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List of symbols

〈·, ·〉 Euclidean inner product
| · | Euclidean norm
‖ · ‖∞ supremum norm
Ba(x) ball of radius a with center x
id identity mapping
L1(·) Lebesgue integrable functions
C(·) continuous functions
AC(·) absolutely continuous functions
C1(·) continuously differentiable functions
C∞(·) infinitely many times differentiable functions
co convex hull
co closure of the convex hull
A(Rm) collection of closed subsets of Rm

C(Rm) collection of compact subsets of Rm

CC(Rm) collection of convex and compact subsets of Rm

dist one-sided Hausdorff distance
distH symmetric Hausdorff distance
σ(p,A) Hamilton function (also called support function)
Proj(x,A) projection of the vector x to the set A
Dev(x,A) set of shortest vectors joining x and the set A
TxM tangent space to a manifold M at x
TK(x) contingent cone at x to K
R(T, t, x) reachable set (of a differential inclusion) from (t, x) at time T
ViabF (K) viability kernel of K under F
Es(x), Eu(x) stable/unstable subspace at x
W s(x), W u(x) stable/unstable manifold of x
W s,ε(x) local unstable manifold of x
Q(x), P (x) projection to the stable/unstable subspace
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Introduction

Discrete and continuous-time set valued dynamical systems arise whenever
the behaviour of a system is not uniquely determined. There is an abundance
of applications featuring non-unique trajectories such as control systems,
economical models, and the deterministic treatment of uncertainty (cp. e.g.
[38], [1], and [19]).

Though there is a great number of results about particular aspects of mul-
tivalued dynamics in the literature, there exists no closed theory that could
be named a theory of set-valued dynamical systems. In set-valued numerical
analysis, the situation is similar. There exist many singular contributions to
the topic, but a transparent general concept still has to be developed.

Shadowing theory examines the impact of uniformly small perturbations
on the behaviour of dynamical systems on infinite time intervals. For classi-
cal dynamical systems, shadowing theory is an established field of research
(cf. [30] and [31]) which is intimately related to structural stability, ergodic
theory, and the notion of hyperbolicity.

Moreover, shadowing theory can be interpreted as a theory oriented branch
of numerical analysis. Since a numerical method is a perturbation of the
original system, shadowing theorems provide estimates for the accuracy of
numerical methods on infinite time intervals when they are applied to the
time-t flow of a differential equation or inclusion.

In the context of set-valued dynamical systems, only few attempts have
been made to establish shadowing results (see [36] and [21]).

The content of this thesis is organized as follows.
In Chapter 1, the vocabulary and basic elements of set-valued analysis are

introduced, while the most important facts related to differential inclusions,
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i.e. generalized ordinary differential equations of the form

ẋ(t) ∈ F (x(t)) for almost all t ∈ [0, T ],

are presented in Chapter 2. The density theorems proved in Section 2.4
are applied in Section 2.5 where the time-t flow of a differential inclusion
with relaxed one-sided Lipschitz right hand side is shown to be a set-valued
contraction.

Chapter 3 briefly summarizes classical shadowing theory for diffeomor-
phisms in order to display those concepts and ideas to which the content of
the following chapters is linked.

In Chapter 4, first shadowing results for discrete-time set-valued dynam-
ical systems of the form

pk+1 ∈ F (pk) for all k ∈ Z

are given. Section 4.1 provides adaptations of the notions of pseudotrajec-
tories, of the shadowing property, and of the inverse shadowing property to
the set-valued environment.

The relatively simple class of contracting mappings analyzed in Section
4.2 deserves attention, because it contains the time-t flows of differential
inclusions with relaxed one-sided Lipschitz right hand sides with negative
Lipschitz constants.

In Section 4.3 a first definition of hyperbolicity for set-valued mappings
is proposed, and it is shown that it implies the shadowing and the inverse
shadowing property. The essence of the coresponding results is further refined
to a selection-based and less restrictive notion of hyperbolicity in Section 4.4.

In Chapter 5, shadowing theory is applied to the Viability Kernel Algo-
rithm, which is one of the most important numerical schemes in the set-valued
context. This algorithm computes the largest subset of a given domain that
is weakly invariant under the flow induced by a differential inclusion. It is
natural to use shadowing theorems in order to derive error estimates for the
accuracy of this algorithm, because the behaviour of exact and numerical
trajectories on the unbounded time interval [0,∞) must be controlled.

Eventually, explicit error bounds and linear convergence of the Viability
Kernel Algorithm are proved for the class of one-sided Lipschitz right hand
sides.
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Future prospects

According to my opinion, it is incomprehensible that there is no systematic
approach to set-valued differentiation, to set-valued dynamical systems, and
to set-valued numerical analysis. I believe that we do not need a ménagerie
of tangent cones and corresponding set-valued differentials, cp. [3], but one
solid differential calculus in order to understand dynamics and numerical
analysis. Furthermore, I believe that such a differential calculus will be the
right language for formulating a powerful hyperbolicity condition which will
be easily verifiable in concrete applications.

As far as convex-valued maps and convex reachable sets are concerned,
it seems relatively easy to establish such a theory, because the Hörmander
embedding (see Chapter 1 or [24]) into the Banach space of continuous real-
valued functions on the sphere provides a framework in which sets become
computable objects. In the significantly more important non-convex case it
is unclear what can be achieved.
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Statement of originality

The results displayed in Sections 4.2.1 and 4.3 have partly been developed
in the framework of a cooperation with Prof. Dr. Sergei Pilyugin (St. Pe-
tersburg). We worked out the set-valued notions of pseudotrajectories, the
shadowing property, and the inverse shadowing property as well as Theo-
rem 67, the original version of Theorem 70, Example 72, Definition 75, and
Theorem 77. The remaining parts of the corresponding Sections have been
established by me alone.

The original statement and the proof of Theorem 70 given in Section 4 of
[33] contain a serious inaccuracy. The version displayed in the present text
is based on the same fixed point argument, but the space of sequences in
which the fixed point theorem is eventually applied must be fixed after the
pseudotrajectory has been specified; in addition, the diameters of the images
of the defining mapping must be uniformly bounded.

Please note that Theorem 70 is of considerable importance, because it
is presently almost indispensable for the treatment of the time-t flow of dif-
ferential inclusions. In [32], I proved that contractive set-valued mappings
with not necessarily convex images but sufficiently large ’continuous convex
kernels’ still have the shadowing property. On the basis of this theorem, it
is possible to prove a shadowing result for one-sided Lipschitz differential
inclusions, but Theorem 70 is by far more elegant and natural.

While I profited from Sergei Pilyugin’s remarkable knowledge about shad-
owing technique, I could contribute my intuition for set-valued concepts. In
the hyperbolic setup, I made the key observation that, in contrast to the
single-valued case, the operator must be defined before the projections are
applied. In Section 4.4, I refined this idea on my own and developed a fully
selection-based notion of hyperbolicity.

I worked out the entire content of Chapter 5 by myself.
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The search for a class of differential inclusions with contractive or hyper-
bolic time-T flow turned out to be a veritable odyssey through the literature.

As I was not aware of the work of Tzanko Donchev and Elza Farkhi, see
e.g. [13], I reinvented the relaxed one-sided Lipschitz condition and proved
contractivity of the time-t flow of differential inclusions with one-sided Lip-
schitz right hand sides.

In order to use classical techniques, I needed the graph of the mapping
(2.35) to be closed. Thus I proved Density Theorem 40 (which was also well-
known, but originally proved in a very different way, see Section 2.4) in order
to approximate arbitrary solutions by smooth ones.

When I learned about the existence theorem for the Caratheodory case
and the Inverse Intersection Lemma, I realized that with these new tools, it
was fairly easy to prove contractivity (see Theorem 42).

In summary, I have developed and proved all results mentioned above
independently, but only the C∞ Density Theorem (Theorem 39) is a truly
new result.

9



Chapter 1

Some set-valued analysis

Set-valued analysis provides tools for the study of differential inclusions, op-
timization problems, and less popular topics such as the study of inverses
of single-valued mappings which are not one-to-one. In this text, only basic
definitions and results which are necessary for a self-contained presentation
will be given. For a complete overview over the topic, the reader is referred
to [3]. An introduction to the matter with a focus on convex optimization is
presented in [34].

1.1 Basic notation

Let Rm be equipped with the Euclidean norm | · |, and let Br(x) and B(x, r)
denote the ball of radius r ≥ 0 around the point x ∈ Rm. Set B := B1(0),
and define

Br(A) := B(A, r) := ∪a∈ABr(a)

for any A ⊂ R
m. The collection of all subsets of Rm will be denoted by

P(Rm), and for any A ⊂ Rm, the convex hull and the closure of the convex
hull of A will be denoted by coA and coA.

The symbols A(Rm), C(Rm), and CC(Rm) will denote the collections of
the nonempty closed, the nonempty compact, and the nonempty convex and
compact subsets of Rm, respectively.

For any A,B ⊂ Rm, the Minkowski sum is defined by

A+B := {a+ b : a ∈ A, b ∈ B}, (1.1)

and similarly µA := {µa : a ∈ A}.
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The projection Proj : Rm × P(Rm) → P(Rm) of a vector to a set is
defined by

Proj(x,A) := {a ∈ A : |x− a| ≤ |x− a′| ∀a′ ∈ A}, (1.2)

while the deviation Dev : Rm × P(Rm)→ P(Rm) is given by

Dev(x,A) := Proj(x,A)− x (1.3)

and can be interpreted as the set of shortest vectors joining x and A. If Proj
is single-valued and continuous, then so is Dev.

For compact sets A,B ∈ C(Rm), the one-sided and the symmetric Haus-
dorff distance are defined by

dist(A,B) := sup
a∈A

inf
b∈B
|a− b| (1.4)

and
distH(A,B) := max{dist(A,B), dist(B,A)}, (1.5)

respectively. While distH is a distance, i.e. it satisfies

• distH(A,B) = 0⇔ A = B,

• distH(A,B) = distH(B,A), and

• distH(A,C) ≤ distH(A,B) + distH(B,C)

for all A,B,C ∈ C(Rm), the semidistance dist is neither definite nor sym-
metric. A weak substitute for these properties is the equivalence

dist(A,B) = 0⇔ A ⊂ B (1.6)

for A,B ∈ C(Rm).
The maximal norm of the elements of a set A ⊂ Rm is denoted by

‖A‖ := sup
a∈A
|a|. (1.7)

This notation is standard, but slightly misleading, because the expression is
not a norm at all.
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The nonempty convex and compact sets CC(Rm) can be embedded into
the linear vector space C(Sm−1) of continuous functions from the sphere into
the real numbers by setting

σ(p,A) := max
a∈A
〈p, a〉 (1.8)

for any A ∈ CC(Rm) and p ∈ Sm−1, see [24]. The function σ(·, A) : Sm−1 →
R is called the Hamilton function of the set A. The properties of these
functions are discussed e.g. in [3] and [34].

1.2 Set-valued mappings, notions of continu-

ity

A set-valued mapping F : Rm1 ⇒ R
m2 is a function F : Rm1 → P(Rm2).

Throughout this text it will be assumed that the images of set-valued map-
pings are nonempty.

Definition 1. Let F : Rm1 ⇒ R
m2 be a set-valued mapping. The image

F (A) of a subset A ⊂ Rm1 is the union

F (A) := ∪x∈AF (x), (1.9)

and the inverse image F−1(B) of a set B ⊂ Rm2 is defined by

F−1(B) := {x ∈ Rm1 : F (x) ∩B 6= ∅}. (1.10)

Definition 2. Let F : Rm1 ⇒ R
m2 be a set-valued mapping. Any single-

valued function f : Rm1 → R
m2 such that f(x) ∈ F (x) for all x ∈ Rm1 is

called a selection of F .

Definition 3. A set-valued mapping F : Rm1 → C(Rm2) is called upper
semicontinuous (usc) at x ∈ Rm1 if

dist(F (x′), F (x))→ 0 as x′ → x. (1.11)

It is called lower semicontinuous (lsc) at x ∈ Rm1 if

dist(F (x), F (x′))→ 0 as x′ → x, (1.12)
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and it is called continuous at x ∈ Rm1 whenever

distH(F (x), F (x′))→ 0 as x′ → x. (1.13)

As usual, F is called usc, lsc, or continuous whenever it has this property at
every point x ∈ Rm1.

In the case m = 1, the relationship between single-valued and set-valued
upper and lower semicontinuity can be visualized in an aesthetic way: Let
a single-valued function f : R → R be given, and define a set-valued map
F : R⇒ R by F (x) := (−∞, f(x)]. If f is usc (resp. lsc), then so is F .

A more elaborate statement about this relationship has been given in [3],
Corollary 1.4.17:

Proposition 4. If a set-valued mapping F : Rm ⇒ R
m is lsc (resp. usc

with compact values), then the distance function (x, y) 7→ dist(y, F (x)) is usc
(resp. lsc).

It is in general false that the intersection of two continuous set-valued
mappings is continuous. For usc mappings, however, there is the following
result, see Theorem 1.1.1 in [2].

Theorem 5. Let F,G : Rm1 ⇒ R
m2 be set-valued mappings such that F (x)∩

G(x) 6= ∅ for all x ∈ Rm1. If F is usc at x0, F (x0) is compact, and the graph
of G is closed, then the set-valued mapping x 7→ F (x) ∩G(x) is usc at x0.

Definition 6. A set-valued mapping F : Rm → C(Rm) is called one-sided
Lipschitz (OSL), if there exists a constant µ ∈ R such that for every x, x′ ∈
R
m, y ∈ F (x), and y′ ∈ F (x′)

〈y − y′, x− x′〉 ≤ µ|x− x′|2 (1.14)

holds. It is called relaxed one-sided Lipschitz (ROSL) if for every x, x′ ∈ Rm

and y ∈ F (x), there exists some y′ ∈ F (x′) such that (1.14) holds. In both
cases, µ is called the one-sided Lipschitz constant of F .

If F : Rm1 → C(Rm2) satisties

distH(F (x), F (x′)) ≤ L|x− x′| ∀x, x′ ∈ Rm, (1.15)

with some fixed L ≥ 0 then F is called Lipschitz continuous with Lipschitz
constant L.
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Lipschitz continuity implies continuity, which in turn implies upper and
lower semicontinuity. Furthermore, relaxed one-sided Lipschitz continuity
generalizes both, one-sided Lipschitz continuity and Lipschitz continuity.

The concept of one-sided Lipschitz continuity is quite rigid. It is closely
related to the notion of monotone multifunctions which are single-valued
almost everywhere. A simple application of the Gronwall Lemma shows
that differential inclusions with a OSL right hand side have at most one
solution, while ROSL right hand sides generically allow the existence of many
solutions.

In spite of their names, one-sided Lipschitz continuity and relaxed one-
sided Lipschitz continuity are monotonicity rather than continuity concepts.
The single-valued real function x 7→ − sign(x) is OSL and ROSL, but dis-
continuous at zero.

1.3 Tangent cones and set-valued derivatives

There exists a whole ménagerie (see [3], Chapter 4.5.4) of tangent cones which
were defined for a variety of purposes. In this text, only the contingent cone
and the corresponding derivative will be presented.

Definition 7. Let K ⊂ Rm be an arbitrary subset, and let x ∈ K. Then the
contingent cone at x to K is defined by

TK(x) := {v ∈ Rm : lim inf
h→0+

h−1 dist(x+ hv,K) = 0}. (1.16)

The contingent cone is closely related to the classical subtangent condi-
tion, and its use will be discussed in the context of viability theory in Section
2.6.

Definition 8. Let F : Rm ⇒ R
m be a set-valued mapping, and let (x, y) ∈

graph(F ). Then the contingent differential of F at (x, y) is defined by

graph(DF (x, y)) := Tgraph(F )(x, y). (1.17)

The set-valued differential generalizes the single-valued one from a geo-
metric point of view: The single-valued derivative Df(x) is a linear mapping
which describes the tangent space of the graph of the original function, re-
garded as a manifold, at (x, f(x)). Following this concept, the set-valued

14



derivative at (x, y) ∈ graph(F ) is a cone containing all vectors which are
tangent to graph(F ) at (x, y).

The disadvantage of this notion is that it does not generalize the single-
valued differential in the sense that it provides an o(h) approximation of the
original function. As it is a function of the independent and the dependent
variable, it is impossible to formulate an analog of the fundamental theorem
of calculus.

1.4 Fixed point theorems

In the single-valued case, an element x ∈ Rm is called a fixed point of a
mapping f : Rm → R

m if f(x) = x. This notion is too restrictive in the
multivalued context.

Definition 9. Let F : Rm ⇒ R
m be a set-valued mapping. An element

x ∈ Rm such that x ∈ F (x) is called a fixed point of F .

This more general setting preserves the dynamical features of the single-
valued case: If x ∈ F (x) is a fixed-point, then the constant sequence {x}k∈Z
is an orbit of the discrete time dynamical system induced by F . Furthermore,
x ∈ F (x) is equivalent to 0 ∈ (id−F )(x), which means that the existence
of a fixed point is still equivalent to the existence of a zero for set-valued
mappings.

Please note that the definitions (1.4) and (1.5) of the Hausdorff distances
can be extended to arbitrary subsets of metric spaces with the drawback
that distances may become infinite. The notions of continuity are generalized
accordingly. The symbols A(M), C(M), and CC(M) denote the collections
of the nonempty closed, the nonempty compact, and the nonempty convex
and compact subsets of a given subset M of a topological vector space X.

The Kakutani Fixed Point Theorem is probably the most popular fixed
point theorem for set-valued mappings. A detailed proof for the finite di-
mensional case is given in [3].

Theorem 10 (Kakutani). Let X be a locally convex topological vector space
and M ∈ CC(X) be nonempty. Then any usc set-valued mapping F : M →
CC(M) has a fixed point.
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The Tikhonov-Schauder Fixed Point Theorem is the single-valued version
of Kakutani’s theorem.

Theorem 11 (Tikhonov-Schauder). Let X be a locally convex topological
vector space and M ∈ CC(X) be nonempty. Then any continuous function
f : M →M has a fixed point.

The set-valued analog of the contraction mapping principle is Nadler’s
Theorem, cp. [45].

Theorem 12 (Nadler). Let (X, d) be a complete metric space, M ∈ A(X)
be nonempty, and F : M → A(M) be a set-valued mapping such that

distH(F (x), F (x′)) ≤ λd(x, x′) (1.18)

for all x, x′ ∈M and a fixed λ ∈ [0, 1). Then F has a fixed point in M .

The Frigon-Granas Fixed Point Theorem, which is a strengthened version
of Nadler’s Theorem, has been given in [18].

Theorem 13 (Frigon-Granas). Let (X, d) be a complete metric space, let
x ∈ X, r > 0, and λ ∈ [0, 1). If F : Br(x) ⇒ X is a set-valued mapping with
closed and bounded values such that

distH(F (x′), F (x′′)) ≤ λd(x′, x′′) (1.19)

for all x′, x′′ ∈ Br(x) and

dist(x, F (x)) ≤ (1− λ)r, (1.20)

then F has a fixed point in Br(x).

