

A Mobile Service Robot
for Automisation of Sample Taking

and Sample Management in a
Biotechnological Pilot Laboratory

Dipl.-Inform. Torsten Scherer

Dept. of Cell Culture Technology,
University of Bielefeld

Dept. of Robotics and Embedded Systems,
Technical University of Munich

October 2004

A thesis submitted to the Faculty of Technology of the
University of Bielefeld in partial fulfilment

of the requirements for the degree

”
Doktor der Ingenieurswissenschaften (Dr.-Ing.)“

c©Torsten Scherer, MMIV

Printed on ageing-resistant paper / Gedruckt auf alterungsbeständigem Papier (DIN-ISO 9706).

Dipl.-Inform. Torsten Scherer

AG Cell Culture Technology
Faculty of Technology
University of Bielefeld

AG Robotics and Embedded Systems
Institute of Informatics
Technical University of Munich

A thesis submitted to the Faculty of Technology of the University of Bielefeld in partial fulfil-
ment of the requirements for the degree”Doktor der Ingenieurswissenschaften (Dr.-Ing.)“.

Printed on ageing-resistant paper (DIN-ISO 9706).

submitted: 27.10.2004
defended and approved: 13.04.2005

Reviewers:

Prof. Peter B. Ladkin, Ph.D.
Prof. Dr. Jianwei Zhang
Prof. Dr.-Ing. Alois C. Knoll

Members of the board of examiners:

Prof. Dr.-Ing. J ürgen Lehmann
Prof. Peter B. Ladkin, Ph.D.
Prof. Dr. Jianwei Zhang
Dr. Heino Büntemeyer

Naturally, in the course of my life I have made lots of mistakes,
large and small, for one reason or another, but at the heart of it all,
every time I made a mistake it was because I was not radical enough.

J.-P. Sartre

Acknowledgements

This work has mainly been financed by the “Arbeitsgemeinschaft industrieller Forschung”
(AiF1) “Otto von Guericke e.V.” with funds from the German Federal Ministry of Economics
and Labour (BMWA2) as projects AiF Nr. 11736 N/1 and AiF Nr. 13223 N/1+2. As for that, I’d
like to thank the german taxpayer for the sponsoring, and the companies B. Braun Biotech Inter-
national (Melsungen, Germany), Diessel (Hildesheim, Germany) and Innovatis AG (Bielefeld,
Germany) for supporting the project.

It has also been substantially sponsored by Bayer Healthcare, Berkeley (USA), where I’d like
to thank Dr. Konstantin Konstantinov and Dr. Rüdiger Heidemann for their support and interest
in this new approach of automating biotechnological processes.

Concerning the non-financial support, I’d primarily like to thank my reviewers Professor
Peter Ladkin, Professor Jianwei Zhang and Professor Alois Knoll for picking up the trouble of
reading this pile of leaved tree produce and writing the reviews – I know this thesis is somewhat
longer than usual, but that’s only because the project did cover more aspects than usual. This is
especially valid for Prof. Ladkin, whom I know since he came to Bielefeld as a“British citizen
and (...) US Permanent Resident Alien”as his bio claims, because he kindly agreed into writing
a review without being directly involved in the project.

In addition to them I’d like to thank Professor Alois Knoll and Professor Jürgen Lehmann for
their canoe trip during which they first came up with the idea for the project – it can’t have been
a whitewater rafting trip if they’ve had spare time for thoughts like these. In the years 1999 to
2004 I’ve been working on this project, first in Prof. Knoll’s group in Bielefeld together with
Dr. Zhang, and later – after Prof. Knoll moved to the Technical University of Munich and Dr.
Zhang moved to the University of Hamburg to become Professor Zhang – technically/financially
in Prof. Knoll’s group in Munich, but physically in Prof. Lehmann’s group in Bielefeld together
with Dr. Dirk Lütkemeyer. This interdisciplinary experience has been very interesting and I owe
all the people a lot.

The interdisciplinary character of this work means that I’ve had contact with a lot of members
of two groups, a computer science group and a biotechnological group. On the computer science
side I’d like to thank my former colleagues or fellow computer/robot freaks Tim Baier, Yorck
von Collani, Markus Ferch, Axel Schneider, Hagen Stanek and Daniel Westhoff for contributing
to this work by means of ideas, suggestions, encouragements, criticisms and corrections, as well
as all the other members of the old AG-TI for being a great group: Ingo Glöckner, Thorsten
Graf, Ingo Homann, Dirk M̈uller (öpening beenary mood däda gonnectium:-), Frank R̈oben
and Christian Scheering. Life has not always been easy in the eventful times when the old
group was re-organised, and I am not entirely sure whether I would have finished this work
without their support.

1http://www.aif.de
2http://www.bmwi.de

v

http://www.aif.de
http://www.bmwi.de

On the biotechnological side I’d primarily like to thank my colleague Iris Poggendorf for
being the complementary part of the project – without her the robot would stand silently and
have nothing to do. Also important for me and the project were Heino Büntemeyer and his
technical and administrative support, Dirk Lütkemeyer as the general organiser of things and
Hans Brinkmann as the general fixer of things. This shall by no means exclude any other
member of the group, but they are just too many – may they forgive me.

Finally, I would like to thank Douglas N. Adams for providing the holistic introductory words
for each chapter and the wise insights into the very foundations of human life – may he rest in
peace3.

3See [Adams 1979].http://www.douglasadams.com

vi

http://www.douglasadams.com

Publications

Excerpts of this work have been published in/on the

• Prozessmesstechnik in der Biotechnologie 2000, Tagung, Bamberg, Germany
[Scherer et. al. 2000]

• Cell Culture Engineering VII, Santa Fe, USA
[Lütkemeyer et. al. 2000a]

• 11th International Biotechnology Symposium, Berlin, Germany
[Lütkemeyer et. al. 2000b]

• Biotechnol. Prog. 16, No. 5, 2000
[Lütkemeyer et. al. 2000c]

• 17th Esact-Meeting, Tylosand, Sweden
[Lütkemeyer et. al. 2001]

• 8th Int. Conference on Computer Applications in Biotechnology, Québec City, Canada
[Poggendorf et. al. 2001]

• BioTec - Fachmagazin für Biotechnologie, Nr. 9-10, Vereinigte Fachverlage, Germany
[Poggendorf and Scherer 2002]

• GVC/Dechema Jahrestagungen 2002, Wiesbaden, Germany
[Poggendorf et. al. 2002a]

• Cell Culture Engineering VIII, Snowmass, USA
[Poggendorf et. al. 2002b]

• 6. Dresdner Sensor-Symposium, Dresden, Germany
[Poggendorf et. al. 2003]

• IEEE Conf. on Emerging Technologies and Factory Automation 2003, Lisbon, Portugal
[Scherer et. al. 2003]

• Cell Culture Engineering IX, Cancun, Mexico
[Poggendorf et. al. 2004]

• Robotik 2004 Conference, M̈unchen, Germany
[Westhoff et. al. 2004a]

• Automatisierungstechnische Praxis 10/2004, Oldenbourg Industrieverlag, Deutschland
[Westhoff et. al. 2004b]

vii

viii

Contents

I Thesis 1

1 Introduction 3
1.1 Motivation . 3
1.2 State of the Art . 4
1.3 About this Work .10
1.4 Thesis Structure .11
1.5 Terminology .12
1.6 A Note on HTTP Links .13

2 Automating a Biotechnological Laboratory 15
2.1 Biotechnology .16

2.1.1 Cells Compounds versus Single Cells16
2.1.2 Cultivation of Mammalian Cells in Pilot Scale16
2.1.3 Sample Management .17
2.1.4 Preliminary Task Definition .20

2.2 The Automation System Architecture .20
2.2.1 The Laboratory .22
2.2.2 The Sampling Device(s) .23
2.2.3 The Pipetting Device .24
2.2.4 The Cell Counter .25
2.2.5 The Centrifuge .26
2.2.6 The Fridge .27

2.3 Task Definition .28
2.4 Robot Architecture .30

3 Accurate Positioning of a Mobile Platform 33
3.1 The “Neobotix MP-L655“ Mobile Platform36
3.2 Localisation .38

3.2.1 Sensors .39
3.2.1.1 Odometry .40
3.2.1.2 Gyro Compass .41
3.2.1.3 Laser Scanners .42

3.2.2 Kinematics Issues .45
3.2.3 Dead Reckoning .46

3.2.3.1 Improving the Kinematic Model47
3.2.3.2 Borenstein Tests .50
3.2.3.3 Summary .52

3.2.4 Least Squares Fit .52
3.2.4.1 Initial Guess .52

ix

3.2.4.2 Least Squares Fit .53
3.2.4.3 Summary .55

3.2.5 Kalman Filter .55
3.2.5.1 System and Measurement Model56
3.2.5.2 Predict and Update .58
3.2.5.3 Summary .59

3.2.6 Extended Kalman Filter .60
3.2.6.1 Simplifications .60
3.2.6.2 Summary .62

3.2.7 The MP-L655 Extended Kalman Filter62
3.2.7.1 State Definitions .63
3.2.7.2 Models .64
3.2.7.3 Model without Acceleration66

3.2.8 Kalman Filtering Summary .68
3.2.8.1 General Issues .68
3.2.8.2 Localisation Issues .71
3.2.8.3 Numerical Issues .72
3.2.8.4 Consequences .73

3.2.9 Realisation .73
3.3 Path-Planning .74

3.3.1 Maps .74
3.3.1.1 Map Design .75
3.3.1.2 Map Expansion .76

3.3.2 Graphs .82
3.3.2.1 Visibility Graph .82
3.3.2.2 Tangent Graph .84

3.3.3 Path Search .85
3.3.3.1 Arbitrary Start and Goal Points85
3.3.3.2 A∗ Algorithm . 86

3.3.4 Summary .87
3.4 Motion Execution .89

3.4.1 Kinematics and Motion Types .89
3.4.1.1 Neobotix Software .90
3.4.1.2 Tracking & Inverse Kinematics91
3.4.1.3 Conclusions .91

3.4.2 Trajectory Generation Filter with Velocity Profiles92
3.4.2.1 Velocity Profiles .92
3.4.2.2 Position Setpoints .95
3.4.2.3 Velocity Setpoints .96
3.4.2.4 Summary .97

3.4.3 Absolute Rotations .98
3.4.4 Absolute Translations .98
3.4.5 Relative Translations .100
3.4.6 Collision Avoidance .101
3.4.7 Realization & Enhancements .102
3.4.8 Summary .104

3.5 Future Work .104
3.5.1 Sensors .104

x

3.5.2 Localisation .106
3.5.3 Path-Planning .109
3.5.4 Behaviours .110

3.6 Experimental Results .111
3.6.1 Localisation Position .113
3.6.2 Absolute Verification of Localisation Position116
3.6.3 Relative Visual Verification of Localisation Position118
3.6.4 Summary .121

4 Advanced Robot Arm Control 131
4.1 The Robot Arm & Tool .133

4.1.1 The “Mitsubishi PA10” Robot Arm133
4.1.2 The Tool .134

4.2 Robot Control Software .136
4.2.1 The PA-Library .136
4.2.2 The “Robot Control C-Library” RCCL137
4.2.3 Consequences .139

4.3 RCCL on the PA10 .139
4.3.1 Kinematic .140
4.3.2 ARCNet Interface and Protocol .142

4.3.2.1 PA10 ARCNet Hardware143
4.3.2.2 PA10 Protocol .144

4.3.3 Joint Controllers .145
4.4 Results .147

4.4.1 Path Tracking Performance .148
4.4.1.1 Cartesian spiral Motion .148
4.4.1.2 Cartesian square Motion .151

4.4.2 Force Control .152
4.4.3 Summary .155

5 Robust Colour Vision 159
5.1 The Implemented Colour Vision System .160

5.1.1 Why Colour? .160
5.1.2 Vision Hardware .162
5.1.3 System Structurisation .164

5.2 Image Segmentation .165
5.2.1 Smart Smoothing .165
5.2.2 Colour Similarity .167

5.2.2.1 Fixed Colours .172
5.2.2.2 Adaptive Colours .174

5.2.3 Flood Fill .176
5.3 Object Recognition & Displacement Computation177

5.3.1 Object Models .181
5.3.2 Model Generation .183
5.3.3 Model Matching .184

5.3.3.1 Displacement Model .184
5.3.3.2 Least-Squares Fit .185
5.3.3.3 Permutations .188

5.4 Iterative Displacement Compensation .189

xi

5.5 Experiments & Results .190
5.5.1 Experiments .191

5.5.1.1 Basic Repeat Accuracy .192
5.5.1.2 Robot Arm Positioning Noise194
5.5.1.3 Influence of Vision Parameters197
5.5.1.4 Planar Marker Displacement200
5.5.1.5 Tilted Marker Displacement202
5.5.1.6 Centrifuge Displacement202
5.5.1.7 Classification Error Comparison205

5.5.2 Summary .206
5.5.3 Future Work & Applications .208

6 Realisation and Integration 211
6.1 Robot Command Scripts .212

6.1.1 Custom Script Language .213
6.1.2 Script Language Commands .214
6.1.3 Example .215

6.2 Robot State Automaton .218
6.3 Database .224

6.3.1 Database Considerations .224
6.3.2 INFOBASE .225

6.4 Networking .226
6.4.1 TCP/IP Networking .226
6.4.2 CNETOBJ .228

6.5 Network Support for Laboratory Devices .228
6.5.1 CLABMSG / CLABDEV / CLABDEVD229
6.5.2 Laboratory Devices .230

6.6 The Networked Robot .231
6.6.1 CROBOT / CROBOTD .231
6.6.2 robotd .233
6.6.3 Modifying/Extending the Functionality234

6.7 Summary .235

7 Automated Sample Management Results 239
7.1 Automated Sample Management .239

7.1.1 The Sample Management Sequence241
7.1.2 The Robot Actions .245

7.2 Biotechnological Results .255
7.3 Summary .256

8 Conclusions & Future Work 259
8.1 The Robot System .260
8.2 Roblets .264
8.3 Applications .265

Bibliography 267

Index 276

xii

II Appendices 281

A Mobile Platform Documentation 283
A.1 The “Neobotix MP-L655“ Mobile Platform283

A.1.1 Hardware .283
A.1.2 Software .286

A.2 The CAN Interface .289
A.2.1 CAN Hardware .289
A.2.2 CAN Frames .289
A.2.3 The C164 Motor Controller(s) .291
A.2.4 The C167 I/O Controller .294

A.3 The LMS-200 Serial Communication .296
A.3.1 Serial Communication Hardware Issues296
A.3.2 Serial Communication Software Issues297
A.3.3 Telegrams and Modes .298
A.3.4 Summary .299

A.4 mobiled .300

B Robot Arm Documentation 303
B.1 The “Mitsubishi PA10” Robot Arm .303

B.1.1 Level 1 – The PA10 Arm .303
B.1.2 Level 2 – The PA10 Controller .305
B.1.3 Level 3 – The PA10 Motion Control Board / PA-Library306
B.1.4 Newer PA10 Versions .307

B.2 The Robot Tool .309
B.2.1 The “ATI Force Torque Sensor” .309
B.2.2 The “phd Electrical Gripper” .311
B.2.3 Gripper Fingers .312

B.3 RCCL .314
B.3.1 Mathematic Computations .314

B.3.1.1 Transforms .314
B.3.1.2 Kinematic .315

B.3.2 Position Equations .316
B.3.3 Arbitrary Motions .318
B.3.4 Singularities .320
B.3.5 (Virtual) Robot Cooperation .321

B.3.5.1 Cooperation .321
B.3.5.2 Virtual Robots .322

C Vision System Documentation 325
C.1 Vision Hardware .325

C.1.1 JAI M1250 Microhead Colour Camera325
C.1.2 Matrox Meteor Framegrabber .327

C.2 Introduction to Computer Vision .328
C.2.1 Image Representation .328
C.2.2 Colour Spaces .330

C.2.2.1 RGB .330
C.2.2.2 YUV .333
C.2.2.3 HSV / HSI / HSL .335

xiii

C.2.3 Linear Image Filtering .336
C.2.3.1 Convolutions .337
C.2.3.2 Smoothing .338
C.2.3.3 Laplace Filter .339
C.2.3.4 Sobel Filter .339

C.2.4 Non-Linear Image Filtering .340
C.2.4.1 Median .341
C.2.4.2 Smart Smoothing .341
C.2.4.3 SUSAN .342

C.2.5 Segmentation .343
C.2.5.1 Top-Down Approaches .343
C.2.5.2 Bottom-Up Approaches .345

C.2.6 Feature Based Classification .345
C.2.6.1 Neural Networks .347
C.2.6.2 Fuzzy Controllers .349

C.2.7 Appearance Based Classification .350
C.2.7.1 Principal Component Analysis351
C.2.7.2 Output Related Features .354

C.2.8 Summary .355

D C++ Class Documentation 357
D.1 CINFOBASE – Accessing the INFOBASE . 357
D.2 CNETOBJ – Communicating over a TCP/IP network361

D.2.1 CCHUNK .361
D.2.2 CNETOBJ .365

D.3 CLABDEV – Control of Laboratory Devices367
D.3.1 CLABMSG .367
D.3.2 CLABDEV .368
D.3.3 CLABDEVD .368

D.4 CROBOT – Accessing the Mobile Robot System369
D.4.1 CROBOT .369
D.4.2 CROBOTD .373

D.5 CMOBILE .379

E Nonsense 383

xiv

Part I

Thesis

1

Chapter 1

Introduction

“Unfortunately I got stuck on the earth for rather longer than I intended.”
Ford Prefect

1.1 Motivation

The thesis presented here is part of the results of a collaborative and interdisciplinary project
between the groups ofCell Culture Technology1 of Prof. Dr.-Ing. J. Lehmann andTechnical
Computer Science2 of Prof. Dr.-Ing. A. Knoll3 at the University of Bielefeld, Germany. The
project with the original (german) title of

”
Roboterisierung der Probenentnahme und des Probenmanage-

ments bei der Kultivierung tierischer Zellen im Pilotmaßstab4“

involves two of todays key high-tech research topics: biotechnology and robotics. Biotech-
nology, on the one hand side, is a modern field of research, but many of its processes are still not
automated. This is particularly true for pilot scale plants where new processes are developed.
Instead, these processes require manual labour by human personnel, which with the never-
ending discussion about wages and non-wage labour costs is increasingly becoming a problem.
Robotics, on the other hand side, is a well established field of research designing machines to
help humans at repetitive and tedious tasks. The probably most commonly known example is
the car industry, where robots are being used to assemble cars or car parts for a very long time.
These systems are, however, typically very inflexible.

The goal of the project is to bring together these two fields of research in a feasibility study
trying to automate the sample management – a complex and particularly tedious part of a
biotechnological process involving numerous spatially separated devices. Its tediousness arises
from the fact that – for mammalian cells – it has to be done every couple of hours for a period of
up to several weeks, which explicitly includes nights and weekends. No employee likes to work
at nights and weekends and no employer likes to pay the employees to do so, so an automated
solution would be highly welcome by everyone.

1AG Zellkulturtechnik, Technische Fakultät, Universiẗat Bielefeld.
http://www.techfak.uni-bielefeld.de/ags/zellkult

2AG Technische Informatik, Technische Fakultät, Universiẗat Bielefeld.
3CurrentlyRobotics and Embedded Systems, Institute for Computer Science, Technical University of Munich.

http://www.atknoll1.informatik.tu-muenchen.de/Zope/tum6

3

http://www.techfak.uni-bielefeld.de/ags/zellkult
http://www.atknoll1.informatik.tu-muenchen.de/Zope/tum6

4 1.2. State of the Art

One explicit intention of the project is to use standard components wherever possible in order
to reduce costs. This means that on the robotics side a robot system consisting of a standard
robot arm mounted on a mobile platform that is capable of navigating in the laboratory has been
built to operate the devices needed for the sample management. The devices on the biotechno-
logical side include a sampling device for filling a sample from a bioreactor into a tube, a pipette
for filling aliquots of the sample into other tubes, a cell counter to determine the cell growth and
viability, a centrifuge to separate the supernatant and a fridge for storing the supernatant. The
entire system is controlled by a computer that logs all data to allow verification. All the devices
are standard components or built from standard components, and their suitability for usage with
a mobile robot system has been researched.

As a side effect, the use of standard components automatically leads to a very high flexibil-
ity. Biotechnological processes are comparatively slow and a single process is only seldomly
changed, but only with the flexibility to quickly adapt the robot system to completely other
processes it becomes economically reasonable. As with other machines as well, the flexibility
determines the commercial success. A secondary goal of the project therefore is to introduce a
new level of flexibility in the automation of these processes.

1.2 State of the Art

Automation (greek:auto= “self”, matos= “willing”) is about devices that act on their own will
– though humans usually take this as machines that facilitate their work. The idea to facilitate
the daily work has a long tradition in human history. Ever since the earliest beginnings the
homo sapiens has built himself tools to simplify his work, though this is not called automation.
Over time these tools became more and more sophisticated, but still they only helped humans
in doing their work. Not earlier than during the industrial revolution the first machines were
built to really work for humans instead of only helping them working, and this technology has
improved ever since.

Since biotechnology is both a rather young and complex science it is by far not yet as auto-
mated as, for example, the car manufacturing industry. The first automation attempts focused
on semi-autonomous devices, of which biotechnological processes nowadays use a large num-
ber. The obvious example is the bioreactor itself, which is connected to a computer that au-
tonomously monitors and adjusts thephysicalcultivation parameters. Automated bioreactors
are well established and in use for several decades. A more recent example is the Cedex cell
counter used in this project, which evaluates some of thebiological cultivation parameters (see
section 2.2.4). These devices can be very elaborate, as for example the Biomek FX Laboratory
Automation Workstation by Beckman-Coulter in figure 1.1, a cartesian robot that is used for
automatic liquid management.

Applications of these simple robots can be very advanced and complex. For example, King
et. al. have built a system where such a device is integrated into an intelligent robot system
that automatically plans and executes experiments to research gene mutations on brewer’s yeast
(saccharomyces cerevisiae)5 . In tests their system has proven to be much faster than a human
operator performing the same analysis manually, and to develop an experimental strategy that

5See [King et. al. (2004)].

1.2. State of the Art 5

Figure 1.1: The Biomek FX Laboratory Automation Workstation
by Beckman-Coulter,http://beckman-coulter.com .

saves up to 2/3 of the costs6. The focus in their application, however, is on the “intelligence” of
the system, and not the robot.

All these devices have in common that they do automate parts of a process or a small but
very repetitive process, but have to be loaded and unloaded by humans. It is because of this
manpower requirements that these devices are called semi-autonomous here.

The automation of the load/unload procedure has led to systems like the TRAC system by
TECAN in figure 1.2 or the ORCA robot arm used in the SAGIAN high-throughput screening
system by Beckman-Coulter in figure 1.3.

Figure 1.2: TheTecan Robotic Assay Composer(TRAC) by TECAN. Images
c©2001 Tecan Group AG. All rights reserved.http://www.tecan.com

6See “Automatische Erkenntnis”, c’t magazin für computer technik 4/2004, p.46, Heise Verlag, Deutschland.

http://beckman-coulter.com
http://www.tecan.com

6 1.2. State of the Art

Figure 1.3: TheOptimised Robot for Chemical Analysis(ORCA, left image) used in the SAGIAN
system (right image). Images by Beckman-Coulter,http://beckman-coulter.com .

These systems use either stationary robot arms or linear conveyor belts to move the robot
arm to the devices, which the arm then loads/unloads, but does not otherwise operate. The
components form a robotworkcell where the devices are grouped so close together that they
cannot be used any more by humans for other tasks. Their flexibility is therefore limited to
what devices can be placed within reach of the robot. The hardware is highly specialised for the
intended tasks, making it very expensive.

Attempts to use standard robot hardware to reduce the costs date back to 1988 when The
Automation Partnership7 (TAP) introduced its “Cellmate” system. The Cellmate system in
figure 1.4 is used to automate the cultivation of cells in roller bottles and T-flasks by using a
cleanroom version of the Stäubli RX60 arm in a class 100 laminar airflow cabinet. Roller bottles
or T-flasks are fed into the system on a conveyor belt, where they are processed following user-
defined programs. The “SelecT” system in figure 1.5 was designed in 2001 and is the successor
of the Cellmate, meant to increase the number of possible operations. It can handle up to 182
T-175 flasks, either as a single cell line or different ones.

The Cellmate and the SelecT use a cleanroom version of the Stäubli RX60 robot arm (see the
introduction of chapter 4). This arm is used to handle roller bottles and T-flasks. Due to their
design all devices needed for the operation of the robot have to be arranged in the workcell and
cannot be used from the outside for other tasks. Whereas this approach is appropriate for the
rapid batches of small scale processes these machines have been designed for, it is inappropriate
for large scale production processes. In large scale production processes fewer operations are
needed, leading to a comparatively higher idle time of the system. An exclusive use of the
devices by the robot would render such a system too expensive, therefore cheaper solutions are
needed.

On the robotics side, truly autonomous service robots are also a relatively new field of re-
search. Plain mobile platforms for transportation tasks – known in industry asautomatic guided

7The Automation Partnership, York Way, Royston, Hertfordshire SG8 5WY, UK.http://www.
automationpartnership.com

http://beckman-coulter.com
http://www.automationpartnership.com
http://www.automationpartnership.com

1.2. State of the Art 7

Figure 1.4: The “Cellmate” automation workcell using a
standard robot arm. Imagesc© by The Automation Partner-
ship.http://www.automationpartnership.com

Figure 1.5: The “SelecT” automation workcell by The Automation
Partnership using a standard robot arm. Imagesc© by The Automation
Partnership.http://www.automationpartnership.com

vehicles(AGV) – are in use for a long time, but these early platforms cannot navigate freely
because they are guided by visual, magnetic or metal lane markers – they are driving on vir-
tual rails. For simple transportation tasks this is sufficient, but not if true autonomy is desired.
Autonomous mobile platforms that do not rely on lane markers are being researched for about
20 years, but are only beginning to leave the university laboratories to be used commercially.
One early example of a commercial application is the MORTIMER platform developed around
1998 at the University of Karlsruhe, shown in figure 1.6 together with another platform. MOR-
TIMER has been used in a hotel as a page, carrying baggage and delivering drinks and meals to
guests in their rooms8.

8http://www3.uni-karlsruhe.de/Uni/puk/Veroeffentlichungen/Unikath/
Unikath98/morti.html

http://www.automationpartnership.com
http://www.automationpartnership.com
http://www3.uni-karlsruhe.de/Uni/puk/Veroeffentlichungen/Unikath/Unikath98/morti.html
http://www3.uni-karlsruhe.de/Uni/puk/Veroeffentlichungen/Unikath/Unikath98/morti.html

8 1.2. State of the Art

Figure 1.6: VIPER & MORTIMER, two service robots developed at the University of Karlsruhe.

Only in recent years the interest in service robots equipped with arms has risen. The
rob@work system in figure 1.7(a) developed in 1998 by the Fraunhofer IPA Institute and used
in the ASSISTOR project9 is one example of such a system. As the project name suggests,
rob@work is intended to assist a human worker, for example by – cooperatively – holding
heavy objects or by repeating motions it has been taught. It is meant to be an intelligent third
hand, but not to fully replace a human worker.

The Care-O-Bot system10 developed in 1998 by the Fraunhofer IPA Institute shown in figures
1.7(b) and 1.7(c) are not meant to assist a worker with his work, but to assist elderly people
with their daily problems. Care of the elderly is – considering the age structure of industrialised
societies – increasingly becoming a time- and cost-intensive problem that is especially in Japan
addressed by high-tech solutions using robots. These service robots can be used to entertain
their users, as a walking aid, to fetch and carry items, to ensure that their users take in their
daily medication and even to monitor medical parameters and to call for emergency service if
they notice an unusual or urgent condition.

These tasks go beyond plain transportation of objects, and so the Care-O-Bot II has in 2002
been equipped with a robot arm with a gripper. His haptic capabilities are still not comparable
to those of a human, but for elderly people the handling of books, bottles and plates can already
be of great help. The aim of the Care-O-Bot systems is to allow them to do complex house-
keeping tasks like operating a fridge or microwave oven, but the realisation of these goals is still
in an experimental phase.

As can be seen at these examples, the trend with service robots focuses on their most com-
monly known application: To render everyday services to humans. For these types of tasks
the systems must be reliable and guaranteed to not do any harm to their environment, but this
does not necessarily require an accurate positioning. Safe motion planning and execution can be
achieved even with only coarse knowledge about the position, and low-level collision avoidance
can be implemented even without any position information at all. With no accurate positioning
required for what is esteemed the primary objective, the positioning accuracy of these systems
has until now not been a high priority and is therefore not sufficient for objectives like laboratory
automation.

9http://www.assistor.de
10http://www.care-o-bot.de

http://www.assistor.de
http://www.care-o-bot.de

1.2. State of the Art 9

(a) rob@work (b) Care-O-Bot (c) Care-O-Bot II

Figure 1.7: Three generations of service robots developed at the Fraunhofer IPA Institute.

Current research aims primarily at making the robots more user friendly, to establish human-
like man-machine interfaces controlled by natural speech and gestures and to improve the robot
intelligence. In short: The trend is to make the robot act, think, behave and – last but not least
– look more like a human, because the physical appearance affects the social acceptance. The
ASIMO (Advanced Step in Innovative Mobility) humanoid robot by HONDA in figure 1.8 goes
clearly in that direction. These systems are meant to be used as entertainment robots, not as
laboratory robots – for a laboratory robot the physical appearance does not matter.

Figure 1.8: The ASIMO humanoid robot by HONDA.http://asimo.honda.com

http://asimo.honda.com

10 1.3. About this Work

1.3 About this Work

The project in which the biotechnological automation system was implemented employed two
researchers over a total of five years: Ms. Dipl-Ing. (FH) Iris Poggendorf has been responsible
for the biotechnological part – the process, the verification, the auxiliary devices and the global
laboratory automation. Her work is presented in [Poggendorf 2004]. Mr. Dipl.-Inform. Torsten
Scherer has been responsible for the robotics part – the design and tests of the mobile robot
system and its integration into the laboratory automation system. His work is presented in this
thesis.

The aspects covered in this work include a wide range of topics such as:

• Research on and selection (often dominated by availability) of components to build the
mobile robot system from,

• design and implementation of control algorithms for the individual components (realised
in separate applications),

• design and implementation of a software architecture suitable for integration of the mobile
robot system into the laboratory environment (including the accessibility by the labora-
tory control program and the maintainability of the required parameters) and

• several tests to evaluate the system’s performance (single components or the entire system
during real cell cultivations).

The primary novelty of this work is the successful combination of a mobile platform and a
robot arm to automate laboratory tasks. Mobile platforms and robot arms alone are established
automation solutions, but combinations of them are still very rare. They only exist as research
objects and not yet as commercial products. As such, they are mostly used for artificial tasks in
artificial environments, but not for real world tasks in real world environments. To the best of
the author’s knowledge, so far no working mobile robot system for automating laboratory tasks
exists, and in particular not the biotechnological sample management.

The two major novelties of the established system are its accuracy and its reliability. The
accuracy of the positioning – especially of the mobile platform – determines the foundation
of the success of the system. A mobile robot that is expected to manipulate standard labora-
tory devices requires a much higher accuracy than one that is used for entertainment purposes
only. The average positioning accuracy of less than 1 cm of the solution presented in this work
surpasses that of other systems significantly.

The reliability is – last but not least – the one criterion that determines the acceptance and the
commercial success. For example, in the car manufacturing industry adriver assistance system
(DAS) for detection of pedestrians is considered reliable if it reaches detection rates of 99%11,
simply because the system only assists the driver, who – still remaining in full responsibility
– will detect the remaining 1%. For a mobile robot system in a laboratory a success rate of
99% means that it is nearly unusable, because with no supervision there must not be any error
at all. However, a real world environment like a biotechnological laboratory means to not have
standardised conditions, an explicitly to not have a standardised illumination – a condition that
is often required with computer vision.

11c’t magazin f̈ur computer technik 17/2004, p.76, Heise Verlag, Deutschland.

1.4. Thesis Structure 11

The vision system presented in this work therefore has to tolerate a wide range of illumination
intensity. It addresses this problem by using that component of vision that is least sensitive
to the illumination intensity – colour information. The newly proposed colour segmentation
allows for a very reliable detection of image features, and the model based object recognition
further enhances the reliability. The system can still fail under extreme circumstances, but
contrary to many other vision systems – especially learning based systems – the limits can be
explicitly given and the failure can not go unnoticed. Therefore, the system has achieved a so
far unprecedenced success rate.

1.4 Thesis Structure

The robot system consists of several components, most notably a mobile platform, a robot
arm and a vision system. In order to keep the complexity maintainable each component has
been designed as independently as possible. The thesis follows this idea and also discusses the
components separately before presenting the overall results, making up for three major sections.
The detailed structure is as follows:

Chapter 2 – “Automating a Biotechnological Laboratory” – describes the laboratory environ-
ment and context in which this work is placed. First, it briefly introduces biotechnology
and the procedures used for the sample management during biotechnological cell culti-
vations. Since these procedures cannot be executed by a robot arm alone it then gives
a description of the implemented automation system with all auxiliary devices. Based
upon these procedures and devices it concludes with the task definition for the mobile
robot system.

Chapter 3 – “Accurate Positioning of a Mobile Platform” – discusses the aspects oflocali-
sation, path planningandmotion executionof the mobile platform. Contrary to other
approaches the implemented solutions do not focus on autonomy in exploring unknown
terrain or in “intelligent” obstacle avoidance, because the task description does not al-
low unknown terrain and the system must never be unpredictable. Instead, they focus
on precision and predictability, both of which are needed to ensure safety of the system
and acceptability by other human personnel in the laboratory. Numerous tests are given to
demonstrate the so far unreached precision that is achieved by the implemented approach.

Chapter 4 – “Advanced Robot Arm Control” – discusses the robot arm and tool hard- and
software (except the camera and vision software). The low-level aspects of controlling
a PA-10 arm at controller level are discussed as well as its integration into RCCL, the
Robot Control C-Library, used to access the arm. Results of the newly implemented
robot control software are given in comparison with the original vendor software as well
as other robots.

Chapter 5 – “Robust Colour Vision” – discusses the hard- and software used in the vision sys-
tem to fine-position the robot arm. This includes classifying objects and determining their
position in an image and is necessary because no fixed object positions can be guaranteed.
A very robust and accurate model based approach using colour information is presented
together with results from several test.

Chapter 6 – “Realisation and Integration” – discusses some of the components used to inte-
grate the robot system into the laboratory control system described by I. Poggendorf in

12 1.5. Terminology

[Poggendorf 2004]. The script interface for easy specification of robot actions is pre-
sented as well as the state automaton used to ensure low-level safety constraints on these
actions. The networked database storing all variable system parameters and also imple-
menting a lookup service for network clients is another of these components. The wrapper
classes provided to hide all network details from the user of a network client are finally
presented.

Chapter 7 – “Automated Sample Management Results” – demonstrates the robot system’s
ability to automate the given task by giving photos and results from real test cultivations.
These results include biological parameters to demonstrate that the automated system
does not affect the culture.

Chapter 8 – “Conclusions & Future Work” – draws conclusions from the experiments and
experience with the current robot system and gives a brief survey over some possible
extensions and future work.

In addition to these main chapters a collection of documentary chapters are provided in the
appendices. These chapters are of minor importance for the thesis because they do not con-
tribute to the primary functionality of the mobile robot system, but may interest a technical
reader. The detailed structure is as follows:

Chapter A – “Mobile Platform Documentation” – documents some aspects of the mobile plat-
form more verbosely, like the CAN and RS422 interface to the sensors and themobiled
application that implements the control software.

Chapter B – “Robot Arm Documentation” – documents the hardware of the robot arm more
verbosely and gives a short introduction into the most prominent features of theRobot
Control C-Library(RCCL). It shall only motivate the decision to use RCCL in this work,
but is not meant to replace the user’s guide.

Chapter C – “Vision System Documentation” – documents the hardware of the vision system
more verbosely and gives a short introduction into some aspects of computer vision as
used in this work. These aspects include several colour models, linear and non-linear
image filtering techniques, basic segmentation approaches and some foundations of clas-
sification.

Chapter D – “C++ Class Documentation” – documents the major C++ classes used in the
various parts.

1.5 Terminology

One issue with any scientific work is the terminology. Due to the ever increasing number of
writers an increasing number of interpretations of technical terms exists. These interpretations
usually differ only slightly and can in most cases be adjusted by common sense. However, if
a reader has strong preconceptions, they can quickly lead to misunderstandings and confusion.
Since this work uses several technical terms in a very specific context the most common of these
term are defined here in order to avoid these problem.

• The term
”
(biotechnological) process“– though in a biotechnological context usually used

to describe theentirecultivation – only addresses the physical appearance of devices and

1.6. A Note on HTTP Links 13

the sequence of their manipulation done by either a human or a robot. It does not cover
any biological or chemical aspects.

• The term
”
system“ is most often used for the complete laboratory automation system

including all devices. It is, however, in a few places also used in local contexts to describe
single components covered in these contexts.

• The term
”
(mobile) robot system“ stands for the compound of the mobile platform, the

robot arm, sensor systems and the controlling computer installed on the mobile platform.

• The term
”
(mobile) platform“ stands for the mobile platform with its sensors, but without

the robot arm. Its meaning sometimes includes the controlling computer as far as it is
needed to access the platform.

• The term
”
(robot) arm“ stands for the robot arm with its sensors, but without the mobile

platform. Its meaning sometimes includes the controlling computer as far as it is needed
to access the arm.

• The term
”
pose“ stands for the combination of a cartesianpositionandorientation.

• The term
”
position“ usually stands for the translational component of a pose – theposition

–, but is sometimes also used in a more general way.

1.6 A Note on HTTP Links

This work usesHTTPlinks as references in several places. The author is well aware that these
links are not fully recognised as references in the scientific world because they tend to be com-
paratively short-lived and change too often. He does not consider them to be a replacement
for official references. He considers them to be additional, but not essential references. Links
are used only at places where they provide useful information, but where the absence of that
information due to outdated links does not hurt. In the really important cases there is always a
postal address or a literature citation in addition to a link.

14 1.6. A Note on HTTP Links

Chapter 2

Automating a Biotechnological Laboratory

“Life, don’t talk to me about Life.”
Marvin

Before addressing the real contents of this work – the mobile robot system – some context in-
formation has to be given. The environment in which this work took place is a biotechnological
laboratory and the task was to automate a certain biotechnological process. For pilot scale se-
tups the size of the laboratory is somewhat limited, but the layout rather non-constant. The
specific type of cultivation is also of importance for an automation system. All this imposes
several very specific requirements on the one hand side, but allows to make certain simplifying
assumptions on the other hand side. Only by taking the physical environment and biotechno-
logical background into account the complexity can be reduced to a manageable point. Without
this background some design aspects may appear inappropriate. Therefore, this chapter presents
the necessary background information.

Section 2.1 gives a short non-biotechnological introduction into those parts of biotechnology
that are needed to understand this work. It defines some basic questions of biotechnology as well
as the specific characteristics of cultivating mammalian cells in pilot scale. The reasons for and
the procedure of sample management are introduced as well as the specific sample management
in the laboratory in Bielefeld. The section closes with a preliminary task definition – not yet
specifically meant for a mobile robot system, but more abstract for anyone who has to perform
the sample management.

Section 2.2 gives an overview of the architecture of the automation system established in
the project. Since the mobile robot system cannot perform the sample management without
auxiliary devices this overview basically consists of a description of the involved devices. These
descriptions are, however, limited to aspects that are of importance for the mobile robot system.

Section 2.3 gives the official task definition for the mobile robot system, according to the
requirements as imposed by the auxiliary devices. This includes abstract specifications of capa-
bilities as well as numeric values for accuracies where they are known.

Section 2.4 gives an overview over the architecture of the mobile robot system devised, de-
signed and built in this work. This robot consists of standard hardware components, but the
software had to be newly developed to meet the task definition. The individual hardware com-
ponents and their software are discussed in subsequent chapters.

15

16 2.1. Biotechnology

2.1 Biotechnology

Biotechnology – from a layman’s viewpoint – is the science of cultivating cells, and involves
both biological aspects of cells and technological aspects of devices. The cells have to be kept
in a watery solution, so cultivating them means to keep them in any kind of storage ranging from
small petri dishes over t-bottles (20-50 ml), spinners (100-250 ml) and super-spinners (1000 ml)
to bioreactors (20 l and more). The purpose of these cultivations is either to obtain the cells
themselves or to obtain some product from their metabolism, for example pharmaceuticals.

2.1.1 Cells Compounds versus Single Cells

If the cells themselves are of interest, for example when growing artificial skin tissue for trans-
plantation to people with severe skin burns, this means growing larger compounds of cells of
a single specific type. It is not yet possible to artificially grow complex compounds of cells of
different types, like entire organs, though the future might bring that soon.

In any case growing compounds of cells means to let them organise themselves in their pre-
ferred structure without external influence. This narrows the number of possible storage con-
tainers to grow them in down to containers where they can be fixedly kept in place, for example
petri dishes. Each such container requires a different way to provide nourishment to the cells, for
example spinners usually use bubble-gassing whereas super-spinners use membrane-gassing.
Petri dishes, on the other hand side, are surface-gassed. All this makes up for very specific
setups for individual cell types. Since cell compounds are not the scope of the biotechnologi-
cal group in Bielefeld this work does not cover these issues any further, but instead focuses on
single cell cultivations.

Cultivating single cells means one can let them float freely in a nourishing broth, which
simplifies the process and allows for a much larger production scale than petri dishes. It is this
type of cultivation that uses bioreactors, which exist with capacities of up to several 1000 litres.

2.1.2 Cultivation of Mammalian Cells in Pilot Scale

The “cultivation of mammalian cells in pilot scale” is about growing single cells. The question
of growing single cells leaves out most aspects of chemical or physical interaction with other
cells, but the aspects of the internal cell metabolism remain. In order to keep that metabolism
under optimal conditions a number of external parameters of the environment in which the cells
are supposed to live have to be controlled. The most important of these parameters include

• thepH value indicating the acidity of the broth (in terms of a watery solution),

• the ambient temperatureϑ of the broth,

• thepO2 value indicating the amount of oxygen dissolved in the broth and

• the amount of nourishing substances in the broth.

Apart from the amount of nourishing substances in the broth these parameters are calledon-
line parameters because they can be measured continuously andin-situ, that means inside the
reactor and while it is running. Other – more indirect – on-line parameters include

2.1. Biotechnology 17

• Vair[l/h], the amount of air (oxygen) per hour needed to maintain or raise thepO2 value,

• VN2 [l/h], the amount of nitrogen needed to reduce thepO2 value and

• VCO2 [l/h], the amount of carbon dioxide needed to increase thepH value.

All these parameters are controlled in real-time by the controller of the bioreactor. They can
be used to detect abnormal situations by comparing their course with the expected course gained
by prior experience. An infection can for example be discovered by an abnormal rise of theO2

consumption.

However, on-line parameters only offer an indirect view of the cells’ health. For example,
controlling the temperature of the broth is usually done by heating the bioreactor’s jacket with
steam or electricity. This, however, means that the temperature distribution in the broth is not
uniform. Near the jacket the broth will be hotter than in the middle of the reactor, and cells that
stay close to the jacket for too long may get damaged. Stirring the broth to prevent this from
happening is only a compromise because it introduces the problem of physically damaging the
cells with the propeller of the stirrer. On the other hand side stirring is absolutely necessary to
ensure a uniform gas distribution if bubble gassing is used.

As a consequence, a lot of different heating, stirring and gassing systems have been manually
optimised for each individual cell line, but still one cannot guarantee the culture’s health from
their parameters. Only by analysing the culture directly information about its health can be
gained.

2.1.3 Sample Management

The purpose of the sample management is to directly measure the cell density and viability of
a culture. Approaches to design appropriate sensors to be plugged into the bioreactor directly
do exist, but none of them have passed the experimental state yet. State of the art therefore still
is to use external devices. This means that the reactor has to be opened and a sample has to
be taken and analysed, which is why the parameters obtained from this step are calledoff-line
parameters.

The sample management as performed at the University of Bielefeld is divided into the fol-
lowing steps:

Taking a Sample

Opening the otherwise strictly sealed bioreactor to take a sample presents a sterility risk
and therefore extra caution has to be taken that the bioreactor is not contaminated. De-
pending on the type of sampling valve/device used this means that a more or less large
amount of equipment has to be sterilised before/after the sampling process.

In our case steam sterilisable valves directly attached to the reactor and covered with a
sterilisation sleeve are used. To take a sample the sterilisation sleeve is removed, a tube is
held to the valve, the valve is opened and the sample is filled into the tube. After removing
the tube from the valve the sterilisation sleeve is put back and the valve sterilised by
pressurised steam for several minutes.

18 2.1. Biotechnology

Note that this procedure means that the valve and therefore the reactor is kept sterile, but
not necessarily the tube and therefore the sample itself. Since the subsequent analytical
steps are rather fast compared to the growth rate of bacteria, the remaining risk of contam-
inating the sample does not really present a danger for a cultivation under “pilot scale”
rules. For a “real” production stricter rules apply. Over all, sterility is a feasible issue in
sample management.

Analysing Cells

Another issue is the one of analysing the sample to count the cells and judge their viability.
The most commonly known method for analysing cells is thetrypan blue dye method.
Using this method the sample is dyed with trypan blue and analysed under a microscope.
Two major cases are distinguishable:

• If a cell is alive the dye only attaches to the hull. In this case the cell will be visible
as a dark circle.

• If a cell is dead it probably has a broken hull and the dye can enter the cell. In this
case the cell will be visible as a solid dark ball, therefore being easily distinguishable
from a live cell.

Using this method a number of subsamples of the sample are analysed and an average
cell count (cell density) and cell viability rate can be given. If performed by a human op-
erator, this is a time-consuming and error-prone task because humans, depending on their
training and fatigue, will miscount or misclassify the cells and thus introduce noticeable
errors. What is even worse is that different people may use different thresholds for classi-
fying ambiguous cells, thus making the process of analysing the cells indeterministic. As
a result the state of a culture may not be correctly observed and a potentially dangerous
situation may be noticed too late.

A more deterministic approach would be of great benefit here. The idea is that even if
such an approach introduces new errors, it is far more advantageous to have a knowingly
constant – even if erroneous – system than to have an indeterministic system where the
error changes from measurement to measurement.

Storing a Cell Free Aliquot

The final step is to store a cell free aliquot of the sample in a freezer for later analysis
of amino acids. This involves separating the cells by either filtering or – as in our case –
centrifugating, filling the cell free supernatant into a different tube and storing this tube
in a freezer. The broth will not deteriorate if frozen and can therefore be analysed at any
time later on.

In addition to checking the culture’s cell density and viability the sample management is also
used to determine the optimal harvest time. The exact time of harvest is not so much determined
by the time since the start of the cultivation, but more by the growth rate of the culture and the
absolute cell density. In one-shot cultivations the cells consume the nourishing substances in
the broth with increasing speed, and once they are consumed harvest should take place because
the culture will die shortly afterwards1. Due to the basically slow growth rate of mammalian

1Harvesting for one-shot cultures means to empty the reactor, separate whatever produce is desired from the
broth and dispose of the rest. Since this is specific to the culture and has got nothing to do with the mobile robot
system it is not further described here.

2.1. Biotechnology 19

cells the exact time may vary by several days, depending on the actual growth rate. Only by
using sample management the actual growth rate can be established, and therefore the optimal
harvest time.

Summarised, the goals of the sample management are:

• to examine the culture’scell densityandviability,

• to determine the optimalharvest timeand

• to allow later analysis of the cell broth.

After this definition of the sample management process two specifics of the“Cultivation of
Mammalian Cells in Pilot Scale”must be given because both of them strongly affect any au-
tomation system. These specifics are the reproduction rate of mammalian cells and the physical
size of the laboratory.

Reproduction Rate

The reproduction rate of mammalian cells is rather low. Bacteria like the often used
escherichia coliduplicate about every 20 minutes. The mammalian cells used in biotech-
nology, on the other hand side, need about 20 to 24 hours to duplicate. This means that a
contamination with bacteria can outgrow a cultivation in a matter of hours, which might
lead to the idea of checking the culture rather frequently. Unfortunately taking a sample
too often means a significant and disturbing loss of broth for small cultures, as well as
an increased risk of contamination in general. The conclusion is that contamination with
bacteria is best checked with high-speed on-line parameters and not with sample manage-
ment. Taking one sample every 4 to 6 hours is usually considered enough. The conclusion
is that for a mobile robot system speed is not the major issue.

Pilot Scale Processes

The term “pilot scale” refers to processes that are used to evaluate new cell lines, new
process types or simply to produce cells to inoculate a larger process. Developing new
processes or scaling them up is not at all trivial. Using a bioreactor of ten times the size
with ten times the gas supply and the capacity of heating and stirring ten times the amount
of broth does in general not lead to ten times the number of cells. A lot of parameters
are non-linearly correlated to the process size and therefore a lot of process changes may
have to be done before finding the optimal parameter set.

For a robot system this means that the process cannot be assumed to be static. The equip-
ment is more likely to change or be moved around the laboratory than for fixed production
processes, and a robot system must therefore be flexible enough to follow these changes.
On the other hand it also means that the size of the space required for the process is com-
paratively small. The equipment can be assumed to be gathered in only one room, so that
the mobile robot system’s path planning capabilities can be kept simple.

A normal one-shot cultivation of mammalian cells like in the 20 l or 100 l bioreactors in
the laboratory in Bielefeld takes up to two weeks, whereas continuous cultures at productions
plants may run for several months. Since the on-line parameters are automatically controlled
by the bioreactor the sample management is usually the only task where human personnel has
to be present. This includes both nights and weekends and therefore presents a high cost factor.

20 2.2. The Automation System Architecture

In addition to this, using human personnel to visually count and classify the cells introduces
a statistical error in the measurements that should best be avoided. It is because of these two
drawbacks of current manual sample management that the idea to design and establish an auto-
mated system has been developed.

2.1.4 Preliminary Task Definition

An automation system that is supposed to overcome the drawbacks of manual sample man-
agement is required to operate at any time of day or night without fatigue, but instead with
constant and verifiable quality. It has to perform all manipulations as required by the sample
management as described in section 2.1.3, which – in very abstract words – means it has to

• take a sample from the bioreactor (while maintaining sterility),

• determine the cell density and viability rate of the sample (in the most deterministic way),

• produce a cell free aliquot of the broth and

• archive that in a deep freezer.

Even a human operator cannot do these tasks alone, but instead requires auxiliary devices.
Because of the project goal of using standard equipment the automation system is supposed to
use the same devices. From an economic point of view this has the advantage that existing de-
vices can be used and thus money saved, but from a robotic point of view it has the disadvantage
that a mobile robot in the automation system has to manipulate a number of devices that were
originally designed to be manipulated by humans. Without anticipating too much details of the
devices as presented in section 2.2 the robot is required to be able to

• move freely in the laboratory to dock to devices,

• pick and place 50 ml NUNC tubes and 1 ml CEDEX tubes,

• fill a sample from the bioreactor to a 50 ml NUNC tube by using a sampling device,

• decant aliquots of the sample or the supernatant to other tubes by using a pipetting device,

• count the cell density and viability by using a cell counter,

• separate the cells from the cell-free supernatant by using a centrifuge and

• archive the (barcode labelled) supernatant in a deep freezer.

2.2 The Automation System Architecture

Many of the sample management tasks cannot be directly performed by either a human operator
or a mobile robot system alone, so a couple of auxiliary devices have to be used. It is only
the combination of the mobile robot system with these devices that makes up the automation
system. With the intention to use standard components this means that the automation system
basically consists of

• the laboratory itself,

• the mobile robot system,

• a bioreactor that contains the broth for the cultivation,

• the sampling device(s),

2.2. The Automation System Architecture 21

• the pipetting device,

• the cell counter,

• the centrifuge and

• the fridge

• a barcode scanner for reading the barcode of the 50 ml NUNC tubes that are to be archived
in the fridge and

• several storage racks for 50 ml NUNC tubes with and without barcode and for 1 ml Cedex
tubes.

These components have been arranged in an architecture as in figure 2.1, which has two cen-
tral points: thelaboratory control program(LCP) and the mobile robot system. The LCP imple-
ments the top-level control and coordinates the sample management cycle. It sends commands
to the devices to make them perform actions and reads back status information and measuring
data. The mobile robot system is “just” one of these devices, although the most important one.
It autonomously performs all those tasks which the LCP cannot make the devices do on their
own. It is described in more detail in subsection 2.4.

USER

TIMER

picks/places tubes
and operates buttons

opens/closes lid,

pic
ks

/pl
ac

es
tub

es

ho
ld

s
tu

be
s

holds tubes

pic
ks

 tu
be

s
holds tubes

op
en

s/
cl

os
es

 li
d

an
d

pl
ac

es
 tu

be
s

stores cell count

controls

controls

m
on

ito
rs

co
nt

ro
ls

triggers

triggers

ce
ll c

ou
nt

de
liv

ers
co

ntr
ols

commands

de
liv

er
s

sa
m

pl
e

REACTOR

CONTROL SYSTEM
MULTI FERMENTER

SAMPLER

PIPETTE

CEDEX

CENTRIFUGE

STORAGE
RACKS

FRIDGE

SCANNER

ROBOT

LABORATORY
CONTROL
PROGRAM

Figure 2.1: The laboratory automation system architecture.

In the following those system components that contribute to the complexity of the mobile
robot system will be described, but only up to the level needed to understand how the robot
interacts with them. The question of how they are otherwise accessed or controlled or the
question of their logical integration in the automation system is not part of this work. These
questions, together with the LCP, are discussed by I. Poggendorf in [Poggendorf 2004].

22 2.2. The Automation System Architecture

2.2.1 The Laboratory

The least obvious component of the automation system is the laboratory itself, an overview
of which is given in figure 2.2. The reason for it being least obvious is that it is usually not
considered a “device” of the automation system, but since it does affect the system it must be
mentioned. The laboratory is in theory the most easily exchangeable component, however, a
few constraints apply.

Figure 2.2: The cell culture laboratory at the University of Bielefeld.

The laboratory in Bielefeld consists of only one room the robot has to operate in, so the
questions of passing doors, using ramps or escalators have not been dealt with – the situation is
explicitly two-dimensional. On the other hand side the laboratory is quite packed with equip-
ment, some of which – most notably the reactor – cannot be freely placed because it must be
attached to fixed installations. In any case a large area in the centre of the laboratory remains
clear and can be used for navigation. This means that the robot needs path planning capabilities
to navigate around the equipment, but that these capabilities can assume plenty of free space
and do not need to include critical situations like tight passageways.

There are no bumps like safety barriers preventing liquids from flowing around in the floor
inside the room, but three drains and one lid covering a maintenance chamber. In addition,
rubber tubes may be lying on the floor near some devices. It is not possible to move the robot
around these objects, because treating them as obstacles would mean that the access to large
parts of the laboratory would be blocked. When driven over they can cause the wheels to slip,
so the robot control software has to be aware of this.

Contrary to an office environment, the laboratory does not primarily consist of straight walls
or corridors. Not to mention cupboards and table or chair legs, most of the walls are obstructed
with sometimes bizzarely shaped objects like radiators and pipes. Again, some of these objects
are not fixed, but may be moved around. When detected with a distance measurement sensor
they can not easily be matched with a map, and therefore do not contribute to the positioning
of the mobile robot. Other means of localisation must be used, for example artificial visual
landmarks. The laboratory must provide enough possibilities to attach such landmarks in places
where the robot can see them from the largest possible number of positions. This means that the
laboratory must not be too packed with non-fixed equipment onto which no landmarks should
be attached.

2.2. The Automation System Architecture 23

2.2.2 The Sampling Device(s)

As with manual sampling, the sample is filled into a 50 ml NUNC tube sealed with a membrane
to prevent aerosols from escaping during the filling process. To fill the tube several sampling
devices have been built, but from standard components (x/y cartesian robots, see figure 2.3).
These sampling devices use different actuation and interface techniques, but are equivalent
concerning their biotechnological and robotical aspects.

Figure 2.3: One of the sampling devices.

Each sampling device is attached to a bioreactor by means of several valves and pipes that
can be sterilised with pressurised steam. Before filling a sample this pipe system is flushed with
broth to flush out condensate that may have settled during the cool-down after sterilisation. If
the pipes were not flushed with broth the sample would otherwise be diluted by the condensate,
leading to a decreased cell count. The samples are then filled by piercing a needle through the
membrane and opening the main valve for a specified amount of time.

To fill a sample into a tube the robot has to place an empty tube into the slot of the storage
rack, re-grasp the tube and fixate it while the sampler is working. This is because of the piercing
of the needle, which would pull out the tube from the rack when the needle is removed after-
wards. After the sampler has finished the robot can retake the tube from the sampler again. In
more detailed words, the robot has to be able to

• go to the sampler,

• find and fine-position over the sampler,

• find and fine-position over the slot,

• place the tube in the slot,

• fix the tube while the sampler works and

• re-grasp the tube.

24 2.2. The Automation System Architecture

2.2.3 The Pipetting Device

At several points during the sample management aliquots of the sample have to be filled from
one tube into another. As with manual sampling, the robot uses a pipette for this task, but since
it cannot grasp an ordinary pipette a special pipetting device has been built (see figure 2.4).
This pipetting device consists of two standard components: A motor driven syringe and a motor
driven multiport valve. Similar to the sampling device the pipes of the pipetting device have
to be cleaned and sterilised between two operations, but this time alcohol is used for this. A
bottle with alcohol must be attached to the pipette as well as a bottle taking the waste – hence
the multiport valve.

Figure 2.4: The pipetting device, together with some of the storage racks.

A reservoir holding 1 ml directly above the needle prevents cells from sedimenting in places
where they would not be flushed out again. If they would – for example – sediment inside the
syringe, this would dilute the sample, leading to a decreased cell count.

To fill aliquots from one tube into another the robot first holds a filled tube under the needle,
the pipette then sucks in the required amount of liquid, the robot then removes the filled tube
and holds an empty tube under the needle and the syringe finally ejects the liquid into the tube.
When using the 50 ml NUNC tubes the robot must control the depth how far the needle pierces
into the tube because for freshly filled samples with it has to draw the aliquot from the bottom
of the broth, whereas for centrifugated samples it has to draw the aliquot from the cell free
supernatant at the top of the broth. In more detailed words, the robot has to be able to

• go to the pipette,

• find and fine-position over the pipette,

• hold a (NUNC or CEDEX) tube under the needle, allowing for an offset how deep the
needle should puncture through the septum into the tube (in case of NUNC tubes) and

• remove a tube from under the needle.

2.2. The Automation System Architecture 25

2.2.4 The Cell Counter

Counting the cells and determining their viability is the central part of the sample management.
The usual way to do this is to dye the sample with trypan blue and analyse it under a microscope.
If a cell is alive the dye only attaches to the hull, leading to a visible dark circle outline. If a cell
is dead it probably has a broken hull and the dye can enter the cell, leading to a visible solid
filled circle.

The Cedex cell counter by Innovatis2 is a device that automates this procedure. In figure
2.5 the Cedex can be seen with the AutoSampler AS20 attached – a carrousel holding several
“Cedex tubes” for batch measurements. Whereas the Cedex is originally designed to be used
by a human operator it can in combination with the AS20 be fed tubes by a robot.

Figure 2.5: The Cedex cell counter.

To analyse a sample an aliquot of exactly 1 ml is filled into a Cedex tube using the pipette,
which is then inserted into the frontmost slot of the carrousel. The AS20 then rotates the car-
rousel so that the piston in its back can lift the tube into the docking port of the Cedex. After
the analysis the Cedex tube is ejected again and removed from the carrousel. The operation of
the AS20 and the Cedex itself are not controlled by the robot, but by the LCP. The robot is only
needed to feed the Cedex tube to the carrousel. In more detailed words, the robot has to be able
to

• go to the cedex,

• find and fine-position over the CEDEX,

• find and fine-position over the slot in the carousel and

• grasp or place a tube in the slot.

2Innovatis AG, Meisenstraße 96, D-33607 Bielefeld, Germany.http://www.innovatis.de

http://www.innovatis.de

26 2.2. The Automation System Architecture

2.2.5 The Centrifuge

Since the cells, even when in a non-tempered and non-gassed tube, will continue to live for
a while after being taken from the reactor their metabolism will affect the broth. To allow a
precise biochemical analysis of the sample a cell free aliquot must therefore be archived. Apart
from filtration the most common way to obtain such an aliquot is to centrifugate the sample to
sediment the cells.

To centrifugate the sample a 50 ml NUNC tube is inserted into the free slot of the cage inside
the centrifuge. Since the cage does not stop in a predetermined position and/or a human operator
may have used the centrifuge since the last automated sample management cycle any position
of the slot must be allowed. After the tube is inserted the lid is closed. To start the centrifuge
the “start” button is pressed. After the centrifugation is completed the “lid” button is pressed to
release the lid locking mechanism. The lid is then opened and the tube taken from the slot in
the cage. Again, any position of the slot must be allowed.

The centrifuge in figure 2.6 used for this is a standard device and explicitly not designed to be
operated by a robot. This means that the runtime and rotation speed are manually programmed
in advance, but for everything else the robot must act like a human. Since with its fingers
it cannot pick or place the tube for an arbitrary slot position it may have to rotate the cage
“manually” until the slot is in a proper position. If this happens when placing a tube into the
slot, the tube must temporarily be deposited into a local storage rack because the robot cannot
rotate the cage with a tube in its fingers.

Figure 2.6: The centrifuge.

When closing the lid by pushing it so that it falls down it cannot be guaranteed that the
locking mechanism really snaps. The robot therefore uses a force-aborted test motion to verify
that the lid is really locked close. If it is not, it uses an additional force-controlled motion to
press onto the lid until it detects a spike in the forces that indicates that the locking mechanism
has snapped. Similar safety applies to opening the lid. In more detailed words, the robot has to
be able to

2.2. The Automation System Architecture 27

• go to the centrifuge,

• find and fine-position over the centrifuge,

• open the lid by

– pressing a button to unlock the lid,

– checking if the lid is really unlocked and

– opening the lid with a circular motion,

• locate the position of the empty/full slot in the cage,

• rotate the cage if necessary to reach the slot by

– placing the grasped tube in a temporary rack (if applicable),

– reaching down with the rubber finger onto a pad of the cage,

– rotating it piecewise to the desired position and

– regrasping the tube (if applicable),

• pick or place a tube in the slot,

• close the lid by

– closing the lid with a circular motion,

– checking if the lid is locked and

– pressing the lid down if it is not and

• start the centrifuge by

– pressing a button.

2.2.6 The Fridge

The second part to keep the sample from deteriorating besides centrifugating off the cells is
to store the sample in a freezer. Only if frozen it can reliably be analysed at a later time. A
standard freezer with a sliding top lid is used for this (see figure 2.7), together with barcode
labelled 50 ml NUNC tubes. The barcode is used to double-verify that the association between
the sample and the corresponding cell count can be established.

To freeze a cell-free sample the robot opens the sliding lid by moving behind the handle and
pushing it sideways. This operation is force-controlled to verify that the lid does not get stuck
before the end of the motion. Since there is no temporary storage rack it can only be done when
the gripper is empty. The robot can do this for example while it is waiting for the centrifuge to
stop – due to the top lid the fridge can be open a few minutes without loosing too much cold.
After filling the sample into an empty tube and reading its barcode the robot goes back to the
fridge and places the tube in one of the free slots of the storage rack inside it. It finally closes
the lid again by applying the reverse sideways motion to the handle of the lid. In more detailed
words, the robot has to be able to

• go to the fridge,

• fine-position over the fridge,

• open the sliding lid by

28 2.3. Task Definition

Figure 2.7: The Fridge.

– pressing on the lid behind its handle,
– moving sideways while controlling the contact force and
– watching out for excess forces indicating errors,

• find and fine-position over a free slot,

• place the tube in the slot and

• close the sliding lid again.

2.3 Task Definition

Based on the above descriptions of the devices needed for the sample management the pre-
liminary task definition from subsection 2.1.4 can now be refined. Basically, the mobile robot
system has to be able to operate all devices, which are distributed in the laboratory. The detailed
requirements of the major components are as follows.

The Mobile Platform

The mobile platform has to bring the robot arm to the devices close enough to allow it to
manipulate them. In order to do this is must...

• Compute its own position in the laboratory with a precision of less than 1 cm. Since the
measurements involve sensors with a basic accuracy lower than that the fusion of several
sensors is mandatory.

• Plan piecewise straight line paths around known obstacles in a map. Since the motion time
is not a critical factor and the control software should be kept simple piecewise straight
line paths are considered sufficient. This means that only straight line translations and
rotations on the spot are required, but not complex curves like splines.

2.3. Task Definition 29

• Execute the motions to arrive at the target with an error of no more than 1 cm. It is this
requirement in particular that presents a challenge that has so far not been met by other
platforms.

• Avoid collision with unexpected obstacles while moving. Since the laboratory can be con-
sidered to be a rather tidy environment unexpected obstacles are assumed to be humans
standing around the robot. They are likely to move away on their own, so it is sufficient
to stop and wait until they do so.

The Robot Arm

The robot arm has to pick and place tubes, carry them between devices and manipulate some
devices. In order to do this is must...

• Determine object coordinates with an accuracy of less than 1 mm. With only very primi-
tive tactile sensors this automatically means to use a vision system. The requirements of
this vision system are listed below.

• Measure contact forces to control offsets that cannot be compensated by the vision sys-
tem. A standard wrist mounted force/torque sensor can be used for this.

• Perform joint and cartesian interpolated motions with an accuracy of less than 1 mm.
This means that the time lag between desired and observed positions as introduced by the
entire arm control loop including the trajectory generator must be very small.

• Allow real-time modifications of motions in the trajectory generator to implement force
control. Without real-time modifications only look-and-move strategies are possible,
which are not applicable to force control. Since a few manipulations absolutely require
real-time force control the arm control software must support this.

• Grasp 50 ml NUNC and 1 ml Cedex tubes. To allow more stable grasps than a two-point
contact this means that the gripper fingers must have circular cut-outs of the appropriate
radius, possibly covered with a rubbery material. Due to the great difference in size of
the two types of tubes this leads to a non-trivial finger design.

• Perform peg-in-hole type motions to place tubes in slots of storage racks3. For the 50 ml
NUNC tubes these motions can be force-controlled because the bevelled edges of the slots
and the cone shape of the tube’s bottom allow to compensate positioning errors on-line..
For the 1 ml Cedex tubes this is not possible because their bottom is not cone shaped. To
place them into the slot on the carrousel of the Cedex a very accurate “blind” positioning
is therefore needed, and the force sensor can only be used to implement safety aborts.

• Press buttons on the plastic foil keyboard of the centrifuge. Since the sensitive area of a
button on a plastic foil keyboard is very difficult to hit and the pressure point very difficult
to detect a rubber finger tip is best used for this. It allows both more deviation off the exact
button centre and the exact pressing depth. Note that a button on an ordinary keyboard
would be much easier to press.

• Perform circular motions, either force-controlled to rotate the cage of the centrifuge or
not force controlled to open/close the hinged lid of the centrifuge.

3Picking tubes from slots is comparatively trivial and not listed here.

30 2.4. Robot Architecture

• Perform force-controlled straight line motions to open/close the sliding lid of the fridge.

• Support position equations as target descriptions to allow to conveniently implement the
above motions while still not requiring to manually recompute all targets when a single
position is changed.

The Vision System

The vision system has to detect the position of objects (devices and tubes) because due to
inaccurate initial measurements and human influence on the setup fixed positions can not be
assumed4. In order to do this is must...

• Provide positional information with an accuracy of less than 1 mm. This means that it
cannot rely on features determined by only very few image pixels, but must consider
larger regions to allow averaging.

• Classify objects with the utmost robustness. Contrary to common classification tasks like
sorting letters according to the zip code on them the detection of the devices and their
position must never fail because a failure cannot be corrected at a later stage. If not
avoidable in the first place, an error must under all circumstances be detectable to at least
safely stop the system.

• Operate robustly without a standardised illumination. Since the system has to work in a
standard and potentially large laboratory installing a special illumination is not feasible5

It must therefore use whatever illumination is present, which means that it must tolerate
a larger variation of the illumination as is common.

Apart from these requirements, the robot system must integrate itself seamlessly into an en-
vironment of computers and devices, which involves a number of networking issues. Its control
software must contain wrappers that hide as many of these issues from the user as possible.
Since the system is to be used by non-expert personnel all specifications of positions, motions
and other parameters have to be easily modifiable and must not require too much knowledge
about robots.

2.4 Robot Architecture

The mobile robot system in figure 2.8(a) that is devised, designed and built in this work is the
most obvious component of the automation system. It consists of standard hardware compo-
nents serving different purposes. The hardware has been explicitly chosen with the task defini-
tion in mind, but still all the software had to be newly developed to meet the requirements. The
most important of the components are:

• A mobile platform as described in chapter 3. Its purpose is to move the robot arm around
the laboratory in order to bring it close enough to other devices so that it can perform its
manipulations. It is able to locate its position in the laboratory and plan a collision-free

4In case of the centrifuge not stopping at a predetermined position this is true even without human influence.
5The only partly reasonable alternative would be to mount lamps to the robot, but this introduces questions of

power supply, complicating the tool design and hard shadows and/or brightness gradients due to spot lights. Such
an approach has not been considered.

2.4. Robot Architecture 31

path to any target, including avoiding collisions with unknown obstacles during motion
execution. To allow it to do this, it is equipped with several sensors. The positioning
accuracy achieved with the control software presented in this work surpasses the previous
commercial solution significantly.

• A robot arm and tool as described in chapter 4. Its purpose is to pick, place and carry
different types of tubes, hold them to devices and to manipulate those devices that cannot
be controlled by other means. It is able to perform several motion types given by position
equations, detect collisions with objects and control forces applied to them during com-
pliant motions. To allow it to do that, the tool is equipped with an electric parallel yaw
gripper with specialised fingers, a wrist-mounted force/torque sensor and a microhead
colour camera used by the vision system. The new control solution presented in this work
allows more flexibility than the commercial solution and is significantly more accurate.

• A vision system using the camera on the arm tool as described in chapter 5. Its purpose is
to compensate for the displacement of objects caused by inaccurate initial measurements
or human influence of the setup during runtime. To allow it to do that, it uses a colour
micro-head camera to detect characteristic patterns consisting of coloured regions from
either natural features or artificially attached labels. This new approach is more tolerant
against changes of the illumination than other approaches and therefore more reliable.

(a)

WLAN

(force sensor, camera,
electrical gripper)

WLAN

PC

ARM

TOOL

co
ntr

ols

co
nt

ro
ls

controls

commands
sends

PLATFORM
MOBILE

LABORATORY
CONTROL
PROGRAM

(b)

Figure 2.8: The mobile robot system, photo and architecture.

These components are – in order to simplify things – treated as separately as possible. This
results in a robot architecture as given in figure 2.8(b). Although all components are controlled
by the on-board PC, treating them separately not only affects the hardware, but also the soft-
ware. Each component is accessed by its own algorithms implemented in its own piece of

32 2.4. Robot Architecture

software, in particular the mobile platform and the robot arm are controlled by two entirely sep-
arate programs. Due to a lacking real-time connection between these two programs the mobile
platform is strictly kinematically uncoupled from the robot arm. This simplifies both control
programs, but needs justification:

• Firstly, the project itself was divided into two halfs, the first concerned with a stationary
robot with only a limited scope and the second concerned with extending that scope by
introducing mobility. The consequence of this split is that at the end of the first half of the
project a working control program not yet incorporating any mobile platform issues ex-
isted, and of course re-using as much parts of this program is an obvious advantage. Any
tight integration of the robot arm and the mobile platform would instead have required to
re-write most of the control program.

• Secondly, the kinematic coupling of a robot arm and a mobile platform is very complex.
There is not yet any commercial software available for such an integration, so all systems
that do exist at research facilities6 are proprietary developments and very experimental.
They imply a lot of constraints that cannot be easily ported to different hardware. The
only possible solution would therefore have been to implement an in-house solution, but
this was out of the scope of this work.

• Thirdly, though being a potentially interesting feature, the given task simply does not
require a tight kinematic coupling. As can be seen in the task description in section 2.3
the platform and the arm only have to be used sequentially, but not simultaneously.

Because of these reasons a kinematic coupling is not considered in this work.

6See [Khatib et.al. 1996].

Chapter 3

Accurate Positioning of a Mobile Platform

“We are now cruising at a level of two to the power of twenty-
five thousand to one and falling, and we will be restoring nor-
mality just as soon as we are sure what is normal anyway.”

Trillian

One big component of the mobile robot system is the mobile platform. In general, the term “mo-
bile platform” is a generic term attributed to almost any machine that can move autonomously
on a flat surface (not including anything that walks on legs, swims or flies), and the possible
incarnations are therefore far too numerous to be listed here.

In industry, for example,autonomous guided vehicles(AGVs) are often used for transporta-
tion tasks. AGVs can be quite large and heavy, like those in figure 3.1 built by MIAG1. These
vehicles are used in aircraft industry for transporting large spare parts like engines or for moving
an entire aircraft when the landing gear is removed2.

Figure 3.1: Autonomous guided vehicles by MIAG used in aircraft industry.

1MIAG Fahrzeugbau GmbH, Kocherstraße 1, D-38120 Braunschweig, Germany.http://www.miag.de
2http://www.miag.de/Produkte/OCS/FWW/body_fww.html

33

http://www.miag.de
http://www.miag.de/Produkte/OCS/FWW/body_fww.html

34 3. Accurate Positioning of a Mobile Platform

The smaller these vehicles become, the less likely they are called AVGs, butservice robots
instead. The name suggest that these platforms are more often used for service and entertain-
ment purposes rather than transportation tasks. The Fraunhofer IPA3, for example, has built
several platforms as in figure 3.2, which are used in the Museum for Communication in Berlin4

as guides.

Figure 3.2: Guide and entertainment robots by the Fraunhofer IPA used in a museum.

These two examples demonstrate the immense differences in size and area of application of
mobile platforms. Even though they look entirely different they basically use similar mecha-
nisms – only at a different scale. If the application permits, they can in particular use the same
control strategies and algorithms.

In this work the mobile platform is used to provide mobility to the robot arm. Simulations
done by S. Plahl in [Plahl 1998] have shown that space is a strong issue in the biotechnological
laboratory and the necessary placement of the devices around a stationary robot arm complicates
the setup significantly. The resulting robot work cell certainly violates the project claim of
allowing human personnel to use the device while the robot is idle. The basic architecture of
the mobile platform used to circumvent these problems is shown in figure 3.3. This platform
has motors and sensors as described in section 3.1, but – in accordance with the introduction in
section 2.4 – no explicit connection to the robot arm.

3Fraunhofer IPA, Nobelstraße 12, D-70569 Stuttgart, Germany.http://www.care-o-bot.de/
MuseumRobots.php

4Museum f̈ur Kommunikation, Leipziger Straße 16, D-10117 Berlin, Germany.http://www.mspt.de/
berlin/d211_rundgang.asp

http://www.care-o-bot.de/MuseumRobots.php
http://www.care-o-bot.de/MuseumRobots.php
http://www.mspt.de/berlin/d211_rundgang.asp
http://www.mspt.de/berlin/d211_rundgang.asp

3. Accurate Positioning of a Mobile Platform 35

PC

SICK SICK
GYRO

BATTERYLASER LASER

MOTOR
od

om
et

ry
ve

lo
ci

ty

laserscan

ro
tat

ion
al

sp
ee

d

laserscan

voltage

Figure 3.3: The mobile platform architecture.

With no tight kinematic coupling between mobile platform and arm the control of both com-
ponents becomes much easier: The robot arm is responsible for grasping and carrying the tubes
and operating the devices, and the mobile platform is responsible “only” for carrying the robot
arm close enough to the devices to allow it to do that. This basically means that the platform
must navigate freely in the laboratory without bumping into or otherwise damaging or harming
any obstacle, including humans. It involves the tasks oflocalisation, path-planningandmotion
executionas defined as follows:

Localisation is the task of computing the current position of the mobile platform based on
current and/or past sensor information. It is described in section 3.2. In order to give
the robot arm the maximum possible operational range the positioning of the mobile
platform must be of the utmost accuracy, and the accuracy of the positioning is bound to
the accuracy of the localisation.

An accurate localisation is, however, not at all a trivial task because mobile platforms do
usually not have sensors that deliver theabsoluteposition, but only sensors that deliver
– partly very noisy –relativemeasurements from which the absolute position has to be
computed. Anextended kalman filter(EKF) is therefore implemented to fuse the sensor
information and compute the statistically most likeliest position. This EKF yields an
accuracy that surpasses the previous commercial solutions significantly.

Path-planning is the task of computing a collision free path to a target according to a map of
known obstacles. It is described in section 3.3. Different aspects of maps are discussed
as well as the major path-planning issues resulting from these maps. The implemented
solution uses expanded polyline maps, tangent graphs and theA∗-algorithm.

Instead of expanding each object as a single polyline it expands each line of each object
separately to avoid degenerate cases. This changes the objective from “not driving into

36 3.1. The “Neobotix MP-L655“ Mobile Platform

obstacles” to “not crossing obstacle borders”, which allows motions entirely “inside” an
object (for example on a table, as long as the table’s edges are not touched). The biggest
part of its calculations are done off-line so that the computation time needed for a single
room laboratory is neglectable.

Motion execution is the task of actually driving a path. It is described in section 3.4. Accu-
rate motion execution in the presence of a noisy localisation is a theoretical contradiction,
but the implemented solution avoids most of the common problems by a new approach.
Instead of continuously and – if the localisation is too noisy – potentially endlessly track-
ing a target it introduces the strong notion of a desired trajectory. Using this trajectory
and velocity profiles computed by a trajectory generation filter – an idea transferred from
robot arms – it stops more deterministically at the target than previous approaches. The
motion execution also includes a simple collision avoidance for unknown obstacles.

The remaining sections cover possible future enhancements that have not been incorporated
into this work (section 3.5) and experiments and results showing the performance of the realized
software (section 3.6).

3.1 The “Neobotix MP-L655“ Mobile Platform

The mobile platform is a “MP-L655” model byNeobotix, a division of theGesellschaft f̈ur
ProduktionssystemeGmbH (GPS)5. The GPS GmbH itself is a spin-off from the Fraunhofer
Institute for Manufacturing Engineering and Automation (IPA)6. Neobotix is a rather small
company building mobile platforms and service robots as individual items on a built-to-order
base, mainly for educational and scientific institutions.

The MP-L655 – for a full documentation see section A.1 in the appendices – is built as an
aluminium frame with several storeys as in figure 3.4. In the basement the motors and drive
and castor wheels are mounted, the first floor holds the batteries and the power electronics, the
second the on-board PC and the robot arm controller and on the roof a LCD display and the
robot arm itself are mounted.

The MP-L655 can be ordered with two kinematics, of which the first has been chosen for
this work because a biotechnological laboratory is more likely to require complex manoeuvring
than to have a very bumpy floor. The kinematics are:

1. Two spring-suspended differential drives in the rotary centre of the platform, two castor
wheels at the front and one castor wheel at the back. This kinematic has the advantage
that the platform can rotate on the spot. It has the disadvantage that a five-point-contact
is not guaranteed to be stable on bumpy terrain. Also, the high number of castor wheels –
if not properly aligned to the driving direction – introduces a lot of resistance that has to
be overcome, which means that on a suboptimal floor the drive wheels are slightly more
likely to slip.

5GPS GmbH, Department Robotics, Nobelstraße 12, D-70569 Stuttgart, Germany.
http://www.neobotix.de

6Fraunhofer IPA, Nobelstraße 12, D-70569 Stuttgart, Germany.http://www.ipa.fhg.de

http://www.neobotix.de
http://www.ipa.fhg.de

3.1. The “Neobotix MP-L655“ Mobile Platform 37

Figure 3.4: CAD drawings of the MP-L655 mobile platform (without robot arm).

2. Two differential drives at the front of the platform and one castor wheel at the back. This
kinematic has the advantage that a three-point-contact is always stable and that no spring
suspension is needed. It has the disadvantage that the platform cannot rotate on the spot
and therefore needs more free space to perform certain manoeuvres and therefore a more
complex motion planning.

Each motor has a built-in odometry sensor (described in section 3.2.1.1). In addition to these
sensors the MP-L655 used in this work has an electrical gyro compass (described in section
3.2.1.2) and two SICK laser scanner (described in section 3.2.1.3), making for a total sensor set
as in table 3.1. Optionally, it can be equipped with ultrasonic sensors and a bumper bar.

2× odometry sensors (1 per motor)
1× electrical gyro compass
2× laser scanner (1 in front, 1 in rear)

Table 3.1: The MP-L655 sensors.

An on-board PC in a small industrial case is used to access the sensors and actors. The odom-
etry sensors and the gyro compass are connected to this PC by a high-speed CAN (described in
section A.2 in the appendices), and the laser scanner by RS422 serial lines. The entire connec-
tivity hierarchy can be seen in figure 3.5.

At the time of purchase, the MP-L655 came with a control software called “GENCONTROL

by Neobotix/GPS”. This software had several deficiencies – documented in section A.1.2 in the
appendices – which made it unsuitable to be used for this work. Most notably it lacked a path
planner for maze-like environments, was not accurate enough (it could arrive some 5 cm left of
the target while reporting to be some 5 cm right of it) and sometimes got trapped in an endless
loop driving around the target (when the catch radius around the target had been decreased in
order to increase the accuracy). Because of these deficiencies the solution presented in this
chapter had to be built.

38 3.2. Localisation

IEEE 1284
parallel port

Lancom AirLancer PCI−11
11Mbps IEEE802.11b WLAN

Camera

LMS−200
SICK

LMS−200
SICK

sensor
forceATI−IA

FTS board

Dongle
PEAK CAN

TCP/IP
network

PA−10
Arm

left
Motor

right
Motor

Gyro

Battery

Joystick

(optionally)
UltrasonicC167

C167

PCI bus

ISA bus

RS422

RS422

SHVS

proprietary
interface

5 Mbps
ARCNet

11 Mbps
WLAN

parallel 500 kbps CAN C164

C164

(actual Neobotix hardware)

SOHARD

Matrox

MOXA
CP−132

SH−ARC−PCI

Meteor−1

bridge
PCI2ISA

PC

Figure 3.5: The MP-L655 connectivity hierarchy.

3.2 Localisation

As stated in the introduction to this chapter, designing a replacement for GENCONTROL in-
volves the tasks oflocalisation, path-planningandmotion execution. Localisation as the first of
these tasks is the most important one because the others are based on it – an error made during
localisation can not be corrected with path-planning or motion execution.

The task of the localisation is to compute the platform’s position based on measurements.
Any measurement is only of a limited accuracy, and therefore the position computed from them
can also only be of a limited accuracy too. What that accuracy is depends on too many aspects
than can be reasonably briefly listed here. Whether the achieved accuracy is satisfying depends
entirely on the application.

For example, the first mobile platforms Neobotix produced were meant to be entertainment
robots in the Museum for Communication in Berlin7 (see again figure 3.2). Their purpose is
to drive around in a great hall, drive up to people, welcome them, give them information about
the museum and otherwise entertain them. They must stay in the hall and keep clear of all
obstacles, but they are not required to physically interact with their environment. They do not
need to know about positions of obstacles, only of the presence of obstacles and a strategy to
avoid them. For a task like this a localisation with an accuracy of 10-20 cm is fully sufficient8.

7Museum f̈ur Kommunikation, Leipziger Straße 16, D-10117 Berlin, Germany.
http://www.mspt.de/berlin/d211_rundgang.asp

8If a localisation is needed at all: Depending on auxiliary means of preventing the robots from leaving the hall
it might already suffice to make them move around randomly and without knowing where they actually are.

http://www.mspt.de/berlin/d211_rundgang.asp

3.2. Localisation 39

Such an accuracy of several centimetres would already be more than enough for a human
to find targets. If a human asks another human where – for example – the pipette is, he will
usually get an answer like: “Oh, that’s on the table where the centrifuge is.” This is not an
accurate answer in that it still allows for up to two square meters in which to search for a rather
small pipette, but still fully sufficient. A human will just go to the table with the centrifuge
(assuming he knows where that one is) andlook for the pipette on that table. With the quality
of human vision this will usually take such an infinitely small amount of time that it can hardly
be called searching.

The mobile robot system in this work follows the same idea when manipulating a device: It
drives to an approximate position which it assumes to be close to the device and uses its vision
to look for where it really is. Since, however, its vision capabilities are much more limited than
that of a human it can only search a much more limited area. More exactly, it has no strategy for
searching objects by exploring a larger area than that of its initial field of view. It can explicitly
not move its head and look sideways. This means that the approximate position must already
be accurate enough to ensure that the object that is searched will be in the field of view of
the robot’s camera – a position with the quality of “on the table with the centrifuge” does not
suffice.

In this section the sensors of the MP-L655 will be presented. Their integrated evaluation by
an extended Kalman filter will be described. The implementation of this Kalman filter and the
models it uses lead to a so far unreached localisation accuracy that safely meets the requirements
of bringing the object into the robot’s field of view without moving the camera.

3.2.1 Sensors

The probably most commonly known method to measure a position is theglobal positioning
system(GPS), which computes a position based on the measurement of distances to satellites
orbiting the earth on known paths. Although using GPS sounds like a promising idea at first
sight, it is not.

One problem is that GPS computes a position only, not an orientation. In order to obtain an
orientation at least two independent receivers are needed. From the different position measure-
ments of these receivers the orientation of whatever object they are mounted on can in theory
be computed. In practice this is unlikely to work for small objects like mobile robots because
there is yet another problem.

The second problem is that the resolution of GPS is too bad. Normal GPS has a resolution
of about 20 m without the intentional disturbance calledselective availability(SA) that was put
on the signal by the US military until may 2000 (before that it was more like 200 m for civilian
use9). This is because the measurement of distances to satellites depends – amongst other things
– on the number of visible satellites and the atmospheric distortions.

Differential GPS(DGPS) can be used to improve this situation. DGPS uses a fixed GPS re-
ceiver whose position has been determined by other means with more accuracy. This receiver
can then compute the error between its real position and what GPS reports as its position and
forward it to other clients close by, which are supposed to suffer from the same distortions.
The client receivers can then compensate this error, resulting in a remaining error as low as

9http://www.igeb.gov/sa

http://www.igeb.gov/sa

40 3.2. Localisation

1 m. Depending on the range of these system they are also calledlocal or wide area augmen-
tation systems(LAAS/WAAS). A LAAS can for example be used at airports to provide a better
navigation assistance for planes in the range of up to 50 km distance10.

Even though this is a considerable improvement compared to standard GPS it is still not
accurate enough for this work. Radio based systems with an accuracy in the range of what this
work needs – about 1 cm – have not been found commercially available, and even if they were it
would still have to be verified that they work reliably in a building consisting of ferro-concrete
and with lots of metal objects. For most mobile platforms other sensors are therefore used.

3.2.1.1 Odometry

Odometry sensors are sensors which compute a position by measuring and integrating over the
travelled distance (greek:hodometron, hodos= “way” and metron= “measure”). This does
safely yield an absolute position of the device they are connected to, but in some cases this
position is not the ultimately desired information.

In case of a standard robot arm odometry sensors are attached to the drive motors as in figure
3.6. Theseencodersmostly count axis revolutions only, but given an initial calibration value
the axis orientation can be computed by integrating the revolutions over time. This computation
is guaranteed to be stable and accurate because due to the fixed kinematic coupling no slippage
between the drive motor and the next arm segment can occur.

