoptosis, and
their cytoplasmic localization can serve as an inactivation mechanism resulting
in uncontrolled growth and the onset of disease (Vousden and Woude, 2000).
One strategy to prevent cytoplasmic localization of those factors is to inhibit the
proteins responsible for their nuclear export. Therefore, it has been proposed
that the prevention or inhibition of nuclear export of tumour supressors as drug
targets could be useful in the treatment of cancer (Turner and Sullivan, 2008).
In this sense, export inhibitors, e.g., LMB, have been proposed for anticancer
therapy (Vigneri and Wang, 2001), additionally, nuclear export inhibitors (NEI)
with the potency of LMB but with better tolerance than LMB in vivo have shown
efficacy in some models (Mutka et al., 2009). Nevertheless, Exportin 1 directed
inhibitors can not be used in therapeutic applications due to their toxic side
effects by blocking all Exportin 1 mediated transport pathways (Knauer et al.,
2007b). Hence, the interference of the LR-NES binding has been proposed as
another strategy to inhibit the nuclear export. Since the exposition of the LR-NES
could be modulated by phosphorylation (explained below), blocking of protein
modifications (epecially phosphorylation) could prove useful. Furthermore, since
NESs can be grouped into specific categories according to their activity in vivo
(Heger et al., 2001), these differences may represent an attractive opportunity to
selectively block export and the biological functions of proteins by the generation
of NES specific inhibitors (Knauer et al., 2007a).

Summarizing, Exportin 1 is the nuclear export receptor for most of the known
protein cargoes travelling from nucleus to cytoplasm, from which, the majority
poses the LR-NES. A summary of the receptors and cargoes so far described is
presented in Table 2.1.

2.1.3 NESs in the regulation of nuclear transport

The multi-stage nature of the nucleo-cytoplasmic transport process gives many
possibilities for regulation in response to, e.g., environmental, cell cycle, apoptotic
and developmental signals (Hood and Silver, 2000; Fried and Kutay, 2003). Many
cellular processes from apoptosis to circadian rhythms and from signal transduc-
tion to the cell cycle are regulated, at least in part, by modulating NLSs and
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Yeast Humans Plants∗

Export Cargo(es) Export Cargo(es) Export
Receptor Receptor Receptor

Crm1p LR-NES CRM1 LR-NES XPO1a
XPO1b

Kap109(Cse1p) Kap60(Sr1p) CAS Importin α CAS(Exp 2)
Kap127(Los1p) tRNAs Exportin-t tRNAs Paused(PSD)
- - Exportin 4 eIF-5A -

Kap142(Msn5)
(bidirectional)

Cdh1(export),

Pho4, Crz1, Exportin 5 pre-miRNA Hasty(HST)
Prot A(import)

- - Exportin 6 Profilin, Actin -

- - RanBP16 p50-RhoGAP -(Exportin 7)

Table 2.1: Exportin receptors and their cargoes
The main receptor for nuclear export is Exportin 1 (shown in blue letters), it is conserved
in yeast, vertebrates and plants (∗Arabidopsis thaliana). It is called Crm1p/Xpo1p in yeast,
CRM1 in humans and XPO1 in Arabidopsis, which has two of these receptors XPO1a and
XPO1b (explained in Section 2.1.4). The most prevalent NES is the LR-NES (colored red),
which is present in the proteins being exported by Exportin 1. There are also other Exportin
receptors for specific cargoes and some cases of bidirectional receptors that carry out nuclear
export as well as nuclear import.

NESs (Macara, 2001). In general, the nucleo-cytoplasmic distribution of proteins
can be regulated at the level of the NPC, transport receptors, and signals (NLSs
and/or NESs) in individual cargoes. The examples described until now can be
grouped in a number of similar common mechanisms (Jans et al., 2000; Hogarth
et al., 2005; Poon and Jans, 2005; Sorokin et al., 2007; Terry et al., 2007), some
of them directly related with the cargoes signals (NLS and/or NES).
The basic factor determining the nucleo-cytoplasmic distribution of proteins may
be the regulation of transport complexes upon their formation due to modulation
of receptor-signal (Exportin-NES) interactions, which are very sensitive to con-
formational changes in the NES regions and in the substrate-binding sites of Ex-
portin. For that reason, the major part of known examples of nucleo-cytoplasmic
distribution regulation involves changes in the substrate that affect the exposition
of the signal (Poon and Jans, 2005) and in this way, the contact with the Exportin.
These mechanisms include NES masking, enhancement of the Exportin-NES in-
teraction and retention of the NES substrate in nucleus. In addition to these,
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there are other regulation processes involving cotransport, changes in the cargo-
binding properties of karyopherin, in the variety of importins and exportins and
in the variety of nucleoporines (Sorokin et al., 2007; Terry et al., 2007). Here,
the attention will be focused on the regulation mechanisms involving the NES
directly, which are described thereafter.

Masking of the NES from recognition by Exportin

The masking of NESs is the most widespread mechanism of regulation of the
nuclear export. Two general classes of masking can be recognized: Intramolecular
and intermolecular.

In intramolecular masking, upon introduction of charge or conformational
changes to the NES-containing region of the protein the access of Exportin to
the NES vanishes. An example of this mechanism is the integrase interactor 1
(INI1) from the human SNF5 chromatin-remodeling complex. The C-terminal of
this protein masks the NES making it inaccessible for Exportin 1 and thus pre-
vents its nuclear export (Craig et al., 2002).
Intramolecular masking can be also caused by phosphorylation near NES(s) or
within them. One example is provided by the telomerase reverse transcriptase,
to which 14-3-3 protein can bind in a non-phosphoserine dependent manner and
block an NES (Seimiya et al., 2000). Another example, under osmotic stress pro-
tein Hog1p (high osmolarity glycerol pathway-signaling protein) is phosphorylated
by Pbs2p kinase at Thr174 and Tyr176, which renders the NES inaccessible for
binding to Exportin 1 and leads to inhibiting the export of Hog1p from the nu-
cleus (Figure 2.4A) (Ferrigno et al., 1998).
The masking of NESs can be as well the result of conformational changes due to
the formation of disulfide bonds between cysteine residues. Thus, under oxidative
stress a disulfide bond between Cys598 and Cys620 is formed in the transcription
factor Yap1p, which makes its NES inaccessible for interaction with Exportin 1
(Figure 2.4A) (Kuge et al., 2001). A similar mechanism of export regulation was
also shown for the transcription factor Pap1 (Kudo et al., 1999b).
Some proteins have more that one NES, which can be differentially regulated.
One example of this situation occurs in the protein p53. The tumor suppressor
p53 shuttles between the nucleus and the cytoplasm in a cell cycle dependent
manner (Stommel et al., 1999) and its nuclear localization is regulated by dif-
ferent mechanisms. One of them is associated with phosphorylation of Ser15/20
in p53 in response to DNA damage that leads to masking of NES1. Another
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mechanism consists in tetramerization of protein p53 within the nucleus in re-
sponse to the DNA damage which causes NES2 masking. Dissociation of this
tetramer is required for the export of the protein from the nucleus (Stommel
et al., 1999). Additionally, the nucleocytoplasmic shuttling of p53 is further abro-
gated by stress induced poly ADP-ribosylation that prevents p53 interaction with
Exportin 1 (Kanai et al., 2007). Defects in p53 nuclear retention are associated
with a number of neoplasms (Jimenez et al., 1999), illustrating the importance of
proper cellular localization for single cargoes (Terry et al., 2007).

The intermolecular masking consists in the distortion of Exportin-NES inter-
actions caused by the binding of the NES-containing protein to another protein or
nucleic acid. As an example, the protein calcineurin can be cited. At high Ca2+

concentration, calcineurin (Ca2+-responsive phosphatase) binds to the transcrip-
tion factor NF-AT4 and masks its NES from interaction with Exportin 1, which
suppresses nuclear export of the factor (Figure 2.4B). At low Ca2+ concentration,
calcineurin dissociates from NF-AT4 and unmasks its NES (Zhu and McKeon,
1999).
The binding of the ligand may also cause masking of the NES as was demonstrated
for the androgen receptor whose NES is in the ligand-binding domain (Saporita
et al., 2003). In the presence of the ligand (androgen), the NES is masked and
Exportin 1 cannot recognize it. The receptor is translocated only after the disso-
ciation of androgen (Figure 2.4C).

Enhancement of the Exportin/NES binding affinity

In contrast to the NES masking, as a result of which interactions of Exportin and
an NES are distorted, another regulation mechanism consists in the enhancement
of the Exportin binding to the NES.
An example of such regulation occurs in the transcription factor Pho4, phospho-
rylation at Ser114 and Ser128 raises its affinity to Exportin 4 and stimulates its
nuclear export (Figure 2.4D) (Komeili and O’Shea, 1999). Some other proteins,
like cyclin D1 need to be phosphorylated for binding to Exportin 1 (Benzeno and
Diehl, 2004). Although cyclin D1 accumulates in the nucleus during the G1 in-
terval, it relocalizes to the cytoplasm during S phase. The essential functions of
cyclin D1 require its nuclear localization, and thus the redistribution of cyclin D1
complexes to the cytoplasm following G1 implies that regulation of cyclin D1
nucleocytoplasmic distribution is necessary for maintaining cellular homeostasis.
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Figure 2.4: Nuclear export regulation involving NESs
Examples of some mechanisms of nuclear export regulation directly related with the NES. A:
Intramolecular masking. 1: Phosphorylation of Hog1p at Thr174/Tyr176 masks the NES from
recognition by Exportin 1 (Xpo 1). Cytoplasmic translocation is found after dephosphorylation
of the residues. 2: Oxidative stress leads to disulfide linkage in protein Yap1p. The formation
of this bond inhibits the binding of Xpo 1 to the NES and leads to accumulation of the protein
in the nucleus. B: Intermolecular masking. 1: At high Ca2+ concentrations, calcineurin binds
to NF-AT4 and mask its NES from interaction with Xpo 1. Nuclear export of NF-AT4 can take
place only after dissociation of calcineurin in response to decreasing concentration of Ca2+. 2:
The NES of the Androgen Receptor (AR) is localized to the ligand-binding domain. In presence
of ligand (androgen), the NES is masked and Xpo 1 cannot recognize it. The export of AR to the
cytoplasm can take place only after androgen dissociation. C: Enhancement of NES binding to
Exportin. Phosphorylation of Pho at Ser114/128 enhances the RanGTP-dependent interactions
of the NES with Exportin 4 (Xpo 4) and leads to its nuclear export. D: Nuclear retention.
Hypothetical model of how annexin A2 is sequestered in the nucleus, when annexin A2 is in
the nucleus, the NES is masked by a protein interacting (X: unknown nuclear factor) with the
region containing the NES, or it is masked by that region per se. When interaction domain
is modified, the NES is exposed and exported. Figures A to C were modified from (Poon and
Jans, 2005; Sorokin et al., 2007), and D from (Liu and Vishwanatha, 2007).
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Phosphorylation of cyclin D1 at Thr-286 by GSK-3 promotes Exportin 1 binding,
which then shuttles cyclin D1 to the cytoplasm (Alt et al., 2000) for subsequent
degradation via the 26S proteasome (Diehl et al., 1998).

Retention in the nucleus or cytoplasm

Another mechanism of nuclear export regulation is realized through the binding
of the NES-containing protein to specific nuclear factors that retain proteins in
the nucleus or in the cytoplasm in the case of nuclear import. This mechanism
plays an important role in the regulation of nucleocytoplasmic distribution of pro-
teins in response to stimulation of different signal pathways in the cell. (Sorokin
et al., 2007). There are many examples of this mechanism involving NLSs but
few cases have been reported involving NESs directly. For example, the glucocor-
ticoid receptor is retained in the cytoplasm through complexation with Hsp90 in
the absence of the ligand. When binding to the hormone (ligand), the glucocorti-
coid receptor is dissociated from Hsp90 and imported into the nucleus by an NLS
dependent mechanism (Tago et al., 2004). Similarly, the tumor repressor p53 is
retained in the cytoplasm by protein Parc (Parkin-like ubiquitin ligase). A nu-
clear retention example is Human annexin A2, it is proposed that the NES of this
protein is masked by an interacting protein in the region tethering the NES, or is
masked by that region per-se and in this way is sequestered in nucleus. When the
interaction domain is modified, the NES is exposed and the export occurs sub-
sequently (Liu and Vishwanatha, 2007). Another example involving retention in
nucleus occurs in the tumor suppressor Rb protein. It was shown that Rb shuttles
between nucleus and cytoplasm with similar rates, and is partially immobile in
both cellular compartments, in part due to Rb binding to the microtubule network
(Roth et al., 2009).
Nuclear or cytoplasmic retention can additionally be regulated by phosphoryla-
tion. For example, the nuclear retention of IFI16 is enhanced after phosphoryla-
tion of NLS by kinase CK II (Briggs et al., 2001). In cyclin B1, phosphorylation
of its NES at the onset of mitosis leads to nuclear retention by blocking the in-
teraction with Exportin 1 (Yang et al., 2001).

2.1.4 Nuclear export in Arabidopsis thaliana

Analysis of plant proteins involved in nuclear export has shown that although this
process is highly conserved between organisms from yeast to vertebrates (Ward
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and Lazarowitz, 1999; Merkle, 2003; Meier, 2005), there are some plant-specific
features.

The existence of a nuclear export pathway for proteins carrying the LR-NES in
plants has been demonstrated (Haasen et al., 1999a). In this way, the ortho-
logue of Exportin 1, XPO1, has been caracterized in Arabidopsis (Haasen et al.,
1999a,b). The plant XPO1 interacts with RanGTP and with the LR-NES of
Arabidopsis proteins like RanBP1a and proteins of other organisms like HIV Rev
suggesting a high degree of conservation of this nuclear export pathway between
organisms. Point mutation of specific hydrophobic residues within the LR-NES
of AtRanBP1a abolished the interaction with XPO1 (Merkle, 2003). The inter-
action with proteins containing the LR-NES is also blocked by Leptomycin B
(LMB) (Haasen et al., 1999a), by the same mechanism as in Exportin 1 from ver-
tebrates (Kudo et al., 1999a). In addition, nuclear export activity in plants was
demonstrated in vivo by using green fluorescent protein (GFP) fusion proteins.
In tobacco BY-2 protoplasts, the NES of RanBP1a or the NES of HIV Rev was
sufficient to confer nuclear export to GFP fusion proteins and the nuclear export
activity was sensitive to LMB (Haasen et al., 1999a). As a special feature and
in contrast to the situation in yeast and vertebrates, Arabidopsis contains two
genes encoding highly similar XPO1 proteins. These two genes were shown to
be essential for development and function of the gametophytes (Blanvillain et al.,
2008). The proteins coded by the two XPO1 genes are called XPO1a and XPO1b
(see Table 2.1).

In addition to XPO1, three more exportins have been characterised in Arabidopsis.
One of them is Hasty (HST), which encodes the putative orthologue of human
Exportin 5/yeast Msn5p. HST interacts with the GTPase Ran in the yeast two-
hybrid system, and a fusion protein of HST with β-glucuronidase (GUS) was
shown to be localised to the periphery of nuclei in transgenic plants (Bollman
et al., 2003). The loss of HST provokes a variety of developmental phenotypes
(Bollman et al., 2003). The second Exportin is Paused (PSD), the Arabidopsis
orthologue of Exportin-t/Los1p. Evidence of PSD function as a nuclear export
receptor for tRNA was provided by complementation of the los1-1 mutant of S.
cerevisiae (Hunter et al., 2003). Like HST, mutants of PSD have pleiotropic effects
in plan development (Hunter et al., 2003; Li and Chen, 2003). The third of the
exportins characterized so far in Arabidopsis is CAS, the nuclear export receptor
for importin α (Haasen and Merkle, 2002).



26 Chapter 2. Background

As explained before, the action of exportins alone is not sufficient to drive the
transport across the NE, in this sense, some components of the Ran cycle have
been identified in plants. Ran has been found in a variety of plant species (Ach
and Gruissem, 1994; Merkle et al., 1994; Saalbach and Christov, 1994). Genes
encoding the GTPase Ran have been isolated from several plant species (Merkle
and Nagy, 1997). Four Ran GTPases are present in Arabidopsis (Vernoud et al.,
2003). AtRAN1, AtRAN2, and AtRAN3 has been identified by sequence similar-
ity and isolated (Xia et al., 1996; Haizel et al., 1997), whereas the fourth gene,
AtRAN4, is annotated as “salt stress-inducible small GTP-binding protein Ran1-
like protein", but so far no information has been published (Vernoud et al., 2003).
At the protein level, AtRAN1, AtRAN2, and AtRAN3 are nearly identical (95%-
96% of identity) differing only in their C-terminal regions, whereas AtRAN4 is
more divergent with only 65% identity to the other AtRAN sequences. AtRAN1,
AtRAN2, and AtRAN3 are able to interact with Arabidopsis RanBP1 in the
yeast two-hybrid system, using Ran mutants that are permanently blocked in
the GTPbound form. All AtRan GTPases contain sequence motifs involved in
GTP binding/hydrolysis and an effector-binding domain for interaction with Ran-
GAPs. This effector-binding motif is 100% identical in AtRAN1 to AtRAN3 and
in tomato and tobacco Ran GTPases but diverges strikingly in AtRAN4, which
does not have any typical conserved C-terminal acidic domain at all. Since in
animals this acidic domain is necessary for interaction with Ran-binding proteins
(Haizel et al., 1997), it is likely that AtRAN1 to AtRAN3 are involved in nucleocy-
toplasmic transport whereas AtRAN4 may have distinct functions in Arabidopsis
(Vernoud et al., 2003).

Regarding Ran binding proteins (RanBP), three genes encoding RanBP1 proteins
were isolated from Arabidopsis (Xia et al., 1996; Haizel et al., 1997). AtRanBP1
proteins contain a Rev-type LR-NES in the C-terminal that confers interaction
with Arabidopsis XPO1. A functional NES was necessary for the nuclear exclusion
of a GFP-AtRanBP1a fusion protein in protoplasts (Haasen et al., 1999a). The
presence of an NES in AtRanBP1c has also been demonstrated, additionally, it was
shown that this protein is functional as a co-activator of RanGAP in vitro (Kim
and Roux, 2003). It has been established that AtRAN1 interacts with AtXPO1
and AtRanBP1a (Haizel et al., 1997; Haasen et al., 1999a), suggesting that the
nuclear export machinery may be functionally conserved in plants (Haasen et al.,
1999a).
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Two RanGAP sequences have been identified in Arabidopsis: AtRanGAP1 and
AtRanGAP2. Both of them complemented yeast RanGAP mutants (Pay et al.,
2002), suggesting that these proteins are functional orthologs of the yeast Ran-
GAP. AtRanGAP-GFP fusions associate with the nuclear envelope, and this lo-
calization is dependent upon a unique N-terminal domain (Rose and Meier, 2001).
AtRanGAP1 localization is consistent with a role for AtRAN GTPases in nucleo-
cytoplasmic transport. These facts together suggest that plant Ran, RanBP1 and
RanGAP proteins have functions that are similar to those of the vertebrate and
yeast proteins (Vernoud et al., 2003).

Concerning the signals, animal and yeast NLSs and NESs have been found to
be functional in plants (Smith et al., 1997; Ward and Lazarowitz, 1999; Merkle,
2001), and endogenous NLSs and NESs have been identified in some plant pro-
teins. For example, the movement protein BR1 of the squash leaf curl virus has a
functional LR-NES and two basic NLSs (Ward and Lazarowitz, 1999). The NES
of Arabidopsis RanBP1a is functionally indistinguishable from the NES on the
HIV-1 Rev Protein (Haasen et al., 1999a).

2.2 Computational prediction of NESs

The general components of the nuclear export process are quite conserved among
eukaryotes, however, many of the NES-containing proteins are species-specific.
This fact together with the functional diversity of the NES-containing proteins,
make their identification of great interest. The approaches used to identify pro-
teins containing the LR-NES are traditionally experimental and include techniques
like yeast two-hybrid screenings using the receptor Exportin as a bait. Given the
growing availability of sequence data for many organisms, many studies have been
directed to develop computational tools that can predict specific signals from the
amino acid sequences and in this way support and speed up the experimental
approaches.

The task has some inherent difficulties in the case of predicting LR-NESs. As
was already exposed, leucine is the most abundant amino acid residue in proteins
from eukaryotes, the signal is relatively short (around 10 amino acid residues)
and is has been already shown that the consensus alone does not provide an
efficient method for prediction. Nevertheless, one NES prediction tool is currently
available (la Cour et al., 2004). It was developed using a combination of Hidden
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Markov Models (HMM) and Neural Networks (NN). This tool has been proved
to be accurate in the prediction of LR-NESs in proteins of organisms like viruses
and yeast, but it is not useful to identify the signals in proteins from plants. This
fact was evidenced since some proteins from Arabidopsis with an experimentally
validated LR-NES (previous work in laboratory of Dr. Thomas Merkle) were not
predicted as containing any LR-NES when screened with that tool.

In contrast to NESs, considerable work has been done in developing computa-
tional prediction methods for NLSs. At present there are several tools available
for finding NLSs in protein sequences (Hawkins et al., 2007). Some of them are:

PredictNLS http://www.rostlab.org/services/predictNLS/
(Cokol et al., 2000)

NLSdb http://cubic.bioc.columbia.edu/db/NLSdb/
(Nair et al., 2003)

NucPred http://www.sbc.su.se/maccallr/nucpred
(Brameier et al., 2007)

NLStradamus http://www.moseslab.csb.utoronto.ca/NLStradamus/
(Ba et al., 2009)

However, NESs are more difficult to identify compared with classical NLSs be-
cause, in addition to the reasons exposed before, they share sequence similarity
to regions that form the hydrophobic core of many proteins (Cook et al., 2007).

Hidden Markov Models (HMM) and supervised machine learning classification
approaches have been widely employed for devising rules that can be used for
targeting signal prediction and they will be used in this work as well. As has
been already mentioned, consensus sequences are not robust enough to be used
directly to find LR-NESs in amino acid sequences, therefore profile HMMs can be
an alternative.
On the other hand, the goal of identifying an LR-NES in a protein sequence can
be regarded as a two-class classification problem: given an amino acid sequence,
the goal is to decide if it could be an LR-NES or not, that means, “classify” the
sequences as “positive” or “negative” wrt. LR-NES. This task can be addressed
using statistical classification techniques from the field of machine learning.
The general principles of these techniques are presented below together with a
general introduction to Hidden Markov Models (HMM) and profiles since they
are used as well in this work.

http://www.rostlab.org/services/predictNLS/
http://cubic.bioc.columbia.edu/db/NLSdb/
http://www.sbc.su.se/maccallr/nucpred
http://www.moseslab.csb.utoronto.ca/NLStradamus/
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2.2.1 Supervised machine learning classification

The term machine learning refers to a set of topics dealing with the creation and
evaluation of algorithms that facilitate pattern recognition, classification, and pre-
diction, based on models derived from existing data (Tarca et al., 2007). Two main
branches exist in the field of machine learning: supervised and unsupervised
learning (Duda et al., 2001; Tarca et al., 2007; Hastie et al., 2009).
Supervised learning is a technique for deducing a function from training data.
The training data consist of pairs of input objects (typically vectors), and desired
outputs. The output of the function can be a continuous value (called regression),
or can predict a class label of the input object (called classification). The task of
the supervised learner is to predict the value of the function for any valid input
object after having seen a number of training examples (i.e. pairs of input and
target output).
In contrast to the supervised framework, in unsupervised learning, no prede-
fined outputs (values or labels) are available for the objects under study. In this
case, the goal is to explore the data and discover similarities between objects,
referred to as clusters.
The goal of identifying LR-NESs in protein sequences is achieved in the frame of
this work by using supervised classification learning, therefore, it will be described
in more detail.

Supervised machine learning methods have been widely used in bioinformatics
prediction applications. The following are just some relevant examples: subcel-
lular location of proteins (Reinhardt and Hubbard, 1998; Hua and Sun, 2001;
Schneider and Fechner, 2004; Bendtsen et al., 2004; Garg et al., 2005; Lei and
Dai, 2005; Pazos and jung Wook Bang, 2006; Brameier et al., 2007; Verma et al.,
2008; Habib et al., 2008; Gromiha and Yabuki, 2008; Kumar and Raghava, 2009),
protein function (Lee et al., 2009a), protein secondary structure (Riis and Krogh,
1996), protein binding sites (Liu et al., 2009), protein-protein interaction (Bock
and Gough, 2001), and special features in proteins like ubiquitylation (Tung and
Ho, 2008a) and glycosylation (Caragea et al., 2007).

For the formal description, vector notation (x denotes an ordered p-tuple of num-
bers for some integer p) and matrix notation (X denotes a rectangular array of
numbers, where xij denotes the number in the ith row and the jth column of X)
will be used here.
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In supervised classification, a classification function is learned from a so called
training set of items with known class labels. The general task is to classify a col-
lection of objects i = 1, ...n into K predefined classes. In the case of the intended
classification of amino acid sequences as NES or nonNES, K = 2. The class labels
can be for instance +1 and −1.
Data and features can be organized in a matrix X = (xij), where xij represents
the measured value of the feature j in the sample i. Every row of the matrix
X is therefore a vector xi with n features to which a class label yi is associated,
being y = 1, ..., K. In a classification problem, a classifier C(x) may be viewed as
a collection of K discriminant functions gc(x) such that the object with feature
vector x will be assigned to the class c for which gc(x) is maximized over the class
labels c ∈ {−1,+1}. The feature space X is thus partitioned by the classifier
C(x) into K disjoint subsets.
There are two main approaches to the identification of the discriminant functions
gc(x) (Webb, 2005; Hastie et al., 2009). The first assumes knowledge of the under-
lying class-conditional class probability density functions (the probability density
function of x for a given class) and assigns gc(x) = f(p(x | y = c)), where f is a
monotonic increasing function, for example the logarithmic function. Intuitively,
the resulting classifier will classify an object x in the class in which it has the
greatest membership probability. In practice p(x | y = c) is unknown and there-
fore needs to be estimated from a set of correct classified samples, the training set.
Parametric (for example, linear and quadratic discriminants) and non parametric
methods (for example, the k-Nearest Neighbor (k-NN) decision rule) can be used
for that end.
The second approach is to use the data to estimate the class boundaries directly,
without explicit calculation of the probability density functions. Examples of
algorithms in this category include decision trees, neural networks and support
vector machines (SVM).

The process described above is called training of the classifier. Subsequently, the
trained classifier, i.e., the learned classification function is applied to classify items
with unknown class affiliation. In this process, a class label y ∈ Y is assigned to
new items x ∈ X, called test items or test set.
If a learned classification function is able to nicely reproduce the class labels of
the training set it is called well fit to the training data. On the other hand, the
ability of a classifier to correctly predict the class labels of so far unseen items,
which were not contained in the training set is called generalization. A non trivial
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task in machine learning is to find a good balance between a classifier that is well
fit to the training data and at the same time has a good generalization ability. For
example, if a training set contains outliers (e.g. items with wrong class labels) a
complex, perfectly fitted classifier might achieve only a poor generalization ability.
Such a classifier is then called overfitted or overtrained.

A main goal of supervised classification is to learn a classification function gc(x)
based on the training set that minimizes the error rate (Err), which can be defined
as the average number of misclassified samples among the total number of objects.
Conversely the accuracy (Acc) of the classifier can be defined as Acc = 1 − Err
and represents the fraction of samples successfully classified and can be taken
as an indicative of the classifier performance if the class distribution is balanced
(the proportion of samples pertaining to each class is similar in the complete
population).

Resampling methods

The goal behind developing classification models is to use them to predict the class
membership of new samples. If the data used to build the classifier is also used to
compute the error rate, then the resulting error estimate, called the resubstitution
or training error, will be optimistically biased (Efron, 1983). Thus, an essential
issue in machine learning relates to judge generalization capability or its ability
of correctly predicting unseen examples of the learning method. The degree of
generalization capability is evaluated by the closeness between the learned function
and the true function, measured by the prediction or generalization error. In
machine learning problems, a good classifier is one that minimizes the prediction
error (produces good predictions) and not the training error on a particular data
set.
In the absence of a large, independent test set, there are some techniques for
assessing prediction error by implementing some form of partitioning or resampling
of the original observed data. Each of these techniques involves dividing the data
into a training set and a test set. For purposes of model fitting, the training set
can be further divided into a training set and a validation set (Hastie et al., 2009).
The methods most commonly used are described below.

• Split sample: This method, also known as the training-test split or hold-
out (McLachlan, 1992), entails a single partition of the data into a training
an a test set based on a predetermined p. For example p = 1

3 allots two-
thirds of the data to the learning set and one-third to the test set.
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• v-fold cross validation (CV): This method randomly assigns the n ob-
servations to one of v partitions such that the partitions are near-equal size.
Subsequently, the training set contains all but one of the partitions which is
labeled as the test set. The error is assessed for each of the v test set and
averaged over v.

• Leave-one-out-cross-validation (LOOCV) This is the most extreme
case of v-CV. In this method each observation is individually assigned to
the test set, i.e. v = n and p = 1

n
(Stone, 1974, 1978). That means, a single

object is removed from the training set and the classifier is trained with the
remaining data. Subsequently, in each step a single item is classified and
the generalization error measured.

• Bootstrap: This technique uses sampling with replacement to form the
training set. Several variations of the bootstrap method have been intro-
duced to estimate the generalization error. The leave-one-out bootstrap
(θ̂BS

n ) is based on a random sample drawn with replacement from the to-
tal of observations (Efron, 1983). For each draw, the observations left out
(≈.368n) serve as the test set. The training set has ≈.632n unique obser-
vations which leads to an overestimation of the prediction error. To correct
for this, two estimators have been suggested: the .632 bootstrap and the
.632+ estimator. Both rectify the prediction error by adding the underesti-
mated resubstitution error θ̂RS

n , ωθ̂BS
n + (1− ω)θ̂RS

n . For the .632 bootstrap
the weight is constant (ω = 0.632), whereas for the .632+ bootstrap ω is
determined based on the “no-information error rate” (Efron and Tibshirani,
1997). The .632+ estimator is the most used in literature and the most ro-
bust across different classification algorithms (Efron and Tibshirani, 1997).

2.2.2 Machine learning algorithms used in this work

In this work, three algorithms for supervised classification are used: k-Nearest
Neighbor (k-NN), Random Forest (RF) and support vector machine (SVM).

k-Nearest Neighbor (k-NN)

The k-NN classifier can be seen as a nonparametric method of density estimation
i.e. it does not assume an underlying distribution of the data (Duda et al., 2001;
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Figure 2.5: Principle of the k-Nearest Neighbor (k-NN) algorithm
The k-Nearest Neighbor (k-NN) algorithm is illustrated in this ’toy problem’. The data corre-
sponds to two-dimensional input vectors x, and associated y class values which can be either
’square’ or ’triangle’. Given, a a new two-dimensional point z, depicted below as a green circle,
the goal is to decide whether it corresponds to ’square’ or ’triangle’ class. k-NN simply looks at
the new point, and finds the closest points in the training set (the nearest neighbors) in order
to decide how to classify the new point. The inner circle demonstrates that, when the closest
3 points (k = 3) are used, the algorithm will predict ’triangle’. However, the outer circle shows
that, when k = 5 is used, it will predict ’square’. Since the distance function used by k-NN (i.e.
Euclidean distance) can work with vectors of any dimension, this principle can be applied to
input vectors of any size.

Hastie et al., 2009), except for the continuity of the feature variables. It is one of
the oldest and simplest methods for statistical classification, developed more that
forty years ago (Cover and Hart, 1967).
The k-NN classifier does not require model fitting but simply stores the training
dataset with all available vector prototypes of each class. A new object is classi-
fied by a majority vote of its neighbors, with the item being assigned to the most
common class among its k nearest neighbors. So, when a new object z needs to
be classified, the first step in the algorithm is to compute the distance between
z and all the available objects in the training set, xi, i = 1, ..., n. A widely used
distance metric is the Euclidean distance: deuc(x, z) =

√∑p
j=1(xj − zj).

The distances are ordered and the top k training samples (closest to the new ob-
ject to be predicted) are retained. Let nc denote the number of objects in the
training dataset among the k ones which belong to the class c. The k-NN clas-
sification rule classifies the new object z in the class that maximizes nc, i.e., the
class that is most common among the closest k neighbors (Figure 2.5). The k-NN
discriminant functions can be written as gc(x) = nc. When the two classes of the
example (NES or nonNES) are equally represented in the vicinity of the point z,
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the class whose prototypes have the smallest average distance to z may be chosen.
In the case of the k-NN classifier, the number of k nearest neighbors to be con-
sidered in the classification step becomes relevant. The choice of the parameter
k depends upon the classification problem. In general, larger values of k will
increase the bias and reduce the variance of the classifier and vice versa. Small
values of k result in decision boundaries with higher variance that fit well the
training set, while large values achieve smooth and stable decision boundaries
that avoid overfitting and are more robust (Hastie et al., 2009).

Random Forests (RF)

A Random Forest (RF) is a combination (in machine learning referred to as en-
semble) of many decision trees, where each tree is grown using a (bootstrap)
subset of the training dataset (Breiman, 2001). A decision tree is a special type of
classifier (Breiman, 1984), which is trained by an iterative selection of individual
features that are the most salient at each node in the tree.
In a classical decision tree, the input space X is repeatedly split into descendant
subsets, starting with X itself. There are several heuristic methods for construct-
ing decision-tree classifiers. They are usually constructed top-down, beginning at
the root node and successively partitioning the feature space. The construction
involves three main steps. (i) Selecting a splitting rule or decision criteria for
each internal node, i.e., determining the feature together with a threshold that
will be used to partition the dataset at each node. (ii) Determining which nodes
are terminal nodes. This means that for each node a decision must be achieved
whether to continue splitting or to make the node terminal and assign to it a class
label. (iii) Assigning class labels to terminal nodes by minimizing the estimated
error rate. The most commonly used decision tree classifiers are binary. They use
a single feature at each node, resulting in decision boundaries that are parallel to
the feature axes (Figure 2.6A). The Random Forest method improves on this pro-
cedure by building a large number decision trees (a forest of them) using random
subsets of the training data for each one (Figure 2.6B). The resulting forest of
trees can then be used to “vote” the most likely class of new data points. This use
of random subsets of the training data avoids the problem of overfitting in which
the classifier follows too closely the peculiarities of the training data to accurately
classify new datasets.
The algorithm for inducing a Random Forest was developed by Leo Breiman and
Adele Cutler (Breiman, 2001), and Random Forests is their trademark. The term
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Figure 2.6: Principle of decision trees and Random Forest
A: Foundation of a binary decision tree, the left panel shows the data for a two-class decision
problem, with dimensionality p = 2. The points known to belong to classes 1 and 2 are displayed
with filled circles and squares, respectively. The decision boundary is shown as the blue thick
line. The triangle designates a new point, v to be classified. The right panel shows the decision
tree derived from this dataset whereas the new point v is classified in class 2 (squares). The
regions in the input space covered by nodes I and IV in the tree are represented by the dashed
areas at the top and bottom of the left panel respectively. This part of the figure was modified
from Tarca et al. (2007).
B: In supervised machine learning, a Random Forest is a classifier that consists of many decision
trees and outputs the class that is the mode of the classes output by individual trees. During the
construction of a single classification tree, logical if-then conditions are determined for predicting
or classifying cases. At the end, the class label for a new sample v is assigned by averaging the
class votes among all the trees in the forest.

came from the random decision forests that were first proposed by Tin Kam Ho
(Ho, 1995). Random Forest combines a special model averaging approach called
bagging (acronym for bootstrap aggregating) (Breiman, 1996) with random se-
lection of features (Ho, 1998) to construct a collection of decision trees with con-
trolled variation. Given a standard training set D of size n, bagging generates m
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new training sets Di of size n
′ ≤ n, by sampling examples from D uniformly and

with replacement. By sampling with replacement it is likely that some examples
will be repeated in each Di. The m models are fitted using the above m bootstrap
samples and combined by averaging the voting (Figure 2.6B).

Support Vector Machine (SVM)

Input space Input space
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Figure 2.7: Principle of the Support Vector Machine (SVM) algorithm
The classical SVM is a data-driven method for binary classification. SVMs are generated by
a two step procedure: first, the sample data vectors x are mapped or projected to a high
dimensional space by using the function φ. Then, the algorithm finds a hyperplane in this
high-dimensional space with the largest margin separating classes of data. The points classified
by SVM can be divided into two groups, support vectors and nonsupport vectors. Nonsupport
vectors are classified correctly by the hyperplane and are localized outside the separating margin.
The Parameters of the hyperplane do not depend on them, and even if their position is changed,
the separating hyperplane and margin will remain unchanged. By the contrast, the support
vectors determine the exact position of the hyperplane. After that, the solution can be applied
on the original input space.

Compared to k-NN and RF classifiers, the Support Vector Machine (SVM) algo-
rithm was proposed (Boser et al., 1992) and developed (Vapnik, 1995, 1998) more
recently. The SVM was developed as a binary (two class) classifier, implementing
the following idea: it maps the input vectors x into a high-dimensional feature
space Z through some non-linear mapping, chosen a priori. In this space an op-
timal separating hyperplane is constructed (Vapnik, 1998) and in such a way, a
non-linear classifier can be accomplished in the original input space (Yang, 2004;
Noble, 2006; Tarca et al., 2007; Ivanciuc, 2007) (See Figure 2.7).
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When considering a binary classification problem, SVMs find the decision bound-
ary that achieves maximum margin between the two classes. From statistical
learning theory, the decision functions derived by maximizing the margin mini-
mize the theoretical upper bound on the expected risk and are thus expected to
generalize well (Vapnik, 1998). The margin is defined as the distance between a
planar decision surface that separates two classes and the closest training samples
to the decision surface (See Figure 2.7). Let denote with (x1, y1), . . . , (xNT

, yNT
)

the labelled training data set where xi ∈ <p, yi ∈ {−1,+1}, being −1 and +1
the class labels. SVMs find an optimal hyperplane wxT + b = 0, where w is
the p-dimensional vector perpendicular to the hyperplane and b is the bias. The
objective of training SVMs is to find w and b such that the hyperplane separates
the data and maximizes the margin 1

‖w‖2 (Figure 2.7, central panel). By introduc-
ing non-negative slack variables ξi and a penalty function measuring classification
errors, the linear SVM problem is formulated as follows:

min
w

(1
2‖w‖

2 + C
NT∑
i=1

ξi) (2.1)

f(x) = sign(w xT + b) = sign(
∑

i

αiyi(xi xT ) + b) (2.2)

where C is a parameter (usually referred to as cost parameter) to be set by the user,
which controls the penalty to errors. The optimization problem can be reduced to
a dual problem with solutions given by solving a quadratic programming problem
(Vapnik, 1998) and the decision function is given by:

f(x) = sign(w xT + b) = sign(
∑

i

αiyi(xi xT ) + b) (2.3)

where αi are coefficients that can be solved through the dual problem. Data points
with non-zero αi are called support vectors (SVs) (see Figure 2.7, central panel).
In SVMs, only SVs contribute to the construction of the decision boundaries (Chen
et al., 2005; Ben-Hur et al., 2008). The linear SVMs can be extended to nonlinear
SVMs where more sophisticated decision boundaries are needed. This is done
by applying a kernel transformation, i.e., replacing every matrix product (xi xT )
in linear SVMs with a non-linear kernel function evaluation K(xi x). This is
equivalent to transforming the original input space X non-linearly into a high-
dimensional feature space Z, as denoted above. The training data that are not
linearly separable in the original feature space can be linearly separated in the
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transformed feature space. Consequently, the decision boundaries are linear in
the projected high-dimensional feature space and non-linear in the original input
space. Two commonly used kernels include polynomial

K(x, z) = (xzT + 1)d (2.4)

and radial basis function (RBF)

K(x, z) = exp(−σ‖x− z‖2) (2.5)

The kernel functions return larger values for arguments that are closer together in
feature space. In constructing linear SVMs for classification, the only parameter
to be selected is the cost parameter C. C controls the tradeoff between errors
of SVMs on training data and the margin. For nonlinear SVMs, the learning
parameters include C and parameters associated with the kernels used, e.g., σ, in
radial basis function (RBF) kernels. In practice, learning parameters are selected
through resampling methods like cross-validation.

2.2.3 Hidden Markov Models and profiles

Hidden Markov Models

Hidden Markov Models (HMMs) are a general statistic modelling for “lineal” prob-
lems like sequences or time series (Eddy, 1998). They provide a formal foundation
for making probabilistic models of linear sequence “labelling” problems (Baldi and
Brunak, 2001; Eddy, 2004; Durbin, 2006). The key idea is that an HMM is a fi-
nite model that describes a probability distribution over an infinite number of
possible sequences (Eddy, 1998). The HMM is composed of a number of states,
which might correspond to for example, columns of a multiple sequence alignment.
Each state “emits” symbols (i.e amino acid residues) according to symbol-emission
probabilities, and the states are interconnected by state-transition probabilities
that describe the linear order in which the state is expected to occur.
The sequence of states is a Markov chain, because the choice of the next state to
occupy depends on the identity of the current state. However, this state sequence
is not observed: it is hidden. Only the symbol sequence that these hidden states
generate is observed, hence the models are called ’hidden’ (Eddy, 1996, 1998,
2004). Once a HMM is drawn, regardless of its complexity, the same standard
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dynamic programming algorithms can be used for aligning and scoring sequences
with the model. These algorithms are called Forward (for scoring) and Viterbi
(for alignment) (Durbin, 2006). Parameters can be set for an HMM in two ways.
An HMM can be trained from initially unaligned (unlabelled) sequences. Alterna-
tively, an HMM can be built from pre-aligned (pre-labelled) sequences (i.e. where
the state paths are assumed to be known). In the latter case, the parameter es-
timation problem is a matter of converting observed count of symbols emissions
and state transitions into probabilities.

Start m1 m3 Endm2

d1 d2 d3

i0 i1 i2 i3

x x x x

1   2   3

C   A   F
 C   G   W
C   D   Y
C   V   F
C   K   Y

C X FY

Figure 2.8: Profile HMM
A small profile HMM (right) representing a short multiple alignment of five amino acid sequences
(left) with three consensus columns. The three columns are modeled by three match states
(squares labeled m1, m2 and m3), each of which has 20 residue emission probabilities, shown
wit black bars. Insert states (diamonds labeled i0 to i3) also have 20 emission probabilities each.
Delete states (circles labeled d1 to d3) are ’mute’ states that have no emission probabilities. A
start and end state are included. State transmission probabilities are shown as arrows.
This figure was lightly modified from (Eddy, 1998).

Profile HMMs

Profile HMMs are statistical tools that can model the commonalities of the amino
acid sequences for a family of proteins. Considered to be more expressive than
a standard consensus sequence or a regular expression, profile HMMs allow po-
sition dependent insertion and deletion penalties, as well as the option to use a
separate distribution for inserted portions of the amino acid sequence. The archi-
tecture was introduced by Krogh et al. (1994) and is considered to be well suited
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for representing profiles of multiple sequence alignments (Eddy, 1998). For each
consensus column of the multiple alignment, a ’match’ state models the distribu-
tion of residues allowed in the column. States ’insert’ and ’delete’ at each column
allow for insertion of one o more residues between that column and the next, or
for deleting the consensus residue (see example in Figure 2.8). Profile HMMs are
strongly linear, left-right models, unlike the general HMM case.

The probability parameters in a profile HMM are usually converted to additive
log-odds scores before aligning and scoring a query sequence (Barrett et al., 1997).
The scores for aligning a residue to a profile match state are therefore compara-
ble to the derivation of BLAST or FASTA score: if the probability of the state
emitting residue x is px, and the expected background frequency of residue x in
the sequence database is fx, the score for residue x at this match state is log px

fx

(Eddy, 1998).
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Overview

This chapter is divided into two main sections: predictor development and lab-
oratory testing. Section 3.1 describes the sequential methods that were used to
construct the proposed predictor for NES sequences, it includes a general descrip-
tion of the process as well as a small introduction concerning the terms used.
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This part of the chapter includes the links to the respective outcomes of each
step, which are presented in Chapter 4.
Section 3.2 forms the second part of the chapter, it describes the experimental
procedures that were used to test the predictions obtained, as well as for testing
the nuclear export activity of some already known NES-containing proteins from
Arabidopsis thaliana.

3.1 Development of a prediction tool for NESs

Collect 
data

Extract 
features

Classifier 
selection

Training Evaluation

Figure 3.1: Simplified view of the pattern classification process
This scheme shows essential steps and main designations that are used in this section and further
chapters.

Figure 3.1 is a simplified representation of the procedures that are described along
this section. The raw data was composed of a set of samples (protein sequences in
this case), which are also called instances, elements or examples. Given this set of
samples belonging to different classes, the main goal was to construct a classifier
that assigns a class label to new unclassified samples. In this case, each sample
belonged to one of two classes: NES or nonNES. The samples labelled as NES
were called the positive set and the samples belonging to the nonNES class were
the negative set.

For constructing a classifier, the first task is to identify certain characteristics or
properties, called features that could be measured to represent each sample. All
the properties measured for every sample conform the feature vector. Formally,
features are the individual measurable properties of the samples and a feature
vector is the m-dimensional vector of numerical features that represent those
properties. In a supervised classification task, a sample is composed of a feature
vector and a class label. After the feature calculation, each sample is represented
as a point (feature vector) in an m-dimensional feature space, where m is the
total number of measured features. The samples are then evaluated by different
classification algorithms in the training or learning phase, the samples used in this
phase constituted the training set. After the training, the next phase consists of
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evaluating the performance of the trained classifiers using samples not included in
the training phase, called test set. Finally, one of the classifiers is selected taking
into account the results of the evaluation process and the intended function of the
classifier.

These concepts can be summarized as follows:

Let
S = (s1, ..., sn) (3.1)

be the data set of n labelled samples. Each sample consists of two parts:

si = (xi, yi) (3.2)

where xi is a vector (feature vector) of m dimensions (number of features mea-
sured) and yi is the class label (for example +1 and −1, for NES and nonNES
respectively).
The goal is to predict a future unlabelled sample x0 by the prediction rule:

P (x0|S) = yo

+1 NES,
−1 nonNES

(3.3)

built on the observed data set S.

An overview of the classifier construction work-flow followed in this study is
presented in Figure 3.2. The consecutive steps are explained in detail in the
next subsections. This part of the work was done using the programming lan-
guage PERL (version 5.8.6) and the statistical computing environment R (ver-
sion 2.7.2) (R Development Core Team, 2005). The procedures described in the
pre-processing, training and evaluation phases, were carried out with the pack-
ages caret (classification and regression training) (Kuhn, 2008a,b), randomForest
(Breiman, 2001), kernlab, ipred (Peters et al., 2002) and rocr (Sing et al., 2005),
available from the BioConductor repository (Gentleman et al., 2004).

3.1.1 Establishment of data sets

The positive data set Spos(pos = 1, 2, ..., p), contained p = 107 experimentally
confirmed NES sequences. It included those contained in the NES database al-
ready available (75 NESs) (la Cour et al., 2003) together with sequences from
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3.1.2 Exploratory  analysis

3.1.3 Feature calculation

3.1.5 Training

3.1.6  Evaluation and selection of 
classifiers

3.1.8  Prediction on new 
protein sequences

Feature 
Vectors

 

Trained 
classifiers 

Selected 
classifier 

New protein 
sequences

Final Report: Is there  a NES 
in the new sequence?    If 
yes, where? 

3.1.4 Feature selection, 
Pre-processing

3.1.1  Establishment of datasets
Data:  NES amino acid sequences
Labels: NES  or  nonNES

Machine learning 
algorithms

3.1.7  Pipeline  construction

Figure 3.2: Development of a prediction tool for NESs: General flow chart
The first stage corresponded to the selection and analysis of the data as well as the calculation of
the elements of the feature vector : the amino acid residues from the sequences were translated
into numerical values. After that, a preparation step involved a selection or filtering of the
features to be used and the splitting of the data. Next came the training of the models in
supervised mode where the tuning parameter for each model was done. Next, evaluation using
data not included in the training phase was carried out and one of the classifiers was selected.
Finally, the selected classifier was integrated in a pipeline and used to classify new protein
sequences. The numbers inside the boxes refer to the section in the text where the item is
further explained.
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Arabidopsis thaliana (32 NESs), which have been experimentally confirmed in the
group of Dr. Thomas Merkle but not published yet. The length of the sequences
to be used as positive NESs was defined by taking as a reference the last hy-
drophobic amino acid within the NES relative to the C-terminal of each protein
sequence, which has been shown to be necessary and critical for the interaction
of the NES with the Exportin receptor (Mattaj and Englmeier, 1998; Görlich and
Kutay, 1999; Kaffman and O’Shea, 1999; Ossareh-Nazari et al., 2001).

The negative data set Sneg(neg = 1, 2, ..., q) was conformed with the same proteins
included in the positive data set, excluding the region(s) associated with nuclear
export activity. To do this, all the regions of the proteins that have some ex-
perimental evidence associated with nuclear export activity were excluded and a
sliding window was used along the rest of the sequence. In this way, around 10000
sequences were generated from which various subsets of size q were randomly
selected. The training of the classifiers was performed using q = 150.

3.1.2 Exploratory analysis

The elements of the data sets are amino acid sequences (s), therefore they could
not be used directly in a machine learning task. It was necessary to find some
properties that could be expressed numerically to generate feature vectors, xi, as
a representation of each sequence si. This study assessed two kinds of properties:
amino acid sequence and physicochemical properties.

The first approach was to examine the amino acid sequence of the NESs con-
tained in the positive data set by constructing sequence logos. Sequence logos
are a graphical representation of an amino acid or nucleic acid multiple sequence
alignment developed by Schneider and Stephens (1990). Each logo consists of
stacks of symbols, one stack for each position in the sequence. The overall height
of the stack indicates the sequence conservation at that position (measured in
bits of information), while the height of symbols within the stack indicates the
relative frequency of each amino or nucleic acid at that position. The letters of
each stack are ordered from most to least frequent, so that one may read the con-
sensus sequence from the tops of the stacks. In this work, the sequence logos were
generated using the application WebLogo at http://weblogo.berkeley.edu/
(Crooks et al., 2004) with multiple sequence alignments of the NES obtained with
CLUSTALW (Thompson et al., 1994; Chenna et al., 2003) and QALIGN (Sam-
meth et al., 2003). The results obtained are presented in Section 4.1.1

http://weblogo.berkeley.edu/
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The possibility of using amino acid residue order as one of the elements of the fea-
ture vector was explored by constructing a distance matrix to reveal the similarity
among all the sequences. The pairwise alignment score obtained by comparing
each sequence to each other with the program ALIGN was used as similarity mea-
sure. ALIGN computes the global alignment of two sequences using a modification
of the algorithm described by Myers and Miller (1988). For this application the
default scoring matrix (PAM250) was used. The reported score corresponds to a
number between 0 and 1, 1 being the value for identical sequences (self alignment
for each sequence) and 0, the value for totally different sequences. Using this ap-
proach, a matrix of dimensions (p+ q)× (p+ q) was generated, where (p+ q) = n,
n being the total number of sequences (positive and negative data sets). The
outcome can be seen in Section 4.1.1.

3.1.3 Feature calculation

Profile Hidden Markov Model (Profile HMM)

The distance matrix obtained with the above approach showed that the order of
the amino acid residues could be used to distinguish positive (NES) from negative
(nonNES) sequences. To express that in a numerical way, a profile HMM was built
using the program HMMER ver 2.3.2 from http://hmmer.janelia.org/, which
is an implementation of profile HMMs for biological sequence analysis. Profile
HMMs use position specific scores for the amino acid residues and position specific
penalties for opening and extending an insertion or deletion. In contrast, tradi-
tional pairwise alignment like BLAST (Altschul et al., 1990), FASTA (Lipman
et al., 1989), or the Smith/Waterman algorithm (Smith and Waterman, 1981),
use position independent scoring parameters. Because of this property, a profile
HMM captures important information about the degree of conservation and the
varying degree to which gaps and insertions are permitted at various positions in
a multiple alignment, (Eddy, 1998).
The multiple sequence alignment used to construct the profile HMM was obtained
with the NES sequences of Arabidopsis using CLUSTALW (Thompson et al., 1994;
Chenna et al., 2003) and QALIGN (Sammeth et al., 2003). The hmmsearch func-
tion from the program HMMER was used to generate a score value for every
sequence from the positive and negative data set, which was used as one of the
elements to include in the feature vector. The distribution of the score values
obtained is shown in Section 4.1.1.

http://hmmer.janelia.org/
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Amino acid index values

Since the physicochemical properties of the amino acid residues are the most
important feature for biochemical reactions, the amino acid index values were
used to extract additional features that are not dependable on the order of the
amino acid residues in the sequence. An amino acid index (aaindex) is a set of 20
numerical values representing any of the different physicochemical and biochemical
properties of each amino acid residue.

Many of the published index values are collected in the AAindex database at http:
//www.genome.ad.jp/dbget/aaindex.html (Kawashima et al., 1999; Kawashima
and Kanehisa, 2000; Kawashima et al., 2008). This database is a flat file that con-
sists of three sections: AAindex1 for the amino acid index values, AAindex2 for
the amino acid mutation matrices and AAindex3 for the statistical protein contact
potentials.

In this study, the section AAindex1 from the AAindex database was used. The
idea was to calculate every aaindex value for all the sequences (NES and nonNES)
and to use these values as additional features for the classification. There are 544
attributes in the AAindex1 database Version 9.1, therefore one can calculate 544
such features. The aaindex values for each sequence were calculated as the sum
of the respective index values of the amino acid residues present in the sequence,
the calculation was made as follows:

Each aaindex was represented as:

AAj = (AAj1, ..., AAj20) (3.4)

where j, corresponds to each aaindex value and varies from 1 to 544.

For each sequence (s) of length (l) amino acid residues (a) represented as:

s = a1, ...al (3.5)

the value of the corresponding aaindex value xs,j was obtained by adding the
individual aaindex value of each amino acid:

xs,j =
l∑

k=1
AAj(ak) (3.6)

http://www.genome.ad.jp/dbget/aaindex.html
http://www.genome.ad.jp/dbget/aaindex.html
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Finally, the HMM score (hmm) described before was appended to the aaindex
values to conform the final feature vector for each sequence:

xs,545 = hmms (3.7)

3.1.4 Feature selection and data pre-processing

When considering a large number of features for classification, it is possible that
some of these are noisy in nature and irrelevant for prediction. Thus, the use
of all predictors to build the classifier some times can suppress or reduce the
performance. Selection of a subset of the most informative predictors, called
feature selection, is commonly addressed in classification problems (Blum and
Langley, 1997). One approach to feature selection is removing irrelevant predictors
according to some pre-determined criteria. As the sample labels are not taken into
account for deciding which predictors are eliminated, this is a kind of unsupervised
filtering.
In this study, predictors with the highest inter-correlations were eliminated. For
that, a correlation matrix from all the predictors was calculated and the function
findCorrelation from the package caret was used to flag predictors for removal.
This function uses the following algorithm:

repeat
| Find the pair of predictors with the largest absolute correlation;
| For both predictors, compute the average correlation between each predictor and all the others;
| Flag the predictor with the largest mean absolute correlation for removal;
| Remove this column from the correlation matrix;
until no correlations are above of a pre-defined threshold ;

The idea of this procedure was to exclude predictors with redundant characteris-
tics so that the pairwise correlation was below a specified threshold. In this case,
three correlation threshold values were tested: 0.9, 0.8 and 0.7. After removal of
predictors, the three classifiers (k-NN, RF and SVM) were trained several times
using the complete data set and the complete and reduced sets of predictors. The
classification error was estimated through resampling (10 fold cross-validation and
.632+ bootstrap) using the function errorest from the package ipred on the R
platform (Peters et al., 2002). The obtained classification error values were used
as criterion to select the number of predictors to use. These results are presented
in Section 4.1.2.
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Once the final set of predictors was determined, the values were transformed before
being used to train the models. The predictor values were centered and scaled
using the predictor means and standard deviations from the training set, this two
options provide location and scale transformations of each predictor. For that
purpose, the function preProcess from caret was used.

3.1.5 Training of classifiers

In this study, the training process was carried out using a combination of repetitive
hold-out or splitting method in the complete data set and classical resampling
methods (10-fold CV, LOOCV and .632+ bootstrap) applied only to the training
set. After the training, the respective test set was used to evaluate the performance
of the classifiers. The complete process (hold-out plus resampling) was performed
multiple times along the complete data set.

In the hold-out approach, the complete data set was divided into a training set
and a test set using p = 0.25, which means that 75% of the data was used for
training and the remaining 25% for testing. The test set was used only to eval-
uate performance and was not included in the classifier training. The partition
was carried out with the function createDataPartition from the caret package.
This function creates random splits within each class so that the overall class
distribution is preserved.

Three supervised classification algorithms were used: k-Nearest Neighbors, Ran-
dom Forest and Support Vector Machine. The classifiers were fitted to each of
the the training sets by resampling using 10-fold CV, LOOCV and bootstrapping.
The optimal classifier in each case was selected based on the highest accuracy
value. The tuned parameters for each model are described below and summarized
in Table 3.1.

• k-Nearest Neighbors (k-NN)

In the case of k-NN the fitted parameter was k, which corresponds to the
number of neighbors to be considered. In k-NN an object is classified by a
majority vote of its neighbors, with the object being assigned to the class
most common amongst its k nearest neighbors. The training phase of the
algorithm consists only of storing the feature vectors and class labels of the
training samples. Then a new vector is classified by assigning the label
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which is most frequent among the k training samples nearest to that query
point.

• Random Forest (RF)

The fitted parameter for RF was the value mtry, which is the number of
variables randomly sampled at each node to be considered for splitting.
One noticeable gain during the training of this algorithm was the estima-
tion of importance of variables in determining classification. This result is
presented in Section 4.1.3.
The importance of a variable for classification may be due to its (possibly
complex) interaction with other variables. Hence, the definition of vari-
able importance is generally problematic. Nonetheless, the importance of
a variable is estimated in the RF algorithm by computing the increase in
prediction error when the data for that variable is permuted while all others
are left unchanged. The percent increase in misclassification rate for a per-
muted variable does reflect the importance of that variable for the overall
classification. To obtain importance estimates for the complete data set, all
input variables are consecutively and randomly permuted in the test set.

• Support Vector Machine (SVM)

The SVM algorithm uses a kernel function to map the original feature space
to some higher-dimensional feature space where the training set is separa-
ble. In this study, the SVM algorithm was trained with the radial kernel
function (RBF for Radial Basis Function).
There are two tuning parameters for SVM: sigma and cost (C ). Sigma is a
parameter for the kernel function that can be used to expand/contract the
distance function and C is the cost parameter. C controls the trade-off be-
tween model complexity and proportion of non-separable samples, allowing
training errors and forcing rigid margins. It creates a soft margin that per-
mits some misclassifications. Increasing the value of C increases the cost of
misclassifying points and forces the creation of a more accurate model that
may not generalize well. For the training of SVM in R, the function sigest
in the kernlab package is used internally during the training to provide a
good estimate of the sigma parameter, so here only the C parameter needed
to be tuned.
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Model Fitted R Package R Methodparameter

k-NN k caret knn

RF mtry randomForest rf

SVM C kernlab svmRadial

Table 3.1: Fitted parameters for the trained classifiers

3.1.6 Performance evaluation criteria

The test set, previously described, was used to assess the performance of the
classifiers. Based on the class predicted by the trained classifiers for every element
of the test set and its actual class (the true class is previously known, every element
is either NES or nonNES), there are four possible outcomes. If the sample is
positive (is a NES) and it is classified as NES, it is counted as true positive; if it
is classified as nonNES, it is counted as a false negative. If the sample is negative
and it is classified as nonNES, it is counted as a true negative; if it is classified
as NES, it is counted as a false positive. Based on these possibilities, a two-by-
two confusion matrix or contingency table (Table 3.2) was used as reference to
calculate the performance metrics (Baldi et al., 2000).

TP
True Positive

FN
False Negative

TN
True Negative

FP
False Positive

NES nonNES

NES

nonNES

True Class

Predicted 
Class

Table 3.2: Confusion Matrix

Based on the notation used in the confusion matrix (Table 3.2), the performance
measurements described below were obtained to assess the performance of the
classifiers used in this study. The area under the receiver operating characteristic
curve (AUC) was also used, it is described in the next subsection. The results con-
cerning the performance metrics and correlation measurements used are presented
in Section 4.1.4.
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• Accuracy (ACC): Fraction of correctly predicted NES and nonNES se-
quences in whole data set.

ACC = (TP + TN)
(TP + FP + TN + FN) (3.8)

• True positive rate (TPR): Fraction of correctly classified NES sequences.
It is also referred to as recall, sensitivity or hit rate.

TPR = Sensitivity = TP

(TP + FN) (3.9)

• False positive rate (FPR): Fraction of misclassified NES sequences. It is
also called false alarm rate.

FPR = FP

(FP + TN) (3.10)

• Specificity: Fraction of correctly detected nonNES sequences. It is equiva-
lent to the True Negative Rate (TNR).

Specificity = TNR = TN

(TN + FP ) = 1− FPR (3.11)

• Precision: Fraction of correctly predicted NES among the total of samples
predicted as NES. It is also called positive predictive value.

Precision = TP

TP + FP
(3.12)

• Matthews correlation coefficient (MCC): This parameter corresponds to
the statistical Pearson correlation, called MCC since it was first used in
Matthews (1975). It assesses the quality of prediction and takes care of
unbalanced data (Baldi et al., 2000). The MCC value is always between −1
and 1, a value of −1 indicates the worst possible prediction, 1 is regarded
as perfect prediction and 0 indicates a completely random prediction.

MCC = ((TP × TN)− (FN × FP ))√
((TP + FN)(TN + FP )(TP + FP )(TN + FN))

(3.13)
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• F-score: This value, also called F1-score or F-measure, combines recall
(TPR or sensitivity) and precision. It corresponds to the harmonic mean of
these two measures and can be interpreted as a weighted average of them,
1 being its best value and 0 the worst.

F-score = 2× Precision×Recall
Precision+Recall

(3.14)

Receiver operating characteristic (ROC) curves

With the trained classifiers, it is possible to produce a continuous output (di-
rectly or by transformation of a discrete output). It means that the outcome of
the classifier is an estimated probability value. Thus, depending on the probability
threshold value applied, the results of the confusion matrix can change, which im-
plies that some of the performance measurements described before are valid only
at a particular probability threshold value.
To asses the performance of the trained classifiers in a broad range of probabil-
ity threshold values, receiver operating characteristic (ROC) curves were used.
A ROC is a two-dimensional graph where the proportion of correctly classified
positive samples i.e., true positive rate (TPR) is plotted as a function of the pro-
portion of incorrectly classified negative instances i.e., false positive rate (FPR).
Each point on the ROC curve represents a classification threshold (θ ∈ [0, 1]) and
corresponds to particular values of TPR and FPR. Varying the threshold gives a
tradeoff between TPR and FPR. The construction of ROCs allows to calculate an
additional measure called area under the ROC curve (AUC). This value has an
important statistical property: the AUC of a classifier is equivalent to the proba-
bility that the classifier will rank a randomly chosen positive sample higher than
a randomly chosen negative sample (Fawcett, 2004). The range of AUC values is
[0, 1]: 1 represents the perfect classification and 0.5 a quite random one.
In this study the ROCs were constructed in R using the package rocr (Sing et al.,
2005) and the AUC value was calculated using the function aucRoc from the
caret package. To compare the classifiers using the ROC approach, the ROC
convex hull (ROCCH) method, described by Provost and Fawcett (2001), was
used. The ROCCH graphs were constructed with the tool ROCOn version 2.0 at
http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/. The results
for ROC curves and ROCCH graphs are presented in Section 4.1.4.

http://www.cs.bris.ac.uk/Research/MachineLearning/rocon/
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3.1.7 Pipeline construction

To deploy the finished classifier for prediction of NES in new protein sequences,
it was necessary to process the new sequences in the same way as the training
and test sequences. It is convenient to have a mechanism that uses a standard
format (for instance amino acid sequences in fasta format) as input. For this, the
classifier was integrated into a work-flow, in bioinformatics commonly referred to
as pipeline, which was implemented using PERL and R. For the prediction of
NESs in a new proteins, each protein is initially split into overlapping fragments
of 10 amino acid residues length. Then the full set of features is calculated (profile
HMM scores and aaindex values) for each fragment. Next, the resulting feature
matrix is passed to the actual classifier and after the classification process, the
original sequence is reassembled with probability values for the two classes (NES
and nonNES) assigned to each amino acid residue. The output of the pipeline
is a list of the proteins containing NES(s) with the position where the possible
signal is located in the sequence. This output can be modulated by changing the
probability value used as treshold for the class assignation.

3.1.8 Prediction on new protein sequences

Prediction set

A data set containing 33410 protein sequences, obtained from the Arabidopsis
Information Resource website (TAIR, http://wwww.arabidopsis.org) was used
as target (TAIR9 Genome Release, June 2009).

Selection of proteins to be experimentally tested

A group of the proteins predicted as containing NES were selected to be tested in
the laboratory to find out if they contain or lack the predicted NES. The proteins
were selected on the basis of their Gene Ontologies (GO).
The GO annotations include three main categories: cellular localization, molec-
ular function and cellular process http://www.geneontology.org/, (The Gene
Ontology Consortium, 2000). Since these three categories are represented as di-
rected acyclic graphs (DAGs) or networks, a child term may have more than
one parent term. That means that one protein could be in more than one

http://wwww.arabidopsis.org
http://www.geneontology.org/
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sub-category. Therefore, the common sequences among sub-categories were in-
spected. For that, the GO terms for every predicted protein were extracted
from the Arabidopsis GO annotations (Berardini et al., 2004) available at TAIR:
http://www.arabidopsis.org/tools/bulk/go. The proteins sharing at least
two sub-categories were selected and some of them were tested in the laboratory,
according to procedures described in the next section. The steps described until
now are summarized in Figure 3.3.

http://www.arabidopsis.org/tools/bulk/go
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Figure 3.3: Summary of the development of the NESs prediction tool
This figure is intended to summarize and integrate the procedures described until now. The
numbers in the figure represent each one of the principal steps of the process: 1: The amino acid
sequences were transformed into numerical features. 2: The number of features was reduced by
eliminating high correlated features. 3a and 3b: Three algorithms for supervised classification
were trained: k-Nearest Neighbor(k-NN), Random Forest (RF) ans Support Vector Machine
(SMV). The training was carried out by combining repeated hold-out in the whole data set
and resampling (10-fold Cross Validation (CV), Leave One Out Cross Validation (LOOCV)
and .632+ bootstrap) only in the respective training set for each hold-out round. 4a and 4b:
The test sets of every hold-out round were used to evaluate the classifiers through performance
metrics and receiver operating characteristics (ROC). 5: A classifier was selected based on the
results of the evaluation process. 6: The selected classifier was integrated in a complete work-
flow or pipeline, which was used to predict possible NESs in new protein sequences. 7: A subset
of the predicted NES-containing proteins was selected by using Gene Ontology (GO) terms
and from that selection, some proteins were experimentally tested by procedures described in
Section 3.2.
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3.2 Experimental assessment of the nuclear export
activity

This section forms the second major part of the chapter. The first two subsections
contain the general laboratory methods and the third one the composition of media
and reagents.

3.2.1 General methods for DNA manipulation

Routine techniques, such as DNA agarose gel electrophoresis, DNA precipitation,
DNA ligation, DNA cleavage with restriction endonucleases and DNA concentra-
tion measurement were done according to Sambrook and Russel (Sambrook and
Russell, 2001).

Polymerase Chain Reaction

Polymerase Chain Reaction (PCR) was employed to amplify DNA fragments for
cloning, for screening of transformed bacterial colonies (colony PCR) and for per-
forming site-directed mutagenesis by overlap-extension PCR, which is explained
below.
Standard reaction conditions and an amplification profile are given in Table 3.3.
Deployed enzymes were Taq DNA polymerase for colony PCR and a proof reading
DNA polymerase (PWO DNA polymerase (Roche) or Phusion High-Fidelity DNA
polymerase (Finnzymes, Finland)) for amplifying DNA fragments to be cloned.
The amount of DNA used as template varied according to the application, for
PCRs from cDNA library, 1 µg was used.

Purification of PCR products

The GFXTM PCR DNA and Gel Band Purification Kit (GE Biosciences) was used
for removal of undesired dNTPs, primers and the polymerase from PCR reactions
as well as for purification of DNA fragments from agarose gels.
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(a) General conditions

Enzyme buffer 1x
dNTPs 0.2 mM
Oligonucleotides 10 pmol of each one
DNA Polymerase 1-2 U
DNA template 50 ng to 1µg

(b) Temperature profile

Initial denaturation 94 ◦C 2 minutes
Amplification 94 ◦C 30 seconds
30 cycles 55-65 ◦C 30 seconds

72 ◦C 1 minute/kb
Final extension 72 ◦C 1 minute

Table 3.3: General conditions for PCR

Site directed mutagenesis by overlap-extension PCR

To test the effect of changing specific amino acid residues on the nuclear ex-
port activity of some proteins, a PCR-based site directed mutagenesis was used
(Figure 3.4). The process involved two steps: first, two separate PCRs were per-
formed with primers that overlap at the position of the desired mutation. After
that, a new PCR was performed using the amplicons from the previous reactions
as templates and the external primers to amplify the whole fragment, now with
the mutation included. The integrity of the DNA fragment and the presence of
the desired mutation were confirmed by sequencing.

3.2.2 Detection of protein-protein interactions by yeast two-
hybrid assays

Method overview

The yeast two-hybrid assay (Y2H) is a molecular biology technique used to reveal
protein-protein interactions in vivo by testing for physical interactions (binding)
between two proteins.
The assay is based on the fact that many eukaryotic transcriptional activators con-
sist of two physically separable functional modules: one acts as the DNA-binding
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Figure 3.4: Site-directed mutagenesis by overlap-extension PCR
Strategy used to change specific amino acid residues in the NES of selected proteins. A: Two
separate PCRs with primers that overlap at the position of the desired mutations (red coloured).
B: New PCR using external primers and the amplicons from the last two reactions as template.
C: Amplified DNA fragment with the mutations included.

domain (DNA-BD) and the other one functions as the transcriptional activation
domain (AD). The DNA-BD localizes the transcription factor to specific sequences
present in the upstream regions of genes that are regulated by this factor, on the
other side the AD contacts components of the transcription machinery required
to initiate transcription. Both domains are required for the activation of gene
function, and normally the two domains are part of the same protein. However, it
has been shown that a functional activator can be assembled in vivo from separate
domains of the same or unrelated transcription factors residing in two proteins.
The first protein of interest, also called bait protein, is fused to the DNA-BD, while
the possible partner, usually called prey protein, is fused to the AD. If the two
proteins interact, then both modules (DNA-BD and AD) are in close proximity
and will activate the transcription of a reporter gene, as is schematically shown
in Figure 3.5.

For the detection of interactions between the receptor Exportin 1 (XPO1a) from
Arabidopsis thaliana and other proteins, the LexA-based Matchmaker system was
used. In this system, the DNA-BD is provided by the prokaryotic protein LexA,
and the AD is an 88-residue peptide (B42) from E. coli that can activate tran-
scription in yeast. A overview of the procedure is shown in Figure 3.6.

The receptor XPO1a from Arabidopsis thaliana (TAIR:AT5G17020), was used as
bait protein. Its was fused to the DNA-BD from LexA protein in the vector pGilda,
which carries the HIS3 gene for selection in His− auxotrophic yeast strains. The
cDNA of the prey proteins was cloned in the pB42AD vector which contains the
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Figure 3.5: principle of the yeast two-hybrid assay
The potential interaction between two proteins (Prot1 and Prot2) can be assayed using this test.
In the scheme Prot1 is fused to and DNA-Binding Domain (DNA-BD) whereas Prot2 contains
an transcription Activation Domain (AD), if Prot1 and Prot2 interact then, the two domains
(DNA-BD and AD) will be in the same unit and could activate the transcription of a reporter
gene.

B42-AD and one gene for Tryptophan biosynthesis.
The yeast strain EGY48[p8op-lacZ] was co-transformed with the vectors pGilda
and pB42AD, according to the protocol from the provider (Clontech). The vector
p8op-lacZ contained in strain EGY48 includes eight LexA-operators, to which the
LexA protein can bind and one gene for biosynthesis of uracil that allows the
selection in an U− medium.
Yeast cells that contain the three vectors (p8op-LacZ, pGilda and pB42-AD) are
selected in a medium lacking histidine, tryptophan and uracil (SD Gluc HWU−

medium). In addition, since the expression of prey protein-AD in pB42AD and bait
protein-LexA in pGilda is under the control of GAL1 promotors, it is necessary
to induce the expression with galactose in a glucose free medium. The interaction
between XPO1a and prey proteins activates the transcription of the reporter gene
lacZ and the yeast cells produce β-galactosidase which can be detected directly
on the plate by including the substrate bromo-chloro-indolyl-galactopyranoside
(X-gal or BCIG, qualitative assay) or in liquid medium by using the substrate
ortho-nitrophenyl-β-D-galactopyranoside (ONPG, quantitative assay).
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Figure 3.6: Identification of XPO1a-interacting proteins with the Matchmaker LexA
Two-Hybrid System
Plasmids containing the LacZ reporter gene (p8op-lacZ), the bait XPO1a cDNA (in pGilda),
and the cDNA of a putative prey interacting partner (in pB42AD) are propagated in yeast cells
(EGY48) on selective media (SD Gluc HWU−). Interaction of the tested proteins activates the
reporter gene, LacZ whose expression can be detected in indicator plates that include galactose
and X-gal.



62 Chapter 3. Methods

Qualitative Y2H assay

In a qualitative version of the Y2H assay, the development of blue color indicates
the positive interaction between the tested proteins. The intensity of the color is
an indicative of the interaction strength. However, the results can only be evalu-
ated in a qualitative way (for example: −, +, +++, to indicate: negative, positive
weak and positive strong interaction, respectively).

The procedure was as follows:

• Growth of yeast cells
Yeast cells from strain EGY48[p8op-lacZ] were inoculated in 50-100 mL of
SD Gluc Ura− medium and incubated (overnight, 30 ◦C, 200 rpm). On the
following day, enough yeast cells from the overnight culture were inoculated
into 300 mL of YPD medium to produce an OD600 of 0.2 to 0.3 followed by
further incubation (3 h, 30 ◦C, 200 rpm). After that, the cells were harvested
(5 min, RT, 1000 g), washed once with sterile water and re-suspended in
1.5 mL of 1X TE/LiAc.

• Transformation
For each transformation reaction, 100 µg of salmon sperm DNA, around
1 µg of each plasmid (pGilda and pB42AD), 100 µL of the yeast cells and
600 µL of PEG/TE/LiAc solution were mixed and incubated (30 min, 30 ◦C,
200 rpm). After that, 70 µL of DMSO were added, mixed and yeast cells
were heat shocked (15 min, 42 ◦C). The cells were then cooled, harvested
and re-suspended in 300 µL of 1X TE.

• Plating
100 µL of the above cells were plated on SD HWU− medium and incubated
(3 days, 30 ◦). On the third day, the yeast colonies were removed from the
plates with 0.5-1 mL of sterile water, washed and dotted onto indicator
plates (HWU− plates containing galactose, BU salts and X-gal). Then, the
plates were incubated (1-2 days, RT or 30 ◦) and photographed afterwards.

• Controls setting
Since in Y2H assays false positive results may arise if the test proteins
have intrinsic DNA-BD or AD activities, empty vector controls were always
included. To test if the prey protein has a DNA-BD, transformations with
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empty pGilda vectors were carried out. In the same way, to find out if the
bait protein has an AD, the empty pB42AD vector was used. The empty
version of both plasmids was tested as well.

Quantitative Y2H assay

A quantitative version of the Y2H assay was used to compare the magnitude of
the XPO1a interaction among different proteins or among the wild type and NES-
mutated versions of the same protein.
The activity of β-galactosidase can be assayed by measuring hydrolysis of the
chromogenic substrate, o-nitrophenyl-β-D-galactopyranoside (ONPG) as shown in
Figure 3.7 (Miller, 1972). ONPG is colorless, while the product, ortho-nitrophenol
(ONP) is yellow (λmax = 420 nm). Therefore, enzyme activity can be measured
by the rate of appearance of yellow color using a spectrophotometer.

ONPG
(colorless)
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1 
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Miller Manual  p. 61, 73-75. 
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Figure 3.7: Transformation of ONPG into ONP by β-galactosidase

The procedure was as follows:

• Galactose induction
For every interaction to test, three independent cultures were inoculated in
2 mL of SD Gluc HWU− (2 days, 30 ◦C, 200 rpm). Afterwards the galactose
induction took place. For that, 0.5 mL of every culture was transferred
to 5 mL of SD Gluc HWU− gal raf medium and incubated (4 h, 30 ◦C,
200 rpm). The growth was stopped by placing the cultures on ice, the
cells were collected by centrifugation (10 min, RT, 1000 g), washed and re-
suspended in 0.5 mL of Z buffer. At this point, the OD600 was measured and
3 aliquots of 100 µL for every initial culture were frozen in liquid nitrogen.
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• ONPG assay
The frozen cells were thawed (2 min, 37 ◦C) and frozen again, this procedure
was repeated three times. Then, 700 µL of Z buffer + βME were added,
followed by 160 µL of ONPG solution, the same was done for the blank
tubes (3 tubes with 100 µL of Z buffer). Next, the samples were incubated
for exactly 1h at 30 ◦C and the reactions were stopped by adding 400 µL
of 1M Na2CO3. After centrifugation (10 min, 14000 rpm), 200 µL of the
supernatant were transferred to a 98 well plate and the OD420 value was
measured in an ELISA reader. The results were expressed as Miller units,
calculated as:

Miller units = 1000× Abs420

OD600 ×mL×min

3.2.3 Reagents and media composition

To support traceability of the experimental assessments, Table 3.4 lists the com-
position of reagents and media used for the procedures during the laboratory
experiments.

Reagent/Medium Composition
YPD medium 10 g Bacto pepton

5 g Yeast extract
10 g Glucose
ddH2O to 500 mL

Dropout HWU− L-Isoleucine 300 mg/L
L-Valine 1500 mg/L
L-Alanine 200 mg/L
L-Arginine HCl 200 mg/L
L-Leucine 1000 mg/L
L-Lysine HCl 300 mg/L
L-Methionine 200 mg/L
L-Phenylalanine 500 mg/L
L-Threonine 2000 mg/L
L-Tyrosine 300 mg/L

continued on next page. . .
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. . . continued from previous page

Reagent/Medium Composition
SD Gluc HWU− medium 3.35 g YNB

10 g Glucose
325 mg dropout HWU−

ddH2O to 500 mL

SD Gluc HWU− plates 2.68 g YNB
8 g Glucose
7.2 g Bacto agar
260 mg dropout HWU−

SD Gluc U− medium 3.35 Yeast nitrogen base (YNB)
10 g Glucose
325 mg dropout HWU−

ddH2O to 495 mL
After autoclaving, add:
10 mg Tryptophan
10 mg Hystidine
For plates add 1.8% Bacto agar

SD Gal HWU− plates 2.80 g YNB
7.2 g Bacto agar
260 mg dropout HWU−

325 mL H2O
After autoclaving, add:
40 mL 20% Galactose
20 mL 20x BU salts
0.65 mL 50 mg/mL X-Gal

20x BU salts 30 g NaH2PO4 x 2H2O
70 g Na2HPO4

pH 7.0
ddH2O to 1000 mL

continued on next page. . .



66 Chapter 3. Methods

. . . continued from previous page

Reagent/Medium Composition
Gal Raf HWU− medium 3.35 g YNB

275 mg dropout HWU−

5 g Raffinose
445 mL H2O
After autoclaving, add:
50 mL 20% Galactose

10x TE buffer 0.1 M Tris HCl (pH 7.5)
10 mM EDTA

10x Li-Acetate 1 M Li-Acetate
pH 7.5 adjusted with acetic acid

PEG/Li-Acetate 40 % (w/v) PEG
1x TE buffer
1x Li-Acetate

Z buffer 40 mM NaH2PO4 x H2O
60 mM Na2HPO4 x 2H2O
10 mM KCl
1 mM MgSO4 x 7H2O
pH 7.0

Z buffer + BME 0.27 mL β-Mercaptoetanol
Z Buffer to 100 mL
10 mM EDTA

ONPG 4 mg/mL ONPG in Z buffer

Na2CO3 1 mM Na2CO3 in H2O

Table 3.4: Reagents and media composition
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Overview

In this chapter the outcomes of the steps described previously in Chapter 3 are
presented in detail. It is divided in two main parts, the first one covers the devel-
opment of the prediction tool for NESs and the second is dedicated to the results
obtained in the experimental part of this work.
Section 4.1 starts with the preliminary analysis of the amino acid sequences that
were used and continues with the calculation of features and the tuning and train-
ing of the three tested classifiers (k-NN, RF and SVM). After that, one of the
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pivotal parts of the first section, the evaluation of the classifiers and posterior
selection of one of these is presented. The section ends presenting the outcomes
of using the selected classifier to predict which proteins encoded in the complete
genome of Arabidopsis could contain NESs. The second part of the chapter, i.e.
Section 4.2, highlights the experimental verification of the nuclear export activ-
ity in a group of proteins selected from the set of predicted as NES-containing
proteins in Arabidopsis. It also includes the assessment of the nuclear export ac-
tivity in some proteins already known to contain NESs, to explore the influence
of amino acid residues inside and outside the NES on the Exportin 1 receptor
binding activity.
In this chapter, the use of “nuclear export signal” and its acronym “NES” refers
always to the leucine-rich NES.

4.1 Development of a prediction tool for NESs

4.1.1 Exploratory analysis

Comparison of NESs from Arabidopsis and from other organisms

As introduced in Chapter 1, one of the main motivations of this work was to
develop a prediction tool to identify NESs in proteins of Arabidopsis. The first
step followed in that direction was to explore if there are differences in the amino
acid sequences of NESs in proteins of Arabidopsis and those that were used to
construct the prediction tool already available (la Cour et al., 2004), which are
from proteins mainly from virus, yeast and human. One way to compare these
two groups of NESs was to construct the sequence logos shown in Figure 4.1.
Figure 4.1 indicates that there are some differences between NES sequences from
Arabidopsis proteins (Figure 4.1A) and NESs from virus, yeast and humans
(Figure 4.1B). These dissimilarities are mainly in the identity and degree of con-
servation of the hydrophobic residues as well as in the number of amino acid
residues between them.

Comparison of NES sequences to nonNES sequences

In this work, the goal was to separate NES (positive) sequences from nonNES
(negative) sequences. One of the most important points when developing a classi-
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Figure 4.1: Sequence logos for nuclear export signals (NESs)
These logos are a graphical representation of the sequence conservation of amino acid residues
in NESs, they were created from multiple sequence alignments of NESs in proteins of, A: Ara-
bidopsis and, B: other organisms, mainly virus, yeast and human (la Cour et al., 2003). This
kind of representation shows how well the residues are conserved at each position: the fewer
the number of residues, the higher the letters are, because the conservation is better at that
position. Different residues at the same position are scaled according to their frequency. The
amino acid residues are coloured according to their polarity: black: non polar (hydrophobic),
green: polar without charge, red: acid and blue: basic.
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fication tool is to look for properties that allow the separation between the classes.
Intuitively, the first property in this case could be the order and identity of the
amino acid residues in each class (NES and nonNES). To see if there were differ-
ences between the classes NES and nonNES regarding this parameter, the distance
matrix shown in Figure 4.2 was constructed by comparing all sequences to each
other. In this matrix the intensity of the color is an indicator of the degree of
similarity of each pair of sequences.

    NES                              nonNES

N
E
S

n
o
n
N

E
S

Figure 4.2: Similarity matrix from positive(NES) and negative(nonNES) sequences
This distance matrix shows the similarity between the amino acid sequences labelled as NES or
nonNES. Every point in the matrix corresponds to a similarity score whose value varies between
[0, 1]. This value is represented with the color bar code shown in the right side of the figure.
The similarity score used to construct this matrix, corresponds to the identity value obtained
from aligning each pair of amino acid sequences with the program ALIGN. According to that,
the intensity of the color is directly related with the strength of the similarity and hence the
central diagonal line represents the self-alignment of each sequence. The region 0...107 contains
the NES or positive sequences, and 108...257 the nonNES or negative sequences.

In Figure 4.2, the presence of a darker zone in comparison to the rest of the matrix
is clearly visible. This area corresponds to the region where NES sequences are
compared to other NES sequences. It means that an NES sequence is more similar
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to another that is also NES than to another that is nonNES. Therefore, the identity
and order of the amino acid residues in the sequences could be used as one of the
features to separate the two classes.

Extraction of features

According to the results shown in Figure 4.2, the NES sequences are different
from the nonNES sequences concerning the amino acid identity and order. This
property had to be expressed in a numerical value. For that purpose, a profile
HMM for NESs was constructed as described in Chapter 3. Every sequence was
then compared to this profile HMM and the score produced was used as the
mentioned numerical value.

The next question to be answered was if the constructed profile HMM alone could
separate the NES class from the nonNES class. This point can be addressed by
looking at Figure 4.3, which shows the distribution of the score values obtained
for all the sequences in both classes. Although there are differences between the
HMM score values obtained for NES and those for nonNES sequences, no single
HMM score value could be used to unambiguously discriminate between the two
classes. Because of that, the profile HMM score was used as one of the elements of
the feature vector but in addition, some extra properties namely the amino acid
index values (aaindex) were included.

4.1.2 Tuning and training of classifiers

For every amino acid sequence labelled as NES or nonNES, 545 properties or
features were calculated. One of these features corresponds to the profile HMM
score and the other 544 are aaindex values. Given this high number of features,
it was necessary to eliminate some of them. The criteria used for that was the
correlation among them, since features that are highly correlated are sometimes
non-informative and instead of improving the classification could increase the noise
and also the time necessary for the training process.
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Figure 4.3: Distribution of the HMM score values for NES and nonNES sequences
Two ways of presenting the values of HMM score associated to each sequence. A: Each circle
represents one sequence, belonging to the NES (red color) or nonNES (green and blue color)
class. In the group of nonNES, the green color indicates all the negative sequences obtained
(around 10000), whereas blue, represents the sequences that were randomly selected to conform
the negative set (150). B: Each curve corresponds to the density distribution for each class
(NES in red and all nonNES in green) estimated with the package sm in R.
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Figure 4.4: Influence of the number of features on the classification error
Boxplots showing the distribution of classification error values obtained by 10-fold cross-
validation (A) and .632+ boostrap (B), for the three classifiers: k-Nearest Neighbor (k-NN),
Random Forest (RF) and Support Vector Machine (SVM) with different number of predictors.
The number of predictors used in each situation is shown in parenthesis. In the first scenario, All
features were used and in the other three, a group of predictors with correlations above a certain
threshold were eliminated. The features used in each situation are indicated as |Cor| < 0.9,
|Cor| < 0.8 and |Cor| < 0.7, where the correlation threshold was 0.9, 0.8 and 0.7 respectively.
In this graph, the whiskers extend from -1.5 to +1.5 of interquartile range (IQR), the dark
horizontal line inside each box indicates the median of the sample (50th percentile) and the lim-
its of the box represent the lower and upper quartiles (25th and 75th percentiles) respectively.
The outliers, if any, are represented as individual circles outside the whiskers. The values were
calculated using the function errorest from the package ipred (Peters et al., 2002) under the
R platform .

For deciding which features would be used in the final classifier, the three classifiers
were trained with all of them (545) and with features with correlation less than
0.90 (240), 0.80 (132) and 0.70 (68) and the classification error was evaluated
for each feature set. The training was accomplished by resampling using 10-fold
cross-validation and .632+ bootstrap. Figure 4.4 shows the classification error for
the three classifiers (k-NN, RF and SVM) with the four features sets described
before and the two resampling methods used. Each classifier reacted in a different
way to the elimination of highly correlated features. The k-NN classifier produced
the highest values for classification error and the error became even bigger for this
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classifier when more features were excluded. In the case of SVM, the classification
error values were much smaller than using k-NN and remained in the same range
with all features sets. In the case of RF, there was a diminution of the error value
after removal of the first group of features (correlation threshold 0.90) but further
eliminations increased the error value again. Beyond that, RF produces the lowest
classification error values, excepting the case of the smallest feature set where the
error values for RF and SVM are about equal. The observed behaviour did not
depend on the resampling procedure used since the tendency was similar when
using 10-fold CV or .632+ bootstrap. As a whole, the values for classification error
under the tested conditions (different number of predictors) were lightly lower and
showed less variance, by using .632+ bootstrap compared to 10-fold CV. Based
on these results, all the features were used in the case of k-NN and 240 (with
correlation < 0.90) in the case of RF and SVM.

Importance

QIAN880117

NAKH900106

NAKH920103

PONP800106

QIAN880104

CHAM830104

KOEP990101

NADH010107

CHAM810101

YUTK870101

SUYM030101

WILM950101

NAKH900107

RACS820113

HMM

40 60 80 100

Figure 4.5: Variable importance estimated with the Random Forest(RF) algorithm
The 15 most important variables or features estimated by Random Forest. The most important
variable is set to value 100 and the others are scaled accordingly. The name of the respective
variable is given in the left side, HMM corresponds to the profile-HMM score and the other are
designations for different aaindex values.
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4.1.3 Variable importance

As part of the algorithm, RF returns measures of variable importance. This
is done by computing the increase in prediction error when the data for that
variable is permuted while all others are left unchanged. The percentage increase
in misclassification rate for a permuted variable reflects the importance of that
variable for the overall classification.

The variable importance measures for the complete data set (without partition) is
shown in Figure 4.5. It is noticeable that the score from the profile HMM (HMM
in Figure 4.5) had the highest relevance and also, aaindex values related with hy-
drophobicity measures (for example NAKH900107, WILM950101, YUTK870101,
PONP800106 and NAKH900106) were included in the selection.

4.1.4 Classifier assessment and selection

Performance assessment

To obtain a preliminary idea of the classifiers performance, the accuracy was
measured in the training phase (using resampling across the training set) and in
the test phase (using the test set). The values obtained for the three classifiers
are shown in Figure 4.6. It can be seen that the accuracy values for the three
classifiers differ between training phase and test phase. In all cases, the values
obtained were higher when the training set and resampling was used than when the
test set was used. If only the resampling scheme were used, the RF classifier would
have an accuracy value of 100% in all the cases, which is an extremely optimistic
scenario. In the same way, for the other classifiers the accuracy values would be
over-estimated if the values reported were only produced by resampling. Taking
in mind this consideration, the evaluation of the classifiers was carried out only
with the test set. The partition of the whole data set into training and test sets
(hold-out method) was carried out more than once and the complete procedure of
training and testing was repeated independently as described in Subsection 3.1.5.

The performance metrics accuracy, sensitivity, specificity, precision, false positive
rate (FPR) and classification error (with respect to the test-set) obtained for the
three classifiers are presented in Figure 4.7. Since three resampling schemes were
used for the training with four different partitions (training-set test-set), twelve
values for every performance metric were obtained for each classifier.
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Figure 4.6: Accuracy compared: training and test sets
The accuracy values (in percentage) for the three classifiers were estimated using resampling
within the training set (red circles) or using only the predictions obtained for the test set (blue
circles). For each classifier twelve measures were obtained, corresponding to three resampling
schemes and four different partitions of the whole data into training and test sets.

Regarding the sensitivity value, the k-NN classifier had a small advantage over
the other two. Nevertheless, this classifier was the least specific and least precise,
and showed also in correspondence the highest values for false positive rate and
classification error. RF was comparable to SVM regarding sensitivity, however
it showed slightly higher values in accuracy, specificity and precision, as well as
lower false positive rate and error than SVM.

The boxplots presented in Figure 4.7, allow not only comparing the values ob-
tained for the three classifiers, but also heeding the degree of dispersion (spread)
and skewness in the data, and identifying outliers. It is noticeable, for example
that k-NN exhibits a higher degree of dispersion of the data in specificity and false
positive rate, compared to RF and SVM.

In addition to the performance measures shown in Figure 4.7, two correlation mea-
sures were also evaluated: Matthews correlation coefficient (MCC) and F-score.
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 Sensitivity  Specificity  Precision  FPR  Error            Accuracy

Figure 4.7: Comparative performance of the trained classifiers (I)
Boxplot graph showing the results for some of the performance metrics (in percentage) used
to evaluate the classifiers k-Nearest Neighbor(k-NN), Random Forest (RF) and Support Vector
Machine (SVM). Every measure corresponds to twelve independent experiments using different
combinations of training and test sets. For the values of accuracy, sensitibity, specificity and
precision, the higher the value, the better the classifier. By the contrast, for false positive rate
(FPR) and error lower values indicate better performance.
The whiskers extend from -1.5 to +1.5 of interquartile range (IQR), the dark horizontal line
inside each box indicates the median of the sample (50th percentile) and the limits of the box
represent the lower and upper quartiles (25th and 75th percentiles) respectively. The outliers, if
any, are represented as individual circles outside the whiskers.

Classifier MCC F-score

k-NN 0.55 (0.03) 0.75 (0.01)

RF 0.77 (0.06) 0.86 (0.03)

SVM 0.66 (0.05) 0.80 (0.03)

Table 4.1: Comparative performance (II): correlation measures
Average values for two correlations measures: Matthews correlation coefficient (MCC) and
F-score, obtained for the classifiers k-Nearest Neighbor (k-NN), Random Forest (RF) and Sup-
port Vector Machine (SVM). The standard deviation in each case is indicated in parenthesis.
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The respective values obtained are presented in Table 4.1. For MCC a value of
“1” is regarded as perfect prediction and “0” indicates a completely random pre-
diction. From this point of view, the three classifiers predict better than random
being RF and SVM slightly superior to k-NN. Similar observations were obtained
regarding the F-score values.

Receiver operating characteristics (ROC) curves

The outcome of the classification process with the three trained classifiers can be
seen as class probability values for every classified sample. Therefore, the perfor-
mance metrics can change depending on the cutoff value used. In order to assess
the relation between sensitivity (expressed as true positive rate (TPR)) and true
negative rate (TNR) across different cutoff values of class probabilities, receiver
operating characteristics (ROC) curves were constructed.
The ROCs for the three trained classifiers are shown in Figure 4.8, where the
indicator area under the curve (AUC) is also included.
According to the ROCs shown in Figure 4.8 the three classifiers can predict much
better than random, which can be seen in the localization of the curve in the ROC
space, in the shape of the curves and also in the AUC value which is > 0.5 in all
the cases. According to this parameter it seems that RF performs better than the
other two classifiers. However, this conclusion can not be drawn using only the
ROCs since the class distribution of the samples (proportion of positive (NES)
compared to negative (nonNES) sequences) is not considered.
Hence, for a direct comparison of the three classifiers in the ROC space, the ROC
convex hull (ROCCH) method, described by Provost and Fawcett (Provost and
Fawcett, 2001) was used. The result is shown in Figure 4.9 where each point
corresponds to one classifier. In this approach, the points that are closer to the
convex hull represent the optimal classifiers under different scenarios. For exam-
ple, in Figure 4.9 A and B, the blue lines indicate two possible class distributions
situations: A, when the data set contains the same proportion of positives and
negative samples and B, when the data set contains 20% of positive samples and
80% of negative samples. According to this approach, RF would be the best
classifier under the two circumstances considered. An interesting observation is
that k-NN would be a good classifier if the data set would contain a much higher
proportion of positive samples in comparison to the negatives.
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Figure 4.8: Comparative performance (III): receiver operating characteristics (ROC)
curves
Receiver operating characteristics (ROC) curves of the three trained classifiers: A: k-Nearest
Neighbor(k-NN ), B: Random Forest (RF), C: Support Vector Machine (SVM ). In A-C, the
average curves are shown in color whereas the individual curves that were used to calculate the
average are shown in grey, the horizontal and vertical lines along the curve correspond to the
respective standard deviation. The differential color used for the average curves corresponds to
a probability cutoff value, the scale is on the right side of each curve.
D shows the average curves for the three classifiers in the same graph and the average area
under the curve (AUC). Each color corresponds to a classifier according to the scheme shown
in the right down corner.



80 Chapter 4. Results

 A  B
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SVM

kNN RF 
SVM
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Figure 4.9: Comparative performance (IV): receiver operating characteristics convex
hull (ROCCH)
The Random Forest (RF) classifier performed better than Support Vector Machine (SVM) and
k-Nearest Neighbor(k-NN) and was the optimal classifier according to the receiver operating
characteristics convex hull (ROCCH) approach. In this plot each red point represents one
classifier whose values of true positive rate (TPR) and true negative rate (TNR) are taken on a
specific probability cutoff value (0.5 in this case). The convex hull curve is shown in green, the
potential optimal classifiers are those that lie on to that line. The blue lines show the potential
optimal classifier under two different conditions of class distributions (proportion of positive and
negative samples): A: Equal class distribution and B: Unbalanced class distribution, 20% of
positive samples and 80% of negatives samples.

According to the results of the performance measurements and ROC curves, RF
was selected as the best method to classify NESs. Therefore, the next step was to
use it to predict NESs in new protein sequences. One of the intended uses of this
classifier was to predict possible NES-containing proteins in the whole available
sequences of Arabidopsis. For an application like this, it is more important to have
a high specificity even if the sensitivity decreases i.e., it is desirable to minimize
the number of false positives even if that means that some positives are missed.
One way to achieve that is to adjust the probability cutoff value that the classifier
uses to assign the class label to new samples.
Fig 4.10 shows the variation of the RF classifier performance across different
probability cutoff values. It can be seen that probability cutoff values higher
than 0.5 can give a better specificity at the cost of some decrease in accuracy
and sensitivity. Consequently, for the screening of the whole available protein
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sequences of Arabidopsis using the RF classifier, a cutoff value of 0.7 was selected
as a trade-off between gaining in specificity without loosing to much in sensitivity.
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Figure 4.10: Probability cutoff value selection for the Random Forest classifier
Plots showing the relationship between A: Specificity, B: Sensitivity, C: Accuracy and D: class
separation, and the probability cutoff value for the Random Forest(RF) classifier. The value
indicated with a dashed line (0.7) was used as the probability cutoff value for screening the
whole data set of protein sequences of Arabidopsis with the RF classifier.
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4.1.5 Classification of new samples

The pipeline constructed was used to classify 33410 protein sequences, obtained
from the Arabidopsis information resource website TAIR, using TAIR9 Genome
Release, June 2009 (http://www.arabidopsis.org). From this data set 5156
sequences corresponding to individual loci were predicted as NES-containing pro-
teins. The length of the sequences classified as NES was in a range from 6 to 20
amino acid residues being most of them between 6 and 11 (Figure 4.11).

Figure 4.11: Length distribution of the predicted NESs in Arabidopsis
This graph shows the number of NESs predicted in relation to their length i.e., number of amino
acid residues. Most of the signals predicted are between 6 and 11 amino acid residues long. Since
more than one NES could be predicted in the same protein, the number of predicted signals is
not necessarily equivalent to the number of predicted NES-containing proteins.

http://www.arabidopsis.org
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Selection of proteins to be experimentally tested

The next step after the prediction of the proteins possibly containing NESs in
Arabidopsis was to test a group of these proteins to investigate if they had nuclear
export activity. The first way to select the proteins to be tested in the laboratory
was to use Gene Ontologies (GO) (The Gene Ontology Consortium, 2000). The
GO project has developed three structured controlled vocabularies (ontologies)
that describe gene products: cellular component, biological process and molecular
function. A gene product might be associated with or located in one or more
cellular components; it is active in one or more biological processes, during which
it performs one or more molecular functions.

Figure 4.12 shows the distribution of the predicted NES-containing proteins across
the GOs molecular function and cellular process. Since many of the predicted
NES-containing proteins do not have an associated GO in the categories molecular
function or cellular process, it is highly probable that they are not characterized
yet.

The targeted group of proteins pre-selected for experimental validation included
all the sequences associated with the GOs “transcription factor activity” and
“DNA or RNA binding” from the molecular function category and, “DNA or RNA
metabolism” and “transcription” from the biological process category (Figure
4.12).

Since the three major GO categories (function, process and component) are rep-
resented as directed acyclic graphs (DAGs) or networks, a child node may have
more than one parent node. That means that one protein could be in more
than one sub-category. Therefore, the common sequences between sub-categories
were examined. The distribution of the protein sequences across the selected
sub-categories is shown as Venn diagrams in Figure 4.13. The protein sequences
sharing at least 2 sub-categories (264 in total) were pre-selected for experimental
validation.
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Figure 4.12: Distribution of the predicted NES-containing proteins according to
gene ontologies (GO)
Distribution of the Arabidopsis proteins predicted as NES-containing among the gene ontologies
(GO) molecular function and biological process. The bars colored in green correspond to the
groups of proteins pre-selected for experimental testing of the nuclear export activity, the number
of proteins in each of these groups are indicated above the respective bar.
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Figure 4.13: Distribution of the predicted NES-containing proteins among selected
gene ontologies
These Venn diagrams show the number of proteins sequences belonging to specific gene on-
tologies (GOs). A: Distribution of the proteins for the GOs, molecular function:transcription
factor activity (MF:TFA) (GO:0003700), molecular function: DNA/RNA binding (GO:0003677
or GO:0003723 ) and biological process: transcription (GO:0006350). B: Distribution of
the proteins for the GOs, molecular function:transcription factor activity, molecular func-
tion: DNA/RNA binding and biological process: DNA/RNA metabolism (GO:0006259 or
GO:0006403). A group of 264 protein sequences shared at least two of these GOs, they were
pre-selected for experimental testing.

4.2 Experimental assessment of the nuclear export
activity

4.2.1 NES verification in predicted proteins

The presence of an NES in a protein can be assessed by testing if the proteins
interacts with the export receptor. In this case the possible interaction with the
Arabidopsis Exportin 1a (XPO1a) receptor was tested in a group of proteins se-
lected from the total predicted. The selection of the proteins to be experimentally
tested was made in principle by using GOs, as described above. Ideally the exper-
imental verification should be done in a random sample of the predicted proteins.
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However, to facilitate the cloning process and obtain results for a larger number of
proteins, an additional selection was made according to the experimental criteria
described below.

• Absence of specific restriction sites in the cDNA sequence

Since the cDNAa of the proteins that would be tested should be cloned in
the plasmid pB42, they should not contain internal restriction sites for both
of the enzymes used for the ligation in that vector: EcoRI and XhoI. If the
cDNA contained one or more sites for only one of those enzymes, the correct
orientation of the cDNA had to be verified additionally.

• Size of cDNA

To facilitate the PCR amplification and posterior cloning, cDNAs with sizes
greater than 2.5 kb were excluded.

Using these criteria 24 proteins from the group of 264 pre-selected by GOs were
selected to be experimentally verified. The respective cDNA was amplified by
PCR using specifically designed oligonucleotides. The amplified fragments were
cloned in the vector pB42AD and confirmed by sequencing. The pB42AD plasmids
containing the cDNAs investigated, together with pGilda plasmid containing the
cDNA of Arabidopsis XPO1a were used in yeast two-hybrid (Y2H) assays.

A positive result in this test indicates that the tested protein interacts with
XPO1a, which is a confirmation of the NES presence in that protein. The re-
sults for the examined proteins are summarized in Table 4.2 and Figure 4.14.
From the 24 proteins selected for testing, 13 were evaluated by Y2H and from
them 11 showed positive interaction with XPO1a.
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BZR1 (BRASSINAZOLE-RESISTANT 1)YESAT1G75080 ++24 YES
AT5G45400 NO23 YES

NO22 AT4G29940

ABF1 (ABSCISIC ACID RESPONSIVE ELEMENT-
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2 AT3G61150

AGI codeProtein

NO

Table 4.2: Summary of the results for the tested proteins.
Oligonucleotides were designed for 24 of the predicted NES-containing proteins. cDNA frag-
ments generated from positive PCR experiments were ligated into the vector pB42AD and
tested in the yeast strain EGY48[p8op-LacZ] for interaction with Arabidopsis XPO1a. This
table presents the summary of the results for all the 24 proteins selected. 13 of them were eval-
uated using the yeast two-hybrid assay (highlighted rows). The remaining 11 failed either in the
cDNA amplification or the cloning process. The sequence of the oligonucleotides are included
in the appendix.
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Figure 4.14: XPO1a binding activity for selected proteins out of the total predicted
Yeast two-hybrid assays for 13 out of the 24 proteins selected from the protein predicted as
containing NES. The respective cDNA fragments amplified by PCR were ligated into the vector
pB42AD and tested in the yeast strain EGY48[p8op-LacZ] for interaction with A. thaliana
XPO1a. This group of proteins correspond to the highlighted cells in Table 4.2, the number on
the left side next to the accession number corresponds to the same used in that table. The protein
whose cDNA was cloned in plasmid pB42AD is labelled at the left of each picture panel and
the content of plasmid pGilda (XPO1a cDNA or empty vector) is indicated on top. Blue color
indicates positive interaction, 11 proteins out of the 13 assayed showed a positive interaction
with XPO1a. For only two proteins, number 4 (AT5G54260) and number 9 (AT3G62420), no
positive interaction was detected.
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4.2.2 Further analysis of some NES-containing proteins

The influence of regions inside and outside of the NES on the XPO1a binding
activity was assessed using proteins from Arabidopsis that were already known to
contain a functional NES. Some of them were included in the group of NESs used
for classifier development.

Effect of changes inside the NES

The effect of changing amino acid residues others than the hydrophobic ones inside
the NES region was evaluated by using the NES of the PAB7 protein. Poly(A)-
binding proteins (PABPs) are a family of proteins characterised by their ability
to bind to poly(A) RNA. They bind the poly(A) tails of newly synthesized or
mature mRNAs and appear to act as cis-acting effectors of specific steps in the
polyadenylation, export, translation, and turnover of the transcripts to which they
are bound. Lacking any evident catalytic activity, PABPs provide a scaffold for
the binding of factors that mediate these steps and also apparently act as antag-
onists to the binding of factors that enable the terminal steps of mRNA degra-
dation (Mangus et al., 2003; Gorgoni and Gray, 2004; Kühn and Wahle, 2004).
Based on intracellular location and phylogeny, PABPs have been divided into two
broad categories, nuclear (PABPNs) and cytoplasmic (PABPCs). Both classes
are ubiquitous in eukaryotic organisms, but PABPNs bear little resemblance to
their cytoplasmic counterparts also in their functions (Wahle, 1991; Nemeth et al.,
1995; Kühn and Wahle, 2004).

PABPCs contain four consecutive RNA recognition motifs (RRMs), located in
the N-terminal region, connected to a conserved C-terminal domain referred to
as the PABC or CTC (Mangus et al., 2003). Arabidopsis contains eight genes
for PABPCs, all of which are expressed (Belostotsky, 2003). This is an unex-
pectedly large number in comparison to other eukaryotes whose genomes have
been sequenced. For example, PABPCs are encoded by single genes in Saccha-
romyces cerevisiae (Sachs et al., 1987), Schizosaccharomyces pombe (Thakurta
et al., 2002) and Drosophila melanogaster (Sigrist et al., 2000); two genes are
present in Caenorhabditis elegans and four in humans (Mangus et al., 2003). Us-
ing phylogenetic comparisons coupled with expression analyses, the eight PABPCs
of Arabidopsis were grouped into four classes (Belostotsky, 2003). The expression
of class I (PAB3 and PAB5) is limited to reproductive tissue; class II members
(PAB2, PAB4 and PAB8) are highly and broadly expressed; class III PABPs
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(PAB6 and PAB7) have a restricted, weak expression pattern; and the sole mem-
ber of class IV (PAB1) has low, tissue-specific expression.

In a previous study in the laboratory of Dr. Thomas Merkle, the XPO1a binding
activity of the Arabidopsis PABPCs was assessed (Roessiger, 2008). Some of
the PABPCs (PAB2, PAB8, PAB4) exhibited strong interaction whereas others
(like PAB7) showed a weaker interaction and some other no interaction at all
(PAB3). Comparing the NES from PAB7 (weak XPO1a interaction) with PAB8,
PAB4 and PAB2 (strong XPO1a interaction), some differences can be noted in
the spacer amino acid residues of the signal, i.e. the residues located between
the hydrophobic ones. To test if these amino acid residues could influence the
interaction with XPO1a, the NES of PAB7 was mutated in order to convert its
weak NES into a strong one. The description of these mutations as well as a
comparison of the NES sequence and the XPO1a interaction activity between
PAB7 and PAB8 are shown in Figure 4.15.

The XPO1a interaction activity was assessed in Y2H assays for the wild type
PAB7 and the PAB7 NES mutants. These results are presented in Figure 4.16.
Modifications of some of the amino acid residues others than the hydrophobic
ones in the NES sequence of PAB7 produced changes in the extent of the XPO1a
binding activity compared to the PAB7 wild type. All the changes of individual
amino acid residues yielded an increase of the XPO1a binding activity that is more
remarkable when the Serine in position 601 is exchanged for Glutamate. When
the four amino acid residues were simultaneously changed so that the NES of
PAB7 was almost identical to the one of PAB2 and PAB4 concerning the spacing
residues, the increase of the activity was even higher, in this case twice as high as
compared to the PAB7 wild type NES.

Effect of changes in regions outside of the NES

To asses if the XPO1a binding activity could also be influenced by regions outside
of the NES, the proteins CID 11 (AT1G32790) and CID 12 (AT4G10610) from
Arabidopsis were used. CID (for CTC interacting domain) proteins are potential
interaction partners of the PABPCs (Bravo et al., 2005). Two of them (CID 1
and CID 7) were initially isolated in a yeast two-hybrid screening using the PABC
region of PAB2 and eleven members more were identified in a database search
using the domain PAM2 (PABP interaction motif 2) as bait (Bravo et al., 2005).
The motif PAM2 is present in the PABP interacting proteins Paip1 and Paip2
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Figure 4.15: Comparison of the NES of some Arabidopsis PABPC proteins
The NES of PAB7 differs from that of PAB2, PAB4 and PAB8. Since PAB7 interacted weakly
with XPO1a and PAB2, PAB4 and PAB8 interacted strongly, some amino acid residues inside
the NES from PAB7 where changed trying to emulate the NES from the proteins that had
a strong XPO1a interaction activity. A: A scheme of PAB7, the main sequence motives are
shown and the NES region is enlarged. The hydrophobic amino acid residues in the NESs are
shown in red, the amino acid residues changed in the respective mutant are shown in blue, the
NES of PAB2, PAB4 and PAB8 are also presented. B: Interaction of PAB7 and PAB8 with
XPO1a assayed by yeast two-hybrid assays. The assays were carried out using plasmids pB42AD
containing the cDNA of proteins PAB7 or PAB8 and pGilda containing XPO1a cDNA or the
empty plasmid as a control. Blue colour indicates positive interaction between the two proteins.
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Figure 4.16: Yeast-two hybrid assays for PAB3 and proteins derived from PAB7
Changes in some amino acid residues inside the NES of PAB7 increased its XPO1a binding. The
XPO1a binding activity of the proteins described in Figure 4.15 was assessed by yeast two-hybrid
assays. The cDNAs of the proteins indicated in the central panel of the figure were cloned in
plasmid pB42AD and tested in the yeast strain EGY48[p8op-LacZ] for interaction with XPO1a
from A. thaliana, whose cDNA was cloned in plasmid pGilda. The interaction was evaluated by
production of β-galactosidase in plates with the X-gal substrate (qualitative assay, left side of
the figure) or in solution by using the ONPG-assay (quantitative assay, right side of the figure).
In the qualitative assay, the development of a blue color indicates a positive interaction between
the two tested proteins. PAB7/pGilda and pB42/pGilda correspond to controls using cDNA of
the protein PAB7 or the plasmid pB42AD empty respectively, together with the plasmid pGilda
empty. pB42/XPO1a corresponds to a control using the plasmid pB42AD empty and the cDNA
from XPO1a in plasmid pGilda.
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from humans and mediates their interaction with PABPs (Khaleghpour et al.,
2001; Roy et al., 2002).
The thirteen CID genes from Arabidopsis were grouped in four classes: A, B, C
and D (Bravo et al., 2005). CID 11 and CID 12 are both in the class D, these
encode highly related RBPs (RNA binding proteins) containing two RRMs and a
basic region that resembles a bipartite NLS. CID 11 and CID 12 are closely related
in sequence (Figure 4.17A), their NES differs just in two amino acid residues
that do not belong to the group of hydrophobic ones. Nevertheless, these two
proteins displayed a very different XPO1a interaction activity. In yeast two-hybrid
assays, CID 11 interacted strongly with XPO1a whereas CID 12 interacted weakly
(Figure 4.17B).

To elucidate why CID 11 and CID 12 interacted so differently with XPO1a, the
mutant proteins whose sketch is shown in Table 4.3, were constructed and tested
in Y2H assays. The proteins assayed were (the names used in Table 4.3 appear
in italics):

• CID 11 and CID 12 wild type proteins.

• CID 11 NES mut: CID 11 with a mutated version of the NES in which two of
the leucine residues were changed to alanine, obtained by overlap-extension
PCR as described in Section 3.2.1.

• CID 11 NES CID 12 : Version of CID 11 containing the NES sequence of
CID 12, it was obtained by overlap-extension PCR.

• CID 12-11 NES CID 12 and CID 11-12 NES CID 11 : Two chimeric proteins
obtained by restriction of CID 11 and CID 12 with the enzyme Hind III
followed by ligation. This enzyme cuts at the end of the NES at identical
positions in both proteins (shown in Figure 4.17). The first chimeric protein
contains the N-terminal end of CID 12 together with its NES and the rest
of CID 11 (after the NES). In the same way, the second protein contains the
N-terminal end from CID 11 with its NES and the rest of CID 12.

• CID 11 minus C-end and CID 12 minus C-end: Shorter versions of CID 11
and CID 12 obtained by PCR, both proteins contain around 100 amino acid
residues less than the wild type.

• CID 11-12 (II) and CID 11-12 (II): Again two chimeric proteins, this time
the C-terminal end of CID 11 and CID 12 was interchanged by using overlap-
extension PCR.
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CLUSTAL 2.0.12 multiple sequence alignment!

CID11     MAVVETGAAATAADAGGVVIQPPPSSPPSSMTSQDSGVSSDDQNHHSRIDQVLRHDQGLY 60!

CID12     MAVIESVGANTTVEAGGLIS----PSPPSSVTSQESGASSN--NDHG--------GNGIH 46!

          ***:*: .* *:.:***::     .*****:***:**.**:  *.*.        .:*::!

CID11     SKIGSHVARSDGVDGGESFKRDMRELQELFSKLNPMAEEFVPPSLNKQGGNGVNGGFFTS 120!

CID12     DEIGVHVARSD---GGESFKRDMRELHELLSKLNPMAKEFIPPSLTKPVVNGFNGGFFA- 102!

          .:** ******   ************:**:*******:**:****.*   **.*****: !

CID11     AGSFFRNNGFAGTGNGGYGNENGGFRRKKSFGQ-GKRRMNARTSMAQREDVIRRTVYVSD 179!

CID12     -----VNNGFVAAGN-FPVNEDGSFRRKKSFGQQGKRRMNPRTSLAQREEIIRRTVYVSD 156!

                ****..:**    **:*.********* ******.***:****::*********!

CID11     LDQQVTEEQLAGLFVSCGQVVDCRICGDPNSVLRFAFIEFTDEEGAMTALNLSGTMLGFY 239!

CID12     IDQQVTEEQLAGLFIGFGQVVDCRICGDPNSVLRFAFIEFTDEVGARTALNLSGTMLGFY 216!

          :*************:. ************************** ** *************!

CID11     PVKVLPSKTAIAPVNPTFLPRTEDEREMCARTIYCTNIDKKVTQSDVKIFFESFCGEVYR 299!

CID12     PVKVMPSKTAIAPVNPTFLPRTEDEREMCARTIYCTNIDKKLTQTDIKLFFESVCGEVYR 276!

          ****:************************************:**:*:*:****.******!

CID11     LRLLGDYQHSTRIAFVEFVMAESAIAALNCSGVVLGSLPIRVSPSKTPVRPRS-PRHPMH 358!

CID12     LRLLGDYHHPTRIGFVEFVMAESAIAALNCSGVLLGSLPIRVSPSKTPVRSRAIPRHQMH 336!

          *******:*.***.*******************:****************.*: *** **!

NES

Hind III

 A

CID 11 CID 12 Empty

X
PO

1
a

E
m

p
ty

pB42

p
G

ild
a

 B

RRM1

RRM2

PAM2

Figure 4.17: Comparison of XPO1a interaction of CID 11 and CID 12
Proteins CID 11 and CID 12 from A. thaliana are highly similar, however they showed different
interaction with XPO1a in the yeast two-hybrid assay. A: Sequence alignment of proteins
CID 11 and CID 12. Nuclear export signal (NES), RNA-recognition motives (RRM) and PAB
interacting motif 2 (PAM2), are highlighted in red, green and blue, respectively. The restriction
site for the enzyme Hind III is marked in red. This enzyme was used to construct chimeric
proteins by combination of different regions of each protein. B: Yeast two-hybrids assay with
proteins CID 11 and CID 12. The assays were carried out using plasmids pB42AD containing
CID 11 cDNA or CID 12 cDNA and pGilda containing XPO1a cDNA or the empty plasmid as
control. Blue colour indicates interaction between the two tested proteins.
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Table 4.3: Chimeric proteins obtained from CID 11 and CID 12
Description and schematic presentation of proteins CID 11 and CID 12 tested in Y2H assays.
The left column contains the name of each protein, as shown in the text and in Figure 4.17, the
central column presents the architecture of each protein and the right column explains briefly
the characteristics of each protein. Protein CID 11 is represented in orange color, CID 12 in
green, the NES from CID 11 in red and the NES from CID 12 in blue.
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The results from the Y2H assays with the described proteins are shown in Fig
4.18. As was already known, the XPO1a binding activity of CID 11 is stronger
than the one of CID 12. Furthermore, it is evident that the mutation of the hy-
drophobic residues in the NES of CID 11 eliminated such activity.
The XPO1a binding activity of CID 11 was diminished when its NES was replaced
by the one of CID 12, a reduction approximately of the same extent was also ob-
served when the C-terminal end of CID 11 was removed but the high activity was
recovered if its C-terminal end was replaced by the one from CID 12.
The interchange of the regions after the NES between CID 11 and CID 12 de-
creased the original high XPO1a binding activity of CID 11 but did not eliminate
it completely. Both of these proteins (CID 12-11 NES CID 12 and CID 11-12
NES CID 11 ) showed less activity than CID 11 but more than CID 12, being the
activity of the one that contains the NES from CID 11 more than twice higher
than the one with the NES from CID 12.
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Figure 4.18: Y2H assays for proteins derived from CID 11 and CID 12
Domain swapping experiments between the proteins CID 11 and CID 12 produced variations
in the original XPO1a binding activity of these two proteins. The XPO1a binding activity
of the proteins described in Table 4.3 was assessed in yeast two-hybrid assays. The cDNAs
of the proteins indicated in the central panel of the figure were cloned in plasmid pB42AD
and tested in the yeast strain EGY48[p8op-LacZ] for interaction with XPO1a from A. thaliana
whose cDNA was cloned in plasmid pGilda. The interaction was evaluated by production of
β-galactosidase in plates with the X-gal substrate (qualitative assay, left side of the figure) or in
solution by using the ONPG-assay (quantitative assay, right side of the figure). In the qualitative
assay, the development of a blue color indicates a positive interaction between the two tested
proteins. CID 11/pGilda, CID 12/pGilda and pB42/pGilda correspond to controls using cDNA
of the proteins CID 11 or CID 12 or the plasmid pB42AD empty respectively, together with
the plasmid pGilda empty. pB42/XPO1a corresponds to a control using the plasmid pB42AD
empty and the cDNA from XPO1a in plasmid pGilda. pB42/pGilda corresponds to a control
with both empty plasmids.
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5.1 Analysis of LR-NESs of proteins from Arabidop-
sis

The sequences of LR-NESs of proteins from Arabidopsis were compared to LR-
NES of proteins from viruses, yeast and humans that were already published
(la Cour et al., 2003) by using sequence logos. This kind of representation provides
a visual yet precise description of sequence similarity that is superior to consensus
sequences and can rapidly reveal significant features of the alignment that are
otherwise difficult to perceive (Crooks et al., 2004).

There are visible differences between the LR-NES of proteins from Arabidopsis and
those from other organisms (Figure 4.1). The conservation of the four hydrophobic
residues, mainly leucines, of a typical LR-NES is more evident in the sequences
of organisms like yeast and humans than in the sequences from Arabidopsis. It
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is also noteworthy that the spacing and the amino acid residues that are found
between the hydrophobic residues differ between these two groups of sequences.
For example, the pattern:

φ-x2-3-φ-x2-φ-x-φ

with (2-3), 2 and 1 amino acid residues between the hydrophobic residues (φ), can
be noted in Figure 4.1 B, but not in the sequences from Arabidopsis (Figure 4.1A).
On the other hand, a definite preference for glutamate, aspartate and serine
residues is observed in LR-NES positions not occupied by hydrophobic residues
in both group of sequences, which is in agreement with previous studies (la Cour
et al., 2004; Kosugi et al., 2008). Additionally, asparagine and glutamine are also
present in the Arabidopsis proteins at the spacing positions. Two recent publi-
cations describe the crystal structure of a the complex between Exportin 1 and
an NES cargo (the human protein Snurportin, SNUPN1 or SNP1) (Dong et al.,
2009a,b; Monecke et al., 2009). SPN1 is a nuclear import adapter for cytoplasmi-
cally assembled spliceosomal uridine-rich small nuclear ribonucleoprotein particles
(UsnRNPs). The protein is recognized by CRM1 via two distinct NES epitopes.
Epitope I corresponds to the consensus LR-NES motif whereas the second epi-
tope comprises a long patch of basic residues unrelated to the LR-NESs (Paraskeva
et al., 1999; Dong et al., 2009a).
In the determined structures, the solvent accessible face of the LR-NES helix is
composed of polar residues (Glu 2, Glu 3, Ser 5, Gln 6 and Ser 10 in the case of
SPN1). Besides, it was determined that the acidic NESs side chains Glu 2 and
Glu 3 make electrostatic contacts with the basic Exportin-1 side chains Lys 560
and Lys 522 that flank the hydrophobic groove (Dong et al., 2009a). Hence, one
side of the LR-NES is exposed to solvent, which explains the presence of polar
residues between the hydrophobic positions, whereas the basic surface that flanks
the N-terminal half of the exportin-1 groove explains the preference for acidic and
electronegative residues.
The differences observed between the LR-NESs from Arabidopsis and from other
eukaryotes could explain why the current tool (la Cour et al., 2004) is not useful to
identify LR-NESs in proteins from plants (i.e. Arabidopsis). It highlights also the
importance of developing species-specific or kingdom-specific prediction systems.

Additional features of LR-NESs of proteins from Arabidopsis were analyzed by
using qualitative and quantitative yeast two-hybrid assays. First, it is noticeable
that the results from the qualitative and quantitative assays are in accordance
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since the intensity in the blue color in the qualitative assays is correspondent with
the value of the activity of β-galactosidase expressed in Miller units (Figures 4.16
and 4.18). That means that the darker and lighter blue yeast spots in the qualita-
tive assay correspond to the higher and lower values in activity in the quantitative
assay, respectively.

The experiments carried out with the protein PAB7 of Arabidopsis confirmed
the importance of polar and acidic amino acid residues located between the hy-
drophobic residues of the LR-NES. The modifications in the LR-NES of PAB7
(Figure 4.15) were directed to transform a weak NES into a strong one (like
that found in PAB4, PAB2 and PAB8 proteins). In fact, the results shown in
Figure 4.16 indicate that the interaction between the LR-NES-containing protein
and the receptor XPO1a was favoured when polar residues were placed instead
of non-polar (for instance: G to Q in position 602 or G to S in 605), charged
acidic residues instead of polar (S to E in 601) or a basic charged residue was
changed (K to N in 609). The increase in XPO1a interaction activity was even
higher when all the residues were changed simultaneously in comparison to indi-
vidual modifications: in Figure 4.16, the XPO1a binding activity of PAB7:EQSN
was around three times higher than the activity of the PAB7 wild type protein.
Similar effects have been also reported by Dong et al. (2009a), where mutation of
electronegative residues Glu 2, Glu 3 and Ser 11 in the LR-NES helix of the pro-
tein SPN1 decreased the interaction with Exportin 1. Furthermore, the quality of
exportin-binding and the kinetics of intracellular transport have been also shown
to be affected by the hydrophilic spacing amino acid residues in some LR-NES
(Heger et al., 2001; Engelsma et al., 2004; Geisberger et al., 2009). Taken together,
these results suggest a role for polar contacts at the interface of the LR-NES and
exportin receptor interaction and explain why the protein PAB7 of Arabidopsis
exhibited a weak interaction with the receptor XPO1a.

The influence of the spacing residues was also observed in the experiments carried
out with the proteins CID 11 and CID 12. The LR-NES from CID 12 con-
tains a histidine instead of the glutamine after the first leucine (see alignment in
Figure 4.17). This could explain partially that CID 12 showed a weaker XPO1a
interaction activity as compared to CID 11. This explanation is only partially
true because if that were the only reason, the XPO1a interaction activity of CID
11 containing the LR-NES of CID 12 would be as low as the one of CID 12. This
was not the case (Figure 4.18, “CID 11 NES CID 12” compared to “CID 11” and
“CID 12”). These findings can be interpreted as follows: the LR-NES of CID 12
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is weaker than the one form CID 11 possibly due to the presence of histidine in
the LR-NES of CID 12, but there is an additional characteristic of CID 12 that
makes the XPO1a interaction activity even weaker. The chimeric protein “CID
12-11 NES CID 12” showed a similar XPO1a interaction activity as compared to
“CID 11 NES CID 12”, which is in agreement with the previous statement and
eliminates the possibility that the N-terminal region of CID 12 is an “LR-NES
activity inhibitory region”. The region containing the two RRMs as well as the
PAM2 motif are practically identical in the two proteins, hence it could not be a
plausible reason for the different XPO1a interaction activities of CID 11 and CID
12. It is noticeable, however, that the C-terminal region is needed for an optimal
activity, since the XPO1a interaction activity of CID 11 without the C-terminal
is lower as compared to the full-length protein (Figure 4.18, “CID 11 minus C
end” compared to “CID 11”). Also, the high interaction activity of CID 11 is
maintained also with the C-terminal region of CID 12 (Figure 4.18, “CID 11-12
(II)” compared to “CID 11”).

NES NES

RRMs RRMs

PAM2

PAM2

Figure 5.1: Secondary structure prediction for the proteins CID 11 and CID 12
The secondary structure of proteins CID 11 and CID 12 was predicted with SSPRED at
http://linux1.softberry.com/. The predicted secondary structure elements are shown above
the amino acid sequences as a for α-helix, b for β-sheet or any letter for coiled regions. The re-
gions in the amino acid sequence corresponding to the RNA recognition motifs (RRMs), nuclear
export signal (NES) and PABP interaction motif 2 (PAM2) are highlighted in green, red and
blue color, respectively. The region of the protein CID 11 highlighted in orange corresponds to
a predicted α-helix that is not predicted for CID 12. Similarly, the proline residues postulated
to be the reason for the absence of the α-helix in CID 12 are shown with orange arrows.

http://linux1.softberry.com/
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This analysis restricts the possible “inhibitory characteristic” of CID 12 to a region
comprised between the end of the PAM2 motif and the beginning of the first RRM.
This statement is consistent with the decrease in activity observed in the chimeric
protein “CID 11-12 NES CID 11” compared to “CID 11”. This chimeric protein
contains the N-terminal region of CID 11, including its LR-NES (a strong NES)
fused to the region of CID 12 after the LR-NES. Sequence and structural analyses
of LR-NES-containing proteins suggested that the signal needs to be accessible
and flexible (la Cour et al., 2004; Dong et al., 2009a). So, one possibility is that in
the context of the protein, the LR-NES is not exposed and because of that is not
available to interact with XPO1a. To explore this aspect further, the amino acid
sequences of CID 11 and CID 12 were analysed with the program SSPRED for sec-
ondary structure prediction from http://linux1.softberry.com/ (Figure 5.1).
The helical structure predicted for both LR-NES regions is consistent with pre-
vious reports (la Cour et al., 2004; Dong et al., 2009a). Specially the structural
analysis in Dong et al. (2009a) shows that in the case of SPN1, the LR-NES re-
gion adopts a helix conformation. Additionally, the RRMs exhibit a pattern of
helices and sheets connected by short coiled regions also in agreement with other
RNA binding proteins containing that motif. It is interesting that the amino acid
residues comprised between the end of the PAM2 motif and the beginning of the
first RRM (dashed region in Figure 5.1) presents some differences in the predicted
secondary structures for both proteins. On one side, CID 11 presents an addi-
tional predicted helix that is not predicted in CID 12. On the other side, CID
12 has two prolines in that region that could be the reason for the adoption of a
coiled structure in this area instead of a helix. This observation could have conse-
quences in the tertiary structure of CID 12 that limit the exposure of the LR-NES.
Thus, the CID 12 LR-NES could be additionally buried in the three-dimensional
structure of the protein.

These results indicate that, in addition to the identity of the spacing amino acid
residues in the LR-NES region, residues flanking the NES apparently contribute
to the interaction, as has been indicated by some authors (Paraskeva et al., 1999;
Petosa et al., 2004; Dong et al., 2009a). The NES needs an appropriate pro-
tein context to adopt a conformation required for high-affinity exportin receptor
binding .

http://linux1.softberry.com/
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5.2 Development of the prediction tool for LR-NESs

The first step of the development process was the extraction or calculation of the
features from the initial amino acid sequences data. Although the most intuitive
characteristic to consider could be the amino acid order i.e. primary sequence, in
the case of LR-NESs there were some additional points to be taken into account.
First, LR-NESs are short sequences (7-12 amino acid residues, depending of the
number of spacing residues) where the most outstanding residue uses to be leucine.
Leucine is the most abundant amino acid in proteins (9.97 % in H. sapiens, 9.52 %
in A. thaliana, 9.58 % in S. cerevisiae, (Pruess et al., 2003; Schneider and Fechner,
2004) and additionally it is present in many hydrophobic signals in proteins that
are not related to nuclear export. Thus an indication was needed that positive
signals “NES” could be distinguished from negative “nonNES”. The pair-wise
alignment of all the amino acid sequences (Figure 4.2) showed that there was
more similarity among the NES sequences than among non related sequences
(nonNES). Hence, the sequence of the NESs could be used as one parameter to
distinguish between “NES” and “nonNES” samples.
One possible way to express the amino acid order in a numerical feature could be
the comparison of every sequence with some of the LR-NES consensus sequences
available (Bogerd et al., 1996; Kosugi et al., 2008), which can generate some
similarity measure. However, it has been well documented that the consensus
sequences alone are not an optimal approach to detect NESs. Furthermore, as
was discussed before, the NESs from Arabidopsis showed differences compared
to the NESs from other organisms and the available consensus sequences did not
include sequences of plant NESs. Instead of that, a profile HMM was used. Profile
HMMs turn a multiple sequence alignment into a position-specific scoring system
for searching for remotely homologous sequences (Eddy, 1998). Furthermore,
they have a solid theoretical background and have been widely used alone or in
combination with other techniques in many bioinformatics applications.

On the other hand, the use of amino acid index values (aaindex) as a source of
features is a simple way to reflect the possible influence of some physical and
chemical properties of the amino acid residues on the characteristics of an NES.
In addition, the use of such values is well documented in the literature in a broad
range of bioinformatics applications, which include sequence comparisons (Tomii
and Kanehisa, 1996), prediction of structure and function of proteins (Bu et al.,
1999; Lee et al., 2009b), prediction of specific binding sites (Tung and Ho, 2007),
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identification of peptides in proteomic studies (Sanders et al., 2007) and prediction
of ubiquitylation sites (Tung and Ho, 2008b).

After the feature calculation, the NES classification became a high-dimensional
problem where the number of features (that is the dimension of the feature vec-
tor x) was larger than the number of samples N . In that situation, high variance
and overfitting are usually the major concern (Hastie et al., 2009). To reduce
the dimensionality of the problem, an unsupervised filtering step was introduced
before the training phase. Since the behaviour of a classification algorithm under
variable dimensions for a specific problem is not predictable and depends on the
characteristics of the data, it was necessary to evaluate the effect of reducing the
number of predictors on the performance of each algorithm before the training
phase (Figure 4.4).

The use of a combined scheme for the training-testing phase (repeated hold-
out and resampling by 10-fold CV, LOOCV and bootstrap, only in the training
set) yielded more realistic measures than those obtained using only resampling
(Figure 4.6). The high accuracy values obtained when using only resampling,
especially in the case of SVM and RF, might be an indicative of overfitting. This
behaviour does not depend on the resampling method used since similar results
were obtained with the three resampling schemes applied. 10-fold CV, LOOCV
and .632+ bootstrap have been suggested as resampling methods when dealing
with small datasets in classifiers like kNN or classification trees (Molinaro et al.,
2005; Kim, 2009). Besides that, the .632+ bootstrap estimator is in general known
to have better performance for small samples because of its small variance (Efron,
1983; Efron and Tibshirani, 1997). That was observed also here in the evalua-
tion of the effect of reducing the number of features on the classification error
(Figure 4.4).
In the case of RF, there is no explicit need for resampling or a separate test set
to get an unbiased estimate of the test set error. It is estimated internally with
the out of bag (oob) error estimate (Breiman, 2001). However, when estimating
the test error using both methods (the combined approach and the oob estimate),
only slightly differences in the results were obtained. Because of that, the com-
bined scheme was used with all the classifiers to have the same number of results
in the three cases.

In this study, three assessment parameters were evaluated to select the “best”
classifier: performance metrics based on the confusion matrix obtained for every
test set, correlation measures, and receiver operating characteristics (ROC) curves.
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A classifier with high specificity was preferred over one with high sensitivity. In
other words, the focus was to obtain few false positives (in Equations 3.11 and
3.12, specificity and precision are higher if the false positives (FP) decrease) even
at the cost of an increased number of false negatives (in Equation 3.9, sensitivity
is lower if the false negatives (FN) increase). For the intended application of the
classifier to predict potential NES-containing proteins in the complete proteome
of Arabidopsis, it was preferable to have fewer predictions but with a low number
of false positives, which would bind effort within the subsequent experimental
analysis.

Although accuracy is not an appropriate measure in the event of imbalanced
data, in this case it was taken as a preliminary indicative of performance since
the data set was only slightly imbalanced. The accuracy values obtained for the
three classifiers (ranging from around 75% in the case of kNN to around 89% in
the case of RF, Figure 4.7), are comparable to the accuracy values obtained for
some classifiers designed to predict protein targeting signals (Schneider and Fech-
ner, 2004). Since Matthews correlation coefficient (MCC) and F-score are much
better indicators of the performance of a classifier than sole accuracy (specially
under imbalanced scenarios), these two measures were also included. In general,
a correlation measure reflects the degree of linear relationship between two vari-
ables. The MCC is in essence a correlation coefficient between the observed and
predicted binary classifications whereas the F-measure correlates precision and re-
call. While there is no perfect way of describing the confusion matrix of true and
false positives and negatives by a single number, the MCC is generally regarded
as being one of the best such measures. Although there is not a threshold value to
be considered as “good” or “bad” when developing a classifier, it is accepted that
above 0, which means a random prediction, the higher the value the more accu-
rate the classifier. Some typical MCC values reported for classification problems
are around 0.3-0.4 (Duan et al., 2008; Liu et al., 2009), 0.5-0.6 (Caragea et al.,
2007; Hawkins et al., 2007; Ba et al., 2009), 0.7-0.8 (Garg et al., 2005; Kumar and
Raghava, 2009) and for F-score 0.66 (Caragea et al., 2007). The values obtained
in this work for MCC were between 0.55 for k-NN and 0.77 for RF, similarly for
the F-score values higher than 0.7 were obtained for the three classifiers (Table
4.1). These values might be considered as “high” when compared to other studies
and can be taken as an additional indicative of the classifiers performance.

With any classifier, it is possible to make a trade-off between sensitivity and
specificity. Hence, it is much more informative to compare the receiver operating



5.2. Development of the prediction tool for LR-NESs 107

characteristic (ROC) curves, which show the trade-off between true positive and
false positive predictions over the entire range of possible values, than to compare
the performance of the classifiers for a particular choice of the trade-off, which cor-
responds to a specific point on the ROC curve (Fawcett, 2004). Furthermore, the
construction of ROC curves offers an extra comparison parameter: the area under
the ROC curve (AUC). The AUC is an effective means of comparing the overall
prediction performance of different methods because it provides a single measure
of overall threshold-independent accuracy. For the AUC, a value higher than 0.5
indicates better performance than random. In this case the three classifiers were
quite superior with values between 0.8 and 0.9 (Figure 4.8). The differences be-
tween the three classifiers observed in the ROCs (Figure 4.8) were less obvious
than when comparing the values of the performance metrics (Figure 4.7). Never-
theless, the superiority of the RF classifier was also evident when comparing the
ROCs and was confirmed in the comparative performance using the ROC convex
hull (ROOCH) method (Figure 4.9).
In the ROOCH method, the classifiers positioned in the left side of the ROC
space represent “conservative” classifiers i.e., it is more important to preserve a
low false positive rate (FPR) although the true positive rate (TPR) could be not
so high (Provost and Fawcett, 2001). That was the case with the RF classifier.
On the other hand, classifiers positioned in the right part of the ROC space are
considered more “liberal” approaches i.e., it is more important not to leave out
any potentially positive sample although the FPR could be also high (Provost and
Fawcett, 2001). That was the case with the k-NN classifier, which is consistent
with the high sensitivity results obtained for this classifier but it also showed the
highest FPR values. The SVM classifier showed a performance close to RF as a
whole, which makes this classifier also a good alternative for the problem of NES
classification.
The purpose of the evaluation and comparison of the three trained classifiers was
to choose one of them for predictions of NES on new protein sequences i.e., not
included in the training. Thus, as a result of the evaluation phase the RF classifier
was selected as the one with the best performance and hence, it was used for the
actual prediction.
Random Forest is an ensemble learning algorithm and is known to be more robust
against noise than many no-nensemble learning models. This algorithm has been
also successfully used in other recent classification applications (Han et al., 2009;
Lee et al., 2009a; Sikić et al., 2009; Liu et al., 2009).
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5.3 Analysis of the predicted Arabidopsis LR-NES-
containing proteins

In 2000, the entire genome sequence of Arabidopsis was determined and based
on sequence conservation with known DNA binding domains Riechmann et al.
(2000) reported that around 1.500 genes encode transcription factors (TFs). More
recent analyses have recognized approximately 2.000 TF genes in the Arabidopsis
genome (Davuluri et al., 2003; Iida et al., 2005; Guo et al., 2005; Riaño-Pachón
et al., 2007). Based on these and other comparative studies, Mitsuda and Ohme-
Takagi (2009) suggested that transcriptional regulation could play more impor-
tant roles in plants than in animals. Since transcriptional regulation is the first
step of gene expression and could affect various “-omes”, namely the proteome,
metabolome and phenome, the functional analysis of TFs is important and nec-
essary for “omics” studies and for the elucidation of whole functional networks in
plants. Taking these considerations in mind, the selection of the NES-containing
proteins that were predicted in this work to be tested in the laboratory was tar-
geted towards TFs. Protein sequences associated with the GOs transcription,
transcriptional activity, DNA or RNA binding and DNA or RNA metabolism
were pre-selected from the total group of the predicted protein sequences (Fig-
ures 4.12 and 4.13).
Since TFs play their role in a nuclear process (transcription), it was thought that
they were just imported into the nucleus after translation in cytoplasm. However,
an important concept that has emerged is the dynamic nature of transport be-
tween the nucleus and the cytoplasm, also for TFs. This concept is particularly
relevant for understanding how transcription is coordinated with other cellular
processes. Cells process a great deal of information from both intracellular and
extracellular sensors. This information is conveyed to the nucleus and used, ul-
timately, to determine the rate of transcription of specific genes. Shuttling of
TFs between the nucleus and the cytoplasm and the regulation of nuclear import
and nuclear export provides multiple mechanisms to control the actual nuclear
abundance of TFs (Figure 5.2).

The prediction of NESs in many TFs and proteins associated with DNA/RNA
metabolism and the experimental verification of the nuclear export activity in a
group of these proteins gives a clear insight that nucleo-cytoplasmic partitioning
is involved in the regulation of TFs in Arabidopsis. The shuttling of TFs and other
proteins whose main activity is nuclear has been widely reported, being a notable
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Figure 5.2: Nucleo-cytoplasmic shuttling of transcription factors
Schematic illustration of the net nuclear abundance of transcription factors. In all the cells A,
the net nuclear abundance of transcription factors is determined by a balance between nuclear
import and nuclear export processes. This steady state distribution can be altered by either
increasing the rate of nuclear import and decreasing the rate of nuclear export, as shown in B
or by decreasing the rate of nuclear import and increasing the rate of nuclear export, as shown
in C. [TF]C, transcription factor concentration in the cytoplasm; [TF]N, transcription factor
concentration in the nucleus.

example the case of many tumour suppressor proteins and cell-cycle regulators.
Also in plants, some proteins have been reported to be nucleo-cytoplasmic shut-
tling proteins. For instance, the tomato heat stress TF HsfA2, a shuttling protein
with dominant cytoplasmic localization as a result of a nuclear import combined
with an efficient export (Heerklotz et al., 2001).

In the present study, from eleven proteins tested and showing a positive interaction
with XPO1a in yeast two-hybrid assays, nine correspond to TFs and the other two
are proteins related to DNA metabolism. Four of those TFs, AT1G09530, PIF3
(phytocrome interacting factor 3, also called bHLH008); AT2G43010, PIF4 (phy-
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tocrome interacting factor 4, also called bHLH009) ; AT5G67110, ALC (alcatraz)
and AT5G53210, SPCH (speechless) belong to the family of basic-helix-loop-helix
(bHLH) TFs in Arabidopsis. The first three are grouped in the subfamily 15 of
the hHLH family, whereas SPCH is located in the subfamily 3 (Toledo-Ortiz et al.,
2003).
The Arabidopsis genome codes for more than 150 putative bHLH class TFs (Toledo-
Ortiz et al., 2003; Bailey et al., 2003). Interestingly all the bHLH proteins involved
in light signalling belong to a single evolutionarily related subclass: the subfamily
15 (Toledo-Ortiz et al., 2003; Bailey et al., 2003; Heim et al., 2003). These bHLH
proteins are known as PIF (phytochrome interacting factor) or PIL (phytochrome
interacting factor-like) (Yamashino et al., 2003; Khanna et al., 2004) (Figure 5.3).
These bHLH class proteins have closely related bHLH domains (Castillon et al.,
2007), and most of them carry a small conserved N-terminal domain called active
phytochrome binding (APB), which is necessary and sufficient for mediating the
interaction with phyB Pfr (maximally absorbing far red form, considered to be
the active form for most phytochrome responses) (Khanna et al., 2004; Duek and
Fankhauser, 2005) (Figure 5.3).
PIF3 was the first bHLH protein to be identified as a phytochrome-interacting
protein (Ni et al., 1998), it binds to phytochromes A and B (phyA and phyB)
in a light-dependent manner (Zhu et al., 2000; Khanna et al., 2004). Activation
of phytochrome results in PIF3 phosphorylation (Al-Sady et al., 2006) and sub-
sequent degradation (Bauer et al., 2004; Park et al., 2004) in a mechanism that
appears to be common to this class of signaling protein (Lorrain et al., 2008; Shen
et al., 2008). Although there seems to be broad consensus on what is known about
the molecular events after phytochrome interaction with PIF3, there is less cer-
tainty about how PIF3 is functioning in photomorphogenesis. This has led to the
hypothesis that PIF3 has a dual function, acting early and positively as a tran-
scription factor, but acting later to regulate phyB abundance and repress light
induced inhibition of hypocotyl elongation (Monte et al., 2007; Al-Sady et al.,
2008). More recently, PIF3, together with PIF1 were proposed to be negative
regulators that function to integrate light and circadian control in the regulation
of chloroplast development (Stephenson et al., 2009). PIF4 interacts preferentially
with phyB and functions negatively in the phyB-mediated inhibition of hypocotyl
elongation (Huq, 2006) (Figure 5.3). PhyB and PIF4 both display positive roles
in regulating stomatal development in response to light quantity (Casson et al.,
2009) and and it has been suggested that PIF4 also plays a role in the circadian
clock (Castillon et al., 2007). .
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Figure 5.3: The subfamily 15 of bHLH transcription factors in Arabidopsis
A nuclear export signal (NES) was predicted and the nuclear export activity experimentally
validated for three transcription factors (TFs) belonging to the subfamily 15 of the bHLH TFs
family in Arabidopsis. The complete subfamily 15 is presented as a phylogenetic tree (Duek and
Fankhauser, 2005), and the three TFs predicted as containing NES and tested in this work are
highlighted. The central panel shows the domain distribution for those proteins including the
predicted position for the NESs, the interaction with the phytochromes A (phyA) and B (phyB)
is also indicated, as well as the role of the proteins in signalization. The size of the symbols
phyA and phyB indicates a weak or strong interaction. The domain APB is a motif necessary
and sufficient for binding to the biologically active Pfr form of phyB (Khanna et al., 2004). The
figure was adapted from Figure 2 in Duek and Fankhauser (2005).

The third member of the bHLH TF family whose NES was predicted and validated
is alcatraz (ALC). This TF also belongs to the subfamily 15 of the bHLH TFs
in Arabidopsis but in contrast to the PIFs, no interaction with the phytochomes
has been determined and it does not contain an ABP domain (Figure 5.3). The
function of ALC has been associated to cell separation during fruit dehiscence
(Rajani and Sundaresan, 2001). Similar to PIF3 and PIF4, ALC showed a weak
XPO1a interaction activity (Figure 4.14). In ALC the predicted location for the
NES is not at the end of the bHLH domain, as is the case for PIF3 and PIF4, but
in the C-terminal region of the protein (Figure 5.3).
The presence of a functional NES in these three bHLH TFs potentially enable them
to be exported from the nucleus which could have implications for the regulation
of their nuclear functions. Nucleo-cytoplasmic shuttling has been also reported
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for TFs of the bHLH family in other organisms, for example, the aryl hydrocarbon
receptor (AhR) (Kanno et al., 2007) and the protein BMAL1 (Kwon et al., 2006).

The fourth member of the bHLH TF family with nuclear export activity according
to this study is SPCH (AT5G53210, speechless), which belongs specifically to
the subfamily 3 of TFs in Arabidopsis (Toledo-Ortiz et al., 2003). SPCH is a
stomatal regulator that contains a unique MAPK phosphorylation target domain
not present even in other TFs closely related that are also involved in stomatal
development control (Lampard et al., 2008). The MAPK phosphorylation domain
mediates repression of SPCH, therefore it has been proposed as the effector to
explain the use of a general mechanism, the MAPKs phosphorylation, in a specific
biological event, the stomatal development in general (Lampard et al., 2008) and
also in response to fluctuating environmental conditions (Lampard, 2009). In the
case of SPCH, the predicted NES is located in the C-terminal end of the protein,
downstream from the MAPK phosphorylation target domain. In this putative
position it is highly probable that the NES is freely exposed for the interaction
with the receptor XPO1.

Another TF for which an NES was predicted and verified in this work is BRZ1
(AT1G75080, brassinazole-resistant 1 (Figure 4.14). This protein has been re-
cently reported to shuttle between nucleus and cytoplasm in Arabidopsis (Gam-
pala et al., 2007; Ryu et al., 2007) and also in rice (Bai et al., 2007), being an
example to demonstrate the potential of the nucleo-cytoplasmic partitioning as a
regulatory mechanism in plants (Merkle, 2003, 2008). It has been shown that the
nucleo-cytoplasmic localization and phosphorylation status of BRZ1 are regulated
in a brassinosteroid(BR)-dependent manner (Ryu et al., 2007). The nuclear export
of BRZ1 has been associated with phosphorylation and interaction of the phos-
phorylated forms with 14-3-3 proteins which promote the nuclear export and/or
cytosolic retention of BZR1 (Gampala et al., 2007; Ryu et al., 2007). However, the
presence of a functional NES (which was predicted in this study in the C-terminal
region of the protein) offers the alternative that BRZ1 can be exported from the
nucleus by its own, which deserves further analysis.

The homeodomain (HD) TFWOX13 (AT4G35550,wuschel-related homeobox 13)
showed a strong interaction with the receptor XPO1a in this study (Figure 4.14).
The members of the HD family of TF are key regulators implicated in the deter-
mination of cell fate and cell differentiation in both plants and animals, however
WOX13 belongs to a special class present only in plants. In Angiosperms, a gene
called wuschel (WUS) was isolated from many different species. WUS was the
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first identified member of the wuschel-related homeobox (WOX) subfamily that
is only found in plants (Haecker et al., 2004; Nardmann and Werr, 2006). A re-
cent study (Deveaux et al., 2008) supports the existence of a WOX13 orthologous
group (WOX13 OG), containing genes from many different members of the plant
kingdom. The function of the WOX13OG Arabidopsis members was linked to
organ initiation and development, most likely by preventing premature differenti-
ation as shown for other WOX proteins (Deveaux et al., 2008). Figure 5.4 shows
the results presented in Deveaux et al. (2008) concerning the domain organization
of WOX13, together with the position of the predicted NES of the present study,
located at the end of the protein. Also in the case of this TF, the nuclear export
activity could implicate that nucleo-cytoplasmic partitioning plays a role in its
regulatory functions.

AT4G35550-AtWOX13

Homeodomain WOX 

WOX13 MOG

YxDpl WOX13 OG

ESExE WOX13 OG

NES
predicted position

Figure 5.4: The WOX13 protein from Arabidopsis
Motif composition of the WOX13 protein from Arabidopsis as presented in Deveaux et al. (2008),
including the predicted position of the NES (this study). The motifs are denoted by colored
boxes on a bar representing the length of the protein (268 amino acid residues), the position of
the predicted NES is indicated in red (position 232). MOG: Main ortologue group.

From the proteins experimentally tested for nuclear export activity in this study,
the TF E2F3 (AT2G36010, E2F transcription factor 3) showed the strongest ac-
tivity (Figure 4.14). It has been shown that the basic regulatory circuits gov-
erning cell cycle progression in animal cells are remarkably conserved in higher
plants. In particular, plant cells possess all the key components of the cyclin
D/retinoblastoma(RBR)/E2F pathway, which in animal cells is a major regulator
of cell proliferation and is part of a critical checkpoint controlling the progression
from G1 to S phase of the cell cycle (Stals and Inzé, 2001). The Arabidopsis E2F
TF family is composed of eight members, six E2Fs (E2FA to E2FF) and two DPs
(DPA and DPB) Mariconti et al. (2002). This family can be divided into two
groups that differ both structurally and functionally. E2FA to E2FC possess all
the features of typical E2Fs, including a DNA-binding domain, a marked box, a
DP heterodimerization domain, a transactivation domain and an RBR-binding
region (Figure 5.5). In the case of AtE2F3/AtE2FA, Kosugi and Ohashi (2002)



114 Chapter 5. Discussion

reported a non exclusive nuclear localization for this protein, therefore, the nu-
clear export through an NES in AtE2F3/AtE2FA was proposed as one of the
mechanisms causing retention of the protein in the cytoplasm.
In the present work, two NESs were predicted for AtE2F3/AtE2FA, one of them
would be located inside the DNA binding motif, which functions also as dimeriza-
tion motif, and the other one after that motif presenting a partial overlap with the
DB binding domain (Figure 5.5). The sequence position of these two NESs would
be consistent with the fact that when AtE2F3/AtE2FA binds to DB, it localizes
mainly in nucleus Kosugi and Ohashi (2002) due to the blockade of one of the
NESs. The presence of two NESs in AtE2F3/AtE2FA as well as the sequence,
although not the localization, are similar to the NESs in the TF E2F4 from human
(Gaubatz et al., 2001). The human E2F4 shuttles between the nucleus and the
cytoplasm and has two NESs, one located in the N-terminal region, in front of the
DNA binding domain and the other inside that domain (Gaubatz et al., 2001).
AtE2F3/AtE2FA has been implicated in cell division and plant development by
assuming a bimodal function in balancing the expression of both positive and
negative regulators involved in cell division and growth (He et al., 2004; de Jager
et al., 2009; Sozzani et al., 2010). Consistent with these functions, it is expected
that AtE2F3/AtE2FA shuttles between the nucleus and the cytoplasm. In that di-
rection, the nuclear export activity of AtE2F3/AtE2FA was probed in this work.
It remains to be established if the position of the NES(s) in AtE2F3/AtE2FA
corresponds to the predicted ones.

Position of the predicted NESs E2F family domain, DNA binding NLS

Marked box pRBR binding DP dimerization domain

Figure 5.5: Predicted localization of two NESs in AtE2F3
Domain distribution of the protein E2F3 from Arabidopsis (AtE2F3). Each domain is displayed
in a color box, which is explained below the sequence. The positions of the two NESs predicted
in this work are also shown.

The TF ABF1 (AT1G49720, absidic acid responsive element binding factor1),
showed a strong interaction with XPO1a (Figure 4.14). This protein, together
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with other ABFs are catalogued as absidic acid (ABA)/stress-inducible TFs be-
longing to a distinct subfamily of basic leucine zipper (bZIP) class TFs (Choi
et al., 2000; Finkelstein et al., 2002). ABFs bind to a cis-acting promotor element
designated as the ABA-responsive element (ABRE), that is a subset of the G-box
sequence. ABF1 has been proposed as a possible redundant mediator of seed or
seedling ABA, together with ABF3 (Finkelstein et al., 2005).
Two NESs were predicted in ABF1 (positions 135-142 and 340-347, being the
length of the protein 392 amino acid residues), the NES close to the C-terminal
overlaps with the position of the four heptad repeats of leucine, a motif that
identifies ABF1 as a bZIP protein (Landschulz et al., 1988). Therefore, the ex-
perimental definition of the position of the NES in ABF1 could decide whether
or not the second predicted NES corresponds to a “false positive” masked with
another motif rich in leucine residues but not related with nuclear export. On the
other hand, if the two predicted NESs are functional, this could be an interesting
example of regulation and/or promotion of the nuclear export activity by coop-
erative binding of multiple NESs, as has been suggested by some authors (Dong
et al., 2009a).

The group of TFs showing nuclear export activity in this study includes also the
TF TOE2 (AT5G60120, target of early activation tagged (EAT) 2). This TF
belongs to the Apetala 2-like (AP2)-ethylene responsive element binding protein
(EREBP) family of TFs, which is present only in plants (Mitsuda and Ohme-
Takagi, 2009). The TOE2 gene is one of the targets of the microRNA miR172
(Aukerman and Sakai, 2003), and together with other factors (like TOE1) is in-
volved in the timing of flowering in Arabidopsis. To date, there is no evidence of
nuclear export for this TF, but the verification of the NES predicted could be an
indicative of nucleo-cytoplasmic shuttling which should be investigated further.

In addition to TFs, two proteins related with DNA metabolism that were pre-
dicted as NES-containing showed also nuclear export activity. The protein RHL2
(AT5G02820, root hairless 2) interacted strongly with XPO1a in the yeast two-
hybrid assay (Figure 4.14). Depending on the genetic screening, this gene has lead
to the identification of the proteins root hairless 2 (RHL2) (Schneider et al., 1997),
AtSPO11-3 (Hartung and Puchta, 2001) and brassinosteroid insensitive 5 (BIN5)
(Yin et al., 2002). The Spo11 protein is an eukaryotic homologue of the archaeal
DNA topoisomerase VIA subunit (topo VIA). In archaea it is involved, together
with its B subunit (topo VIB), in DNA replication. However, most eukaryotes,
including yeasts, insects and vertebrates have a single gene encoding Spo11/topo
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VIA and contain no homologues for topo VIB. In these organisms, Spo11 medi-
ates DNA double-strand breaks that initiate meiotic recombination. Plants are
the exception to this rule, as many plant genomes, including Arabidopsis and
rice, code for three Spo11 homologues (Grelon et al., 2001; Hartung and Puchta,
2001, 2000). The three Spo11 homologues in Arabidopsis have two very discrete
functions. Both AtSPO11-1 and AtSPO11-2 play key roles in meiotic recombi-
nation (Grelon et al., 2001; Stacey et al., 2006), while AtSPO11-3/RHL2/BIN5,
is involved in DNA endoreduplication (Hartung et al., 2002; Sugimoto-Shirasu
et al., 2002; Corbett and Berger, 2003), a common process in eukaryotes that
involves DNA amplification without corresponding cell divisions (Edgar and Orr-
Weaver, 2001). A classical NLS was functionally identified at the N-terminal of
AtSPO11-3/RHL2/BIN5, which was in agreement with a diffuse, but not exclu-
sive, nuclear localization of the protein (Sugimoto-Shirasu et al., 2002). In that
sense, a non-exclusive nuclear localization of this protein could be explained by
the nuclear export activity due to the predicted NES. As in the other proteins,
the localization of the NES in the protein remains to be confirmed.

The protein PSF (AT1G80190, partner of SLD five 1) is to date, an uncharac-
terized protein identified in a genome-wide analysis of the core DNA replication
machinery in plants as one of the components of the GINS complex (Shultz et al.,
2007). In eukaryotes, the GINS complex (the name is an acronym for go-ichi-ni-
san, the Japanese for 5-1-2-3, after the four subunits of the complex Sld5, Psf1,
Psf2 and Psf3) was recently identified as a novel factor essential for both the
initiation and elongation stages of the replication process (MacNeill, 2010). The
predicted NES is located in the middle of the protein (amino acid 103-112 from 201
residues) in a region predicted to adopt a helix conformation. Since the charac-
terization of this protein is still at the beginning, its potential nucleo-cytoplasmic
partitioning merits to be investigated further.
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Conclusions and outlook

The foremost contribution of this work is the development of an accurate tool for
predicting NESs in proteins of Arabidopsis thaliana based on a Random Forest
classifier. This conclusion is based on two facts. First, the results of the perfor-
mance assessment during the classifier selection procedure were very promising
(Section 4.1.4). Second, the experimental verification of the nuclear export ac-
tivity in a selected group from the total of predicted proteins confirmed that the
developed tool is accurate for the intended use: the detection of NESs in proteins
of Arabidopsis.

From the computational point of view, two major challenges were addressed: find-
ing the appropriate features to represent the NESs and dealing with a low number
of available samples. The first problem was managed with the combination of a
profile HMM and physicochemical properties expressed as amino acid index val-
ues. On the other hand, to deal with the limited availability of samples, a mixed
resampling approach was used for the training and testing. This approach has
turned out to be effective.
An important characteristic of the developed tool is that the Random Forest clas-
sifier was integrated into a pipeline where it is possible to adapt the probability
threshold value according to the application, which has important implications
because it allows to modify the trade-off between specificity and sensitivity. In
other words: for an application like the screening of a big set of protein sequences,
could be advisable to use an astringent threshold value i.e., the specificity is more
important. However, if the aim is to look for the possible position of an NES in
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a protein with known or suspected nuclear export activity, it would be better to
low the threshold value to gain more sensitivity.

From a biological perspective, the prediction of around 5000 A. thaliana proteins
that possibly contain NESs implies that approximately 18% of the total of pro-
teins of Arabidopsis could have an NES, which is an indicative of the potential
of the nucleo-cytoplasmic partitioning as a regulation mechanism in Arabidopsis.
Moreover, the experimental validation of the nuclear export activity in a group of
selected proteins, mainly transcription factors, corroborate such a potential.
Furthermore, this work addressed additional points concerning the nuclear ex-
port activity of some proteins of Arabidopsis. It was shown that although the
hydrophobic amino acid residues present in the NES are indispensable for the
nuclear export activity, the identity of the spacing residues is also important. Po-
lar and negatively charged residues produced a higher receptor binding activity
compared to neutral or positively charged. This observation has been reported in
other organisms but not in proteins of Arabidopsis. Similarly, the nuclear export
activity of some proteins (like CID 12 in A. thaliana) could possibly be modified
due to structural constrains of the regions close to the NES.

The results of this work raise new challenges for further investigation. The nu-
clear export activity detected in the proteins tested calls to be determined and
characterized in planta. Additionally, the experimental localization of the NESs
is necessary to determine if they are in accordance with the predicted positions.
On the other hand, in the the total set of proteins predicted as NES-containing
there are still many waiting to be tested. As soon as more proteins are experi-
mentally verified, the classifier could be re-trained using the new data to improve
the performace even more.
The developed prediction tool was directed to Arabidopsis proteins, however the
extension to other plants or related organisms is thinkable. To facilitate that, it
would be desirable to extend the usability of the tool. Since currently the predic-
tion tool is available for individual use only, one of the perspectives for the near
future is to make it available as a web application with both, a graphical interface
and an application server interface.



APPENDIX A

Oligonucleotide sequences

1 F GATGAGCGTGAGATGTGTGCAAGAACTATCTACTG AT1G32790
AT4G10610

2 R TCTTGCACACATCTCACGCTCATCTTCAGTCCT AT1G32790
AT4G10610

3 F GCTTCACGAGCTTCTCTCTAAGCTTAATCCTATGGCT AT1G32790
4 R CTTAGAGAGAAGCTCGTGAAGCTCTCTCATATCACGC AT1G32790
PAB7 F CCGTGTGGAAGCTAGAAAAAGCAGC AT2G36660
PAB7 R GCTTTTTCTAGCTTCCACACGGTTC AT2G36660
K 609 N R GAGCTCGAGTCAGTTAATCGAAACGCCAGCAATGCCAGA AT2G36660
G 605 S R GAGCTCGAGTCACTTAATCGAAACGGAAGCAATGCCAGA AT2G36660
G 602 Q F GTCTCAGATTGCTGGCGTTTCGA AT2G36660
G 602 Q R ACGCCAGCAATCTGAGACGCCAAGTAATCAG AT2G36660
S 601 E F TTGGCGGAGGGCATTGCTGGCGTT AT2G36660
S 601 E R AGCAATGCCCTCCGCCAAGTAATCAGAACG AT2G36660
EQSN F GAGCAGATTGCTTCCGTTTCGATTAACTGACTCGAG AT2G36660
EQSN R GTTAATCGAAACGGAAGCAATCTGCTCCGCCAAGTAATCAGAACG AT2G36660

Table A.1: Oligonucleotides (I)
Oligonucletides used to amplify the cDNA of the modified versions of the proteins CID 11
(At1g32790), CID 12(At4g10610) and PAB7(At2g36660) (Subsection 4.2.2, Table 4.3 and Fig-
ures 4.18, 4.15 and 4.16).
1 and 2 and amplify the cDNA of the C-terminal end of CID 11 and CID 12. 7 and 8 were
used in the overlap-extension PCR experiments to obtain the cDNA of the protein referred to
in Table 4.3 as CID 11 NES mut.
In the case of PAB7 wild type and mutated, the names of the oilgonucleotides correspond to
the same used in Figures 4.15 and 4.16.
The second column from the left gives the orientation of each oligonucleotide, F: forward and R:
reverse and the last column to the right gives the AGI code for the respective encoded protein.
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1 F ATCGAATTCATGACTATGCGATCATCTTCACCT AT5G41200
1 R GAGCTCGAGTTAACAAAAGCCTGCATAACCGTAACC AT5G41200
2 F ATCGAATTCATGAATTTCAACGGTTTTCTCGACGACGGT AT3G61150
2 R GAGCTCGAGTCAGGTGCTATCACAATGAAGAGCAGC AT3G61150
3 F ATCGAATTCATGCCTCTGTTTGAGCTTTTCAGGCTC AT1G09530
3 R GAGCTCGAGTCACGACGATCCACAAAACTGATCAG AT1G09530
4 F ATCGAATTCATGTCTAGGGAGGATTTTAGTGATACACTTCGAG AT5G54260
4 R GAGCTCGAGTTATCTTCTTAGAGCTCCATAGTTCCTTG AT5G54260
5 F ATCGAATTCATGGCGGATAAGAAGAAGCGAAAGCGATCA AT5G02820
5 R GAGCTCGAGTCAGAGCCAATCCTGCTGCTGCAGTTTCAG AT5G02820
6 F ATCGAATTCATGGAACACCAAGGTTGGAGTTTTGAGGAG AT2G43010
6 R GAGCTCGAGCTAGTGGTCCAAACGAGAACCGTCGGTG AT2G43010
7 F ATCGAATTCATGAGTGACAAAGACGAGTTTGCCGCAAAG AT1G26260
7 R GAGCTCGAGCTACGGCTCCACCTTCATGTCAGCTGT AT1G26260
8 F ATCGAATTCATGATGGAATGGGATAATCAGCTACAACCCA AT4G35550
8 R GAGCTCGAGTCAGCCTGACATGCCATAATCTTCAACATG AT4G35550
9 F ATCGAATTCATGGGGTCGTTGCAAATGCAAACAAGTC AT3G62420
9 R GAGCTCGAGTCAGCAATCAAACATATCAGCAGAAGCTCTG AT3G62420
10 F ATCGAATTCATGTTCGATATGACGCCGAAAAACTCCGA AT4G21750
10 R GAGCTCGAGTTAGGCTCCGTCGCAGGCCAGAGCG AT4G21750
11 F ATCGAATTCATGGATGTGCCAGAGGAGACGAGGCTTC AT5G46280
11 R GAGCTCGAGTCAAATGATATGAACTTTGCCATCGCTG AT5G46280
12 F ATCGAATTCATGCAGGAGATAATACCGGATTTTCTTG AT5G53210
12 R GAGCTCGAGCTAGCAGAATGTTTGCTGAATTTGTTGAGCC AT5G53210
13 F ATCGAATTCATGTACGGGAGAAAAGGGTATCAGCT AT1G80190
13 R GAGCTCGAGTCATCCTGTCAGCTCCTCCATTTGG AT1G80190
14 F ATCGAATTCATGCTGGATCTCAATCTCGACGTCGACTC AT5G60120
14 R GAGCTCGAGCTATGGTGGTGGTTGTGGGCGGTTCATG AT5G60120
15 F ATCGAATTCATGTCCGGTGTCGTACGATCTTCTC AT2G36010
15 R GAGCTCGAGTCATCTCGGGGTTGAGTCAACAGCTGTTG AT2G36010
16 F ATCGAATTCATGGATGAATCAAGTATTATTCCGGCAGAG AT4G09820
16 R GAGCTCGAGCTATAGATTAGTATCATGTATTATGACTTGGTGG AT4G09820
17 F GAGCTCGAGATGTTCGAGCCAAATATGCTGCTTGCG AT1G05230
17 R GAGCTCGAGTCAAGCAGTCTCACAAGACATTGAAGC AT1G05230
18 F GAGCTCGAGATGGGGAAGGAAAATGCTGTGTCTCGG AT1G15570
18 R GAGCTCGAGTCAGAATAGCGTGTCAAGTAGCTTTGG AT1G15570
19 F GAGCTCGAGATGCTTCGTGGTGGGACAACTCTTGTTG AT1G31360
19 R GAGCTCGAGTCAAGCTTCTTCTTCTCCGCTGCTCTC AT1G31360
20 F ATCGAATTCATGGGTGATTCTGACGTCGGTGATCGT AT5G67110
20 R GATGAATTCTCAAAGCAGAGTGGCTGTGGAAAAGCA AT5G67110
21 F GAGCTCGAGATGGGTACTCACATTGATATCAACAACTTAGGC AT1G49720
21 R GAGCTCGAGTTACCACGGACCGGTAAGGGTTCTTCTC AT1G49720
22 F ATCGAATTCATGGAGGAGAGTGAAACAAAGGGGAGAATC AT4G29940
22 R GATGAATTCTTACCTTTTCTCCTTGATCTCTGCTATTGGA AT4G29940
23 F GAGCTCGAGATGGCGGTGAGTTTGACGGAGGGAGTG AT5G45400
23 R GAGCTCGAGTCAGTAGCTGCCTACATGTTGCCTTG AT5G45400
24 F ATCGAATTCATGACTTCGGATGGAGCTACGTCGACA AT1G75080
24 R GATGAATTCTCAACCACGAGCCTTCCCATTTCCAAG AT1G75080

Table A.2: Oligonucleotides (II)
Oligonucletides used to amplify the cDNA of the predicted NES-containing proteins that were
tested in the laboratory for nuclear export activity. The numbers in the left column correspond
to the same used in Table 4.2 and Figure 4.14 (Section 4.2.1). The second column from the left
gives the orientation of each oligonucleotide, F: forward and R: reverse. The last column to the
right contains the AGI code for the respective encoded protein. Sequences are given in direction
5’ to 3’.



List of Abbreviations

ABA absidic acid
ABF absidic acid responsive element binding factor
ABRE ABA-responsive element
ACC accuracy
AD activation domain
APB active phytochrome binding
AUC area under the curve
bHLH basic-helixloophelix
BME β-Mercaptoetanol
CAS cellular apoptosis susceptibility
CBC cap binding complex
cDNA coding DNA
CID CTC interacting domain
CRM chromosome region maintenance
CTC C-terminal domain
CV cross validation
DAG directed acyclic graph
DP dimerization parter
DMSO dimethyl sulfoxide
DNA deoxyribonucleic acid
DNA-BD DNA-binding domain
dNTP deoxynucleic triphosphate
EAT early activation tagged
EDTA ethylene diamine tetraacetic acid
ELISA enzyme-linked immunosorbent assay
EREBP ethylene responsive element binding protein
FG phenylalanine glycine repeats
FPR false positive rate



122 Appendix A. Oligonucleotide sequences

GINS go-ichi-ni-san
GDP guanosine-5’-diphosphate
GO Gene Ontology
GTP guanosine-5’-triphosphate
HD homeodomain
HIV human immunodeficiency virus
HMM Hidden Markov Model
HWU− w/o histidine, tryptophan and uracil
k-NN k-nearest neighbors
LMB leptomycin B
LOOCV leave-one-out CV
LR-NES leucine-rich nuclear export signal
MAPK mitogen-activated protein kinase
MCC Matthews correlation coefficient
MOG main ortologue group
mRNA messenger ribonucleic acid
NE nuclear envelope
NES nuclear export signal
NLS nuclear localization signal
NPC nuclear pore complex
Nup nucleoporin
ONP ortho-nitrophenol
ONPG ortho-nitrophenyl-β-D-galactopyranoside
PABP poly(A)-binding protein
PABPC cytoplasmic PABP
PABPN nuclear PABP
PCR polymerase chain reaction
PEG polyethylene glycol
PHAX phosphorylated adaptor for RNA export
PIF phytochrome interacting factor
PIL phytochrome interacting factor-like
PKA phosphokinase A
PKI protein kinase inhibitor
Ran Ras-related nuclear protein
RanBP Ran-binding protein
RBF radial basis function
Rev regulator of virion
RF Random Forest
RNA ribonucleic acid
ROC receiver operating characteristic
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ROCCH receiver operating characteristic convex hull
RRE rev responsive element
RRM RNA recognition motif
rRNA ribosomal RNA
snRNA small nuclear RNA
SVM Support Vector Machine
TAIR The Arabidopsis Information Resource
TF transcription factor
TOE target of EAT
TPR true positive rate; sensitivity
tRNA transfer ribonucleic acid
UsnRNP uridine-rich small nuclear ribonucleoprotein particle
WOX wuschel-related homeobox
XPO exportin
Y2H yeast-2-hybrid
YNB yeast nitrogen base
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