1.5 Measurability and integration

Definition 14. A mapping F : Rm1 → A(Rm2) is called measurable if the
inverse image F−1(B) of every open subset B ⊂ Rm2 is Borel measurable.

Please note that the definition of the inverse image does not preserve
complements: For a single-valued f : Rm1 → R

m2 and any B ⊂ Rm2 ,

f−1(Bc) = (f−1(B))c
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holds, whereas for set-valued F : Rm1 ⇒ R
m2 ,

F−1(Bc) = (F−1(B))c

is in general false. For this reason, set-valued measurability is not connatural
to the conventional notion in the single-valued case.

A highlight from the calculus of measurable maps is the Inverse Intersec-
tion Lemma (cf. [3], Theorem 8.2.9).

Lemma 15 (Inverse Intersection). Let F : Rm0 → A(Rm1) and G : Rm0 →
A(Rm2) be measurable mappings, and let f : Rm0 ×Rm1 → R

m2 be a Cara-
theodory map. Then the set-valued mapping H defined by

H(x) := {y ∈ F (x) : f(x, y) ∈ G(x)} (1.21)

is measurable, and there exists a measurable selection of H whenever H(x) 6=
∅ for all x ∈ Rm0.

If m1 = m2 and f(x, y) = y for all x, y ∈ Rm0 , then H(x) = F (x)∩G(x).
Thus the Inverse Intersection Lemma implies that the intersection of two
measurable mappings is measurable.

Definition 16. A set-valued map F : Rm1 → A(Rm2) is integrably bounded
if there exists a nonnegative function k ∈ L1(Rm1) such that F (x) ⊂ Bk(x)(0)
for almost every x ∈ Rm1.

If a set-valued mapping is integrably bounded then every measurable
selection is integrable by Lebesgue’s Theorem.

Definition 17. The Aumann integral of an integrably bounded set-valued
map F : Rm1 → A(Rm2) is defined as the set of integrals∫

Rm1

F (x)dx :=

{∫
Rm1

f(x)dx : f is a measurable selection of F

}
. (1.22)

Some important features of the Aumann integral are listed in the following
theorem. The corresponding proofs are given in Chapter 8.6 of [3].

Theorem 18. Let F : Rm1 → A(Rm2) be a measurable and integrably
bounded mapping. Then

1.
∫
Rm1

F (x)dx ∈ CC(Rm2).
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2. ∀p ∈ Rm2 , σ(p,
∫
Rm1

F (x)dx) =
∫
Rm1

σ(p, F (x))dx.

3. If for some y ∈
∫
Rm1

F (x)dx and p ∈ Rm2 with |p| = 1

〈p, y〉 = σ(p,

∫
Rm1

F (x)dx)

holds, then every measurable selection f of F with y =
∫
Rm1

f(x)dx
satisfies

〈p, f(x)〉 = σ(p, F (x)) almost everywhere.
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Chapter 2

Differential inclusions

An ordinary differential inclusion (ODI) is a set-valued generalization of an
ordinary differential equation (ODE). It is usually given by an inclusion of
the form

ẋ(t) ∈ F (t, x(t)) almost everywhere, (2.1)

where F is a set valued mapping and x(·) is required to be absolutely con-
tinuous.

The concept of ODIs allows a rigorous treatment of ODEs with discon-
tinuous right hand sides, which can be embedded into the class of upper
semicontinuous set-valued mappings in a natural way, cf. Chapter 2.1 in [2]
or [26].

The right hand side of a continuous-time control system

ẋ(t) = f(t, x(t), u(t)), u(t) ∈ U (2.2)

is usually smooth in the second and third argument (cf. [38, 43]), and it can
be interpreted as an ODI of type (2.1) by the embedding

F (t, x) := {f(t, x, u) : u ∈ U}, (2.3)

see Chapter 10 in [3] for an overview. The respective set-valued right hand
sides are generically locally Lipschitz continuous and almost everywhere mul-
tivalued.

Fundamental results have been published in [2], whereas advanced exis-
tence theory for the Caratheodory case and infinite dimensional state spaces
can be found in [10]. The monograph [37] is a comprehensible text, which
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avoids technical difficulties and provides an overview of modern concepts such
as optimality and stabilization. A whole book has been dedicated to the im-
portant aspect of viability theory, see [1], and two more volumes dealing with
applications will follow.

2.1 Absolutely continuous functions

A short, but readable introduction to the matter can be found in [42], Chapter
9.22. The proofs are based on a careful study of the analytical features of
absolutely continuous functions.

Definition 19. Let J ∈ R be an interval. A function f : J → R is called
absolutely continuous if for every ε > 0 there exists some δ > 0 such that for
any finite system ((αi, βi))i=1,...,p of pairwise disjoint open subintervals of J
with

∑p
i=1(βi − αi) < δ inequality

p∑
i=1

|f(βi)− f(αi)| < ε (2.4)

holds.

Lipschitz continuity implies absolute continuity, which in turn implies
uniform continuity.

For arbitrary J , the collection AC(J) of all absolutely continuous func-
tions on J is a vector space. If J is compact, the product of two functions
f, g ∈ AC(J) is again absolutely continuous.

Definition 20. A function f : J → R
m is called absolutely continuous if

every component of f is absolutely continuous.

The absolutely continuous functions are the most general class of func-
tions for which the Fundamental Theorem of Calculus holds true:

Theorem 21 (Fundamental Theorem). Let J := [a, b] be an interval. A
function f ∈ AC(J) is differentiable almost everywhere in J with derivative
f ′ ∈ L1(J), and

f(b)− f(a) =

∫ b

a

f ′(t)dt (2.5)

holds.
Conversely, if ϕ ∈ L1(J), then f(t) :=

∫ t
a
ϕ(s)ds is absolutely continuous

and satisfies f ′ = ϕ almost everywhere in J .
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Thus all techniques for real-valued differentiable functions which are de-
rived from the Fundamental Theorem such as integration by parts and trans-
formation can be applied to absolutely continuous functions.

Another important consequence of the Fundamental Theorem is the Gron-
wall Lemma. It is difficult to find an explicit proof for the AC case in the
literature, cf. [2], [37], or [41].

Theorem 22 (Gronwall Lemma). Let α(·), β(·) ∈ L1([0, T ]).

(i) If ϕ(·) ∈ AC([0, T ]) satisfies

ϕ̇(t) ≤ α(t) + β(t)ϕ(t) a.e.,

then

ϕ(t) ≤ ϕ(0)e
R t
0 β(τ)dτ +

∫ t

0

α(s)e
R t
s β(τ)dτds

for all t ∈ [0, T ].

(ii) If ϕ(·) ∈ L1([0, T ]) satisfies

ϕ(t) ≤ α(t) +

∫ t

0

β(s)ϕ(s)ds a.e.,

where in addition β(·) ∈ L∞([0, T ]) with β(·) ≥ 0, then

ϕ(t) ≤ α(t) +

∫ t

0

α(s)β(s)e
R t
s β(τ)dτds

for almost all t ∈ [0, T ].

Proof. (i) The function t 7→
∫ t

0
β(τ)dτ is absolutely continuous. Hence,

γ(t) := e−
R t
0 β(τ)dτ satisfies

γ̇(t) = −e−
R t
0 β(τ)dτ

(
d

dt

∫ t

0

β(τ)dτ

)
= −e−

R t
0 β(τ)dτβ(t) a.e.

as a consequence of the Fundamental Theorem. Thus

(γϕ)′ = −βγϕ+ γϕ̇ ≤ −βγϕ+ γβϕ+ γα = γα
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holds almost everywhere. By the Fundamental Theorem and since
γ(0) = 1,

γ(t)ϕ(t) ≤ ϕ(0) +

∫ t

0

α(s)γ(s)gs

for all t ∈ [0, T ]. Multiplication of both sides with γ(t)−1 yields the
result.

(ii) The function v(t) :=
∫ t

0
β(s)ϕ(s)ds is absolutely continuous. By the

Fundamental Theorem and by assumption,

v̇(t) = β(t)ϕ(t) ≤ β(t)α(t) + β(t)v(t) a.e..

By part (i),

v(t) ≤
∫ t

0

α(s)β(s)e
R t
s β(τ)dτds,

which implies the desired result.

2.2 Existence and properties of solutions

Consider the differential inclusion

ẋ(t) ∈ F (x(t)), t ∈ [0, T ], (2.6)

where F : Rm ⇒ R
m is some set-valued mapping. A solution of (2.6) with

initial state x0 ∈ Rm is a function x(·) ∈ AC([0, T ],Rm) such that x(0) = x0

and (2.6) is satisfied almost everywhere in [0, T ]. The set of all solutions of
this initial value problem will be denoted by S(T, 0, x0). The reachable set
at time T is the set

R(T, 0, x0) := {x(T ) : x(·) ∈ S(T, 0, x0)}, (2.7)

i.e. the set of all states which are attained by solutions at time T .
In this text, existence results will only be sketched for ODIs with convex-

valued right-hand-sides. Proofs of the following theorems and a coverage of
the non-convex case can be found in [2].
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Existence theorems are usually based on selections with suitable smooth-
ness properties. If a right hand side F admits a continuous selection f , then
every solution x(·) of the ODE

ẋ(t) = f(x(t)), t ∈ [0, T ] (2.8)

solves (2.6).
Please note that an arbitrary solution of (2.6) need not be induced by a

selection. Solutions of ODIs with Lipschitz continuous right hand sides can
intersect themselves or become constant in finite time and exhibit a much
more complicated behaviour than solutions of ODEs.

If a mapping is lsc, i.e. its values cannot collapse instantaneously, it is
relatively easy to prove the existence of a continuous selection:

Theorem 23 (Michael’s Selection Theorem). Let F : Rm1 ⇒ R
m2 be lsc

with closed convex values. Then there exists a continuous selection f of F .

The continuous selection gives rise to a solution of (2.6):

Theorem 24. Let F : Rm ⇒ R
m be lsc with closed convex values, and let

any initial value x0 ∈ Rm be given. Then there exist an interval J := (t−, t+)
with t− < 0 < t+ and a continuously differentiable solution x(·) : J → R

m of
(2.6) satisfying x(0) = x0. Moreover, either t+ = ∞ or limt→t+ x(t) = ∞,
and analogously for t−.

If a convex-valued set-valued mapping is continuous, the projection of
zero to F is single-valued and continuous:

Definition 25. Let F : Rm1 → CC(Rm2) be a set-valued mapping. Then
the selection mF (·) given by mF (x) := Proj(0, F (x)) is called the minimal
selection.

Theorem 26 (Minimal Selection). Let F : Rm1 ⇒ R
m2 be continuous with

closed convex values. Then the minimal selection x 7→ mF (x) is single-valued
and continuous.

An analog of Theorem 24 holds for solutions induced by the minimal
selection:
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Theorem 27. Let F : Rm ⇒ R
m be continuous with closed convex values,

and let any initial value x0 ∈ Rm be given. Then there exist an interval
J := (t−, t+) with t− < 0 < t+ and a continuously differentiable solution x(·) :
J → R

m of (2.6) satisfying x(0) = x0 and ẋ(t) = m(F (x(t))). Moreover,
either t+ =∞ or limt→t+ x(t) =∞, and analogously for t−.

Existence results for upper semicontinuous right hand sides are more dif-
ficult to prove, because usc set-valued mappings need not possess any contin-
uous selections. Thus most proofs are based on approximate selections and
their corresponding solutions. The following theorem from [10] is weaker
than the corresponding result from [2], but its assumptions can be verified
more easily.

Theorem 28. Let F : [0, T ] × Rm ⇒ R
m be usc with closed convex values

such that
‖F (t, x)‖ ≤ k(t)(1 + |x|) (2.9)

holds for all t ∈ [0, T ] and x ∈ Rm, where k(·) ∈ L1([0, T ]). Then there exists
an absolutely continuous solution of the initial value problem

ẋ(t) ∈ F (t, x(t)), x(0) = x0

for any x0 ∈ Rm.

The Caratheodory case is covered in [10]:

Theorem 29. Let F : [0, T ] × Rm ⇒ R
m be a set-valued mapping with

closed and convex images such that F (t, ·) is usc, F (·, x) is measurable, and
the growth condition

‖F (t, x)‖ ≤ k(t)(1 + |x|) ∀t ∈ [0, T ], x ∈ Rm (2.10)

is satisfied for some k(·) ∈ L1([0, T ]). Then there exists an absolutely con-
tinuous solution of the initial value problem

ẋ(t) ∈ F (t, x(t)), x(0) = x0

for any x0 ∈ Rm.

Clearly, Theorem 28 is a consequence of Theorem 29. It is displayed
nevertheless, because it can be proved by relatively simple techniques, while
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the treatment of the Caratheodory case requires some deeper results about
measurable functions.

The following important statement about the behaviour of solutions is
taken from [10], Theorem 7.1. In [2], Theorem 2.2.1, upper semicontinu-
ity of the mapping x 7→ S(T, 0, x) is proved under a so-called boundedness
assumption.

Theorem 30. Under the assumptions of Theorem 29, the mapping x 7→
R(T, 0, x) is upper semicontinuous with compact values.

In contrast to the autonomous case, where lower semicontinuity is a
favourable property, it is impossible to prove a general existence result for
lsc right hand sides in the Caratheodory situation, see Example 6.2 in [10].

2.3 Filippov Theorem and Relaxation Theo-

rem

The Filippov Theorem is a central result for differential inclusions, because
it is an existence and a stability theorem at the same time. It has important
consequences for the error analysis of numerical schemes for ODIs. For a
proof consider [2] or the original publication [16].

Theorem 31 (Filippov). Let y ∈ AC([0, T ],Rm) and a constant β > 0 be
given and denote Q := {(t, x) ∈ R × Rm : |x − y(t)| ≤ β}. Let F : Q →
A(Rm) be continuous and such that

distH(F (t, x), F (t, x′)) ≤ k(t)|x− x′| (2.11)

for some k(·) ∈ L1([0, T ]). Assume moreover that

δ := |y(0)− x0| ≤ β and dist(ẏ(t), F (t, y(t))) ≤ p(t) a.e.

for some p ∈ L1([0, T ]). Define

ξ(t) := δe
R t
0 k(τ)dτ +

∫ t

0

e
R t
s k(τ)dτp(s)ds

and let t+ > 0 be such that ξ(t+) ≤ β. Then there exists a solution x(·) :
[0, t+]→ R

m of the ODI

ẋ(t) ∈ F (t, x(t)), x(0) = x0 (2.12)
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such that
|x(t)− y(t)| ≤ ξ(t) ∀t ∈ [0, t+] (2.13)

and
|ẋ(t)− ẏ(t)| ≤ k(t)ξ(t) + p(t) a.e. in [0, t+]. (2.14)

For autonomous ODIs, the Filippov Theorem can be reduced to the fol-
lowing rule of thumb: If F is Lipschitz continuous with Lipschitz constant L,
then the initial error δ is propagated with a factor eLT , whereas the defect
p(·) causes an additional error of size

∫ T
0
eL(t−s)p(s)ds.

The Filippov Theorem has been generalized to a setting, where the Lip-
schitz-like condition (2.11) is replaced by relaxed one-sided Lipschitz conti-
nuity, see [13].

The Relaxation Theorem states that the solutions of an ODI with a Lip-
schitz continuous right hand side are dense in the set of solutions of the
convexified problem. As a consequence, it is usually sufficient to consider
convex-valued multifunctions which are easier to handle.

Theorem 32 (Relaxation Theorem). Let F : Rm → C(Rm) be Lipschitz
continuous and let a solution x : [−T, T ]→ R

m of the ODI

ẋ(t) ∈ coF (x(t)), x(0) = x0 (2.15)

and ε > 0 be given. Then there exists a solution y : [−T, T ] → R
m of the

ODI
ẏ(t) ∈ F (x(t)), y(0) = x0 (2.16)

such that |y(t)− x(t)| ≤ ε for all t ∈ [−T, T ].

Inclusion (2.15) is called the relaxed version of the original problem (2.16).
For a proof, see [2].

2.4 Density theorems

The first density theorem is given in the amazing paper [16] by Filippov:

Definition 33. A subset A ⊂ R
m is called uniformly locally connected if

there exists a function η : R+ → R+ satisfying lims→0 η(s) = 0 and such that
any two points y, y′ ∈ A with |y − y′| ≤ s can be joined by a connected set
B ⊂ A with diam(B) ≤ η(s).
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Theorem 34. Let F : [0, T ] ×Rm → A(Rm) be continuous with uniformly
locally connected images such that

distH(F (t, x), F (t, x′)) ≤ L|x− x′|

for some L ≥ 0 and all t ∈ [0, T ] and x, x′ ∈ Rm. If x(·) is a solution of

ẋ(t) ∈ F (t, x(t)), x(0) = x0, (2.17)

and ε > 0 is given, then there exists a continuously differentiable solution x̄(·)
of (2.17) with |x(t) − x̄(t)| < ε for all t ∈ [0, T ] which in addition satisfies
˙̄x(0) = v0, where v0 ∈ F (0, x0) is arbitrary.

The proof is based on a skillfully performed construction of a sequence of
absolutely continuous solutions such that a suitable measure of discontinuity
of the derivatives converges to zero along the sequence.

A weaker density theorem which can be proved by standard techniques
is due to Wolenski, see [44]:

Theorem 35. Let F : Rm → CC(Rm) be locally Lipschitz continuous, and
let y(·) ∈ C1([0, T ]), K ∈ C(Rm) and δ > 0 be such that Bδ(y([0, T ])) ⊂ K.

If
∫ T

0
dist(ẏ(t), F (y(t)))dt < δe−LT for some Lipschitz constant L of F on K,

then there exists a continuously differentiable solution x̄(·) of the ODI

ẋ(t) ∈ F (x(t)), x(0) = y(0)

satisfying

|y(t)− x̄(t)| ≤ eLT
∫ T

0

dist(ẏ(s), F (y(s)))ds

for all t ∈ [0, T ].

In contrast to the approach pursued by Filippov, this proof uses a se-
quence of continuously differentiable approximations obtained by a modified
Picard-Lindelöf iteration which converges to a solution.

The density of the C1 solutions follows from Lusin’s Theorem together
with Theorem 35.

Following an alternative concept, it is possible to show under strengthened
assumptions that also the infinitely many times differentiable solutions are
dense:
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Definition 36. A set-valued mapping F : Rm → CC(Rm) is called (L, δ0)-
stout with constants δ0 > 0 and L > 0 if there exists a Lipschitz continuous
mapping Fδ0 : Rm → CC(Rm) with Lipschitz constant L such that

F (x) = B(Fδ0(x), δ0) ∀x ∈ Rm. (2.18)

Remark 37. Since Fδ0 is Lipschitz continuous with Lipschitz constant L,
the mappings defined by x 7→ B(Fδ0(x), δ) with δ > 0, and in particular
F , are Lipschitz continuous with the same constant. Obviously, the images
B(Fδ0(x), δ) are compact and convex. Thus an (L, δ0)-stout mapping is (L, δ)-
stout for every δ ∈ (0, δ0], where

Fδ(x) := B(Fδ0(x), δ0 − δ). (2.19)

Please note that stoutness is closely related to smoothness properties of
set-valued mappings: If a map F : Rm → CC(Rm) is (L, δ0)-stout, its images
cannot have any ’edges’.