1010100101101010...

M

Figure 3.6: Schematic construction of odometry encoders.

In case of a mobile platform the situation is different. Odometry sensors can still provide an
absolute orientation of the wheels, but that is not the desired information. The desired infor-
mation is the position and orientation of the platform, and that can only be computed from the
odometry by a function calledkinematicsthat is not unique and/or not invertible (see section
3.2.3 for details).

Because of this, odometry – in the context of a mobile platform – can not be considered an
absolutemeasurement. It onlytracksthe position of the platform by integrating over the wheel
revolutions, having no idea what the real absolute platform position is. Yet, it is common to use
odometry because its short-term accuracy – for example for fine-positioning – is unchallenged.

10http://gps.faa.gov/Programs/LAAS/laas.htm

http://gps.faa.gov/Programs/LAAS/laas.htm

3.2. Localisation 41

cticksPerMotRev = 4096
cgearRatio = 37

tsample = 0.002 s

Table 3.2: System parameters of the motors and wheel encoders.

The MP-L655 has wheel encoders in both of the two drive wheels with parameters as in table
3.2. The encoder resolution of 4096 ticks per motor revolution in combination with the gear
ratio of 1:37 means that this mechanism has a drive wheel revolution resolution of 0.0024◦ as
per

pdeg =
penc · 360◦

cticksPerMotRev · cgearRatio

where

[pdeg] = ◦ (degree)

[penc] = 1 (ticks)

Velocities are not handled in degrees per second, but in ticks per sample interval of 0.002 s.
The necessary conversion is

venc =
vdeg · cticksPerMotRev · cgearRatio · tsample

360◦
(3.1)

where

[venc] = 1 (ticks/sampleinterval)

[vdeg] = ◦/s

The wheel encoders are tightly integrated with the motor and can be read out by accessing
the appropriate controller on the CAN.

3.2.1.2 Gyro Compass

Compasses (ital.compassare= to pace off) are devices to indicate a certain fixed point of the
compass and are used to determine orientations. Classic magnetic compasses using the mag-
netic field of the earth are easily disturbed by the presence of metal or electricity and therefore
not suitable for precise and reliable measurements. Air planes for example use gyroscopes
instead.

A gyroscope is a device which takes advantage of the physical law of the conservation of
angular momentum. It contains a freely suspended mass that – once brought into rotation –
will keep its absolute orientation even if the outside world rotates (as seen from its point of
view). The only two disadvantages are that a gyroscope is a delicate and complicate mechanical
construction and that depending on the quality it is made with suffers from a long-term drift.
The latter is similar to the odometry because it does not measure an absolute value, but only
integrates over changes with no compensation for any errors. In the aviation technology they can
still be used because it is sufficient to re-adjust them once every few hours when other (absolute)
measurements are available. In case of the mobile platform these absolute measurements are
given by the laser scanners described in section 3.2.1.3.

42 3.2. Localisation

The MP-L655 is equipped with aBEI 11 “GYROCHIPR© Model HORIZON” electrical gyro
as in figure 3.7. This gyro uses a miniaturised oscillating quartz tuning fork as sensitive element.
When brought into rotation a coriolis force is exerted on the fork, leading to a change of the
electric charge in it that can be measured. The gyro then outputs a voltage that is linearly
correlated to an angular velocity of up to±90 ◦/s.

item value
Size (L×W×H): 58.25× 25.25× 25.25 mm
Input voltage: +8 to +15 V DC
Output range: +0.5 to +4.5 V DC
Standard range: ±90 ◦/s
Operating temperature:-25 to +70◦C
Shock: 200 g
Short term stability: <0.05◦/s

Figure 3.7: The GYROCHIPR©Model HORIZON electrical gyro with its technical specification.

On the MP-L655 the gyro is connected to the C167 controller on the I/O board. The angular
velocity reading is digitised by the controller, integrated and can be read out by accessing it
on the CAN. Although this yields – once initialised – an absolute orientation, this value is
again differentiated to an angular velocity by the localisation. This is because it is much safer to
compensate small relative errors in each cycle than to allow a larger absolute error to accumulate
in the first place. This way problems with the gyro drift can be avoided before they arise.

Examples of this drift can be seen in figure 3.8, which shows results from three measure-
ments of almost 1 h. The experiments were done consecutively and under apparently the same
conditions. A comparison with a constant drift of -0.005◦/s shows that all three runs are by
more than a factor of 10 under the specified short term stability of 0.05◦/s. The fact that the
runs were done consecutively suggests a systematic reason for their different appearance, most
probably the room temperature affecting the A/D converter or similar effects. The possibility
of such an uncontrollable dependence emphasises that the absolute value of the gyro should not
be relied on.

3.2.1.3 Laser Scanners

As has been mentioned in the two previous sections both the odometry and the gyro compass
suffer from drift effects as they only integrate changes with limited resolution and do not have a
reference to an absolute frame. In order for this drift to not have a fatal effect on the localisation
an additional sensor is therefore needed, a sensor which does have a reference to an absolute
frame. On the MP-L655 two laser scanners are used for this task.

The SICK12 “LMS-200 Laser Measurement System” (laser scanner) in figure 3.9 is a non-
contact measurement system that scans a 2d-plane of its environment. It works on the general

11BEI Technologies Inc., Systron Donner Inertial Division, 2700 Systron Drive, Concord, CA 94518-1399,
USA. http://www.systron.com

12SICK AG, Auto Ident Devision, Nimburger Str. 11, D-79276 Reute, Germany,http://www.sick.de

http://www.systron.com
http://www.sick.de

3.2. Localisation 43

-12

-10

-8

-6

-4

-2

 0

 2

 0 0.2 0.4 0.6 0.8 1

an
gl

e
[d

eg
]

time [h]

run 1
run 2
run 3

-0.005 deg/s

Figure 3.8: Three runs of measuring the drift of the gyro compass over about 1 h each at a completely
immobile platform. The line indicating -0.005◦/s is only 1/10th of the specified short term stability.

principle of measuring the time of flight of a laser beam. As figure 3.10 illustrates, a laser light
sourceS emits short light pulses, which are then reflected by objects and thrown back to the
scanner where they are detected by a receiverR. The time∆t between emitting a light pulse
and receiving its reflection is proportional to the distances between the object and the scanner.
The LMS-200 extends this principle by using a rotating mirror to redirect the laser beam to not
only cover one direction, but a complete semi-circle in front of it.

Size (H×W×D): 185× 155× 156 mm
Weight: 4.5 kg
Operating power: 24 V,≤ 20 W
Operating temperature: 0..+50◦C
Operating range: about 8 m with mm resolution,

up to 80 m with cm resolution
Angular resolution: 1, 0.5 or 0.25◦

Systematic error (8 m range): typ.±15 mm
Statistical error (8 m range): typ. 5 mm

Figure 3.9: The SICK LMS-200 laser scanner.

44 3.2. Localisation

Figure 3.10: The basic principle of operation of the LMS-200 laser scanner.

In addition to the time of flight∆t the LMS-200 can also measure the intensity of reflectance
(the ratioIR/IS). This way special reflector marks (calledbeaconsor landmarks)13 can be
distinguished from other objects. These beacons can be used by the localisation to compute the
platform position by triangulation, the details of which will be described in the next sections.
To illustrate this, figure 3.11 shows a sample scan of an almost empty room.

Caution has to be taken if two or more laser scanners are to be operated with intersected fields
of view. Although it is possible to electrically synchronise two scanners so that their mirrors
rotate in a way that this problem does not occur, SICK recommends mounting them in a way
that their planes of view do not intersect in the first place. This presents a problem for multiple
mobile platforms in a single room as synchronisation is not possible and tilting the scanners is
not feasible. Since in this work only one platform is used this problem is stated here, but not
further investigated.

According to [SICK AG 2002], the LMS-200 laser scanners are“not devices for protecting
persons as defined by current machine safety standards”. On the MP-L655 platform, however,
they are used for localisation as well as collision avoidance, so for a full safety license the
platform would need additional bumpers and/or other proximity/collision sensors. Currently
SICK is introducing a new model, the S3000, which will comply to safety regulations, but it
has not been evaluated for localisation purposes. Again, since these aspects do not affect this
work, they are not further investigated here.

13Fa. IMOS Gubela GmbH, Postfach 1113, D-77867 Renchen, Germany.http://www.imos-gubela.de .

http://www.imos-gubela.de

3.2. Localisation 45

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

y
[m

]

x [m]

map:walls
scan:free

map:mark
scan:mark

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7

y
[m

]

x [m]

map:wall
scan:object

map:mark
scan:mark

Figure 3.11: Sample scan of an almost empty room as seen from a mobile platform close to the
lower left corner. On the left rays have been drawn from the scanners to the scan points to indicate
the free space, whereas on the right the scan points have been connected with a line to indicate the
object(s) outline. The reflector marks from the map and as seen by the scanner are also shown. The
empty strip through the platform is its blind area and caused by the way the scanners are mounted.

The LMS-200 laser scanners are connected to the PC using a serial interface which can be
configured as either EIA-RS232 or EIA-RS422. On the MP-L655 they are operated in RS422
mode because this mode is considered to be more robust against electrical interference. Over
the serial line the scanners can be sent commands according to theTelegram Definition Manual
(TDM) [SICK AG 2000], which they execute autonomously using a built-in processor. The
communication details and protocol are documented in the appendices in section A.3.

3.2.2 Kinematics Issues

Robotics is (mostly) about moving, and moving means to change somedegrees of freedom
(DOFs) of something with respect to some reference coordinate system, or, in other words,
to change itspositionand/ororientation. Usually the DOFs can only be modified indirectly
by the actors of a robot mechanism and so a mappingθi → pi between the parameterθi the
actor i controls and the DOFpi that is actually desired to be controlled must be established.
This mapping is called theforward kinematicsof the mechanism and is straightforward for
translational and rotational joints:

• Computingθi → pi as the positionpi = x, y or z of a translational jointi in a cartesian
robot is trivial because the actor and the DOF are fixedly linked by a single worm gear or
belt.

• Computingθi → αi as the orientationpi = αi of a rotational joint in asingle segment
arm is trivial because the actor and the DOF are fixedly linked by a gear box.

46 3.2. Localisation

• Computing~θ → ~p as the cartesian position~p = (x, y, a, αroll, αpitch, αyaw) of the end-
effector of amulti-segment armis slightly more complex because the effects of the joints
are overlayed, but can still be easily established.

The forward kinematics is oftenunique, meaning that one set~θ of actor values corresponds
to exactly one set~p of DOF values only. For example, when driving individual joints of a multi-
segment arm one after another the sequence does not matter. In case of a 2-segment arm the
different chains∆θ1 and∆θ2 yield two positions

(∆θ1, 0) + (0, ∆θ2) = (∆θ1, ∆θ2) ⇒ ~p1

(0, ∆θ2) + (∆θ1, 0) = (∆θ1, ∆θ2) ⇒ ~p2

(3.2)

but it trivially follows that

~p1 = ~p2

The reason is that even though the mapping is called “kinematic” it only addresses thestatic
part of the physics, i.e. theposition, but not themotion. The resulting position, however, is not
affected by the order of application of changes to individualθi for these type of kinematics.

For a mobile platform this is no longer true. The reason is that the underlying mapping~θ → ~p
is no longer unique. Taking the sequence of changes from equation 3.2 it has to be stated that

~p1 6= ~p2

even though the actor values(∆θ1, ∆θ2) are the same in both cases.

As figure 3.12 illustrates a mobile platform with the MP-L655 kinematic will turn to the
side if only one motor is moved. If, for example, first only the right and then only the left
motor is used for the same amount of time the platform moves towards the red end position.
In case of the opposite sequence it moves towards the green end position. If the motors had
been moved simultaneously the platform would have moved straight forward. Therefore the
resulting position depends on which motor is moved first, meaning that the forward kinematic
is not unique. As a consequence the whole problem of “forward kinematic” has to be addressed
differently for a mobile platform than for a robot arm.

3.2.3 Dead Reckoning

One way of addressing the forward kinematics problem is to usedead reckoning(DR). DR is the
general idea to compute a state by continuously tracking (integrating) changes (differentiations)
of that state instead of computing it directly from single measurements. One reason for doing
this is that it is often easier to measure travelled distances than an absolute position, and another
reason is that for a mobile platform with just odometry sensors it is actually the only way to
implement a forward kinematic. One set of wheel angles(θL, θR) can correspond to many
positions(x, y, α), and only a continuous history of the motions can single out the correct one.

DR can – depending on the sensors used – be very accurate over “short” distances, but it has
no bounds for the error on “larger” ones. One reason for this is that the state changes are often
measured with limited resolution, and another reason is that in general all measurements are
afflicted with noise. Integrating over these errors means that the resulting value will become

3.2. Localisation 47

Figure 3.12: Different sequences of changes of actor posi-
tions lead to different world positions for a mobile platform.

more and more inaccurate over time. Therefore, if the state computed by DR is not checked
against other, absolute measurements from time to time, it may become arbitrarily wrong.

The practical upshot of this is that DR must not be the only localisation method used on a
mobile platform, but still it is always part of the localisation because it is very accurate over
short distances. The quality of DR depends on the kinematic model and the accuracy of the
measuring equipment.

DR is not at all a new idea, but in fact quite old in human history. Amongst the most famous
people to have used DR on a large scale “motion” is Christopher Columbus with his 1492
voyage to “India”14. He navigated by reading the direction from a compass (however accurate
that may have been) and measuring the speed by checking the flow of water close to the ship.
Whether he was sailing with or against an ocean current he did not know, and therefore this
measurements were inaccurate. And he did, after all, arrive quite wrong.

3.2.3.1 Improving the Kinematic Model

The original GENCONTROL kinematic model was based on the fact that the dynamic state
of the platform consisted of only an angular velocityω (about the platform’s vertical axis)
and a translational velocityv (along whatever direction the platform is currently heading to).
More specifically, since the localisation is a discretised process these values were expressed
as differential values∆α and∆s for some time interval∆t. The update step for a∆t in the
localisation was:

x(t + 1) = x(t) + ∆s · cos(α) (3.3)

y(t + 1) = y(t) + ∆s · sin(α) (3.4)

α(t + 1) = α(t) + ∆α (3.5)

14Seehttp://www1.minn.net/˜keithp/index.htm .

http://www1.minn.net/~keithp/index.htm

48 3.2. Localisation

with

∆α =
(∆αR −∆αL) · r

2d

∆s =
(∆αR + ∆αL) · r

2
(3.6)

being computed from the drive wheel angular changes∆αL and∆αR, the radiusr of the wheels
and their distanced to the centre of the platform. At first sight this seems to fit to the kinematics
of the MP-L655, which is described as to be able to

• translate forward and backward and

• rotate on the spot,

plus superimpositions of these. Only a second sight reveals that the superimpositions present
a problem: All possible motions are rotations about some point on the line formed by the two
drive wheels, say, a partial circular arc. But with the above equations it is not possible to track
the position of such a motion. Figure 3.13(a) shows that the computed position does not stay
on the real trajectory. The red sequence occurs when first the orientation is applied and then the
translation, and the green sequence occurs when the order of application is reversed.

(a) Original GENCONTROL kinematic. (b) Improved kinematic.

Figure 3.13: Positions as computed by DR using different kinematics when driving a circular arc.

This is because the translational component∆s is always tangential to the circular arc. If one
first updates the position and then the orientation the platform will end up outside the arc, and
if one first updates the orientation and then the position it will end up inside the arc.

In both cases the computed change of orientation∆α would have to be modified to put an
emphasis on getting back on the arc, and that GENCONTROL does not do.

A first improvement is to compute the update as:

β = α(t) +
∆α

2
x(t + 1) = x(t) + ∆s · cos(β) (3.7)

y(t + 1) = y(t) + ∆s · sin(β) (3.8)

α(t + 1) = α(t) + ∆α

3.2. Localisation 49

Using these equations the position is always held on the arc, regardless of what the current
orientationα or the translational speed∆s might be (see figure 3.13(b)).

Another problem is that∆s as per equation 3.6 is only correct for∆αR = ∆αL (translation
straight ahead) or∆αR = −∆αL (rotation on the spot). This is because it computes the length
of the circular arc of the centre of the platform, not the length of the circular chord. Focusing on
the arc is understandable because the arc is the trajectory the centre of the platform has moved,
but it is the chord that is used by the equations 3.7 and 3.8. Since – except from the two above
mentioned cases – the length of the arc is always greater than the length of the chord these
equations yield a position which is almost always too far ahead. The argumentation is that since
an only small error is introduced by this inaccuracy it is non-fatal because the dead-reckoning
is fused with other localisation techniques which will correct this error, but still this model can
be improved.

What is needed for a correct computation of∆s is the length of the circular chord. Based on
the general formula for a circular arcsarc = r · α whereα is already known from above it can
be established that

r =
sarc

α

in which of courser → ±∞ for |α| → 0 because there is no “radius” if the platform is moving
straight ahead. At the same time the lengthschord of a circular chord can be computed as

schord = 2r sin
α

2

Combined, this yields

schord = sarc ·
2

α
sin

α

2︸ ︷︷ ︸
f(α)

(3.9)

wheref(α) can be considered a “correction factor” forsarc. This factor has to be analysed to
be sure the division byα is non-fatal. Together withsin z =

∑∞
k=0(−1)k+2 · z2k+1

(2k+1)!
for complex

argumentsz it follows that

f(α) =
2

α
sin

α

2

=
2

α

(
∞∑

k=0

(−1)k+2 ·
(

α
2

)2k+1

(2k + 1)!

)

=
∞∑

k=0

(−1)k+2 ·
2
α
·
(

α
2

)2k+1

(2k + 1)!

=
∞∑

k=0

(−1)k+2 ·
(

α
2

)2k

(2k + 1)!

The division byα disappears andf(α) is therefore safe to be used for values ofα near to
0. As can be seen in figure 3.14 this factor is indeed always< 1 except forα = 0. Using this
factor the true chord lengthschord can be computed as per equation 3.9 and used in equations
3.7 and 3.8 to finally yield “correct” results.

50 3.2. Localisation

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

-3 -2 -1 0 1 2 3
angle [rad]

(2/x)*sin(x/2)

Figure 3.14: The correction factorf(α) used to com-
pute the circular chord length given a circular arc length.

Note that the results are still not absolutely “correct” because one link is still missing. The∆α
used by the above equations actually has to be called∆αodo because it only takes the odometry
into account. The gyro compass, which computes its own∆αgyro is not considered. Integrating
it by other means than building a – perhaps weighed – average of∆αodo and∆αgyro is not
yet possible because so far no model exists that describes how the two measurements correlate.
Only the Kalman filter in section 3.2.5 will introduce such a model.

3.2.3.2 Borenstein Tests

Johann Borenstein has done extensive studies about sensors and methods for mobile robot po-
sitioning. His work “Where am I?” [Borenstein, Everett and Feng 1996] is regarded a standard
book on mobile robotics. He has also given name to a benchmark for measuring odometry
errors in mobile robots [Borenstein and Feng 1995]. This “Borenstein Test” tries to provoke
both systematical errors caused by a faulty kinematics and non-systematical errors caused by
slipping and other problems with the floor. Its aim is to allow the user of a mobile platform to
make the odometry as accurate as possible so that the platform can cover larger distance and
needs fewer resource-consuming absolute measurements.

It has to be kept in mind that the Borenstein test is from 1995 when computers were by a factor
of probably around 50 slower than today (2004), so at least the argument of available resources
for computation of absolute measurements is no longer that urgent. With a measurement rate
of the laser scanners of 38 Hz and a maximum (translational) speed of the MP-L655 of 1 m/s

3.2. Localisation 51

the platform will only have moved at most 2.6 cm between two laser measurements, and over
such a short distance odometry errors are very unlikely to accumulate. More precisely, since
the path controller and the odometry are in the current configuration run with only 31.25 Hz it
is actually impossible. Therefore no true Borenstein tests have been done with the MP-L655.

To demonstrate the possible magnitudes of the error of the odometry a simplified test has
been done instead. In this test the mobile platform is commanded to drive a square with a side
length of 2 m using its full Kalman filter localisation including absolute landmarks. Parallel to
that, a second Kalman filter instance is run with only the odometry update. By using only the
wheel encoders and the gyro compass but with the Kalman filter model of the system the test is
close, but not identical to the original Borenstein test.

As can be seen in figure 3.15 the “desired” (true) trajectory forms the intended square, but
the “real” (odometry) trajectory deviates very quickly. It actually deviates the more the lesser
the base velocity is, which indicates that not the travelled distance is the primary problem,
but the time the platform needs for that distance: If the platform moves slower it needs more
localisation cycles for the same distance and therefore a larger error can accumulate. The fact
that all deviations tend to go in the same direction indicates a systematic problem. In general,
the test shows that odometry can not be trusted over even short distances, let alone if the floor
is slippery.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 1.5 2 2.5 3 3.5 4 4.5

y
[m

]

x [m]

relative speed = 1.0

desired
real

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 1 1.5 2 2.5 3 3.5 4 4.5

y
[m

]

x [m]

relative speed = 0.125

desired
real

Figure 3.15: The mobile platform driving a square with a side length
of 2 m with two different velocities. Each test is repeated five times.

Borenstein has also introduced thegyrodometryidea to combine measurements from a gyro
with measurements from wheel encoders. In [Borenstein and Feng 1996] he writes:

Sensor-fusion of this kind has been done before, usually by means of a statistical
model that describes the behaviour of the gyro and the behaviour of the odometry
component. However, because these systems are based on models, they can not an-
ticipate the unpredictable and potentially ”catastrophic” effect of larger bumps or
objects occasionally encountered on the floor. By contrast Gyrodometry has been

52 3.2. Localisation

developed based on a careful study of the physical interaction between the ground
and the vehicle. We have found experimental evidence that non-systematic odome-
try error sources (such as bumps) impact the vehicle only during very short periods;
typically a fraction of a second for each encounter. During these short instances the
readings from the gyro and from odometry differ significantly, while in the absence
of large non-systematic errors the readings are very similar. Gyrodometry makes
use of this observation by using odometry data only – most of the time, while substi-
tuting gyro data only during those brief instances during which gyro and odometry
data differ substantially. This way the ill-effects of gyro drift are almost completely
eliminated, and our method can thus make use of inexpensive gyros with large drift
rates.

The idea of gyrodometry is only presented as a possible enhancement here. It has not yet been
applied to the MP-L655 platform.

3.2.3.3 Summary

Taking a wheel encoder resolution of 0.0024◦ into account DR is the method of choice to pro-
vide a high accuracy for small incremental motions. However, it has to be calibrated against
absolute measurements in regular intervals because due to several inaccuracies it can arbitrarily
drift off the real values over time. It also requires aninitial value because it can only track
changes of that value, not the value itself.

3.2.4 Least Squares Fit

In order to compensate the drift problems of DR an absolute reference is needed. For the MP-
L655 platform used in this work special reflector marks for the laser scanners are therefore used
as absolute references. Theselandmarksare placed throughout the laboratory at fixed positions
and their coordinates are stored in a map. By referring to these known landmarks an absolute
position can be computed by triangulation. This process of triangulation is not trivial and will
be discussed in this section.

3.2.4.1 Initial Guess

The first step in the process is to safely identify the landmarks. Although the final goal is an
absoluteposition these scanners still provide arelative measurement, i.e. they yield a set of
tuples

(d1, α1), (d2, α2), ..., (dn, αn)

of distancesdi and anglesαi under which reflector marks are seen in the platform coordinate
frame. Using these values and given aninitial guessof the platform position(px̃, pỹ, pα̃) the
coordinates(mx̃i,

mỹi) of a mark as seen by the platform can be given as

mx̃i = px̃ + di · sin(pα̃ + αi)
mỹi = pỹ + di · cos(pα̃ + αi)

These “predicted” coordinates can be used to establish a mapping(mx̃i,
mỹi) → (mxi,

myi) of
a mark as seen by the platform onto a mark as stored in the map. This mapping may not be
possible for all marks because some of them may only be false reflections by highly reflecting
objects like glass or metal and have no corresponding marks in the map. As a result the mapping

3.2. Localisation 53

process must take care to only map those seen marks on a map mark that actually do have a map
mark close by, and at most only one seen mark per map mark.

The existence and quality of the initial guess it the crucial point in this process, as is illus-
trated in figure 3.16. The marks in the upper part of the figure are printed in different colours
and therefore the situation is unique. The marks in the lower part of the figure are not distin-
guishable, and therefore – if it was not for the square frame – the three situations can not not be
told apart. A laser scanner certainly can not tell them apart because without additional informa-
tion the three situations are entirely symmetric. It is because of these symmetries that an initial
guess is needed to settle on one of the possible solutions.

Figure 3.16: A symmetrical situation illustrating the necessity of
an initial guess of the platform position for the mapping process.

3.2.4.2 Least Squares Fit

After the mapping is done the above equations may be rewritten using the real mark coordinates
as:

mxi = px + di · sin(pα + αi)

= px + di · (sin pα cos αi + cos pα sin αi)

= px + sin pα · (di cos αi) + cos pα · (di sin αi)
myi = py + di · cos(pα + αi)

= py + di · (cos pα cos αi − sin pα sin αi)

= py + cos pα · (di cos αi)− sin pα · (di sin αi)

In order to solve this for the real platform position(px, py, pα) the equations can be rewritten
as alinear equation system(LES):

(
mxi
myi

)
=

[
1 0 di cos αi di sin αi

0 1 −di sin αi di cos αi

]
·

px
py

sin pα
cos pα

54 3.2. Localisation

with (px, py, sin pα, cos pα) being the vector of unknowns. So far this LES has only two equa-
tions, but since each mapped mark contributes two equations a larger system

~y = M · ~x

can be aggregated. In general the following three cases are possible:

1. Only one mark can be seen/mapped: The matrixM is non-square and non-invertible. The
LES is underdetermined and would yield an infinite number of solutions.

2. Exactly two marks can be seen/mapped: The matrixM is square and may or may not be
invertible, depending on its rank15. If it is invertible the LES yields exactly one solution.

3. Three or more marks can be seen/mapped: The matrixM is non-square and non-
invertible. The LES is overdetermined and may yield no unique solution.

These cases can best be explained at the simplified example of intersecting two-dimensional
lines in a two-dimensional space as in figure 3.17. If there is only one line there is no intersec-
tion. If there are two lines there may be an intersection if the lines are not parallel. If there are
three (or more) lines there may still be a single intersection, but the likelihood is that they will
not intersect in onepoint.

Figure 3.17: The problem of intersecting multiple lines in one point.

The problem with case three is that according to the physical model behind the problem it
may be expected that these “lines” shouldtheoretically intersect in one point, but since the
values are derived from measurements with noise theypracticallywill not. What will happen is
that the intersection points of every two lines will be close together, but not identical. If no more
information about the problem is given the best way is to select that solution that minimises the
total squared error over all equations. This solution is called theleast squares fit(LSF).

Instead of computing this solution iteratively a direct solution is of course preferable. One
possibility is to use an approximationM+ ≈ M−1 like

M+ = (MT M)−1MT (3.10)

or

M+ = MT (MMT)−1 (3.11)

Since the goal of thisM+ is to fulfil the condition

MM+ ≈ I
15Since it is not intended to invert the matrix as such no further attention has been paid to this case.

3.2. Localisation 55

as good as possible it is called thepseudo inverse(PI) or Moore-Penrose Inverse(MPI) of a
matrix M .16 This PI exists for matrices of all sizes: Equation 3.10 is for matrices with more
rows than columns, and equation 3.11 is for matrices with more columns than rows. The reason
for this case-split is that the “inner core” of the PI (the part of the equation that is in brackets) has
to be kept small because otherwise the PI would have more free parameters than the underlying
LES, which would lead to problems. For our case of more equations than unknowns equation
3.10 has to be used.

An interesting situation occurs when the PI is applied to a square matrixM . In this case the
PI is actually equivalent to the normal inverseM−1 because for square matricesA andB the
condition(AB)−1 = B−1A−1 holds and equation 3.10 can therefore be rewritten as:

M+ = (MT M)−1MT

M+ = M−1MT−1
MT

M+ = M−1

Note that the PI only makes it possible to use inversion by ensuring that the matrix that is to
be inverted is square, but not that the inversion itself will succeed. Although for our problem
this is not the case, it is in general still possible that the argument of the inversion is a singular
matrix. For problems for which this can not be avoided thedamped pseudo inverse(DPI)

M−1 ≈ (MT M + λI)−1MT

can be used to guarantee invertibility.

3.2.4.3 Summary

Applied to the localisation of a mobile platform the PI can be used to address the problem of
solving the over-determined LES that is built by observing the landmarks. In the presented
form it is, however, of only limited use because it does not take the other sensors into account.
It has been used in early stages of the project to verify the original GENCONTROL software,
but has soon been dropped in favour of the Kalman filter that integrates all sensors and allows
predictions. Therefore no tests of the performance and accuracy of PI will be given here.

The really important issues introduced with the PI/LSF are the ideas of aninitial guessand
trackingof a position. It has been shown that this approach does not actually compute a position
from the measurements alone, but needs an initial guess. Consequently, in the next cycle the
output of the last cycle will be used as an initial guess. This remains potentially troublesome
because if the association of the landmarks is ever lost it will never come back automatically
and the localisation will fail, but this will be discussed in more detail in the next section.

3.2.5 Kalman Filter

The so far presented approaches are all stand-alone computations for one type of sensor, ignor-
ing the fact that the platform has multiple sensors. These sensors provide information about
different parts of the platform’sstate(position, orientation, velocity, ...), for example the odom-
etry can be directly used to obtain a velocity and indirectly – via DR – to obtain a position,
whereas the laser scanners only deliver a position. The question of how tofuseeither these

16See [Moore 1920] and [Penrose 1955].

56 3.2. Localisation

measurements or their results has so far not yet been raised. The naive approach is of course to
use all approaches separately and compute and use their average output as “the position”, but
that would raise a lot of questions:

• What if the quality of the different measurements differ? As has already been shown GPS
lies in the range of several metres, whereas the odometry lies in the range of fractions of
a millimetre. How shall these differences be incorporated?

• What if the quality of the different measurements does not stay the same over time? What
if it does not stay the same over the position at which they are taken?

• What if the measurements are taken with a different sample interval? Does one have
to wait until measurements from all sensors have arrived and then process them in a
single batch, or can they be processed as they arrive? This may not only be a question of
available computing power.

• What if it is not sufficient to know the current system state? For example, in order to map
the laser marks a prediction of the current state before its measurement is perhaps not
strictly necessary, but at least desirable.

These questions can only be addressed if more knowledge about the setup is taken into ac-
count. More knowledge generally means to add more parameters to the system state, for exam-
ple a velocity in addition to a position to allow predictions. As a result, the complexity of the
setup increases and a formal framework is needed to maintain manageability and mathemati-
cal soundness. This framework needs to be simple enough to be analysable and yet powerful
enough to allow modelling of complex systems.

In 1960, Rudolph E. Kalman introduced an approach referred to as theKalman filter (KF),
which does exactly that [Kalman 1960]. The KF in general is a mathematical method for linear
filtering of discrete data. It is a recursive algorithm toestimatethe state of a system according
to a set of measurements, given a linear model of how they relate. The emphasis is on “esti-
mate” because the “correct” state is unknown because both the state and the measurements are
allowed to be superimposed by gaussian white noise, and because the linear model may contain
approximation errors. The KF does not see the superimposed noise as a disadvantage, but in
fact tries to estimate it too and use it for weighing the different measurements. The resulting
statistically optimal state estimation is therefore precisely that state that meets the least-squares
criterion.

In this section only a brief introduction into Kalman Filters will be given. For a more detailed
workout see [Schneider and Westhoff 2002], from which parts of this introduction have been
taken.

3.2.5.1 System and Measurement Model

The KF as a black box is based on the assumption of a linear world model. Furthermore, the
world is assumed to be a time-discrete one. In such a world thesystemis modelled as astate
vector

3.2. Localisation 57

~xt =

x1

x1
...

xn

t

representing the individual components of the system state and asystem equation

~xt+1 = F~xt + B~ut + ~wt (3.12)

realising the projection of the system state from time stept to time stept + 1. The matrix
F is called thesystem matrixand ~wt the noise that affects the system in each time step. The
vector~ut is the control input of the system used to influence the system via the matrixB. In the
following the termB~ut is dropped for the sake of simplicity without loss of generality.

Themeasurementis modelled as ameasurement vector

~zt =

z1

z1
...

zm

t

representing the individual measurements and ameasurement equation

~zt = H~xt + ~vt (3.13)

linking the measurement to the system state. The matrixH is called themeasurement matrix
and~vt is the noise that affects the measurement. A block diagram of the KF can be seen in
figure 3.18.

The noise terms~wt and~vt only represent the white, uncorrelated statistical part of the noise
of the system and the measurement, not any systematic effects. They can therefore be described
by Gaussian distributions with zero-meanN (0, Q), whereQ = E{~wt ~w

T
t } = diag(q1, . . . , qn)

andN (0, R), whereR = E{~vt~v
T
t } = diag(r1, . . . , rm). Q and R are positive (semi-) definite

matrices. The system and measurement noise must not be correlated, i.e.E{~wt~v
T
t } = 0 holds.

58 3.2. Localisation

In addition to~wt and~vt there is another important component dealing with statistical effects.
Since the KF is going to compute estimates of the system state, that state itself has to be con-
sidered inaccurate or noisy. Since it can not be assumed that the noise in the state components
is not correlated an additional matrixP is therefore used as thecovariance matrixof the state.

Σ Σ Σ Σ

F t∆

H K

H F t∆

t
+

+

+

+

+

−

+

+

w x

x

z

x x

x

v

t t+1

t

t+1

t+1

t

t

t+1

+

+−

measurement Kalman filtersystem

a posteriori estimation a priori estimation

Figure 3.18: Block diagram of a Kalman filter.

3.2.5.2 Predict and Update

The sequence of operation for a KF consists of two major steps:

1. The first step is thepredict step in which ana-priori estimationx̂−t of the system state
just before a measurement is computed, based on the last estimatex̂+

t−1 as a substitute for
the unknown real state~xt−1.

x̂−t = Fx̂+
t−1 (3.14)

After this, the covariance matrixP expressing the uncertainty has to be updated. For each
predict step the variances increase (Q is added) because with no measurement to verify
the situation the estimation becomes more and more unreliable.

P−
t+1 = FP+

t F T + Q (3.15)

2. The second step is theupdatestep in which a new measurement is used to verify the pre-
diction. First a matrixKt called theKalman matrixis computed. It uses the uncertainty
(covariances) of state components and the measurement model to estimate the uncertainty
of the measurement components and use them as gain factors for the update. This way
those sensors which are considered most accurate are given the highest weights.

Kt = P−
t HT

(
HP−

t HT + R
)−1

(3.16)

3.2. Localisation 59

Then ana-posterioriestimationx̂+
t of the system state is computed based on that matrix

and a measurement~zt

x̂+
t = x̂−t + Kt(~zt −Hx̂−t︸ ︷︷ ︸

~it

) (3.17)

The vector~it is called theinnovation– the difference between the measurement and the
prediction of the measurement according to the prediction of the state. If the state predic-
tion was correct the innovation will be 0 and the state prediction will not be changed.

Finally, an a-posteriori estimate of the covariance matrix is computed as the starting point
of a new cycle.

P+
t = (I −KtH) P−

t (3.18)

See [Schneider and Westhoff 2002] or [Bar-Shalom and Li 1993] for a derivation of these
equations.

This sequence of equations 3.14 to 3.17 is called iteratively for each cycle of the time-discrete
system. If different measurements should be available at different intervals, the cycle can be
split and a separate measurement model and update cycle can be used for each measurement.

Also, none of the matricesF , H, Q andR have to be constant over time. For example, in
case of a moving object the state will have to hold its velocity. In order to compute predictions
of the state that velocity has to be multiplied by the elapsed time∆t, and this can only be done
in a KF by writing this∆t in the system modelF . Since the∆t may varyF is therefore no
longer constant.

Having variableQ andR means that the accuracy of the system or the measurement changes
over time. Often only a poor initial guess about these accuracies exists and the reliability of the
system can be improved when they are changed at run-time. For example different laser marks
may be considered unequally reliable depending on how long they have been observed. A mark
that only flashed up once can well be considered unsafe compared to a mark that has been
constantly observed over a long time. Appropriate individual weights are therefore a worthy
consideration.

All these manipulations are not part of the KF and have to go into modifying the matrices.

3.2.5.3 Summary

The KF is a construct to estimate and track the state of a linear time-discrete differential system.
If a linear approximation of a system and the measurements are feasible and the variances of the
sensors are at least approximately known the KF can be proven to be the statistically optimal
and stable estimator of the system because it implements an iterative least-squares fit. It can
then compute past, current and future states of the system.

60 3.2. Localisation

On the other hand side, the KF in general as well as in particular for a mobile platform does
raise a few issues, which will be shown in detail in section 3.2.8. Summed up in short words
the general KF may fail and produce appearingly random output if the preconditions are not
met. In addition to that, using a KF for a mobile platform where the state model contains an
integrator invokes problems because integrators are not stable in the sense of “bounded input”
→ “bounded output”17.

3.2.6 Extended Kalman Filter

The KF useslinear models for the system and the measurement and assumesgaussiandistri-
butions of the errors. Often a situation is more complex than that and can only described by
more general functions. In the most generic case the state~xt and the measurement~zt in such a
situation remain as with the plain KF, but the models allow arbitrary functionsf(~x) andh(~x)
instead of matricesF andH. That is, the system equation 3.12 changes from

~xt+1 = F~xt + B~ut + ~wt

into

~xt+1 = f(~xt, ~ut, ~wt) (3.19)

and the measurement equation 3.13 changes from

~zt = H~xt + ~vt

into

~zt = h(~xt, ~vt) (3.20)

where~ut is the controller input. The error distributions for these models must not necessarily
be gaussian, but can be of any shape.

3.2.6.1 Simplifications

Solving such a generic problem is not always possible, so simplifications have been sought. The
extended Kalman filter(EKF) is one such extension [Schmidt 1970] [Schmidt 1976]. The EKF
handles the non-linear modelsf andh by approximating them bytaylor seriesexpansions,
and the error distributions~wt and~vt by approximating them by gaussian distributions with
covariance matricesQ andR. Depending on the number of terms of the taylor series expansion
after which one abandons the approximation there exist several different EKFs. The simplest
one described here is thefirst orderEKF, which only uses a linear approximation of the models.
The modelsf andh are therefore approximated by theirJacobianmatricesF J andHJ .

The sequence of operations for the EKF is shown in figure 3.19. It corresponds with the
sequence of operations for the plain KF:

1. Prediction: First the new predicted estimatex̂−t+1 of the state is computed as

x̂−t+1 = f(x̂+
t , ~u) (3.21)

17See [Bar-Shalom and Li 1993].

3.2. Localisation 61

and then the covariance matrix of the a-priori estimation error as

P−
t+1 = F J

t P+
t (F J

t)T + W J
t Q(W J

t)T (3.22)

2. Update with measurements: First the Kalman matrixKt is computed as

Kt = P−
t (HJ

t)T
(
HJ

t P−
t (HJ

t)T + V J
t R(V J

t)T
)−1

(3.23)

then the a-posteriori estimatêx+
t of the state as

x̂+
t = x̂−t + Kt(~zt − h(x̂−t)) (3.24)

and finally the covariance matrixP+
t of the a-posteriori estimation

P+
t = (I −KtH

J
t)P−

t (3.25)

The errors~wt and~vt have for simplicity been assumed to be 0 in these equations – a legal
assumption as they are only required to have a zero mean and no more knowledge about them
is known at this stage.

The resulting EKF is more complex than a plain KF and therefore the question of its stability
has to be raised. Bar-Shalom and Li say18 that

In general, a nonlinear transformation will introduce a bias and the covariance
calculation based on a series expansion is not always accurate. (...) In practice,
if the initial error and the noises are not too large, then the EKF performs well.
The actual limits of the successful use of the linearisation techniques implicit in the
EKF can be obtained only via extensive Monte Carlo simulations for consistency
verification.

and

The sufficient conditions for the stability of the KF are not necessarily sufficient for
the EKF. The reason is that its inherent approximations can lead to divergence of
the filter – unbounded estimation errors.

18[Bar-Shalom and Li 1993], chapter 10.3.3, page 388

62 3.2. Localisation

'

&

$

%

'

&

$

%
6x̂+

t , P+
t

?
x̂−0 , P−0

?
x̂−t , P−t

Update with measured values

1. Kalman matrix

Kt=P−t (HJ
t)T

“
HJ

t P−t (HJ
t)T

+V J
t R(V J

t)T
”−1

2. a-posteriori estimate for the
system-state using the measure-
ments~zt

x̂+
t =x̂−t +Kt(~zt−h(x̂−t ,0))

3. covariance matrix of the a-
posterioriestimate

P+
t =(1−KtH

J
t)P−t

Prediction

1. projection of the system-state

x̂−t+1=f(x̂+
t ,~ut,0)

2. projection of the covariance matrix
of thea-priori estimation error

P−t+1=F J
t P+

t (F J
t)T

+W J
t Q(W J

t)T

Figure 3.19: Sequence of operations for the extended Kalman filter.

Once modelling errors are assumed to be the cause of problems using a more accurate model
is of course the next idea, and in case of a taylor series expansion this means to use more terms.
A second orderEKF would not only use the function’s Jacobian, but also theHessian. Although
this appears to be more accurate then a first order EKF, the result is“generally reported be only
partly successful”19. Bar-Shalom and Li express the same problem in clearer words20: “There
is no guarantee that even the second order terms can compensate for (...) errors”. Second or
higher order filters have therefore not been researched here.

3.2.6.2 Summary

The EKF is an enhancement to the KF which allows non-linear models like the ones needed for
our mobile platform. It uses one (or more) terms from the taylor series expansion to simplify
these models, leading to a linear (in case of just one term) approximator of the non-linear mod-
els. It is, however, this approximation which makes it impossible to prove the filter’s stability.
Extensive tests about the filter’s behaviour are therefore necessary. Apart from this, the EKF is
an interesting state estimator because it is not too computationally expensive.

3.2.7 The MP-L655 Extended Kalman Filter

After generally establishing the EKF as a suitable means of estimating the state of a mobile
platform the concrete filter for the MP-L655 shall now be discussed. Schneider and Westhoff21

have developed a complete kinematic and (partially) dynamic, down to including differential

19[Wright, Maskell and Briers 2003]
20[Bar-Shalom and Li 1993], chapter 10.3.3, page 388
21[Schneider and Westhoff 2002], chapter 4.

3.2. Localisation 63

equations for a model of the drive system. Their overall model is very detailed and complex,
and so only a brief sketch containing their most important results will be given here.

3.2.7.1 State Definitions

Schneider and Westhoff have chosen a model which not only consists of the platform’s position
and velocity, but also includes the platform’s accelerations, the angular wheel velocities and the
positions of the laser marks. The complete state vector~x is defined as:

~x =
(
ωR, ωL, ẋ, ẏ, φ̇, ẍ, ÿ, φ̈, x, y, φ, xf1 , yf1 , ..., xfn , yfn

)T

with ωR andωL being the wheel velocities as modelled according to a first order differential
equation,(ẋ, ẏ, φ̇) the current platform velocity as derived from the wheel velocities,(ẍ, ÿ, φ̈)
the current platform acceleration as derived from differences in the velocity,(x, y, φ) the current
platform position as derived from integrating the velocity and acceleration and(xfi

, yfi
) the

coordinates of the laser mark (feature)i.

Note that the velocity of the platform is not modelled as a plain translational and rotational
velocity, but as separatex andy-components of the the translation. This means that the equa-
tions for them always have to take the current orientationφ into account and that they keep
changing if the platform is moving a circle with constant real “velocity”. Although it may
appear more intuitive to regard the platform velocity as a function of the wheel velocities as
constant in case of the circle, it makes computing the positions slightly more difficult. Overall
there is no systematic difference between both approaches.

Having the positions(xfi
, yfi

) of the laser marks in the state allows them to be changed during
an update, which is both an interesting and a potentially dangerous idea. Interesting, because it
allows the EKF to make corrections if the position of one mark should be slightly wrong in the
map. Dangerous, because these corrections are not at all bound – in the worst case all marks
can be moved by an amount that no mapping to the real marks will be possible any more. Since
this only adds to the fact that the EKF isper-senot proven stable it is not considered an urgent
problem here. It remains an open question, though.

As for the measurements, there are two distinct measurement vectors for two distinct update
routines. This is because the odometry and the laser scanner deliver their data at different rates
and therefore have been separated. The odometry measurement is defined as

~zodo =
(
ωodoR

, ωodoL
, φ̇gyro

)T

with ωodoR
and ωodoL

being the wheel velocities as reported by the encoders andφ̇gyro the
rotational velocity as reported by the gyro.

The laser measurement is defined as

~zlaser = (df1 , αf1 , ..., dfm , αfm)T

with dfi
being the distance to laser marki andαfi

the angle under which it is seen (in platform
coordinates).

64 3.2. Localisation

3.2.7.2 Models

The system and measurement models have to take all these state components into account, yet
they are very straightforward. The system modelx̂t+1 = f(x̂t, ~u) is given as

ωt+1R = uR + (ωtR − uR) · e−
∆t
τ

ωt+1L = uL + (ωtL − uL) · e−
∆t
τ

ẋt+1 = ωt+1R
+ωt+1L
2 · r · cos φt

ẏt+1 = ωt+1R
+ωt+1L
2 · r · sinφt

φ̇t+1 = ωt+1R
−ωt+1L
2 · r

a

xt+1 = xt + ẋt+1 ·∆t + ẍt
2 ·∆t2

yt+1 = yt + ẏt+1 ·∆t + ẍt
2 ·∆t2

φt+1 = φt + φ̇t+1 ·∆t + φ̈t

2 ·∆t2

ẍt+1 = ẋt+1−ẋt

∆t

ÿt+1 = ẏt+1−ẏt

∆t

φ̈t+1 = φ̇t+1−φ̇t

∆t

(3.26)

with ~u being the controller input from the last cycle (the value it was commanded to reach),
∆t the time interval that has elapsed since the last update,τ the time constant for the drive
system model,r the drive wheel radius’ anda the distance of the drive wheel from the platform
centre.

The measurement models are even more intuitive. The odometry modelẑ = h(x̂t) is given
as

ωR = ωtR

ωL = ωtL

φ̇ = φ̇t

 (3.27)

and the laser model̂z = h(x̂t) is given as

di =
√

(yfi
− yt)2 + (xfi

− xt)2

αi = atan2 (yfi
− yt, xfi

− xt)

 (3.28)

Note that theαi in this form is still in world coordinates and needs a proper conversion into
platform coordinates.

The Jacobians shall also be briefly introduced. The system jacobianF J
t is given as

3.2. Localisation 65

F J
t =

ect 0 0 0 0 0 0 0 0 0 0 0 0

0 ect 0 0 0 0 0 0 0 0 0 0 0
r
2
ect cos φt

r
2
ect cos φt 0 0 cy∆t 0 0 cy

∆t2

2
0 0 cy 0 0

r
2
ect sin φt

r
2
ect sin φt 0 0 cx∆t 0 0 cx

∆t2

2
0 0 cx 0 0

r
2la

ect − r
2la

ect 0 0 0 0 0 0 0 0 0 0 0
r

2∆t
ect cos φt

r
2∆t

ect cos φt
−1
∆t

0 cy 0 0 cy
∆t
2

0 0 cy

∆t
0 0

r
2∆t

ect sin φt
r

2∆t
ect sin φt 0 −1

∆t
cx 0 0 cx

∆t
2

0 0 cx

∆t
0 0

r
2la∆t

ect − r
2la∆t

ect 0 0 −1
∆t

0 0 0 0 0 0 0 0

0 0 ∆t 0 0 ∆t2

2
0 0 1 0 0 0 0

0 0 0 ∆t 0 0 ∆t2

2
0 0 1 0 0 0

0 0 0 0 ∆t 0 0 ∆t2

2
0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1

where

ct =
−∆t

τ
cx = ẋt+1 − w3

cy = −ẏt+1 + w4

Note that thisF J
t only contains two rows and columns for one laser mark, indicated by lines

separating them. The actualF J
t is of course larger because it has to hold all laser marks, but the

additional rows and columns are only filled according to the one given here and have therefore
been left out for simplicity.

The measurement jacobianHJ
t is given as

HJ
t =

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
xt−xfi,t

d

yt−yfi,t

d
0

xfi,t−xt

d

yfi,t−yt

d

0 0 0 0 0 0 0 0
yfi,t−yt

d

xt−xfi,t

d
−1

yt−yfi,t

d

xfi,t−xt

d

d =

√
(xt − xfi,t)

2 + (yt − yfi,t)
2

The system noise jacobianW J
t is given as

66 3.2. Localisation

W J
t =

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0
r
2
cos φt

r
2
cos φt 1 0 0 0 0 0 0 0 0 0 0

r
2
sin φt

r
2
sin φt 0 1 0 0 0 0 0 0 0 0 0

r
2la

−r
2la

0 0 1 0 0 0 0 0 0 0 0
r

2∆t
cos φt

r
2∆t

cos φt 1 0 0 1 0 0 0 0 0 0 0
r

2∆t
sin φt

r
2∆t

sin φt 0 1 0 0 1 0 0 0 0 0 0
r

2la∆t
−r

2la∆t
0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 1

And, finally, the measurement noise jacobianV J

t is given as

V J
t =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

With these equations the EKF as in equations 3.21 to 3.25 is fully specified. However, this

specification is not what was finally implemented because a minor change has been found nec-
essary.

3.2.7.3 Model without Acceleration

Although theoretically correct the complete model has been discovered to be troublesome dur-
ing testing. It was found that the acceleration introducing terms that contain1

∆t
or 1

∆t2
caused

problems when∆t got too small. Two main reasons for this problem could be identified:

First, since the underlying Linux kernel is not really real-time capable22 it may well happen
that the cycle timing is not strictly fixed. Whereas usually the deviations from the desired timing
are quite tolerable they are – by design of the linux kernel – unbound under worst circumstances.
In addition to the general problems of measuring velocities and accelerations based on varying
time intervals it also means that∆t can become arbitrarily small.

Second, since the sensors deliver their data with different rates the odometry and laser update
are implemented as different routines to be called at different times. This raises the idea to also
use a different predict for each of the updates. The EKF does work when there is only one
predict step at a time, but yields only suboptimal results in this case. On the other hand side,

22The system still uses a Linux kernel from the 2.4 series, although the 2.6 series is supposed to be better in this
aspect.

3.2. Localisation 67

with an individual predict for each update the filter can become numerically unstable if the time
∆t between these predicts becomes arbitrarily small. This situation is visualised in figure 3.20.

laser
update

update
odometry

Lt = 4

Ot = 5

=
predict

t

laser
update

update
odometry

Lt = 4

Ot = 5
=

predict

t

Figure 3.20: A predict step asynchronous to the updates (upper image) means that the update steps
will never perfectly fit to the predicted system state and the filter will yield suboptimal results. A
predict step called synchronous with each update (lower image) means that the time∆t between two
predicts can become arbitrarily small, which can cause numerical problems with the system model.

In both cases components of the covariance matrixP can become large because of divisions
by ∆t or ∆t2, which leads to that components of the Kalman matrixK become large which in
turns leads to that large “corrections” are done in the update step. Practically this means that the
position after an update may be wrong by an amount larger than the catch radius used for mark
mapping, so that in the next cycle the mapping of the landmarks is no longer possible. This is
consistent with the fact that the EKF can become unstable if the amount of noise on the data is
too high.

As a result of this the parts of the system modelf from equation 3.26 that contain acceleration
terms have been shortened to

68 3.2. Localisation

xt+1 = xt + ẋt+1 ·∆t

yt+1 = yt + ẏt+1 ·∆t

φt+1 = φt + φ̇t+1 ·∆t

ẍt+1 = 0

ÿt+1 = 0

φ̈t+1 = 0

virtually disabling accelerations for the other parts. Also, the system jacobianF J
t has been

cleaned of the appropriate entries.

3.2.8 Kalman Filtering Summary

Although often used for estimation problems the (E)KF does raise a few issues, which will be
discussed in this subsection. The issues are partially inherent to the KF and not specific to this
work. They are grouped in general issues, issues concerning the localisation and numerical
issues. If ignored, they can make the filter unstable.

3.2.8.1 General Issues

First of all, it has to be emphasised that the KF only works for (linear) discrete time dynamic
system. If the system to be handled is not a dynamic system the KF can not be applied. Practi-
cally this means that the state has to hold an entity (the position) as well as the first derivative
of that entity (the velocity). This may sound too obvious, but there is a possibility to see a
mobile platform as a static object: The odometry as well as the laser mark recognition can be
implemented in a way that they yield absolute positions without ever using a platform velocity.
A KF can not work without a velocity because without a velocity no predictions are possible,
and without these predictions no estimates of the measurements are possible, and without these
estimates no weighted update is possible.

Another aspect is that the KF is only anestimatorin several ways, i.e. it will never tell the
“truth”. The primary reason for this is that the truth is unknown because noprecisemeasurement
is given – all measurements are all superimposed by noise. If there was a precise and reliable
measurement there would be no need to use a KF in the first place. Expecting a KF to give
absolutely “correct” values is simply out of its scope.

The secondary reason is that the KF uses gaussian shaped probability distributions to fuse
the predicted system state and the measurements into the most likeliest new system state. This
is only an approximation because – depending on the system – these entities may in reality
have arbitrarily shaped probability distributions. The KF assumes that it is legal to use this
approximation in order to simplify computations, but it also means that it can no longer yield
the “correct” values. Approaches like the UKF or particle filter do exist to overcome this draw-
back by not assuming gaussian shaped distributions, but take much more computation time (see
section 3.5.2).

The tertiary reason is that the KF only uses simplifiedmodelsof the system and measure-
ments. It further assumes the measurements to basically comply to these models and only be
disturbed random white noise. This assumption does have an impact so important that it needs
special attention.

3.2. Localisation 69

As long as the system and the measurement comply to the models the KF is known to be a
statistically optimal estimator, which means that it computes the “optimal” state by weighing
the prediction and the measurements according to their variances. The resulting output is still
affected by noise, but since the KF gains certainty from fusing multiple measurements the noise
of the output is supposed to be smaller than the noise of any of the individual measurements.
An unwary user may therefore in particular expect the filter output to not jump by arbitrary
amounts. This, however, only holds as long as individual measurements comply to the model
and do not contradict each other.

If two measurements yield contradicting results (e.g. because one sensor is broken) the KF
can do nothing but apply its models – it does notseethe contradiction and therefore can not
do anything against it. As a result it will produce a suboptimal output that may even jump by
an unexpected amount. This especially applies to mobile robots because their reality is very
complex and their models usually very simple. In most cases they are designed to cover the
“normal” conditions only, but not any errors.

For example, if there has been a bump in the floor and the gyro has seen a jerk sideways where
the odometry thinks the platform is still going straight ahead, two measurements contradict each
other. The KF is not able to determine which measurement is wrong, so all it can do is apply
its models. The resulting output will clearly be “wrong” because it is only a superimposition
of the two contradicting measurements23. There is no such thing as a covariance matrix of the
measurement which the KF itself can change to compensate for the contradiction because there
is no entity which determines which input was wrong.

If such a situation only affects one measurement and occurs only once it may not have a
lasting effect. If it does, however, affect more measurements or occurs more frequently it has
to be handled either in the model (which makes the model bigger and in turns potentially more
troublesome) or by modifying the measurement noiseR (which requires external pre- or post-
processing).

In general a KF will return to the “correct” solution as soon as the measurements are in
accordance again, but in case of a mobile platform this may not necessarily be the case. On
the MP-L655 an “adequate” state prediction is needed to map the laser marks as part of the
measurement, and this mapping can fail in the above situation if the error in the state is too
large. As a result no more laser measurements will be possible from this point on into the
future and the KF – now only relying on odometry – will become arbitrarily wrong. This is
the absolute worst case that can happen and all the statistical optimality does not help here
because it is a problem of the model, not the KF. The only way to deal with such a situation
is to have other (lower priority) absolute position computation(s) running in parallel, verifying
and resetting the KF state if necessary.

23This is even more complicated by the fact that for the MP-L655 the system model does not allow sideway
motions, but the measurement model does. The reason to exclude them from the system model is that according
to its kinematic the MP-L655 can not produce these motions with its own motors, and the reason to include them
in the measurement model is that there must be a possibility to correct them if they erroneously do occur. If, for
example, one drive motor spins freely because it gets stuck in a drain in the floor the kinematic suddenly changes.
Contrary to the usual kinematic which can only produce rotations about points on the axis through the two drive
wheels the new kinematic using the remaining drive wheel and the castor wheels also allows rotations about other
points. The resulting motion therefore can have a non-zero sideways component, and since the system model does
not incorporate it the measurement model must have a chance to adjust the state accordingly.

70 3.2. Localisation

A final aspect is that in case of the plain KF the models also have to belinear, for example
the measurement has to be alinear function of the state. Whereas in a lot of cases a linear
approximation of a non-linear system is a feasible first-order approach, there are systems for
which this does not work.

Unfortunately, one example of such a system is one that involves multidimensional distances
and angles like a mobile platform. As for the distances, if the state contains the cartesian
positions of the platform and the marks and the laser scanner measures an angle and a distance
then the measurement model would have to contain terms like

dmark =
√

~p2
platform − ~p2

mark

which are clearly non-linear. As for the angles the problem is the same. If the state contains
the orientation of the platform as an angleα (and not its sine and cosine) and the odometry
yields a cartesian velocityvodo in heading direction the measurement model would have to
contain terms (in C++ style) like

px + = vodo · TSample · sin α

py + = vodo · TSample · cos α

which are again non-linear. The question of whether a linear approximation of one or the
other term is feasible will not be raised here.

Searchingthe mapping is also a non-linear process, so in order to map the laser marks a KF
always needs additional preprocessing for a mobile platform.

The EKF in turns allows non-linear models, but is more complex and can not be proven to
be stable even with bounded errors. One reason for this is that the system and measurement
noise are still approximated by gaussian distributions only, which is a simplification that leads
to suboptimal (and in some cases unstable) behaviour. If the distribution of any component
would for example have the shape of a banana an approximation with a gaussian distribution
can not express all information in that distribution (see figure 3.21).

Figure 3.21: Approximating a banana with a gaussian distribution.

Such a situation actually occurs with the odometry: Consider the measurement of the drive
wheel velocity to be affected by pure gaussian noise, which is – without any further knowledge
– a legal assumption. If the forward kinematic (DR) is applied to this measurement to obtain a
position after some small time of motion the probability distribution of this position will have
exactly that banana shape.

It also occurs with the laser measurements during rotations: Due to wheel slippage when
accelerating too fast it is quite frequent that the platform has not rotated as much as the pre-
diction yielded. On the other hand it will probably not have moved too much away from the

3.2. Localisation 71

point it was standing at. This means that the distance to the marks is likely to be the same as
predicted, but the angles under which they are seen are not. The resulting distribution of the
laser measurement prediction has again exactly the shape of a banana.

A (E)KF that does not take this into account will yield suboptimal estimations, if any.

3.2.8.2 Localisation Issues

According to the (E)KF theinitial state is an unknown random variable that is supposed to
converge. A mobile platform, however, needs an adequate initial state because its measurement
involves mapping the laser marks. Because of this mapping the error of the state must be bound
to some absolute value, even though the (E)KF stability itself might not be affected by sporadic
outliers. If no marks can be mapped no unique laser update is possible, a situation which is
unlikely to cure itself in the following cycles. The question of the allowable noise is therefore
not a question of the filter gradually degrading, but of completely and abruptly failing to work.

In case of no unique mapping according to the current state estimate it is still possible that
there are several solutions distinct from the current state which might “fit” (with different least-
squares errors). In such a case amulti-hypothesis approachcan be used to track these solutions
during some exploratory movements until one of them becomes preferable according to its
covariance expressing the certainty. These approaches are not suitable for the laboratory setup,
precisely because the laser scanner only scans a single plane of the room and therefore the
exploratory movements can not be guaranteed to not lead to collisions. Other sensors like
ultrasonic sensors that monitor not only planes but true spaces are needed to guarantee this.
Since these sensors do not exist on the platform these ideas have not been pursued.

The matricesQ andR expressing the covariances of thesystemandmeasurement noiseof ~wt

and~vt are very important as they are the only parameters over which one can adjust the (E)KF.
On the other hand side they are often unknown and only approximated or guessed. This means
that the (E)KF uses suboptimal knowledge about the accuracy of sensors and therefore produces
suboptimal state estimates. If one sensor is erroneously given a too large variance this means
that its contribution to the state estimation is weighed too low compared to others. If these other
sensors in turns do have a higher variance this means that the resulting state estimation will
be noisier than it would have to be if the measurement variances had been correct. The worst
possible case is to not include any knowledge about the sensors at all and have all entries in the
matrices as constant 1.

Let, for example, the system be a human being and the state the information of where “up”
and “down” are. A human has two main sensors for detecting up and down. The primary
sensor is the vestibule24 in the ear (“gravity organ”) which physically detects the pull of gravity.
However, this organ may be disturbed for example by a severe cold or flu. In such a case a
human can still tell up from down by using its eyes in combination with knowledge of how
the environment isexpectedto look like if everything is ok. Biologic evolution has in the
course of history adjusted the variances in order to put more emphasis on the eyes than on the
gravity organ, probably because of some evolutionary advantage. Only when both sensors are
not in agreement the human becomes aware that there actually are two sensors, for example in

24The vestibule’sutricle andsacculaeare used for sensing static head positions, whereas the semicircular canals
are used for sensing motions in each of the 3 spatial planes.http://webschoolsolutions.com/patts/
systems/ear.htm

http://webschoolsolutions.com/patts/systems/ear.htm
http://webschoolsolutions.com/patts/systems/ear.htm

72 3.2. Localisation

deliberately tilted houses where rooms appear normal but everyone is standing lopsided or areas
where water seems to flow uphill25.

Another example is that of a mobile platform and its sensors: Too much focus on the laser
scanners means that even a single measurement error strikes through to the position estimation
(and the association of the laser marks might be lost). On the other hand too few focus on them
means that slippage might not be detected (and the association of the laser marks might be lost).
Any mechanism to deal with this problem can only adjust the variances~wt and~vt on-line. If a
symptom can not be cured by this, the system can not be approximated by an (E)KF.

3.2.8.3 Numerical Issues

The (E)KF is a construct that has undergone a lot of extensive analysis since its invention. It
can be proven to be stable if some conditions on - amongst other things - the covariance matrix
are given26. This raises a few issues when implementing an (E)KF on a computer with limited
numerical resolution. Though never having been observed at our setup these issues can in the
worst case make the (E)KF unstable and shall therefore at least be mentioned here.

The first issue is that of numericalstability of the computation itself. Covariance matrices
have two key features: symmetry and positive definiteness27, both of which are crucial for the
filter’s stability. In a computer implementation of the (E)KF both of these features may be lost
due to rounding errors. According to [Bar-Shalom and Li 1993] there are two main points of
trouble (with the plain KF, but for the EKF the situation is similar):

1. The covariance prediction step

P−
t+1 = FP+

t F T + Q

as in equation 3.15 can affect only the symmetry of the resulting matrix, a problem which
can be avoided with a proper implementation of the matrix multiplication.

2. The covariance update step

P+
t = (I −KtH) P−

t

as in equation 3.18 can affect the symmetry and – because of the subtraction – the positive
definiteness. However, algebraically equivalent forms exist that do not have this problem.

Another issue is that ofefficiency. The covariance matrix has a size ofn× n, wheren is the
size of the state. For a mobile platform with coordinates of a lot of landmarks in the state this
n can be quite large, leading to very large matrices. On the other hand side these matrices are
likely to be only sparsely filled, so a naive approach is likely to waste memory and computing
time. In case this should become a problem there are special software libraries available for
sparse matrices.

25http://www.mysteryspot.com
26Note that stability of the filter does not require the dynamic system to be stable. Filter stability means that

the covariance matrix converges to a finite steady (stable) state, whereas state models used in tracking are unstable
because they have an integration from velocity to position. Stability means “bounded input bounded output”, and
this condition is not satisfied by an integrator [Bar-Shalom and Li 1993].

27An only positivesemi-definite covariance matrix, i.e. one with zero eigenvalues for some state components
would reflect the filters belief that it has perfectly accurate estimates of these state components – a thing which is
unlikely to be true and therefore undesirable.

http://www.mysteryspot.com

3.2. Localisation 73

3.2.8.4 Consequences

As a final word it can be said that the EKF is a suitable approach for the localisation problem if
the necessary precautions are met. In such a case it is in particular quite computationally cheap,
compared to other solutions. For example theparticle filter spends more effort on exactly
modelling the error distribution and therefore being able to better choose the likeliest solution,
but at the price of increased computational effort28. This can very well be a knock-out argument
for highly integrated robots where computing power is typically low compared to common
desktop computers.

3.2.9 Realisation

The control flow for the localisation is separated into three major threads, as can be seen in
figure 3.22. One thread reads the laser scanners and calls itsupdate() function once it has
received scans from all (both) scanners, one thread reads the odometry and gyro values and
calls itsupdate() function once it has received all information and one thread periodically
calls thepredict() function and executes motion steps. This way the asynchronicity of the
different sensors (see again figure 3.20) is completely hidden from the EKF.

E

motion?

wait for
31ms timer

EKF.Predict()

MOTION.Step() inverse
kinematics

MOTORS.SetVelocity()

yes

no

GetGyro()

MOTORS.GetOdometry()

EKF.UpdateOdometry()

map marks

LASERS.GetScan()

EKF.UpdateLaser()

Figure 3.22: Control flow for the localisation. Boxes underlayed with red
are actions that can block for a longer amount of time and are therefore exe-
cuted by parallel threads. Boxes underlayed with green belong to the EKF.

28See [Wright, Maskell and Briers 2003].

74 3.3. Path-Planning

3.3 Path-Planning

Path-planning is the task of computing an optimal path from an arbitrary start point to an arbi-
trary target that avoids collisions with known static objects (obstacles). This involves aspects
of maps (which are needed to store knowledge about the obstacles), graphs (which are needed
to express paths in these maps) and the actual path-planning (which means searching in these
graphs) – topics which are discussed in this section.

Searching a path means to minimise acostfunction. These costs can be expressed in many
ways, for example in terms of lengths of distances travelled, lengths of time intervals needed
and amount of electrical energy needed. For this work the cost has been defined as the length
of the path, the shortest path therefore being the optimal one. Since planning a collision-free
path means to go around obstacles agraphof all possible straight connections between corners
of obstacles that keep a certain safety distance is generated from the map and labelled with the
corresponding cost. For problems like this, where from any point of the graph the minimal
remaining cost to the goal can be estimated without evaluating the graph, theA∗ algorithm can
be used to optimise the search. The resulting path is the shortest sequence of straight lines that
lead to the goal without coming closer to any obstacle than the specified safety distance.

Theobstacle avoidanceis at this stage limited to known static objects because only they are
known in advance. Dynamic objects like humans roaming around the scene can not be handled
here because their positions can not be forecast and stored in the map. For simplicity and
because the given problem description does not necessarily require it the solution presented here
does not go as far as maintaining models of dynamically moving objects and therefore having
possibly dynamic paths. Dynamic obstacles will be taken care of at the motion execution stage
in section 3.4, where they are dealt with by acollision avoidancemodule.

Since the field of mobile robots is a quickly growing area of scientific work there are of
course a lot of other ideas and approaches which have not been incorporated in this work. The
reason for this is that most of these alternative ideas are targeted at problems which do not
occur at our setup or do at least not have a high priority. Amongst these ideas are – to mention
only the most commonly known ones –simultaneous localisation and map-building(SLAM),
which was not included because the setup requires all positions to be known in advance and the
map-building process is not that difficult for a single laboratory. A second idea arebehaviour
based approaches, which were not included because they can fatally interfere with the static
path-planning on the one hand side and can not be guaranteed to reach a target themselves on
the other hand side. They can unboundedly violate the optimality criterion up to the point of
causing more collisions in the course of avoiding one in the first place – a loop which can not
be guaranteed to terminate.

Again, this section is a compressed version of the work Schneider and Westhoff have done in
and for this project29.

3.3.1 Maps

The necessary prerequisite for every path-planning is a proper map, representing the robot’s
knowledge about its environment. Although such a map may appear trivial at first sight, it is
not. First there are several types of maps depending on what the robot needs to know about its

29See [Schneider and Westhoff 2002], chapter 6.

3.3. Path-Planning 75

environment, then there are several ways of storing information about obstacles in the maps and
finally the object which is to be moved according to the map may have an influence on the map
design.

This section introduces the questions ofmap designwith the given setup of the laboratory in
mind. It shows why an appearingly primitive polygonal map has been chosen and how this map
is modified duringmap expansionto take the shape of the robot into account.

3.3.1.1 Map Design

Maps can be divided into different groups according to how much information they hold and of
what type that information is. Gallistel has defined a geometric concept of “strength”, allowing
to compare different map representations. He says that the “strength” is

[...] the range of geometric relations among the mapped points that could in prin-
ciple be recovered from the map [...]30

Lee in turns has used this “strength” to set up the following four basic categories of map types31:

• Recognisable Locations:The map consists of a list of locations which can be reliably
recognised by the robot. The recognition is only a qualitative but not a quantitative one,
which means that no exact values for the positions are available.

• Topological Map: In additions to the recognisable locations, the map records which
locations are connected by traversable paths.

• Metric Topological Map: This term is used for maps in which distance and angle infor-
mation is added to the path descriptions.

• Full Metric Map: Object locations are specified in a fixed coordinate system. Precise
positional information is provided.

A good example for recognisable locations are vision systems which classify images into
known categories, like learning basedomnivisionsystems32. These systems yield an abstract
similarity of images to learned situations, from which at most a rough position guess of an
accuracy of at least several centimetres can be derived. They may therefore be usable for a
coarse monitoring of the (E)KF, but not for building maps where a high precision is needed.

What the given setup requires is that positions are precisely known in order to allow planning
proper paths around obstacles without collisions and detecting and compensating for malposi-
tioning of target objects. This requires a full metric map, and in fact the localisation has already
been designed to be able to provide the necessary precision. Also, any map with less strength
than a full metric map can not explicitly hold obstacles – they are only stored implicitly by the
paths.

The obstacles themselves are then best and easiest described by their polygonal outline, re-
sulting in apolygonal mapas in figure 3.23 (the objects only being filled for visualisation). Such
a map is also suited for themap expansionthat is needed to implement the obstacle avoidance.

30See [Gallistel 1990].
31See [Lee 1996], page 18.
32See [Zhang, Ḧubner and Knoll 2001].

76 3.3. Path-Planning

Figure 3.23: A polygonal map of obstacles, which are only filled for visualisation.

3.3.1.2 Map Expansion

In this polygonal map the robot has to move, which raises the question of its shape. Obviously
it makes a difference whether an arbitrarily shaped object has to be moved or some constraints
about the shape can be made33. Arbitrary shapes will not only need translations to get to the
goal, but also rotations to get around obstacles.

The more rotationally symmetric the shape of the robot is the less rotations are needed and
the easier the problem is, down to a fully rotationally symmetric circle which will not need any
rotations. The most easiest case would be if apointhas to be moved in the map. Fortunately the
shape of the MP-L655 can as a first approximation be considered circular without introducing
too much error, which allows to use the idea ofmap expansionthat makes it possible to reduce
the platform to a point.

Expanding Lines / Shrinking Robots

Given a robot radius ofr, the basic idea behind map expansion is to shrink the circular robot to
a point and at the same time expand the obstacles byr. Applied to a single line as in figure 3.24
this means to build parallels to the line at a distance ofr and to build semi-circles with a radius
of r at the line’s endpoints. The expansion yields a “cigar” shape around the line. The original
obstacle avoidance goal ofnot coming too close to a linethen translates intonot crossing the
outline of a cigar.

Although the semi-circles can be stored with only four parameters (the positionx and y,
the radiusr and the orientationα) using them is not an optimal idea. The reason for this

33This is known as thepiano mover problem, seehttp://www.google.de/search?q=piano+mover+
problem or http://www.cs.caltech.edu/˜lei/cs20/c/project/src/pm.html .

http://www.google.de/search?q=piano+mover+problem
http://www.google.de/search?q=piano+mover+problem
http://www.cs.caltech.edu/~lei/cs20/c/project/src/pm.html

3.3. Path-Planning 77

Robot
Line

Expansion
Shrinking

Figure 3.24: One idea of moving a robot with a radiusr through a map is to shrink the robot to a
point while expanding the obstacles byr. Applied to a single line this means to build parallels to
the line at a distance ofr and to build semi-circles with a radius ofr around the line’s endpoints.

is that the path to be constructed is likely to follow only fragments of these circles, which
means that intersections between circles and lines will have to be computed. These intersections
are significantly more complex compared to intersections of lines only. In addition to that,
intersecting (nearly tangential) lines with circles is computationally troublesome because it is
much more affected by rounding errors than intersecting two lines.

In order to keep the computations stable the circles can be approximated by polygons as in
figure 3.25. For this work each semi-circles has been approximated by 3 lines, which increases
the amount of information stored for each original line from 2 lines plus 2 semicircles to 8 lines
total.

Taking into account that a line is also stored with four parameters (the start pointx0 andy0

and the end pointxe andye) this means that the number of parameters stored for each original
line increases from(2 + 2) · 4 = 16 to (2 + 2 · 3) · 4 = 32 total. This is a significant increase of
information, but the gain in simplicity of the intersection computation is well worth the price.

Figure 3.25: The circles around the endpoints of a line can be approximated by a polygon with
more or less lines, depending on a tradeoff between accuracy and modelling complexity. From right
to left: 1, 2, 3, 4 and∞ lines. The area marked in red indicates the excess space that is wasted.

78 3.3. Path-Planning

The only potential problem that remains is that the approximation blocks more space than the
circle would have done, but with 3 lines per circle this can usually be neglected. The only case
in which this might become a problem are very narrow passages, but since these are already
potentially dangerous adding a bit more safety distance does not introduce a new disadvantage
and can only relax the problem. If this means that the passage will get blocked the situation is
so dangerous that it should better be re-arranged in the first place.

Expanding Objects

The above mentioned expansion method is designed for expanding single lines only, and not
composite objects. Instead of describing the world with single lines only a more sophisticated
approach is therefore desirable. Objects – for the purpose of obstacle avoidance – can be fully
described by their 2d-shape, their contour, which in turns can be approximated by a polygon.
Since a polygon is only a sequence of lines the easiest way to expand an object is to built
parallels to each line and join neighboured ones, and the easiest way to do that is to use simple
connecting lines.

As can be seen in figure 3.26 in case of concave corners of a polygon the parallels intersect
before the joining line. This is not yet a real problem, but only a waste which can in many
cases be avoided by not joining the parallels but using the intersection point to cut them off.
An exception are situations where the lines are so short that the parallels do not intersect. This
problem will soon be addressed.

Figure 3.26: Problems when joining parallels at concave corners.

The opposite case of convex corners also yields problems, as can be seen in figure 3.27. To
keep the desired distance the parallels may or may not be joined by connecting lines, depending
on the angle with which the original lines meet. If the angle is too pointed a simple connecting
line will violate the distance constraint34. It is possible to use more complex construct like
arcs to bridge the gap join the parallels, but that only works if the lines are long enough or no
concave corner follows.

One implementation of such a simple approach isedge shifting35. In edge shifting the paral-
lels (edges) are built as above, but allowed to extend beyond their original length. As suggested
for concave corners above, the intersection of the extended shifted edges of two neighboured
lines is taken as a corner point of the expanded contour. This process is repeated for each
neighboured pair of two original lines until a complete expanded contour is obtained.

34More precisely any such line will violate that constraint because the end point of the parallels are on a circle
with the desired distance radius around that corner, and so a line between them is asecantto that circle. But in
case the distance was amply chosen this can be tolerated to some point.

35See [Hunn 1993], p. 18-22.

3.3. Path-Planning 79

Figure 3.27: Problems when joining parallels at convex corners.

This basic version of edge shifting is actually not very much more sophisticated than the
joining with simple lines, and it is therefore not surprising that it suffers from similar problems.
As can be seen in figure 3.28 it does neither guarantee to get the optimal contour, nor even legal
ones:

• In the left situation the expanded contour reaches into the original object. This is again
not a real problem, but only a “suboptimal” contour. The robot can not collide with the
object because it would have to cross a line in order to get close enough to it. However,
the “loop” in the expanded contour unnecessarily increases the number of lines to check,
and therefore the required processing time. In order to reduce that time to a minimum the
loop could be removed, but this process is again not at all trivial as it involves not only
neighboured lines, but the whole contour.

• In the right situation the problem is more severe. Due to the shape of the original contour
the extended shifted edges intersect at corners that are off the optimal expanded contour.
In some cases they “only” waste space, but in other – fatal – cases the robot can collide
with the object. The reason for this is that as with removing the loop looking at only two
neighboured lines for each corner is not enough, because it might lead to a collision with
a third line. Again, to get around this,all lines have to be looked at, which significantly
complicates the expansion process.

Figure 3.28: Problems of theedge shiftingapproach: The expanded contour may be sub-
optimal and even reach into the object (left) or even allow collision with the object (right).

The problem of wasting space can be seen in figure 3.29: At very sharp edges the intersec-
tion of the shifted lines lie much farther away from the object than necessary. This not only
blocks more space around obstacles than necessary, but can actually lead to that no path is
found because a passage may be blocked. Again, avoiding this situation means to use other

80 3.3. Path-Planning

means of joining the parallels, means which are likely to cause problems or at least an increased
complexity at neighbouring corners.

Figure 3.29: The edge shifting approach blocks more space around obstacles than necessary.

Adding to all these problem, edge shifting only works forsolid objects given byclosedpoly-
gons. The reason for this is that it does not specify how to join the “inner” and “outer” parallel at
the endpoint of an open polygon. Only at closed polygons this situation never occurs. This is an
undesirable restriction as it often suffices to use plain lines or open polygons to model obstacles
for the robot. Also, adding obstacles may require recalculation of the expanded contour over
much larger areas of the map than just the newly added part, and using only local sections of the
map to optimise the processing time is much more difficult as it may cut closed polygons into
open ones. Because of these difficulties approaches trying to compute an “optimised” expanded
contour have not been regarded for this work.

Instead, in this work the obstacles are allowed to consist of open polygons (including single
lines) and each of their lines is expanded separately using the cigar expansion36. Figure 3.30
gives an example of how this works for a simple polygonal object. It can be seen that this
approach yields a quite large number of lines, many of which are redundant because they lie
completely inside the cigars and will therefore never be touched.

Figure 3.30: The cigar expansion – when applied to polygonal contours of objects – leads
to a large number of lines which are redundant because they lie inside the expanded contour.

The redundant lines can optionally be removed by applying the following checks: For each
line of each cigar it has to be checked if both its start and end point are within any of the other
cigars, which is very easy to do because the cigars are convex polygons37. If they are, the line is
tagged. After this process has been completed all tagged lines can safely be removed from the

36Actually the polygons do not really exist. They are only used as a theoretical construct to allow the writer of
the map to have an idea of “what belongs together”. Internally all lines of all polygons are stored individually.

37See [Sedgewick 2001].

3.3. Path-Planning 81

object, which will cut open the closed cigars. The remaining cigar fragments are open polygons
representing the object’s shape without forming closed contours, as can be seen in figure 3.31.

Figure 3.31: Deleting the redundant lines, whose start or end point in in a cigar. For better
visualisation the segments resulting from the different cigars have been marked in red and green.

A next step might be to compute the real closed polygon of the object’s shape. The set of
open polygons resulting from the above step can be merged at their intersection points to obtain
a single closed polygon. This does not affect the computational effort as it does not change
the number of lines, but it allows the notion of being “inside an object”. However, this idea
of reducing the object to its outer hull destroys an interesting feature of the cigar expansion
approach. It has to be repeated that the initial goal of

Do not come too close to an obstacle.

has in the course of expanding the map already been modified to

Do not cross any lines in the (expanded) map.

More precisely, the path-planning task imposes the following two restrictions on a legal path:

1. The start and goal point must not lie inside a cigar.

2. The path between them must not cross any line of any cigar.

Note that this does not explicitly say that the start or goal points may not lie inside an object,
simply because the notion of “inside an object” would require the notion of an “object” in the
first place. Since in the simple cigar expansion these do not exist the “objects” – if large enough
– will have a free space inside them (see again figure 3.30) which does not violate the first
of the above constraints. Attempting to build a path from such a point to the “outside” of the
object will violate the second constraint, but attempting to build a path to a point which is also
“inside” the object does not. This makes it perfectly legal for the robot to apparently move
inside an object.

The practical upshot of this is that for example a table can be modelled by giving its contour
and a small robot can then be placed and safely moved on it without falling off the edge. The
question of whether this is applicable to an “object” or not is reduced to whether or not it is
possible to legally put the robot there in the first place. This side effect is only possible because
there is no notion of the “inside” or “outside” of an object, or even of “objects” – there is only
the notion of “crossing lines”.

82 3.3. Path-Planning

As a result of these consideration the cigar expansion for single lines has been chosen for
this work. The redundancies of lines is not addressed here, but dealt with at a later stage. The
resulting expanded maps are therefore actually more complex than shown in figure 3.32, where
only the outer contour is given and the obstacles appear to be solid. These simplification have
only been applied to this and the following figures to yield more sparse and therefore better
visualisable graphs.

Figure 3.32: The expanded polygonal map. Note that the shifted edges are directly
connected to form the expanded contour instead of using the cigar expansion. This
violates the distance constraint but keeps this and the following figures simpler. For the
same reason only the outer contour is given and the objects are filled to appear solid.

3.3.2 Graphs

The expanded map is only the foundation for the remaining steps of planning a path for a
motion. The start and goal point of the motion are still unknown, but nevertheless a lot of
information about admissible paths can already be extracted from the map at this stage, so that
the upcoming path search is as optimal as possible.

Having reduced the robot to a point the task of searching the shortest path is one of moving a
point along lines. The best way to store information about points and lines is agraph, because
there exists a vast number of algorithms for operating on graphs. In the following the idea
of visibility and tangent graphs for describing admissible and optimal paths will be presented,
which finally leads to theA∗ algorithm used for the path search.

3.3.2.1 Visibility Graph

In a world that consists entirely of lines, intersections of two lines – or, in other words, the
corners of obstacles – are the only prominent and interesting points. Except from the part

3.3. Path-Planning 83

from start or goal to an obstacle the optimal path can only consist of lines between corners of
obstacles. This is because any shortest path will consist of a segment from the start to a corner
of an obstacle, some segments along the contour of that obstacle and/or to corners of other
obstacles and finally a segment to the goal. Any deviation off the contour will make the way
longer. This includes the one special case where the goal is directly reachable from the target.

To built a foundation for the path search avisibility graph (VG) is constructed from the
expanded map. The graph is initialised to hold all corners from the expanded obstacles as nodes,
and no connections. Then, for each corner a connection to all those corners that are visible from
it is added to the graph. Technically this is implemented by amatrix whose elements are either
the positive cost of the connection of the corners denoted by the row and column indices or
negative if no legal connection exists. An example for such a VG can be seen in figure 3.33.

Figure 3.33: Thevisibility graph (VG), based on the expanded polygonal map. For
each corner there is a path to each other corner that is visible from it. This automatically
includes its neighbours in the contour, making the complete contour a possible path.

This figure is again a simplification as it is not based on the real cigar expansion. Since it only
uses the outer contour it has a quite trivial and obvious notion of visibility. Visibility between
corners in the cigar expansion context means that

1. the start and goal corner must not lie in any cigar and

2. the line between them must not intersect any cigar.

Using these constraints yields a graph with actually much more connections than in figure
3.33, for example connections between corners in the free space inside objects (see again figure
3.30). It is the second constraint that is important because it forbids connections through cigars
and therefore keeps the robot from coming too close to any obstacle.

84 3.3. Path-Planning

Since the run-time of any search algorithm depends on the number of points to visit the
resulting graph is not yet an optimal base for path searching – it holds too many connections.
The next step therefore is to reduce the VG by deleting connections that are redundant.

3.3.2.2 Tangent Graph

As has been suggested a path will consist entirely of segments between corners of contours
(with the exception of the start and goal point). More specifically, once one obstacle is passed
the shortest possible path around the next obstacle is to go to the farmost visible point, the one
where the line only touches the contour in a single point. Any attempt to first go on the contour
and then around it will only make the path longer (with the exception that the target lies on the
contour).

Therefore all those connections between corners where the prolongation reaches inside the
contour are deleted from the graph. The resulting graph only holds connections which are
tangential to both their contours, and is therefore called atangent graph(TG). As can be seen in
figure 3.34 the TG holds significantly fewer connections than the VG it was constructed from.

Figure 3.34: The tangent graph(TG), based on the visibility graph. All those paths are dis-
carded which are not tangents to the obstacles they end at, i.e. whose prolongation would reach
inside any of these obstacles. This results in a significant reduction of the number of paths.

The tangentiality attribute has to be computed with caution because erroneous deletion of a
connection may lead to making parts of the map unreachable. In this work an algorithm based
on theccw() function by Robert Sedgewick38 is used. This algorithm basically computes
whether a point is on the right or left side of a line. Tangentiality can be computed from this
because if a line is a tangent to a contour point, then the point preceeding and the point following
that point on the contour have to be on the same side of the line.

38See [Sedgewick 2001].

3.3. Path-Planning 85

This computation is sensitive against rounding errors as is illustrated in figure 3.35. If both of
the connections(p3, p5) and(p2, p5) are deleted no passage through the gap between the objects
will be possible. Such a situation can only happen if the connection in question is (almost)
parallel to a contour line. One way to avoid this problem is to modify theccw() function to
return the real distance of a point to a line and to use a threshold that is knowingly larger than
the worst possible rounding error.

P1

P2 P3

P4
P1

P2 P3
P4

P5P5

Figure 3.35: Sensitivity of tangentiality computation against rounding errors. If
in the left case the pointp2 is erroneously taken to be above the line(p3, p5) it is on
the opposite side than pointp4 and(p3, p5) can not be a tangent. If at the same time
in the right case(p2, p5) is also not accepted as a tangent becausep3 is erroneously
taken to be above that line no connection between the two object remains.

3.3.3 Path Search

On the above presented TG the path must be searched on, but before a path can be searched the
start and goal point must be known, which leads to a final modification of the graph. Once they
are added theA∗ algorithm can be used to search the optimal (shortest) path.

3.3.3.1 Arbitrary Start and Goal Points

So far the TG contains only path fragments concerning the corners of (expanded) obstacles and
not yet the current position or goal. This is because the obstacles represent the only information
that is available off-line for advance computation, and advance computation is desired to keep
the on-line computation effort low. Only when a motion is to be done and the start and goal
point are known they are added to the graph on-line. All connections from the start and goal to
the directly visible corners that are tangents are added to the graph, finally resulting in thepath
graph(PG) as in 3.36.

Since this step has to be repeated for every motion its computational complexity has to be
analysed: Adding two points (corners) to the TG increases the size of the vector of nodes by
two and the size of the matrix of connections by two rows and columns. For any numbern of
original corners the size of the matrix will increase fromn2 to (n + 2)2. The increment in size
(n + 2)2 − n2 = 4n + 4 means that the effort to add the start and goal point will increase with
the number of points that are already in the graph, but only linearly. It is therefore likely to be
neglectable.

