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Abstract

Parametric regression models that describe the dependence of the mean of some response
variable on a set of covariates play a fundamental role in statistics. Allowing for simple
interpretation and estimation these models, however, are often not flexible enough for
describing the data at hand. In the last 15 to 20 years with the development of computer
technology and statistical software, another approach - nonparametric regression - has
received more attention and recognition. The mean of a response is thereby modelled as
a smooth, but otherwise unspecified function of covariates.

The large domain of nonparametric regression models includes local techniques like ker-
nel or locally-weighted smoothers and spline methods. The main focus of this thesis
is on penalized splines (P-splines), which have become a very powerful and applicable
smoothing technique over the last decade. This nonparametric method can be viewed as
a generalization of smoothing splines with a more flexible choice of bases and penalties.
The main attraction of P-spline smoothing is its ties with ridge regression, mixed models
and Bayesian statistics. This allows the adoption of different techniques, like Markov
chain Monte Carlo or likelihood ratio tests for penalized spline methodology. Smoothing,
in particular, can be performed with any mixed model or Bayesian software.

This thesis addresses several problems of nonparametric techniques that can be succes-
sively handled with penalized spline smoothing, due to its link to mixed models. First,
smoothing in the presence of correlated errors is shown to be more robust if performed
in the mixed models framework. This property is used to estimate the term structure
of interest rates. Next, the problem of smoothing of locally heterogeneous functions is
treated by representing the adaptive penalized splines as a hierarchical mixed model.
Application of Laplace approximation for parameter estimation of this model results
in the fast and efficient method for adaptive smoothing, which is implemented in the
R package AdaptFit. Investigation of the asymptotic rate at which the spline basis
dimension is supposed to grow to minimize mean squared error concludes the thesis.
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1 Introduction

Modelling the dependence of the mean of some response variable y on a set of covariates
x1, ..., Tq is one of the main objectives of regression analysis. The intention is to specify
a function m(.) such that

E(y|x17 HS) CCd) = m(xh ) l’d)
or in case of non-normal response (e.g. count or binary data)

E(y|zy,...,xq) = him(xq, ..., x4)],

with h(.) as the inverse of a link function. Modelling regression function m(.) as a linear
combination of some known functions of covariates, e.g. m(x1,...,zq) = Bo + Y, Bizi,
leads to a parametric (generalized) linear model. These models possess a well-developed
theory, they are easy to estimate and to interpret. However, the underlying assumptions
are often too restrictive and not supported by the data at hand. A need for more flexible
approaches has led to the development of a number of nonparametric methods, where

function m(.) is modelled as some unspecified smooth function of covariates.

1.1 Overview of nonparametric techniques

Nonparametric models are conceptually different from linear regression. The functional
dependence between response and covariates is exposed without imposing any particular
parametric assumption about this dependence. We give here a short overview of nonpara-
metric techniques for estimating the model with one metric covariate E(y|x) = m(x),
extension to the multiple covariate and generalized response is then straightforward.

The simple running mean or moving average method estimates the regression function
as m(x;) = ZjeN{“ y;/k, with N} as a neighborhood of z; containing k observations. The
approach is popular in time series analysis, but produces an estimate which is hardly
"smooth”. A convenient generalization is the locally-weighted running-line smoother,
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also known as loess. Instead of calculating a mean value one computes a weighted least-
squares line in each neighbourhood. The smoothness of the estimate is controlled by the
"size” of the neighbourhood, expressed as a percentage or span of the data points. Wider
spans result in smoother fits. Another enhancement of local smoothing is achieved by
using local averaging with the so-called kernels weights. The regression function is then
estimated as m(z;) = >, K[(v; —x;)/Ny;/ >, K[(v; — x;) /], with some fixed constant
A and K(.) as a kernel function, e.g. the standard Gaussian density. Here, the tuning
parameter is bandwidth A\, with larger values leading to a smoother estimate.

Another approach to the nonparametric regression is to find m(.) as a solution to the
optimization problem

Sl )l 1 [ ), (1.1)
with A as a fixed constant. The first term in (1.1) ensures the closeness of the estimate
to the data, while the second penalizes the curvature of the function. It has been shown
that the natural cubic spline with knots at z; is the unique solution of (1.1). Parameter A
plays the same role as the bandwidth in kernel smoothing or span in loess. Small A values
imply an interpolating estimate, while large smoothing parameter forces m”(x) — 0,
yielding the least squares line fit. Modelling m(.) with spline functions (natural cubic
or B-splines) without penalization, but with appropriate choice of number and location
of knots, defines regression spline smoothing.

Penalized spline smoothing is a nonparametric technique which has become very popular
over the last decade. It can be seen as a generalization of spline smoothing with a more
flexible choice of bases, penalties and knots. Namely, one chooses a spline basis based
on some sufficiently large set of knots and penalizes unnecessary structure. One of the
main strengths of this approach is its link to mixed and Bayesian models. This allows
application of techniques such as likelihood ratio tests or Markov chain Monte Carlo
to the penalized spline methodology. In particular, smoothing can be performed with

mixed models or Bayesian software.

1.2 Objectives of Thesis and Outline

This thesis aims to investigate some aspects of penalized spline smoothing. After pre-
senting the theoretical background we concentrate on three main issues.

First, smoothing in presence of correlated errors in considered. We show that the mixed
model representation of penalized splines results in smoothing parameter estimation that
is more robust to misspecification of the correlation structure, when compared to stan-
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dard methods using mean squared error based criteria for smoothing parameter choice.
We demonstrate with a number of real data examples how this property can help to
discover an underlying variance structure. In particular, estimation of a long term trend
in macroeconomic or financial time series can be approached with this method. As illus-
tration a two dimensional smoothing of the term structure of interest rates is performed.
This latter modelling exercise has two main challenges: untypical correlation structure
of the data and very large sample size (more than 126 000 points). Penalized spline
smoothing allows handling both problems successfully, resulting in a fast and robust
smoothing.

Secondly, we face the problem of the smoothing of a function of locally varying com-
plexity, that is, if the regression function is changing rapidly in some regions while in
other regions it is very smooth. Estimation of such functions with a global smoothing
parameter is not efficient and a number of solutions have been suggested. We approach
the problem in that we model the smoothing parameter as a smooth function, which has
to be estimated as well. This assumption leads to a hierarchical mixed model and its
likelihood function results in an intractable integral. We avoid, however, numerically ex-
tensive MCMC techniques and employ simple Laplace approximation for the parameter
estimation. This results in a fast and efficient adaptive smoothing method, which can be
readily extended to bivariate smoothing and models with generalized response. As illus-
tration, we apply our approach to a dataset on absenteeism of workers of a medium-sized
German industrial company. During the observation period (1981 - 1998) the company
went through a major downsizing process (1992 - 1993) which changed the absenteeism
behaviour of employees, increasing the probability of returning to work after a sick leave
noticeably. We show that adaptive smoothing captures such untypical data structure
more appropriate than non-adaptive. We also provide the R package AdaptFit to make
application of the technique convenient and accessible.

Finally, we investigate asymptotics issues of penalized smoothing. In particular, we are
interested how fast should the spline basis dimension grow, so that the mean squared
error is minimized. In the mixed model framework this question relates to the order of
the error in Laplace approximation.

This thesis is based on the following papers

- Krivobokova, T. and Kauermann, G. (2006). A Note on Penalized Spline Smooth-
ing with Correlated Errors (submitted to Journal of American Statistical Associ-

ation).

- Krivobokova, T., Kauermann, G. and Archontakis, T. (2006). Estimating the
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term structure of interest rates using penalized splines. Statistical Papers, 47(3):
443-459.

- Krivobokova, T., Crainiceanu, C.M., Kauermann, G. (2006). Fast Adaptive Pe-
nalized Splines (submitted to Journal of Computational and Graphical Statistics).

- Kauermann, G., Krivobokova, T. and Fahrmeir, L. (2006). Some Asymptotics on
Generalized P-Spline Smoothing (working paper).



2 Penalized Spline Smoothing

This chapter introduces penalized splines as smoothing technique. Beginning with the
main idea of P-spline smoothing as a type of ridge regression, we extend it to the different
basis functions and discuss the link to the mixed models. Computational issues, as well
as extensions to additive and generalized models, are considered.

2.1 lIdea of Penalized Smoothing

Penalized spline smoothing is a very flexible concept. Different basis functions, form of
the penalties, amount and location of knots all provide a wide spectrum of smoothers.
Some of them are discussed here.

2.1.1 Regression and Penalized Splines

We introduce the idea of penalized spline smoothing with the following model

y; ~ N(m(x;),0%), i=1,..,n, (2.1)
where m(x) is a smooth, but otherwise unspecified, function of some univariate covariate
x, that needs to be estimated from y;, x;. To be able to capture a complex non-linear
structure of m(x), we define K knots ki, ...,kx and extend a parametric polynomial

model with the truncated polynomial basis functions; i.e. we model
K

m(x) = fo + Bz + ... + Bpa? + Zu](x — k)L,
j=1

where (x — k;)+ = max{0, (x — k;)}. Denoting with X = [1,2;, .., 2 |1<i<n, Z = [(z; —

.y i

ko) oy (= ki) B J1<i<n, B = (Boy -, Bp)" and u = (uy, ..., ur )" we can rewrite (2.1) as

y~ N(XB+ Zu,02l,), (2.2)
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with y = (y1, ..., ¥n)?. The model (2.2) is purely parametric and can be easily estimated
with ordinary least squares
y=c(cro)cty,

with C' = [X, Z]. This approach is referred to as regression spline smoothing. More
general versions are defined for other basis functions, e.g. B-splines (see de Boor, 1978).
Inherent with the advantages of parametric modelling, regression splines possess, how-
ever, a serious drawback - a proper strategy for selecting the number and location
of knots is needed. As illustration we estimate with regression splines the function
m(x) = 4 + sin(27z) for 300 x equally spaced on [0, 1] and independent €; ~ N(0,0.3%),
i =1,..,300. In Figure 2.1 the estimated curves (bold) are shown together with the
used cubic truncated polynomial basis functions. While the left hand side fit is based on
5 equidistant knots, the plot on the right makes use of 20 equidistant knots. It appears

00 02 04 06 08 10 00 02 04 06 08 10

Figure 2.1: Function m(z) estimates (bold) based on 5 (left) and 20 (right) knots

that the right hand side fit is "too” flexible, i.e. the data are "overfitted”. It seems
natural to employ some selection strategies for choosing an optimal model, similarly to
the multiple linear regression, like the Akaike or (generalized) cross validation criteria.

However, flexibility of regression splines also implies a huge amount of "candidate” mod-

els. For example for some fixed K knots there are Zfio (If ) = 2% possible models. Since
the location of knots has additionally a marked effect on the fit, the usual selection pro-
cedures become unfeasible. Although a number of approaches for choosing the amount
and position of knots have been suggested (see e.g. Fried & Silverman, 1989, Stone,

Hansen, Kooperberg & Truong, 1997 or Smith & Kohn, 1996), all of them are rather
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complicated and computationally intensive.

An alternative approach to optimize the fit is achieved by imposing a penalty on spline
coefficients. Specifically, one chooses a large amount of knots (e.g. min{n/4,40} as
suggested in Ruppert, 2002) and prevents overfitting by putting a constraint on spline

coefficients, i.e. one finds

Igin ly — X3 — Zu|]?, subject to|ju|® < ¢,
u

)

for some nonnegative constant c. Using the Lagrange multiplier, this minimization

problem can be written as
3 _ _ 2 T — mi _ 2 T
rglun{Hy X3 — Zul* + M u} min {lly — CO|> + \0" D} ,

with 6 = (87, u")", D = blockdiag(0(11)x(p+1), [x) and some A > 0. The resulting
estimate is given by
j=C([CTC+AD)'CTy. (2.3)

Note that (2.3) is a type of ridge regression, which is used in parametric regression to
reduce variability of estimates (see e.g. Draper & Smith, 1998). The smoothness of

0.0 02 04 06 08 10 0.0 02 0.4 06 08 1.0

Figure 2.2: Function m(x) estimates (bold) based on 20 knots and A = 0.2 (left) and
A = 0.002 (right)

the estimate varies now continuously as a function of the single smoothing parameter \.
The larger the values of the smoothing parameter A, the more the fit shrinks towards a
polynomial fit, while smaller values of A result in a wiggly "overfitted” estimate. This is
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visible in Figure 2.2, where the above data are estimated with K = 20 and smoothing
parameters A = 0.2 (left hand side fit) and A = 0.002 (right hand side fit). Such
smoothing technique is known as penalized spline smoothing.

2.1.2 Spline Bases and Penalties

The truncated polynomial basis is simple, but not always numerically stable. When the
number of knots is large and the smoothing parameter A\ close to zero the inversion of
(CTC + AD) can lead to numerical problems. In this case the computation has to be
organized carefully, involving QR or Demmler-Reinsch decomposition (see Section 2.5.2
or Ruppert, Wand & Carroll, 2003). However, numerically superior alternatives are
available, like B-splines and radial basis functions, which will be presented subsequently.

B-splines

The idea of penalized spline smoothing traces back to O’Sullivan (1986), but it was
Eilers & Marx (1996) who introduced the combination of B-splines and difference penal-
ties which they called P-splines. B-splines based on a set of knots ki, ..., kg are defined
in de Boor (1978) (see also Dierckx, 1993) with a recursive formula

Bjo(x) = I[kj,kj+1}(x)7

x—k; 1
B () —— B (z) +

J
Kivp — k; Kjsp1 — ki

ki1 —x -1
Bji,

where Bf () denotes jth B-spline of degree p. Note that additional 2p + 2 knots are
necessary for constructing the full B-spline basis of degree p. The general properties of

a B-spline of degree p as given in Eilers & Marx (1996) are the following

it consists of p + 1 polynomial pieces of degree p;

- the polynomial pieces join at p inner knots;

- at the joining points the derivatives up to order p — 1 are continuous;

- the B-spline is positive on a domain spanned by p + 2 knots, otherwise it is zero;
- except at the boundaries, it overlaps with 2p polynomial pieces of its neighbours;

- at a given x, p + 1 B-splines are non-zero.
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Figure 2.3: B-spline of degree 2 (left) and degree 3 (right)

Figure 2.3 shows an example of B-spline of degree 2 and 3, the position of knots is indi-
cated by the stars.

B-splines can also be computed by the differencing of corresponding truncated poly-
nomials, as shown in Eilers & Marx (2004). For example, the B-spline of degree p = 1
based on equidistant knots can be computed with Bj(z) = (z — k;j); — 2(z — kj_1)+ +
(z — kj_2)y =2 A*Zj(x). The general formula is given by

By (x = (=1)" AP Z0 () / (h7p),
with h = k;_y —kj, Z}(z) = (x — k;)%. and the difference operator AP*' defined through

Alaj = a; — G-,
Azaj = Al(AlCLj) = (lj — 2aj,1 + CL]',Q,
Aqaj = Al(Aq_laj).

Somewhat more complicated results can be also obtained for arbitrary chosen knots, as
shown in de Boor (2001). Note that one needs extra 2p + 2 truncated polynomial basis
functions to generate a complete B-spline basis of degree p.

A complete B-spline basis matrix of degree p for n observations based on K knots has
dimension n x (K + 1 + p). It is not difficult to see that truncated polynomials and
B-spline basis matrices of the same degree and based on the same knots are equivalent,
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i.e. there exists a square invertible matrix L, such that
B=CL. (2.4)

For example, for linear truncated polynomials based on K = 5 equidistant knots placed

over x; € [0,1] matrix L has the form

16 0 0 0 0 0 0
-1 1 0 0 0 0 0
1 -2 1 0 0 0 0
L=6l0 1 -2 1 0 0 0, (2.5)
0 0 1 -2 1 0 0
0O 0 0 1 -2 1 0
0o 0 0 0 1 -21

with corresponding basis functions shown in Figure 2.4. Substituting (2.4) into (2.3)

00 02 04 06 08 10 00 02 04 06 08 10

Figure 2.4: Truncated lines (left) and B-spline basis functions (right) of degree 1

results in
j = B(B'B+ AD)™'BTy, (2.6)

where D = LTDL. For more details see Eilers & Marx (2004) or Ruppert, Wand &
Carroll (2003).

From (2.6) we obtain also the form of the penalty used with B-spline basis, which in fact
equals the difference penalty suggested by Eilers & Marx (1996), i.e. D= AqTAq, where

10
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Ayisa (K+14p—q) x (K + 1+ p) matrix representation of the difference operator of
order ¢ = p+ 1. For example, the difference matrix of the second order A, has the form

As argued by Eilers & Marx (1996) this penalty is a "good discrete approximation to
the integrated square of the gth derivative”. It follows immediately from the formula for
the gth derivative of the B-spline of degree p, given in de Boor (1978)

B3 0B (@) = 3 AY B a),

with @ as spline coefficients. The details can be found in Eilers & Marx (1996). The
smoothness penalty as integrated square of the second derivative has become standard,
following the work on smoothing splines by Reinsch (1967). Eilers & Marx (1996) also
suggested using higher order differences, choosing thereby the difference order ¢ and
spline degree p independently. B-splines of degree three and second order difference
penalty have become a common choice. Note that the difference order of the penalty
determines the limiting fit - large smoothing parameter A\ with (¢ + 1) order penalty
shrink the fit toward a ¢th degree polynomial. For a truncated polynomial basis the
limiting fit is defined by the polynomial degree p.

Radial basis functions

Radial basis functions are defined in Ruppert, Wand & Carroll (2003) as follows
La,,a" o=k e — kg0 (2.7)

for r = 1,2, .... Figure 2.5 shows the radial basis functions for r = 1 and » = 2 based on
K =5 equidistant knots. The fitting criterion with the radial basis is given as

nﬁlin {lly — X3 = Zgu|* + " Qu}

11
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Figure 2.5: Radial basis functions of degree 1 (left) and 3 (right)
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The motivation of this

with model matrices X = [1, Xy, ..,x;il]lgign, ZR = HZL‘Z — kl
and penalty matrix Q = [[k; — & [* 1, [k — kP
smoother comes from the equivalence of natural cubic spline and

m(x) = By + P + Zuz|x — x]?, subject to Zu2 = Zuzxz =0, (2.8)
i=1 =1

=1

as shown in Green & Silverman (1994). The constraints in (2.8) provide essentially the
identifiability of basis coefficients 3y and ;. The integrated squared second derivative
of function m(x), used as a penalty with natural cubic splines, takes for (2.8) the form
u” Zpu with Zg = (|, — 21]?, ..., |2; — Zn|*|1<i<n. To fit n data with this approach one
needs to estimate n model parameters and a smoothing parameter, which is computa-
tionally intensive, especially in case of more than one covariate (O(n?®) operations) and
a large n. Approximation to natural cubic splines can be obtained by specifying knots
ki, ..., ki and using basis functions Cg = [X, Zg| with the penalty Q with r = 2, which
reduces significantly numerical effort (see Ruppert, Wand & Carroll, 2003 or Wood,
2003). Extension to arbitrary odd degree results in (2.7) (see also Nychka, 2000).

Note that the radial basis functions depend on the distance between observations and
knots only. This allows extension to higher dimensional predictors, e.g. by defining for
x,k; € R? basis functions r(||x — k;||), with ||.|| as Euclidean norm and some appropriate
positive function r(.). We postpone the details until Section 2.4.2.

12



2 Penalized Spline Smoothing

2.1.3 Basic Definitions
A penalized smoother is defined through €8, with 6 as a minimizer of
ly — CO||> + M0 D,

for some positive definite matrix D and A > 0. The model matrix C' can contain any of
the basis functions defined above with the penalty matrix D appropriately chosen. In
fact, one has to make the following choice when applying penalized splines:

- amount and location of knots;
- spline basis functions;
- degree of the spline and the penalty matrix.

Penalized spline estimates and least squares fits share the key feature that they are both
linear functions of the response variable. For a linear regression model y ~ N (X3, 021,,)
the ordinary least squares fit is obtained as § = X (X7 X) "1 X%y = Hy, where H is the
hat matrix. The penalized spline fit results in § = C(CTC + AD)~'C7Ty and the matrix

Sy =C(CTC+ D) 'ct

is called a smoothing matrix. Generalizing also the definition of degrees of freedom from

linear models as the trace of the hat matrix, we can define with
df = tI‘(S ,\)

the degree of the smoother, corresponding to the smoothing parameter A. It can be
interpreted as the equivalent number of fitted parameters.

The residuals degrees of freedom can be obtained analogously to the linear model from
E[RSS] = Ely" (I — S\)"(I — Sy)y] = o?tr(I — 255 + S»Sy) + [|m(x)(I — Sy)|*.

Assuming that the bias ||m(z)(I — Sy)||” is negligible, we get an unbiased estimate for
0% as RSS/df,es with
df,«es =n — tl"(QS)\ - SAS)\).

An alternative definition of residual degrees of freedom n — tr(S,), also common for
linear smoothers, is used as well.

13
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A common measure of error of the smoother for a fixed point x is the mean squared
error (MSE), which is defined through

MSE[m(x)] = Var[m(z)] + {E[m(x)] — m(ﬂn)}2 )

Since an entire fit is usually of interest, rather then individual points, one considers the

mean average squared error
1 & R 1
MASE()) = — > MSE[(;)] = - {o2tr(S\Sy) + [m(2)(I — Sy)|]*}. (2.9)
=1

The first term in (2.9) represents the average variance, the second is the average squared
bias contribution. In general (2.9) reflects the so-called bias-variance trade-off; larger
values of the smoothing parameter A lead to a smaller variance but increase the bias,
smaller \ values attain the opposite result. Thus, the optimal amount of smoothing has
to be chosen by compromising goodness of fit with complexity of the estimated function.
This issue is the subject of the next section.

2.1.4 Smoothing Parameter Selection

In this section some approaches to data-driven smoothing parameter choices are dis-

cussed.

(Generalized) Cross Validation

2 is known as a common measure

The residual sum of squares RSS = """ (vi — Us)
of goodness-of-fit in regression. However, estimation of an optimal smoothing parameter
by minimizing of RSS will result in the fit that is closest to interpolation. Instead, one

minimizes the cross validation expression

where % denotes the fit computed by leaving out the ith data point. For a linear
smoother one can show that ;" equals

4]
- Z S SZZ T auYi

J#i
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2 Penalized Spline Smoothing

with Sﬁ\j denoting an 75th element of the smoothing matrix. With this it can easily be
shown (see e.g. Hastie & Tibshirani, 1990) that

L~ fyi— |
=1

A modification of this criterion was suggested by Craven & Wahba (1979), which replaced
S with tr(Sy)/n, resulting in the generalized cross validation criterion

n

1 Yi — Ui ’ _ RSS/n
GCV(\) = - Z { 1_ tr(SA)/n} (L —tx(Sy)/n)?’

i=1

Note that both GCV and C'V in expectation approximate the mean average squared

error. Indeed,

E(RSS/n) = MASE()) + o2 — 20tr(Sy)/n. (2.11)
Approximating now (1—tr(Sy)/n)~? = 1+2tr(S))/n+o(n!) and assuming tr(S))/n ~
tr(SxS,)/n we find

BEIGCVN] ~ % {aftr(SASA) {1 - QM} (@) — Sy {1 + QM} } + 02

n n
= MASE()\) + 0>+ o(n™)

A similar relationship holds for cross validation.
Mallow’s C,,

Expression (2.11) motivates also another criterion, known as Mallow’s C,. If the vari-
ance o2 where known, we could correct (2.11) by adding 202tr(Sy)/n. Substituting o2
with its estimate results in the so-called Mallow’s C), statistic

C,(\) = RSS(\)/n + 25%tx(Sy) /n.

The disadvantage of this criterion is that it requires a proper prior estimate for o2. It
is suggested to choose 62 = RSS(N)/dfres(\) with a rather small A (even A = 0 would
be appropriate for penalized smoothing) in order to minimize the bias (see Hastie &
Tibshirani, 1990 or Ruppert, Wand & Carroll, 2003).
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2 Penalized Spline Smoothing

Akaike Information Criterion

Motivation of the Akaike criterion is different from the criteria above (Akaike, 1969). It
is based on the Kullback-Leibler distance between the unknown true density g(y) of the
distribution generating the data y and the approximate model f(y) used for fitting the
data

I(f,9) = /_OO {loglg(y)] — log[f(v)]} 9(v)dy,

which has to be minimized with respect to f(.). This is equivalent to minimizing of

—E,[log(f(y)], which is for a normal density approximated by
AIC(X) = log[RSS(N)] + 2tr(Sy)/n. (2.12)

Moreover, for a normal distribution it is easy to see that E{exp[AIC()\)]} is also approx-
imately equal to MASE. Indeed, analogously to GCV we approximate exp[2tr(S))/n] =
1+ 2tr(Sy)/n + o(n™') and find

E {exp[AIC(\)]} = MASE(\) + > + o(n™1).

There were some modified versions of AIC' criterion suggested, e.g. Hurvich, Simonoff
& Tsai (9958) proposed for nonparametric regression using

2tI'<S)\) + 2

AIC(A) = log[RSS(A)] + —— N

Identification of an optimal smoothing parameter A with the above criteria is carried out
with a grid search. An efficient algorithm employing Demmler-Reinsch orthogonalisation
is available and will be discussed in Section 2.5.2. Figure 2.6 shows all three described
criteria and the resulting fit for the simulated data described in Section 2.1.1. For fitting
a squared truncated polynomial basis based on 20 equidistant knots was used.

2.2 Mixed Model Representation

Mixed models are regression models that incorporate random effects. Having a wide
application spectrum - from longitudinal studies to survival analysis - mixed models are
also closely related to smoothing. Penalized spline smoothing corresponds exactly to
optimal prediction in a mixed model framework. This makes it possible to use mixed

16
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7.95

exp(AIC) /GCV /Cp
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Figure 2.6: Criteria exp(AIC) (bold), GCV (dashed), Mallow’s C, (dotted) and esti-
mated curve (bold) with confidence bands (dashed)

model methodology and software for penalized spline regression.

2.2.1 Mixed Models

We begin with a short review of linear mixed models, which can be defined as
y=X0+ Zu+e.

Thereby y is a vector of n observable random variables, (3 is the p+4 1 dimensional vector
of fixed effects, also known as "marginal” or "population-averaged” effects. The model
matrices X and Z can be quite general, depending on application, we do not specify any
form for these matrices at the moment. K dimensional vector u of random or "subject-
specific” effects and n dimensional error term e are unobservable random variables, such

that
= [0] and Cov [u
0 €

where G and R are positive definite covariance matrices. Usually it is assumed that the

G 0
0 R

)
€

random effects and the error term are normally distributed.

Fixed effects estimation

17



2 Penalized Spline Smoothing

Estimation of the fixed effects 5 can be carried out from the linear model
y=XpB+€,

where ¢* = Zu + € with Cov(e*) = ZGZT + R =: V. For a given covariance matrix V
the fixed effects estimate results in

B=(XTv1x)txTv—1y. (2.13)

Estimate 3 is referred to as generalized least squares (GLS) and is the best linear unbi-
ased estimator (BLUE) for 8. For multivariate normal y estimate (2.13) can be derived

as a maximum likelihood estimate.
Prediction

The best predictor of a random vector w based on an observable random vector v, such
that v = w + ¢ with independent w and ¢, is defined as a solution of E[||w — v|?.
Commonly one assumes w = a + Bv, with some vector a and matrix B, restrict-
ing the family of predictors to be linear. Minimizing F {||w — (a + Bv)|*} with re-
spect to a and B one easily finds that the best linear predictor for w is given by
W = E(w) + Cov(w,v)Cov ' (v)[v — E(v)] (for more details see e.g. Searle, Casella,
& McCulloch, 1992 or McCulloch & Searle, 2001). Note, from the standard results on
multivariate normal distribution the best predictor for bivariate normal w and v is linear.
Random effects u can now be predicted from y — X B =Zu+e resulting in the best
linear predictor

i=GZ"V Yy - Xp). (2.14)

For known G and V' predictor @ is shown in Robinson (1991) to be the best linear
unbiased predictor (BLUP). Note that the difference between "estimator” and "predictor”
is only that the target is deterministic for the former and random for the latter. However,
some authors argue that the distinction is not necessary.

Another way to derive the BLUP solutions under normality assumption is given in
Henderson (1950), who suggested to maximize the joint density of u and y

—1/2 T -1
1 U U
eXp § 5 )
) 2(y—Xﬂ—Zu> (y—Xﬁ—Zu)
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2 Penalized Spline Smoothing

leading to the criterion
(y— XB—Zu)' R (y— XB— Zu) + u' G 'u, (2.15)

which is minimized by (2.13) and (2.14). From (2.15) is easy to see that § = (37, a”)"
can be also written as § = (CTR™'C + B)"'CTR™'y, with B = blockdiag(0, G™"),
yielding

j=C0=C(CTR™'C+ B)'CTR™ Yy (2.16)

as best linear predictor for y.
Covariance matrix

It remains to estimate the covariance matrix V. With the normality assumption this
can be done from the profile log-likelihood

—27(V) = (y = XB5)"'V " (y — X) + log|V|. (2.17)

Parameterizing V' with some vector ¢, one can find its estimate ¢, e.g. with Fisher
scoring. General references are Harville (1977) and Lindstrom & Bates (1988) as well as
Searle, Casella, & McCulloch (1992).

Replacing now covariance matrix by its estimate in (2.13) and (2.14) we get the esti-
mated best linear estimate (EBLUE) and the estimated best linear predictor (EBLUP),

respectively, as

X

(XTV1x)1XTV Yy,
GZ™V "y — X73). (2.18)

83
|

Estimated BLUE and BLUP have, therefore, an additional source of variability, due to
estimation of V.

Restricted maximum likelihood
It is known that maximum likelihood estimates of variance are biased, since they do
not take into account the degrees of freedom used for fixed effects estimation. Modifying

the standard likelihood function using generalized least squares residuals, as suggested in
Patterson & Thompson (1971) and later in Harville (1974), results in the method known
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as restricted (or residual) maximum likelihood (REML). More precisely, in REML esti-
mation one maximizes the log-likelihood for the residual vector ¢ =y — X 3, which due
to the independence of € and § equals

(&) =1pV)-1Up) = —%[bg VI+(y— X8V (y— XP)
+ log |[XTVIX| = (B - BT (XTVIX)(B - B)]
P(V) — %log IXTVX).

An alternative way to justify REML estimate is using Bayesian approach with a non-
informative prior distribution for 3, e.g. f ~ N (O,Ug) with a large aé. Integrating (3
out to obtain the corresponding marginal likelihood leads to the above result (see Laird
& Ware, 1982). This suggests using the profile restricted likelihood for the estimation
of V

(V) = (V) ~ L log | X7V X

instead of (2.17) (see also Harville, 1977).
Variance estimates

For the inference about estimated parameters we need to derive the corresponding vari-

ances. From (2.16) we immediately find
Cov(flu) = (CTR™'C + B)"'\CTRC(CTR'C + B)™!

and consequently Cov(CO|u) = CCov(f|u)CT. However, often the inference about pre-

cision of BLUPS is more relevant, i.e. one looks for

Cov(d — ) = Cov F_ﬁ] = Cov laﬁ ]

uUu—u —Uu

Again, using (2.16) we get

Cov [ . (CTR'C+B)'C"VO(CTR'C+B) ™' - 8 g = (C"R'C+B)™,
uUu—u
yielding
Cov[Ch — CH] = CCov(d — 0)CT = C(CTR™'C + B)~'CT (2.19)
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Replacing V' with its estimate provides the variance estimates for inference. These
estimates, however, ignore the additional variability due to estimation of V. While this
is acceptable for large datasets, it can make a difference for small sample sizes. This
variability can be taken into account with a full Bayesian approach, presented in Section
2.6.

2.2.2 Penalized Splines as Mixed Models

Comparing (2.3) with (2.16) we can see that the penalized fit (2.3) can be obtained by
assuming coefficient u to be random. We consider the following model

ylu ~ N(XB + Zu,0?1,), u~ N(0,021x), (2.20)

with matrices X containing polynomial and Z truncated polynomial basis functions as
defined in Section 2.1. With the results of the previous section we get for R = ¢2I,, and
G = O_ZIK

2
j=C(CTC+ 25D) Ty, (2.21)
u
with D = blockdiag(0(+1)x(p+1), [)- Thus, the ratio of variances 02/02 in the mixed
model framework plays the role of the smoothing parameter A. With this in mind penal-
ized spline smoothing is equivalent to the parameter estimation in a linear mixed model,
which can be carried out with any standard mixed model software.
Note that the inverse of the penalty matrix imposed on spline coefficients has to be a
proper covariance matrix - symmetric and positive definite. While this is unproblematic
for truncated polynomials as shown above (covariance matrix is just identity), other ba-
sis functions with corresponding penalties need to be adjusted in order to be represented
by a linear mixed model.

B-splines for mixed models

Let us consider penalized spline smoothing with B-spline basis of degree p with dif-
ference penalty of order ¢, based on K knots, that is

ly — BO|I” + \0TATA 0.

The difference matrix A, has the dimensions (K + 1+ p) x (K + 14 p — ¢) with the
penalty matrix A:}FAQ being singular and having the rank K +1+p—¢q. A singular value
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decomposition leads to AgAq = Udiag(b)UT with U as eigenvectors and eigenvalues in
vector b arranged in descending order, so that K +14p—q eigenvalues are strictly positive
and the remaining ¢ are zeros. Thus, we can represent U = [Uy, Up] and b = (b%,0])"
with U, of dimension (K + 14 p) x (K 4+ 14 p —q), corresponding to non-zero elements

of vector b and rewrite

BY = BUU"0 = B[UUL6 + U, diag(b,"*)diag(b}*) U]
—: B[UpS + U, diag(b;"*)u] =: X3+ Zgu (2.22)

Moreover,
HTAZAqQ = 0"Udiag(b)U"0 = 0" Uydiag(0,)U; 0 + 07U, diag(b4)UL0 = u"u, (2.23)

implying that only coefficients u are penalized with the penalty matrix /x4, Hence,
the mixed model representation is available and results in

y|u ~ N(Xﬂ + Zpu, 0_52['”)’ U~ N(07 05]K+1+p—Q)'

However, the representation (2.22) is not unique due to the singularity of A:{Aq. In fact,
any one-to-one transformation of spline coefficients B0 = B[Wpg3 + W,u| with matrices
W3 and W, of dimensions (K +1+p) x ¢ and (K +1+p) x (K +14p—q), respectively,
such that

- [Wp, W,] is of full rank;

WEW, = WIW; = 0;

- WﬁTAqTAqW/g = 0;

WuTAqTAun = Ixt14p—

can be applied (for more details see Green, 1987 or Fahrmeir, Kneib & Lang, 2004).
While the first condition ensures the uniqueness of transformation, the remaining ones
provide that only coefficients u are penalized with identity penalty matrix. A common
choice has become to define W5 = [1,w,...,w? '] with w = (1,2,.., K +p + 1)T and
W, = AT(AAT) ™! (see e.g. Durban & Currie, 2003) yielding the transformation

BO = BWsp + AI(AA]) ] = X8+ Zpu.
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Note, that X results here in a polynomial of degree gq.
Radial basis for mixed models

Radial basis smoother
ly — X3 — ZRuH2 + Ml Qu,

can be represented as a mixed model (2.20) with the simple adjustment of the spline

basis matrix

ylu ~ N(XB + ZpQ~Vu,0°1,), u~ N(0,02Ik),

since the inverse of the penalty matrix Q = [|k; — ki[>, ..., |k — kx| hi<j<k 1s a
proper covariance matrix.

2.3 Confidence Intervals

Let us first consider the conditional model y ~ N(m(x),0?1,), with m(z) = X8 + Zu,
where the parameters # and u are assumed to be fixed and estimated from penalized
least squares, yielding 7(z) = Syy. With this, Cov[m(z)] = 025,57. The confidence

intervals can now be constructed from
m(z) ~ N(E[m(x)], 025,55 ). (2.24)

However, the confidence interval obtained from (2.24) covers E[m(x)] rather than m(x),
since in the conditional model m(z) is not an unbiased estimate for m(x).

The confidence bands resulting due to mixed model representation of penalized splines,
i.e. from the marginal model y|lu ~ N(X8 + Zu,0?1,), u ~ N(0,02Ik), do not have
such a drawback. In the mixed model framework the function m(zx) = X3 + Zu is
random due to the randomness of u and 7(z) = X + Zi is unbiased for m(x). Thus,
we can construct the confidence interval for m(z) from

() — m(z) ~ N(0,025y).

where the Cov[m(x) —m(z)] = 025y according to (2.19). Replacing o2 with the estimate
results in the 95 % confidence bands for m(x;) as

;) & 2604/ St
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Thus, at some fixed x the confidence bands in conditional model use diagonal elements
of S)S), while in the mixed model framework variability bands are bias adjusted and
use diagonal entries of 5.

2.4 Extensions

2.4.1 Additive Models

Additive models introduced by Hastie & Tibshirani (1990) extend the usual multiple
linear models by incorporating nonparametric techniques. More precisely, these models

allow for nonlinear covariate effects which remain additive; i.e.
yi ~ N(Bo +mi(zin) + ... + ma(zia),02), i=1,..n

with my(.) as smooth, but otherwise unspecified, functions of n dimensional covariates
x;, L =1,...,d. A widely used approach for fitting additive models is the backfitting algo-
rithm introduced in Hastie & Tibshirani (1990). Thereby, functions m,(.) are estimated
iteratively by smoothing partial residuals, which arise from the model without m;(.).
However, the penalized spline approach allows for the fitting of additive models simulta-
neously for all variables. For example, modelling m;(.) with a linear truncated polynomial
basis, we represent each function as my(x;) = ;0 + Zu, with K; dimensional vectors
u, [ =1,...,d. Hence, we can estimate parameters either from

ly — X8 — Zu|]* + Muluy + ... + Mulug (2.25)
or from the linear mixed model

ylu ~ N(XB+ Zu,0?1,), u~ N(0,blockdiag[o? I, ...,00 Ix,]),

~ Oy

with 8 = (8o, B1, -, Ba), u = (ul, .., ul)T, X = [1, 251, ..., Tigli<icn and Z = [Zy, ..., Z4),
where Z; is the linear truncated polynomial basis matrix of dimension n x K;. Both
models result in the estimate § = C(CTC + D)"'CTy with C = [X,Z] and D =
blockdiag[0(g+1)x(d+1)s M1k, s Aalk,]- As in the univariate case, in the mixed model

framework smoothing parameter \; = 02 /0, is a ratio of variances.

Additive models with B-spline basis
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Fitting additive models with B-splines is described in detail in Durban & Currie (2003).
To achieve identifiability we center the B-spline basis matrices B; of degree p; based on
K, knots leading to B; = (I — 1,1X/n)By;, 1 = 1, ...,d. This gives the model

y ~ N(BO,0?1,),
with BO = [y1,, + B0+ ...+ Bde, which is estimated in the penalized form
ly — BO|” + MOTAL Ay 0y + ..+ X AL A, 04

To use the mixed model representation the coefficient # have to be modified so that
B = B(Wsp + W,u) with matrices W5 and W, having those properties described
in Section 2.2.2 and u ~ N(0,blockdiag[o} Ix,,...,00 Ik,]). Durban & Currie (2003)
suggested to choose matrix W, = blockdiag(Wy,, ..., W,,) with W,, = AT(ATA )~
and matrix Wy = blockdiag(1, Wp,, ..., Ws,) with Ws = (wy, w?,...,w" ') and w; =
(L,2,... Ki+p+1),l=1,...4d.

Additive models with radial basis

Modelling my(x;) = By + Zraw, | = 1,...,d we can estimate the model either from

penalized least squares
Hy — Xﬂ — ZRU||2 + Alufﬁlul + ...+ )\duZ;Qdud
or from the linear mixed model

ylu ~ N(XB+ Zpt " ?u,021,), u~ N(0,blockdiaglo? Ir,,...,o0 Ix,]),

- Yy

with X = [1, 2, ..., TidJi<i<n, Zr = [ZRy,---» Zr,] and Q = blockdiag[€, ..., 4], where
Zp, and (; are respectively radial basis function and corresponding penalty matrix based
on K; knots.

Smoothing parameters estimation

In the mixed model framework smoothing parameters selection brings no additional

2

challenges - variance parameters o

and 012” are estimated from the (restricted) likeli-

hood along with the other parameters. However, estimation of smoothing parameters
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in the conditional model, e.g. (2.25), requires solving a d-dimensional optimization
problem. The BRUTO algorithm introduced in Hastie & Tibshirani (1990) combines
backfitting and smoothing parameter selection, avoiding a d-dimensional minimization.
The method, applicable to general linear smoothers, is based on iterative univariate min-
imization of the GCV criterion for additive models. For smoothing splines Gu & Wahba
(1991) suggested a modified Newton procedure, which is extended in Wood (2000) and
Wood (2004) to a wider range of smoothers, including penalized splines. This approach
is implemented by S.N. Wood in his R package mgcv, which is discussed in Section 2.5.3.
In general, it can be difficult to find a global minimum when d is large.

2.4.2 Bivariate Smoothing

The general bivariate smoothing model has the form
yz‘NN<m(l'i1,.Ti2),O'€2), 1= 1,...,71,.

Clearly bivariate smoothing requires bivariate basis functions and there are essentially
two possible approaches: tensor product of one dimensional truncated polynomials (see
Ruppert, Wand & Carroll, 2003) or B-spline basis functions and radial basis functions
defined in two dimensions, known also as low rank thin plate splines. We consider these
methods consecutively.

Tensor product of truncated polynomials bases
Since it is common in linear regression to model interaction by adding a product term

y ~ N(Bo+Bixi+ 82w+ 22129, 0%1,), the natural extension for truncated polynomials
would be to represent the regression function by

K1 K2
m(z1,m2) = Bo+Bior+ Y uj(my— ki) + Bles+ Y ui(wa — k)4
im1 i=1

K1 K2
+ B2x1my + 27 Z up(v1 — k)4 + 11 Z ui(ze — k)4
i=1 i=1
K2

+ Y (= k(12— )4
i=1
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Thus, the basis functions are formed as a tensor product of two one dimensional bases
Cr = [L i, (Ta — k), o (@0 — ka1t hi<icn,
Co = [17 Tio, (Tig — k%)+> vy (W0 — k%@)-{-]lgigna

which for any polynomial degree can be written as

Cro=0C1 00, = [le Z1] Y [X2; Z2],

with C and (5 denoting basis matrices of truncated polynomials of degree p for covari-
ates x1 and w9 respectively. Rearranging the basis matrix according to the parameter

vector § = (B, ul vl ul)T as
Cra=[X1® X0, Xo® Z1, X1 ® Zy, Z) @ Zo]
and estimating the parameters from the penalized likelihood
ly — C120)* + MuFur + Aaulug + Apulyurs
or from the linear mixed model
ylu ~ N(C120,021,), u~ N(0,blockdiag(o? Ir,, 00 Ii,, 00 Iry,)),

we get the following estimate § = C1o(Cla” C1o + D)~ 'C1o"y with the penalty matrix
D = blockdiag[0(,11)2x (p+1)2s MLk, Aol ky, M2ky,]. Thus, one can consider bivariate
smoothing as a type of additive model with three smoothing parameters to be chosen:
one for each covariate and one for an interaction effect. Consequently, smoothing pa-
rameter estimation methods described in the previous section can be directly applied to

the bivariate smoothing.
Tensor product of B-splines
A truncated polynomial basis is not necessarily a perfect choice for bivariate smoothing

when it comes to numerical stability. One may prefer to perform bivariate smoothing
with a superior alternative, e.g. with the tensor product of B-splines Bis(xq,22) =
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Figure 2.7: Tensor product of B-splines of degree 2 at knots ki' = ki
k3? = 0.6 and k3' = k5% = 0.9.
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0.3, k' =

Bl(z1) ® B%*(z9) (see Dierckx, 1993 or de Boor, 2001), representing

K1 K>

m(xzy, xe) = Z Z B}($1)BJZ($2)9¢]’.

i=1 j=1

Figure (2.7) shows a part of B-splines tensor product basis at knots ki* = k7* = 0.3,

k3t = k3> = 0.6 and k3' = k3* = 0.9. Parameters can now be estimated from the

penalized least squares

ly = Biofl|* + MOT (AT Ay, @ [1,)0 + A0 (I, ® AL A, )0,

where smoothing parameters A; and Ay steer the amount of smoothing in directions x;

and , respectively. Eilers & Marx (2003) also suggest adding an overall penalty A;2676.
Mixed model representation can be derived similar to additive models.

28
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Low-rank radial smoother

Extension from a one-dimensional radial basis to a bivariate case is straightforward,
since basis functions depend only on distance between observations and knots |z — k;.
Having x;,k; € R?, i =1,...,n, j = 1,..., K, we just replace the absolute value with the
Euclidean norm and define

Zr = [lIxi = Kl log [[x; — k] s — ke | log [k, — ko]

1<i<n, 1<j<K° Q= [ 1<s,t<K

with 7 > 2. Addition of the log(.) factor arises from the multivariate extension of
integrated squared derivative penalty of natural cubic splines (see Section 2.1.2). Figure
2.8 represents radial basis functions at knots ki' = ki? = 0.3, k3* = k3* = 0.6 and
k3t = k3? = 0.9. The parameter estimates can be obtained either from penalized least

squares
ly — X8 — Zgul|” + M Qu

or from the linear mixed model
ylu ~ N(XB + ZpQ~V?u,6°1,), u~ N(0,021k).

This smoothing method (also referred to as low-rank thin plate smoother) is closely
related to kriging and is rotationally invariant, which is important for geographical
smoothing. For more details and discussion see Ruppert, Wand & Carroll (2003).

2.4.3 Smoothing with Generalized Response

Let us consider the following generalized response model

E(ylr) = p(x) = hm(z)], Var(ylz) = dv(u),

with function h(.) as the inverse of a link function, v(.) as some specified variance function
and ¢ as a dispersion parameter. We assume that the observations are drawn from the

exponential family

yle ~ exp {(yd(z) = b[I()])/¢ + c(y, )} -
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Figure 2.8: Low-rank radial splines at knots k" = k* = 0.3, k3"

kI = k22 = 0.9,
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= 0.6 and

Functions ¥(z) and pu(x) stand in the unique relationship ¢'(¥) = pu, so that ¥ =

b=t {h[m(zx)]}. Choosing h(.) = V'(.) results in a generalized model with the natural
link. Modelling m(x) with penalized splines using for example truncated polynomial
basis we can estimate the parameter either from penalized log-likelihood

% {yT9(XB + Zu) —1Tb[9(X 5

or from the generalized linear mixed model

E(ylz,u) = p*(z) = h(XB + Zu),

Other bases and penalties are easily applicable. We consider parameter estimation from

(2.26) and (2.27) consecutively.
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2 Penalized Spline Smoothing

Estimation with penalized log-likelihood

Estimating parameters of the model (2.26) by applying the Fisher scoring with the

score function

ol(0 3 ,
% = CTWh (W] (y — ) — ADY
and information matrix 82l(9)
R — T
B(-710) e

is equivalent to the iterated weighted least squares (IWLS)
§=C0=CCTWC +AD)"'CT"Wz = Sz, (2.28)

with the working vector z = CO + [h ' (n)]'(y — p) and W as the n x n diagonal matrix
with diagonal elements w; = (¢v;[h~(p;)']?) ™. The smoothing parameter selection can
be carried out with GCV criterion, with the usual residuals replaced by Pearson residuals
(see O’Sullivan, Yandell & Raynor, 1986 or Green & Silverman, 1994)

1 - Yi — Hi ?
GOV = nzwz{l—tr(sm,\)/n} ’

i=1

or with Akaike criterion

1 & X
AlCq = - Z D;(ys, fui) + 2tr(Swa)/n,

=1

where D is the model deviance and Sy is the smoothing matrix resulting from the last
iteration.

Smoothing parameter selection with the above criteria is carried out with the grid search.
One fits models with the Fisher scoring (or equivalently with IWLS) for different values
of smoothing parameters and chooses the smoothing parameter with the smallest GC'V
or AIC¢ value. An alternative approach discussed in Green & Silverman (1994) is to
invert the order of (i) iteration to update parameters and (ii) minimization of GC'Vg (or
AICg). That is, within each cycle of the Fisher scoring algorithm the smoothing param-
eter is chosen as if the current linear problem were the original model. There is some
evidence (see e.g. Gu, 1992) that the second approach gives better results. Moreover,
this method is more efficient numerically. In Section 3.6 we provide the implementation
of the latter approach in R using Demmler-Reinsch orthogonalisation, discussed in Sec-
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2 Penalized Spline Smoothing

tion 2.5.2.
Generalized linear mixed models

Parameter estimation of the model (2.27) has to be performed from the likelihood

L(B,0}) = . Flylu) f(w)du = (2m) """ exp[Lie(y, ¢)] (B, 07),

with

T
J(B,0%) = /R exp {yTﬁ(Xﬁ + Zu) )¢ — 1T0[0(X B + Zu)] /¢ — g(;; _ % log ag} du

- /RK exp {—g(u)} du. (2.29)

Such intractable integrals can either be solved with MCMC based techniques or ap-
proximated with Laplace’s method, leading to the penalized quasi likelihood (PQL).
The latter approach is presented in Breslow & Clayton (1993). Laplace approximation
applied to (2.29) results in the following log-likelihood

~ ~

u-u

2
u

+ Klog(ai) + log | Ll

(2.30)
where @ solves dg(u)/0u = 0 and I, = E[0?g(0)/0udu’] = (CTWC + D/o?). Min-
imization of (2.30) over § and u with the Fisher scoring is identical to the iterated

g

_91(3,0%) ~ —% LT9(XB + Za) — 1To[0(X 5 + Za)]} +

weighted least squares (2.28) with A = 1/02. The variance parameter estimate results

n .
9 uu

“ "t [CTWC(CTWC + D/o2)- 1
Note, that (2.31), as well as (2.28), are not explicit solutions. Thus, the parameter

o

(2.31)

estimation is carried out by iterating back and forth, getting (B ,u) from (2.28) and the
variance parameter from (2.31). More details are available in Breslow & Clayton (1993)
and Searle, Casella, & McCulloch (1992).

It should be noted, Shun & McCullagh (1995) showed that the Laplace approximation
can be applied to the integrals of the form (2.29) without correction only if the order
of random effects dimension is at most K = o(n'/?). More detailed treatment of this
problem is provided in Section 6.3.1.
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Note, that the extensions to the generalized additive model
E(ylxy,...,xq) = plz1, ..oy xg) = h[my(z1) + ... + my(zg)]
as well as to generalized bivariate smoothing
E(y|w1, x2) = p(x1, 22) = h[m(z1, 22)]

are straightforward. Redefining model matrices X and Z and penalties as described in

Sections 2.4.1 and 2.4.2 immediately delivers the corresponding estimates.

2.5 Computational Issues

Flexibility of penalized smoothing and its ties to mixed and Baysian models lead to a
vast choice of numerical techniques for estimation and inference. Some of them are the

subject of this section.

2.5.1 Choice of Knots and Basis

As was mentioned in Section 2.1.3, one has to make the following choice when applying

penalized splines:
- amount and location of knots;
- spline basis functions;
- degree of the spline and the penalty matrix.

Penalized splines are low-rank smoothers, i.e. amount of knots used for estimation is far
less than the number of observations, which significantly reduces the numerical effort.
The default choice min {n/4,40} is suggested in Ruppert (2002) and is commonly used.
Based on a simulation study Ruppert (2002) stated that "there must be enough knots
to fit the features in the data, but after this minimum necessary number of knots has
been reached, further increases in K often have little effect on the fit”. The asymptotic
order of spline basis dimension K, so that the mean squared error is optimized will be
investigated in Chapter 6.

The best type of knot spacing for scatterplot smoothing - equidistant or quantile - is
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still controversial. Eilers & Marx (1996) and Eilers & Marx (2004) stress that "equally-
spaced knots are always to be preferred”; while Ruppert, Wand & Carroll (2003) em-
phasize utilization of quantile-based knots. Eilers & Marx (2004) provided an example
where equally spaced knots were superior to quantile spaced. Crainiceanu, Ruppert &
Carroll (2005) doubted that "any type of spacing is always best” and presented an exam-
ple where quantile spacing outperformed equidistant knots noticeably. In general, both
approaches do the work equally well for most of the examples. For bivariate smoothing
there are several approaches to knot spacing available, e.g. space filling algorithm by
Nychka & Saltzman (1998) or clara algorithm of Kaufman & Rousseeuw (1990). The
latter is implemented in R package cluster. Equidistant knots for bivariate smoothing
are less used due to their inefficiency.

One also needs to make a choice about spline basis. Truncated polynomials are useful
for understanding spline regression, but direct estimation with this basis can lead to
numerical problems. However, transformation to a more stable version is available (see
next section), resulting, in fact, in another basis. In contrast, B-splines seem to be a
superior alternative - they are numerically stable, easy to calculate and as noticed Eilers
& Marx (2004) "allow informative visualization” (see their Figure 3). Radial basis func-
tions are computationally efficient and stable as well. In the Bayesian framework this
basis also provided a better MCMC convergence, as noted by Crainiceanu, Ruppert &
Carroll (2005).

Finally, the degree of the spline and the penalty matrix need to be determined. Trun-
cated polynomials are less flexible in this respect. The penalty matrix is just an identity
matrix and polynomial degree defines, at the same time, the limiting fit. In contrast,
B-splines allow for separate choice of the spline degree p and the order of the penalty q.
The latter is the discrete approximation of integrated squared gth derivative and defines
the limiting estimate: large smoothing parameter with ¢+ 1 order penalty shrink the fit
toward a polynomial of degree ¢. This property of B-splines allows for a greater flexibil-
ity of the smoothing model. Different versions of radial basis are established in the most
R packages, e.g. in mgcv and SemiPar. While SemiPar allows varying the spline degree
only, the mgcv version lets one choose the penalty order ¢ as well (with the condition
2¢q > d to be fulfilled, where d is the number of covariates).

In general, in most examples the knots’ location, basis and penalty types have no no-
ticeable effect on the fit, in so far as the amount of knots is sufficiently large. However,
for complex problems like smoothing of regression functions with strong varying local
variability or with sparse data in some regions, some care is needed for knots and basis

selection.
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2.5.2 Fast and Stable Penalized Smoothing

An optimal smoothing parameter, if not chosen in the mixed model or Bayesian frame-
work, has to be identified by grid searching, which can be numerically exhaustive, es-
pecially for large datasets. Moreover, some basis functions, like truncated polynomials,
can be numerically unstable. The Demmler-Reinsch orthogonalisation allows one not
only to speed up computations for smoothing parameter selection, but also to stabilize
it numerically. A variation of this algorithm is used to compute smoothing splines (see
Eubank, 1988 or Green & Silverman, 1994). Following Ruppert, Wand & Carroll (2003)
we give here the algorithm for some basis matrix C"

1. Obtain Cholesky decomposition of CTC' = KT K with square and invertible K
2. Obtain singular value decomposition of K=" DK~ = Udiag(b)U7;
3. Get the smoothing matrix as Sy = A diag(1 + \b) ' AT with A =CK~'U.

Note that ATA = UTK-TCTCK~'U = I,,, yielding df = tr(Sy) = 11(1 + Xb)~!. The
beauty of this approach is that matrix A and vector b have to be calculated just once
and then these quantities can be used for all values of the smoothing parameter A. For

justification of this algorithm one just needs to note that
CT'C+AD=K'"K+AD =K' I+ K 'DK ™)K = KTU(I + \diag[h)) UT K.

Now the calculation of GCV or AIC criteria as given in (2.10) or (2.12) can be made
for all values of A at once. For implementation of Demmler-Reinsch algorithm in R and
MATLAB see Appendix B of Ruppert, Wand & Carroll (2003).

This approach can also be used to optimize calculations in the BRUTO algorithm of
Hastie & Tibshirani (1990) for smoothing parameter choice in additive models, as well
as for bivariate smoothing. The optimization in this case is performed iteratively for one
smoothing parameter at a time. Moreover, since generalized penalized spline smoothing
can be represented as iterated weighted penalized least squares, it is straightforward
to adjust the Demmler-Reinsch approach for generalized penalized spline smoothing.
Implementation in R is provided in Section 3.6.

2.5.3 R Packages mgcv, nlme and SemiPar

This section demonstrates how penalized spline smoothing can be performed with pack-
ages available in R.
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Function gam

Function gam of R package mgcv, written by S.N. Wood, implements (generalized addi-
tive) penalized spline smoothing with a smoothing parameter chosen with GCV. It han-
dles (generalized) scatterplot, additive and multivariate smoothing with flexible choice
of knots and bases. For example, estimating the parameters of penalized likelihood
|y — C(x)0]|> + M7 DO with thin plate penalized splines based on K = 40 knots and
second order penalty using automatic smoothing parameter choice is carried out with

> library(mgcv)
> y.fit <- gam(y~s(x,k=40,bs="ts",m=2)).

More details are given in Wood (2004) and in the documentation to the mgev package,
available at CRAN pages (http://cran.r-project.org/doc/packages/mgev.pdf). In gen-
eral, function gam is fast and time-tested.

Note that R function gam is fundamentally different from the Splus function gam based
on the work Hastie & Tibshirani (1990). Splus function uses smoothing splines or loess-
smoother (local polynomial regression) for fitting and has no option for automatic choice
of smoothing parameters.

R functions for mixed models

R package nlme with its function 1me allows for the fitting of linear mixed models of
any complexity. To use this function for smoothing one needs first to define the model
matrices X and Z in accordance with the smoother type. For example, to fit the model

ylu ~ N(XB + Zu, afln), U ~ N(O,Uﬁ][{)

with squared truncated polynomials based on K = 40 equidistant knots, we first set up
the model matrices

> K <- 40

> n <- length(y)

> st <~ (max(x)-min(x))/(K+1)

> knot.x <- seq(min(x)+st,max(st)-st,by=st)
> 7Z <- outer(x,knot.x,"-")

> Z <= (Zx(Z2>0))"2
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> X <- cbind(rep(1l,n),x,x"2)
and perform the penalized fit as follows

> library(nlme)
> all <- rep(1l,n)
> y.fit <- Ilme(y~“X-1,random=list(all=pdIdent(~Z-1))

Note that the 1me functions in R and Splus have different formats, e.g. fitting the same

model in Splus has to be performed with
> y.fit <- 1lme(y~X-1,random=pdIdent(~Z-1))

Moreover, Splus version of 1me makes use of a different optimizer, which is faster and
more robust. John Fox in the online appendix to his book Fox (1997) (see http://cran.r-
project.org/doc/contrib /Fox-Companion/appendix-mixed-models.pdf) also notices that
"comparing the maximized log-likelihoods for the two programs suggests that the R
version of 1me has not converged fully to the REML solution”.

The estimates for 3, u, 02, 02 from both (Splus and R) fits can be obtained with

> beta.hat <- y.fit$coef$fixed

> u <- as.vector(unlist(y.fit$coef$random))

> sigma.sq.eps.hat <- y.fit$sigma~2

> sigma.sq.u.hat <- sigma.sq.eps.hat*exp(2*unlist(y.fit$modelStruct)).

For fitting the models with generalized response, e.g.
E(ylr,u) = X8+ Zu), u~ N(0,021k),

function glmmPQL of package MASS can be used. This function fits generalized mixed
models by sequential calls of the function 1me and consequently has the same format and
output. Having y, for example, drawn from the Poisson distribution and model matrices
defined as above we can call

> library(MASS)
> y.fit <- glmmPQL(y~X-1,random=list(all=pdIdent(~Z-1),family=poisson)

The estimated object is of 1me-class.

Package SemiPar
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The R package SemiPar was written by M.P. Wand to accompany the book Ruppert,
Wand & Carroll (2003). In general its function spm facilitates the interface with mixed
model functions. Based on lme (or glmmPQL) function spm performs (generalized) scat-
terplot, additive and bivariate smoothing with two possible basis functions (truncated
polynomials and low-rank thin plate splines) and flexible choice of knots. A comprehen-
sive user’s manual is available at http://www.maths.unsw.edu.au/~wand/SPmanu.pdf.
For example, a scatterplot fit with a squared truncated polynomial basis based on 40
knots can be performed with

> knot.x <- default.knots(x,40)
> y.fit <- spm(y~f(x,knots=knot.x,basis="trunc.poly",degree=2))

The parameter estimates can be extracted from y.fit$fit, which is the 1me-class object
as above.

There are two more functions in R which make use of 1me (or glmmPQL) - these are
lmeSplines and gamm. Both functions are not as general as spm, however gamm is the
most similar to it. Function gamm is a part of the S.N. Wood’s mgcv package and has
the same format as gam, which makes it convenient for comparison.

Finally, one should be aware that the function gam and all 1me-based approaches estimate
in two different frameworks, which also results in a different inference and in particular

different confidence intervals, as pointed out in Section 2.3.

2.6 Bayesian Model for Smoothing

Specifying in the mixed model

u 0 0'2[[( 0
= XB+ Zu+e, ~ N |7
S H (H [0 agan

prior distributions on (3,02, 0?) we get a complete Bayesian model for smoothing. It
is standard to specify prior distribution for / either p(3) o< 1 or p(5) = N (O,aglpﬂ)
with a large 0%. Priors for variances 02 and ¢? are taken from gamma family of priors
02 ~ IG(A,, B,) and o2 ~ IG(A,, B.) with hyperparameters chosen small to provide
noninformative proper prior. With this we get a hierarchical Bayes model.
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FEstimation

Since p(ﬂ,u\y,a 0?) o< p(y|B,u, 02, 0?)p(ulo?, o?)p(Blo?, 0?), we find that conditional

ur e

on (y,02, 02) the posterior distribution of parameters 3 and u is proportional to

1 o2
exp {5 [l = X8 = zul + Z |} = exp {51 1 = con* + Zooo ),

u

which is minimized by (2.21). Denoting with Xy = (CTC +¢2D/0c?)~! and representing

1
p(B,uly, 02, 02) o exp [ 5o 2 {[9 ¥oC y] 51 [9 — E@C’Ty}}:|
we find

Oly, o2, 07 ~ N (Z9C"y, 075) . (2.32)

ulr e

Thus, the posterior distribution of m(z) = C8 given (y,02, 02) is normal with

2 ~
E[m(z)ly,02,02] = C(C'C+ %D)‘ICTy = Sy = O,

E
u

2
Cov [m(2)|y,02,02] = o2C(CTC + U—ZD)_lcT =028. (2.33)

6
u

Now from

p(o?y, Byu,02) o p(y|B,u, o202)p(a?|B, u, 02),
p(olly, B,u,07) o p(y|B,u,on0)p(ol| B, u,0?)

we get that posterior distributions of variance parameters o2 and o2 given (y,u, 3) are

respectively proportional to

1
o A exp {——2 (ly = X8 — Zul” + Be)}
0-6

(K /24 Aut1) b
o, exp{ p (HuH + B, )}

Comparing these distributions with the inverse gamma density

IG(z;a,b) = bz Y exp(—b/z) /T (a)
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we determine

1
Uz|yaﬁau70_3 ~ G<A + 5 +—||y—Xﬁ—ZU||2)

n
2’
2 2 K
Uu|y’ﬁau70-€ ~ IG(A + — 5 B +_|| ||>

Estimation is carried out in that the MCMC algorithm iterates between sampling con-
ditional on the data y the regression coefficients (5, u) from (2.32) given the vari-
ance components (02,02), and vice a versa. Numerically this procedure can be im-
plemented, e.g. in WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs) or with BayesX
(http://www.stat.uni-muenchen.de/~bayesx). While the latter is designed primarily for
handling Bayesian semiparametric regression based on MCMC simulation techniques
(see e.g. Lang & Brezger, 2004), the former is more general.

Compared to the mixed model framework the full Bayesian approach can assess the vari-
ability due to hyperparameter estimation, which can make a difference in inference for
small datasets. On the other hand, one faces the problems specific to the MCMC infer-
ence such as determination of burn-in or inspection of the Markov chains’ convergence
to their stationary distribution. Moreover, the estimate resulting in the full Bayesian

framework can be sensitive to the variance hyperpriors.
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3 Smoothing with Correlated Errors

3.1 Motivation

It is well known that in the presence of correlated errors standard smoothing parameter
selectors fail to work and overfit the data (see for instance Altman, 1990 or Hart, 1991).
This has been nicely exposed in Opsomer, Wang & Yang (2001) for a number of smooth-
ing techniques. Overfitting can be avoided by taking the correlation structure explicitly
into account for bandwidth selection. This has been demonstrated among others in Wang
(1998) for spline smoothing and in Altman (1990), Hart (1991), Beran & Feng (2001) or
Ray & Tsay (1997) for local smoothing, see also McMullan, Bowman & Scott (2003) for
an applied approach. For penalized spline fitting Currie & Durban (2002) and Durban
& Currie (2003) present a strategy for smoothing with correlated errors and selecting
the correlation structure based on the likelihood. A Bayesian approach for fitting with
correlated errors is found, for instance, in Smith, Wong & Kohn (1998). In general, the
correlation structure is unknown in advance and estimation of the correlation structure
requires a sufficiently good fit of the mean function. Hence, one is faced with a dilemma
in practice. In fact, even small misspecification of the correlation structure can result in
serious over (or under) fitting as demonstrated in Opsomer, Wang & Yang (2001). This
exhibits an undesirable sensitivity of MSE-based smoothing parameter selectors. The
problem of smoothing with correlated errors is most prominent in a time series setting
where x = t gives the time and adjacent observations y; and ;.1 are correlated. Typical
examples are macro economic time series like inflation or GDP. In this case m(t) gives
the (long term) trend which has to be estimated in the presence of correlated residu-
als. An overview about common trend estimates is provided, for instance, in Fan &
Yao (2003). A traditional method for long term trend estimation in time series is the
Hodrick & Prescott (1997) (HP) filter, which incorporates a penalization. The latter
clearly demands the specification of a penalty (smoothing) parameter. However, to our
knowledge, no data driven routine for choosing the penalty parameter in the HP filter
has been suggested yet and instead the choice “A = 1600” as heuristically suggested by
Hodrick & Prescott (1997) is usually used.
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3 Smoothing with Correlated Errors

We investigate penalized spline smoothing using two different smoothing parameter se-
lectors. First, a classical MSE minimizer, based on the Akaike criterion is used. Secondly,
a restricted maximum likelihood (REML) smoothing parameter estimate is used by con-
sidering the smoothing model as a linear mixed model with random spline coefficient (see
for instance Wand, 2003 or Kauermann, 2004). It is shown in theory and simulations
that the latter approach is more recommendable, since REML based smoothing parame-
ter selection is less sensitive to misspecification of the correlation structure compared to
MSE based choices. This means, for instance, if data have been mistakenly considered
as independent when they are (not too strongly) correlated, a serious overfit using a
MSE smoothing parameter selector appears, while the REML estimate is robust and
features a satisfactory behaviour. This performance is demonstrated for simulated data
in Figure 3.1 upper row, where the two smoothing parameter selectors are applied to
autocorrelated data, but mistakenly assumed no correlation when fitting it. Of course,
any fit using a misspecified correlation structure is inferior to one which considers the
true correlation, regardless of the smoothing parameter selection used. However, the true
correlation is typically unknown (unless in simulations) so that the reported superiority

of the REML provides a practical advantage when the correlation is not known.

3.2 Smoothing Parameter Selection

3.2.1 Akaike and REML

We consider the smoothing model
yi ~ N(m(z;),02), i=1,..,n, (3.1)

with m(.) is a smooth, but unknown function. Estimation of m(x) is carried out by
penalized spline (P-spline) smoothing, replacing m(z) in model (3.1) by some high di-
mensional parametric structure m(z) = X + Zu. Here, X is a low dimensional basis,
e.g. with rows X/ = (1,x;), while Z = Z(z) is high dimensional, e.g. truncated lines
with rows Z; = [(x; — k1)+, ..., (z; — kk)+], where k; are fixed knots, j = 1,..., K.
Clearly, other bases can be used. For theoretical investigation the use of truncated poly-
nomials proves, however, to be simpler and is therefore preferred here. With respect to
the dimension K we follow the reported results by Ruppert (2002) and assume that the
location and number of knots are fixed in advance.
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3 Smoothing with Correlated Errors

Coefficients 3 and u are estimated from the penalized least squares

(y —COH (y — C0)/)o? + Mu'u, (3.2)

with y = (y1,...,yn)7, C = (X, Z) and coefficient 0 = (57, u”)?, resulting in the estimate
m(z) =CO=C (CTC+ D)™ CTy = Sy, (3.3)

with D as block diagonal matrix built from 0 and I with matching dimensions. With
S\ we denote the resulting smoothing matrix. The penalty parameter A thereby steers
the amount of smoothness. A data driven choice for X is available by minimizing the
Akaike criterion

AIC()) = nlog [RSS(N)] + 2df (V), (3.4)

where RSS(A\) = (y — m(x))T (y — m(z)) and df (\) = tr(Sy). Alternatively, a modified
version of the criterion can be used (see Simonoff & Tsay, 1999), but for the sake of
simplicity we stay with the simple case here.

The penalized fit can also be motivated by treating u as random coefficient leading to
the linear mixed model

ylb ~ N(XB+ Zu,0?1,), u~ N(0,021k). (3.5)

In this case, m(x) as given in (3.3) results in a posterior Bayes estimate or Best Linear
Unbiased Predictor (BLUP) with A = 02 /a2, Model (3.5) thereby allows one to estimate
the smoothing parameter A by maximizing the likelihood resulting from the linear mixed
model. In practice, an adjusted residual maximum likelihood (REML, see Section 2.2.1
or Harville, 1977) shows advantages. In this case A is chosen by minimizing the negative
REML function.

—2 REML(X) = (n — p)log(62 y/5;) + log [Va| + log | X V7' X, (3.6)

with p as dimension of 3, 62 5, = (y — XAV (y— X3)/(n—p) as variance estimate

in the mixed model (3.5) and V\, = I,, + ZD~ZT ) \.
Differentiating (3.4) and (3.6) with respect to A and solving resulting equations we can
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3 Smoothing with Correlated Errors

define /\REML as

- ) tr (Sy) —
AREML = US,MMﬁ, (3.7)
while the AIC minimizer can be written as
- tr(Sy — S)S
e = 0—2M (3.8)
0T D(I — Sy)0

with 62 = RSS(\)/n and Sy = (CTC + AD)"'CTC. Note that both (3.7) and (3.8)
are not explicit solutions, since the right hand sides of the equations depend on A
We can however use (3.7) iteratively as fixed point iteration by inserting the current
estimate in the right hand side of the equation to obtain an update for the left hand
side. This approach performs weakly for (3.8). Thus, even though equation (3.8) defines
the estimate for our theoretical investigation with A arc inserted on both sides of the
equation, we would recommend to minimize (3.4) not using (3.8), but by grid searching.
More details on estimates (3.7) and (3.8) are provided in Section 3.5.

3.2.2 Smoothing with misspecified correlation

When the data are in fact correlated with some, typically unknown, correlation structure,
one has to incorporate a "working correlation” R in the smoothing parameter selection.
Our objective is to explore which of the two above smoothing parameter selectors is more
sensitive with respect to misspecification of such a working correlation. Without loss of
generality, we explore this point using working zero correlation, that is R = [,,, with [,, as
identity matrix. Note that if a different working correlation R is used, then observations
y* = R™Y2y show working zero correlation with mean function m*(z) = R~?m(z).
This implies that the results derived for zero correlation can directly be transferred to
more general settings. Moreover, with R we denote the true unknown correlation of .
Let now A arc and b\ reMmL be smoothing parameter estimates calculated assuming uncor-
related residuals. We are interested in E(62/Aa;¢|R) and E(&EQ’MM/S\REML]E’). We show
subsequently that £(62 3,/ Arparz|R) is less dependent on R than E(62/Aarc|R). This
means that S\REML varies less if the true (unknown) correlation changes. We consider
the smoothing parameters in this form for technical reasons, since their expectations are
more tractable. Moreover, in the mixed model framework &3’ v/ ArEML = 62, which in
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3 Smoothing with Correlated Errors

fact steers the amount of smoothing. Using (3.7) and (3.8) we find

> (5-52,MM |R) - O'Str[R(SA — S)\SA)]
P Aremr(tr(Sy) —p)

tr[Ey (m(z)m(z)")(Sy — SiSy)]

REML

" AreEmL(tT(S)) — p) 7 (3.9)
62 =\ oZtr[R(Sy — ShSh) (I, — Sy)]
B (E'R) a /\Alcktlf(SAA —ASASA) :
N tr[m(x)m(z)T(Sy — SaSa) (I, — Sy)] | (3.10)

)\A[Ctr(S/\ — S)\SA)

Note that in (3.9) we take expectation with respect to y and «, while in (3.10) coefficient
u is treated as given, as it is also indicated by subscripts at the expectation symbols.
This means that \az¢ and (3.10) exist in the smooth model (3.1) with m(z) = X3+ Zu
and u as unknown parameter while A\ppaz and (3.9), respectively, are defined in the
mixed model (3.5) with u as random coefficient.

Apparently, the mean values (3.9) and (3.10) depend on the unknown correlation struc-
ture R. Our theoretical investigation is embedded in the following framework. We
assume equidistant and ordered covariates z; with support [0,1] for simplicity. The
correlation matrix R has the form Rij = r(li — j|) with r as some stationary posi-
tive correlation function, descending to zero for |i — j| growing. Note that this implies
that the correlation between two fixed points in [0,1] is decreasing as n — oo. We
parametrise R by some finite dimensional parameter vector p, that is R = R(g), where
0o = 0 stands for independence such that R(Q = 0) = I,. The vector g consists of the
elements o = {r(1),7(2),...,7r(s)}, taking the correlation function r(d) to be zero or of
ignorable size for d > s. The idea is now to approximate E(:|R) by a first order Taylor
series around E(-|R = I,,), that is

: : OB(|R)
: : 50 | © (3.11)

0=0

Note that the further terms in Taylor expansion (3.11) are essentially zero which is
readily seen from (3.9) and (3.10) and the chosen parametrisation of R. The problem

of smoothing parameter selection in presence of correlated errors is then mirrored in the
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derivate of the expectation. Parameterising R by 04 = r(d), d =1,...,s allows us to
approximate
OR
ct— C~207C,
a(Qd 04=0
This follows since [g—i] - takes value 1 for ¢ = j+d and j = i+d and is 0 otherwise.
i -0

Moreover, since basis C' is built from continuous functions we get by denoting with C;
the i-th row of C: C; = C; + O(n™'), assuming ¢ — j to be bounded (e.g. by s). Hence,
cre; = CFe{1 + O(n1)}. Since CTC is of finite dimension, we can proceed with
(3.11) and differentiate (3.9) and (3.10) with respect to p, which yields

 Anwnr OB(62 yar/MreaLl R) tr(Sy — S\Sh)
VeEML = = 900 0 TSy —p (3.12)
Qd=
Aarc OE(62/Aarc|R) tr[(Sy — SaSy) (I — Sy)]
_ E 3.13
Varc o2 do4 ) tr(Sy — SySy) (3:13)
Qd=

with Aggapr = Eu(Aaze) as shown in Section 3.5.3. It remains to show that Va0 >
Vreymr. We apply first the Demmler-Reinsch decomposition discussed in Section 2.5.2.
To do so we write CTC = BT B, where B is a square and invertible matrix obtained
by a Cholesky decomposition and apply a singular value decomposition B~T DB~ =
Udiag(e;)UT, with U as a matrix of eigenvectors and e = (ej, ea,...) as corresponding
eigenvalues and thus represent the smoothing matrix as S, = CB~'Udiag(b;)(CB~'U)T,
with b = 1/(1 + Ae;). In this notation (3.12) and (3.13) become respectively

b; —
VereEML = 222 by — Z )

Zibi_QZibg—i_Zib?
TRV

Noting further that ; > 0 by definition, one finds V 4;¢ > Vgeyr since

Vaic =2
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(29) () ) = (3) (59)

S YD bbb —by)* —p Y bi(bi — 1)

i >t

K
& DN bbb — b)) > 0.

i=1 i<j<K

Y
o

The last inequality follows from the fact, that due to the structure of D, the last p
eigenvalues exy1 = .. = ex4p = 0 and thus bgy; = ... = bx4, = 1, with K as dimension
of u and p as dimension of 5. This proves that the first order derivative in (3.11) is more
pronounced for the AIC smoothing parameter choice than for the REML.

3.2.3 Simulation

To illustrate the theoretical findings we ran a number of simulation studies some of each
are reported here. Following Wang (1998) and Currie & Durban (2002), we generate

Figure 3.1: Estimated curves with AIC (dashed) and REML (bold) based smoothing
parameter choice (left) and partial autocorrelation function corresponding
to the true function (right).

n = 300 data points with y; = sin(27i/n) + 0.3¢;, where ¢;, i = 1,...,n are drawn from a
first-order autoregressive process with mean zero, standard deviation one and first-order
autocorrelation equal to 0.3. Figure 3.1 shows an exemplary simulation. The smooth fit
is based on a quadratic polynomial basis with K = 40 knots placed equidistantly over
the observed x values. The smoothing parameters are selected assuming independence.
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3 Smoothing with Correlated Errors

Clearly, the AIC based choice fails to estimate the function properly while the REML
estimated smoothing parameter behaves well.

We rerun the simulation with different values for the autocorrelation, ranging from 0 to
0.5 with step size 0.1. Figure 3.2 shows the resulting simulated smoothing parameters

S\AIC and S\REML on a log scale in a boxplot, each based on 100 simulations. The
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Figure 3.2: Boxplots for log-transformed smoothing parameter choice in 100 simulations.
Upper row shows log A arc and log A reMmL Without accounting for correlation.
The two bottom plots correspond to AIC and REML smoothing parameters
when the true correlation structure is explicitly taken into account.

upper row shows the selected smoothing parameter when the correlation is ignored,
that is, we use working independence. It appears that even for small correlations, the
AIC tends to pick a small smoothing parameter, which in turn leads to overfitting. In
general the dependence of Aarc on the correlation is strong. In contrast, the REML
based A\ behaves clearly more inertially and ANREML picks a reasonable bandwidth even
for (weakly) misspecified correlation. The deficit of the AIC choice is corrected if the
true, but unknown, correlation is taken into account; that is, if we use the true (but
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3 Smoothing with Correlated Errors

apparently unknown) correlation matrix R in the AIC choice (3.4) as well as for the
REML criterion (3.6). The so selected smoothing parameters are plotted in the bottom
row plots in Figure 3.2. Note that this second approach is only a theoretical exercise and
not available in practice, since the true correlation structure is unknown. Therefore, the
two bottom plots can serve as reference only. Even though our focus on the behaviour of
the smoothing parameters A 4;¢c and Agrgasr, it is also practically of great interest to see
the effect on the Mean Squared Error of the resulting estimates. This is visualized for
the above simulations in Figure 3.3, where we show the term > | (i (z;) —m(z;))?/n for
the different simulation scenarios. The organisation of the plot is the same as in Figure
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Figure 3.3: Boxplots for average squared error in 100 simulations. Upper row shows
ASE(j\ arc) and ASE(XREML) without accounting for correlation. The two
bottom plots correspond to ASE of fits with AIC and REML smoothing
parameters correspondingly, when the true correlation structure is explicitly
taken into account.

3.2 and so is the resulting interpretation. Clearly, even small omitted correlations among
the residuals have a dramatic effect on the Mean Squared Error of the AIC based fit,

49
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while the REML based choice has a more stable behaviour.

We ran a number of other simulations with (i) different numbers of knots, (ii) different
functional forms, (iii) different residual variability (i.e signal to noise ratio) and (iv)
different basis functions (e.g. B-splines). The findings were the same as those reported
here and these factors did not change the general behaviour. The superiority of the
REML approach was always clearly seen.

The behaviour of the REML estimate transfers to more complex correlation scenarios.
To demonstrate this we simulated data from an AR(2) process with first and second order
autocorrelation 0.4 and 0.3, respectively. For fitting we employed a (misspecified) AR(1)
correlation structure with first order autocorrelation estimated from the data. Note that
this is easily accommodated in the linear mixed model framework and implemented,
for instance, in the Splus or R 1me(.) function (see Section 3.6 or Pinheiro & Bates,
2002). The resulting fit is shown in Figure 3.4, top row plots. The data clearly exhibit
a correlation structure, if however this is not correctly specified, the AIC smoothing
parameter choice suffers from overfitting. This is in contrast to the REML selected A
which works fine even for misspecified correlation. We rerun the simulation for different
values of the second order autocorrelation, ranging from 0 (which equals AR(1)) to 0.5.
The two plots in bottom row of Figure 3.4 show the resulting smoothing parameter
estimates and Mean Squared Errors, respectively, if the data are in fact fitted with
a misspecified AR(1) structure. The weak dependence of the REML estimate on the
correlation structure is again visible and confirms our theoretical findings.

3.3 Examples and Applications

To illustrate the applicability of the described property of the REML estimator for the
smoothing parameter selection we first consider data from Box & Jenkins (1970). 197
measurements of the “uncontrolled” concentration in a continuous chemical process are
sampled at intervals of two hours and shown in Figure 3.5. The true correlation struc-
ture of the data is unknown. Diggle & Hutchinson (1989) made use of the data to
demonstrate their smoothing parameter selection criterion which incorporates an AR(1)
correlation structure. They suggest to estimate the smoothing and correlation param-
eter simultaneously, and receive an estimated first order correlation of 0.368. For the
smoothing parameter choice a modified cross validation criterion that accommodates au-
tocorrelated errors was applied. The resulting mean estimate is shown in the left upper
plot of Figure 3.5 (see bold line). The dashed line is the fit assuming independence of
the residuals, which is clearly not satisfactory. The right upper plot presents the fits
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Figure 3.4: Estimated curves (bold) with AIC and REML based smoothing parame-

ter choice (top row) with boxplots for log-transformed smoothing parameter
choice in 100 simulations (middle row) and boxplots for average squared error
in 100 simulations (bottom row).

with the proposed REML smoothing parameter choice, performed in the same way with

(see bold line) and without (see dashed line) accounting for correlation. Both estimates

are nearly indistinguishable, although the variance structure is wrongly specified in the
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Figure 3.5: Estimated curves with (bold) and without (dashed) accounting for correla-
tion using AIC (left) and REML based (right) choice of smoothing parameter
(top row) with partial autocorrelation functions for the AIC (left) and REML
based (right) fits without accounting for correlation (bottom row). Dotted
lines show confidence bands for the REML fit which accounts for correlation.

second case. Thus, the REML based mean estimate with moderately misspecified corre-
lation helps here to make a conclusion about unknown correlation structure of the data.
This is visible from the bottom plots of Figure 3.5 where the estimated partial autocor-
relation function based on the fitted residuals is shown. The REML estimate assuming
independence provides a reasonable estimate for the autocorrelation structure (bottom
right hand side plot) which can be used to modify the REML estimate by incorporating
the estimated correlation structure (AR(1) in our example) in the smoothing parameter
selection. The residual autocorrelation function for the latter fit looks the same as for
the REML estimate ignoring correlation. Such behaviour does not exist for the MSE
based choice, as can be seen from the bottom plot on the left hand side, which show the
residual auto correlation function using an AIC choice without taking correlation into
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Figure 3.6: Estimated curves with an AR(2) (bold) and AR(1) (dashed) correlation
structure using AIC (left) and REML based (right) choice of smoothing pa-
rameter (top row) with partial autocorrelation functions for the AIC (left)
and REML based (right) fits accounting for an AR(1) correlation structure
(bottom row).

account.

Our second example considers monthly averaged data of the German stock price index
(CDAX) obtained from OECD Main Economics Indicators. We analyse 485 log obser-
vations from the period June 1964 to June 2004 as shown in Figure 3.6. We first fit the
data with REML (upper right plot), assuming an AR(1) correlation structure (dashed).
The plot of partial autocorrelation functions (bottom right plot) provides however ev-
idence of the AR(2) structure of the residuals. We refit the data with a REML based
smoothing parameter but now assuming an AR(2) structure. The resulting fit is shown
in Figure 3.6 (top right plot) as solid line and the resulting autocorrelation function
exhibits no changes. In contrast to the REML based estimate, the AIC criterion is not
able to discover the mean structure at all, even if the covariance matrix of an AR(2)
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process is explicitly taken into account in the estimation. This phenomenon can be ex-
plained by the fact that our time series is nearly non-stationary (with very large first
order correlation), which however does not influence the REML estimate. Similar deficit
of the MSE-based approach was mentioned e.g. in Diggle & Hutchinson (1989).

A further application is discussed in Chapter 4 where a two dimensional fit of the term
structure of interest rates with non-standard correlation structure was performed. Again,
it was the REML based smoothing parameter which made the fit possible.

3.4 Extensions

3.4.1 Additive Models

The result can be easily extended to other models, for instance additive models of the
type
yz'NN(ﬁ(ﬁ—ml(xﬂ)%—...—i—md(xid),af), 7= 1,...,n.

As in the univariate case we can represent each function as my(x;) = ;0 + Zjuy, | =

1,...,d and estimate parameters from the penalized least squares
(y— XB—Zu) ' (y — XB— Zu)/o? + Muluy + ... + Aqulug
or from the linear mixed model

ylu ~ N(XB+ Zu,021,), u~ N(0,blockdiag(cs Ir,,....00, Ix,)),

= Oy

with 3 = (B, ., Ba), u = (ul, .. ;v X = [1, 25, ..., Tigh<icn and Z = [Zy, ..., Z4],
where Z; is a basis matrix of dimension n x K;. Both models result in the estimate
§ = C(CTC + D)'CTy with C = (X, Z) and D = blockdiag[0pxp,, A lx,, .-, Aalk,],
where p is the dimension of X. The expressions for )\, in both frameworks can be easily
derived similar to (3.7) and (3.8) and result in

A rEMmL = 67 T {HG) —p
’ =MMAr DGy

and

;\l e = 5‘2 tr[(S)\ — SAS,\)Gl]
’ “0TDG /NI — 5,6
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with G; = blockdiag[0 4k, +.. 4+, 1)> [, Ok, i +..+K,))- Now the results of the Section
2.2 are directly applicable. We ran a number of simulations to check the performance of
the routine. Whenever correlation is associated with one of the covariates, the findings
of the previous section are reproduced for the additive case.

3.4.2 Non-normal Response

The advantages of REML estimates of smoothing parameter remain valid in a general-
ized setting. As illustration we consider Westgren’s gold series. Figure 3.7 shows the
data from experiment described in Westgren (1916), as given in Guttorp (1991). Total 1
598 observations are the numbers of gold particles observed in the same volume of a solu-
tion every 1.39 seconds. Particles may move in and out of the volume. These data were
considered by the numbers of authors - Chandrasekhar (1954), Heyde & Seneta (1971),
Guttorp (1991), Grunwald & Hyndman (1998) - as an example of a Poisson branching
process or of a Poisson AR(1) model. Particularly Grunwald & Hyndman (1998) con-
sidered smoothing parameter choice with AIC and BIC criteria for smoothing of this
correlated Poisson series. We used REML approach to fit these data with K = 120
knots, taking an AR(1) correlation structure into account. Left plot of the Figure 3.7
shows the resulting REML fit (bold), while the right plot represents the estimated auto-
correlation function for this estimate. The letter has evidence of an AR(2) correlation.
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Figure 3.7: Right: Estimated curves with AIC (dashed) and REML (bold) based smooth-
ing parameter choice. Left: Partial autocorrelation function corresponding
to the REML estimate.

This is consistent with the findings of Grunwald & Hyndman (1998), which estimated
the first order correlation to be 0.583 and noted a substantial additional variation. The
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corresponding fit is shown in Figure 3.7 left hand side as dashed line. Obviously, AIC
estimate is affected by the misspecified correlation structure, while REML fit remains
stable. In fact, the estimate which takes an AR(2) correlation structure is indistinguish-
able to that of REML fit with an AR(1) structure.

3.5 Smoothing Parameter Estimation

3.5.1 REML estimate

Let us consider the mixed model
ylu ~ N(XB+ Zu,01,), u~ N(0,021f).
The restricted log-likelihood for this model is given by
—2lg = (n = p)log(02 yar) +log [Va] +log [XTVIX| + (y — XB)TV Hy — XB) /02y

yielding the following estimates for the fixed effects and 05’ MM

B = (XTVAAX)AXTVAA%
_ NTY/—1(,, 2 T .
= (y =XV (y=XB) _y (I =Sy (3.14)

(n—p) (n—p)

With this the profile restricted log-likelihood for the smoothing parameter A results to
(3.6). Now ArEyr can be obtained by minimization of (3.6). Using the relationships

oS 1 A ~ 1
8_)\)\ = _X(S,\ - SAS/\)7 0" DO = XQT(S/\ - SAS/\)y’
8(10g|V,\|) . 1 T —1 7T
= yula(z'z + D)2

and
Alog | XTV X 1
(log | 5 A ) = —)\tr[Z(ZTZ+ )\D)_lZTX(XTVA_lX)_1XTVA_1],

we get the REML score equation

N
_LOREML(\) _ 6"Df %(tr@) ) =0, (3.15)

= 2
o\ 02 vim
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3 Smoothing with Correlated Errors

There are a number of approaches for solving (3.15) - EM, fixed point algorithm, Fisher
scoring or Newton-Raphson algorithm (see e.g. Searle, Casella, & McCulloch, 1992 or
Demidenko, 2004).

Fixed point estimation

Equation (3.15) invites for the solution with the fixed point algorithm using the rep-

resentation

tl"(S ,\) —p
0TDh
The estimation procedure is now the following

1. Define some initial value A;

2. Estimate 3 and 62 pay from (3.14);

3. Update A from (3.16);

4. Iterate between 2 and 3 until convergence.

This approach is in fact a version of EM algorithm as pointed out in Demidenko (2004)
and is motivated and justified in the mixed model literature (see e.g. Searle, Casella, &
McCulloch, 1992). Thus, we can use (3.16) not only as a definition of Agrgasr, with the

true parameter inserted in both sides, but also for the estimation.
Fisher scoring

For technical reasons we solve (3.15) with the Fisher scoring algorithm (see Harville,
1977) after multiplication with A62,,,,. That is, the iteration procedure A\0"+1) =
A" — 5R/E[03R/0N is defined for §g(X\) := —2X 62, OREML/OX. It remains to
determine the first derivative of §g(\), which can be written as

95r(M)
O\

Sy — 5,8y 6TDé
S - p(tr(S,\) — #B.17)

R R . ~ A t
— 67D —20D(I — 5))0 + 62,1 d
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3 Smoothing with Correlated Errors

so that its expectation equals

B [aR_W] _ o3(t(Sy) —p)  20%tr(S) — S\S))

O\ A A
n 052’61"(5)\ — S\Sy) B Ug(tr(SA) _p)2
A A(n —p)
2 N2
= 2 [ —p - L2
n—p

This type procedure is implemented in any standard mixed model software, which han-
dles more complex models with general covariance structure of y and u as well.

Newton-Raphson algorithm

Under some additional assumptions we can interpret (3.16) also as a Newton proce-
dure. Namely, we assume for the proof that K << n, that is the dimension of the
spline is small compared to an increasing sample size. Moreover, for technical rea-
sons we assume A to be bounded and bounded away from zero. This means that
0 < 02 < oco. For simplicity we keep K bounded, that is € is of finite dimension.
For Sg as score equation we can see that all components in its derivative (3.17) are
of negligible order except of #7DA. This follows since Hy' = (CTC + AD)~! has or-
der O(n™!) for A being bounded. This can be motivated by recognising that accord-
ing to (2.19) in the mixed model framework Cov(d — ) = o2H;* = O(n™"), yielding
tr(Sy — SaSy) = tr(H;'DH;'CTC) = O(n™"). Moreover, since f is assumed as finite
dimensional we get 7 D(I — Sy)0 = A@ATDH)\_IDQA = O,(n~'). This simplifies the rth
step of the Newton procedure to

5r(M)\ ' o tr(Sy) —p _
A () [ 2RV \) = &2 A P 1
a)\ SR( ) Us,MM QTDQ +Op(n )7

with A = A\(") on the right hand side.

3.5.2 AIC estimate

Similar to the REML-estimate, we proceed for the AIC choice of smoothing parameter.
We consider the model
y~ N(XB+ Zu,0l,).

o8



3 Smoothing with Correlated Errors

In this framework parameter estimates are given with

0 = (CTC + )\Ach)ilcTy,
o _ =00y —C0) _ y" (L — S (L= Sy
3 n n .

The smoothing parameter Aq;c is chosen by minimizing (3.4). Using the results from
above, we obtain

DAIC(N)  20TD(I —5,)0 2
a)\ = 6-52 — Xtr(S)\ — SAS)\) =0. (318)

Solving (3.18) for A yields estimate (3.8). We can now, at least in principle, also use
(3.8) iteratively, which is justified as Newton procedure. The arguments are comparable
to the proof above and, therefore, not explicitly listed here. We stress however that even
though (3.18) or (3.8) serves the purpose of theoretical investigation, the practical use
of (3.8) as iterative formula is not recommended since Newton method in general has
poor global convergence properties. Instead, grid search should be used. Clearly, Fisher

scoring or EM algorithm are not applicable here.

3.5.3 Relation of AIC and REML based smoothing parameters

For comparison of Agrgyr, = 02/02 and Aajc we stress that they are defined in two
different models. While Aggyrp exists in the linear mixed model (3.5), Aasc is defined
in the smoothing model (3.1). In particular, in (3.1) we assume that u(z) = X5+ Zu
so that Aa;¢ depends on the unknown coefficient u (and ), subsequently denoted by
Aarc(u). To relate Aggarr, and Aaro(u) we consider the mixed model (3.5) and show
that

Aremr = Eu[Aarc(u)]. (3.19)

Note, that the Mean Squared Error in the smoothing model (3.1) equals
MSE()\) = o2tr(SySy) + N;c0" DH'CTCH ' DO, (3.20)

Differentiating (3.20) defines the optimal Mean Squared Error smoothing parameter
Aarc as a solution of

MSE 2072
— 85—()\) _ _ 2% tr(SxSy — SxSaSy) + 2Aarc0” DH,'CTS\CH; ' D6.

0
O\ Aarc
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3 Smoothing with Correlated Errors

Considering now u (and hence 0 = (37, u”)T) as random, that is assuming the mixed
model (3.5) we find by taking expectation

MSE 2
0=F, M :2(03— e )tl"(S)\S)\—S,\S)\S)\),
O\ Aarc

which is solved for Aa;c = Agparr = 02/02 and proves (3.19).

3.6 Computational Issues

To demonstrate the simplicity and numerical feasibility of the REML estimate we present
the implementation in R (www.r-project.org, R Development Core Team, 2005) using
the example of the German stock price index (CDAX) data. We take advantage of the
1me function of package nlme (see also Pinheiro & Bates, 2002 or Ngo & Wand, 2004 for
more details in smoothing using Ime (.)). The dataset has 485 observation for “day” and
“cdax”. First we define our model matrices for £ = 80 knots. We use squared truncated

lines here.

> st <- 484/(k+1)

> kn <- seq(l+st,485-st,by=st) #set equidistant knots
> Z <- outer(1:485,kn,"-")

> Z <= (Zx(Z2>0))"2

With this spline matrix we can call the 1me function, using

> library(nlme)

> all <- rep(1,485)

> cdax.fit <- fitted(lme(cdax“day+day~2,random=1ist(all=pdIdent(~Z-1)),
correlation=corAR1()))

> plot(day,cdax.fit)

Here, we allow for an AR(1) process in the residuals. The plot of the partial autocor-
relation function in Figure 3.6 suggests refitting the model with an AR(2) correlation
structure as follows

> cdax.fitl <- fitted(lme(cdax~day+day~2,random=1ist(all=pdIdent(~Z-1)),
correlation=corARMA(p=2)))

The confidence bands can be obtained according to (2.19) from the variance estimate
Var[jiy(z)] = 62tr[C(CTR™'C + AD)~'C7], with R as estimated correlation matrix. In
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3 Smoothing with Correlated Errors

Figure 3.5 the confidence bands are shown exemplary for the REML fit which accounts
for correlation.

For generalized responses the above code looks the same, with 1me being replaced by
the glmmPQL function from library MASS, see also Section 2.5.3.

An efficient algorithm for the penalized smoothing using AIC/GCV criterion is given in
Section 2.5.2. The R implementation of this algorithm can be found in Appendix B of
Ruppert, Wand & Carroll (2003). We adjusted this implementation for the smoothing
with generalized response and demonstrate it here on the example of Westgren’s gold
series with time as covariate and gold as Poisson distributed response variable.

# Set up model matrices

x <- time

y <- gold

n <- length(x)

k <= 120

st <- (max(x)-min(x))/(k+1)

kn <- seq(min(x)+st,max(x)-st,by=st)
Z <- (outer(x,kn,"-"))

Z <- (Zx(Z2>0))"2

C <- cbind(rep(1,n),x,x"2,Z)

D <- diag(c(rep(0,3),rep(1,k)))

# Set up logarithmic grid of smoothing parameter lambda values

lambda.low <- 10

lambda.upp <- 1076

num.lambda <- 150

lambda.vec <- 10" (seq(logl0(lambda.low),logl0O(lambda.upp),
length=num.lambda))

# Get initial values from simple regression spline model
theta <- coef(glm(y~C-1,family=poisson))

eta <- as.vector(C%*)theta)

mu <- exp(eta)

weights <- c(mu)

# Iterate for the mean estimate

for (i in 1:20)
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3 Smoothing with Correlated Errors

u <- eta+(y-mu)/weights
# Take into account current iterative weights

u <- sqrt(weights)*u
CV <- sqrt(weights)*C
CVC <- t(CV)%*%CV

# Carry out Demmler-Reinsh algorithm

K <- chol(CVC)

svd.mat <- t(solve(t(K), t(solve(t(XK), D))))
svd.out <- eigen(svd.mat, symmetric = T)
s.vec <- svd.out$values

U <- svd.out$vectors

A.mat <- CV %x% backsolve(K, U)

b.vec <- as.vector(t(A.mat)%*% u)

r.mat <- 1/(1 + outer(s.vec, lambda.vec))
y.hats <- A.mat %*} (b.vec * r.mat)

y.vec <- matrix(rep(u, num.lambda), n, num.lambda)
RSS <- apply(((y.vec-y.hats)~2),2,sum)

df .vec <- apply(r.mat, 2, sum)

# Determine AIC ...
AIC <- log(RSS)+2x*df.vec/n
# or GCV criterion GCV <- RSS/(1-df.vec/n)"2
# Find minimum ...
ind.min <- order (AIC) [1]
if(ind.min == 1)
stop("make lambda.low smaller")
if(ind.min == num.lambda)
stop("make lambda.upp bigger")

lambda.aic <- lambda.vec[ind.min]

# and next approximation
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3 Smoothing with Correlated Errors

etal <- (1/sqrt(weights))*y.hats[,ind.min]

epsilon.eta <- sum((eta-etal)~2)/sum(eta”2)

eta <- etal

mu <- exp(eta)

weights <- c(mu)

if (max(epsilon.eta)<=1e-05) break

if (i==20) stop ("Iteration limit reached without convergence")

mu

The implementation can easily be adjusted for other distributions of exponential family.
Known correlation structure can be taken into account by standardizing the working

vector.

3.7 Discussion

We investigated the sensitivity of misspecified correlation for two data-driven smoothing
parameter selectors for penalized spline smoothing - Akaike and REML. It has been
shown that the AIC chosen smoothing parameter is (on average) more affected by the
presence of correlated errors than the REML based smoothing parameter. Theoretical
investigation based on a Taylor series and a simulation study illustrated that the REML
chosen smoothing parameter possesses a kind of robustness against misspecification of
the correlation structure, while AIC fails even for weak correlation. The findings were
supplemented by real data examples.
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4 Estimation of the Term Structure of
Interest Rates

4.1 Motivation

Modelling the term structure of interest rates has become an active field of research
in finance in the last years. Based on historical developments, a primary area of ap-
plication is pricing and hedging of different contracts and options written on bonds.
Numerous approaches have been proposed concerning the underlying time structure and
the stochastic framework of term structure models. Furthermore, different perspectives
on term structure modelling have stimulated the development of an enormous variety of
models and methods used to study them.

Generally, term structure models can be divided into two main categories: equilibrium
and arbitrage-free models. Note that both kinds of models are constructed under the as-
sumption of no-arbitrage, therefore the term “arbitrage-free” may be a little misleading.
Within the first category a state variable that determines the term structure is identified
and both, the yield curve and the dynamic behaviour of interest rates are determined
endogenously. Therefore, one has to estimate or choose parameter values to approxi-
mate the average yield curve as well as the short rate. Pioneering models of this kind are
Vasicek (1977) and Cox, Ingersoll & Ross (1985). In the second category, the currently
observed yield curve is used as an input to model the changes of the term structure over
time. The basic model here is proposed in Ho & Lee (1986). Their approach differs from
Vasicek in so far as it contains additional time dependent adjustment parameters to
calibrate the initial yield curve with the goal to match the observed yield curve exactly
(see Backus, Foresi & Zin, 1998).

Despite the widespread use and application of these “theoretical” models, the extraction
or estimation of the complete term structure of interest rates from empirically observed
bond prices is of less common use. In statistical terms this corresponds to an exploratory
analysis of the term structure. In practice it is not possible to obtain the values of the
term structure for all horizons since their number exceeds the number of available bonds.
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4 Estimation of the Term Structure of Interest Rates

To overcome this problem one may use smoothing as an interpolation technique. This
is the task of a different stream in the term structure literature and emphasis of the
following paper.

In recent work, Ioannides (2003) compares seven estimation methods for the term struc-
ture applied to UK data. The methods used in his paper can roughly be categorized as
(i) parametric and (ii) nonparametric. For the first, a low dimensional basis is used for
fitting the term structure to observed data. This approach traces back to McCulloch
(1971) and is further explored and discussed for instance in Chambers, Carleton & Wald-
man (1984) or Nelson & Siegel (1987). The latter paper, in contrast to McCulloch, uses
a parsimonious parametric function, with only a small number of unknown parameters,
that is flexible enough to represent the shapes generally associated with yield curves (see
also Steeley, 1990). In nonparametric estimation, a restrictive parametric term structure
modelling is abandoned and replaced by unspecified, unknown functions. The idea is
that the functional form should be estimated from the data and not pre-specified in
advance. This approach was pursued in Fisher, Nychka & Zervos (1995) and is further
employed in this paper. Since the term structure has implications both for the cross
section and time series dimension of yields, we use a two-dimensional smoothing that
leads to a more efficient estimation.

Nonparametric fitting in general has seen a considerable amount of research in the last
two decades. Nonetheless, it has been just recently that nonparametric techniques have
found their way to term structure modelling. Linton, Mammen, Nielsen & Tanggaard
(2000) and Jeffrey, Linton & Nguyen (2001) concentrate on kernel smoothing while Jar-
row, Ruppert & Yu (2004) employ penalized spline estimation (P-spline). Comparing
the two fitting routines, P-spline smoothing features a considerably reduced numerical
effort. This is an important issue, in particular if the number of observations is large,
about 126 000 in our application. In P-spline smoothing the unknown term structure
is replaced by a high dimensional basis (30-200 dimensional) which is then fitted in a
penalized manner, that is spline coefficients are shrunk towards zero. This guarantees a
smooth fit by prevailing all necessary structure in the function.

The term structure thereby depends on two components, the time left to maturity m
and the calendar time ¢. We take this into account by denoting the term structure
function as f(t,m). To explore the term structure at a given time-point, one can fix
t at some specific value to, say, and fit f(tp,m) as a function of m only. This is the
approach used in the above cited papers. Fixing now the time left to maturity m to
my, say, the development of f(t,mg) for a given my is traditionally understood as a
stochastic process. This is useful if the focus is on prediction of the yield based on data
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4 Estimation of the Term Structure of Interest Rates

(and history) available at the current data point. From an exploratory point of view
one might however also be interested in describing or visualising the smooth trend in
f(t,mp). This is what could be interpreted as long term development, which is visual
from the raw data in a crude way only. In previous applied work this approach is mostly
done for the short-rate, since it can be seen as an important state variable for the term
structure (see e.g. Chan, Karolyi, Longstaff & Sanders, 1992).

Surprisingly, it has been only quite recently that papers in both streams of the term
structure literature, i.e. theoretical modelling and smoothing techniques, try to model
the complete panel of yield data simultaneously (see e.g. Brandt & Yaron, 2003 or
Diebold & Li, 2003). In this paper we combine the two approaches by fitting f(¢,m)
simultaneously as a function of both covariates, time ¢t and time left to maturity m.
This means we are using smoothing in two ways. First, as interpolation tool for showing
f(t,m) for a fixed time as function of m. Secondly, with smoothing we visualise long
term trends in f(¢,m) taken as function of time for fixed m. This allows us to explore
the term structure and its temporal variation simultaneously.

There are two challenges arising in this modelling exercise. First, one is faced with
additional numerical effort, as the dataset has more than 126 000 points. Using the
link of penalized splines to the linear mixed models and, thus, fitting our data with
standard linear mixed models software makes it possible to overcome this problem. The
second challenge occurs since bond prices are correlated over time which has to be taken
into account. Ignoring correlation among observations typically leads to serious under-
smoothing, that is overfitting, as discussed in previous Chapter. Research on smoothing
correlated errors has nearly exclusively discussed univariate or spatial correlation. We
here, however, observe correlation only along yield price development over time of single
bonds. To handle this problem we offer a simple procedure, based on accounting for
correlation of single yield strips. This means the smoothing parameter is chosen using

one-dimensional estimates of correlation structure.

4.2 Data

Our investigation is based on daily ask quotations of US Treasury STRIPS (Separate
Trading of Registered Interest and Principal of Securities). These are securities and
synthetic zero-coupon bonds, which are constructed from coupon bearing Treasury bonds
and issued by the US Federal Reserve Bank. The sample runs from July 1998 to July
2003 and contains 107 different US Treasury Strip coupon securities with maturities
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from one month to 30 years, a total of 126 251 observations. The data are collected on
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Figure 4.1: Design of independent covariates time ¢ and maturity m

July 11, 2003 using the Reuters 3000 Xtra information service and include bond prices
with maturity dates from August 2003 to May 2033. Figure 4.1 shows the observed time
point and maturity pairs. Table 4.1 shows some specific properties of the data set. To
provide a useful representation, the daily quotes are summarized in classes of different
years to maturity. It should be clear that the average yield curve has an increasing,
concave shape.

Maturity Obs Mean St Dev Autocorr
0.0986-0.25 36 1.0064 0.0365 0.0316

0.25-0.5 95 0.9866 0.1062 0.9202
0.5-1 376 1.1212  0.1419 0.9430
1-3 4255 25199  1.1757 0.9878
3-6 13882 4.4737 1.3132 0.9938
6-9 14301 5.2139 0.9423 0.9932
9-12 13457 5.4037 0.7329 0.9907

12-15 14655 5.6697  0.5945 0.9882
15-20 24614 5.8301 0.4677 0.9873
20-25 22776 5.8194 0.3920 0.9873
25-30.3616 17894 5.6992 0.3630 0.9863

Table 4.1: Properties of US Treasury STRIPS Yields
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4.3 Spline Models for the Term Structure

4.3.1 Bivariate spline smoothing

We denote with P, ,, the price of a zero bond at time point ¢ with m years left to maturity
and consider the continuously compounded yield obtained as

log( Prp,
Ytm = — g( L )
m
We model
Ytm = f(t, m) + €m,  Etm N<07 UER)a (4-1)

with f(t,m) as an unknown smooth function of both time and years left to maturity.
The structure of matrix R will be discussed in the next section and is assumed known
for the moment.

Now we face the problem of the spline basis choice. There are three alternatives: ten-
sor product of one dimensional either truncated polynomials or B-splines and low-rank
radial basis as discussed in Section 2.4.2. Thereby, we have to take into account the non-
standard structure of our data. Apart from the extremely large dimension (more than 126
000 points) we observe that the functional complexity over time is much more exposed
than that over time left to maturity. Smoothing with the low-rank radial basis seems to
be the least preferable, since it is controlled by a single smoothing parameter, implying
same amount of smoothing in both directions. Moreover, we experimented with different
basis dimensions and found that capturing the function complexity requires more radial
basis functions than is numerically feasible. A more attractive approach appears to be
the tensor product of either truncated polynomials or B-splines. By choosing more knots
over time than over years left to maturity and having separate smoothing parameters
for each dimension, we can obtain an adequate estimate with less numerical effort. Due
to the correlation structure of our data, described in the next section, we need to esti-
mate the model in the mixed model framework. Since mixed model representation for
B-spline basis requires additional adjustment, which is undesirable for our very large
dataset, we found B-spline basis less attractive. In contrast mixed model representation
of the smoothing model based on truncated polynomials is straightforward. Thus, for
estimation we choose K; and K,, knots placed over time and time left to maturity and
replace f(t,m) with

flt,m) = (Xy, Zy) @ (Xon, Zim)0.
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Here X; = [1,t,t?] and X,, = [1, m, m?] are low dimensional bases in time ¢ and maturity
m respectively, and Z, = [(t — k})3, ..., (t — ki,)3], Zm = [(m — K3, .., (m — kR )2 ]

are the high dimensional supplements. We rearrange the basis matrix to
C = [Xt ® Xm7Xt ® Zma Zt ® va Zt ® Zm]a

with 6 decomposing to (3, t,, us, u.). The different components in C' and 6 capture dif-
ferent aspects of the function. Coefficient (3 is the overall parametric fit, u,, models the
dependence on maturity, while u; mirrors the temporal variation. Finally, u. captures
the interactive influence of ¢ and m. The disadvantage of tensor product matrices is
that their dimension increases rapidly. For instance, if Z; and Z,, are 30 dimensional
2y ® Ly, is 900 dimensional, which is at the limit of numerical applicability when it comes
to matrix inversion. We, therefore, replace the last component in C' by Z. = Zy @ Zom,
where Zt and Zm are of some lower dimension K..

Denoting now with ¥ the n-dimensional vector of observations ¥ ,,,, we write the penal-
ized least squares to be maximized as

1 1

—§(Y —COTRY - Ch) — 5 r

1 1
)\tutTut — §Amug;um — 5)\Cuc Ue.
Assumption u,, ~ N(0,02 I, ), us ~ N(0,0%1k,), u. ~ N(0,021k,) leads to the linear
mixed model. Both approaches result in the estimate Y = CO with § = (CTRIC +
D)"'CTR7'Y, with D = blockdiad[Ogxg, AsIk., Melk,, Aelk.]. In the mixed models

_ 2.2 _ 22 _ 272
framework N\, = 02 /0}, A\, = 02/07%,, A\e = 02 /02

4.3.2 Spline Smoothing with correlated errors

The smoothing parameters A = (A¢, A, Ac) steer the amount of penalization in each
direction and therewith the smoothness of the fit. As extensively discussed in Chapter
3, smoothing parameter selection with any data driven method (cross validation, AIC
or (RE)ML) fails in the case of correlated errors and typically leads to serious under-
smoothing, that is overfitting of the data. However, (RE)ML estimate of the smoothing
parameter has two advantages. First, the estimate resulting in mixed model framework is
more robust to the correlation misspecification. Second, once the correlation structure is
specified, estimation of regression and correlation parameters can be carried out simulta-
neously. Implementation of this procedure with 1me function is shown in Section 3.6. We
use these properties of the (RE)ML estimate in the following way. Let Y ~ N(C#,02R)
with correlation matrix R assumed to be known. This yields Y* = R™'/2Y, as uncor-
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related observations, and with C* = R™Y/2C, one gets that Y* ~ N(C*0,0%I). Hence,
knowing the correlation structure we can simplify the estimation to uncorrelated resid-
uals. The idea is now as follows. We will develop a rough estimate for the correlation
structure considering data along calendar time only. The estimate is then used to derive
Y*. Even though the estimated correlation might not equal the true correlation exactly,
it has been shown in Chapter 3 that the REML estimate still provides reasonable variance

estimates even if the correlation is moderately misspecified. The correlation structure of
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Figure 4.2: Yield development of a 6 years bond, smoothed with (solid line) and with-
out (dashed line) accounting for correlation, with the corresponding partial
autocorrelation function of residuals.

Y is however not standard. We observe correlation along calendar time ¢, but for given ¢
it is not reasonable to assume that residuals €, ,,, along maturity m are correlated. Figure
4.2 shows the yield development of a bond with 6 years left to maturity on the July 1998.
The dashed line shows a penalized spline fit if autocorrelation is ignored, the solid line
shows the fit if residuals are assumed to have an AR(1) correlation structure. For the
latter we plot in Figure 4.2 the autocorrelation structure of the residuals. The AR(1)
assumption seems plausible. Both fits are univariate smoothers and are calculated using
the standard linear mixed models software, as described above without any modification.
To account for correlation in the two dimensional fit (4.1), we now employ the idea of
standardising the response variable in the following way. As visible in Figure 4.1 our
data are observed in time series Y} ,._(—s,) Where m, is the maturity at ¢, in July 1998.
All together there are 107 series, one of which is shown in Figure 4.2. Fitting these series
in the same line as that in Figure 4.2 provides autocorrelation estimates ranging from
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about 0.8 to 0.9. We therefore use an autocorrelation of 0.85 and let 7, denote the
corresponding correlation matrix. Rearranging Y as (Y,2 r

o (—tys -2 Y ) With
,mM1 (t to) t,mi07 (t to)
t taking all observed time points allows us to get Y* = R~'/2Y with R as block diagonal

matrix built from the 107 matrices R,,,. Accordingly we get after rearrangement our
matrix C*.

It remains to fit a linear mixed model for independent errors Y* ~ N (C*Q,O';m]n),
Uy, ~ N(0,02 Ik, ), uy ~ N(0,021g,) and u. ~ N(0,021f,). Even though the dimension
is large, due to independence and the lush, but finite, dimension of ¢ linear mixed models
software can be applied to obtain the estimates 6 = (B, U, Ug, U.)T and the resulting
fitted response Y = C. This is a numerically handy version to cope with the complex
correlation structure in the data. Based on this fit we also analyzed the residuals of
the 107 series but did not find obvious violations from the model. There was a slight

indication of heteroskedasticity which, however, was not too evident and for simplicity
is ignored.
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Figure 4.3: Bivariate fit of the term structure

4.3.3 Empirical Results

In Figure 4.3 we show the bivariate fit of the term structure. The fit is performed

using matrix C' constructed from truncated squared bases with equidistant knots. The
dimensions are thereby chosen as K; = 40, K,, = 10 and K, = 10 x 10. There are two
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things apparent from the plot. First, the functional complexity over time is clearly more
exposed than the functional complexity over maturity. Secondly, time and maturity have
an interactive effect on the bond price, that is u. can not be penalized to zero. To better
understand the interactive effect we consider a number of plots by slicing the bivariate
fit in Figure 4.3 time-wise and maturity-wise.

Figure 4.4 shows the estimated term structure for different time points. Beside the fit we
have included prediction intervals based on 4+26. Prediction intervals are more useful
than confidence intervals in this setting, since the latter are due to the large number
of observations so small that they are visually indistinguishable from the fitted curve.
From the plots there is a clear dynamic visible over time. The term structure during July
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Figure 4.4: Estimated term structure with prediction intervals

1998 shows up as a typical “flat” yield curve, that is the case when the interest rates are
about on the same level for different types of bonds. Two years later, in July 2000, after
the stock market crash in USA (March 2000) the fitted term structure demonstrates
a fully “flat” shape on a high level of about 0.06. Subsequently, the term structure
becomes curved again, showing a “normal” shape with higher yield for a longer lending
time and with more expressed differences between shorter and longer term yields in the
most recent years. It is also obvious that long term bonds remain on an interest rate of
about 0.06 while yield of short term bonds decreases with time.

Next, we consider the yield development for a given maturity over time. This is shown

73



4 Estimation of the Term Structure of Interest Rates

in Figure 4.5. The figures visualize the stock market crash in 2000 in that yields for all
maturities increase until about spring 2000 and decrease afterwards. In this respect we
see that the yield for short maturity bonds is decreasing more rapidly than that for long
term bonds.
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Figure 4.5: Estimated yield development with prediction intervals

4.4 Discussion

We pursued the exercise of fitting zero bonds yield as a bivariate function over time
and maturity. We demonstrated the numerical efficiency of penalized spline smoothing
as smoothing technique. The modelling exercise allowed to look in the term structure
function and to study the dynamic effects. The approach exposed an interesting pattern
in the term structure during the stock exchange crash. The empirical and exploratory
approach can confirm theoretical investigations and stimulate new insights.
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5.1 Motivation

Even though P-spline smoothing is easy and practical, the standard setting with a single
penalization parameter fails if the function to be estimated is locally of varying com-
plexity, that is if the function is changing rapidly in some regions while in other regions
the function is very smooth. This is the general problem of spatially adaptive smooth-
ing which has been treated by a number of authors. For kernel based methods Fan &
Gijbels (1995) or Herrmann (1997) may serve as references. For spline smoothing Luo
& Wahba (1997) suggest what they call hybrid adaptive splines. The idea is to replace
the n dimensional spline basis, where n is the sample size, by a subset of the basis
functions with the spline basis functions chosen adaptively. This idea has similarities
to adaptive knot selection for regression splines as suggested in Friedman & Silverman
(1989). An alternative approach is to allow the smoothing parameter to vary locally
adaptive. Using a reproducing Hilbert space formulation has been suggested in Pintore,
Speckman & Holmes (2005), where piecewise constant smoothing parameters are used.
Similarly, making use of the P-spline idea, as also discussed in this paper, Ruppert &
Carroll (2000) allow the penalty to act differently for each locally defined spline basis,
where the smoothing parameters are then selected using a multivariate generalized cross
validation. A similar approach is suggested in Wood, Jiang & Tanner (2002) working
with mixtures of splines in a fully Bayesian framework. Lang & Brezger (2004) achieve
a local adaptive P-spline by pursuing a Bayesian model of P-splines where spline coeffi-
cients trace from a heterogeneous random walk.

In this work we follow the idea of Baladandayuthapani, Mallick & Carroll (2005) and
Crainiceanu, Ruppert & Carroll (2005) who achieve spatial adaptivity by imposing a
functional structure on the smoothing parameters. However, these papers make use
of full Bayesian framework and require the use of MCMC methods to obtain an esti-
mate. We demonstrate how the MCMC techniques can be easily circumvented by simple
Laplace approximation. Even though this is a step back in terms of the technical features
we have nowadays, it is a step forward in terms of simplicity of numerics and therewith
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allowing for fast calculation.

5.2 Smoothly varying local penalties for P-spline

regression

5.2.1 Hierarchical penalty model

We introduce our approach with the simple scatterplot smoothing model
yi ~ N(m(zy),0%), i=1,..n, (5.1)

where m(z) is a smooth function in the univariate metrical quantity z. We assume that
m(z) can be of locally varying complexity and replace m(x) for fitting by the penalized
truncated polynomials

Ky
m(z) = Bo+xf+ .. + 276, + Y (x — k)b, (5.2)
s=1

where kib), . kﬁ?l{ are knots covering the range of x and (x — kgb))i is the truncated
g-th order polynomial. The dimension K, of the basis is chosen in a lush and generous
manner and knots k" are placed over the range of z, e.g. using the quantiles of x. For
fitting we impose a penalty term Ab”b on spline coefficients b. We present our routine for
truncated polynomials for simplicity of notation, but any other basis functions described
above can be used.

Mixed model representation arises from the assumption b ~ N (0, 02 1,). The restriction
explicitly occurring with this setting is that all coefficients have the same a priori variance
and therewith undergo the same penalization. This is a critical point if the underlying
function is of locally varying complexity. Like Crainiceanu, Ruppert & Carroll (2005) or
Baladandayuthapani, Mallick & Carroll (2005) we therefore allow coeflicients by, ..., bg,
to have locally varying variability which is accommodated by

by ~ N(0,07), s=1,.., K,

We assume next that the variance components o7, change smoothly over the (ordered)
spline coefficients, meaning that the complexity of function m(z) varies smoothly over x
and does not change rapidly. A typical example for such function is the Doppler curve

76



5 Fast Adaptive Penalized Smoothing

(see left plot of Figure 5.1). We accommodate this assumption by setting o7, = ag(kgb)),
where 02(.) is a function smoothly varying over the knots of the basis. In a hierarchical

manner the smooth structure is again modelled by P-splines. To do so we set

K.

P (k®) = explyo + kO + o+ KOy, 3RO — k)l (5.3)
t=1
where k:ic), o k% is a second layer of knots covering the range of k:%b), cee k:gz Note that

K. < Kp is a restriction to be held and practically K. is chosen far smaller than K.
Extending now the smooth estimation, we fit o2(-) in a penalized form by imposing a
penalty on coefficients ¢;. From a Bayesian viewpoint this can be expressed as a priori
distribution in the form

¢~ N0, t=1,.., K.

2

Note that the variance o

is set to be constant and serves as hyper parameter in our
model construction.

For notational simplicity we rewrite the model in matrix form. Let, therefore,

Y= ) Xo = Lo 2l hicicn, Zo = [(m— )Y (25— ki) i<izn

and write 3 = (8o, ...,8,)" and b = (by,...,bk,)”. In an analogous way we define

b b)P b c b c
Xe= LAY K igery Zo = (B — KO (Y — B < jer,

LA J

which gives the hierarchical model

y‘b7c = XpB+ Zpb + ¢, GNN(Oaazjn)a
b|C ~ N(07 Eb)a Eb = dlag[eXP(Xc7 + ZCC)]7
c ~ N(0,02Ig,). (5.4)

The corresponding likelihood results in

_ (n+Ke)

= (27) 2z o "o /RKC exp|—g(c)]de, (5.5)
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o 4 (y — Xo8)"V  y — Xu)
1 cc Y — Xp Ty — Xy
_1 Ve €
9(c) 2 og V| 202 202

and V. = I, + ZbeZbT/af. Note that both, V. as well as ¥, depend on ¢ and 7y
which is omitted throughout the paper for notational simplicity. The integral in (5.5)

is not available analytically, which motivates a solution based on MCMC techniques as
pursued in the previously cited papers. We, however, go a different route via Laplace
approximation, which is justifiable for two reasons. First, the hierarchical model (5.4)
is used as a vehicle for estimation only and has no specific data generating justification.
This means finding the exact marginal likelihood by extensive numerics is not necessary,
if an approximate version fulfills the task of estimation properly. Secondly, since K.
(and K}) are assumed to be bounded while sample size n is growing, i.e. K. < K, < n,
one finds function ¢(-) to be of order n. This implies that the Laplace approximation
has an error of order O(n™') (see Severini, 2000). Therefore, the Laplace approximation
appears as attractive alternative to simulation based techniques. The log-likelihood is

then approximated, up to a constant, by

—21(B,7,0%,0%) =~ nlogo?+ K. logo? + log |V.(¢)| + log |I..(¢)|
+ élefol+ (y— XuB) V() (y — XpB) /02, (5.6)

where ¢, t =1, ..., K. is the solution to

d9(¢) _ %tr (VE_ﬁK) 4o xerv ey o xs =0 (57)

de; dc; o 207 dei *
glc ij —1Z ey -1 7e
I .= F = — o '
()i (acz-acj C) o2 " o (VE 9, ¢ 8@) ’ o

with d;; as the Kronecker delta. It is not difficult to see that the derivative appearing in
the above equations results in
oV,

e, = Zydiag(Zeq)Xp 2y |02,

where Z,; stands for the ith column of the matrix Z.. Moreover, noting that the pre-
diction of b is defined through

ZIV Ny — XuB) = 0255 1.
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and tr (V. 10V, /0c) = Z wgr, with wg as Kj, dimensional vector containing the diagonal
elements of A = ZF'Z,(o?%, ' + ZL Z,) 71, we can represent (5.7) and (5.8) as

dg(c)

1 .
= 3 ZH {5 - wy p+ 5 =0,

52
O-C

and

1 I
> 5 ~ 7T diag(vay) Z. + %,

0%g(c)
Leole) = E ( 0coc” 2
with vy as K dimensional vector containing the diagonal elements of AA. Note that
df, = Z P wg = 1% K, War measures the degree of freedom used for fitting b. In particular,
for K assumed to be fixed we find df, — K} as n tends to infinity and both wg and vgf
tend to 1g,.
Assuming that weights vy vary slowly or not at all as a function of v (which is readily
seen from dugr/0v; = 2diag[(AA — AAA)diag(X.;)] with X ; as the ¢th column of the
matrix X.) we can estimate v and ¢ simultaneously, resulting in the following iterated

weighted least squares (IWLS) for estimation of parameter § = (47, ¢T)T

R D!
0 = | Wldiag (Uif> W.+ — Wldiag <%> u, (5.9)
2 o? 2
with W, = (X, Z.), D. = diag(0gp1)x(p+1), Ix.) and v = W0 + diaug(vcjfl)(Eb_ll;2 — Wr)
as a working vector. Fixing now parameter 0 provides, with the above log-likelihood

(5.6), the following parameter estimates

Q>

: = éTé/wfzf
(XbTV (O)X) XV (D). (5.10)

0 = (y—0"V. Oy - X0)/n.

@
|

with wg; = tr(Zediag(vg) Z. 1.,'/2) and obvious definition for V(6). Finally, we obtain

c ~cc

the estimated best linear unbiased predictor (EBLUP) via
b=Z V. (y — X8) /3¢

The latter steps are standard and available from linear mixed models technology. Esti-
mation can now be carried out with the standard in mixed models framework EM type
algorithm (see e.g. Searle, Casella, & McCulloch, 1992 or Breslow & Clayton, 1993)
by iterating between (5.9) and (5.10) until convergence. It should be noted that the
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estimation consists of two simple steps and is, therefore, numerically very fast.

5.2.2 Restricted maximum likelihood

The above results are presented for maximum likelihood estimates. The use of restricted
maximum likelihood (REML) is, however, more common in mixed models. This ap-
proach makes a small sample adjustment for the estimation of the unpenalized param-
eters 3, see Section 2.2.1. The restricted maximum log-likelihood for the model (5.4)
takes the form

1 .
IR(B,7,02,02) =1(3,7,0%,02) — 5108 X, VN0 X /o2,

with [(3,7,02,02) as given in (5.6). The further estimation procedure is identical to

€rc

that described in the previous section, with the matrix A in wg and vg being replaced
by

Ap=A—ZIV X (XEV X)) XY Zy(Z) Zy + 2 o)
and the variance estimate defined as 62 = (y—X,0)T V.1 (0) (y— X,58)/n—g—1. We have
compared the performance of both procedures in a simulation study presented in Section

5.2.5 and found little difference in estimates. However, REML estimates demonstrated

a slightly better numerical stability for implementation in R.

5.2.3 Variance estimation

We denote with m(z)|c = X,8 + Zyb|c the best linear unbiased predictor (BLUP)
of the function m(z)|c = Xu8 + Zyblc, where 3 = (XFV.'X,) ' X V. 'y and blc =
S ZE V. (y — Xu3) /2. Note that within the linear mixed model framework the func-
tion m(x)|c is random due to randomness of parameter b. Since m(x)|c is unbiased for
m(x)|ec, the confidence intervals for m(z)|c can be obtained from

[m(x) — m(x)]|c ~ N(0, Var[m(x) — m(z)|c]),
where Var[m(z)—m(x)|c] = 625(0) = o?Wy(WIW,+02D,(0))*W,l with W, = (X3, Z3)
and Dy(0) = diag(0(g41)x(g+1): X5 ')+ Using the delta method and unbiasedness of m(z)|c

one can approximate the unconditional variance with

Var[m(z) — m(x)] = E[Var(m(z) — m(z)|e)] + Var[E(m(z) — m(x)|c)] = o25(é).
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Let now m(z)|c = Xuf + Zyb|c denote the estimated best linear unbiased predictor
(EBLUP), obtained from m(z)|c by plugging in the estimates of variance parameters.
This can be used to obtain a plug in estimate @[m(m) —m(z)] = 625(0).
The variance estimate can also be calculated and justified within the Bayesian frame-
work. Assuming parameters 3, = diaglexp(WW.0)] and o? are known, the posterior
distribution of m(x) is N(r(z,),c25(0)), where m(z,6) = S(0)y. An empirical Bayes
approach would now replace the unknown values ¥, and ¢? in the prior by estimates
and then treat these parameters as if they were known and given in advance. Thus, the
approximate posterior distribution of m(z) results in N(rm(z,6),525(f)), yielding the
same confidence intervals as in the linear mixed model framework.
Even though the variance formula has the advantage of being simple it does not, how-
ever, account for the extra variability due to estimation of #, that is the local varying
penalty. This is the price to pay when using Laplace’s method instead of a full Bayesian
approach. For further discussion we refer to Morris (1983), Laird & Louis (1987), Kass
& Steffey (1989) or Ruppert & Carroll (2000). To correct for this we now estimate the
posterior variance of m(x) calculated from the joint posterior distribution of b and 6.
We, therefore, use the delta-method correction from Kass & Steffey (1989) and obtain
. T .
om(x,0) ) Var(d) (8m(x,0)
0=0 90

~2 A
a2S5(0) + (—89 gzé) :

As estimate of Var(#) one can use the inverse of the Fisher matrix Ips(#) resulting from

Var(m(x)ly) = E[Var(i(z)|0,y)] + Var[E((z)|0, y)]

Q

the last iteration as by-product. The derivative in the last term, ignoring the dependence

of 62 on 6, results in

om(x,0)

2 = GeWo (W Wa + 62 D)~ Wei Do(W Wi + 62D5) ' Wy,
i 0;=0;

with Dy = Db(é) and I/T/cﬂ- = diag(0¢g+1)x(g+1)> Wei), where W,; stands for the i-th
column of matrix W,.

5.2.4 Numerical implementation

For the numerical implementation one can make use of any standard mixed models

software. More precisely, we use the following algorithm:

1. Obtain initial estimates for all parameters from a non-adaptive fit, using any mixed
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model software;
2. Get next estimates for § and 62 from (5.9) and (5.10);

3. Update estimates for the remaining parameters with a mixed model software, tak-
ing the estimated variance matrix 3, = diag[exp(W,6)] into account;

4. Tterate between 2 and 3 until convergence.

We implemented this algorithm in the package AdaptFit described below. With respect
to the splines we experimented with a number of spline basis functions, such as B-
splines of different degree and penalty order, quadratic and cubic truncated polynomials
as well as cubic thin plate splines. Although all basis functions produced very similar,
in fact almost indistinguishable, results, the cubic thin plate splines demonstrated a
slightly better numerical stability and were preferred for the simulation study. Knots
dimensions K, and K. need also to be chosen carefully to ensure capturing a complex
function structure in the regions of a higher variability.

5.2.5 Simulations and comparisons with other univariate smoothers

We performed a number of simulations. A particular focus is to compare our results with
those reported in Ruppert & Carroll (2000) and Baladandayuthapani, Mallick & Carroll
(2005). First, for n = 400 z equally spaced on [0, 1] and independent ¢; ~ N (0, 0.2?) we

Figure 5.1: Estimated regression functions m; (z) (left) and my(z) (right) with confidence
intervals (dashed) and true function.
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Figure 5.2: Pointwise MSE with a smoother of the points (left) and smoothed pointwise
coverage probabilities of 95% confidence intervals (right) for 500 simulated
datasets with function m4(x)

examined the regression function
[ 2m(1 + 20-4)/5)
my(z) = \/:L’(l—x)sm( P T :

with 7 = 6. We performed 500 simulations with Kj, = 80 and K. = 20. An exemplary fit
(bold) together with confidence intervals (dashed) is shown in the left plot of Figure 5.1.
The left plot of Figure 5.2 displays the pointwise Mean squared error E({r(z)—m(z)}?)

with the expectation being replaced by the mean of the simulations. For better visual
impact, we show a simple smoother (thick line) for the latter. The average MSE over
all 2’s (AMSE) equals 0.0033, which is comparable with 0.0027 reported in Baladan-
dayuthapani, Mallick & Carroll (2005) and 0.0026 of Ruppert & Carroll (2000). We
also computed the coverage probabilities of the 95% confidence intervals over all 500
simulated datasets. The right plot of Figure 5.2 shows smoothed pointwise coverage
probabilities. For small values of x < 0.1, i.e. in the region with low signal-to-noise
ratio, there is clear undercoverage, but beyond 0.1 the coverage probability exceeds
95% being slightly conservative. The average coverage probability is 94.95%. Next, we

consider the heterogeneous regression function

my(x) = exp(—400(z — 0.6)%) + gexp(—SOO(a: —0.75)%) + 2 exp(—500(z — 0.9)%).
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Figure 5.3: Pointwise MSE with a smoother of the points (left) and smoothed pointwise
coverage probabilities of 95% confidence intervals (right) for 500 simulated
datasets with function mqy(z).

Now n = 1000 z values are equally spaced on [0, 1] and ¢ ~ N(0,0.5%). We apply our
approach to 500 simulated datasets, using K, = 40 and K, = 4. Figures 5.1 (right)
and 5.3 (left) represent one of the simulated fits and pointwise MSE respectively. The
resulted AMSE is equal 0.0049, which is somewhat smaller than 0.0061 and 0.0065, ob-
tained by Baladandayuthapani, Mallick & Carroll (2005) and Ruppert & Carroll (2000)
respectively. The smoothed pointwise coverage probabilities can be seen in the right
plot of Figure 5.3. The average coverage probability for this function is 95.94%, which is
comparable with 95.22% and 96.28% reported by Baladandayuthapani, Mallick & Car-
roll (2005) and Ruppert & Carroll (2000) respectively. Overall, our method provides
comparable results to the other approaches, but with less numerical effort.

5.3 Spatial smoothing

5.3.1 Hierarchical modelling
We now generalize the ideas of the previous section with regards to spatial smoothing

y; ~ N(m(x;),02), i=1,..,n,

? Y€
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with ; € R? and m(.) as a smooth function of two covariates. Following Crainiceanu,
Ruppert & Carroll (2005) we use radial basis functions and choose K, knots k:gb), . k:ﬁ?i €
R?. This defines the model matrices X, = [1, &} ]1<i<, and Z, = ZKbQ;/2 where Zy, =
(lz: — k| log |2 — kP [|i<o<k, 1<i<n and Qu, = [[[ki” = £ |2 log [k — kO [11<a <,
with ||.|| denoting the Euclidean norm in R?. Including penalties and using the link to

linear mixed model we get

ylb = XyB+Zb+e e~ N(0,01,),
b ~ N(0,%). (5.11)

Local adaptive smoothing is now implemented by allowing coefficients b to have locally
varying variability. Like above we set subknots k\?, ..., kg? € R?, K, < K, and define
matrices X, and Z. similarly to the corresponding definition of matrices X, and Z,
that is X3 = [1, (k") icuck,, Ze = ZiQ? with Zi, = [k — k{7 log [k —
ki N1<ocr 1ier. and Qi = (k{7 — k| log [k — k{|J1<cs<x, where the @ co-
variates are replaced by knots k® and the knots are replaced with subknots k9. The

model is completed by adding to (5.11) the hierarchical structure
¥y = diaglexp(Xoy + Zec)], ¢~ N(0,0%Ik.).

Estimation can now be carried out analogously to above. The knots can be selected with
clara algorithm described in Kaufman & Rousseeuw (1990) and implemented in the R
package "cluster”.

5.3.2 Simulations and comparisons with other surface fitting
methods

For comparison with Crainiceanu, Ruppert & Carroll (2005) and Lang & Brezger (2004)
we consider the following regression function with moderate spatial variability

mg(x1, x2) = 1 sin(4mrz,),

with z; and zy independently, uniformly distributed on [0,1]. We used n = 300,
o = 1/4range(mgs) and equally-spaced 12 x 12 and 5 x 5 knot grids for ki(b) and k:J(-C),
respectively. Figure 5.4 displays the true function, an adaptive fit for one simulation and
the same data fitted non-adaptively. We simulated 500 datasets to compare log(MSE)
of our estimator with values reported in Crainiceanu, Ruppert & Carroll (2005) and
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Lang & Brezger (2004). Our simulations provide a median of log(MSE) of -4.13 with
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Figure 5.4: True regression function ms(x1, z3), adaptive and non-adaptive estimates

an interquartile range [-4.78,-3.82] and a range [-5.46,-2.7]. This is comparable with
the results in Crainiceanu, Ruppert & Carroll (2005) (median -3.67, interquartile range
[-3.80,-3.53] and a range [-4.21,-3.13]) which outperform the findings of Lang & Brezger
(2004). The obtained AMSE equals 0.0176. The average coverage probability of the
95% confidence intervals is 94.31%. The smoothed coverage probabilities are displayed
in Figure 5.5. Similarly to the Crainiceanu, Ruppert & Carroll (2005), the coverage
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Figure 5.5: Smoothed coverage probability of 95% confidence intervals for 500 simulated
datasets with function ms(zy, x2).

probability is lowest for z; € [0.2,0.5]. This is explained by the low signal-to-noise ratio
in this region.
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5.4 Non-normal response model

5.4.1 Hierarchical modelling

The technique is now extended to non normal response models by considering the fol-

lowing generalized linear hierarchical mixed model

E(ylb,c) = pu" = h(X,8+ Zyb), Var(y|b, c) = ¢v(u®),
b|C ~ N(O Zb) Eb = diag[exp(Xcly + ch)]a
c N(O o IKC)

with function A(.) as the inverse of link function §(.), v(.) as some specified variance
function and ¢ as dispersion parameter. We follow Breslow & Clayton (1993) and
estimate the parameters from the quasi-likelihood

(Kb+Kp)

explgl(B,7,0%)] = (2m)” . /RK /RK exp[—ki(b,c)]dbde,  (5.12)

with

1 1
ki (b, c) = 20 Z%(%‘aﬂ?’ bTE b+ —log |25 + 952°¢ c'e

and

Py —t
qi(y, p =—2/ “———dt,
(v, 1) o)

as deviance measure of the fit. Assuming that conditionally on b and ¢ the observations
are drawn from the exponential family y|b, ¢ ~ exp[(yd(x) — b(¥(z)))/¢ + c(y, ¢)], the
quasi-likelihood (5.12) represents the true likelihood of the data. Using Laplace’s method

for approximation of the integral over b, one gets

explgl(B,7,07)] =~ (27)*%05& /RKC exp[—kz(c)]de, (5.13)

with

1
kg(c):§10g11n+zg“wzbzb|+ quy,,,ul + sz: 1b+ e

where b is the solution to

8k1(b, C)

o = — % Wdiaglg' (1"))(y — p") + 3,0 = 0,
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with W as the n x n diagonal matrix of GLM iterated weights with diagonal elements
w; = (v [F (12)]?)~", using the simplifying assumption that the iterative weights
w; vary only slowly (or not at all) with the mean. Substituting the current estimate b
into (5.13) and replacing the deviance Y ¢;(v;, ,u?’c) in ko(.) by the Pearson chi-squared
statistic S (y; — p2%)2 /v;(u€) results in

_Kc

explql(B,7,0%)] ~ (27) 7o, K

W2 / expl—ks (¢))de,
RKe

with
e

2
207

Ba(e) = o |V] + 5 4 (U — X'V A (U — X,),

where V =W+ Z,%,ZF and U = X, + Zyb + diag[g’ (u>)](y — u*). Applying again
Laplace’s method, we end up with the following quasi-log-likelihood for the remaining

parameters

—2l(B,7,02) ~ Kclogo. +log|V|+ log|k5|
+ eefo? + (U - XpB)'VHU - XuB),

with k56 = 0%ks(c)/dcOc’. In complete analogy to Section 5.2.1 the estimation of pa-

rameter § = (47, )T can be carried out from the score equation
Oks (0 1 .
gé ) _ —éwfzb—l {52 - wdfag} + D.0/c? = 0. (5.14)

Numerically this procedure can be implemented by iterating between estimation of 97
and thus 3, from (5.14), and calls of any generalized linear mixed models software.

5.4.2 Simulations for the logistic regression example

We consider the following model for binomial data y; ~ B(n;, 7;) with canonical link

b’C ~ N(0> Z]b)a Eb = dlag[exp(XC'y + ch)]v
c ~ N(0,0’?I}Q).

logit[E(y;|x;)/ni;] = log (1 i ) = Xgﬂ+ Zgb, i=1,..,n,
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5 Fast Adaptive Penalized Smoothing

The diagonal elements of the iterative weights in matrix W for this model equal w; =
1/n;m;(1 —7;). We simulated data with probabilities 7 = logit™'[my(z)], where function
ma(.) is the same as in Section 5.2.5. Figure 5.6 represents exemplarily the fit for the
grouped data with n; = 5 and n = 1000 (left) and the fit for n = 5000 binary data (right).
For comparison the fit with global smoothing parameter is also presented (dashed). The

benefit of local adaptivity is obvious.
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Figure 5.6: Estimated regression function 7 = logit™'[my(z)] with adaptive penalty
(bold), with global smoothing parameter (dashed) and true function for 1000
grouped binomial data (n; = 5) (left) and 5000 binary data (right).

5.5 Example

For demonstrational purposes we apply the above spatially adaptive smoothing technique
to a dataset on the absenteeism of workers of a company in Germany. Parts of the data
have been analysed before in Kauermann & Ortlieb (2004), though with a different focus.
We consider absenteeism spells and model the probability of returning to work after a
sick leave. With d denoting the duration of such a leave we model the discrete hazard
rate

P(d=t|d>1t) = h(t), (5.15)

where t = 1,2, .... The duration is thereby measured in days and the event of interest is
the recovery that allows workers to return to work. If the worker has been reported sick
on one day, say Tuesday, but returns to work on a consecutive working day thereafter,
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we count this as an event and the duration is the number of working days the worker has
been absent. If, in contrast, the last days of absenteeism and the first day of returning to
work are not consecutive working days, we consider the duration as censored observation,
and d gives the number of consecutive working days of absenteeism. To make this more
explicit, assume that a worker reports himself sick on Friday, but returns to work the
Monday after. It is unclear when the worker actually recovered, either already Friday,
Saturday or Sunday. It is however known, that the worker was called sick at least one day
and the observation is, therefore, d = 1 with censoring indicated. Let now ¢ denote the
censoring indicator which is either zero, for censoring, or 1, otherwise. For each absence
spell we transform d to the binary variables y, ..., ys with y; = 0 for [ < d and y4 = 0.
The hazard function is then the probability P(y; = 1]y, = 0,1 < t). We concentrate on
short term absenteeism spells truncated at d = 10 and take longer spells as censored
observations. Besides the explicit duration time we allow the hazard function to depend
on calendar time ¢ as well, where ¢ is the first day of the worker’s absenteeism spell. The
final model is then

logitP(d = t|d > t,c) = m(t,c), (5.16)

which is fitted in a locally adaptive way below.

The data were collected in company in Southern Germany and we analyse the data of 378
employees. Not all of them were employed at the same time with the observation period
ranging from 1981 to 1998. On average, about 3/4 of the employees have been reported
sick at least once per calender year. We assume that the durations of different sick leaves
of the same worker are independent and even though it might be argued whether this
is an appropriate assumption, for sake of simplicity we leave this issue aside for now.
Figure 5.7 shows the fit of the model (5.16) using non-adaptive (left) and adaptive (right)
smoothing. Both fits were carried out using 12 knots for each dimension and low-rank
thin spline basis as defined in Section 5.3.1 The variance structure for the adaptive fit was
modelled with 9 knots for each dimension. The differences in the plots are quite obvious.
Both fits expose a bump at 1992 and 1993 and day 3, which becomes even more peaked
for the spatially adaptive fit. Beyond this peak, particularly for longer absenteeism time,
the non-adaptive fit is quite wiggled while the adaptive approach selects a smooth, flat
behaviour. The latter fit appears preferable and once more demonstrates the benefits
of spatial adaptivity. The peak at year 1993 and duration time at day 3 allows for
an interesting economic interpretation. In 1992/93 the company went through a major
downsizing process with more than 50% of the workers being dismissed. While this

economic situation has hardly any effect on the hazard function for days d > 5, it does
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Figure 5.7: Estimated regression function P(d = t|d > t, c) = logit™" (m(t, ¢)) with global
(left) and local (right) smoothing parameter.

affect the hazard rate for short absenteeism times, particularly for d = 3. Due to the
German law, workers reporting themselves sick for more than 3 consecutive days have
to provide a medical certificate, at the latest by the third day of their sick leave, while
for shorter periods no special medical documentation is required. Apparently, during
the downsizing period the duration of sick leaves is clearly shorter with more employees
returning after 3 days. This provides indication that economically critical conditions of
a company have a direct influence on the absenteeism of employees. Looking further into
the data it can be seen that it is mainly employees who are being dismissed who tend
to change their absenteeism behaviour (see also Kauermann & Ortlieb, 2004), Figure
5.7 shows how this is changed. Moreover, the locally adaptive smoothing exposes the

peak more clearly without overfitting the remaining regions and, therefore, justifies the
additional modelling effort.

5.6 R Package AdaptFit

To implement our approach we developed an R package. We took advantage of the
R package “SemiPar”. To perform adaptive smoothing we integrate the Fisher scoring
procedure (5.9) for § with updates of the remaining parameters by subsequent calls of
function “spm”. The current version of our package “AdaptFit” with the function “asp” is
available at http://cran.r-project.org. In general, the usage of “asp” is similar to that of
function “spm”. For example, the simulation of function m;(z), as described in Section
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5.2.5, can be performed as

x <= 1:400/400

mu <- sqrt(x*x(1-x))*sin((2*xpix(1+2~((9-4%6)/5)))/(x+2"((9-4%6)/5)))
y <- mu+0.2xrnorm(400)

kn <- default.knots(x,80)

kn.var <- default.knots(kn,?20)

y.fit <- asp(y“f(x,knots=kn,var.knot=kn.var))

plot(y.fit)

V V V V V V V

Switching between maximum likelihood and restricted maximum likelihood estimation
can be done by specifying spar.method="ML". Other examples are provided within the
package. The algorithm used is given in Section 5.2.4. After defining the initial estimates
from the simple non-adaptive fit we get estimates 6 and 62 as defined in (5.9) and (5.10),
standardize the random effects b with the current estimate of 33, = diag[exp(WW,0)] and
call the function spm of SemiPar package to obtain the remaining estimates. Usually
convergence is achieved after 3-6 iterations.

5.7 Discussion

We demonstrated how locally adaptive smoothing can be easily carried out by formulat-
ing penalties on a spline coefficient as hierarchical mixed model. The major contribution
was to show how simple Laplace approximation of the marginal likelihood allows for the
fitting of such models relatively easily without MCMC methods. This also applies to
more general settings like spatial smoothing or generalized response models. In an empir-
ical Bayes style the method also allows one to estimate the remaining hyper parameters,
so that the procedure is, in fact, fully adaptive. Developed R package AdaptFit allows

for fast and convenient application of this technique.
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6 Some Asymptotics on Penalized
Splines

6.1 Introduction

Even though P-splines are practically convincing, theoretical investigations of their per-
formance and properties are less explored. A recent investigation is found in Opsomer
& Hall (2005) who reformulate the approach as white noise representation. Some first
results were provided in Wand (1999) with subsequent work in Aerts, Claeskens & Wand
(2002). The latter two papers are based on the simplifying assumption that the dimen-
sion of the spline basis is fixed. This is, apparently, a stringent assumption in theoretical
terms, which however has proven to be of little practical impact if the dimension of the
spline basis is chosen in lush and generous manner. A suggested rule of thumb is to
select min(n/4,40) spline basis functions with n as sample size. Also, knot selection
for the spline basis is of secondary importance as investigated in Ruppert (2002). The
theoretical advantage of fixing the number of spline functions in advance is that asymp-
totically one achieves a parametric model and penalization loses its influence. This is,
however, based on the assumption that the true underlying function is, in fact, repre-
sentable by the (finite dimensional) basis. The contrary approach is to assume that the
spline basis grows at the same rate as the number of observations. This leads to classical
spline theory with one spline basis per observation, see e.g. Wahba (1990) or Eubank
(1999). Letting the spline basis grow with the sample size induces numerical problems,
in particular when the sample size is large.

We start from a penalized spline approach, but allow the number of spline basis functions
to depend on the sample size. We explore the asymptotic rate at which the dimension
of the spline basis is supposed to grow such that the mean squared error of the estimate
is minimized. The particular focus is thereby on the bias component which decomposes
into two parts, one part occurring due to the penalized estimation, the second due to
working with a spline basis of smaller dimension than the sample size. Our work thereby
relates to Huang & Stone (2003) who consider unpenalized estimation and Cardot (2002)
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who presents similar results but works with a different penalty. The framework for our
theoretical investigation is based on generalized smoothing models of the form

p(x) = Efy(x)} = h{n(z)}, (6.1)

with x as a continuous covariate and y as response, assumed to be distributed according
to an exponential family distribution. Function A(-) is a known invertible (inverse) link
function while function n(x) is supposed to be smooth and will be estimated via penal-
ized spline smoothing.

The connection of penalized spline smoothing to mixed models results if the penalty
imposed on the spline coefficients is written as a Gaussian prior. In case of a normally
distributed response and a canonical link function h(-), the penalized spline estimate for
the smoothing model is equivalent to a posteriori Bayes predictor in the linear mixed
model. Moreover, the smoothing parameter steering the amount of penalization becomes
the ratio of the dispersion parameter over the a priori variance of the random spline ef-
fect. This has a practical implication, since smoothing parameter selection can now be
carried out by maximum likelihood (ML) or restricted maximum likelihood (REML)
estimation. The correspondence is investigated analytically in Kauermann (2004) for
penalized splines by keeping the dimension of the spline basis fixed. If the response
is not normally distributed, but a generalized smoothing model like (6.1) is assumed,
penalized spline fitting can be linked to generalized linear mixed models (GLMM). This
results analogously in the normal response case by imposing an a priori normal distri-
bution on the spline coefficients. Integrating out the random spline coefficients using
a Laplace approximation is then equivalent to a penalized spline fit. This in turn im-
plies that Penalized spline fitting is connected to generalized linear mixed models only if
the Laplace approximation provides asymptotically exact results. It has been shown in
Breslow & Lin (1995), however, as well as more generally in Shun & McCullagh (1995),
that Laplace approximation can fail in generalized linear mixed models. For clustered
data this occurs if the number of observations within a cluster is small and does not
increase with the sample size. It should be noted that the classical literature on gener-
alized linear mixed models assumes that the number of (independent) clusters increases
while the number of observations within a cluster is fixed. The asymptotic scenario for
penalized spline smoothing is, however, conceptually different. Here, spline coefficients
play the role of clusters and the number of spline bases functions is small compared to
the sample size n, while the number of observations for each spline is increasing with
the sample size. This, however, is exactly the condition in which Laplace approximation
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works. We investigate, therefore, how the number of spline coefficients may increase
without disturbing the accuracy of the Laplace approximation.

6.2 Generalized P-Spline Smoothing

We consider the generalized smoothing model (6.1) where y for given z is assumed to
follow an exponential family distribution with notation

sl ~ exp {W(“") - jw(”} Ty, ¢>} , (6.2)

with J(z) = J{n(x)} as the natural parameter of the underlying exponential family and
¢ as dispersion parameter. Functions b(-) and c¢() are determined by the distribution.
For simplicity we ignore the role of the dispersion parameters in (6.2) for the moment and
set ¢ = 1. Functions J(x) and u(x) stand in the unique relationship ¥'(¥) = pu, so that
I[n(z)] = b~ {h[n(z)]}. Choosing the link function h(-) = '(-) provides the natural link.
For simplicity we assume that « is distributed with density having compact support [0, 1]
and we observe the independent pairs (z;,v;),7 = 1,...,n. Function n(z) is assumed to

be smooth in x and we decompose n(z) to
n(z) = X" (2)3+ Z" (x)u + 6(x), (6.3)

where 6(z) = n(z) — {X"(2)3 + Z"(z)u} will be called approximation bias subse-
quently. Matrix X (z) is thereby a low dimensional polynomial basis, e.g. X7 (z) =
(1,2,2%/2,...,29/q!), while Z(x) is high dimensional, built for instance from truncated
polynomials, i.e.

7= (Bl et

q

where (x)? = z7 for x > 0 and zero otherwise. With k& — 1 we get the dimension of Z(z)
and we assume that the (ordered) knots are placed such that |r; — 7;_1| = O(k™!) with
O=mg<n<...<Tmp1 <7 =1

Ignoring the approximation bias §(z) we obtain the log likelihood

1(0) = y(PLo) —b{o(P0)}, (6.4)

=1
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where PT = PT(z;) = (XT(2;), Z"(x;)) = (XTI, Z]) and 0 = (BT, u")T. Maximizing
1(0) will lead to a wiggled estimate if the spline dimension k is large. Therefore, a penalty
is imposed on #, that is we consider the penalized likelihood

L,(0,\) =1(0) — %JW (6.5)
where ) is the smoothing or penalty parameter. The penalty in (6.5) can also be written
as 07 D0, where Dy, is a block diagonal with zero entries in the upper left (¢+1) x (¢+1)
block and identity matrix I;_; in the bottom right block. The explicit listing of k£ in
(6.5) is done for practical reasons and possibly slightly awkward in theoretical terms. We
will see that both, X as well as u”u depend on k as well, so that explicit listing of k does
not seem necessary. Practical experience, however, shows that implicit incorporation of
the spline dimension in the penalty in (6.5) accounts for different spline dimensions in
finite sample situations, which motivates us to list k explicitly in (6.5). Increasing A to
infinity leads to a purely parametric and, therefore, smooth fit. Decreasing A induces
more complexity into the fit. Clearly, A has to be chosen data driven in order to minimize
the mean squared error.
Instead of truncated polynomials the use of B-splines can be numerically more advisable,
even though both approaches are equivalent in the following sense. We define with P,

the n by (¢ + k) dimensional truncated spline basis with rows

2 q q q
x4 x} (v, — )% (i — mm1)d
PlT:Pk(q;‘):(lm—l...—’—...—
q, 7 s L1y 9 ) 9 9 ) )
! ! ! q q!
t =1,...,n. From P,; we can construct the normed B-spline basis B, via B, =

k1P, L, where L, is a (¢+k) x (¢+k) dimensional invertible matrix constructed from
the ¢+ 1 order difference matrix as discussed in Section 2.1.2. The spline representation
can now be written as P, ;0 = B,rw with w = k_qL;,ﬁH as coeflicient vector for the
B-spline basis. Note that the coefficient vectors # and w depend on k as well so that
we should write 6, instead of 8. We suppress however this extra index to simplify the
subsequent formulas. We can now formulate the penalized likelihood (6.5) in terms of

parameter vector w leading to

20t

l(w,\) = l(w) — w! Dyw, (6.6)

where Dy, = L% Dy Lgk. Both, 1,(.) as well as I(.) depend on the sample size n which is

not mirrored in our notation for simplicity of presentation. We will now investigate how
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the spline dimension k should grow with increasing sample size. In particular, we will
derive the asymptotic order k = O(n'/(2¢+3)) which guarantees that all components in
the mean squared error are of the same asymptotic order. Let P, 0y = B, rwo be the
best spline approximation of the unknown function 7(z) based on a Kullback Leibler

measure, that is
0o = argmax E {{(0)|n}

or equivalently wy = k‘lL;,lﬁo = argmax E{l(w)|n}, where the expectation is calculated
with the unknown predictor n(x). Accordingly, we define with do(z) = 1(z)— PJ, ()0 =
n(x)— B](z)wo the smallest approximation bias with By () as B-spline basis evaluated
at z. We can now decompose the Mean Squared Error to

MSE {i(z)} = E [{i(z)—n(x)}’]
= B [{i(@) - BL(x)o}’| + 83(2) + 200(2)E {ii(2) — Bl ()i}

The first component mirrors a conventional mean squared error in penalized parametric
regression, while the remaining two components include the approximation bias. The

central result of this chapter can now be stated as follows.

Theorem 1 ~ With the assumptions listed in (A1) to (A5) in the Section 6.4 we
find that the penalized estimate 7j(z) = B[, ()& obtained from (6.6) is consistent
with the mean squared error of order

2q+2
MSE{i(z)} = O (n +) .
In particular, we can expand the estimate 7(z) as

i) - ate) = | B0 { 2 - wer b} o) gy, 01

with F(\) = E (—82l(w)/8w6wT - )\k2‘1+1l~7k>. The leading stochastic component

2q+2
in (6.7) has the same asymptotic order O, <n7%2gi3>.

Based on (6.7) the central limit theorem applies in the form

() —n(x) N {bias (7)(z)) , Var (7(x))} , (6.8)
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with
bias((x)) = Bl (z)F(A) " Ak**! Dywo — 6()
and

Var(i)(2)) = By (2) F~H(A)F(A = 0)F 7 (X) By(2). (6.9)

)

The proof of the theorem is provided in Section 6.4.

Remarks

1. One of the central theoretical questions for P-spline smoothing is how fast should
the spline dimension grow with the sample size. It is shown in the Section 6.4 that
k = O(n'/(?4+3)) is a recommended choice with respect to the above mean squared
error criterion. With truncated quadratic functions or B-splines of second order,
we get k = O(n'/7), so that the spline basis grows clearly at a slower rate than the

sample size. This motivates one to choose k < n in practice.

2. As demonstrated in the Section 6.4, the mean squared error decomposes into two

parts. The first is the mean squared error if we assume that the unknown function
n(z) is in fact representable by the parametric shape X (z)78 + Z(z)Tu. In this
case, the penalty parameter \ has to be chosen such that it balances the variability
and the squared smoothing bias. This is achieved if we set A = O(n") with
k = 1/(2q + 3), assuming that the parametric model is correct.
The remaining terms in the mean squared error are driven by the approximation
bias d(x) which is with Taylor approximation of order 6(z) = O(k~@*1). It results
then, that both components in the mean squared error have the same asymptotic
order if k grows with order O(n'/(29t3)). This means that the practical guideline for
P-spline smoothing to choose a number of knots, such that the approximation bias
d(z) can be ignored compared to the variability of the estimates, does not have an
asymptotic justification. In fact, the approximation bias is playing a non-ignorable
role, at least in asymptotic terms.

3. The variance of 7(z) is built in a sandwich form from Fisher type matrices. Due
to the fact that the dimension £ of w grows with the sample size, the dimension
of the Fisher matrix grows as well. It is shown in Section 6.4 that for B-Splines
F(X) is a band diagonal matrix of order ¢ resulting from properties of B-splines.
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Moreover, the elements in the bands of the matrix grow with order O(n/k), as
long as A = O(n'/(43) " as postulated. This motivates that the sandwich type
variance in (6.9) is decreasing to zero with order O(k/n).

4. The obtained optimal rate of convergence (as well as the order of the spline basis
dimension k) corresponds exactly the results reported in Agarwal & Studden (1980)
for regression splines under normality.

6.3 P-Spline Smoothing and Mixed Models

6.3.1 Laplace Approximation

P-spline smoothing can be linked to mixed models by comprehending the penalty as
"a priori” normal distribution on the spline coefficients. The penalized estimate is then
asymptotically equivalent to the posterior Bayes estimate resulting in the mixed model.
This equivalence holds exactly in the normal response model with identity link and
normal distribution imposed on the spline coefficients. In this case, the marginal likeli-
hood is available analytically by integrating out the spline coefficients. The smoothing
parameter A now plays the role of the ratio of the residual variance and the "a pri-
ori” variance of the spline coefficients. Consequently, based on the mixed model, the
smoothing parameter can be estimated by maximizing the marginal likelihood, or an
adjusted version of it, yielding a restricted maximum likelihood estimate (REML). This
is a practical benefit, since smoothing parameter selection can now be carried out by
maximum likelihood estimation adopting the mixed model approach. For generalized
response models, however, integration over the spline coefficients is not available analyt-
ically and alternative methods have to be used. The link to penalized spline estimation
results by pursuing a Laplace approximation. The latter is justified asymptotically only,
if the remaining correction terms converge to zero with growing sample size. In the
following section we want to focus on the question whether the Laplace approximation
is justified when we assume the spline dimension to grow with the previously proposed
order k = O(n!/(2a+3)),

We now model spline coefficient vector u as a priori normally distributed. Moreover, we
assume in this section for the sake of simplicity that link function A(.) is the canonical
link. This leads to the generalized linear mixed model

E(ylu) = h(XB+ Zu), u~ N (o, %z) , (6.10)
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with y = (y1,...,vy,)" and X and Z as defined above. Integrating out the random spline
effects leads to the marginal likelihood (up to a constant)

L(B.0%) = oy D / expl—g(u)ldu, (6.11)

Rk—1

with g(u) = —y" (X8 + Zu) + 110(X B + Zu) + ku'u/202%, with 1, = (1,...,1)T, The
integral in (6.11) does not generally have an analytic solution. We, therefore, make use
of a Laplace approximation to obtain the marginal likelihood (6.11). This means we
expand g(u) around its minimum. Note that g(u) = g(3,u,0?), that is g(u) depends
as well on other quantities which are omitted in (6.11). It is not difficult to see that
89(B, ,02)/0(8,u) = 0 defines the penalized estimating equation dl,(0, ) /30 = 0 with
1,(0,)\) as defined in (6.5) and A = 0,2 playing the role of the penalization parameter.
Instead of deriving a Laplace approximation for the integral (6.11) directly, we use a B-

spline formulation for technical reasons. Let, therefore, the difference matrix L, from

Ly Lo )
Ly = ,
ok ( Loy Lo

according to the dimension of § and u, i.e. L1 € R@+D)x(a+1) | Since the elements of Lis

above be decomposed as

are all equal to zero it is easy to see that Py ,0 = B, ,w can be represented as
Xﬁ + Zu = kq(XLll + ZLgl)wl + quL22w2 = Bq,k71W1 + Bq,k72WQ, (612)

with wy := k7903 and wy := k~9L5) (u— Loy L' 3). In this notation the integral (6.11)

takes the form

L(B,07) = o, *VEED4 Ly exp[—g(wz)]dws, (6.13)
Rk—1

where g(ws) = g(w1,w2) = g(6(w)) = g(B,u). The integral in (6.13) is approximated
using a Laplace approximation by

(k=1

/Rk_1 exp|—g(wa)]dws = |G|7V2(2m) 7 exp[—§(@2)] {1 + O(eo)} , (6.14)

where G = G(&) denotes the second order derivative 02§(iws)/dws0wd, evaluated at
@y which minimizes g(.). The objective is now to evaluate the asymptotic order of the
correction term eq. Let f]ﬂ denote the (j,1)-th element of G. Accordingly, third and
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forth order derivatives of g(-) are denoted by §le and éjlrs, respectively. Moreover, with

¢t we refer to the (i, 7)-th element of the inverse of G. Following the results provided

in Barndorff-Nielsen & Cox (1989) or Shun & McCullagh (1995) and using Einstein’s

summation convention we can then write the correction term in (6.14) as

g0 = —GusdG[3]/24 (6.15)
i (557519 + 7557 16]) /72

In (6.15) equal super and subscript imply a summation over the corresponding indices
and the bracketed terms denote possible permutations over the indices, e.g. the first
component in (6.15) is a short form for 1/245]]-”5 (f]ﬂé’”s—i— G+ éjsfjrl). The objective
is now to show that the term ¢ vanishes asymptotically with the sample size n increasing.

Note that
2q+1

= Bl ;WBg + 7(L;Lm)j,, (6.16)

with B, ;; denoting the [-th column of B, 2 defined in (6.12), W as diagonal matrix with
variance elements Var(y;), i = 1,...,n on the diagonal and (L3,Ls2);; as (j,1)-th element
of L1, Lys. Assuming the knots 7;,7 = 0,...,k, to be distributed according to quantiles
of covariate x (see assumptions (A1) and (A2) in the Section 6.4) we obtain that the
number of non zero elements for each column of spline basis B, is of order O(n/k).
Consequently, the first element in (6.16) equals 0 if |j — I| > ¢ and is of order O(n/k)
otherwise. Considering the definition of L2,Ls; we find that the second component in
(6.16) takes values 0 if |j — I| > ¢ + 1 and has order O(k*?™! /o2) otherwise. Hence,

Ok R, -l < g+
it = 0, otherwise.

In the same way we obtain

s [ OWMm/k), lj—1l<qand|j—7r|<qgand |l —7]<q
Gitr = 0, otherwise

and accordingly g« = O(n/k) if the maximum of absolute pairwise differences of the
subscript indices is smaller than or equal to ¢, and otherwise zero.
This implies that ¢y has the order

L2a+1 -2 L2a+1 -3
&TOIO{'NI(%—F 02 ) }+O{n2(%—|— o2 > } (617)

101




6 Some Asymptotics on Penalized Splines

Letting now k grow with order O (n'/(2473)) see (6.25), allows one to rewrite the asymp-
totic order of (6.17) to

-3
@] {n?si?» (1 + niﬁmf) } ,

which decreases to zero if we set 02 = O(n~"/(24+3)), The latter is formulated in condition
(A5) in the Section 6.4 and was postulated in the same way in the previous section as
condition imposed on smoothing parameter A. As a result we find that the Laplace
approximation is justified asymptotically and the correction term £y may be omitted

even for a growing dimension of the spline basis. It remains, however, to show that the

2

~ is sound, which will be discussed in detail in Section 6.3.3

assumption imposed on o
below. The validity of the Laplace approximation was derived for the B-spline basis. Due
to the equivalence of B-splines and truncated polynomials, the result transfers to the
original formulation (6.10) with truncated polynomials as well. The latter is formulated

in the following theorem:

Theorem 2 With assumptions (A1), (A2), (A3) and (A5) we find that the marginal
likelihood function of the General Linear Mixed Model (6.10) can be approximated
using Laplace approximation, that is

L(B,03) = [0, “ V|G exp { =g(8, 4, 03) }] {1+ 0(1)},

with g(i, 3,02) = —y (X B+ Z0)+110(X 8+ Z0)+ka' 0 /20% where y = (y1, ..., yn)"
and @ as minimizer of g(3, u, 02). Matrix G is defined through 8?¢(8, @, 02) /Oudu’ =
ZTWZ + kI )02,

Remarks

1. Using the normal assumption for u, we get with u ~ N(0,02/kI}_;) and assump-

tions (A5) 02 = O(n~Y24+3)) and (A3) k = O(n'/(249) that
ulu = 0,(02) = O, (k™). (6.18)

This is the stochastic formulation of condition (6.27). Hence, in Theorem 2 we
omitted assumption (A4) but imposed a normality on coefficients u which induces

(A6.18) as stochastic version of assumption (A4).

2. Shun & McCullagh (1995) showed that the Laplace approximation of a likelihood
for some k dimensional parameter based on the n data points (from exponential
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6 Some Asymptotics on Penalized Splines

family) is reliable provided that k = o(n'/3). This is clearly satisfied for our choice
k = O(n/(24+3)) given q > 0.

6.3.2 Posterior Cumulants

We will now generally look at posterior cumulants of the spline coefficients based on the
generalized mixed model (6.10). Based on (6.11), the corresponding moment generating
function is defined through

_ ka_l exp(tTwy) exp[—g(ws)]dw,
Jrr—r exp[—G(w2)]dw, '

M,y (7) (6.19)
Following the results from above, the denominator in (6.19) can be approximated by

(6.14). Applying Laplace approximation in the same style to the nominator of (6.19)
(see Barndorff-Nielsen & Cox, 1989) we obtain

(2m) D21 GI T2 exp[—g(dn)] (M.(t) + exp(tT@2)0 {go + e1(t)})

where M, (t) denotes the moment generating function of the normally distributed random
variable z ~ N (&, V) with V = G~! and &,(t) = gt¢"'9"*[3]/6. Note that g, and
e1(t) are of the same asymptotic order for a given fixed ¢t. With this we get

1+ exp(—t"Vt/2)0 {gg + &1(1)}
1+ O(ey) '

M,y (1) = M.(7)

The corresponding cumulant generating function can be written as
Ko,y (t) = K.(t) + H(t) + O(cp),

with H(t) = exp(—tTVt/2)O {go + £1(t)}. This shows that the sth derivative of the H(t)
with respect to t;,,...,t;, evaluated at ¢ = 0 defines the difference of the sth posterior
cumulant of the Wy to the corresponding cumulant of the normally distributed random

variable z. Since the derivatives of O {eqg + €1(t)} are negligible for s > 2, we obtain

..........

.....
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with &;, = Gj1-7.g"[3]/6. From standard results on multivariate normal distribution we
find

...........

.....

LU [10] + h; U]k'lllm[15]
~~~~~ BB [15] + il 31D [45]) — D031 T [15],
where 7;; denotes the ij element of the matrix V = G~'. The general pattern is as
follows: the summation involves unit blocks and double blocks with ©;;, blocks having
three or more elements are ignored.

We are now interested in H;, ;. (t = 0). Since h;(t = 0) = 0 we immediately obtain

.....

I:Iz(o) = O(&)

H;;(0) = O(=0j¢0)

Hijk(0) = O(=30;¢ek)
Hiju(0) = O(0y0 H 0)
Hijrim(0) = O(50;5081[3]em)
f[ijklmn(O) = O(—70;jUki0mn[15]e0).

This in turn provides

E(@yily) = @+ 0(sy)
Cov(wai, wajly) = 05 {1+ O(eo)}.

Noting that the ij element of matrix V = G~ is of order O(k/n) = O(n~(24t2)/(24+3)),
provided 02 = O(n~/(24+3)) we easily find the convergence rate of the higher order
cumulants to zero.

Due to the definition of wy the above results transfer directly to the cumulants of ly.
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6.3.3 Maximum Likelihood Estimation

2

+ converges to zero with order

Above we have assumed that the a priori variance o
O(n~1/(24+3)). We will now demonstrate that this rate of convergence is sound. The
mixed model formulation of penalized spline smoothing is commonly used to allow for
a simple estimation of the smoothing parameter utilizing mixed models technology. In
particular, since the smoothing parameter A plays the role of 1/02 in the mixed model
formulation, we can use maximum likelihood estimation for o2 to obtain an estimate for
A. For fixed spline dimension in the linear mixed model with normal response this has
been investigated theoretically in Kauermann (2004). Here, we let the spline dimension
grow with the sample size and focus on asymptotic rates. Instead of maximum likelihood
(ML) estimation, the use of restricted maximum likelihood (REML) is more common in
mixed models. The latter makes a small sample adjustment for the estimation of the
unpenalized parameters 3. The practical difference is usually minor (see Ruppert, Wand
& Carroll, 2003), in particular if the dimension of the spline basis grows with increasing
sample size. In this case, the difference between REML and ML becomes negligible since
the dimension of 3 is fixed and therewith ignorable compared to the growing dimension
of the spline basis. For simplicity we consider here therefore ML estimation of o2 only.
The leading term in the Laplace approximated log likelihood is written as

k—1

1 .
1(B,02) = —=log |G| — g(a) — 5 log o2, (6.20)

2

with G = ZTWZ + kI, /o2. Inserting the estimate for 3 and differentiating (6.20)

with respect to o2 yields

o302 1 L OGN\ kT k-1
ooz 2T\C a2 ) T agr T a0 (6:21)
| (kiTa )
- St - aen (6:22)

where df (02) = tr {G™'ZTWZ}. We get from (6.21) to (6.22) by reflecting the definition
of G and using the fact that tr(G7'G) = k — 1. The estimate is now defined through

0T D0 OT Dyl
5o =k = kPt ——— 6.23
o= k(o) (2 (6.23)

It should be remarked that (6.23) is not an analytic formula, since the right hand side of

the equation contains the unknown parameter as well. For our analytic investigation we
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6 Some Asymptotics on Penalized Splines

can, however, make use of (6.23) by treating o2 on the right hand side as true "a priori”
variance. We now show, that the estimate 62 is efficient if 02 = O(n~/24+3). It is not
difficult to show that E(62%) = 02, so that we investigate the variance, expressed here as
Fisher matrix. Note that

0*1(B,07) 1 17]0Up,oy)
do2002 [203 _203] 902 (6.24)
+ L tr(G’lZTWZG’lZTWZ)—%QTG*IZTWZQ
20 o2

2

2) is decreasing to zero if o2 has the above

Our intention is to show that the Var(o
listed order. This guarantees efficiency of the ML estimate. To do so we look at the
Fisher information. Note that the first component in (6.24) has expectation zero and
BE(ki"G'ZTW Zu)o?) = tr(G'ZTW ZG ZTW Z). Using the relationship k97 Lyy =
B, k2 as defined in (6.12) we can represent

tr(G1ZTWZG 1 ZTW Z) = tr(é—lBg MWBq,k,gé_lBZ koW Bg2),

with G defined in (6.16) and find that the expected second component in (6.24) has the

order
0?1(B,02) B n? (n k2t 2
E{‘ aaaaaz} - ¢ E(ﬁ oz)

42 o 1 \?
= 030, 'n=ms (1+Ju2n 20+3> .

This yields to
2 1 2
Var(&i) =0 {Uﬁn_ 29+3 (1 + U;Qn_72q+3) } ’

which is minimized if o2 is of order O(n~'/(24+3)),

6.4 Asymptotic Behavior

Proof of Theorem 1

The subsequent derivations relate to Cardot (2002) and Agarwal & Studden (1980).
Unlike these two authors we do not restrict the proof to normal response model. Also,
in contrast to Cardot we impose the penalty directly on the spline coefficients. This is
advantageous since we can link the results described below to mixed model theory. Our
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asymptotic scenario is built on the following assumptions.

(A1)

(A3)

(A4)

We assume that design points x; € [0, 1] become dense with order n, such that two
adjacent values z; and x; converge to zero with order O(n™'). In other words, z;
are drawn independently from density f(x) having the compact support [0, 1].

The knots for the spline basis are placed according to quantiles of the distribution of
z and it is assumed that 0 =79 < 7 < ... < Ty < 7 = L with 7, —7;_; = O(k™!)
forj=1,... k.

We assume that the dimension of the spline basis grows with the sample size with
order

k= O(n77). (6.25)

Function n(x) is assumed to be ¢ 4+ 1 times continuously differentiable and the
penalty on coefficient u relating to the truncated polynomial basis (see 6.3) fulfills

||| 0o = max |us| = O(k™). (6.26)
In particular this yields
u'u=O0(k™"). (6.27)

Moreover, n(z) is bounded so that pu(z) = h(n(zx)) is in the interior of the mean
parameter space for all z.

The penalty parameter \ is assumed to grow with sample size with order

1

A = O(n7%). (6.28)

Setting 02 = 1/ as used in Section 3, the order (6.28) is also formulated as
0—121 = O(n_l/(2q4‘3)).

Remarks

1.

The order (6.25) will be derived in the proof. It turns out that with the proposed
choice the mean squared error is asymptotically optimal. The equivalence between

truncated polynomials and B-splines leads to the formulation P, ;0 = B, jw with
w = k_qL;,fﬁ. Writing the penalty in § = (87, u”)” in the form 67 D0 with
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Dy, = diag(0g441, Ix—1), where 0g4; is the zero matrix and I,_; the diagonal matrix
with dimensions given as subscript, yields the equivalent penalty for w in the form

0T D0 = k2" Dyw

where Dk = L;[:k-Dqu,k

2. The asymptotic order of the penalty (6.27) can be motivated as follows. Note that
for z as inner point in [0, 1] and some v > 0 we have
Px(r+v)0 — P, ()0
1

B oz T —T) ,
_ {gr_lﬁﬁZ—(q o l}{1+0(>}

+ > (= 7)uw/q! (6.29)
< O(V){0(1)+0(k)-0(|IUI|oo)}{1+O(V)}7 (6.30)

Differentiability in the limit as k& tends to infinity is achieved only if we postulate
O(||ul|os) = O(k™1). This implies 7 D6 = O(k™'). Writing P, ;0 with penalty
07 D10 as B-spline formulation yields

k6" Do = k> Wl Dw = 0(1)

For the proof of Theorem 1 we use the following notation. Let {(d) = >0yl V(z;) —
b(Y(x;))+c(y;, 1) define the log-likelihood function and denote the derivative with respect
to the vector ¥ = (9(z1),...,90(xy)) as ly(9) = 9l(9)/90 = (y; — p[I(x:)]),_,
Accordingly we write [,(n) for the n dimensional column vector

.....

() = G l0) = (G s = w0l ) (6.31)

Let ny = Bgrwo, where wy is the best coefficient in the sense that wy minimizes the
Kullback-Leibler distance, that is E{B], 1, [(Bgrwo)]} = 0, where the expectation is
carried out with respect to the true function n(z). Coefficient wy defines the optimal
approximation bias §(z) in (6.3) through

do(x) = n(x) = Bys()wo (6.32)
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with B, () as spline basis evaluated at x. The proof of the theorem follows now by
decomposing

E{(i(z) —n(2))"} = E{(i(x) —n(x))"}

/

~~

1

+ 85 () + 2B ((x) — 1mo(2)) do() - (6.33)
el Y

We gradually consider the separate components in (6.33).
We show first convergence of @w to wy. Note that the penalized estimating equation for

w results in
0 = Bl 1,[9(Bys)] — Nk*™ Dy, (6.34)

The subsequent proof will make use of Einstein’s summation convention (see McCullagh,
1987 or Barndorff-Nielsen & Cox, 1989). This allows one to consider higher dimensional
arrays, beyond vectors and matrices. To apply the technique we need some additional
notation. Let the j-th component of vector w be denoted with a super, instead of
subscript, that is w = (w!,w?, ..., w""). With 0 = [, ;(&) we denote the j-th component
of equation (6.34), that is [, ;(w) = 9l,(w)/0w’|,—s with I,(-) as defined in (6.6). The
objective is now to expand [, (&) around I, ;(wy). We use the convention of omitting
the explicit listing of parameters if the best coefficient wy is used, that is [, ; = [, ;(wo).
Moreover, the hat notation lAp,j is used for [, ;(w). Finally, higher order derivatives are
notated by multiple subscripts, e.g. 1, i = 02l,(wp) /0w’ dw'. We are now able to expand
lAp,j around [, ;. Using the Einstein summation convention implies that equal sub and
superscripts are being summed over. This allows one to write the expansion as

0= lp;j = lpj + L@ — wh) + %zp,ﬂr(a/ —wp) (@ —wp) + - (6.35)
Solving (6.35) for &' — w{ is done with series inversion (see Barndorff-Nielsen & Cox,
1989), and we get

& —w) =, - il;““zp,llp,r +... (6.36)
with J' as (j,1)-th element of the matrix inverse of ,,j,l = 1,...,q + k, and IJ'" =

lgslgl;“lwtu. The remaining components not explicitly listed in (6.36) are of lower asymp-
totic order and, therefore, omitted. In the style of classical Maximum Likelihood Theory

109



6 Some Asymptotics on Penalized Splines

(see McCullagh, 1987) we simplify (6.36) using the following arguments. First, we de-
compose I, j = wj+ k71 D+ s, where wj; is the weight or Fisher matrix contribution
—E(8%1(wp)/0wi0w') and s is the stochastic component of the second order derivative
without the penalty, ie. s; = l; — wy. Finally, Dﬂ is the (j,1)-th element of D.
The technical idea of our proof is now to look at the form of matrix w;;. Note that
wji, J, 0 = 1,...,k + ¢, written as matrix takes the form ngkWquk with W as weight
matrix, which in case of canonical link simplifies to diagonal matrix with diagonal ele-
ments Var(y;),i = 1,...,n. Using properties of B-splines we find that BZkWBq,k is a
band diagonal matrix with bandwidth ¢+ 1 and with elements increasing with order n/k.
Moreover Dy, is also a band diagonal matrix with bandwidth ¢+ 2 and elements of order
O(1). Hence, matrix BZkWBng + Mk27t1 Dy is band-diagonal with elements of order
O(n/k + Mk?**h). Similarly, writing s as matrix yields B}, SB, with S as diagonal
matrix, where the diagonal elements are stochastically independent random variables
each having order O,(1). Hence, matrix sj is block diagonal as well, with elements of
order O, {(n/k)}. The first component in (A6.36) can then be simplified using

b= {1 + O, { (% + Ak2q+1)_2 %H

with f7'(\) as the matrix inverse of f;;(\) = wy + Ak**1D;;, or written as matrix
F(X\) = Bl ,WBg +Ak2+1 D, With the same arguments we sce that I, 4, is of diagonal
structure, meaning that [, s, is zero if max{|s —t|, |s —u|, |t —u|} > ¢+ 1, otherwise the
element has order O(n/k). This allows for the quantifying of the remaining components
in (A6.36) and we get with tedious, but simple, calculations

, A . -2
S —wl = P\ + [Op { (% + >\k:2‘1+1> %}
n 2+1) > 1 n 2 |Aat2
ro{ (Fae) "o, (3) ro e} (e
Rewriting the leading component in matrix notation yields
O —wo=F'() {BZ}Jn . )\k2q“l~)kw0} T (6.38)

with correction terms of the asymptotic order listed in (6.37), where I, = [, [(Bgrwo)],
that is we follow the convention of dropping the parameter argument if the function is
evaluated at the best spline coefficient wy. Note that we postulated ||ugllec = O(k™)
(see (6.26)) or equivalently [wo|lee = O(k~(@*Y). A sufficient condition for this to hold
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is that L, xwy is a k dimensional vector with elements of order O(k~(4*+D). Accordingly
LT ok Larw = Dywy has elements of order O(k~(*1). Consequently, the Mean Squared
Error for w has the leading terms

Elo—w)] = —F Y M\N Dywo {14 0(1)}
) { (% A k2q+1) T kq} , (6.39)
Var(@) = FY0)F( = 0)F(\) {1+ o(1)} (6.40)

_ 0{(%+Ak2q+1) 2;}

Finally, with (6.38) we see that the dominant stochastic part of & — wy is F~'(\)B] L.
Since 1, is a vector of independent random variables the central limit theorem applies so
that with (6.39) and (6.40) we get (6.8).

Setting £ = O(n") and using (6.39) and (6.40), with the mean squared error taking wy
as true coefficient, has the order

MSE(@]wy) = E(& —wp)? + Var(@)

n 2g+1) 2 2 7.2 n
ICEPVES }{O(A k) +0 (1)}
19) (( 1-k + An k(2g+1) ) 2) (O ()\2 n2qn) + 9] (nl—n>) (641)
Apparently, if we now choose (a) A = O (n'~772*) we find that asymptotically the
penalization does not dominate the Fisher matrix and the mean squared error simplifies
to

MSE(@|wy) = O®** V) - {O(Nn**") + O(n'™")} (6.42)

Moreover, choosing (b) A = O(n1=(2¢+1)%)/2) provides the optimal choice for the smooth-
ing parameter A\ in an asymptotic sense so that the mean squared error simplifies to order
O(n*~1). Simple calculation shows that the above postulated asymptotic orders (a) and
(b) hold simultaneously if x = (2¢ + 3)~!, which justifies (6.25) and (6.28). The mean
squared error for & is then of order O (n~(2¢+2)/(2¢+3)),

The asymptotic orders are derived for the spline coefficients w. It is however easy to
directly extend them to the functional estimate 7j(x) = By . (x)@. In particular the mean
squared errors for 7j(z) and @ are of the same asymptotic order. This follows since vec-
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tor B, () is zero except of g + 1 elements so that the asymptotic order of @ directly
transfers to 77(x). This in turn provides the order of component 1 in (6.33).

In the second part of the proof we focus the approximation bias dp(z) given in (6.32).
Since n(z) is approximated in each interval [7;, 7,41 by a polynomial of order ¢ we find
for n(.) € CT ([0, 1]) by Taylor series an approximation bias §y(x) of order O(k~(a+1),
Observing the order of k given in (6.25) we see that the squared approximation bias,
that is component 2 in (6.33), has order O (k~2tD) = O (n~(2¢+2/(4+3)) which is the
same as for component 1 in (6.33).

Finally, component 3 in (6.33) results by multiplication of the bias (6.39) and the ap-
proximation bias. Keeping the above results in mind we find with the same arguments
as used above, that this component is also of order O (n*(2q+2)/(2q+3)) so that (6.33) is
a decomposition with elements having all the same asymptotic order. Combining the
results we get the final expansion

gk(T)w —n(z) (6.43)
2g+1 ~ -1
(@) { BLW By + An#is Dy }

(@) —n(x) = B
B

x < Bl — )\n%ﬁkw} + 0, <n_2qq%13> : (6.44)

6.5 Discussion

We studied the asymptotic order with which the spline basis dimension in the gener-
alized penalized smoothing model is supposed to grow to optimize the mean squared
error. The main results about optimal rate of convergence n~(24t2)/(4+3) and spline
dimension k = O(n'/(24+3)) correspond exactly to the results reported under normality
assumption for regression splines in Agarwal & Studden (1980). We showed that in the
generalized mixed model framework the error of the Laplace approximation remains to
be of negligible order even if the spline dimension grows with the above order.
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7 Summary

In this work we considered some theoretical and practical aspects of penalized spline
smoothing - a smoothing technique which gained much popularity over the last decade.
In Chapter 2 we presented penalized splines as smoothing technique. P-spline smoothing
is a very flexible concept - combination of different splines basis, penalties and knots pro-
vides a wide spectrum of smoothers. Mixed model representation and Bayes model for
smoothing widen the possibilities for estimation and inference and deliver new insights.
For example, some special problems, which are either impossible or difficult to handle
with standard nonparametric techniques, like smoothing in presence of correlated errors
or estimation of locally varying functions, can be treated successfully in the mixed model
(and thus Bayes) framework for penalized splines, as shown in Chapters 3 to 5.

The problem of smoothing with correlated errors, discussed in Chapter 3, is complex and
prominent in nonparametric statistics. Smoothing parameter choice with MSE-based
criteria fails in presence of correlated errors leading to the serious overfitting unless the
correlation structure is correctly specified. In general, the correlation structure is un-
known in practice and its estimation requires a sufficiently good estimate of the mean
function. Thus one faces a dilemma in practice. Mixed model representation of penal-
ized splines has two advantages. First, in the mixed model framework the correlation
matrix parameters can be estimated along with the other parameters if the correlation
structure is specified (e.g. AR(1)). Second, the smoothing parameter estimate (which
is just a (RE)ML estimate of two variances) is less sensitive towards misspecification
of the correlation structure compared to MSE based choices. These two features of the
(RE)ML estimate can help discovering the true correlation structure much more effi-
ciently. We demonstrated on a number of examples a simple strategy. First, fit the
model with the mixed model software, assuming the most probable correlation structure
and inspect whether the residuals behave in accordance with the assumption about the
covariance matrix. If the correlation structure is only moderately misspecified it can be
visible in the plot of (partial) autocorrelation functions, which helps to determine the
true correlation structure of the data. In Chapter 4 we made use of the above prop-
erty of the (RE)ML estimate to perform the two-dimensional fit of the term structure
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of interest rates (over calendar time and time left to maturity). Apart from the very
large sample size, our data possesses an untypical correlation structure: while the sin-
gle bonds are correlated over calendar time we observed no correlation over the second
covariate (time left to maturity). We fitted the model in the mixed model framework
in two stages. First, we determined the correlation structure over calendar time of the
single bonds with the above described strategy. Afterwards, we standardized the data
with the obtained correlation matrix and performed standard bivariate estimation with
independent errors.

In Chapter 5 we approached the problem of smoothing a function of locally varying com-
plexity, that is if the regression function is changing rapidly in some regions while in other
regions it is very smooth. Smoothing of such functions with a single smoothing param-
eter, implying that all spline coefficients undergo the same penalization, is not efficient.
We achieved spatial adaptivity by imposing a functional structure on the smoothing
parameter and representing adaptive smoothing as a hierarchical (generalized) mixed
model. Intractable integral in the corresponding likelihood we approximated with the
Laplace’s method, resulting in the fast and simple adaptive smoothing technique, which
can be readily extended for the fitting of the (generalized) additive and bivariate models.
We provided the R package AdaptFit, which is available at CRAN, to make the approach
accessible. Adaptive smoothing in many application is superior to the smoothing with
the global smoothing parameter and our fast and handy technique allows for more effi-
cient smoothing with little additional numerical effort. We illustrated our method with
the example on absenteeism of workers of a medium-sized German industrial company.
We were interested in estimation of the discrete hazard function in two dimensions -
calendar time and duration of absenteeism in days. Representing duration of absen-
teeism as a set of binary variables we modelled the hazard as a binomial probability and
fitted two-dimensional logit-model. Our dataset was, however, not standard - during
the observation period the company went through a major downsizing process which
increased the probability of returning to work after a sick leave noticeably in this period.
We showed that the generalized bivariate adaptive smoothing delivered more adequate
estimate of such non-standard data structure than the non-adaptive methods.

Finally, in Chapter 6 we dealt with some asymptotics issues. In particular we were in-
terested how fast spline basis dimension is supposed to grow to provide an optimal rate
of convergence. We based our investigation on generalized penalized spline smoothing
model. Since smoothing in generalized mixed model framework involves Laplace approx-
imation, we investigated additionally the order of the corrections terms in the Laplace
approximation, given that the spline dimension grows with the sample size. The ob-
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tained optimal order of the spline dimension corresponds exactly to the results reported
for the regression splines under normality assumption. Moreover, we showed that with
this order of the spline basis dimensions the error term in the Laplace approximation
remains of negligible order.
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