The following lemma formalizes a simple geometric principle.

Lemma 38. Let Fi ⊂ Rm, i ∈ I and G ⊂ Rm be closed and convex, where
I is some index set. Then

dist(co(∪i∈IFi), G) ≤ sup
i∈I

dist(Fi, G). (2.20)

Proof. Let f ∈ co(∪i∈IFi). There exist λ0, . . . , λm ∈ [0, 1] and f0, . . . , fm ∈
∪i∈IFi, fj ∈ Fij such that f =

∑m
j=0 λjfj and

∑m
j=0 λj = 1. Let gj ∈ G be

such that
|fj − gj| = dist(fj, G) ≤ dist(Fij , G).

Then g :=
∑m

j=0 λjgj ∈ G, and

|f − g| ≤
m∑
j=0

λj|fj − gj| ≤
m∑
j=0

λj dist(Fij , G) ≤ sup
i∈I

dist(Fi, G).

The proof of the following C∞ Density Theorem follows the tradition
of proving existence results by considering selections. The problem is that
an arbitrary solution need not be induced by any selection. This difficulty
is overcome by a suitable non-autonomous reformulation which admits a
smooth selection close to the derivative of the original absolutely continuous
solution.
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Theorem 39 (C∞ Density Theorem). Let F : Rm → CC(Rm) be (L, δ0)-
stout with δ0 ∈ (0, 1]. Then the infinitely many times differentiable solutions
of the initial value problem

ẋ(t) ∈ F (x(t)) a.e. in [0, T ], x(0) = x0 (2.21)

are dense in the set of all solutions with respect to the maximum norm.

Proof. Let x(·) be a solution of (2.21). We will construct smooth solutions
aδ(·) arbitrarily close to x(·).

Step 1: A-priori bounds. The solution x is à-priori bounded: Let z(s) ∈
F (x(0)) such that |ẋ(s)− z(s)| = dist(ẋ(s), F (x(0))). Then

|x(t)− x(0)| ≤
∫ t

0

|ẋ(s)|ds

≤
∫ t

0

|ẋ(s)− z(s)|+ |z(s)|ds

≤
∫ t

0

distH(F (x(s)), F (x(0))) + ||F (x(0))||ds

≤ t||F (x(0))||+
∫ t

0

L|x(s)− x(0)|ds,

and by the Gronwall lemma,

|x(t)− x(0)| ≤ t||F (x(0))||+
∫ t

0

s||F (x(0))||LeL(t−s)ds

= t||F (x(0))||+ 1

L
||F (x(0))||(eLt − Lt− 1)

=
1

L
||F (x(0))||(eLt − 1).
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In particular,

|x(t+ η)− x(t)| ≤ 1

L
||F (x(t))||(eLη − 1)

≤ 1

L

[
||F (x(0))||+ distH(F (x(t)), F (x(0)))

]
(eLη − 1)

≤ 1

L

[
||F (x(0))||+ L|x(t)− x(0)|

]
(eLη − 1)

≤ 1

L

[
||F (x(0))||+ ||F (x(0))||(eLt − 1)

]
(eLη − 1)

≤ 1

L
||F (x(0))||eLT︸ ︷︷ ︸

=:C1

(eLη − 1). (2.22)

Step 2: Regular approximation. Now we construct a regular approxima-
tion xδ of x. Without loss of generality we can assume that

ẋ(t) ∈ F (x(t)) ∀t ∈ [0, T ]

as a function. We formally continue it as a function ẋ ∈ L1
loc(R,Rm) by

setting

ẋ(t) :=


ẋ(T ), T < t
ẋ(t), 0 < t ≤ T
ẋ(0), t ≤ 0.

(2.23)

For given δ ∈ (0, δ0], there exists a function ϕδ ∈ C∞0 (R,R+) satisfying
supp(ϕδ) ⊂ [−δ, δ] and

∫
R ϕδ(τ)dτ = 1 such that

yδ(s) :=

∫
R
ϕδ(τ)ẋ(s− τ)dτ

is a function yδ ∈ C∞(R,Rm) (see Theorem 2.16 in [28]) with∫ T

0

|yδ(s)− ẋ(s)|ds ≤ δ.

Hence xδ ∈ C∞(R,Rm) given by

xδ(t) := x(0) +

∫ t

0

yδ(s)ds
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satisfies
|xδ(t)− x(t)| ≤ δ ∀t ∈ [0, T ].

Note that yδ is Lipschitz continuous in [−1, T + 1] with Lipschitz constant
Kδ > 0.

Step 3: Construction of a regular selection. Consider the time dependent
mappings

F̃ : R×Rm → CC(Rm), F̃ (t, x) := F (x)− yδ(t) (2.24)

and
F̃δ : R×Rm → CC(Rm), F̃δ(t, x) := Fδ(x)− yδ(t), (2.25)

where the Fδ is the δ-retract of F defined in (2.19). Since F̃δ(t, x) is Lipschitz
continuous in t and x, its minimal selection

(t, x) 7→ m(F̃δ(t, x))

is continuous by theorem 1.7.1 in [2]. Take a ψδ ∈ C∞0 (R × Rm,R+) with
supp(ψδ) ⊂ B(0, δ

2Kδ
) × B(0, δ

2L
) and

∫
R×Rm ψδ(t, x)d(t, x) = 1, so that the

function

m̃(t, x) :=

∫
R×Rm

ψδ(θ, ξ)m(F̃δ(t− θ, x− ξ)) d(θ, ξ) (2.26)

is an element of C∞(R ×Rm,Rm). According to Theorem 1.6.13 in [43], it
satisfies

m̃(t, x) ∈ co{m(F̃δ(t− θ, x− ξ)) : (θ, ξ) ∈ supp(ψδ)}

⊂ co(F̃δ(B(t,
δ

2Kδ

), B(x,
δ

2L
)))

⊂ co(B(F̃δ(B(t,
δ

2Kδ

, x),
δ

2
)))

⊂ co(B(F̃δ(t, x), δ)) = F̃ (t, x)

for t ∈ [0, T ] and x ∈ Rm, which implies

yδ(t) + m̃(t, x) ∈ F (x). (2.27)
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On the other hand,

|m̃(t, x)| ≤ ‖co{m(F̃δ(t− θ, x− ξ)) : (θ, ξ) ∈ supp(ψδ)}‖
= ‖{m(F̃δ(t− θ, x− ξ)) : (θ, ξ) ∈ supp(ψδ)}‖

≤ sup{dist(0, F̃δ(θ, ξ)) : θ ∈ B(t,
δ

2Kδ

), ξ ∈ B(x,
δ

2L
)}

≤ sup{dist(0, F̃ (θ, ξ)) : θ ∈ B(t,
δ

2Kδ

), ξ ∈ B(x,
δ

2L
)}+ δ

≤ sup{dist(0, F̃ (t, x)) + dist(F̃ (t, x), F̃ (θ, x))

+ dist(F̃ (θ, x), F̃ (θ, ξ)) : θ ∈ B(t,
δ

2Kδ

), ξ ∈ B(x,
δ

2L
)}+ δ

≤ dist(0, F̃ (t, x)) + 2δ = dist(yδ(t), F (x)) + 2δ.

Step 4: Corresponding solution. By the Cauchy-Peano theorem, the ini-
tial value problem

ȧδ(t) = yδ(t) + m̃(t, aδ(t)), aδ(0) = x(0) (2.28)

admits a solution aδ(·) on a maximal subinterval J ⊂ [0, T ] with 0 ∈ J . It is
an element of C∞(J,Rm), and because of (2.27) it is also a solution of the
original differential inclusion (2.21). For t ∈ J one obtains

|xδ(t)− aδ(t)| ≤
∫ t

0

|yδ(s)− (yδ(s) + m̃(s, aδ(s)))|ds

=

∫ t

0

|m̃(s, aδ(s))|ds

=

∫ t

0

dist(yδ(s), F (aδ(s))) + 2δ ds.

By Theorem 1.6.13 in [43],

yδ(s) ∈ co{ẋ(τ) : τ ∈ s− supp(ϕδ)}. (2.29)
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Hence

|xδ(t)− aδ(t)| ≤
∫ t

0

dist(co{∪s−supp(ϕδ)F (x(τ))}, F (aδ(s))) + 2δ ds

(2.20)

≤
∫ t

0

sup
τ∈[s−δ,s+δ]

dist(F (x(τ)), F (aδ(s))) + 2δ ds

≤
∫ t

0

sup
τ∈[s−δ,s+δ]

L|x(τ)− aδ(s)|+ 2δ ds

(2.22)

≤
∫ t

0

L(|x(s)− aδ(s)|+ C1(eLδ − 1)) + 2δ ds

≤
∫ t

0

L|xδ(s)− aδ(s)|+ L(δ + C1(eLδ − 1)) + 2δ︸ ︷︷ ︸
=:C2(δ)

ds.

The Gronwall lemma yields

|xδ(t)− aδ(t)| ≤ C2(δ)t+

∫ t

0

C2(δ)sLeL(t−s)ds

= C2(δ)t+
1

L
C2(δ)(eLt − Lt− 1)

=
1

L
C2(δ)t(eLt − 1),

and thus

|x(t)− aδ(t)| ≤ δ +
1

L
C2(δ)t(eLt − 1)

≤ δ +
1

L
C2(δ)T (eLT − 1). (2.30)

In particular, aδ is bounded on J . Hence J = [0, T ], and

||x− aδ||∞ ≤ δ +
1

L
C2(δ)T (eLT − 1) (2.31)

−→ 0 as δ → 0.

The C∞ Density Theorem is linked to the numerical analysis of differential
inclusions. In order to design and prove convergence of higher order methods,
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it is necessary to specify an object with sufficient smoothness properties, e.g.
a suitable subset S̃(T, 0, x0) of smooth elements of the set of all solutions
S(T, 0, x0) which can be approximated efficiently.

There is a characteristic tradeoff between two errors of different nature:
If the Hausdorff distance between S(T, 0, x0) and S̃(T, 0, x0) is kept small
the norm of the derivatives of the approximating C∞ solutions may become
large, resulting in larger errors of the numerical scheme.

This tradeoff seems to be the fundamental dilemma in the study of higher
order methods. In the well-known paper [40] of Vladimir Veliov, the impact of
non-smoothness and the resulting numerical errors are unfortunately hidden
in the constants. It is an absolute necessity to study this phenomenon very
carefully in the future.

It is possible to give an alternative proof for the classical result of Filippov
and Wolenski using the above techniques. If only C1 solutions are constructed
the minimal selection does not need to be smoothened, and thus it is not
necessary to assume that the set-valued mapping F is stout.

Theorem 40. Let F : Rm → CC(Rm) be Lipschitz continuous. Then the
continuously differentiable solutions of the initial value problem

ẋ(t) ∈ F (x(t)) a.e. in [0, T ], x(0) = x0 (2.32)

are dense in the set of all solutions with respect to the maximum norm.

Proof. The à-priori estimate and the regular approximation xδ(·) can be ob-
tained exactly as in the previous proof. For the construction of a regular
selection, we can consider the time dependent mapping

F̃ : R×Rm → CC(Rm), F̃ (t, x) := F (x)− yδ(t).

Since yδ is continuous, F̃ is continuous w.r.t the Hausdorff metric and con-
sequently, the minimal selection (t, x) 7→ m(t, x) of F̃ is also continuous.
Obviously

|m(t, x)| = dist(yδ(t), F (x)),

and
yδ(t) +m(t, x) ∈ F (x) ∀t ∈ [0, T ], ∀x ∈ Rm.

By the Cauchy-Peano theorem, the initial value problem

ȧδ(t) = yδ(t) +m(t, aδ(t)), aδ(0) = x(0) (2.33)

34



admits a solution aδ(·) on a maximal subinterval J ⊂ [0, T ] with 0 ∈ J . The
following estimates are merely a simplified version of the previous calcula-
tions. Of course, the solution aδ(·) is defined on the whole interval [0, T ] and
it is continuously differentiable, because the right hand side of (2.33) is a
continuous function.

2.5 Relaxed one-sided Lipschitz continuity

In the context of differential equations and inclusions, Lipschitz continuity
can sometimes be replaced by the notion of relaxed one-sided Lipschitz con-
tinuity (ROSL), see Definition 6. Multivalued mappings with this property
and the corresponding differential inclusions have been thoroughly analyzed
by Tzanko Donchev, see e.g. [12], [13], and [14].

The ROSL condition is the most accurate stability concept for differential
inclusions, because it imposes conditions on the right hand side only in those
directions which matter. Furthermore, it is possible to define ROSL conti-
nuity with negative Lipschitz constant implying contractivity of the solution
sets, see Theorems 41 and 42. Thus it generalizes the principle of eigenvalues,
which is the most important stability criterion in the single-valued case.

Thanks to the Density Theorem 40, it is possible to prove a stability
theorem for differential inclusions without using sophisticated results about
measurable and Caratheodory mappings.

Theorem 41. Let F : Rm → CC(Rm) be Lipschitz continuous with Lip-
schitz constant L > 0 and ROSL with constant µ ∈ R. Then the mapping
x0 7→ R(T, 0, x0) from the initial states to the reachable sets of the differential
inclusions

ẋ(t) ∈ F (x(t)), x(0) = x0 (2.34)

for some fixed time T is Lipschitz continuous with Lipschitz constant eµT .
In particular, x0 7→ R(T, 0, x0) is a contraction whenever µ < 0.

Proof. Let x(·) be any solution of (2.34). Without loss of generality we can
assume that x(0) = 0. Let v ∈ Rm be given. By Theorem 40, for every ε > 0
there exists a solution xε ∈ C1([0, T ],Rm) of (2.34) such that xε(0) = 0 and
||xε − x||∞ < ε.

The graph of the mapping

G(t, x) := {y ∈ Rm : 〈y − ẋε(t), x− xε(t)〉 ≤ µ|x− xε(t)|2} (2.35)
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is closed, because xε, ẋε, and the inner product are continuous. As F is
ROSL, the right hand side of the differential inclusion

ẏ(t) ∈ F (y(t)) ∩G(t, y(t)) (2.36)

is nonempty, and it is obviously convex and compact. By Theorem 5, it is
simultaneously upper semicontinuous in both arguments. Hence there exists
a solution xv,ε of (2.36) with xv,ε(0) = v according to Theorem 28 (growth
condition (2.9) follows from Lipschitz continuity of F ).

Now

d

dt
|xε(t)− xv,ε(t)|2 = 2〈ẋε(t)− ẋv,ε(t), xε(t)− xv,ε(t)〉

≤ 2µ|xε(t)− xv,ε(t)|2

implies that

|xε(T )− xv,ε(T )| ≤ |xε(0)− xv,ε(0)|eµT = eµT |v|, (2.37)

and
|x(T )− xv,ε(T )| ≤ ε+ eµT |v|. (2.38)

Since this estimate holds for every ε > 0, eµT is a Lipschitz constant for the
T-flow w.r.t. the Hausdorff distance.

It is possible to replace Lipschitz continuity by upper semicontinuity, the
ROSL property, and a linear growth condition and an existence theorem
for the Caratheodory case. This theorem is stronger than the previous one,
but it requires advanced results such as the Inverse Intersection Lemma. A
similar result is presented in [13].

Theorem 42. Let F : Rm → CC(Rm) be an upper semicontinuous set-valued
mapping which satisfies

‖F (x)‖ ≤ c(1 + |x|) ∀x ∈ Rm, (2.39)

for a constant c > 0 and the ROSL condition with constant µ ∈ R. Then the
mapping x0 7→ R(T, 0, x0) from the initial states to the reachable sets of the
differential inclusions

ẋ(t) ∈ F (x(t)), x(0) = x0 (2.40)

for some fixed time T is Lipschitz continuous with Lipschitz constant eµT .
In particular, x0 7→ R(T, 0, x0) is a contraction whenever µ < 0.
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Proof. Let x(·) be any solution of (2.40). Without loss of generality we can
assume that x(0) = 0. Let v ∈ Rm be given.

Consider the mapping

H(t, x) := {y ∈ F (x) : 〈y − ẋ(t), x− x(t)〉 ≤ µ|x− x(t)|2}. (2.41)

It inherits the linear growth condition from F . The images of H are obviously
convex, compact, and because of the ROSL property also non-empty. Since
H is an intersection H(t, x) = F (x) ∩G(t, x), where

G(t, x) := {y ∈ Rm : 〈y − ẋ(t), x− x(t)〉 ≤ µ|x− x(t)|2}

and graphG(t, ·) is closed because of the continuity of the inner product,
H(t, ·) is usc by Theorem 5.

As H can also be represented as

H(t, x) = {y ∈ F (x) : f(t, x, y) ∈ G̃(t, x)},

where
f(t, x, y) := 〈y − ẋ(t), x− x(t)〉

is measurable in (t, x) and continuous in y and

G̃(t, x) := (−∞, µ|x− x(t)|2]

is measurable in (t, x) and has closed values, the Inverse Intersection Lemma
15 guarantees that H(·, x) is measurable.

Thus H satisfies the assumptions of Theorem 29 and there exists a solu-
tion xv of the initial value problem

ẋv(t) ∈ G(t, xv(t)), xv(0) = v (2.42)

on [0, T ]. Now

d

dt
|x(t)− xv(t)|2 = 2〈ẋ(t)− ẋv(t), x(t)− xv(t)〉

≤ 2µ|x(t)− xv(t)|2

implies that

|x(T )− xv(T )| ≤ |x(0)− xv(0)|eµT = eµT |v|, (2.43)

and eµT is a Lipschitz constant for the T-flow w.r.t. the Hausdorff distance.
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Remark 43. Please note that the ROSL condition characterizes stability in
the following sense: Suppose that the assumptions of Theorem 42 hold, but
that there is an open set U ⊂ Rm such that for any x, x′ ∈ U there exists
some y ∈ F (x) with

〈y − y′, x− x′〉 ≥ µ|x− x′|2 (2.44)

for any y′ ∈ F (x′).
Fix x1, x2 ∈ U . Because of the growth condition, there exists some t+ ∈

(0, T ] such that any solutions x1(·) and x2(·) with initial values x1(0) =
x1 and x2(0) = x2 are contained in U for all t ∈ [0, t+]. But then the
computation of the previous proof can be repeated with ’≥’ instead of ’≤’,
implying

|x1(t)− x2(t)| ≥ eµt|x1 − x2| ∀t ∈ [0, t+] (2.45)

so that

distH(R(t, 0, x1),R(t, 0, x2)) ≥ eµt|x1 − x2| ∀t ∈ [0, t+].