If, in case of very large graphs, this should become a problem there are still a number of
alternatives possible. If the number of possible start and goal points is limited (for example
the devices in the biotechnological laboratory) and only the number of obstacles is high (for
example because the devices are spread in a very large room with many other objects) all start
and goal points can be added to the TG right away and the path(s) pre-computed. In this case

86 3.3. Path-Planning

Goal
Start

Figure 3.36: The start and goal point are added to the tangent graph by adding
(blue) paths from them to any corner which they only touch tangentially, yielding the
path graph(PG). This operation typically adds only comparatively few connections.

the only thing that has to be checked at run-time is whether the robot really is at one of the start
points, or can at least directly reach one of them. Since this is under normal circumstances very
likely to be true the complete stage of path-planning can then be omitted.

Another possibility, especially if multiple rooms are involved, is to split the map and the graph
into smaller parts with defined juncture points. This way only those partial graphs holding the
start and goal point have to be modified, leading to a reduction of required computing time.

Also, it might be worth considering to use a control mode which already puts the robot into
motion as soon as parts of the path are known and does not wait for the complete path. Even
though it is not guaranteed that the first available path segment guess is really the optimal one
it is still very likely and can speed up the motion execution. Parallelising the path-planning and
the motion execution also means that the path-planning does no longer have to be done on the
rather small embedded computer on the platform, but may be passed over to a more powerful
computer in the network. Such a centralised PC can then also partly synchronise the motions of
two or more robots which would otherwise not know about each other.

3.3.3.2 A∗ Algorithm

After inserting the start and goal point the TG contains all the information that is needed to
finally search the path. Searching basically means to try several possibilities and choose the
“best” of them, according to a certain cost function. In case of a geometric problem like path-
planning this cost function is most commonly the length of the path, but other cost functions
are also possible (like the smoothness of the path or the energy needed to drive it). Graphs are
a very well researched field of computer science and so a lot of algorithms exist.

3.3. Path-Planning 87

The obvious possibility is to begin at the start point and try all possible connections to other
points. This yields a set of paths which consist of only one segment yet, each with a different
length (cost). No assumption about which of the paths may be preferred is made, but instead
again all possible connections to other points are tried (except from those leading back on the
path). This leads to a set of paths which consist of two segments. The process is repeated until
all combinations of segments have been evaluated, and from the (hopefully non-empty) set of
solutions the best one is chosen.

This breadth firstapproach is known asDijkstra’s algorithm. It does find the best solution,
but at the price of completely evaluating all possibilities. It does not take any information into
account other than the length of a complete path. It is therefore also called anuninformed
search.

The total costc(i) of a pathi is of course only known if the goal~g is reached, but if an
estimatee(i) about the remaining costs would exist the total costh(i) of a partial path could be
estimated as

h(i) = c(i) + e(i) (3.29)

This estimate can be used to improve Dijkstra’s algorithm by evaluating the best path first. A
path with higher estimated remaining costs is considered unlikely to turn out to be shorter than
one with lower estimated remaining costs. The first optimisation is therefore that is is likely
that the first solution is found in less time. This solution is not guaranteed to be the optimal
solution and so the evaluation has to be continued, but the second optimisation is that some of
the remaining partial path(s)j can be completely discarded because their estimated costsh(j)
are higher than the total costc(i) of the so far best solution. The only condition required for this
to be true is that the estimated remaining coste(i) in equation 3.29 doesnot over-estimate the
real remaining cost, and for geometrical problems like looking for the shortest path the easily
computable euclidian distance

e(i) = ‖~pi − ~g‖

between the the current end point~pi of the partial pathi and the goal~g guarantees exactly
that.

This best firstapproach is known as theA∗ algorithm by Hart, Nilsson and Raphael39. It
yields the optimal path computed in an optimal time. An example of the result of theA∗

computation can be seen in figure 3.37, where the best solution has been marked in green.

3.3.4 Summary

The path-planning part of the mobile platform control for static obstacles is implemented using
theA∗ algorithm on tangent graphs, which are in turns computed from visibility graphs. These
graphs are derived from line maps in which each line – representing a part of a (not necessarily
closed) polygonal obstacle – is expanded by the robot’s radiusr using a “cigar” expansion,
while at the same time the robot is shrunk to a point. This way a safe distance to the obstacles
can be maintained and yet no time is wasted by driving suboptimal paths.

The primary goal of path-planning of “staying away from obstacles” translates into “not
crossing any line” with this approach, allowing for the special case of appearingly moving the

39See [Hart, Nilsson and Raphael 1968].

88 3.3. Path-Planning

Goal
Start

Figure 3.37: Searching a path is done by theA∗ algorithm which traverses
the graph and finds the optimal (green) combination of path segments.

robot “inside” an object that is given as a polygon. This has to be seen as an advantage because
it for example allows smaller robots to be moved on tables using the same map as a larger robot
that moves around that very table.

The map is considered to be given because the idea of building it by exploration known as
simultaneous localisation and map building(SLAM)40 does not comply with the requirement
of having a high precision and safe operation. This is because SLAM requires a learning phase
of unpredictable length, It will end up with the capability to go back to positions where it has
been before, but it still does not know how to associate these positions with laboratory devices.
Searching the devices using the arm and its vision system is for security reasons not feasible,
and so a human operator will have to teach the positions of the devices as with an ordinary map.

With the intended field of application of a single laboratory no performance issues arise. The
complete map and graphs can be held in computer memory with no problems, even though they
are only sparsely filled. If the map should become too large the computational effort can be
kept reasonable by splitting the map.

Dynamic obstacles are not handled at this level, but by the collision avoidance in the motion
execution level. Possible enhancements might include a separate thread that monitors the visible
obstacles and enters them into the map if they are found to be persisting or removes them if they
are found to have gone again. This, to distinguish them from really static obstacles, would lead
to a layered map.

40For example see P. Newman’s work [Newman 1999].

3.4. Motion Execution 89

3.4 Motion Execution

Once a path for a motion to a target is computed the next step is to drive that motion, or – in other
words – execute a sequence ofmotion primitives. In general, it can not be guaranteed that this
is actually the last step because unforeseen obstacles or circumstances may make it necessary to
stop half-way and replan parts of the path, however, under the limitations of this work it can. The
strategies presented in this section therefore cover thetrajectory generator(TGEN) executing
a functionally complete set of motion primitives including a low-levelcollision avoidance, but
not high-level replanning. The motion primitives implement the idea of controlling the platform
with a non-linear filter based on velocity profiles, which – contrary to the original Neobotix
software – do have a strongly deterministic notion of when a motion is finished.

3.4.1 Kinematics and Motion Types

Depending on the kinematics of the mobile platform and the type of the computed path a lot
of different types of motions are possible. In general a mobile platform with adifferential
kinematicas the Neobotix MP-L655 is capable of driving “only” one type of motion, namely

• rotations about any point on the axis going through the platform’s drive motors.

Whereas this generic motion type may at first sight appear to be both not very powerful and
yet complex to implement it includes two interesting special cases. Since these special cases
are much simpler than the generic case and yet exactly the ones which are needed to build a
functionally complete set of motion primitives the list needs to be rewritten to include them.
Updated, the MP-L655 is therefore capable of driving

• circles with a radiusr,

• rotations on the spot (a circle with radius 0) and

• translations straight ahead (a circle with radius∞).

This set of motion types is already functionally complete41, and so the last motion type to be
mentioned is not explicitly required, but only a nice-to-have. Adding to the above, the MP-L655
is also capable of driving

• splines (or other curves)

because they can be locally approximated by a circle. Note again that with a differential
kinematic it is not possible to move the platform sideways without rotating first – such a motion
can not be expressed by a rotation about a point on the vertical axis going through the platform
centre.

Before presenting the velocity profile based filter used in this work it shall first be shown how
the original vendor software implemented motion execution.

41It can be trivially seen and has been shown in section 3.3 that a point-sized object can reach any target with
only rotations on the spot and translations, whereas arbitrary shaped objects may require rotations about arbitrary
points.

90 3.4. Motion Execution

3.4.1.1 Neobotix Software

As has been mentioned, the original GENCONTROL software does not use a path planner and
can therefore not at all reach targets which are more than just trivially obstructed. Instead it
uses a three-staged motion execution with an integrated obstacle avoidance to move around
those obstacles it can deal with. The three stages of motion execution are:

1. Rotate towards the target until the difference in orientation is below some threshold,

2. drive towards it until the euclidian distance is below some threshold and

3. rotate in target orientation until the difference in orientation is below some threshold.

These stages are not fixedly executed one after another, but newly selected in each cycle
according to the conditions – see figure 3.38. This is because it is possible that in stage 3 the
euclidian distance condition is violated again due to slippage or other kinematic problems. In
this case the TGEN switches back to stage 2, trying to get back to the target, or – more likely –
even to stage 1 to orientate the platform towards the target again. Only if all three conditions are
satisfied the TGEN stops sending commands to the drive motors. Since the platform is basically
a mass with inertia this does not necessarily mean that it immediately comes to a rest, and if
during the final deceleration one of the constraints is violated again the procedure is restarted
right away.

BEGIN distance to target
>= threshold?

translational

>= threshold?

orientational
distance to target

target orientation
>= threshold?

deviation from

towards
translate

target

towards
rotate

target

rotate towards
target orientation

END

no

no

yes

no

yes

yes

Figure 3.38: Tracking a target in the original GENCONTROL software. BEGIN
and END mark a single cycle of the control software, not the entire motion.

This means that GENCONTROL tracksa target rather than execute a deterministic motion
towards it – it does not have a true notion of a “motion”. As such, termination of the “motion”
can only be determined by additionally observing the above constraints at a higher level, plus

3.4. Motion Execution 91

ensuring that the drive wheels are actually no longer moving. This approach is of course very
error-prone, giving one of the reasons for the decision to replace GENCONTROL.

Another reason is that the final termination of the TGEN loop is of course not guaranteed by
this approach. In fact the platform has been observed to get trapped in endless motion if the
catch radius around the target is smaller than the accuracy of the localisation. Such a behaviour
is of course untolerable in the given setup.

The newer Neobotix software “PLATFORMCONTROL” which is now shipped with the MP-
L655 does – though being a complete rewrite – does not correct all these issues. Instead of using
the three-stage-approach for linear motions it can drive the robot on a spline curve, but since it
– at the time of writing – still has no motion planner the spline has to be externally given. Also,
it still has the problem of getting endlessly trapped in non-trivial situations. It is therefore also
not suitable for the given requirements.

In addition to that, both the GENCONTROL and PLATFORMCONTROL run under the Win-
dows operating system which, since the robot arm control runs under the Linux operating sys-
tem, means that an additional PC has to be installed on the mobile platform and additional com-
munication has to be implemented. Since this unnecessarily complicates the setup it presents a
final reason to implement a replacement.

3.4.1.2 Tracking & Inverse Kinematics

Considering alternative implementations, there is at least one other important thought to con-
sider: Moving means to change the position, and one way to do a motion is to precompute a
trajectory, i.e. the position as a function of time. Motion execution then means to time-step this
function and apply inverse kinematics to yield a set of commands to feed to the drive mecha-
nism. This is the way it is usually done for robot arms where there is a strict kinematic coupling
(i.e. no slippage) between the drive mechanism and the space in which the arm is to move.
A mobile platform, however, does not have this strict kinematic coupling, and therefore this
approach can not be applied directly.

One typical suggestion to overcome this problem is that only a virtual point is moved and
the platform is requested to track that point by means of some additional controller. Depending
on the controller, this means that even though the virtual point is moving with constant steps
the platform itself will not – if slippage occurs. Where the maximum velocity is likely to be
limited, meaning that the platform will not catch up if it lags behind, reduction of the velocity
will surely occur if the platform overshoots.

As a result this approach does work in terms of moving the platform along the trajectory,
but may do so using a non-constant velocity and therefore leads to jerky motions. A more
sophisticated approach will of course avoid this problem in the first place.

3.4.1.3 Conclusions

Because of these – partly fatal – disadvantages of the commercial software a different approach
had to be implemented for this work. It was especially designed to be

• compatible with rotations and translations,

• have a deterministic concept of the termination of a motion and in particular

92 3.4. Motion Execution

• prevent endless loops. It should

• not suffer from the tracking problem,

• have basic collision avoidance, but

• need not have obstacle avoidance capabilities.

The central means to achieve these goals is a trajectory generation filter that uses velocity
profiles.

3.4.2 Trajectory Generation Filter with Velocity Profiles

Both rotations on the spot and translations can be seen as travelling a distance in one dimension
– the angle of orientation in case of rotations and the projection of the position on the desired
trajectory in case of translations. As is shown by Lloyd and Scherer42 this allows for a simple
velocity profile to be computed for that travel.

3.4.2.1 Velocity Profiles

The physical foundation behind velocity profiles is that the distanced travelled is the integral
under the velocity curvev(t).

d(t) =

∫ t

0

v(t)dt

This alone is not a constructive rule as it does not specify how the curve should look like.
In order to construct a proper curve additional information is needed, which does exist in the
requirement to get to the target as fast as possible.

In case of static profiles (i.e. those with zero initial velocity) this means to ramp up (acceler-
ate) to some peak velocity and then to ramp down (decelerate) to stop exactly at the target. As
can be seen in figure 3.39(a) such a profile makes the computation of its integral quite trivial.
The distanced travelled under such a profile is given as

d =
v2

p

a

and the timets needed for the travel as

ts =
2vp

a

The peak velocityvp can easily be computed from the above as

vp =
√

a · s

In most cases thisvp will exceed the maximum allowed velocity of the platform, so it has to
be clipped. The resulting profile has a phase of constant velocity as in figure 3.39(b), making the
integral computations slightly more complex because the system can be in any of three different
states:

42See [Lloyd 1998] and [Scherer 1998], chapter 3, p.14 ff.

3.4. Motion Execution 93

vm

pv

t s

v

t

(a) non-clipped

t s

pv

v

t

(b) clipped

Figure 3.39: Simple static profiles.

1. The system is accelerating to the maximum velocity.

2. The system is travelling with constant maximum velocity.

3. The system is decelerating to stop at the target.

The profile computations are the same for all these states. The distanced travelled under the
profile is given as

d = vpts −
v2

p

a

and – sincevp is known to be the maximum allowed velocity – the timets needed for the travel
as

ts =
d

vp

+
vp

a

From thesevp can be computed as

vp =
ats −

√
a2t2s − 4ad

2

0
t s

v0

pv

v

t

0
t s

v0

pv

v

t
0

t s

v0

pv
v

t

Figure 3.40: Three possible different types of dynamical profiles.

As has been said, these static profiles are for zero initial velocity only. If applied, they will
put a system in motion and so this condition will no longer hold in the next cycle. What is
needed as a generalisation are dynamic profiles, i.e. profiles with a non-zero initial velocity.
This dynamic case is a bit more difficult as there are in fact three different types of profiles
possible, as can be seen in figure 3.40:

94 3.4. Motion Execution

1. vp ≥ v0 > 0: The system is going towards the target in any of the the above three stages.
It will come to stop at the target.

2. v0 > 0, vp < 0: The system is going towards the target, but the initial velocity is too high
and it will overshoot if it must not violate the maximum allowed acceleration. It will have
to go backwards to finally stop at the target.

3. v0 < 0, vp > 0: The system is going away from the target and has to decelerate to turn
around into a motion towards the target.

The types 2 and 3 actually do not occur with the mobile platform control because of reasons
that will be shown below, and so only the type 1 will be further analysed here. This type can
without loss of generality be divided into a ramp-down from the initial velocityv0 covering the
distanced0 =

v2
0

2a
plus some extra distanced∗ ≥ 0. The fastest way to travel this extra distance

is again to accelerate to some peak velocityvp, yielding a profile as in figure 3.41.

pv

v0

t s

d*
d0

v

t

Figure 3.41: The extra distanced∗.

The peak velocityvp of this profile can be computed as

vp =

√
ad +

v2
0

2

as long asd ≥ v2
0

2a
holds, because ifd <

v2
0

2a
we are not in a type 1 profile at all. Ifd =

v2
0

2a
we are

in the special case ofd∗ = 0, for whichvp = v0 holds – a case that consistonly of a ramp-down.

Again, this vp has to be clipped against the maximum allowed velocity. Depending on
whether the clippedvp is larger or smaller than the initialv0 two major cases have to be distin-
guished:

1. v0 < vp: The profile first ramps up tovp, optionally stays at that velocity for some time
and then ramps down to stop at the target (see figure 3.42 left). The distance travelled can
be computed as

d = vpts −
v2

p

2a
− (vp − v0)

2

2a

The only parameter that is still missing is the timets needed for travelling the motion,
which can be computed from the distance as

ts =
d

vp

+
vp − v0

a
+

v2
0

2avp

3.4. Motion Execution 95

2. v0 > vp: The profile directly ramps down tovp, optionally stays at that velocity for some
time and them ramps down again to stop at the target (see figure 3.42 right). The distance
travelled can be computed as

d = vpts −
v2

p

2a
+

(v0 − vp)
2

2a

and the motion timets as

ts =
d

vp

− v2
0

2avp

+
v0

a

v0

t s

d*

pv

0d

v

t
t s

d*

pv

v0
v

td’’
d’

Figure 3.42: Two different cases of covering the extra distanced∗.

These parameters are all that is needed to construct a one-dimensional profile. Since
[Scherer 1998] originally used these profiles to control robot arm motions he also defines
stretching a profile, that is enlarging itsts to synchronise several dimensions of a multi-
dimensional profile, which involves possible switches between the above two types. However,
stretching is not needed for one-dimensional profiles, therefore its description has been dropped
here.

Also only briefly mentioned is that while a one-dimensional profile can be proven to be stable,
a multi dimensional in general can not. [Scherer 1998] uses multi-dimensional profiles to move
a point in 3d-space to a target, but under certain restrictions. If used without restrictions a multi-
dimensional is likely to result in anattractorsystem and converge to a “stable”orbit around the
target, rather than a point.

3.4.2.2 Position Setpoints

Depending on the desired output the application and evaluation of these profiles differs. Lloyd
and Scherer use them to generate commands for a PUMA robot arm which acceptsposition
setpoints, so in their application they really integrate the profile for some cycle timetc. This
increment in position is then added to the current position to obtain a new setpoint.

A motion is terminated once the profile is used beyond its lengthts. Since after termination of
the profile the target position value is continuously output to be tracked by the motor controllers
it does not matter if they actually reached the target atts or not. The typical PUMA arm motor
controller will in fact lag a bit behind its desired target value, but this effect can and is usually
ignored as it only makes up for fractions of degrees.

96 3.4. Motion Execution

This usage of velocity profiles yields no problems except that the target velocity that is also
provided by the profile is ignored because the PUMA can make no use of it. This also means
that this value is lost in the next cycle when a new profile is to be computed. Instead, they
use the differential position as reported by the robot asv0 for the new profile. Thisv0 will be
smaller than the actual velocity in acceleration phases and larger than it in deceleration phases.
However, Scherer shows that this does not make the filter unstable43.

3.4.2.3 Velocity Setpoints

Applied to the MP-L655 mobile platform the differential position as obtained by integrating the
profile can not be used as a control command because the motor controllers do not support posi-
tion setpoints, but onlyvelocity setpoints. Instead of implementing an additional PID controller
around each motor that allows feeding of position commands this task is laid upon the profile
itself. This means that it is no longer the finally desired target entity that is controlled, but its
first derivative, and so problems are to be expected.

Note that – contrary to a robot arm – with a mobile platform there is slippage between the
motors and the entity that is to be controlled. This means that the profile really has to be newly
computed in each cycle because no assumption about the remaining distance to be travelled can
be made. This raises the question of which velocity to use as initial velocityv0 of the profile.
Using the actual velocity as obtained by differentiation of the position triggers a problem at the
start and end of the ramps:

• At the end of the deceleration ramp, assume that the last profile cycle exactly stops at the
target with velocity zero. The output to the motors will be a zero velocity, meaning that
in theory the platform will not move that last remaining distance. In practice it will still
move a little bit because the platform’s inertia will forbid it to stop immediately. In such a
case the motion is terminated as soon as the profile is used beyond its lengthts and a few
cycles are spent waiting until the platform really comes to a stop. The remaining error is
typically in the range of very few degrees of wheel position and can well be tolerated.

• At the begin of the acceleration ramp the situation is a lot more severe. In the very first
cycle the profile will yield a quite small target velocity. If this velocity is too small to
overcome the mass inertia the platform will not move. This, however, means that in the
next cycle the actual velocity as the differential velocity between two position will be
zero, because the position has not changed. As a result, in the next cycles the situation
will always stay the same (see figure 3.43): The position has not changed and the velocity
is zero – the platform willnevermove.

This problem is inherent with discretised systems, in particular when only the first derivative
of the desired entity is controlled. In order to overcome it, the actual velocity must not be taken
to compute the profile. Instead, the target velocity from the last cycle is used as initial velocity
for a new cycle. As can be seen in figure 3.44 this means that the initialv0 will get larger in
every cycle and eventually overcome the mass inertia.

A visualisation of a control cycle of this approach can be seen in figure 3.45. Since the
profile is always recomputed with the actual distance to be travelled this approach works without
causing larger positioning errors. It does, however, add to the final positioning error, leading to

43See [Scherer 1998], p.27.

3.4. Motion Execution 97

t

v

t

v

t

v

tc tc tc

Figure 3.43: Using the real velocity as initial velocity for a profile may let it get stuck.

t

v

t

v

t

v

tc tctc

?
??

Figure 3.44: Using the target velocity from the last cycle as initial velocity for
a new cycle overcomes the inertia and ensures that the platform starts to move.

that the termination conditions have to be modified. Therefore, a motion is forced to terminate
when either

• the current position is beyond the target,

• the output velocity is zero (which may happen a bit short off the target, but not because
of an active collision avoidance) or

• according to the timeline the target should be reached in this step (regardless of whether
this really is going happen or not).

It is because of this focus on terminating a motion once it has come close enough to or passed
a target without trying to go back to it that the above mentioned type 2 and 3 profiles actually
do not occur in the profiles as used in this work. As a result of this the real position may differ
from the desired target when the profile has stopped.

3.4.2.4 Summary

It has been shown that velocity profiles can be used to implement a TGEN as a filter. In case
of one-dimensional problems like during rotating or translating a mobile platform it is theoreti-
cally stable, whereas in the generic multi-dimensional case it needs additional constraints. The
practical stability problems that arise from the fact that the initial ramp-up may get stuck due to
discretisation or mass inertia can be overcome with only slight modifications.

The resulting implementation puts a strong emphasis on deterministic termination of a mo-
tion, even if this means to slightly deviate off the target. It therefore needs no catch radius and
no knowledge about the overall accuracy to determine motion termination and can by design
not get trapped in an endless loop like the original vendor software.

98 3.4. Motion Execution

BEGIN
compute
profile

velocity
last

position
current

time−step
profile

profile
overshoot?

read profile
velocity

velocity
zero?

apply inverse
kinematics

TERMINATE
MOTION

END

nono

yes yes

remember

Figure 3.45: Moving to a target with the new approach presented in this work. Again, as in
figure 3.38, BEGIN and END mark a single cycle of the control software, not the entire motion.

3.4.3 Absolute Rotations

Absolute rotations – i.e. rotations to an absolute orientation – are needed to change the orien-
tation of the platform between path segments or at the end of a path. They are implemented by
a one-dimensional profile for the orientation angle. During each cycle the current orientation is
obtained from the localisation, the profile recomputed and the target velocity send to the motor
controllers. The rotation profile is terminated according to the above conditions.

The rotations are silently assumed to be “on the spot”, though this is neither checked nor
enforced. Due to slippage or other kinematic problems it happens that during the rotation the
positionchanges slightly. As can be seen in figure 3.46, this translational deviation depends on
the absolute rotation angle. It is at most 2 cm for a rotation of 180◦, so for rotations between
path segments it can be ignored.

For rotations to go into target orientation at the end of a path such a deviation can not be
tolerated. Because of this, the approach to a device is implemented in a way that avoids rotations
as the last motions. Instead of directly going to a target the platform first goes to a point some
approach distancein front of the target and then goes the last part in a straight line. This way
at the target at most only a very small rotation is necessary to compensate for errors that have
occurred during the final approach.

Currently only rotations to a targetangleare implemented, not to a targetpoint. The rotations
between path segments are in fact rotations towards a point (the end point of the next segment),
but instead the pre-computed target angle is used. This does make a difference because during
rotation the position of the platform may shift and therefore the target angle too. Due to the
lacking target point rotation mode this effect is currently not compensated for and so the setup
has to be arranged in a way that it can be ensured that rotation to not take place above sinks,
drains or other bumps in the floor.

3.4.4 Absolute Translations

Absolute translations – i.e. translations to an absolute point – are needed to drive the platform
along a path segment from a start point~p0 to an end point~pe. Although this is a motion in a
2d-world it basically is only a 1d-problem because the robot is desired to drive the path segment
as a straight line. This requires that the platform is basically oriented towards the target – if it
is not, a rotation has to be issued first. Once this has been assured the translation can start.

3.4. Motion Execution 99

 0

 0.005

 0.01

 0.015

 0.02

 0.025

-150 -100 -50 0 50 100 150

di
sp

la
ce

m
en

t [
m

]

rotation [deg]

 Experiment

Figure 3.46: Translational displacements during rotations.

First, the lengthlt of the desired trajectory~pt and the trajectory itself are computed as

lt = ‖~pe − ~p0‖

~pt =
~pe − ~p0

lt

Then, in each cyclet the current position~p(t) and velocity~v(t) of the platform are projected
onto the trajectory as

pt(t) = ~p(t) · ~pt

vt(t) = ~v(t) · ~pt

A 1d-profile can then be computed to move the platform along the trajectory and bring it to rest
after some timets so that

pt(ts) = lt

vt(ts) = 0

holds.

During the travel it may happen that non-zero position and/or velocity components perpendic-
ular to the trajectory occur because of slippage and/or other kinematic problems or inaccuracies.
In order to compensate for these a PID controller is added ontop of the profile to try and bring
these components back to zero, i.e. the platform back to the trajectory. This controller is only
parameterised to perform small corrective motions and not full rotations, so the platform really
has to be basically oriented towards the target.

100 3.4. Motion Execution

Motions are terminated according to the above conditions, which – due to the PID controller
producing commands perpendicular to the trajectory – means that not only a small deviation
along the trajectory from the target may occur, but also a small deviation off the trajectory.
Basically, the platform can be expected to arrive near the target with what can be approximated
by a gaussian distribution. The positioning error is typically within 1 cm, with worst cases of up
to 5 cm. This error must not be mixed up with the localisation error, which is typically less than
1 cm, but has to be added to the above to yield the absolute accuracy. The overall performance
of the platform control is shown in more detail in section 3.6.

It is mainly because the PID controller forbids arbitrary deviations off the desired trajectory
that the final positioning error is so low. The original GENCONTROL software did not have the
notion of a desired trajectory and therefore allowed for arbitrary deviations off it. This means
that the platform may arrive at the target with an arbitrary orientation, and since rotations to
correct this orientation in turns result in changes of the position it suffers from a much larger
positioning error and the potential endless-loop-problem.

With the approach shown here these problems do not have to be compensated because they
do not arise in the first place. Also, no catch radius and no knowledge about the accuracy of the
localisation are needed to ensure a deterministic behaviour – the only effect a bad localisation
would have is to make the accuracy of the positioning bad too.

3.4.5 Relative Translations

Relative translations – i.e. translations by a distance – are only needed to approach to and depart
from theautomatic charging station(ACS). They are based on absolute translations with three
differences. They

• disable the collision avoidance,

• disable the PID controller and

• do not use the real position as feedback.

The reason for disabling the collision avoidance is that the ACS is mounted to a pillar in the
laboratory and approaching it means that the normal safety distance has to be violated. As a
consequence relative translations should not be used in situations where unexpected obstacles
(humans) may be present.

The reason for disabling the PID controller is that due to the design of the ACS it is not
favourable to approach it with an orientation that is not exactly perpendicular to it. In case the
orientation is only a little bit sideways the electric contacts in the plug may not properly connect
with the socket. Therefore, since during short translations only very small orientation errors are
likely accumulate, it is favourable to use a short approach motion from a point directly in front
of the ACS and tolerate the small orientation error rather than to try and compensate it, which
may temporarily lead to even larger orientational deviations. As a consequence the ACS has to
be mounted at a place where such an approach in possible, which in particular means that the
floor near it must be free of sinks, bumps or other troublesome points.

The reason for not using the real position as feedback is that the “real” distance to drive can
not be given. The position of the approach point and the ACS are of course known, but if a
motion to the precise target is issued one of the following two problems may occur:

3.4. Motion Execution 101

1. If the distance was too short no sufficient electrical contact can be made. Since the ACS
is not equipped with an ampèremetre indicating that current is actually flowing such a
situation can not be properly detected. The only thing that could be detected is whether
the battery voltage is increasing or not, but since this has to be measured over a longer
period of time to be absolutely sure44 it is a very cumbersome measurement. This is es-
pecially true if the battery is already almost full and the change in voltage during loading
is therefore very small.

2. If the distance was too large the platform is stopped by “bumping” into the ACS be-
fore reaching the target. Since the profile would see that it has not yet reached the tar-
get it would therefore continue producing motion commands. This means that the mo-
tion would run indefinitely with the platform standing in front of the ACS with spinning
wheels.

Instead, if the true position is not taken as feedback for the profile the motion can be set
up to go one or two centimetres “into” the ACS. The profile will not see that the platform
has bumped into an obstacle and will continue to drive towards the target until it stops. As a
result the platform can be assured to have established proper electrical contact against the spring
mechanism used in the ACS, and the fact that the wheels spin for a second or two does not hurt
– this also happens at very bumpy floors.

3.4.6 Collision Avoidance

Collision avoidance is actually not implemented in these motion classes, but one level higher in
the TGEN that calls these classes. The TGEN computes a simplevelocity scaling factorbased
on the distanced to the nearest obstacle

f(d) = tanh(c · (d− dmin))

which is clipped to not become negative45. The scaling factorf(d) is then applied to the velocity
in each cycle. Some examples of this factor for different parameters can be seen in figure 3.47.

If the platform was slowed down in order to avoid a collision the profile has to be notified
of this because it has to use the correct velocity in the next cycle. If it would not know about
the slowdown it might see that the distance has not changed, but would assume to still be at
maximum velocity. This means that as soon as the obstacles goes away it would try to resume
the motions with full speed instead of ramping up, which is not a good idea.

Also, the profile has to know about the slowdown in order to not erroneously believe that the
motion termination condition checking for whether the output velocity is zero has become true.
During a slowdown caused by the collision avoidance this one condition is therefore explicitly
disabled. Since the other two conditions only become true if the target is explicitly crossed this

44If, for example, the platform has recently been moving with full speed (a lot of current has been drawn from
the battery) and the battery has already been quite low the voltage will increase as soon as the platform (the current
withdrawal) is stopped. This is because of the way lead-acid batteries work: Their chemical agent represents an
electric resistor that is increased when the battery is discharged. Since a withdrawal of current causes a loss of
voltage over that resistor the available external voltage gets lower. If the withdrawal of current is reduced the
external voltage may therefore rise again. The absolute voltage of course stays the same.

45Care has to be taken that the parametersc anddmin do not lead to too much deceleration at the nominal safety
distance as kept by the path planner, because otherwise the platform will mistake the objects the pathplanner is
moving around as obstacles and slow down.

102 3.4. Motion Execution

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2

ve
lo

ci
ty

 m
ul

tip
lic

at
io

n
fa

ct
or

distance [m]

tanh(7*(x-0.5))
tanh(5*(x-0.6))
tanh(3*(x-0.7))

Figure 3.47: Velocity scaling factors used for collision avoidance.

means that under worst circumstances it is possible to pull the platform slightly more beyond
the target if a moving obstacle is involved than it would have gone with no obstacles nearby.
Since this is a consequence of a required safety mechanism it can not be called a disadvantage.

Currently, no models about objects and their motion are derived from the scans and therefore
the collision avoidance does not make a difference between objects that are moving towards
the platform, standing still or moving away from it. As a result the parameters have to be
chosen conservatively to avoid collisions with humans moving towards the platform. Since the
presence of humans in the laboratory is considered to be the exception this is also not considered
a problem.

3.4.7 Realization & Enhancements

The rotations and translations are implemented in C++ classes encapsulating the profile.
They are both derived from the generic classCGENMOTIONdeclared in the header file
genMotion.h as in table 3.3.

The basic working principle is that the outer class (CGENBASE) sets the pos and vel
entries to their current values. Then it calls the virtualStep() method. It is up to that method
to implement everything that is needed, including computing profiles. The parameters required
for this can be stored in the motion class (CROTATIONfor rotations andCTRANSLATIONfor
translations).

More actually, these classes are not called directly, but through a special class,CMOVE, which
encapsulates some typical combinations of rotations and translations as they are needed for

3.4. Motion Execution 103

class CGENMOTION
{

friend class CGENBASE;

protected:
CVEC pos;
CVEC vel;
double transVel, rotVel;

public:
virtual bool Step (void) = 0x0;

void GetVelocities (double &transVel, double &rotVel)
{

transVel = transVel;
rotVel = rotVel;

}
};

Table 3.3: Excerpts from the generic motion C++ classCGENMOTION.

moving a path. TheStep() method ofCMOVEis then responsible for updatingpos and vel
of the current second level motion class and calling theirStep() method. The motivation for
this encapsulation is that it makes a complete path with all segments look like one single motion
only to the callingCGENBASE.

Using this interface additional types of motions can be very easily added, simply by writing a
new motion class derived fromCGENMOTIONand implementing a newStep() method. The
above mentioned classes are fully functional for the laboratory setup, yet the most prominent
enhancements shall be briefly mentioned.

Relative Rotations : One motion type that can be easily added are relative rotations, i.e. rota-
tions by some angle, regardless of what the current orientation is. Relative rotations are
helpful if for example the robot is to be moved by interactive remote control to perform
monitoring or inspection tasks in a future application. The necessary motion class will al-
most be a copy ofCROTATIONwith only the initial target orientation computation being
changed.

Absolute Rotations to Points : Another interesting motion type are absolute rotations to
points. As has already been mentioned, the rotations between segments of the path are
actually rotations to the end point of the next segment, but are currently only emulated by
rotations to the fixed orientation of the next segment’s end point as seen from the current
segment’s end point. This does not take into account that during a rotation the position of
the platform may shift due to slippage and/or other kinematic problems. A motion class
that does take this into account will also be based onCROTATIONwith the only major
difference that the target orientation angle is also newly recomputed in each cycle. This
will not make the filter unstable if the two points are not too close together (or – worse –
identical), in which case care has to be taken.

Splines : Finally, the most complex motion type are spline motions, which are interesting for
driving smooth paths. As has – again – already been mentioned, splines can be locally
approximated by circles, and therefore the platform can drive spline motions and the

104 3.5. Future Work

necessary motion class can be added to the control software. There are more and more
complex parameters required for defining a spline, but since each motion class can declare
its own parameters this is not a problem. Using a spline motion class is, however, not
that straightforward as using the other classes. The most likeliest implementation will
probably move a virtual point along the spline and then let the platform track that point,
which introduces another layer of indirection. Also, it will require a different path planner
because the spline curve has to be ensured to keep a safe distance from all obstacles.
Using the existing path planner and “just” smoothing the corners of the path will violate
this safety distance.

3.4.8 Summary

It has been shown that the final step in moving a mobile platform, the actual motion execution, is
a 1d-problem if only rotations on the spot and translations are involved. It has also been shown
that velocity profiles are a suitable means of executing such motions, as opposed to tracking a
virtual target using explicit inverse kinematics. They avoid jerky motions because they always
drive the platform with the maximum velocity (outside acceleration and deceleration phases),
regardless of how much distance is actually covered in each cycle. It is because of this that they
can – contrary to tracking approaches – be guaranteed to be time-optimal.

The resulting implementations of rotations and translations put a strong emphasis on deter-
ministic termination of motions, even if this means to slightly deviate off the target. Small
deviations can be far better tolerated than getting trapped in an endless loop as with the original
vendor software.

The C++ interface to motion execution is both powerful enough to implement all the aspects
of the presented approach and simple enough to allow for easy addition of new motion types.

3.5 Future Work

In this section a few alternatives to the hard- and software used in this work will be briefly
presented, like alternative sensors, localisation methods and path-planning issues. A few words
will also be spend on behaviour based control, which has been completely omitted from this
work despite being an interesting and active area of research. It will be discussed why these
alternatives might or might not be be improvements to the current implementation.

3.5.1 Sensors

The biggest problem that remains is that the localisation is only an estimation process which can
not be guaranteed to tell the truth. The current implementation based on triangulation between
known points can, as has been shown, actually diverge unboundedly once the association of the
laser marks is lost. This is obviously a question of the sensors involved, and so a few alternatives
have to be discussed.

Ultrasonic Sensors

One of the most prominent sensors on mobile platforms are ultrasonic sensors. They operate
on the same principle a bat uses for navigating: They emit pulses of ultrasonic sound and listen

3.5. Future Work 105

for echoes. From the delay in time after which the echo arrives they can compute the distance
to the object that reflected the echo.

Ultrasonic sensors are cheap, but of limited use because while they can tell the distance to an
object they can not tell the direction of the object. Their receptive field is basically a 3d-cone
with a more or less wide opening angle. Mounted on a mobile platform they are widely used as
proximitysensors to avoid collisions in 3d-space, but not for precision localisation purposes.

Infrared Sensors

The other most prominent sensors on mobile platforms are infrared sensors, operating on the
principle of detection of reflections of emitted light pulses. Although they can theoretically
focus on a single line they are also of limited use because sampling the environment with only a
very limited number of measurements does not allow localisation. Also, they somewhat depend
on the type and colour of the surface of the object their light falls on46.

Global Positioning System

GPS alone can not be used as a sole localisation system because, as has been mentioned, its
accuracy of as low as1 m using DGPS techniques is too large for the precise localisation needed
in this work. It is, however, anabsolutemeasurement of the position and might as such be used
to help limiting the error of the localisation which, once the association of the reflector marks
is lost, may otherwise become unlimited. If this error can be bounded the basic problem of
landmark navigation – that one does not know or looses knowledge about which mark is which
– can be avoided.

RF Beacons

Another promising idea for absolute measurements is just being introduced with the recently
increasing interest inradio frequency identification(RFID) andtranspondersystems. In these
systems an active detector emits radio frequency waves that induce a voltage in an otherwise
passive transponder. The transponder (a very small device that can be placed virtually any-
where) can use this energy to send back some information – typically only very few bits, but
systems with up to several kilobytes are currently in discussion for machine-readable passports.
The detector in turns can not only receive this information, but also triangulate the transponder.
For example the G̈otting KG47 company is building a new system that computes a 2d-position
of the transponder. The current drawbacks of this system are that only one transponder can be
read at a time and only if it is within a range of up to 10 cm. Still, this could provide a very
useful positional information for a mobile platform because at the same time the identification
bitstring of the transponder is returned, making it impossible to mistake it with some other
transponder as it can happen with the laser landmarks.

46This is actually also true for the SICK laser scanners, which can erroneously detect reflection marks at polished
metal surfaces or glass as well as fail to detect objects which absorb the laser (the fabric of black jeans has been
found troublesome in this aspect). Only by being extremely sensitive in receiving the reflection and using extensive
post-processing of the data the sensor achieves its quality – and becomes very expensive.

47Fa. G̈otting KG, Celler Str. 5, D-31275 Lehrte, Germany.http://www.goetting.de

http://www.goetting.de

106 3.5. Future Work

Vision Systems

Recently, a lot of attention and research has been spent on vision systems in general, and om-
nivision system in particular48. As has been mentioned these systems usually only yield a very
rough estimate of a positional information, and sometimes even only the abstract likelihood
of being in one of a limited number of known situations. They are therefore not suitable for
localisation directly, but, like GPS, might help in bounding the error of the laser scanner based
localisation. The only problem that remains is that, also like GPS, it has to be ensured some-
how that the error of these systems is also strictly bounded, which is at least not trivial, if not
impossible at all.

Optical Mice

Another interesting principle is that of optical computer mice. Such a mouse uses a minimal
vision system to track the texture of the surface it is moved on, and the idea is whether or not
this might be used as an odometry sensor for a mobile platform. The only thing that has to be
ensured is that the floor does have a sufficient texture, and the only problem that remains is that
these mice can probably not be directly used.

Their mechanism currently only works if it is brought very close to the surface in question,
and this means such a sensor would have to be attached very close to the floor. One way to
do this is to built a mechanism that uses one of these sensors (not necessarily in a mouse case)
and presses it to the floor close to the drive wheels49, but without introducing any possibility of
getting stuck behind bumps or other things that may lie on the floor. If this can not be assured,
the idea of whether these sensors can be modified or at least their principle used with ordinary
cameras to operate at a greater distance to the surface. Anyway, using this principle an odometry
could be established that would not suffer from slippage of the drive wheels and therefore be
more accurate over long-term measurements. This idea does not appear to have been tried by
anyone so far as no literature is known about it.

Separate Odometry Wheels

The last thing to be mentioned here is to use separate wheels for the odometry encoders. If these
are mounted on the same axes as the drive wheels but not driven by the motors and allowed to
rotate individually they can provide odometry data that does not suffer from slippage if the drive
wheels are spinning free. It has of course to be ensured that these wheel are pressed to the floor
tightly enough to not allow slippage, but this can be achieved with any means ranging from
softer rubber mixtures for the tyres (since they do not have to carry any weight this should not
be a problem) to a full separate suspension.

3.5.2 Localisation

Another field of possible enhancements are the algorithms used for localisation, or, in other
words, everything that deals with how the sensors are actually used. For example the existing

48See [Zhang, Ḧubner and Knoll 2001].
49This is because these sensors can detect translatory movements, but not rotations. If two sensors are placed

close to the drive wheel they can be used to support/replace the drive wheel odometry encoders and detect all
motions without additional kinematic computations. If they are mounted elsewhere an additional kinematic model
will be necessary to translate sensor motion into platform motion. If only one is used and placed in the platform
centre no such model would be needed, but then this single sensor cannot detect rotations.

3.5. Future Work 107

laser scanners can be used for more than just detecting reflector marks. On the other hand
alternatives to the EKF might be interesting.

Detection of Walls in Laser Scans

One possible enhancement to using laser scanners is to not only let them detect reflector marks,
but walls too. The idea is to detect sequences of scan points that form a straight line and try
to match it with the map. Once such a mapping has been established the platform’s parallel
distance to that line can be computed (see figure 3.48). The position of the platform must be on
the parallel, and if more lines are detected more parallels can be built and the position narrowed
down using a least square fit (because the parallels are unlikely to intersect in one point).

d

Figure 3.48: Computing the parallel distance to a detected line.

One crucial aspect with this idea is the detection of straight lines in the scan. The individual
scan points have to comply with some “straightness” criterion that has to be properly parame-
terised. The longer the line segments the more reliable the detection will be, but it will not be
of any worth if it requires lines longer than any that do exist.

Another aspect is the mapping of these detected lines onto map lines, which also requires a
couple of threshold parameters. This, too, is only likely to be free of troubles with long lines.
As a result this idea is likely to work in an office-like environment with a lot of hallways (lines),
but not necessarily in a laboratory with a lot of reactors, pipes, tables with their legs and/or other
things that obstruct the walls or other planar objects.

Unscented Kalman Filter

Theunscented kalman filter(UKF) is an alternative to the EKF by Julier and Uhlmann50. Where
the EKF uses a plain gaussian approximation of the probability distribution the UKF uses a set
set of sample points to modify that approximation to better fit to the real distribution (see figure
3.49). The UKF therefore is more computationally expensive, but can be shown to be of better
performance.

50See [Julier and Uhlmann 1997] and [Wan and Merve 2001].

108 3.5. Future Work

Figure 3.49: Normal EKF approximation of a banana shaped probability dis-
tribution (left) and the UKF approximation based on more sample points (right).

Monte Carlo Techniques / Particle Filter

The escalation of the UKF aremonte carlo techniqueslike theparticle filter (PF) by Salmon,
Gordon and Smith51. The PF uses a set of samples rather than an approximation to represent
states and/or distributions (see figure 3.50). Wright, Maskel and Briers say that

the particle filter adopts a different approach to Kalman-based filters by sampling
a number of hypothesised states for the target; these are the particles. The particle
filter does not attempt to model the distribution using an analytic form. Instead, the
uncertainty (and so the distribution) is represented using the diversity of the set of
particles which simply represent the distribution. Each particle is compared with
the measurement and weighted accordingly. Those particles with high weights are
propagated and those with low weights discarded.52

A particle in the PF is a system state associated with a weight. Initially all the particles
represent the same state and are equally weighted. During a predict step the PF – contrary to
the (E)KF – adds gaussian noise to each particle before applying the system model, which leads
to a distribution of future states. The idea of the PF is that this distribution can have an arbitrary
shape and is thus better suited to model the probability than the gaussian distribution of the
(E)KF.

When updating the state with a measurement each of the particles is individually compared
to the measurement and its weight updated accordingly. From these weighted particles and
the measurement the new state can then be computed, for example by choosing the highest
weighted prediction. After the update the sequence is repeated from the start, applying new
gaussian noise to each particle and thus slowly spreading them.

If the number of particles should for practical reasons be constant additional manipulations
apply: A particle whose weight is below some threshold (is too far away from the optimal
solution) is removed and instead the particle with the highest weight is split in two. This way
it is also ensured that the particles will not spread into infinity, but remain close to the optimal
solution.

During this process no statement can be made about the way the particles organise, in par-
ticular not whether they will build clusters or not. If they do, the approach to compute the new
state by choosing the highest weighted particle may jump between clusters. This only motivates
that in fact a large variety of possible selections or computations can be applied, and the optimal
one has to be chosen manually according to the system in question.

As can be seen, the evaluation of a PF is considerably more complex than that of a (E)KF or
UKF because a lot of samples are needed, but the gain is even more accuracy in modelling53.

51See [Salmond, Gordon and Smith (1993)].
52See [Wright, Maskell and Briers 2003].
53See [Doucet, Freitas and Gordon 2001].

3.5. Future Work 109

Figure 3.50: Particle filters (PF) use a set of samples to repre-
sent any shape of probability distribution. Note that this image
uses a grid to visualise the particles, but actual PFs will not.

Multi Hypothesis Techniques

All the above approaches aim at a more precise modelling of the uncertainty during state esti-
mation and therefore at obtaining a “better” (more likely) state, but none of them can deal with
fully ambiguous situations. The plain KF for example has been proven to be generally able to
converge to the optimal solution from any initial guess if the sensor noise is not too large, but
the EKF in this application can not do this because it needs a “correct” initial guess to establish
the association of the landmarks. With no initial guess about the state all possible associations
of landmarks have to be taken into account, some of which may – depending on the map – be
ambiguous. This is actually equivalent to thekidnapped robot problem, in which the robot is
manually moved without giving the localisation a chance to track that motion.

In these casesmulti hypothesis techniques(MHT) have to be employed, for example track-
ing each of the possible states with a separate KF. These KFs are then evaluated during some
exploratory motions until one of them becomes favourable. As such, MHT are similar to the
SLAM problem which also needs exploratory motions. Since exploratory motions with no real
knowledge about where the platform is going to do not comply with the laboratory task defini-
tion MHT and SLAM have not been used in this work. They remain, however, interesting for
other applications.

3.5.3 Path-Planning

The current path planner is based on the assumption that all obstacles are static and known in
advance, which is a fairly legal assumption for a laboratory which has to comply to several
safety standards. The necessary map expansion and visibility and tangent graphs can therefore
be computed in advance. The motions are executed strictly according to the paths with no
additional obstacle avoidance behaviour. The only way to react to an unexpected obstacle (a
human?) is therefore to stop and wait until it disappears, which may take quite a lot of time and
impair the sample management.

Dynamic Maps

One way to deal with such a situation is to usedynamic maps, i.e. to allow addition and removal
of obstacles. Once an unexpected obstacle has been encountered and the platform has come to a
stop it can wait for some time and see if the obstacles goes away. If it does not, those parts of its
shape that can be seen are added as a new obstacle to the map, the map computation is repeated
and a new path is generated (which may of course be impossible because now the way to the
target may be blocked). At the same time obstacles which are obviously no longer present are
removed from the map.

110 3.5. Future Work

In order to not cause problems by erroneously overlooking fixed obstacles like glass doors
this motivatesmulti layer mapsin which permanent and temporary obstacles are kept separated
and it is not allowed to remove permanent ones. Other layers might be added for objects which
may change, but not be removed, like doors. These layers are only needed to separate different
types of obstacles, but for computing the graphs they have to be merged. Such a map modifier
can be implemented by an additional thread which only monitors the sensor data and does not
further interfere with existing code. The implementation is simplified by the fact that the cigar
expansion does not make any assumptions about whether lines belong together, and so a line
can be easily added or removed.

3.5.4 Behaviours

Controlling a mobile platform is not trivial. Despite all the research that is done with them
they are still far from being everyday devices like TV sets or VCRs. It is only just now that
the first autonomous mobile devices like the Dyson DC06 vacuum cleaner become publically
available.54 This often amazes the layman because the basic problem can be so easily described:

Go to XXX (on the shortest path) and do not crash into anything on your way.

The problem is, nobody can really translate this into something that is understandable by a
machine, simply because nobody has yet fully understood how he/she itself does it. All that we
know is that a human uses a lot of low-level behaviour for this - one does not have to compute
the distance of oneself to obstacles and try and not let any of these become smaller than a fixed
threshold, it simply works by trying to “keep away from obstacles”. The obvious idea is of
course to transfer the human solution to the robot, to implement a few “behaviours” and let the
robot deal with the problem on its own.

Using behaviour based control means to implement a set of rules on what to do if certain
patterns of sensor data occur. Behaviours at this level are most often not more than low-level
reflexes, and so the rules are usually simple and easy to implement. Yet, by evaluating a set set
of low-level rules and superimposing their reactions high-level swarm, pack or team behaviours
can emerge.

As a rather primitive example, collision avoidance (up to some degree) for a mobile platform
with a differential drive can be achieved by implementing two very trivial rules:

1. If you see an obstacle on the right, steer a bit to the left.

2. If you see an obstacle on the left, steer a bit to the right.

The evaluation of these rules of course has to properly cooperate with whatever instance is
generating the underlying motion, which would not be the case with the translation motion class
that tries to come back to the desired trajectory as implemented in this work. Also, one has to be
aware that such simple rules may raise other problems when used carelessly: If, for example,
the platform is moving into a funnel where both rules fire to the same degree the result may
be that it accelerates and crashes into the end of the funnel – depending on how “steer to the
left/right” is implemented. The point is, the above rules say to steer out of the way of obstacles,
but they do not explicitly say to stop if the obstacle comes too close. They really only implement
some kind of rudimentary collision avoidance, but nothing more.

54Seehttp://www.international.dyson.com/range/feature_frame.asp?model=DC06 .

http://www.international.dyson.com/range/feature_frame.asp?model=DC06

3.6. Experimental Results 111

The obvious way out of this is of course to add more rules that deal with assuring that all
the other requirements are also met. Each rule on its own is easy to express (and hopefully
to implement), but the question of what the possible results of their superimposition might be
is still not answered. A (primitive) complete motion control for a mobile platform may for
example be implemented with the following rules:

1. If the target is “far” away and the platform is “not” heading towards it, produce a positive
command for one motor and a negative one for the other, so that the platform rotates
towards the target.

2. If the target is “far” away and the platform “is” heading towards it, produce equal positive
commands for both motors, so that the platform moves towards the target.

3. If an obstacle appears on the right side ahead, reduce the command for the left wheel by
some factor, so that the platform turns to the left.

4. If an obstacle appears on the left side ahead, reduce the command for the right wheel by
some factor, so that the platform turns to the right.

5. If an obstacle comes too close to the platform, reduce the commands for both motors, so
that the platform eventually stops completely.

6. If the target is “close” and the platform is “not” heading towards the target direction,
produce a positive command for one motor and a negative one for the other, so that the
platform rotates towards the target direction.

7. If none of the above rules has fired for some time interval consider the motion finished.

Note that the rules about steering out of the way of obstacles have been rewritten more clearly:
The command now is to explicity steer by reducing the velocity of the wheel on that side where
the platform is to steer to and increasing the opposite one. This way the platform will not
accelerate in a funnel and avoid crashing into it, but still an additional rule implementing a
safety stop is required because the collision avoidance rules only speak about “obstacles on the
left/right side”, not directly ahead.

The original GENCONTROL software behaved similar to this, in particular it used a compara-
ble way to circumvent obstacles, but no path planner. As a result, as has been mentioned, it can
drive around some obstacles if that does not mean to leave the trajectory too much. But it can
also get stuck in a deadlock if by avoiding obstacles it comes too much off the target direction.

Rule based behaviour control can be interesting for low-level reflexes or if the research of
emergence is the primary goal. If the primary goal is to have stable and deterministic “be-
haviour” it is not suitable. The superimposed reaction can – by definition – often not be pre-
dicted, and a robot with an unpredictable and indeterministic behaviour is potentially dangerous
and should not be used in environments where humans can be harmed. It is primarily because
of these troubles that behaviours have not been researched in this work. For an introduction to
the field of behaviour based robotics see [Arkin 1998].

3.6 Experimental Results

The basic definition of “success” of the mobile platform is only a boolean variable stating
whether it did bring the arm to a position that allowed it to perform the required operations or

112 3.6. Experimental Results

not, and the success rate a probability of how often it did. This, however, is not a meaningful
measure as for all the tests of the software done for this evaluation it has been 1.0 – complete
success. The problem is that this measure does not take into account how close to a potential
failure each individual run has been, because it does not use a proper definition of “success” of
the arm.

The “success” of the arm should also not be defined as a boolean variable because of the
same reason: it is not a very helpful information. If a failure occurs it is essential to know
why this happened, but with only a boolean measure about how “well-behaved” a situation is
no conclusions can be drawn and no improvements be made. Other measures have to be used,
based on more sophisticated analyses of how a failure is caused.

Even though failure as such is a boolean entity, a situation may become gradually troublesome
before finally resulting in a failure. In case of the arm, objects and motions are designed to have
a certain amount of tolerance against unforeseen errors. When inserting tubes into slots – also
known as thepeg-in-holeproblem (see figure 3.51) – there is a certain safety margin, and in case
of the 50 ml NUNC tubes even bevelled edges. The vision system (see chapter 5) is expected to
compensate as much of these displacements as possible, but even with complete compensation
some problems remain:

Figure 3.51: The peg-in-hole problem illustrating the need for safety margins: Apart
from the optimal situation (left) a safety margin is needed to allow for unforeseen dis-
placements (middle). In case of even larger errors bevelled edges (right) might be needed.

• First, the vision system may have been able to compensate the displacement by applying
corrections to the robot position when it is centred over the feature that is used to detect
that displacement, but this does not yet ensure that the subsequent operations will succeed.
For example a small rotation of an object of a few degrees can easily be compensated if
the object is standing fairly close to the arm, but leads to that large translations are needed
for targets that are farer away. As a result the arm may run into workspace limits during
the subsequent operation.

• Second, if the above problem does not occur, it may still happen that the motions during
arm operation pass near a workspace boundary or singularity. In these cases the move-
ment can become jerky, leading to that liquid from a filled tube can be spilled or the
insertion of a tube into a slot can fail despite of all safety precautions. As a result the
operation will fail even though it at first looked like everything was well-behaved.

At least the second effect is not a boolean, but a continuous one. The only way to guarantee
success is to ensure that the real situation does not differ too much from the ideal situation,

3.6. Experimental Results 113

say, that the deviation to be compensated by the vision is as small as possible. For the mobile
platform this means that it should bring the arm as close to the intended position as possible,
even though it may seem as there are several centimetres of safety margin. A safety margin
exists to remain a safety margin, not to be used by default.

This means that – not too surprising – the quality of the mobile platform control software
has to be measured as the precision with which it brings the platform to the intended target.
Unfortunately, this is not as easy as it appears at first sight, as will be shown with the results of
several test runs.

3.6.1 Localisation Position

The easiest value to analyse is the position as reported by the mobile platform’s own localisa-
tion. For this, several experiments have been done, each one subsequently moving the mobile
platform to one of a set of targets in a loop. For each target the position as reported by the
localisation has been recorded. The plots of the these positions can be seen in figure 3.53 (the
orientations have for simplicity been omitted).

The analysis of these plots reveals that the error can not solely be described by a gaussian
distribution because it has some deterministic components. One of these components comes
from the motion execution which can, as has been shown in section 3.4, overshoot. Another
aspect that can be seen is that different experiments produce different results, and even in one
experiment the different targets are reached with different precision. This reflects the fact that
the accuracy of the localisation largely depends on the number and quality of observable land-
marks, and the experiments and targets were deliberately chosen to represent some variety in
these.

A detailed numeric analysis of these plots is given in table 3.4. Taking the highlighted worst
case values from this table (∆x = -0.01268 m,∆y = 0.01455 mσx = 0.00672 andσy = 0.00434
– all values in meters) the accuracy of the mobile platform appears to be very good – less than
2 cm systematic deviation and less than 1 cm gaussian errors distribution around that. However,
this measurement has a severe drawback.

experiment # runs # target µx y0 ∆x ∆y σx σy

20031023-1 119 1 1.99853 1.99725 -0.00147 -0.00275 0.00242 0.00266
119 2 6.00322 4.00394 0.00322 0.00394 0.00237 0.00332
119 3 1.99798 4.00277 -0.00202 0.00277 0.00232 0.00239

20031024 92 1 1.99870 1.99711 -0.00130 -0.00289 0.00340 0.00299
92 2 6.00378 4.00440 0.00378 0.00440 0.00242 0.00316
92 3 1.99661 4.00177 -0.00339 0.001770.00672 0.00207

20031216-d20 42 1 1.99510 2.00251 -0.00490 0.00251 0.00254 0.00238
42 2 5.99825 1.99452 -0.00175 -0.00548 0.00260 0.00236
42 3 5.98732 5.01455 -0.01268 0.01455 0.00434 0.00434

20031217-d20 46 1 1.99552 2.00302 -0.00448 0.00302 0.00227 0.00233
46 2 5.99788 1.99415 -0.00212 -0.00585 0.00217 0.00198
46 3 5.98992 5.01301 -0.01008 0.01301 0.00343 0.00384

Table 3.4: Mean valuesµx andµy, differences∆x and∆y of these from the target
and standard deviationsσx andσy of the distributions of the experiments (all values
are in metres). The worst case values for each column have been highlighted.

114 3.6. Experimental Results

 1.98

 1.99

 2

 2.01

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (1 extreme outlier removed)

<- target

position

 3.99

 4

 4.01

 4.02

 5.99 6 6.01 6.02

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 3.99

 4

 4.01

 4.02

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 1.98

 1.99

 2

 2.01

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (1 extreme outlier removed)

<- target

position

 3.99

 4

 4.01

 4.02

 5.99 6 6.01 6.02

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 3.99

 4

 4.01

 4.02

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (2 extreme outliers removed)

<- target

position

 1.99

 2

 2.01

 2.02

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 1.98

 1.99

 2

 2.01

 5.98 5.99 6 6.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 5

 5.01

 5.02

 5.03

 5.97 5.98 5.99 6

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 1.99

 2

 2.01

 2.02

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 1.98

 1.99

 2

 2.01

 5.98 5.99 6 6.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 5

 5.01

 5.02

 5.03

 5.97 5.98 5.99 6 6.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

Figure 3.52: Plots of the position as reported by the localisation. Experiments shown
in rows from top to bottom: 20031023-1, 20031024, 20031216-d20 and 20031217-
d20. Each experiment consists of 3 targets, which are shown in the columns.

3.6. Experimental Results 115

 1.98

 1.99

 2

 2.01

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (1 extreme outlier removed)

<- target

position

 3.99

 4

 4.01

 4.02

 5.99 6 6.01 6.02

y-
ax

is
 [m

]
x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 3.99

 4

 4.01

 4.02

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 1.98

 1.99

 2

 2.01

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (1 extreme outlier removed)

<- target

position

 3.99

 4

 4.01

 4.02

 5.99 6 6.01 6.02

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 3.99

 4

 4.01

 4.02

 1.98 1.99 2 2.01

y-
ax

is
 [m

]
x-axis [m]

scatter plot (2 extreme outliers removed)

<- target

position

 1.99

 2

 2.01

 2.02

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 1.98

 1.99

 2

 2.01

 5.98 5.99 6 6.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 5

 5.01

 5.02

 5.03

 5.97 5.98 5.99 6

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 1.99

 2

 2.01

 2.02

 1.98 1.99 2 2.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 1.98

 1.99

 2

 2.01

 5.98 5.99 6 6.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

 5

 5.01

 5.02

 5.03

 5.97 5.98 5.99 6 6.01

y-
ax

is
 [m

]

x-axis [m]

scatter plot (0 extreme outliers removed)

<- target

position

Figure 3.53: Plots of the position as reported by the localisation. Experiments shown
in rows from top to bottom: 20031023-1, 20031024, 20031216-d20 and 20031217-
d20. Each experiment consists of 3 targets, which are shown in the columns.

116 3.6. Experimental Results

The problem is that this measurement expresses only the localisation’sbelief about where
it has been, not the real position in the real world. This belief includes all errors of the EKF
used for the localisation, all errors in detecting and measuring the landmarks and all errors that
result from an initial misplacement or unevenly spreading of landmarks. It can happen that the
platform is at a completely wrong position, but the localisation believes the position is correct
because of these errors. Analysing only the localisation’s position output means to analyse a
guessonly, with no checking against an absolute reference. As a result, this measurement can
not be used to judge the accuracy of the mobile platform.

3.6.2 Absolute Verification of Localisation Position

Schneider and Westhoff therefore use an absolute reference against which they check the local-
isation’s position55. They attach measuring rods to the platform as in figure 3.54 and place a
millimetre grid around the single target position (x=0 m, y=0 m andϕ=0 ◦). The platform is
then commanded to repeatedly drive to that target in a motion along thex-axis and both the lo-
calisation’s position and the real position as computed from the position of the rods is recorded
once it has reached the target.

measuring
rod, front

measuring
rod, back

Figure 3.54: Measurement rods at the mobile platform.

This test was originally used to demonstrate and document the performance differences be-
tween the oldGenControlsoftware and (an older version of) the software developed in this
work (calledUniBiControlhere), leading to two sets of data in the following figures.

Figure 3.55 shows the localisation’s estimate of the position. Since the motion was along the
x-axis it appears as if GenControl stops too early. Also, the orientation seems to be much better
with UniBiControl than with GenControl.

In comparison to this, figure 3.56 shows the real position, obtained using the measuring
rods. The impression that GenControl stops too early and is not as good in the orientation as
UniBiControl can be verified with this measurement.

55See [Schneider and Westhoff 2002].

3.6. Experimental Results 117

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01

[m
]

[m]

self-localisation’s estimate of the position after the motion has stopped

genControl
UniBiControl

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40 45 50

[d
eg

re
es

]

[number of test]

self-localisation’s estimate of the orientation after the motion has stopped

genControl
UniBiControl

Figure 3.55: The mobile platform position as reported by the localisation.

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01

[m
]

[m]

measured position obtained my measuring with the external rods

genControl
UniBiControl

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

7

5 10 15 20 25 30 35 40 45 50

[d
eg

re
es

]

[number of test]

measured orientation by measuring with the external rods

genControl
UniBiControl

Figure 3.56: The mobile platform position as measured with the measurement rods.

Numerically speaking, the parameters of the distributions are as in table 3.5. As can be seen,
the differences in theµ values are 2 mm inx- and 1.8 mm iny-direction for GenControl, and
0.5 mm and 0.7 mm for UniBiControl respectively. These rather small differences mean that –
on average – both control softwares are not too bad in estimating the real position.

localisation verification
GenControl UniBiControl GenControl UniBiControl

max x [mm] -40.1 5.6
max y [mm] 8.6 2.7
max ϕ [◦] 1.57 0.22
µx [mm] -8.1 -0.7 -10.1 -1.2
µy [mm] 0.4 0.8 -1.4 0.1
µϕ [◦] 0.14 0.02 1.58 0.23
σx [mm] 7.5 2.2 6.9 1.6
σy [mm] 4.1 0.8 1.3 0.9
σϕ [◦] 0.086 0.006 1.9 0.3

Table 3.5: Parameters of the distributions in figures 3.55 and 3.56.

118 3.6. Experimental Results

The σ values for GenControl are a bit lower for the real than for the estimated position,
whereas for UniBiControl they are roughly equal. This means that the noise of the position in
GenControl is larger than in UniBiControl.

Overall, the measurements attest that GenControl does show considerable room for improve-
ments. In particular the average systematicx-deviation of about -1 cm (in this experiment!)
shows that the questions of accuracy of the localisation and of the motion execution are indeed
separate. It is mainly because of the “accuracy” of the motion execution of GenControl that the
decision to replace it was taken in the first place.

Concerning the type of measurement it can be stated that because of the reference to an
absolute frame it has to be taken as highly accurate and reliable. The practical realisation,
however, is complex, expensive and potentially troublesome. Since the readings have to be
taken from the measuring rods manually all possible human errors have to be considered.

As a result of this, this measurement has not been repeated for later versions of UniBiControl.
In particular, it has not been applied to situations with multiple targets that are placed so that
different numbers of landmarks can be seen from them. Instead, an approach that automates the
measurement is used.

3.6.3 Relative Visual Verification of Localisation Position

The basic desire behind the automation is that one of the already existing sensors on the mo-
bile robot should be used for the necessary measurements. With laser scanners, odometry and
gyro compass already in use by the localisation this leaves only the camera to provide suitable
information.

The camera can be used to detect marker on the floor free of systematical noise and with only
very low statistical noise. As such it can provide a very reliable, accurate and repeatable mea-
surement. In fact the taking of images and their processing to obtain the desired measurements
can even be decoupled so that the analysis can be made off-line. The only problem lies in which
kind of markers to use to obtain which kind of information.

Using any type of absolute marker grid is not a suitable idea because this grid would have to
be too carefully placed in order for it to be guaranteed to align to the world coordinate system.
If this alignment can not be established the displacement will turn up in the measurements as an
appearingly systematical drive error and can never be parted from other systematical effects56.
Fortunately, such an absolute measurement is not necessary to establish the basic accuracies.

Motivation

Instead, a relative measurement that only computes displacements between two images can be
used, which allows to use the very same vision routines which are used and explained in chapter
5. Because of this, the measurement is called “relative visual verification” of the localisation
position. The procedure is as follows:

• First, the camera is mounted on the platform rather than on the arm in such a way that it
can see a part of the floor with a sufficient resolution.

56In fact it is not totally clear if/how [Schneider and Westhoff 2002] have considered this problem, the likeliest
explanation being that they considered the displacement irrelevant until it showed up in the results with at least the
magnitude of the basic accuracy, which it does not.

3.6. Experimental Results 119

• Next, the platform is driven to the real target and a marker placed on the floor so that it is
roughly in the centre of the camera image. Note that at this stage neither the real absolute
position of the platform nor the real position of the marker is known.

• Then the platform is driven to the real targetn times, the positionpi (of the camera, not
the platform centre) as reported by the localisation is recorded and an imagebi taken,
yielding a set of positions and a set of corresponding images.

After these preparations the actual evaluation can be done off-line:

• The visual displacement∆bi between reference imageb1 and imagebi for i = 1..n is
computed, yielding a set of displacements instead of a set of images. Note that in this set
the displacement for the reference imageb1 is 0, but neither this nor the number of the
reference image in the first place does affect the further computation.

• From this set of displacements the average57 visual displacementµ∆b is computed. Since
no statement can be made about the character of the reference situation no statement can
be made about thisµ∆b, in particular not if it is 0 or not.

• In addition to that, the average positionµp is computed from the set ofpi.

Now, instead of taking the real target as a basis for further computations, thevirtual target
given byµp is considered. This assumes thaton averagethis is identical to the real target, which
allows only for statistical and not for systematical drive errors. If systematical drive errors
occur, e.g. the platform always drives10 cm too far, they are not detected by this measurement.
However, once the (statistical) driving accuracy and measuring accuracy have been computed
the absolute position measurements can be evaluated again and a systematical error can be
detected.

• Thepositional displacement∆pi = pi − µp is then computed. This∆pi is the deviation
as seen by the localisation and is the overlay of the (pure statistical) drive error and the
measurement error.

• Thevisual displacement∆b′i = ∆bi− µ∆b is computed next. This∆b′i is the deviation as
seen by the camera and corresponds to the drive error only.

Both distributions∆pi and∆b′i are by construction centred around zero.∆b′i corresponds to
the drive error and∆pi − ∆b′i corresponds to the measurement error. A separation of the two
errors is therefore possible.

The standard deviationsσ of all distributions are then computed (expecting thatσ∆pi
>

σ∆b′i
). Since thex : y distributions representing the translational error cannot be assured to

be of circular shape aprincipal component analysis(PCA) is applied to them, leading to two
eigenvalues. The square root of these eigenvalues corresponds to the standard deviationσrot of
a new distribution rotated appropriately so that the largest extension lies in the newx-direction.
Because theσrot are therefore more sensitive to worst case elements they are generally larger
than the plainσ. It is theseσrot that are taken to judge the “accuracy” of the system.

57In case of extreme outliers in the distribution themedianmay be used instead of themeanfor this averaging.

120 3.6. Experimental Results

Experiments

Again, several experiments have been done and evaluated accordingly, the results for the trans-
lational errors being shown in figures 3.58 to 3.62 on the following pages. In these figures the
∆pi distributions giving the localisation error have been labelled as “LOC”, the∆b′i distribu-
tions giving the vision (or positioning) error as “VIS” and the∆pi − ∆b′i distributions giving
their difference (or measuring) error as “DIFF”.

Each of these experiments (figures) consists of plots for three different targets, each in a sep-
arate row. The left column shows a scatter plot of the LOC, VIS and DIFF distributions as well
as thestandard deviation ellipseobtained from the PCA, the (non-square-rooted) eigenvalues
of which are given in the legend. The right column shows correlation plots between the LOC
and VIS distributions of thex andy axis, giving the correlation coefficients% in the legend.

A numerical evaluation of these plots is given in table 3.6, using the same abbreviations LOC,
VIS and DIFF as in the figures. In this table each row gives the values for one distribution of
one target of one experiment. The first two columns give the extrema‖∆~p‖max and‖∆ϕ‖max.
The next columns give the standard deviationsσx, σy andσϕ of the distribution and the square-
rooted eigenvaluesσrot

x andσrot
y of the PCA. Theabsolute valueof σrot =

√
(σrot2

x + σrot2

y) can
be used as “the” accuracy. The remaining columns are specific for the target as a whole, and not
for one distribution (though listed under the LOC row). They give the correlation coefficients
%x and%y of the LOC vs. VIS distributions (which is expected to be partly correlated) and of the
DIFF vs. VIS distribution (which is expected to be not correlated). Finally, the corresponding
%ϕ for the orientation are given.

In most cases the order of magnitude of the corresponding values are similar, however, a few
measurements stand out:

• In the 3rd target of experiment 20031022-2 theσrot is 12.287 mm for LOC and 11.393 mm
for VIS, but only 3.225 mm for DIFF. This means that even though the measuring accu-
racy is pretty good the localisation has reported large errors, which can also be seen from
the fact this case produces the largest extrema. The reason for this is of course that the
motion execution has produced rather large positioning errors. This is also confirmed by
the vision, which reports a high correlation of 0.973 and 0.975 between LOC and VIS
data, indicating agreeing measurements. The correlation between DIFF and VIS data is –
expectedly – much lower.

• In a lot of other cases the correlation between LOC and VIS data is also very low, or rather
non-existent, down to even negative. This is particularly true for cases where theσ values
are already either small or similar for LOC, VIS and DIFF distributions and means that
no pure positioning error can be isolated from the overlayed localisation error. Building
DIFF on the contrary introduces a systematic component and therefore leads to a higher
(negative) DIFF/VIS correlation than LOC/VIS.

• For the experiments 20031022-2, 20031216-d20 and 20031217-d20 the values for the
third target are significantly higher than for the first and second target. This – as figure
3.57 shows – is because the third target is in an area of the map where fewer landmarks can
be seen, and those that can be seen are farther away. As a result the measuring accuracy
decreases, and as a result from this the positioning accuracy decreases too. This effect
can also be very clearly seen in the scatter plots.

3.6. Experimental Results 121

5

6

7

8

9

10
1

2
3

4

Figure 3.57: Average number of visible reflector marks.
Target #4 has not been used in the experiments.

The measuring accuracy DIFF (σrot) ranges from 1.999 to 6.175 mm with an average of
3.37 mm, the positioning accuracy VIS ranges from 3.070 to 11.393 mm with an average of
4.761 mm and the localisation accuracy LOC ranges from 2.922 to 12.287 mm with an average
of 4.650 mm. The fact that the average values are pretty similar indicates that under normal
circumstances the measuring noise determines the global accuracy and the motion execution
has only a negligible effect. On the other hand, in those cases where larger localisation errors
can be observed they correlate with larger vision errors, indicating that errors of the motion
execution can be safely detected. In any case the accuracy is well within the requirements of
this work.

The results for the orientational errors are shown in figures 3.63 to 3.67 on the following
pages, using the same abbreviations as above. The results do not seem to be spectacular with
0.804 being the highest correlation between LOC and VIS values, suggesting that even less
gain can be achieved by trying to compensate for localisation errors. This is not too surprising,
taking into account that the motion execution issues a rotation to the target orientation as the
last step. As a result of this the orientation is of course expected to be more accurate than the
position, which may change a little but during this final rotation.

This is also confirmed by LOCσϕ values in the range of 0.015 to 0.111◦, with an average of
0.0518◦. In fact even the LOC‖∆ϕ‖max are only in a range of 0.03 to 0.32◦ with an average of
0.163◦, and the target VIS‖∆ϕ‖max is only 0.42◦. With this accuracy even the largest outliers
can simply be ignored for the requirements of this work.

3.6.4 Summary

Overall, theσrot values for LOC confirms that the mobile platform clearly has an accuracy of
“less than 1 cm”, as has been published58. Also, the assumption that the measuring accuracy is
better than the localisation accuracy can – on average – be confirmed. As a practical upshot of
the often lacking correlation of LOC/VIS values the idea whether it is a good idea to compensate

58See [Scherer et. al. 2003].

122 3.6. Experimental Results

for localisation errors has to be doubted. Except from a few cases where large positioning errors
have occurred it is likely to yield no gain – on the contrary, it can make the situation even more
troublesome. In a future version this code should therefore be replaced in favour of a repetition
of the platform’s approach motion in case the localisation should detect abnormally large errors
(3 to 4 cm and above).

As far as the orientation is concerned the accuracy of less than 1/10th of a degree is very
unlikely to be improvable. This accuracy does not mean that the possible error is bound to it,
as the EKF can completely fail due to loosing the association of the landmarks as described in
section 3.2.8, but only that this effect did not occur during these tests.

3.6. Experimental Results 123

lo
c

/v
is

di
ff

/v
is

lo
c

/v
is

di
ff

/v
is

ex
pe

rim
en

t
#t

ar
g

#r
un

s
‖∆

~p
‖ m

a
x

‖∆
ϕ
‖ m

a
x

σ
x

σ
y

σ
ϕ

σ
ro

t
x

σ
ro

t
y

σ
ro

t
%

x
%

y
%

x
%

y
%

ϕ
%

ϕ

[m
m

]
[◦

]
[m

m
]

[m
m

]
[◦

]
[m

m
]

[m
m

]
[m

m
]

[1
]

[1
]

[1
]

[1
]

[1
]

[1
]

20
03

10
22

-2
1

35
LO

C
15

.6
0.

1
3.

17
2.

62
0.

06
3.

44
4

2.
24

3
4.

11
0

0.
28

9
0.

82
2

-0
.3

50
-0

.0
89

0.
03

9
-0

.7
91

V
IS

7.
3

0.
2

2.
05

2.
29

0.
08

2.
36

5
1.

95
8

3.
07

0
D

IF
F

13
.2

0.
3

3.
23

1.
50

0.
09

3.
45

6
0.

87
6

3.
56

5
2

35
LO

C
7.

6
0.

3
3.

50
2.

59
0.

11
3.

71
3

2.
26

7
4.

35
0

0.
33

9
0.

50
8

-0
.7

68
-0

.7
59

0.
68

2
0.

04
7

V
IS

20
.6

0.
2

5.
14

3.
91

0.
07

5.
51

5
3.

35
9

6.
45

7
D

IF
F

19
.6

0.
2

5.
14

3.
42

0.
08

5.
16

7
3.

38
1

6.
17

5
3

35
LO

C
43

.5
0.

2
9.

63
7.

63
0.

09
9.

68
3

7.
56

3
12

.2
87

0.
97

3
0.

97
5

0.
54

0
-0

.3
99

0.
16

9
-0

.7
81

V
IS

48
.0

0.
4

7.
94

8.
17

0.
12

9.
20

2
6.

71
8

11
.3

93
D

IF
F

11
.4

0.
4

2.
65

1.
84

0.
14

2.
66

0
1.

82
4

3.
22

5

20
03

10
23

-1
1

11
9

LO
C

22
.8

0.
2

2.
61

2.
48

0.
05

2.
71

6
2.

36
1

3.
59

9
0.

83
5

0.
86

6
-0

.2
84

-0
.3

51
0.

44
7

-0
.7

85
V

IS
22

.3
0.

3
2.

60
2.

61
0.

08
2.

61
1

2.
60

3
3.

68
7

D
IF

F
9.

7
0.

3
1.

50
1.

32
0.

07
1.

56
5

1.
24

2
1.

99
8

2
11

9
LO

C
9.

3
0.

3
3.

35
2.

51
0.

08
3.

34
8

2.
50

4
4.

18
1

0.
38

1
0.

49
8

-0
.5

98
-0

.4
76

0.
79

1
-0

.3
11

V
IS

10
.8

0.
3

3.
58

2.
43

0.
08

3.
69

3
2.

25
0

4.
32

4
D

IF
F

10
.2

0.
2

3.
86

2.
47

0.
05

3.
85

9
2.

47
1

4.
58

2
3

11
9

LO
C

9.
5

0.
2

2.
26

2.
50

0.
05

2.
91

1
1.

69
6

3.
36

9
0.

37
2

0.
62

4
-0

.5
88

-0
.2

88
0.

66
7

-0
.6

95
V

IS
11

.7
0.

2
2.

37
2.

14
0.

07
2.

61
0

1.
84

4
3.

19
6

D
IF

F
11

.2
0.

2
2.

60
2.

04
0.

05
2.

60
3

2.
02

8
3.

30
0

20
03

10
24

1
92

LO
C

25
.4

0.
1

2.
99

3.
42

0.
03

3.
91

4
2.

30
3

4.
54

1
0.

86
6

0.
67

9
-0

.0
13

-0
.0

89
0.

17
3

-0
.9

47
V

IS
17

.3
0.

4
2.

61
2.

55
0.

09
2.

72
4

2.
42

1
3.

64
5

D
IF

F
13

.8
0.

3
1.

49
2.

52
0.

09
2.

66
8

1.
21

1
2.

93
0

2
92

LO
C

10
.6

0.
2

3.
11

2.
46

0.
06

3.
14

5
2.

41
1

3.
96

3
0.

48
4

0.
44

0
-0

.5
34

-0
.6

36
0.

68
1

-0
.6

46
V

IS
18

.4
0.

3
3.

22
2.

90
0.

08
3.

60
9

2.
40

0
4.

33
4

D
IF

F
20

.7
0.

3
3.

22
2.

86
0.

06
3.

24
3

2.
83

0
4.

30
4

3
90

LO
C

30
.6

0.
1

4.
38

1.
94

0.
04

4.
43

4
1.

81
9

4.
79

3
0.

90
5

0.
39

1
-0

.2
08

-0
.5

27
0.

41
2

-0
.8

39
V

IS
28

.7
0.

4
4.

36
1.

86
0.

08
4.

39
3

1.
78

8
4.

74
3

D
IF

F
8.

1
0.

4
1.

91
2.

10
0.

07
2.

13
0

1.
87

5
2.

83
8

20
03

12
16

-d
20

1
42

LO
C

18
.5

0.
1

1.
61

3.
09

0.
02

3.
09

2
1.

60
7

3.
48

5
0.

28
8

0.
91

1
-0

.7
02

-0
.1

75
0.

36
4

-0
.7

31
V

IS
17

.6
0.

1
1.

99
3.

04
0.

03
3.

04
0

1.
98

8
3.

63
2

D
IF

F
5.

3
0.

1
2.

17
1.

29
0.

03
2.

47
6

0.
49

7
2.

52
5

2
42

LO
C

7.
0

0.
1

3.
29

1.
32

0.
02

3.
29

5
1.

30
1

3.
54

3
0.

88
8

0.
03

5
-0

.0
20

-0
.8

22
0.

54
2

-0
.8

98
V

IS
7.

3
0.

1
2.

95
1.

96
0.

05
2.

99
0

1.
89

1
3.

53
8

D
IF

F
10

.9
0.

1
1.

51
2.

32
0.

04
2.

33
6

1.
49

2
2.

77
2

3
42

LO
C

10
.3

0.
2

3.
27

5.
24

0.
07

5.
24

4
3.

27
4

6.
18

2
0.

85
8

0.
90

0
0.

08
6

-0
.5

64
0.

25
7

-0
.7

31
V

IS
12

.1
0.

2
2.

66
6.

28
0.

09
6.

28
8

2.
64

1
6.

82
0

D
IF

F
6.

4
0.

2
1.

69
2.

77
0.

10
2.

81
4

1.
60

8
3.

24
1

20
03

12
17

-d
20

1
46

LO
C

18
.2

0.
1

1.
48

2.
85

0.
03

2.
85

1
1.

47
9

3.
21

2
0.

31
2

0.
91

6
-0

.7
85

-0
.2

90
0.

19
1

-0
.7

40
V

IS
19

.9
0.

1
2.

24
2.

96
0.

03
3.

08
9

2.
05

9
3.

71
2

D
IF

F
7.

9
0.

1
2.

27
1.

20
0.

04
2.

41
8

0.
85

7
2.

56
5

2
46

LO
C

5.
9

0.
0

2.
74

1.
01

0.
01

2.
74

6
1.

00
0

2.
92

2
0.

77
2

0.
57

5
-0

.3
62

-0
.8

34
0.

65
7

-0
.9

76
V

IS
6.

7
0.

1
2.

79
1.

83
0.

06
2.

83
7

1.
76

5
3.

34
1

D
IF

F
5.

4
0.

1
1.

87
1.

50
0.

05
2.

20
8

0.
92

8
2.

39
5

3
46

LO
C

19
.6

0.
1

3.
86

3.
50

0.
04

3.
97

4
3.

37
1

5.
21

1
0.

76
7

0.
69

6
-0

.0
43

-0
.6

50
0.

53
0

-0
.8

83
V

IS
18

.3
0.

2
3.

07
4.

59
0.

09
4.

72
6

2.
85

1
5.

51
9

D
IF

F
14

.0
0.

2
2.

48
3.

31
0.

08
3.

41
3

2.
33

4
4.

13
5

Ta
bl

e
3.

6:
R

es
ul

ts
fo

r
th

e
lo

ca
lis

at
io

n
(L

O
C

),
po

si
tio

ni
ng

(V
IS

)
an

d
m

ea
su

rin
g

ac
cu

ra
cy

(D
IF

F
).

F
or

ex
pl

an
at

io
ns

se
e

pa
ge

12
0.

124 3.6. Experimental Results

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [11.86 5.03] @ -31.3 deg
VIS EV [5.59 3.83] @ +116.7 deg

DIFF EV [11.94 0.77] @ -21.3 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20
LO

C
 [m

m
]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.289138)
 y-axis (corr=0.821873)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [13.79 5.14] @ +25.0 deg
VIS EV [30.42 11.28] @ -27.3 deg
DIFF EV [26.70 11.43] @ -7.8 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.339478)
 y-axis (corr=0.508476)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (3 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [93.77 57.20] @ -9.6 deg

VIS EV [84.68 45.13] @ +132.2 deg
DIFF EV [7.08 3.33] @ +6.2 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (3 extreme outliers removed)

 x-axis (corr=0.972764)
 y-axis (corr=0.975365)

Figure 3.58: Experiment 20031022-2: Scatter and correlation plots of translational displacements
for three different targets, each in a separate row. See page 120 for an explanation of the legend.

3.6. Experimental Results 125

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (1 extreme outlier removed)

LOC
VIS

DIFF
LOC EV [7.38 5.57] @ -34.3 deg
VIS EV [6.82 6.77] @ +97.0 deg

DIFF EV [2.45 1.54] @ -28.5 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (1 extreme outlier removed)

 x-axis (corr=0.834794)
 y-axis (corr=0.866199)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [11.21 6.27] @ +3.3 deg
VIS EV [13.64 5.06] @ -18.0 deg

DIFF EV [14.89 6.11] @ +1.2 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.380845)
 y-axis (corr=0.498285)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [8.47 2.88] @ +129.3 deg

VIS EV [6.81 3.40] @ -36.3 deg
DIFF EV [6.78 4.11] @ -6.5 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.372441)
 y-axis (corr=0.624248)

Figure 3.59: Experiment 20031023-1: Scatter and correlation plots of translational displacements
for three different targets, each in a separate row. See page 120 for an explanation of the legend.

126 3.6. Experimental Results

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (1 extreme outlier removed)

LOC
VIS

DIFF
LOC EV [15.32 5.31] @ +127.0 deg

VIS EV [7.42 5.86] @ -38.9 deg
DIFF EV [7.12 1.47] @ +111.6 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20
LO

C
 [m

m
]

VIS [mm]

translational displacement correlation plot (1 extreme outlier removed)

 x-axis (corr=0.866232)
 y-axis (corr=0.678715)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [9.89 5.81] @ +13.5 deg
VIS EV [13.02 5.76] @ -37.0 deg

DIFF EV [10.52 8.01] @ +14.6 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.483966)
 y-axis (corr=0.440021)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (1 extreme outlier removed)

LOC
VIS

DIFF
LOC EV [19.66 3.31] @ -9.5 deg
VIS EV [19.30 3.20] @ +7.5 deg

DIFF EV [4.54 3.52] @ +111.3 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (1 extreme outlier removed)

 x-axis (corr=0.904521)
 y-axis (corr=0.390719)

Figure 3.60: Experiment 20031024: Scatter and correlation plots of translational displacements for three
different targets, each in a separate row. See page 120 for an explanation of the legend.

3.6. Experimental Results 127

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [9.56 2.58] @ +93.2 deg
VIS EV [9.24 3.95] @ +90.5 deg

DIFF EV [6.13 0.25] @ +29.4 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.288077)
 y-axis (corr=0.911247)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [10.86 1.69] @ +4.5 deg

VIS EV [8.94 3.58] @ -12.4 deg
DIFF EV [5.46 2.23] @ +97.9 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.887831)
 y-axis (corr=0.034789)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [27.50 10.72] @ +89.3 deg

VIS EV [39.54 6.97] @ +86.6 deg
DIFF EV [7.92 2.59] @ +77.0 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.857645)
 y-axis (corr=0.900101)

Figure 3.61: Experiment 20031216-d20: Scatter and correlation plots of translational displacements for
three different targets, each in a separate row. See page 120 for an explanation of the legend.

128 3.6. Experimental Results

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [8.13 2.19] @ +90.0 deg
VIS EV [9.54 4.24] @ +112.7 deg
DIFF EV [5.85 0.73] @ +21.7 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20
LO

C
 [m

m
]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.312296)
 y-axis (corr=0.915593)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [7.54 1.00] @ +3.1 deg
VIS EV [8.05 3.12] @ -12.6 deg

DIFF EV [4.88 0.86] @ -35.9 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.772263)
 y-axis (corr=0.575239)

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

y-
ax

is
 [m

m
]

x-axis [mm]

translational displacement scatter plot (0 extreme outliers removed)

LOC
VIS

DIFF
LOC EV [15.79 11.37] @ +26.7 deg

VIS EV [22.34 8.13] @ +72.4 deg
DIFF EV [11.65 5.45] @ +70.5 deg

-20

-15

-10

-5

 0

 5

 10

 15

 20

-20 -15 -10 -5 0 5 10 15 20

LO
C

 [m
m

]

VIS [mm]

translational displacement correlation plot (0 extreme outliers removed)

 x-axis (corr=0.767386)
 y-axis (corr=0.695609)

Figure 3.62: Experiment 20031217-d20: Scatter and correlation plots of translational displacements for
three different targets, each in a separate row. See page 120 for an explanation of the legend.

3.6. Experimental Results 129

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.039476)
DIFF (corr=-0.790813)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.681998)
DIFF (corr=0.046507)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.168515)
DIFF (corr=-0.781078)

Figure 3.63: Experiment 20031022-2: Rotational displacements for
three different targets. See page 121 for an explanation of the legend.

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.447478)
DIFF (corr=-0.784630)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.791001)
DIFF (corr=-0.311293)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.667284)
DIFF (corr=-0.695199)

Figure 3.64: Experiment 20031023-1: Rotational displacements for
three different targets. See page 121 for an explanation of the legend.

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.173273)
DIFF (corr=-0.946961)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.680521)
DIFF (corr=-0.645742)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.411652)
DIFF (corr=-0.838735)

Figure 3.65: Experiment 20031024: Rotational displacements for
three different targets. See page 121 for an explanation of the legend.

130 3.6. Experimental Results

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.363988)
DIFF (corr=-0.730936)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.542345)
DIFF (corr=-0.897779)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.256545)
DIFF (corr=-0.731114)

Figure 3.66: Experiment 20031216-d20: Rotational displacements for
three different targets. See page 121 for an explanation of the legend.

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.190560)
DIFF (corr=-0.740169)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.656893)
DIFF (corr=-0.975908)

-0.4

-0.2

 0

 0.2

 0.4

-0.4 -0.2 0 0.2 0.4

LO
C

/D
IF

F
di

sp
la

ce
m

en
t [

de
g]

VIS [deg]

rotational displacement scatter plot (0 extreme outliers removed)

LOC (corr=0.530428)
DIFF (corr=-0.883422)

Figure 3.67: Experiment 20031217-d20: Rotational displacements for
three different targets. See page 121 for an explanation of the legend.

Chapter 4

Advanced Robot Arm Control

“This is still just the culture shock. You wait till I’ve settled down
into the situation and found my bearings. Then I’ll start panicking!”

Arthur Dent

Another component of the mobile robot system is therobot arm, or simplyrobot in short. The
word robot refers toarticulated robotsin this work, although in general public it is used much
more relaxed. The first time this word was used by the czech author KarelČapek in his 1921
drama “Rossum’s Universal Robots” (R.U.R.)1 it stood for machines which would today be
calledhumanoids. Since then it has been mainly attributed to all kinds of machines that are
capable of doing manipulations that are more or less vaguely similar to human manipulations,
using mechanisms which are more or less vaguely similar to a human arm. Today, the term
“articulated robot” is used for arm mechanisms only.

There are numerous companies building numerous types of robot arms, for example the ABB,
KUKA, Stäubli and FANUC arms shown in figure 4.1. They differ in size, weight, payload,
number of joints and kinematics over a large scale. Some of them are specifically designed
for certain tasks, using a reduced number of joints leading to reduced kinematic capabilities,
but most of them are capable of moving in all sixdegrees of freedom(DOF) of our three-
dimensional world.

Figure 4.1: Some robot arms. From left to right: IRB 1400 by ABB, KR3 by
KUKA, RX60 by Sẗaubli and ARC Mate 100iB by FANUC (images do not scale).

1http://www.czech-language.cz/translations/rur-introen.html

131

http://www.czech-language.cz/translations/rur-introen.html

132 4. Advanced Robot Arm Control

Being capable of performing manipulations similar to a human arm, these robot arms
are mainly used in situations where manipulations would be too strenuous, dangerous or
monotonous for a human being. The most commonly known application of robot arms is prob-
ably still the car manufacturing industry, although many other areas of application are common.
In the car manufacturing industry the robot arms are used at assembly lines as in figure 4.2.
They are used to pick and place parts that are tricky to handle, weld parts together more pre-
cisely (deterministically) than a human can do it, paint cars without the danger of damaging
their health due to paint spray and many other tasks.

Figure 4.2: Robots at an assembly line in the car manufacturing industry.

In this work the robot arm is used to pick and place the different types of tubes, to carry them
between devices and to operate some of these devices. The mobile platform “only” helps in
bringing the arm close enough to the devices to allow it to perform its operations without having
to group the devices close around the arm2. Since the the vendor specific control software of
the arm has proven inappropriate for the tasks in this work a new control approach based on the
well known and free scientific robot control software RCCL has been implemented.

The arm and the tool are briefly described in section 4.1. Section 4.2 introduces and compares
the Mitsubishi PA-Lib with RCCL, motivating why RCCL is being used instead of the PA-
Lib. The modifications and enhancements of RCCL and parts of the hardware necessary to
support the PA10 are described in section 4.3. Finally, section 4.4 gives some results of the arm
performance as well as a summary.

2See the introduction of chapter 3 for the motivation of the kinematic separation.

4.1. The Robot Arm & Tool 133

4.1 The Robot Arm & Tool

The robot arm used for the mobile robot system is a 1999 model Mitsubishi Heavy Industries
(MHI3, Japan) “Portable General Purpose Intelligent Arm PA10”4. It consists of the arm itself
and a custom tool designed for the grasping tasks required for this work.

4.1.1 The “Mitsubishi PA10” Robot Arm

The PA10 arm weighs only 35 kg, yet it has a rather high payload of 10 kg. Its weight is dis-
tributed over a kinematically usable length of 950 mm, making it very compact. In comparison,
for example the smallest model of Stäubli’s RX series, the RX60, weighs 42 kg at a length of
600 mm.

The arm has 7 joints arranged in a way to resemble the capabilities (not necessarily the
appearance) of a human arm as in figure 4.3. It has aredundantkinematic, which means that
there is generally an infinite number of solutions to the inverse kinematics. It also means that
parts of the arm can move without changing the pose at the end effector.

Figure 4.3: The PA10 arm with its 7 joints. All lengths are in millimetres.

3http://www.robot-arm.com , http://www.sdia.or.jp/mhikobe-e/products/
mechatronic/e_index.html

4The newer PA10-6C and PA10-7C are not covered in this work, but only referenced at some places.

http://www.robot-arm.com
http://www.sdia.or.jp/mhikobe-e/products/mechatronic/e_index.html
http://www.sdia.or.jp/mhikobe-e/products/mechatronic/e_index.html

134 4.1. The Robot Arm & Tool

The arm comes with a controller box that is very compact. The logic and power boards
inside it use only a fraction of the available space in the box – most of the space is used by
the power supply which transforms the japanese standard 100 VAC down to 100 VDC for the
power amplifiers. This small size and the fact that it is possible to run the power amplifiers with,
for example, only the 48 VDC present on the mobile platform makes it possible to integrate the
controller into the mobile platforms without larger modifications.

The controller implements the joint controller loops, which have to be given setpoint com-
mands every 10 ms over an ARCNet port. The PA10 controller supports two major commands:
Velocity commands and torque commands, but not position commands. This means that in or-
der to drive any trajectory given by position points a secondary controller is needed to translate
positioning errors into velocity commands.

Usually, themotion control board(MCB) by MHI is used as secondary controller. The MCB
is an ISA or PCI board that must be plugged into the computer that is to become the controlling
host for the PA10. It communicates with the controller via an ARCNet link. The MCB performs
all the computations needed for moving the arm, however, no official documentation about the
MCB itself exists.

The only way to use the MCB is therefore to use the “PA-Library” (PA-Lib), which comes
with source code. The PA-Lib implements no functionality on its own, but only passes its
function parameters to the MCB. It is therefore limited to MCB hardware features and does not
allow any user enhancements.

The combination MCB/PA-Lib has some severe deficiencies which make it ill-suited for this
work, most notably the path-tracking precision for arbitrary paths. These deficiencies are briefly
described in section 4.2.1, where the PA-Lib is compared to therobot control c-library(RCCL)
used in this work.

For a more verbose description of the arm see section B.1 in the appendices.

4.1.2 The Tool

The PA10 arm is equipped with a custom made tool as in figure 4.4, consisting of a microhead
colour camera, a force torque sensor and an electronic gripper with specialised fingers. The
purpose of the tool is to hold the different sensors and actors in order to allow the arm to grasp
the tubes and manipulate the devices properly. Since it is very important not to waste major parts
of the operational range of the arm, this tool has been designed to be as compact as possible.

The force sensor is a 6degrees of freedom(DOF) model and used to detect forces during
contact with an object, for example when inserting a tube into a slot or pressing a button. It is
the only tactile sensor the arm has got, meaning that there are no explicit force sensors in the
fingers or elsewhere. As such the force detection is very indirect and not suited for true tactile
sensing.

The gripper is a small electric parallel jaw gripper and not, as they are in widespread use
especially in industry, a pneumatic model. The disadvantage of pneumatic grippers is that they
more beat their fingers on the objects rather than firmly grasp them. With small and lightweight
objects this can well mean to make them slip out of the gripper, which is a severe problem if
no tactile sensors exist to detect this situation. An electric gripper closes its finger much more
slowly and therefore carefully. The only disadvantage of an electronic gripper is that it has a
lower grasp force, but with the lightweight tubes used in this work with is not a problem.

4.1. The Robot Arm & Tool 135

Figure 4.4: The tool with the camera, force/torque sensor and gripper.

The gripper fingers are custom made to fit to the tasks required by this work. To open lids
the fingers have to reach behind a handle and lift it, which can be done with any almost finger
design. To press buttons on a keyboard they are equipped with a rubber point, which can also
be done with any almost finger design. To grasps tubes special care has to be taken.

The fingers have cut-outs milled into them so that they properly align with the round shape
of the tubes (see figure 4.5). The reason for this is that with no cut-outs the contact to the
objects would be a two-point contact only, and therefore very unstable. With cut-outs, and
eventually cut-outs coated with some rubbery material the contact is established plane-on-plane,
and therefore much more stable.

Figure 4.5: The gripper fingers holding a 50 ml NUNC tube (left) and a 1 ml Cedex tube (right).

The camera belongs to the vision system and is described in chapter 5.

For a more verbose description of the other components of the tool see section B.2 in the
appendices.

136 4.2. Robot Control Software

4.2 Robot Control Software

Apart from the proper hardware a sophisticatedsoftwareis also needed to actually move the
arm. Motion trajectories have to be planned and split into discrete setpoints, forward and inverse
kinematics have to be computed on these setpoints, command data has to be sent to the robot
in real-time while several parameters of the motions like speed and acceleration have to be
changeable and subsequent motions have to be blended into each other smoothly. These tasks
all involve complex computations with special robot data structures and algorithms which the
average industrial user does not always want to be aware of. Commercial vendors therefore
ship some kind of proprietary programming language with their robots with which these users
may be fully satisfied, but a scientific research project is much more demanding. This section
therefore introduces the capabilities of the Mitsubishi PA-Lib in comparison to the capabilities
of the free RCCL library developed by computer science researchers and being widely used at
research institutes all over the world.

4.2.1 The PA-Library

As has been mentioned in section 4.1.1 MHI provides the MCB / PA-Lib package for operating
the PA10. The PA-Lib is the only documented way to access the MCB and therefore the only
high-level way to access the PA10. Its key features are briefly described here, explaining the
reasons why it was found to be not suitable to be used for this work.

The PA-Lib originally comes as both a pre-compiled Windows library and as C source code.
The source code reveals that it does not implement any functionality on its own, but only inter-
faces the hardware – function parameters are copied through several structs before being sent to
the MCB. It does in particular not use any low-level operating system functions, which means
that a port to Linux is quite trivial. As a result of this, it does not require a dedicated PC.

Compared to the V+ language and operating system that is used on Stäubli RX robots this is
an advantage. The RX robots come with a proprietary robot controller on which all the robot
related software has to reside. On this controller the V+ programs areinterpretedrather than
compiled, which means that any high-level computations that are not covered by a single V+
statement are rather slow5. Programs are limited to what the V+ language supports, so if the
task requires anything – like advanced vision or complex and lengthy on-line calculations –
that cannot be done on the controller it has to be distributed to other computers. The network
communication that arises from this is in turns again limited to what the V+ language and
operating system supports, with the result that it is – if at all possible – quite awkward compared
to mainstream programming languages.

The PA-Lib – on the other hand – does not need an external proprietary controller for de-
manding computations, but can be used on any Windows/Linux computer directly. Since it can
be linked to any C/C++ program it gives the user more flexibility and freedom. With the PA-Lib
the user has all the abilities to

• set basic motion parameters (speed, acceleration, ...),

• do joint interpolated motions,

• do cartesian interpolated motions,

5For example the “execution” of an empty comment line already takes a non-neglectable amount of time.

4.2. Robot Control Software 137

• modify motions in real-time (very limited capability) and

• store and execute teached motions

as well as to use one of the fastest and most commonly used programming languages, likely
eliminating the need to learn a new “robot programming language”. If complex high-level
calculations are needed they can also be done on the controlling computer without problems
and without the need for network communication, though this is very easily possible if required.
This is aided by the fact thatanycomputer may be used, and if one should be found to be too
slow replacing it by a more powerful one is a cheap and easy thing.

These features are, however, not enough for a scientific user. One key interest of a scientific
user it to have thepossibilityto get control over all high and low-level functions and to add new
functionality if the provided one is not sufficient. This, however, is explicitly not possible with
the PA-Lib.

With the PA-Lib the user has a certain number of routines implementing a certain functional-
ity. All this functionality and its parameterisation is limited to what MHI considers important.
For example, the support for modifying some motion parameters at real-time does not allow
a full scale force control because it is only blends very softly over the existing motion and is
therefore too sluggish (see section 4.4.2). If the user is at any point not satisfied with the per-
formance of the PA-Lib there is absolutely no way to add better routines because the PA-Lib
does not offer any support for enhancing its functionality and no documentation is available that
might indicate whether this is at all possible with the underlying MCB. One particular thing that
is completely impossible are user-level callback functions that might be used to add low-level
behaviour that is otherwise not achievable.

Summarised, the major shortcomings of the PA-Lib are:

• It does not supply any mathematical routines,

• the real-time modifications of motions perform too badly to be used for force control and

• it offers no support to add low-level functionality to overcome its own shortcomings.

Because of these shortcomings the PA-Lib has been found unsuitable for the requirements of
this work and has – apart from some initial tests – not been used. Instead the freely available
and well-known robot control software RCCL has been chosen to be adapted to the PA10.

4.2.2 The “Robot Control C-Library” RCCL

RCCL is the “Robot Control C-Library” by John E. Lloyd and Vincent Hayward6. Its first
versions date back to the mid-80s, but it is still technologically up-to-date as far as low-level
robot control is concerned. Its objective is to give the user access to different types of robot
hardware, the kinematic functions, mathematical structures as well as a lot of routines to do
daily work, including a trajectory generator for the actual motions. Its particular strong point is
the ability to install user functions in the trajectory generator that can modify all kinds of data
structures and thus freely determine the path of the motion. It is not limited to motion types that
have been designed in advance but allows the user to add whatever might be needed later on.

6See [Lloyd and Hayward 1989].

138 4.2. Robot Control Software

RCCL was the first robot library written in C to run on a normal UNIX workstation. Com-
pared to the proprietary programming languages running on proprietary controllers this is a
great advantage in several aspects. One aspect is that the user does not have to learn a – how-
ever trivial – new programming language for each new type of robot. Another aspect is that
auxiliary mathematical routines are either available or can at least be trivially added. But the
really important aspect is that the robot can be controlled from the same computer and even the
same program that is used for computing the targets in the first place – communication with
other computers is only seldomly really required.

Commercial robot control software like the V+ language is often too limited to implement
expensive high-level computations in. These languages are basically for executing motion com-
mands only. Anything that requires more computing power is likely to require to distribute the
task to a more powerful machine, which in turns requires network communication which can
be quite awkward with these systems. With all software implemented in a single programming
language that offers enough functionality and integrated on a single computer that is cheap and
has enough power this problem does not occur and the user can instead concentrate on the real
task.

The PA10 does a first step in improving this situation because the PA-Lib is written in C and
the MCB can be plugged into any computer, however, the PA-Lib / MCB combination is too
limited to take full advantage of this first step. It lacks a lot of useful functionality, and – since
it is limited to the undocumented MCB hardware – most notably the possibility to add it later
on. RCCL is very well documented down to the hardware interfaces and has been used by the
author of this work for several years. Its source is available and allows an even further insight
into all details than the documentation. The only drawback – if any – is that it is no longer
supported and that it may not be used commercially.

Section B.3 in the appendices gives an optional introduction into some key features of RCCL
listed here. None of these features has a counterpart in the PA-Library, but some of these
features are absolutely mandatory for this work. The features are:

Mathematic Computations : A very trivial but very disturbing – if lacking – point are the
mathematical helpers around the robot data types. They include functions to do compu-
tations with sets of joints, vectors, transforms – 4×4 homogenous matrices describing
relative spatial coordinate changes – and kinematics. These mathematical helpers are
very important in the every day work because without them parts of the robot’s physical
functionality cannot be used. For example, the PA-Lib does have a function to move a
robot to a target given by a transform, but does not have any routine to do calculations
with transforms. As a result the function is pretty useless.

Position Equations : The most important mathematical construct is the position equation,
where the target of a motion is specified by two separate chains of transforms. One of
these chains must contain the robot transform. The trajectory generator takes a position
equation, solves it for the target robot transform, compares this with the current robot
transform and issues a motion to eliminate the difference.

Using position equations the target description can be split into separate components, so
that if a rack with 10 tubes is moved on the table only the relative position (transform) of
the rack on the table has to be changed and not all 10 positions of the tubes. The PA-Lib
does not have such a construct.

4.3. RCCL on the PA10 139

Arbitrary Motions : Any robot control software has a fixed number of motion types built-in,
usually joint and cartesian interpolated straight line motions and circular arcs. RCCL
allows the user to attachcontrol functionsto transforms to modify them in real-time and
thereby change the motion path. This construct can be used to implement completely new
motion types as well as force control (which is nothing more than a local modification of
a motion). The PA-Lib does not have such a construct.

Singularities : One application of arbitrary motions aresingularities– positions where the
robot can for kinematical reasons not follow all motions as issued by the trajectory gen-
erator because it would exceed the joint velocity limits. If such a situation cannot be
avoided by other means it has to be dealt with at motion generation level, but for this
to be possible there must be a way to change motions. With RCCL this can be done by
means of control functions, but the PA-Lib does not have such a construct.

(Virtual) Robot Cooperation : In RCCL several robots can cooperate if their position equa-
tions contain the other robots transform. These robots need not be real, but can also
be virtual. A virtual robot (object) does not have joints, but only its transform. This
transform can be contained in the position equation of a real robot which is then asked
to endlessly track its current position. As a result it will follow the motions of the ob-
ject without the user having to do any calculations. The PA-Lib does not have such a
construct.

4.2.3 Consequences

It is mainly due to these superior capabilities and flexibilities of RCCL that using only the
PA-Lib has never been considered an option. The initial approach instead targeted at a mix-
ture of RCCL and the MCB/PA-Lib where RCCL should be used to generate joint position
setpoints which would then be passed to the MCB operating in “each axes real-time mode”
(pa mod axs()) with the specialpa odr axs() PA-Lib function. Not anticipating the fact
that this approach proved to be too badly conditioned to be usable and so finally afull PA10
support had to be added to RCCL even the initial approach requires modifications of RCCL
which shall now be discussed.

4.3 RCCL on the PA10

RCCL originally only supported the PUMA, SCARA and other even lesser known old type
robots, basically because no noteworthy development work to add new robots has gone into it for
a couple of years, in turns basically because even its inventor considered it too old, cumbersome
and scheduled to be replaced by a successor. The reasons and consequences still apply today,
but otherwise the situation has not changed.

As a result support for the PA10 as required by this work has been implemented. Commu-
nication to the arm controller over an ARCNet network has been established, software joint
controllers to translate from RCCL’s position commands into the PA10’s velocity commands
has been integrated and the PA10 kinematic has been implemented. The changes are described
in detail in the following subsections.

140 4.3. RCCL on the PA10

4.3.1 Kinematic

The PA10 with 7 joints is a redundant robot and as such has a kinematic that is incompatible with
any robot supported by RCCL so far. In particular none of the officially supported robots had
more than 6 joints, so a lot of structures and functions were limited to that. Before implementing
the PA10 kinematic some data structures and functions therefore had to be modified.

Basically, RCCL used/uses the constant “#define MAXJNTS 12 ” as defined in
include/maxjnts.h as a limit, but only to size a couple of secondary arrays. The pri-
mary array defining the set of joints on an actual robot is sized separately. This original joint
specification is given as

#define NUM_JNTS 6

typedef struct {
float v[NUM_JNTS]; /* joint values */
char type[NUM_JNTS+1]; /* joint type (’r’ or ’p’) */
int num; /* number of actual joints */

} JNTS, *JNTS_PTR;

in include/rcclDefs.h and does have anumfield indicating how many joints the robot
really uses. IncrementingNUMJNTS from 6 to 7 only revealed that a lot of functions had6
hardcoded as limit rather thanMANIP->JNTS->num , so the general porting efforts had to go
beyond increasingNUMJNTS. The kinematic functions themselves could only be established
after these changes.

Kinematic (greek:kinema= “movement”) is the science of movement and covers both the
dynamicaspects of motion as well as thestaticaspects of position, because motion is nothing
more than a change of position. In robotics, however, the term “kinematic” is mainly used
to refer to positional questions only, not dynamical ones7. Kinematic in this context means
to compute cartesian robot positions from joint values, and vice versa. These computations
need a description of the physical appearance of the robot like the Denavit-Hartenberg (DH)
convention8. Any such description yields a set of parameters like in table 4.1 describing each
segment individually, which are combined to describe chains of segments up to the complete
arm. RCCL does not use a generic kinematic routines that utilises a full DH parameter set,
but individual functions for each class of robots instead. The reason for this is simply that
RCCL is rather old and had to run on computers that would nowadays considered to be mere
pocket calculators, so it had to take advantage of all possible simplifications. For the PUMA
robot class for example a lot of DH parameters are either zero or at least equal for all PUMAs,
so the corresponding simplifications are hardcoded in the appropriate routines. As a result of
this adding a new kinematic to RCCL not only means to add a new set of DH parameters, but
actually to implement new routines.

The forward kinematic then is the problem of computing a cartesian position from a set of
joint angles. This task is trivial and could – if needed – be quite easily implemented in a generic
way forn-joint robots: Each segmentj can be described by a single transformTj that is defined
by the DH parameters (including the joint variable). Multiplying together these (7, in case of

7The question of robot dynamics does of course exist, but is explicitly named “robot dynamics” and not “robot
kinematics”.

8See [Denavit and Hartenberg 1955] and [Denavit and Hartenberg 1964].

4.3. RCCL on the PA10 141

i θi di ai αi

1 π 0 0 1
2
π

2 π 0 a2 0

3 0 d3 0 1
2
π

4 π d4 0 1
2
π

5 π 0 0 1
2
π

6 0 0 0 0

Table 4.1: Denavit-Hartenberg parameters for a PUMA-260 under RCCL.

the PA10)Tj yields the end effector position9

TROBOT = T1 · T2 · T3 · T4 · T5 · T6 · T7

The PA10 forward kinematic grants itself the same simplifications as the existing PUMA
routines and combines these multiplication in a single complex but computationally cheaper
expression. The forward kinematic is unique, meaning that each single input always produces
exactly one single output (although several different inputs may produce the same output). It
needs no further attention.

The inverse kinematic is the inverse problem of computing a set of joint angles from a carte-
sian position. This computation needs the additional attention that it is not unique, meaning
that a single input can produce multiple outputs. In case of the PUMA kinematic it means that
there are 8 possible sets of joint angles for each legal cartesian position (which do – as in case
of singularities – not always have to be really different). In order to chose one of these solutions
RCCL provides a bitmask indicating the desired configuration.

In case of the PA10 kinematic the situation is even more problematic because a closed form
for the inverse kinematic does not exist for redundant robots. Redundant robots do not only have
a countable multitude of solutions but rather an infinite number, which means that providing a
bitmask to select a solution is not sufficient. There are ways of controlling redundant robots
but they use other methods than the direct inverse kinematic, for example the pseudo-inverse
of the jacobian. Since RCCL does require a direct inverse kinematic a compromise has been
established.

Instead of using all 7 joints the implemented kinematic only uses 6 joints, keeping the redun-
dant one (J3, called “E1” by MHI) constant at zero10. The resulting “reduced” PA10 kinematic
shares an interesting feature with the PUMA robots, which is that the rotation axes of the last
three joints intersect in one point. These robots are calledwrist partitionedrobots and allow a
computational split of the kinematic: As can be seen from the upper right 3× 3 matrix of zeros
in the jacobian for a PUMA-260 in

9The reason why thisTROBOT is also calledT6 is historical, motivated by a time where no robot had more than
6 joints. In this work it is mostly calledT6 because the individualTj for joint number 6 is not of interest here.

10This kinematic has been developed at a time where only the original PA10 with 7 joints existed. Today the
newer PA10-6C and PA10-7C versions are 20 mm shorter in the last segment than the PA10, but since except
from this the placement of the joints is exactly the same and the joint that is missing at the PA10-6C is exactly the
redundant joint the same kinematic routines can be applied to them.

142 4.3. RCCL on the PA10

J =

−s1r1 − c1d3 c1r2 c1c23d4 0 0 0
c1r1 − s1d3 s1r2 s1c23d4 0 0 0

0 −s23d4 − c2a2 −s23d4 0 0 0
0 −s1 −s1 c1s23 −s1c4 − c1s4c23 −s1s5s4 + c1r3

0 c1 c1 s1s23 c1c4 − s1s4c23 c1s4s5 + s1r3

1 0 0 c23 s4s23 c5c23 − c4s5s23

wheresi = sin(θi), sij = sin(θi + θj), ci andcij respectively and

r1 = s23d4 + c2a2

r2 = c23d4 − s2a2

r3 = c5s23 + c4s5c23

as abbreviations, the last the joints do not contribute to theposition. Only the first three joints
1 to 3 determine the position and the last three joints 4 to 6 only correct theorientationto the
desired value11. This does not present a noteworthy gain for the forward kinematic, but for the
inverse kinematics it allows to operate with much shorter expressions than with a generic 6-joint
kinematic. It is only because of the fact that the RCCL routines for the PUMA kinematic have
special assumptions about some of the DH parameters hardcoded that they cannot be used for
the PA10.

Because of this simplification the implemented kinematic is “only” equally powerful than
the PUMA class kinematic, in particular it is not possible to use the redundancy in cartesian
motion. This is not a noteworthy restriction as the task requirements do not explicitly require a
redundant robot in the first place, and should it yet become necessary it can be added later by
means of arbitrary motions in RCCL. Using this kinematic the PA10 can be fully used in joint
interpolated mode (which only uses the forward kinematic) and in a limited way in cartesian
mode (which also uses the inverse kinematic). The only thing that has to be externally ensured
is that the redundant jointJ3 really is zero when a cartesian motion is started because otherwise
it would jump to zero in the first cycle(s), which could damage both the robot and anything in
its vicinity.

The PA10 jacobian has not been established because it is not needed for this work. Given the
forward kinematic its computation is trivial.

4.3.2 ARCNet Interface and Protocol

Another area of modifications involves the ARCNet communication with the PA10 controller.
ARCNet (Attached Resource Computer NETwork) is a network communication hardware and
protocol like ethernet, but different in some aspects. Electrically it defines – like ethernet –
several transmission channels like coaxial or twisted pair copper or fibreglass cables using bus
or star topologies and several modulations techniques for transmitting data. Logically it defines
a token-ring protocol that ensures that no collisions can occur - one node (the one with the
highest id) in the network is the master and controls the traffic. It is probably because of the

11See [Scherer 1998], chapter 4.2.

4.3. RCCL on the PA10 143

token-ring characteristic of being deterministic and real-time capable that MHI chose ARCNet
as communication media12.

MHI only provides the MCB to access the PA10 controller, which means that any user who
does not want to use it has to use an ARCNet board. Since ARCNet is a niche product there are
only few companies building ARCNet boards, and so the choice is limited. Unfortunately this is
a problem because at the same time MHI uses media transceivers which are rather uncommon
in Europe. This applies to both the original PA10 used in this work as well as the newer
PA10-6C/PATENSEVEN. Their ARCNet hardware specification is given in table 4.2.

PA10 PA10-6C/PA10-7C optional
chip SMSC COM20020 SMSC COM20022
speed 5 Mbps 10 Mbps
transceiver TMC HYC2485S Agilent HFBR-1528/2528 TMC HYC4000

AC coupled DC coupled AC coupled
“RS485 type” plastic optical fibre (POF) “RS485 type”

media twisted pair 1 mm POF
650 nm wavelength (red)

connector RJ11 Agilent “Versatile Link”

Table 4.2: The ARCNet hardware specifications of the PA10, PA10-6C and PA10-7C. The
term “RS485 type” is written in quotation marks because it comes from TMC/MHI, but the
mode is actually incompatible to what is known astrueRS485 mode (see section 4.3.2.1).

4.3.2.1 PA10 ARCNet Hardware

The original PA10 used in this work uses a HYC2485S transceiver by TMC13 to transmit data
with 5 Mbps over twisted pair cable with RJ11 connectors. TMC and MHI call this a “RS485
type” transmission, though it is in fact incompatible to what is known astrue RS485 mode.
RS485 operates with (differential) DC voltage signals, whereas the HYC2485S/HYC4000 use
an AC modulation. As a result of this the RS485 ARCNet boards by companies like SOHARD14

or Contemporary Controls15 can not be directly used to interface the PA10 controller.

Instead, a SH-ARC-PCI board from SOHARD has been modified by replacing its transceiver
with a HYC2485S. Only using this modified board the PA10 can be accessed from a computer
with virtually any operating system because the SMSC16 COM20020/22 ARCNet chip family
is actually the only ARCNet chip on the market and every driver supports it.

12In case of just a peer-to-peer “network” with only two nodes and only one application communicating over it
ethernet could probably also be used, but that discussion is not of interest for this work.

13Toyo Microsystems Corporation (now part of SMSC).http://www.smsc.jp/en andhttp://www.
arcnet.com/toyo.htm

14SOHARD AG, Würzburger Straße 197, D-90766 Fürth, Germany.http://www.sohard.de
15Contemporary Controls Ltd., Barclays Venture Centre, University of Warwick Science Park, Sir William

Lyons Road, Coventry, CV4 7EZ, England.http://www.ccontrols.com
16Standard Microsystems Corporation (SMSC), 80 Arkay Drive, Hauppauge, NY 11788-8847, USA.

http://www.smsc.com/main/catalog/arcnet.html

http://www.smsc.jp/en
http://www.arcnet.com/toyo.htm
http://www.arcnet.com/toyo.htm
http://www.sohard.de
http://www.ccontrols.com
http://www.smsc.com/main/catalog/arcnet.html

144 4.3. RCCL on the PA10

4.3.2.2 PA10 Protocol

To speak to the PA10 controller MHI uses a protocol that defines several commands. Since the
MCB cannot be used by 3rd-party software this protocol is the only way to access the controller.
As documented in [Mitsubishi PA10 Servo Driver Manual], the commands implement a simple
state machine as in figure 4.6.

standby mode

brake release
mode

control mode

control
data

control
data

control parameter
setting (RAM)

write RAM
to EEPROM

mechanical zero
point measurement

power on

EEPROM
read

EEPROM
write

C

C

E (or timeout)

E (or timeout)

IW

M

R

P

T

S

Figure 4.6: The state machine implemented by the PA10-6C controller protocol.

Apart from several diagnostic and maintenance commands the primary commands are the
“S” and “E” commands to bring the arm in or out of “control mode” and the “C” command.
The specification of these commands is as follows:

• The “S” command is used forstartingarm control. After power-up the controller is in
“standby” mode, waiting to be initialised. Only after receiving a “S” command it enters
“control” mode where the arm can be used. Additionally it starts a watchdog timer to wait
for “C” commands. Any sending of “E” commands, watchdog timeouts or other errors
result in the controller going back into the standby mode.

• The “C” command is used forcontrolling the arm. When the controller is in “control”
mode this command can be used to release/activate the brakes, to enable/disable the indi-
vidual servo drivers17, to send them velocity or torque commands and to read the current
position During normal operation the controller expects a “C” command every cycle of
10 ms (on the PA10, or 2 ms on the PA10-6C/PA10-7C) and defines a timeout as a cer-
tain multiple of that time. If the higher level fails to send the next “C” command within

17Note that with the “S” command the servo driver of an axishasto be enabled when its brake is released. Only
if the “T” command has been used to enter (a similar) control mode the servo driver may remain deactivated, thus
allowing to passively move the arm in a zero-gravity way.

4.3. RCCL on the PA10 145

that timeout the controller goes back into standby mode, stopping the arm and activating
the brakes.

• The “E” command is used forendingarm control. When arm control is ended the servo
drivers are disabled, the brakes are activated and the controller goes into standby mode.
Only after sending a new “S” command the arm can then be used again.

This protocol has some drawbacks that affect any kind of robot control software. One
drawback is that multi-byte data inside the packets is encoded in little endian (Intel) order18

on the original PA10 used in this work and in big endian (Motorola) order on the newer
PA10-6C/PA10-7C. In addition to this the parameters in at least the “C” command differ
slightly. As a result the PA10 and PA10-6C/PA10-7C protocols are incompatible and a unified
driver for both types of robots has to be aware of this.

Another drawback is derived from the fact that all these commands strictly follow a
client/server principle. It is only the host computer that actively issues commands and only
then the controller passively sends replies. It does in particular not report the current joint val-
ues (or other state information) on a periodical base, meaning that the host computer has to
actively ask for them. Since there is no separate command for requesting joint values but only
the “C” for sending velocity commands that returns the joint values as a reply this makes it trou-
blesome to obtain current joint values, as for example to be used in the PID controller described
in section 4.3.3 and used in this work to generate the velocity setpoints in the first place.

4.3.3 Joint Controllers

RCCL has a trajectory generator that works by planning a true desired trajectory from the start to
the target, computing cartesian setpoints along that trajectory and directly applying the inverse
kinematic on these cartesian setpoints to obtain joint setpoints. As such it explicitly produces
joint positionsetpoints to be passed to the robot as in figure 4.7. The reason it does this is that
the PUMA – like all robots RCCL supported so far – accepts position setpoints only.

RCCLApplikation

TGENZielmove(); PID LE/Motor

pos.

HWIF

Encoderpos.

pos. pos.

0.875ms14ms

PUMA

Figure 4.7: RCCL’s interaction with the PUMA controller: Position setpoints are sent
every 14 ms. The PUMA controller then has 16 of its internal cycles time to reach the target.

With the PA10 this does not work any longer because the PA10 only acceptsvelocityset-
points. The only way to produce velocity setpoints from position setpoints without rewriting
the TGEN is to add an additional PID controller to RCCL that translates between the values as
in figure 4.8.

18Big endian byte order means that the 4-byte word 0x12345678 becomes a byte stream of 0x12 0x34 0x56
0x78 and little endian byte order means that it becomes a byte stream of 0x78 0x56 0x34 0x12.

146 4.3. RCCL on the PA10

RCCLApplikation

TGENZielmove();
pos.

10ms

PID LE/Motor

10ms

PID
vel.

PA−10

pos.

???

HWIF

Encoder

vel. Encoder

pos.

vel.

Figure 4.8: RCCL’s interaction with the PA10 controller: In order to be able to send
velocity setpoints RCCL must use an internal PID controller. Since this controller can
not run faster than the PA10 controller cycle rate and should not run slower than RCCL’s
TGEN this means that the PID controller has only 1 cycle time to reach its target.

This approach does work, but introduces a few problem. First of all, a general principle of
control theory states that when using cascaded controllers the inner ones have to run several
times faster than the outer ones. The reason is simply that the inner controller must be given
some time to react to changes of the outer controller. This scheme is, however, not possible in
case of three cascaded controllers here because the cycle rates of the outer- and innermost one
are fixed:

• Since the PA10 servo drivers only accept new setpoints every 10 ms there is no point
in letting the PID controller compute its output faster, so it is bound to not run faster
than every 10 ms. Actually, the servo drivers should be given some time to react, so the
requirement can be given astc � 10 ms.

• Since RCCL’s TGEN produces new outputs every 10 ms there is not point in letting the
PID controller accept its input slower, so it is bound to not run slower than every 10 ms.
Actually the PID controller should be given some time to react, so the requirement can be
given astc � 10 ms.

The only way to obtain a halfway legal combination is to reduce these requirements from
tc � 10 ms andtc � 10 ms to tc ≥ 10 ms andtc ≤ 10 ms and let the PID controller run
at exactly10 ms too, but this introduces the announced problems: The PID controller now has
only 1 cycle time to reach its target before a new target comes in, which can be proven to be
impossible to do. As a result it willneverreach its target in the desired time butalwayslag
more or less considerably behind. This is not a fully satisfying behaviour, but about the best
that can be done with the given hardware.

It is of course possible to let RCCL’s TGEN run slower so that the PID controller has more
time to do its work, but this would only mean that the trajectory is sampled much more coarsely.
Any quick movements or reactions as are required in force control would become impossible.
Overall, the resulting performance can be expected to be even worse than with the implemented
approach.

Another problem is that any controller needs current values for its calculations, and the PA10
does not properly provide them. As has been mentioned there is no command on the PA10 to
request current joint positions, but only a command to set new targets that gives the joint posi-
tions as return values. This means that the current joint values become available onlyafter the
controller loop has run and computed its velocity command. This situation has to be considered

4.4. Results 147

a consequence of the above problem, because if the PID controller had more cycles time to
reach its target the problem would probably not show up in the first place. With just one cycle
time, however, it does show up quite clearly. Several approaches are conceivable to deal with it:

1. Issue an additional “C” command at thebeginningof the control circle – repeating the
old velocity commands – with the only purpose of obtaining current joint positions, then
run the control loop and immediately issue another “C” command with the new velocity
values. This is technically possible, but MHI does not specify how the servo driver will
react to this and therefore it cannot be considered stable and cannot be used.

2. Do nothing, but simply use the position readings from the last cycle when computing the
new velocity. This basically works, but introduces 1 cycle delay in the position readings.
As a result the controller can by definition never fully reach its target, the positioning
performance will become overly bad and therefore the approach cannot be used.

3. Try to forecast the current position based on the values from the last cycle. If the trajectory
is not changed too abruptly this should at least yield a better performance than to just use
the position from the last cycle.

For this work the third approach has been implemented with a simple predictor that adds a
fraction of the last velocity command to the last position reading to estimate the current position.
This is still a suboptimal solution compared to a PUMA system, but again about the best that
can be done with the given hardware.

Because of these two problems the resulting positioning performance can not be expected
to be as good as with an old PUMA system, but still better than with the MCB and certainly
good enough to allow all required operations in the biotechnological laboratory, as is shown in
section 4.4.

As a final note it has to be mentioned that the newer PA10-6C/PA10-7C have a cycle time
of only 2 ms compared to the 10 ms on the PA10 used in this work. Such a reduced cycle time
would theoretically allow to run the PID controller 5 times faster than RCCL’s TGEN without
changing that one’s cycle time, though due to the internal thread structure of RCCL this could
be quite complicated. Whether this really improves the positioning performance has to be left
an open question because it has neither been part of this work, nor had the necessary resources
for the tests been available.

4.4 Results

As has been shown the usage of RCCL involves several issues that affect the performance of
the arm. These issues all arise from the fundamental fact that since the PA10 uses velocity
commands for the servo motors it can strictly speaking not be legally used by RCCL. Adding
a joint controller to the TGEN principally allows to use it, but introduces technical complica-
tions. Control theory demands that if an additional controller is inserted into a system either the
innermost controllers must run faster or the outermost controllers must run slower, neither of
which is possible or admissible in case of the PA10. The performance of the resulting cascaded
system can therefore never be as good as of a system which accepts position commands in the
first place. This may lead to questioning whether the idea to use RCCL is in fact a good one or
not, so in this section the achievable performance has to be shown.

148 4.4. Results

Two different types of experiments have been done, one dealing with path tracking perfor-
mance and one dealing with force control. It will become obvious that in both cases the per-
formance of RCCL on the PA10 is in fact suboptimal, but still better than with the original
MHI software. A summary will finally point out why this performance is fully sufficient for the
requirements of the biotechnological service robot.

4.4.1 Path Tracking Performance

The first experiments compare the path tracking performance of the PA10 operated by
RCCL (PA10/RCCL) and by the MCB (PA10/MCB)19 with a PUMA260 operated by RCCL
(PUMA260/RCCL). Two different types of motions have been done: A cartesian spiral motion
in 3d-space and a cartesian square motion in 2d-space. Due to the different size of the PA10
and PUMA the paths are not 100% identical, but still comparable. A number of graphs are used
to show certain aspects of the performance:

• Thecommandedandobservedpositions of joint #1 are given as an example to show the
performance of the robot in following the path in joint space. This includes not only the
question of whether it follows the shape of the motion at all rather than distorting it, but
also the question of the time-delay with which it follows it.

• 3d and 2d-projections of the motion are given to show the performance of the robot in
following the path in cartesian space. These graphs do show the shape of the motion
quite nicely, but do not directly show whether the robot followed it with a time-delay or
not. They do show this indirectly, though.

• Finally, the euclidian norm of the cartesian positioning error is shown. This value shows
the full influence of the time-delay with which the robot follows a path because it may
be non-zero even if according the 3d or 2d plots the motion matches the desired path
appearingly perfectly.

4.4.1.1 Cartesian spiral Motion

In the first motion the robots are requested to move along a cartesian spiral which lies tilted in
the 3d-workspace. This motion is very harmonic in cartesian space and therefore produces very
harmonic, sine-like motions in joint space. The absence of high accelerations presents a rather
optimal case for the joint controllers and should allow them to follow the path just perfectly. On
the other hand a spiral is a long motion that keeps changing its direction, so if a robot should be
lagging behind in time this is likely to show up as cartesian deviation off the trajectory.

Figure 4.9 shows the cartesian results from this experiment. In the 3d and 2d-plots of the
cartesian position during the motion it can be seen that the PA10/MCB lags so much behind
that it completely leaves the desired trajectory. It takes “shortcuts” through the open space to
reach a setpoint that is already far ahead along the spiral, but never actually reaches that point.
The PA10/RCCL performs much better in this aspect, though small deviations are still visible.
Only for the PUMA260/RCCL no deviations can be seen.

19More precisely, RCCL is also used in this case to generate the setpoints because the MCB cannot generate
spiral motions, but the setpoints are then passed to the MCB. This is done by using a special version of RCCL
that uses the PA-Lib as hardware interface. Because of the results of these experiments this version has never been
used again.

4.4. Results 149

cartesian spiral motion

desired PA10/RCCL PA10/MCB

 280
 300

 320
 340

 360
 380

 400
x [mm] -40

-20
 0

 20
 40

 60

y [mm]

 360
 380
 400
 420
 440
 460
 480
 500

z [mm]

cartesian spiral motion

desired PUMA260/RCCL

 60
 80

 100
 120

 140
 160

 180
x [mm] 220

 240
 260

 280
 300

 320
 340

y [mm]

 20

 40

 60

 80

 100

 120

 140

z [mm]

-15

-10

-5

 0

 5

 335 340 345 350 355

y
[m

m
]

x [mm]

cartesian spiral motion (2d-projection of closeup)

desired PA10/RCCL PA10/MCB

 260

 265

 270

 275

 280

 115 120 125 130 135

y
[m

m
]

x [mm]

cartesian spiral motion (2d-projection of closeup)

desired PUMA260/RCCL

Figure 4.9: Cartesian results from the cartesian spiral motion. The first row shows
the original motion in 3d and the second row shows a 2d projection of the centre of the
spiral. The left column shows results from the MCB and RCCL control for a PA-10 and
the right column shows results from the RCCL control for a PUMA-260 for comparison.

This cartesian deviation is caused by a sluggishness at joint level, which is shown in figure
4.10. It can be seen that the PA10/RCCL lags slightly more behind than the PUMA260/RCCL,
but by far not as much as the PA10/MCB. Due to the extreme lag the PA10/MCB builds up
a mean square error(MSE) of 1.14 degrees with a maximum peak of 3.79 degrees where
the PA10/RCCL only has 0.22 degrees with a maximum peak of 0.77 degrees. This means
that the RCCL solution performs about a factor of 5 better than the MCB solution. The
PUMA260/RCCL has only 0.13 degrees with a maximum peak of 0.34 degrees.

Figure 4.11 shows the euclidian norm of the cartesian displacement between the desired and
observed position. Since this measure includes both deviations along and off the trajectory it
is generally larger than the 3d and 2d-plots might suggest. As can be seen the PA10/MCB has
a MSE of 18.3 mm with a maximum peak of 46 mm where the PA10/RCCL only has a MSE
of 2.4 mm with a maximum peak of 4.9 mm. The RCCL solutions performs better by a factor
of 7-8. The PUMA260/RCCL with 1.3 mm with a maximum peak of 2.5 mm performs again
better than the PA10/RCCL by a factor of about 2.

150 4.4. Results

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0 50 100 150 200 250 300 350 400 450 500

an
gl

e
[ra

d]

of cycle

cartesian spiral motion - value of joint #1

desired PA10/RCCL PA10/MCB

-1.75

-1.7

-1.65

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

 0 50 100 150 200 250 300 350 400 450 500

an
gl

e
[ra

d]

of cycle

cartesian spiral motion - value of joint #1

desired PUMA260/RCCL

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 390 400 410 420 430 440 450

an
gl

e
[ra

d]

of cycle

cartesian spiral motion - value of joint #1 (closeup)

desired PA10/RCCL PA10/MCB

-1.52

-1.5

-1.48

-1.46

-1.44

-1.42

 230 240 250 260 270 280 290

an
gl

e
[ra

d]

of cycle

cartesian spiral motion - value of joint #1 (closeup)

desired PUMA260/RCCL

Figure 4.10: Joint results from the cartesian spiral motion. The first row shows the
motion of joint #1 and the second row shows a closeup of the area marked in the first
row. The left column shows results from the MCB and RCCL control for a PA-10 and
the right column shows results from the RCCL control for a PUMA-260 for comparison.

 0

 10

 20

 30

 40

 50

 0 50 100 150 200 250 300 350 400 450 500

po
si

tio
na

l d
ev

ia
tio

n
[m

m
]

of cycle

deviation from desired spiral

desired PA10/RCCL PA10/MCB PUMA260/RCCL

Figure 4.11: Euclidian norm of the cartesian positioning error during an spiral motion.

4.4. Results 151

4.4.1.2 Cartesian square Motion

In the second motion the robots are requested to move along a cartesian square which basically
lies flat in the 3d-workspace20. This motion is less smooth in cartesian space because is includes
perpendicular changes of the direction at the corners of the square, but since each motion along a
side of the square is brought to a stop before starting along the next side the resulting joint space
motion is still sufficiently smooth. But then, depending on where in the workspace the square
is placed, the linear motions along the sides of it are more likely to raise a non-linear relation
between the cartesian and joint velocities, say, higher joint accelerations may be expected than
with the spiral. If a robot only lags behind the desired position in time this will not show up
immediately as deviation off the trajectory because the trajectory is a straight line. It will,
however, show up as soon as a motion along a new side will be started if the robot has not
reached the corner until that time.

cartesian square motion

desired PA10/RCCL PA10/MCB

 280
 300

 320
 340

 360
 380

 400
x [mm] -60

-40
-20

 0
 20

 40
 60

y [mm]

 420

 421

 422

 423

 424

z [mm]

cartesian square motion

desired PUMA260/RCCL

 60
 80

 100
 120

 140
 160

 180
x [mm] 220

 240
 260

 280
 300

 320
 340

y [mm]

 72

 73

 74

 75

 76

 77

z [mm]

 35

 40

 45

 50

 55

 380 385 390 395 400

y
[m

m
]

x [mm]

cartesian square motion (closeup of 2d-projection)

desired PA10/RCCL PA10/MCB

 310

 315

 320

 325

 330

 160 165 170 175 180

y
[m

m
]

x [mm]

cartesian square motion (closeup of 2d-projection)

desired PUMA260/RCCL

Figure 4.12: Cartesian results from the cartesian square motion. The first row shows
the original motion in 3d and the second row shows a 2d projection of the centre of the
spiral. The left column shows results from the MCB and RCCL control for a PA-10 and
the right column shows results from the RCCL control for a PUMA-260 for comparison.

Figure 4.12 shows the cartesian results from this experiment. In the 3d and 2d-plots of the
cartesian position during the motion it can seen that the PA10/MCB solution lags much more

20The square is actually not entirely flat in the 3d-workspace, or rather – since the projectionis a square – it is
not really asquare, but actually only a more general polygon. This does not affect the experiment and is only done
to ensure that there is some systematic variance in the z-components of the measurement for better visualisation.

152 4.4. Results

behind than the RCCL versions, but this does not show up so obviously in the 2d-plot while the
robot is moving along a side of the square. Only when stopping at a corner and turning around
to move along the next side the PA10/MCB solution can be very obviously seen to deviate
significantly because it is taking the same shortcuts as with the spiral motion. The 3d-plot,
however, reveals that even in those cases where according to the 2d-projection the situation is
not so bad a deviation does in fact occur. The PUMA260/RCCL is generally better than both
PA10 solutions except in one aspect.

Apparently motions along two opposite sides of the square can be followed quite precisely
by both robots (PA10: along y-axis, PUMA260: along x-axis), but motions along the other
two sides not (PA10: along x-axis, PUMA260: along y-axis). For the PA10 this effect is less
obvious than for the PUMA260 because it is disturbed by a higher positioning noise, but it can
still be seen. The reason for this effect is that the kinematical situation is such that the “good”
motions translate into joint motions of basically the rotational shoulder joint only, whereas
the “bad” motions translate into joint motions of basically the swinging shoulder joint and the
swinging elbow joint. Synchronising two joints is more difficult than moving just one joint and
the result is an increased error in case where more joints are involved. The reason why this
effect occurs at different sides of the square is the different kinematic (placement of coordinate
systems) of the PA10 and PUMA260.

Again, the cartesian deviations are caused by a sluggishness at joint level, which is shown
in figure 4.13. In the joint plots it can be seen that the PA10/RCCL lags slightly more behind
than the PUMA260/RCCL, but not as much as the PA10/MCB. The PA10/MCB yields a MSE
of 1.05 degrees with a maximum peak of 3.99 degrees whereas the PA10/RCCL only has 0.18
degrees with a maximum peak of 0.72 degrees. The RCCL solution again performs better than
the MCB solution by a factor of more than 5. The performance of the PUMA260 with a MSE
of 0.13 degrees with a maximum peak of 0.54 degrees is again the best.

Figure 4.14 shows the euclidian norm of the cartesian displacement between the desired and
observed position. The PA10/MCB has a MSE of 15.1 mm with a maximum peak of 34.5 mm
whereas the PA10/RCCL only has a MSE of 1.9 mm with a maximum peak of 3.8 mm. This
means that again the RCCL solutions performs better by a factor of 8-9. The performance of
the PUMA260/RCCL with a MSE of 1.2 mm with a maximum peak of 2.6 mm is again not
reached by the others.

4.4.2 Force Control

Another important aspect is the perforce of the robot system when using force control. Force
controlled mode is advisable for any motion that is in contact with a fixed object because even
by the most advanced vision system the position of these objects can not be determined without
error. On the other hand side even the slightest positioning error can cause excessively high
forces to occur when the robot/object contact is stiff enough, and in case of the biotechnolog-
ical devices used in this work this is almost always true. In order to not damage the object
and/or cause an operation to fail force control has to be used to compensate the remaining small
positional displacements.

Although the PA10 (like many other robots) has a mode where motor torque setpoints can
be given this mode is not used for force control. The reason is that it is very complicated to
overlay this with an ordinary motion, but such an overlay is required by the majority of force

4.4. Results 153

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0 50 100 150 200 250 300 350 400 450 500

an
gl

e
[ra

d]

of cycle

cartesian square motion - value of joint #1

desired PA10/RCCL PA10/MCB

-1.8

-1.75

-1.7

-1.65

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

 0 50 100 150 200 250 300 350 400 450

an
gl

e
[ra

d]

of cycle

cartesian square motion - value of joint #1

desired PUMA260/RCCL

 0.11

 0.12

 0.13

 0.14

 0.15

 0.16

 0.17

 100 110 120 130 140 150 160

an
gl

e
[ra

d]

of cycle

cartesian square motion - value of joint #1 (closeup)

desired PA10/RCCL PA10/MCB

-1.78

-1.77

-1.76

-1.75

-1.74

-1.73

-1.72

 300 310 320 330 340 350 360

an
gl

e
[ra

d]

of cycle

cartesian square motion - value of joint #1 (closeup)

desired PUMA260/RCCL

Figure 4.13: Joint results from the cartesian square motion. The first row shows the
motion of joint #1 and the second row shows a closeup of the area marked in the first
row. The left column shows results from the MCB and RCCL control for a PA-10 and
the right column shows results from the RCCL control for a PUMA-260 for comparison.

 0

 10

 20

 30

 40

 0 50 100 150 200 250 300 350 400 450 500

po
si

tio
na

l d
ev

ia
tio

n
[m

m
]

of cycle

deviation from desired square

desired PA10/RCCL PA10/MCB PUMA260/RCCL

Figure 4.14: Euclidian norm of the cartesian positioning error during a square motion.

154 4.4. Results

control tasks21. Except for some special situations which can not be assumed in this work a
cartesian dimension can not be mapped to a single joint dimension – the robot’s jacobian will
generally show that more joints are involved. This means that some joints participate in the force
controlled dimension and should be operated in torque mode and the same joints also participate
in a cartesian motion in the other dimensions and should be operated in velocity/position mode.
This is impossible to do with RCCL and any other readily available software known to the
author. Experimental setups that exist at certain research institutes all have to implement an
individual robot control software – a task that was not part of the scope of this work.

Force control in this work is therefore implemented ashybrid force controllike in many other
works22. With hybrid force control the stiffness of the complete arm mechanism in contact with
an object is modelled by a virtual spring hidden in the system. Pressing this spring causes forces
to occur, and by moving along the direction of these forces they can be adjusted to desired values
by either P(ID) or more complex, non-linear control algorithms like neural networks or fuzzy
controllers. This can be done quite easily with RCCL by means of variable transforms, even
when superimposed on an otherwise normal motion.

Figure 4.15 shows force plots for the PA10/RCCL when opening/closing the sliding door
of the fridge. Thefz force that presses on the door is to be controlled to a constant level of
2 N while a motion is to be done in either positive or negative y-direction. The difference
between the two motions can be clearly seen in thefy forces in the graphs. Thefx forces are
perpendicular to the motion direction and the controlled axis and are not meaningful.

The quality of the force control has to be regarded as poor. The forces change with an
amplitude of 1 N in a systematic oscillation. This is mainly because the underlying positioning
system is too sluggish to follow changes of the position quickly, and so in order to achieve an at
least reasonable force control speed the proportional gain of the controller has to be increased
almost to a level where the controller becomes unstable. Usage of a more sophisticated and
better parameterised controller than a plain P-controller might improve this situation slightly,
but will not completely avoid the problem.

A true comparison with a PUMA260/RCCL cannot be done because the PUMA260 is too
small to operate the fridge. Instead, figure 4.16 shows force plots for a helix search of a hole on a
PUMA260/RCCL. This task is similar in that it moves along (in this case: two) other dimensions
than that in which the force is to be controlled, and different in that it “scratches” over the
surface rather than hooks behind a door handle and uses a completely different force controller.
Yet it serves the purpose of showing that the amplitude of the controlled force of about 0.5 N
is by a factor of 2 smaller on the PUMA260 than on the PA10. Even more important is the
fact that the characteristic of the force plot is more that of noise rather than that of systematic
oscillation. The system is not even near the point of being unstable and in this particular case
the proportional gain might even be increased a bit more. Overall, the reaction is much faster
and so the motions can be done with higher speed.

21For example during opening the sliding door of the fridge the robot should control the force perpendicular to
the door because the height of the fridge is not precisely known because it is standing on an uneven base on an
uneven floor, but at the same time the robot must make a motion parallel to the door to slide it open.

22See [Collani 2001] and [Ferch 2002].

4.4. Results 155

-12

-10

-8

-6

-4

-2

 0

 2

 0 100 200 300 400 500 600 700 800 900 1000

fo
rc

e
[N

]

of cycle

forces during opening the fridge

fx
fy
fz

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

fo
rc

e
[N

]

of cycle

forces during closing the fridge

fx
fy
fz

-12

-10

-8

-6

-4

-2

 0

 2

 0 100 200 300 400 500 600 700 800 900 1000

fo
rc

e
[N

]

of cycle

forces during opening the fridge

fx
fy
fz

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600 700 800 900 1000

fo
rc

e
[N

]

of cycle

forces during closing the fridge

fx
fy
fz

Figure 4.15: The PA10/RCCL doing force controlled motions to open/close of the fridge
door. The (green)fy value shows the direction of the overlayed motion: In the left images
it pushes against the door in y-direction to open it and in the right images it pulls the door
along the negative y-axis to close it. The (red)fx value is perpendicular to the motion
direction and presents no relevant information. The (blue)fz value is to be adjusted to
-2 N so that the finger of the robot tool presses with 2 N on the door while moving it.

4.4.3 Summary

The results prove that using RCCL on a PA10 is a feasible approach. The resulting robot control
system is not as reactive as a PUMA260 or any other position controlled robot and special care
has to be taken in some cases, but it performs better in all tested aspects than the PA-Lib by
MHI running on the MCB.

The performance results of the positioning are summarised in table 4.3 for the joint values
and in table 4.4 for the cartesian values. The average displacement of about 1 degree and peak
displacements of about 4 degrees at the joint level of the of the PA10/MCB indicate a very

156 4.4. Results

-2

-1.5

-1

-0.5

 0

 0.5

 1

 0 200 400 600 800 1000 1200 1400

fo
rc

e
[N

]

of cycle

helix search of a hole

fx
fy
fz

Figure 4.16: The PUMA260/RCCL doing a force controlled helix search of a hole in a planar object.

sluggish response of the system. Tests of responses to step functions that are not given here
show that it takes about 0.3 s to reach the desired value where a PUMA260 is almost 10 times
faster. The reason for this is not that the PA10 has several time the mass than the PUMA260,
but simply that the MCB implements avery sluggish TGEN. Using RCCL and an additional
joint controller improves the joint behaviour by a factor of about 5.

PA10/RCCL PA10/MCB PUMA260/RCCL
min avg max min avg max min avg max

spiral 0.0000 0.2219 0.77200.0013 1.1412 3.79250.0000 0.1300 0.3447
square 0.0000 0.1816 0.72160.0007 1.0486 3.98530.0001 0.1368 0.5414

Table 4.3: Displacement between the commanded and observed values of joint
#1 during test motions for all three tested robot setups. All values are in degrees.

The sluggishness at the joint level naturally corresponds to a sluggishness at the cartesian
level. With average displacements between 15 and 18 mm and peak values between 34 and
46 mm the PA10/MCB cannot be said to be usable for fine-positioning. Displacements in that
magnitude not only mean that the paths will be notably distorted, but also that collisions with
objects become possible – the very avoidance of which is the reason to do path-planning in the
first place. Using RCCL and an additional joint controller improves the cartesian behaviour by
a factor of almost 8.

PA10/RCCL PA10/MCB PUMA260/RCCL
min avg max min avg max min avg max

spiral 0.018 2.376 4.949 0.595 18.333 46.041 0.037 1.336 2.519
square 0.015 1.904 3.782 0.562 15.172 34.503 0.138 1.203 2.622

Table 4.4: Displacement between the commanded and observed cartesian position
during test motions for all three tested robot setups. All values are in millimetres.

4.4. Results 157

As a consequence of the suboptimal performance of the PA10/RCCL all the force controlled
motions have to be executed with rather slow speed in order to not become unstable. With the
current hardware there is no way to overcome this drawback. The newer PA10-6C/PA10-7C
have a cycle time of 2 ms which might theoretically allow to run the PID controller 5 times
faster than RCCL’s TGEN without changing that one’s cycle time of 10 ms, though due to the
internal thread structure of RCCL this will be quite complicated. Whether this really improves
the positioning performance has to be left an open question because it has neither been part of
this work, nor had the necessary resources for the tests been available.

The PA10/RCCL system established in this workis capable of performing the required tasks
according to section 2.3, although the performance of the newly implemented PA10/RCCL
solution lies below that of a 20 year old PUMA260. With the initially intended PA10/MCB
solution the tasks would not have been possible. Using RCCL therefore has to be seen as the
proper choice.

158 4.4. Results

Chapter 5

Robust Colour Vision

“If whatever I’m supposed to be looking for is here, I don’t want it.”
Zaphod Beeblebrox

In this chapter the colour vision system used on the robot arm is presented. This vision system
is a crucial part of robot system because it is the arm’s most important sensor used to detect
an object’s positions before manipulating it. The arm needs such a sensor because it can not
assume the teached positions to be accurate.

As mentioned in chapter 3 the positioning of the mobile platform is not absolutely accurate.
This inaccuracy is inherently enhanced by the two explicit goals of the robot system that the
setup should be easily modifiable and that all devices should remain usable by human personnel
for other tasks when the robot is idle. As a result the positions of the devices can not be assumed
as fixed. Human personnel can and will change the positions more or less slightly by touching
the devices, even if only accidentally. Therefore – even if the mobile platform’s positioning was
perfect – it can only be considered to bring the arm “close” to an object, but not close enough
so that it can manipulate the object without further sensing.

A newly designed colour vision system is used to detect and compensate these positioning
errors. Since the mobile robot system operates without human supervision this vision system
has to be absolutely reliable. In the car manufacturing industry adriver assistance system
(DAS) for detection of pedestrians is considered reliable if it reaches detection rates of 99%1,
simply because the system only assists the driver, who – still remaining in full responsibility –
will detect the remaining 1%. For a mobile robot system in a laboratory a success rate of 99%
means that it is not usable, because with no supervision there must not be any error at all.

Usually a system that is supposed to work without any error requires all environmental pa-
rameters to be under perfect control, however, a real world environment like a biotechnological
laboratory for example means to not have a standardised illumination – a condition that is often
required by computer vision. The vision system presented in this work therefore has to tolerate
a wide range of illumination intensity. It addresses this problem by using that component of
vision that is least sensitive to the illumination intensity – colour information.

1c’t magazin f̈ur computer technik 17/2004, p.76, Heise Verlag, Deutschland.

159

160 5.1. The Implemented Colour Vision System

The colour segmentation proposed in this work allows for a very reliable detection of image
features, and the model based object recognition further enhances the reliability. The system
can still fail under extreme circumstances, but contrary to many other vision systems – espe-
cially learning based systems – the limits can be explicitly given and the failure can not go
unnoticed. Therefore, the system has achieved a so far unprecedenced success rate as defined
by not recognising errors.

The vision system consists of a microhead colour camera mounted to the arm tool and used
to grab colour images. In these images the objects are detected by extracting coloured regions
that form individual patterns for each object. These patterns are classified and their position in
the image is computed. Once the position is known the arm can apply correctional motions to
centre over the object and thus learn about the object’s position in world coordinates. The only
prerequisite needed for successful operation is that the positioning of the mobile platform and
the arm must be good enough to ensure that the object is within the initial viewing area of the
camera.

The structurisation of this chapter is as follows: Section 5.1 discusses the foundation of the
vision system, the motivation why colour vision is used, the hardware used by the system and
its software structurisation. This system basically falls into three different parts: Section 5.2
covers the image segmentation part in which the dimensionality of the information is reduced
from that of a complete colour image to that of a list of coloured regions. Section 5.3 covers
the object recognition and displacement computation part in which the region lists are searched
for patterns of known objects as well as the position of a thereby detected object in the image is
computed. Section 5.4 covers the displacement compensation part in which the detected object
is centred in the image by means of moving the camera (arm). Finally, section 5.5 gives the
results of some experiments to show the system’s performance, summarises the most important
aspects and gives an outlook into possible future work.

This chapter uses a lot of terms and constructs from computer vision and classification, the
basics of which are assumed to be known. Nevertheless, a short introduction into some terms
and ideas is given in section C.2 in the appendices.

5.1 The Implemented Colour Vision System

In this section an overview and introduction into the established colour vision system will be
given: Subsection 5.1.1 gives the motivation for using colour vision, subsection 5.1.2 briefly
describes the vision hardware and subsection 5.1.3 describes the software structurisation.

5.1.1 Why Colour?

The centre-point of the design of the vision system is the decision to use a colour based ap-
proach. This is an important point because most contemporary vision system are still based on
greyscale imaging only. With colour images the amount of information is three times as high as
with greyscale images, and accordingly the processing requires more resources. Likewise, most
of the known basic image manipulation techniques have originally been defined for greyscale
images only. Applying three instances of such a filter to the three channels of a RGB image is
no technical problem, but does not automatically yield new results. So the question is: Why
colour?

5.1. The Implemented Colour Vision System 161

The reason is the one dominating problem of greyscale vision – the illumination. By looking
only at the brightness of pixels it can be impossible to tell whether a bright spot caused by a
feature of the object or because of some spot of light falling on it. This is particularly trouble-
some when a later processing step applies a binary threshold to the image, as is often the case.
Figure 5.1 shows an example of such a situation. An image like this is extremely troublesome
for a greyscale computer vision system because it can not be guaranteed that a binary threshold
to segment the water cooker from the background can be found.

Figure 5.1: A bright object in front of a dark background with
sunlight falling through a blind. When using binary thresholds
on greyscale images the object is almost impossible to segment.

Because of this problem most greyscale computer vision systems require a normalised il-
lumination. In a computer vision laboratory this can usually be accomplished without major
problems because the environment can be defined to fit to the vision system. In a real-world
laboratory normalised illumination can not generally be guaranteed because only limited or no
modifications of the environment may be tolerable. The obvious idea to attach lamps to the
robot is not so trivial as it would then have to be guaranteed that these lamps dominate all other
light sources but do not cause systematic brightness gradients in the image. Over all, the most
promising approach is to make the vision system tolerant against a wide range of changes of the
illumination.

The idea to use colour information to make the vision system tolerant against changes of the
illumination was first inspired by the coloured caps of the NUNC tubes and the coloured button
of the centrifuge as in figure 5.2. This approach is feasible and justifiable because all objects
are either coloured in the first place, or can easily be tagged with coloured labels, the latter
of which being only a neglectable modification of the system’s environment. It is well-known
that colour itself changes much slower than the brightness with varying illumination. In the
RGB colour space this is not so obvious, but the YUV and HSV colour spaces are downright

162 5.1. The Implemented Colour Vision System

designed for this because they explictly separatecolour from brightness(see section C.2.2 in
the appendices). By employing this decoupling illumination influence can be ruled out to a
large extend.

Figure 5.2: The blue cap of the NUNC tubes and the coloured buttons
of the centrifuge have inspired the usage of a colour vision system.

For example, the gray value of the yellow buttons of the centrifuge in figure 5.2 is already with
normal illumination quite similar to the gray value of the front panel around it. If the brightness
of this image is gradually decreased and – as common with dark images – a little noise added,
the buttons quickly become difficult to see in greyscale images. Figure 5.3 shows clearly that
with decreasing brightness it becomes more and more difficult to make out the yellow buttons
in the V channel, but they still can be seen in the S and in particular in the H channel of a HSV
image. This means that colour is an important information that should not be discarded for the
mere sake of simplicity of the algorithms.

5.1.2 Vision Hardware

The hardware used in the vision system consists of two parts: A colour camera and a colour
framegrabber board, both of which were state-of-the-art at the time of the project start.

The colour camera is mounted at the wrist of the arm tool. Since it must be very small in
order not to obstruct the arm movements a microhead (lipstick) camera is used. The camera
delivers raw signals to a receiver box that controls all camera parameters like gain and shutter
values. The box then delivers an analog video signal as either analog colour composite FBAS,
SVHS or RGB.

Due to the camera size all of its components must be very small, including the CCD sensor.
A small sensor means that amplification is needed because it does not catch very much light,
and amplification adds noise to the signals. Because of this noise level and because of the
fact that the signals are transported quite a long way on an analog cable the resulting image
quality can not compete with current digital still cameras. The comparison in figure 5.4 show
rather drastically that especially low saturated colours are almost completely suppressed on the
M1250.

5.1. The Implemented Colour Vision System 163

Figure 5.3: The coloured buttons of the centrifuge under different illumination conditions. The columns
from left to right show the original image and the V, S and (non-colourised) H channels of the HSV
decomposition. The rows from top to bottom show situations with 100, 75, 50 and 25% illumination
and increasing noise level. Where with decreasing brightness it becomes more difficult to make out the
yellow buttons in the V channel they can be more easily seen in the S and in particular in the H channel.

Figure 5.4: The colour saturation of the JAI M1250 microhead camera
(left) compared to an Olympus C-300 Zoom digital still camera (right).

164 5.1. The Implemented Colour Vision System

This situation is even worsened by the need to digitise the analog signal data with a colour
framegrabber board, which is used to deliver YUV colour images to the software. Even though
the SVHS cable used does provide a better signal quality than a FBAS cable it still adds to
the signal noise, especially because of interference of other electric components on the mobile
platform. The image quality resulting from the suboptimal camera, the analog transmission to
and the digitisation on the framegrabber board is rather poor, as can be seen in figure 5.5. Vision
software operating with these images has to be tolerant against these disturbances.

Figure 5.5: Closeup of sample images demonstrating
the poor image quality of the vision system hardware.

For a more verbose description of the vision hardware see section C.1 in the appendices.

5.1.3 System Structurisation

The software to work on the hardware is split in two major parts, The CIMAGE library operating
at image level and the CVISION software operating at object level.

The CIMAGE library operating at image level deals with low-level vision aspects like image
grabbing, manipulating, displaying and storing. The image manipulation capabilities include
colour space conversions, different filters, image resizing and some drawing capabilities. To
allow manipulations not implemented in CIMAGE the raw data can be easily accessed.

The CVISION software operating at object level uses this CIMAGE library as a foundation
for its work. It implements the high-level vision process as shown in figure 5.6 and described
in the following sections. This vision process is in turns split in three parts:

• The image segmentationstage uses the CIMAGE library to extract a list of coloured
regions from the image. It is presented in section 5.2.

• The object recognition & displacement computationstage uses this list of coloured re-
gions to generate models of objects, recognise objects according to these models and
compute their position in the camera coordinate system. It is presented in section 5.3.

• The displacement compensationstage uses small, iterative motions of the robot arm to
correct the object positions. It is presented in section 5.4.

5.2. Image Segmentation 165

grab image segment
image

generate
model compute displacement

match model,
displacement

correct

manipulate device

approach device

Figure 5.6: Execution flow of vision process.

5.2 Image Segmentation

The first step of the vision process is to extract a minimal set of characteristic features fully
describing the situation in order to reduce the problem’s dimensionality. Coloured regions are
chosen as features because the image background of the possible situations is mostly colourless
and the colour component changes only very slowly with changing illumination. A colour
similarity measure is defined to allow the comparison of colours. Using this measure the images
are segmented by a flood fill algorithm into regions of similar colour, resulting in a list of only
the centre of gravity(COG) and colour of the regions. This feature list is used to recognise
objects and compute their position in the camera coordinate system as described in section 5.3.

Starting with a raw YUV image the steps of the segmentation process are as in figure 5.7.
After splitting the image into separate Y, U and V channels the U and V channels are smoothed
with a new smart smoothing filter (subsection 5.2.1). Optionally, edges in the Y image can
be used to enhance borders between regions in the U and V image. A colour is then chosen
from the UV plane according to one of two possibilities (subsection 5.2.2.1 and 5.2.2.2). If no
proper colour has been found the segmentation terminates. If a proper colour has been found a
similarity measure of image colours to the chosen colour is computed (subsection 5.2.2). In this
similarity measure the most similar pixel is chosen (the fill seed). Around this pixel a region is
filled using a flood fill algorithm (subsection 5.2.3). The region is removed from the image and
the process repeated by searching for a new colour in the UV plane.

In the following these segmentation steps will be demonstrated at the image of the centrifuge
in figure 5.8.

5.2.1 Smart Smoothing

The first step after image acquisition is to smooth the image to remove noise. This is necessary
because the generally poor signal quality of the camera, the analog transmission of the video
signals and the grabbing have already at this first stage deteriorated the image quality signifi-
cantly. This manifests itself in the fact that in order to not destroy even more image contents
classic smoothing algorithms can not be used.

Classical, convolution based linear filtering (see section C.2.3 in the appendices) processes
the image by running a mask (the filter kernel) over each pixel of the image. In case of themean
filter it then computes the average pixel valuepµ of the pixels inside this mask and assigns this
as the new pixel valuepnew. As such, the mean filter smoothes outliers from the image, but

166 5.2. Image Segmentation

grab image

split image into Y, U and V channels

smooth U and V channels

to enhance borders in U and V images
optional: detect edges in Y image

fill region around chosen pixel

choose most similar pixel

image colors to chosen color
compute similarity of

proper color found?

choose a color in UV plane

generate model

no

yes

Figure 5.7: Execution flow of image segmentation.

v

u

beta

255°

135°
40°

190°

Figure 5.8: A sample image of the centrifuge. The blue (β = 40◦), yellow
(β = 190◦) and red (β = 255◦) buttons can be clearly seen as fingers in the UV
colour plane usage. The green (β = 135◦) finger that can also be seen belongs
to LEDs on the front panel. It is too unstable to contribute to the recognition.

5.2. Image Segmentation 167

does not remove them completely. Also, it does not differ between noise and meaningful image
contents, therefore it blurs the entire image.

Examples for the mean filter can be seen in figure 5.9. The source image has deliberately
been chosen to be noisy. As can be seen, by averaging over the pixels in the filter kernel the
filter effectively suppresses noise, but also blurs sharp edges. In order to smooth images but not
overly blur edges other filters are therefore needed.

To overcome the disadvantages of the ordinarymeanfilter asmart mean(“smean”) filter has
been developed for this work. The idea with non-linear “smart” techniques (see section C.2.4 in
the appendices) is to take additional information into account that can not be expressed linearly.
In case of the smean filter this means that smoothing should only be applied to those areas of
the image where it can be expected to be helpful. For example, areas uniformly filled with a
colour but slightly distorted by noise should be smoothed, but edges between areas of different
colours should not.

The smean filter is similar to the mean filter in that it uses the same kernel to compute the
average valuepµ of an environment of pixels, but differs in the step that comes afterwards.
Where the mean filter simply assigns this average valuepµ to the new pixelpnew the smean
filter also computes the deviationσ of the environment of pixels. Thisσ expresses how “equal”
the pixels in the filter kernel are. It is low when the pixels are similar and high when they are
not, as in case of an edge. Together with a scaling factorc it is then used to weight the average
and the original pixel value to compute the new pixel value as

pnew = e
−σ
c · pµ + (1− e

−σ
c) · porig

Figure 5.10 shows examples of the smean filter. Compared to the mean filter in figure 5.9 it
can be seen that the smean filter only blurs those areas of the image where pixels have already
been somewhat similar, but maintains rather sharp edges. This feature makes the smean filter
very interesting for smoothing a YUV colour image where the UV colour plane has a rather low
signal/noise ratio but edges should be maintained by all means.

5.2.2 Colour Similarity

The primary intention with using colour information is to use its additional information to gain
better and more robust vision performance, however, this intention leads to a triplication of the
amount of data that has to be handled. Since a lot of algorithms are easier to use and perform
better when they are applied to only one-dimensional data it is therefore desirable to reduce
the dimensionality as early as possible. The image segmentation algorithm implemented in this
work allows exactly that because it uses an abstract one-dimensional similarity of colours.

In the YUV images used in this work a pixel’s brightness is represented by a 1-dimensional
valuey along the Y axis, whereas its colour is represented separately by a 2-dimensional vector
~c = (cu, cv) in the UV plane. The centre(0, 0) of that plane represents all grey pixels from
black to white. The naive approach would be to use the euclidian distance

d(~c1,~c2) = ‖~c1 − ~c2‖

as a similarity measure,. However, this would neglect an important feature of colour, the
distinction between colourhueα(~c) and coloursaturations(~c) as per

168 5.2. Image Segmentation

Figure 5.9: The mean filter smoothing an image. Upper row from left to right: Original image, 7×7
mean and 15×15 mean. Lower row: close-ups of the areas marked in the upper images.

Figure 5.10: Smart smoothing of an image. Upper row from left to right: Original image, 7×7 smean
and 15×15 smean. Lower row: close-ups of the areas marked in the upper images.

5.2. Image Segmentation 169

α(~c) = arctan
cv

cu

s(~c) =
√

c2
u + c2

v

The second naive approach to use euclidian distances onα ands separately is also not advis-
able because the objects in this work have colours consisting of a wider range of hue/saturation
values. A more sophisticated measure is therefore needed.

The basic idea behind this measure is to weight the differences in saturations and hueα
differently. Given a desired colour hueβ, that is, a vector̂cβ in the UV space2 the saturation
similarity ds is computed as the projection of a colour~c onto the desired colour̂cβ.

ds(~c, ĉβ) = g (~c · ĉβ) (5.1)

The functiong is used to address two problems:

1. The scalar products = ~c · ĉβ can become negative if complementary colours are used3.
Such a negative similarity is undesired and has to be avoided. Of course, clipping at zero
as per “s = (s > 0) ? s : 0” in C/C++ notation would be the trivial way, but would still
ignore the second problem.

2. Since the vision system is explicitly designed for coloured objects a similarity only makes
sense for saturated colours. In case of pale colours with a saturation of less than somes0

any similarity should therefore explicitly be suppressed.

Both these problems can be eliminated by applying a non-linear scaling ofs. A multitude of
possible scaling functionsg exists. For example,1 − exp(−s + s0) yields a scale factor that
brings down the output to zero for inputs nears0, but becomes negative for even smaller inputs.
Multiplied with an already negative input the total output increases exponentially. The function
is theoretically applicable, but needs additional clipping and is therefore not recommendable.
Instead, the function

g(s) =
tanh(s− s0) + 1

2
· s

or, if the transition should be smoother, with an additional factorf < 1 as

g(s) =
tanh(f · (s− s0)) + 1

2
· s

more smoothly mapping[−∞..∞] → [0..∞] is used. The termtanh(s)+1
2

yields a scale factor
that converges to 0 fors → −∞ and 1 fors → ∞ with an inflexion point ats = 0. Using
the s0 parameter the inflexion point can be arbitrarily moved and using thef parameter the

2The notation̂cβ means thatβ is a colour with full saturation. The resulting vector is therefore a unit vector for
the colourβ.

3Note that the variables is used here for the similarity of two colours as well than the saturation of a single
colour. The similarity can always be expressed as the saturation of the vector(~c · ĉβ) · ĉβ resulting from the scalar
product, hence the double usage.

170 5.2. Image Segmentation

steepness of the transition can be modified. This way large saturation similarities4 are nearly
linearly passed and small (or negative) ones are suppressed. Plots of the functions can be seen
in figure 5.11.

 0

 0.2

 0.4

 0.6

 0.8

 1

-5 0 5 10 15

w
ei

gh
t

saturation similarity

1
1-exp(-x+s0)

(tanh(x-s0)+1)/2
(tanh(f*(x-s0))+1)/2

 0

 2

 4

 6

 8

 10

 12

 14

-5 0 5 10 15

ou
tp

ut
 s

at
ur

at
io

n
si

m
ila

rit
y

input saturation similarity

x
(1-exp(-x+s0))*x

((tanh(x-s0)+1)/2)*x
((tanh(f*(x-s0))+1)/2)*x

Figure 5.11: Non-linear scaling of the saturation similarity. Left image: weight factor implemented
by the scaling function, right image: weight factor applied to the saturation. The parameters used are
s0 = 6 andf = 0.4. The operations works in an abstract integer domain, so the scales are not±1.

For example, the centrifuge in figure 5.8 consists of blue (β = 40◦), yellow (β = 190◦) and
red (β = 255◦) buttons. The saturation similarity from equation 5.1 applied to the colours of
this image yields weights as in figure 5.12 (contrast-maximised to match the printable range of
grey values).

Figure 5.12: The saturation similarity from equation 5.1 applied to the colours of the centrifuge.

The hue similaritydα is the second part of the total similarity. It is computed as the absolute
value of the projection of a colour~c onto the vector̂dβ ⊥ ĉβ, expressing the distance5 of the

4Actually, this term might appear a bit irritating because the similarity only compares the saturationss of two
colours if the colour hues are close together, that is, the vectors~c are nearly collinear. The more non-collinear the
vectors are the more it is the hueα that affects the measure. Nevertheless it is called saturation similarity here
because the primary purpose of this measure is to separate colours of similar hue according to their saturation.

5This means that colours of low saturation are allowed to change more than colours of high saturation, but this
is only a side-effect. It is, however, a desired side effect because low saturated colours are usually affected by noise
too, and in this case it might be of advantage to be a bit more tolerant compared to high saturated colours.

5.2. Image Segmentation 171

colour~c from the line generated by thêcβ.

dα = h(|~c · d̂β|) (5.2)

Again, a functionh is required to address two problems:

1. The scalar products = ~c · d̂β yields a similarity that changes linearly over the input range.
With the saturation similarity this is acceptable, but with the hue similarity it is not. One
result would be that strongly different colours are still weighted too high, which must be
avoided.

2. The scalar product yields an inverted range of values, that is low values correspond to
good similarity and high values to bad.

Again, both these problems can be eliminated by applying a non-linear scaling ofs and again
a multitude of possible scaling functionsh exists. For example,exp(−4s/smax) yields a non-
linear conversion ofs that solves both problems, but allows only a very small range of input
similarities to be weighted high. It is more selective towards exact matches than desirable, and
therefore not recommendable. Instead, the function

h(s) = exp

(
−
(

s

2smax

)2
)

more smoothly mapping[0..smax] → [1..0] is used. The termexp(−s2) yields a result that
smoothly becomes 1 fors → 0 and 0 fors → smax. Using the maximum similaritysmax the
output range can be adjusted to the input range because the measure is designed to be relative
to the extend of the input range that is actually used6. If only a small band of the theoretically
possible input range is used because all existing colours are of very similar hue the measure
should be more strict in segmenting the hues. Plots of the functions can be seen in figure 5.13.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

w
ei

gh
t

hue similarity

exp(-4*x/sMax)
exp(-(x/(sMax/2))**2)

Figure 5.13: Non-linear scaling of the hue similarity. The parameter issmax = 100.

6Since this parameter must be known in advance the actual computation has to be done in two steps, storing
temporary results in between.

172 5.2. Image Segmentation

Applied to the colours of the centrifuge in figure 5.8 the hue similarity from equation 5.2
yields weights as in figure 5.14 (contrast-maximised to match the printable range of grey val-
ues).

Figure 5.14: The hue similarity from equation 5.2 applied to the colours of the centrifuge.

Combined, the total similarity

d(~c, ĉβ) = g (~c · ĉβ) · h(|~c · d̂β|) (5.3)

applied to the colours of the centrifuge in figure 5.8 yields weights as in figure 5.15 (contrast-
maximised to match the printable range of grey values). Applying these similarity weights to
the centrifuge in figure 5.8 itself yields images of the similarity of regions to the colours as in
figure 5.16.

These similarities can for visualisation purposes be used to reconstruct an image as in figure
5.17 of what this step of the vision process recognises as “coloured regions”. It is this image
with all the non-coloured background removed that the following segmentation steps “see”, and
not the original one.

5.2.2.1 Fixed Colours

This similarity measure is an intuitive and easy way to compare two colours, but the initial step
of selecting the colourβ to compare image colours to is yet unspecified. This step is important
as it affects the parameters used in both the measure itself and the upcoming segmentation. Two
different approaches have been researched.

The first approach is to use fixed colours. The centrifuge in figure 5.8 has regions with the
colours blue (β = 40◦), yellow (β = 190◦) and red (β = 255◦). The caps of the NUNC tubes are
of a blue colour. The other objects are marked with labels which also consist of blue, yellow and
red colours. These colours are strictly speaking not of 100% identical hue and saturation, but
similar enough to motivate and allow a restriction to these three fixed colours. The advantage
of this simplification is that the matching of colour hues can be reduced to the matching of two
integer variables.

With this selection mode the sequence of the segmentation loop is slightly different from the
one described earlier. The exact sequence of operation as in figure 5.18 is as follows:

1. One of thepredeterminedcolours is selected,

5.2. Image Segmentation 173

Figure 5.15: The combined saturation and hue similarity from equation 5.3 applied to the colours
of the centrifuge. Upper row: original weights, lower row: weights applied to UV colour plane.

Figure 5.16: Similarity of regions of the centrifuge to colours of the cen-
trifuge. Upper row: original weights, lower row: re-colourised weights.

174 5.2. Image Segmentation

Figure 5.17: Visualisation of the information reduction by focusing on coloured regions. Left:
original image of the centrifuge, right: reconstruction based on the colour similarities in figure 5.16.

2. the similarity for this colour is computed,

3. the highest weighted pixel (seed) is determined and

4. a flood fill algorithm is used to grow a region around the seed.

This sequence is repeated from step 3 until no more pixel of sufficient similarity can be found.
In this case the next colour is selected and the entire sequence restarted. If no more colours are
left the entire sequence terminates.

Note that the regions are removed from the similarity image by the fill algorithm, but explic-
itly not from the original image. This is because the similarity measure allows colours with
overlapping similarity to be mixed up, for example resulting in that a yellow region might be
found as a red region (but with a poor similarity). If such an erroneously detected region would
be removed it could no longer be found if the correct colour is selected. This leads to that some
regions may be found more than once with a different colour.

This feature – though not being fatal – has to be considered a disadvantage of the approach.
Another disadvantage is that the approach relies entirely on the a priori calibration. If this
calibration is slightly wrong or if the hue of the illumination changes at run-time due to sunlight
shining onto the scene this means that the measure will be slightly wrong too. As long as the
hue shift is only small the measure will still weigh the “correct” colours highest, although with
a loss of relevant bits. Nevertheless an alternative approach has been researched.

5.2.2.2 Adaptive Colours

The alternative approach is to select the colours adaptively based on the UV plane of each
individual image. Such an approach requires a measure to base the selection on, and since the
intention is to focus on coloured regions the colour saturation is the obvious candidate. Again,
with this selection mode the sequence of the segmentation loop is slightly different from the
one described in the beginning of this section. The exact sequence of operation as in figure 5.19
is as follows:

5.2. Image Segmentation 175

pre−determined colors
select one of a set of got a

color? similarity to
compute image

selected color
search
region region?

found
yes

no

grab image

yes

no

generate model

Figure 5.18: Execution flow of fixed colour selection.

1. Search the most saturated colour in the UV plane,

2. compute the similarity for this colour,

3. determine the highest weighted pixel (seed),

4. use a flood fill algorithm to grow a region around the seed and

5. remove the region from the original image.

This sequence is repeated from step 1 until no pixel of sufficient saturation can be found, in
which case the sequence terminates.

This time the region has to be removed from the original image because of the search for the
most saturated pixel: If it is not removed the same pixel is found again in the next run, resulting
in an endless loop. It can be safely removed because due to the automatic colour selection the
danger of mixing up colours under troublesome illumination conditions does no longer exist.

It has to be noted that the separation between the search for the most saturated pixel in step
1 and the search for the highest weighted pixel in step 3 means that it can not be guaranteed
that these two pixel are the same. In practice this is very unlikely to happen because the highest
saturated pixel can be expected to yield the highest weight. The only situation in which it might
happen is when two spatially separated pixel have almost the same colour (hueandsaturation)
and due to rounding errors one of them is selected in step 1 and the other one in step 3. This
is not a problem because since they belong to almost the same colour no error is introduced by
mixing them up and the other one is very likely to be found in the next run.

The advantage of this adaptive approach is that it is more tolerant against suboptimal colour
calibration and illumination. By removing regions from the image it avoids double recognition
and therefore minimises the number of regions. Since the similarity weight can be assumed to
be better suited for the coloured regions the thresholds used in finding that region can in theory
be made more strict. If, however, theyare made more strict this immediately means that the
border of regions is not properly recognised as still belonging to the region. As a result the
border is likely to be found as an additional region in a following run, leading to an increased
number of total regions if the fragments are not merged again. In the direct comparison with the
approach using fixed colour no immediate or significant advantage could therefore be found.

176 5.2. Image Segmentation

grab image saturated color
compute most

found?
color

selected color

compute image
similarity to search region remove region

from image

generate model

yes

no

Figure 5.19: Execution flow of adaptive colour selection.

5.2.3 Flood Fill

After having selected the seed pixel as the highest weighted pixel using the above similarity
measure the region corresponding to that pixel must be established. This is done by using a
conventionalflood fill algorithm on the similarity image. This recursive fill algorithm uses a
four-neighbourship to grow a region. Each new pixel is checked against a threshold defining a
minimum similarity and added to the region if it complies to the threshold. Due to the a-priori
colour similarity computation this threshold is less critical to choose than in a multi-dimensional
case, but still needs attention.

If the threshold is too low the region may not be completely filled, and if the threshold it
too large the algorithm may “leak” out of the region and include parts of the background. In
the former case the border around the region is likely to be accepted as a separate region later
on, leading to a higher number of regions. This is not strictly speaking a problem, but leads to
suboptimal performance. In the latter case, of course, the classification will fail.

Figure 5.20 shows a sample segmentation of a centrifuge button to illustrate this effect. The
predetermined colour of the blue button has deliberately been mistaken asβ = 60◦ instead of the
correct 40◦ to enhance the problem. Yet, even with this deliberate error the range over which
the threshold has to be modified to trigger the problem is very large. Without the deliberate
error the threshold is even less critical.

Figure 5.20: Influence of the threshold during a fill operation on a seed inside the upper right
blue button. Thresholds used from left to right: 220, 128 and 20 from a range of [0..255]. Too large
thresholds yield only a fragment of the button and too low thresholds leak into the background.

The result of the fill algorithm is a contiguous region of pixels around the seed, either as
a mask image or as explicit coordinate list. Optionally, the hull of the region can be estab-
lished by applying a simple criterion: Every pixel in the region whose 4 neighbours in the
four-neighbourship are not all members of the region themselves belongs to the hull, and every

5.3. Object Recognition & Displacement Computation 177

other pixel not. The hull can be useful for visualisation purposes like in figure 5.20, but is not
required by the following processing steps.

Applied to the sample image of the centrifuge in figure 5.8 this combination of a colour
similarity measure, seed selection and flood fill algorithm successively finds the coloured image
regions. If no more coloured regions can be found the segmentation terminates. A visualisation
of the process can be seen in figure 5.21.

The result of the entire segmentation process is a list of regions

Ri = (βi, ∆xi, ∆yi)

whereβ is the colour hue of the region and∆x and∆y give the offset of the COG relative to the
centre of the image in pixel. It is this list that all the following vision routines operate on, not
the original images. The idea is that the reduction to the COGs still represents all the essential
information needed to recognise the object and its position, as will be shown in the following
section.

A particular advantage of the COG approach is that small segmentation errors at the border
of regions do not overly affect the COG. For example, if from a centred 21×21 square region
the upper leftmost pixel is not detected the COG changes from (0, 0) to (0.022727, 0.022727)
only, and if the complete leftmost column of pixel is not detected it changes from (0, 0) to
(0.5, 0) only. If the segmentation errors are symmetric they do not at all affect the COG.
Because of this a region whose border has not been 100% accurately detected can still be used
for classification. With a proper choice of the threshold the region list is therefore a very robust
compressed representation of the original scene.

This can be seen in figure 5.22 where images have been artificially darkened and super-
imposed with noise to provoke suboptimal behaviour. Even though the segmentation of the
regions becomes more and more disturbed with decreasing image quality the regions are still
recognised. If only the COG of the regions is used for further processing the segmentation
errors are unlikely to show up in later stages.

5.3 Object Recognition & Displacement Computation

The next step in the vision process is to use the extracted information to classify the objects
and compute their position in the image. Classification basically means to take a set of features
(patterns) belonging to severalclassesand to establish a function that allows to separate them7.
This function can either be computed directly from the data (for example in polynomial classi-
ficators) or learnt iteratively (for example inneural networks(NNs)). All these approaches are
based on the a-priori extraction of appropriate features, which is increasingly considered as in-
appropriate. The focus of research has in recent years moved toappearance based approaches,
which take images as a whole and do not require feature extraction.

The objects used in this work are characterised by their coloured regions (labels, buttons and
caps), which means that they consist of one or more simple geometric shapes. C. Berger has
shown in [Berger 2000] that aprincipal component analysis(PCA) based approach is capable
of classifying simple geometric shapes under some constraints. The most important constraint

7See [Niemann 1983], or chapter C.2.5 in the appendices.

178 5.3. Object Recognition & Displacement Computation

Figure 5.21: Successive segmentation of an image. The rows show the steps for each region from left to
right: the original image, the colour similarity, the segmented region and the reconstructed image containing the
regions found so far. The colours used from top to bottom are: yellow, yellow, blue, blue, blue, blue and red.

5.3. Object Recognition & Displacement Computation 179

Figure 5.22: Segmenting an image of the centrifuge with different brightness and noise level. Each row
shows the original image on the left and the reconstructed image with the segmented regions of the right. The
rows from top to bottom show situations with 100, 77, 54 and 31% brightness and increasing noise level.

180 5.3. Object Recognition & Displacement Computation

is that a set of images of the objects in all possible orientations must be given, because the PCA
has only limited capabilities to interpolate between two situations. This is already a problem if
the object is so large that it can not be rotated manually and that the robot holding the camera
can not drive around it automatically.

A second drawback is that this approach only classifies the objects, but does not compute
their position in the image. On the contrary, the PCA strictly requires anormalisedimage, that
means a centred image of a normalised size and normalised brightness. This is because the PCA
looks at differences in the image data without knowing whether the differences are relevant or
not, so all irrelevant differences have to be removed in advance. In case of non-centred regions
it can not be guaranteed that the PCA will indeed focus on the shape of the regions rather than
its position.

A third drawback is that this approach is able to classify the shape of single regions, but
not patterns consisting of several regions. Considering the problem of mixing up the object’s
appearance and position as relevant information abounding boxhas to be placed around the
regions belonging to the pattern in order to allow to normalise it in size and brightness. This,
however, requires to know the position of the pattern in the first place – a typical chicken/egg
problem.

A fourth drawback is that the behaviour of the PCA becomes entirely unpredictable when
additional background regions not belonging to the object appear in the image. Basically, the
PCA can only classify what it has learnt and is instantly confused when it hits upon a new
situation. Since in the laboratory it can not be guaranteed that no background regions exist
the PCA is therefore not suitable for this work. Tests have shown that this also applies to other
appearance based approaches likeoutput related features(ORFs). An entirely different solution
is therefore needed.

The approach proposed in this work actually makes active use of the distinction between sin-
gle regions (simple objects) and patterns of several regions (complex objects). The only points
where the recognition of simple objects is needed are the rings used in detecting NUNC/Cedex
tubes or slots in their storage racks. Since there is no point in trying to find a tube or slot in
a storage rack if the position of the rack itself is unknown a cascaded approach is suggested:
First find the object (outer classification), then find the rendezvous point(s) on the object (inner
classification). This cascading allows certain constraints about the situation during inner clas-
sification, like only minor displacements caused by inaccuracies of the outer classification will
occur and the situation can otherwise be assumed inoffensive8. From these constraints simpli-
fications of the classification itself can in turns be drawn. Using these simplifications, the two
parts of the cascaded classification can be given as follows:

Inner classification covers the detection of simple object consisting of only one region (tube
caps or rings used around slots of storage racks). These objects are actually not classi-
fied at all. Instead, only the segmentation step is applied and centre-most region is then

8The main purpose of the vision system is to deal with a possible confusion of devices and/or larger displace-
ment of devices. Both problems are caused by handling errors by human personnel, but once the correctness of a
device has been assured certain assumptions about it have to be made, like the cage of the centrifuge is not modified
and the positions of the slots in a rack are not changed. Due to limited sensoric capabilities not every imaginable
deviation from the desired state can be detected, and therefore some constraints must be allowed.

5.3. Object Recognition & Displacement Computation 181

assumed to be the tube/ring9. Since the outer classification of the corresponding storage
rack has already asserted certain constraints this simplification still provides sufficient
information to safely grasp/place a tube. The inner classification only needs the image
segmentation part described in section 5.2 and is not further described here.

Outer Classification covers the detection of complex objects consisting of more than one re-
gion (all other objects like the storage racks themselves, the centrifuge etc.). These objects
require a true classification because no assumptions about the correctness of a device or
its displacement can be made. Since PCA/ORF based approaches have proven to be not
applicable a model based approach as in figure 5.23 has been established instead. This
approach needs only a single image of the desired situation for training, can be easily
extended by additional objects and yields the classification and position computation in a
single step.

unused
model?

got an
features to

model features

assign image got an unused
assignment? match models compute

displacement

select best match

object
select

model
image model

yes

no

no

Figure 5.23: Execution flow at object recognition (outer classification).

5.3.1 Object Models

The idea behind using a model is to not rely on an unknown internal representation of a situation
in a PCA or NN, but to have more control over the classification process. The obvious way to
achieve that is of course to explicitly compute features from the object. When using only a
single feature it must be simple enough to be reliably detected and yet complex enough to allow
to reliably distinguish between multiple objects. Since Berger’s results do not make this appear
too promising the alternative approach of using a set of simple features that can be reliably
computed and use their spatial relationship to distinguish between objects has been chosen.
The detection of an object is therefore reduced to the detection of a set of features – the model.

This leaves the detection of the individual features, which is not trivial. Since the purpose
of the vision system is not to classify a normalised image of the object but to allow certain
degrees of freedom (translation and rotation), the detection of the features must be invariant
with respect to these degrees of freedom. For example, if a classifier is able to detect triangles
that are standing upright it can only detect translated triangles, but not rotated ones. The only
shape that is fully translationally and rotationally symmetric is a circle, hence the COGs from
the region list are used as features.

9The question of whether the “centre-most” region is really the desired tube/ring can be answered by looking
at its distance from the centre. If that distance is higher than some threshold the slot must have been empty and a
neighbouring tube has been selected.

182 5.3. Object Recognition & Displacement Computation

From this set of 2-dimensional points~pi a subset is selected according to some constraints as
the modelM of the object, which can finally be given as:

M = (~p1, ~p2, ..., ~pn)

The selection process has to be done manually because the model has to satisfy some con-
straints which can not trivially be established automatically. One constraint is that it has to be
ensured that only relevant features are selected, another one is that the selected features must be
reliably detectable under all possible translations and rotations and, finally, the feature sets must
be sufficiently different for different objects to allow a reliable classification. A visualisation of
the model generation steps so far can be seen in figure 5.24.

Figure 5.24: The separate steps during model generation: The original
image (upper left), the segmented regions (upper right), the COGs of the
regions (lower left) and the model as a subset of the COGs (lower right).

The constraint that the models have to be sufficiently different for different objects is im-
portant because it affects the classification performance more subtly than the others. Speaking
in terms of separation by a hyper-curve, if the patterns are too close together the question of
whether they can still be separated becomes a question of measurement noise. For example, in
the set of three models with three one-dimensional features

M1 = (−1, 0, 1)

M2 = (−1.95,−0.98,−0.03)

M3 = (−1, 0, 2)

5.3. Object Recognition & Displacement Computation 183

M1 andM2 are quite similar becauseM2 is just a translation ofM1 plus some noise. The
difference between any of them andM3 is much higher. The feature set would allow to confuse
objects 1 and 2 very easily and does therefore not yield good models. This issue has to be
addressed at feature selection, but does not pose a problem if the models can be explicitly
designed.

Except from the centrifuge all devices are labelled with special markers as in figure 5.25 that
satisfy the above constraints. The markers can be printed with an ordinary colour laser printer
and attached to the devices. They implement a 4-bit code to distinguish 16 different devices10,
yet they are unique unter all translations and rotations (but not mirrorings).

0
0 0
0 0

0 0
1

0 0
0 1

0 0
1 1 0

0
0

1
0

0
1

1

0
1 1

1
0
0

0
1

0
0

1
10

0
1
1 1 1

1 1
...

Figure 5.25: The markers attached to the devices.

The result of these considerations is a generic model of an object. The model consists of a
list of xy-COGs of model regions and their colour. The COGs are two-dimensional coordinates
because the system only has a single camera and therefore can not detect depth information. A
stereo camera mechanism required to do this would be very difficult to attach to the tool while
keeping the tool compact and the system would not necessarily benefit from it. Therefore only
2d-models are used in the following steps.

5.3.2 Model Generation

Model generation is done off-line in a learning phase before using the system. With PCA or
NNs “learning” means to iteratively present the system samples and the desired output. The
number of learning data is usually very high because all possible views or variations of all
possible objects have to be considered. During the iteration the system then learns to minimise
the output error according to a learn rule and thus to classify the objects. Since the effort to do
this scales linearly to the number of learn data and the number of learn iterations this process
can take quite some time.

Contrary to these approaches the established system has implicit knowledge (another model)
about how the appearance of the object changes under translation and rotation. It it explicitly
designed to use this knowledge to compute this displacement from a given image without having
stored a dedicated sample for each displacement. The only sample the system needs is one of
the object it itsdesired pose. For this an integrated tool exists with which the administrator can

10For the current laboratory setup this is more than enough, yet – if it should ever become insufficient – a code
with more than 4 bits can be easily designed.

184 5.3. Object Recognition & Displacement Computation

• move the robot (camera) over the object in the desired pose,

• take an image,

• segment the image into a list of coloured regions (or rather their COGs only),

• build a model by selecting a proper subset of the COGs and

• store the model.

Requiring only a single model per object for all possible translations and rotations is a great
advantage. It allows to handle devices where it is not possible to automatically generate an
extended set of learn samples (e.g. the centrifuge). Furthermore it reduces the learning effort
by requiring only constant resources (leaning time and storage space).

Another advantage is that it is easily possible to add new objects at run time. With PCA
or NNs it is not possible to add more objects after the learning step because only abstract
information about the objects is stored and this information is spread over the entire storage
space. When a NN is given a new situation it will learn information about it, but at the price
of destroying information about the old ones. The only way to really add new situations is to
keep the old set of samples, add the new one and re-learn the entire set. This is of course not
desirable because it requires a huge amount of resources. With the established system adding
a new object is reduced to adding a new model. It does not affect the knowledge about the old
objects and the effort is again constant.

5.3.3 Model Matching

With having only a primitive model of the desired pose of an object the classification and com-
putation of the displacement is necessarily somewhat more complex than with a NN or PCA.
The approach used in this work is based onmatchingmodels, which means that a model is
generated automatically from a camera image of a scene and then compared to the manually
generated models describing the desired poses of the known objects. In a single step this yields
both the displacement of the camera model as well as the correct object class in the first place.

5.3.3.1 Displacement Model

Given a modelO = (~o1, ~o2, ..., ~on) of an object in a known situation and a modelC =
(~c1,~c2, ...,~cn) of a camera image of an unknown situation a linear displacementD is assumed
between each corresponding feature according to

~ci = D · ~oi (5.4)

Since the features are 2-dimensional only translations along the x- and y-axis and rotations
about the z-axis apply and the displacement – written as a 4×4 homogenous matrix – can be
given as

D =

cos(ϕz) − sin(ϕz) 0 dx

sin(ϕz) cos(ϕz) 0 dy

0 0 1 0

0 0 0 1

5.3. Object Recognition & Displacement Computation 185

Inserted to equation 5.4 the equation expands to alinear equation system(LES)

ci,x

ci,y

0

1

 =

cos(ϕz) − sin(ϕz) 0 dx

sin(ϕz) cos(ϕz) 0 dy

0 0 1 0

0 0 0 1

 ·

oi,x

oi,y

0

1

which yields two separate equations

ci,x = cos(ϕz) · oi,x − sin(ϕz) · oi,y + dx

ci,y = sin(ϕz) · oi,x + cos(ϕz) · oi,y + dy

with – takingsin andcos as two independent variables – four unknowns. To indicate this, the
equations can be rewritten as

(
ci,x

ci,y

)
︸ ︷︷ ︸

~c ′

=

[
−oi,y oi,x 1 0

oi,y oi,x 0 1

]
︸ ︷︷ ︸

K′

·

sin(ϕz)

cos(ϕz)

dx

dy

with K ′ ∈ R2×4 holding the “new” matrix of weights. This LES can not be solved for the

unknowns because it is under-determined. Since, however, the same displacementD applies to
all features of a model (which is why there is only aD, and not severalDi) multiple equations
from multiple features can be joined into a larger LES. Using2N equations fromN > 1 features
it can be rewritten as

c1,x

c1,y

c2,x

c2,y

...

cN,x

cN,y

︸ ︷︷ ︸

~c

=

−o1,y o1,x 1 0

o1,y o1,x 0 1

−o2,y o2,x 1 0

o2,y o2,x 0 1
...

−oN,y oN,x 1 0

oN,y oN,x 0 1

︸ ︷︷ ︸

K

·

sin(ϕz)

cos(ϕz)

dx

dy

 (5.5)

with K ∈ R2N×4.

5.3.3.2 Least-Squares Fit

With N = 2 features equation 5.5 could be solved directly, but would not yield a good recog-
nition. If the computation of the displacement depends on the location of only two points inac-
curacies in detecting have a too large influence on the result. Furthermore, if the colour code
consists of only two points it would not allow to distinguish two objects, because two points are
already needed to distinguish all possible rotations of one object. Classification and robustness
against detection inaccuracies can only be achieved by using more than two features.

186 5.3. Object Recognition & Displacement Computation

Unfortunately, withN > 2 features equation 5.5 can again not be solved directly because it
is over-determined.K is non-square and can therefore not be inverted. The situation is identical
with the problem in section 3.2.4, and the solution is again to use aleast-squares fit(LSF).

Instead of invertingK directly the thepseudo inverse(PI)

K+ = (KT K)−1KT

as an approximationK+ ≈ K−1 of the real inverse has to be used11. The unknowns can then
be computed as

sin(ϕz)

cos(ϕz)

dx

dy

 = K+ · ~c

One way to check for consistency would be to ensure that

arcsin(sin(ϕz)) = arccos(cos(ϕz)) = ϕz

plus or minus some quadrant corrections, but this is not robust enough. Instead, by inserting the
unknowns in the original LES from equation 5.5 themean-square error(MSE)

eC,O =

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣~c−K ·

sin(ϕz)

cos(ϕz)

dx

dy

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
from the LSF can be computed. This erroreC,O expresses the average distance between features
from the camera modelC and the object modelO and is expected to be low for correct matches.
By computing the displacement and the associated error for all stored models and choosing the
one with the smallest error the camera image can therefore be classified and the displacement
obtained in a single step.

The MSEeC,O has to catch any aspect that is not part of the displacement, like lens or per-
spective errors. A lot of different lens errors exist, but for the purpose of this work only the
radial lens error is important. Radial lens error means that a ray that is coming through the
outer parts of a lens is projected differently compared to a ray that is coming through along
the optical axis: The focal point of a lens depends on the radial distance from the optical axis
through which a ray comes. This can be compensated by applying a radial stretching of the
image as in figure 5.26, but this correction is not utilised in this work. The reason for this is that
the error introduced by omitting the correction is below the threshold that is required to mix up
two models, as will be shown in section 5.5.

The perspective error is raised by the fact that the vision system uses only two dimensions.
For feature patterns that lie in a plane that is parallel to the image plane only the radial lens errors
apply because the entire situation is two-dimensional. If the planes are not parallel – as in case
of the centrifuge – perspective distortion occurs if the pattern is looked at from different view

11See [Moore 1920] and [Penrose 1955].

5.3. Object Recognition & Displacement Computation 187

Figure 5.26: Radial lens error: Original (left) and corrected image (right).

points. The spatial relation of features changes with the view point, for example leading to that
something that is “above” something else in the model will additionally shift a bit sideways.
Figure 5.27 shows an illustration of this perspective effect. This of course affects the model
matching because the two patterns no longer fit exactly, but again the error introduced by this is
below the threshold that is required to mix up two models, as will also be shown in section 5.5.

Figure 5.27: Perspective effects on a titled pattern: The
spatial relation of features changes with the view point.

188 5.3. Object Recognition & Displacement Computation

5.3.3.3 Permutations

One issue and potential error that is so far uncovered is raised by the fact that in the introduction
it was said that the displacementD is assumed between eachcorresponding feature. This means
that features from the two modelsC andO have to be mapped in advance, which can become
problematic in several ways:

• If the modelC contains more features thanO the mapping is possible if the subset of those
fC features corresponding tofO features can be found. However, even ifC contains more
features thanO this does not necessarily mean that it contains thesamefeatures asO. It
may happen that one or more of thefO features are not detected, but features resulting
from the background and/or other objects are detected instead. Therefore the existence of
the mapping can not be guaranteed.

• If the modelC contains the same number of features asO this still does not mean that
the mapping can be established, because of the same reasons as above. Therefore the
existence of the mapping can again not be guaranteed.

• If the modelC contains less features thanO the mapping is definitely not possible.

If the mapping can not be established this means the models can not be matched using the
approach presented here, no classification can be obtained and no displacement be computed.
One possible attempt is to try and take away features fromO and repeat the mapping attempt,
but since this – if it works – leads to reduced reliability it has not been included in this work.
Instead the program will try and repeat the entire recognition step with a new image.

If this continues to fail for example because the light is switched off at night it remains
stuck in an endless loop, optionally notifying the operator. This is considered more safe than
continuing with uncertain results.

But even if the mapping can be established because all features fromO are contained inC
– and let for simplicity be assumed that exactly only the features formO are contained inC
– it has to be actually found. Since the features are detected according to a complex sequence
by decreasing colour similarity (which varies from image to image) and from the bottom right
to the upper left image corner (which, since the orientation is yet unknown, does not allow
to identify specificfeatures of a model) the plain order of detection does not permit such a
mapping. With – contrary to the localisation of the mobile platform in section 3.2 – no initial
guess about the displacement that allows to identify corresponding features except from the
colour (which is the same for several, but not all features) there is no way but to try all possible
permutations.

The possible number of permutations is given by thebinomial coefficient
(

c
m

)
for drawing

m objects from a pool ofc indistinguishable objects, multiplied bym! because in the case of
mapping features the objects are not indistinguishable and the order in which they are drawn
does matter. This makes up for a total of

#perms =
c!

(c−m)!

permutations, which leads to a triangular structure that – starting atc = 1 – begins as

5.4. Iterative Displacement Compensation 189

1
2 2

3 6 6
4 12 24 24

5 20 60 120 120
6 30 120 360 720 720

7 42 210 840 2520 5040 5040
8 56 336 ...

In this triangle the last two numbers of each row are the same because if every features is
assigned except the last one, then there is exactly one possibility left to assign that feature to.

With the m = 7 features as used by the markers in figure 5.25 this means that in order to
recognise the marker7! = 5040 permutations of assignments (mappings) have to be passed
through the least-squares fit12. Since this step has to be repeated for allN objects to be recog-
nisedN ·5040 (80640 if all 16 markers from figure 5.25 are used) of the least-square fits have to
be done. The number of permutations scales over-exponentially, which is not a good behaviour.
Approaches to reduce the dimensionality of this problem are discussed in subsection 5.5.3, but
have not been incorporated in this work.

Apart from these resource requirements the least-squares model matching stands out because
of its absolute robustness. If all necessary features are found the MSEeC,O allows for a safe
detection of the correct object and displacement, and if not all necessary features are found
it also allows to safely detect that. Results from experiments demonstrating this are given in
subsection 5.5.

5.4 Iterative Displacement Compensation

Using the above model matching an object can be classified and its displacement compared
to a desired pose can be computed – in image coordinates. In order to compensate for this
displacement it needs to be converted into arm coordinates, taking into account the way the
camera is mounted to the tool13. The pose of the camera coordinate system relative to the arm
coordinate system is established using an off-line calibration, but the translational scaling is not.
As a result, the control program knows in which direction to move the arm if the vision says
that the object is “to the left”, but it does not know how far to move.

The reason for why the translational scaling – the millimetres per pixel – is not established
off-line too is that it is different for some of the objects. It depends on the height with which
the camera is held over the object: If the height is small it will be small too because the im-
age becomes larger, and if the height is large it will be large too because the image becomes
smaller14. Since with a monocular and two-dimensional vision system the height can not be
measured automatically the translational scaling can not be established automatically.

12And that only applies ifc = 7 because no additional background features are found. If they are (c > 7), this
number increases even more.

13In this context “arm coordinates” stands for what is known as theT6 frame in RCCL and many other works.
The tool itself is often assigned aTTOOL transform that, if applied toT6, leads to theTTCP coordinate system (the
tool centre point). In terms of kinematics the camera is just a different “tool” leading to a different “tool centre
point”.

14The rotational scaling is not affected by this because the angle stays the same no matter from what distance it
is observed.

190 5.5. Experiments & Results

One theoretical possibility to avoid this problem is to use additional knowledge about the
models. If the z-distances to the features in the model were known to the system it could
establish the scaling automatically. This, however, introduces an additional situation where
upon adding of a new object manual measuring is required rather than automatic learning, which
is not desirable. Furthermore, it works only for the classification of complex object models and
not single regions as used in centring over tubes and slots.

Instead of calibrating the correct scaling off-line an uncalibrated approach as in figure 5.28
is used, using the minimal possible value of the scaling for the closest possible object. 90% of
the displacement as computed by the scaling are compensated and the process is repeated until
the displacement is small enough. The resulting iterative process usually requires more just one
run to centre over an object, but prevents overshoots and is therefore stable.

displacement
computation scaling into

arm coordinates

displacement application of ~90% of
displacement to arm

displacement
small enough?

device manipulation

device approach

no

yes

Figure 5.28: Execution flow at displacement compensation.

Figure 5.29 shows an excerpt of a log of the detected positional and orientational errors
during a test run involving several objects. The MSEeC,O is given as a measure of the quality
of the classification. The loops for the different objects can be clearly seen from the decreasing
positional error (in pixel) during displacement compensation. In almost all cases the positional
error can be brought down to one pixel only. The orientational error (in degree) is much smaller
than the positional error because it is far less affected by the platform motions.

For the last object (the centrifuge) the MSE also decreases from an initially significantly
higher value compared to the previous objects, demonstrating the perspective error mentioned
above and showing that it does not disturb the classification and displacement compensation.

5.5 Experiments & Results

Being the most important part of the arm control software the vision system has been tested in
several experiments, which are presented and discussed in subsection 5.5.1. In Subsection 5.5.2
the vision system and the results of the experiments are summarised, while subsection 5.5.3
gives a brief outlook in the possible future.

5.5. Experiments & Results 191

-5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 40 45 50 55 60 65
of run

positional error [pixel]
orientational error [degree]

classification error MSE

Figure 5.29: The positional and orientational errors iteratively decrease during the
displacement compensation. The figure shows results for several different objects during
a test run. In almost all cases the positional error can be brought down to one pixel only.

5.5.1 Experiments

The intended goal of the vision system was to be as tolerant against changing environment
parameters as possible in general, and not requiring a standardised illumination in particular.
Allowing a wide range of input parameters means that mandatory processing parameters and
thresholds may be difficult to find, and yet a typical vision system requires a lot of these. The
idea behind the established system was to keep these thresholds as non-critical as possible
by preferring meaningful operations and parameters over abstract ones – for example the fill
threshold on a colour similarity “image” is not just an abstract entity, but does have a descriptive
meaning.

To verify that these goal are met several experiments have been done. These experiments
cover:

• The basic repeat accuracy,

• the sensitivity against the robot arm positioning precision,

• the sensitivity against the most important vision parameters,

• the sensitivity against lens/perspective errors

– during translation of a planar marker,

192 5.5. Experiments & Results

– during translation of a non-planar (titled) marker and

– during translation of the centrifuge, and

• the suitability of the the mean-square error (MSE)eC,M for classification.

The experiments have been repeated on three different objects:

• Experiment “20031201-planar” uses a planar marker. It is primarily affected by lens
errors only and should otherwise be the best case.

• Experiment “20031201-tilted” uses a tilted marker. This introduces perspective errors
and therefore larger errors, but since the marker is still rather small the perspective errors
are expected to be small too.

• Experiment “20031210-centrifuge” uses the front plate of the centrifuge. Compared to
the titled marker the front plate of the centrifuge is titled even more and the pattern there-
fore more difficult to detect15. Also, the pattern is larger and therefore more subject to
perspective errors. It is therefore expected that the centrifuge presents the worst case.

5.5.1.1 Basic Repeat Accuracy

The basic repeat accuracy is defined to be the noise of the vision output when the input is as
constant as possible. Several experiments have been done in which the camera is centred over
an object, but the arm is not moved during the experiment (a “null” motion is applied) and the
vision parameters are also kept constant. In such an experiment the segmentation of the regions
will change only minimally due to imaging noise and rounding effects, and the purpose of the
experiment is to establish the order of magnitude these effects have on the output.

This and the following experiments will produce separate, but not independent measurements
for the arm and the vision. The arm measurements give the readings from the joint position
encoders translated by the forward kinematic. They are labelled “commanded” and given in
millimetres natively. The vision measurements give the output from the vision system that is
relative to the arm. They are labelled “observed” and are natively computed in pixel, but have
been converted to millimetres with a manually established scaling factor that is given in each
experiment. The scaling factors are only used for the purpose of comparison in the experiments,
but not during the compensation.

As can be seen in figure 5.30 the noise of the arm measurement during null motions is – as
expected – not zero. This is consistent with the fact that in the experiment it could be observed
that the arm was slightly vibrating. With no brakes applied the arm control is continuously
evaluating its control loop to keep the arm at a steady position. Since the PID controller used
for this requires a positioning error to generate commands and since the gravity pull the arm
out of its desired position it can not stay exactly at that position without any noise. Since the
camera is mounted to the arm the vision error therefore can not be smaller than the arm error –
even with a perfect vision system.

The standard deviations of the distributions given in table 5.1 show that the basic noise is very
low. The median order of magnitude of the vision error is between 1 and 2/100 millimetre. The
y-axis of experiment “20031201-tilted/null” in subfigure 5.30(b) with a standard deviation of

15It becomes invisible at comparatively small translations due to the large tilt angle.

5.5. Experiments & Results 193

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(a) 20031201-planar/null

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(b) 20031201-tilted/null

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(c) 20031210-centrifuge/null

Figure 5.30: Scatter plots demonstrating the basic repeat accuracy during null motions. The rows
show the experiment on three different objects: A planar marker, a tilted marker and the centrifuge
(which has a tilted front plate). The left column shows the original plots and the right column closeups.

194 5.5. Experiments & Results

1/10 millimetre is an outlier. The value is in the same range as in the experiments with dummy
motions in figure 5.31(c) and therefore hints towards external disturbances of a similar kind. In
the experiment the robot has been standing in a large room whose floor was slightly shaking
because of heavy objects being moved in adjacent rooms, thus causing the arm to swing a little
bit.

Experiment σx σy Scaling

20031201-planar commanded0.007741 0.001238 –
observed 0.012606 0.012835 0.39

20031201-tilted commanded0.007496 0.003776 –
observed 0.014794 0.133436 0.40

20031210-centrifuge commanded0.009487 0.008524 –
observed 0.024882 0.016175 0.53

Table 5.1: Standard deviationsσx andσy for the experiments in figure 5.30.
All σ values are in millimetres, the scaling factors in millimetres per pixel.

Overall, the order of magnitude of the error is roughly the same for all experiments. The
error is very small because the segmentation is very robust. As long as a segmented region
only changes by a few pixels at its hull this does not affect the centre of gravity (COG) to a
noteworthy degree, and if it does this effect is still levelled by the least-square fit (LSF) which
mingles all COGs. The overall resulting noise is therefore fully neglectable.

5.5.1.2 Robot Arm Positioning Noise

In another experiment the robot is commanded to perform “dummy” motions, that means mo-
tions which always bring it back to the initial position. This experiment can be used to judge
the influence of the robot arm positioning on the vision, because due to the limited accuracy of
the arm’s sensors and actuators it will not return to the exact same position. In terms of cen-
tring above an object this means that even if the displacement was computed absolutely correct
the motion compensating it will still leave a small error. The purpose of this experiment is to
establish the order of magnitude of this error and the effects this has on the vision accuracy.

The amount of the positioning error that affects the depends on several kinematic aspects.
For example, if the arm is completely outstretched a rotational error of 1 unit in the shoulder
leads to a larger displacement than if the arm is in hinged position. Likewise, some joints affect
the cartesian position more than others, and so the error depends on the current pose of the arm.
The experiment has therefore been repeated with two different motions:

1. Experiments denoted with “dummy1” use a constant motion of 50 mm along the z-axis
perpendicular to the image plane. This primarily involves joints with only a limited con-
tribution to the x/y position and is therefore expected to yield a small error.

2. Experiments denoted with “dummy2” use random motions with a standard deviation of
σ=80 mm in the x/y-plane. They are therefore expected to suffer from the full scale of
the positioning inaccuracy.

Figure 5.31 shows the results for this experiment. As expected, the “dummy1” experiments
have little effect on the system error. Using the same scales as in figure 5.30 no noteworthy

5.5. Experiments & Results 195

difference to the null motions can be seen, because this motion primarily involves joints that
contribute to the z position above the image plane. The “dummy2” experiments do show a
significant impact on the system error. Both the arm and the vision error are much larger,
because these motions primarily involve joints that contribute to the x/y position in the image
plane. Interestingly, the arm error (“commanded”) appears to be larger than the vision error
(“observed”) and the vision error appears to aggregate around two cluster points rather then just
one. These effects may occur due to a superposition of limited joint position encoder resolution,
gear backlash and the high-level arm control software. None of the effects causes errors beyond
what is tolerable, and so they have not been further investigated.

Table 5.2 gives a numerical evaluation of the experiments. For the “dummy1” experiments
the arm positioning error is almost the same as with the “null” experiments, which confirms that
the motion does not affect the x/y plane much. The vision error is due to the added noise slightly
higher, but still its standard deviation is always below 1/10 millimetre. For the “dummy2”
experiments the arm and vision errors are much higher than that, with standard deviations of
up to 9/10 millimetre. This confirms that the motions do affect the x/y plane. The fact that the
vision errors are actually smaller than the arm errors can also be nicely seen.

Experiment Subtype σx σy Scaling

20031201-planar/dummy1 commanded0.008777 0.042649 –
observed 0.013582 0.089193 0.39

20031201-planar/dummy2 commanded0.905021 0.746743 –
observed 0.252359 0.067033 0.39

20031201-tilted/dummy1 commanded0.018847 0.017677 –
observed 0.024748 0.097002 0.40

20031201-tilted/dummy2 commanded0.911211 0.749816 –
observed 0.235738 0.083085 0.40

20031210-centrifuge/dummy1 commanded0.029098 0.014753 –
observed 0.072109 0.038201 0.53

20031210-centrifuge/dummy2 commanded0.906363 0.749119 –
observed 0.325007 0.151336 0.53

Table 5.2: Standard deviationsσx andσy for the experiments in figure 5.31.
All σ values are in millimetres, the scaling factors in millimetres per pixel.

Generally speaking the error values are still below the threshold where they can cause prob-
lems for the system and can therefore be neglected. The arm hard- and software itself has
a repeat accuracy of about 1 millimetre, so if a sub-millimetre accuracy should be required,
special care has to be taken. One possibility demonstrated by these experiment is to split the
approach to a target so that the last motion is perpendicular to the plane in which a displacement
is expected. Since the usual way to grasp objects in this system is precisely that, a positioning
accuracy of only 1 millimetre still safely allows to grasp objects with a precision of less than 1
millimetre.

196 5.5. Experiments & Results

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(a) 20031201-planar/dummy

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(b) 20031201-planar/dummy2

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(c) 20031201-tilted/dummy1

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(d) 20031201-tilted/dummy2

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(e) 20031210-centrifuge/dummy1

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(f) 20031210-centrifuge/dummy2

Figure 5.31: Scatter plots demonstrating the effect of dummy robot motions. The rows
show the experiment on three different objects: A planar marker, a tilted marker and the
centrifuge (which has a tilted front plate). The left column shows a dummy motion perpen-
dicular to the image plane and the right column a dummy motion in the image plane.

5.5. Experiments & Results 197

5.5.1.3 Influence of Vision Parameters

Another experiment researches the influence of the most important vision parameters on the
results. With no standardised illumination the image quality can vary greatly and the images be
quite noisy, therefore image noise is an important parameter. Another important parameter is
the threshold used in the fill algorithm, which determines the quality with which the regions are
detected. Whereas the image noise can only be indirectly adjusted by smoothing the image, the
threshold can and has to be directly adjusted. On the other hand, it has to allow a safe operation
over a wide range of input image quality, so it must not be too critical. The purpose of this
experiment is to establish the influence of these two parameters on the system output.

In the first experiment the influence of image noise on the system output is examined. Im-
ages taken during an experiment with “null” motions are artificially superimposed by noise to
simulate a degrading image quality. The noise added is zero mean gaussian noise with 0, 3, 6
and 9 pixel values standard deviation for each YUV component individually16. By using really
different images and not simply adding a different noise to the same image over and over again
the situation is similar to the experiment with null motions, and the the resulting error can not
be smaller than the basic repeat accuracy.

Figure 5.32 shows the results for this experiment. As can be seen the comparability with the
basic repeat accuracy is confirmed. The standard deviation of the error for low noise images
is about 1/100 millimetre – the same as with plain null motions. With larger noise the error
increases to about 3/100 millimetre. Obviously the noise leads to changes of the segmentation
of the regions that affect the COGs, and therefore the output quality degrades.

In the second experiment the influence of the fill threshold on the system output is examined.
Applied to the colour similarity images the threshold determines the lower bound down to which
a region is filled. A high threshold means that only very few pixel around the initial seed will be
found and a large corona around that area will be left unrecognised. Since parts of the corona
are likely to be taken as additional regions in a later step this leads to an increased number of
regions with no guarantee that the COG of one of them is identical to the COG of the entire
region. A low threshold, on the other hand, means that a region will be filled to its very border,
with the danger of bleeding out into the background. This means that the COG of that region
will shift and therefore yield to problems with the LSF. Both cases should be avoided because
the transition from suboptimal classification to complete failure is usually abrupt. As a result of
this the threshold is required to work over a wide range without causing this problem.

Figure 5.33 shows the results for an experiment with thresholds of 70, 100 (the nominal
values), 130 and 160. As can be seen the vision error is not affected by the threshold at all and
stays at the level of the basic repeat accuracy. Only with the highest threshold value of 160 the
error seems to increase slightly, but still only within the range of measurement accuracies. The
reason for this independence is that a higher threshold leaves a corona around the region, but
since for the features used this is a symmetric loss it does not affect the COG and therefore has
no influence on the vision system.

Table 5.3 gives the numerical evaluation for these experiments. It can be summarised that the
effects of image noise on the vision system are roughly the same as those of dummy motions
perpendicular to the image plane. An effect of the fill threshold can even be denied for the

16Starting with a standard deviation of 9 the system fails to recognise some images, so this is almost the upper
limit. Real images do not have that much pixel noise.

198 5.5. Experiments & Results

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
er

ro
r [

m
m

]

x-error [mm]

vision error

item value
σx 0.013292
σy 0.012137

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
er

ro
r [

m
m

]

x-error [mm]

vision error

item value
σx 0.014026
σy 0.013635

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
er

ro
r [

m
m

]

x-error [mm]

vision error

item value
σx 0.019586
σy 0.018667

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
er

ro
r [

m
m

]

x-error [mm]

vision error

item value
σx 0.029421
σy 0.029034

Figure 5.32: Sample images, vision displacement scatter plots and standard deviation (in
millimetres) of the distributions for a set of of images with no robot motion and different zero
mean gaussian noise levels. The noise levels used from top to bottom are 0, 3, 6 and 9 (where
the system starts failing to recognise the object) pixel values standard deviation. As can be seen
the noise level does affect the result because it leads to non-symmetric changes of the regions.

5.5. Experiments & Results 199

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
er

ro
r [

m
m

]

x-error [mm]

vision error

item value
σx 0.014786
σy 0.012231

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
er

ro
r [

m
m

]

x-error [mm]

vision error

item value
σx 0.013303
σy 0.012558

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
er

ro
r [

m
m

]

x-error [mm]

vision error

item value
σx 0.011704
σy 0.012829

-0.1

-0.05

 0

 0.05

 0.1

-0.1 -0.05 0 0.05 0.1

y-
er

ro
r [

m
m

]

x-error [mm]

vision error

item value
σx 0.016183
σy 0.014276

Figure 5.33: Sample images, vision displacement scatter plots and standard deviation (in mil-
limetres) of the distributions for a set of of images with no robot motion and different similarity fill
thresholds. The threshold used from top to bottom is 60, 100 (the nominal value), 133 and 166 of
a range of 0..255. As can be seen the detected regions become smaller with a larger threshold, but
since the loss is mostly symmetric it does not affect the COGs and therefore also not the results.

200 5.5. Experiments & Results

range of threshold values used. The parameters can therefore be seen as non-critical over a
wide range, which allows for an easy selection process.

Experiment σx σy scaling

20031128-planar/null commanded 0.010329 0.009896 –
observed 0.011452 0.012685 0.39
noise 0 0.013292 0.012137 0.39
noise 3 0.014026 0.013635 0.39
noise 6 0.019586 0.018667 0.39
noise 9 0.029421 0.029034 0.39
threshold 70 0.014786 0.012231 0.39
threshold 100 0.013303 0.012558 0.39
threshold 130 0.011704 0.012829 0.39
threshold 160 0.016183 0.014276 0.39

Table 5.3: Standard deviationsσx andσy for the experiments in figure 5.32 and
5.33. All σ values are in millimetres, the scaling factors in millimetres per pixel.

5.5.1.4 Planar Marker Displacement

Having established the basic accuracies and shown that the threshold parameter is not a critical
one the errors resulting from the application of the system to real displacements can now be
examined. In order to do this, experiments have been done with three different objects in which
well-defined displacements according to a grid pattern are applied to the arm. Each displace-
ment is applied several times and the output from the vision system compared against it. The
vision error can then be established relative to the displacement. The MSEeC,M used as clas-
sification error is analysed too, because with a changing appearance of the pattern it will match
only suboptimally.

In the first displacement experiment (“20031201-planar”) a planar marker on the tubestorage
is used and a scaling factor of 0.39 is applied to convert the the vision output into millimetres.
Using a planar pattern means that basically only lens errors should affect the output. Since the
lens errors are correlated to the radial distance from the optical axis the error is expected to be
the higher the larger the deviation is. Overall, the errors resulting from lens errors are expected
to be rather small.

Figure 5.34 shows the results from this experiment. The scatter plot shows that for larger
displacements the vision computes values which are slightly too small. The vision error, when
plotted against the displacement, shows this too. This dependence on the displacement is con-
sistent with the assumption of lens errors. The largest vision error seen is about 2.5 mm at an
absolute value of the displacement of about 64 mm, which means that the vision system de-
tects about 96% of the displacement at the worst case. Since the error becomes exponentially
smaller with smaller displacements the iterative compensation can be expected to not have any
problems with it.

The classification error remains very small over the entire range of displacements. The largest
value is about 3 at the largest displacement. It too becomes smaller with smaller displacement,
which confirms that the deformation of the pattern correlates to the absolute value of the dis-
placement.

5.5. Experiments & Results 201

-40

-30

-20

-10

 0

 10

 20

 30

 40

-50 -40 -30 -20 -10 0 10 20 30 40 50

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(a) scatter plot

-2

-1

 0

 1

 2

-3 -2 -1 0 1 2 3

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

vision error

(b) error scatter plot

vision error

-50 -40 -30 -20 -10 0 10 20 30 40 50
x-displacement [mm] -40

-30
-20

-10
 0

 10
 20

 30
 40

y-displacement [mm]

 0

 1

 2

 3

 4

 5

 6

 7

 8

error

(c) vision error

classification error

-50 -40 -30 -20 -10 0 10 20 30 40 50
x-displacement [mm] -40

-30
-20

-10
 0

 10
 20

 30
 40

y-displacement [mm]

 0

 5

 10

 15

 20

error

(d) classification error

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70

vi
si

on
 e

rr
or

 [m
m

]

arm displacement [mm]

vision error

(e) vision error relative to absolute value of dis-
placement

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 10 20 30 40 50 60 70

cl
as

si
fic

at
io

n
er

ro
r

arm displacement [mm]

classification error

(f) classification error relative to absolute value of
displacement

Figure 5.34: Results from experiment “20031201-planar”, the translation of a planar marker from
the tubestorage. A scaling factor of 0.39 has been used to convert the vision output into millimetres.

202 5.5. Experiments & Results

5.5.1.5 Tilted Marker Displacement

In the second displacement experiment (“20031201-tilted”) a tilted marker is used. Since the
tilted tubestorage used for this requires a slightly larger height for the operation a slightly larger
scaling factor of 0.40 is applied to convert the vision output into millimetres. Using a tilted
pattern means that in addition to lens errors perspective errors become effective. These, too,
are correlated to the radial distance from the optical axis and therefore the shape of the error is
expected to be the same. The value of the errors is in turns expected to be much higher.

Figure 5.35 shows the results from this experiment. The scatter plot shows the same effect
of computing values that are too small as with the planar marker, only that the error is larger
this time. This is confirmed by the plot of the vision error against the displacement. The largest
vision error seen is about 5.6 mm at an absolute value of the displacement of about 64 mm,
which means that this time the vision detects only about 91% of the displacement at the worst
case. Since the error still becomes smaller – though apparently more linear than exponential
– with smaller displacements the iterative compensation still can be expected to not have any
problems with it.

The classification error, too, is larger than with the planar marker and shows an interesting
effect: The error does not depend on the absolute value of the displacement, but on the y-
value of the displacement only. In addition to this, it does not become smaller with smaller
displacements, but converges to a value of about 9.5 only. This can be explained by the fact that
in order to do this experiment no explicit classificator for the tilted tubestorage was used, but the
classificator for the planar tubestorage was applied to the tilted tubestorage. This classificator
of course expects a different appearance of the marker and therefore can not yield a zero error.
The interesting point is that this deliberate error does not have a larger impact on the vision
output, because it still computes feasible values.

5.5.1.6 Centrifuge Displacement

In the third displacement experiment (“20031210-centrifuge”) the centrifuge is used. Since
this again requires a larger height for the operation a larger scaling factor of 0.53 is applied to
convert the vision output into millimetres. The difference to the tilted tubestorage is that the
pattern on the front plate of the centrifuge is spread over a larger area, which means that it is
more affected by perspective errors. The value of the errors is therefore again expected to be
higher than in the two previous experiments. Since the tilt angle is also higher the pattern can
become invisible if the displacement is large enough so that the camera looks parallel to rather
than on the front plate of the centrifuge. For this reason the displacement grid used in this
experiment is not symmetric.

Figure 5.36 shows the results from this experiment. Basically, all plots show the expected
behaviour, that means, the vision and classification errors increase with larger displacements.
The largest vision error seen is about 7 mm at an absolute value of the displacement of about
85 mm, which means that this time the vision detects almost 92% of the displacement at the
worst case. Since the displacement for this worst case is much larger than the displacement for
the worst case of the titled tubestorage it can be assumed that the detection rate for the tilted
tubestorage would have been larger if a correct classificator had been used. But since again the
error correlates with the displacement the iterative compensation can be expected to not have
any problems with it.

5.5. Experiments & Results 203

-40

-30

-20

-10

 0

 10

 20

 30

 40

-50 -40 -30 -20 -10 0 10 20 30 40 50

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(a) scatter plot

-4

-3

-2

-1

 0

 1

 2

 3

-5 -4 -3 -2 -1 0 1 2 3 4 5

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

vision error

(b) vision error scatter plot

vision error

-50 -40 -30 -20 -10 0 10 20 30 40 50
x-displacement [mm] -40

-30
-20

-10
 0

 10
 20

 30
 40

y-displacement [mm]

 0

 1

 2

 3

 4

 5

 6

 7

 8

error

(c) vision error

classification error

-50 -40 -30 -20 -10 0 10 20 30 40 50
x-displacement [mm] -40

-30
-20

-10
 0

 10
 20

 30
 40

y-displacement [mm]

 0

 5

 10

 15

 20

error

(d) classification error

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70

vi
si

on
 e

rr
or

 [m
m

]

arm displacement [mm]

vision error

(e) vision error relative to absolute value of dis-
placement

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 10 20 30 40 50 60 70

cl
as

si
fic

at
io

n
er

ro
r

arm displacement [mm]

classification error

(f) classification error relative to absolute value of
displacement

Figure 5.35: Results from experiment “20031201-titled”, the translation of a tilted marker.
Since the tilted tubestorage used for this requires a slightly larger height for the operation a
slightly larger scaling factor of 0.40 has been used to convert the vision output into millimetres.

204 5.5. Experiments & Results

-60

-50

-40

-30

-20

-10

 0

 10

 20

 30

-20 -10 0 10 20 30 40 50 60

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

commanded observed

(a) scatter plot

-6

-5

-4

-3

-2

-1

 0

 1

 2

-2 -1 0 1 2 3 4 5

y-
di

sp
la

ce
m

en
t [

m
m

]

x-displacement [mm]

vision error

(b) vision error scatter plot

vision error

-20 -10 0 10 20 30 40 50 60
x-displacement [mm] -60

-50
-40

-30
-20

-10
 0

 10
 20

 30

y-displacement [mm]

 0

 1

 2

 3

 4

 5

 6

 7

 8

error

(c) vision error

classification error

-20 -10 0 10 20 30 40 50 60
x-displacement [mm] -60

-50
-40

-30
-20

-10
 0

 10
 20

 30

y-displacement [mm]

 0

 5

 10

 15

 20

error

(d) classification error

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60 70 80 90

vi
si

on
 e

rr
or

 [m
m

]

arm displacement [mm]

vision error

(e) vision error relative to absolute value of dis-
placement

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 10 20 30 40 50 60 70 80 90

cl
as

si
fic

at
io

n
er

ro
r

arm displacement [mm]

classification error

(f) classification error relative to absolute value of
displacement

Figure 5.36: Results from experiment “20031210-centrifuge”, the translation of a tilted marker
from the centrifuge. Since the centrifuge requires an even larger height for the operation an even
larger scaling factor of 0.53 has been used to convert the vision output into millimetres.

5.5. Experiments & Results 205

This time the classification error shows the expected cone shape too, with the cone tip centred
at a zero displacement. The largest value is about 23 at a displacement of about 85 mm. Since
this value describes the average error for the placement of the individual features of the pattern
and since for most patterns used this is actually larger than the nominal distance between two
features it becomes doubtful whether the classificator might not start mixing up objects. The
apparent correlation of the vision output to the applied displacement denies that, but the problem
remains to be further examined in a final experiment.

5.5.1.7 Classification Error Comparison

The above experiments – and in particular the last one – have shown that with increasing dis-
placements the classification error increases too. This raises the question whether it might
become large enough to allow a wrong permutation of a wrong object to be mixed with the
correct permutation of the correct – but badly weighted – object. To prove the contrary an ex-
periment has been done in which a displacement according to a grid pattern of the size 24×
24 millimetres has been applied. The experiment has been repeated on six different objects:
The tube storage, the cedex storage, the pipette device, the scanner device, the fridge and the
centrifuge (in this order).

Figure 5.37 shows the results from the experiment, where the measurements for each object
are sorted according to the increasing absolute value of the displacement and the error has
been clipped at 140. As can be clearly seen no wrong positive classification occurs because no
classification error of a false object is ever lower than that of the correct one. In most cases the
safety margin is several times the error of the correct object, so for most objects no danger of
being mixed up exists.

In case of the fridge, however, the margin shrinks to a factor of two compared to the pipette
because obviously the patterns are very similar. With an even larger displacement a mix-up
might therefore become possible, but this has never been observed in the tests. This problem is
not symmetric, because on the other hand side the pipette can be separated from the fridge with
a much larger safety margin.

The absolute value of the classification error also needs a discussion. The maximum true
positive classification error in the experiment with the displaced centrifuge is 23, compared to
the lowest true negative classification error of about 8 in case of the fridge/pipette comparison.
Looking only at these two values a correct classification appears impossible and the system
can therefore not be called safe. This, however, is not true because the errors have to be seen
differently for different objects. An error of 8 is smaller than an error of 23, but in the case of
comparing the centrifuge with other objects in fact no true negative classification error lower
than about 130 does occur17. The error of 8 occurs only when comparing the fridge with other
objects, and since the problem is not symmetric it does not affect the system in a way that a
false positive classification occurs. Therefore, the values of the errors must only be compared
within the correct object class, and using that restriction the system is safe.

The entire question of how safe the classification is under the influence of uncompensated
optical effects can be reduced to the question of how similar the patterns are. The markers from
figure 5.25 used in this system have not been explicitly designed with an optimised separability
in mind, but since they are artificial they could be trivially replaced by improved ones. It can

17Also, the classification error of 23 does under real-world conditions not occur because the displacement in the
order of magnitude of 85 mm causing it does not occur. See section 3.6 for details.

206 5.5. Experiments & Results

 0

 20

 40

 60

 80

 100

 120

 140

 0 50 100 150 200 250

cl
as

si
fic

at
io

n
er

ro
r

of experiment

tubestorage
cedexstorage

pipette
scanner

fridge
centrifuge

Figure 5.37: The classification error (MSE)eC,M for six different objects in several different
displacements in a 24× 24 millimetres grid. The experiments for each object are sorted according
to an increasing absolute value of the displacement and the error has been clipped at 140.

happen that the classification fails if one or more of the required regions are missing due to
extremely bad environmental conditions, but it has never been observed that it mixes up objects
when these conditions are in their normal – quite variable – range.

5.5.2 Summary

The colour vision system established in this work to compensate for object displacements is
different compared to other approaches in several aspects:

First of all, the usage of colour information is still an uncommon idea. Classical vision
systems used greyscale vision only, because colour cameras were extremely expensive and their
image quality not always good (especially for miniaturised cameras) and the computers with
the necessary power to perform fast operations on colour images were extremely expensive
too. As a result of this, lots of algorithms for greyscale computer vision exist, but only few for
colour vision. This situation is currently changing, but the change is not yet fully done. In the
meantime a lot of useful information is often wasted by discarding colour information. Instead,
since the objects in this work do either have coloured features that can fully represent them or
can be labelled with coloured markers for that purpose, an approach that focuses on the colour
information and discards everything else has been favoured.

The established colour image segmentation tries to use as much of the colour information
while still reducing the dimensionality of the problem as early as possible. It defines and com-

5.5. Experiments & Results 207

putes a similarity measure of coloured pixels to either a given colour or one selected from the
image by its saturation. The measure itself can be expressed as a greyscale image, which means
that at a very early stage the complexity is reduced by a factor of three. In these similarity
image regions of similar colour are found by using a conventional fill algorithm as a bottom-up
strategy. Compared to a top-down strategy like quadtree splitting this approach has the advan-
tage that the outline of regions can be very easily and precisely modelled. An image is then
segmented into coloured regions by applying this step iteratively and the regions which are not
coloured are discarded. For a typical image of the tubestorage as in figure 5.38, which consists
of the marker and one additional region, this process takes about 0.675 seconds on a 2 GHz
Intel Pentium 4 processor.

Figure 5.38: A typical image of the tube storage.

These regions are then reduced to their centre of gravity (COG) and colour angle – the charac-
teristic image features. The idea behind this approach is that the segmentation does – depending
on the fill threshold and the environmental parameters – not always detect the full object, but
leaves a corona around the regions undetected. If only the COGs are used as features and not
the entire region this means that the features are largely insensitive against segmentation errors
at the border of the region. In case of symmetric segmentation errors as they are likely with
symmetric shapes as used in this work they do not even affect them at all. The features are
therefore very robust.

From these features a model is generated and stored for each object to be recognised in the
desired pose. Object recognition is then performed by evaluating all possible permutations of
assignments of image features to model features, because with no initial guess about the position
of the object in the image no assumption about the placement of the features can be made. For
each of these assignments a 2d-displacement – translation alongx andy and rotation aboutz –
is then assumed and the displacement parameters are computed by a least-square fit. The mean-
square error of this fit is the classification error and is used to determine the correct assignment
and model. For the image in figure 5.38 this process takes an additional 0.019 seconds on a
2 GHz Intel Pentium 4 processor.

208 5.5. Experiments & Results

The displacement thus computed by the vision system is then used by the arm control soft-
ware to iteratively adjust the position of the arm until the required accuracy is achieved. This
implements a partially uncalibrated approach because neither the lens errors nor the conversion
factor between the camera and arm coordinate system are known. It is the explicit design of the
vision system to prefer iterations over the requirement of exact calibrations, with the purpose of
allowing for easy modifications of as much parts of the setup as possible.

The vision system has been tested in several experiments. According to these experiments
the inherent system noise is only about 1 to 2/100 millimetre, caused by image noise and arm
vibrations. If the arm is moved this noise increases – depending on the direction of the motion
– to about 1 to 9/10 millimetre because of the arm repeat accuracy. Since the arm hardware
claims to have a repeat accuracy of only 1/10 millimetre18 the surplus error must be attributed
to the control software. This basic accuracy is affected by additional image noise, but is largely
independent from the fill threshold parameter, The latter proves that using only the COGs is a
feasible and robust approach.

Experiments with calibrated displacements confirm that the system is an uncalibrated 2-
dimensional system because it suffers from lens and perspective errors. Due to these errors
the computed translational displacement is computed too low. For planar patterns (a plain 2-
dimensional problem) the error introduced by the lens errors is not larger than 4%, and for tilted
patterns (a 3-dimensional problem) the combined error introduced by the lens and perspective
errors is not larger than 8%. No cases have been observed where the computed deviation was
entirely wrong, because if it is due to a wrong assignment of regions this can be detected by
limiting the allowed LSF error. This shows that these error are within bounds that still allow a
robust compensation in an iteration loop.

The LSF error used for classification allows for a robust detection of obstacles and compu-
tation of the displacement in a single step. The markers used to label those objects which do
not provide their own feature pattern are not explicitly designed to yield a maximum separa-
bility in classification. In a few cases the safety margin between the correct and the next best
object class can become small, but so far no false positive classifications have been observed.
If the classification fails, it fails because one or more of the regions belonging to the object can
not be segmented due to extreme environmental parameters. In case false positive classifica-
tions should start to happen with more objects or larger displacements, the markers can easily
be redesigned with respect to separability. Therefore the system can be very easily adapted to
expanded or otherwise modified tasks.

5.5.3 Future Work & Applications

Despite being a very robust approach, the established system can certainly be further enhanced.
Only the biggest of its current drawbacks shall be mentioned here, the computing time needed
in the classification. As has been said, with no prior knowledge about the displacement of the
object no assumptions about the position of its features in the image can be made. This means
that all possible permutations of assignments have to be checked, which yields a(n

k
) complexity.

The time of about 0.019 seconds needed for this for a typical image of the tube storage is only
a best case, because it has only a single region that does not belong to the object. If an image
has a lot of these background regions this time increases over-exponentially.

18See section 4.1.1.

5.5. Experiments & Results 209

One idea to speed up the matching is to try and applyheuristicknowledge about the feature
placement. Of course, the system is supposed to be able to detectanypossible displacement,
but the hope in many cases is that anyactualdisplacement is rather small. With a positioning
accuracy of the mobile platform of about 1 centimetre translational and about 1/10th of a degree
rotational19 this seems reasonable. Especially the high rotational accuracy allows to make cer-
tain assumptions about the positioning of features, like for example a feature that is left above
another feature in the model will also be left above another feature in the image. Using assump-
tions like these the most likely assignments can be evaluated first, and only if they do not yield
a satisfying LSF error entire set of permutations have to be evaluated.

Another idea to speed up the matching is to not compute the LSF for full feature mappings.
It has been said that the more features are used the more robust the LSF works, but this is
not necessarily true for establishing the mapping too. For example, trying every assignment of
image features to only two of the model features yields both a lower number of permutations as
well as a faster LSF computation. Given a model withm ≥ 2 features and a camera image with
c ≥ m features this reduces the number of permutations to evaluate fromc!

(c−m)!
to c!

(c−2)!
. The

displacement “guess” computed this way can then be used to map the remaining features, after
which the LSF can be repeated with the full model to compute the “real” displacement.

Meanwhile, the idea to use colour imaging is being more widely pursued. The RoboCup20

championship where teams of mobile robots of all types are programmed to play soccer against
each other is but one example. In a typical RoboCup scenario like in figure 5.39 all important
parts are coded in deeply saturated colours – in particular the ball. To detect the ball, the goal
and the other players a simple colour segmentation like the one developed in this work can
be used. With colours as brilliant and distinct as in this example almost no application-specific
parameterisation is needed to obtain a good segmentation. As can be seen, the vision algorithms
in this work can be applied to a wide variety of situations.

Figure 5.39: A typical RoboCup scenario for the F2000 league. The left image shows the original
situation and the right image a colour segmentation with a region growing approach from this work.

19See section 3.6.
20Seehttp:/www.robocup.org .

210 5.5. Experiments & Results

Chapter 6

Realisation and Integration

“If there’s anything more important than my
ego around, I want it caught and shot now.”

Zaphod Beeblebrox

To implement the functionality presented in the three previous chapters a software architecture
given in figure 6.1 has been designed. This architecture consists of several separate programs,
each implementing only some aspects of the mobile platform control. The main part is the robot
programrobotd , which is accessed by thelaboratory control program(LCP). Therobotd
program implements the arm control using RCCL and the software part of the vision system.
It uses themobiled program to access the mobile platform, theimaged program to acquire
images from the camera and theinfobased program to read parameters and scripts. The
mobiled can be monitored with a visualisation program calledmobileView . robotd ,
mobiled and imaged have to run on the on-board PC of the mobile platform because they
need direct access to their hardware, but the other programs can run on any PC in the network.
The programs communicate with each other using network support classes.

bin/mobiledbin/robotd

bin/imaged bin/mobileViewbin/infobased

CLABDEVD

CINFOBASE

CMOBILE

CLABDEV

CMOBILECLABDEVD

CINFOBASE

CLABDEV

CINFOBASED

CMOBILED

Laboratory Control
Program (LCP)

Figure 6.1: Software architecture overview.

In this chapter the major aspects of realisation of the separate modules and their integration
into the laboratory context are presented. This includes software details of the implementation

211

212 6.1. Robot Command Scripts

and communication of the separate components as well as aspects which deal with system safety
and user interaction and maintenance. The selection is limited to aspects visible or otherwise
important to the user. It does, for example, not include the control of the mobile platform itself
because this one is completely encapsulated in the main robot application and not explicitly
visible to the user. The mobile platform control is therefore only described separately in chapter
A in the appendices. The aspects which are described here are:

• The scripting language used for implementing tasks in section 6.1,

• thedeterministic finite automatonor state automatonused to implement safety constraints
in section 6.2,

• the database INFOBASE used to store the scripts, state automaton and several other pa-
rameters to allow them to be easily modified by the user in section 6.3,

• some general networking issues raised by the interconnectedness of the system and com-
munication software to address them in section 6.4,

• the dedicated network support for laboratory devices to hide the network details from the
used as far as feasible in section 6.5 and

• the networked robot as an (actually,the most important) example of such a networked
laboratory devices in section 6.6,

followed by a short summary in section 6.7.

It is the interface described in section 6.6 that the user sees when accessing the robot system.
As such, it is still only usable by a programmer or computer program and not yet an – in terms
of specific computer science – unskilled laboratory staff member. Only with its integration into
a separate laboratory control system it becomes a fully usable system – a task splitting that was
deliberate in the project this work was embedded in. The design and implementation of the
laboratory control system is covered in [Poggendorf 2004].

6.1 Robot Command Scripts

Contrary to for example a welding robot used in an automobile factory the situation for the
mobile service robot in this work is much more dynamic. In case of a welding robot the situation
is static in that it always repeats the exact same operations for weeks and months because its
program is usually only changed when a new type of car is to be build. In case of the mobile
service robot it is very likely that its program will be changed much more often because of the
diversity of the tasks it is expected to perform. Not only the frequency of changes is supposed to
be higher, but also the amount of details, because different devices may need entirely different
ways to operate them. Therefore the robot software has to offer the user the largest possible
range of flexibility – ideally the full flexibility of RCCL.

Even with only a limited knowledge about RCCL (mainly how it handles positions and mo-
tions) rather complex sequences of operations can be quite easily programmed, even by non-
expert personnel. Using RCCL, however, means programming in C/C++, which is most likely
something one does not want the laboratory personnel to have to do. Requiring an – speaking
in terms of computer science – unskilled user to learn a full-fledged programming language like

6.1. Robot Command Scripts 213

C++ to operate a robot would be overly complicated and only distract the user from its real task.
Something easier is therefore needed.

Languages used by commercial robot vendors are typically BASIC-like interpreters (e.g.
VAL/V+ from Stäubli) and therefore easier to learn than C++. However, they still require
learning a proprietary language, which typically requires expensive training at the robot manu-
facturer. On the other hand side emulating such a language with all its syntax would be overly
complicated.

Other possibilities are existing script languages liketcl/tk , cgi / perl , PHP, python
or shellscripts – the possibilities are limitless, but troublesome. The main problem is that the
complete control application can not be realised in such a script language because of the com-
plexity of the task, the separation between what the user may be allowed to edit and what not
and especially real-time requirements. The application has therefore been designed to be writ-
ten in C++, with only some embedded scripts at places where they seem reasonable (the robot
motions). However, integrating one of the mentioned script languages into a C++ program is
also quite complicated. There exist approaches likeSWIG1 or mktclapp 2 for tcl/tk , but
these approaches are not suited to the problems of this work – e.g. they compile static scripts
into C/C++, or make C/C++ functions available intcl/tk , which is the wrong way round.
And, last but not least, they are also quite complex for a non-expert to learn.

Because of all these disadvantages using an existing language is not feasible. Instead, a
simple “parser” for a simple custom script “language” is used that does not share the above
problems. It is so downsized in complexity and functionality that it is trivial to learn, yet it is
appropriately suited for the task.

6.1.1 Custom Script Language

After having decided to use a custom script language the goal is of course to not make it too
complex. The script language therefore does not claim to follow any formal syntax, except that
the general structure in EBNF is

<COMMAND> [<ARGUMENT>]*

The script language includes calling of sub-scripts to reuse existing code, (very) limited con-
ditional branching and limited arithmetics on transforms, some commands to access the encap-
sulated vision system or the state automaton as well as commands to actually manipulate the
robot (motion commands and speed settings).

Variables (i.e. scripts starting with “s ” and transforms starting with “t ”) are logically bound
to a device (including the robot) and loaded on request. They are accessed by names and stored
in a stack-oriented way, where calling a (sub-) script enters a new stack context. Searching on
this (these) stack(s) is done using alast in first out(LIFO) approach, finding the last declared
variable of a given name. This means that it is possible to occlude an existing variable by a new
one with the same name. When a (sub-) script is terminated the corresponding stack context
and all its variables are deleted and “older” variables of the same name become visible again.

1http://www.swig.org
2http://www.hwaci.com/sw/mktclapp

http://www.swig.org
http://www.hwaci.com/sw/mktclapp

214 6.1. Robot Command Scripts

A special case are variables that are bound to the robot: These variables are “global” because
the stack context of the robot is never deleted. In addition to global configuration they may be
used to pass information about special situations between scripts (e.g.tTargBackup , which
is used to pass the exact position where the robot stopped fromsHoldTubeSampler to
sTakeTubeSampler). If changing a script requires exchanging more positional information
with other scripts a new transform has to be declared at the robot and the program has to be
restarted, however, this is rarely needed and could also be easily changed.

The general execution flow is as follows:

• At program start the parameters and scripts belonging to the robot are loaded and the
program enters the main loop, waiting for commands from the network (see section 6.4).

• If a remote client wishes to execute an operation it calls its appropriate local method
(e.g. HoldTubeSampler()), which sends a command over the network (e.g.
CMDHOLDTUBESAMPLER).

• When the command is received the corresponding static top-level script (e.g.
sHoldTubeSampler) is executed. This script must already exist, so it must have been
loaded at program start.

• This script uses the state automaton to check sanity and loads transforms and low-level
scripts belonging to the device in question.

• It then calls whatever commands are necessary to implement the operation, either directly
or by using subscripts (e.g.call sApproach andcall sHoldTube).

• Upon termination of the top-level script an error code is send back to the remote client,
which may then issue other commands.

Because of the reloading of parameters with each command the “real” scripts and transforms
finally implementing the sequence can be modified without restarting the program3.

6.1.2 Script Language Commands

Yorck von Collani has implemented scripts as binary graphs in his OPERA system because
this allows easier automatic modifications by learning algorithms4. Contrary to that, the scripts
in this work are implemented as plain ASCII text because they are intended to be modifiable
without agraphical user interface(GUI). This does complicate the parsing a little bit, but the
advantages due to easy saving/loading, viewing and editing outweigh this. An excerpt of the
list of the script commands can be seen in table 6.1.

Contrary to the RCCL++ wrapper around RCCL used by Collani and Ferch these commands
do not allow relative movements, but only absolute movements to targets given by position
equations or sets of joint angles. If a relative motion is to be performed a transform in a position
equation must be changed or a transform added to the equation. This makes the motion prim-
itives look complex, but has the advantage that – using “speaking” names for all transforms –
each single motion can be easily verified without requiring the context of previous motions.

3In the current implementation this does not hold for the top-level scripts (which is why they are “static”).
Changing one of them requires the program to be restarted, but this could rather easily be changed too.

4See [Collani 2001].

6.1. Robot Command Scripts 215

COMMAND ARGUMENTS EXPLANATION

checkstate [REQUIRESlist] [CHANGES list] enforce safety and reasonability checks on sequences of
high-level functions

call name invoke sub-scriptname
callif TRANS | ROT trsf op limit name invoke sub-scriptnameconditionally
open open the gripper
close close the gripper
pushspeed scale push the current speed on a stack and set the new speed

as current speed timesscale
popspeed restore the previous speed from the stack
move poseq move the arm in cartesian space according to a position

equation
movej poseq move the arm in joint space according to a position

equation
centerregion colour trsf poseq centre over the already centre-most region of colour

colour by changingtrsf in poseq

confirmmodel device trsf confirm modeldeviceby checking all models and set
trsf to its displacement

analyzemodel <device> <trsf> check only modeldeviceand settrsf to its displacement
centermodel device trsfposeq centre on modeldeviceby iteratively modifyingtrsf in

poseq

fmove [CTRL,spec] [ABORT,spec] poseq move in cartesian space according to a position equa-
tion while obeying force constraints and/or limits

selectslot device flags trsf settrsf to the displacement of a free/full slot fromde-
viceaccording toflags

load <device> load parameters and sub-scripts fordevice
settrsf trsf [coordspec | trsf2] settrsf
newtrsf trsf coordspec create and set a newtrsf to be visible until the current

script is finished
addtrsftrans <trsf> <transspec> addtransspecto the translational part oftrsf
multtrsf trsf trsf2 multiply trsf by trsf2

circle trsf trsf2 trsf3poseq move the arm in cartesian space according to a circular
motion relative to the current position

mobile movedevice move the mobile platform todevice

mobile forwarddistance move the mobile platform forward bydistancemetres
(may be negative)

arm start start the arm by disabling brakes
arm stop stop the arm by enabling brakes
arm approachposeq sequence of motions to unfold the arm from its park

position into an optimal position (in terms of best joint
scope) to approachposeq

arm retreatposeq retreat fromposeq and go into park position by apply-
ing the reverse order of commands as in ”approach”

Table 6.1: Excerpt of the most important script commands and their short explanations as currently
used for the robot system. Arguments written in CAPITAL are keywords. Variables written initalics
are atomic symbols, values or names and variables written inteletype are composite data structures.

Using the functionality of these script commands the sequence of operations needed to realise
the global commands are implemented, and most things can be changed online without having
to restart the system. The software has a simulator mode which does not move the arm or the
platform and may be used to check if the scripts are logically and syntactically correct and all
transforms properly defined.

6.1.3 Example

To give an example of how these scripts work the script to “place a tube into the sampler and
hold it there” (sHoldTubeSampler) will now be presented. The script is bound to the robot
and loaded at program start-up. It can be seen (comments stripped and broken into several lines
for readability) in table 6.2.

216 6.1. Robot Command Scripts

/robot/scripts/sHoldTubeSampler

1 checkstate REQUIRES holding=,gripper=nunc,tube=empty
CHANGES holding=sampler

2 mobile move sampler
3 load sampler
4 call sApproach
5 call sCenterModel sampler
6 settrsf tTargBackup tTarg
7 call sSelectSlot sampler 0 tSlot 250
8 settrsf tSlotBackup tSlot
9 call sHoldTube

Table 6.2: The contents of the scriptsHoldTubeSampler .

Line 1 implements the state automaton check described in section 6.2. Line 2 moves the
mobile platform to the stored position of the sampler (implicitly updating a global transform
tBase to the positioning error of the robot base). Line 3 loads the scripts and transforms
specific to the sampler (e.g. a transformtTarg). Line 4 calls a subscript that performs a basic
approach of the arm to the sampler (specified bytTarg). Line 5 calls a subscript that performs
the vision tasks of classifying the object and compensating its displacement (by modifying
tTarg). Line 6 stores the value oftTarg in the global transformtTargBackup because
it will be needed by a later script (sTakeTubeSampler) and would otherwise be lost. Line
7 selects one of the multiple slots of the sampler rack to place the tube in (by settingtSlot).
Line 8 stores the values oftSlot in the global transformtSlotBackup . Line 9 calls a
subscriptsHoldTube that actually performs the operation.

As has been said, line 3 loads scripts and transforms bound to the sampler. These transforms
can be seen in table 6.3. Due to the stack mechanism used for variables they will be used for all
subsequent commands and sub-scripts untilsHoldTubeSampler is finished. One example
of such a sub-script is the scriptsHoldTube , which is loaded in line 3 and called in line 9.
The scriptsHoldTube is used to implement the specific actions needed to hold a tube into the
sampler. It can be seen – comments again stripped – in table 6.4.

/sampler/trsfs/tTarg
855.95 139.90 154.61 0.000 90.000 -0.000

/sampler/trsfs/tUpRegrasp
-10.0 0 0 0 0 0

/sampler/trsfs/tUpTube
-32.0 0 0 0 0 0

/sampler/trsfs/tRegrasp1
0 0 -80 0 0 0

/sampler/trsfs/tRegrasp2
30 0 -80 0 0 0

/sampler/trsfs/tRegrasp3
30 0 -22 0 0 0

Table 6.3: Some transforms bound to the sampling device.

6.1. Robot Command Scripts 217

/sampler/scripts/sHoldTube

1 move tBase T6 t7 tGripperTool EQ tTarg tSlot tGraspHeight
2 settrsf tDown 0 0 0 0 0 0
3 pushspeed 0.25
4 fabortmove tDown 6.0 -1.0 0.0 NONE

tBase T6 t7 tGripperTool EQ tTarg tSlot tDown
5 popspeed
6 open
7 settrsf tDown 100 0 0 0 0 0
8 pushspeed 0.2
9 fabortmove tDown 2.0 -1.0 0.0 SOLVE

tBase T6 t7 tGripperTool EQ tTarg tSlot tDown
10 popspeed
11 move tBase T6 t7 tGripperTool EQ

tTarg tSlot tDown tUpRegrasp
12 move tBase T6 t7 tGripperTool EQ

tTarg tSlot tDown tUpRegrasp tRegrasp1
13 move tBase T6 t7 tGripperTool EQ

tTarg tSlot tDown tUpRegrasp tRegrasp2
14 move tBase T6 t7 tGripperTool EQ

tTarg tSlot tDown tUpRegrasp tRegrasp3
15 close

Table 6.4: The contents of the scriptsHoldTube bound to the sampler.

Line 1 moves the arm to tBase T6 t7 tGripperTool = tTarg tSlot
tGraspHeight (the EQ is motivated by RCCL and just a placeholder for “=”), a posi-
tion equation that that centres the gripper some distance (tGraspHeight) over the slot. Line
2 declares and initialises a new transform,tDown . Line 3 stores the current speed on the stack
and sets the new speed as 0.25 times the current speed. Line 4 moves the arm down with a
special force controlled command (note howtGraspHeight was exchanged bytDown
in the position equation from above). The motion is aborted when the force exceeds6 N ,
whatever the position may be. This “collision” happens when the tube has been fully inserted
and hits the bottom of the slot. Line 5 restores the old speed. Line 6 opens the gripper. Line 7
setstDown to a new value (that will actually be inside the rack). Line 8 sets a new speed of
0.2 times the current speed. Line 9 again moves the arm down (because the value oftDown
has changed), but only until a force of2 N is exceeded. Contrary to the force controlled move
above the value oftDown at which this happened is computed for later use (this is what the
“SOLVE” says). This “collision” happens when the gripper hits the rack. Line 10 restores the
old speed again. Lines 11 - 14 perform motions a little bit up again, a bit backwards, a bit down
and a bit forward again, leading to that the gripper now reaches into the rack. Line 15 closes
the gripper, leading to that it fixates the tube while the sampler is running.

It can be seen that the operation is basically split into several motions – force controlled
ones and normal ones – executed at various speeds. The position equations for these motions
are very verbose: Targets are not given directly, but only by means of multiple concatenated
relative transforms.

218 6.2. Robot State Automaton

It has to be kept in mind that a position equation doesnot specify a motion, but only a
target. The motion is performed implicitly on a straight line from the current position to the
target. Therefore, even if a target can be given by a single transform it may only be safely
reachable from a certain point with more than one motions. Giving every relative displacement
a “speaking” name and not combining the adjacent transforms into something less readable is a
good way of making the position equation very intuitive.

It is obvious that - should it become necessary during testing or operation - the sequence can
be most trivially edited. Splitting a motion into several motions only means to add lines to the
script, and changing targets or relative displacements only means to edit the transforms. No
recompilation is needed, and if the changes are not in the top-level script the program even need
not be restarted. This way any change (that does not require a completely new command) can
be “programmed” very quickly.

6.2 Robot State Automaton

A special command is thecheckstate command implementing safety constraints. Generally,
using the commands from the script language the user can program a great number of sequences,
use- and meaningful ones as well as futile and even dangerous ones. A futile sequence would
for example be to dispose a tube twice, whereas a dangerous one would be to grab a tube twice.

In the former case there would simply be nothing in the gripper to dispose in the waste bin
and the gripper would open and drop nothing, but in the latter case it would already be holding
a tube when approaching the storage rack and positioning over another tube. In this case a
collision with the storage rack would be unavoidable, and even if it could be detected (which is
currently not possible) it would be hard to decide what to do next.

One solution – given a detection was possible – would be to unroll the motions to bring
the robot back into a safe position, but that would not recover the complete state information.
Appropriate sensors would be needed to tell if the robot has a tube in its gripper after this
recovery or not, because otherwise one can not tell if it has slipped during the collision. And
even if it still has a tube grasped that tube may have shifted and so subsequent operations are
likely to fail. The problem with any collision is that one can not predict its consequences –
one can only use sensors to detect them. Since the robot system has only very limited sensoric
capabilities this approach would not work and was therefore discarded.

Another and much simpler solution is to deny the command immediately if it does not match
the current state of the robot or device, and therefore astate automatonhas been implemented.
In this state automaton the state

S = {(A1, V1), (A2, V2), ..., (AN , VN)} .

is given as a list ofattribute Ai andvalueVi pairs. The script for each global command
contains acheckstate command to check the sanity of the command byrequiring certain
attributesAi to have certain valuesVi and by definingchangesto them if the command should
be legal. BothAi andVi are ASCII strings, and thereforeS can also be expressed as an ASCII
string.

The syntax for thecheckstate command is defined as

checkstate REQUIRES <list> [CHANGES <list>]

6.2. Robot State Automaton 219

which means that it expects either two or four arguments:

1. The keywordREQUIRES,

2. a list of attribute/value pairs as requirements and optionally

3. the keywordCHANGESand

4. a list of attribute/value pairs as changes.

The attributes required and changed do not have to be the same. For example, the
checkstate statement used in the script for putting a tube into the centrifuge and starting
it (sLoadAndRunCentrifuge) is given as:

checkstate REQUIRES holding=,gripper=nunc,tube=full,centrifuge=open
CHANGES gripper=,tube=,barcode=,centrifuge=closed

The requirements are that the robot must not be standing at any device (holding=), must
have a full (tube=full) NUNC tube in the gripper (gripper=nunc) and the centrifuge
must be open (centrifuge=open). If these requirements are met the operation is allowed
and the changes are applied. The changes are that after the operation the centrifuge is closed
(centrifuge=closed), the robot does not have any tube in the gripper (gripper=) and
therefore no assumptions about whether that tube is full (tube=) or whether it has a barcode
(barcode=) can be made.

The complete robot state automaton as used in this work is given in table 6.5. The most com-
mon attributeholding implements the basic safety constraints by allowing only very specific
commands in certain situations. For example, in situations where the robot remains standing at
a device to hold a tube while that device is operating only the one command removing it from
that device is allowed as next command. Other attributes implement more constrains. Using
this state automaton some futile sequences are still possible, but the most prominent errors are
caught. It is up to the user to impose more restrictions to narrow down the legal actions to a
single sequence – if that should be desirable.

The order of the commands in table 6.5 corresponds to one possible meaningful sample man-
agement cycle at robot level. The sequence with its state requirements and changes is given as
follows:

1. UnparkCharger: The robot is unparked from the charging station at which it waits for
the beginning of a new sample management cycle. The state requirements before the op-
eration are: The robot must be parking at the charging station (holding=charger).
The state changes after the operation are: The robot is not standing at any device
(holding=).

2. PickTubeStorage: The robot drives to the storage rack for NUNC tubes without bar-
codes and grabs one from a filled slot. The state requirements before the operation are:
The robot must not be standing at any device (holding=) and must not have any-
thing grasped (gripper=). The state changes after the operation are: The robot has
grasped an empty (tube=empty) NUNC tube (gripper=nunc) without a barcode
(barcode=false).

220 6.2. Robot State Automaton

#
C

om
m

and
R

equirem
ents

C
hanges

1
U

nparkC
harger

holding=
charger

holding=
2

P
ickT

ubeS
torage

holding=
,gripper=

gripper=
nunc,tube=

em
pty,barcode=

false
3

H
oldT

ubeS
am

pler
holding=

,gripper=
nunc,tube=

em
pty

holding=
sam

pler
4

TakeT
ubeS

am
pler

holding=
sam

pler
holding=

,tube=
full

5
S

hakeT
ube

holding=
,gripper=

nunc,tube=
full

6
H

oldT
ubeP

ipette
holding=

,gripper=
nunc

holding=
pipette

7
TakeT

ubeP
ipette

holding=
pipette

holding=
,gripper=

nunc
8

LoadA
ndR

unC
entrifuge

holding=
,gripper=

nunc,tube=
full,centrifuge=

open
gripper=

,tube=
,barcode=

,centrifuge=
closed

9
P

ickC
edexS

torage
holding=

,gripper=
gripper=

cedex,tube=
em

pty
10

H
oldC

edexP
ipette

holding=
,gripper=

cedex
holding=

pipette
11

TakeC
edexP

ipette
holding=

pipette,gripper=
cedex

holding=
,tube=

full
12

P
laceC

edexC
edex

holding=
,gripper=

cedex,tube=
full

gripper=
,tube=

13
S

topA
ndU

nloadC
entrifuge

holding=
,gripper=

,centrifuge=
closed

gripper=
nunc,barcode=

,tube=
full,centrifuge=

open
14

H
oldT

ubeP
ipette

s.a.
s.a.

15
TakeT

ubeP
ipette

s.a.
s.a.

16
P

laceT
ubeW

aste
holding=

,gripper=
nunc

gripper=
,tube=

,barcode=
17

O
penF

ridge
holding=

,gripper=
,fridge=

closed
fridge=

open
18

P
ickT

ubeS
torageB

arcode
holding=

,gripper=
gripper=

nunc,tube=
em

pty,barcode=
true

19
H

oldT
ubeP

ipette
s.a.

s.a.
20

TakeT
ubeP

ipette
s.a.

s.a.
21

H
oldT

ubeS
canner

holding=
,gripper=

nunc,barcode=
true

holding=
scanner

22
R

otateT
ubeS

canner
holding=

scanner
23

TakeT
ubeS

canner
holding=

scanner
holding=

24
P

laceT
ubeA

ndC
loseF

ridgeholding=
,gripper=

nunc,fridge=
open

gripper=
,barcode=

,tube=
,fridge=

closed
25

P
ickC

edexC
edex

holding=
,gripper=

gripper=
cedex,tube=

26
P

laceC
edexW

aste
holding=

,gripper=
cedex

gripper=
,tube=

27
P

arkC
harger

holding=
holding=

charger

Table
6.5:

T
he

com
plete

state
autom

aton
w

ith
the

state
requirem

ents
and

changes
for

the
com

m
ands

as
needed

for
a

m
eaningfuland

reasonably
safe

sam
ple

m
anagem

entcycle.

6.2. Robot State Automaton 221

3. HoldTubeSampler: The robot drives to the sampling device and holds the NUNC tube
into the slot. The state requirements before the operation are: The robot must not be
standing at any device (holding=) and must have grasped an empty (tube=empty)
NUNC tube (gripper=nunc). The state changes after the operation are: The robot
remains standing at the sampling device (holding=sampler).

4. TakeTubeSampler: The robot takes the NUNC tube it has been holding out of the sam-
pling device. The state requirements before the operation are: The robot must be standing
at the sampling device (holding=sampler). The state changes after the operation are:
The robot is no longer standing at any device (holding=) and the grasped NUNC tube
is full (tube=full).

5. ShakeTube: The robot shakes the filled NUNC tube to prevent sedimentation of the
cells. The state requirements before the operation are: The robot must not be standing
at any device (holding=) and must have grasped a full (tube=full) NUNC tube
(gripper=nunc). There are no state changes with this command.

6. HoldTubePipette: The robot drives to the pipetting station and holds the tube under the
pipetting needle. The state requirements before the operation are: The robot must not
be standing at any device (holding=) and must have grasped a (not necessarily full)
NUNC tube (gripper=nunc). The state changes after the operation are: The robot
remains standing at the pipetting station (holding=pipette).

7. TakeTubePipette:The robot takes the NUNC tube it has been holding out of the pipetting
station. The state requirements before the operation are: The robot must be standing at
the pipetting station (holding=pipette) and must be grasping a NUNC tube there
(gripper=nunc). The state changes after the operation are: The robot is no longer
standing at any device (holding=).

8. LoadAndRunCentrifuge: The robot drives to the centrifuge, places the NUNC tube into
the slot of the cage, closes the lid and starts the centrifuge. The state requirements before
the operation are: The robot must not be standing at any device (holding=), must have
grasped a full (tube=full) NUNC tube (gripper=nunc) and the centrifuge must be
open (centrifuge=open). The state changes after the operation are: The centrifuge is
closed (centrifuge=closed), the robot is no longer grasping anything (gripper=)
and the fill and barcode flag of the (non-grasped) tube are reset to unknown (tube= and
barcode=).

9. PickCedexStorage: The robot drives to the storage for Cedex tubes and grasps one
tube from a filled slot. The state requirements before the operation are: The robot
must not be standing at any device (holding=) and must not have grasped anything
(gripper=). The state changes after the operation are: The robot has grasped an empty
(tube=empty) Cedex tube (gripper=cedex).

10. HoldCedexPipette: The robot drives to the pipetting station and holds the Cedex tube
under the pipetting needle. The state requirements before the operation are: The robot
must not be standing at any device (holding=) and must have grasped a (not necessarily
empty) Cedex tube (gripper=cedex). The state changes after the operation are: The
robot remains standing at the pipetting station. (holding=pipette).

222 6.2. Robot State Automaton

11. TakeCedexPipette:The robot takes the Cedex tube it has been holding out of the pipet-
ting station. The state requirements before the operation are: The robot must be stand-
ing at the pipetting station (holding=pipette) and must be grasping a Cedex tube
there (gripper=cedex). The state changes after the operation are: The robot is no
longer standing at any device (holding=) and the grasped Cedex tube is now full
(tube=full).

12. PlaceCedexCedex:The robot drives to the Cedex and places the Cedex tube into the slot
of the carousel. The state requirements before the operation are: The robot must not be
standing at any device (holding=) and must have grasped a full (tube=full) Cedex
tube (gripper=cedex). The state changes after the operation are: The robot has no
longer grasped any tube (gripper=) and the fill flag of the (non-grasped) tube is reset
to unknown (tube=).

13. StopAndUnloadCentrifuge: The robot drives to the centrifuge (assuming that it has
already finished), opens the lid and grasps the tube from the cage. The state re-
quirements before the operation are: The robot must not be standing at any de-
vice (holding=), must not have grasped anything (gripper=) and the centrifuge
must be closed (centrifuge=closed). The state changes after the operation are:
The centrifuge is now open (centrifuge=open) and the robot has grasped a full
(tube=full) NUNC tube (gripper=nunc) without a barcode (barcode=).

14. HoldTubePipette: see above

15. TakeTubePipette:see above

16. PlaceTubeWaste:The robot drives to the waste bin and disposes of the NUNC tube.
The state requirements before the operation are: The robot must not be standing at
any device (holding=) and must have grasped a (either full or empty) NUNC tube
(gripper=nunc). The state changes after the operation are: The robot has no longer
grasped anything (gripper=) and the fill and barcode flag of the (non-grasped) tube are
reset to unknown (tube= andbarcode=).

17. OpenFridge: The robot drives to the fridge and opens the sliding lid. The state re-
quirements before the operation are: The robot must not be standing at any device,
(holding=) must not have grasped anything (gripper=) and the fridge lid must be
closed (fridge=closed). The state changes after the operation are: The fridge lid is
now open (fridge=open).

18. PickTubeStorageBarcode:The robot drives to the storage rack for NUNC tubes with
barcodes and grasps a tube from a filled slot. The state requirements before the opera-
tion are: The robot must not be standing at any device (holding=) and must not have
grasped anything (gripper=). The state changes after the operation are: The robot
has grasped an empty (tube=empty) NUNC tube (gripper=nunc) with a barcode
(barcode=true).

19. HoldTubePipette: see above

20. TakeTubePipette:see above

6.2. Robot State Automaton 223

21. HoldTubeScanner: The robot drives to the barcode scanner and holds the tube into its
laser beam. The state requirements before the operation are: The robot must not be stand-
ing at any device (holding=) and must have grasped a NUNC tube (gripper=nunc)
with a barcode (barcode=true). The state changes after the operation are: The robot
remains standing at the barcode scanner (holding=scanner).

22. RotateTubeScanner:The robot rotates the NUNC tube it has been holding in the barcode
scanner to ensure the laser can read the barcode. The state requirements before the op-
eration are: The robot must be standing at the barcode scanner (holding=scanner).
There are no state changes with this command.

23. TakeTubeScanner:The robot takes the tube it has been holding out of the barcode scan-
ner. The state requirements before the operation are: The robot must be standing at the
barcode scanner (holding=scanner). The state changes after the operation are: The
robot is no longer standing at any device (holding=).

24. PlaceTubeAndCloseFridge:The robot drives to the fridge, places the NUNC tube in a
free slot and closes the lid. The state requirements before the operation are: The robot
must not be standing at any device (holding=) and must have grasped a (either full or
empty) NUNC tube (gripper=nunc) and the fridge must be open (fridge=open).
The state changes after the operation are: The robot is no longer grasping anything
(gripper=), the fill and barcode flag of the (non-grasped) tube are reset to unknown
(barcode= andtube=) and the fridge is closed (fridge=closed).

25. PickCedexCedex: The robot drives to the Cedex and picks the Cedex tube from the
carousel. The state requirements before the operation are: The robot must not be standing
at any device (holding=) and must not have grasped anything (gripper=). The state
changes after the operation are: The robot has grasped a Cedex tube (gripper=cedex)
with an unknown fill flag (tube=).

26. PlaceCedexWaste:The robot drives to the waste bin and disposes of the Cedex tube.
The state requirements before the operation are: The robot must not be standing at
any device (holding=) and must have grasped a (either full or empty) Cedex tube
(gripper=cedex). The state changes after the operation are: The robot has no longer
grasped anything (gripper=) and the fill flag of the (non-grasped) tube is reset to un-
known (tube=).

27. ParkCharger: The robot drives to the charging station, docks and waits for the next
sample management cycle. The state requirements before the operation are: The robot
must not be standing at any device (holding=). The state changes after the operation
are: The robot remains standing at the charging station (holding=charger).

It has to be noted that the automaton is adeterministic finite automaton(DFA), whereas the
system model isnon-deterministic. The definition of being non-deterministic is that the same
action based on the same original state can lead to one of several distinct new states. This can be
caused by a random selection of actions or by state information that does not cover all process
variables. In the latter case it can happen that an action changes some entity that is not part
of the state. The automaton can not see this and therefore can not correctly determine the new
state. The usual solution is to use aggregated states and try and separate the possibilities later.

224 6.3. Database

Another way of not being able to determine the correct state is to not have the required
sensors. If, for example, the robot is commanded to grasp a tube it can not detect whether the
operation has succeeded or not because is does not have a sensor to do this, and any state model
of how good something is grasped is therefore useless. Since it has to choose a new state it can
as well choose a description of the grip description. Therefore, incomplete observance of the
system state automatically makes the system non-deterministic.

Finally, external influence on the system for example by human personnel moving objects
can lead to spontaneous state changes. Most of these state changes are observable in terms of
being detectable by the robot, but only at the time when the robot hits upon them and not at the
time when they occur. External state changes which are not instantly made known to the system
make it, by definition, non-deterministic.

All of this is actually the case for the robot system in this work, which does not have enough
sensors to monitor all system parameters and can therefore not completely determine its state.
The solution in this case is to drop all those components from the state which can not be mea-
sured or relied on in the first place. For example, when a tube is grasped the system can not
decide whether the operation succeeded or not, it can only assume that it did. The state automa-
ton can therefore not be used to select actions in case operations go wrong, but only to determine
legal subsequent operations under the assumption that the previous operation succeeded and its
state assumption is correct. Anything beyond this is not within its scope.

6.3 Database

Storing parameters hardcoded in a program is not just bad style but may even be considered a
programming error. In case of the system developed in this work and its intended use it would
render the entire approach futile because it would require laypersons to edit and recompile the
programs after even the slightest changes. Therefore one of the basic concepts of this system is
to storeall parameters in a central data base, including the above mentioned scripts, transforms
and state automaton attributes.

6.3.1 Database Considerations

Having decided to use a database for storing parameters, the question of using a commercial
available database arises. Due to the inhomogeneous computer hardware with its inhomo-
geneous operating systems that are required by the different components of the system this
database is required to have C/C++ frontends for the Linux, Windows and QNX operating sys-
tem. This poses a problem because at the time of the system design the commonly known
databases like Oracle5 or IBM DB/26 did not support QNX. It is claimed that

only Oracle runs on every popular platform including UNIX, Windows and Linux7,

but this advertisement (like usual) fails to specify what exactly it means by saying “UNIX”.
Other, freely available databases were also discarded because of lacking QNX support. Today
there are ways of running e.g. PostgreSQL8 on QNX, but they require a lot a patchwork to get

5http://www.oracle.com/products/
6http://www-3.ibm.com/software/data/db2/
7http://www.ostusa.com/products/oracle_software.asp
8http:/www.postgresql.org

http://www.oracle.com/products/
http://www-3.ibm.com/software/data/db2/
http://www.ostusa.com/products/oracle_software.asp

6.3. Database 225

it running and are generally unsupported. LDAP9, the light-weight directory access protocol,
might have been a considerable alternative, but was not yet commonly known at the time of the
system design.

On the other hand side a full-fledged database would be disproportionate for the trivial task
of storing simple parameters. Because of this, and because the efforts to port an existing freely
licensed database to QNX and to implement a miniature database just suited to the project’s
needs are roughly comparable a “database” called INFOBASE has been developed.

6.3.2 INFOBASE

The INFOBASE is a small, lean, network-capable client/server database. It is organised like a
simple filesystem, storing data in files that are kept in directories. Since it keeps the entire data
in memory rather than actually writing it to a real disk it can be seen as a mixture between a
ramdisk and a network filesystem. Entry names (directories or files) are treated according to the
UNIX convention, i.e. the normal slash “/ ” is used to separate path components. Names may
be absolute (starting with a “/ ”) or relative to whatever the current working directory is. The
virtual directories “. ” and “.. ” do exist and can be used as in other filesystems, except that the
“ .. ” directory of the global root directory “/ ” points back to itself. Data is internally treated
as binary, although in this project only ASCII data is used. The entire or part of the directory
tree can be dumped as ASCII text.

An example can be seen in table 6.6. It contains a directory “robot” which contains the files
“address” (no contents specified), “jZero”, “models” and a subdirectory “trsfs”, which in turns
contains a file “t7”. The file “/robot/models” shows that the contents may be broken over several
lines when printed, but internally it is just a single string. What can not be seen in this print is
that the lines 6 and 7 end with a space. This is needed for reading back a dump because the
lines are binary concatenated, but the words have to be separable.

1 /robot/
2 /robot/address
3 /robot/jZero
4 "0 0 0 0 0 0 0
5 /robot/models
6 "tubestorage tubestoragebarcode sampler sampler2
7 "centrifuge centrifuge2 pipette fridge cedexstorage
8 "cedex cedex2 scanner
9 /robot/trsfs/
10 /robot/trsfs/t7
11 "0 0 80 0 0 0

Table 6.6: Example for INFOBASE data storage.

Just like for printing the directory tree (ibls), tools exist to remove (ibrm), copy (ibcp) or
move or rename (ibmv) entries and to save and load (parts of) the tree (ibsave / ibload).
These tools can be used as a way to modify the contents of the INFOBASE, however, most
higher level programs use the provided C++ classCINFOBASEimplementing the client access.

9http:/www.openldap.org

226 6.4. Networking

In a networked environment the client and server of a database need not be running on the
same machine. In case of the INFOBASE the serverinfobased is found by the clients using
broadcasts, which means that it can run on any machine that is in the same sub-net as the
others10. Broadcasts in an IP network are UDP datagrams and do not support features like flow
control and fragmenting. Because of this the broadcasts are only used to establish the IP address
of the server. After this initialisation step a TCP connection is established between the client
and the now known server. This method of locating the INFOBASE is used by theCLABDEV
class described in section 6.5 to provide transparent network support for other components of
the system.

The clients access the INFOBASE server infobased by means of a C++ client class
CINFOBASEthat is documented in section D.1 in the appendices.

6.4 Networking

The INFOBASE is only one component of the system that has to be accessible by other compo-
nents. Overall, the system consists of many components implemented on or accessed by many
computers using many different communication media and protocols. The resulting network is
very complex, as can be seen in figure 6.2. For the purpose of this work the individual devices
can be grouped into three classes:

1. “Passive” devices that do not need and do not have any computer interface at all, but are
only passively operated. Examples include the storage racks and the fridge.

2. “Active” devices that do have an interface to offer at least some low-level functionality.
Because of their limited capabilities these devices actuallyrequirean external controlling
computer to perform complex and useful tasks. Examples include the first sampler where
stepper motors have to be controlled over a Centronics parallel line in real-time, and the
second sampler and the pipetting station which have to be programmed by RS422/RS232
serial lines.

3. “Intelligent” devices that can be given complex commands and have enough intelligence
to process them on their own. These devices have an ethernet interface and can be ac-
cessed by TCP/IP. Examples include the third sampler and the robot.

This section describes the communication of the type 3, the TCP/IP networked devices only.
The details of the other communication media and protocols is discussed in [Poggendorf 2004].

6.4.1 TCP/IP Networking

The system does use distributed hardware, but the distribution is somewhat limited. The type
2 devices have to be tightly connected to a computer acting as a master for them, which auto-
matically leads to a centralised system because due to hardware and simplicity reasons exactly
and only one computer is used for this. Due to these technical constraints the communication is
done in a master/slave manner. Complex communication networks as contract nets used by C.

10Contrary to multicasts, broadcasts are for obvious reasons not forwarded by routers and switches, therefore
only machines in the same sub-net see the broadcast. In case the INFOBASE should be running on a machine that
can not be reached by broadcast the environment variableINFOBASEmay be set to an explicit host name. If this
variable is present the broadcast mechanism is overridden.

6.4. Networking 227

Figure 6.2: Overview of the interconnections and the data flow between the
different components of the entire robot system. Image by I. Poggendorf.

Scheering11 and T. Graf12 or other (multi) agent systems as used by M. Ferch13 are not required
by the task definition.

This motivates organising the TCP/IP networked type 3 devices according to the same idea –
a dedicated master/slave architecture. Logically, the resulting network as in figure 6.3 therefore
has astar topologyusing a TCP/IP medium as backbone. Technically, the main medium is
wired 100 Mbps IEEE 802.3u ethernet, but the mobile robot can of course not use wires. It
is therefore attached to the network by 11 Mbps IEEE 802.11bwireless lan(WLAN), using a
dedicated PC as router into the wired network. WLANs, however, do raise quite a few issues
like their operational range or safety questions.

The operational range of a IEEE802.11b WLAN is typically 100 m in an open-air environ-
ment and may be less than 10 m inside buildings with concrete walls and/or other obstacles.
This is currently not a problem because the task does not specify leaving the room in which all
the devices are cumulated. If leaving the room should become desirable a more sophisticated
WLAN with several access pointscould be used to extend the operational range.

Another issue is the safety of a WLAN – since everyone within the operational range can in-
tercept the radiowaves everyone can read the raw data being transmitted. Thewired equivalent
privacy (WEP) used in IEEE802.11b networks to encrypt the raw data can not be considered

11See [Scheering 2000].
12See [Graf 2000].
13See [Ferch 2002].

228 6.5. Network Support for Laboratory Devices

(central laboratory
management system)

"cirp" / QNX

barcode scanner

centrifuge

pipette

1st sampler parallel

serial

serial

serial

"bernoulli" / Linux

(infobase)

Cedex / Windows MFCS / Windows

storage rack(s)

fridge

Robot Arm
MHI PA−10

Mobile Platform
Neobotix MPL−655

2nd sampler Ethernet / RS232RS232

Ethernet

Camera

FTS

Gripper

A
rcN

et
SV

H
S

proprietary
digital I/O

Robot

C
A

N

"boltzmann" / Linux
(robotd, mobiled,
imaged)

TCP/IP

(ETH)

TCP/IP(ETH) (E
TH)

TCP/IP

(E
TH)

(E
T

H
)

T
C

P/
IP

TCP/IP

(WLAN)

TCP/IP

3rd sampler

Figure 6.3: The network oriented system setup. Items marked in blue are computers or intelli-
gent devices that can be accessed via ethernet. The box marked in red is the central controlling
computer “cirp” running the laboratory management system. Items marked in green are devices
than can only be accessed indirectly and items in yellow do not have a computer interface at all.

safe because it has known systematic weaknesses – working exploits do exist. Since the robot
is not yet used continuously this is a suboptimal situation, but not a real safety risk. For a more
permanent use the safety should of course be improved by implementingaccess control lists
(ACLs) on the bridge computer, allowing only known clients to use the network, and/or by
using virtual private networks(VPNs) realizing a safe high-level encryption.

6.4.2 CNETOBJ

In order to simplify the interaction with the TCP/IP network a framework calledCNETOBJ
has been developed that hides network details and allows for efficient and simple transfer of
C++ objects. It deals with properly encoding object data and creating proper object instances
on the receiving side. As such it is similar to frameworks like CORBA14, but it can not be
really compared with it because it aims at only a fraction of CORBA’s goals. The main pur-
pose of theCNETOBJframework is to allow a simple, lean and efficient one-shot master/slave
object transfer of C++ objects between hosts in a common subnet, and not the full feature set
of CORBA, which is a more abstract definition supporting multiple programming languages,
network topologies and communication types.CNETOBJis therefore very small and can be
used on system with only very limited resources, whereas CORBA involves a lot of overhead
that requires more powerful machines.

The CNETOBJcommunication and transfer mechanism consists of two parts, theCCHUNK
class implementing a buffer and theCNETOBJclass itself. Both classes are documented in
section D.2 in the appendices.

6.5 Network Support for Laboratory Devices

Based on the low-levelCNETOBJmechanism is the mid-level network support for laboratory
devices implemented in theCLABDEVframework. In addition to the data encoding and trans-
mission ofCNETOBJ, this framework presents an encapsulation of services that further simpli-

14Seehttp://www.corba.org and the Object Management Group athttp://www.omg.org .

http://www.corba.org
http://www.omg.org

6.5. Network Support for Laboratory Devices 229

fies the network use. It implements a client/server based one-shot service where exactly one
command (with parameters) is send to a server and exactly one answer (with parameters) is
send back to the client.

Instead of accessing a remote server by its IP address and port number directly they access it
by its uniquename. To allow clients to resolve these names the server stores its IP address and
port number in the entry

/ name/address

in the INFOBASE, leading to a communication as in figure 6.4. Since the INFOBASE can in
turns automatically be found by the clients using broadcasts all services using theCLABDEV
framework can therefore be automatically found regardless of which computer they are im-
plemented on. By resolving the nameeach timea service is called and only establishing a
connection for the time of the one-shot service the design even allows to transparently restart
servers while the main control program is running.

bin/infobased

LCP bin/robotd

CLABDEV

CINFOBASE CINFOBASE

CLABDEVD

CINFOBASED

Figure 6.4: TheCLABDEVnetwork support framework.

6.5.1 CLABMSG / CLABDEV / CLABDEVD

TheCLABDEVframework is implemented in three C++ classes: The message classCLABMSG,
the client classCLABDEVand the server (daemon) classCLABDEVD. The message class
CLABMSGdefines parameters as in table 6.7, which are more than enough for the mobile robot
system because only the names of scripts to be executed are transmitted, plus at most two pa-
rameters in very few cases. Other parts of the laboratory automation system also using the
CLABDEVframework use more parameters, but the current restriction has proven to not be a
limitation. The arrays are of fixed size for simplicity reasons only – theCNETOBJframework
could also support transmission of variable sized arrays.

TheCLABMSG, CLABDEVandCLABDEVDclasses are documented in detail in section D.3
in the appendices.

230 6.5. Network Support for Laboratory Devices

#define MAXSTRINGDATA 4

class CLABMSG : public CNETOBJ
{
public:

int cmd;
int intData[8];
float floatData[8];
char * stringData[MAXSTRINGDATA];
int auxDataSize;
void * auxData;

};

Table 6.7: The message classCLABMSG.

6.5.2 Laboratory Devices

The C++ classesCLABMSG, CLABDEVandCLABDEVDimplement only the abstract mid-level
framework of the network communication, but they do not implement any real service. Support
for a laboratory device using these classes has to be implemented in derived classes that imple-
ment or overwrite the appropriate methods. The following devices currently use this mechanism
of communication:

• The MFCS,

• the pipette (although in this case client and server are running on the same host),

• the Cedex,

• the camera serverimaged and

• the robot serverrobotd described in the next section.

Communication over theCLABDEVframework is currently subject to some safety issues.
Most notably the only protection used on the WLAN is the weak WEP encryption15. At the
time of writing cards with the newer and betterwi-fi protected access(WPA) encryption were
not yet supported under Linux. The only protection is theAllow() method ofCLABDEVD,
which can limit access to certain IP addresses. While faking IP addresses is not impossible, it
is not trivial, especially if the network is properly administered.

As a result, the current implementation should only be used in a restricted environment. If
more protection is needed the software can either be changed to use an explicit SSL encryption
or a VPN can be established over the WLAN. The latter solution has the advantage that is does
not require the software to be changed.

15WEP uses the stream encryption method RC4 and computed – but not random – initialisation vectors, which
makes it decipherable if only enough ciphered data can be monitored (WEP64 (40 bit key) app. 15 min, WEP128
(104 bit key) app. 40 min)

6.6. The Networked Robot 231

6.6 The Networked Robot

One – the most interesting – example of a high-level service based on the mid-levelCLABDEV
framework is the robot server in figure 6.5. The robot server implements the arm control using
RCCL and the vision system. It in turns uses theCLABDEVframework to access the image
serverimaged to acquire images from the camera. Access to the mobile platform control
programmobiled is established by a different communication framework because the mobile
platform control is designed to be accessible by other programming languages than C++ (see
chapter A in the appendices).

− receives commands from clients
− calls internal functionality

CLABDEVD::Event()

ExecuteArmCmd()

ExecuteScript()

Execute...

ExecuteMobileCmd()

CMOBILE

CLABDEV("camera")

CVISION
− implements color vision

CINFOBASE
−accesses parameter database

CROBOTD::CLABDEVD("robot")

calls
cal

ls

us
es

calls

calls

CLABDEV("robot")

LCP

CLABDEVD("camera")
− accesses camera

bin/imaged

CMOBILED

bin/mobiled

bin/robotd

calls

calls

calls

FRAMEGRABBER

Figure 6.5: The robot serverrobotd .

6.6.1 CROBOT / CROBOTD

The robot support is implemented in two C++ classes,CROBOTfor the client side and
CROBOTDfor the server (daemon) side. These classes are derived from theirCLABDEVcoun-
terparts and implement the interface to the robot’s functionality. Their full documentation is
given in section D.4 in the appendices.

The client classCROBOTis derived fromCLABDEV. It implements the client interface to the
robot’s functionality and is documented in subsection D.4.1 in the appendices. It is all that can
be externally seen from the robot – all the implementation details of the commands are hidden
in the scripts and parameters in the INFOBASE. An excerpt of the methods implemented by
CROBOTcan be seen in table 6.8. The methods have quite “speaking” names, and so only the
first one shall be described here to show the abstract level at which robot commands operate16:

16See the definition of the state automaton on page 219, or tables 7.1 and 7.2 in section 7.1 for explanations of
the other methods.

232 6.6. The Networked Robot

class CROBOT : public CLABDEV
{
public:

CROBOT (void) : CLABDEV ("robot");
virtual ˜CROBOT (void);

int PickTubeStorage (void);
int PlaceTubeStorage (void);
int PickTubeStorageBarcode (void);
int PlaceTubeStorageBarcode (void);
int PlaceTubeWaste (void);

int HoldTubeSampler (void);
int TakeTubeSampler (void);
int HoldTubeSampler2 (void);
int TakeTubeSampler2 (void);

int HoldTubePipette (int numShake,
double depth);

int TakeTubePipette (void);

int OpenCentrifuge (void);
int PlaceTubeCentrifuge (void);
int PickTubeCentrifuge (void);
int RunCentrifuge (void);

int CloseCentrifuge (void);
int CloseCentrifugeReally (void);
int LoadAndRunCentrifuge (void);
int StopAndUnloadCentrifuge (void);

int OpenFridge (void);
int PlaceTubeFridge (void);
int CloseFridge (void);
int PlaceTubeAndCloseFridge (void);

int HoldTubeScanner (void);
int RotateTubeScanner (void);
int TakeTubeScanner (void);

int PickCedexStorage (void);
int HoldCedexPipette (double depth);
int TakeCedexPipette (void);
int PlaceCedexCedex (void);
int PickCedexCedex (void);
int PlaceCedexWaste (void);

int ParkCharger (void);
int UnparkCharger (void);

};

Table 6.8: Excerpt from the client classCROBOTas declared inrobot/robot.h . Apart
from deriving itself fromCLABDEVand calling that constructor with its name (“robot”) it
basically declares some methods implementing the client part of the robot’s functionality.

PickTubeStorage() drives the mobile platform from wherever it is standing to the
tube storage with NUNC tubes without barcode, moves the arm over the ex-
pected position of the marker on the storage, finds the marker using the vi-
sion system, compensates the displacement, selects a slot to take a tube from,
moves the arm to that slot, uses to vision system to centre on the tube, grasps
the tube and retreats the arm into a park position.

Amongst the methods only two take any arguments:HoldTubePipette() and
HoldCedexPipette() . This is because – seen from the robot – thedepthhow far a tube
should be held under the pipette and the numbernumShakehow often a tube should be shaken
for resuspending the cells are the only parameters variable at run-time. For all other cases the
parameters are static and stored in the INFOBASE.

The depth has to remain variable because it depends on the fill level of the broth in the tube:
For the centrifugated broth the needle must only penetrate short below the surface of the liquid
to be sure not to suck any cells from the bottom of the tube. The robot itself does not keep state
information (though the state automaton partially does) about whether a tube is centrifuged or
not and therefore can not decide this.

The server classCROBOTDis derived fromCLABDEVDand implements the robot functional-
ity. In addition to the network communication it also contains the complete robot arm control17,

17The mobile platform is accessed using the C++ classCMOBILE. This class implements a remote control that
does not follow theCLABDEVscheme. The reason for this is that theCMOBILEclass was intended to be used in
a much wider range of projects which have got nothing to do with the laboratory setup in this project.

~

6.6. The Networked Robot 233

making it quite complex. Since the internals ofCROBOTDare not visible to the user they are
not given here, but are documented in subsection D.4.2 in the appendices.

6.6.2 robotd

TheCROBOTDclass is implemented in therobotd program – the robot server. Therobotd
program accepts a number of command line arguments listed in table 6.9. The meaning of these
arguments is as follows:

tesche@fermi/pts/2> ./robotd -h
usage: robotd [<option>]

where <option> is any combination of
-d : enable debugging
-h : print this help
-m <hostname> : connect to mobile <hostname> instead of default
--no-arm : disable arm
--fake-arm : fake arm movements
--no-mobile : disable mobile
--no-force : disable force control
--no-vision : disable vision

Table 6.9: Command line arguments ofrobotd .

-d enables lots of debugging output. This option is not recommended for normal
usage because it can disturb the real-time capabilities of the system due to
calls to thewrite() system call by real-time threads.

-h prints the arguments as listed in table 6.9.

-m <hostname > connects to an explicit mobile platform instead of the default
localhost . This option is only useful for debugging or experimental se-
tups.

--no-arm completely disables the arm. Includes--no-force and
--no-vision . No motions are performed, no checks are done and every-
thing is silently assumed to succeed.

--fake-arm fakes using the arm. Includes--no-force and--no-vision .
Kinematic checks are applied, but the arm is not moved. This option (together
with --no-mobile) can be used to runrobotd in a simulator mode.

--no-mobile disables the mobile platform. No connection to themobiled is
opened, no checks are done and the mobile displacement is silently be as-
sumed to be zero. This option (together with--fake-arm) can be used to
run robotd in a simulator mode.

--no-force disables the force sensor. All force are assumed to be zero. This
option is only useful for debugging or experimental setups because it breaks
several operations.

--no-vision disables the vision system. No connection is made to the image
server, no computations done, all classifications are silently assumed to suc-
ceed and all displacements to be zero.

234 6.6. The Networked Robot

6.6.3 Modifying/Extending the Functionality

In compliance with the level of flexibility required by the task definition the functionality im-
plemented withCROBOTandCROBOTDis not static, but can be changed to a large degree.
Adaptions of the robot to changes of the environment or the biotechnological process can there-
fore be easily performed. Depending on the scope of the changes they can even be possible at
run-time without restarting the system, which is a major advantage in a setup with untrained
personnel because it allows a remote administration.

The possible changes can be divided into four groups of increasing complexity and decreased
simplicity:

1. Modifying existing scripts/parameters:

If only a position has to be changed (for example the target relative to the vision marker
has changed) or an existing script has to be modified (for example a motion has to be
added) this can be most easily accomplished. These type of changes can be made in the
INFOBASE at run-time and do not require to restart therobotd or the laboratory control
program. With a typical laboratory use the vast majority of changes fall into this category.

2. Adding new scripts:

If a new script has to be added to perform some functionality that is not yet included in
any other script this requires slightly more work. Basically, the script has to be added to
the INFOBASE and a proper method has to be added toCROBOT. This function must set
up aCLABMSG, that is, fill its fields

CLABMSG.cmd = CMDEXECSCRIPT
CLABMSG.stringData[0] = strdup (" <scriptname>")

just as all other methods do. Since the script name is transferred as a string and not some
magic value that has to be handled in a case-switch this does not require to restart the
robotd , although it does require to restart the laboratory control program (or whatever
program is sending the commands). With a typical laboratory use these changes are
unlikely to be necessary.

3. Adding new devices:

If a new device has to be added (for example an extra sampling device) the necessary
changes depend on the device in question. As long as the device can be operated with
the existing primitives all that supporting it involves is adding a new script/transforms
as described above. If the device can not be operated with the provided primitives the
CROBOTDclass has to be extended by the appropriate methods, as described below. These
changes, however, mostly occur during initial installation of the system only and have no
impact on the typical use.

4. Adding new motion primitives:

If a new motion primitive has to be added (for example a new type of force controlled
motion) theCROBOTDclass has to be extended by the appropriate methods. Depending
on the primitive in question this will involve more or less explicit knowledge about C++
programming in general and RCCL in particular. It will require an experience program-
mer and is therefore the most complex enhancement, but on the other hand it has not yet
been necessary after the initial establishment of the system.

6.7. Summary 235

Since the modifications which involve C++ programming are not really necessary during
typical use and the easier ones only involve changing the INFOBASE the system can therefore
be considered as easily maintainable.

6.7 Summary

A task as complex asautomating the sample managementcan not be done without requiring any
knowledge from the operator – it plainly and simply is a lot more complex than programming a
VCR. It also must not be forgotten that the project was supposed to be acase study, not to result
in a product. Because of this, those parts of the system that may/have to be edited/configured
by the operator still require knowledge about programming and robots, though the complexity
has been brought down to a reasonable level by various techniques. This section summaries the
efforts and gives an outlook into possible future enhancements.

Scripts

The robot actions in this work are controlled by scripts. The scripts contain simple commands to
make use of the vision system, to set motion parameters, to move the robot according to position
equations as well as a few special motion types and to do limited conditional branching. The
scripts may seem complex for a layperson to deal with, however – upon a closer look – the
obvious alternatives are hardly less complex.

Usingteachingfor example appears like an interesting idea. Instead of programming the mo-
tions using position equations a special “zero gravity mode” of the arm can be used to passively
move it. Motions to targets which are not reachable on a straight line will not have to be split up
into several parts because the operator will “show” the system a propertrajectory, and not just
program thetarget. However, one drawback with this approach is that there are cases where
precision and/or straight line motions are needed, both of which is not possible with teaching.

Another idea is to use the zerograv mode, a joystick, mouse or graphical interface to move the
robot to store only a few setpoints through which a trajectory is then interpolated, for example
by means of straight lines or splines. This approach can provide the necessary precision and
use smooth and time-optimal trajectories. However, like direct teaching, it has the disadvantage
that with no knowledge about the situation the system can do nothing but store exactly the
learnt trajectory and apply it to exactly the same situation again. In case of devices with several
buttons the operator can take no benefit from knowing that one button is a certain distance away
from another – he/she will have to teach a completely separate trajectory for every button. This
also applies if a task change should make it necessary to press other buttons, or to press buttons
in a different order. More basically, trajectories from all possible start points to all possible
targets have to be teached, and this is hardly a simplification.

The very major drawback with all these ideas is that none of them will completely rid the
operator of learning/using a script language because specifying the targets is only one part
of the problem. Accessing sensors and doing conditional motions is the other part, and any
means of getting rid of position equations does not help here. Therefore the implemented script
functionality can be seen as a reasonable compromise.

236 6.7. Summary

State Automaton

A DFA is also used to provide a compromise between effort and safety. It catches the only
problem caused by accidental misusageof the system by personnel that has been encountered
so far – the mixing up of the command order. All other problems were caused by the operator
programmingthe scripts, which is something that will not happen during typical use. Extending
the checks to also catch pitfalls during the programming state is not really possible. The problem
is that a proper balance between helping the programmer and restricting the programmer has to
be found.

All programming languages only check for syntactical errors, not for semantical errors. The
reason is simply that they do not see the semantic because it is not expressed in the language.
In case of a programming language the system does not know what a routine is supposed to do,
and therefore it can not help. In case of a robot setup the system does not know how to perform
a task, and therefore it can not help, too.

The plain syntax errors can be checked by running therobotd in simulator mode. This
also checks if all required transforms are defined and if no motion targets – assuming no device
displacements – are out of reach. All further checks like collision checks require a motion
simulator in RCCL, which is not available for the PA-10 arm.

Also important is the fact that most problems can not be dealt with by offline simulation be-
cause they arise online from the device displacements that have to be detected and compensated
by the vision. The only thing that could be done is computing average and assuming worst case
displacements and see how they affect the reachability or singularities. Expected singularities
are dealt with by a special mode which does velocity clipping, but since this deviates from the
desired trajectory it may only be used when not in contact with any object18. Predicting the
displacement is something the system can not do and so it is the operator’s responsibility to
design the situation so that there is enough safety margin for the worst case displacement.

Therefore no additional checks at all are implemented and the state automaton has to be seen
as a reasonable compromise. The fact that it is adeterministicautomaton whereas the system
itself is non-deterministicbecause of external influence can not be avoided because no sensors
exist to monitor the external state changes. It is not within the scope of the state automaton to
address these effects.

Database

The INFOBASE used to keep parameters and scripts also has to be seen as a compromise be-
tween functionality on the one hand side and portability and complexity on the other hand side.
It is similar to a very simple networked filesystem, but in its simplicity lies one of its great
advantage: It can be easily ported to any operating system. While commercial databases are
network-capable too, they do not offer network client frontends for all operating system, in par-
ticular not the QNX operating system used for some computers in this work. LDAP may be an
alternative for a rewrite, but was not yet commonly known at the time of the system design.

Another great advantage also lies in its simplicity: Because of its focus on the specific re-
quirements of this work it is very lean and easy to use. Both the INFOBASE itself as well as the

18See [Scherer 1998].

6.7. Summary 237

client frontendCINFOBASErequire only very few resources and can easily be used on small
computers, like embedded controllers on intelligent devices.

Since the INFOBASE is found by clients using broadcasts it also serves as a lookup mecha-
nism for laboratory services like the MFCS or the robot. Services register the IP address and
port number they are running on under a unique name in the INFOBASE. This means that a
client need not know the host a service is running on, but only its name. It can look up the ad-
dress using the name in the INFOBASE. This mechanism works as long as all involved devices
are within the same subnet and can receive broadcasts.

The worst that can be said about the INFOBASE is that it represents asingle point of failure
– without the INFOBASE nothing will work – but here its simplicity has helped to practically
prove its stability over the years. It is a central component of the system and well tailored to its
requirements.

Network Support

Programming distributed applications with network communication involves a lot of details one
usually does not want to bother with. Programming languages like Java come with extensive li-
braries that relieve the user from a large part of this burden, however, C/C++ do not include such
standardised tools, and so a non-standard tool had to be used. TheCNETOBJandCLABDEV
mechanisms implemented for this provide C++ classes for encapsulation of the object network
transmission and the one-shot client/server communication that is required by the system. Like
the other parts, they focus on providing the necessary service with the least possible overhead
and complexity.

As such, they are less powerful than other network communication tools like CORBA, but the
same argument as with the INFOBASE applies: Having a lean, well tailored and yet cheap solu-
tion is in most cases advantageous compared to complex and omnipotent products.CNETOBJ
andCLABDEVtherefore implement a suitable approach to minimising the network details re-
quired to be known to use the distributed robot system. They are used for many services within
the system with no known problem.

The Robot

With the above preparations, controlling the robot is only a matter of consequential usage of
these tools. The C++ classCROBOTused on the client side completely hides all network and
robot issues from the user and does therefore not require special knowledge. The C++ class
CROBOTDused on the server side does require special knowledge about robots, but concerns
only the programmer initially establishing the system, and not the final user. The final user can
still determine the sequence by choosing the methods of theCROBOTclass to be called – as
long as the sequence is allowed by the state automaton – and by modifying their parameters
in the INFOBASE – both of which are trivial operations. This way of controlling the robot has
proven itself successful during the entire project.

238 6.7. Summary

Chapter 7

Automated Sample Management Results

“Six pints of bitter. And quickly please, the world’s about to end.”
Ford Prefect

Usually, a technical system needs to pass several tests with good results, and usually, these
results are presented in a separate, but single chapter. Results from the individual components
of the mobile robot system presented in this work have so far been given in section 3.6 for the
mobile platform, section 4.4 for the robot arm and section 5.5 for the vision system. According
to these results the system should clearly be able to perform the automated sample management
according to the task definition in section 2.3, however, they do not actually prove that it does.
With a system as complex as this one, that employs several unpredictable sensor information,
such a proof can not formally be given. Therefore, the only way to demonstrate the system’s
fitness is to do additional test with its intended application, the automated sample management.
For a feasibility study one successful test would already be enough, but for this system – apart
from numerous dry runs – several real test cultivations have been done using the mobile robot
system, and their results are given in this chapter.

The results given consist of descriptions and photos taken during one of the test cultivations
in section 7.1 to show how the robot performs its actions, and the biotechnological results in
section 7.2 to show that the automated sample management has no effect on the quality of the
sample management.

7.1 Automated Sample Management

In the dry runs and test cultivations the robot actions were controlled by the central laboratory
control program (LCP) by I. Poggendorf accessing all the auxiliary devices too and creating
the protocol files1. The LCP uses theCROBOTinterface from section D.4 in the appendices
to call methods from table 7.1 to perform the sample management. The sequence of actions it
performs is not fixed, and so the run given in this section is only one example of a meaningful
sequence. It does in particular not make use of theentireset of methods available inCROBOT,
which is why table 7.2 lists even more methods.

One reason why the LCP does not use them is that they separately implement atomic actions,
which were designed to be used in the first tests only. The entire sequence can be done with

1See [Poggendorf 2004].

239

240 7.1. Automated Sample Management

UnparkCharger() moves away from the charging station, ready for a new run.
PickCedexCedex() moves to the cedex (whose carousel must be in the proper position) and picks

the cedex tube from the slot.

PlaceCedexWaste() moves to the waste bin and disposes the cedex tube.
PickTubeStorage() moves to the storage rack for normal50 ml NUNC tubes and grasps one from

a full slot.
HoldTubeSampler() moves to the sampler, places a tube into the rendezvous slot and fixates it so that

the sampler may run. May only be followed byTakeTubeSampler() .
TakeTubeSampler() following HoldTubeSampler() , takes the tube out of the sampler again.
HoldTubePipette() moves to the pipette, optionally shakes the tube and holds it under the needle.

May only be followed byTakeTubePipette .
TakeTubePipette() following HoldTubePipette , takes the tube out of the pipette again.
LoadAndRunCentrifuge() time-saving combination: moves to the centrifuge (which must be open), places

the tube in the cage (optionally rotating it), closes the lid (really) and presses
the “start” button.

PickCedexStorage() moves to the cedex tube storage and picks a cedex tube from a slot.
HoldCedexPipette() moves to the pipette and holds the cedex tube under the needle, staying there.

May only be followed byTakeCedexPipette .
TakeCedexPipette() takes the cedex tube away from the pipette.
PlaceCedexCedex() moves to the cedex (whose carousel must be in the proper position) and places

the cedex tube in the slot.
OpenFridge() moves to the fridge and opens the sliding lid.
StopAndUnloadCentrifuge() time saving combination: moves to the centrifuge (which must be closed but

idle), presses the “lid” button, opens the lid and picks the tube from the cage
(optionally rotating it).

HoldTubePipette() moves to the pipette, optionally shakes the tube and holds it under the needle.
May only be followed byTakeTubePipette .

TakeTubePipette() following HoldTubePipette , takes the tube out of the pipette again.
PlaceTubeWaste() moves to the waste bin and disposes the currently grasped tube.
PickTubeStorageBarcode() same asPickTubeStorage , only that the storage rack for barcode labelled

tubes is used.
HoldTubePipette() moves to the pipette, optionally shakes the tube and holds it under the needle.

May only be followed byTakeTubePipette .
TakeTubePipette() following HoldTubePipette , takes the tube out of the pipette again.
HoldTubeScanner() moves to the barcode scanner and holds a tube in front of it. May only be

followed byRotateTubeScanner or TakeTubeScanner .
RotateTubeScanner() rotates the tube in front of the scanner by a small random angle around the world

z-axis.
TakeTubeScanner() takes a tube away from the scanner
PlaceTubeAndCloseFridge() time-saving combination: moves to the fridge (which must be open), places the

tube in a free slot and closes the sliding lid.
ParkCharger() moves to the charging station and parks there, recharging batteries. May only

be followed byUnparkCharger

Table 7.1: Robot methods implemented byCROBOTand used by the
laboratory control program for the automated sample management.

these atomic actions, but they waste a lot of time by going back into the park position after each
command. Since time is an important – though biotechnologically not that critical – constraint,
time-saving combinations of them have been implemented and are now preferred. However,
since the atomic actions are partially based on the same scripts it does not hurt to keep them for
possible future use in a modified setup.

7.1. Automated Sample Management 241

PlaceTubeStorage() moves to the storage rack for normal50 ml NUNC tubes and puts the currently
grasped tube back into an empty slot.

PlaceTubeStorageBarcode() same asPlaceTubeStorage , only that the storage rack for barcode labelled
tubes is used.

OpenCentrifuge() moves to the centrifuge, presses the “lid” button and opens the lid.
PlaceTubeCentrifuge() moves to the centrifuge (which must be open) and places the tube into the cage.
PickTubeCentrifuge() moves to the centrifuge (which must be open) and picks the tube from the cage.
RunCentrifuge() moves to the centrifuge and presses the “start” button.
CloseCentrifuge() moves to the centrifuge and closes the lid.
CloseCentrifugeReally() moves to the centrifuge and pushes down an already closed lid where the lock-

ing mechanism has not snapped in.
PlaceTubeFridge() moves to the fridge (which must be open) and places the tube in a free slot.
CloseFridge() moves to the fridge (which must be open) and closes the sliding lid.

Table 7.2: More robot methods implemented byCROBOT
but not actually used by the laboratory control program.

7.1.1 The Sample Management Sequence

In this subsection the sequence of actions of the LCP according to a sample log file in table
7.3 will be discussed, with the focus on putting the robot actions into the proper context. The
individual robot actions will then be explained further in the next subsection.

The steps according to the log of the LCP are:

• ROBOTERCHARGERWEG calls

UnpackCharger() to undock the mobile robot from its charging station and make it
ready for the new cycle.

• VORBEREITENCEDEX logs into the Cedex via TCP/IP and reserves it to be used by the
robot, temporarily blocking console access.

• ALTESCUPCEDEX commands the Cedex (AS20) to eject the old Cedex tube and to turn
the carousel so that the robot can grasp it2. After this, it calls

PickCedexCedex() to move the mobile robot to the Cedex and grasp the Cedex tube
from the slot.

• ROBOTERCEDEXABFALL calls

PlaceCedexWaste() to move the mobile robot to the waste bin and drop the Cedex
tube into it.

The steps until here are only done to initialise the system and to clean up from the previous
cycle, but now the new cycle starts.

• ROBOTERVORRATPROBE calls

PickTubeStorage() to move the mobile robot to the storage rack for NUNC tubes
without barcode and grasp a new tube.

2The old tube is left in the Cedex after a measurement because the Cedex needs a tube to flush its syringe and
it does not hurt to leave it there after completition of the cycle.

242 7.1. Automated Sample Management

Mon Mar 24 22:24:01 2003

Die Befehlssequenz beginnt jetzt...

RoboterChargerWeg Mon Mar 24 22:24:01 2003 Mon Mar 24 22:24:08 2003
VorbereitenCedex Mon Mar 24 22:24:08 2003 rob030305 rob030305 R018 Mon Mar 24 22:24:32 2003
AltesCupCedex Mon Mar 24 22:24:32 2003 Mon Mar 24 22:24:32 2003
RoboterCedexAbfall Mon Mar 24 22:24:32 2003 Mon Mar 24 22:26:34 2003
RoboterVorratProbe Mon Mar 24 22:26:34 2003 Mon Mar 24 22:27:42 2003
RoboterReaktorWarten Mon Mar 24 22:27:42 2003 Mon Mar 24 22:28:51 2003
Reaktor1Entnahme Mon Mar 24 22:28:51 2003 Mon Mar 24 22:30:26 2003
Wartezeit Mon Mar 24 22:30:26 2003 280 Mon Mar 24 22:35:06 2003
RoboterReaktorPipette Mon Mar 24 22:35:06 2003 Mon Mar 24 22:36:45 2003
PipettierenProbe Mon Mar 24 22:36:45 2003 Spuelen1 Mon Mar 24 22:38:31 2003
RoboterPipetteWeg Mon Mar 24 22:38:31 2003 Mon Mar 24 22:38:51 2003
RoboterLadenZentrifuge Mon Mar 24 22:38:52 2003 Mon Mar 24 22:40:53 2003
RoboterCedexPipette Mon Mar 24 22:40:53 2003 Mon Mar 24 22:42:25 2003
AusgebenProbe Mon Mar 24 22:42:25 2003 1.03 Mon Mar 24 22:42:40 2003
RoboterPipetteCedex Mon Mar 24 22:42:40 2003 Mon Mar 24 22:44:08 2003
StartenCedex Mon Mar 24 22:44:08 2003 rob030305 Mon Mar 24 22:44:36 2003
RoboterOeffnenTiefkuehl Mon Mar 24 22:44:37 2003 Mon Mar 24 22:46:13 2003
PipetteSpuelen2 Mon Mar 24 22:46:13 2003 Mon Mar 24 22:51:38 2003
FertigZentrifuge Mon Mar 24 22:51:38 2003 Zeit Mon Mar 24 22:51:38 2003
RoboterZentrifugePipette Mon Mar 24 22:51:38 2003 Mon Mar 24 22:54:51 2003
PipettierenArchiv Mon Mar 24 22:54:51 2003 2.5 Mon Mar 24 22:55:13 2003
RoboterPipetteAbfall Mon Mar 24 22:55:13 2003 Mon Mar 24 22:56:27 2003
RoboterArchivPipette Mon Mar 24 22:56:27 2003 Mon Mar 24 22:58:26 2003
AusgebenArchiv Mon Mar 24 22:58:26 2003 2.5 Mon Mar 24 22:58:40 2003
RoboterArchivBarcode Mon Mar 24 22:58:40 2003 Mon Mar 24 22:59:20 2003
StartenBarcode Mon Mar 24 22:59:20 2003 0226 Mon Mar 24 22:59:23 2003
RoboterBarcodeWeg Mon Mar 24 22:59:23 2003 Mon Mar 24 22:59:34 2003
RoboterTiefkuehlUndZu Mon Mar 24 22:59:34 2003 Mon Mar 24 23:01:46 2003
ErgebnisCedex Mon Mar 24 23:01:46 2003 Probe:R018 Tot:2.17E+005

Lebend:9.41E+005 Viability:81.3
SD:1.42E+005 SDrel:15.09 Bilder:20

Mon Mar 24 23:01:59 2003

ErgebnisMFCS Mon Mar 24 23:01:59 2003 Tot:2.17E+005 Lebend:9.41E+005 Vi-
ability:81.3 SD:1.42E+005 SDrel:15.09
Bilder:20 Barcode:226 Cedex:18

Mon Mar 24 23:02:04 2003

RoboterChargerHin Mon Mar 24 23:02:04 2003 Mon Mar 24 23:02:39 2003
PipetteSpuelen2 Mon Mar 24 23:02:39 2003 Mon Mar 24 23:08:05 2003
Mon Mar 24 23:08:05 2003

Die Befehlssequenz wurde vollstaendig abgearbeitet!

Table 7.3: A sample log file of a run of the sample management
as printed by the laboratory control program by I. Poggendorf.

• ROBOTERREAKTORWARTEN calls

HoldTubeSampler() to move the mobile robot to the sampling device, place the tube
in the slot and fixate it.

• REAKTOR1ENTNAHME uses the sampling device to first flush the tubes with cell broth,
then penetrate the needle through the septum of the tube, fill the sample and retreat the
needle again. The entire control of the sampling device is fully autonomous, so that the
remaining system can continue to do other tasks while it is working in the background.
Since the robot has to fixate the tube this feature is not used.

• WARTEZEIT waits for a calibrated amount of time after which it is safe to take the tube
out of the sampler again.

7.1. Automated Sample Management 243

• ROBOTERREAKTORPIPETTE calls

TakeTubeSampler() to take the tube from the sampler again and

HoldTubePipette() to move the mobile robot to the pipette and hold the tube under
its needle.

• PIPETTIERENPROBE accesses the pipette to suck in 1 ml of the cell broth.

• ROBOTERPIPETTEWEG calls

TakeTubePipette() to take the tube from the pipette again.

• ROBOTERLADENZENTRIFUGEcalls

LoadAndRunCentrifuge() to move the mobile robot to the centrifuge, optionally
rotate the cage so that the free slot is in a proper position, place the tube in the free
slot, close the lid of the centrifuge and press its start button. The centrifuge is then
left running in the background.

• ROBOTERCEDEXPIPETTE calls – while the centrifuge is running –

PickCedexStorage() to move the mobile robot to the storage racks for Cedex tubes
and grasp a new tube and

HoldCedexPipette() to move the mobile robot to the pipette and hold the Cedex
tube under its needle.

• AUSGEBENPROBE then ejects the 1 ml cell broth into the Cedex tube.

• ROBOTERPIPETTECEDEX calls

TakeCedexPipette() to take the Cedex tube from the pipette again and

PlaceCedexCedex() to move the mobile platform to the Cedex and place the Cedex
tube into the slot in the carousel.

• STARTENCEDEX starts the Cedex counting process which keeps running in the back-
ground.

• ROBOTEROEFFNENTIEFKUEHL calls

OpenFridge() to move the mobile robot to the fridge and open its sliding lid. Since
the lid is on top of the fridge the cold is not lost by leaving it open for a few minutes.

• PIPETTESPUELEN2 performs the cleaning process of the pipette. This process does not
require a tube to be under the needle.

• FERTIGZENTRIFUGE waits until the centrifuge reports that it is ready, which is usually
immediately the case because the steps in between have taken a few minutes time.

• ROBOTERZENTRIFUGEPIPETTE calls

244 7.1. Automated Sample Management

StopAndUnloadCentrifuge() to move the mobile robot to the centrifuge, press
the button to unlock the lid, open the lid, optionally rotate the cage so that the slot
with the NUNC tube is in a proper position and grasps the tube and

HoldTubePipette() to move the mobile robot to the pipette and hold the tube under
its needle.

• PIPETTIERENARCHIV accesses the pipette to suck in 2.5 ml of the cell free supernatant
of the broth.

• ROBOTERPIPETTEABFALL calls

TakeTubePipette() to take the NUNC tube from the pipette again and

PlaceTubeWaste() to move the mobile robot to the waste bin and drop the NUNC
tube into it.

• ROBOTERARCHIVPIPETTE calls

PickTubeStorageBarcode() to move the mobile robot to the storage rack for
NUNC tubes with barcode and grasp a new tube and

HoldTubePipette() to move the mobile robot to the pipette and hold the tube under
the needle.

• AUSGEBENARCHIV ejects the 2.5 ml cell free supernatant into the tube.

• ROBOTERARCHIVBARCODE calls

TakeTubePipette() to take the tube from the pipette again and

HoldTubeScanner() to move the mobile platform to the barcode scanner and hold
the barcode in front of the laser.

It then accesses the barcode scanner to read the barcode. If this fails because the scanner
can not see the barcode it calls

RotateTubeScanner() to rotate the tube in front of the barcode scanner by a small,
random angle.

It repeats this until the barcode can be read.

• ROBOTERBARCODEWEG calls

TakeTubeScanner() to take the tube from the barcode scanner again.

• ROBOTERTIEFKUEHLUNDZU calls

PlaceTubeAndCloseFridge() to move the mobile robot to the fridge, place the
NUNC tube in a free slot inside it and close the sliding lid.

• ERGEBNISCEDEX collects the results from the Cedex and logs off it to allow it to be used
by other users again.

7.1. Automated Sample Management 245

• ERGEBNISMFCS transfers all results to the MFCS.

• ROBOTERCHARGERHIN calls

ParkCharger() to move the mobile robot to the charging station and dock to it.

• PIPETTESPUELEN2 is again a cleaning cycle of the pipette.

After the final flushing and cleaning of the pipette the cycle is finished and the LCP waits for
a new cycle to begin.

7.1.2 The Robot Actions

The robot actions performed in this cycle require a more detailed presentation. They will there-
fore be discussed now and some of them illustrated with force logs and images.Robot actions
which are used more than once during the cycle are mentioned only once in the following, so
the sequence given here does no longer correspond to a meaningful sample management cycle.

UnparkCharger()

Following a previousParkCharger() this method undocks the mobile platform from its
charging station. In order to do this it uses a relative backward motion during which the collision
avoidance is switched off, making it a bit troublesome. The reason for switching off the collision
avoidance is that the charging station is mounted to a pillar which the collision avoidance would
otherwise recognise as an obstacle and halt the motion. Currently the collision avoidance is
disabled for both laser scanners, but this can be fixed to only disable the front scanner facing
the pillar and thus still allow collision avoidance in the direction of the motion.

PickCedexCedex()

This method is the first that uses the regular sequence of primitives: It first moves the mobile
platform to the cedex, positions the camera over the expected position of the marker by moving
the arm, uses the vision system to classify the marker and compensate its displacement, then
positions the camera over the expected position of the slot (in this case it is in fact a second
marker on the carousel close to the slot) relative to the initial marker, compensates its displace-
ment too, grasps the Cedex tube and retreats the arm into the park position. During picking the
tube the arm first moves down until it detects a deliberate collision with the carousel and then
back up a millimetre again.

PlaceCedexWaste()

Dropping a Cedex tube into the waste bin is trivial and yet special because the waste bin cur-
rently does not have a marker for classification and fine-positioning. The sequence of primitives
is therefore reduced to moving the mobile platform to the waste bin, moving the arm to the ex-
pected position, simply open the gripper and drop the tube into whatever is under the gripper
and retreating to the park position. Apart from not being guaranteed to succeed this has so far
been considered sufficient because the waste bin is so large that no fine-positioning is needed.

246 7.1. Automated Sample Management

PickTubeStorage()

This method moves the mobile platform to the storage rack for NUNC tubes without barcode,
uses the vision system to classify the rack and compensate its displacement, selects a filled slot
based on status information in the INFOBASE, centres over the tube, grasps it and retreats to the
park position. Figure 7.1 illustrates this sequence. During grasping the gripper is first moved
down until a deliberate collision with the rack is detected by the force sensor, and then back up
a calibrated distance to the cup of the tube. This way a limited variation of the height of the
storage rack can be compensated.

Figure 7.1: PickTubeStorage()

HoldTubeSampler()

The next step is to move the mobile platform to (one of the) sampling station(s), perform the
usual steps of classification and fine-positioning and place the tube in the free slot as in figure
7.2. Selection of the free slot is done using the same mechanism as with the storage racks,
however, only one slot is actually stored in the INFOBASE. This means that always the same
slot is chosen, but that this slot can be changed rather easily3.

After placing the tube in the slot the arm repositions itself to regrasp the tube below the cap
to fixate it. This is needed because the sampler – when removing the needle from the tube – will
otherwise pull the tube out of the slot because the needle will get stuck in the septum sealing
the tube. The arm remains holding the tube after completition of this method. It may only be
followed byTakeTubeSampler() .

During placement of the tube in the slot the force sensor is used to detect whether the tube
got stuck, but not to implement a real force controlled peg-in-hole operation. During regrasping
it is used too to detect the height of the storage rack just like inPickTubeStorage() .

3Different coordinates for the slots relative to the marker are in fact the only change that is needed for the three
different sampling devices.

7.1. Automated Sample Management 247

Figure 7.2: HoldTubeSampler()

TakeTubeSampler()

After HoldTubeSampler() regrasped the tube to fixate it during sampler operation
HoldTubeSampler() now reverses this sequence and grasps the tube in the normal way
again as in figure 7.3. Since the arm has been in contact with the tube in the meantime no addi-
tional fine-positioning is needed for this. The tube is then taken out of the slot and the sampler
and the arm moved back into a park position.

Figure 7.3: TakeTubeSampler()

HoldTubePipette()

This method moves the mobile platform to the pipetting station, performs the usual steps of
classification and fine-positioning and holds the tube under the needle of the pipette as in figure
7.4. The arm remains holding the tube after completition of this method. It may only be
followed byTakeTubePipette() .

248 7.1. Automated Sample Management

Figure 7.4: HoldTubePipette()

The depth how far the needle penetrates into the tube is given as an additional parameter. The
force sensor is not used during the penetration of the needle because the forces the needle exerts
on the septum of the tube are too small to be separated from the basic noise.

TakeTubePipette()

Following HoldTubePipette() this method takes the tube out of the pipette again and
moves the arm back into its park position. Since all relevant positions have been stored no
vision or force sensor is needed during this operation.

LoadAndRunCentrifuge()

Instead of using multiple separate commands to operate the centrifuge, the entire first half of op-
erations concerning it has been integrated intoLoadAndRunCentrifuge() . This method
moves the mobile platform to the centrifuge, classifies it and fine-positions over the coloured
buttons on the front panel (the centrifuge is the only device which is not labelled with a marker),
then centres over the cage inside the centrifuge, detects the position of the free slot, optionally
rotates the cage so that the slot is in a proper position, inserts the tube into the slow, retreats the
arm to move it behind the lid, closes the lid with a circular motion downwards, again repositions
the arm to try and lift the lid again to see if it locked close and press onto it to really close it if
it is not and finally presses the “START” button to start the centrifuge and moves the arm back
into its park position. A visualisation of this sequence is given in figure 7.5. The centrifuge is
left running after this method returns.

The arm may have to rotate the cage because it can not reach the slot in all possible positions
of the cage and the centrifuge does not stop in a defined position4. In these cases (the script
conditionally branches here) it applies a series of rotations to the cage until the slot is in a
proper position (≤ ±45 degrees from the point where the arm is standing) and only then grasps
the tube. To allow it to perform the rotations it must temporarily deposit the tube in a small
storage rack mounted to the centrifuge, and later grasp it again. The rotation is then applied
by pushing the gripper onto the surface of a pad on the cage and using “telephone-dialing” like
circular motions. During these circular motions the force with which the gripper presses onto
the pad is controlled because it must not loose contact.

During insertion of the tube into the slot the force sensor is used to implement a force con-
trolled peg-in-hole operation and to detect when it is fully inserted. It is also used during testing

4There exist centrifuges that do stop in a defined position, but they are way more special and expensive. They
are not used for this project because the intention was to use standard (and cheap) equipment.

7.1. Automated Sample Management 249

Figure 7.5: LoadAndRunCentrifuge()

whether the lid is really closed or not. If the lid is not closed (the script again conditionally
branches here) the arm is positioned over it and starts a motion to slowly press it down against
the rubber sealing with an increasing force. As can be seen in figure 7.6 at the moment when the
locking mechanism snaps in a spike occurs in the force, which it detected by the force sensor
and used to abort the motion. The force of 60 to 70 N at which this usually occurs is more than
20 times the force that is otherwise used during force control or collision detection and more
than half of the maximum force of 110 N that the sensor is designed for.

PickCedexStorage()

This method moves the mobile platform to the storage rack for cedex tubes, does the usual
classification and fine-positioning, selects a slot, centres over the slot, grasps a new Cedex tube
and goes back into the park position. Figure 7.7 shows a visualisation of this sequence, which
really is the same as withPickTubeStorage() , only that the distances differ and thus the
lengths of the relative motions.

HoldCedexPipette()

Similar toHoldTubePipette() , this method moves the mobile platform to the pipetting sta-
tion, classifies it and fine-positions over its marker and performs the necessary relative motions
to hold the Cedex tube under the needle. Contrary toHoldTubePipette() this happens at

250 7.1. Automated Sample Management

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 1 2 3 4 5 6

fo
rc

e
[N

]

time [s]

 fx
 fy
 fz

Figure 7.6: LoadAndRunCentrifuge() – Forces during closing the lid. The small
spike marked with a yellow circle is the point where the locking mechanism snaps in.

Figure 7.7: PickCedexStorage()

a different height because the Cedex tube is much smaller. Since it is not necessary to control
the penetration depth of the needle the arm is moved upwards until the force sensor detects that
the needle has reached the bottom of the tube. The arm is then moved 2.5 mm down again to
not block the hole in the needle. This way the length or height of the needle can be varied in a
limited range without having to modify the script. Figure 7.8 shows the steps of this sequence.
The arm is left holding the Cedex tube after this method returns. It may only be followed by
TakeCedexPipette() .

7.1. Automated Sample Management 251

Figure 7.8: HoldCedexPipette()

TakeCedexPipette()

Following HoldTubePipette() this method removes the Cedex tube from the needle of
the pipette by reversing the previous motion sequence and moving the arm back into its park
position. Since all relevant positions have been stored no vision or force sensor is needed during
this operation.

PlaceCedexCedex()

This method drives the mobile platform to the Cedex cell counter, does the usual classification
and fine-positioning over the marker on its carousel, then positions over the frontmost slot,
inserts a Cedex tube into it and goes back into the park position. During the insertion of the
tube the force sensor is used to detect whether it really hits the slot or collides with the carousel.
Figure 7.9 illustrates this sequence.

Figure 7.9: PlaceCedexCedex()

The slot is actually not found by centring overit, but by centring over a second marker that
is attached to the carousel as close to the slot as possible. This is because contrary to all other
cases involving slots the dimensions of the carousel are such that it is not possible to add a

252 7.1. Automated Sample Management

coloured ring around the slot. Since a symmetric object like a ring only allows to centre over its
position, but not to adjust to itsorientation, placing a ring next to the slot is not feasible unless
the direction from the ring to the slot can be given otherwise (which it can not in this case).
Only an additional marker can also give the direction pointing to the slot, and the distance to it
has to be as short as possible to minimise the remaining errors. It is necessary to pay so much
attention to this case because it is the one with the least safety margin in the entire setup.

OpenFridge()

This method moves the mobile platform to the fridge, does the usual classification and fine-
positioning over the marker, moves the arm to the handle of the sliding lid, opens it by pushing
the handle sideways and then moves the arm back into its park position. Figure 7.10 illustrates
this sequence. The opening is divided into two parts:

• During the first part the force sensor is used to check whether the lid gets stuck. A
violation of the force limit is treated as an error and the sequence aborted (but this has
so far never happened except when deliberately blocking the lid for testing purposes). At
the same time the force with which the gripper presses onto the lid is controlled so that it
does not loose contact (the lid is slightly tilted in the arm coordinate system). This motion
lasts for all but the last 2 cm of the distance. A sample force log file can be seen in figure
7.11(a).

• During the second part the lid has to be pushed over a slight resistance. This requires a lot
more force than just sliding it and therefore a different motion which uses a much higher
force limit than the first. A violation of this limit is not treated as an error, but only as a
reason to terminate the motion because the lid has arrived at its goal. A sample force log
file can be seen in figure 7.11(b).

Figure 7.10: OpenFridge()

7.1. Automated Sample Management 253

-12

-10

-8

-6

-4

-2

 0

 2

 0 1 2 3 4 5 6 7 8 9 10

fo
rc

e
[N

]

time [s]

 fx
 fy
 fz

(a) sliding phase

-25

-20

-15

-10

-5

 0

 5

 0 0.5 1 1.5 2 2.5

fo
rc

e
[N

]

time [s]

 fx
 fy
 fz

(b) stopping phase

Figure 7.11: OpenFridge() – Force during opening of the sliding lid.

StopAndUnloadCentrifuge()

The second half of centrifuge operations has been integrated in the
StopAndUnloadCentrifuge() method. It moves the mobile platform to the cen-
trifuge, does the usual classification and fine-positioning, presses the “LID” button to unlock
the lid, tries to lift it to see if it is really unlocked (and aborts if it is not, but this has so far
never happened), then opens the lid using a circular motion, centres over the cage inside the
centrifuge, detects the position of the tube in it, optionally rotates the cage so that the tube is
in a proper position5, grasps the tube from the slot and retreats the arm to the park position.
Figure 7.12 visualises these steps.

PlaceTubeWaste()

This method is equivalent toPlaceCedexWaste() .

PickTubeStorageBarcode()

This method is equivalent toPickTubeStorage() , except that the storage rack for NUNC
tubeswith barcode is used. Apart from their markers these two storage racks are absolutely
identical and therefore the methods use identical scripts.

HoldTubeScanner()

This method moves the mobile platform to the barcode scanner, does the usual tasks of clas-
sification and fine-positioning and holds the tube in front of the scanner to read its barcode.
The arm is left holding the tube after this method returns. It may only be followed by either
RotateTubeScanner() or TakeTubeScanner() .

5The optional rotation of the cage is the same as withLoadAndRunCentrifuge() , only that now the robot
has no tube grasped and therefore does not need to temporarily deposit it anywhere.

254 7.1. Automated Sample Management

Figure 7.12: StopAndUnloadCentrifuge()

RotateTubeScanner()

In case the barcode scanner should be unable to read the barcode due to damage, dirt or an
improper placement of the code this method is used to rotate the tube about the world z-axis
by a small random angle. The arm is left holding the tube after this method returns. It can be
called several times until the scanner succeeds.

TakeTubeScanner()

This methods takes the tube from the barcode scanner again and moves the arm back into its
park position. Since all relevant positions have been stored no vision or force sensor is needed
during this operation.

PlaceTubeAndCloseFridge()

The last biotechnological step in the cycle is to archive the supernatant in the fridge by using
this method. It moves the mobile platform to the (open) fridge, does the usual classification
and fine-positioning, selects a free slot from the rack inside the fridge, places the tube into that
slot, moves the gripper behind the handle of the sliding lid, closes it by pushing it sideways and
moves the arm back into its park position. Figure 7.13 illustrates these steps.

7.2. Biotechnological Results 255

During insertion of the tube in the slot the force sensor is used in a force controlled peg-in-
hole operation to ensure that the tube does not get stuck. It is also used during closing the lid,
which happens in the same two steps as withOpenFridge() .

Figure 7.13: PlaceTubeAndCloseFridge()

ParkCharger()

Finally, this method moves the mobile platform to its charging station and docks to it. Similar
to UnparkCharger() , the collision avoidance is switched off during approaching the station
with a relative forward motion. This method may only be followed byUnparkCharger() .

7.2 Biotechnological Results

The above presented cycle of robot actions has been tested many times and has been used in test
cultivations without major problems. The mobile robot itself has therefore proven its fitness for
the desired task, but the automated sample management system affects more than just the robot.
The auxiliary devices and the biotechnological evaluation of the cultivations in the project have
been the work of I. Poggendorf. To show that the automated sample management also has no
impact on the biotechnological parameters this section briefly presents results from her work6.

Overall, three 20 l cultivations were done with the automated sample management system,
one with hybridoma cells and two withrecombinant chinese hamster ovary(rCHO) cells. Since
the cultivations were also used to optimise the system they did not run completely without
restarting the control program(s). The maximum number of autonomous cycles without inter-
ruption was reached in the second cultivation with seven cycles, corresponding to more than two
complete days. During the third cultivation a hardware failure occurred on one of the platform
motors after 44.5 h so that only six autonomous cycles could be done.

6See [Poggendorf 2004].

256 7.3. Summary

During these cultivations three samples were taken per day: One in the early morning, one
at noon and one in the late afternoon. In addition to this, during the hybridoma cultivation one
sample was taken during the night. The samples taken by the robot system were compared
with manually taken samples, which have been counted twice using the Cedex. The main
biotechnological difference between the automatic and the manual samples are:

• The samples are taken through a different valve at the reactor, which may affect the cell
density.

• The sampling device uses rather long tubes, which may affect the cell density due to
dilution with condensate and sedimentation of cells.

• The pipetting uses different mechanisms, which may affect the cell density due to sedi-
mentation of cells and the cell viability due to physical force exerted on the cells.

• The robot needs more time for cycle, which may affect the cell density and viability.

The results from the cell count and viability analysis for the three cultivations are given in
figure 7.14. The general decrease of the cell densities between 72 and 96 h in the first, at 48 h
in the second cultivation and at 69 h in the third cultivation are dilution effects – bioreactors are
not run with their full volume right from the start, but are stepwise filled up because cells do
not grow well if their density is very low. In the first cultivation the nutritients in the broth are
used up after 144 h and the cells start dying. In the second cultivation a microbiotic infection
occurred at at 67.5 h and had to be treated with antibiotics, but the growth rate remained rather
low, so that the cultivation was aborted prematurely.

Looking at the cell density the first cultivation has a larger deviation between automatic and
manual counts than the other two. This is because the first cultivation used the original version
of the pipetting device, whereas the other two used a modified version. In this modification a
reservoir holding 1 ml of the sample was added to the tubing system directly above the needle.
Without this reservoir cells could sediment in the tubes and the syringe, so that a diluted sample
was ejected out of the pipette and fed to the Cedex. With this reservoir the dilution is almost
completely avoided and the remaining differences are within acceptable statistical bounds.

A comparison of the viability rates shows that no cell damage occurs with the automatic
sample management. The automatic sample management therefore can be considered as equiv-
alent to the manual sample management as far as the main biotechnological parameters are
concerned. The sample is not significantly diluted by the automatic system and the cells are
not damaged. The still slightly lower cell density with automatic sampling compared to manual
sampling should be examined further. It may be caused by statistical effects, in which case
more test cultivations will provide the necessary reliability.

7.3 Summary

Several tests have been done with the robot system. The mobile robot has been tested in parts,
and the entire robot system during numerous dry runs and three real test cultivations. The
tests of the mobile platform revealed that it is well capable of reaching the required positioning
accuracy of less than 1 centimetre.

7.3. Summary 257

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
 0

 20

 40

 60

 80

 100
de

ns
ity

 [1
05 c

el
ls

/m
l]

vi
ab

ili
ty

 [%
]

time [h]

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
 0

 20

 40

 60

 80

 100

de
ns

ity
 [1

05 c
el

ls
/m

l]

vi
ab

ili
ty

 [%
]

time [h]

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 12 24 36 48 60 72 84 96 108 120 132 144 156 168
 0

 20

 40

 60

 80

 100

de
ns

ity
 [1

05 c
el

ls
/m

l]

vi
ab

ili
ty

 [%
]

time [h]

total-robot
alive-robot
dead-robot

viability-robot

total-avg
alive-avg
dead-avg

viability

total
alive
dead

viability

Figure 7.14: Cell density and viability results from the three test cultivations plotted in the same scale
from top to bottom: Hybridoma cell cultivation, first rCHO cultivation and second rCHO cultivation.

258 7.3. Summary

The vision system of course still needs sufficient, but not standardised illumination. It has so
far worked reliably in all practical tests, but still has the potential of improvements, in particular
its run-time complexity.

The arm control does not offer much room for improvements because of limitations of the
hardware. The PA-10 arm positioning is quite accurate, but compared to older PUMA robots
rather sluggish. Unfortunately this means that force control is possible, but remains suboptimal.

Nevertheless, the mobile robot successfully completed three test cultivations – not taking
the one mechanical failure into account. During these cultivations no significant differences
between automatically and manually taken samples could be found.

According to all these results it can therefore be stated that the implemented mobile robot
system is a feasible approach to automating the sample management during biotechnological
cell cultivations.

Chapter 8

Conclusions & Future Work

“Science has achieved some wonderful things of
course, but I’d far rather be happy than right any day.”

Slartibartfast

The project goal was to do a feasibility study for establishing a robot system to automate the
sample management in a biotechnological laboratory – a complex procedure involving numer-
ous spatially separated devices. As is natural with a feasibility study, there remain a few issues
that could impact the practical use of such a robot system and therefore need addressing. Since
most of these issues are tightly bound to a specific piece of hardware for which no alternatives
existed within the scope of this work they could not be properly covered. These issues are
discussed in this chapter.

Since it has proven unfeasible to aggregate the required devices around a stationary robot
arm, the arm had to be mounted to a mobile platform to achieve the necessary autonomy. Both
the mobile platform and the robot arm have several sensors to detect both their position and the
position of the devices the system is supposed to manipulate. The robot should be easy to use
and easy to adapt to different sequences because the sample management process may required
different steps for different cultivations. All this, together with the fact that the robot is required
to co-exist in an environment with human personnel that may accidentally obstruct the robot’s
way or may accidentally move the devices, makes up for a very complicated system.

Yet, it has been established, and so the approach has to be considered feasible and the project
a success.

The system has passed the component tests as well as several test cultivations as presented in
chapter 7. The conclusions are:

• It is possible to use a standard robot arm to manipulate tubes and devices that have not
been designed to be manipulated by a robot.

• It is possible to design a vision system that can detect objects that have not been designed
to be detected by a camera without standardised illumination.

• It is possible to position a mobile platform with an accuracy of less then 1 centimetre that
has not been designed to be positioned that accurately.

• And, finally, it is possible to integrate a robot system into a greater distributed system in
a way that requires only limited knowledge about details.

259

260 8.1. The Robot System

8.1 The Robot System

In order to establish an entire robot system in the limited time and with the limited human
resources available in the project several constraints had to be applied. The most important
constraint was the explicit intention to buy as much equipment as possible ready-to-use and
“only” deal with integrating it into a robot system and the high-level issues. This, it turned out,
does not nearly work as easily as expected. The problem is that commercial hardware is usually
designed for very specific tasks, and it is something between very hard and impossible to see
by looking at the official glossy sales brochures (specifications) whether they are suited for
something else and more experimental too. Often the specs suggested functionalities that later
on could not be achieved. On the other hand side the limited funds of the project did not allow
to upgrade the hardware once these deficiencies were recognised, and in fact it often turned
out that better hardware was not available at all. This makes up for sometimes unsatisfying
solutions that do affect the overall system performance. It certainly did increase the amount of
software that had to be designed and implemented to way beyond what was intended.

About the Arm

For example, the PA-10 robot arm was and still is the one best suited to be mounted on a mobile
platform because of the small size of its controller and its power supply. The software manual
also makes it look suitable by mentioning theeach axis real time control mode– for each axis a
new desired position value can be given in each cycle. This means that everyone who does not
want to use Mitsubishi’s software natively thinks that it is going to be possible to simply add
support for this mode to their own software and not have to bother with the low-level details. As
is demonstrated by the results in sections 4.4 this is not true because the resulting performance
is too poor for virtually any application.

In this work this has led to the requirement to add full PA-10 support to RCCL, which has
taken a considerable and unscheduled amount of time. It also meant the introduction of the PID
joint controller, which has so far been the unavoidable source of inaccuracies. The performance
of the implemented solution is several times better than with Mitsubishi’s software, but still
suboptimal. This particularly manifests itself in the force control that is used in (only) some
parts of the sequences: With the sluggish reaction of the arm only very slow force control is
possible.

One might think that robot arms are so well-established products that these problems do not
occur, but this is obviously not the case. Yet, no real alternatives exist because other robot arms
do not nearly as easily fit on a mobile platform. The conclusion therefore has to be that the
PA-10 still is the best-suited arm for these applications, but that more effort has to be spend on
optimising the control software used to access this arm.

About the Platform

For the mobile platform similar considerations apply. The initial idea of buying the platform
complete with software could not be pursued because the accuracy of the supplied software
did not meet the requirements. The vendor did improve the software during the course of this
work, but the schedule did not allow to wait for this. As a result an in-house solution had to be
developed, which again took a considerable and unscheduled amount of time.

8.1. The Robot System 261

The extended kalman filter (EKF) used in this solution is a somewhat conservative approach
to the localisation problem, compared to techniques like particle filters, but fully sufficient. It
does, however, share two problems with them: First, since the model contains an integrator
(from velocity to position) the filter can not be guaranteed to be stable in the sense of “bounded
input” → “bounded output”. Second, since the laser measurements are onlyrelativemeasure-
ments (distances and angles) an initial guess about the position must exist in order to associate
a laser scan with a map.

The latter is a generic measurement problem and not specific for any particular filter type.
When humans navigate by landmarks they usually recognise them individually. That means,
they recognise buildings, churches, trees, rivers, mountains or whatever because they have seen
them before or can identify them on a map. With laser reflector markers the mobile platform
does not recogniseindividual landmarks, but only that thereare landmarks at all. It does not
know which landmark in the scan is which landmark in the map because they all look the same
– they do not carry any information that allows them to be distinguished. The only way to
associate them is to have an initial guess about the position and then use the measurements to
only correct that guess. If this initial guess does not exist or is too poor the association can
not be established and the filter will fail. Only a means to measure anabsoluteposition or to
make the landmarks unique can avoid this problem, but none of this is possible with the given
hardware.

What remains is that the current mobile platform control software has passed all tests, but
can not be guaranteed to always do so. The conclusion therefore has to be that in order to gain
any kind of guarantee additional absolute sensors are needed.

About the Vision

The vision system is the component of the system that least suffers from its hardware. Accord-
ing to the tests in sections 5.5 its accuracy is better than the positioning accuracy of the robot
arm. By focusing on the centre of gravity (COG) of coloured regions – which can be extracted
very robustly – it achieves a very high reliability without requiring standardised illumination.
Contrary to many other systems the usual laboratory illumination is therefore fully sufficient. If
the vision system does fail because of insufficient illumination this can be easily detected and
the operation can be repeated. Problems like with the mobile platform where one step can lead
to a faulty situation which the next step can not cure are therefore almost impossible.

On the other hand the image quality of the given hardware is quite poor compared with
modern digital still cameras, especially the colour saturation and noise. The camera used is
a microhead (lipstick) camera with a single CCD sensor. There are microhead cameras with
3 CCD sensors to grab RGB colours separately, but these cameras are very expensive. Other
cameras with 3 CCD sensors exist too, but are of partly substantially larger size. Since the
arm currently uses almost all its operational range to manipulate the devices a larger tool that
requires a larger safety distance is a potentially fatal idea.

Another aspect is the image data transmission. The microhead camera uses analog video
signal transmission and requires the images to be digitised with a framegrabber, which does not
improve the image quality. A digital transmission like IEEE 1394 (firewire) would improve the
image quality significantly, but the currently available firewire cameras are also of larger size.
Advances in camera technology can be expected to improve this situation.

262 8.1. The Robot System

Since the coloured markers used for the region detection suffer from the same association
problem as the localisation of the mobile platform an approach has been implemented that tries
all possible permutations of associations and choose the best solution. This approach is very
stable, but also numerically quite expensive. If the image is distorted by too many background
or erroneous regions the detection can take several seconds up to minutes – an upper bound is
not given1.

The conclusion therefore has to be that using a different camera is definitely a worthy idea to
improve the image quality and thus the reliability, but that an increased size of the camera may
lead to problems. Compared to the drawbacks of the other components this one is currently of
minor importance. What is of importance is the execution speed of the vision software, and
here an optimisation of the mapping process is strongly recommended. Amongst the possible
improvements are partial mappings to reduce the computation speed and the idea to use the
expected position as initial guess to reduce the complexity.

Speed Issues

Speed is also an issue with the robot motions as such. Currently, one automated sample man-
agement cycle takes up to 45 minutes, which is about twice the time a human operator would
need. For a single reactor cultivation of mammalian cells under pilot scale constraints this is
not a problem because these cells grow rather slowly, but for other cells or more than just one
reactor it may be too long. Ways to speed up the sequence are therefore an interesting and
important topic.

The mobile platform runs at a translational speed of 0.5 m/s, which is almost its technical
limit. As far as the mobile platform is concerned a speedup can only be achieved by avoiding
motions wherever possible. The setup used in the test cultivations already took advantage from
placing devices together on different tables at what appears to be the same position for the
mobile platform, but the layout can still be optimised. On the other hand, perhaps only 1 or 2
minutes could be gained by this, so the arm motions must also be optimised.

The nominal arm speed (30 deg/s) should not be increased because of the issues with the
PID joint controller, especially not the force controlled motions. The only way to speed
up arm motions is therefore also to avoid them. The setup used in the test cultivations al-
ready incorporated this optimisation for single devices. The most prominent examples are the
LoadAndRunCentrifuge andStopAndUnloadCentrifuge commands, which group
together a set of atomic operations. Since each of the atomic operations goes into a park posi-
tion after completition only to leave that position and recentre over the centrifuge immediately
again for the next atomic operation a lot of time can be saved by optimising the sequence and
dropping all redundant park/unpark and centring motions.

This idea could be extended to also optimise motions involving several devices. Currently
the arm goes back into a park position after each command, which – considering the above
combination of operations – means after it is done with a device. Since many devices are
already grouped spatially together to avoid platform motions the arm could take advantage of
this and also drop redundant park/unpark motions between devices that are at the same platform
position. Depending on how optimal the devices are grouped together several minutes may be
gained by this.

1This is also the reason why this approach is not applicable to the localisation.

8.1. The Robot System 263

Combined, the execution speed can perhaps be brought down to the time a human operator
needs for the task, but obviously a tradeoff remains: The more optimised the setup and the robot
motions are the more specific they are to the given situation. With such an optimised system a
slight modification of the sequence will result in much larger changes of the scripts than when
atomic operations are used. This is not a fundamental problem because both sequences can
exist at the same time, but it is up to the user to decide which one to prefer.

The only really larger speedup that can be achieved while still using atomic operations is with
parallelisation. Currently the robot has to wait at more than just one point in the sequence for
other devices to become ready. With just one reactor there is only limited room for parallelisa-
tion, but with more reactors it will for example be possible for the robot to fetch a sample from
the second reactor while the pipette is still cleaning itself from the sample from the first one.
This could bring down the average cycle time significantly and make the system more efficient.

Operating System Issues

Another issue is the operating system (OS) that is used on the computer controlling the arm and
the platform. Currently a plain Linux 2.4 kernel is used, which is officially not real-time capable.
Early tests with rather old hardware even before the beginning of this work showed that the
Linux kernel can have a scheduling latency of up to several milliseconds, with no upper bound.
Clearly this would be unacceptable for any robot control, but with newer hardware and newer
kernels this situation has improved a lot. Contemporary hard/software combinations yield a
typical latency of less than 1 millisecond, though still without a guarantee. Linux kernels 2.6 and
above are preemtible, which is an important step towards even further decreasing the latency,
though even still without a guarantee. If hard real-time requirements should ever become an
issue, an alternative OS like QNX or Solaris must be evaluated.

For this work these alternatives are not used because with Linux the driver support for ad-
ditional hardware is on average much better, and if it is not, the existence of free source code
helps in implementing new or modifying existing drivers. In addition to this hard real-time
requirements are practically speaking not strictly required by the system. Due to the PID joint
controller the PA-10 arm is sufficiently sluggish so that it goes completely unnoticed if a set-
point should be missed by up to several milliseconds, and the mobile platform is even more
sluggish. As a result a plain 2.4 Linux kernel has so far proven itself sufficient.

Biotechnological Issues

Apart from laboratories at universities like the one used during the test cultivations biotechno-
logical production involves clean rooms, which is an issue with the current robot. Clean room
technology is about minimising particles in the air, to which germs might attach and contami-
nate a cultivation. For any equipment brought into or installed in a clean room this means that
a certificate must exist that it does not emit more than a certain number of particles of a certain
size. In addition to this it must be sterilisable by either ethanol (or any other liquid detergent)
or hot pressurised stream. Both of this is currently not possible with the robot system because
of several fans ensuring its cooling and the fact that its electronic and mechanic components are
not sealed against liquids. To allow operation of the robot system in a clean room major design
modification therefore have to be done.

264 8.2. Roblets

8.2 Roblets

One interesting offspring inspired by the experience with remote programming of mobile robots
gained during this project is the ROBLET©R architecture by H. Stanek2, an alternative for the
script programming. As has been mentioned in section 6.1 the robot command scripts have
been implemented to provide the highest possible level of flexibility at the lowest possible level
of complexity. Such an approach necessarily leads to a somewhat limited level of functionality.
The scripts have never been intended to be seen as a real programming language, but a real
programming language is what is ultimately required to provide an ultimately satisfying level of
functionality. Such a programming language has been regarded as out of the scope of this work
because its details would distract the non-expert user from its real task – the “programming” of
the automated sample management.

The ROBLET©R architecture addresses exactly that problem by using the JavaTM language and
encapsulating all robot details inunits3. JavaTM is a widely known and used object-oriented
language invented by Sun Microsystems4. It has especially been designed with distributed
systems in mind and therefore includes a lot of useful encapsulations of network details. JavaTM

programs are compiled into an intermediate language calledbyte code, which is executed by the
JavaTM Virtual Machine (JVM). This JVM exists for a large variety of computers and operating
systems, including embedded systems.

Since JavaTM is so commonly known it presents a very good compromise between function-
ality and the need to learn a programming language. Chances are that users programming a
robot system already have knowledge about JavaTM. If they do not, the effort to learn it is not
wasted on a very specific language that they are unlikely to ever use again for anything else,
but is spend on a very versatile language that may be useful for many other future occasions.
Because of this the “distraction” argument concerning the amount of effort that has to be spent
on learning a new programming language can be considered inapplicable to JavaTM. Anyway,
only a very limited amount of JavaTM knowledge is needed because ROBLET©Rs encapsulate
most low-level details.

The ROBLET©R architecture consists of a ROBLET©R server on the mobile robot and one (or
more) clients on the network as in figure 8.1. Instead of requesting functionality from the server
by usingremote procedure calls(RPCs) the clients make use of an interesting feature of JavaTM

– the possibility to send real applicationcode to the server. Once received, the ROBLET©R

server executes these ROBLET©Rs in its own JVM. This execution of code makes this approach
fundamentally different from all other networking tools like CORBA, which only senddata
describing the requests.

The ROBLET©R server provides the ROBLET©R with a set ofunitsthat manifest the “world” as
the ROBLET©R sees it. These units represent all sensor, actor and helper methods that may be
used by the ROBLET©R to implement its functionality5. The units are expected to represent only
abstractinterfaces to the hardware in order to keep the ROBLET©Rs free from low-level details.
By first requesting which units are present the ROBLET©R can thus be kept independent from
any specific assumptions and can run on a wide range of robots.

2Das genRob-Projekt, Hagen Stanek, Albrecht-Dürer-Str. 16, D-71065 Sindelfingen, Deutschland.http:
//www.genrob.com

3See [Westhoff et. al. 2004a] and [Westhoff et. al. 2004b].
4Seehttp://java.sun.com .
5JavaTM class loaders can be used to ensure that the ROBLET©R is caged in a kind of secondarysandboxand can

not call other methods except those from the units.

http://www.genrob.com
http://www.genrob.com
http://java.sun.com

8.3. Applications 265

Figure 8.1: The ROBLET©R architecture.

Currently, the ROBLET©R architecture is in an experimental phase of implementation and
supports access to the mobile platform only. In the future units encapsulating RCCL on the PA-
10 arm, the vision system and the INFOBASE interface will be added. It will then be possible
to access the entire functionality of the robot system using ROBLET©Rs, but the goal is to keep
both interfaces available in parallel. The major advantage of the ROBLET©R approach will be that
users can use the JavaTM language to implement much more refined computations of transforms,
safety checks and conditional branching than are possible with the script approach. This will
significantly simplify usage of the robot system and is even likely to open completely new areas
of application.

8.3 Applications

One question that has often arisen in the presentations of the robot system to an interested
audience is whether it can not be applied to other types of laboratories as well. The answer is
of course “yes”, but with a “but”.

First of all, the robot does not see what it is doing. This means that as long as the provided
primitives allow to manipulate different devices the modifications of the scripts are straightfor-
ward. Whether this covers additional biotechnological devices or, for example, devices used
in a chemical laboratory does not matter at all. The “problems” only start to mount when the
implemented primitives do not suffice and new ones have to be added, and even then it does not
matter which type of device they are meant to be used for. Basically, the simpler the operations
are the less the effort that has to be spend on adapting the robot system is. Apart from that,
anything is possible – at least unless it requires visual services that go beyond the currently
implemented ones.

The question whether the robot system can be used for different tasks is therefore reduced to
the question whether these tasks require similar manipulations, where “similar” means similar in
a low-level meaning. Two tasks that require placing a tube into some device are not necessarily
similar, because they may require completely different motions. In general, other devices can
be manipulated and other laboratories can be automated, but a detailed statement about the
required modifications can only be made for each new setup individually.

Concerning the practical applicability of the mobile robot system and its commercial po-
tential, Bayer Healthcare in Berkeley (USA) is currently planning a new production facility
designed to be suitable for a mobile robot. Encouraged by the results from the system presented

266 8.3. Applications

in this work they are considering to evaluate this new automisation approach for some of their
processes. This will be the first time ever that a mobile robot system enters a biotechnological
production plant – a step that will produce valuable results for the further development of the
robot system and might change the automation forever.

Bibliography

[Adams 1979]D. N. Adams (1979)
“The Hitch-Hikers Guide to the Galaxy”
Pan Books Ltd, London, UK.
ISBN 0-330-25864-8

[Arkin 1998]
R. C. Arkin (1998)
“Behaviour Based Robotics”
MIT Press, ISBN 0262011654.

[Bar-Shalom and Li 1993]
Y. Bar-Shalom and X.-R. Li (1993)
“Estimation and Tracking: Principles, Techniques and Software”
Artech House Inc., Norwood, MA 02062, USA
ISBN 0-89006-643-4

[Berger 2000]
C. Berger (2000)
“Ein robuster, farbbasierter Objekterkenner zur Roboterfeinpositionierung in einem
realen Laborumfeld”
Diplomarbeit, Universiẗat Bielefeld, Technische Fakultät, Germany.

[Borenstein, Everett and Feng 1996]
J. Borenstein, H. R. Everett and L. Feng (1996)
“Where am I? – Sensors and Methods for Mobile Robot Positioning”
http://www-personal.engin.umich.edu/˜johannb
http://www-personal.engin.umich.edu/˜johannb/position.htm
http://www-personal.umich.edu/˜johannb/shared/pos96rep.
pdf

[Borenstein and Feng 1995]
J. Borenstein and L. Feng (1995)
“UMBmark: A Benchmark Test for Measuring Odometry Errors in Mobile Robots”
Proceedings of the 1995 SPIE Conference on Mobile Robots, Philadelphia, October
22-26, 1995
http://www-personal.engin.umich.edu/˜johannb
http://www-personal.engin.umich.edu/˜johannb/umbmark.htm
http://www-personal.engin.umich.edu/˜johannb/Papers/
paper60.pdf

267

http://www-personal.engin.umich.edu/~johannb
http://www-personal.engin.umich.edu/~johannb/position.htm
http://www-personal.umich.edu/~johannb/shared/pos96rep.pdf
http://www-personal.umich.edu/~johannb/shared/pos96rep.pdf
http://www-personal.engin.umich.edu/~johannb
http://www-personal.engin.umich.edu/~johannb/umbmark.htm
http://www-personal.engin.umich.edu/~johannb/Papers/paper60.pdf
http://www-personal.engin.umich.edu/~johannb/Papers/paper60.pdf

268 Bibliography

[Borenstein and Feng 1996]
J. Borenstein and L. Feng (1996)
“Gyrodometry: A New Method for Combining Data from Gyros and Odometry in Mo-
bile Robots”
Proceedings of the 1996 IEEE International Conference on Robotics and Automation,
Minneapolis, Minnesota, Apr. 22-28, 1996, pp. 423-428.
http://www-personal.engin.umich.edu/˜johannb
http://www-personal.engin.umich.edu/˜johannb/gyrodom.htm

[Collani 2001]
Y. O. v. Collani (2001)
“Repräsentation und Generalisierung von diskreten Ereignisabläufen in Abḧangigkeit
von Multisensormustern”
Dissertation, Technische Fakultät, Universiẗat Bielefeld, Deutschland.
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:
hbz:361-1657

[Denavit and Hartenberg 1955]
J. Denavit and R. S. Hartenberg
“A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
Journal of Applied Mechanics, June 1955, pp. 215 - 221.

[Denavit and Hartenberg 1964]
J. Denavit and R. S. Hartenberg 1964
“Kinematic Synthesis of Linkages”
McGraw-Hill, New York, 1964.

[Doucet, Freitas and Gordon 2001]
A. Doucet, N. de Freitas and N. Gordon (2001)
“Sequential Monte Carlo Methods in Practice”
Springer.

[Ferch 2002]
M. C. Ferch
“Lernen von Montagestrategien in einer verteilten Multiroboterumgebung”
Dissertation, Technische Fakultät, Universiẗat Bielefeld, Deutschland.
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:
hbz:361-3722

[Fu, Gonzales and Lee 1987]
K. S. Fu, R. C. Gonzales and C. S. G. Lee (1987)
“Robotics – Control, Sensing, Vision and Intelligence”,
ISBN 0-07-022625-3, McGraw-Hill International Editions, Singapore.

[Gallistel 1990]
C. Gallistel (1990)
“The Organisation of Learning”
The M.I.T. Press, Cambridge, Massachusetts and London

http://www-personal.engin.umich.edu/~johannb
http://www-personal.engin.umich.edu/~johannb/gyrodom.htm
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:361-1657
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:361-1657
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:361-3722
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:361-3722

Bibliography 269

[Graf 2000]
T. Graf (2000)
“Flexible object recognition based on invariant theory and agent technology”
Dissertation, Technische Fakultät, Universiẗat Bielefeld, Deutschland.
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:
hbz:361-1408

[Hart, Nilsson and Raphael 1968]
P. Hart, N. Nilsson and B. Raphael (1968)
“A formal basis for the heuristic determination of minimum cost paths”
IEEE Transactions on Systems, Science and Cybernetics, 4(2), p.100-107.

[Hunn 1993]
U. Hunn (1993)
“Implementierung von Planung und Steuerung der Bewegung eines autonomen
Fahrzeuges in einer Fuzzy-Umgebung”
Diplomarbeit, Institut f̈ur Prozessrechentechnik und Robotik, Universität Karlsruhe.

[IEEE 1985]
IEEE Computer Society (1985),
“IEEE Standard for Binary Floating-Point Arithmetic”,
IEEE Std 754-1985.
http://standards.ieee.org

[JAI CV-M1000 Series Operation Manual]
JAI A.S.
CV-M1000 Series Operation Manual(2700-21092 E A2 0399)
JAI A.S., Produktionsvej 1, DK-2600 Glostrup, Copenhagen, Denmark.

[Julier and Uhlmann 1997]
S. Julier and J. K. Uhlmann (1997)
“A new extension of the Kalman filter to nonlinear systems”
Proceedings of AeroSense, 11th International Symposium on Aerospace/Defense
Sensing, Simulations and Controls.

[Kalman 1960]
R. E. Kalman (1960)
“A new approach to linear filtering and prediction problems”
Transactions of the ASME, Journal of Basic Engineering 82, p. 35-45

[Khatib et.al. 1996]
O. Khatib, K. Yokoi, K. Chang, D. Ruspini, R. Holmberg, A. Casal and A. Baader
(1996)
“Force strategies for cooperative tasks in multiple mobile manipulation systems”
In G. Giralt and G. Hirzinger (editors)
Robotics Research: The Seventh International Symposium, p. 333-342.

[King et. al. (2004)]
R. D. King, K. R. Whelan, F. M. Jones, P. G. K. Reiser, C. H. Bryant, S. H. Mug-
gleton, D. B. Kell and S. G. Oliver
“Functional genomic hypothesis generation and experimentation by a robot scientist”
Nature, Vol. 427, p. 247, 15. January 2004.

http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:361-1408
http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:hbz:361-1408
http://standards.ieee.org

270 Bibliography

[Lee 1996]
D. Lee (1996)
“The Map-Building and Exploration Strategies of a Simple Sonar-Equipped Robot”
Cambridge University Press, Cambridge

[Lloyd and Hayward 1989]
J. E. Lloyd and V. Hayward (1989)
Multi-RCCL User’s Guide
McGill Research Centre for Intelligent Machines, McGill University, Montréal,
Queb́ec, Canada.
http://www.cs.ubc.ca/spider/lloyd/rccl

[Lloyd 1995]
J. E. Lloyd (1995)
“Robot Trajectory Generation for Paths with Kinematic Singularities”
Ph. D. dissertation, Department of Electrical Engineering, McGill University, Canada.

[Lloyd and Hayward 1996]
J. E. Lloyd and V. Hayward (1998)
“Discrete Algorithm for Fixed-path Trajectory Generation at Kinematic Singularities”
Proceedings of the 1996 IEEE International Conference on Robotics and Automation,
Minneapolis (Minnesota), USA, pp. 2743 - 2748.
http://www.cs.ubc.ca/spider/lloyd/papers.html

[Lloyd 1998]
J. E. Lloyd (1998)
“Removing the Singularities of Serial Manipulators by Transforming the Workspace”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation,
Leuven, Belgium, pp. 2935 - 2940.
http://www.cs.ubc.ca/spider/lloyd/papers.html

[Lloyd and Hayward 1998]
J. E. Lloyd and V. Hayward (1998)
“Generating Robust Trajectories in the Presence of Ordinary and Linear-Self-Motion
Singularities”
Proceedings of the 1998 IEEE International Conference on Robotics and Automation,
Leuven, Belgium, pp. 3228 - 3234.
http://www.cs.ubc.ca/spider/lloyd/papers.html

[Lloyd 1998]
J. E. Lloyd (1998)
“Trajectory Generation implemented as a Non-linear Filter”
Technical Report 98-11, Department of Computer Science, University of British
Columbia, Vancouver, B.C., Canada.
http://www.cs.ubc.ca/cgi-bin/tr/1998/TR-98-15.pdf

[L ütkemeyer et. al. 2000a]
D. Lütkemeyer, I. Poggendorf, T. Scherer, J. Zhang, A. Knoll and J. Lehmann
(2000)
“Robot Automation of Sampling and Sample Management in Pilot Scale”
Cell Culture Engineering VII, Santa Fe, USA, 5. bis 10.3.2000

http://www.cs.ubc.ca/spider/lloyd/rccl
http://www.cs.ubc.ca/spider/lloyd/papers.html
http://www.cs.ubc.ca/spider/lloyd/papers.html
http://www.cs.ubc.ca/spider/lloyd/papers.html
http://www.cs.ubc.ca/cgi-bin/tr/1998/TR-98-15.pdf

Bibliography 271

[Lütkemeyer et. al. 2000b]
D. Lütkemeyer, I. Poggendorf, T. Scherer, J. Zhang, A. Knoll and J. Lehmann
(2000)
“Robot Automation of Sampling and Sample Management in Pilot Scale”
11th International Biotechnology Symposium, Berlin, Germany.

[L ütkemeyer et. al. 2000c]
D. Lütkemeyer, I. Poggendorf, T. Scherer, J. Zhang, A. Knoll and J. Lehmann
(2000)
“First Steps in Robot Automation of Sampling and Sample Management during Culti-
vation of Mammalian Cells in Pilot Scale”
Biotechnol. Prog. 16, No. 5, 822-828, 2000

[Lütkemeyer et. al. 2001]
D. Lütkemeyer, I. Poggendorf, T. Scherer, J. Zhang, A. Knoll and J. Lehmann
(2001)
“Robot Automation of Sampling and Sample Management during cultivations of Mam-
malian cells in Pilot Scale”
17th ESACT-Meeting, Tylosand, Sweden.

[Minsky and Papert 1969]
M. L. Minsky and S. A. Papert (1969)
“Perceptrons”
MIT Press, Cambridge, MA (USA).

[Mitsubishi PA10 Operating Manual]
Mitsubishi Heavy Industries Ltd.
Portable General Purpose Intelligent Arm Operating Manual(English Translation, 91-
000066, Rev. 0)
Mitsubishi Heavy Industries Ltd.,Kobe Shipyard & Machinery Works, Machinery
Sales Department, Machinery & Space Systems Sales Section, 1-1 Wadasaki-cho 1-
chome, Hyogo-ku, Kobe 652-0854, Japan.

[Mitsubishi PA10 Servo Driver Manual]
Mitsubishi Heavy Industries, Ltd.
Instruction Manual for Servo Driver, SKC-GC20004 Rev. 0
Mitsubishi Heavy Industries Ltd., Head Office, Laser & Electronics Group, Turboma-
chinery & General Machinery Department, Machinery Headquarters, 5-1 Marunouchi
2-chome, Chiyodaku, Tokyo 100-8315, Japan.

[Moore 1920]
E. H. Moore (1920)
“On the reciprocal of the general algebraic matrix”
Bull. Amer. Math. Soc., 26:394-395.

272 Bibliography

[Newman 1999]
P. Newman (1999)
“On the Structure and Solution of the Simultaneous Localisation and Map Building
Problem”
Ph.D. Thesis, Australian Centre for Field Robotics, The University of Sydney, 2006
NSW, Australia.
http://www.acfr.usyd.edu.au/people/postgrads/pnewman
http://www.robots.ox.ac.uk/˜pnewman

[Niemann 1983]
H. Niemann (1983)
“Klassifikation von Mustern”
ISBN 3-540-12642-2, Springer Verlag, Berlin, Deutschland.

[Penrose 1955]
R. Penrose (1955)
“A generalized inverse for matrices”
Proceedings of the Cambridge Philosophical Society, 51:406-413.

[Plahl 1998]
S. Plahl (1998)
“Automatisierung im Labor. Planung einer Roboter- Arbeitszelle und Entwicklung
einer vollautomatischen sterilisierbaren Probenentnahme”
Diplomarbeit, Technische Fakultät, Universiẗat Bielefeld, Deutschland.

[Poggendorf et. al. 2001]
I. Poggendorf, D. Lütkemeyer, T. Scherer, J. Zhang, A. Knoll and J. Lehmann
(2001)
“Using an Industrial Robot Arm for Monitoring Cultivations of Mammalian Cells in
Pilot Scale”
8th International Conference on Computer Applications in Biotechnology, Québec
City, Canada.

[Poggendorf and Scherer 2002]
I. Poggendorf and T. Scherer (2002)
“Roboter arbeiten auch am Wochenende gerne - Serviceroboter für die biotechnolo-
gische Produktion von Zellkulturen
BioTec - Fachmagazin für Biotechnologie, Nr. 9-10, 36-37, Vereinigte Fachverlage
GmbH, Mainz, Deutschland.

[Poggendorf et. al. 2002a]
I. Poggendorf, D. Lütkemeyer, T. Scherer, J. Zhang, A. Knoll and J. Lehmann
(2002)
“Let’s Start Moving - A Mobile Robot has the Potential of Complete Automation in
Monitoring Mammalian Cell Cultures.’
GVC/Dechema Jahrestagungen 2002, Wiesbaden, Germany.

http://www.acfr.usyd.edu.au/people/postgrads/pnewman
http://www.robots.ox.ac.uk/~pnewman

Bibliography 273

[Poggendorf et. al. 2002b]
I. Poggendorf, D. Lütkemeyer, T. Scherer, J. Zhang, A. Knoll and J. Lehmann
(2002)
“Let’s Start Moving - A Mobile Robot has the Potential of Complete Automation in
Monitoring Mammalian Cell Cultures”
Cell Culture Engineering VIII, Snowmass, USA.

[Poggendorf et. al. 2003]
I. Poggendorf, D. Lütkemeyer, T. Scherer, J. Zhang, A. Knoll and J. Lehmann
(2003)
“Einsatz eines Serviceroboters zurÜberwachung von Kultivierungen tierischer Zellen
in einer Technikumsumgebung”
6. Dresdner Sensor-Symposium (6. DSS), Dresden, Deutschland.

[Poggendorf et. al. 2004]
I. Poggendorf, D. Lütkemeyer, T. Scherer, J. Zhang, A. Knoll and J. Lehmann
(2004)
“Automatic 24/7 Monitoring of Cell Culture Behaviour in Pilot Scale Cultivations of
Mammalian Cells Using an Autonomous Service Robot”
Cell Culture Engineering IX, Cancun, Mexico.

[Poggendorf 2004]
I. Poggendorf (2004)
“Einsatz eines Serviceroboters zur Automatisierung der Probenentnahme und des
Probenmanagements während Kultivierungen tierischer Zellen in einer Technikum-
sumgebung”
Doktorarbeit, Technische Fakultät, Universiẗat Bielefeld, Deutschland.

[Poynton 2002]
C. Poynton (2002)
“The Color FAQ”
Frequently Asked Questions about Color.
http://www.poynton.com/ColorFAQ.hmtl

[Röben 2003]
F. Röben (2003)
“Farbbasierte Regionensegmentierung zur Feinpositionierung eines Serviceroboters
in einer Laborumgebung”
Diplomarbeit, Technische Fakultät, Universiẗat Bielefeld, Germany.

[Salmond, Gordon and Smith (1993)]
D. J. Salmond, N. J. Gordon and A. F. M. Smith (1993)
“Novel approach to nonlinear / non-Gaussian Bayesian state estimation”
Radar and Signal Processing, IEE Proceedings F, vol. 140, no. 2, p. 107-113, ISSN
0956-375X.

[Scheering 2000]
C. Scheering (2000)
“Multi-Agenten in einem situierten künstlichen Kommunikator”
Dissertation, Technische Fakultät, Universiẗat Bielefeld, Deutschland.

http://www.poynton.com/ColorFAQ.hmtl

274 Bibliography

[Scherer 1998]
T. Scherer (1998)
“Design and Implementation of a Trajectory Generator for Arbitrarily Moving Targets
and On-Line Singularity Robustness”
Diploma Thesis, Technische Fakultät, Universiẗat Bielefeld, Bielefeld, Germany.

[Scherer et. al. 2000]
T. Scherer, J. Zhang, A. Knoll, I. Poggendorf, D. L̈utkemeyer and J. Lehmann
(2000)
“Roboterisierung des Probenmanagements in der Biotechnologie”
Prozessmesstechnik in der Biotechnologie, Vortrags- und Diskussionstagung, Bam-
berg 2000

[Scherer et. al. 2003]
T. Scherer, I. Poggendorf, A. Schneider, D. Westhoff, J. Zhang, D. L̈utkemeyer, J.
Lehmann and A. Knoll (2003)
“A Service Robot for Automating the Sample Management in Biotechnological Cell
Cultivations”
Proceedings of the IEEE Conference on Emerging Technologies and Factory Automa-
tion (ETFA 2003, Vol. 2, p. 383-390), Lisbon, Portugal, 16-19 September 2003. IEEE
Catalog Number 03TH8696, ISBN 0-7803-7937-3.

[Schmidt 1970]
S. Schmidt (1970)
“Computational techniques in kalman filtering”
In: Theory and Applications of Kalman Filtering, AGARDograph 139, NATO Advi-
sory Group for Aerospace Research and Development, London

[Schmidt 1976]
S. Schmidt (1976)
“Practical aspects of kalman filtering implementation”
In: AGARD-LS-82, NATO Advisory Group for Aerospace Research and Develop-
ment, London

[Schneider and Westhoff 2002]
A. Schneider and D. Westhoff (2002),
“Autonomous Navigation and Control of a Mobile Robot in a Cell Culture Labora-
tory” ,
Diploma Thesis, Faculty of Technology, University of Bielefeld, Germany

[Sedgewick 2001]
R. Sedgewick (2001)
“Algorithms in C” Addison-Wesley, ISBN 0201316633.

[SICK AG 2000]
Sick AG (2000)
“Definition der Telegramme zwischen Benutzerschnittstelle und LMS- oder LMI 400-
System̈uber RS422/RS232, Version 02.04.2000”
Sick AG, Auto Ident Division, Nimburger Str. 11, D-79276 Reute, Germany
http://www.sick.de/de/products/categories/auto/en.html

http://www.sick.de/de/products/categories/auto/en.html

Bibliography 275

[SICK AG 2002]
Sick AG (2002)
“Lasermesssysteme LMS 200/211/220/221/291, Technische Beschreibung”
Item #8008969 (de) / #8008970 (en), Sick AG, Auto Ident Division, Nimburger Str.
11, D-79276 Reute, Germany
http://www.sick.de/de/products/categories/auto/en.html

[Smith and Brady 1995]
S. M. Smith and J. M. Brady (1995)
“SUSAN - A new approach to low level image processing”
Technical Report TR95SMS1c, University of Oxford.

[Sobel 1990]
I. Sobel (1990)
“An isotropic 3×3 image gradient operator”
In H. Freeman (editor): “Machine Vision for Three-Dimensional Scenes”, pages 376-
379, Academic Press, 1990.

[Wan and Merve 2001]
E. A. Wan and R. van der Merve (2001)
“The Unscented Kalman Filter”
to appear inKalman Filtering and Neural Networks, chapter 7. Edited by Simon
Haykin. Wiley Publishing.

[Westhoff et. al. 2004a]
D. Westhoff, T. Scherer, H. Stanek, J. Zhang and A. Knoll (2004)
“A flexible framework for task-oriented programming of service robots”
Robotik 2004 Konferenz , M̈unchen. In: VDI-Bericht Nr. 1841, VDI-Verlag, Postfach
101054, 40001 D̈usseldorf, Deutschland.

[Westhoff et. al. 2004b]
D. Westhoff, J. Zhang, H. Stanek, T. Scherer and A. Knoll (2004)
“Mobile Manipulatoren und ihre aufgabenorientierte Programmierung”
atp – Automatisierungstechnische Praxis 10/2004, Oldenbourg Industrieverlag GmbH,
München, Germany. ISSN 0178-2320
http://www.oldenbourg.de/verlag/at-technik/rot-atp1.htm

[Whitney 1969]
D. E. Whitney (1969)
“Resolved motion rate control of manipulators and human prostheses,
IEEE Transactions on Man-Machine Systems, Vol. 10, p. 47-53, 1969.

[Whithey 1972]
D. E. Whitney (1972)
“The mathematics of coordinated control of prosthetic arms and manipulators
Journal of Dynamic Systems, Measures and Control, 94G(4), p. 303-309, Dec., 1972.

[Wright, Maskell and Briers 2003]
R. Wright, S. R. Maskell and M. Briers (2003)
“Comparison Of Kalman-based Methods With Particle Filters for Raid Tracking”
QinetiQ Ltd., Malvern, UK
http://mcs.open.ac.uk/Statistics/PBS5/papers.html

http://www.sick.de/de/products/categories/auto/en.html
http://www.oldenbourg.de/verlag/at-technik/rot-atp1.htm
http://mcs.open.ac.uk/Statistics/PBS5/papers.html

276 Bibliography

[Zhang, Ḧubner and Knoll 2001]
J. Zhang, K. Hübner and A. Knoll (2001)
“Learning based situation recognition by sectoring omnidirectional images for robot
localisation”
Proceedings of the IEEE Workshop on Omnidirectional Vision, Budapest.

[Zhang and Knoll 1996]
J. Zhang and A. Knoll (1996)
“Constructing fuzzy controllers with B-spline models”
IEEE International Conference on Fuzzy Systems, 1996.

[Zhang and Knoll 1998]
J. Zhang and A. Knoll (1998)
“Constructing fuzzy controllers with B-spline models – principles and applications”
International Journal of Intelligent Systems, 13(2/3):257–286, February/March 1998.

Index

access point (WLAN), 227
ARCNET, 134, 142
automaton, 218

deterministic finite automaton (DFA),
223, 236

autonomous guided vehicles (AGV), 33

behaviour based control, 110
biotechnology

mammalian cell cultivation, 16, 19
pilot scale cultivation, 16, 19
sample management, 17
short introduction, 16

borenstein tests, 50
broadcast, 237

camera, 160, 162
CCHUNK, 228, 361
cell counter, 25
centrifuge, 26
CLABDEV, 228, 229, 368

CLABDEV, 229, 368
CLABDEVD, 229, 368
CLABMSG, 229, 367

CLABDEVD, 229, 368
CLABMSG, 229, 367
CNETOBJ, 228, 361, 365
Collani, Yorck von, 214
colour

robustness, 160
similarity, 167
YUV colour space, 165

colour segmentation, 165
colour vision, 160
CROBOT, 231, 239, 369
CROBOTD, 232, 373

database, 224
dead reckoning (DR), 46
deterministic finite automaton (DFA), 223,

236
devices

cell counter, 25
centrifuge, 26
fridge, 27
pipetting device, 24
sampling device, 23

DFA, 223, 236

Ferch, Markus, 214, 227
flood fill, 176
force sensor, 134

force control, 152
fridge, 27

GenControl, 37, 90
genrob, 264
Gesellschaft f̈ur Produktionssysteme (GPS),

36
Graf, Thorsten, 227
gripper, 134

fingers, 135

infobase, 225, 236
infobased, 226

initial guess, 52, 188
IPA, Fraunhofer Institute, 34

kalman filter (KF), 55
caveats, 66, 68
extended KF (EKF), 60
measurement model, 57
predict and update steps, 58
system model, 56

Kalman, Rudolph E., 56
kinematic

mobile platform, 45
robot arm, 133

laboratory control program (LCP), 239
LCP, 239
least squares fit (LSF), 52, 185

initial guess, 52, 188
Lloyd, John, 137
localisation, 35, 38

277

278 Index

alternatives, 106
borenstein tests, 50
dead reckoning (DR), 46
experiments, 111
gyro compass, 41
kalman filter (KF), 55
laser scanner, 42
odometry, 40
sensors, 39

mammalian cell cultivation, 16, 19, 239
experiments, 239

MCB, 134, 306
MHI, 133, 303
Mitsubishi Heavy Industries (MHI), 133,

303
mobile platform, 33, 36, 260

behaviour based control, 110
experiments, 111
kinematic, 45
localisation, 35, 38
motion execution, 36, 89
MP-L655, 36
path-planning, 35, 74

mobile robot system, 30
task definition, 28

motion control board (MCB), 134, 306
motion execution, 36, 89

absolute rotations, 98
absolute translations, 98
collision avoidance, 101
experiments, 111
motion types, 89
relative translations, 100
tracking, 90
velocity profiles, 92

MP-L655, 36

Neobotix, 36
GenControl, 37, 90
MP-L655, 36
PlatformControl, 91

network, 226
virtual private network (VPN), 228
wireless local area network (WLAN),

227

object displacement model, 184
object models, 181
OPERA, 214

PA-10
experiments, 147
hardware, 133, 303
joint controllers, 145
PA-Library (PA-Lib), 134, 136, 306
RCCL, 139

PA-Library (PA-Lib), 134, 136, 306
path-planning, 35

alternatives, 109
experiments, 111
map expansion, 76
maps, 74
path search, 85
tangent graph, 84
visibility graph, 82

pilot scale cultivation, 16, 19
pipetting device, 24
Poggendorf, Iris, 21, 212, 239, 255
pseudo inverse, 54

RCCL, 137, 212
RCCL++, 214

roblets, 264
robot arm, 131, 260

kinematic, 133
tool, 134

robot arm, PA-10, 133
robot tool, 309
run time type information (RTTI), 365

sample management, 17
sampling device, 23
Scheering, Christian, 226
scripts, 212, 235, 264

script language(s), 212
sensors, 39

alternatives, 104
gyro compass, 41
laser scanner, 42
odometry, 40
SICK, 42

SICK, 42
SSL, 230

tangent graph, 84
task definition, 28
TCP/IP, 226
tool, 134, 309

camera, 135, 160
force sensor, 134

Index 279

gripper, 134

velocity profiles, 92
position setpoints, 95
velocity setpoints, 96

visibility graph, 82
vision, 159, 261

camera, 160
colour segmentation, 165
experiments, 190
object recognition, 177

VPN, 228, 230

WEP, 227
WLAN, 227

access point, 227
wi-fi protected access (WPA), 230
wired equivalent privacy (WEP), 227

WPA, 230

Part II

Appendices

281

Appendix A

Mobile Platform Documentation

This chapter gives an optional, but more verbose documentation of the mobile platform used in
this work. This documentation consists of a detailed hard- and software description of the MP-
L655 mobile platform as delivered by the vendor in section A.1, details about the CAN interface
used to access the motors and the gyro compass in section A.2, details about the RS422 serial
communication used to access the LMS-200 laser scanners in section A.3 and the application
mobiled that implements the entire mobile platform control in section A.4.

A.1 The “Neobotix MP-L655“ Mobile Platform

Although thought to be a booming market there are only very few manufacturers of mobile
robots. Real World Interface (RWI), lately a subdivision of iRobot, has actually ceased the
production of its well known B14 and B21 mobile robots in favour of autonomous vacuum
cleaners1. iRobot itself, co-founded by MIT fellow Rodney Brooks2 nowadays focuses on mil-
itary applications. ActivMedia Robotics has picked up parts of the former RWI product line,
selling them under new names3. French ROBOSOFT is the european distributor for these robots
as well as some others4.

All the products of all the above companies are mere “mobile platforms” in sometimes a very
relaxed sense, and most of them are not suitable for this work simply because of their size.
The MP-L655, compared to these products, has one big advantage: Neobotix offers a complete
electrical and mechanical integration of the Mitsubishi PA10 robot arm and its controller, leav-
ing only the question of the arm control software. None of the other companies offers such an
integration support.

A.1.1 Hardware

The MP-L655 – see again figure 3.4 on page 37 – is built as an aluminium frame with several
storeys. In the “basement” the motors and castor wheels are mounted, the first floor holds the
batteries and some power electrics, the second the controlling PC and the PA10 controller and

1http://www.irobot.com/rwi , http://www.rwii.com .
2http://www.irobot.com/corp/default.asp

http://www.ai.mit.edu/projects/humanoid-robotics-group .
3ActivMedia Robotics, 19 Columbia Drive, Amherst, NH 03031, USA.

www.activmedia.com/robots , http://www.activrobots.com
4ROBOSOFT, Technopole d’Izarbel, F-64210 Bidart, France.http://www.robosoft.fr .

283

http://www.irobot.com/rwi
http://www.rwii.com
http://www.irobot.com/corp/default.asp
http://www.ai.mit.edu/projects/humanoid-robotics-group
http://www.activrobots.com
http://www.robosoft.fr

284 A.1. The “Neobotix MP-L655“ Mobile Platform

on the “roof” a LCD display and the PA-10 itself are mounted. The basic physical specifications
are given in table A.1. Note that these dimensions do not include the mounted PA-10 robot arm
– dimensions of the arm are given in chapter 4.

size: 655× 655 mm
diameter: 844 mm
height: 560 mm
weight: 150 kg weight
payload: app. 100 kg

Table A.1: Physical specifications of the MP-L655 (without robot arm).

The MP-L655 can be ordered with two kinematics, of which the first has been chosen for
this work because a biotechnological laboratory is more likely to require complex manoeuvring
than to have a very bumpy floor. The kinematics are:

1. Two spring-suspended differential drives in the rotary centre of the platform, two castor
wheels in front and one castor wheel in back. This kinematic has the advantage that the
platform may rotate on the spot. It has the disadvantage that a five-point-contact is not
guaranteed to be stable on bumpy terrain. Also, the high number of castor wheels – if
not properly oriented for the driving direction – introduce a lot of resistance that has to
be overcome, which means that on a suboptimal floor the drive wheels are more likely to
slip.

2. Two differential drives at the front of the platform and one castor wheel in back. This
kinematic has the advantage that a three-point-contact is always stable and that no spring
suspension is needed. It has the disadvantage that the platform cannot rotate on the spot
and therefore needs more free space to perform certain manoeuvres and therefore a more
complex motion planning.

The electrical parameters of the MP-L655 are given in table A.2. The main voltage of 48 V
is used to drive the motors, the on-board PC and the robot arm. The total capacity of 3840 Wh
allows up to 12 h of operation with moderate use of the arm and/or the platform. Auxiliary
voltages are available for additional user equipment.

The platform does not come with an automatic charging station, therefore a custom solution
as in figure A.1 has been built. This charging station allows the robot to safely charge the
batteries during the idle time. Its copper contacts are isolated from the operating voltage unless
pressed into the case against a spring, so that accidental and/or unnoticed bumping into a person
or a person unintentionally playing with the contacts can cause no harm.

The drive motors are a highly integrated proprietary Neobotix’ development. They combine
a sine wave commutated brushless servo drive, a backlash-free gear box, high resolution wheel
encoders (4096 increments / motor revolution), an electromagnetic brake and a Siemens C164
microcontroller and the necessary power electronics in a single case as in figure A.2. The C164
basically runs a speed control loop for the motor, interfaces to the brake and implements a few
safety constraints like checking for the motor temperature. With these motors the platform can
reach a maximum rotational speed of 90◦/s and a maximum translational speed of 1 m/s.

A.1. The “Neobotix MP-L655“ Mobile Platform 285

batteries: 8× 12 V, 40 Ah lead-acid
main voltage: 48 V (4× 12 V in a row)
total capacity: 80 Ah (2× 40 Ah parallel)
total power: 3.84 kWh
auxiliary voltages: +24, +12 and +5 V

Table A.2: Electrical specification of the MP-L655.

Figure A.1: The contact mechanism used for the automatic charging station.

Figure A.2: A drive motor, integrating the actual motor, wheel
encoders, a gear box, power electronics and the controller.

In addition to the odometry sensors provided by the motor’s C164 microcontroller the MP-
L655 used in this work has an electrical gyro compass and two SICK laser scanners, making
for a total sensor set as in table A.3. The gyro compass is connected to a third microcontroller,
a Siemens C167, on an I/O board that is also used to read out a joystick interface and the main
battery voltage. Other versions of the MP-L655 add an ultrasonic sensor board with yet another
C167 microcontroller, and low-level bumper bars. These additional sensors are required to gain
approval of official safety regulations5.

5In Germany there is not yet an explicit class of safety regulations for mobile robots because they are still
not very common, so standard safety regulations from other machinery are applied instead. These regulations for
example state that a system must have a low-level emergency stop mode that does not rely on high-level software
(that may have crashed). A plain SICK laser scanner as used on the MP-L655 is therefore not enough because it
can be operated in either a mode for measuring distances and reflectance or a mode for monitoring safety areas and
actively signalling violations on an I/O bit, but not in both simultaneously. See also section 3.2.1.3.

286 A.1. The “Neobotix MP-L655“ Mobile Platform

2× odometry sensors (1 per motor)
1× electrical gyro compass
2× laser scanners (1 in front, 1 in rear)

Table A.3: MP-L655 sensors.

An on-board PC in a small industrial case is used to implement the control program by ac-
cessing the other components. The PC is connected to the C164 and C167 controllers via a high
speed CAN bus – whose protocol is documented in the appendices in section A.2 – and to the
laser scanners via RS422 serial lines (see again figure 3.5. on page 38). Due to the large battery
capacity the PC is not necessarily required to use power-saving equipment, therefore it can be
built of virtually any standard hardware. Since in this work the PC must also control a robot
arm with its sensors it consists of the following hardware:

• An ICP Industrial Computer Products6. “ROCKY-4784EV” CPU backplane with a
2 GHz Intel Pentium 4 processor, 256 Mb RAM, a 2 1/2 inch notebook harddisc7 with
30 Gb, built-in graphics and (wired) ethernet network,

• anATI Industrial Automation8 (ATI-IA) ISA board to connect to the force/torque sensor
on the robot arm,

• a Moxa Technologies9 CP-132 PCI board with two RS422 serial ports to connect to the
SICK laser scanners (see subsection 3.2.1.3),

• a Matrox10 “Meteor” PCI framegrabber board to access the camera on the robot arm (see
chapter 5 for details),

• a (modified)SOHARD11 “SH ARC-PCI” PCI arcnet board to access the robot arm itself
(see section 4.3.2 for details) and

• an ELSA / Lancom12 “Airlancer PCI-11” PCI board to interface to an “Airlancer MC-
11” PCMCIA IEEE 802.11b wireless LAN card to connect the platform with the main
network.

A.1.2 Software

The platform comes with a proprietary control software that is supposed to handle all the aspects
of localisation, path-planning and motion execution that are needed for controlling a mobile
platform. This software still has to be considered “under development” because since the time

6ICP Deutschland GmbH, Humboldtstr. 36, D-70771 Leinfelden-Echterdingen, Germany,http://www.
icp-deutschland.de

7Notebook harddiscs are more rugged than ordinary desktop harddiscs in terms of shock-resistance, which is
necessary because of the platform driving over potentially bumpy floors.

8c/o SCHUNK GmbH & Co. KG, Bahnhofstraße 106-134, D-74348 Lauffen am Neckar, Germany,http:
//www.schunk.de , http://www.ati-ia.com

9Moxa Germany, Heinrich-Lanz-Straße 4, D-69514 Laudenbach, Germany,http://www.moxatech.de
10Matrox Electronic Systems GmbH, Unterhaching, Germany,http://www.matrox.com
11SOHARD AG, Würzburger Straße 197, D-90766 Fürth, Germany,http://www.sohard.de
12LANCOM Systems GmbH, Adenauerstraße 20 / B2, D-52146 Würselen, Germany,http://www.

lancom-systems.de

http://www.icp-deutschland.de
http://www.icp-deutschland.de
http://www.schunk.de
http://www.schunk.de
http://www.ati-ia.com
http://www.moxatech.de
http://www.matrox.com
http://www.sohard.de
http://www.lancom-systems.de
http://www.lancom-systems.de

A.1. The “Neobotix MP-L655“ Mobile Platform 287

from the purchase of the platform it has undergone major changes. The history of these versions
is important because it explains why an in-house replacement had to be developed.

The original software called GENCONTROL by Neobotix/GPS is a large, monolithic, self-
contained Windows C++ application, a screenshot of which can be seen in figure A.3. It uses
a map of known laser reflector markers, the gyro compass and the odometry sensors for local-
isation. It also has a map of polyline obstacles, but does not use it for path-planning. Instead
it uses an obstacle avoidance mode to drive around corners to reach a target without bumping
into walls (or other obstacles). This of course at most only works with targets that are quite
trivially reachable around just one corner, yet it has been observed to fail more than once. For
GENCONTROL to be used in a maze-like environment an external path planner therefore has to
be implemented.

Figure A.3: Neobotix’ GENCONTROL software.

The interface to GENCONTROL’s functionality is a TCP/IP socket running a simple ASCII
protocol giving access to the sensors and motion primitives. Using this interface the platform
can be initialised, different operating modes (standby / target / joystick) can be selected, motions
can be issued to targets given as(x, y, α)-triplets and the laser scanners can be read out to
visualise the environment and verify the reported platform position.

One major problem of GENCONTROL is that it has no concept of a “motion” as an entity that
starts, runs and is definitely finished at some time. The way GENCONTROL manoeuvres is that
it constantly and indefinitelytracksa target (that can be changed at any time). This tracking is
divided into three phases, in which the platform rotates towards the target, drives to the target
position and then rotates to the desired target orientation.

However, on the one hand side it is not possible to read out which phase GENCONTROL is in
and on the other hand side it can jump back from phase 3 to phase 1 if it decides that rotating
towards the target orientation has brought it too far away from the target position (for example

288 A.1. The “Neobotix MP-L655“ Mobile Platform

because of a slippery ground). Therefore it is highly non-trivial to check if the platform has
arrived at the target or not.

The only way this simple question can be answered is by checking if it has come within a
certain radius of the target and has no longer been moving the wheels for a certain time, and
even this can fail in case of an emergency stop because of an obstacle close to the target. Besides
that, determining the catch radius is non-trivial because the localisation is very noisy.

Measurements done by A. Schneider and D. Westhoff in [Schneider and Westhoff 2002]
show that GENCONTROL’s localisation and motion control are not accurate and stable enough
to meet the requirements of this work.

On the one hand side the platform can get trapped in endless corrective motions when trying
to reach a target with a desired precision that is lower than the localisation noise. On the other
hand side the worst deviations observed are that the platform deviates from the target by some
5 cm in one direction, but reports to have deviated 5 cm in the exact opposite direction.

Overall, these effects are not tolerable. Since no source code for GENCONTROL was available
to fix these problems and since additional external software (a path planner) was needed anyway,
an in-house replacement had to be built.

Since then Neobotix has released a new software called PLATFORMCONTROL , a screen-
shot of which can be seen in figure A.4. This software has been improved in several aspects.
It is a complete rewrite incorporating latest Fraunhofer IPA research results (including wall
recognition) and is separated into a Windows C++ controller application (PltfCtrl) and a JAVA
graphical user interface(PltfCtrlGui). Neobotix claims that the localisation and positioning
are much better than with the old software, but since the new one was only released after the
solution presented in this work was completed it has not been further investigated.

Figure A.4: Neobotix’ PLATFORMCONTROL Software.

One final argument against using any of these commercial solutions has to be emphasised:
Both GENCONTROL and PlatformControl are – though having a platform independent Java user
interface – at their core Windows applications and need a Windows operating system. Using any
of these programs means to have to install a second PC on the platform because the arm control

A.2. The CAN Interface 289

software runs under the Linux operating system. Such a second PC would be very troublesome
because of the limited space available on the mobile platform.

A.2 The CAN Interface

The platform’s low-level interface is a high-speedcontroller area network(CAN) that is at-
tached to the on-board PC (see again figure 3.5 on page 38). This CAN offers access to the
C164 motor controllers with their wheel encoders and the C167 I/O-controller with the gyro
compass. The CAN interface is proprietary by Neobotix and only documented by means of
header files. Therefore, this section separately documents the CAN hardware, packet format
and commands used to access the individual controllers.

A.2.1 CAN Hardware

The CAN is a serial fieldbus developed by theRobert Bosch GmbHin the 1980s as a com-
munication system to replace explicit cabling for the increasing number of actors, sensors and
controllers in the car industry. It supports data rates up to 1 MBps and is very robust against
electrical and/or magnetic disturbances. Many companies offer a wide range of CAN hardware,
taking advantage from the fact that CAN is an open standard (ISO 11898 for data rates up to
125 kbps and ISO 11519 for data rates above 125 kbps) not requiring any licensing fees.

On the MP-L655 the CAN is connected to the PC by aPEAK System Technik GmbH13

“PCAN-Dongle”. This dongle is attached to the parallel port and therefore does not require
a free slot on the PC – a fact that is quite important in a setup of miniaturised hardware. It
is built around a PHILIPS CAN-Controller SJA1000 with 16 MHz clock frequency and com-
pliant to CAN specifications 2.0A (11-Bit ID) and 2.0B (29-Bit ID). What makes the dongle
interesting is that it comes with a well-documented Linux driver providing real/dev/pcan*
devices.

A.2.2 CAN Frames

The CAN is not just an electrical specification for transmitting raw bits like a RS232 serial line,
but also a protocol specification defining several frame types. The most commonly used frame
type is the normal data frame, consisting of some flags, a device address (ID), a payload size
field and the payload itself. The PCAN-Dongle driver abstracts from the protocol details so that
the user only has to supply a target ID and the payload data.

Technically, the CAN is abroadcastingmedium, that means physically each node sees all
messages. It is in the responsibility of the designer of the bus to manually assign each node a
unique ID and to manually filter out packets not meant for this node. The IDs can be either 11
bit (CAN 2.0A) or 29 bit (CAN 2.0B). On the MP-L655 the device addresses are as in table
A.4.

Due to the intended real-time capabilities in combination with the (compared to typical eth-
ernet) low data rate the payload is limited to up to 8 bytes of user data per frame. This limited
payload is not really a restriction since the CAN usually controls low-level devices which only

13PEAK System Technik GmbH, Otto-Röhm-Straße 69, D-64293 Darmstadt, Germany,http://www.
peak-system.com

http://www.peak-system.com
http://www.peak-system.com

290 A.2. The CAN Interface

address controller direction
0x101 C167 i/o PC → CTRL
0x100 C167 i/o CTRL → PC
0x201 C164 right motor PC → CTRL
0x200 C164 right motor CTRL → PC
0x301 C164 left motor PC → CTRL
0x300 C164 left motor CTRL → PC
0x401 C167 ultrasonic PC → CTRL
0x400 C167 ultrasonic CTRL → PC

Table A.4: The CAN device IDs used on the MP-L655. The IDs concerning
the ultrasonic board are only mentioned for completeness – they are not used
on the platform in this work because it does not have an ultrasonic board.

need to communicate very few bytes. On the MP-L655 all data frames have 8 bytes, padding
unused bytes with zeros.

The SJA1000 used in the PCAN-Dongle is capable of buffering up to 8 CAN frames, making
it quite improbable that a message should get lost. In case it does, the protocol carried within
the payload data has to ensure that no harm is done. On the MP-L655 the commands have been
designed to minimise traffic and so that it does not hurt if a reply should get lost.

In the following the general layout of the CAN frames on the MP-L655 and some selected
commands needed to access the C164 motor controllers and the C167 I/O controller are given.
Since these do have changed in the past this description has to be taken as strictly inofficial. For
any official documentation on these, unlisted or new commands the Neobotix documentation
has to be used, available at the Neobotix website14.

The general frame format forcommandson the MP-L655 is given in table A.5, where CMD
is the command value.

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
CMD

Table A.5: General CAN user data layout for command packets on the MP-L655.

The general frame format forreplies to a command on the MP-L655 is given in table A.6,
where CMD is the command value as sent in the command and STATUS is a 2-bit code defined
as the enumeration:

enum Ser_Can_Msg
{

Msg_OK,
Msg_Error,
Msg_NotAccept,
Msg_NoAction

};

14http://www.neobotix.de/downloads

http://www.neobotix.de/downloads

A.2. The CAN Interface 291

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7 Byte 8
... ID (CMD << 2) | STATUS

Table A.6: General CAN user data layout for reply packets on the MP-L655.

The variables denotes in this table are to be understood as follows: “FOO” stands for an up
to 8-bit value that fits into one byte and “FOO7

0” stands for (in this case) only the bits 0 to 7 of
a larger value. Variables larger than 8 bit are encoded in abig-endianstyle.

A.2.3 The C164 Motor Controller(s)

Each motor has its own C164 controller integrated and can be accessed separately with a set of
commands, which in theory makes it possible to have more than two motors on the platform.
The commands are defined in the Neobotix header fileCmdMotCtrl.h as an enumeration
CmdMotCtrl , an excerpt of which will be explained here.

enum Cmd_MotCtrl
{

CMD_MOTCTRL_CONNECT,
CMD_MOTCTRL_DISCONNECT,
CMD_MOTCTRL_SETDIGOUT,
CMD_MOTCTRL_GETDIGIN,
CMD_MOTCTRL_GETANALOGIN,
CMD_MOTCTRL_SETMOTIONTYPE,
CMD_MOTCTRL_GETPOSVEL,
CMD_MOTCTRL_GETSTATUS,
CMD_MOTCTRL_DISABLEBRAKE,
CMD_MOTCTRL_ENABLEMOTOR,
CMD_MOTCTRL_SYNCHMOTOR,
CMD_MOTCTRL_ENABLECOMM,
CMD_MOTCTRL_SETCMDVAL,
CMD_MOTCTRL_SETCTRLPARA,
CMD_MOTCTRL_GETCTRLPARA,
CMD_MOTCTRL_SETPOSCTRL,
CMD_MOTCTRL_GETPOSCTRL,
CMD_MOTCTRL_SETEMSTOP,
CMD_MOTCTRL_RESETEMSTOP,
CMD_MOTCTRL_ERROR_STOPMOTION,
CMD_MOTCTRL_UNKNOWN

};

CMDMOTCTRLCONNECTis used to initially connect to the controller. This is more a logi-
cal initialisation than a physical one because technically the communication partners are
already connected. It basically means that the controller enters a state where it accepts
other commands.CMDMOTCTRLCONNECTdoes not carry any parameters and triggers
a reply with no parameters.

Byte 1
CMD MOTCTRL CONNECT

292 A.2. The CAN Interface

CMDMOTCTRLDISCONNECTis used to terminate a “connection”. After this com-
mands the controller will no longer accept any other command except a new
CMDMOTCTRLCONNECT. CMDMOTCTRLDISCONNECTdoes not carry any param-
eters and does not trigger a reply.

Byte 1
CMD MOTCTRL DISCONNECT

CMDMOTCTRLDISABLEBRAKE is used to control the mechanical brake in the motors. This
brake is enabled by default (fail-safe) and has to be actively released by an electromagnet.
This magnet consumes about 1 A currency at 12 V, so it is a sound idea to re-enable
brakes whenever the platform is not used.CMDMOTCTRLDISABLEBRAKEcarries a
1-bit true/false FLAG as parameter and triggers a reply with no parameters.

Byte 1 Byte 2
CMD MOTCTRL DISABLE BRAKE FLAG

CMDMOTCTRLENABLEMOTORis used during initialisation to enable (disable) the power
electronics of the motor. It does not yet mean that the motor can be used afterwards – that
requires syncing the motor.CMDMOTCTRLENABLEMOTORcarries a 1-bit true/false
FLAG and an 8-bit TORQUE value as parameters and triggers a reply with no parame-
ters.

Byte 1 Byte 2 Byte 3
CMD MOTCTRL ENABLEMOTOR FLAG TORQUE

CMDMOTCTRLSYNCHMOTORis used during initialisation to synchronise the motor, i.e. to
find the zero index of the wheel encoder. The motor is still not usable after syncing – the
commutation still needs to be enabled.CMDMOTCTRLSYNCHMOTORcarries an 8-bit
TORQUE value as parameter and triggers a reply with the expected and measured 16-bit
positions of the encoder zero index (only needed for hardware debugging).

Byte 1 Byte 2
CMD MOTCTRL SYNCHMOTOR TORQUE

Byte 1 Byte 2 Byte 3 Byte 4
POSMEAS15

8 POSMEAS7
0 POSEXP158 POSEXP70

CMDMOTCTRLENABLECOMMis used during initialisation to enable the commutation of the
motor, which is the final step to start it.CMDMOTCTRLENABLECOMMcarries no pa-
rameters and triggers a reply with no parameters.

Byte 1
CMD MOTCTRL CONNECT

A.2. The CAN Interface 293

CMDMOTCTRLGETSTATUSis used to request various state information about the controller.
It can be called at any time after connecting to a controller, even when the motor is not yet
initialised.CMDMOTCTRLGETSTATUScarries no parameters and triggers a reply with
a 16-bit STATE information (consisting of bits as defined below inenum STATECtrl)
and the measured 16-bit TEMP(erature) (useful for detecting thermic overloads, but needs
conversion).

Byte 1
CMD MOTCTRL GETSTATUS

Byte 1 Byte 2 Byte 3 Byte 4
STATE15

8 STATE7
0 TEMP15

8 TEMP7
0

enum STATE_Ctrl
{

ST_Ctrl_LimSwHardPosMax = 1,
ST_Ctrl_LimSwHardPosMin = 2,
ST_Ctrl_LimSwSoftPosMax = 4,
ST_Ctrl_LimSwSoftPosMin = 8,
ST_Ctrl_TempMax = 16,
ST_Ctrl_EMStop = 32,
ST_Ctrl_Watchdog = 64

}

CMDMOTCTRLGETPOSVELis used to request the current motor position and velocity.
The position is an absolute value measured between the motor and the gear box.
CMDMOTCTRLGETPOSVELcarries no parameters and triggers a reply with a 32-bit
ANGLE15 and a 16-bit VEL(ocity) value.

Byte 1
CMD MOTCTRL GETPOSVEL

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
ANGLE31

24 ANGLE23
16 ANGLE15

8 ANGLE7
0 VEL15

8 VEL7
0

CMDMOTCTRLSETCMDVALis used to send new target values to the motor.
CMDMOTCTRLSETCMDVALcarries 16-bit VEL(ocity) and 32-bit POS(ition) values
(current implementations only use the velocity values, the position values are reserved for
future use for a more precise fine-positioning of the motor) and triggers two replies, one
of type CMDMOTCTRLGETPOSVELand one of typeCMDMOTCTRLGETSTATUS.
This is deliberate to minimise the traffic on the bus by avoiding sending commands
which can be considered unnecessary because it can be predicted that the user is going to
call them.

15Current versions have a known bug that this value wraps near 0x08000000, see the source code for details.

294 A.2. The CAN Interface

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
CMD MOTCTRL SETCMDVAL POS31

24 POS23
16 POS15

8 POS7
0 VEL15

8 VEL7
0

A.2.4 The C167 I/O Controller

The I/O controller is a C167 mainly interfacing to the gyro compass, the joystick and the battery
voltage meter. The commands are defined in the Neobotix header fileCmdIOBoard.h as an
enumerationCMDIOBOARD, an excerpt of which will be explained here.

enum CMD_IOBOARD
{

CMD_IOBOARD_CONNECT,
CMD_IOBOARD_DISCONNECT,
CMD_IOBOARD_GETDIGIN,
CMD_IOBOARD_SETDIGOUT,
CMD_IOBOARD_GETANALOGIN,
CMD_IOBOARD_GETGYROVAL,
CMD_IOBOARD_ZEROGYRO,
CMD_IOBOARD_GETJOYVAL,
CMD_IOBOARD_GETVBATT,
CMD_IOBOARD_GETSTATUS,
CMD_IOBOARD_SETCTRLPARA,
CMD_IOBOARD_GETCTRLPARA,
CMD_IOBOARD_UNKNOWN

};

CMDIOBOARDCONNECTis used to “connect” to the controller. The same comments as for
the motor controllers apply.CMDIOBOARDCONNECTcarries no parameter and triggers
a reply with no parameters.

Byte 1
CMD IOBOARD CONNECT

CMDIOBOARDDISCONNECTis used to “disconnect” from the controller. The same com-
ments as for the motor controllers apply.CMDIOBOARDDISCONNECTcarries no pa-
rameter and does not triggers a reply.

Byte 1
CMD IOBOARD DISCONNECT

CMDIOBOARDGETSTATUSis used to read the combined data of the sensors attached
to the I/O controller, thus saving bandwidth because the commands do not have
to be sent separately. CMDIOBOARDGETSTATUScarries no parameters and
triggers two replies, one of typeCMDIOBOARDGETSTATUSand one of type
CMDIOBOARDGETDIGIN (not described here). TheCMDIOBOARDGETSTATUS
reply holds two 8-bit values for the joystick readings, a 16-bit ANGLE value for the
gyro (seeCMDIOBOARDGETGYROVAL) and a 16-bit value for the battery voltage (see
CMDIOBOARDGETVBATT).

A.2. The CAN Interface 295

Byte 1
CMD IOBOARD GETSTATUS

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7
CMD IOBOARD GETSTATUS JOYX JOYY ANGLE15

8 ANGLE7
0 VOLTAGE15

8 VOLTAGE7
0

CMDIOBOARDZEROGYROis used to initialise the gyro compass (set it to zero). This is –
strictly speaking – not necessary because only differences of gyro values are used for the
localisation, but may be helpful.CMDIOBOARDZEROGYROcarries no parameters and
triggers a reply with no parameters.

Byte 1
CMD IOBOARD ZEROGYRO

CMDIOBOARDGETGYROVALis used to read the gyro compass value. This value is an abso-
lute position value integrated over the gyro signal by the controller. To obtain the velocity
this value has to be differentiated again.CMDIOBOARDGETGYROVALcarries no pa-
rameters and triggers a reply with a 16-bit ANGLE value (needs to be converted).

Byte 1
CMD IOBOARD GETGYROVAL

Byte 1 Byte 2
ANGLE15

8 ANGLE7
0

CMDIOBOARDGETJOYVALis used to read out the joystick readings.
CMDIOBOARDGETJOYVALcarries no parameters and triggers a reply with two
8-bit readings, the x- and y-axis of the joystick.

Byte 1
CMD IOBOARD GETJOYVAL

Byte 1 Byte 2 Byte 3
CMD IOBOARD GETJOYVAL JOYX JOYY

CMDIOBOARDGETVBATTis used to read the platform battery voltage.
CMDIOBOARDGETVBATT carries no parameters and triggers a reply16 with a
16-bit VOLTAGE value (needs to be converted).

Byte 1
CMD IOBOARD GETVBATT

Byte 1 Byte 2
VOLTAGE15

8 VOLTAGE7
0

16Older versions tagged this reply as CMDIOBOARD GETJOYVAL.

296 A.3. The LMS-200 Serial Communication

A.3 The LMS-200 Serial Communication

Communication with the SICK LMS-200 laser scanners is done via RS422 serial lines accord-
ing to a protocol defined in thetelegram definition manual(TDM)17. Both the hard- and software
aspects of this communication do have their originalities which must be observed in order to
avoid serious problems.

A.3.1 Serial Communication Hardware Issues

According to the TDM the scanners support data rates of 500000, 38400, 19200 and 9600 bps.
In the same manual a list of values can also be found which are returned when querying the
scanner for its internal status ([SICK AG 2000],0xB1 reply). These values lead to the idea
that they are used as divisors for a frequency of 1 MHz to generate the data rates as in table
A.7, leading to a (neglectable) error in the lower rates and a totally uncommon highest data rate
that can only be explained by SICK’s desire to save costs at all price and not install a simple
additional quartz oscillator.

speed flag divisor real speed error
9600 0x8067 103 9708 1.13 %

19200 0x8033 51 19607 2.12 %
38400 0x8019 26 38461 0.16 %

500000 0x8001 2 500000 0.00 %

Table A.7: Baud rates as derived from [SICK AG 2000]. The manual only lists
theflags and not the formula, but it can be guessed as 1000000 / (flag - 0x7fff).
The resulting error in the lower rates is small enough to not irritate a receiver that
is running on the correct speed because it will re-sync on the rate after each byte.

On the PC architecture theuniversal asynchronous receiver / transmitter(UART) was his-
torically driven with a frequency of 1.8432 MHz, which the chip immediately divided by 16 to
yield abaud baseof 115200 bps. It is this baud base which is further divided to yield the serial
data rate, the original 8250 UART only allowing divisors of 2 and therefore at most 57600 bps.
Modern chips like the 16550 UART can be driven with a much higher frequency, most com-
monly 14.7456 MHz = 8· 1.8432 MHz, leading to eight times the baud base (921600 bps = 8
· 115200 bps) and therefore eight times the data rate as for the same divisor as with the origi-
nal frequency. For compatibility with the original rates these chips have an additional internal
divide-by-8 logic that can be activated and deactivated according to the desired rate. If in high-
speed mode, a divisor of 2 would therefore lead to a data rate of 460800 bps, which is quite
common.

However, a data rate of 500000 bps can not be achieved by any integer divisor using this fre-
quency, so a customary UART like the typical on-board chips cannot be used to interface to the
LMS-200. Instead the PC is equipped with aMoxa18 “CP-132” PCI board with an 16550 UART
on which the 14.7456 MHz quartz has been exchanged by a 16 MHz one. Using this quartz the

17See [SICK AG 2000].
18Moxa Germany, Heinrich-Lanz-Straße 4, D-69514 Laudenbach, Germany,http://www.moxatech.de

http://www.moxatech.de

A.3. The LMS-200 Serial Communication 297

board actually matches all the LMS-200 data rates without error. The resulting integration of
the scanners can be seen in figure A.5.

user
application

16550

serial port board

PCI RS422
/dev/ttyM?

16MHz
quartzlinux kernel

"mxser"
module

laserscanner

PC

Figure A.5: The integration of the SICK laser scanner into the Linux kernel involves
several questions: Due to the uncommon transfer speed the clocking quartz on the serial
port has to be modified and a special kernel module has to be used that knows about this.

Adding to the above complications there exists yet another potential snag: The 16550 on the
Moxa board has a 16 byte FIFO buffer to avoid serious overrun problems, but its interface to
the PCI bus is rather slow. It has to be accessed using explicit I/O commands, reading each
byte separately. Tests have shown that a read of a single byte off the chip’s FIFO can take
considerably more than 1 us. The practical upshot of this is that if one uses the FIFO buffer to
avoid a high interrupt load the interrupt routine may not be fast enough to empty the buffer and
overruns may in fact occur, in particular if two 16550 are receiving data from two laser scanners
simultaneously. In order to avoid this the FIFO settingmust notbe set to their maximum value,
but even then occasional overruns do occur. Other variations of UARTs like the yet newer 16650
and 16750 have a larger FIFO (32 and 64 bytes) but are unlikely to have a better bus interface,
though due to a lack of available boards this has been left untested. What remains is that for
two active scanners the CPU of the on-board PC reading the data is under a load of 20-30 % in
an interrupt routine just for reading data off the UART, regardless of the speed of the CPU

A.3.2 Serial Communication Software Issues

Another thing that has next to be taken care of is the software driver. Moxa ships a Linux driver
with the board that allows to use the higher data rates, but of course this driver does not know
about the modified quartz. Basically, in order to use it the divisor tables have to be changed
to reflect the higher baud base. The only thing that remains after these changes is that Linux
does not allow to usebaud ratevalues when setting the data rates, butenumeration flagswhich
reflect the underlying divisors. So in order to switch to 500000 bps a constant calledB460800
has to be used, and it is up to the user to not get irritated by this.

Yet, after the hardware connection is properly established, other problems remain. The TDM
specifies that

• the maximum time between two bytes of a telegram received from the LMS-200 may be
up to 14 ms

• the maximum time between two bytes of a telegram send to the LMS-200 must not be
longer than 6 ms, because otherwise a timeout is assumed and the telegram discarded

298 A.3. The LMS-200 Serial Communication

• the minimum time between two bytes of a telegram send to the LMS-200 must not be
shorter than 55µs.

The first condition is trivial to meet: A reading process simply has to ignore all timeout
considerations and just read data as it arrives. If there should have been a gap in the data stream
because a byte was dropped this can always be detected with a checksum later on.

The second condition is not that trivial, but still easy: Knowing that data is send in an interrupt
routine once buffered by the system it is just almost impossible that a gap of 6 ms should occur,
the more because of the UART’s FIFO. Such a gap could only occur if some other interrupt
routine would block the processor for more than that amount of time, and this should not be the
case with Linux - though it is not proven.

The last condition, however, does present a problem because the normal spacing at
500000 bps would be 20µs (8 data bits, 1 start and 1 stop bit). Requiring a 55µs spacing
means that the data cannot be send as a continuous stream, which at least means that it cannot
be given to the Linux kernel with one largewrite() call because the timing of what happens
after thewrite() is out of the hands of the application. What can be done instead is sending
the data byte by byte usingwrite() s of only 1 byte and manually running a delay loop in
between. Such a delay loop would of course execute in the user domain and be subject to all
scheduling effects that may occur. Even if it is running in a tight loop not giving up the proces-
sor it may be preempted for other tasks, leading to that larger gaps in the stream may occur. In
the worst case it might become possible that the second condition gets violated this way.

Overall, it cannot be guaranteed that sending telegrams to the LMS-200 is successful on a
multitasking operating system, and so a close watch on timeouts during an attempt to receive a
reply is needed to detect sending problems. Fortunately the only places where telegrams have
to be send is during initialisation. Once initialised the LMS-200 is put into a mode where it
continuously sends scan telegrams without any further need to talk to it.

A.3.3 Telegrams and Modes

Once all low-level communication issues are resolved telegrams can be sent to the scanner for
execution. Each telegram consists of a header, a command byte, additional command data and
a checksum as in table A.8. 16-bit values are encoded in thelittle-endian (Intel) format, the
lowest significant byte first. Upon receiving a telegram the scanner is expected to reply with
either anACK(0x06) or aNACK(0x15) within 60 ms (after aNACKthe host should wait at
least 30 ms before retrying). This only indicates whether a telegram has been received correctly,
not what the status of execution of that command is. Depending on the command it may still
take up to some seconds until the scanner sends a reply telegram.

name bytes explanation
STX 1 0x02 start byte
ADDRESS 1 0x00..0x7f host→ LMS, +0x80 LMS→ host
LENGTH 2 DATA length (not including checksum)
CMD 1 0x00..0x7f command byte, +0x80 reply
DATA LENGTH-1 arbitrary command data
CRC 2 CRC checksum from STX to DATA

Table A.8: General telegram format on the LMS-200

A.3. The LMS-200 Serial Communication 299

Using these telegrams the scanner may be sent commands to execute, for example the RESET
command (0x10 telegram) to be initialised to a known state19. This rises the problem that in
order to successfully send a RESET command one already has to know the transmission speed
the scanner is running on, which is not necessarily the case. The initialisation routine therefore
first tries to abort whatever command the scanner is working at and set its speed to 9600 bps by
sending it an appropriate SETSPEED command (0x20 telegram with0x42 mode). Since the
actual transmission speed is yet unknown no return errors can be evaluated and the procedure
has to be repeated at all possible transmission speeds of 9600, 19200, 38400 and 500000 bps,
one of which the scanner will be running at. After this the RESET command may be send,
this time evaluating a return error. Once the state of the scanner is established it may be set to
500000 bps again (0x20 telegram with0x48 mode) and finally used.

The scanner has several modes in which it uses different resolutions and does or does not
report reflection values as real reflection values or just a “blending” flag. Since the data field in
the reply telegrams has limited bits the distance resolution is linked to the maximum distance
value. They can the changed from a range of 8, 16 and 32 m with millimetre resolution up
to 80 m with centimetre resolution. A decimetre resolution is also available, but it does not
enlarge the operating range any further. Also, the angular resolution can be changed to either
0.25, 0.5 and 1◦. In 1 and 0.5◦ mode the scanner can report all 181 or 361 scan values in one
telegram, but in 0.25◦ mode it can not. Instead it replies with several telegrams in which the
data is delivered in what SICK calls an “interlaced mode”, because it has to acquire them using
several rotations of the mirror. The details of all possible modes and their data format can be
found in the TDM.

On the MP-L655 the scanners are operated in acontinuous mode(0x20 telegram with0x24
mode). In this mode it continuously delivers 361 distances of up to about 8 m with millimetre
resolution and an angular resolution of 0.5◦. The reply telegram format for this continuous
mode is given in table A.9. It is because of this mode that overruns in the serial communication
are not really fatal: If an overrun occurs the telegram is discarded due to its broken checksum,
but another telegram will soon follow anyway. It just means that the localisation will have to
skip one cycle, which is not a problem unless it happens too often and/or in succession, which
experience has shown is not the case.

Since the mirror takes 26 ms for one scan the scan frequency can be as high as 38 Hz. Given
that each scan telegram consists of 732 bytes this results in an effective data flow of only up to
27 kBytes/s, or almost 280 kBit/s. The physical transmission rate of 500000 kbps is not even
barely touched, so all the hardware efforts to get a communication going at this troublesome
rate is actually wasted.

A.3.4 Summary

Summing up the difficulties of establishing a reliable serial communication in the first place
and considering the amount of processor load this communication introduces, using a RS422
serial line has to be considered a bad idea. Seen from an efficiency point of view a more modern
transmission media like USB with a packet oriented approach would be highly desirable, but
since the LMS-200 is often used in rough industry environments the robustness advantages of
RS422 may have outweighed considerations of other communication interfaces at SICK. The

19Actually this does not (re)set the format to be used when sending scan data, but since this is not touched by
any part of the software there is no need to reset it. For details see the TDM.

300 A.4. mobiled

name bytes contents explanation
STX 1 0x02 start byte
ADDRESS 1 0x80 reply address (in our case
LENGTH 2 726 DATA length (not including checksum)
DATA 1 0xB0 CMD

2 FLAGS
2 FLAGS = UNIT15

14:PSCAN11313:PSCAN21211:COUNT10
0

2 SCAN0 = BLEND15
15:DIST12

0
...

...
2 SCAN360

1 padding
CRC 2 CRC checksum from STX to DATA

Table A.9: The SCANCONTINUOUS telegram (0xB0 CMD). The FOOj
i notation indicates

how values are packed into the bitsi to j of the DATA. The values are: UNIT = 1 indicating
a millimetre scale, PSCAN1 and PSCAN2 = 0 indicating a complete scan, COUNT = 361,
BLEND a 1-bit flag indicating whether a reflector has been detected and DIST the distance
in millimetre between 0x0000 (0m) and 0x1ff7 (8.183m). Values between 0x1ff8 and 0x1fff
indicate errors. Note that this does leave some bits open which are not defined in this mode.

only alternative to get rid of the processor load would therefore be to use an “intelligent” serial
I/O board with a separate processor to buffer the data, but for this work this has not been tested
because the load has been found to be tolerable.

A.4 mobiled

The mobile platform control is implemented in themobiled program. Internally, the control
architecture of themobiled program consists of several parallel threads as in figure A.6. Ex-
ternally, themobiled program accepts a number of command line arguments listed in table
A.10. The meaning of these arguments is as follows:

tesche@fermi/pts/2> ./mobiled -h
usage: mobiled [<option>]

where <option> is any combination of
-d : enable debugging
-h : print this help
-s : simulate (motors and laser)
--no-motor / --no-motors : disable motors
--no-laser / --no-lasers : disable lasers
--no-voltage : disable voltage graph

Table A.10: Command line arguments ofmobiled .

-d enables lots of debugging output. This option is not recommended for normal
usage because it can disturb the real-time capabilities of the system due to
calls to thewrite() system call by real-time threads.

A.4. mobiled 301

-h prints the arguments as listed in table A.10.

-s enters simulation mode. In this mode no hardware is accessed, but only simu-
lated. This mode is useful to run a simulatedrobotd .

--no-motor / --no-motors disabled the use of the motors. This mode is
only useful for testing the laser scanners.

--no-laser / --no-lasers disabled the use of the laser scanners. This
mode is useful for testing the odometry.

--no-voltage disables the voltage graph. If themobiled does not have ac-
cess to a graphical console or cannot find the external helper program for
viewing gnuplot logs use this option to disable the voltage graph. This
does not affect the possibility to read out the voltage manually.

CPERIODICTIMER::Event()
− predicts new position
− executes motion step
− performs collision avoidance
− sends motor commands
−triggers motor readback

− updates position according to odometry
− updates position according to laser

− predicts position
Localisation

− generates target velocities

− reads current position
− executes motion step

Step()

CMOTION

CCANPLATFORM

CCONDITION

CMOTORFEEDER

calls

waits

CCONDITION

CSICKLASERCLASER

reads

CSICKLASERCLASER

reads

reads

reads

tri
gg

er
s

triggers

w
ai

ts

CLASERFEEDER
− delivers data to connections
− waits for new connections
CDAEMON::Run()

CCONNECTION::DataAvailable()

CCONDITION

CGENBASE
spawns

ca
lls

bin/mobiled::main()

cr
ea

tes

reads/writes

CCLIENT

triggers

waits

CTHREAD::Fxn()
− waits for 31.25ms timer

CTHREAD::Fxn()
− read odometry data
− read gyro data
− updates localisation

− en/decodes data protocol

CTHREAD::Fxn()

− calls functionality

reads

calls

calls

calls

calls

ca
lls

tri
gg

er
s

ca
lls

MOTOR MOTOR GYRO

CTHREAD::Fxn()
− collects scans from scanners

CTHREAD::Fxn()
− reads scans from CSICKLASER
− converts scans to platform coordinates

CTHREAD::Fxn()
− reads raw data from laser
− converts raw data to scan

CTHREAD::Fxn()
− reads scans from CSICKLASER
− converts scans to platform coordinates

CTHREAD::Fxn()
− reads raw data from laser
− converts raw data to scan

Figure A.6: The control architecture of the server programmobiled .

302 A.4. mobiled

Appendix B

Robot Arm Documentation

This chapter gives an optional, but more verbose documentation of the robot arm used in this
work. This documentation consists of a detailed hardware description of the PA10 robot arm as
delivered by the vendor in section B.1, details about the custom tool designed for this work in
section B.2 and a short introduction into the most important aspects of the robot programming
language RCCL used in this work in section B.3.

B.1 The “Mitsubishi PA10” Robot Arm

The robot arm used for the mobile robot system is a 1999 model Mitsubishi Heavy Industries
(MHI1, Japan) “Portable General Purpose Intelligent Arm PA10” in the original japanese ver-
sion. The PA10 can be ordered in several “levels” from MHI according to table B.1. For this
work a level-3 PA10 has been chosen, so the next three subsections will describe the arm, the
controller and themotion control board(MCB). In each subsection arguments for choosing the
PA10 for this work will be pointed out as well as the major problems.

level scope of devilery
1 arm mechanism only
2 1 + controller
3 2 + motion control board (MCB)
4 3 + operation control section (PC)

Table B.1: Different “levels” of the PA10.

B.1.1 Level 1 – The PA10 Arm

Level 1 of the PA10 consist of only the arm according to the specification data given in table B.2.
It weighs only 35 kg, yet it has a rather high payload of 10 kg. This weight is distributed over
a kinematically usable length of 950 mm, making it very compact. In comparison, for example
the smallest model of Stäubli’s RX series, the RX60, weighs 42 kg at a length of 600 mm.
A Stäubli RX60 had initially been considered for this work, but thorough considerations soon
indicated that 600 mm length are not enough. The auxiliary devices would have to be packed
too close and too cramped around the robot so that they would actually hinder the robot when
operating them.

1http://www.robot-arm.com ,
http://www.sdia.or.jp/mhikobe-e/products/mechatronic/e_index.html

303

http://www.robot-arm.com
http://www.sdia.or.jp/mhikobe-e/products/mechatronic/e_index.html

304 B.1. The “Mitsubishi PA10” Robot Arm

weight: 35 kg
payload: 10 kg
motors: AC servo motors
sensors: absolute resolvers
number of joints: 7, similar to human arm
kinematical length: 950 mm
positional repeatability: ± 0.1 mm

Table B.2: Some PA10 specification data.

The arm has 7 joints arranged in a way to resemble the capabilities (not necessarily the
appearance) of a human arm as in figure B.1. It has aredundantkinematic, which means that
there is generally an infinite number of solutions to the inverse kinematics. This also means
that parts of the arm can move without changing the pose at the end effector. Even though this
feature is not used in this work, it can be useful in avoiding collisions in narrow environments,
where theseself motionscan be used to avoid obstacles while still driving a desired motion. It
can also be used to avoid some of the problems associated with singularities2.

Figure B.1: The PA10 arm with its 7 joints. All lengths are in millimetres.

2See [Scherer 1998].

B.1. The “Mitsubishi PA10” Robot Arm 305

The joints are driven by brushless AC motors over a gear box and position resolvers, all
integrated in the compact casing. Contrary to a RX60 the resolvers on the PA10 can report the
absolute joint position without needing calibration3. The exact specifications of the joints are
given in table B.3.

This table shows one interesting point highlighted in gray: The last joint has no mechanical,
but only a logical limit. While for some operations this may be a useful feature it raises a
problem with the position resolver. The operating manual says (literally)4:

If power is re-supplied when lost at a position exceeding±180 degrees, initial angle
is not recovered, but an angle displaced by 180 degrees is given.

Practically, if at a position of more than 180 degrees the angle is displaced by 180 degrees,
this means that the arm may come up with 360 degrees error in the zero position of the last
joint. This is a severe problem because cables leading to the tool may/will get damaged if the
arm is moved when being in this condition.

joint type mech limit servo limit soft limit vel limit
[◦] [◦] [◦] [rad/s]

1 rotation ±180 ±178 ±177 ±1
2 swing ± 94 ± 92 ± 91 ±1
3 rotation ±180 ±175 ±174 ±1
4 swing ±143 ±138 ±137 ±2
5 rotation ±270 ±256 ±255 ±2Π
6 swing ±180 ±166 ±165 ±2Π
7 rotation ±∞ ±361 ±360 ±2Π

Table B.3: Specifications of the original PA10 joint parameters.

B.1.2 Level 2 – The PA10 Controller

A level 1 PA10 is only useful for people wishing to design their own controller. For all others
the level 2 PA10 comes with a MHI controller. The main specifications of this controller are
given in table B.4.

The controller is very compact. The logic and power boards inside it use only a fraction of the
available space in the box – most of the space is used by the power supply which transforms the
japanese standard 100 VAC down to 100 VDC for the power amplifiers. The small size and the
fact that it is possible to run the power amplifiers with, for example, only the 48 VDC present
on the mobile platform makes it possible to integrate the controller into the mobile platforms
without larger modifications.

Internally this controller has several microprocessors – one for running a control loop for
each joint and one for global tasks and communication over the ARCNet interface. ARCNet is

3More exactly, the RX60 can also do this for some time (up to 2-3 weeks) without power because its incremental
encoders are backed up with an auxiliary battery and keep counting even when the main power is switched off.
Once this battery has run flat the RX60 “forgets” the position and has to be calibrated.

4See [Mitsubishi PA10 Operating Manual].

306 B.1. The “Mitsubishi PA10” Robot Arm

physical dimensions: 225× 343× 395 mm (W×H×D)
weight: 14 kg
external operating voltage: 100 VAC, 50/60 Hz, 1 kVA
internal operating voltage: 100 VDC
external interface: RJ11 socket, HYC2485S modulated twisted pair 5 Mbps ARCNet
joint controller cycle time: 10 ms
safety timeout watchdog: 300 ms (default, can be changed)

Table B.4: Specifications of the PA10 controller.

a token ring network where stations are only allowed to send data when they are given the token
by the network arbiter. In addition to this, the protocol is designed so that the controller will
never send packets on its own if not asked to do so by the host. Due to this mechanism there are
no collisions on the bus and real-time behaviour can be guaranteed. This real-time behaviour is
needed because the joint controllers have to be given new command data at a constant rate of
10 ms. Failure to do so will result in jerky motions and may damage the arm and the objects it
manipulates.

The joint controllers in the PA10 provide two different type of motor commands:

1. Velocity commands and

2. torque commands.

Torque commands can be used to access the motors at a very low level when the goal is to
obtain full control and responsibility and to implement a motion control completely separate
of what the existing higher levels provide. They can also be useful when implementing force
control, in particular because it is possible to have only some of the seven joints in torque mode.
For this work they are not used because implementing a motion control at a cycle rate of 10 ms
using torque commands involves a lot of difficulties, one of which being that it is very tricky to
keep the arm steady because due to gravity a torque of zero does not mean that the arm will be
standing still. This work therefore uses only the velocity command mode.

One thing that the PA10 controller does not offer is aposition commandmode, where the joint
controller accepts real positions and not velocities. Such position commands of course have to
be ensured to be reachable in one cycle given the mass, velocity and limited acceleration of
the arm, but are very useful if properly implemented. The point is that without having position
commands some higher level controller has to be implemented for bringing the arm to a target
position, and if that controller runs too slow it may perform badly.

B.1.3 Level 3 – The PA10 Motion Control Board / PA-Library

A level 3 PA10 consists of the arm and the controller as described above plus the “motion con-
trol board” (MCB). The MCB is an ISA board (see figure B.2) to be plugged into the computer
that is to become the controlling host for the PA10 (newer versions use a PCI board). It has
a single ARCNet interface to connect to a single robot. Apart from this interface it also has
a complete computer with its own CPU, memory and operating system, independent from the
host CPU and operating system. It is intended to be used by all those customers who want a
high level access to the arm.

B.1. The “Mitsubishi PA10” Robot Arm 307

Figure B.2: The Motion Control Board (MCB).

The MCB can perform all the computations needed for moving the arm including computing
a trajectory to a cartesian target, generating setpoints along that trajectory, applying some kind
of inverse kinematics to obtain joint level setpoint and sending them to the arm via the ARCNet
interface. According to the manual the trajectory generator uses theresolved motion rate control
(RMRC) approach to generate the motions5.

The fact that the programming manual mentions the term “RMRC” (resolved motion rate
control) suggests that trajectory generation is actually done by applying the inverse of the arm
jacobian, or, since the arm has a redundant kinematic, rather the pseudo-inverse of the jacobian6.
RMRC translates cartesianvelocitiesinto joint velocities, which is consistent with the fact that
at the lower ARCNet level the controller accepts velocity commands. In order to move the arm
to apositionthe MCB has to apply RMRC in a closed loop even if the arm is no longer to be
moved, treating the difference in position as a virtual velocity.

No official documentation about the MCB itself exists. The only way the MCB can be used
is by purchasing the separately available “PA-Library” (PA-Lib). Since this library comes with
source code it can be seen that it implements no functionality on its own, but only passes its
function parameters to the MCB. It is therefore limited to MCB hardware features and does
not allow any user enhancements. Its key features are briefly described in section 4.2.1 and
compared to therobot control c-library(RCCL) used in this work.

B.1.4 Newer PA10 Versions

In 2002 MHI has revised the PA10 design and henceforth only sells the PA10-6C with 6 and
the PA10-7C with 7 joints, an excerpt of whose specifications is given in table B.5. They differ
in a few details from the original PA10, for example in that they support the german operating
voltage of 240 VAC and comply to european safety regulations. Other differences include the
fact that they have built-in pneumatic tubes and electric cables running from the base to the
lower arm to be used freely by the customer.

5See [Whitney 1969] and [Whithey 1972].
6See [Scherer 1998] and section B.3.4 in the appendices.

308 B.1. The “Mitsubishi PA10” Robot Arm

PA10-6C PA10-7C
number of joints: 6 7
weight: 38 kg 40 kg
payload: 10 kg
kinematical length: 930 mm

Table B.5: Some specifications of the newer PA10-6C and PA10-7C.

The most important difference is that they use a different kinematic. The PA10-6C appears to
differ in that it has only 6 joints and looks different (see figure B.3), but this is not a kinematical
difference. All of its joint locations, zero points and scales coincide with the joints of the
PA10-7C so that – except from the non-existent joint E1 that has to be assumed to have a
constant value of zero – the same kinematic can be used. The real difference is that they are
both shorter (930 mm) than the old version (950 mm), meaning that the kinematic routines must
be aware of this and that not all manipulations of the old version in a given and fixed scenario
are guaranteed to succeed on the new version.

Figure B.3: The PA10-6C (left) and PA10-7C (right). All lengths are in millimetres.

B.2. The Robot Tool 309

Other differences exist in the controller, which now has an optical ARCNet interface requiring
a different ARCNet board to access it, and the MCB, which now comes as a PCI board. The
protocol spoken over the ARCNet has changed – some commands take additional arguments
and the endianess has changed – making the new versions incompatible at the low level.

B.2 The Robot Tool

The purpose of a robot arm is to interact with its environment, which in the context of this work
means to grasp several types of tubes, carry them around, feed them to devices and operate these
devices. In order to do that, the robot needs a propertool equipped with (at least) an actuator
and (perhaps multiple) sensors. This tool is generally not readily shipped with the robot simply
because the robot manufacturer cannot tell what type of tool the customer may be needing.
Instead, the robot arms come with flanges that allow the customer to mount – within obvious
limitations – whatever tool he wants.

In industry robots are mostly used for a single and rather simple repetitive task requiring only
very limited, but sometimes also very specialised tool capabilities. As long as the task is not
changed the tool usually does not have to be changed too. The problems start when the task
gets too complex, for example when not only one type of object has to be manipulated. In these
cases a single tool that fits all requirements can often not be built and atool changerhas to be
used.

A tool changer allows the arm to change the tool autonomously, eliminating the need to build
a complex and large tool for all purposes in the first place. This flexibility, however, does not
come without a price, which is that the changing mechanism itself is usually quite big. For
industry applications using large robots this may not be a problem, but for the service robot in
this work it is.

One of the greatest problems with planning motions for a service robot is to ensure that it
has maximum manoeverabilityand keeps the maximum possible safety distance from objects
in the environment. Given that the operational range of a small robot like the PA10 is rather
limited and most of that operational range is already needed to keep the mobile platform at a
safety distance this is not a trivial task, and a big tool changer and the end of the arm would
complicate this even more. As a result, a tool changer has to be considered unsuitable for such
a robot and was not used in this work.

Instead, a single customised and very compact tool has been designed and fixedly mounted to
the PA10. All sensors (notably the camera) and actors (the gripper fingers) are placed as close
together as possible to not waste valuable operational range for offset movements between them.
The resulting tool can be seen in figure B.4. The force/torque sensor, the electric gripper and
the gripper fingers will be described in the following subsections, and the camera is described
in chapter 5.

B.2.1 The “ATI Force Torque Sensor”

One of the tool sensors is an “ATI Industrial Automation7 (ATI, USA) Gamma SI-65-5”
force/torque sensor(FTS) with 6degrees of freedom(DOF). The FTS is mounted at the wrist as

7http://www.ati-ia.com . German distributor: Fa. Schunk.http://www.schunk.de

http://www.ati-ia.com
http://www.schunk.de

310 B.2. The Robot Tool

Figure B.4: The tool with the camera, force/torque sensor and gripper.

in figure B.5 to measure forces (3 DOFs) and torques (3 DOFs) along/about all three cartesian
axes applied to or by the gripper. It is the only tactile sensor the arm has got, i.e. there are no
explicit force sensors in the grippers.

Figure B.5: The wrist mounted force/torque sensor (FTS).

The basic principle of operation of such a FTS is Hook’s Law (the spring law), except that no
ordinary “spring” is used. The back-end of the FTS that is mounted to the arm and the front-
end where the gripper is mounted to are not totally fixed, but connected only by an elastically
deformable object. On this object strain gauges are attached to measure the slight deformations
that occurs when forces are applied to it. Using a proper placement of the strain gauges forces
and torques along and about all three cartesian axes can then be computed.

The biggest problem with such a construction is that not only external forces can exert defor-
mations, but also thermic expansion of the sensor. In theory this effect can be compensated by
using two properly placed strain gauges in a bridge, but since in practise the thermic expansion

B.2. The Robot Tool 311

is not always uniform an error remains8. Summing up this error, the disturbances caught on the
analog cable and the sampling errors in digitisation the overall error with the Gamma SI-65-5
is about±0.2 N (for the forces). This is a bit troublesome because the range of force values in
which force control is usually used in this work is only about±2 N, so the error is about 10%.
It means that it is not possible to adjust forces to an infinite accuracy.

The FTS is connected to the PC by an ISA busdigital signal processor(DSP) receiver board
that does all the necessary digitisation and conversion from raw strain gauge values into cali-
brated force/torque values, as well as low-pass filtering to eliminate noise. The DSP board is
integrated into the controlling PC by a linux device driver realized as a kernel module. This
device does all the necessary initialisation and allowsioctl() calls to read out the forces and
torques, readily converted into N and Nm.

On a higher level the FTS is transparently integrated into the robot control software by means
of a library using the linux device interface. The user of the robot control software can read out
the FTS values from a data structure that is automatically updated with the control frequency
of 100 Hz. For a brief description of the force control implemented on top of this see section
4.4.2.

B.2.2 The “phd Electrical Gripper”

The tool’s actor is a “phd9 (USA/Germany) EGP-5MG-8x14-CA-H141” based customised par-
allel yaw gripper as in figure B.6. It is driven electrically by a conventional DC motor rather
than a stepper motor. Therefore it needs a small interface box mounted at the base of the arm
containing some electronics to control the opening/closing speed and/or limit the motor current.

Figure B.6: The electric parallel yaw gripper.

8Having an air-conditioning in a sealed laboratory does not necessarily help as the reaction of that air-
conditioning to outside weather changes can be quite fast and the resulting temperature distribution in the room
quite non-uniform.

9Fa. PHD GmbH, Arnold-Sommerfeld-Ring 2, D-52499 Baesweiler, GERMANY.
http://www.phdinc.com , http://www.phd-gmbh.de

http://www.phdinc.com
http://www.phd-gmbh.de

312 B.2. The Robot Tool

The interface box is connected to two general purpose digital I/O bits on the FTS receiver
board. This means that it is accessed by the FTS library via the Linux device driver for this
board. The gripper support has been transparently integrated into the robot control software so
that the usual commands to open/close it can be used.

The gripper can be commanded to open or close, but neither can an arbitrary position between
these two extremes be commanded nor can the actual position be read out. The speed with
which it moves can only be influenced indirectly by manually changing the current limit at the
interface box. Since the motor is always running this current limit also determines the force
with which the gripper holds objects. This may not be an optimal approach for grasping tasks
in general, but is fully sufficient for the setup in this work.

One of the biggest problems with grasping is that one has to be sure whether the object in
question is properly grasped or not. With no sensors to detect this the only way to ensure a
proper grasp is to grasp it carefully. Industry often uses pneumatic grippers because these can
apply high forces to obtain a firm grasp. The drawback with these grippers is that their fingers
close very quickly, in fact they more snap together rather than close. When the finger clash with
the object it may well happen that the object is moved out of position. Since this does applies to
most objects in this work a pneumatic gripper can be expected to fail on the required grasping
tasks.

An electric gripper like the phd avoids this problem because it closes its finger rather slowly.
The fact that electric grippers cannot apply the high forces of pneumatic grippers is not a prob-
lem because the objects in this work are quite light-weight and do not at all require high forces
to be handled. Quite on the contrary the Cedex tubes are rather fragile, so handling them with
limited forces is actually a must.

B.2.3 Gripper Fingers

The gripper is equipped with two customised fingers as in figure B.7. These fingers have to be
designed to be able to safely handle all necessary type of tubes and to operate the necessary
devices. Operation of devices means “opening of lids” and “pressing of buttons” in the context
of this work and is accomplished rather easily with any type finger. In order to open the lids of
the centrifuge and fridge the finger basically only has to be able to reach behind it and lift or
shift it, and in order to press a button on the membrane keyboard of the centrifuge the finger can
be equipped with a piece of silicone rubber. In order to safely handle the tubes more attention
is required.

A human operator doing the sample management uses three different tubes for the sample
management as shown in figure B.8: A large 50 ml NUNC tube for taking the sample from
the reactor (because the centrifuge that is needed later uses them), a smaller 1 ml Cedex tube
for feeding the Cedex and a very small 1.5 ml Eppendorf tube for archiving the cell-free su-
pernatant. The initial idea of letting the the robot manipulate all these tubes had to be dropped
because no feasible way to manipulate the 1.5 ml Eppendorf tubes could be found. Since the
archiving can – although being a waste – also be done in NUNC tubes the tool was designed to
be able to grasp only the NUNC and the Cedex tubes.

This restriction also eases another problem, which is that cut-outs have to be milled in the
fingers so that they properly align with the round shape of the tubes. The reason for this is that
with no cut-outs the contact to the objects would be a two-point contact only, and therefore very

B.2. The Robot Tool 313

Figure B.7: The customised gripper fingers with curved cut-outs
fitting the NUNC and Cedex tubes and a piece of silicone rubber
to press buttons on the membrane keyboard of the centrifuge.

Figure B.8: Three different kind of tubes used for manual sample management.
Left image: A 50 ml NUNC tube (upper), a 1 ml Cedex tube (lower left) and a 1.5 ml
Eppendorf tube (lower right). Right image: A closeup of the Eppendorf tube.

unstable. With cut-outs, and eventually cut-outs coated with some rubbery material the contact
is established plane-on-plane, and therefore much more stable.

Being able to grasp tubes of different diameter means to have cut-outs of different radius,
and since the cut-outs cannot be placed into one another this means that the fingers have to be
longer. Long fingers in turns raise a problem with the operational range of the arm: If a tube
has to be holdundersome device – as is the case with the pipette – this means that a camera
observing the scene cannot be mountedabovethe gripper. It has instead to be mounted with
some displacement. If then the tube has to be visually centred above some device this means

314 B.3. RCCL

that additional translational motions have to be applied to compensate this displacement. These
length of these translations correlates with the length of the fingers, and so in order to not waste
too much operational range of the arm the fingers have to be kept short. As can be seen in figure
B.9 the resulting fingers are quite capable of grasping NUNC and Cedex tubes.

Figure B.9: The gripper fingers holding a 50 ml NUNC tube (left) and a 1 ml Cedex tube (right).

Having only two fingers is the reason why the screw caps of the 50 ml NUNC tubes cannot be
used, leading to an important modification. The caps have to be drilled and a special membrane
has to be placed into them for sealing the tube. This membrane does not tear if pinched with a
needle, but instead closes again perfect enough to let no fluid drop out of the tube afterwards if
the tube is not jogged too much With these modified NUNC tubes all biotechnical requirements
are met10 and the robot can automate the sample management.

B.3 RCCL

In this section a short introduction into the most prominent features ofRobot Control C-Library
(RCCL) by John E. Lloyd and Vincent Hayward11 will be given. This introduction is not meant
to be a user’s guide to RCCL, but only to motivate the decision to use RCCL in this work. This
decision is based on the fact that RCCL has support for many extremely useful features that
commercial robot vendor’s proprietary programming languages lack.

B.3.1 Mathematic Computations

Controlling robots involves a lot of computations about joint and/or cartesian positions. RCCL
offers a lot of useful data types as well as the most commonly used routines to work with them.
These include, but are not limited to:

B.3.1.1 Transforms

The most prominent data structure is thehomogenous transformation– short: transformation
or transform– calledTRSFin RCCL. A transform defines a coordinate system (frame) and can

10See [Poggendorf 2004].
11See [Lloyd and Hayward 1989].

B.3. RCCL 315

be regarded either as describing an absolutepose(position and orientation) in 3d-space or as a
relative change of pose (motion) with respect to a reference frame12. In case the reference frame
is the coordinate system origin these two meanings coincide. A (homogenous) transformT is a
4× 4 (homogenous) matrix

T =

 R ~p

0 0 0 1

where

R =

 nx ox ax

ny oy ay

nz oz az

is a 3× 3 rotational matrix consisting of three unit vectors~n, ~o and~a describing thex, y and
z-axes of the new coordinate system as seen in the old coordinate system and

~p =

 px

py

pz

is the position vector. Transforms can be easily inverted (meaning seeing the old coordinate
system from the new one, or a motion backwards) because the inverseR−1 of a rotational
matrixR is simply its transposeRT .

T−1 =

 RT −RT ~p

0 0 0 1

Transforms can be multiplied like any other matrices like in

TBASE · T6 · TTOOL

to describe a combined motion or a combined pose that is concatenated from several relative
motions. Standard rules for matrix multiplication apply if a chain like this is to be solved for
one of its components.

RCCL offers all the necessary functions to do computations with transforms. Unlike that, the
PA-Library does have a comparable data structureMATRIXbut only uses it as a target definition
in the commandpa mov mat() . It does not provide any routine to do computations with these
matrices.

B.3.1.2 Kinematic

Another important aspect of robots is to have access to their kinematics, that is, to compute a
cartesian position from a set of joint angles or backwards.

Given that the inverse kinematics has multiple solutions for a 6 DOF robot it is necessary
to manually choose a solution. In addition to this some joints may be able to move more than

12See [Fu, Gonzales and Lee 1987].

316 B.3. RCCL

360 degrees, making it necessary to supplyreference angles. If no reference angles are given
these joints may be driven close to a limit on one side during sequences of motions where the
same position with an angle± 360 degrees may be a lot more relaxed. In addition to that robot
motions are usually given as targets only, even if the user had an explicit trajectory in mind. In
case of a joint close to its limit thetrajectory generatormay think it necessary to drive a joint
in precisely the opposite direction as the user intended, even though the final position will be
correct13. All this makes it necessary to have a possibility to intervene with the kinematic to
adjust things to how the user wants them to be.

In case of a redundant robot as the PA10 the inverse kinematic actually has an infinite number
of solutions and even more complex schemes to choose one are required. One possible alter-
native is to take that solution where the joints are as far away from their limit as possible, only
that now this is a question of minimising a continuous error function rather than selecting one
of a discrete set of solutions. Again, if no attempt is made to keep the joints away from their
limits problems with motions will occur.

RCCL provides the routinesfwdKinematics() andinvKinematics() to do compu-
tations with the kinematics, accepting aconfiguration bitmaskas well as reference angles to
allow the user to have some control over the selection of the solution. It does not implement
a selection scheme or a trajectory generator for redundant robots, although these could be im-
plemented by means of control functions by the user. The PA-Library on the contrary does not
offer any access to kinematic computations.

B.3.2 Position Equations

Another very useful construct are position equations. A position equation is a highly flexible
way of defining motion targets. For simple programs with just a few static targets it may be
feasible to pre-compute all target positions, but in general that has to be considered a bad idea.

If a program has a lot of motion targets this means that all the affected absolute positions have
to be computed in advance, which may be a bit of work. If in addition to that one of the targets
is dynamic (that is, if it changes between two motions) this means that the affected absolute
positions have to be re-computed each time this target is accessed.

As an example suppose a table with a tube storage rack on it as in figureB.10. In order
to grasp tubes from the racks their absolute positions have to known. If the table or the rack
is moved this means that these positions have to be re-computed. Of course this is already
greatly simplified if it is possible to do computations with transform, but still it requires a lot of
computations. An even more convenient solution is therefore to use position equations and let
the robot control software do all this alone.

Position equations are based on the fact that transforms are matrices and can be concatenated
as in

TTABLE · TRACK · TTUBE,i

13The easiest and most disturbing example of such a situation is screwing a screw into a screw thread. The user
has a very explicit idea of which was to rotate the joint in question, but when only the target orientation is given
it cannot be guaranteed that the trajectory generator will agree with that. Using a joint space motion of that joint
is of course one way to ensure that the screwing will work, but is unlikely to be applicable because an overlaying
cartesian motion is needed to compensate for the thread pitch and no robot control software supports mixing joint
and cartesian motions for individual joints at the same time.

B.3. RCCL 317

Figure B.10: A table with a tube storage rack on it. Between the left and the right image the rack
has been moved, requiring to re-compute the absolute position of all tubes if they are to be grasped.

to describe a more complex target frame, in this case the absolute position of tubei. An illustra-
tion of this chain of transforms can be seen in figure B.11. In a position equation two different
ways to reach a target frame are given, one of which must contain the robot transformT6(t)
and the other not. Taking the example with the table and wanting to grasp tubei the position
equation

TBASE · T6(t) · TTOOL = TTABLE · TRACK · TTUBE,i

is most likely to befalseat the beginning of a motion – the two sides are not equal. What
the trajectory generator does is to introduce an additional transformTDRIVE(t) that catches the
difference. So the real (internal) position equation is

TBASE · T6(t) · TTOOL = TTABLE · TRACK · TTUBE,i · TDRIVE(t) (B.1)

which can always bemadetrue. This equation is then solved for the initialTDRIVE(0).

TDRIVE(0) = T−1
TUBE,i · T

−1
RACK · T

−1
TABLE · TBASE · T6(0) · TTOOL

If we assume the motion to have a total duration oftE at the end of the motion

TDRIVE(tE) = I

must hold because the initial position equation has to become true – at the target both sides of
the equation are equal. All that the trajectory generator now does is to bringTDRIVE(t) to I in
the computed motion timetE by scaling the translation and rotation. By inserting thisTDRIVE(t)
into equation B.1 and solving it for

T6(t) = T−1
BASE · TTABLE · TRACK · TTUBE,i · TDRIVE(t) · T−1

TOOL

the robot is then brought to the target without that the user ever had to explicitly compute values
for T6.

If now the table is moved all that has to be done is the new value ofTTABLE has to be
measured. No other transforms have to be changed, in particular none of theTTUBE,i. All

318 B.3. RCCL

TTABLE

TRACK

T
SL

O
T

4

T
SL

O
T

3

T
SL

O
T

2

T
SL

O
T

1

Figure B.11: The same situation as in figure B.10, only now relative transforms
are defined to link the objects. If now the rack is moved onlyTRACK has to be
changed and the rest can be computed automatically by the robot control software.

the motion equations can remain unchanged because RCCL will internally compute everything
that is necessary to do a motion to the changed target. This greatly simplifies things when
multiple targets or multiple transforms per target are involved, and having a position description
split into multiple transforms is always a good idea because it makes a complex position more
understandable.

RCCL offers all the necessary functions to create and handle position equations and solve
them for any necessary transform (or sub-chain of transforms). The PA-Library does not offer
anything comparable to a position equation.

B.3.3 Arbitrary Motions

So far the positions equations from section B.3.2 contained only constant transforms (except
T6(t)), however, having one or morevariable is an interesting extension. Using variable trans-
forms in a position equation means that RCCL cannot computeTDRIVE and therefore the com-
plete motion in advance because it does not know about the changes that will occur.

What it does is it computesTDRIVE from the initial values of the variable transforms and
starts the motion as normal. If the variable transforms are not actually changed this leads to
the same motion as with constant transforms. If they are changed, RCCL can do nothing but

B.3. RCCL 319

apply all the change ontop of the normal motion immediately as in figure B.12. It cannot blend
these changes into the motion as this would require re-computing all the motions parameters
includingtE, which is not supported.

t1 t2
t

T1

T2

T3

Figure B.12: Setpoint generation for moving targets: Att = t1 the target was moved fromT1
to T2 and att = t2 it was moved again toT3. The current trajectory (the fading green dots) is
left and the change applied in full immediately and not blended smoothly (the fading red circles).

Monitor functionscan be attached to a transform to be called in every cycle of the trajectory
generator, which means that the transform can be modified in real-time. This way a normal
motion may be superimposed by an arbitrary offset as long as the offset does not violate the
robot’s acceleration and speed limits.

A special case occurs if the constant part of the motion is actuallyNULL because the robot
is already at the target position of the motion. Normally such a motion would take no time and
complete immediately, but with variable transforms it is possible to manually set the motion
time tE to infinity (or any other applicable time). During execution of such a motion the robot
does no pre-planned moves but only react to changes of the variable transforms. This way a
truly arbitrary motion may be achieved, again, as long as the offset does not violate the robot’s
acceleration and speed limits.

Applications of arbitrary motions are for example spline curves as an extension of the tra-
jectory generator and force control, where correctional movements obtained by measurements
from a FTS are superimposed onto an otherwise constant motion to prevent excess forces from
damaging the robot or other equipment (for details see section 4.4.2).

RCCL’s position equations and variable transforms offer all the support that is necessary
to implement these arbitrary motions. The PA-Library has limited capabilities to modify a
motion (seepa set mat() , pa set wav() andpa odr xyz()), but these changes are
still smoothed by the trajectory generator and the approach is therefore not suitable for real
force control. It is any any case not possible to do a fully arbitrary motions with them.

320 B.3. RCCL

B.3.4 Singularities

One interesting application of a low-level intervention during motions issingularity robust-
ness. Singularities are situations (sets of joint angles~θ) where the robot’s jacobian matrixJ(~θ)
becomes singular. The jacobian represents the partial derivatives of each cartesian DOFpi

according to the robot’s kinematicfKYN(~θ) with respect to each joint DOFθj as

J(~θ) =

[
∂pi

∂θj

]
It is the first order (linear) term of thetaylor series expansion

f(x) =
∞∑

n=0

f (n)(x0)

n!
(x− x0)

n

of the robot’s kinematicfKYN(~θ) around some~θ0. For example, for a robot with 6 DOFs and 6
joints like the PUMA type robots or the PA10-6C the jacobian is given by14

J(~θ) =

∂px

∂θ1

∂px

∂θ2

∂px

∂θ3

∂px

∂θ4

∂px

∂θ5

∂px

∂θ6

∂py

∂θ1

∂py

∂θ2

∂py

∂θ3

∂py

∂θ4

∂py

∂θ5

∂py

∂θ6

∂pz

∂θ1

∂pz

∂θ2

∂pz

∂θ3

∂pz

∂θ4

∂pz

∂θ5

∂pz

∂θ6

[R1]3,2 [R2]3,2 [R3]3,2 [R4]3,2 [R5]3,2 [R6]3,2

[R1]1,3 [R2]1,3 [R3]1,3 [R4]1,3 [R5]1,3 [R6]1,3

[R1]2,1 [R2]2,1 [R3]2,1 [R4]2,1 [R5]2,1 [R6]2,1

where

R =

 nx ox ax

ny oy ay

nz oz az

 (the rotational component of the robot’s transform)

Rj =
[

∂R
∂θj

RT
]

(as abbreviation)

[M]r,c = Mr,c (matrix element in row numberr and column numberc)

This jacobianJ can be used to compute small differential changes∆~p in the cartesian pose
from small incremental changes∆~θ in the joint angles via

∆~p = J(~θ) ·∆~θ

The RMRC method for trajectory generation implemented on the MCB inverts this equation to
compute small incremental changes∆~θ in the joint angles from small differential changes∆~p
in the cartesian pose via

∆~θ = J−1(~θ) ·∆~p

For redundant robots like the PA10 where no closed solution to the inverse kinematics exists
this is actually the only way to generate motions. The only drawback is that in this caseJ

14See [Scherer 1998].

B.3. RCCL 321

is not square and the normal inverse cannot be used, but this can be overcome by using the
pseudo-inverse.

If J becomes singularJ−1 does not exist, with the practical upshot that in computing it a
division by zerooccurs and the computed∆~θ are therefore±∞ for one or more joints. If the
program does not abort immediately because of SIGFPE15 it means that it will abort shortly
afterwards because the robot cannot do motions with a higher velocity than its physical limit.

Numerous solutions to this problem exist16, but they all involve slowing down along the
trajectory or slightly deviating from it. These can quite easily be implemented with arbitrary
motions in RCCL. Since the PA-Library does not allow arbitrary motions it cannot offer any
means to deal with singularities.

B.3.5 (Virtual) Robot Cooperation

As a final aspect the cooperation of two or more robots has to be mentioned. Since this work
uses only one robot this appears to be a useless idea at first sight, however, this will be shown
to be not true.

B.3.5.1 Cooperation

Robot cooperation is an important feature when handling large or complex objects – a single
robot may physically not be able to lift the object because it is either too heavy or because
it cannot grasp it near its centre of gravity (in which case it will drop out of the gripper if
lifted). With two robots the same task may be physically possible, but is more complex to
program. Basically, to allow two robots to cooperatively carry the object their motions must be
synchronised. If they are not synchronised already the slightest positioning deviations can cause
excessively high forces to occur inside the object or the robot and – fatally – damage them.

Consider two robots MASTER and SLAVE carrying an object as in figure B.13. The master
is intended to perform the real motion and the slave is intended to follow it. In order for the
slave to do this it must know where the master currently is, and the easiest way to achieve this
is to link itsT6 transform into the position equation like in

MASTER : TBASE,MASTER · T6 · TTOOL,MASTER = TTARGET

SLAVE : T6 · TTOOL,SLAVE = MASTER → T6 · TOFFSET

Note that the slave does not need a base transform (and strictly speaking it also does not need
a tool transform). All that has to be done is thatTOFFSET has to be properly initialised so that the
second equation is valid at the start, then the slave has to be sent into an infinite motion tracking
its position equation and then the master is commanded to do its motion. In each cycle RCCL
will see that the target for the slave has shifted slightly becauseMASTER → T6 has changed
and will adjustSLAVE → T6 accordingly, thus tracking the motion of the master. Since the
master is a real robot with speed and acceleration limits it can in most cases be assumed that
the resulting motion of the slave will also be within its speed and acceleration limit, though this
cannot generally be guaranteed in advance.

15SIGFPE: Floating Point Exception. UNIX signal to indicate numerical problems with the floating point pro-
cessor.

16See for example [Lloyd 1995], [Lloyd and Hayward 1996], [Lloyd 1998] and [Lloyd and Hayward 1998].

322 B.3. RCCL

Figure B.13: Two robot arms cooperatively carrying an object.

B.3.5.2 Virtual Robots

Whereas it is possible to cooperatively carry an object in the above way it remains awkward
because it is the master robot that defines the path. If instead the object is required to move on
a specific path the user has to compute in advance what the path of the master robot has to be
to result in the desired object motion. Mentioning only one aspect, the kinematic lever between
the object and the robot leads to that rotations of the object will translate into translations along
a circular arc for the robot. This is a problem because the only motion types that RCCL as well
as most other robot programming languages provides are straight line motions in either joint
or cartesian space. At first sight it therefore appears as if using a master/slave approach for
cooperation is hardly an improvement of the situation.

In order to overcome this problem RCCL implements the notion ofvirtual robots. A virtual
robot is a normal robot seen from a cartesian point of view, but has no joint data structures,
no kinematic and no hardware interface. It has cartesian velocity and acceleration limits, has a
cartesianT6 position and can be moved in cartesian space according to any position equation.
It can not be commanded to operate in joint interpolation mode and none of its joint structures
must ever be touched.

With this concept of virtual robots the task of cooperatively carrying an object can now be
refined. The idea is to let the object itself be a virtual robot and attachbothrobots to it as slaves
with position equations like

LEFT : T6 · TTOOL,LEFT = OBJECT → T6 · TOFFSETLEFT

OBJECT : TBASE,OBJECT · T6 · TTOOL,OBJECT = TTARGET

RIGHT : T6 · TTOOL,RIGHT = OBJECT → T6 · TOFFSETRIGHT

B.3. RCCL 323

If both robots are set up to passively track the object the same mechanism as above applies:
RCCL sees that the object’sT6 changes in each step and corrects each of the robot’sT6 in
order to keep the equations true. It translates the motion of the object into motions of the
robots, moving them on whatever path is necessary without the user having to do any advance
computations at all.

The reason why this idea of virtual robots also helps simplifying a system with just one robot
is precisely that complex form of motion the robot may have to follow if it is attached to an
object that is moving. If, for example, the robot has to close the lid of the centrifuge this means
to do a circular motion. Instead of programming the motion explicitly a virtual robot can be
placed so that its z-axis coincides with the hinge of the lid as in figure B.14.

LID−>T6

Figure B.14: The hinge of the lid of the centrifuge seen as a virtual robot.

The only thing the user then has to do is to rotate the virtual robot about its z-axis. RCCL
will automatically re-evaluate the position equation for the real robot in each cycle and adjust
its T6 accordingly, which – in case of the centrifuge – means that it will move the robot along a
circular arc as in figure B.15.

What has originally been implemented in RCCL as the possibility to let two or more robots
cooperate can therefore also be used to generate other motions than just straight lines for only
one robot. Again, this is impossible to do with the PA-Library because if offers no support for
arbitrary motions.

324 B.3. RCCL

Figure B.15: The robot closes the lid of the centrifuge using a circular motion that is
generated automatically by RCCL by passively following the rotation of the lid hinge.

Appendix C

Vision System Documentation

This chapter gives an optional, but more verbose documentation of the vision system used in
this work. This documentation consists of a description of the vision hardware in section C.1
and a short introduction into some important aspects of computer vision in section C.2.

C.1 Vision Hardware

In this subsection the hardware used for the colour vision system is described. The hardware
consists of two parts: A colour microhead camera and a colour framegrabber board. At the time
of the project start this hardware was state-of-the-art.

C.1.1 JAI M1250 Microhead Colour Camera

The “JAI1 (Denmark/Japan) M1250” microhead (lipstick) colour camera is mounted at the wrist
of the arm tool as in figure C.1. The camera delivers raw signals from the CCD chip to a
DSP receiver box mounted at the arm base. This box can control the gain and shutter values
and can apply a few manipulations to the signal like automatic white balance and backlight
compensation. After processing the signal it is then output as either analog colour composite
FBAS, SVHS or RGB.

The camera is very compact, as also becomes clear from the specification in table C.1. Its
7.5 mm wide angle lens therefore has only a very cumbersomely adjustable focus and aperture –
it has to be unmounted from the tool to be adjusted. The Sensor is very small (8.1 mm diameter)
and yet offers almost PAL resolution. This means that the receptive elements on the sensor are
very small, which in turns means that the signal has to be amplified a lot in order to obtain bright
images2. Amplification, however, introduces noise to signals.

Because of this noise level and because of the fact that the signals are transported quite a
long way on an analog cable the resulting image quality cannot compete with current digital
still cameras. The images in figure C.2 show this rather drastically. With default setup values
the colour saturation of the images taken by the JAI M1250 microhead camera are considerably
worse than with an Olympus C-300 Zoom digital still camera. Especially low saturated colours
like the green boxes are almost completely suppressed on the M1250.

1Seehttp://www.jai.com , german distributorhttp://www.imaging.de .
2Actually, with 752 pixel along 6.5 mm = 8.6µm/pixel the camera is in the same range as current digital

still cameras like the Canon EOS-300D with 3072 pixel along 22.7 mm sensor width = 7.4µm/pixel, but the
post-processing of these cameras is much better today than with the five year old M1250 camera.

325

http://www.jai.com
http://www.imaging.de

326 C.1. Vision Hardware

Figure C.1: The JAI M1250 microhead colour camera.

head diameter: 17 mm
image sensor: 6.5× 4.8 mm (8.1 mm diameter)

752× 582 pixel
scanning system: 625 lines, 2:1 interlace
resolution: 450 lines
sensitivity: 1000 lux at f=8.0
minimum illumination: 4 lux at f=1.4
signal/noise ratio: 46 dB

Table C.1: Specification of the JAI M1250 micro head camera.

Figure C.2: The colour saturation of the JAI M1250 microhead camera
(left) compared to an Olympus C-300 Zoom digital still camera (right).

C.1. Vision Hardware 327

Another problem with the M1250 camera that can also be seen in this figure is the automatic
white balance. The [JAI CV-M1000 Series Operation Manual] says that

due to the TTL system employed for Auto White Balance, it detects the highest video
level in the image as a white colour.

This approach is troublesome if there is no true white in the image in the first place, as it does
happen in some cases with the objects in the laboratory. In such a case the colour space is shifted
so that all colours are slightly wrong. On the other hand not using automatic white balancing at
all raises the same problem when the scene is illuminated by direct sunlight through a window,
so the vision algorithms have to be tolerant against this.

The usage of a newer microhead camera like the GP-US522(E) by Panasonic3 can improve
the situation significantly by using three separate CCD chips. Also, using newer and better post-
processing algorithms in the DSP receiver boxes promise better image quality. Compared to the
M1250 camera, the GP-US522(E) has a signal to noise ratio of 60 dB as opposed to 46 dB. The
image quality of the GP-US522(E) can therefore be expected to be far better than that of the
M1250.

Another interesting idea are digital IEEE1394 “FireWire” cameras, which are available with
much higher resolutions because they do not have to use an analog TV video signal as data
channel. They process the sensor signal directly in the camera and and can be digitally accessed
by firewire, thus also avoiding the error-prone analog transmission. Their only disadvantages
are that they are considerably larger than the M1250 camera and that they have not yet been
available at start of the project.

C.1.2 Matrox Meteor Framegrabber

The camera is connected via analog SVHS video cable to a Matrox4 Meteor framegrabber PCI
board. It is accessed by means of a linux kernel module. This module does not use the newer
video4linuxinterface, but implements a dedicated driver providing access to a/dev/meteor0
device.

The Meteor can grab colour images in either YUV or RGB mode. Even though the camera’s
CCD sensor samples RGB values YUV is the better choice because the camera already converts
its data to YUV format for transmission over the SVHS cable. Grabbing in YUV mode means
that the Meteor has to digitise the SVHS signals, whereas grabbing in RGB mode means that it
additionally has to convert them to RGB again. Since every conversion includes a small loss of
information due to rounding errors YUV should therefore be preferred.

Using the SVHS cable does provide a better signal quality than using a FBAS cable, but still
is subject to noise. This is in particular true on the MP-L655 where not all devices are properly
grounded. The image quality resulting from the suboptimal camera, the analog transmission
to and digitisation on the framegrabber board and the flawed grounding is rather poor, as can
be seen in figure C.3. Vision software operating with these images has to be tolerant against
these disturbances. Again, only a digital transmission via IEEE1394 “FireWire” (or USB) could
eliminate this problem.

3http://www.panasonic.com/medical_industrial/3CCDColorCameras/index.asp
4http://www.matrox.com/imaging/products/frame_grabbers.cfm

http://www.panasonic.com/medical_industrial/3CCDColorCameras/index.asp
http://www.matrox.com/imaging/products/frame_grabbers.cfm

328 C.2. Introduction to Computer Vision

Figure C.3: Sample images demonstrating the poor image quality of the vision system hardware.

C.2 Introduction to Computer Vision

This section gives a short introduction into computer vision and classification. This introduction
does not even try to claim to be complete, but only to cover some aspects which are needed
or at least helpful for the understanding of the vision system used in this work. As such, it
includes some general ideas about image representation (dimensionality), colour spaces, image
manipulation, classification and segmentation.

The image manipulation part contains an introduction into basic and well established tech-
niques, even if – like convolutions – they are not used in this work. The reason for presenting
them here even if they are unused is is that convolution based image manipulation has a very
long history, and the reason for not using them is that they are not sophisticated enough. This
of course demands an explanation and hence a separate subsection.

The classification part is split into feature based classification and appearance based classi-
fication approaches. The appearance based approaches are not used in the established system,
but still deserve some amount of attention because they are an active field of research. They
have been briefly tested during this work, but found to be too troublesome. To demonstrate this
some results will be given in a separate subsection.

C.2.1 Image Representation

One important question is how to store images inside a computer. This question is obviously
not trivial because the representation may have an influence on the performance or complexity
of later processing algorithms. The natural way is to look at what is known about how humans
work with images like the one in figure C.4.

Humans largely work with images by using spatial relations, that means they use the neigh-
bourship of pixels. They immediately apply this “neighbouring” attribute not only to directly
adjacent pixels, but also to those slightly more afar as long as they belong to the same object.
The whole question of what an object is is basically centred about what pixels belong together,
but humans do not have to explicitly compute these relations because apparently the brain does
this automatically at a very low-level stage – they “see” it immediately. This, however, applies
only to natural images. If the image in figure C.4 is for example stored as a matrix

C.2. Introduction to Computer Vision 329

Figure C.4: A greyscale image of a euro coin.

B =

aba9a8a5a8aab1b1abb0a8a5a6acadadada8a6a6a8adaeadb1aeb0b5b3aaacb1b2b3abaeafafacabb5afa6b2a6afa9afb3b1b0abafb5adafaca5b0afb0a7afa7
abaaa9abada8a8a9adadabaeb0ada6a6a7b3b2b3b1b0b3b9b6bdc1c3bcb6bbb2b4bbc6c4c3c3c5bbb1b5b0ada9a1aaa6a5a5a9aaa6a4abaeb4acabaaabacabad
a4a2a4a8a6a8a9a7a4a7a7a8adaeb2b2adb0b5bbb3a59e94796b615d5f5e6361645e5d5c5f687586a4c7cbc9c7b7b3afb3afadabafb0b3adb1aeb6a9b1b4aaa6
a5a6aba7afada9a6a6a6a9acabaaafc4cbc396765953617c9db1c5d5dcdfdfe1e0dcd8d5ccbfaa9070564f6892becfcbbdaaa9adaba3a4a5aeada9ada7b0b3ad
aca4aaaeaea5a5afb6b3b0afb1b8ab8c6e55678cbfd6e0e2ded9dde0dfe3e1e2e0dedcd9d6d9d0d5cdc6b49f7c5a5c8bc8dec9a9a8b6afa4a2afabacafacabae
a7a8a4a1adb5acaaa7a5afb39e7e5c5683c8dbdadadedcdfdde2e2e4e5e6e0e5e2e2e0dfdfdcdbe0ded7d6d1c6c0ae805671b5dccfb0b6b0b3b1a8a8adabacb1
aca8ada9a9a9acadb0b7ad916068a3d2d8d8dcdcdedcdedddce1dbd9d8d6dde0dfdad8dcdadadedddddcdcd9d5d1c4beb8946073b0d3bcb1ada8b0aaaca9a4ac
acada9b0aab4b7b6b9a87f6baed2d4d6d8dadcdddbdcd3d1d7dce2ecf2eeeff0f0efede9ded8d8d4d2d8dbdbd8c9dbc8c1bdbc9b6781cdc7b6b3b3acafb3afa7
a9a7b0b4aca8beb78f76a0d1d4d4d3dcdcd9d5cccfd5e0e8e5e2e5e9edefecdae5e6e7e4e0e1e0dfe3d8d4d1d2c1bbccd2c0c5c5b9946aa5cdb8acaaa7a5aaaf
abaaacaeb1c2b88e88cbd4d8d8d7d8d8d9cbcfd5dbdfe1e1e6e6dfd5d2d7ccbfe6e3e1e3e1dfd8d6dbdedbd4c7babdc5c1cae1c3bdbca96c8accc5a7abaeaaa8
a8acaaa8bfb1939fd0d3d6d9d7d5d1c6cddaddd9bbafaaa4b3c6c8ccced1c9dfe4e3e0dfdedcd7d4d7d7d4d2c7c2bfbdcac9b1c4cfd0c9c0787dc2cfb0aab3ad
a7a8afc2c39faccbd0d4d4d8cfc7bfced8dbdededddcdedfd7d3cedddec9d3e3e3e1e0dedbdcd8d7d8d3d4d0cbb9c0c0b8bdc1bfb1babcc6c18a8bd1b4b4b2aa
b0afb9b8adabc8cdd1d3d6d4cabdccd1d4d7d9dbdddcdee4d3cedce5e2c8dfe0e1e0e0e4dcd6d4d3d3d1d4cdc6bec8c4b9c9c5c3d4cfd8cfc8c88e95dbafacb2
b1bcd2b39dc5c7cdd1ced4cbc2ced2ced3dcd7d9dadadcd8cdd5e9e8c8dbdededfe0dddddbd9d6d8d5d2cfc9c4bdc6c0d3cbc9bdcdc7a5c0c2c5c192a9dbabb2
a7d8bfa2bdc5c8ced5d3ccbec5c9cdcfd0d2d4d9d7dae2ccd1dfe4cad3dcdadadbdbd8d5d4d5dddacfcecbc8c0c1cacfd2c4b1bcbdd1c1bfd1c4bfb1a4cebeae
bacfbbaac0c5c3cfd3ccbcbdc4c7c5cad3d2d1d3d3d9cecbdce6d5c3d5d4d7d6d5d5d3d3d2d2e5d6cdcdccc3b8c1d4dacbbdd3cac4c5c6bca9c7bab7b8b9e1a8
d8c3aeb4bcc2c8cbcbc6b4c5c4cdcbc8c9cccbd4d3d5c5d1e5e5b8d0d2d1cfd5d2d5d8dfcfd1ddcfcbcbcbc2c0cad5d2e4bcc4c3b6b2bebbc7bfbcbab8c3d4bb
d3d6b6aeb3c1c5c7c6b2b5bcbfc1c5c3cac9c7c9cfbac6e1e6c0c3cdc9c9cbcad0dbe2d1cecdecd2cccfcecab8c4d0d7bbc4b3c1b4bdb6c3c3bdbbb9b1bfcac9
cbdeb7b6bec7c7c4bfaeb9bebdbdc0c5c3c5c2d6c0bfcddfc4bac2cec4c2c4c8c8a9abbcd5e0ddd4cccfc9dac8c5ccbdc0c3b2c3b4bfb6ccbfb3b9b7bebfc6d0
bde8bdb8c0c5c5beb6aebbbdc0bfbfbfc4c0c5c4c2c9dbd1afbac8c4bec1bfc4c5c4c4bcb4c1c3c9ccd0d3d1d5d1beb3c3b1c1b4b1b2bcd0bdb6b9b9babcd1cf
c1edb9bac1c5bfbebaafc0c5c1bfbbbcbebecdbfcad7ddb7aeb1b4bcbcbbbdc0bfbec1c4c5d0d2c1c2d5d1d9d1d7bab4afb1b1b5ada7c2c4bcbab4b7bdbdd1d5
bdefb8b9b8bac1beb7abbebfbcbabbb8b6c1b5bfc6c9b6b4afafb8b6b3babdc0bdbcb7b3ccc3c8e1cbc8cebdb5babbb8b9d1c2c2c2b0b8b7b8beb8b5bebecdcb
c8f4bbb8b3b8bebcbbacb4b7bab9b7b4bcc2b4bcc6b7adaab1a8a8acb3c5cecdb8b8b9c4cebdb3bcd6d5cbc5cec5c4acbdcb9ec3c7a8bfc3a6afafd5c0bbcfa7
c5ecceb6b7b7b8bbb9abadb4b3bab2b4c4babbbbb7acabaaaca7abadb4d1adbed2c8d0beb5cdc9ced1c6bfcdd4d4b7b4caadc7afa2b6ccb5beb0bed8c2b5d288
a0dde2bcb1b5b5b9b2ada2adb5c1d0c3b3b2b4b6a7c6a6aaa9aca6abd5b8beb9bec3c3ceb9afb7b9cad8b6bcb198abbdcdaca6d9b1b2c9c3b6bebebbccbfd77c
80b7f0beafb1b4b5b9a5bbb6c1bfbbb6b7bdbec4aac0c8a8a4a7a2b2c3c3c6bec1c4a6989ca39aa2a4b9d9c39faeb4a291b5b191a6b39dcfc4c2a6b0bfd89174
5594e1ddb2b2afb2b0a4a5828f8c868e8f91968f869796adb3aeb59a9eb6bdc9b398a3a5adb9b3b7c8aaacd0d4aebab3b9bcc2b3b8bcc4b0aeb0bbc0bea45f75
4b65a4f2c4b1adaeaaa6aca896adafaeaeafaea4a7a99f9b928a959b979f968d94acb3b3afafadaba3b4a398bbcdbcb5bec69cc0bbbbbecdceb8b9bbad6e5c70
434e69c3e1c1aeaaa8aeabb2a598aeb1adb3b5aca299a3a2a3a5a1999daaa3a5a7a8a7afafaaaeaeb3b6cecaaba2c3b6b8b4abc8bcbdb7b8b7c9bcbc8d635e73
46455478d9d4beb2b3adafa6a1ad96a4adafb9b4ac9ea29da3a6a4afa6b5b2acbeb9aba8abaeb2aaaeb29cb0adb1c0bdb2acc3c5bec7b6b7bac2bb9f62575975
513f4a537ad8d1b4aba8b4aaabaeac9e92a1a8aba89eaaa7aaa3a2a6a7a499a19abdb7b2b0b2b3b7b7bab1bbc9b7abacc6c0c3afb5b8b4b5bbbe934c4e4f587f
5b3e4547597bd3cbbbb1b5aeababa9aca29a95a7acaea6a3aaa8a2aba8a6aeabafbbb7b6b3b3b7bcc1c1c3a6b7bcbfbabbada7b4c2bfb5b9b4783c45494e607e
654e414043586fadd2c3b2aba8a6a9a8aca4aa9c9b98a0a7a9a6a6a5adadafafb4bbb9b5b5b8c1c5acb4b7b6b9babdbcc5b7c5b4b5c0d2a34e383a45464c6f89
635740393a3c525a72ced1baacacada4a7a0a59a9ca2a3a09e999ca29d9da4a8aca8aab0acb4b5b1bac0b8b5bbceb3b5b5bbbcbfc9cc6b2e393b383e3f557089
675c4d3c3538393f545882cfc3b2afb0a89f9f9c989e9ea9a7b0afb2adafb1b3b1b6b4b1b9babcc7c9b9ccc5b1aeb7b6b8babfc5974e313c3736343648627c92
6f5e5a47363435353848595b8bc6c3beb4aea8a199a19ca8a6a6aab1afadb3b8b8b9b9b7b8b7b2a9adafafbcbcb9b6bec5c98446303c38333233303e55687f8d
77615751433432333132364b544973b8d5bcafa9aba8a4a8a4aab1aea8adb5b4b7b9b9b8b8b4b5c2b7abb1bfb7cecfac623238483a2f2d2f2c2a384d5c6a7685
7c685f554d41332f2f2d2d3437434c464f7fafc5c2b4b1b0b0b7b2a2a8a9b2b0b2b5b3b7b9bbb1afb6becccaa26b462c3a3d34322f2c2a282934445764768394
8573665d534740352e2c2b2d2e2f2f363e423738506e8a9baebec2bdbcb8bec4c2bec2bec1b7a59b806342302d3537352f2b29292625262c3741505f72789494
86726b62554e47433b312c2e2b2a2b2b2c2f3134343532312c30313a4b4a5254534e463d322b2b33353936302f2c29282826232321273139434c56687c868899
9089776f5e574b49464037312a262627262828292b2b2b2d3333323331322f303132343332312f2f2a2b292726242422221f1c222e3338424c556777828ca097
8b83746f6c6057514a44423a342c26252625252725252725262829282826272627262627262625242423222221211e1e20232b33333c454e5861707c85979295
8d868484756c5e57524d46403c38352e2a2323242222222222242323211f2121212221232222221f201f1e1e1c1d20252c3234363c46505a646c79889586979e
9398918b86786b6359524f47433e3c3935322c2626221f1f20201f211f1d1e1d1d1d1e1f1e1d1d1c1c1a1b1f25292d3335383c4249505e68727b8490989d998f
93948d8a827d7a6e6a5c56534b4542403a39353333312f2b292422222220201f2020202022242425262a2b2f3337383a3e43474e565f697d878f9692959da0a3
988a95908e847e727565645d574d4849433f3c393635343432302d2b2f302e2c2d2c2e2d2d2e2f2f2f34383a3c3e4144474f585f66777c8587878f9fa1979f9d
999f948f9a90858c83766e6a635a55514e4946413d3d3a373635343332333232323233323336383a393e414143474c50575d6a6e72838a8f94989a96a0a19aa7
a69ea49a959d8e8a8789837c6e69635e5f554f4b494742403f3f3b393738393a3a3a3c3d3f40414445484b4d5153585e656c7d7e84928e91a0a09f9a9ba2a9a2

of hexadecimal 8-bit greyscale values in order to preserve as much of the spatial relationship
as possible a human finds it much harder to make anything out, although both representations
contain exactly the same information.

On the other hand such a matrix does not help a computer a lot. It assumes that a computer can
draw the same benefits from such a representation as a human, which is not true. A computer
always has to explicitly compute relationships, and whether it does this by means of going along
rows and columns of a matrix or any other data structure makes no fundamental difference. Even
the fact that a matrix is a 2-dimensional structure does not matter, and so in this work as well as
in many others images are for simplicity treated as 1-dimensional structure, as a vector

~b T = (aba9a8a5a8aab1b1abb0a8a5a6acadadada8a6a6a8adaeadb1aeb0b5b3aaacb1b2b3abaeafafacabb5afa6b2a6afa9afb3b1b0abafb5adafaca5b0afb0...)

instead of a matrixB. This is perfectly legal as long as the width of the original image is
stored elsewhere too, because the two representation can be transformed into each other with
the equation

330 C.2. Introduction to Computer Vision

B[x,y] = b[y·width+x]

The dimensionality of the space spun by such a vector is independent from the fact that it can
be written as a 1-dimensional structure. In fact, image vectors are amongst the highest dimen-
sional vectors used in computer science. The table of numbers of pixel (number of elements of
the vector) for the usable resolution of the most prominent video formats can be seen in table
C.2.

norm resolution pixels (gray) pixels (colour)
PAL (half) 384×288 110592 331776
NTSC 640×480 307200 921600
PAL (full) 768×576 442368 1327104
HDTV (1) 1280×720 921600 2764800
HDTV (2) 1920×1080 2073600 6220800

Table C.2: Usable resolution and number of pixels of the most prominent video formats.

In case of the full PAL resolution of 768×576 pixels this means that an image carries 442368
pixel in greyscale format or 1327104 pixel in colour format. Additionally taking into account
that the pixel values are usually sampled with 8 bit precision in a computer this means that in
a full PAL resolution colour image one of2561327104 or 210616832 possible situations is encoded.
Considering that the currently biggest supercomputer5 has “only” a little more than243 bytes
of memory simply storing for later comparison in order to detect objects is utterly impossible
(and this even completely ignores the question whether it is feasible to obtain the necessary
set of teach images in the first place). Clearly, vision algorithms which drastically reduce this
dimensionality are required.

C.2.2 Colour Spaces

Colour information is – contrary to greyscale information – not unique. From the different
colour models or colour spaces that do exist the ones used in or interesting for this work shall
be discussed in this subsection, taking the colour image in figure C.5 as an example. Most of
the information has been gathered from the Colour FAQ by Charles Poynton6.

According to table C.2 colour images have three times the number of pixels than greyscale
images. An alternative point of view is to say that they do actually have the same number
of visible pixels, but that for each pixel the colour information is encoded in three separate
channels7. The motivation for these channels directly leads to the first colour space.

C.2.2.1 RGB

The RGB (red, greenandblue) colour space is used for example in computer and television
displays (but not in (analog) television signal radio/cable transmission). It appears to the “natu-

5The “Earth Simulator” in Yokohama, Japan, has 5120 CPUs with 2 gigabyte memory each, totalling to 10
terabyte. Seehttp://www.es.jamstec.go.jp/esc/eng/index.html or http://www.top500.
org

6See [Poynton 2002].
7Other colour spaces like the 4-dimensional CMYK used for printing exist, but are not of interest for this work.

http://www.es.jamstec.go.jp/esc/eng/index.html
http://www.top500.org
http://www.top500.org

C.2. Introduction to Computer Vision 331

Figure C.5: A sample colour image.

ral” colour system because it is motivated by the human eye. The human eye uses two different
major types of light receptors: rods and cones. The about 120 million rods are very sensitive to
light of all wavelength and are used for greyscale vision. The about 6 to 7 million cones are far
less sensitive to light, but have a more selective sensitivity for light of certain wavelengths and
are used for colour vision. They again can be separated in three types8:

1. “Blue” cones have a sensitivity in the area ranging from 400 and 540 nm with a peak near
419 nm.

2. “Green” cones have a sensitivity in the area ranging from 450 to 640 nm with a peak near
531 nm.

3. “Red” cones have a sensitivity in the area ranging from 550 to 700 nm with a peak near
558 nm (which is actually more like yellow).

Figure C.6 shows a (very) rough sketch of this spectral sensitivity of human eye cones.

The RGB colour space therefore defines three coloursred, greenandblueand uses them in
additive colour mixing e.g. forcathode ray tube(CRT) displays, or their inversescyan, magenta
andyellow (CMY) in subtractive colour mixing e.g. for printing. Both colour mixings can be
seen in figure C.7.

8Which makes up for a total of four different receptor types in the human eye even though the colour infor-
mation is encoded by only three of them. This situation is similar to the CMYK colour space used for printing
where it is theoretically sufficient to usecyan, magentaandyellow (CMY) to print all possible colours, butblack
is additionally used to generate a deeply saturated black.

332 C.2. Introduction to Computer Vision

400 500 600 700
wavelength [nm]

se
ns

iti
vi

ty

Figure C.6: Approximate spectral sensitivity of the cones in the
human eye. The sensitivity of the “red” cone lies more in the yellow.

Figure C.7: Additive mixing of RGB colours (left)
and subtractive mixing of CMY colours (right).

Using the RGB colour space the sample image in figure C.5 can be decomposed into the
three channelsred, greenandblueas shown in figure C.8. Note that in each of these channels
the intensity of one basic colour is encoded separately. This means that if the overall intensity
(brightness) of the scene changes the values in all three channels will change too. A vision
system that is supposed to be invariant against changes of the illumination may find it difficult
to deal with this, but then other colour spaces exist that do not share this feature.

C.2. Introduction to Computer Vision 333

Figure C.8: Decomposition of the image in figure C.5 into (from left to right) the R (red),
G (green) and B (blue) channels of the RGB colour space. The channels themselves are
by definition greyscale images, but have been re-colourised here for better visualisation.

C.2.2.2 YUV

One alternative is the CCIR-601 YUV colour space9 used in analog video radio/cable transmis-
sion. It was introduced with the invention of colour television as a result of the desire to keep it
compatible to black/white television. By defining luminance

Y ′
601 = 0.299 ·R′ + 0.587 ·G′ + 0.114 ·B′

and encoding the colour information (UV) separately it allowed old black/white television
sets to display the luminance only while at the same time the new colour television sets could
use the full information10. For displaying YUV images on a RGB monitor the two colour spaces
can be converted into each other by

 Y
U
V

 =

 16
128
128

+

 0.25678823 0.50412941 0.09790588
−0.14822290 −0.29099279 0.43921569

0.43921569 −0.36778832 −0.07142737

 ·
 R

G
B

and

 R
G
B

 =

 1.164383574 0.000000000 1.596026777
1.164383574 −0.391762275 −0.812967628
1.164383574 2.017232129 0.000000000

 ·
 Y − 16

U − 128
V − 128

using computer-utilisable values in the range of 0..255 for each component. As follows from
these equations the Y component has an excursion of 219 at an offset of 16 (usable range: 16
(black) to 235 (white)) and the UV components have an excursion of±112 around an offset of
128 (usable range: 16 to 240). Values outside these ranges will lead to values outside the 0..255
range for RGB and may occur by using inaccurate conversion routines, but are never delivered
by compliant video devices.

9CCIR – Consultative Committee for International Radio; a predecessor organisation of the ITU-T/R.
10The prime symbols denote the usage of non-linear, gamma-corrected values. The subscript 601 denotes the

CCIR 601 recommendation, describing CRT phosphors used at the time of introduction of NTSC colour television
in 1953. Contemporary CRTs use different phosphors and hence the newer CCIR 709 recommendation defines
Y709 = 0.2125 ·R + 0.7154 ·G + 0.0721 ·B.

334 C.2. Introduction to Computer Vision

Using the YUV colour space the sample image in figure C.5 can be decomposed into the
three channels as shown in figure C.9. As can be seen that the UV channels are very pale,
low-contrast images. Only a fraction of the usable range of 16 to 240 seems to be used by most
pixels, resulting in a mainly neutral gray image. This is because “being coloured” still allows
for a variety of colour saturations. Colour saturation is expressed by the euclidian distance in
the UV plane from the neutral (128, 128), and the fact that most pixels are very close to this
value shows that most colours in the image are of very low saturation. Looked at from an
abstract statistical point of view the UV channels do by far not carry as much information as
the Y channel. This is consistent with the human colour perception which is very sensitive to
changes in the colour – it does not need much information to tell colours apart.

Figure C.9: Decomposition of the image in figure C.5 into (from left to right) the
Y (luminance), U and V (bothchrominance) channels of the YUV colour space.

This aspect of colour saturation can also be seen in another visualisation that is used later in
this work. Figure C.10 shows the UV plane with the colours used by the image in figure C.5
marked in black. It can be seen that the pixel are aggregated around the image centre with only
a few branches going into the outer regions towards saturated colours. On the other hand it can
also be seen that these branches go into the blue, green, yellow/orange and red colours that the
image basically consists of.

v

u

Figure C.10: The UV plane with the colours
used by the image in figure C.5 marked in black.

C.2. Introduction to Computer Vision 335

For this work YUV has been chosen as the low-level colour space because the vision hard-
ware using analog video transmission natively delivers YUV image data rather than RGB, so
that no additional conversion is needed. Higher levels operate with notions which are not com-
pletely identical, but very similar to yet another representation: The HSV colour space.

C.2.2.3 HSV / HSI / HSL

In the YUV colour space the imageluminanceis separated from thechrominance, but it has
been shown that this chrominance still mingles the colour hue and saturation. As a natural
consequence other colour spaces have been defined. One of these colour spaces is the HSV
colour space invented in 1978 by Alvy Ray Smith11.

The three channels of the HSV colour space represent thehue, saturationandvalue(lumi-
nance) of a pixel. The conversion goes along the following lines12: In the UV plane a colour
is given by a vector(u, v). Using polar coordinates this vector could also be described as
(d =

√
u2 + v2, α = arctan v

u
). The HSV colour space does basically exactly that, naming the

angleα thehueand the distanced thesaturationof the colour.

This transformation of the YUV colour space leads to a cylindric representation of the HSV
colour space. In this cylinder it is theoretically possible to use several distinct hue and saturation
values in order to obtain the same colour, for example the H and S values do not matter in case
of V=0 because black is black and remains black. As a consequence of this the HSV colour
space is more usually represented by a cone, where distinct numerical values really represent
distinct colours. Both of these representations can be seen in figure C.11.

Figure C.11: The HSV colour space, represented as a cylinder (left) or cone (right).

Since the HSV colour space closely resembles the human colour perception it is often used in
computer graphics. In these applications a “colour wheel” as in figure C.12 is used to determine
colours. With this wheel a user can intuitively enter the 3-dimensional colour information by
using an only 2-dimensional input structure.

11Seehttp://alvyray.com .
12The exactconversion equations are a bit more complicated. They are not given here because they are not

needed in this work. This work does use the notions of colour hue and saturation, but does not require them to be
compatible to the HSV system because these values are only used internally.

http://alvyray.com

336 C.2. Introduction to Computer Vision

Figure C.12: The HSV colour wheel.

Using the HSV colour space the sample image in figure C.5 can be decomposed into the three
channels as shown in figure C.13. All three channels are by definition greyscale images, but the
H channel has been recoloured for better visualisation.

Figure C.13: Decomposition of the image in figure C.5 into (from left to right) the H (hue),
S (saturation) and V (value) channels of the HSV colour space. All the channels are by
definition greyscale images, but the H channel has been re-colourised for better visualisation.

Variants of the HSV colour space include the HSI (hue, saturationand intensity) and HSL
(hue, saturationand lightness) colour spaces. Contrary to the HSV cone (or hexcone), where
white is in the middle of the plane of colours with full luminance at the base of the cone they
both use double cones (or double hexcones) put together base-to-base. The two apexes of the
double cone correspond to black and white. and the most saturated colours are in the middle the
of the I/L axis where the structure is widest. As such both HSI and HSL more closely resemble
a deformed version of the RGB colour cube with I/L being the diagonal between black and
white. Their only difference is in the interpretation of the I and L value.

C.2.3 Linear Image Filtering

An important processing step in computer vision are image manipulations known as filters.
These filters can be used to improve image quality by applying certain smoothness criteria to
remove distortions or to detect low-level image features like edges. They can be divided into

C.2. Introduction to Computer Vision 337

linear and non-linear filters. In this subsection the basics and some examples of linear filters
shall be given, and in the next subsection some examples of non-linear filters.

C.2.3.1 Convolutions

Linear filters define amask(also calledcoreor kernel)

Hk,l ∈ R(2m+1)(2n+1), k = 0, . . . , 2m, l = 0, . . . , 2n

that describes a local linear operation in a certain environment around a pixel of the original
image. The size of the mask can vary, but is usually small and square (3× 3 up to 7× 7)
because for these sizes special hardware exists which can apply them to video signals in real-
time. In general, the new image is computed by applying the maskh to each original pixelfi,j

successively as per

gi,j =
m∑

k=−m

n∑
l=−n

fi+k,j+l · hm+k,n+l (C.1)

Care has to be taken at the borders of the image because parts of the mask may reach outside
the image. In these cases several strategies are possible:

• Apply the mask only to those pixels where it fully fits into the image, explicitly meaning
that it is not applied to a certain margin of the image. Depending on the operation either
the original pixels can then be copied into the margin of the new image or the border can
be dropped from the new image, making it smaller.

• Apply the mask to all pixels leaving no border and assume those parts where the mask
exceeds the image to have a certain fixed value (zero). This strategy maintains the original
image size, but may lead to unusable results in the new image margin. For example, in
case of smoothing where the sum of all pixels is divided by the mask size it will make the
image the darker the closer it bets to the border because more pixels are assumed to have
a value of zero.

• Apply the mask to all pixels and wrap at the borders, that is, use pixel values from the
opposite borders. This strategy is only recommendable for recurring patterns, which is
rarely the case in real-world examples.

Actually, equation C.1 is only a specialised version of the general equation

g(t) =

∫ ∞

−∞
f(t− t′)h(t′)dt′

known as theconvolutionf(t) ∗ h(t). In the time domain this is a bit awkward to write, but
using the Laplace transformation

L (x(t)) = X(ω)

it can be rewritten as

L(g(t)) = L (f(t) ∗ h(t))

= L (f(t)) · (h(t))

= F (ω) ·H(ω)

The convolution operator “∗” in the time domain becomes a simple multiplication “·” in the
frequency domain.

338 C.2. Introduction to Computer Vision

C.2.3.2 Smoothing

One example of a convolution filter is themeanfilter used for smoothing an image. Its filter
kernel is given as

H ∈ Rm,n =
1

mn

 11,1 · · · 11,n

...
...

...

1m,1 · · · 1m,n

or, in case ofm = n = 3 as

H =
1

9

 1 1 1

1 1 1

1 1 1

The filter obviously adds up the values of all pixels covered by the kernel and then returns the

average of these values. As such, it smoothes outliers from the image, but does not remove them
completely. Also, it does not differ between noise and meaningful image contents, therefore it
blurs the image.

Examples for the mean filter can be seen in figure C.14. The source image has deliberately
been chosen to be noisy. As can be seen, by averaging over the pixels in the filter kernel the
filter effectively suppresses noise, but also blurs out sharp edges. In order to smooth images
while not overly blurring out the image other filters are therefore needed.

Figure C.14: The mean filter smoothing an image. Upper row from left to right: Original image,
7×7 mean and 15×15 mean. Lower row: close-ups of the areas marked in the upper images.

C.2. Introduction to Computer Vision 339

C.2.3.3 Laplace Filter

The LaplacianL(x, y) is a function defined to be the sum of the second order partial derivatives
in thex andy directions of some other functionf(x, y).

L(x, y) =
∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2

Because of the use of derivatives it is sensitive to changes in the original function, which in
image processing terminology means it can detect image edges. It is not sensitive for the spatial
direction of an edge, but it is sensitive for the gradient of the edge.

Unfortunately, derivatives in general and the second derivative in particular are very sensitive
to noise. Already a little bit of noise in an otherwise uniformly filled image area can therefore be
treated as a corner by the Laplace filter. As a result the Laplace filter is difficult to use without
prior image smoothing.

For example, a typical 3×3 Laplace filter kernel of

HLaplace =

 0 1 0

1 −4 1

0 1 0

will produce results as in figure C.15. The Laplace image has an average gray level of 128 with
edges being either darker or brighter, depending on their gradient. The output images have been
contrast-maximised, yet they have a very low visible contrast. This is because single spikes
caused by noise use up the full output scale so that real edges are not so clearly visible. Only if
the source image has been smoothed in advance the edges can be seen, but immediately start to
get blurred due to the smoothing.

Figure C.15: The Laplace edge detector applied to a greyscale image. From left to right: Original im-
age, and Laplace output of original and smoothed image. The Laplace images are contrast-maximised.

C.2.3.4 Sobel Filter

An alternative way to detect edges is the Sobel filter13, which only looks at the gradient of the
image, but independently for several spatial directions. Several approaches are possible, but the
most common implementation uses two separate kernels for x- and y-direction.

13See [Sobel 1990].

340 C.2. Introduction to Computer Vision

These kernels are not as sensitive to noise as the Laplace kernel because of two reasons: First,
they use only the first derivative along a single direction, for example a 1-dimensional kernel[

−1 0 1
]

in case of the x-direction. Second, it uses an implicit smoothing perpendicular to the derived
axis, again, for example 1

2
1

in case of the x-direction. Combined, this makes for a filter kernel of

Hx =

 −1 0 1

−2 0 2

−1 0 1

for x-direction direction and

Hy =

 −1 −2 −1

0 0 0

1 2 1

for the y-direction. With these kernels both the norm

g =

√
∂f

∂x

2

+
∂f

∂y

2

and the spatial direction of the edge

α = arctan

(
∂f
∂y

)
(

∂f
∂x

)
can be computed. Figure C.16 shows an example of the Sobel filter. Only the strength of the
edges is shown, not their direction. Contrary to the Laplace filter the edges can be clearly seen
without prior smoothing of the original image, indicating that the Sobel filter is not as sensitive
to noise. However, also contrary to the Laplace filter, in this implementation the direction of the
gradient in brightness space can not be seen due to usage of the norm.

C.2.4 Non-Linear Image Filtering

The results of the above linear filters are not in all aspects fully satisfying, however, alternatives
exist with the non-linear filters. Non-linear filters are all those filters that cannot be expressed
by a simple convolution because they include – maybe in addition to a convolution – non-linear
steps.

C.2. Introduction to Computer Vision 341

Figure C.16: The Sobel filter applied to a greyscale image. The left image is the original
image and the right image the edge strength as computed by the Laplace filter. Contrary
to the Laplace filter the edges can be clearly seen without prior smoothing of the image.

C.2.4.1 Median

The median filter is a smoothing filter which, instead of computing the average of a set of pixels,
computes the median. This median is the average of the set of pixels with some extreme outliers
removed in advance. Technically, this often done by maintaining a sorted list of pixel values,
discarding some elements at the beginning and end of that list and computing the average of
the remainder. Since sorting is a non-linear operation the median filter cannot be expressed as
a convolution. Due to the explicit removal of outliers the median filter produces a smoother
output than the mean filter, but since it still blurs the image no example is given here.

C.2.4.2 Smart Smoothing

Another class of smoothing filters use what is called here “smart smoothing” techniques. The
idea with these techniques is that smoothing should only be applied to those areas of the image
where it can be expected to be helpful. For example, areas uniformly filled with a colour but
slightly distorted by noise should be smoothed, but edges between areas of different colours
should not. As with smoothing in general there is notthesmart smoothing filter, and the smart
mean (smean) filter developed for this work is just one possibility.

This smean filter is similar to the mean filter in that it uses the same kernel to compute the
average valuepµ of an environment of pixels, but differs in the step that comes afterwards.
Where the mean filter simply assigns this average valuepµ to the new pixelpnew the smean
filter also computes the deviationσ of the environment of pixel. Thisσ expresses how “equal”
the pixels in the filter kernel are and is low when the pixels are similar and high when they are
not, as in case of an edge. Together with a scaling factorc it is then used to weight the average
and the original pixel value to compute the new pixel value as

pnew = e
−σ
c · pµ + (1− e

−σ
c) · porig

Figure C.17 shows an example of the smean filter. Compared to the mean filter in figure C.14
it can be seen that the smean filter only blurs those areas of the image where pixels have already
been somewhat similar, but maintains rather sharp edges. This feature makes the smean filter
very interesting for smoothing a YUV colour image where the UV colour plane has a rather low
signal/noise ratio but edges should be maintained by all means.

342 C.2. Introduction to Computer Vision

Figure C.17: Smart smoothing of an image. Upper row from left to right: Original image,
7×7 smean and 15×15 smean. Lower row: close-ups of the areas marked in the upper images.

C.2.4.3 SUSAN

An example of a non-linear edge detector is the SUSAN (smallest univalue segment assimilating
nucleus) filter by Smith and Brady14. The SUSAN filter places a circular kernel over a centre
pixel and then computes the size of a region of pixels inside the kernel with a value that is
“similar” to the value of the centre pixel (the USAN). An illustration of this principle is given
in figure C.18. As can be seen the size of the USAN corresponds to the distance to an edge:
Both in- and outside the object the size is at its maximum, while at the edge it drops to the
half (in case of corners it would drop even to a fourth). The size of the USAN can therefore
be used to detect edges without derivating the image data. This is an important feature because
by explicitly avoiding derivations the SUSAN filter is much less sensitive to noise than the
conventional Laplace or Sobel filters.

Actually, the SUSAN filter does not explicitly compute the region by filling, but simply adds
a similarity measure applied to all pixels in the kernel. Given a centre pixel~r0 this similarity is
defined as

c(~r, ~r0) = e
−

“
I(~r)−I(~r0)

t

”6

whereI(~r) is the value of a pixel~r andt is a scaling parameter. This parameter determines the
sensitivity of the filter as well as its dependence on noise: Smaller values allow less variation
and larger values allow more variation. Using the sixth power is according to Smith a good

14See [Smith and Brady 1995] or [Berger 2000] for a summary.

C.2. Introduction to Computer Vision 343

Figure C.18: The working principle of the SUSAN edge detector.

compromise between a relaxed sensitivity to the parametert and a good transition from “good”
to “bad” similarity. The (inverse) strength of an edge is then computed as the “size”

n(~ro) =
∑

~r

c(~r, ~r0)

of the region of similar pixels over all pixels~x in the kernel around~x0. Besides using this
strength the direction of the edge can also be computed to allow non-maximum suppression,
but for brevity this is dropped here.

Figure C.19 shows some example for the SUSAN filter with different kernel sizes and sim-
ilarity thresholds. The images have been inverted (so that white corresponds to an edge) and
contrast-maximised like the images for the other edge detectors. Compared to the Laplace and
Sobel filters the edges show up more clearly, although parameter tuning is – as always – nec-
essary. The number of levels of edge strength (and gray levels in the images) is linked to the
kernel size: Smaller kernels do not allow for a large number of levels of edge strength. To al-
low sufficient differentiation between edge strengths the kernel must therefore not be too small.
Disturbances in the output resulting from noise in the input can be effectively suppressed by
increasing the threshold, which allows larger areas to be found similar. With the other filters
a-priori smoothing would have to be applied to remove noise, and this would in turn lead to that
edges are blurred too. With the SUSAN filter this problem does not exist.

C.2.5 Segmentation

Another important manipulation procedure is image segmentation. It means to find regions of
contiguous pixels that satisfy some criterion. By describing larger entities rather than single
pixels it reduces the information dimensionality significantly. It can be used to extract relevant
information in a pre-processing step to recognise complex objects. There are two basic ways to
look at segmentation.

C.2.5.1 Top-Down Approaches

One way to implement segmentation aretop-downapproaches which start with the image as
a whole and split it in quad-trees as long as the criterion is violated. This process is repeated
recursively until for all those parts where the criterion is still violated. Since – as can be seen in
figure C.20 – the splitting is only done at fixed points it has difficulties in reproducing the shape

344 C.2. Introduction to Computer Vision

Figure C.19: Outputs from the SUSAN edge detector. Rows from top to bottom: kernel size
of 3×3, 7×7, 11×11 and 15×15. Columns from left to right: scale values of 4, 8, 16 and 32.

of objects. For a good object shape reproduction the minimum cell size and similarity threshold
must be very small and a second processing step added, in which adjacent regions are merged
again if their union does not violate the constraint again. This technique is therefore also called
split & merge.

One example of such a top-down technique is the Linde-Buzo-Gray (LBG) algorithm, a mod-
ified k-means algorithm15. The normal k-means algorithm uses a-priori knowledge about the
number of clusters to segment the input space into, for example, speaking in terms of colour
image segmentation, the number of independent colours. Having to know the number of colours
in advance is of course a severe disadvantage because it cannot be guaranteed that their number
is sufficient. On the other hand it may perhaps be too high for some images, and using too
many colours means wasting information and complicating the later segmentation. It is this
second point which the LBG algorithm addresses. It starts with one cluster and recursively
splits clusters until a maximum number of clusters is hit or the quantisation error is below some
threshold.

Such a colour quantisation is but one step of the image segmentation. It reduces the colour
information to a small number of colour indices, but it depends on the number of possible colour
indices whether they represent the eventually desired regions. Since in order to avoid problems

15See [R̈oben 2003].

C.2. Introduction to Computer Vision 345

Figure C.20: Image segmentation by quadtree splitting. Starting with the en-
tire image, each region is split in four quarters if a similarity criterion is violated.
The image on the left shows the original image with the quadtree regions and
the image on the right shows the regions filled with their average colour.

that limit is usually deliberately set too high than too low an additional merge step may be
necessary to join adjacent regions of similar colour.

C.2.5.2 Bottom-Up Approaches

Another way to achieve a segmentation is to use abottom-upapproach that works the other
way round. Instead of beginning with the complete image and splitting regions as long as they
violate some constraint the bottom-up approach starts at a single pixel and tries to fill a region
around it as long as pixels satisfy the constraint. This is also calledregion growing. As can
be seen in figure C.21 contrary to quadtree splits this approach can very precisely represent the
shape of objects.

Region growing approaches do not need any knowledge about the number of clusters to
segment its input into, but can in the worst case yield one cluster per input data if the criterion
is too sharp. Another potential problem with region growing often mentioned in literature is the
selection of the initial pixel: If theseedis not chosen optimal the algorithm may produce more
clusters than necessary. In term of colour segmentation this problem does not occur because
the colour saturation can be used as a means to determine seed pixels. It is because of this
interesting feature that a region-growing approach has been chosen for the colour segmentation
in this work.

C.2.6 Feature Based Classification

Classification is the task to recognise objects in an image. Since in general more than just one
object has to be recognised it is usually formally described as the task to assign an image~b to

346 C.2. Introduction to Computer Vision

Figure C.21: Image segmentation by region growing. Starting with an
initial pixel, regions are build by a flood fill algorithm as long as a similar-
ity criterion holds. The image on the left shows the original image and the
image on the right the regions filled with the colour of the initial pixel.

one of a set ofN possible classes.

~b → i ∈ [1..N]

As such, it only covers the aspect of recognising the object and not that of determining its
position in the image. It also means that most classification algorithms only allow to recognise
knownsituations. Unless they have an explicit rejection class an unknown situation will be
taken as one of the known ones, although with a high error. There are techniques for dealing
with this and adding a new class when the classification error gets too high, but they are not
presented here because due to the fixed number of objects used in this work they are not of
interest.

What will be presented is an overview over some classification techniques helpful for under-
standing some inherent problems of classification. Since the classification implemented for this
work uses different techniques this overview is only very brief16.

The basic idea of all these classificators is to place a hyper-curve into the input space that
allows to tell whether a specific input pattern is on one side of the plane or the other. This
means that classification is not achieved by storing information about one class only, but by
explicitly comparing two classes. As a consequence it is not sufficient to have a set of sample
images of an object to be recognised. In addition to these positive examples a set of negative
examples is also needed to give the classificator the possibility to compute the “border” that
allows to distinguish them. Therefore it is strictly speaking not possible to recognise a single
situation, but only to distinguish at least two situations.

The techniques shown in this subsection are often calledfeature basedclassification tech-
niques. Although defined on abstract vectors, they are usually not applied to complete images,

16For a real introduction into classification and/or pattern recognition see for example [Niemann 1983].

C.2. Introduction to Computer Vision 347

but only to reduced information computed from them – the features. One reason for doing this
is that these techniques can need a very high number of parameters to approximate a separating
function with enough accuracy to allow to distinguish all possible images, making them slow to
evaluate and uncomfortable to handle. In some cases the storage space required for the param-
eters can even exceed the memory capacity of contemporary computers, in particular with the
B-Spline Fuzzy Controllers17.

In addition to this, the more parameters a system has the more degrees of freedom it has to
adjust itself, which may cause undesired side effects. Interpolation of a function given by a
large number of sample points, for example, is not done by fitting a single high dimensional
polynomial to the data, but by piecewise fitting several low-dimensional polynomials. The
single high-dimensional polynomial has too many degrees of freedom that allow it to match
the sample points perfectly and yet wildly oscillate in between. Features extraction is therefore
an important step in reducing the dimensionality of the problem and making the classification
more reliable.

C.2.6.1 Neural Networks

One well-known modern classification technique areneural networks(NNs). NNs are inspired
by nature, which uses an electric system to transmit information over neural tracts. This in-
formation is not encoded in the voltage, but in the frequency of occurrence of impulses. The
neurons are cells that receive electric impulses from other neurons and, depending on the fre-
quency of occurrence of these impulses, themselves send out impulses to again other neurons.

In a computer simulation this situation has to be simplified (modelled) because computers
cannot handle frequencies well. Information is therefore again encoded as the magnitude of a
signal, not the frequency of its occurrence. A computer neuron then is an entity that receives a
vector~x of input from other neurons, performs a scalar product with a vector~w of weights to
obtain a weighted sum of that input and finally outputs a signal

y = factivate(~x · ~w)

according to an activation functionfactivate(). This activation function is what makes artificial
NNs interesting and powerful tools. Without the activation function (or actually: with anylinear
activation function, includingf(x) = x) the NN would compute only a linear combination of its
input and the weights. Such a linear combination describes a hyper-plane in a high-dimensional
space, which – in terms of classification – means that only linear separation is possible. The
NN would be less powerful than polynom classificators.

In addition to this, NNs have to betrained, which means they define an error function on
their output which is to be minimised iteratively. For the majority of applications this is done
by thebackpropagationalgorithm which uses partial derivatives of the output of each neuron
to change the weights for its inputs. However, using derivation of a linear function is somewhat
pointless and unlikely to yield a stable converging of the set of weights. As a result other, non-
linear activation functions are usually used, mostly one of the class of sigmoid functions like
the tangens hyperbolicus in figure C.22. These functions allow a non-linear combination of the
inputs as well as stable converging because they saturate at certain values and their derivation
becomes zero.

17This problem is also known as thecurse of dimensionality.

348 C.2. Introduction to Computer Vision

-1

-0.5

 0

 0.5

 1

-6 -4 -2 0 2 4 6

ou
tp

ut

input

tanh(x)

Figure C.22: The tangens hyperbolicus function as a neural activation function.

Such a single neuron is called a perceptron and is not yet very powerful. In fact, Minsky and
Papert have shown that it can not even compute the XOR problem18. The potential that arises
from perceptrons comes from joining several ones into amulti layer perceptron(MLP) as in
figure C.23. Such a MLP consists on an input layer, one or more hidden layers19 and an output
layer. The number of neurons in each layer varies according to the task the MLP has to fulfil.
With these MLP arbitrary complex problems can be computed.

x1

x2

x3

y1

y2

f()

f()

f()

f()

f()

f()

f()

f()

f()

Figure C.23: A sample multi-layer-perceptron.

18See [Minsky and Papert 1969].
19It can be proven that one layer of hidden neurons is functionally complete, but often practical reasons speak

for using more layers.

C.2. Introduction to Computer Vision 349

Such a MLP/NN itself does strictly speaking not yet classify, but only learns to approximate
an arbitrary function

y = f(~x)

from its input pattern. Classification capabilities can be achieved by teaching an output of 1 in
case of an input pattern that belongs to a class and 0 for all other patterns20. After training the
network will then compute an output that is unlikely to be exactly one of these desired values,
but is expected to be very close to one of them. Depending on which of the desired values it
comes closer to the classification can be answered with yes or no.

Since the net learns acontinuousfunction classification into multiple classes can theoretically
be done by learning several distinct values for each class of input patterns. This, however,
remains a theoretical approach because it is likely to fail due to an inaccurate approximation of
the function. A much more stable approach is to use several output neurons – one for each class
of input patterns – and learn a set of functions

~y = f(~x)

instead of just a single one. For each input pattern the output neuron to whose class the
pattern belongs is given 1 as desired output and all other neurons 0. The output of the network
after training will be an arbitrary vector in which one component is expected to be significantly
larger than the other ones. The index number of this component gives the MLP’s belief to which
class the input pattern belongs.

C.2.6.2 Fuzzy Controllers

Another approach to classification are fuzzy techniques like the B-Spline Fuzzy Controllers
(BSFC)21. The BSFC places a hyper-grid of b-spline functions of a certain degree over the
input space. These functions are designed so that they react to input only in a limited local
range and that a couple of other conditions are met (for example thepartition of unity). By
assigning each function an individual weight the input data function can then be approximated
by computing

y =
∑
i1

...
∑
ik

wi1,...,ik · fi1,...,ik(~x)

as output of the BSFC. The weights are adjusted iteratively by a simple learning algorithm.
Since the error function in this algorithm is quadratic it has only one minimum and the algorithm
can therefore be proven to converge.

The BSFC is similar to a NN, especially to the group ofradial basis function(RBF) NNs –
they all are generic function approximators. As such, it also learns a multi-dimensional function
that allows to separate different classes of input patterns. Because of the need to store a hyper-
grid of weights that has as many dimensions as the input vector has elements BSFCs can only be
used for low-dimensional problem. It is completely impossible to use them on images directly.

20More precisely, for symmetric functions like sigmoid functions it is recommendable to learn symmetric values,
for example in case oftanh() the extrema -1 and +1 at which it saturates. On the other hand, the backpropagation
algorithm uses the derivation of the function and will converge only very slowly at points where that function is
almost flat. Therefore, even more precisely, in case oftanh() it is advisable to learn values a little bit smaller, like
-0.9 and +0.9.

21See [Zhang and Knoll 1996] and [Zhang and Knoll 1998].

350 C.2. Introduction to Computer Vision

C.2.7 Appearance Based Classification

The classification techniques presented above have been researched for a long time. Their
advantages and disadvantages are therefore well known. One of their biggest disadvantage is
that the computation of the features they use is not necessarily trivial.

For example, one can try and classify a certain group of images by checking whether there is
“a lot of blue” in the upper part of the image and “a lot of green” in the lower part. Apparently,
this will hold true for a lot of scenic landscape images, so the required features are rather simple
in this case. Telling how many mountains there are in the image is a lot more difficult because
it requires much more complex features – something like analysing the horizon and looking for
peaks.

This disadvantage of classic approaches has led to an increasing desire to use techniques
which enable a computer to perform the classification by its own and without prior computation
of complex features. With no a-priori knowledge about the situations built-in to the algorithms
these techniques are by definition all learning techniques. In this subsection two of these tech-
niques will be shown.

Listing them under appearance based classification does not mean that they cannot be used
for feature based classification, it just means that they primarily focus on appearance based
classification because they focus on high-dimensional data. Their central idea is to use a high-
dimensional off-line computation based on learn data that allows to reduce the dimensionality
of the work data on-line. They both compute

~xn = M · ~xo

whereM is a matrix anddim(~xn) � dim(~xo) while ~xn is supposed to still hold as much
information as possible.

Again the overview will only briefly mention the most important aspects because these tech-
niques have been found to be not applicable to this work. The inherent problem is that due to
uncertain generalisation an explicit sample image has to be learned for any situation that has to
be recognised, and this is not feasible in case of many objects used in this work. For example
the cage in the centrifuge can legally be rotated by 360 degrees, but it is not possible to take
all corresponding learn images automatically with the robot because for the larger rotations it
will then collide with the lid of the centrifuge. Even in cases where using the arm to generate
rotations does not lead to collision with objects it can still be impossible because it would drive
the intended target out of range. Generating the images manually is not an alternative because
it would require very complex auxiliary structures to ensure the necessary accuracy.

On the other hand, not including the training data that cannot be generated automatically
does not simply mean that the algorithm will recognise this and/or compute no result, but will
instead lead to severe errors. Both the presented approaches will in this case return an output
that belongs to a learned input which – in their internal representation – is as good as “similar”
to the real input as possible. As such, it will be wrong and can lead to severe damage to the
device and/or the robot. From the two solutions to find other ways of generating learn images
or to use a completely different approach the second one has been chosen for this work.

C.2. Introduction to Computer Vision 351

C.2.7.1 Principal Component Analysis

Theprincipal component analysis(PCA) is a well-known linear transformation of vector spaces
used for dimensionality reduction. It is based of the fact that every linear transformation of a
vector space is equivalent to a change of the set of base vectors~bi spanning the vector space. A
linear transformation ofm-dimensional vectors~x(m) can therefore be written as

~y(m) = B · ~x(m)

with B ∈ Rm×m being the matrix of new base vectors. Obviously, the dimensionality of the
vector space can be reduced by using onlyn < m base vectors and compute

~y(n) = B′ · ~x(m)

with B′ ∈ Rn×m. However, this discards information from the~x(m). Speaking about sep-
aration, it is of course easier (needs less accuracy and thus less parameters) to separate data
that is spread over a wider range, as can be seen in figure C.24. So, in order to maximise the
separability a minimal set of new base vectors has to be chosen that maximises the data entropy.

Figure C.24: Two (mostly) 1-dimensional distributions visualising the separability problem.

At this point an interesting feature of linear vector space transformations can be used: Every
linear vector space transformationM has a set of vectors~e for which

λj · ~ej = M · ~ej

holds, meaning that these vectors are only stretched, but not rotated. These vectors are called
eigenvectorsand their associated parametersλj are calledeigenvalues. If a data distribution
uses allm dimensions of its vector space it can be shown thatm distinct eigenvectors with
eigenvalues6= 0 exist. It the distribution does not use all dimensions some eigenvalues will
be 0 and the corresponding eigenvectors will not exist. Figure C.25 gives an example of the
eigenvectors for a 2-dimensional distribution.

The eigenvaluesλi represent the data variance along the eigenvectors. When using a subset
of n < m of these eigenvectors as a new vector base system for dimension reduction it can
therefore be shown that the erroren describing the loss of information by dropping dimensions
is proportional to the sum of the eigenvalues of the unused eigenvectors.

en ∼
m∑

i=n+1

λi

352 C.2. Introduction to Computer Vision

Figure C.25: A 2-dimensional distribution with its eigenvectors.

This error can obviously be minimised by sorting the eigenvalues and using those eigenvec-
tors that belong to then largest eigenvalues.

Based on this principle, the PCA takes a set of sample data{~x} and computes the mean
(expected value)

~µ = E(~x)

and the covariance matrix

C = E
(
(~x− ~µ)(~x− ~µ)T

)
of the data distribution22. It then decomposes the covariance matrixC into its eigenvectors,
selects a subset of these vectors and build a matrixB′ ∈ Rn×m from them. This is done off-line
on learning data. At run-time the dimensionality of an input vector~x(m) can then be reduced by
applying

~y(n) = B′ ·
(
~x(M) − ~µ

)
while maintaining the maximum entropy.

The PCA appears to be a very promising approach to reduce the dimensionality of a problem,
but it does have several drawbacks. The biggest drawback is that it is anunsupervisedand
stochastic approach. It tries to reduce the dimensionality while maintaining the general data
entropy, silently assuming that this is the information the user is interested in. This, however, is
not necessarily true.

The PCA treats data as a distribution, blindly looking at variations of the values. In case
of images there are a lot of variations possible which the user may not be interested in, like

22Actually, the covariance matrix can be too large to be handled by a contemporary computer, in which case the
implicit covariance matrixis used instead. This is a simplification which has no effect on the results.

C.2. Introduction to Computer Vision 353

changes in brightness and colour, image noise and minor changes in appearance of the objects
due to lens aberrations or (partial) occlusion. If such a variation would dominate the more
relevant variations (lead to a higher eigenvalue) it will be regarded as more important and the
eigenvectors will therefore focus on something “wrong”. As an absolutely essential prerequisite
the images have to be normalised in brightness and size to ease this problem, but even then it
is not completely eliminated. Under these circumstances the fact that the PCA also requires a
comparatively high amount of memory for parameter storage has to be seen as only a minor
handicap.

The PCA has initially been evaluated for this work by C. Berger23. At the time of his analysis
the intention was only to use the PCA to recognise low-level geometric shapes like circles,
rectangles and triangles, but not to detect their position in the image. The objects were extracted
from the image using early versions of the colour image segmentation presented in this work,
and normalised in size and brightness. The main variance that the PCA was intended to focus
on was that cause by object orientation, which was for obvious reasons not normalised. The
resulting set of training images of the rotated objects was used to compute a PCA.

One aspect of “maintaining information” during a PCA is that images which are similar
are reduced to similar vectors in the eigenspace. As can be seen in figure C.26 the different
orientations of the objects lead to contiguous trajectories in the eigenspace. The vectors for the
“compressed” images are stored and used to classify objects at run-time using a next-neighbour
test.

"Circles/gnuDat.dat"
"Rects/gnuDat.dat"
"Rings/gnuDat.dat"
"Trias/gnuDat.dat"

"zange/gnuDat.dat"

-0.6
-0.4

-0.2
0

0.2
0.4

0.6
0.8 -0.6

-0.4
-0.2

0
0.2

0.4
0.6

-0.7
-0.6
-0.5
-0.4
-0.3
-0.2
-0.1

0
0.1
0.2
0.3
0.4

Figure C.26: Visualisation of the global eigenspace of five different geometric objects.

23See [Berger 2000].

354 C.2. Introduction to Computer Vision

Berger tested several variants of the PCA24: One with 100 learn images and 10 eigenvectors
and one with 360 learn images (1 image per degree of object rotation) and 5, 7, and 10 eigenvec-
tors. His classification results – compared to a geometric approach for which no normalisation
is needed – can be seen in table C.3. Berger has shown that a classification of simple objects
using PCA is possible, although the number of dimensions to use remains a critical parameter.

#images #dim triangle circle rectangle ring tongs
geom - - 84 94 90 82 -
PCA 100 10 100 100 100 98 100
PCA 360 5 74 44 78 78 100
PCA 360 7 92 58 92 92 100
PCA 360 10 100 100 100 100 100

Table C.3: Classification results of several PCA variants. All num-
bers are probabilities for correct-positive classifications in percent.

Since the laboratory scenario consists of more complex objects than simple geometric forms
Berger’s approach had to be extended. Tests have been made in which objects consisting of
several regions were to be classified. These tests have shown the problem that with no a-priori
knowledge about what object is in the image and where in the image it is the object’s regions
cannot be separated from the background. This means that the normalisation of the size required
for the PCA is not possible.

Attempts to not segment the object from the background and not normalise its size, but use
the complete image instead have not nearly been as successful as the results for the simple
geometric shapes. The variations in the images introduced by allowing the objects to translate
were too big and virtually suppressed the variations arising from the different objects. Using the
PCA on complex objects consisting of several non-contiguous regions that cannot be separated
from the background in advance has therefore to be considered unfeasible.

C.2.7.2 Output Related Features

As has been shown the PCA is an unsupervised approach that uses generic principles from
information theory. A more specific approach following similar ideas areoutput related features
(ORFs). With ORFs the reduced set of new base vectors~b is not automatically computed by
using the data variance, but by trying to maximise linear correlation

~b · ~xi = si

to a user-supplied desired outputsi for each input~xi. As such, ORFs implement an approach
based onsupervisedlearning, the learning rule of which is

∆~b = ε · ~xi ·
(
si − ~xi ·~b

)
with someε � 1 used as scaling factor. Once one ORF vector~b is known the information

along that vector can be taken from the data by computing

24See [Berger 2000], chapter 5, page 40ff.

C.2. Introduction to Computer Vision 355

~x′i = ~xi −~b
(
~b · ~xi

)
for all data vectors~xi and repeating the learning process to obtain another ORF vector.

Since the user-supplied desired output is completely arbitrary, ORFs can be used for many
tasks. If, for example, the desired output is an index number they can be used for classification.
If the desired output is the coordinate of an object in the image this can also be learned – at
least theoretically. The ORF approach has therefore been tested on learning the coordinates of
objects in images25. