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0.1 Summary

Phylogeny estimation, that is the inference of the evolutionary history of the
various life forms (species) on earth, is a widely studied problem that is not
yet solved to satisfaction. Studying the strengths and weaknesses of current
methods that work on biosequence data, branch attraction phenomena due to
unequal amounts of evolutionary change in different parts of the phylogeny are
one major problem, placing the species that evolved fast in one part of the
phylogenetic tree, and the species that evolved slowly in the other.

We improve the current state of the art by describing a way to avoid the
attraction of species that evolved slowly, and hence share old (”symplesiomor-
phic”) character states. These leftover character states have ”eroded” away
in the other species. They are detected using a calibrated comparison with
an outgroup, and contrasted with shared novel (”synapomorphic”) character
states that testify the exclusive common heritage of a subset of the species.
Torn apart, these shared novelties indicate conflict in a split of all species con-
sidered, and only the split at the root of the phylogenetic tree cannot have
such conflict. Therefore, we can work top-down, by heuristically searching for a
minimum-conflict split, and tackling the resulting two subsets in the same way.
This application of the divide-and-conquer principle, together with an intelli-
gent search for minimum-conflict splits based on the exchange of species that
carry the conflict, results in a fast, simple and transparent phylogeny estimation
algorithm.

The algorithm, called ” minimum conflict phylogeny estimation” (MCOPE), is
validated intensively using both real and artificial data. We reanalyze published
trees, yielding more plausible phylogenies, and analyze small ”undisputed” trees
on the basis of alignments considering structural homology. Artificial data fea-
ture randomly constructed phylogenetic trees with equal and unequal amounts
of evolutionary change.

Our phylogeny inference method may be viewed as a quantification of the
reasoning that a systematist applies whenever s/he builds up a tree based on
morphological data, using cladistic principles.



Chapter 1

Introduction

1.1 The Light of Evolution

”Nothing in biology makes sense except in the light of evolution.”
Theodosius Dobzhansky, American Geneticist [5]

For a long time, humans have been eager to understand life, as well as
themselves, and the roots and origin of both. Modern science places man among
all life forms, and tries to describe how these first appeared and have since
diversified and changed. Evolution theory describes the initial conditions and
the underlying processes. We will assume that this theory has universal validity
even though we note that this is impossible to prove. Moreover, many flavors of
this theory exist, but we will restrict ourselves to the most basic ”undisputed”
principles, thereby reducing the probability that we make false assumptions.

In fact, we do not need much more than the principle of ”descent with
modification”: Starting with a set (population) of ”almost” identical ancestral
life forms, we assume that a reproductive mechanism led to generations after
generations of descendants, some of these modified with respect to the orig-
inal. Environmental conditions and other factors separated descendants into
subpopulations. After many generations, modifications accumulated such that
the reproductive mechanism only works within the separated subpopulations,
which we may then call ”species”. If the separation-descent-modification pro-
cess occurs repeatedly, the result is a phylogeny, that is a hierarchical, tree-like
structure that represents the evolution of the various species. Given the species
as they are today, our task will be the estimation of the underlying phylogeny;
we have to calculate the order of separation events that happened in the past.

Our emphasis will be on the evolutionary processes, that are the processes
postulated by evolution theory. The initial conditions (origin-of-life issues) are
not investigated in this text, nor are the structures on which they have operated
and still operate. These structures, and the possibility to order their substruc-
tures sequentially, for example in the form of biomolecular sequences, are taken
for granted. Furthermore, we gloss over any variation within a species. Finally,



we ignore that some species carry hundreds of blueprints (genes) of some of
these structures, since there are mechanisms that keep the blueprints almost
identical, like unequal crossing-over and gene conversion [4]. Ignoring variation,
we can take one such structure like 185-rRNA, and talk about ”its sequence”
and claim that there is exactly one characteristic 18S-rDNA sequence for each
species. This sequence is composed of substructures called nucleotides, like any
RNA/DNA sequence is. Taking proteins, the substructures would be amino
acids. (18S-rRNA is a component of ribosomes, which are part of the appa-
ratus that translates gene information into proteins. It has its own gene, the
18S-rDNA sequence.)

Since we assume that the evolutionary processes are behind all history of life,
an investigation of life forms is always an investigation into the results of evolu-
tion — ”Nothing in biology makes sense except in the light of evolution” [5]. No
matter what we are talking about — molecules, genomes, organisms or ecosys-
tems — considering the history of the entities under study can help us a great
deal in understanding structure, function and relationships.

In this introduction, we highlight four examples of the productive use of
phylogenetic information in biology research — this is ”the light of evolution” in
action.

e Molecular level. The prediction of the three-dimensional structure of pro-
teins can be improved significantly if we know the three-dimensional struc-
ture of related proteins. By finding these relatives, phylogeny serves as an
aid for molecular modelling, see e.g. [27].

e Genomic level. The phylogenetic analysis of viral genes can be exemplified
by the case of HIV, the human immunodeficiency virus. The possibility
that a dentist has infected his patients has been studied by estimating the
phylogeny of the viruses carried by the dentist and his patients [23, 11].
The global spread of HIV subtypes is studied phylogenetically in [24].
Cross-species transmission events and the discovery of recombination be-
tween viruses are examined in [30]. As a last example, phylogeny inference
is used to assess the worldwide variation of HIV and some other viruses
in [12]. The phylogeny of many virus families has been studied up to now;
the influenza virus is another prominent example, see e.g. [18].

e Organism level. The development of body plans can be studied in the
light of phylogenetic data. The author of [20] even expresses his hope
to establish a ”causal relationship” between the evolution of genes called
HOM/Hoz clusters, and the evolution of body plans. The paper already
discusses a variety of correlations between gene evolution and organism
development.

e Fcosystem level. Phylogenies are very useful for the description of biodi-
versity and the inference of population processes in wildlife, as described in
[21]. This paper also discusses how wildlife management, and conservation
in general, may benefit from studying phylogenies.



We have highlighted the path of gaining knowledge by considering the evo-
lutionary history of the entities under study. This work is concerned with phy-
logeny estimation, i.e. gaining knowledge about the evolutionary history itself.
The basis for gaining such knowledge is currently expanding at a rapid pace.
Due to improvements in nucleotide sequencing technology, larger and larger
datasets are in need of phylogenetic analysis, featuring significantly more than
just 30 species and just a few hundred nucleotides/amino acids. Instead, for
hundreds of species, thousands of nucleotides are now available for analysis. In
fact, whole genomes are becoming available, making an all-encompassing phy-
logenetic analysis possible for the first time. Whole genomes comprise huge
datasets on the order of billions of nucleotides, and it would be worthwhile
to align the data as far as possible, and to estimate trees from the data that
comprise all the inheritable information of the different species.

1.2 Minimum Conflict Phylogeny Estimation in
a Nutshell

In the following, we will discuss some general characteristics of our approach.
In the next section, we will contrast our approach to current methods.

The first characteristic of our approach is simplicity, and a focus on the
most relevant information. We already described our simple model of evolution,
which amounts to the hypothesis that separation and descent with modification
are the processes that we should focus on. The most natural way of analyzing
data resulting from these processes is to look for the modifications. In the case
of biomolecular sequences, these are modifications of character states (sequence
substructures like nucleotides) that appeared anew in an ancestral species. They
testify the exclusive common heritage of all the species to which that ancestral
species gave rise. If at least some of these modifications are still visible in the
present-day species, we should be able to detect them.

Consequently, our method for recovering the phylogenetic tree tries to de-
tect character states shared between species because these species are the sole
descendants of an ancestral species. We argue that these "valid” shared char-
acter states constitute the most relevant and the least misleading information
available. Two examples are given in Fig. 1.1, panels 1 and 2, where character
states are exemplified by the nucleotide symbols A,C,G,T.

All too often, it happens that character states are shared between some
species even though there is no common ancestor from which only these species
developed. Instead, these species just feature a different amount of evolution-
ary change. During their evolution, they were subjected either to much more,
or to far less modifications than the others. The former phenomenon leads to
"long-branch attraction”, and the latter to ”erosion”, or ”short branch attrac-
tion”. We will describe both phenomena, which are also displayed in Fig. 1.1,
panels 3 and 4. (Different amounts of evolutionary change are attributed to a
7 different speed of evolution”, and it has become standard to talk about ”fast”



Figure 1.1: Valid shared character states, and branch attraction phenomena.
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”Long-branch attraction” is the observation of character states shared by
"more evolved” sequences because they are modifications that are equal (”con-
vergent”) just by coincidence (Fig. 1.1, panel 3). ”Short branch attraction” is
due to character states shared by ”less evolved” sequences because they are the
leftover of old character states that were modified in the other (*more evolved”)
sequences only (Fig. 1.1, panel 4). Short branch attraction can be visualized
by an ”erosion” process taking place in the "more evolved” sequences, modi-
fying some of their character states that have been shared before. Since there
are usually (but not necessarily) at least a few modifications that coincide with
character states elsewhere, at least a low level of long-branch attraction is of-
ten a phenomenon that occurs together with short branch attraction. Due to
erosion, tree estimation algorithms may be misled by the similarity of the old
character states still shared by the uneroded, less evolved sequences.

In general, however, long-branch attraction may happen independently of
short-branch attraction, and both may happen independently of the separation-
descent-modification process that underlies the phylogeny. For example, the
"more evolved” sequences may share similarities due to random convergences,
and the ”less evolved” sequences may nevertheless have been subject to so many



modifications that they feature no shared old character states. A more prob-
lematic theme, to which we will return repeatedly in this text, is the possibility
that branch attraction happens in parallel with the separation events, that is in
concordance with the evolutionary history of the species.

Figure 1.2: Erosion in species 1-8 triggers artifact similarity in species 9-11.

[ 1 *Halanus*
[ 2 *Petraclita*
— 3 *Chelonidio*
4 *hihamalus*
— 5 *Colanthica*
— B *Lepas*

— 7 *Ocloiosmis*

—— B *Lozothyloocus*
’7 9 Frrypetesa*
__[10 *Borndiie™
11|uicphysema
12 Branchinecta (outgroup)
A likely case of short-branch attraction is exemplified in Fig. 1.2, which

displays an alignment of 185-rDNA from crustacean species on the right, and
the putative correct tree on the left.

This in species 1-8 trig-
gers shared old character states in the short-branch species 9-11, in contrast to
the valid shared character states that testify the exclusive common heritage of
species 1-10. In contrast, the shared old character states do not testify exclusive
common heritage of species 9-11 — these species do not have a common ancestor
that is not the ancestor of any other species. (It does not matter along which
branch(es) the larger amount of evolutionary change took place, as long as all
species in 1-8 are affected. For example, if they are only recent subjects to sig-
nificant modifications, we can still observe erosion. In other words, the
in evolved species may consist of conserved modifications, gaps and/or a mix of
nucleotides.)

Fig. 1.2 introduces our running example, to which we will return throughout
this text. It is based on real data, and the putative correct tree is derived from
morphological features. A partial alignment will provide us with data for sample
calculations. The full-length alignment will be discussed extensively in section
4.4.1.

Short-branch attraction can be detected by inspecting a sequence or se-
quences from species that developed as a side-branch from an ancestor ”older”
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than the ancestral species giving rise to all the descendant species under consid-
eration. This ”outgroup” (species 6 in Fig. 1.1, panel 4, and species 12 in Fig.
1.2) indicates whether character states shared by the short branches only might
be old indeed. If they are, we can disregard all artificial evidence that places the
short-branch species into one group, and the long-branch species into the other.
The decision ”old” versus "new” is based on the calculation of "matching rates”
with respect to the outgroup. A matching rate compares two sequences (or sets
of sequences) and it is calculated by tallying the number of character states
that are equal. (For sets of sequences, majority character states are checked
for equality.) Basically, the more matching with the outgroup we observe, the
more evidence we have for erosion. Matching rates are a very simple concept
that we will use again and again; after all, simplicity and transparency shall
be one important characteristic of our approach. When the analysis is started,
the user will need to specify an outgroup in advance. However, we will show
in section 3.3 that we have an unusual freedom in the choice of the outgroup,
because we will calibrate the matching rate of the shared character states by
comparing it with a matching rate tallied over alignment columns that do not
feature the shared character states.

To summarize, the second, and possibly the most important characteristic
of our method is that it tries to detect short branch attraction — it avoids falling
into what we call the erosion trap, and to our knowledge it is the first method
that explicitly avoids this systematic error. We even conjecture that as long as
the short-branch attraction is stronger than the long-branch attraction artifact,
we can detect the former and then avoid both problems. This is ” Future Work”,
see section 4.6.

The description above is idealistic because usually, there is no clear-cut divi-
sion between ”more evolved” and ”less evolved” sequences. Moreover, the speed
of evolution may differ in time, across the branches of the tree, resulting in a
complex mixture of branch attraction phenomena, and possibly other artifacts.
Nevertheless, our method is able to recover correct separations in many cases,
as described in the sections on validation.

Once we are able to ignore shared old character states, and instead concen-
trate on the valid ones that indicate the sole descendants of an ancestral species,
we can do a heuristic search of all splits (bipartitions) of the set of species an-
alyzed. Starting with any split, ”conflict” may arise if valid shared character
states can be found for a subset of the species: if this subset is torn apart by the
split, the valid shared character states are then found on both sides. They are
torn apart themselves. If a split with no (or minimum) conflict can be found by
moving species between the two sides, we assume that we have found the most
ancient separation. In hindsight, this most ancient separation divides the set of
species into two subsets, and every subset includes the sole descendants of one
of the two ancestral species into which the species at the starting point (at the
so-called root) was separated.

Now, our approach can make use of the divide-and-conquer paradigm en-
abling the fast analysis of large datasets. We have already motivated the neces-
sity of processing speed in section 1.1, and we will now show that divide-and-

11



conquer is a natural ingredient of our approach.

The heuristic search just discussed is designed to reveal the most ancient
separation, and the question is how the analysis can be continued. The most
natural answer is to use divide-and-conquer. We view the two separated sets
of species as new problems that can be tackled in the same way. Indeed, in
a top-down manner, we will explore the hierarchical structure of the dataset
by estimating the most ancient separation, followed by the analysis of the two
subsets that result from the corresponding split. The two subsets are then
analyzed in exactly the same way as the whole dataset was analyzed before;
only the outgroup may be different. It is selected in a way that ensures the
most informative matching rates. Once the subsets are analyzed, we follow up
on their minimum-conflict splits, and so on, until the analysis stops with sets of
one or two species. The divide-and-conquer scheme is visualized in Fig. 2.7 on
page 36.

For a completely balanced tree of 100 species, the first divide-and-conquer
step divides the problem into two sets of 50 species each. Next, we need to
tackle four sets of 25 species, etc. For unbalanced trees, divide-and-conquer
slows down, reducing a problem with 100 species to a new one with 99 species,
etc. We assume that trees arising from samples of existing species are usually
rather balanced. Evidence for this assumption is as follows:

e There is no need to question the overall validity of classic biological sys-
tematics, where species are actually classified into many large groups of
related species on different levels of a classification hierarchy.

e Trees published in the literature are usually quite balanced; few are com-
pletely imbalanced so-called ”caterpillars” (cf. Fig. 3.29, panel 1, on page
103).

¢ Simulation studies usually suggest even more balanced trees, and this
"puzzle” is the subject of some recently revived research (see e.g. [1]).

All trees considered are rooted, making both erosion detection and divide-
and-conquer possible. These are the third and forth characteristic of our method:
We can expect that the algorithm is fast, and we calculate rooted trees (in con-
trast to less informative unrooted trees) as a side-effect.

A high-level overview of our method, termed ”minimum conflict phylogeny
estimation” (MCOPE) can be found in Fig. 1.3. In general, we aim to model
the decision process of a trained systematist who applies a strictly logical ap-
proach to phylogeny estimation. Our method may be viewed as followup work
that builds upon the logics of phylogeny inference, based on the concepts of
shared movelties (synapomorphies), convergences (homoplasies), and leftovers
(symplesiomorphies), see e.g. [10] and sections 2.6 and 2.8. The relevance of
this “cladistic” approach developed by Willi Hennig has been outlined before
[41, 42]. We attempt to quantify it, and improve on certain aspects. For exam-
ple, sigmoid functions are used repeatedly to achieve discriminatory power, e.g.
to amplify and filter the evidence found via the comparison of matching rates.

12



Figure 1.3: Schematic overview of MCOPE.

Input: An aligned set of sequences

@ Search the space of bipartitions heuristically:

@ Take a bipartition

@ Investigate whether conflict
arises due to shared novelties
on both sides of the bipartition

@ Move species to minimize conflict

@ The minimum-conflict split indicates the two mono- O
phyletic groups of species at the root of the (sub)tree

@ For both proposed monophyletic groups,
apply the same algorithm.

Output: A phylogenetic tree

The fifth characteristic of our approach is the transparency that comes with its
logical foundation: We record the evidence for different hypotheses of phyloge-
netic relationship, analyse and compare it using simple formulas, and make it
possible for the researcher to re-evaluate both the evidence and its analysis.

We believe that it is very important to validate a new method for gaining
phylogenetic knowledge. Validation with biological data (in contrast to artifi-
cially generated data) is important to prevent circularity, which may occur in
subtle ways whenever likeminded researchers write data generation as well as
data analysis software. We are tempted to say, ”Nothing in phylogeny estima-
tion is validated except in the light of biological data.” On the other hand, in the
case of artificial data we can be sure to know the correct phylogeny. Therefore,
we have done an extensive validation by biological data and artificial data alike.
Applied to both kinds of data our method performs very well. In particular,
we will discuss several examples where evidence from molecular datasets is now
much more in line with morphology-based systematic knowledge.
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1.3 Comparison with Other Phylogeny Estima-
tion Methods

In this section, we compare our method to other approaches. For a detailed
explanation of these, and a comprehensive overview of phylogenetic systematics
in general, the reader is asked to consult [36].

Distance methods for phylogeny estimation calculate distances between pairs
of sequences, based on the number of character states that do not match. The
pairwise distances are used to build up a phylogenetic tree. Our method,
however, is character-based, analyzing multiple sequences simultaneously in a
position-by-position fashion. This makes more use of the information provided
by the individual sequence positions. Furthermore, modifications may occur in
the development of the present-day species only, after the last separation event.
These amplify distances between close relatives, and misguide the analysis. In
an attempt to deal with this specific type of long-branch artifact, corrections of
distance estimates are often employed, and they are obtained by using specific
models of character state evolution.

Such detailed models of evolution, including specific ”substitution rates” for
different classes of modifications, cannot be universally valid, and their estima-
tion from data analyzed before constitutes circular reasoning: what if the trees
used to estimate the model parameters are incorrect ? In this case, a system-
atic error is introduced into the model, and it may be reinforced by the further
analyses of similar data.

Like our approach, mazimum likelihood analyses are character-based. These
evaluate a so-called likelihood function for each sequence position, and combine
the results. Likelihood gives high scores to trees for which the modifications con-
form to an estimate about which classes of modifications are likely, and which
ones are not. Therefore, the likelihood function relies on a detailed model of
character state evolution, which we would like to avoid for the same reasons as
in the case of distance methods. Furthermore, noise caused by random modifi-
cations may nevertheless influence the result of maximum likelihood.

Parsimony analysis is also character-based, evaluating another (but similar,
see [38]) scoring function for each sequence position and combining the results.
Parsimony gives high scores to trees which explain the data with a minimum
of modifications. No detailed model is needed for the parsimony function, but
a lot of the noise caused by random modifications may influence the result of
parsimony. If positions are weighted differently (see [36], pp. 502-503, for a
review), and/or the correction suggested by [29] is applied, the problem may
at best disappear at the expense of additional complexity that allows for other
systematic errors. Most importantly, we now discuss how parsimony may be
mislead by erosion.

Parsimony can fall into the erosion trap because trees for which the short
branches form a subtree require less modifications, if the long branches match
the character state estimated for the node at which they are all attached. This
matching may be viewed as a low level of long-branch attraction, and we con-
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Figure 1.4: Parsimony may be misled by erosion.
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jecture that pure short-branch attraction cannot mislead parsimony.

In Fig. 1.4, panels 1 and 2 feature the same character states at the leaves of
the tree. The difference is in the tree itself: species 2, representing ”the long
branches” in this case, is attached to different edges, and we assume that the
left-side tree is correct. In panels 3 and 4, the character state of species 6 is T,
but the tree in panel 3 is the same as in panel 1, and tree in panel 4 coincides
with the one in panel 2. Inferred modifications are marked by thick lines. If
species 2 has a character state that is different from species 6, we need two
modifications to explain its evolution, no matter which tree we take (panel 1
or panel 2). If species 2 has a character state matching species 6, the correct
tree on the left requires three inferred modifications (panel 3), and parsimony
will favor the incorrect tree where species 2 and species 6 are ”together”, and
there is no need for a modification "between them” (panel 4). In the most
parsimonious tree, the short-branch species 1,3-5 form one subtree. For panel 3,
we remark that three modifications are also needed if we assume that the last
common ancestor of 1-6 has character state T. Moreover, there is more than one
tree that is both incorrect as well as most parsimonious; species 2 and 6 in the
tree to the right (panels 2 and 4) may as well be placed in a common subtree,
and the number of modifications is two for such a tree as well.

In contrast to all three standard methods, our method builds the tree top-
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down, from the root to the leaves. At each level we do a simultaneous analysis
of the relevant sequences only. As we have seen, this strong focus has a very
pleasant side-effect: at least for balanced trees, calculations can be very fast.

Of the existing approaches just discussed, parsimony and maximum likeli-
hood in particular are reaching their limits for large datasets, especially because
these require a (heuristic) search of the space of all possible trees, evaluating the
scoring function very many times. Researchers are reworking these methods in
order to make them faster. For example, "PUZZLE” [33] is a method that does
maximum likelihood calculations for sets of 4 species, and then assembles the
subproblem solutions recursively. For parsimony, "Tterative Fixation” [29] is one
algorithm that combines species into archetypes to speed up calculations. How-
ever, these two approaches are limited by both the drawbacks of the underlying
method, and the heuristic nature of the speedup.

Then again, the divide-and-conquer paradigm already plays a key role in
tackling large phylogenies. A distance-based generic algorithm called “Disk-
Covering” is described in [13, 14]. “Disk-Covering” is similar to our approach
because it also divides the set of species into subsets, and then combines the sub-
tree solutions. Its reliance on distance calculations makes it susceptible to the
problems already discussed for distance trees. Nevertheless, “Disk-Covering”
holds a lot of promise, in particular because it has proven desirable character-
istics for sufficiently large sequences, see the end of section 2.3.

1.4 Nature, Models, and Software

In the following chapter, we will introduce our basic concepts and then we will
formalize the ” phylogeny estimation” problem that we are trying to solve. Later
we will define the "minimum conflict” method that we propose to estimate
phylogenies, and our final task will be the attempt to validate our method.
This section discusses some issues in formalizing biological problems, and using
computers to solve them.

Strictly speaking, we need to distinguish 3 different sets of entities: nature,
models, and software. The first set of entities is ” taken from nature”; we believe
that we are observers of individuals, species, reproduction, nucleotide sequences,
vertebrates, evolution, and such.

Since these natural entities tend to be elusive, the next sections will develop
a second set of entities. These are (simplified) models of some of the natural
entities. We will define this small world of entities as precisely as possible and we
will express both our problem and our method in terms of these. The problem
will be stated by describing an extremly simple model of the process of sequence
evolution. This process transforms a certain kind of tree into an aligned set of
sequences. We will state that this aligned set of sequences evolved according
to the tree, and our task will be to recover the tree, given the aligned set of
sequences. The task is tackled by our method of phylogeny estimation. It will
be described as a series of calculations which attempts to transform the final
data of an individual process of sequence evolution, that is an aligned set of
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sequences, into the tree with which the process was started. We assume that
there is some homomorphy (i.e. structural similarity) between the natural and
the model entities and their relationships, even though we make no attempt
to identify it precisely; formalizing this homomorphy is a very complex subject
indeed.

Our method has been implemented on a computer, yielding yet another set
of entities expressed ”in silico”. We have strived to faithfully map our model
entities to computer code such that our method can be executed on electronic
data files (input, an aligned set of sequences), and we get the same results
(output, a tree) as if we executed our method on paper.

Assuming finally that the data files are faithful observations of the natural
entities investigated (like nucleotide sequences aligned with the help of structural
information, see below), our computations can be interpreted as the inference of
natural phenomena — then, if all our assumptions are met, we are able to make
statements e.g. about the evolutionary history of vertebrates by estimating a
phylogenetic tree.

If such statements are plausible (i.e. not in conflict with most” of the other
observations that we make), or, possibly, even yield correct predictions in the
world of natural entities, then we ”are on the right track” towards validation.
While such validation is difficult, another form of validation can be obtained
readily even though its value is limited. We can simply test whether our method
correctly recovers the underlying tree, if it is given the results of an artificial
process of sequence evolution. Indeed, we have used both ”biological” and
”artificial” datasets in our validation attempt; in both cases we obtain very
good results, as described later.

Let us expand on the term ”nucleotide sequences aligned with the help of
structural information”. OQur method does not work with unaligned sequences,
such that we assume the existence of a black-box alignment preprocessor in case
of unaligned input. For ribosomal RNA sequences, the preprocessor may take
into account RNA structure information; for coding DNA, protein structures
may be used. In general, alignment is a tough problem, and if we have sequences
which are aligned by some unknown or imperfect procedure, failure of validation
using biological datasets may be attributed to an incorrect alignment. The
reader may consult [7] and references therein for further information on the
multiple alignment problem.

1.5 Conventions Used in This Text

Great care has been taken to use precise language, by defining all relevant
concepts at least verbally. The first occurance of an important concept is written
in typewriter font, accompanied by its definition. If a verbal definition is given,
the reader may watch for a definition in mathematical terms soon thereafter,
again quoting the concept in typewriter font. In the rare case that a concept
is mentioned before it is defined, it is enclosed by quotation marks. All defined
concepts are listed in the index, which gives the reader a look-up glossary.
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Chapter 2

Analyzing Patterns of
Evolution

2.1 Species, Character States, and Alignments

We will now define a small set of entities that will be used to give a precise
problem statement, and, later on, a precise description of the algorithm we
propose. Along the way, we develop not only models for the biological entities
we work with, including a very general model of evolution. We also formalize
some cladistic concepts that are used very frequently by biologists to describe
and analyze the results of evolutionary processes. Regarding both the general
model and the formal treatment of cladistic terminology, we are not aware of
similar efforts.

The first entity to be defined is a ”species”. In the spirit of the introductory
statements, we evade the issue of what a species really is. For us it is just a
name, and we understand that it refers to a population of life forms that do not
reproduce with other life forms. All data considered is from recent species, that
is from entities which are alive today, as opposed to dinosaur or other fossile
sequence data.

We are given m names that we call recent species, or species for short,
per default denoted by indices 1,...,m. We assume that we have m sequences,
s'1,...,8'm, one sequence per species, each sequence consisting of character
states taken from an alphabet of symbols A4, e.g. A= {4,C,G,T} for DNA
sequences.

In the course of its evolution, a sequence may be extended or shortened. We
assume that we also have an alignment S of the sequences (S is also known as
the data), a matrix consisting of m rows and r columns with character states
taken from the extended alphabet of symbols AU{—}, where ” —” ¢ A denotes
the special character state "gap”:
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§1= 811 S1,2 ... 815 .. Sipr

S2 = 821 S22 ... 825 ... Sar
§; = Si1 5,2 -S4 - Sir
Sm = Sm,1 Smz2 - Sm,j - Smyr-

The sequences s'y, ..., s',, can be obtained from the rows (the aligned sequences,
denoted s1, ..., Sj, .., S ) Of S by removing all gaps. The alignment S must not
have any columns (sites, denoted 1, ..., $x,j, .-+, Sx,r) that consist exclusively
of gaps.

Two character states are matching if they are equal, or equivalent (i.e. in
the same equivalence class, given an equivalence relation on the set of character
states). Character states which match are also called shared, those that do not
match are called different. In a fixed (or invariable) alignment column,
all species have matching character states. The notion of "matching” may be
generalized to ”similarity”. This is useful in the case of amino acid character
states, and for morphologically defined ones, e.g. features of specific body parts
of animals. We will only deal with RNA/DNA sequences, and there will be no
follow-up on this generalization.

The alignment of all sequences to be analyzed is always denoted by S, and it
has r columns; alignments in general are denoted by A. Unless noted otherwise,
calculations done with an alignment A ignore its fixed columns, pretending that
the alignment just consists of variable sites. The projection A|, of any alignment
A to a set of rows indexed by a subset I of the species,

I= {7’.17"'77:4} - {1,,771,}

is called a subalignment; its columns are called subcolumns, and its length
(ignoring gap-only columns as well as fixed columns) is denoted by ¢. Subsets
of subsets of species will be denoted by

I'= {iy,in} C {it, ric)-

The projection A, has length p. (The indices are selected such that their
lexicographic order reflects their size, k < £ < m holds as well as p < ¢ < r.)

2.2 Trees and Monophyly, Heirs and Ancestors

The entities defined in this section prepare the way for a formal model of evolu-
tion. Trees are used as the formal representation of the hierarchy that is created
if descent with modification is interspersed with separation events.

A group of species g is just a set of species. A subgroup is a subset, and a
supergroup is a set that includes the group under consideration. Given a group
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Figure 2.1: Tree terminology and examples.
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of species g and a subgroup ¢’ of g, the complementary subgroup is denoted
by g-g'.

A split G = g1 v g2 (read ”g1 versus ¢g2”) is a bipartition of a group of
species into two nonempty subgroups, g1 and ¢2.

A tree of m species is a directed cycle-free connected graph T = (V, E)
with vertices V and edges £ = V x V, which has m terminal vertices with
one incoming edge, one root vertex with two outgoing edges, and a set of non-
root internal vertices with one incoming and two outgoing edges (see Fig. 2.1,
panel 1, where m = 6). A tree is also known as a phylogeny, or a phylogenetic
tree. The vertices are also known as the nodes, the terminal vertices are the
leaves, and the edges are also known as the branches of the tree. All edges are
directed from the root to the terminal vertices, and every non-root vertex is a
direct descendant : it has one incoming edge from its direct ancestor. We
label the terminal vertices with the species indices {1,...,m}, the root vertex
with the description of the list of all species, that is the single label ”1-m”, and
any other internal vertex v with the description of the list of terminal labels
that can be reached from v by travelling away from the root. In formal terms,
these heirs are defined by

heirs(v) = {i € {1,...,m} : Juq, ug, ..., uy : {(v,u1), (u1,u2), ..., (us,9)} C E}.
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Vertices u, in the above definition describe the path from v to 4. The symbol 3
should be read as ”there exists”. The set of all heirs of v is the set of vertices 4
for which there exists a path from v to i. As a generalization of the preceeding
definitions, a path from v to ¢ makes v an ancestor of 7, and ¢ a descendant
of v. The heirs of v are all descendants of v. A vertex v is a common ancestor
of a set of species {i1,...,ix} C {1,...,m}, if

{i1, ...y i} C heirs(v)

holds.

All trees considered in this text are rooted and bifurcating. We note that
in practice, we may consider multifurcating trees (with vertices of degree 4 or
more, so-called polytomies). On the one hand, there are some cases where mul-
tifurcations may have happened in the natural world of entities. On the other
hand, multifurcations can express uncertainties in estimated trees, allowing to
represent several hypotheses in a single tree.

For an internal vertex v the label lists the monophyletic group of all the
species for which v is the 1ast common ancestor. More generally, for any group
of species {i1,...,ix} C {1,...,m}, the last common ancestor lca(i, ..., i) is
defined as

lea(iy,...,i;) = v < v is a common ancestor of {i1,...,ix}, and

Yo' £ v ({il, ey bk} € heirs(v') or heirs(v)gheirs(v’))

The second condition states that all vertices that are not the last common
ancestor are either missing one or more descendants, or they are the ancestor
of a strictly larger group of species. (The symbol V should be read as ”for all”.)
The last common ancestor v leads to the two last common ancestors of
the two disjoint sister groups that the monophylum splits into (see Fig. 2.1,
panel 2. The last common ancestor of g = ”1-5” leads to the last common
ancestors labeled ”1-3” and ”4,5”. ”1-3” is the sister group of ”4,5” and vice
versa. We will discuss some aspects of panel 2 as well as panels 3 and 4 of this
figure in the next sections.) The closer to the root, the older an ancestor is.

2.3 Evolution and Phylogeny Estimation

Given a formal definition of trees, we can now write down a formal model of
evolution. Let us first add another label to each vertex of our tree 7. For the
terminal vertices, we use the aligned sequences of the given alignment S of the
m species. For the internal vertices, we use some arbitrary aligned sequences of
same length. Then, such a tree represents a specific evolutionary history of
the m sequences, and its interpretation is as follows.

e Every internal vertex v corresponds to a separation event, that is the
verbatim copying of its aligned sequence.
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e Every edge corresponds to zero or more substitutions in the aligned
sequence, that is the modification of a character state into a different one.

We assume that the character states of an alignment column all evolved from
a single character state of the root ancestor. Then, a character is just an
alignment column. If a character state does not change across an edge (or a
path of edges), we say that the descendant inherited it from its ancestor (see
Fig. 2.1, panel 2, on page 20).

The reader may ask which ”natural entities” are modeled by the aligned
sequences. In biological terms, every aligned sequence represents a species com-
prising individual life forms. These natural entities are subject to selection,
genetic drift, reproduction, and speciation, but no precise definition of these
biological terms will be given in this text. The model that we will describe will
subsume these effects, however.

Let z = | AU {—}| denote the size of our alphabet, including the gap char-
acter. Substitution frequencies across an edge e can be recorded by a z times z
substitution frequency matrix M, where the entry mg , is the relative fre-
quency of a substitution of the zth symbol by the yth symbol, for z # y, and the
entry mg , is the frequency that the zth symbol is not substituted. Naturally,
we have

Z Mgy = 1 for all y,
z€{l,...,z}

and

Z Mgy = 1 for all z.
ye{l,...,z}

In the case of nucleotide sequences, the matrix M is

mi,1 Mi,2 M3 Mi4 M1
m2,1 M22 M23 M4 M2s
M = ms1 M3 M33 M34 M35
Ma1 MMa2 M43 M4 M4
ms1 M52 M53 M54 M55

mp A MALC MALG MALT MA -
mc,A MCLC MCG MCLT MCH—

= mg,A MGC MGG MGLT MGo— ’
mT,pA MTCc MTG MTT MT—
m-,p M, MG M—,T M-

treating the gap symbol as the fifth nucleotide character state. If m, , > % holds
for character state x, we can still see ”traces” of inheritance that are preserved
for that state. If inheritance is traceable for all character states, we say that the
substitution frequency matrix still reveals a minimum of inheritance. The closer
Mg,z 1S tO %, and the shorter the aligned sequences, the more likely any small
inheritance observed must be interpreted as an artifact, the result of chance
alone.
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A deletion is represented by the substitution of one or more consecutive
nucleotides into gap character states. An insertion is represented by the sub-
stitution of one or more consecutive gap character states into nucleotides. In
other words, our representation of evolution accomodates insertions in an indi-
rect way, using gap character states in aligned ancestral sequences as a place-
holder for future events (see Fig. 2.1, panel 3 on page 20). An indel is either
an insertion or a deletion.

Up to now, we have been talking about the representation of a specific evolu-
tionary history, given m species and an alignment, by a tree labelled with all the
aligned sequences, both ancestral and recent. We did not use the term ”"model”
because we would like to reserve it to the ”evolutionary process” in general, of
which a specific evolutionary history is just a sample result.

First however, we need to specify the following evolutionary parameters
if we want to give a complete specification for a model of sequence evolution.

o A family of character probability distributions that is used to cre-
ate the aligned root sequence. Formally, we define a family of functions

fit AU{=} = [0.1]

Z fj(N)=17

NeAu{-}

for each site j of the root sequence. For each site j, a different distribution
may be used for the creation of the root character state.

where

o A family of substitution probability distributions that is used to
apply substitutions across the edges of the tree. Formally, we define a
family of functions

9j : E—[0.1" x ... x [0..1]%.

~

~~
z times

Function g; assigns a substitution probability matrix
M (e) = {mj’e}ze{l,...,z},ye{l,...,z}

to each edge e € E, where

Y mit =1forallye€{l,..,z}

z€{l,...,2}
Z mJEZ =1forall z € {1,...,2},
ye{l,...,z}

and 1
1>mde > = forallz € {1,...,2}.
Tz

For each site j, and for each edge e, a different matrix may be used.
The third condition ensures in particular that a minimum of traceable
inheritance takes place along an edge.
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Our peculiar way of using substitution probability matrices is possible be-
cause we have one matrix per edge; as soon as we insist on a universal substi-
tution probability matrix, we need to introduce a notion of time into our model
if we want to have ”slow” and ”fast” evolution along different edges, and we
then need to deal with multiple substitutions across a single edge, e.g. from A
to G and back to A. Then, we are forced to define ”instantaneous rate matrices”
@ that refer to the amount of change for an ”infinitesimally” small amount of
time, and solve the differential equation to arrive at a matrix that describes the
rate of change for an arbitrary period of time ¢. (The reader may be familiar
with the corresponding Jukes-Cantor matrices () jc and M ¢ in the case of 4
nucleotides (see e.g. [36]):

—3a «a Qa Q
_ | «@ —3a « a
Qo = a a -3a « ’
a «a «a —3a,

and, solving a differential equation,

14 38,-4at 1 _1l,—4at 1 _ lo—dat 1 _ 1,—dat

i _ _e—4at i + §6—4at i _ ie—4at i _ _e—4at
Mjc = i _1_—4dat i _ i —4at i é —dat i _1_—4dat )

RS B S S SEPE S S

1 1€ 1 1€ 1 1€ 17T g€

where « is a parameter that combines base frequency and substitution rate: it
is one quarter of the mean substitution rate.)
For each edge e of the tree we can define its inherent edge weight,

e
L3 1=myS

)\e: ’

that is the expected substitution probability on that edge, given a random
sequence at the incoming node. It is the average over all sites of the average
probability that a character state is substituted at that site, which in turn is
the average over all character states & of 1 — m%¢. (As before, z is the size of
the alphabet, matrix M has z rows and z columns, and r is the length of the
alignment.)

To obtain an appropriate notion of indels, restrictions would need to be
imposed on the probability distributions such that creation and substitution of
gap characters as well as substitution by gap characters tend to be done along
consecutive stretches of the sequence — we will not describe these restrictions in
detail, however.

Given m species, an alignment length r, a tree 7 and evolutionary parame-
ters {f;} and {g;}, an evolutionary process is the generation of the aligned
sequences S with the evolutionary parameters ({f;},{g;}) along the tree T.
Strictly speaking, this is our very simple model of sequence evolution.

Our model is sufficiently general that we may have specific character-depen-
dent substitution probabilities, different substitution rates on different branches
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of the tree, sequence motifs (regions in the alignment where the substitution
probability is low), and many more features. In fact, our model is too permissive
for any practical considerations, unless we impose larger lower bounds on mf;fx.
The current bound

; 1
1>m?% > —forall z € {1,...,2}
T2

just guarantees that 0 < A\, < 1— % holds for the inherent edge weights, and for
inherent edge weights close to 1 — %, the generated data are ”almost” random.
Larger lower bounds on m}%, which translate into tighter upper bounds on the
inherent edge weights, are necessary if we want to have any chance to recover the
tree, but we will not develop any theoretical results in this text — this is ” Future
Work”. As outlined before, our model shall suffice for the aim of describing and
justifying our method of phylogeny reconstruction. Then, obtaining plausible
trees is the ultimate test for the usefulness of our method and the adequacy of
our model.

In summary, the design of our model follows a very simple notion of evolu-
tion, ”descent with modification”: Character states are subject to substitutions,
and inherited by descendants. We ignore reticulate (net-like) evolution with
confounding factors like lateral transfer of genetic information between some
species, e.g. in bacteria, or plants.

Now we are able to define the problem we want to solve, the phylogeny

estimation problem.

Given m species and their alignment S that is the result of
an evolutionary process with unknown (but fixed) evolutionary
parameters ({f;},{g;}) along an unknown (but fixed) tree 7
and € > 0, recover the tree with probability at least 1 — €.

We may make the problem even more difficult, by setting bounds on the
time complexity of the calculation (e.g. that we must recover the tree in time
that is polynomial in both m and r).

The constant € above may be arbitrarily small, but non-zero. Both the
required sequence length as well as the time complexity of the method may be
made dependent on e. For example, both may be polynomial in 1/e.

We do mot suggest that our method will solve the phylogeny estimation
problem. Instead, our aim is a method that can recover the underlying tree
for as many biologically realistic evolutionary processes as possible, i.e. for as
"large” and ”realistic” a parameter space as possible. In particular, the lower
bound on m%f;, which translates into an upper bound on the inherent edge
weight A., must not be too small, because then the evolutionary process is just
producing random data. On the other hand, if the mJ?, are too large (i.e. if
they are very close to 1), there are very few substitutions — not much detectable
evolution is taking place. Both scenarios are not in the application domain of
our method.

The reader may think that our problem cannot be solved anyway, unless the
evolutionary parameters are ” very favorable”. However, if we forget about locat-
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ing the root of the tree, and about indels, and if we restrict the phylogenetic tree
to a so-called ” CF tree”, with two character states and an underlying Markov
process with a single substitution probability matrix, where edge weights follow
a Poisson distribution, and if the character states of the root sequence follow the
uniform distribution, there exist methods which recover the tree in polynomial
time, from an alignment of polynomial size. One of these methods is the Disk-
Covering Method that we mentioned in section 1.3. The details of these results
can be found in section 7.1 of [44], including the formal framework needed to
state them in precise terms, and to prove them.

In practice, an algorithm for solving the phylogeny estimation problem may
indicate those cases where the data are not informative, e.g. by returning multi-
furcating trees. In the case of our approach, we can use multifurcations to note
our failure to obtain exactly one minimum-conflict split with no close followups,
cf. section 2.10.

2.4 Majority Sequences

Our method will construct ”majority sequences” which are related to the notion
of consensus sequences. As we will see in section 2.8, majority sequences are
important to identify incorrect splits. They form yet another set of labels of
the internal vertices of the phylogenetic tree. The majority symbols are the
boldfaced equivalents of the character state symbols, taken from the alphabet
A ={A,C,G,T}. A special symbol ! denotes a position where no majority
can be found: the position is called noisy, a term which also covers positions
dominated by gaps. Formally, majority sequences are just sequences over the
alphabet {A,C,G,T,!}.

Let an alignment A = (ai)ic{i;,....is} = Qiys > Gis > @3, be given, where
{i1,.--,5¢} C {1,...,m}. Then, for a symbol N € A, let

U(N,j) = |{l S {il,...,ig} LA = N}|

be the character state count of N in column j.
Given a minimum invariability threshold 7, 0 < 7 < 1, (@i)ic{i,....ir}
gives rise to a majority sequence

c((ai)ie{il,...,iz})7

by absolute or relative majority voting. In the case of 7 > 0.5, we use absolute
majority voting:
C((ai)ie{il,...,iz}) = (le PERT] ch)a where

~_ | N if there exists N € A such that o(N,j) > 7 -/,
%=1 1 otherwise

for each column j of the alignment, where ¢ is the length of the alignment A
currently under consideration. If 7 > 0.5 does not hold, the symbol obtaining
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the highest vote can be selected (relative majority voting). In this case, ties
are possible; these are resolved by resorting to the lexicographic ordering of the
symbols in the alphabet. To formalize this notion, let ord : A — {1, ...,|A|} be
an injective function which implements a lexicographic ordering of the alphabet,
like ord(A) < ord(C) < ord(G) < ord(T). Then, the formula for ¢; is

if there exists N € A such that o(N,j) > 7-£,
N and o(N,j) > o(N', ) for all N # N

and ord(N) < ord(N') for all N’ # N for which o(N, j) = o(N', j)
! otherwise

Cj =

The first condition for returning N in the preceeding formula is a sufficient
majority for N. The second condition ensures that no other character state has
a larger vote, and the third condition takes care of the ties. If there are no gap
character states in A, a minimum invariability threshold 7 of 0 yields the same
majority sequence as any threshold within the open interval ]0,1/|A|[. For a
bipartition (split) of an alignment A with majority sequence ¢(A), the majority
sequences of the two subalignments A4y and Ay, c(A)41) and ¢(4y2), can be
different from ¢(A), and from each other.

Also, majority sequences calculated for monophyletic groups are not neces-
sarily equal to their ancestral sequences. The ancestral character states may
simply be lost in the recent species due to substitutions. Moreover, majori-
ties are directly dependent on the choice of voters; they can be manipulated
by many closely related species that are not representative of the monophylum
which they ”dominate”. Since our method will make intensive use of majority
sequences, this highlights the importance of species sampling (see also [22]);
the suitable choice of species makes phylogeny estimation much easier. We will
discuss in section 3.9 why our approach is nevertheless very robust as far as
imbalanced species sampling is concerned. Empirically, the relative majority
rule established in case of 7 = 0 triggers the best results; for minimum 7, a
maximum of information can then be extracted and used to find ”inconsistency
patterns” as described in the following sections.

Running Example, Crustacean alignment

Consider Fig. 2.2 for an example. Here, an alignment of 11 sequences is dis-
played in a shaded box, and the split (bipartition) between sequences 1-8 and
9-11 is considered. The species names (1 Balanus”, ..., 711 Ulophysema”) are
listed on the left, and the column numbers (2, ..., 135) are listed at the bottom.
The alignment is just the first 50 variable columns of the Crustacea alignment
discussed in section 4.4.1; columns containing gaps or unknown nucleotides /
missing data have also been removed. We already used this alignment to illus-
trate Fig. 1.2. (Unknown nucleotides are those which could not be identified
precisely by the investigator. In the examples presented, we will always ignore
columns that contain unknown nucleotides, as well as those for which data are
missing.)
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Figure 2.2: Majority sequences for species 1-8 and 9-11.

w1 —84) GCCAGTGTTGAATCGCTTTAACAATGCTTAGCCTTCATCCGTTCAGTGOT

1 *BALANITT*

2 CHTHAMALUS*

3 *TETRACLITA*

4 +HELONIBIA*

5 +ALANTIOA*

B *LEPAS*

T *OCTOLASMIS*

B *LOXOTHYLACLIS*

8 TRYFETESA
10 BERNDTIA

11 ULOPHYSEMA
o(5-11)

S Em D o

21
22
27
32
33
J4
37
a8
g
40
41
46
49
a0
52
57

cCTacDeMDAACETEEKNCCCTGATCEOACGATCTTCOTTTEAATCTAT A
CCTACDENDAACGDTTDCCCTGATCRIDAAGATCTTCETTTERATCTAT A

For the split 1-8 v 9-11, the species belonging to the first group are marked
by ”*”. The majority sequence of the first group (”c(*1-8*)”) is printed just
above, and the majority sequence of the other group (”¢(9-11)”) is printed just
below these sequences, for 7 = 0. (We will return to this figure in the following
sections, and pay attention to more details.)

2.5 Correct Split, Missplit, Unbacked Split and
the Correct Tree

In this section, we will introduce some more tree terminology that will help
us describe our approach. Mostly, we are concerned with ”truth”: we discuss
correct splits and correct trees. First, let us recall the definition of ”split” given
in section 2.2 : A split G = gl v g2 (read "g1 versus ¢2”) is a bipartition of
the set of species into two nonempty groups, gl and g2.

A tree split is the partition of a tree 7 into two nonempty subtrees,
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T = (T1,7Tz), obtained by removing a single nonterminal vertex v, and one of
its outgoing edges, e = (v,u1). Vertex u; becomes the root of the new tree 7.
To establish the other tree 75 containing w, the former ancestor of v, we remove
the other edges of v and add one edge connecting w with wuy, the other vertex
for which v was an ancestor (see Fig. 2.1, panel 4, on page 20).

For each non-root split of a tree, there is exactly one corresponding split of
the set of its species, but not vice versa. Removing the root vertex and any of
its two outgoing edges gives rise to the same split of the set of species. This
split GTT = g*t+ v gtt at the root vertex is the only split that involves two
monophyla: it involves the largest monophyletic group g7+ and its monophyletic
complement, and it is called the correct split of the tree 7. The missplits
G = g v g are the other (non-root) splits of 7; only one group in a missplit
is still monophyletic, and the other group is ”paraphyletic’. In Fig. 2.3 on
page 30, the correct split is displayed in panel 1, and a missplit is displayed
in panel 2. The unbacked splits are all the other splits of the set of species
into two groups, none of which are monophyletic, and none of which correspond
to a subtree, see panel 2 (above, right). Correct split and missplits form the
set of tree-backed splits, while missplits and unbacked splits are called the
incorrect splits of the set of species, cf. Fig. 2.3, panel 5. Without loss of
generality, we will usually assume that the first group ¢ in a missplit G =gv g
is the monophylum.

We will also talk about the correct split of a monophyletic set of species,
and this will be the correct split of the subtree of these species, if they are
displayed in the context of a larger tree. Then, the correct split of the set of
species is not the correct split of the tree displayed.

Given a set of species, we can single out one tree that we term the correct
tree, or most-plausible tree, or true tree of the species. Its interpretation
shall reflect the evolution of the species by separation and substitution alone, as
defined in section 2.2. (Remember that species are just names used as labels for
the sequences, and that we identify one species with exactly one sequence.) For
biological data, the correct tree is extracted from observations made on natural
entities, and as such, it is a problematic concept. Usually it is based on the body
of knowledge assembled by systematists, employing morphological, paleontolog-
ical and molecular observations. Eventually, its choice is arbitrary — ultimately
it cannot be verified since we cannot look back in time. Furthermore, such a
tree may not exist if our simple model of evolution is inadequate. While some
inadequacies are easy to deal with (e.g. we can use multifurcating trees instead
of bifurcating trees without much problem), other inadequacies are more chal-
lenging. For example, modelling and dealing with reticulate (net-like) evolution
is beyond the scope of this text, and it is listed in section 4.6 on ” Future Work”.
For artificial data, the correct tree is known by the method that was employed
for generating the data.

All tree-related definitions we introduced suggest that we are dealing with
the correct tree. However, terms like ”monophyletic” and ”correct split” are
always defined with reference to a particular tree 7. Whether or not that tree
is the correct tree of the species, these terms just refer to assumptions that are
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implicit in the tree 7, no matter what their biological plausibility is.

In the following sections, whenever we are given a tree 7, we are automat-
ically given all its labels, including all the ancestral sequences. These make it
possible to give precise definitions of the concepts involved. Nevertheless, the
input of our method will only be the aligned sequences of the recent species.

2.6 Shared Novelties, Convergences, Erosion and
Accumulation

Figure 2.3: Novelty, substitution and convergence.

shared novelty
in1-6
correct

c unbacked
c split

split N missplit c 56V 1-4,7
convergence
3) 4
substitution A
A
A
A
A
Cc c
5)
incorrect splits
correct split missplits unbacked splits

tree-backed splits

We now define concepts and terms useful to describe the analysis of the
results of evolutionary processes. Some of these are borrowed from ”cladistics”.
For us, cladistics covers the work started and inspired by Willi Hennig (see e.g.
[10]). Since the usual cladistic terms are not enjoyed by many people in the
bioinformatics community, we use some more intuitive terms.

Given a tree T, and given a monophyletic group g of species, a shared
novelty n in g is a character state n that first appeared as a substitution in the
last common ancestor of g, and was then inherited by at least two species in g.

A shared novelty is marked in Fig 2.3, panel 2 (right). Fig. 2.3, panel 1 (left)
displays another shared novelty; it supports the correct split of 7. A shared
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novelty is also called a synapomorphy, or a shared derived character state.
It is the formalization of the ”valid shared character state” mentioned in the
introductory sections.

A shared novelty n is completely visible, or visible for short, if it is
present in all species of g and in no species outside g. A shared novelty n is
weakly visible, if it is present in all species of g and in no species of the sister
group of g. Both shared novelties in Fig. 2.3 are visible.

It follows from our model of evolution that visible shared novelties are the
currency of phylogeny estimation — one single visible shared novelty about which
we have absolute certainty testifies one monophyletic group; it is enough to infer
one vertex (separation) of the corresponding tree. As we will see in the context of
our divide-and-conquer algorithm, weak visibility is in fact sufficient for correct
tree estimation.

Unfortunately, ancestral sequences and inheritance relationships between
character states are usually unknown, and, for biological data, there are often
only few (if any) shared novelties that are visible. In particular, a big challenge
for phylogeny estimation using molecular data is that shared novelties do not
usually appear as insertions into the sequence, i.e. they do not usually stand
out, aligning with gap characters. They are instead substitutions in alignment
columns that already display a shared novelty that appeared earlier. Not only
is the earlier shared novelty then made invisible, but the phenomena discussed
next may lead us on the wrong track: we start seeing shared novelties that
aren’t there.

Remember from section 2.2 that a substitution is a character state change
across an edge of the tree under consideration. One such substitution is marked
in Fig. 2.3, panel 3 on page 30. To discuss invisible and imagined shared novelties
in more detail, we need to distinguish convergent and nonconvergent substitu-
tions.

Given a tree 7 and a shared novelty n found in a group g of species, a
convergence to n is a character state that first appeared in the last common
ancestor of a group of species g’ disjunct from g, was then inherited by at
least one species in ¢', and is matching with the character state of the shared
novelty, cf. Fig 2.3, panel 4 on page 30. (In the figure, ¢’ consists of the single
species 5.) A convergence is also called a homoplasy, a chance similarity, or
an analogy. It is obvious that a convergence is a substitution, but not every
substitution is convergent to some shared novelty n. Nevertheless, convergences
can be very frequent especially in molecular sequences.

Consider the group of species gt = 1-5 in Fig. 2.4. This time, the sequences
are displayed from left to right, and the species labels (from 1 to 5) are on
the left. In panel 1, the sequence of the first species starts ”GT”, the sequence
of the second species starts ”"AG”, etc; the remaining symbols of each sequence
are represented by e. We assume that the correct split into two subgroups is
gt = gvg =13 v 4,5. We now investigate how incorrect subgroups in 1-
5 may be supported by shared character states that are displayed in columns
subjected to substitutions. In our search for true shared novelties, convergences
— and substitutions in general — can each cause two kinds of errors.
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Figure 2.4: Invisible and imagined novelties.

1) Substitutions (L) in 1-5 render shared 2) Convergences ( O) in 4,5 render shared
noveltiesin species 1-5 invisible. noveltiesin species 1-3 invisible.
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5) Shared Novelties and Erosion : 6) Shared Novelties and Accumulation :
Substitutions ([J) in 4,5 trigger theillusion of Convergences ( ) in 3 trigger theillusion of
further shared novelties in species 1-3. further shared novelties in species 1-3.
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e They render existing shared novelties invisible:

e Shared novelties in g7 are subject to substitutions, see Fig. 2.4,
panel 1.

e Convergences occur in species that do not belong to the monophylum
g- Convergences are the result of those substitutions outside g C g+
that happen to coincide with the character state of the shared novelty
in g, which is then invisible (panel 2).

e Their concerted action triggers the imagination (or illusion) of a shared
novelty although there is none:

e (Old character states are eroded by substitutions in rapidly evolving
species; then the other species in g* have matching old states, which
look like a unique shared novelty (panel 3).

e Convergences accumulate in rapidly evolving species; these species
and the monophyletic group g C gt then have matching, seemingly
unique novel character states (panel 4). These character states are
not shared novelties because they are of different origin: their pattern
does not form a "monolithic” whole — it has no unique source.
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Formally, an invisible shared novelty is a shared novelty that does not
comply with the definition of a ”visible shared novelty”. An imagined shared
novelty in g* C g7 consists of character states that are matching because some
of them are convergent to the others, or because they are leftovers of a shared
novelty that was novel for the last common ancestor of a supergroup g* D g*.

In fact, following up on the formal definition of a shared novelty, we have
just revisited short-branch attraction (erosion) and long-branch attraction (ac-
cumulation) as discussed in the introduction (see 1). Imagined shared novelties
are ”false positives” in search for shared novelties, due to branch attraction
phenomena.

Unfortunately, the identification of shared novelties is complicated further
by the possiblity that they can be found in parallel, that is, in the same species
as their imagined counterpart. In other words, it may just be that branch
attraction phenomena are in concordance with the evolutionary history of the
species, as shown in panels 5 and 6 of Fig. 2.4. On the left, erosion in species
4,5 triggers imagined shared novelties in 1-3, indistinguishable from true shared
novelties in the same species that testify the separation of their ancestor from the
ancestor of 4,5. On the right (panel 6), accumulation of convergences in species
3 to shared novelties of species 1,2 triggers further imagined shared novelties in
species 1-3.

Figure 2.5: Pairwise shared novelties

1) 2)

shared novelty .
in1-4 found in 1,2 shared novelty
in1-4foundin 2,3
3) 2)

33



Our definition of shared novelty is driven by the criterion of usefulness; char-
acter states that are only inherited by at most one species do not qualify because
they do not even contribute ”partial knowledge” to phylogeny estimation, since
they do not support groups of two or more species. Since at least 2 species dis-
play a shared novelty, we can at least place these 2 species together. Imagine the
artificial scenario that some bacteria researcher was able to inhibit the preser-
vation of any substitution in more than 2 species of his/her evolving bacteria,
for some set of 6 species. Given enough shared novelties, we would still be able
to establish the correct split, by combining our knowledge. In the example of
Fig. 2.5, shared novelties in species 1-4 that are found in species 1,2 (red arrows,
panel 1), species 2,3 (blue arrows, panel 2), species 3,4 (green arrows, panel 3)
and a shared novelty in species 5,6 (cyan arrows, panel 4) would testify that the
correct split is 1-4 v 5,6. Furthermore, our definition of shared novelty hints at
the key idea that we develop to estimate phylogenies: shared novelties can ”be
torn apart”, i.e. an incorrect split may feature the novel character state in both
of its groups, and then we may be able to note a ”conflict”.

Figure 2.6: Erosion and accumulation (top); Correct and incorrect rooting (bot-
tom).

accumulation of convergences

1
7 2 4 4
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erosion
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Erosion and convergence accumulation can only be identified if they happen
for many characters simultaneously. We will resort to the notion of a ”novelty
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estimate” which serves as a quantitative measurement that is the higher the less
evidence for erosion is observed.

In a tree setting, both erosion and convergence accumulation are displayed
once more in Fig 2.6, panels 1 and 2. Here, 3 columns of the corresponding
alignment are shown on the same tree; ”AAA” denotes the 3 character states of
the first row (species 1), ?GTC” denotes the 3 character states of the second row
(species 2), and so on. We will soon explain in great detail how imagined shared
novelties due to erosion can be detected by outgroup comparison; this detection
gives us good estimated trees in spite of long branches such as in species 2
in panel 1. Even detection of convergence accumulation (as in species 5 in
panel 2) may be possible by modifying our approach, as mentioned in section
4.6 on ”Future Work”.

2.7 Divide-and-Conquer Phylogeny Estimation

Without the complications just discussed, one weakly visible shared novelty can
be observed for every separation event, and the following ideal divide-and-
conquer phylogeny estimation can calculate the correct tree, given a set of
species G:

e Find the shared novelty involving the largest group of species.
e Divide the set of species into two monophyletic groups:

e The group of species displaying the shared novelty.

e The complementary group of species, or single species.
Insert the corresponding vertex and appropriate edges into the tree.
e Call this procedure for each group recursively.

The complementary group is monophyletic because we use the shared novelty
involving the largest group of species to define the split. Weak visibility is
sufficient because for each recursion step we are dealing with a subset of the
species for which we then have a (strongly) visible shared novelty.

The divide-and-conquer scheme is shown in Fig. 2.7. The top row displays
the recursive split of an alignment of seven sequences, and the bottom row
visualizes the corresponding knowledge that we have about the tree, established
in a top-down manner.

The resulting tree and all subtrees are rooted, and for any kind of divide-
and-conquer technique dividing sets of species, correct rooting of subtrees is a
prerequisite for correct trees, since adding a differently rooted subtree introduces
a different statement about the history of the species in that subtree, see Fig.
2.6, panels 3 and 4, on page 34. In panel 3, the subtree is attached to the
remaining tree via the correct root between species 1-3 and 4,5. In panel 4, the
subtree is rooted differently between species 1,2 and 3-5. Attaching it to the
remaining tree results in a different overall tree.
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Figure 2.7: The divide-and-conquer scheme.
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2.8 Leftovers and Inconsistencies

In the last section, we have described a tree estimation method that works top-
down, from the root to the leaves, finding the correct splits based on known
visible shared novelties. However, usually these are not known. Therefore, we
have to do heuristic searches for best-supported hypotheses of the correct split,
encountering incorrect splits along the way, and the question is how to detect
these. We will first deal with missplits, and then with unbacked splits.

2.8.1 Benign Leftovers Show up in Missplits

A missplit G = g v g (i-e. a split that still involves one monophyletic group g)
can usually be detected by observing shared old character states ("leftovers”)
in g, as follows.

Given a tree 7, a monophyletic group g of species, and a monophyletic
supergroup g"‘ig, a shared leftover for g in g7 is a shared novelty in g+

that was inherited by at least one species in g, cf. Fig 2.8, panel 1. A shared
leftover, or leftover for short, is also called a symplesiomorphy, or a shared
old character state. It is an "old” state for g and defined with respect to
g+, in which it is a new character state, a shared novelty that testifies its last
common ancestor.

It is important to note that up to now, all the ”shared old character states”
that we have dealt with in an informal way have been leftovers in the whole set
of species under consideration, that is in g Ug. In other words, their point of
reference is the whole set of species — they are shared novelties already featured
by the last common ancestor of this set. That’s why they cannot help to detect
missplits in g U g, since they are not shared novelties in a subset of g Ug which
could be torn apart by a missplit. (The whole set of species is always torn
apart by a split — no information about the correct split is provided by shared
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Figure 2.8: Visible, benign and malign leftovers.
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novelties #n g Ug.) Shared old character states in the whole set of species can
only misguide the analysis, if they are eroded away in some species.

Yet in other words, the value of leftovers depends on the group under con-
sideration. They are useful only if they testify exclusive common heritage of a
subgroup of the species under consideration, because they are shared novelties
in these subgroups. Mathematically, the condition g U ying ensures that gt

is a subgroup of g U g, and this ensures that the "leftover in g*” need not be
useless.

A malign leftover for g in g% is found in g only (Fig 2.8, panel 2), whereas
a benign leftover for g in g7 is found in the majority of species of g, and in
gt — g, as in Fig 2.8, panel 3. A visible leftover for g in gt is a benign
leftover present in all species of g7 — g, cf. the first panel in Fig 2.8. Given
no ancestral character states, benign leftovers can help us to see the conflict in
a missplit. Only visible leftovers for g in g7 can guide us towards the root of
the tree, by identifying a larger monophyletic group g*, as in panel 1. Only
visible leftovers for g in g+ can identify the root, and therefore the correct
split, Gt1 = gt+ v gt cf. Fig. 2.8, panel 4. Note that only the majority of
species of g must display a visible leftover. For example, it does not matter
whether one species in g (like species 2 in all panels) features a character state
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Figure 2.9: Valid and invalid inconsistencies.
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that is different.

A benign leftover in g7 may be confused with a shared novelty in g and a
corresponding convergence if we don’t know the ancestral character states.

A visible shared novelty in gt will trigger a visible leftover for any subgroup
g of g*. Invisible shared novelties may nevertheless give rise to visible leftovers;
the conditions for this depend on the majority of species making up g. Some
of the power of our method stems from the fact that visible leftovers do not
require visible novelties, as in Fig. 2.8, panel 4.

2.8.2 Inconsistencies Flag Benign Leftovers

Given a split G = g v g, a character state in g that is part of a variable subcol-
umn is called an inconsistency, if it is matching with the majority character
in g. Throughout this text, inconsistencies are marked by circles. Per definition,
benign leftovers for g in g are flagged by inconsistencies; these are found in
gt —g ; g. However, inconsistencies do not just flag leftovers. Inconsistencies

also appear if we investigate unbacked splits, as shown in subsection 2.8.3, and
they may be due to erosion and accumulation as discussed in subsection 2.8.4.

The term ”inconsistency” is derived from the observation that an inconsis-
tency violates a rule like ” only the species in the monophyletic group g have
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character state A”. In other words, the inconsistency reveals that the rule is in-
consistent. On the other hand, substitutions of A within g testify incompleteness
of the rule.

2.8.3 Inconsistencies Flag Apparent Leftovers in Unbacked
Splits

In an unbacked split G* = g* v g*, group g¢* is not monophyletic, and we
expect inconsistencies in the form of ”apparent leftovers”, cf. Fig 2.9, panel 1.
Here, we investigate the assumption that g* is monophyletic, but we observe an
apparent leftover in g* that features the same character state as g* (A in the
first species); g* is the non-monophyletic subset of a monophylum and it does
not include all species displaying the visible shared novelty. Fig. 2.9, panel 2
displays a similar situation. (Strictly speaking, we observe an apparent leftover
in species 1, and a benign leftover in species 4-6.) In panel 3, group g** is not
monophyletic. However, the inconsistency in species 7 does not indicate this. It
is mot due to a shared novelty that testifies any monophyly within species 1-6.
Instead, the inconsistencies in panel 4 are the apparent leftovers showing that
g** is not monophyletic.

2.8.4 FErosion, Accumulation and Leftovers

Finally, inconsistencies may also flag erosion and convergences. For example, the
inconsistency in Fig. 2.9 panel 3 is due to erosion in species 1-3, and investigating
the correct split 1-3 v 4,5 of species 1-5 in Fig. 2.6, panel 2, on page 34, the
inconsistencies in species 5 are due to convergences. The inconsistencies in
panel 1 of the same figure, where the correct split of species 1-5 is investigated
as well, are the ”A’s” found in species 1 and 3, and they are due to erosion in
species 3.

We can say that our phylogeny estimation method will be based on penalizing
leftovers, apparent or not. It tries to ignore inconsistencies due to erosion, and it
may fail in the case of convergence accumulation, at least in the form presented.
Furthermore, apparent and benign leftovers due to shared novelties may be
overshadowed by inconsistencies due to erosion, if erosion affects exactly the
species in a monophyletic group of the correct split. This is just rephrasing the
observation we made for Fig. 2.4, panel 5, on page 32, where erosion happens
in parallel with the evolutionary history of the species.

It is important that only character states in variable subcolumns are con-
sidered for inconsistency analysis; the species in g Ug are assumed to be mono-
phyletic anyway, and ”inconsistencies” in fixed columns would just reveal this
monophyly.

39



2.9 Inconsistency Patterns and Pattern Counts

Inconsistencies as defined in the last section are not relevant if they are just
”scattered around” in the various species. What we are interested in are patterns
of these.

Given a set of species I = {i1,...,ig} C {1,...,m}, a pattern type is simply
a proper subset of I, excluding () and I itself. Given an alignment A of length
g and a split G = g v g, the two pattern types found in a character (alignment
column) j € {j1,..., jq} are

e t =t(j), the list of species from g which display an inconsistency, and
e t =1(j), the list of species from g which display an inconsistency.

Any or both lists may be empty. No duplicate entries occur in these lists such
that we can always consider a canonical repeat-free list of species in numerical
order, and we can also use set notation. In Fig. 2.8, panel 1, g is 1-3, and if
g is 4-7, the pattern type in g is ”4,5”. In Fig. 2.9, panel 1, the inconsistency
pattern type is ”1”. A pattern is the presence of a pattern type in one or more
alignment columns. The split 1-3 v 4,5 in Fig. 2.6 on page 34 has pattern ”1,3”
in panel 1, and pattern ”5” in panel 2, displayed in all 3 columns.

By inspecting the entire alignment, we can prepare two lists of patterns.
For each subgroup g and g, we list the subsets of species from the subgroup that
display inconsistency patterns. The columns supporting pattern ¢ in g are
given by

C(t) ={Jj € {j1,--,Jq}, such that for alli € g:a;; =¢;(g) < i€ t},

where
c(g) = (¢, (9), -, ¢5,(9))

is the majority sequence for g. The columns supporting pattern ¢ are the
columns in which inconsistencies are observed exactly in the species making
up t.

The pattern count of pattern ¢ is the number of columns supporting ¢; it
is also denoted by s(t). The list of all patterns in g is T' = T(g) = {t1, ..., t|7}.
T'(g) is empty if there are no inconsistencies in any subcolumn.

Running Example, Crustacean alignment

Let us continue our running example. In Fig. 2.10, we investigate the split
G = g v g =1-10 v 11. The majority sequence of 11 coincides with the sequence
itself. Its character states form a pattern ¢ = ”9,10” in columns C = 6, 22, 41,
46, 49, 50, 62, 89, 90, etc. (We will return to this figure very soon in the context
of matching rates calculated by outgroup comparison.)

In Fig. 2.11, we investigate the split G = 1-8 v 9-11. (We have already
investigated this split in Fig. 2.2.) In the first column, which is column 2 in
the complete alignment of the dataset investigated in section 4.4.1, the majority
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Figure 2.10: Inconsistency patterns in 1-10.

1 *BATANIIS*

2 MHTHAMALUS*
3 *TETRACLITA
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B *LOXOTHYLACIIS*
8 *TRYFETESA*

10 *AERNITIA*

11 ULOPHYSEMA
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of 1-8 is G, and the majority of 9-11 is C. Species 11 displays an inconsistency,
its character state matches the majority character state of the other group.
This observation can be made for columns 2, 32, 33, 40, 75, 129 and 134. The
character states of the majority sequence of 1-8 form another pattern ”79,10” in
columns 10, 15, 21, 39, 63, 70, 122 and 135. The white background color flagging
species 9,10 already hints at their better fit with species 1-8 than with species
11; it indicates a conflict due to the exclusive common heritage of species 1-10,
and this conflict is found in the columns indicated. (The color coding of the
alignment is based on a product of row scores and column scores. The ”species
conflict” to be defined in section 3.9 is used as the row score, and the column
score is defined analogously. Red indicates high scores, and white indicates low
scores. The columns in question do not have a completely white background
because there is no conflict in 1-8; yielding an average column score of one half.)
We will return to this figure very soon.

In Fig. 2.12, we investigate the split G = 1-9,11 v 10. The majority sequence
of 10 coincides with the sequence itself. Its character states display an inconsis-
tency pattern t1 = ”9” in columns C; = 2, 32, 33, 40, 57, 75, 129, 132 and 134,
and a pattern t2 = ”1-9” in columns C» = 15, 21, 39, 63, 122 and 135. Again,
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Figure 2.11: Inconsistency patterns in 9-11.
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the white background for species 9 indicates that the split 1-9,11 is in conflict
with the common heritage of species 9 and 10. (If we go beyond analyzing the
first 50 columns, the other conflict, found in species 1-9 due to the common
heritage of species 1-10, will become more pronounced.)

In Fig. 2.13, split G = 1-7,10,11 v 8,9 triggers 4 patterns, one in 8,9 and
three in 1-7,10,11. The monophyly of 9,10 triggers inconsistencies in species 10
in 1-7,10,11. Tt does not trigger inconsistencies in species 9 in 8,9, except by
coincidence, because species 10 cannot gain any majorities in 1-7,10,11. The
monophyly of 1-8 triggers inconsistencies in species 8 in 8,9, and in species 1-7
in 1-7,10,11. Finally, the monophyly of 1-10 triggers inconsistencies in species

1-7,10.

2.10 Valid and Invalid Inconsistencies, and Divide-
and-Conquer Revisited

We have just seen in section 2.8 that we can expect the observation of inconsis-
tencies in incorrect splits. However, we need to distinguish valid and invalid
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Figure 2.12: Inconsistency patterns in 1-9,11.
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inconsistencies:
e In the case of a missplit, valid inconsistencies result from benign leftovers.

e In the case of an unbacked split, valid inconsistencies may flag apparent
leftovers.

e In the case of any split, invalid inconsistencies may result from erosion
and convergence accumulation.

In our running example, Fig. 2.10 gives an example for invalid inconsis-
tencies, given the correct split. Fig. 2.11 and 2.12 give examples for valid in-
consistencies triggered by a missplit, and Fig. 2.13 gives an example for valid
inconsistencies triggered by an unbacked split.

Consequences resulting from the two types of inconsistencies are dramati-
cally different: convergences and erosion must be ignored, while identification
of valid inconsistencies implies a new hypothesis about monophyly. We will
soon resort to a quantitative estimation of the phenomenon, that is a ”validity
estimate” based in particular on the “novelty estimate” calculated for an incon-
sistency pattern. It is designed to be proportional to the likelihood that shared
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Figure 2.13: Inconsistency patterns in 1-7,10,11 and 8,9.

c(+B.30) CACACCGTTAACCGGCTCCAACAACGCACAACCCCCECGCBAACAGAGAT
1 BALANUS G oGRC TGNDG A AT cBEDT TABTABDTEOT TECCC TTCAT cCBT TCHEDTECD
2 CHTHAMALLS GCORG TONDeAAT CORDT TARCARTET T TEOCTTCAT BT TEHRETGD
3 TETRACLITA 7 |6 CORG TANDG A AT COTDT TAECABTET T TERCOCTTCAT CCRT TCAETEHD
4 CHELGNIEIA G COGOTEIDG A ¢ A CBRDT TARDCATEOTORCOC T TCAT CCOT TCAETGUD
5 CALNTICA % GCOGETANDG A ATECADT TARCABTGOT TASOC T TCAT CCOT TEAL TGN
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TR = = . ]

(1=710,11) GCCAGTGTTGAATCGCTTTAACAATGCTTAGCCTTCATCCEGTTCAGTGET

novelties torn apart or convergences are the reason for the inconsistency pat-
tern. Of course, we would be much happier if our estimate were proportional
to the likelihood that only shared novelties torn apart are the reason for the
inconsistency pattern.

Basing invalidity of inconsistencies on erosion alone will nevertheless yield

good empirical results, and we conjecture that erosion is the predominant phe-
nomenon at least in the datasets we investigated. On the downside, we believe
that one major failing condition of our method will occur if shared novelties are
outvoted by convergence accumulation. For chance substitutions, we would ex-
pect that only one in three substituted nucleotides are convergences, but highly
evolved species may nevertheless be subject to this problem. Convergence accu-
mulation leads to conflict for the correct split, in the form of a seemingly valid
inconsistency pattern. It is one of the reasons why we cannot always expect a
minimum conflict close to zero. In particular, an increase in the frequency of
some character states at the expense of others, like an abundance of A and T in
some species only, may cause convergence accumulation. If, furthermore, there
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are incorrect splits that do not trigger conflict because there is no sufficient
number of shared novelties that give rise to valid inconsistency patterns, our
method fails because it favors an incorrect split that displays lowest conflict. If
more than one split involves a conflict close to zero, at least we know that there
is a problem. If, on the other hand, all splits involve some significant conflict, we
also know that there is a problem. We can use multifurcating trees to highlight
such problems — this is ” Future Work”.

As we have seen in Fig. 2.4, panel 5, on page 32, another failing condition
may occur if erosion and the separation event leading to speciation occur in
parallel. We will continue the discussion of these problems in section 3.5.2.

If we search for the split with minimum conflict, i.e. a minimum of valid
inconsistencies, and then proceed top-down, from the root to the leaves, we ob-
tain a heuristic version of the ”ideal divide-and-conquer phylogeny estimation”
presented in section 2.7 : Given a set of species G,

e Find the split with minimum conflict.

e Divide the set of species into two putative monophyletic groups, according
to the split with minimum conflict.
Insert the corresponding vertex and its edges into the tree.

e (all this procedure for each group recursively.

In section 3.13, we will give a detailed exposition of this algorithm.
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Chapter 3

Minimum Conflict
Phylogeny Estimation

3.1 The MmcoPE Cascade

In the last chapter we have seen that the identification of inconsistency patterns,
that is the systematic occurance of the majority character state of one group of
species in another group of species, can be used to design a phylogeny estimation
algorithm. The algorithm can be successful, if we are able to establish the
validity of these patterns, that is the likelihood that they are due to shared
novelties torn apart, and not due to branch-attraction artifacts that are caused
by a different amount of evolutionary change in one of the groups. The following
are the crucial steps of our approach:

e Based on outgroup comparison, we calculate an estimate for such a pattern
validity.

e Then, we do a heuristic search for a minimum of conflict caused by ”valid”
patterns (see Fig. 1.3 on page 13).

¢ Finally, we apply our algorithm recursively (see Fig. 2.7 on page 36).

We will evaluate inconsistency patterns in a cascade of calculations designed
to filter out invalid ones. These invalid patterns will include patterns with a high
outgroup-based ”validity estimate”, if the number of supporting columns is so
low that the validity estimate must be deemed unreliable. The cascade receives
input from outgroup comparison via matching and preservation rates and from
the actual number of columns supporting a pattern. Sigmoid functions are used
to trigger clear decisions whenever possible.

Fig. 3.1 is a chart of the MCOPE cascade. Moving bottom-up in the chart, we
will discuss the "novelty estimate” in section 3.5, and ”species softness” in sec-
tion 3.4. Both give rise to the ”validity estimate” introduced in section 3.6. The
"reliable pattern count” is discussed in section 3.7. The ”conflict” due to shared
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novelties is the subject of section 3.8. First however, we will discuss sigmoid
functions like excess and advised, which are an important generic ingredient of
the cascade.

Figure 3.1: The MCOPE cascade.
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states in other columns shared character states outside pattern of pattern species

3.2 Sigmoid Functions

This section is concerned with ”sigmoid” functions that are used throughout
the MCOPE cascade of signal amplification and filtering. These ”sigmoids” are
applied whenever two values are compared, and their input is the difference of
these two values. Their effect is twofold:

e The input is amplified whenever it is positive, and it is amplified the more,
the larger it is.

¢ The input is squashed whenever it is negative, and it is squashed the more,
the larger its absolute value is.

Both amplification and filtering (squashing) can be seen as a natural component
of information processing, and the use of sigmoids is common in information pro-
cessing applications from both engineering and computer science. (Some people
believe that sigmoids are also a good model for some aspects of information
processing in the brain, and if we interpret our method as a formalization of
the application of Hennigian logic to molecular systematics by trained system-
atists, then we may conjecture that sigmoids model their decision process in
some reasonable way.)
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Figure 3.2: Sigmoid activation of a single input value.
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The functions used are called ”sigmoid” because they make, in one way or
another, use of the sigma-shaped standard activation function
1

Y= 1qeer

where z €]—00..00[ is the input, and 6 € ]0..00[ is a scaling parameter controlling
the smoothness of the slope. Fig. 3.2 displays the input-output correlation for
different values of slope smoothness. The sigmoid activation function is also
called the logistic function. (In some neural networks, the function is used
to activate z, the weighted sum of neuron inputs, and the result is the neuron
output).

We start with a treatment of ”sigmoid” functions which

e activate the difference between two values,

¢ allow a value to advise another one,

e activate a count value, weighted by another activated variable, and
e implement a smooth OR-function.

Once we analyze the running time of our algorithm, we will assume that all
these sigmoid functions take unit cost, i.e. O(1).
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Figure 3.3: Activation of the difference between two values.
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3.2.1 Activation of Differences

For § = 0.1, Fig. 3.3 displays the activation of the difference of two values
(standard and observed), with the property that the return value is the higher,
the larger the excess of standard with respect to observed is. The formula is

1
1+ e—(standard—observed) /6’

excessy(standard, observed) =

based directly on the logistic function. As an example, we will use this function
to evaluate the difference between two outgroup matching rates, one (called
the ”observed matching rate”) derived from the columns with shared character
states and the other (called the ”standard matching rate”) derived from ”the
other columns”. The comparison will yield higher ”novelty” estimates the more
the ”standard” rate exceeds the ”observed” one.

3.2.2 Advice

Based on a similar sigmoid formula, we can let some value advisor, advisor €
[0..1], influence another value preliminary, preliminary € [0..1], depending on
the ambiguity of the latter. See Fig. 3.4 for an example; the closer preliminary
is to 0.5, the more advice is taken. The underlying formulas are, given a smooth-
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Figure 3.4: The ”advice” value influences the ”preliminary” value.
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ness parameter 6,
w = abs(preliminary — 0.5) + 0.5,

Y = w - preliminary + (1 — w) - advisor,
1
14 e (20570,

where w is the weight that is given to preliminary depending on its ambiguity,
Y is the weighted sum of both preliminary and advisor, and the final result
is an activation of this weighted sum. If preliminary is 1, the weight w is 1,
and the weighted sum ¥ is 1 as well, and if preliminary is 0, w is 1, and ¥ is
0 as expected. For other values of preliminary, the weight is at least 0.5, and
the weighted sum is between 0 and 1. To match this [0..1] interval to the input
interval of the standard sigmoid function, we need to transform the weighted
sum by substracting 0.5, resulting in an interval with 0 in the middle.

In Fig. 3.4, the advised function is shown, where 6, is set to the standard
0.1. We will use this function to give some influence on the novelty estimate to
a weaker criterion of novelty, i.e. the ”species softness”, yielding the so-called
”validity estimate”.

advisedy, (preliminary, advisor) =
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Figure 3.5: Activation of an instance count via different formulas.
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3.2.3 Amount of Evidence

The values activated up to now are in the interval [—1..1], but sigmoid activation
works as well for values in the interval | — 0o..00[. In particular, we can compare
two instance count variables, and we can weight an instance count variable s
with the result of its comparison to a threshold, so:

1

excessy,(s,s0) - 5 = 1+ e (5-50)/8: °

The more s exceeds sq, the more s can retain its value. Given s, excessy, (s, so)-s
will be interpreted as the number of instances that we have available to reach
reliable conclusions based on some property of these.

If we observe an instance pattern count s €]0..00[, and are given an acceptable
instance count Sg, to which we assign a reliability of one half, the preceding
formula will result in one half the observed count, if the observed is equal to the
acceptable count, i.e. s = sg. The formula will yield activated counts close to
zero if the observed count is far below the acceptable one, s << sg, but it will
not suppress an observed count that is far ahead, s >> sg.

The sigmoid activation of instance counts is shown in Fig. 3.5, in black (for
s0 = 32.417). We will soon discuss the other plot in this figure — we will prefer
such a curious kind of activation for reasons that will be explained soon. The
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Figure 3.6: Activation of a confidence estimate via different formulas.
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odd number 32.417 is taken from the sample data of section 4.4.1, calculated as
explained in section 3.7 starting on page 80.

Sigmoid activation may also be used to activate the difference between an ob-
served confidence estimate, v € [0..1], and a standard, acceptable confidence
estimate, vg € [0..1] :

1
excessy, (v,v9) = 1T o w)/o

Given v, excessg, (v, vg) will be interpreted as the amount of confidence that
we have in some property under investigation. Strong confidence is amplified,
weak confidence is squashed.

The slope smoothness 6, is set to the usual 0.1. The sigmoid activation of
the confidence estimate is shown in Fig. 3.6, in blue (for vo = 0.5), and in black
(for vg = 0.75). We will soon discuss the other plots in this figure — suffice it to
say that we will settle with the green plot. (Care has been taken to render the
color designations redundant wherever necessary, by labelling all plots in a way
that identifies them directly).

Combining both formulas, we will now design an activation scheme that
takes an instance count and a corresponding confidence estimate, and thresholds
(acceptable values) for each. It suppresses small instance counts as well as any
instance count with low confidence, by multiplying the activated instance count
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Figure 3.7: Weighted activation of instance counts .
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by its activated confidence estimate, and it yields the amount of evidence.

For example, the input can be a pattern count and its validity estimate. Then
we suppress patterns with small counts and/or low validity, and we obtain what
we will call the "amount of evidence for shared novelties” that is behind the
conflict in an inconsistency pattern.

As another example, imagine that we listen to a piece of music via short-wave
radio. Due to distortion, we can just listen to low-quality fragments. What is
the amount of evidence that we listen to a piece of music known to us 7 At least
two conditions must be fulfilled:

o We cannot tell from just a few fragments even if we recognize them well;
the similarity may be due to chance alone.

e If we do not recognize the fragments (low confidence estimate), there is
no evidence for a known piece either, no matter how many fragments we
hear.

The formula for the amount of evidence is as follows.
evidence(s,v) = excessy, (s, so) - s - excessy, (v, vp).-
See Fig. 3.7 for a display of this function in case of sg = 32.417, vg = 0.75,
0, =4.322 and 6, = 0.1.
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In general, both sg and 8, will be estimated from the data as explained in
section 3.7; the odd values taken here are the ones derived from the example data
discussed in section 4.4.1. An acceptable confidence estimate of vy = 0.75 follows
from the idea that the activated confidence estimate is used as the multiplier
for the activated instance count. Then, if the confidence estimate is 0.75, right
in the middle between 0.5, which is the case of doubt, and the maximum at 1,
we want the multiplier to be 0.5, cutting the activated instance count by one
half. As before, a slope smoothness 6, = 0.1 is standard for values activated in
the interval [—1..1].

Using the plain formula for evidence(s,v), a small confidence estimate will
still trigger a non-zero activated confidence estimate. Multiplying a sufficiently
large activated instance count by such non-zero activated confidence will incor-
rectly flag some residual amount of evidence. In the ”piece of music” example,
lots of fragments that we do not deem recognizable will nevertheless contribute
some evidence, if we are not completely sure, that is, if our confidence is slightly
larger than zero.

In our case, multiplying activated inconsistency pattern counts by their ac-
tivated validity estimate, patterns with a very small validity estimate can still
flag shared novelties if their count is high enough. Let us assume that a pattern
is reliable, but due to erosion. It occurs in 250 columns, and its validity estimate
is 0.25. Then we have,

evidence(250,0.25) = 250 - excessg.1(0.25,0.75) = 250 - 0.0067 = 1.673.

Even a small validity estimate of 0.1 still flags a small residual amount of evi-
dence for shared novelties,

evidence(250,0.1) = 250 - excessp.1(0.1,0.75) = 250 - 0.0015 = 0.375,

which most certainly is an artifact.
To achieve a non-residual activation, we simply multiply the scaled dif-
ference ((0.25-0.75)/0.1 = -5) with itself a number of times:

(=5)* = —125, (—5)° = —3125.

For the examples just discussed we obtain, using exponent 5,

: 1
evidences(250,0.25) = 250 - 1 —a=gam e = 290 0=0

and 1
evidences(250,0.1) = 250 - 1+ e (1 0m)/01F = 250-0=0.

Since scaled differences may be negative, valid exponents are the odd numbers
3, 5, 7, etc. The modified formula for the non-residual activation of a confidence

estimate v is 1

1+ e~ ((v—v0)/6o)7 "

excessg, n(v,v0) =
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Analogous arguments can be brought up in favor of a non-residual activation of
an instance count s, and the corresponding formula is

1
ercesso.n(% 50) = TG

In both formulas 7 can be any odd integer.
The combined formula is

evidence,(s,v) = excessg, ,(s, so) - s - excessg, ,(v,vo)-

A plot of this formula is displayed in Fig. 3.8 using the same parameters as in
Fig. 3.7, and n = 5. The non-residual activation of a count variable is given
in Fig. 3.5, in green (so = 32.417, non-residual) and the same activation of the
confidence estimate is shown in Fig. 3.6, in red (vo = 0.75, non-residual).

Figure 3.8: Non-residual weighted activation of instance counts .
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A second issue arises if the acceptable confidence estimate is not 0.5. Then,
the intervals to the left and to the right of the threshold value are of different
length, even though the smoothness of the slope is the same. For example, using
an acceptable confidence estimate of 0.75, confidence estimates are completely
suppressed as they approach 0.5, as can be seen for the red plot (vo = 0.75,
non-residual) in Fig. 3.6. If we wish to give influence to ”cases of doubt” with
confidence estimates around 0.5, we may use a ”translation” and move the

55



Figure 3.9: Symmetric, non-residual weighted activation of instance counts .
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acceptable confidence estimate towards 0.5, cf. the cyan plot (vo = 0.5, non-
residual) in Fig. 3.6. Or, we may use symmetric scaling. Symmetric scaling
simply means that all scaled differences stemming from the larger subinterval,
like [0,0.75], are divided by 3, because the interval is 3 times larger than the
smaller subinterval [0.75, 1]. More formally, given an acceptable confidence esti-
mate vg, we rescale the interval to the left, dividing by 1_205: which is the ratio
of the lengths of the two intervals. For vy = 0.75, we obtain a ratio of 0.75:0.25,
or 3:1.

In the ”piece of music” example, we now maintain that sufficiently many
fragments can give evidence even if we are in doubt. In our case, a pattern
with doubtful validity will flag some amount of evidence for shared novelties if
it occurs with sufficient frequency. In both cases, very strong doubt will still
give no residue of evidence.

Symmetric scaling can be expressed by the following formula:

if v Z Vo,
otherwise .

Dq —_ 1
e:ccessovm(fu, vo) = T 070
1

—((o—v —Ug .
Lm0/ (T255 07

A plot of the combined formula is displayed in Fig. 3.9, again using the same
parameters as in Fig. 3.7. The underlying formula is now

evidence)'(s,v) = excessy, (s, s0) - 5 - excessy, (v, v0),
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adding the > symbol and the exponents 7 to the formula on page 53. For the
axis of the confidence estimate, the smoothness of the slope is now in line with
the size of the interval. The symmetric non-residual activation of the confidence
estimate is shown in Fig. 3.6, in green (vo = 0.75, non-residual, symmetrical).
Although both symmetric scaling and translation give more weight to cases of
doubt, they yield very different results in practice, because in case of symmetric
scaling, the threshold yielding an activated confidence estimate of 0.5 can still
be 0.75, even though estimates below 0.5 are not completely suppressed.

In summary, we want to ensure that the following two conditions apply to
the amount of evidence:

e Suppress doubtful cases (1/3 < v < 3/4) moderately by more than one
half, but don’t ignore these.

e Suppress very doubtful cases (v < 1/3) rigorously, even if the instance
count is very high.

We conjecture that strong symmetric scaling is the natural way of accomplishing
this. As can be seen from Fig. 3.6, the first condition is not met for vy =
0.5, irrespective of non-residual activation (blue and cyan plots), because the
suppression is insufficient. The first condition is not met either for vg = 0.75
with non-residual activation (red plot), because the suppression is too strong.
The second condition cannot be met without non-residual activation because
otherwise suppression is insufficient for v < 1/3 (black plot, vg = 0.75). The
green plot (vp = 0.75, non-residual, symmetrical) is the only survivor; it meets
both conditions.

3.2.4 Smooth OR

Following up on the formula for advice presented in subsection 3.2.2, we can
design a smooth way to take the ”OR” of two values in the interval [0, 1], by
just weighting both values independently, as follows.

Given a smoothness parameter 6y,, we set

Wz, = abs(zg — 0.5) + 0.5,
wz, = abs(z1 —0.5) + 0.5,

Y =Wy - To + Wy, - 21,

where w;, is the weight that is given to x¢, wy, is the weight of z;, and X is the
weighted sum of the input values. Their smooth OR evaluates to

1
14 e (2-05)/0nq"

org,,(To,21) =
A plot of this function is shown in Fig. 3.10, for the standard slope smooth-

ness p, = 0.1. Given an inconsistency pattern, we will use smooth OR to
estimate the possibility that another pattern is just its transformation, and
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that both should be treated alike. This possibility depends on the hamming
distance of the two patterns, and the ”softness” of their symmetric difference.
Basically, if only one of these two criteria is met clearly, the possibility is high,
and if both criteria are met moderately, it is high as well.

Figure 3.10: Smooth OR.
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It is a nice observation that empirically, a good slope-smoothness parameter
for any activation of values in the interval [0,1] is 0.1. A thorough, but not
exhaustive investigation indicates that 0.1 is also a close-to-optimal value for
the biological data that we will deal with. We will even use the ratio of 8, = 0.1
to vg = 0.75 as the criterion to calculate 6, given so. (And indeed, 0.1/0.75 =
4.322/32.417, cf. page 53).

3.3 Matching Rates and Preservation Rates

We will now turn our attention to the identification of substitutions in the
alignment of sequences belonging to a set of species. The preservation rates
defined in this analysis will serve several purposes:

e They give rise to a weak estimate of pattern novelty which we will call
”species softness”.

e They are used to guide outgroup maintenance.
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e They play a role in calculating a similarity score on the set of pattern
types.

The first two issues are discussed in section 3.4, purpose number 3 is high-
lighted in section 3.10, and the final item is followed up in section 3.12. More-
over, in this section we will define matching rates in general. Specific matching
rates will play a major role in the upcoming sections.

Tackling a split G = g v g, we cannot precisely identify substitutions (and,
subsequently, erosion or convergence accumulation) unless we know the ancestral
sequences. However, a rough estimate is possible if an outgroup gO is given. An
outgroup g0 for G = g v gis a set of species that are not among the descendants
of the last common ancestor of G, lca(G). Nevertheless, the majority sequence
of the outgroup is used as an estimate for lca(G). Our method assumes that this
is a good estimate for purposes of matching rate comparison. (We will assume
that the outgroup is of constant size, or of size linear in the number £ of species
currently studied.)

A matching rate is the frequency of matching character states, defined for
two disjoint groups of species that are to be compared, and a set of columns J
in which the comparison takes place. In formal terms,

m(Il,Ig, J) — |{-7 €J: CJ(II) — CJ(I2)}|,
||
where I; and I, are the two disjoint groups of species, and ¢;(I) is the majority
character state of the species making up I, at column j.

Given two matching rates m(7, I*, Jy) and m(I, I*, J>), and sufficiently large
column sets J; and Jo, we will assume that a change of I'* to I** does not have
a major effect on their quotient. We assume that both matching rates go up if
group I** is closer to I than I* is, and that they both go down if group I** is
farther away.

More specifically, given a set of species ¢, where t C g or ¢t C g, an outgroup
g0 and two sets of columns J; and J2, we evaluate quotients of the form

m(ta gO; Jl)
m(t7 gOJ J2) ’

If we assume that for any two groups of species I* and I**, which do not need
to be recent, and for all sufficiently large column sets J,

m(tJ I*7 J) ~ W(I*7 I**) ) m(t7 I**7 J)7

where 7 is a constant depending of the length of the path between I'* and I**,
then we have approximate equality of quotients as follows:

m(ta gO; Jl) ~ m(ta lca’(g)a Jl)
m(t,90,J2) ~ m(t,lcalg), J2)’
for a wide range of outgroups gO and sufficiently large column sets J; and Js.

In other words, the outgroup is a good estimate for the last common ancestor
of g for the purpose of matching rate comparison.
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So let us assume that we are able to provide an outgroup for each split of
species we tackle. In the beginning, the outgroup is supplied by the user. Out-
group maintenance across the divide-and-conquer steps is discussed in section
3.10.

A deviation in G is a character state in a species ¢ € G which is not
matching with the one estimated for the last common ancestor of G. If the
estimation is correct, and if no substitutions back to the ”ancestral” state have
occured, a deviation is just a substitution, and vice versa, cf. Fig 2.3, panel 3
on page 30, where the ancestral character states are known. Another example
are the nucleotides marked by squares in Fig. 3.11, where the outgroup is used
as an estimate for the ancestral states. A character state that is not a deviation
is called a "preserved" character state. (The quotation marks remind us that
a deviation does not need to be a substitution after all.)

Let an alignment A = (a;)ic{i,,....i,} = Qiys -+ Qiy e Gy, Where {i1, ..., 00} C
{1,...,m}, of length ¢ be given. As usual, we ignore fixed columns. We can
calculate a preservation rate for individual species by calculating the relative
number of ”preserved” character states displayed. Given an outgroup gO, the
preservation rate of species i is defined as

) = 90, i) = L0} 011 = GO

where
c(90) = (¢;,(90), -, ¢5,(90))

is the outgroup majority sequence. Note that ¢; (%) is a;,;. In the next section, we
will start comparing matching rates in the form of preservation rates calculated
for various species.

The time complexity for calculating the preservation rate of all species in
g is O(¢q), since the outgroup majority sequence takes at most O(£q) for an
outgroup of size O(f), and preservation rate calculation takes at most O(q) per
species.

Running Example, Crustacean alignment

In Fig. 3.11, we consider the same alignment and the same split as in Fig.
2.10 on page 41, but marks and color codes are for preservation analysis, not in-
consistency analysis. In fact, the split does not matter for preservation analysis;
we could have taken any other one. The outgroup (species 12) is printed in red.
Squares are used to mark deviations, and the preservation scores are listed next
to the species names. There are 50 variable columns. The preservation of the
first species, Balanus, then is 0.460 = 227 since there are 27 deviations from
the outgroup. We note that preservation in species 8 is particularly low, and
species 11 is the most preserved. The color coding of the alignment is simply the
product of the preservation rate of the species and an analogous column score;
high values are indicated by red, low values trigger white color. As expected,
species 8 stands out, as do columns 2, 27, 63, 131, 132 and 135. (As before,
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1 *BALANITS* 0.460

2 *HTHAMALUS® 0,480

I #TETRACLITA* 0,460

4 *CHELONTBIA* 0.400

5 *CALANTICA* 0.380

B *LEPAS* 0.420

7 *OCTOLASMIS* 0.420

B *LOXOTHYLACLE* 0.340

9 *TRYFETESA* 0.520

10 *BERNDTIA* 0.520

Figure 3.11: Preservation rates in 1-11.

[Elc ¢ AGT T TG T ¢ & ¢ T TTARCWATEENTHAREE T T SATCE MR METET]
[BlecAETe T TGRAK T 66 € T TARCMATE TIHEEE T T SAMCRIMMEXEMET
[Ble ¢ A[ETI: T TG T ¢ T THARCAATETT THEEEE T T qAMCE MR WS
(Bl dS)T}s T TERERELC 6 € T TTTAR T T AR MMEWEMGIAT
T T ARl MMEWEMEIAT]
T T ANCEI T CHATEIT]
T T AN MGG
CITiol € 6 Cle| THE A ST e T)
[Tl cTleT T AACET 3 € TElc ¢ TGAT J[AERICIE A TC T TCGTTITG AAITE AT AT
.q}cjsrT@EEC[M}CCTGATEEEAGATCTTCGWUGA.ﬂcrﬁmﬂlﬂ

ASANTIHICTTICIAIGE |

11 ULOPHYSEMA D.760 <—

IEICI}CCGEELA.ATC,CCTMﬂjGATCTchﬂTrrTAGTAr.ccc

Culgroup 12 go ACCACCETTIAGATCECTTICCTGATCCT|ITRCATCTTCGTIGTEMGTAT & CC|C
4 (D 0 1 T U T P DY o P B 0 0 3 0 00 B P 1) D U 6 0 T 0 e Ol 1y 2 T
. e L L R R Tt et e R R N o e e e e e e e e R R L L it o Rt
taxon 8:

=> preservation rate 17/50 = 0.34

column numbering is done with respect to the original alignment including sites
that are fixed, have gaps, etc.)

3.4 A Weak Estimate for Pattern Novelty

The preservation rates assigned to individual species in section 3.3 can easily
serve to calculate a weak estimate for novelty, as follows. For all calculations,
we assume that suitable outgroups are given, see also section 3.10.

Remember the concepts of erosion and convergence accumulation introduced
in section 2.6, Fig. 2.4, panels 3 and 4, on page 32 and in Fig. 2.6, panels 1 and
2, on page 34. Displayed in a tree, these are investigated again in Fig. 3.12,
panels 1 and 2. Let’s ignore species 6 and 7 for the moment, and investigate
species 1-5. Due to erosion, substitutions in species 2 trigger the illusion of
shared novelties in species 1,3-5. This has consequences for the split 1-3 v 4,5,
which is the correct split if species 1-5 are under investigation: We observe
pattern 1,3 in 1-3 v 4,5. If we also observe a low preservation rate in species 2
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Figure 3.12: Interpreting inconsistency patterns, I.
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(which should not just be based on the columns displayed in our tree), we have
evidence that erosion is yielding the illusion of shared novelties in species 1,3.
The pattern may be invalid.

In panel 2, let’s again investigate 1-5 and ignore species 6 and 7. Low preser-
vation in species 5 (which should not just be based on the columns displayed
in our tree) gives evidence that we are victim of an illusion of shared novelties
in 1-3,5; a case of convergence accumulation. In other words, we observe an
invalid pattern ”5” in group 4,5 of the correct split 1-3 v 4,5.

Consider Fig. 3.12, panel 3. Now the subject of our investigation is group
1-6, and not group 1-5 as in panel 1. Also, some character states have been
changed. We change perspective because we will be talking about maxima and
minima, and this is more instructive if there are at least two values from which
these are taken. This would not be the case in panel 1.

Investigating species 1-6, the correct split 1-5 v 6 triggers the pattern ¢t = 4,5
in 1-5. An indicator for lack of erosion would be that the preservation rate in
species 1-3 is larger than the rate in the other species of 1-5, i.e. 4,5. (This is not
the case for the three columns shown, but it may still be the case considering
other columns!) More precisely, lack of erosion is indicated if the minimum
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preservation rate in g — ¢t is in excess of the maximum preservation rate in ¢:

Jnin, p(i) > Ilz;gxp(z).
The minimum preservation rate in g — ¢ is taken since an inconsistency pattern
t cannot develop by erosion if the least preserved species in g — t is still very
preserved. Then, many old character states are preserved in all species in g — ¢.
(For an inconsistency pattern to exemplify erosion, the converse needs to hold
true: The old character states do not tend to be preserved in any species in
g —t.) The mazimum preservation rate in ¢ is taken since an inconsistency
pattern ¢ cannot develop by erosion if the most preserved species involved is
still very unpreserved. Then, the old character states are not preserved in any
species in ¢. (For an inconsistency pattern to exemplify erosion, the converse
needs to hold true: The old character states tend to be preserved in all species
in t.)

To quantify the excess, we use a sigmoid function as explained in section
3.2.1. The species softness q of the species involved in pattern ¢ is given by
the expression

g = q(t) = ewcessy, ( min, p(i), maxp(i)).
The slope-smoothness for this activation is 6, which is set to the standard 0.1.
In Fig. 3.13, a plot of this function is shown. Apart from the labels, it is identical
to Fig. 3.3 on page 49.

If the species involved in pattern ¢ are soft, we have a weak hint that no
erosion took place. Again, the reader should note that preservation rates are
estimated along the whole sequence with respect to the outgroup species gO,
and do not need to refer to the sites displayed in Fig. 3.12.

In panel 4, we investigate accumulation, following up on panel 2. We change
the subject of our investigation to group 1-6, like we did for panel 3, and we
modified some character states, too. Furthermore, the pattern now appears
in group g, and not in group g. For this pattern type t = 1-3 in group 1-
5, an indicator of lack of convergence accumulation is that the preservation
rate in species 1-3 is larger than the rate in the other species in 1-5, i.e. 4,5.
(Again, this is not the case for the three columns shown!) More precisely, lack
of accumulation is indicated if the minimum preservation rate in ¢ is in excess
of the maximum preservation rate in g — ¢:

i) > s pC).

The species resistance is given by the expression

max p(i)) = q(g — t).

r = r(®) = excesso, (minp(i), max

If one group is soft, the other is resistant, and vice versa.
At the time of this writing, species resistance is a concept that we fail to
include into the overall approach, because softness and resistance estimates tend

63



Figure 3.13: Species softness
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to be inversely correlated. If |g| = 2, minima and maxima coincide with the rate
of the single species concerned, and the inverse correlation is perfect. Therefore,
only the species softness will be used as a weak estimate for novelty: whenever
we diagnose lack of erosion due to species softness, we suppress the alternative
diagnosis ”convergence accumulation”, and we state that the pattern is valid
even though it may not be ”monolithic” due to accumulation. (A pattern that
consists of shared novelties and corresponding convergences is not ”monolithic”,
that is, is has two or more sources from which the similar character states
originate. In contrast, a pattern due to erosion is ”monolithic”, but parts of the
monolithic whole have eroded away.)

Our estimate is weak anyway, simply because different preservation rates
are neither a necessary nor a sufficient condition for erosion (or accumulation) —
preservation rates can be highly misleading. In case of erosion, we note the fol-
lowing. Different preservation rates are not necessary since random substitutions
in individual species may overshadow any difference due to the erosive process
itself. For the same reason, they are not sufficient either. Moreover, species in
one monophyletic group may all have high preservation rates, while the species
in the sister group all have low rates, and we may then suspect erosion to explain
a pattern that is at least in part due to shared novelties. In other words, any
difference in preservation rates may be in parallel (or, ”in concordance”) with
the evolutionary history of the species. (Remember that necessary conditions

64



give us all candidates for the instances struck by a specific phenomenon, while
sufficient conditions give us the assurance that the phenomenon occurs for a
given instance, even though instances may be missed. The phenomenon implies
its necessary conditions, and sufficient conditions imply the phenomenon.)

Irrespective of preservation rates, the link between erosion and pattern va-
lidity is quite weak in theory. We have already noted that

e FErosion on the one hand, and the formation of shared novelties leading to
valid inconsistency patterns on the other hand, may occur in parallel.

e Patterns may be invalid if they are not due to erosion, but due to accu-
mulation.

(See also sections 2.6 and 2.10; we will resume our investigations in section
3.5.2))

Since calculating all preservation rates is the dominant factor in softness
analysis, and their time complexity is O({q), species softness can be obtained
in O(¢4q).

3.5 A Stronger Estimate for Pattern Novelty

3.5.1 Motivation

In this section we are given a split, an outgroup, and an inconsistency pattern for
this split, and we investigate whether the pattern can be explained by erosion,
or not. If a pattern cannot be explained by erosion, the novelty estimate we
introduce will be maximum.

Consider again Fig. 3.12, panel 1, repeated in Fig. 3.14, panel 1, and the
correct split of group 1-5, G = g vg = 1-3 v 4,5, with outgroup gO = 6. In
group 1-3, we find the pattern t = 71,3”. At first sight, many occurances of
the 71,3” pattern type contribute evidence to the hypothesis that there are
character states shared due to exclusive common heritage in a group of species
that is composed of 1,3 and the majority of species in 4,5. In other words,
there seem to be shared novelties that are torn apart by the split 1-3 v 4,5.
For example, this would be the case if there were a monophyletic group 1,3-5.
However, there are many matches between the inconsistencies in 1,3 and the
outgroup 6. We conclude that shared character states in 1,3-5 are old. Due to
erosion in species 2, the short branches 1,3-5 attract each other. In panel 2, the
situation is completely different: pattern ”3” in 1,2 v 3-5 does not match the
outgroup. The same holds for pattern ”1” in 2,3 v 1,4,5 in panel 4 (lower right).
Both patterns are valid, due to the shared novelties in 1-3. Pattern 5 in 1-3 v 4,5
in panel 3 (lower left) does not match either, even though it is invalid; if there is
no erosion, there may still be convergence accumulation. We already confessed
in section 2.10 that detecting convergence accumulation is ”future work”.

There are more immediate challenges, however, which are explained in Fig.
3.15, panels 1 to 4. In the first panel (cf. the first panel in Fig. 3.14), the
outgroup 6 was subject to erosion, in the form of modifications eliminating the
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Figure 3.14: Interpreting inconsistency patterns, II.
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matches between the pattern ¢ and the outgroup that we observed before. In
the second panel (cf. the second panel in Fig. 3.14), the outgroup 6 was subject
to convergences. In both cases, the matching rate does no longer carry the
information needed to establish erosion correctly: In panel 1, we do no longer
suspect erosion in species 2, whereas in panel 2 we are led to suspect erosion
in species 4,5. There is, however, an easy trick that alleviates these problems
in a lot of cases: Instead of relying on a single matching rate, we calculate two
matching rates.

The first matching rate is based on the columns displaying the pattern,
and the second is based on columns without the pattern. Consider Fig. 3.16. In
panel 1, the situation in Fig. 3.14 panels 1 and 2 is reiterated, and we are happy.
The ”leftover inconsistencies due to erosion in species 2” are all matching the
outgroup, and the ”inconsistencies due to shared novelties in species 1-3” are
not matching. In panel 2, few substitutions do not affect our judgement. In
panel 3, the situation in Fig. 3.15 panels 1 and 2 is reiterated, including one
further column, and we are very unhappy. Matches with the outgroup have
mostly eroded away in the case of ”leftover inconsistencies due to erosion in
species 2”, and convergences in the outgroup have accumulated in the case of
”inconsistencies due to shared novelties of species 1-3”. In the panels on the
right-hand side of Fig. 3.16, matching rates are compared: In panel 4 and 5,
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Figure 3.15: Interpreting inconsistency patterns, III.
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we observe that in general, ”leftover inconsistencies due to erosion in species
2” yield a higher matching rate than character states in ”other” columns that
do not display the pattern. On the other hand, ”inconsistencies due to shared
novelties in species 1-3” yield a lower matching rate than character states in
”other” columns that do not display the pattern. In panel 6 and 7, we can
see that these observations even hold for the problematic cases, as long as the
?other” columns that do not exhibit the pattern are subject to approximately the
same amount of erosion or accumulation in the outgroup.

Therefore, in Fig. 3.15, panel 1, we compare an ”observed” matching rate
between the character states of the inconsistency pattern in 1,3 and the out-
group to a ”standard” matching rate between character states in 1,3 from other
columns not displayed in the tree, and the outgroup, and we expect to observe
an ezcess of the observed matching rate, even though there are many modi-
fications in the outgroup. An excess of the "standard” matching rate would
indicate that there is no erosion. We would expect such an excess in Fig. 3.15
panel 2, as indicated in Fig. 3.16 panel 7. This excess will be the novelty esti-
mate, to be defined formally in subsection 3.5.3. (The exact definition of ”other
columns” and the formula for the ”standard” matching rate will also be given
in subsection 3.5.3).

In section 3.3, we observed that matching rates go up if the outgroup is close,

67



Figure 3.16: Absolute matching rate versus comparison of matching rates .
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and they go down if it is farther away, but a quotient of matching rates may not
be affected much. Exactly this is happening here, if the outgroup was subject
to modifications, convergent or not (Fig. 3.15, panel 1 and 2). In panel 1, the
process that affected the matching rate of the inconsistency pattern in species
1,3 with the outgroup (that is, erosion of the outgroup 6) has no relation to the
process that formed the pattern (that is, erosion of species 2). In panel 2, the
process that affected the matching rate of the inconsistency pattern in species
3 with the outgroup (that is, convergence accumulation in the outgroup 6) has
no relation to of the process that formed the pattern (that is, the appearance
of shared novelties testifying exclusive common heritage in species 1-3). As we
will see, processes in panels 3 and 4 of Fig. 3.15 are related, leading to problems
to be discussed in the next subsection.

Running Example, Crustacean alignment

Consider Fig. 3.17. For the split 1-8 v 9-11, species 12 is the outgroup
supplied by the user. Majority sequences are printed for both groups of species,
situated again right above/below the shaded alignment box. As before, circles
mark inconsistencies. As we have seen, the character states of the majority
sequence of 1-8 form a pattern ”79,10” in columns 10, 15, 21, 39, 63, 70, 122 and
135.

We calculate an ”observed” matching rate of 0.5 for pattern ”9,10” in split
1-8 v 9-11 in Fig. 3.17, and a ”standard” matching rate of 0.818 in Fig. 3.18.
An excess of the ”standard” matching rate indicates valid shared novelties:
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Figure 3.17: Observed matching rate for pattern 79,10” in 9-11.
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Pattern: 9,10 in 9-11 versus 1-8
Observed Matching Rate: 0.500

Standard Matching Rate: 0.818

Conclusion: Shared Novelties.

In contrast, observed and standard matching rates for the same pattern in
split 1-10 v 11 are displayed in Fig. 3.19 and 3.20. We summarize:

Pattern: 9,10 in 1-10 versus 11
Observed Matching Rate: 0.800

Standard Matching Rate: 0.682

Conclusion: Erosion.

In the introduction in [8], erosion is discussed in the framework of the two
competing splits shown; the observed matching rate of pattern ”9,10” in 1-8 v
9-11 is compared to its observed matching rate in 1-10 v 11. However, there
is at least one serious drawback of the direct comparison of observed matching
rates. It is not at all guaranteed that the same pattern is actually found in
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Figure 3.18: Standard matching rate for pattern 79,107 in 9-11.
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sufficiently many supporting columns in both splits. If not, one of the matching
rates may be highly unreliable.

3.5.2 Relationships between Validity, Erosion and Match-
ing Rates

In Fig. 3.15, panel 3, one shared novelty in the first alignment column, in
species 1-3, triggers a pattern ”3” in 1,2 v 3-5. The resulting inconsistency
(”4”, in species 3) does not match the outgroup (”C”). Furthermore, the out-
group matches with a pattern ”3” found in species 1-3 that is due to erosion in
species 4 and 5. This process affecting the matching rate of ”the inconsistency
pattern found in species 1-3” with the outgroup is related to the valid pattern
formation process: both trigger pattern ”3” ! The inconsistencies are due to
both a shared novelty (column 1) and erosion (columns 2 and 3). In panel 4,
the situation is similar: the inconsistencies in columns 1 and 2 are due to shared
novelties, while the inconsistency in column 3 is due to erosion.

(We already note an observation with respect to the upcoming combination
of the weak novelty estimate, that is the species softness, and the novelty es-
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Figure 3.19: Observed matching rate for pattern 79,10” in 1-10.
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=> matching rate 12/15 = 0.8

timate just described, that is based on outgroup comparison, into one validity
estimate. The combination will be designed such that in panel 3, high species
softness of the pattern species 3 (derived from columns other than the ones
shown), in contrast to species 4,5 would indicate lack of erosion, and it could
still render a sufficiently large validity estimate. In panel 4, high softness is the
case for the columns shown: it is exactly the shared novelties in 1-3 that reduce
the preservation rate of species 3 with respect to the outgroup. As we will see,
this reduction can contribute to a correct decision in favor of pattern validity.)

Like the weak novelty estimate, the species softness, the stronger novelty
estimate just introduced suffers from inherent problems. In fact, an excess of the
observed matching rate is at least not a necessary condition for erosion. It is not
necessary, because an erosive process may be in parallel with the evolutionary
history of the species. As we have seen in Fig. 3.15, panel 4, on page 67, repeated
in Fig. 3.21, panel 3, on page 73, the observed matching rate then goes down
because there are also inconsistency patterns testifying shared novelties. This
is actually a good thing, since it is the shared novelties that we want to detect,
in spite of erosion. It is not known whether an excess of the observed matching
rate is a sufficient criterion — more theoretical work is needed to tackle this issue.
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Figure 3.20: Standard matching rate for pattern ”9,10” in 1-10.
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In particular, convergences may accumulate in both the pattern species as well
as the outgroup, as displayed in Fig. 3.21, panel 4, on page 73. Such ”twofold”
accumulation yields a relatively high observed matching rate that is not due to
erosion, but the standard matching rate should be affected as well.

Therefore, the stronger novelty estimate based on outgroup matching rates
is much more useful than the weak estimate. It turns out to be susceptible
to mixed cases, where both erosion and valid pattern formation by speciation
happen, and then it favors the correct answer, whenever it fails as an erosion
detector.

Sampling error put aside, we conjecture that the stronger novelty estimate
just leaves us with the two main problems noted for our approach:

e Erosion is not a sufficient condition for the invalidity of patterns. Pat-
terns may have valid and invalid components, if the following happens in
parallel:

e Speciation, testified by the formation of shared novelties leading to
valid inconsistency patterns.

e Branch attraction, that is the formation of shared old character states
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Figure 3.21: Shared novelties and leftovers may be observed for the same set of
species.
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due to erosion.

¢ Erosion is not a necessary condition for the invalidity of patterns. Patterns
may be invalid due to convergence accumulation.

Fig. 3.22 summarizes our conjectures regarding necessary and sufficient con-
ditions. Arrows are assumed to be valid if the phenomenon that labels them
holds. For example, an invalid pattern ¢ is deemed the result of erosion if "no
accumulation in ¢” holds true. The label "no shared novelties involving ¢” is
just rephrasing that erosion and speciation do not take place in parallel.

3.5.3 Formal presentation

We will now formalize the ideas just discussed. Given a split G = g v g of
species {i1,...,ig} C {1,...,m}, let us assume that we have obtained the list
of patterns T'(g) observed in group g in the alignment A = (a;)icqis,....i,} =
@iy yeeey Giy -oey a5, Of length ¢q. (The case of group g is analogous). We fix a
minimum column count §, which is the minimum number of supporting columns
that are needed to trigger an investigation of the corresponding pattern. In other
words, pattern types are ignored if they occur in strictly less than § alignment
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Figure 3.22: Relationships between invalidity, erosion, and matching rates.
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columns. Empirically, § is taken as [log, vcols], where wvcols is the number
of variable alignment columns. This value is sufficiently low (it is 8.0 for 256
variable columns) that no relevant information should be lost. The minimum
column count serves a dual purpose:

¢ Computation time and memory requirements are reduced significantly.

e Ignored pattern types can serve nicely for the calculation of the standard
matching rate, as explained below.

Given an inconsistency pattern type t = {i1,...,ix} C g found in columns

C=C®) C{j1,- g}
|C| > 4, and an outgroup majority sequence

c(gO) = (le (go)a -5 Cjq (go))a

an outgroup match occurs in column j € {j1, ..., jq} if and only if

¢j (@i s o a3, ) = ¢5(g0).
For j € C we have

Cj(ail,---,ai,c) = Gjy
and we just check
Qai, =Cj (go)a

since the inconsistencies must all be equal. The observed matching rate

m =m(t) = m(t,90,C)

is the relative number of outgroup matches in the pattern-supporting columns
C, and the standard matching rate

mo = mo(t) = m(t,g0,C’)
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is the relative number of outgroup matches in the standardizing columns of
t,

C'=C'(t)={j € {J1,-jq} : t' =t(§) =0 or ' =t(j) is ignored }.

The standard matching rate checks outgroup matches considering the same
species t as the observed matching rate, but for a different set of columns. This
set C' consists of columns featuring no pattern type, and columns featuring an
ignored pattern type. The former may feature only deviations that are not in-
consistent because they do not match with the majority of the other group, or
columns that are fixed in g — in both cases, no pattern type is observed. Columns
with a different, unignored pattern are not used for standardization. They give
rise to their very own matching rate. Columns for which there is no majority
character state in g (such that no inconsistencies can be detected) are not con-
sidered either. These are too noisy to contribute any valuable information about
the standard matching rate. In particular, these columns must feature gaps in
the majority of species in g, if the minimum invariability threshold 7 is 0. If the
majority of species in t C g features gaps as well, these columns influence the
standard matching rate by some arbitrary amount, depending on the number of
gaps in the outgroup. Only the standard matching rate is influenced by gaps in
the outgroup, but not the observed matching rate. This is because the observed
matching rate is established only for inconsistent character states, which must
not be gap since they must match with a majority character state.

As the overall number of random deviations in the dataset increases, so does
the number of inconsistent ones, and the first subset of C' shrinks, whereas
the second subset grows. If more species are included in a group, we usually
observe the same effect, since the new species usually have at least some random
deviations.

The criterion for detecting erosion, called the novelty estimate n, can
now be formalized as the difference between standard matching rate mg and
the observed matching rate m, activated as explained in section 3.2.3:

1
T 14 e—(mo—m)/fm

n = n(t) = excessy,, (Mg, m)

The larger the excess, the more likely no erosion took place. The slope-smooth-
ness of the activation is given by the constant 6,,,, which is set to the standard
0.1.

In summary, outgroup comparison enables the interpretation of inconsis-
tency patterns. Comparatively high observed matching rates indicate the pres-
ence of erosion, comparatively low rates are interpreted as an indication of
validity. As noted, the detection of erosion should not rely on the observed
matching rate alone, since we would then ignore the ”proximity” of the out-
group to the group under investigation. In other words, we use a standardized
(or normalized, or calibrated) novelty estimate which is robust to the length of
the path to the outgroup.
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3.6 Combining Pattern Novelty Estimates into
an Activated Validity Estimate

Our next step is to combine the novelty estimate n of a pattern ¢ and its weak,
preservation-based species softness ¢, into one validity estimate v, using
the advised function introduced in section 3.2.2. Empirically, best results are
obtained if we limit the impact of the advice even more, by weighting it one

half: dvised
v = o(t) = n+a vzs2e 9. (n,q)

The slope-smoothness of the advice activation is given by the constant 6,
which is again set to 0.1.

Let vg be the acceptable validity estimate for which a pattern count
shall have one half of the full impact. We set vg = 0.75, as discussed in section
3.2.3. Then, we can activate the validity estimate as follows:

0 = 0(t) = excessg, ,(v,v0),

using a slope smoothness parameter 6,, which is again set to 0.1, symmetric
scaling, and non-residual activation with exponent n = 5 (see section 3.2.3).

This activated validity estimate ¥ will next be multiplied with the pat-
tern count, which we will activate for reliability.

Finding the list of patterns T'(g) for group g taken from a set of species of
size O(£) takes time O({q) for the majority sequence of g, and for the subsequent
inspection of all subcolumns involving the species in g, where ¢ is the length of
the alignment.

The time complexity for calculating the novelty estimate for a pattern ¢ of
size O(f) is O(£q), where ¢ is again the length of the alignment. In detail, the
majority sequence takes O(fq) for the standardizing columns C' and O({q) for
an outgroup of size O(f). It is already given for the supporting columns C. The
computation of the rates themselves take an additional O(g). Since the time
complexity for softness is the also O({g), we end up with O(¢q) running time
consumed for the validity estimate of one pattern.

In the worst case, the number of patterns is O(min(; o;q ,2%)) since the min-
imum column count § is logarithmic in the number of alignment columns, and
for alignment length g, there can be at most { columns displaying pattern types
that occur in at least & columns. Naturally, the number of patterns cannot be
more than exponential in the number of species.

Running Example, Crustacean alignment

Returning to Fig. 3.17, the pattern type featured most in group 9-11 is
79,107, in columns 10, 15, 21, 39, 63, 70, 122 and 135. Next in line is pattern
type 7117, found in columns 2, 32, 33, 40, 75, 129 and 134. Finally, pattern
type 79,117 is observed in columns 37 and 38, and ”10,11” is observed once in
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column 34. If we set the minimum column count threshold § to 2, the results of
the running example are well in line with the results of the Crustacea data from
which it is derived by retaining the upfront columns (see section 4.4.1). The
pattern ”10,11” is then ignored since it is observed only once. For the first group
1-8, a total of 10 different pattern types can be observed. The most prominent
one is ”1-7” in columns 5, 10, 27, 91, 92, 94, 95 and 107.

We can prepare the following table for the first group 1-8 and the second
group 9-11. For comparison, we also append parts of the table for group 1-10 in
split 1-10 v 11 (cf. Fig. 3.19). Numbers marked by an asterix ( (*)) are adjusted
by considering the impact of ”neighboring” patterns as discussed in section 3.12.

Patt. Found in Pattern Observed Standard Novelty Soft- Validity Activ’d Activ’d Pattern
type Columns Count Matching Matching ness Estimate | Validity Count Conflict
t s Rate m Rate mo n q v v 5 5u

Group 1-8
1-7 510.. | 8(8.182™) [ S —0.756") | 15 —0.417 [ 0.033 [ 0.198 0.021 0.000 8.182(*) 0.000
... 9 more patterns, 6 ignored, 3 with an activated validity estimate v =0 ...
Group 9-11
9,10 [ 1015 ... B 2 =10.500 27=10.818 | 0.960 | 0.802 0.975 1.000 4.000 4.000
9,11 37 38 2 2 =1.000 26—0.788 | 0.107 | 0.198 0.064 0.000 0.000 0.000
10,11 34 1 - - - - - - - -
11 232 ... 7 (7.6167)) 6 =0.869) | 2T —0.818 | 0.376 | 0.198 0.253 0.000 0.000 0.000
Group 1-10
9,00 | 622... | 15(15.888™)) [ 12 —0.811) [ 13 — 0682 | 0215 [ 0.057 [ 0.127 [ 0.000 | 15.888") 0.000

.. 17 more patterns, 14 ignored, 3 with an activated validity estimate 7 =0 ...

This table follows up on all the steps of the MCOPE cascade as introduced
in section 3.1. Discussion of the last two table columns, the activated count s,
and the pattern conflict (the amount of evidence for shared novelties, &), will
be postponed until section 3.8.

Let us exemplify how we arrive at the validity estimate of pattern ”9,10” in
group 9-11, given species 12 as the outgroup (Fig. 3.17). We observe this pattern
in 8 columns. In columns 15, 21, 39 and 122, the inconsistent nucleotide matches
the outgroup. In columns 10, 63, 70 and 135 it does not. Therefore, the observed
matching rate is set to 0.500 = %. Our standard matching rate is based on 33
columns (see Fig. 3.18); these are either fixed in 9-11 (like columns 5, 6, 8, 9),
display only consistent nonconvergent deviations (columns 57, 76, 126, 132), or
they display a pattern type that is ignored because it occurs in an insufficient
number of columns (column 34). Of these 33 columns, 27 match the outgroup,
and the standard matching rate is 0.818 = % Activating this difference, we

obtain a novelty estimate of
n = excessg.1(0.818,0.500) = 0.960.
The softness of the species involved in our pattern, species 9 and 10, is
q = excessy.1(0.760,0.620) = 0.802,
because the maximum preservation rate of the species involved in the pattern,

that is species 9 and 10, is 0.620 and the (minimum) preservation rate in the
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complement, species 11, is 0.760 (cf. Fig. 3.11 on page 61). Taking the advice,
we obtain a validity estimate of

v =10.5-0.960 + 0.5 - advisedy.1(0.960,0.802) = 0.5 - 0.960 + 0.5 - 0.989 = 0.975.
Finally, the activated validity estimate is
U = excessgy 5(0.975,0.750) = 1.

The validity estimate for pattern ”79,10” in 1-10 v 11 is completely different
(see Fig. 3.19). This time, the observed matching rate is based on 12 matches
in columns 22, 41, 46, etc, and 3 mismatches in columns 6, 116 and 131. This
yields an observed matching rate of 0.800, which is adjusted to 0.811, considering
"neighboring patterns” as explained in section 3.12. This time, the standard
matching rate is based on 22 columns, 15 of which match, yielding a rate of
0.682 (see Fig. 3.20). Activating this difference, we obtain a novelty estimate of

n = excessp.1(0.682,0.811) = 0.215,
which will take the conforming advice of
q = excessp.1(0.340,0.620) = 0.057,
yielding a validity estimate of
v =0.5-0.215 4+ 0.5 - advisedy 1(0.215,0.057) = 0.127,
which is then squashed by the sigmoid activation:
U = excessgq 5(0.127,0.750) = 0.

(Note that non-conformant advice would not be taken; e.g. advisedy 1(0.215,1.000)
evaluates to 0.238, and 0.238 is also squashed to 0.)

The standard matching rate of pattern ”79,11” in 1-8 v 9-11 is % instead of
% since the majority nucleotide C of species 9,11 in column 76 does not match
the outgroup, but the majority nucleotide A of species 9,10 in the same column
does. Other than that, calculations of the validity estimates for patterns ”9,11”
and ”11” in group 9-11, as well as ”1-7” in group 1-8 are straightforward.

We now return to the problems caused by erosion and speciation occuring
in parallel, cf. section 3.5.2. Panel 1 of Fig. 3.21 displays the familiar situation
of leftovers in species 9-11 and shared novelties in species 1-10, because species
1-8 are "more evolved”. In contrast, Fig. 3.21, panel 2 indicates that species
11 evolved rapidly as well, and shared old character states (leftovers) as well as
shared novelties are then found in species 1-10.

The consequence is that the split 1-8,11 v 9,10 in Fig. 3.23 becomes a bor-
derline case, where the inconsistencies in 1-8 (in columns 15, 21, 39, 63, 122
and 135) are due to shared novelties as well as erosion, and they match the
outgroup even more often than the character states in other columns. However,
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Figure 3.23: Observed matching rate for pattern ”1-8” in 1-8,11.
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the softness of the pattern-forming species 1-8, in contrast to species 11, gives
the much-needed advice that a lack of erosion occuring in species 11 can be
established for the formation of the pattern ”1-8”, and the inconsistencies are
therefore considered valid. For our sample alignment, the softness of the pattern

species 1-8 is

qg=q("1-8") = excessp.1( min p(i), max p(i)) = excessy.1(0.760,0.480) = 0.943,

i€711”

i€71—8”

but the incorrect verdict of a novelty estimate of 0.194, based on an observed
matching rate of 0.667 and a standard matching rate of 0.500, is too unambigous
to be advised by it. Analyzing the full alignment, however, reveals a novelty

estimate of 0.474, which can be advi

sed.

In other words, it is noted as evidence for validity that despite the softness of
1-8, there are still many inconsistencies that do not match, and such a borderline
case found for the full-size alignment is then decided in favor of validity.
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3.7 Activating a Pattern Count Based on its Re-
liability

Given a split G = g v g, and an inconsistency pattern type t = {i1,...,4x} C g,
found in columns C = C(t), recall that |C| = |C(¢)]| is the pattern count of the
pattern ¢, which is also denoted by s = s(t).

We call a pattern unreliable, if it has too few supporting columns such that
the observed matching rate may be distorted easily by very few substitutions,
resulting in an incorrect validity estimate. To get rid of unreliable patterns, we
will multiply a pattern count s with its excess to an acceptable pattern count
so- It is a challenge to establish an appropriate acceptable pattern count
so for which one half of the activated count is given. The following approaches
failed:

e Fix sg once and for ever as a small constant, say, 32. The problem is that
this idea does not scale well with large alignments.

e Fix sg as a derivative from the minimum column count §, such that it is
basically logarithmic in the number of variable columns in the alignment.
The problem is that the number of variable columns in an alignment de-
pends strongly on the amount of erosion, but sg should not be influenced
by this.

The approach now presented is the least studied part of MCOPE, but it has some
theoretical appeal, and at the same time, it triggered a significant improvement
of results.

Let ¢ and ¢ be mean and standard deviation of the distribution of all pattern
counts of inconsistency patterns in group g. This includes the counts of the
patterns ignored for outgroup matching rate analysis. If they were distributed
according to a Poisson distribution with mean p, the standard deviation of their
distribution would be ,/u. This value is used as the acceptable standard
deviation of the actual distribution. Let the excess of the acceptable standard
deviation with respect to the observed standard deviation,

p = excessg, (\/,0),

be the regularity of the distribution. Regularity is close to zero if o is very
large because there are outliers, but it is close to one if the distribution is well-
behaved. The slope-smoothness of the activation, 6,, is set to be 4/30 of \/p.
(The same ratio underlies the choice of the activation for validity estimates.
This one was set empirically to 0.1 for an acceptable validity estimate of 0.75;
0.1=4/30-0.75.)

If there are no outliers, we set s9 = p+ v, -0, where v is a small number like
5. This is based on the idea that reliability should be assigned to ”significant”
counts, and ”significant” can be expressed in statistical terms as the standard
error of the mean, u + v, - 0. However, if there are outliers, o can become very
large, and inflate sg. Then, we resort to the term sg = pu + vg - o, where vg is
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a small number like 1. To accomodate both cases in a smooth way, we set the
acceptable pattern count to

so=pp+vs-o)+(1—p)ptvs- o).

Given the observed pattern count s, we can calculate the activated pattern
count in the following way:

5 =5(t) = excessg, ,(s,50) - S,

using slope smoothness parameter 6, and non-residual activation with exponent
71 = 5, as described in section 3.2.3 starting on page 51. The slope smoothness
parameter 6, is 4/30 of the acceptable pattern count sy, analogous to the ratio
used for validity estimates, where the slope smoothness of 0.1 is 4/30 of the
acceptable validity estimate of 0.75.

3.8 The Pattern Conflict

If a pattern has an activated validity estimate of ¥, and an activated count
of 5, the pattern conflict, also called the amount of evidence for shared
novelties, denoted §,, is then given by

8§y = 5,(t) = 8- U = excessg, (s, 50) - 5 - excessy, ,(v,v0) = evidencey'(s,v).

In summary, we modify the pattern count according to its reliability and its
corresponding validity estimate by employing a sigmoid activation function as
shown in Fig. 3.9 on page 56. Its main features are that neither low validity
estimates nor low pattern counts give rise to a valid pattern — the latter guards
against small sampling errors that distort the validity estimates of unreliable
patterns.

The most time-consuming part of the pattern count activation process is the
calculation of the regularity of the distribution of pattern counts. It is linear
in the number of all patterns, which is at most O(min(g, 2¢)). The calculation
needs to be done once per subgroup.

Running Example, Crustacean alignment

Let us return to the sample alignment. The distribution of pattern counts
in group 9-11 of split 1-8 v 9-11 is given in column 3 of the table on page 77,
listing all four patterns found: 79,107, 9,117, ”10,11” and ”11”. The average
pattern count is g = 4.654 (4.5 without neighbors), and the standard deviation
is

\/(8 —4.5)2 4+ (2 - 4.5)2 4+ (1 — 4.5)2 + (7 — 4.5)2

= 3.041
; 3.041,
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that is

= 3.177

\/ (8 — 4.654)2 + (2 — 4.654)% + (1 — 4.654)2 + (7.616 — 4.654)?
4

with neighbors. Since the expected standard deviation is
Vi =V4.654 = 2.157,

we obtain a regularity of
p = excessg.2ss(2.157,3.177) = 0.028,

where 0.288 = (4/30) - 2.157. Therefore, the acceptable pattern count is

so =plptvs-o)+(1-p)ptvs-o)
=0.028 - (4.654+ 5-3.177) + (1 — 0.028) - (4.654 + 1- 3.177)
=0.028-20.537 + (1 — 0.028) - 7.831 = 8.188.

Now we can evaluate the reliability of the pattern count of pattern ”9,10” in
group 9-11. We observe this pattern s(”9,10”) = 8 times. Hence, the activated
pattern count evaluates to

5(79,10”) = excessi.092,5(8,8.188) - 8 = 4.000,

where 1.092 = (4/30) - 8.188.
Finally, the pattern conflict is

5(79,10") = evidencel(8,0.975) = 5- 5 = 4.000 - 1.000 = 4.000.

3.9 The Split Conflict

In this section, we are given a split G = g v g, and an outgroup. The lower the
maximum pattern conflict in a split is, the more confident we can be that the
split is the correct division of the species into two monophyletic groups, because
no shared novelties within gUg are torn apart, resulting in a valid inconsistency
pattern.

We usually need to investigate two tables of pattern types, one per group.
From both tables, the split conflict is the maximum pattern conflict taken
over all patterns:

conflict(g v g) = teT?gl)aS{T(y) 5y (t)

Finding the split with minimum conflict is the open issue that we will tackle
in section 3.13. Finally, the species conflict of a species ¢ € g can be defined
based on the set of patterns into which it is involved,

T@)={teT(g):tNi# 0, and ¢ is not ignored }.
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Species conflict is the average pattern conflict of the patterns that the species
is involved in:

conflict(i) = Z 50(t) | /IT ()|

t€T (i)

The species conflict is used as the row score for the color coding in the figures
displaying the inconsistency analysis in an alignment of the ” Running Example”,
and for the heuristic search for minimum conflict.

Looking back at all the calculations done to estimate the conflict, we note
that during one step a specific influence can be made by the species sampling
in the dataset, like the inclusion of closely related or even identical sequences.
This step is the calculation of the relative majority sequences, which depends
on the composition of the set of species for which the majority is estimated. In
the other steps, the inclusion of identical sequences does not pose a threat; for
example, patterns just include one species more, if an identical sequence is added
to the pattern-forming set of species, and conflict calculations run unaltered for
the larger pattern.

Given a split G = g v g, the overall running time of the conflict calculation
can be estimated as follows. First, it suffices to consider the calculations done
for one subgroup, say g, of size O(£). We first find all patterns in time O(£q) (see
section 3.6). Regularity, and the acceptable pattern count take O(min(g,2%))
(section 3.8). The maximum number of unignored patterns is O(min(L,2°))
(see section 3.6, again). This is the number of validity calculations necessary in
the worst case, each of which takes O(£q) (as described in section 3.6). Including
the final maximization step, which needs to consider all unignored patterns, the
overall time consumption then is

O(tq) + O(min(g, 2%)) + Omin(y_ —,2%) - O(fg) + Olmin(p- —,2))

which is dominated by
. q ¢
2¢)) .
O(min(i.2—,2) - O(to),

that is
2

q
- S
O(;, o )
for sufficiently large £.
Running Example, Crustacean alignment

Inspecting the table on page 77, we observe that conflict(1—8 v 9—11) =
4.000, whereas con flict(1 — 10 v 11) = 0.000.
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3.10 Outgroup Maintenance

As discussed in section 3.3, an essential ingredient of our divide-and-conquer
method is the maintenance of an outgroup for any set G = g1 v g2 of species
investigated. The character states of this outgroup are the basis of our investi-
gations into preservation and matching rates, resulting in species softness, the
novelty estimate and, ultimately, a pattern validity estimate.

MCOPE starts with a group of species G and an outgroup gO as specified
by the user. Once G is split into two subgroups gl and g2, we need two new
outgroups, one for each subgroup. O(gl), the new outgroup for g1, may be
taken as a nonempty subset of g2 U gO, and O(g2), the new outgroup for g2,
may be taken as a nonempty subset of g1 U gO.

Outgroup calculation is driven by the need

e to stay close to the species in the new group under investigation,
e not to come too close to the species in the new group, and

e not to dilute information by calculating majority sequences among out-
group candidates.

The latter takes care that the outgroup majority stays as informative as possible;
majority sequences of g2U gO or g1 U gO have been tried without success. The
closeness of the outgroup is reflected by the matching rates. It is obvious that
a far-away outgroup may not be able to give sufficiently accurate matching rate
information. If the outgroup is very distant, matching rates around 0.25 are
observed, and the comparison of matching rates tends to be useless. However, if
the outgroup is too close, standard matching rates close to 1 are the result, and
it becomes impossible for the observed matching rate to exceed the standard
one by a sufficient amount. Furthermore, for standard matching rates of, say,
0.9, sampling error can easily diminish the observed matching rate such that
no excess is possible even though erosion took place. In other words, outgroup
comparison is not very informative if the outgroup is too close, nor if it is too
far away.

Therefore, the homogeneity of the amount of deviations introduced into a
new group g by comparing its species to the outgroup candidate ¢’ is a good
criterion for outgroup selection. It is defined as

pA(g7gl) =1- (ma‘xm(i:g,: {j17 7.7(]}) -4 inm(iagla {jl: 7.7q})) .
i€g €9
For each outgroup candidate g’, we calculate the matching rates of the indi-
vidual species ¢ with the candidate, and then we look at the spread between
minimum and maximum. A large spread implies low homogeneity. (Casting
our calculation as a comparison of preservation rates, pa is large if there is low
spread among the individual preservation rates in g.)
Finally, the outgroup of g; is selected by the formula

O(g) = if pa(g1,92) > pa(g1,90),
9= gO otherwise.
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The outgroup of g, is selected in an analogous way.
Outgroup maintenance has complexity O({q), since it boils down to the
calculation of O(¥) preservation rates.

Running Example, Crustacean alignment

Figure 3.24: Outgroup selection for 1-10; candidate: 11.

| *BALANIS* 0.458 ¢ GCCHETIEER A T ¢ & ¢ TTRRCWATREN TARELR T 7 AT
2 WCHTHAMALTS* 0,479 c ¢ ofCWATIHER A T ¢ ¢ ¢ TTRACWATET TTHAEER T T dAT
3 KTETRACLITA* 0.158 G G CHETIECA & T ¢ T TNACHWATIGT THAREL T T AT
L CHELONTRIA* (.417 CcG G ¢ MTTAAKERIMEKCIT JAGEKE T T
5 SCUZANTICA 0.375 ¢ ¢ g daiEmAic A 4 TEElC T T W AMEC I TIAEEE T T
§ SEERASH 0417 C G (CHETIHCHTEL & ¢ TTMEAC WATMEHEMAGEKE T T JAIT
7 OCTOLASMIS* D417 ¢ G CAGTHEWEEL & ¢ TTMAACHATIGERETEEER T T GAT
B “LOXOTHYLACUS* 0.292 semy min.  |© qAMEEGE ¢ THTAC WA TAKIETEET

9 *TRYFETESA* 0,638 +—+ Max.

10 *AERNDTIA* 0.546

outgraup 11

e 1A JTje A BB ATk ¢ T s ATKEHRL 64 TET TEGTE 1T ARNET ATHL
c[Cle T A cTle A ACEICIME)K: ¢ T ¢ AT GARAIGATETTCGTG T T AA] ATHAT]

CGCTACCCAAATCGCTCCTEACCATTCGATCTTCGTETTAGTATACCCE

e

11

22
27
3z
33
34
37
ia
40
41

48
44
50
52
57

We will now explain how an outgroup for group 1-10 can be found, given a
choice of 711” and ”12”. Figures 3.24 (featuring outgroup 11) and 3.25 (featur-
ing outgroup 12) are preservation plots in a similar way as Fig. 3.11; in both cases
the first group is 1-10. For outgroup 11, preservation scores have a minimum of
0.292 in species 8, and a maximum of 0.688 in species 9, yielding a homogeneity
score of pa = 1 — (0.688 —0.292) = 0.604. For outgroup 12, preservation scores
have a minimum of 0.340 in species 8, and a maximum of 0.620 in species 9
and 10, yielding an homogeneity score of pao = 1 — (0.620 — 0.340) = 0.720.
Therefore, outgroup 12 will serve in the next divide-and-conquer step involving
species 1-10.

(The acute reader may observe that a different set of columns has been used
for candidate 11 versus 12. Columns 1 and 113 are only used for candidate
11, and columns 15, 21 39 and 122 are only used for candidate 12. However,
these columns are fixed for 1-10, so they do not influence any differences in
preservation rates upon which the selection of the outgroup is based. The cu-
rious reader may wish to know why different sets are used. The reason is one
of software engineering; the same body of code is used for both preservation
rates and outgroup matching rates. Since outgroup matching rates make sense
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Figure 3.25: Outgroup selection for 1-10; candidate: 12.

1 *BATANIIS* 0.46]

2 *CHTHAMALUS® 0480

I ATRTRACLITA* 0.460

4 FOHELONIBIA* 0,400

B +CALANTICA* 0380

B *LEPAS* 0.420

T *OCTOLASMIS* 0.420

8 *LOXOTHYLACLS* 0.340 %<—3% min.

9 *FRYPETESA* 0.620

10 *BERNDTIA* 0620

Cutgraup 12

w—+ Max.

[ClecAdITe T TGajs T ¢ 6 ¢ T TTAHEHAECITTEGEE T T A d]
[Clc ¢ A[dT]e T TEKA T ¢ 6 ¢ TTTAREMWANEL TMHEEEK T 7 SAMCR TR AMATET)
[Clc ¢ A[GT]e T TEKa T ¢ qTIT TTARERATE THEEEK T 7 AT CRI MR AEMET)
[Ele clEkTIe T TEAERK 6 ¢ T 1T AMEETTAREEE T T AT WG KT
[Ele CIEEMATT &K TEEE T THARCHAMECTTTAGREK T T AT
[Elc ¢ ATl T TSATEL 6 ¢ T TTERCHARMGEIEIAREE T T AT SR TId CHEMEKT]
[Elec AdTe T T[AREEK 6 ¢ T TTRRCHAMEOETHEEk: T T dAlT R TMEREMEKT]
[GEk A5k & T TEMEEEl ¢ T TR ATEC TH
EaThdTleT T AAEETEC MElc c T GA T JGCREEG A TE T T € 6 TTIT 6 AT EIMATRIT)
[T AT T T AACEKETTEI ¢ T AT JGERK G ATET T € 6 TTIT & AAITEIATIAR)

AP,

2

£

ACCACCGTTAGATCGCTTCCTGATCCTTAGATCTTCGTGTEAGTATGCCC

S onB oW

21
22
27
3z
33
34
37
3g
39
40
41
46
44
a0
52
a7

only in the context of a split, a split is "hidden” in the preservation analysis in
the plots of Figs. 3.24 and 3.25 as well. This split is 1-10 v 12 and 1-10 v 11,
respectively. In other words, sequence 12 is hidden in the plot for candidate 11,
and sequence 11 is hidden in the plot for candidate 12. Both sequences do no
harm, but they trigger the display and consideration of columns for which they
are variable even if 1-10 are fixed.)

3.11 Detection of Runs

Let us assume that inconsistencies are found in a consecutive sequence of align-
ment columns. If columns with gaps are not ignored, the suppression of such
“runs” is necessary, because these usually indicate no pattern, but sequencing
gaps. For example, in the following initial part of the alignment investigated in
section 4.4.6, the pattern type ”1-5,10-12” will occur in columns 1 to 18, if the
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split 1-12 v 13 is investigated.

01
02
03
04
05
06
07
08
09
10
11
12
13

MUS_MUSCU
ORYCTOLAG
HOMO_SAPI
XENOPUS_L
LATIMERIA
SQUALUS_A
ECHINORHI
FUNDULUS_
SALMO_TRU
PETROMYZO
LAMPETRA_
BRANCHIOS
SACCOGLOS

Since we would like to ”flag” (identify) the indices involved in runs in a
flexible way, the following routine takes the following set of parameters:

CCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGA
CCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGA
CCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGA
CCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGA
CCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGA
——————————————————— AG-CATATGCTTGTCTCAAAGA
——————————————————— AG-TATATGCTTGTCTCAAAGA
——————————————————— AG-CATATGCTTGTCTCAAAGA
—————————————————— TAG-CATATGCTTGTCTCAAAGA
CCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGA
CCTGGTTGATCCTGCCAGTAG-CATATGCTTGTCTCAAAGA
CCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGA
CCTGGTTGATCCTGCCAGTAGTCATATGCTTGTCTCAAAGA

® p5, the minimum index difference that defines ”consecutive”,

® pg, the minimum number of consecutive indices of a ”"long run” which is

flagged from start to end, and

® p,, the number of consecutive indices that are not flagged at the start of

a "short run” of length smaller than pg.

Strip-Runs, flexible identification of runs.

Input: A sequence of indices J C {ji,...,Jq}, representing the columns that

support an inconsistency pattern, and a set of parameters.

e artifact_cols =[] /* empty list */

o tmp=—ps —1

o tmplist =[] /* empty list */

e foreach index j € (J,00) do

o if j —tmp < ps do /* run starts or continues */

tmplist = (tmplist, j

(tmp,j) if tmplist =]
) else

else /* run stops */
if tmplist # [ ] do

o if |[tmplist| > pg artifact_cols = (artifact_cols, tmplist)
else artifact_cols = (artifact_cols,tmplist,  |impiist|)

o tmplist =[]

o tmp =
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Strip-Runs returns artifact_cols as the list of indices involved in runs.

In the foreach loop, we first compare the first index and —ps — 1; this com-
parison must fail (i.e. j —tmp < ps does not hold for tmp = —ps —1.) Therefore,
the first index is copied into ¢tmp. Then, the copied index is compared to the
next one, which is then copied as well, etc. As soon as a comparison succeeds,
i.e. it results in a difference that is smaller than ps, both current indices (tmp
and j) are added to the temporary list of flagged indices, tmplist. Thereafter,
only the new index j needs to be added, as long as the comparison succeeds.
Once the comparison fails, the temporary list of flagged indices is concatenated
to the global list, and is reset. The symbol oo is used as a stop sign, which
triggers the last concatenation if there is a run in the end.

Strip-Runs is usually called with the following parameters: ps = 2, pg = o0,
and p, = 4. Setting pg = oo implies that for every run, the first p, indices are
not flagged.

3.12 Involving ”Similar” Patterns

3.12.1 Neighbor Patterns and Transformations

Given a set of pattern types, we now introduce a similarity score proportional
to the likelihood that one pattern type is just the transformation of the other.
A transformation consists of one or more transformation steps. These are
either the loss of an inconsistency in a species, or the gain of an inconsistency via
a convergent substitution. If the hamming distance is small, very few random
mutations may have transformed one pattern of inconsistencies into the other.
If the transformation involves species that are "more evolved”, even pattern
types with a large hamming distance may be related. In particular, a loss of
inconsistencies due to erosion in ”"more evolved” sequences may transform one
pattern into another. In summary, the similarity of two pattern types depends
on their hamming distance and on the erosion score, that is an estimate for the
likelihood that they are related due to erosion or accumulation, independently
of their hamming distance.

Formally, a transformation between two pattern types involves the species
that make up the symmetric difference of the two pattern types, as follows.
Recall that a pattern type is defined as a list of species taken from a group
of species g. As before, a pattern type is written using set notation. Given a
split G = g v g of species {i1,...,ig} C {1,...,m}, let us investigate group g,
without loss of generality. Given pattern types u,t € T(g), we can define their
symmetric difference A(u,t) and its complement A(u,t) as follows.

Au,t)y={i€eg:(ietandig¢u)or ((€uandi¢t)}

and

Au,t) = g — Au, t).
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As usual, the norm of the symmetric difference is the hamming distance:
hamming(u,t) = |A(u,t)|.

Given a pattern type t, we will investigate its relationship to its neighbors,
i.e. to the other pattern types u, where u € T'(g) — {t}.
The following are the ”neighbor rules” employed.

1. All neighbors must have smaller pattern counts than the pattern type
itself.

2. The pattern and its neighbor do not encompass all species, nor is their
intersection empty.

3. ”Good” neighbors have a small hamming distance, and/or they feature a
high softness of the symmetric difference.

4. If the pattern count of a neighbor comes close to the count of the pattern
type evaluated, it is downweighted further by up to 50%.

5. Moreover, the weight of the neighbors is multiplied by a user-defined con-
stant, the neighbor impact factor.

6. Finally, if the neighbors display an average observed matching rate very
different from the one of the pattern itself, their collective impact is down-
weighted.

The first four rules restrict the number of neighbors considered. Rules 3 and
4 give rise to a weight, which must pass a certain threshold. This ”preliminary
neighbor weight” depends on how well rule 3 is met, and on the pattern count
of the neighbor (rule 4). The last two ”neighbor rules” apply to all neighbors
collectively, yielding their overall weight, and count. The overall neighbor count
is then added to the pattern count itself.

3.12.2 The Hamming Score

To quantify neighbor rule 3 from the preceding subsection, our goal is a “ham-
ming score” of two pattern types that is the larger, the smaller their hamming
distance is. Using sigmoids as usual, it may be expressed as the excess of an
”acceptable hamming distance” (to be defined), and the actual hamming dis-
tance. In formal terms, let pattern type ¢ and an acceptable hamming distance
un be given. For each pattern type u € T'(g) — {t}, the hamming score wp(u,t)
is then given as the excess of py and the hamming distance between u and ¢, as
follows:
wn(u,t) = excessy,, (pn, hamming(u,t)).

The slope-smoothness 6, is normally set to 1, a value found empirically. It is
midway between the smoothness parameter used for the [0, 1]-interval, and the
smoothness used when activating counts.
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If the actual hamming distance is much larger than the acceptable one, the
hamming score will tend to zero. If the actual hamming distance is much smaller,
the hamming score will tend to one. Therefore, a small acceptable hamming
distance has the effect that fewer patterns have a large hamming score. In
turn, a large acceptable hamming distance results in more patterns with a large
hamming score.

We now turn our attention to the acceptable hamming distance pp. Since
the size of the group g is the most relevant factor for the evaluation of the ham-
ming distance between patterns in g, the preliminary acceptable hamming
distance upq is set to the log, of the size of g. However, the acceptable ham-
ming distance u; should also depend on the sparseness p of the distribution
of unignored patterns,

p=1-1|T(g,8)|/(2¥ - 2),

where |T'(g,d)| is the number of patterns ¢ found in g, with s(t) > §, the max-
imum of which is 2/9/ — 2. (Recall that § is the minimum column count.) We
note that p is close to 1 if few unignored pattern types are observed, and it is
close to 0 if most of the possible pattern types are actually realized in more
than § columns. In this case it is likely that neighbors found are not due to
the erosion of the pattern type for which neighbors are sought, but instead
they are realized like most other patterns, due to the erosion of fixed columns.
Hence, the acceptable hamming distance should be decreased. Once again using
sigmoids, the formula for the acceptable hamming distance involves activation
of the difference between the sparseness and an acceptable sparseness p,,
and multiplication of the preliminary acceptable hamming distance with the
activated sparseness. The activated sparseness is

p = excessy, (p, po),

where the acceptable sparseness p, is set to 0.1, and the slope-smoothness 8, is
the usual 0.1 for values in the [0, 1]-interval. Finally, the acceptable hamming
distance is set to

Bh = Pho - P-
A low acceptable sparseness implies that a low activated sparseness triggers

a ”significant” reduction of up, only if almost all pattern types are found in
sufficiently many columns.

3.12.3 The Erosion Score

If the species involved into the symmetric difference of two patterns have low
preservation rates, the patterns may be related because one pattern resulted
from the other due to an erosive process. In Fig. 3.26, consider pattern ¢t =
”2,3” in panel 1 and its neighbor u = ”3” in panel 2, where ¢t O u. If the species
in t —u = 72" have low preservation rates, there is evidence that pattern u is
derived from pattern t. Conversely, in panel 3, for v = 72-4”, ¢ C v holds, and
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Figure 3.26: Neighbors of a pattern.
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we may assume that neighbor v is due to convergences accumulated in v — ¢, if
the species in v — ¢t = ”4” have low preservation rates. In panel 4, both erosion
and acculmulation may have transformed ”2,3” into ”3,4”.

Following up on section 3.4, we define the erosion / accumulation score,
or erosion score for short, of a neighbor as the softness of the symmetric
difference

g(A(u,t)) = excessgp( min p(i), max p(i)).
P€EA(u,t) 1€A(u,t)
The slope-smoothness for this activation is 8,, which is set to the standard 0.1.
The erosion score of two patterns is the higher, the more likely one of them is
the result of a transformation of the other one, due to erosion.

3.12.4 The Preliminary Neighbor Weight

Up to now, we have focussed our attention on the likelihood of the transfor-
mation of one pattern into another. We have also requested that a neighbor
cannot have a larger count than the original pattern. Another question is how
neighbors with a similar count should be treated. Giving full weight to these
inflates the influence of the neighbors on the original pattern, such that its count
and observed matching rate may the completely overshadowed. Our empirical
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solution to the problem is the introduction of a size-based downweighting
factor, given by
ws(u,t) = ewcessg,, (s(t), s(u)),

which uses the same slope smoothness 6, and non-residual activation as the
standard pattern count activation. Accordingly, we set the slope smoothness to
(4/30) - s(t) and the exponent to 5. Since s(u) < s(t), we have wy(u,t) > 0.5.
In other words, size-based downweighting can at most amount to 50%.
Given pattern type t, the preliminary neighbor weight of neighbor u now
evaluates to
w(u,t) = org, (wn(u,t),q(Au,t))) - ws(u,t),

using the implementation of a "smooth OR” given in section 3.2.4 with slope
smoothness 84 set to 0.1 as usual.

The following set U of pattern types u with smaller count will be considered
for a pattern type t. It meets the neighbor rules 1-4 outlined in subsection
3.12.1.

s(u) < s(t) and
Ut)=<ucCg:| tNu#0andtUu # g) and ,
wlu,t) > e

where ¢ is the minimum preliminary neighbor weight. Empirically, ¢ is set
to one half. The first condition maintains that neighbors cannot have more
supporting columns than the original pattern (”neighbor rule” 1). The condition
tNu # ) assures a minimum connection between the neighbors in the form of
at least one shared inconsistent symbol, and ¢t Uu # g ensures that two pattern
types are not just neighbors because they are derived from constant subcolumns
which were subject to substitutions at different positions ("neighbor rule” 2).

3.12.5 Influence of Neighbors on the Pattern Count and
the Observed Matching Rate

Given neighbors U(t) of a pattern ¢, we would like to check the difference of
e the observed matching rate of the pattern ¢, and of
e the combined observed matching rate of the neighbors in U (t).

If this difference is too large, the impact of the neighbors is downweighted, and
we will give more credit to the observed matching rate of the original pattern ¢.

We combine the individual observed matching rates of the neighbors by
defining a weighted average observed matching rate, given by

2ueu(r Mt 90,C(w)) - s(u) - w(u, 1)
2 uev@) Su) - w(u,t)
where s(u) is the number of columns supporting u, and m(t, gO,C(u)) is the

matching rate of the majority of the character states in the species making up
t with the outgroup, tallied over the columns supporting neighbor u. Taking

m(U(t)) =
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the majority over the species in ¢ and not in w is in line with the idea that the
pattern type u is really a transformation of £.

In contrast to an average observed matching rate, the weighted average ob-
served matching rate is calculated by weighting the individual matching rates
with the number of columns s(u) on which they are based. Naturally,

m(t, 90,C(u)) - 5(u)

can be simplified to
{7 € C(w) : ¢;(t) = ¢;(90)}|,

it is just the number of matching character states.
The matching rate congruence of the neighbors of ¢ is now given by

we(t) = excessg, (0.5, abs(m(t) — m(U(t)))),

employing slope smoothness 6., and the usual non-residual activation with 5 =
5. Empirically, 6. is set to 0.25, which results in a smoother activation than
usual. Such activation is justified because a smoothness of 0.1 would make it
impossible to take note of differences abs(m(t) — m(U(t))) less than 0.3:

excessg.1,5(0.5,abs(0.8 — 0.5)) = 1.000,

whereas
excessy.2s,5(0.5,abs(0.8 — 0.5)) = 0.581.

Novelty scores that differ by 0.8 — 0.5 = 0.3 should not yield a congruence of
1.000.

Given pattern type t and a neighbor impact factor we, the adjusted
pattern count including neighbors is

s*(t) = s(t) + we - we(t) - Z w(u,t) - s(u).

u€eU(t)

The adjusted pattern count includes the neighbor counts weighted by the
neighbor impact factor, the matching rate congruence, and their individual pre-
liminary neighbor weight.

The adjusted observed matching rate of the pattern including neighbors

m(t) - s(t) + m(U () - (s*(¢) — s(t))

s*(t) '
Here, we employ exactly the same scheme that we used to compose the adjusted
pattern count.

is
m*(t) =

Running Example, Crustacean alignment

Coming back to our running example, some neighbors of pattern ”9,10” in
group 1-10 taken from split 1-10 v 11 are marked by arrowsin Fig. 3.27. They are
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Figure 3.27: Neighbors for pattern 79,107 in 1-10.

1 *BALANITT*

2 CHTHAMALUS*
3 *TETRACLITA*
4 +HELONIBIA*
5 +ALANTIOA*

B *LEPAS*

T *OCTOLASMIS* -

B *LOXOTHYLACLIS*

- 0 10 W jamg
i\ /IVl\ i\

ACCACCGTTAGATCGCTTCCTGATCCTTACATCTTCGTGTGAGTATGCCD

outgroup 12

found in columns 9, 76, 82 and 100. For columns 9, 82 and 100, their hamming
distance to 79,10” is 1; pattern ”4,9” in column 76 has hamming distance 2.
All the other neighbors (like ”1,2,4-9” in column 38) do neither feature a small
hamming distance, nor does their symmetric difference show signs of erosion.

Let us continue by a detailed evaluation of the neighbors of pattern ”11”
in group 9-11 taken from split 1-8 v 9-11, displayed in Fig. 3.28. We observe
this pattern 7 times, in columns 2, 32, 33, 40, 75, 129 and 134 (cf. the table on
page 77). Other patterns in group 9-11 are ”9,10”, 79,117 and ”10,11”. Pattern
79,107 is not considered as a neighbor since its intersection with ”711” is empty.
(Another sufficient drop-out reason is its higher pattern count of 8.) Pattern
79,11” in columns 37 and 38 requires more careful evaluation. First, we establish
the sparseness p of the distribution of investigated patterns,

p=1—|T|/2¥ -2)=1-3/(2° —2) = 0.5,
which is activated to

p = excessg.1(p,0.1) = excessp.1(0.5,0.1) = 0.982.
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Figure 3.28:

w184

1 *BALANITT*

2 CHTHAMALUSY
3 *TETRACLITA*

4 +HELONIBIA*

5 +ALANTIOA*

B *LEPAS*

T *OCTOLASMIS*

B *LOXOTHYLACLIS*

Neighbors for pattern ”11” in 9-11.

GCCAGTGTTGAATCGCTTTAACAATGCTTAGCCTTCATCCGTTCAGTGOT

8 TRYFETESA
10 BERNDTIA

11 ULOPHYSEMA

o(9-11)
outgroup 12

CCTAC@G@DAACG@CCCTGATC@ACBATCTTCGTTT@AATCTATAC_I:
CCTAD@G{D:DAACc@TT@cccTGAT@AAGATCTTCGTTT@)AATCTATAC_Ij

CCTACTOGTTAACGCCECTCCOTGATCGCACGATCTTCGTTTEGAATCTATAT
ACCACCGTTAGATCGCTTCCTGATCCTTAGATCTTCGTGTEAGTATGCCE

The preliminary acceptable hamming distance of log.3 is now multiplied
with the sparseness, yielding

Wk = pihg - p = log23 - 0.982 = 1.556.

Therefore, the hamming score of 79,117 with respect to ”11” is the excess of
1.556 compared to the actual hamming distance of 1,

wp(u,t) = wp(79,117,711”) = excess; (1.556,1) = 0.636.

The erosion score of 79,117 with respect to ”11” is the softness of the sym-
metric difference ”9” in relation to its complement ”710,11”:

q(”9”) = excessp.1( min

(1), max p(i)) = excessg.1(0.620,0.620) = 0.500.

p
’iE”lO,ll” ’ i€”9”

The size-based downweighting factor of the neighbor evaluates to

ws(79,117,7117) = excesso.933,5(7,2) = 1.000,
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where 0.933 = (4/30) - 7.
The preliminary neighbor weight is larger than the cutoff at € = 0.5:

(’U(”S)7 11”7 ” 11”) — OTOl(wh(”g, 11” , ”11”)7 q(”gﬂ)) . ws(”97 11” , ” 117))
= 0r.1(0.636,0.500) - 1 =0.824.

Neighbor 710,117 triggers exactly the same calculations and has the same
preliminary neighbor weight.

To find out about the matching rate congruence, we need to evaluate the
observed matching rate for the neighbors U(”11”) = {”9,117,”710,11”}. The
average observed matching rate is

mU("117)) = Tueveirr) 117,900 (u))-s(u)-w(u,"117)

Yuereirr) s w(u, 117)
_1.2.0.82441-1-0.824 = 1.000
~ 2-0.824+1-0.824 - ?

since the neighbor-supporting columns are all matching.
Matching rate congruence evaluates to

we("117) = excessg.25,5(0.5,abs(m(”11”7) — m(U("11"))))
= excessp.25,5(0.5,abs(0.857 — 1)) =0.997,

where the matching rate of the original pattern is m(”11”) = £ = 0.857. The
pattern count including neighbors is

S*(”].].”) — S(”].].”) + we - wc(”ll”) ) EuEU(”ll”) w(u,”ll”) ) S(U)
=7+0.25-0.997-(0.824-2+0.824-1) = 7.616.

Finally, the adjusted observed matching rate of the pattern including neigh-
bors is

m*("117) = MO SO EmUC L) (s (1) —s(7117)

11
_ 0.857-7+1.000-(7.616—7S _
= T o16 = 0.869.

Both s*(”11”) and m*(”11”) have already been listed in the table on page
7.

3.13 Exhaustive and Heuristic Searches For Min-
imum Conflict

Let a set of species {1,...,m} and a split G = g v g be given. In the preceding
sections, we have discussed how we can estimate the split conflict, that is the
amount of evidence for shared novelties within g U g that are torn apart by the
split. In this section, our concern is

¢ the search for a split with minimum conflict, given a set of species, and

e the recursive estimation of a phylogenetic tree.
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Informally, we have already outlined our method in figures 1.3 on page 13, and
2.7 on page 36, and we introduced the skeleton of our algorithm at the end of
section 2.10 starting on page 42.

As noted, our approach depends on the assumption that the split with the
lowest conflict is the correct split, i.e. the one which can be used to identify
the largest monophyletic group and its monophyletic complement. We will first
present an exhaustive algorithm, and then a heuristic speedup.

The exhaustive version of our algorithm starts with a multiple alignment S =
{84,j}i=1...m,j=1...r and calculates the conflict for all O(2™) splits. Recursively,
the two subalignments defined by the split of minimum conflict are subjected
again to conflict calculations, and split further, until the sizes of the groups are
less than 3. Along the way, a tree is established that has lowest conflict across
all its bifurcations.

More precisely, we have the following algorithm.

MCOPE-Exhaustive, phylogeny estimation based on minimum conflict.

Input: A set of species I = {i1,...ig}. We assume that at any time, we
have access to an outgroup as described in section 3.10, and to the underlying
multiple alignment A. I = {iy,...i¢} are the row indices of the projection of A
under investigation.

e foreach split G =gl vg2of I, gl #0 # g2, do
e Calculate con flict(G)

o Let Gin = 9l,0in V 92,,:n be the split such that con flict(G i) is mini-
mum over all splits. (Ties are broken arbitrarily.)

o Set V:={"91,,;,," }U{"92,,:»," }, and
E:= {(”g]‘min U gzmin” ’ ”g]‘min”)J (”g]‘min U gzmin” ’ ,’g2min”)}
o if |g1,...| > 2, set (V1, E;) = MCOPE-Exhaustive(gl

else if |gl,,;.| =2,
set Vi :=Uigg1, .. 171"} and Ey := Uicg1_ . {("91,:7,7 ")}

o if |g2,,:n] > 2, set (Va, E2) = MCOPE-Exhaustive(g2
else if |g2,,;,| = 2,
set Vo 1= Uiega . {71"} and Ey := Uicga . {("92,:,",71")}

ereturn V:=VUuUViuVyand F:= FU E; U Es.

min)7

min);

The inferred tree T = (V U {741-i,”}, E) is returned by MCOPE-Exhaustive.
Note that MCOPE-Exhaustive only estimates a topology, but no branch lengths.

MCOPE-Exhaustive is initially called with the set of all species to be in-
vestigated, the corresponding alignment, and the user-supplied corresponding
outgroup gO.

Since the number of splits is O(2™), running time of MCOPE-Exhaustive as
described will be exponential in m. Therefore, we will heuristically try to find a
split G = g1 v g2 of low conflict by listing splits that have high ”weight”, and
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of these, we explore the splits that also have low conflict. This will lead to a
heuristic algorithm of polynomial complexity. First, however, we will define the
notion of the "weak weight” of a split.

An alignment column j provides weak weight for a split G = g1 v g2 if one
group exposes a single character state that is not displayed by the other group.
The weak weight of a split G = g1 v g2 in an alignment A = {a; ;}i=1...¢,j=1...q
of length ¢ is the number of weak-weight-providing columns:

wgt(gl v g2) = |J|, where

J = {J € {jla---yjq} :

there exists N € A: foralli € gl:a;; =N, and for all ¢ € g2: a; ; #N,
or foralli € g2:a;; =N, and for all s € g1 : a;,; # N}.

Since wgt(gl v g2) = wgt(g2 v gl), it is useful to create a canonical list of
splits with nonzero weak weight, by keeping only the splits where the last species
is not involved in the first group g1, thereby removing all duplicates. For an
alignment A, the canonical list of splits with nonzero weak weight is called the
weak spectrum, a weaker notion of the ”spectrum” introduced by [9]. (For the
case of two character states, there is no difference between our notion and the
one by [9]. If there are more character states, we give weak weight to a split
even if one group does not feature a single character state.)

Given an alignment S = {s; ;}i=1...m, j=1...r, of length r, composed of the
rows indexed by {1,...,m}, we can calculate the set of splits with nonzero weak
weight by inspecting each column of S in turn, and for each character state N
except ” —” ("gap”), we increment the weak weight of the split that is composed
of the species which display N, and their complement:

forall j € {1,...,r},forallNe A4:
if g ={i:s;; =N} #0, increment wgt(g,{1,...,m} —g) .

Since the size of the alphabet is constant, this calculation runs in time O(mr).
For subalignments A, we can calculate their list of non-zero weak weights by
simply projecting the list of weak weights calculated for S: We just add to-
gether weak weights for which the indices have the same projection. This list of
weak weights can be canonized as described before. Alternatively, we can just
recalculate the weak spectrum for each subalignment, and since this renders our
running time analysis a bit easier, we will simply assume such recalculations in
section 3.14.

We will now introduce the concept of a filter. We introduce two list operators
grep and sort. Given a predicate p, and a list L, grep(p, L) consists of those
elements in L for which p is true. The sort+ operator just sorts a list in
descending order, the sort- operator sorts in ascending order. A max-filter
fT(threshold, L) is now defined as

fT(threshold, L) := grep(v > threshold, sort+(L)).
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fT returns elements larger than threshold, in descending order. In contrast, a
min-filter returns elements smaller than threshold, in ascending order:

f~ (threshold, L) := grep(v < threshold, sort-(L)).

A list of pairs L = ([u;,v;])i—1...|| will always be grepped and sorted according
to the second value v = v;; the first value is just carried along.

For each filter in the following discussion, the heuristics also retains a min-
imum number of elements, fmin, if necessary by filling up the output list from
the best input splits that are not yet included in the list (at least one split is
always available, but for f,,;, > 1 we may fail to provide the requested number
of splits), and the heuristics truncates the output list if a mazimum number of
elements, fiaz, is exceeded. Implicitly, all filters discussed in the following have
Sfmin and frq. set to small constants; f,,i,, is generally set to 2, and f,4, is set
to 16 (in the case of the starter list based on the weak spectrum), or 8 (in the
case of the subsequent list of minimum-conflict splits, see below).

Let I = {i1,...,i¢} be the set of species currently under investigation, and A
be the corresponding (sub)alignment. The list of high-weight splits H considered
by the heuristics is then based on the weak spectrum, in the form of a list of
pairs [split, weak weight]

G=([(g1vg2), wgt(glvg2)] | wgt(glvg2)>0),

where g1 U g2 = I, as follows, given a minimum weak weight value fiyg¢:
H= f+(,uwgt=G)-

Mgt May e.g. be calculated as 2% of the maximum weak weight value observed.
Then, the list of low-conflict splits H' is based on

G = (g1 v g2), conflict(glvg2)] | (g1 vg2) e H)
as follows, given a maximum conflict value fconfiict:
H' = f_(,u'conflicta Gl)

Leonflict Mmay e.g. be 20% of the average conflict value of the splits in G'.

Next, the species involved in high-conflict patterns are determined, and, be-
ginning with the species of highest conflict, moved into the other group; conflict
improvements are noted, and the optimization process branches in this case:
it continues the old exploration, with the remaining high-conflict species, and
it starts a new one using the new split of lowest conflict and the remaining
high-conflict species.

A variant is to move several species in one go, if they were involved in the
same valid inconsistency pattern. High-conflict species can be determined using
another filter, selecting those candidates that display e.g. more than the average
amount of pattern conflict. If we move several species, the list of trailing species
has to be updated by removing the piggybacks. For simplicity, we continue
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discussing the species-by-species case, which is of course less efficient. In all
validation runs presented in chapter 4, several species were allowed to move in
one go.

Let G = g1 v g2 be the split currently under consideration. Let 7 be derived
from the list of species in g1 U g2 as follows:

Z=([¢, conflict(i)] | i€ gluUg2).

Then, given a minimum species exchange conflict value V.onfiict, the list
of high-conflict species to be subjected to conflict-based species exchange is

7' = f+(Vconflict;I)-

Veonflict May €.g. be the average conflict value of the species in 7.

The size of H,G', H' and Z' is O(1) since the filters truncate the lists if the
maximum number of elements f,,,, is exceeded.

Finally, the following routine is the heuristic to find a split with minimum
conflict:
Function movespecies, improving a split by conflict-based species exchange.
Input: A split G = g1 v g2, a list 7’ of high-conflict species, and a split G5, =
91l,in V 92, With known con flict-value.

e if |7'| =0, return Gnin,
else select the species ¢ with highest conflict from 7’

o Set
G- glu{i} vg2—{i} ifieg2
T gl —{i} vg2U{i} otherwise

e if the split G is nontrivial (no group is empty) do:

e Calculate con flict(G)
o if conflict(G) < conflict(Gpmin) do:
e Set Gpin =G
o Gpin = movespecies(Gnin, Z', Gmin)

¢ G.uin = movespecies(G, 7', Gin)
e return Gin

movespecies is called for all splits in H' as the first argument, and a cor-
responding list of high-conflict species, providing the best split found so far as
the third argument; initially this is the first element of H'. The con flict-values
are stored in a table since splits may be encountered more than once during
different calls to movespecies, but with different trailing lists of species still to
be checked for moving. As a final step, if G5, does not appear in H', it should
also be checked for any further improvement.

We obtain a heuristic variant of MCOPE-Exhaustive, called MCOPE-Heuristic,

by starting with a list of high-weight splits, finding the low-conflict splits of
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these, and then using movespecies as a search routine to find a split of lowest
conflict.

It is not clear whether the current main bound on the number of heuristic
search explorations, that is the constant size of the list 7’ of high-conflict species,
can be justified; possibly the size of Z' would need to be linear, or at least
logarithmic in the number of species studied, if we did an ” average-case” analysis
of the method. ”Easy alignments,” for which the split with the largest weak
weight is the correct one, do not require heuristic searches at all, and the more
visible the shared novelties are, the easier the heuristic search is. In general, the
amount of information in the alignment, the ability of our method to use this
information, as well as the amount of misleading information in the alignment,
and the power of our method not to be mislead, give rise to a lot of interesting
theoretical issues.

A variant is to explore local optima as well as the global optimum found
so far, by branching whenever the new-found split is an improvement to the
current one, but not necessarily to the minimum-conflict one. Running time
can be controlled further by fixing the number of branching events allowed. In
the current implementation, a constant max forks = 4 is the upper bound on
the number of recursive calls, except for those starting with a new optimum
Gumin- In other words, the number of recursive calls due to the exploration of
local optima and due to the exploration of trailing species in Z' have a common
upper bound.

3.14 MCOPE Running Time Analysis

In the following analysis of the overall time complexity of MCOPE, we ignore the
non-essential consideration of neighbors (section 3.12), as well as the detection
of runs in consecutive indices in the set of pattern-supporting columns (section
3.11). The latter calculation is only needed if columns with gaps are considered
for the analysis, and an empirical comparison of running times with and without
detection of runs reveals that it imposes only a neglegible performance penalty.

The two parameters of the analysis are the number of sequences m and the
length of the alignment r. As we have seen, MCOPE estimates the tree top-down,
in a divide-and-conquer fashion, employing heuristic searches for minimum con-
flict at each node. Basically, these heuristic searches require the calculation of
the weak spectrum in time O(mr) worst-case, and split conflict calculations.

Since divide-and-conquer is employed, calculations will actually be done with
smaller and smaller sets of sequences; their size is denoted by the variable /£,
and the size of the corresponding projection of the alignment is g. We have used
these two parameters in the running time estimates that we calculated up to
now for certain parts of the algorithm, culminating in the worst-case estimation
of the time complexity of the conflict value of one split,

2

q
O(logq K)J
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see section 3.9.

The list Z' of high-conflict species to be moved has constant size, using a
filter that truncates the list if the maximum number of elements f,,,, is ex-
ceeded. Then, the heuristic search via movespecies requires O(1) split conflict
calculations, since each recursive call to movespecies starts with one element
less in the list of high-conflict species. As discussed before, such a truncation
may reduce the accuracy of MCOPE, but complex issues may need to be resolved
to understand its impact.

Since the heuristic search does O(1) split conflict calculations, the number of
split conflict calculations during the entire tree traversal of MCOPE-Heuristic
is O(m) in the case of a caterpillar tree as shown in Fig. 3.29, panel 1. (The
internal nodes of this completely unbalanced tree are labeled with the number of
species that are considered once they are visited, but the number of species does
not affect the number of heuristic searches, which is constant. For comparison,
the same labelling has been done for a balanced tree in panel 2. If the number of
heuristic searches would depend on the number of species considered, the effect
of the tree topology would be profound.)

Continuing the worst-case analysis, we instantiate £ by m and ¢ by r, such
that one split calculation now takes time O( 1;2T -m) worst-case. (In other words,
we assume that the tree is not balanced, and that the projected alignments have
no smaller length than the alignment used at the start. The latter assumption
implies alignments composed only of very variable columns, and that the size
of the alphabet is sufficiently large to allow such variation for the given number
of species.)

Considering one calculation of the weak spectrum before each start of the
heuristic search, in time O(mr) worst-case, the overall running time of MCOPE
as described is now

O(m) - O(mr) + O(m) - O(-— -m) = O(-"— - m?),

logr - logr -

for an unbalanced tree with O(m) interior nodes.

Assuming balanced trees, the number of weak spectrum and split conflict
calculations during the tree traversal and the heuristic searches is O(log m), and
the total running time would then be

"2
O(—— -mlogm).
(logr gm)

The main caveat regarding the preceding calculations is the complexity of
the heuristic search, which may not be successful if the bound on the number
of explorations is constant as assumed. Then again, it is likely that the amount
of explorations necessary depends on the nature of the alignment, in particular
on the amount of misleading information it includes. As noted, our theoretical
understanding of MCOPE is still insufficient to tackle these issues.
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Figure 3.29: Caterpillar tree, and balanced tree.
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Chapter 4

Validation, Discussion and
Future Work

4.1 Artificial versus Real Datasets

Intensive validation on both real and artificial data has been performed with
very good results. These are presented in this chapter. Some intensive research,
including the consultation of many people, gives the impression that there are
currently no benchmark datasets for phylogeny estimation, either published in
the literature, or on the World-Wide-Web. The tradeoff between

e unrealistic assumptions employed for the generation of artificial data, and
e the impossibility to know the true phylogeny for real data

poses major problems for benchmarking phylogeny estimation methods. Nev-
ertheless, we can have confidence in the good performance of a method that is
carefully validated with both kinds of data.

4.2 The McOPE Standard Parameter Set

For both the artificial and real datasets used for validation, the following standard
parameter set is used for all calculations.

e The acceptable validity estimate vg is set to 0.75. Validity estimates are
activated symmetrically with a non-residual activation, using exponent
n = 5, as described in section 3.2.3 starting on page 51.

e The acceptable pattern count sg is estimated from the data as described in
section 3.7, depending on the regularity of the distribution of all pattern
counts. Pattern counts are activated in a non-residual manner, again using
exponent 7 = 5.
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The smoothness of the sigmoid function activating pattern counts depends
on the acceptable pattern count, as explained in section 3.7.

The minimum column count § is set to be the logy of the number of
variable alignment columns. This yields small values around 5-10 for the
splits investigated; patterns supported by fewer columns are ignored and
should not bear relevant conflict.

The smoothness of the sigmoid functions operating on values in the range
[0..1] is set to 0.1.

The minimum invariability threshold T is set to 0. In this way, a maximum
of information is extracted from the alignment subcolumns by relative
majority voting.

The parameters for neighbor pattern consideration are set as follows:

e The acceptable hamming distance pp between a pattern type and
its neighbor is estimated from the data, considering the size of the
subgroup of species under consideration, and the sparseness of the
distribution of all patterns, cf. section 3.12.2.

e The neighbor impact factor w, is set to 0.25. Neighbors contribute at
most 25% of their pattern count to the pattern under investigation.

o The minimum preliminary neighbor weight € is set to 0.5, on a scale
of 0 to 1. If a neighbor has less preliminary weight based on its
hamming distance, the softness of the symmetric difference, and the
number of columns supporting it, it is not considered.

e The slope smoothness of the activation for the matching rate congru-
ence between neighbors is set to 0.25.

Usually, results of MCOPE without neighbor consideration are only slightly
worse.

All columns with unknown nucleotides / missing data (usually coded ”?”
or ”’N” in the alignment) are removed.

If columns with gaps are considered, runs in the indices of columns sup-
porting a pattern are removed in part using standard parameters as de-
scribed in section 3.11.

For the real data, the parameters used for the heuristic search are the ones
suggested in section 3.13; for the artificial data the exploration is reduced
to ”just moving high-conflict species”, starting with the split of maximum
weak weight.
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4.3 Artificial datasets

For the generation of artificial datasets, the tool ROSE (Random Generation
of Nucleotide Sequences) [32], Version 1.0.1, was used. Rose allows a wide array
of parameters; we restrict our analysis to nucleotide sequences generated under
the following setup:

e A random tree topology with 32 leaves is constructed by ROSE. The
mutability, that is the percentage of nucleotides modified along one
branch of the tree (also known as the ”percent accepted mutations”, or
PAM) is set by editing the tree lengths, and feeding the tree back to
ROSE, for sequence generation only. This manipulation is necessary since
per default, ROSE 1.0.1 generates trees with a very unequal branch length
distribution, if the PAM-value (expressed in terms of ” average distance”) is
supplied directly. (Basically, ROSE 1.0.1 obtains trees by randomly drop-
ping sequences and corresponding branches from a fully resolved binary
tree with approx. 1000 nodes and all-equal user-specified branch lengths.
Imagine a path from the root to a surviving leaf. Since the more outgoing
branches are deleted, the closer one gets to the leaf, internal branchlengths
close to the root are a lot smaller than the ones close to the leaf.)

e 32 sequences are generated as described, with average sequence lengths of
500, 1000 and 1500 nucleotides. We then split the tree at the root, and
the first subtree contributes the sequences to be analyzed, whereas the
second subtree contributes the outgroup by relative majority rule. This
mechanism results in trees of different size and topology; the average size
is 16 sequences.

e The following simple substitution probability matrix is used. Nucleotides
are substituted with 1% probability per unit of branchlength (1 PAM), and
all three kinds of substitutions are given the same probability of 0.003333.

mp,p MpLC MALG MAST
M = mc,a MCLC MCLG MCT
mGgL,A MGLC MGG MGT
mrt_,p MT,L,C MTLG MTLT

0.99 0.003333 0.003333 0.003333
_ 0.003333 0.99 0.003333 0.003333
B 0.003333 0.003333 0.99 0.003333

0.003333 0.003333 0.003333 0.99

e In ROSE, insertions and deletions depend on the ” average distance” value
(called ”Relatedness” in the ROSE 1.0.1 interface), user-supplied ” thresh-
olds”, and user-supplied indel length functions. As described in [32], the
PAM-value is multiplied with the depth of the tree, yielding the ”average
distance”. The insertion and deletion thresholds are both set to 0.1, and
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the length of both insertions and deletions follow the following distribu-
tion:

frequency(length) = 1/(2 - 1.5n9th),
not considering lengths larger than 10. The following table lists the length

distribution explicitly; note that indels larger than 10 may appear in the
sequences due to the multiple indels.

length 1 2 3 4 5 6 7 8 9 10
frequency 0.333 0.222 0.148 0.099 0.066 0.044 0.029 0.020 0.013 0.009

e We do not use the following possibilities offered by ROSE:

e Sequence motifs, where substitution probabilities differ across the
sequence length.

e Definition of a non-uniform distribution to be used for creating the
sequence at the root of the tree, and insertions.

o Selection of internal node sequences for inclusion into the alignment
to be analyzed.

For most of the data shown, 32 independently created phylogenies were
analyzed using minimum conflict. In other words, 32 runs with the same average
number of sequences (i.e. approx. 16), the same average sequence length (i.e.
500, 1000 or 1500 nucleotides), and the same mutability were performed for each
data point. In a few cases, execution of the software was terminated prematurely
due to external factors; in any case, at least 30 phylogenies were created. The
heuristic search relied entirely on the movespecies heuristic starting with the
split of strongest weak weight; no spectra were obtained and filtered.

For each run, the error count was calculated as the number of incorrectly
established splits across the whole tree. Whenever an incorrect split was favored
by MCOPE, the error count was incremented and the calculation was resumed
with the correct split as if nothing happened. The main alternative to this
”count of incorrectly estimated splits” would have been the completion of a run
without any restart, and the comparison of the resulting tree with the true tree,
e.g. by establishing the number of false positive and false negative bipartitions
in the estimated tree. (In particular, the ”"Robinson-Foulds score” combines
both numbers into one estimate, see [44].) The advantages and drawbacks
of our ”count of incorrectly estimated splits”, in relation to the more direct
comparison of the calculated and the correct tree, are as follows.

e Qur error count may overreport errors because the same species or set
of species can be mishandled several times. For example, a long-branch
species may be split off incorrectly at the root of the tree, but the correct
tree then forces the species back into one of the two correct subtrees.
Following the resumption of calculations with the two correct subtrees,
the species is mishandled again in one of the subtrees, etc, etc.

e Underreporting of errors is possible because without the resumptions with
the correct split, our tree estimation method may make many more errors
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in subsequent divide-and-conquer steps. However, we can view a resump-
tion as a new run with fewer sequences, for which we can, in an ad-hoc
manner, assume at least a similar error probability as the one obtained
for the larger set of sequences. In essence, our conjecture is that the error
probability does not feature any significant change from top to bottom :
it does not depend much on the number of sequences analyzed.

In any case, the differences between any reasonably defined error counts van-
ish as the counts approach zero, so we do not run into interpretation problems
if our error count is close to zero.

The error rate of a single run is defined as the relative frequency of error,
i.e. the error count is divided by the number of splits to be estimated for the
tree under consideration. The error rate of a set of runs is the average error
rate taken over all runs performed.

Results obtained by inspecting random trees with approximately 1500, 1000
and 500 nucleotides are shown in the following set of figures, Figs. 4.1, 4.2 and
4.3. In all 3 figures, the vertical axis is labelled with the average error rate
established over at least 30 runs, and the horizontal axis is labelled with the
specifics of the run. This PAM-value, or mutability, is the number of applica-
tions of the substitution probability matrix along one branch of the artificial
tree, from the ancestral to the descendant node. Naturally, the percentage of
substitutions introduced along a path of branches is much larger. For example,
the percentage of substitutions between two sister group sequences is almost
twice the mutability, unless multiple hits cause saturation effects in case of very
large mutabilities. For the right-hand side of the figures, the mutability is the
same for each branch, while on the left-hand side, it varies as indicated, and the
axis refers to the average mutability, marked as such by the minus (”-”) sign.

The figures include so-called ”error” bars for purposes of decoration only,
based on an unsound attempt to calculate a standard ”error” of the mean as a
basis for 95% confidence intervals. (Note that ”standard error of the mean” is a
technical statistical term, referring to the ”error” that may be attached to the
mean value displayed. Confusion may arise because our variable is an error rate.
However, "error” in the statistical sense is always put into quotation marks in
this chapter, not just to avoid confusion, but also because it is not calculated
in a statistically sound manner. In summary, that ””error”” in doing statistics
makes it easy to distinguish between our error variable and the technical ”error”
term in statistics.)

Our calculation of ”error” bars is unsound because error rates do not feature
a symmetric distribution around the mean value — there are no negative rates !
Furthermore, the ”error” bars may be inflated because they are based on a
distribution of discrete values; if we investigate a tree with 10 internal nodes,
10 splits need to be estimated, and the error can be 0, 0.1, 0.2, 0.3, etc, but
not 0.25. We also note that 32 runs are just enough to calculate ”error” bars;
the author of [34] writes that ”With small samples — say under 30 observations
— larger multiples of the standard error are needed to set confidence limits.”
(For the record, we use + 2 standard deviations, aiming at a 95% confidence
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Figure 4.1: Error rates for artificial data, 1500 nucleotides.
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Using approx. 16 sequences with 1500 nucleotides, 32 independently created
phylogenies established an error rate of zero or almost zero given a mutability of
1-12 PAM (Fig. 4.1, right). Larger mutability triggers more and more error, like
8% for 16 PAM, and 17% for 20 PAM. If the mutability varies randomly between
1 and 3 PAM on different branches of the tree, we observe about 3% error.
Again, larger branchlengths result in more and more error (Fig. 4.1, left). To
some degree, the large error rates to the left can be expected; after all, mutability
variation between 1 and 48 PAM implies almost complete randomizations taking
place across some branches of the tree, and randomization effects are even much
stronger along paths of the tree.

Fig. 4.2, right, displays similar results for an average sequence length of 1000
nucleotides. We observe an average error rate of zero or almost zero given a
mutability of 2 - 8 PAM. A smaller mutability of 1 PAM renders the alignment
less informative, so we can indeed expect a higher error rate. Again, larger
mutability triggers more and more error (Fig. 4.2, right). If the mutability
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Figure 4.2: Error rates for artificial data, 1000 nucleotides.
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varies randomly between 1 and 3 PAM on different branches of the tree, about
7% error results, and for variation between 1 and 7 PAM, we observe about 10%
error. Again, larger branchlengths result in more and more error (Fig. 4.2, left).

For sequences with only 500 nucleotides, we note much higher error rates
(Fig. 4.3, right), unless mutability is around 4 PAM. In particular, the rise in
error for small mutability is more pronounced. Moreover, in these cases variation
of branchlength within the trees studied increases the error rate quite a lot (Fig.
4.3, left). For example, we record about 16% incorrectly estimated bipartitions
in the case of variation between 1 and 7 PAM. However, for half of these errors
the correct bipartition has a conflict value very close to the erroneous one (data
not shown), and polytomies should have been flagged.

The following problems are not handled well by MCOPE, analyzing the arti-
ficial datasets.

e Sometimes, the outgroup is too close to the group under investigation.
Then, a very high standard matching rate results, which is not exceeded
by the observed matching rate because of sampling error, even though the
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Figure 4.3: Error rates for artificial data, 500 nucleotides.
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pattern is due to erosion.

e Rarely, high impact of neighbors on pattern counts lifts the acceptable
pattern count threshold such that valid patterns do no longer qualify if
they have few neighbors. In such cases a general cutoff on the impact
of neighbors may be helpful. However, the natural way to reduce their
impact is to increase the quality criteria they need to meet, like softness
of the symmetric difference. High-quality neighbors should be considered
no matter what their weighted count is, possibly even if it exceeds the
pattern count of the original pattern.

Current knowledge about the relationship between the process used for the
generation of the artificial data, and the evolutionary processes that are behind
the real data, is very limited. Calculating mutabilities / nucleotide substitu-
tion rates from real data is not straightforward, as exemplified by the complex
procedures used in [39, 40]. Therefore, some intensive research is needed to
find good estimates for the mutabilities that we can expect in real data, not to
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mention their variation across the different branches, and we should not derive
any detailed conclusions yet based on the performance of MCOPE on artificial
data.

4.4 Real-life datasets

Artificial datasets are an unsatisfactory substitute for biological data; the model
needed to generate the data must naturally be inadequate. Evolutionary pro-
cesses do not fit into a simple model, and complex models usually imply many
false assumptions. Moreover, systematic errors in phylogeny estimation, includ-
ing branch attraction phenomena, are hard to come by except for a careful study
of real data.

We have selected real data from two sources. We will reinvestigate published
studies, and we will assemble datasets from an alignment database. We will take
great care that the latter are assembled in an almost objective manner, and not
in a manner that suits us best.

In the case of the published studies, we conjecture that current methods have
fallen victim to erosion whenever MCOPE estimates the presumably correct split
not estimated by the authors. In the first study, to be presented in section 4.4.1,
the incorrect split has high bootstrap support. However, bootstrap values (see
e.g. [36]) may be deceived by systematic error — e.g. these indicate maximum
support (100%) for any data if the method just builds up a caterpillar tree of
the sequences in input order; resampling will yield such an artifact tree every
time.

All real-life datasets investigated are collections of 18S-rDNA, with two ex-
ceptions.

e The Arthropod dataset (section 4.4.2) includes both 18S-rDNA and 28S-
rDNA. 28S-rRNA is also a component of the ribosomes of a cell.

e The Mammalia dataset (section 4.4.5) features mitochondrial DNA.

In general, rDNA is a very popular gene for phylogeny reconstruction since its
product has a unique function within the cell, and it has many conserved regions
that can be aligned, often based on structural data. Moreover, the conserved
regions enable the use of standard sequencing primers. Also, rDNA occurs in
many repeats, which makes it even more easier to sequence.

4.4.1 Analysis of the Crustacea Dataset

The Crustacea dataset published by Spears et al [31] has been used as our run-
ning example. Alignments and sample calculations shown in previous chapters
were based on it.

The data comprise 18S-rDNA from twelve species, one species (Branchinecta,
12) from the Branchiopoda group, and 11 species from their putative sister
group Thecostraca. The Thecostraca split into Cirripedia and Ascothoracica,
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Figure 4.4: Putative correct tree (left) and minimum conflict tree (right) for the
Crustacea dataset.
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and the Cirripedia split into Acrothoracida and Thoracica. Thoracica in turn
are comprised of Rhizocephala and Thoracica sensu stricto. The tree from Fig.
4.4, left, is usually assumed to be correct, based on morphological data [31].

The next figure, Fig. 4.5, left, features the tree obtained by Spears et al
[31]. The authors comment their tree as follows: ”Parsimony, invariants and
neighbor-joining analyses all showed the Ascothoracida and Acrothoracica to
be sister taxa [...] Although we certainly do not reject the considerable molec-
ular data supporting a close relationship between the Acrothoracica and As-
cothoracica, we suggest that the Acrothoracica diverged very early from the
cirripedian lineage [...]”. (The method of ”Invariants” goes back to [17, 2], and
"neighbor-joining” [28] refers to a popular distance method. Both methods are
also explained in [36].)

As we have shown, the published tree is very likely due to erosion, and the
more plausible tree featuring the Cirripedia (species 1-10) as a monophylum
is clearly found by minimum conflict (Fig. 4.4 and 4.5, right.) In Fig. 4.4,
the split of minimum conflict used to draw the tree is also listed as the first
label (?minimum”). The follow-up split, that is the split with the second-lowest
conflict, is listed as well ("next”). In Fig. 4.5, the label attached to an internal
node of the minimum conflict tree lists the minimum conflict value established,
followed by the conflict of the second-best split. Furthermore, on the left of the
figure, the conflict value obtained for the split featured by the published tree
(21.480) is noted next to its bootstrap value. In other words, the split 1-10 v 11
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Figure 4.5: Published tree, redrawn (left) and minimum conflict tree (right) for

the Crustacea dataset.
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triggers zero conflict, followed by the split 1-8,11 v 9,10, which has a conflict of
15.562. The split 1-8 v 9-11 triggers a conflict value of 21.480. We obtain this
minimum conflict tree with the standard parameter set outlined in section 4.2,
ignoring the parts of the alignment featuring gaps.

Using alignment columns with gaps as well, we estimate the tree in Fig. 4.6,
right, but only the first two splits. Again, 1-10 v 11 has zero conflict, followed
up by 1-8,11 v 9,10 (conflict 25.657). The incorrect split 1-8 v 9-11 has con-
flict 62.634. The next correct split 1-8 v 9,10 is recovered, but not too well;
split 1-9 v 10 has conflict 0.00003 due to insufficient validity of the pattern ”9”
in 1-9. Further correct splits are not recovered at all. It is possible that our
gap-handling mechanism does not cope well with the Crustacea dataset, and/or
the gaps in this dataset are misleading anyway. Ignoring neighbors of patterns
and alignment columns with gaps, we estimate the tree in Fig. 4.7, right, where
conflict values are almost identical to the ones estimated with neighbor consider-
ation. Ignoring neighbors of patterns but not alignment columns with gaps, we
estimate the same tree as in Fig. 4.6, right, with very similar conflict values; for
the Crustacea dataset, neighbors do not contribute much information. All these
trees are based on calculations like the ones presented in our running example,
which uses the first 50 variable columns without gaps or unknown nucleotides
/ missing data.

We now provide some more details on the heuristic search leading to the
minimum-conflict tree for the Crustacea dataset, considering neighbors and ig-
noring alignment columns with gaps (Fig. 4.5, right).
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Figure 4.6: Published tree, redrawn (left) and conflict tree considering gaps
(right) for the Crustacea dataset.
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Using species 12 as the outgroup, we first obtain the following heuristic split
search results:

| Split | Conflict | Weak Weight |
1-10 v 11 0.000 75
910 v 1811 15.562 9
1-8 v 9-11 21.450 226
10 v 1-9,11 34.356 8
9 v 18,1011 34.356 5
8 v 1-7,9-11 117.323 90
6 v 1-5,7-11 123.932 12
7 v 1-6,8-11 124.563 16
1-7 v 811 125.547 31

The search starts with the calculation of the weak weights, now listed in the
last column. The weak spectrum starts with the split 1-8 v 9-11, for which weak
weight is provided by 226 columns, followed by 8 v 1-7,9-11, 1-10 v 11, 9,10 v
1-8,11, 1-7 v 8-11, etc. Sorting the weak spectrum by split conflict almost results
in the table shown; the heuristic search encounters only one further split, namely
9 v 1-8,10,11, by moving species 10 out of 9,10 v 1-8,11. Since the number of
variable columns is 298 for the alignment of species 1-11, the minimum column
count for the preceding conflict calculations is [log2298] = 8.

The outgroup for the species 1-10 is 12, repeating the calculation done in sec-
tion 3.10, for the full alignment. The following search results are then obtained
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Figure 4.7: Published tree, redrawn (left) and minimum conflict tree ignoring
neighbors (right) for the Crustacea dataset.
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for species 1-10 with outgroup 12:
| Split | Conflict | Weak Weight |
1-8 v 9,10 0.000 275
1-9 v 10 64.902 8
9 v 1-8,10 77.390 5
8 v 1-7,9,10 132.214 96
6 v 1-5,7-10 137.972 14
4 v 1-3,5-10 138.388 8
7 v 1-6,8-10 138.710 16
5 v 1-4,6-10 138.819 6
2 v 1,310 138.907 15
1-7 v &10 144.000 35

This time, the minimum-conflict split is also the one with the maximum weak
weight. This will also hold for the investigation of species 1-8, but not for the
investigation of species 1-7, where the splits 1-6 v 7 and 1-5,7 v 6 have maximum
weak weight (data not shown). The outgroup selected for 1-8 is again species
12, but for 1-7, species 8 triggers a smaller spread of matching rates, and is
therefore elected as outgroup.

Since the minimum column count is the base-2 logarithm of the number
of variable columns, it gradually decreases with this number, which in turn
decreases due to the loss of variation in the species that are no longer considered.
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In this case, the projected alignments featuring species 1-10, 1-8 and 1-7 have
267, 137 and 75 variable columns, respectively, and the minimum column counts
are 8, 7 and 6.

The calculation of the Crustacea minimum conflict tree then continues with
an insufficient number of just 45 variable columns.

4.4.2 Analysis of the Arthropod Dataset

The publication of the analysis of the Arthropod dataset, an alignment of parts
of both 185-rDNA and 28S-rDNA, by Friedrich and Tautz [6] led to significant
debate. Analyzing arthropod, vertebrate, annelid and nematode sequences, it
suggests that the Mandibulata, species 1-8, do not comprise a monophyletic
group, nor do the Tracheata, species 1-6 (see Fig. 4.8, left. Bootstrap support
is again given in boxes. The tree published also indicates branchlengths, and
resolves the two polytomies in the same way as MCOPE).

Figure 4.8: Published tree, redrawn (left) and conflict tree (right), for the
Arthropod dataset.
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The tree is estimated by maximum likelihood, and the authors state that
bootstrap analysis with maximum likelihood as well as parsimony and neigh-
bor joining ([28], a distance method) give trees that do not differ substantially
(see [6] for details.) Using the alignment that was distributed by the authors,
where the species ”Pseudachorutes” was replaced by "Podura”, MCOPE is able
to recover monophyly of the Mandibulata, despite bootstrap support of 77% in
favor of non-monophyletic Mandibulata (see Fig. 4.8, right. As before, a split
in the conflict tree is usually labeled by its minimum conflict value, and the

117



Figure 4.9: Published tree, redrawn (left) and conflict tree ignoring neighbors
(right), for the Arthropod dataset.
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conflict value of the next-best split. If the minimum-conflict split is not the
presumably correct split, the conflict value of the latter is listed first, followed
by the minimum conflict value and the second-best value. This case is indicated
in red).

The reason for the putative incorrect split is once again deemed to be erosion:
Crustacea and Hexapoda form one group in the Friedrich and Tautz publication
because they gained substitutions fast, while Myriapoda and Chelicerata share
old character states. Monophyly of the Tracheata cannot be established; the
minimum-conflict split for 1-8 is 3 v 1,2-8 (conflict 0.001), followed by 1 v 2-8
(conflict 0.002) and 2 v 1,3-8 (conflict 0.013). The split 1-6 v 7,8 has conflict
21.059.

There are just six gap characters in the alignment provided. However, we
can investigate the effect of the neighbors (Fig. 4.9). Without neighbors, the
incorrect split 2 v 1,3-13 has a minimum conflict of 5.937, closely followed up
by 1 v 1-13 and the split 1-10,12,13 v 11. The correct split 1-11 v 12,13 has a
conflict of 8.926. The correct split of 1-11, i.e. 1-10 v 11, cannot be found either,
favoring 9,10 v 1-8,11 instead. For species 1-10, the correct split 9,10 v 1-8 is
recovered. Monophyletic Tracheata are again not supported.

The number of variable characters in the alignment considered by MCOPE
is rather constant; it goes down from 695 sites for group 1-13 to 645 sites for
group 1-11, and then down to 610 sites for group 1-10. Even for group 1-6, 461
variable sites are still available, and we conclude that there is a lot variability
in the data. Nevertheless, MCOPE seems to be able to make some sense out of
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this noisy dataset, in particular if neighbors are considered.

4.4.3 Analysis of the Bilateria Dataset

Up to now, we have reanalyzed datasets provided by other authors. For these
datasets, we have no leverage in the choice of species, and the alignment is given
by a black box (the authors used some computerized method and then corrected
the alignment ”by eye”). This time, we have constructed our own dataset from
the alignment of the RDP (Ribosomal Database Project, [19]) database, which
is guided by structural information. It is possible that this alignment is more
objective than the alignments considered so far, since it is not corrected by eye,
for a particular study.

The more important point however is the choice of species — how can it be
done in an objective way, and still yield a set of species for which an ”undis-
puted” correct tree can be constructed 7 The RDP database offers a sequence
query facility (the ”Phylogenetic Tree Browser”) that has a crude phylogenetic
organization which we will finetune a bit, and then we can run the following
procedure to obtain a selection of species that is both objective and classifiable
to a very high degree.

1. Take a group of species to be studied.

2. Select the outgroup such that it is the first group of species listed on the
same level. (If the first group in the list is the group under study, select
the second one.)

3. Explore the selected groups. On the level of the group selected, always
take the first two groups of species, and explore these in the same way.

4. Once you reach the species level, take the first two species.

The ”take the first two” rule renders our selection process as objective as pos-
sible; "the first two” groups are predefined by the browser, and "the first two”
species are predefined by the order in which groups and species are listed by
the browser. The ”take the first two” rule also helps us to select species such
that the tree is ”almost” undisputed; adding a third group would imply that a
debate is possible on the correct classification of the three groups. (Our rule
does not select the most ”representative” groups or species; “representative” is
a subjective criterion that is sacrificed in favor of a strict rule that just uses
the rather arbitrary order in the listings given to us. We note that usually,
reconstructing phylogenies becomes easier if "representative” species are used
for the various groups.)

As of June 2000, the RDP tree is organized as in the table below; we have
expanded the groups by following the procedure just outlined, and use boldface
to highlight the species selected accordingly. The dots (....) represent groups of
species that need not be considered, because they are not the first two groups,
considering the finetuned phylogeny.

We have finetuned the RDP phylogeny by postulating the following:
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¢ 7(3.10.5) ECHINODERMATA_AND_HEMICHORDATES” and ”(3.10.6)
CHORDATA?” are in one subtree. This subtree is called ” Deuterostomia”.
Few biologists will doubt the resulting assumption that the Echinodermata
and Chordata are in one subtree, and the Mollusca are in the other subtree.

e ”Deuterostomia” and ”(3.10.7) MOLLUSCA_AND_OTHERS” are in one
subtree, to the exclusion of the other species in (3.10.1) — (3.10.4). This
”undisputed” subtree is called ”Bilateria”.

(3.10) METAZOA_AND_RELATIVES
(3.10.1) CHOANOFLAGELLIDA
Drcy.salmo Dermocystidium salmonis (protist; fungi/metazoan incertae sedis)
Drcy.spSal Dermocystidium sp. (protist; fungi/metazoan incertae sedis)

(5.10.2) PORIFERA_AND_CTENOPHORA
(5.10.3) CNIDARIA_AND_PLACOZOANS
(5.10.4) NEMATODA_(ROUNDWORMS)

*Bilateria: (3.10.5) + (3.10.6) + (3.10.7)*
**Deuterostomia: (3.10.5) + (3.10.6)**

*%*(3.10.5) ECHINODERMATA_AND_HEMICHORDATES
*%(3.10.5.1) ECHINODERMATA
*%(3.10.5.1.1) ECHINOIDEA (SEA_URCHINS)
Flls.zelan Fellaster zelandiae (sea urchin)
Enco.aberr Encope aberrans (sea urchin)

*%(3.10.5.1.2) OPHIUROIDEA (BRITTLE_STARS)
Ophp.japon Ophioplocus japonicus (brittle star)
Opph.acule Ophiopholis aculeata (brittle star)

*%(3.10.5.2) ENTEROPNEUSTS_(ACORN_WORMS) - this group may be debated
*#%(3.10.6) CHORDATA
*%(3.10.6.1) GNATHOSTOMATA_(JAWED_VERTEBRATES)
*%(3.10.6.1.1) AVES_(BIRDS)
Lthx.lutea Leiothrix lutea (red-billed leiothrix bird) — fragment only
Trgd.trgld Troglodytes troglodytes (wren) — fragment only

Trdu.migrt Turdus migratorius (thrush bird, unspecified)

Gall.gallu Gallus gallus (chicken)

#%(3.10.6.1.2) MAMMALIA
Oryc.cunic Oryctolagus cuniculus str. New Zealand (rabbit) — the po-
sition of this species in the tree is debated
Oryc.cuni2 Oryctolagus cuniculus (rabbit)
Homo_sapi2 Homo sapiens (human)
Homo_sapie Homo sapiens (human)
Homo-_sapi5 Homo sapiens (human)
Homo_sapi3 Homo sapiens (human)
Ratt.norw4 Rattus norvegicus (brown, common or Norway rat)
Ratt.norwe Rattus norvegicus (brown, common or Norway rat)
Ratt.norw2 Rattus norvegicus str. Sprague Dawley (brown, ... rat)
Mus_-muscu4 Mus musculus (house mouse)
Ratt.norw3 Rattus norvegicus (brown, common or Norway rat)
Mus_-muscul Mus musculus (common or house mouse)
Mus_muscu2 Mus musculus (house mouse)

*%(3.10.6.2) AGNATHA_(JAWLESS_VERTEBRATES)
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*%(3.10.6.2.1) PETROMYZONTIFORMES_(LAMPREYS)
Lptr.aepyp Lampetra aepyptera (least brook lamprey)
Ptrm.marin Petromyzon marinus (sea lamprey; marine lam-
prey)

*%(3.10.6.2.2) MYXINIFORMES_(HAGFISH) — this group may be debated

*(3.10.7) MOLLUSCA_AND_OTHERS
*(3.10.7.1) MACTRIDAE_MOLLUSCA _(SURF_CLAMS)

Tres.nutta Tresus nuttali (surf clam)
Tres.capax Tresus capax (surf clam)

*(8.10.7.2) BRYOZOA_GROUP_I — this group is ill-defined
*(3.10.7.3) OSTREIDAE_MOLLUSCA (OYSTERS)

Otre.eduli Ostrea edulis (oyster)
Crst.virgi Crassostrea virginica (eastern oyster)

Now we can outline the strict process of species selection:
e The group to be studied is ”Bilateria”, (3.10.5) — (3.10.7).

e The first group on the same level is ”(3.10.1) CHOANOFLAGELLIDA”. Tt is
used as the outgroup. Since we are already investigating two groups on this
level of the finetuned phylogeny (”Bilateria”, (3.10.5) — (3.10.7), and ”(3.10.1)
CHOANOFLAGELLIDA”), no further groups from this level are selected.

e One level further, we investigate the ”Bilateria”. The first group is the
”Deuterostomia”, the next one is ”(3.10.7) MOLLUSCA_AND_OTHERS”,
and we do not consider other groups on the same level.

e One level further, we investigate the ”Deuterostomia”. The first
group is ”(3.10.5) ECHINODERMATA_AND _HEMICHORDATES”,
and the second one is 7 (3.10.6) CHORDATA”. Within (3.10.5), we ig-
nore the ”unsafe” group ”(3.10.5.2) ENTEROPNEUSTS_(ACORN.-
WORMS)”, and only tackle ”(3.10.5.1) ECHINODERMATA”. From
this group, we take the first two species of the first two subgroups.

e On the same level, we investigate ”(3.10.6) CHORDATA”. The first
subgroup is ”(3.10.6.1) GNATHOSTOMATA _(JAWED_VERTEBRA-
TES)”, and the second one is ”(3.10.6.2) AGNATHA_(JAWLESS.-
VERTEBRATES)”. From the first subgroup, we take two birds and
two mammals, since ”(3.10.6.1.1) AVES_(BIRDS)” and ”(3.10.6.1.2)
MAMMALIA” are listed first. The two birds selected are the only ones
for which not just an RNA fragment is available. Mammal selection
ignores ”duplicates” as well as species of debated phylogenetic origin
(Oryctolagus). From the second subgroup, we take two species from
7(3.10.6.2.1) PETROMYZONTIFORMES_(LAMPREYS)”, ignoring
7(3.10.6.2.2) MYXINIFORMES_(HAGFISH)” since its phylogenetic
origin is also debated.

e From ”(3.10.7) MOLLUSCA_AND_OTHERS”, we take the first two species
of the first two subgroups, ignoring an ill-defined group "BRYOZOA -
GROUPI".

The result of this strict species selection process is the tree in Fig. 4.10 on
the left, which is, moreover, hard to dispute. The minimum conflict tree on the
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Figure 4.10: ”Undisputed” tree (left) and minimum conflict tree (right) for the

Bilateria dataset.
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right recovers the phylogeny correctly, even though resolution deteriorates for
the most internal nodes. The reason is a lack of variable columns — after all,
we ignore all the columns that include unknown nuclotides / missing data, as
specified by the MCOPE standard parameter set. (It is future work to rectify this
necessity, by handling these cases in a reasonable way. Then again, permitting
missing data may introduce subtle artifacts if e.g. sequences ”from one study
only” carry them. If the study concerns just molluscs, molluscs are ”marked”
by the presence of missing data, and subtle effects may drive them into one
group just because of this.)

MCOPE starts off with 522 variable characters in the alignment of species
1-14, continues with 408 variable sites in the alignment of species 1-10, and
can still resolve the correct split of 1-6, given 206 variable sites. Lists of many
zero-conflict splits result for the remaining subtrees of species 1-4, 4-8 and 9-12,
featuring 135, 177 and 191 variable characters, respectively.

Ignoring gap character states, MCOPE does one mistake, suggesting an incor-
rect subtree of Chordata and Mollusca, with the Echinodermata as the incorrect
sister group. The corresponding split, 7-10 v 1-6,11-14, has conflict 16.812, but
the second-best split with conflict 18.616 is the correct split 1-10 v 11-14.

4.4.4 Analysis of the Gnathostomata Dataset

MCOPE performance is mixed on the second dataset retrieved from the RDP
database, comprising Gnathostomata sequences. The species were selected fol-
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lowing the same procedure as for the Bilateria dataset, finetuning the RDP
phylogeny as follows:

e Rattus and Mus are united into the monophyletic group ”Rodentia”, which
is part of the Mammalia.

e 7(3.10.6.1.1) AVES_(BIRDS)” and ” (3.10.6.1.3) REPTILIA” form one sub-
tree, called ”Reptilia (incl. Aves)”.

e "Reptilia (incl. Aves)” and ”(3.10.6.1.2) MAMMALIA” are in one subtree,
called ” Amniota”.

e ”Amniota” and ”(3.10.6.1.4) AMPHIBIA” are in one subtree, called ” Tetra-
poda”.

e ?Tetrapoda” and ”(3.10.6.1.5) COELACANTHIFORME” form the group
”Sarcopterygii”.

e ”Sarcopterygii” and ”(3.10.6.1.6) ACTINOPTERYGII_(RAY-FINNED -
FISHES)” comprise ”(3.10.6.1) GNATHOSTOMATA _(JAWED_VERTE-
BRATES)”.

Finally, group ”(3.10.6.1) GNATHOSTOMATA_(JAWED_VERTEBRATES)”
and group ”(3.10.6.2) AGNATHA _(JAWLESS_VERTEBRATES)” are the rele-
vant first two groups listed for the Chordata. We consider this tree very safe,
but not as undisputed as the one presented for the Bilateria.

The group to be studied is Gnathostomata, and since this is the first group
in the list, the second group (” Agnatha”) on the same level (that is, ”(3.10.6)
CHORDATA?”) serves as outgroup. Species selection then follows the "take the
first two” rule within the refined phylogeny. The same rules as in section 4.4.3
are used in case of problems. Furthermore, Trachemys scripta, the first species
in the group ”(3.10.6.1.3) REPTILIA”, is ignored, because its phylogenetic re-
lationship to birds on the one hand, and other ”Reptilia” on the other hand,
may be debated.

Considering the monophyla ”Rodentia”, ”Reptilia (incl. Aves)”,” Amniota”,
”Tetrapoda” and ”Sarcopterygii” just described, the following table taken from
the RDP Phylogeny Browser gives rise to the species found in the tree of Fig.
4.11, left.

(3.10.6) CHORDATA
(3.10.6.1) GNATHOSTOMATA _(JAWED_VERTEBRATES)
(3.10.6.1.1) AVES_(BIRDS)

Trdu.migrt Turdus migratorius (thrush bird, unspecified)
Gall.gallu Gallus gallus (chicken)

(3.10.6.1.2) MAMMALIA
Oryc.cunic Oryctolagus cuniculus str. New Zealand (rabbit) — the position of
this species is debated
Oryc.cuni2 Oryctolagus cuniculus (rabbit)
Homo _sapi2 Homo sapiens (human)
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Homo _sapie Homo sapiens (human)
Homo-_sapi5 Homo sapiens (human)
Homo_sapi3 Homo sapiens (human)
Ratt.norw4 Rattus norvegicus (brown, common or Norway rat)
Ratt.norwe Rattus norvegicus (brown, common or Norway rat)
Ratt.norw2 Rattus norvegicus str. Sprague Dawley (brown, ... rat)
Mus_muscu4 Mus musculus (house mouse) — fragment only
Ratt.norw3 Rattus norvegicus (brown, common or Norway rat)
Mus_muscul Mus musculus (common or house mouse)
Mus_muscu2 Mus musculus (house mouse) — fragment only
(3.10.6.1.3) REPTILIA
Trch.scrpt Trachemys scripta (red-eared slider turtle; dime-store turtle)— the
position of this species is debated
Alli.msspp Alligator mississippiensis (American alligator)
Htrd.pltyr Heterodon platyrhinos (eastern hognose snake)
Sclp.undul Sceloporus undulatus (iguanian lizard)
(3.10.6.1.4) AMPHIBIA
Xeno.laev6 Xenopus laevis (African clawed frog; South African clawed frog)
Xeno.laevi Xenopus laevis (African clawed frog; South African clawed
frog)
Xeno.laev3 Xenopus laevis (African clawed frog; South African clawed frog)
Xeno.laev4 Xenopus laevis (African clawed frog)
Xeno.borea Xenopus borealis (clawed frog) — incomplete RNA
Xeno.laevb Xenopus laevis (tongueless frog; African clawed frog)
Disg.picts Discoglossus pictus (painted frog)
Amby.mexic Ambystoma mexicanum (axolotl (mole salamander))
Hyla_ciner Hyla cinerea (green tree frog)
Bufo_valli Bufo valliceps (Gulf coast toad)
(3.10.6.1.5) COELACANTHIFORME
Ltmr.chlmn Latimeria chalumnae (coelacanth) - one single species
(3.10.6.1.6) ACTINOPTERYGII_(RAY-FINNED_FISHES)
Echr.cooke Echinorhinus cookei (prickly shark)
Squa.acant Squalus acanthias (spiny dogfish)

(3.10.6.2) AGNATHA _(JAWLESS_VERTEBRATES)
(3.10.6.2.1) PETROMYZONTIFORMES_(LAMPREYS)
Lptr.aepyp Lampetra aepyptera (least brook lamprey)
Ptrm.marin Petromyzon marinus (sea lamprey; marine lam-
prey)
(3.10.6.2.2) MYXINIFORMES_(HAGFISH)
(3.10.6.3) BRANCHIOSTOMIDAE_(LANCELETS)
(3.10.6.4) UROCHORDATA_(TUNICATES)

MCOPE estimates only part of the tree shown in Fig. 4.11, right. The red
labels of the first two splits indicate that these are not reconstructed correctly,
even though the distance between the correct split (listed first) and the incorrect
minimum-conflict one (listed next) is small: 1-12 v 13,14 has conflict 5.658, and
the minimum conflict split 12 v 1-11,13,14 has conflict 5.256. Not shown are
the conflict values of 12 v 1-11,13,14 (5.432) and 1-9 v 10-14 (6.746), which
come next. MCOPE indicates that there is a problem, and a polytomy should
be returned. In case of the next split to be determined, the correct one (1-11 v
12) has some more conflict (8.262) than the minimum-conflict one (1-9 v 10-12),
with conflict 6.061. The other splits are estimated correctly, and the minimum
conflict is much smaller than the conflict of any other split. Not considering
columns with gap character states, we retrieve the same tree, contemplating the
same set of problems.

The number of variable sites considered by MCOPE ranges from 185 for
species 1-14 to 26 for species 1-5, which must be considered very low. The
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Figure 4.11: ”Undisputed” tree (left) and conflict tree (right) for the Gnathos-

tomata dataset.
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reason lies in the skipping of any alignment column that includes missing data.

4.4.5 Analysis of the Mammalia Dataset

The Mammalia Dataset is also taken from the RDP database, following the
same procedures with two notable exceptions:

e We are interested in two debated sets of splits, the first one among the
Hominids, and the second one between the Eutheria (placental mammals),
Marsupialia (opossums, kangaroos, etc.) and Monotremata (platypus,
echidnas).

e We select the data from the ”mitochondrial DNA” part of the RDP
database; there is no 185-rDNA available for the most of the species con-
cerned.

The following list was retrieved from the RDP database; boldface highlights
the sequences selected based on our interest in the Mammalia as well as the
Hominids, and the ”take the first two” rule explained in section 4.4.3. The
outgroup used is ” Trachemys scripta”, which is the first group listed that belongs
to the ” Amniota” (see section 4.4.4).

(4.4) VERTEBRATES
(4.4.5) REPTILES
(4.4.5.1) PARAPHYLETIC_REPTILE_GROUP.I - uncertain phylogeny
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(4.4.5.2) TURTLES
(4.4.5.2.1) SLIDER_TURTLE

Trch.scr-M Trachemys scripta (red-eared slider turtle; slider
turtle; dime-store turtle) — mitochondrion

(4.4.6) MAMMALS
(4.4.6.1) MARSUPIALS
(4.4.6.1.1) MARSUPTAL_SUBGROUP.I

Phln.ori_M Phalanger orientalis (gray common cuscus) — mito-
chondrion

Phin.car_M Phalanger carmelitae (mountain cuscus) — mitochondrion —
fragment only

Trcs.vul-M Trichosurus vulpecula (brush-tailed possum) — mitochon-
drion — fragment only

Phcl.cin-M Phascolarctos cinereus (koala) — mitochondrion — fragment
only

Phcl.ci2_M Phascolarctos cinereus (koala) — mitochondrion

(4.4.6.1.2) MARSUPIAL_SUBGROUP.II — uncertain phylogeny
(4.4.6.1.3) MARSUPIAL_SUBGROUP.III — uncertain phylogeny
(4.4.6.1.4) MARSUPIAL_SUBGROUP._IV - uncertain phylogeny

(4.4.6.2) MONOTREMATES_(EGG-LAYING_MAMMALS)
(4.4.6.2.1) PLATYPUS

Orrh.an3_M Ornithorhynchus anatinus (duckbill platypus)
— mitochondrion
Orrh.an4_M Ornithorhynchus anatinus (duckbill platypus)
— mitochondrion
Orrh.an2_M Ornithorhynchus anatinus (duckbill platypus) — mi-
tochondrion — fragment only
Orrh.ana-M Ornithorhynchus anatinus (duckbill platypus) — mi-
tochondrion — fragment only

(4.4.6.2.2) ECHIDNAS - only fragments found

(4.4.6.3) RODENT_GROUP.I
(4.4.6.3.1) RODENT_SUBGROUP.I

Prmy.pol_ M Peromyscus polionotus (deer mouse) — mito-
chondrion

Prmy.kee_M Peromyscus keeni (deer mouse or North Amer-
ican wood mouse) — mitochondrion

(4.4.6.3.2) RODENT_SUBGROUP._II

Onch.are_M Onychomys arenicola (Chihuahuan grasshop-
per mouse) — mitochondrion
Onch.leu_M Onychomys leucogaster (northern grasshop-
per mouse) — mitochondrion

(4.4.6.19) PRIMATES
(4.4.6.19.1) HOMINTDS

Pan_tro5_M Pan troglodytes (common chimpanzee) — mitochondrion
Pan_tro4_M Pan troglodytes (common chimpanzee) — mitochondrion
Pan_trog_M Pan troglodytes (common chimpanzee) — mitochondrion —
fragment only

Pan_tro3_M Pan troglodytes (central African common chim-
panzee) — mitochondrion

Homo_sa9_M Homo sapiens (human) — mitochondrion

Pan_tro2_M Pan troglodytes (common chimpanzee) — mitochon-
drion

Pan_pani-M Pan paniscus (pygmy chimpanzee) — mitochondrion - frag-
ment only

Pan_pan2_M Pan paniscus (pygmy chimpanzee) — mitochondrion — un-
readable genbank file

Gorl.go2_M Gorilla gorilla (gorilla) — mitochondrion
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Gorl.gor_M Gorilla gorilla (lowland gorilla) — mitochondrion — fragment
only

Gorl.go3_M Gorilla gorilla (Western lowland gorilla) — mito-
chondrion

Homo_sa3-M Homo sapiens (human) — mitochondrion

Homo_sap-M Homo sapiens (human) — mitochondrion
Homo_sa2_M Homo sapiens (human) — mitochondrion
Homo_sa4_M Homo sapiens (human) — mitochondrion

Homo_sa8_M Homo sapiens (human) — mitochondrion

Homo_sa5_-M Homo sapiens (human) — mitochondrion

Homo_sa7-M Homo sapiens (human) — mitochondrion

Pong.py2_M Pongo pygmaeus (orangutan) — mitochondrion

(4.4.6.19.2) NON-HOMINID_PRIMATES - only fragments found

Figure 4.12: Unresolved tree (left) and minimum conflict tree (right) for the
Mammalia dataset (mitochondrial DNA).
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The result of the selection process are the species included in the tree of
Fig. 4.12, left; the tree shown may be debated as far as the position of the
Monotremata and the various hominids is concerned, and we use polytomies
to indicate this. On the right, the minimum conflict tree is displayed; the
split 1-13 v 14,15 (Theria versus Monotremata) has minimum conflict, although
it is closely followed by 12 v 1-11,13-15 (conflict 17.741), 1-12 v 13-15 (con-
flict 20.417), 12,13 v 1-11,14,15 (conflict 22.280), 8-11 v 1-7,12-15 (conflict
25.960) and 1-11 v 12-15 (conflict 28.732). The last split listed refers to the
”Marsupionta” hypothesis, proposing a monophyletic group of Marsupialia and
Monotremata [15, 16, 25]. The other splits (Eutheria versus Marsupialia, and
Primates versus Rodentia) are well supported. No further resolution is possible
for the primates; there are seven splits with zero conflict. This is no surprise:
While 413 variable sites are given in the alignment of 1-15, and 294 are still
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available in the alignment of 1-11, no resolution is possible for the 107 variable
columns in the projected alignment of the primate species 1-7.

4.4.6 Analysis of the Chordata Dataset

The Chordata dataset is a subset of the Metazoa dataset analyzed by Rédding
and Wigele [26]. A projection of a PAUP version 3.1 bootstrap run using
parsimony [35] of all 98 species is given in Fig. 4.13, left. The choice of species
is close to the one of the Gnathostomata dataset, but the underlying alignment is
provided by the authors, who used a computerized procedure (ClustalW, [37])
and then maximized the number of invariable sites by eye. We note that in
addition to the groups already discussed, species 1-13, species 1-12 and species
1-7 in this dataset are usually considered to be monophyletic.

Figure 4.13: Doubtful tree (left) and conflict tree (right) for the Chordata
dataset.
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The parameters of the PAUP run have been:
e 500 bootstraps

o Heuristic Tree Search

e Nearest Neighbor Interchange

e Addition sequence simple, reference species Mus Musculus.
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The run assigns bootstrap confidence of 53% to the presumably incorrect split
1-5,8,9 v 6,7 (see Fig. 4.13, left, including bootstrap support values), and we
assume that leftover character states due to more rapid evolution of Fundulus
and Salmo trigger the incorrect tree topology, since MCOPE gets the tree right
up to this point (Fig. 4.13, right). Thereafter, the conflict tree is as incorrect as
the PAUP-tree, favoring a zero-conflict split 1-3 v 4-7 over the correct split 1-5
v 6,7, which obtains a conflict of 23.107. Without considering gaps, calculations
run very similar, except that split 1-11 v 12 is no longer minimum, giving way to
10,11 v 1-9,12, which is not a plausible bipartition into monophyletic subtrees.
For the Chordata dataset, MCOPE recognizes 662 variable sites in the beginning,
and this number goes down to 341 for species 1-9, and to 323 for the subtree
of species 1-7. In the end, 50 variable columns are left in the alignment of the
sequences of species 1-3.

4.5 McOPE Advantages and Disadvantages

Our method, ”minimum conflict phylogeny estimation” (MCOPE), has the follow-
ing advantages, which have been outlined in section 1.2, unless noted otherwise.

e MCOPE avoids short-branch attraction (erosion).

e MCOPE is fast due to its divide-and-conquer approach; many species can be
handled simultaneously, and no search through the space of tree topologies
is necessary.

e MCOPE returns rooted trees, which are more informative than unrooted
trees.

e MCOPE is simple and transparent.
e MCOPE needs no modelling of substitution rates, etc.
e MCOPE is rather robust to species sampling problems, see section 3.9.

e MCOPE returns results that do not depend in any way on the input order
of the sequences.

The following disadvantages should be noted:
e MCOPE does not deal with protein sequences yet.

e MCOPE, as currently implemented, is slower than necessary because it is
all written in a scripting language (Perl), without using the numerical data
handling package that Perl now offers.

e MCOPE may fall victim to long branch attraction due to the accumulation
of convergences, see section 3.5.2.

e MCOPE may fall victim to parallel erosion and speciation, see section 3.5.2.
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4.6 Future Work

For updates on our work, and more applications of our method to biological and
artificial datasets, please watch the URL
http://bibiserv.techfak.uni-bielefeld.de/mcope/.

The following is a list of possible improvements.

e Method and algorithm

There needs to be an assessment on how far the split of lowest conflict
is away from the follow-on ones, and how significant this distance is.

If this distance is insignificant, the method may flag reticulate (net-
like) evolution, and/or it may follow up on more than one low-conflict
split, analyzing the subtrees in parallel, and possibly combining the
results of the analyses.

The detection of convergence accumulation may be possible by using
the detection of erosion in the complementary set of species as a flag.

We would like to estimate the acceptable validity estimate from the
dataset.

Theoretical results may be very useful, following up on the very gen-
eral model introduced in section 2.3. Philosophical issues can then
be tackled more directly. MCOPE uses the local similarity of charac-
ter states in an intelligent way, just like parsimony. Therefore, we
claim that it is not a phenetic method in any reasonable sense of
the word, because is it does not just look at the (overall) similarities
between character states. Theoretical results could add some deeper
understanding of these issues.

Simulation studies may include a direct comparison with standard
phylogeny estimation methods.

It may be possible to avoid the heuristic search of split space, and do
a simultaneous analysis of all the patterns in a spectrum. It may be
possible to analyze these for erosion, independently of any split.

The handling of gap character states (in particular terminal gaps)
and unknown nucleotides / missing data should be improved. In
particular, the failure to distinguish terminal from nonterminal (in-
terior) gaps may be responsible for some of the errors reported for
real datasets whenever alignment columns with gap character states
are not ignored.

The method should be generalized to protein data.

e Implementation issues

A better automated output of trees in various formats is needed.
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¢ Since the prototyping phase is now over, memory consumption and
speed should be cut by several orders of of magnitude, investing just
a few days of finetuning work.

e The crude databases used for maintaining parameter information and
associated results need to be improved.

e A standalone distribution needs to be developed, most likely based
on a standalone server/browser setup.

4.7 A Short Description of the MCOPE Software

MCOPE software is written using the Perl programming language [43]. It consists
of object-oriented modules for alignment manipulation (see [3]), phylogeny ma-
nipulation, phylogeny exploration and corresponding alignment visualization.
The phylogeny explorer allows the user to specify which splits of a given phy-
logeny s/he wishes to inspect (sorted and filtered by weak weight and conflict, in-
cluding an optional search for better splits via conflict-based species exchange).
The explorer also manages the recursion, preceded by another optional filtering
step, and allows for each filtering step the setting of a minimum and maximum
number of splits to be retained. For any path, the explorer can return results
as hypertext and as graphics; in both cases cumulative reports can be returned,
effectively listing conflict spectra as linked tables or histograms.
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majority symbols, 26

malign leftover, 37

matching, 19

matching rate, 59

matching rate congruence, 93
max-filter, 98

maximum conflict value, 99
maximum likelihood, 14
min-filter, 99

minimum column count, 73
minimum invariability threshold, 26

minimum preliminary neighbor weight,

92
minimum species exchange conflict
value, 100
minimum weak weight value, 99
missplits, 29
model of sequence evolution, 24
monophyletic, 21
most-plausible tree, 29

movespecies, 100
mutability, 106

neighbor impact factor, 93
neighbors, 89

nodes, 20

noisy, 26

non-residual activation, 54
novelty estimate, 75

observed matching rate, 74
older, 21

outgroup, 59

outgroup match, 74

parsimony, 14

path, 21

pattern, 40

pattern conflict, 81

pattern count, 40, 80

pattern type, 40

phylogenetic tree, 20

phylogeny, 20

phylogeny estimation problem, 25

polytomies, 21

precise language, 17

preliminary acceptable hamming dis-
tance, 90

preliminary neighbor weight, 92

preservation rate, 60

recent species, 18
regularity, 80
root, 20

rows, 19

runs, 107

separation event, 21

sequence, 18

shared, 19

shared derived character state, 31
shared leftover, 36

shared novelty, 30

shared old character state, 36
short branch attraction, 9

sister groups, 21

sites, 19



size-based downweighting factor, 92

sort, 98

sparseness, 90

special character state, 18

species, 18

species conflict, 82

species resistance, 63

species softness, 63

split, 20, 28

split conflict, 82

standard activation function , 48

standard parameter set, 104

standard matching rate, 74

standardizing columns, 75

subalignment, 19

subcolumns, 19

subgroup, 19

substitution frequency matrix, 22

substitution probability distributions,
23

substitution probability matrix, 23

substitutions, 22

supergroup, 19

symmetric difference, 88

symmetric scaling, 56

symplesiomorphy, 36

synapomorphy, 31

terminal, 20
transformation, 88
transformation steps, 88
translation, 55

tree, 20

tree split, 28
tree-backed splits, 29
true tree, 29

unbacked splits, 29
unreliable, 80

valid, 42

valid shared character state, 31
validity estimate, 76

visible, 31

visible leftover, 37

weak spectrum, 98

weak weight, 98

weakly visible, 31

weighted average observed match-
ing rate, 92
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