2.6 Viability theory

Consider solutions x(·) of the ODI

ẋ(t) ∈ F (x(t)) a.e., (2.46)

and orbits {xk}k∈N of the discrete-time set-valued dynamical system

xk+1 ∈ G(xk) ∀k ∈ Z, (2.47)

where F,G : Rm → CC(Rm) are set-valued mappings.

Definition 44. A subset D ⊂ R
m is a viability domain of (2.46), if for

any x0 ∈ D there exists a solution x : [0,∞) → D such that x(0) = x0.
The viability kernel ViabF (K) is the largest closed viability domain of (2.46)
contained in some set K ⊂ Rm.

A subset D ⊂ Rm is a viability domain of (2.47), if for any x0 ∈ D there
exists a solution of (2.47) starting at x0 and remaining in D for all time.
The viability kernel ViabG(K) is the largest closed discrete viability domain
of (2.47) contained in some set K ⊂ Rm.
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Under mild assumptions on F and G, both types of viability kernels are
well-defined, compare e.g. [1].

The Viability Theorem from [3] is a set-valued version of the well-known
subtangent principle:

Theorem 45 (Viability Theorem). Let F : Rm → CC(Rm) be usc with linear
growth, and let D ∈ A(Rm) be such that

F (x) ∩ TD(x) 6= ∅ ∀x ∈ D. (2.48)

Then D is a viability domain of (2.46).
If G : Rm ⇒ R

m is an arbitrary mapping and

G(x) ∩D 6= ∅ ∀x ∈ D, (2.49)

then D is a viability domain of (2.47).

For a detailed coverage of this topic, the reader is referred to [1].
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Chapter 3

Shadowing in dynamical
systems

The main aim of Shadowing Theory is the characterization of dynamical
systems which are robust under uniformly small perturbations. Most shad-
owing theorems provide sufficient conditions for the existence of an orbit of
the dynamical system close to a given faulty trajectory on the bi-infinite time
interval.

Various types of shadowing properties have been stated and investigated
in the literature. The monograph [31] provides an overview over this research
area and its connections to the delicate subject of structural stability, while
[30] presents an elaborate analysis of the classical Shadowing Lemma and the
intricate geometric features of dynamical systems with hyperbolic structure.

In this text, only few concepts and facts will be displayed in order to
show where the results of Section 4 are located in the landscape of Shadowing
Theory. Most statements and the corresponding proofs can be found in [30].

3.1 Hyperbolic fixed points

Hyperbolicity is an essential concept in shadowing theory. Its key feature is
the assumption that there exists a decomposition of the tangent space into
a direct sum of two subspaces such that the linearized dynamical system
contracts in forward time on one of the subspaces and in backward time on
the other.

The simplest example of a hyperbolic set for a C1 diffeomorphism, i.e.
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for a bijective mapping f : U → f(U) such that f, f−1 ∈ C1, is a hyperbolic
fixed point.

Definition 46. Let U ⊂ R
m be open. A point x0 ∈ U is said to be a

hyperbolic fixed point of a C1 diffeomorphism f : U → R
m if f(x0) = x0 and

the eigenvalues of Df(x0) lie off the unit circle.
The sum of the generalized eigenspaces corresponding to the eigenvalues

inside (outside) the unit circle is called the stable (unstable) subspace and is
denoted by Es (Eu).

Note that the stable and unstable subspaces are invariant under Df(x0).
It is well-known that for any λ1, λ2 > 0 such that |λ| < λ1 < 1 for all
eigenvalues λ of Df(x0) with |λ| < 1 and 1 < λ−1

2 < |λ| for all eigenvalues λ
with |λ| > 1, there exist K1, K2 > 0 such that for all k ≥ 0

|[Df(x0)]kξ| ≤ K1λ
k
1|ξ| for ξ ∈ Es (3.1)

and
|[Df(x0)]−kξ| ≤ K2λ

k
2|ξ| for ξ ∈ Eu. (3.2)

Thus the behaviour of the linearized system is characterized by

[Df(x0)]kξ → 0 as k →∞ if and only if ξ ∈ Es

and
[Df(x0)]−kξ → 0 as k →∞ if and only if ξ ∈ Eu.

This motivates the following definition for the original nonlinear system:

Definition 47. Let x0 be a hyperbolic fixed point of the C1 diffeomorphism
f : U → R

m. Then the sets

W s(x0) := {x ∈ U : fk(x)→ x0 as k →∞}

and
W u(x0) := {x ∈ U : f−k(x)→ x0 as k →∞}

are called the stable and the unstable manifold of x0, respectively.

Despite its name, the stable manifold may not be a submanifold of Rm,
but it can be described in terms of the local stable manifold which is a smooth
submanifold of Rm.
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Definition 48. Let x0 be a hyperbolic fixed point of the C1 diffeomorphism
f : U → R

m. For given ε > 0, the local stable manifold is defined by

W s,ε(x0) := {x ∈ U : fk(x)→ x0 as k →∞ and |fk(x)−x0| < ε for k ≥ 0}.

Please note that for any ε > 0,

W s(x0) =
⋃
k≥0

f−k(W s,ε(x0)), (3.3)

and that the invariance properties

f(W s(x0)) = W s(x0) and f(W s,ε(x0)) ⊂ W s,ε(x0) (3.4)

hold.
The proof of the smoothness property is based on the contraction mapping

principle.

Theorem 49. Let U ⊂ Rm be open and let f : U → R
m be a Cr diffeomor-

phism with hyperbolic fixed point x0 and associated stable subspace Es. Then
for ε > 0 sufficiently small, W s,ε(x0) is a Cr submanifold of Rm containing
x0, and Tx0W

s,ε(x0) = Es.

The following statement is often referred to as the saddle-point property,
cf. [30].

Theorem 50. Let U ⊂ Rm be open, and let x0 ∈ U be a hyperbolic fixed
point of the C1 diffeomorphism f : U → R

m. Then there exists some ∆ > 0
such that fk(x)→ x0 as k →∞ whenever |fk(x)− x0| ≤ ∆ for all k ≥ 0.

Hence W s,ε(x0) is already characterized by

W s,ε(x0) := {x ∈ U : |fk(x)− x0| < ε for k ≥ 0}. (3.5)

if ε is small enough.

3.2 Hyperbolic sets

A hyperbolic periodic orbit of length n is a set {x0, f(x0), . . . , fn−1(x0)} of
distinct points, where fn(x0) = x0 and the eigenvalues of Dfn(x0) lie off the
unit circle.
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As x0 is a hyperbolic fixed point of the mapping fn, the state space Rm

can be represented as the direct sum of the stable and the unstable subspaces
Es(x0) and Eu(x0). It is easy to show that for any iterate x = fk(x0), the
splitting Rm = Es(x)⊕ Eu(x) defined by

Es(x) := Dfk(x0)[Es(x0)], Eu(x) := Dfk(x0)[Eu(x0)]

has the invariance property

Df(x)[Es(x)] = Es(f(x)), Df(x)[Eu(x)] = Eu(f(x)),

and that there are suitable constants 0 < λ1, λ2 < 1 and K1, K2 > 0 such
that the linearized dynamical system satisfies

|Dfk(x)ξ| ≤ K1λ
k/n
1 |ξ| for ξ ∈ Es(x)

and
|Df−k(x)ξ| ≤ K2λ

k/n
1 |ξ| for ξ ∈ Eu(x)

for all k ≥ 0. These facts motivate the following general definition.

Definition 51. A compact set S ⊂ U is said to be hyperbolic if

(i) S is invariant, i.e. f(S) = S;

(ii) there is a continuous splitting Rm = Es(x)⊕ Eu(x), x ∈ S

such that the subspaces Es(x) and Eu(x) have constant dimensions. More-
over, the invariance properties

Df(x)[Es(x)] = Es(f(x)), Df(x)[Eu(x)] = Eu(f(x)) (3.6)

hold and there are constants 0 < λ1, λ2 < 1 and K1, K2 > 0 such that for all
k ≥ 0 and x ∈ S

|Dfk(x)ξ| ≤ K1λ
k
1|ξ| for ξ ∈ Es(x) (3.7)

and
|Df−k(x)ξ| ≤ K2λ

k
2|ξ| for ξ ∈ Eu(x). (3.8)

The numbers K1 and K2 are called the constants and λ1 and λ2 are called
the rates for the hyperbolic set S.
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Remark 52. A splitting Rm = Es(x) ⊕ Eu(x), x ∈ S is called continuous
if the projection x 7→ Q(x) with ImQ(x) = Es(x) is continuous. Please note
that the continuity of the splitting is already implied by the other assumptions
in Definition 51 (cf. [27]).

For a general hyperbolic set it is still possible to define the stable and
unstable manifolds.

Definition 53. Let f : U → R
m be a C1 diffeomorphism and let S be a

compact hyperbolic set. Its stable and unstable manifolds are defined by

W s(S) := {x ∈ U : dist(fk(x), S)→ 0 as k →∞} (3.9)

and
W u(S) := {x ∈ U : dist(f−k(x), S)→ 0 as k →∞}. (3.10)

Furthermore, the stable and unstable manifolds of a point x ∈ S are given by

W s(x) := {y ∈ U : |fk(y)− fk(x)| → 0 as k →∞} (3.11)

and

W u(x) := {y ∈ U : |f−k(y)− f−k(x)| → 0 as k →∞}. (3.12)

Whenever a hyperbolic set is isolated, the stable and unstable manifolds
of the whole set coincide with the unions of the stable and unstable manifolds
of its elements, respectively.

Definition 54. Let f : U → R
m be a C1 diffeomorphism. An invariant

subset S of U is said to be isolated if there is a neighbourhood W of S such
that S is the maximal invariant set contained in W .

Though the following statement is very natural, its proof is not trivial at
all.

Theorem 55. Let S be an isolated compact hyperbolic set for the C1 diffeo-
morphism f : U → R

m. Then

W s(S) =
⋃
x∈S

W s(x), W u(S) =
⋃
x∈S

W u(x). (3.13)

Hyperbolicity is intimately related to the notion of exponential dichot-
omies.
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Definition 56. Let J ⊂ Z be an interval, and let Ak, k ∈ J , be invertible
m×m matrices. Denote

Φ(k, n) :=


Ak−1 . . . An for k > n
id for k = n
Φ(n, k)−1 for k < n.

The difference equation
uk+1 = Akuk

is said to have an exponential dichotomy on J if there are projections Qk and
constants 0 < λ1, λ2 < 1 and K1, K2 > 0 such that for all k and n in J the
projections satisfy the invariance conditions

Φ(k, n)Qn = QkΦ(k, n),

and the inequalities

|Φ(k, n)Qn| ≤ K1λ
k−n
1 , k ≥ m

and
|Φ(k, n)(id−Qn)| ≤ K2λ

n−k
2 , k ≤ m

hold.

It is clear that the linearized dynamical system has an exponential di-
chotomy on hyperbolic sets.

Theorem 57. If S is a compact invariant set for the diffeomorphism f :
U → R

m, then S is hyperbolic if and only if for all x ∈ S the difference
equation

uk+1 = Df(fk(x))uk (3.14)

has an exponential dichotomy on (−∞,∞) with constants, exponents, and
rank of projection independent of x.

Exponential dichotomies are more flexible than the hyperbolicity condi-
tion, because the time interval J need not be infinite. This feature makes
them an attractive tool in the field of numerical analysis, whenever the re-
striction of a problem on (−∞,∞) to a finite time interval J is studied (see
e.g. the recent paper [25]).

A diffeomorphism f has the so-called expansivity property on any hy-
perbolic set. The expansivity property is a natural generalization of the
saddle-point property of hyperbolic fixed points (see Theorem 50).
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Theorem 58. Let S be a compact hyperbolic set for the C1 diffeomorphism
f : U → R

m. Then f is expansive on S, i.e. there exists some δ > 0 such
that for any x, y ∈ S the inequalities

|fk(x)− fk(y)| ≤ δ ∀k ∈ Z (3.15)

imply x = y.

It is clear by intuition that the hyperbolicity property is robust under C1

small perturbations which do not shift the eigenvalues of the linearization
too much. The following result which is often referred to as the Roughness
Theorem states this more precisely.

Theorem 59. Let S be a compact hyperbolic set for the C1 diffeomorphism
f : U → R

m, and let U be convex. Choose β1, β2 > 0 such that

λ1 < β1 < 1 and λ2 < β2 < 1.

Then there exist positive numbers σ0 and d0 depending only on f , S, β1, and
β2 such that if O is an open neighbourhood of S with

max
x∈O

dist(x, S) ≤ d0

and g : U → R
m is a C1 diffeomorphism satisfying

σ := sup
x∈U
|g(x)− f(x)|+ sup

x∈U
|Dg(x)−Df(x)| ≤ σ0,

the set
SO := {x ∈ O : gk(x) ∈ O for all k ∈ Z}

is a compact hyperbolic set for g with exponents β1 and β2 and the dimension
of the stable bundle is the same as for f and S.

Furthermore, there exists a constant M > 0 such that for every g with
σ < σ0 there is a homeomorphism h : S → SO satisfying

|h(x)− x| ≤Mσ

and h ◦ f = g ◦ h.
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3.3 The Shadowing Lemma

Various types of shadowing properties have been stated and analyzed, but
it is still partly unclear how these properties are related to each other. It is
also an open question whether there are necessary conditions for shadowing.
In this text, only the most common notion of shadowing will be discussed.

Definition 60. A sequence {xk}k∈Z of points in U is said to be a d-pseudo-
trajectory of a mapping f : U → R

m if

|xk+1 − f(xk)| ≤ d for k ∈ Z. (3.16)

Pseudotrajectories can be regarded as approximate or perturbed orbits
with a uniformly bounded perturbation.

Definition 61. Let f : U → R
m be a C1 diffeomorphism, and let d, ε > 0 be

positive numbers. A d-pseudotrajectory {xk}k∈Z in U is said to be ε-shadowed
by a real orbit, i.e. a sequence {pk}k∈Z with pk = fk(p0), if |xk − pk| ≤ ε for
all k ∈ Z.

The diffeomorphism f is said to have the (d, ε)-shadowing property on U
if any d-pseudotrajectory {xk}k∈Z in U is ε-shadowed by a real orbit {pk}k∈Z.

Thus the long-term behaviour of the induced dynamical system is robust
w.r.t. uniformly small perturbations whenever f has the shadowing property.

The following result is often called the Shadowing Lemma.

Theorem 62 (Shadowing Lemma). Let S be a compact hyperbolic set for
a C1 diffeomorphism f : U → R

m. Then there exist positive constants d0,
σ0, and M depending only on f and S such that for any C1 diffeomorphism
g : U → R

m satisfying

|f(x)− g(x)|+ |Df(x)−Dg(x)| ≤ σ for x ∈ U (3.17)

with σ ≤ σ0, any d-pseudotrajectory of f in S with d ≤ d0 is ε-shadowed by
a unique true orbit of g with ε = M(d+ σ).

The proof is based on a fixed point argument on the space of sequences.
Every true orbit of g is a fixed point of the operator T which maps a sequence
{xk}k∈Z to a sequence {yk}k∈Z given by yk+1 := g(xk), and it must be shown
that there exists a fixed point of T close to any given d-pseudotrajectory.
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The technical details vary according to the fixed point theorem which is
eventually applied.

Of course the Shadowing Lemma is of great interest for numerical compu-
tations, because it guarantees that the errors caused by a numerical scheme
will not explode on arbitrarily long time intervals whenever it is applied to
hyperbolic systems.

The conjugacy statement in the Shadowing Lemma is closely related to
the behaviour of the numerical method regarded as a discrete-time dynamical
system. In the pioneering work [4] it has been shown that the phase portrait
of a dynamical system near a stationary hyperbolic point is reproduced cor-
rectly by numerical one-step methods. Many similar results for systems with
special or hyperbolic structure followed, see e.g. [39] and [20].
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Chapter 4

Shadowing for set-valued
dynamical systems

Though Shadowing Theory is an established field of research, very little is
known about the shadowing property in set-valued dynamical systems.

In [19], spatial discretization effects were investigated by means of a mul-
tivalued extension, and first attempts to generalize the concept of unstable
manifolds were made. These ideas were developed further in [7], where the
properties of multivalued stable and unstable manifolds were investigated
systematically.

The papers [21] and [22] analyze set-valued dynamical systems induced by
contractive set-valued mappings. Unfortunately, the proof of the shadowing
theorem stated therein contains a critical error.

In [29] and [36], hyperbolicity was defined for smooth relations. This
hyperbolicity condition is designed to study features of classical dynamical
systems such as stable and unstable manifolds in the framework of non-
invertible maps. Due to the nature of the analyzed objects, this hyperbolicity
condition does not allow the graph of a relation to have nonempty interior,
which is generically the case in the set-up discussed in the present text.

4.1 Basic notation

A set-valued dynamical system on Rm is determined by a set-valued mapping
F : Rm → A(Rm) and its iterates. Throughout this text, the mapping F and
the corresponding dynamical system are identified. An orbit of the set-valued
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system is defined as follows.

Definition 63. A sequence η = {pk} is a trajectory of the system F if

pk+1 ∈ F (pk) for any k ∈ Z. (4.1)

As in the single-valued case, d-pseudotrajectories are sequences which
satisfy the defining relations (4.1) up to a small error.

Definition 64. A sequence ξ = {xk} is called a d-pseudotrajectory of F if
an error of size d > 0 is allowed in every step, i.e., if

dist(xk+1, F (xk)) ≤ d for any k ∈ Z. (4.2)

The shadowing property is defined analogously to the classicial case as
well.

Definition 65. Let d and ε be positive numbers. The system F has the
(d, ε)-shadowing property on a subset K ⊂ Rm, if for any d-pseudotrajectory
ξ = {xk} ⊂ K of F there exists a trajectory η = {pk} with

dist(xk, pk) ≤ ε for any k ∈ Z. (4.3)

The inverse shadowing property has been discussed in the context of
single-valued dynamical systems, see e.g. [4], [8], and [15]. The definition of
the inverse shadowing property for set-valued mappings introduced in [32]
and [33] is local in contrast to the case of shadowing.

Definition 66. Let η = {pk}k∈Z be an orbit of the system F . The system F
has the local inverse (a, d, ε)-shadowing property at η if for every sequence of
mappings

Φ = {Φk : Rm → CC(Rm)} (4.4)

such that each Φk is continuous w.r.t. distH and

distH(F (pk + v),Φk(pk + v)) ≤ d for k ∈ Z and |v| ≤ a (4.5)

there exists a trajectory ξ = {xk}k∈Z of Φ, i.e. a sequence of points satisfying
xk+1 ∈ Φk(xk), such that

|xk − pk| ≤ ε for all k ∈ Z. (4.6)
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Of course it is possible to state a global inverse shadowing property by
imposing the same conditions on the sequence Φ on the whole phase space,
and global inverse shadowing theorems can be derived from local ones.

Please note that inverse shadowing is qualitatively different from shad-
owing. In the case of shadowing, one is interested in finding an orbit of a
system F with strong properties such as hyperbolicity close to a given pseu-
dotrajectory. In the inverse setup, an orbit of the system F is given and an
orbit of a system, which is only known to be continuous and close to F in
the sense of inequalities (4.5) is desired.

4.2 Contractive systems

Contractive systems are a subclass of hyperbolic systems which will be treated
in Section 4.3. Nevertheless, there are good reasons for discussing them sepa-
rately. The underlying principles can be displayed in the absence of technical
difficulties, and contractivity allows the use of the Frigon-Granas Theorem
(see Section 1.4) which does not require the defining mapping to be convex-
valued. Moreover, it is possible to apply shadowing theorems to the time-T
flow of differential inclusions with relaxed one-sided Lipschitz right hand
sides which induce contractive dynamics (cf. Section 2.5), while it is still un-
clear whether there is a nontrivial class of right hand sides with a hyperbolic
time-T flow.

4.2.1 Shadowing theorems

The following shadowing theorem is based on the Tikhonov-Schauder Fixed
Point Theorem, cf. Theorem 11.

Theorem 67. Let K ⊂ Rm be any subset, let a > 0 and λ ∈ [0, 1), and let
F : Rm → CC(Rm) be a set-valued mapping which satisfies

distH(F (x), F (x′)) ≤ λ|x− x′| (4.7)

for any x ∈ K and x′ ∈ Rm with |x − x′| ≤ a. Then F has the (d, d
1−λ)-

shadowing property on K whenever d ≤ (1− λ)a.

Proof. Define the sets Hd := {v ∈ Rm : |v| ≤ d
1−λ} and H∞d := (Hd)

Z.

Then Hd ⊂ Rm is compact w.r.t the Euclidean topology and H∞d ⊂ (Rm)Z

is compact w.r.t. the Tikhonov topology.
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Let {xk}k∈Z be a d-pseudotrajectory in K, let V = {vk} ∈ H∞d , and
define a sequence W = {wk} by

wk+1 = Dev(xk+1, F (xk + vk)). (4.8)

Such a sequence W is unique since the sets F (xk + vk) are convex.
Condition (4.7) implies that the mapping F is continuous w.r.t. distH .

Hence, the mapping vk 7→ wk+1 is continuous by Theorem 26. Furthermore,

|wk+1| ≤ dist(xk+1, F (xk)) + dist(F (xk), F (xk + vk))

≤ d+ λ|vk| ≤ d+ λ
d

1− λ
=

d

1− λ
,

and W ∈ H∞d . Thus, the operator σ defined by σ(V ) = W maps the compact
convex set H∞d into itself.

Since the (k+1)th element of σ(V ) depends on the k th element of V only,
the operator σ is continuous w.r.t. the Tikhonov topology. By the Tikhonov-
Schauder Fixed Point Theorem, there is a sequence V = {vk} ∈ H∞d such
that σ(V ) = V . Thus,

xk+1 + vk+1 = xk+1 + Dev(xk+1, F (xk + vk)) ∈ F (xk + vk), (4.9)

and the trajectory η = {pk} ∈ (Rm)Z given by pk := xk + vk is a solution of
(4.1) with

‖η − ξ‖∞ = ‖V ‖∞ ≤
d

1− λ
. (4.10)

Remark 68. Note that this type of proof can easily be adapted to sequences
{xk}k∈N and {pk}k∈N by the trivial continuation xk = pk = vk = wk = 0 for
k < 0. With the setting w0 := v0 the operator σ remains continuous w.r.t.
the product topology and possesses the desired fixed point.

It is possible to formulate an inverse shadowing theorem and prove it in
a very similar way. Note that for inverse shadowing, only the images of the
approximations Φk and not the images of the mapping F are required to be
convex.

Theorem 69. Let η = {pk} ∈ (Rm)Z be a trajectory of a set-valued dy-
namical system generated by a mapping F : Rm ⇒ R

m with compact values.
Assume that there exist numbers a > 0 and λ ∈ [0, 1) such that F satisfies

distH(F (pk), F (pk + v)) ≤ λ|v| for any k ∈ Z and |v| ≤ a. (4.11)
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Then F has the inverse (a, d, d
1−λ)-shadowing property at η whenever d ≤

(1− λ)a.

Proof. Let Hd and H∞d be as in the proof of Theorem 67, and let a family Φ
of mappings be given according to Definition 66. Take some V = {vk} ∈ H∞d
and define a sequence W = {wk} by

wk+1 = Dev(pk+1,Φk(pk + vk)). (4.12)

By the properties of the mappings Φk, the operator defined by σ(V ) := W
is continuous w.r.t. the Tikhonov topology. Furthermore,

|wk+1| ≤ dist(pk+1, F (pk)) + distH(F (pk), F (pk + vk))

+ distH(F (pk + vk),Φk(pk + vk))

≤ λ|vk|+ d ≤ d

1− λ
,

and W ∈ H∞d .
By the Tikhonov-Schauder theorem, there exists a sequence V = {vk} ∈

H∞d such that σ(V ) = V . Thus,

pk+1 + vk+1 = pk+1 + Dev(pk+1,Φk(pk + vk)) ∈ Φk(pk + vk),

and ξ = {xk} ∈ (Rm)Z given by xk := pk + vk is an orbit of Φ such that

||η − ξ||∞ = ||V ||∞ ≤
d

1− λ
.

The following shadowing theorem uses the Frigon-Granas Fixed Point
Theorem to prove the existence of a shadowing trajectory without assuming
convexity of the values of the defining mapping F .

Theorem 70. Let K ⊂ R
m be a subset, and let F : Rm → C(Rm) be a

set-valued mapping. If there exist constants a > 0, M > 0, and λ ∈ [0, 1)
such that

distH(F (x), F (x′)) ≤ λ|x− x′| for all x, x′ ∈ Ba(K) (4.13)

and
diamF (x) ≤M for all x ∈ Ba(K), (4.14)

then F has the (d, d
1−λ)-shadowing property on K whenever

d ≤ d0 := a(1− λ).
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Proof. Let ξ0 = {x0
k}k∈Z ⊂ K be a d-pseudotrajectory of F with d ≤ d0.

The set

X :=

{
{xk}k∈Z ⊂ Rm : sup

k∈Z
|xk − x0

k| <∞
}

(4.15)

equipped with the distance

Dist({xk}k∈Z, {x′k}k∈Z) := sup
k∈Z
|xk − x′k| (4.16)

is a complete metric space. Let Dist(A,B) and DistH(A,B) denote the non-
symmetric and the symmetric Hausdorff distance of two subsets A,B ⊂ X,
respectively.

Consider the mapping F : Ba(ξ0) ⇒ X given by

F(ξ = {xk}k∈Z) = {η = {pk}k∈Z ⊂ Rm : pk+1 ∈ F (xk) ∀k ∈ Z}. (4.17)

For any ξ = {xk}k∈Z ∈ Ba(ξ0), set d1 := Dist(ξ, ξ0) < ∞. If η = {pk}k∈Z ∈
F(ξ),

|x0
k+1 − pk+1| ≤ dist(x0

k+1, F (xk)) + diamF (xk)

≤ dist(x0
k+1, F (x0

k)) + dist(F (x0
k), F (xk)) +M (4.18)

≤ d+ λd1 +M <∞.

Thus every element of F(ξ) is an element of X, and the mapping F is
well-defined. Furthermore, estimate (4.18) implies that the values of F are
bounded. Since F has closed values, so does F .

Set r := d
1−λ and let ξ′, ξ′′ ∈ Br(ξ

0). For any η′ = {p′k}k∈Z ∈ F(ξ′),

Dist(η′,F(ξ′′)) ≤ sup
k∈Z

dist(p′k+1, F (x′′k)) ≤ sup
k∈Z

distH(F (x′k), F (x′′k)) (4.19)

≤ sup
k∈Z

λ|x′k − x′′k| = λDist(ξ′, ξ′′), (4.20)

and hence

DistH(F(ξ′),F(ξ′′)) ≤ λDist(ξ′, ξ′′) for all ξ′, ξ′′ ∈ Br(ξ
0). (4.21)

In addition,

Dist(ξ0,F(ξ0)) ≤ sup
k∈Z

dist(x0
k+1, F (x0

k)) ≤ d ≤ (1− λ)r. (4.22)
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By the Frigon-Granas Fixed Point Theorem, there is a fixed point η0 of F
such that

‖η0 − ξ0‖∞ ≤ r =
d

1− λ
. (4.23)

It remains to note that the definition of a fixed point η0 of F implies that η0

is an orbit of F .

Remark 71. It is unclear if the above proof can be adapted to the case of
forward sequences {xk}k∈N and {pk}k∈N, because it seems that it is impossible
to choose component p0 of η in (4.17) without prior knowledge about the fixed
point and without violating the conditions of the Frigon-Granas Fixed Point
Theorem.

The Frigon-Granas Theorem belongs to the group of contraction mapping
principles, and thus it can only be applied to strictly contracting maps. Thus
it is impossible to prove an inverse shadowing theorem based on the Frigon-
Granas Theorem in the above manner: If F is contractive and Φ is a family
of approximating mappings, the Φk need not be contractions.

Using the Kakutani Fixed Point Theorem, it is possible to give alternative
proofs of Shadowing Theorem 67 and the Inverse Shadowing Theorem 69
which are based on truly set-valued methods and deserve to be displayed.

Alternative proof of Theorem 67. If ξ = {xk}k∈Z is any d-pseudotrajectory
in K,

dist(xk+1, F (xk + v)) ≤ dist(xk+1, F (xk)) + dist(F (xk), F (xk + v))

≤ d+ λ|v| ≤ d+ λ
d

1− λ
≤ d

1− λ
for all v ∈ B d

1−λ
(0). Thus the mappings Fk : Rm ⇒ R

m defined by

Fk+1(v = {vk}k∈Z) := B d
1−λ

(0) ∩ (F (xk + v)− xk+1) (4.24)

have nonempty convex and compact values on B d
1−λ

(0), and they are upper

semicontinuous by Propositions 1.4.8 and 1.4.9 in [3].
The ball B∗ := {x ∈ (Rm)Z : ‖x‖∞ ≤ d

1−λ} is compact in the product

space (Rm)Z equipped with the product topology. Consider the mapping
F : B∗ ⇒ B∗ given by

F(v) :=
∏
k∈Z

Fk(vk−1). (4.25)
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It is upper semicontinuous and its values are nonempty, convex, and compact.
Thus the Kakutani Fixed Point Theorem implies the existence of a fixed point
v̄ ∈ B∗ of F , which means that ξ+ v̄ is a shadowing trajectory close to ξ.

Alternative proof of Theorem 69. If Φ is a family of approximating map-
pings,

dist(pk+1,Φk(pk + vk)) ≤ dist(pk+1, F (pk + vk)) + dist(F (pk + vk),Φk(pk + vk))

≤ λ|vk|+ d ≤ d

1− λ
for all vk ∈ B d

1−λ
(0). Thus the mappings Fk : Rm ⇒ R

m defined by

Fk+1(vk) := B d
1−λ

(0) ∩ (Φ(pk + vk)− pk+1) (4.26)

have nonempty convex and compact values on B d
1−λ

(0), and they are upper

semicontinuous by Propositions 1.4.8 and 1.4.9 in [3].
The Kakutani Theorem applied to the product mapping

F(v = {vk}k∈Z) :=
∏
k∈Z

Fk(vk−1). (4.27)

yields a fixed point v̄ ∈ B∗ of F as in the previous proof, and η + v̄ is an
orbit of the approximating family Φ.

The following remark illustrates that shadowing trajectories are not nec-
essarily unique.

Example 72. Consider the Euclidean plane R2 with coordinates z = (z1, z2)
and the segment

I = {z : z1 = 0, 0 ≤ z2 ≤ 1}. (4.28)

Define a set-valued dynamical system generated by the constant mapping
F (z) = I, z ∈ R2. A sequence η = {pk} is a trajectory of F if and only
if pk ∈ I for all k ∈ Z.

The mapping F satisfies the conditions of Theorems 67 and 70 for any
a > 0 and λ ∈ [0, 1). Fix d > 0 and consider the sequence ξ = {xk} given by

xk = (d(1− 2−|k|), 0). (4.29)

Clearly, ξ is a d-pseudotrajectory of F , but not a δ-pseudotrajectory for any
δ < d. There is no exact orbit η of F such that ‖ξ−η‖∞ < d, but ‖ξ−η‖∞ = d
holds for any sequence η = {pk}, where

pk ∈ I ∩Bd
√

1−(1−2−|k|)2
(0). (4.30)
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4.2.2 Application to differential inclusions

Consider the differential inclusion

ẋ(t) ∈ F (x(t)) a.e. (4.31)

Mild smoothness and growth assumptions guarantee compactness of its reach-
able setR(T, 0, x) for any x ∈ Rm, see Theorem 30. If diamF (x) ≤M for all
x ∈ Rm, then any two solutions y(·) and z(·) of (4.31) with identical initial
value y(0) = z(0) = x0 satisfy

|y(T )− z(T )| ≤
∫ T

0

|ẏ(s)− ż(s)|ds ≤
∫ T

0

diamF (y(s)) + L|y(s)− z(s)|ds

≤ MT +

∫ T

0

L|y(s)− z(s)|ds,

and the Gronwall Lemma yields

|y(T )− z(T )| ≤MT +

∫ T

0

LMseL(T−s)ds =
M

L
(eLT − 1). (4.32)

It follows that diamR(T, 0, x0) ≤ M
L

(eLT − 1) for all x0 ∈ Rm.
If F satisfies the relaxed one-sided Lipschitz property with constant µ < 0

(see Sections 1.2 and 2.5) the time-T flow x 7→ R(T, 0, x) is a set-valued
contraction according to Theorem 42.

Hence the following global statement holds.

Theorem 73. Let F : Rm → CC(Rm) be a Lipschitz continuous set-valued
mapping which also satisfies the relaxed one-sided Lipschitz property with
negative constant µ < 0. If the diameter of the images of F is uniformly
bounded, then the time-t flow of (4.31) satisfies the assumptions of the Shad-
owing Theorem 70 and the Inverse Shadowing Theorem 69 with arbitrary
a > 0, K = Rm, and λ := eµT .

In view of Remark 43, the relaxed one-sided Lipschitz property with nega-
tive constant is an ’almost necessary’ condition for contractivity of the time-T
flow of an ODI.

The lengthy discussion of this topic in [32] turns out to be unnatural and
unnecessary. At that time, we were not aware of the Frigon-Granas Fixed
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Point Theorem and had to prove shadowing via approximating selections of
the time-T flow. Please note that the inverse shadowing theorems do not
require the defining mapping, but the approximating family to be convex-
valued. This assumption does not cause any problems, because the images
of the Euler scheme and the Viability Kernel Algorihm (cf. Chapter 5) are
convex by construction.

Example 74. The right hand side f : R→ R, f(x) = −x of the differential
equation

ẋ(t) = −x(t) (4.33)

is one-sided Lipschitz with constant µ = −1. Thus the right hand side F :
R→ CC(R), F (x) = [−x− ε,−x+ ε] of the ODI

ẋ(t) ∈ [−x(t)− ε,−x(t) + ε] (4.34)

is relaxed one-sided Lipschitz with the same constant. The time-t flow satis-
fies

Glog 2(x) := R(log 2, 0, x) = [
x

2
− ε

2
,
x

2
+
ε

2
], (4.35)

i.e. it is a set-valued contraction with constant λ = 1
2
, and in particular,

Glog 2([−ε, ε]) = [−ε, ε]. (4.36)

Note that the set [−ε, ε] attracts every compact subset of R, that it contains
a dense trajectory of Glog 2, and that its diameter depends on the diameter of
the values of F .

Since G−1
log 2(x) = [2x − ε, 2x + ε], every orbit {pk}k∈Z such that p0 /∈

[−ε, ε] satisfies pk → ∞ as k → −∞, but any sequence {xk}k∈Z such that
x0 ∈ [−ε − 2d, ε + 2d] and dist(xk+1, Glog 2(xk)) ≤ d for all k ≥ 0 can be
extended to a d-pseudotrajectory such that xk ∈ [−ε − 2d, ε + 2d] for all
k < 0.

Hence Glog 2 satisfies the conditions of Theorem 70 for any subset K,
any a > 0 and M := ε. Furthermore, the statement of Theorem 70 still
holds for d-pseudotrajectories ξ+ which are only defined for nonnegative times
whenever K = [−δ, δ] with 0 < δ ≤ ε+ 2d, any a > 0 and M := ε, because it
is possible to extend ξ+ artificially to a d-pseudotrajectory ξ on Z which does
not leave K.
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4.3 Hyperbolic systems

The aim of this section is to propose a hyperbolicity condition for set-valued
mappings on Rm and to show that this condition implies the shadowing
and the inverse shadowing property. One can give a similar definition of
hyperbolicity on a compact subset without changing the essence of Theorem
77 below.

Definition 75. Let a set-valued mapping F : Rm → CC(Rm) of the form

F (x) = L(x) +M(x) (4.37)

be given, where L : Rm → R
m is a continuous single-valued mapping and

M : Rm → CC(Rm) is a set-valued mapping with compact and convex images.
The mapping (4.37) is said to be hyperbolic in Rm if there exist constants
N ≥ 1, a, κ, l > 0, and λ ∈ (0, 1) such that the following conditions hold.

(P1) For any point x ∈ Rm there exist linear subspaces Es(x) and Eu(x) of
R
m such that

Es(x)⊕ Eu(x) = Rm, (4.38)

and
‖Q(x)‖, ‖P (x)‖ ≤ N, (4.39)

where Q(x) and P (x) are the corresponding complementary projections
from R

m to Es(x) and Eu(x), which are called the stable and unstable
subspaces, respectively.

(P2) If x, y, v ∈ Rm satisfy |v| ≤ a and dist(y, F (x)) ≤ a, then L(x+ v) can
be represented as

L(x+ v) = L(x) + A(x)v +B(x, v), (4.40)

where A(x) : Rm → R
m is a linear mapping that is continuous with

respect to x and such that

|Q(y)A(x)v| ≤ λ|v| for v ∈ Es(x), (4.41)

|Q(y)A(x)v| ≤ κ|v| for v ∈ Eu(x), (4.42)

and
|P (y)A(x)v| ≤ κ|v| for v ∈ Es(x). (4.43)
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Finally, the restriction P (y)A(x)|Eu(x) : Eu(x)→ Eu(y) is assumed to
be a linear isomorphism satisfying

|P (y)A(x)v| ≥ 1

λ
|v| for v ∈ Eu(x). (4.44)

(P3) For v ∈ Rm with |v| ≤ a,

|B(x, v)| ≤ l|v| (4.45)

and
distH(M(x),M(x+ v)) ≤ l|v| for x ∈ Rm. (4.46)

Since L(x) and A(x) are assumed to be continuous, B(x, v) is continu-
ous for any x and v with |v| ≤ a. Moreover, condition (4.46) implies the
continuity of M w.r.t. the Hausdorff distance.

Example 76. Let A be an m × m matrix such that all eigenvalues lie off
the unit circle, and let M ∈ CC(Rm) be a fixed set. Then the mapping
x 7→ Ax + M is hyperbolic in the sense of the above definition, where the
stable and unstable subspaces and projections are those associated with the
hyperbolic matrix A.

In [7], the dynamics of multifunctions similar to those in Example 76 are
analyzed. It is assumed that the single-valued component has a saddle point
and that the set M is a small ball. The analysis is given from a completely
different point of view. Every trajectory of the multivalued system is consid-
ered as a trajectory of the single-valued system which is perturbed by some
sequence with values in M . Conjugacy-type results are obtained, analogs
of the stable and unstable manifolds are proposed, and their smoothness
properties are discussed.

The following shadowing theorem is based on the Tikhonov-Schauder
Fixed Point Theorem. In the single-valued case it is possible to decompose
the dynamics into their stable and unstable components, to prove the ex-
istence of a fixed point, and to piece the components together again. It is
not possible to transfer this technique directly to the set-valued case, mainly
because

x = Px+Qx (4.47)
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for any point x ∈ Rm, but

M $ PM +QM (4.48)

for almost all subsets M ⊂ Rm, which means that a fixed point constructed
by direct projection might not be an element of the set, but only an element
of the sum of its projections.

Theorem 77. Let F be a set-valued hyperbolic mapping as described above.
If

λ+ κ+ 4lN < 1, (4.49)

then F has the (d,Ld)-shadowing property whenever d ≤ a/L, where

L−1 =
1

2N
(1− λ− κ− 4lN) .

Remark 78. Condition (4.49) implies the inequality

λ(1 + κ+ 4lN) < 1. (4.50)

In addition,

L−1 ≤ 1

2N

(
1

λ
− 1− κ− 4lN

)
. (4.51)

Proof of Theorem 77. Set d0 = a/L and consider a d-pseudotrajectory {xk}k∈Z
of F with d ≤ d0. The aim is to find a sequence V = {vk ∈ Rm : k ∈ Z} such
that

xk+1 + vk+1 ∈ F (xk + vk) (4.52)

and
‖V ‖∞ ≤ Ld; (4.53)

in this case, {pk = xk + vk} is the desired trajectory of F .
By (4.37), relations (4.52) take the form

xk+1 + vk+1 ∈ L(xk + vk) +M(xk + vk). (4.54)

If |vk| ≤ a, it follows from property (P2) that

L(xk + vk) = L(xk) + A(xk)vk +B(xk, vk). (4.55)

61



Thus, relation (4.54) can be rewritten as

xk+1 + vk+1 ∈ L(xk) + A(xk)vk +B(xk, vk) +M(xk + vk),

or

vk+1 ∈ L(xk) + A(xk)vk +B(xk, vk) +M(xk + vk)− xk+1. (4.56)

Consider the vector

σk = Dev(xk+1, L(xk) +B(xk, vk) +M(xk + vk)).

The compact and convex set L(xk) + B(xk, vk) + M(xk + vk) depends con-
tinuously on vk w.r.t. the Hausdorff distance for |vk| ≤ a (see the definition
of F and properties (P2) and (P3)). By (4.45),

|B(xk, vk)| ≤ l|vk|;

by (4.46),
distH(M(xk),M(xk + vk)) ≤ l|vk|.

Since
dist(xk+1, L(xk) +M(xk)) < d,

estimate

|σk| = dist(xk+1, L(xk) +B(xk, vk) +M(xk + vk)) ≤ d+ 2l|vk| (4.57)

holds. If
σk = vk+1 − A(xk)vk, (4.58)

then the inclusion

xk+1 + σk ∈ L(xk) +B(xk, vk) +M(xk + vk)

implies that

xk+1 + vk+1 − A(xk)vk ∈ L(xk) +B(xk, vk) +M(xk + vk),

which is equivalent to the desired inclusion (4.52). Thus, a solution V = {vk}
of (4.58) yields a shadowing trajectory.
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Consider the projections

Q(xk+1)vk+1 = Q(xk+1)A(xk)vk +Q(xk+1)σk, (4.59)

P (xk+1)vk+1 = P (xk+1)A(xk)vk + P (xk+1)σk (4.60)

of equality (4.58) to S(xk+1) and U(xk+1), respectively. Denote b := dL/2
and let

Hk = {vk ∈ Rm : |P (xk)vk|, |Q(xk)vk| ≤ b}
and

H =
∏
k∈Z

Hk. (4.61)

Each Hk is compact and convex; hence, H is convex and compact w.r.t. the
Tikhonov product topology.

If V = {vk} ∈ H, then

|vk| ≤ |P (xk)vk|+ |Q(xk)vk| ≤ 2b = Ld ≤ a; (4.62)

hence, all the terms in (4.59) and (4.60) are defined. Thus an operator T
that maps a sequence V = {vk ∈ Rm} to a sequence W = {wk ∈ Rm} can
be defined as follows:

The stable components of wk are defined by

Q(xk+1)wk+1 = Q(xk+1)A(xk)vk +Q(xk+1)σk. (4.63)

To obtain the unstable components, equation (4.60) must be transformed.
Consider the mapping

G(w) = P (xk+1)A(xk)w, w ∈ U(xk). (4.64)

Clearly, G(0) = 0. It follows from (4.44) that

|G(w)−G(w′)| ≥ 1

λ
|w − w′|, w, w′ ∈ U(xk). (4.65)

Since the restriction of P (xk+1)A(xk) to U(xk) is assumed to be a linear
isomorphism,

G(D(b, xk)) ⊃ D(b′, xk+1), (4.66)

where b′ = b/λ,

D(b, xk) = {z ∈ U(xk) : |w| ≤ b}, and D(b′, xk+1) = {z ∈ U(xk+1) : |z| ≤ b′}.
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By (4.65) and (4.66), the inverse Γ of G is defined on D(b′, xk+1). By (4.65),

|Γ(z)− Γ(z′)| ≤ λ|z − z′|, z, z′ ∈ D(b′, xk+1). (4.67)

Now the unstable components of wk can be defined by

P (xk)wk = Γ{P (xk+1)[vk+1 − σk − A(xk)Q(xk)vk]}. (4.68)

Lemma 79. The operator T maps H to itself.

Proof of Lemma 79. For the stable components, estimate

|Q(xk+1)wk+1|
≤ |Q(xk+1)A(xk)vk|+ |Q(xk+1)σk|
≤ |Q(xk+1)A(xk)P (xk)vk|+ |Q(xk+1)A(xk)Q(xk)vk|+ |Q(xk+1)σk|
≤ κ|P (xk)vk|+ λ|Q(xk)vk|+N(d+ 2l|vk|)

holds (see (4.39), (4.41), (4.42), and (4.57)). Since |vk| ≤ 2b (see (4.62)),

|Q(xk+1)wk+1| ≤ (λ+κ+4lN)b+Nd =

(
λ+ κ+ 4lN +

2N

L

)
b ≤ b (4.69)

by the definition of b and L.
It must be checked that the argument in the right hand side of (4.68) is

contained in the domain of Γ. Since vk+1 ∈ Hk+1,

|P (xk+1)vk+1| ≤ b. (4.70)

By (4.39) and (4.57),

|P (xk+1)σk| ≤ N(d+ 2l|vk|) ≤ N(d+ 4lb). (4.71)

By (4.43),
|P (xk+1)A(xk)Q(xk)vk| ≤ κ|Q(xk)vk| ≤ κb. (4.72)

By inequalities (4.70)–(4.72) and (4.51), the argument of Γ satisfies

|P (xk+1)[vk+1 − σk − A(xk)Q(xk)vk]| ≤ (1 + κ+ 4lN)b+Nd

=
(
1 + κ+ 4lN + 2N

L

)
b ≤ b

λ
= b′. (4.73)

Thus, Γ{. . .} is defined, and it follows from (4.73) and (4.67) that

|P (xk)wk| ≤ b. (4.74)

Inequalities (4.69) and (4.74) show that if V ∈ H and W = T (V ), then
W ∈ H.
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Since σk depends on vk only, formulas (4.63) and (4.68) show that (T (V ))k
depends on vk−1, vk, vk+1. Hence, the operator is continuous w.r.t. the
Tikhonov topology on H.

The Tikhonov-Schauder fixed point theorem implies that T has a fixed
point in H. To complete the proof of Theorem 77, it remains to show that
if T (V ) = V , then V solves equation (4.58). By (4.63),

Q(xk+1)vk+1 = Q(xk+1)A(xk)vk +Q(xk+1)σk (4.75)

if T (V ) = V . Apply G to the equality

P (xk)vk = Γ{P (xk+1)[vk+1 − σk − A(xk)Q(xk)vk]}

in order to show that

P (xk+1)A(xk)P (xk)vk = G(P (xk)vk) = P (xk+1)[vk+1 − σk − A(xk)Q(xk)vk].

Hence,

P (xk+1)vk+1

= P (xk+1)σk + P (xk+1)A(xk)Q(xk)vk + P (xk+1)A(xk)P (xk)vk

= P (xk+1)[σk + A(xk)vk]. (4.76)

Statements (4.75) and (4.76) imply that

vk+1 = σk + A(xk)vk,

i.e., V solves equation (4.58). Since

‖V ‖∞ ≤ Ld

by (4.62), the proof is complete.

For the local notion of inverse shadowing, it is necessary to modify the
hyperbolicity condition given above. The mapping F is said to be hyperbolic
at the trajectory η = {pk}k∈Z if there exist constants N ≥ 1, a, κ, l > 0, and
λ ∈ (0, 1) such that condition (P1) holds for points x = pk, condition (P2)
holds for points x = pk, y = pk+1, and vectors v with |v| ≤ a, and, finally,
condition (P3) holds for points x = pk and vectors v with |v| ≤ a.
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Theorem 80. Assume that F is hyperbolic at a trajectory η = {pk} in the
above sense. If

λ+ κ+ 4lN < 1, (4.77)

then F has the inverse (a, d,Ld)-shadowing property whenever d ≤ a/L,
where

L−1 =
1

2N
(1− λ− κ− 4lN).

Proof. The line of argument is very similar to the proof of Theorem 77. Here,
a trajectory {xk} of Φ is constructed by proving the existence of a sequence
{vk} such that

pk+1 + vk+1 ∈ Φk(pk + vk)

and
‖V ‖∞ ≤ Ld. (4.78)

The mappings Φk can be represented as

Φk(pk + v) = L(pk) + A(pk)v +B(pk, v) + M̃k(pk + v) (4.79)

for small v, where each M̃k : Rm → CC(Rm) is a continuous mapping w.r.t.
distH such that

distH(M(pk + v), M̃k(pk + v)) ≤ d. (4.80)

Indeed,

F (pk + v) = L(pk) + A(pk)v +B(pk, v) +M(pk + v),

inequalities (4.5) hold, and the Hausdorff distance between the sets Φk(pk+v)
and F (pk + v) is preserved when these sets are shifted by the same vector
−(L(pk) + A(pk)v +B(pk, v)).

The aim is to prove the existence of a sequence {vk} such that

pk+1 + vk+1 ∈ L(pk) + A(pk)vk +B(pk, vk) + M̃k(pk + vk), k ∈ Z. (4.81)

As in the previous proof, it is enough to define

σ̃k = Dev(pk+1, L(pk) +B(pk, vk) + M̃(pk + vk)).

and to show that there exists a sequence of vectors V = {vk} such that

σ̃k = vk+1 − A(pk)vk (4.82)
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and inequality (4.78) holds.
Indeed, it follows from (4.82) that

pk+1 + vk+1 = pk+1 + σ̃k + A(pk)vk

∈ L(pk) +B(pk, vk) + A(pk)vk + M̃(pk + vk) = Φk(pk + vk).

For |vk| ≤ a,

|σ̃k| = dist(pk+1, L(pk) +B(pk, vk) + M̃(pk + vk))

≤ dist(pk+1, F (pk)) + distH(L(pk) +M(pk), L(pk) +B(pk, vk) + M̃(pk + vk))

= distH(M(pk), B(pk + vk) + M̃(pk + vk))

≤ |B(pk + vk)|+ distH(M(pk),M(pk + vk)) + distH(M(pk + vk), M̃k(pk + vk))

≤ d+ 2l|vk|,

which corresponds to estimate (4.57).
Now the operator T̃ : H → H is defined by

Q(pk+1)wk+1 = Q(pk+1)A(pk)vk +Q(pk+1)σ̃k (4.83)

and
P (pk)wk = Γ(P (pk+1)[vk+1 − σ̃k − A(pk)Q(pk)vk]) (4.84)

with H and Γ defined in (4.61) and via (4.64). (Of course, P (xk) must be
replaced by P (pk) etc. in these definitions.) Since the estimates of |σk| and
|σ̃k| are the same and the operators A(pk) have the same properties as the
operators A(xk) in Theorem 77, the rest of the proof is identical with that
of Theorem 77, and all constants remain unchanged.

Remark 81. The contractive set-valued mappings F discussed in Section 4.2
are hyperbolic according to the definition proposed above. For any λ ∈ (0, 1),
take Es(x) = Rm, Eu(x) = {0}, and L(x) = 0 (thus, A = 0) for all x ∈ Rm.
Then conditions (P1), (P2), and (4.45) hold with N = 1 and any l, κ > 0,
while inequalities (4.46) are a reformulation of the contractivity condition
(4.7).

67



4.4 Selection-based hyperbolicity

In the previous section, a hyperbolicity concept for set-valued mappings was
proposed which generalizes both, the classical single-valued hyperbolicity
condition as well as the set-valued contractive case discussed in Section 4.2.
The drawback of this approach is that it imposes rigid restrictions on the
behaviour of the set-valued mappings. On the other hand, the assumptions
imposed on the mappings are relatively easy to check.

It is possible to state a more general selection-based hyperbolicity condi-
tion for set-valued dynamical systems and to prove that every such system
has the shadowing and inverse shadowing property. In a way, this selection-
based approach is the first satisfactory notion of hyperbolicity from the point
of view of set-valued analysis. Unfortunately, it turns out to be very diffi-
cult to specify sufficient conditions which can be verified easily, because it is
impossible to characterize dynamics by means of the set-valued differentials
proposed in the literature (see Section 1.3).

4.4.1 Shadowing theorems

Throughout this section, the following notion of hyperbolicity will be con-
sidered.

Definition 82. A set-valued mapping F : Rm → A(Rm) is said to be hyper-
bolic if it is locally parametrized by a family of hyperbolic selections:

(P1) For every x ∈ Rm there exist linear subspaces Es(x), Eu(x) ⊂ R
m

called the stable and unstable subspaces, respectively, such that

Es(x)⊕ Eu(x) = Rm. (4.85)

If Q(x) and P (x) are the corresponding complementary projections from
R
m to Es(x) and Eu(x), then there exists an N ≥ 1 such that

|Q(x)|, |P (x)| ≤ N (4.86)

for all x ∈ Rm.

(P2) There exist constants λ ∈ (0, 1), κ > 0, l > 0, and a > 0 such that
for every point (x, z) ∈ graph(F ) there exists a local selection fz of F ,
which is a single-valued function fz : Ba(x) → R

m with fz(x) = z,
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fz(x
′) ∈ F (x′) for all x′ ∈ Ba(x), and such that the following property

holds: For any y, v ∈ Rm with |v| ≤ a and |z − y| ≤ a,

fz(x+ v) = z + Az(x)v + bz(x, v), (4.87)

where the Az(x) : Rm → R
m is a linear map, the restriction

P (y)Az(x)|Eu(x)
: Eu(x)→ Eu(y) (4.88)

is an isomorphism such that

|P (y)Az(x)P (x)v| ≥ λ−1|P (x)v|, (4.89)

|P (y)Az(x)Q(x)v| ≤ κ|Q(x)v|, (4.90)

|Q(y)Az(x)P (x)v| ≤ κ|P (x)v|, (4.91)

|Q(y)Az(x)Q(x)v| ≤ λ|Q(x)v|, (4.92)

and bz(x, ·) is a small perturbation continuous in v and bounded by

|bz(x, v)| ≤ l|v|. (4.93)

Formula (4.87) and the above condition on bz imply that fz is continuous
for |v| ≤ a.

Remark 83. The definition of hyperbolicity stated in Section 4.3 is a special
case of the general definition given above.

In Section 4.3, set-valued mappings of the form

F (x) = L(x) +M(x) (4.94)

were considered, where L : Rm → R
m is a continuous single-valued mapping,

and M : Rm → CC(Rm) is a set-valued mapping with compact and convex
images. It was assumed that there exist constants N ≥ 1, λ ∈ (0, 1), κ > 0,
l > 0, and a > 0 such that

• condition (P1) above is satisfied;

• if x, y, v ∈ Rm satisfy the inequalities |v| ≤ a and dist(y, F (x)) ≤ a,
then L(x+ v) can be represented as

L(x+ v) = L(x) + A(x)v + b(x, v),

where A(x) : Rm → R
m is a linear map that is continuous in x and such

that (after the replacement of Az(x) by A(x) in (P2)) the restriction
(4.88) is an isomorphism that satisfies estimate (4.89), and inequalities
(4.90)-(4.92) hold;
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• |b(x, v)| ≤ l|v|;

• distH(M(x+ v),M(x)) ≤ l|v|.

Take a mapping F be of the form (4.94) that satisfies the above conditions,
let z ∈ F (x), and define the corresponding local selection fz by

fz(x+ v) = z + A(x)v + Dev(z + A(x)v, F (x+ v)),

i.e. take A(x) as Az(x) and set

bz(x, v) = Dev(z + A(x)v, F (x+ v)).

Clearly, fz(x) = z, fz(x + v) ∈ F (x + v), and Az(x) = A(x) satisfies the
corresponding properties formulated in (P2) above. Since F is convex and
continuous, bz is continuous.

The inclusion z ∈ F (x) implies that

dist(z + A(x)v, F (x+ v)) ≤ dist(F (x) + A(x)v, F (x+ v))

= dist(L(x) + A(x)v +M(x), L(x) + A(x)v + b(x, v) +M(x+ v))

= dist(M(x), b(x, v) +M(x+ v))

≤ |b(x, v)|+ distH(M(x),M(x+ v)) ≤ 2l|v|,

and inequality (4.93) is verified (with l replaced by 2l).

The following shadowing theorem reduces the shadowing problem to a
discussion of selections.

Theorem 84. Let F : Rm → A(Rm) be a hyperbolic set-valued mapping
such that

λ+ κ+ 2lN < 1.

Then F has the (d, Ld)-shadowing property whenever d < a/L, where

L−1 =
1

2N
(1− λ− κ− 2lN).
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Proof. For every k ∈ Z, fix y = xk+1 and a point z ∈ Proj(xk+1, F (xk)).
Then |y − z| < a, and there exists a continuous hyperbolic selection fz of F
(denoted below fk) such that

fk(xk + v) = fk(xk) + Ak(xk)v + bk(xk, v) ∈ F (xk + v), |v| ≤ a,

according to (P2). Thus any sequence vk with |vk| ≤ Ld such that

xk+1 + vk+1 = fk(xk + vk)

yields a shadowing trajectory.
Take b = d/(2L) and define

Hk := {v ∈ Rm : |P (xk)v|, |Q(xk)v| ≤ b}

and H :=
∏

k∈ZHk. Note that if v ∈ Hk, then |v| ≤ 2b = Ld. Since each Hk

is compact and convex, so is H w.r.t. the Tikhonov topology.
The mapping Gk : U(xk)→ U(xk+1) given by

Gk(w) := −P (xk+1)Ak(xk)w (4.95)

satisfies Gk(0) = 0,

|Gk(w)| ≥ λ−1|w|, w ∈ U(xk), (4.96)

and Gk(B
b
xk

) ⊃ B
b/λ
xk+1 , where

Bc
x := {z ∈ Eu(x) : |z| ≤ c}, (4.97)

because of property (P2). Thus the inverse G−1
k of Gk is defined on B

b/λ
xk+1 ,

and
|G−1

k (z)−G−1
k (z′)| ≤ λ|z − z′|, z, z′ ∈ Bb/λ

xk+1
. (4.98)

The operator T : H → H which is given by

Q(xk+1)Tk+1(V ) := Q(xk+1) (fk(xk + vk)− xk+1) (4.99)

and

P (xk)Tk(V ) := G−1
k (P (xk+1) {bk(xk, vk)

+Ak(xk)Q(xk)vk + fk(xk)− xk+1 − vk+1}) (4.100)

71



for V = {vk}k∈Z ∈ H, is well-defined. The argument in (4.100) satisfies

|P (xk+1) {bk(xk, vk) + Ak(xk)Q(xk)vk + fk(xk)− xk+1 − vk+1} |

≤ Nl|vk|+ κ|Q(xk)vk|+Nd+ b ≤ 2lNb+ κb+Nd+ b

≤ (2lN + κ+
Nd

b
+ 1)b ≤ λ−1b

for V = {vk}k∈Z ∈ H, because

b−1 =
1

Nd
(1− λ− κ− 2lN) ≤ 1

Nd
(λ−1 − 1− κ− 2lN),

so that the argument in (4.100) is an element of B
b/λ
xk+1 . Furthermore,

|Q(xk+1)Tk+1(V )|

≤ |Q(xk+1)Ak(xk)P (xk)vk|+ |Q(xk+1)Ak(xk)Q(xk)vk|

+|Q(xk+1)bk(xk, vk)|+ |Q(xk+1)(fk(xk)− xk+1)|

≤ κ|P (xk)vk|+ λ|Q(xk)vk|+ lN |vk|+Nd ≤ κb+ λb+ 2lNb+
2N

L
b = b,

and T (V ) ∈ H. The operator T is continuous w.r.t. the Tikhonov topology,
because every component Tk depends on vk−1, vk, vk+1 only. Hence T has a
fixed point V ∈ H, which implies that

Q(xk+1)vk+1 = Q(xk+1) (fk(xk + vk)− xk+1) (4.101)

and

−P (xk+1)Ak(xk)P (xk)vk = Gk(P (xk)vk)

= P (xk+1) {bk(xk, vk) + Ak(xk)Q(xk)vk + fk(xk)− xk+1 − vk+1}

or
P (xk+1)vk+1 = P (xk+1)(fk(xk + vk)− xk+1). (4.102)

By (4.101) and (4.102), the sequence η := {pk}k∈Z with pk = xk + vk is the
desired shadowing trajectory.
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As the line of argument for inverse shadowing is very similar to the pre-
vious discussion, only the elements of the setup which have to be modified
will be highlighted.

A mapping F : Rm → A(Rm) is said to be hyperbolic at a given trajectory
η = {pk} if there exist constants N ≥ 1, a, κ, l > 0, and λ ∈ (0, 1) such that
condition (P1) holds for points x = pk, and condition (P2) holds for points
x = pk, y = z = pk+1, and vectors v with |v| ≤ a.

It is possible to consider two classes of sequences of mappings that ap-
proximate the set-valued mapping F . Fix a number d > 0.

Class 1.
Consider a sequence of mappings

Φ = {Φk : Rm → CC(Rm)}

such that each Φk is continuous w.r.t. distH and

dist(F (pk + v),Φk(pk + v)) ≤ d for k ∈ Z and |v| ≤ a. (4.103)

Class 2.
Let

CS(Ψ, x, a) = {ψ ∈ C(Ba(x),Rm) : ψ(y) ∈ Ψ(y), y ∈ Ba(x)}

be the set of all continuous local selections of a set-valued mapping Ψ and
let C(Ba(x),Rm) be equipped with the supremum norm.

Consider a sequence of mappings

Φ = {Φk : Rm → A(Rm)}

such that
dist(CS(F, pk, a), CS(Φk, pk, a)) ≤ d, k ∈ Z. (4.104)

For both classes, a sequence of points xk ∈ Rm is a trajectory of the
sequence Φ if xk+1 ∈ Φk(xk).

Remark 85. According to my opinion, the following problem has received
far too little attention:
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Which conditions can be imposed on two set-valued mappings F and G
from some set K to Rm such that the sets CS(F ) and CS(G) of their con-
tinuous selections are close to each other w.r.t. the Hausdorff distance in
the space of continuous functions, and is it possible to relate this distance
distH(CS(F ), CS(G)) to the Hausdorff distance distH(F (·), G(·)) between the
images of F and G?

It is well-known that convexity and compactness of the images together
with continuity imply that

distH(CS(F ), CS(G)) ≤ sup
x∈K

distH(F (x), G(x)), (4.105)

but these conditions are by no means necessary: Consider a continuous map-
ping F with arbitrary images and define G(·) := v + F (·), where v is any
vector. Then the Hausdorff distance between the sets of continuous selec-
tions of both mappings is |v| = distH(F (x), G(x)).

As most fixed point theorems can only be applied to continuous functions,
this question has a considerable impact on existence results.

Theorem 86. Assume that a set-valued mapping F : Rm → A(Rm) is
hyperbolic at a trajectory η = {pk} in the above sense. If

λ+ κ+ 2lN < 1, (4.106)

then F has the inverse (a, d, Ld)-shadowing property: Whenever a family
Φ of mappings is in one of the above classes with d < a/L, there exists a
trajectory ξ = {xk} of Φ such that

‖ξ − η‖∞ ≤ Ld,

where

L−1 =
1

2N
(1− λ− κ− 2lN).

Proof. By assumption, there exist hyperbolic selections fk of F such that
fk(pk) = pk+1,

fk(pk + v) = fk(pk) + Ak(pk)v + bk(pk, v),

|P (pk+1)Ak(pk)P (pk)v| ≥ λ−1|P (pk)v|,

and so on.
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Case 1. Because of (4.103), ϕk(pk + v) := Proj(fk(pk + v),Φk(pk + v)) is
a selection of Φk such that |fk(pk + v)−ϕk(pk + v)| ≤ d for all |v| ≤ a. Since
Φk is continuous w.r.t. the Hausdorff distance and has convex values, the ϕk
are also continuous according to Theorem 26.

Case 2. Assumption (4.104) implies the existence of continuous selections
ϕk of Φk such that

|fk(pk + v)− ϕk(pk + v)| ≤ d, |v| ≤ a.

In both cases, the aim is to find a sequence vk with |vk| ≤ Ld such that

pk+1 + vk+1 = ϕk(pk + vk) ∈ Φk(pk + vk).

As before, b = d/(2L), Hk := {v ∈ Rm : |P (pk)v|, |Q(pk)v| ≤ b}, and
H :=

∏
k∈ZHk. Here,

Gk(w) := −P (pk+1)Ak(pk)w, (4.107)

and the operator T : H → H is defined by

Q(pk+1)Tk+1(V ) := Q(pk+1) (ϕk(pk + vk)− pk+1) , (4.108)

P (pk)Tk(V ) := G−1
k (P (pk+1){bk(pk, vk) + Ak(pk)Q(pk)vk (4.109)

−(fk − ϕk)(pk + vk) + fk(pk)− pk+1 − vk+1}) .

The estimates are essentially unchanged, merely the error Nd is now
caused by the term P (·)(ϕk− fk)(·) instead of P (·)(fk(xk)− xk+1) as before.

4.4.2 Application to polytope-valued mappings

Let F : Rm → CC(Rm) be a polytope-valued mapping, i.e. a set-valued
mapping which is characterized by its vertices s1, . . . , sn : Rm → R

m via

F (x) = co{s1(x), . . . , sn(x)} for all x ∈ Rm. (4.110)

Assume that there exist N ≥ 1, a, κ, l > 0, and λ ∈ [0, 1] such that

(P1′) condition (P1) of Section 4.4.1 holds, and the dimensions of the spaces
Eu(x) are the same for all x ∈ Rm.
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(P2′) For any x, y, v ∈ Rm with |v| ≤ a and |si(x)− y| ≤ a, the vertices can
be represented as

si(x+ v) = si(x) + Ai(x)v + bi(x, v) (4.111)

for 1 ≤ i ≤ n, where any Ai(x) : Rm → R
m is a linear map such

that for each v there exists a direction of expansion p(x, v) ∈ Rm with
|p(x, v)| = 1 and

〈p(x, v), P (y)Ai(x)P (x)v〉 ≥ λ−1|P (x)v|, (4.112)

analogs of conditions (4.90)-(4.92) hold (with Az(x) replaced by Ai(x)),
and bi(x, ·) are small continuous perturbations for which analog of con-
dition (4.93) is valid.

Remark 87. From the geometric point of view, inequality (4.112) ensures
that the unstable perturbations P (y)Ai(x)P (x)v drive all vertices in the same
direction, so that their movements cannot cancel each other when combined.

In the case of polytope-valued mappings, the general notion of hyperbol-
icity introduced in Section 4.4.1 is implied by conditions on the behavior of
a finite set of points. Please note that there are polytope-valued mappings
which satisfy the conditions of Theorem 88, but not the restrictive setup of
Section 4.3, because inequality (4.112) bounds the expansion of each single
vertex from below but not from above.

Theorem 88. Let F : Rm → CC(Rm) be a polytope-valued mapping such that
its vertices satisfy conditions (P1 ′) and (P2 ′). Assume that the projections
P and Q are Lipschitz continuous with Lipschitz constant K ≥ 0 such that

K diam(F (x)) max
1≤i≤n

‖Ai(x)‖ < λ−1, x ∈ Rm. (4.113)

If
λ0 := sup

x∈Rm
max(λ1(x), λ2(x)) < 1,

where
λ1(x) := (λ−1 −K diam(F (x)) max

1≤i≤n
‖Ai(x)‖)−1

and
λ2(x) := λ+K diam(F (x)) max

1≤i≤n
‖Ai(x)‖,
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then F is a hyperbolic set-valued mapping with constants N, λ0,

κ0 := κ+ sup
x∈Rm

K diam(F (x)) max
1≤i≤n

‖Ai(x)‖,

l, and a.

Proof. Let any point (x, z) ∈ graph(F ) be given. Because of (4.110), there
exist θ1, . . . , θn ∈ [0, 1] with

∑n
i=1 θi = 1 and

z =
n∑
i=1

θisi(x).

Define the selection fz : Rm → R
m as the convex combination

fz(x
′) :=

n∑
i=1

θisi(x
′). (4.114)

of the vertices of F with the above coefficients. Then

fz(x+ v) =
n∑
i=1

θisi(x+ v) =
n∑
i=1

θi (si(x) + Ai(x)v + bi(x, v))

= s(x) +
n∑
i=1

θiAi(x)v +
n∑
i=1

θibi(x, v) =: z + A(x)v + b(x, v).

In order to check condition (P2), take y with |y − z| ≤ a and define
yi = y − z + si(x), so that |yi − si(x)| ≤ a. Since the projections P are
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Lipschitz continuous with Lipschitz constant K,

|P (y)A(x)P (x)v|
≥ 〈p(x, v), P (y)A(x)P (x)v〉

= 〈p(x, v),
n∑
i=1

θiP (y)Ai(x)P (x)v〉

= 〈p(x, v),
n∑
i=1

θiP (yi)Ai(x)P (x)v〉

+〈p(x, v),
n∑
i=1

θi (P (y)− P (yi))Ai(x)P (x)v〉

≥ λ−1|P (x)v| −K diam(F (x)) max
1≤i≤n

‖Ai(x)‖|P (x)v|

=

(
λ−1 −K diam(F (x)) max

1≤i≤n
‖Ai(x)‖

)
|P (x)v|

= λ−1
1 (x)|P (x)v|

by estimates (4.112), which implies that the restriction

P (y)A(x)|Eu(x)
: Eu(x)→ Eu(y)

is an isomorphism (the dimensions of Eu(x) and Eu(y) coincide). The same
estimate proves inequality (4.89).

To prove inequalities (4.90)-(4.92), note that

|P (y)A(x)Q(x)v|

= |P (y)
n∑
i=1

θiAi(x)Q(x)v|

≤ |
n∑
i=1

θiP (yi)Ai(x)Q(x)v|+ |
n∑
i=1

θi (P (y)− P (yi))Ai(x)Q(x)v|

≤ κ|Q(x)v|+K diam(F (x)) max
1≤i≤n

‖Ai(x)‖|Q(x)v|

=

(
κ+K diam(F (x)) max

1≤i≤n
‖Ai(x)‖

)
|Q(x)v|

≤ κ0|Q(x)v|,
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|Q(y)A(x)P (x)v|

= |Q(y)
n∑
i=1

θiAi(x)P (x)v|

≤ |
n∑
i=1

θiQ(yi)Ai(x)P (x)v|+ |
n∑
i=1

θi (Q(y)−Q(yi))Ai(x)P (x)v|

≤ κ|P (x)v|+K diam(F (x)) max
1≤i≤n

‖Ai(x)‖|P (x)v|

=

(
κ+K diam(F (x)) max

1≤i≤n
‖Ai(x)‖

)
|P (x)v|

≤ κ0|P (x)v|,

and

|Q(y)A(x)Q(x)v|

= |Q(y)
n∑
i=1

θiAi(x)Q(x)v|

≤ |
n∑
i=1

θiQ(yi)Ai(x)Q(x)v|+ |
n∑
i=1

θi (Q(y)−Q(yi))Ai(x)Q(x)v|

≤ λ|Q(x)v|+K diam(F (x)) max
1≤i≤n

‖Ai(x)‖|Q(x)v|

=

(
λ+K diam(F (x)) max

1≤i≤n
‖Ai(x)‖

)
|Q(x)v|

= λ2(x)|Q(x)v|.

Finally,

|b(x, v)| ≤
n∑
i=1

θi|bi(x, v)| ≤ l|v|,

which proves estimate (4.93).

Corollary 89. If the assumptions of Theorem 88 hold and

λ0 + κ0 + 2lN < 1,

then F has the shadowing property due to Theorem 84 and the inverse shad-
owing property according to Theorem 86.
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Chapter 5

An application: The Viability
Kernel Algorithm

Viability kernels (cf. Section 2.6) of differential inclusions are of considerable
interest, because many theoretical and practical problems can be reformu-
lated as viability problems.

The viability approach enjoys an increasing popularity in a variety of
applications where constrained dynamics are analyzed. It has been used e.g.
in [6] in oder to derive conditions under which ecosystems are viable in the
sense that no species dies out.

Most problems related to the prevention of collisions arising from traffic
control or robotics can be reformulated as viability problems in a natural way:
The set K of desirable states is defined as the union of all states in which the
distance between the vehicles or between robot and obstacles, respectively,
is bigger than some given safety distance. In this setup, the viability kernel
is the set of states from which collisions can successfully be prevented.

Unfortunately, it is very difficult to calculate viability kernels analyti-
cally and thus reliable numerical methods are required. In [17], Frankowska
and Quincampoix proposed a first algorithm for the computation of viabil-
ity kernels, and Saint-Pierre succeeded to prove the convergence of a fully
discretized and hence implementable algorithm in [35]. This Viability Ker-
nel Algorithm was later generalized to impulsive differential inclusions in [9].
However, it is still an open question how fast this algorithm converges, and
until now no error estimates have been available.
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As viability theory describes the behaviour of trajectories on the un-
bounded time interval [0,∞), it seems natural to use shadowing results as
tools in this context. The aim of this chapter is to derive the first rigorous
estimates for the accuracy of the fully discretized viability algorithm.

5.1 Algorithm and general estimates

Consider the autonomous differential inclusion

ẋ(t) ∈ F (x(t)) for almost every t ≥ 0, x(0) = x0 ∈ Rm (5.1)

and its time-h-flow

Gh : Rm ⇒ R
m, x 7→ R(h, 0, x), (5.2)

where R(h, 0, x) denotes the reachable set of (5.1) at time h. For any ρ > 0
let Xρ ⊂ Rm be a countable subset with

∀x ∈ Rm, ∃xρ ∈ Xρ with |x− xρ| ≤ ρ. (5.3)

In most applications, Xρ is simply a subgrid of Rm. Given any subset A ⊂
R
m and ε > 0, define

Aε := A+ εB and Aερ := Aε ∩Xρ. (5.4)

Consider the semi-discretized Euler scheme

Γh : Rm ⇒ R
m, x 7→ x+ hF (x) (5.5)

and the fully discretized scheme

Γh,ρ : Xρ ⇒ Xρ, xρ 7→
(
xρ + hF (xρ) + (2 + Lh)ρB

)
∩Xρ, (5.6)

where L > 0 will be a Lipschitz constant of a restriction of F (see assumption
(iii) below).

The Viability Kernel Algorithm for the computation of the viability kernel
ViabF (K) of a compact set K is straight forward:

1. Set V0 := K ∩Xρ and Z0 := ∅.
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2. For each xρ ∈ V0: If Γh,ρ(xρ) ∩ V0 = ∅, set Z0 := Z0 ∪ {xρ}.

3. Set V1 := V0\Z0 and Z1 := ∅.

4. For each xρ ∈ V1, . . .

The sequence V0 ⊃ V1 ⊃ V2 ⊃ . . . will eventually be constant. The com-
puted set V∞ := ∩∞n=0Vn is the largest weakly positively invariant set, i.e. the
discrete viability kernel, under the inflated Euler method.

It should be mentioned that the Viability Kernel Algorithm is closely re-
lated to the well-known subdivision method for the approximation of attrac-
tors and unstable manifolds of ODEs proposed by Dellnitz and Hohmann, see
[11]. While the subdivision method computes in every step a covering of the
desired object which is backward invariant w.r.t. a suitable space discretiza-
tion, the Viability Kernel Algorithm computes a forward invariant subset of
a grid. Whenever the time-h flow is locally Lipschitz continuous, these con-
cepts coincide up to a reversal of time, so that the subdivision method could
be regarded as a particularly important special case of the Viability Kernel
Algorithm.

Throughout this chapter, the following assumptions will be supposed:

(i) The viability kernel ViabF (K) is stable in the sense that there exist an
ε0 > 0 and a Lipschitz constant LV > 0 such that for all 0 ≤ ε ≤ ε0,
ViabF (K) ⊂ ViabF (Kε) and

dist(ViabF (Kε),ViabF (K)) ≤ LV ε. (5.7)

(ii) There exist a d
(s)
0 > 0 and a d

(is)
0 > 0, possibly dependent on h, such

that the h-flow Gh has

(iia) the (d, ϕ(d))-shadowing property in Kε0 for d ∈ (0, d
(s)
0 ] and

(iib) the (global) inverse (d, ψ(d))-shadowing property in K for d ∈
(0, d

(is)
0 ],

where ϕ, ψ : R+ → R+ are increasing functions with limd→0 ϕ(d) = 0
and limd→0 ψ(d) = 0, which can also depend on h.
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(iii) The mapping F is Lipschitz-continuous in Kε0 with Lipschitz constant
L > 0 and has compact and convex values.

The following observations will be used frequently throughout this Chap-
ter.

Observation 90. For any compact set A ⊂ Rm, the viability kernels can be
characterized by

ViabG(A) = {x0 ∈ A : ∃(pn)n∈N ⊂ A with p0 = x0 and pn+1 ∈ G(pn) ∀n ∈ N}

and

ViabF (A) = {x0 ∈ A : ∃ a solution x : [0,∞)→ A of (5.1) with x(0) = x0}.

It is obvious that the right hand sides are the largest viability domains con-
tained in A. Under mild assumptions on F and G they are closed, compare
e.g. Theorem 3.5.3 in [1].

Observation 91. Because of assumption (iii), F is bounded on Kε0 by
‖F‖∞ = M < ∞. Thus any solution x of (5.1) remaining in Kε0 satis-
fies

|x(t)− x(0)| ≤
∫ t

0

|ẋ(s)|ds ≤Mt. (5.8)

If x(0) ∈ Kε with 0 < ε < ε0, it follows that x(t) ∈ Kε0 for all t ∈ [0, h] with
0 < h < ε0−ε

M
. Otherwise 0 < t0 := inf{t ∈ [0, h] : x(t) /∈ Kε0} < h and (5.8)

holds for all 0 ≤ t ≤ t0. But then

|x(t0)− x(0)| ≤Mt0 < Mh ≤ ε0 − ε

implies that x(t0) is in the interior of Kε0, which is a contradiction. Thus
(5.8) holds for all t ∈ [0, h]. If x(0) ∈ Kε and x(h) ∈ Kε, (5.8) can be
applied forwards in time from x(0) and backwards in time from x(h) in order
to obtain

dist(x(s), Kε) ≤ 1

2
Mh ∀s ∈ [0, h]. (5.9)

Lemma 92. The relations ViabF (K) ⊂ ViabGh(Kε) and

dist(ViabGh(Kε),ViabF (K)) ≤ LV (ε+
1

2
Mh)

hold whenever 0 ≤ ε < ε0 and 0 < Mh < ε0 − ε.
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Proof. Obviously ViabF (K) ⊂ ViabGh(Kε). But

x0 ∈ ViabGh(Kε) ⇒ ∃(pn)n∈N ⊂ Kε : p0 = x0, pn+1 ∈ Gh(pn) ∀n ∈ N
⇒ ∃ a solution x : [0,∞)→ R

m of (5.1) : x(nh) = pn ∈ Kε

⇒ dist(x(t), Kε) ≤ 1

2
Mh ∀t ≥ 0

⇒ x0 ∈ ViabF (Kε+ 1
2
Mh)

by Observation 91, and thus

dist(ViabGh(Kε),ViabF (K))

≤ dist(ViabGh(Kε),ViabF (Kε+ 1
2
Mh)) + dist(ViabF (Kε+ 1

2
Mh),ViabF (K))

≤ LV (ε+
1

2
Mh)

by assumption (i).

The following Lemma is contained implicitly in many works, because it
estimates the local error of the semi-discretized Euler-scheme.

Lemma 93. The error of approximation between Gh and Γh is

distH(Gh(x0),Γh(x0)) ≤Mh(eLh − 1)

for all 0 < ε < ε0, x0 ∈ Kε, and h > 0 such that MheLh ≤ ε0 − ε.

Proof. Let a solution x : [0, h] → R
m of (5.1) with x(0) = x0 be given.

Because of (5.8), x(s) ∈ Kε0 for all s ∈ [0, h]. As F has convex values,
the image of the Euler-step Γh(x0) is identical with the reachable set of the
constant differential inclusion

ė(t) ∈ F (x0), e(0) = x0 (5.10)

at time h. Since

dist(ẋ(t), F (x(0))) ≤ dist(F (x(t)), F (x(0))) ≤ L|x(t)− x(0)| ≤ LMt,

the Filippov Theorem (cf. Theorem 31) guarantees the existence of a solution
e : [0, h]→ R

m of (5.10) satisfying

|x(t)− e(t)| ≤
∫ t

0

eL(t−s)LMtds = Mt(eLt − 1)
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for all t ∈ [0, h], and in particular

dist(x(h),Γh(x0)) ≤ |x(h)− e(h)| ≤Mh(eLh − 1).

Conversely, let η ∈ F (x0) be given and consider the corresponding linear
trajectory e(t) := x0 + tη for t ∈ [0, h] of Γh. As

dist(ė(t), F (e(t))) ≤ dist(F (x0), F (e(t))) ≤ LMt,

the Filippov theorem yields a solution x : [0, h]→ R
m of (5.1) with x(0) = x0

and

|x(t)− e(t)| ≤
∫ t

0

eL(t−s)LMtds = Mt(eLt − 1)

for all t ∈ [0, h], and in particular

dist(e(h), Gh(x0)) ≤ |e(h)− x(h)| ≤Mh(eLh − 1).

5.2 Estimates using the shadowing and the

inverse shadowing property

Lemma 94. If Mh(eLh−1) ≤ d
(is)
0 , ε1 := ψ(Mh(eLh−1)) ≤ ε0 and MheLh ≤

ε0 then
dist(ViabF (K),ViabΓh(Kε1)) ≤ ε1.

Proof. Let p0 ∈ ViabF (K) ⊂ ViabGh(K) be given. Then there exists an orbit
(pn)n∈N of Gh such that pn ∈ K for all n ∈ N. As Γh is continuous with
compact and convex values, Lemma 93 ensures that Γh is an approximation
of Gh in the sense of assumption (iib), which in turn yields the existence of
an orbit (xn)n∈N of Γh such that |pn−xn| ≤ ε1. Thus xn ∈ Kε1 for all n ∈ N,
and x0 ∈ ViabΓh(Kε1) by Observation 90.

The following lemma uses a simple fact: For any A ⊂ X, the estimate
dist(A,Aρρ) ≤ ρ holds, because for every a ∈ A there is an xρ ∈ Xρ such that
|a− xρ| ≤ ρ, and then xρ ∈ Aρ ∩Xρ.

Lemma 95. If ε1 + ρ ≤ ε0, then

dist(ViabΓh(Kε1),ViabΓh,ρ(K
ε1+ρ
ρ )) ≤ ρ.

85



Proof. Let (xn)n∈N be a viable orbit of Γh in Kε1 . By definition, there exists
a ξ0 ∈ Kε1+ρ

ρ such that |x0 − ξ0| ≤ ρ. Since

dist(x0 + hF (x0), ξ0 + hF (ξ0)) ≤ (1 + Lh)ρ, (5.11)

it follows that

dist(x0 + hF (x0), ξ0 + hF (ξ0) + (1 + Lh)ρB) = 0, (5.12)

and thus

dist(Γh(x0),Γh,ρ(ξ0))

= dist(x0 + hF (x0), (ξ0 + hF (ξ0) + (2 + Lh)ρB) ∩Xρ)

≤ ρ.

Thus there exists a ξ1 ∈ Γh,ρ(ξ0) such that |x1 − ξ1| ≤ ρ, and by induction
there exists a whole orbit (ξn)n∈N of Γh,ρ with |xn − ξn| ≤ ρ for all n ∈ N.
Consequently ξn ∈ Kε1+ρ

ρ for all n ∈ N, and ξ0 ∈ ViabΓh,ρ(K
ε1+ρ
ρ ).

Lemma 96. Let ε2 := ϕ((2 +Lh)ρ+Mh(eLh− 1)). If MheLh ≤ ε0− ε1− ρ,

Mh ≤ ε0 − ε1 − ρ− ε2, and (2 + Lh)ρ+Mh(eLh − 1) ≤ d
(s)
0 , then

dist(ViabΓh,ρ(K
ε1+ρ
ρ ),ViabF (K)) ≤ ε2 + LV (ε1 + ρ+ ε2 +

1

2
Mh).

Proof. By Lemma 93,

dist(Γh,ρ)(xρ), Gh(xρ))

≤ dist(xρ + hF (xρ) + (2 + Lh)ρB, xh + hF (xρ)) + dist(xρ + hF (xρ), Gh(xρ))

≤ (2 + Lh)ρ+Mh(eLh − 1) =: d

for every xρ ∈ Kε1+ρ
ρ . Thus any trajectory (ξn)n∈N of Γh,ρ which is viable

in Kε1+ρ
ρ is a d-pseudotrajectory of Gh, and assumption (iia) implies the

existence of an orbit (pn)n∈N of Gh such that |pn − ξn| ≤ ε2 for all n ∈ N.
Hence p0 ∈ ViabGh(Kε1+ρ+ε2) by Observation 1, which means that

dist(ViabΓh,ρ(K
ε1+ρ
ρ ),ViabF (K))

≤ dist(ViabΓh,ρ(K
ε1+ρ
ρ ),ViabGh(Kε1+ρ+ε2

ρ ))

+ dist(ViabGh(Kε1+ρ+ε2
ρ ),ViabF (K))

≤ ε2 + LV (ε1 + ρ+ ε2 +
1

2
Mh)

by Lemma 92.

86



Altogether, an estimate for the accuracy of the Viability Kernel Algorithm
is obtained:

Theorem 97. If

(2 + Lh)ρ+Mh(eLh − 1) ≤ d
(s)
0 , (5.13)

Mh(eLh − 1) ≤ d
(is)
0 , (5.14)

MheLh + ε1 + ρ ≤ ε0, (5.15)

Mh+ ε1 + ε2 + ρ ≤ ε0, (5.16)

and if assumptions (i) to (iii) are satisfied, then

distH(ViabF (K),ViabΓh,ρ(K
ε1+ρ
ρ ))

≤ max{ε1 + ρ, ε2 + LV (ε1 + ρ+ ε2 +
1

2
Mh)}. (5.17)

The conditions of Theorem 97 do not look very appealing. Please note
that they can be verified easily in a quite practical sense: In concrete applica-
tions, it is usually reasonable to express ρ in terms of h, e.g. ρ := h2. Under
moderate assumptions, the left hand sides of (5.13) and (5.14) converge con-

siderably faster to zero in ρ than the corresponding shadowing constants d
(s)
0

and d
(is)
0 (compare Section 5.4). If a desired accuracy δ > 0 of the approxi-

mation of the viability kernel and concrete monotone functions ϕ and ψ are
given, the inequalities (5.13) to (5.16) together with

max{ε1 + h2, ε2 + LV (ε1 + h2 + ε2 +
1

2
Mh)} ≤ δ (5.18)

can be regarded as scalar constraints which are monotone w.r.t. h. Thus one
can determine the maximal h which respects all constraints using a simple
interval subdivision algorithm. The same method can be used in the context
of Theorem 100.

5.3 Estimates using the shadowing property

only

It is possible to dispense with the inverse shadowing property by inflating
the right hand sides of the numerical schemes so much that the numerical
errors are ’swallowed’ by the inflation. To this end, define

Γ̃h : Rm ⇒ R
m, x 7→ x+ hF (x) +Mh(eLh − 1)B (5.19)
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and

Γ̃h,ρ : Xρ ⇒ Xρ, (5.20)

xρ 7→
(
xρ + hF (xρ) +Mh(eLh − 1)B + (2 + Lh)ρB

)
∩Xρ.

For these schemes the following estimates hold.

Lemma 98. If MheLh ≤ ε0 and ρ ≤ ε0,

dist(ViabF (K),ViabΓ̃h,ρ
(Kρ

ρ)) ≤ ρ.

Proof. According to Lemma 93,

dist(Gh(x0),Γh(x0)) ≤Mh(eLh − 1)

for all x0 ∈ K, and thus

dist(Gh(x0), Γ̃h(x0)) = 0

and
dist(ViabGh(K),ViabΓ̃h

(K)) = 0.

Adapting the proof of Lemma 95 to Γ̃h and Γ̃h,ρ yields the desired result.

Lemma 99. If ε3 := ϕ(2Mh(eLh−1)+(2+Lh)ρ) ≤ ε0−ρ, MheLh ≤ ε0−ρ,

and 2Mh(eLh − 1) + (2 + Lh)ρ ≤ d
(s)
0 , then

dist(ViabΓ̃h,ρ
(Kρ

ρ),ViabF (K)) ≤ ε3 + LV (ρ+ ε3 +
1

2
Mh).

Proof. By Lemma 93,

dist(Γ̃h,ρ(xρ), Gh(xρ))

≤ dist(xρ + hF (xρ) +Mh(eLh − 1)B + (2 + Lh)ρB, xρ + hF (xρ))

+ dist(xρ + hF (xρ), Gh(xρ))

≤ 2Mh(eLh − 1) + (2 + Lh)ρ =: d̃

for any xρ ∈ Kρ
ρ .

Thus any trajectory (ξn)n∈N of Γ̃h,ρ which is viable in Kρ
ρ is a d̃-pseudotra-

jectory of Gρ, and assumption (iia) implies that there exists an orbit (pn)n∈N
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of Gh such that |pn− ξn| ≤ ε3 for all n ∈ N. Hence p0 ∈ ViabGh(Kρ+ε3), and
therefore

dist(ViabΓ̃h,ρ
(Kρ

ρ),ViabF (K))

≤ dist(ViabΓ̃h,ρ
(Kρ

ρ),ViabGh(Kρ+ε3
ρ ))

+ dist(ViabGh(Kρ+ε3
ρ ),ViabF (K))

≤ ε3 + LV (ρ+ ε3 +
1

2
Mh)

by Lemma 92.

Summarizing the following estimate for the accuracy of the Viability Ker-
nel Algorithm can be obtained for systems which have the shadowing but not
the inverse shadowing property:

Theorem 100. If

MheLh + ρ ≤ ε0, (5.21)

2Mh(eLh − 1) + (2 + Lh)ρ ≤ d
(s)
0 , (5.22)

ε3 + ρ ≤ ε0, (5.23)

and if assumptions (i), (iia), and (iii) are satisfied, then

distH(ViabF (K),ViabΓ̃h,ρ
(Kρ

ρ))

≤ max{ρ, ε3 + LV (ρ+ ε3 +
1

2
Mh)}. (5.24)

5.4 One-sided Lipschitz right hand sides

In this section, the above results are applied to differential inclusions with
relaxed one-sided Lipschitz right hand sides. This discussion should serve as
a kind of template which shows how one can derive statements about the
accuracy of the viability kernel algorithm from shadowing theorems. The
behaviour, the stability properties, and the shadowing properties of these
systems are well understood (see [13, 14], and Section 2.5).

Let F : Rm ⇒ R
m be a set-valued mapping which is Lipschitz continuous

with Lipschitz constant L > 0 and satisfies the relaxed one-sided Lipschitz
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condition with one-sided Lipschitz constant µ ∈ R. Then Theorem 41 states
that F defines a differential inclusion such that the reachable sets at time
h > 0 satisfy

distH(Gh(x), Gh(x
′)) = distH(R(h, 0, x),R(h, 0, x′)) ≤ eµh|x− x′| (5.25)

for all x, x′ ∈ Rm. If µ < 0, the time-h flow Gh is a contraction with
contraction constant λ := eµh < 1. It is a well-known fact that the reachable
sets of a differential inclusion with Lipschitz continuous right hand side in a
finite dimensional vector space are nonempty and compact, cf. Theorem 30.

As F is Lipschitz continuous on Kε0 , the reachable sets R(h, 0, x) are
uniformly bounded for x ∈ Kε with 0 < ε < ε0 and h > 0 small enough.
Thus Gh(x) = R(h, 0, x) satisfies the assumptions of Theorem 70 and has

the (d, d
1−eµh )-shadowing property whenever d < d

(s)
0 := 1−eµh

2
(ε0− ε). Please

note that ϕ(d) = d
1−eµh and that d

(s)
0 and ϕ indeed depend on the time-step

h.

Repeating the line of argument of section 5.3 in this setup, one obtains

Theorem 101. Let F : Rm ⇒ R
m be a set-valued mapping with convex

and compact values which is Lipschitz continuous with Lipschitz constant
L > 0 and satisfies the relaxed one-sided Lipschitz condition with one-sided
Lipschitz constant µ < 0. Then

MheLh + ρ ≤ ε0 (5.26)

and

4Mh
eLh − 1

1− eµh
+ (4 + 2Lh)

ρ

1− eµh
+ ρ ≤ ε0 (5.27)

imply

distH(ViabF (K),ViabΓ̃h,ρ
(Kρ

ρ))

≤ (1 + LV )
(

2Mh e
Lh−1

1−eµh + (2 + Lh) ρ
1−eµh

)
+ LV ρ+ 1

2
MLV h. (5.28)

In classical numerical analysis, the order of convergence of a scheme is
regarded as one of the most important indicators for its quality. It is doubtful

90



if this way of thinking is appropriate here, but it is possible to obtain a notion
of convergence by setting ρ := h2. In this case,

MheLh + h2 ≤ ε0 (5.29)

and

4Mh
eLh − 1

1− eµh
+ (4 + 2Lh)

h2

1− eµh
+ h2 ≤ ε0 (5.30)

imply

distH(ViabF (K),ViabΓ̃h,ρ
(Kh2

h ))

≤ (1 + LV )
(

2Mh e
Lh−1

1−eµh + (2 + Lh) h2

1−eµh

)
+ LV h

2 + 1
2
MLV h. (5.31)

Since eLh−1
1−eµh → 0 and h

1−eµh →
1
|µ| as h → 0, the algorithm converges

linearly in h. These findings are in tune with the behaviour of set-valued
numerical methods for initial value problems with spatial discretization, see
[5] and [23].

Please note that every shadowing theorem for the time-h flow of a dif-
ferential inclusion can be used to derive a concrete error estimate for the
Viability Kernel Algorithm in the way sketched above. As the shadowing
theory for set-valued systems is still under development, there is hope that
the reasoning of this chapter can soon be applied to more general classes of
right hand sides.
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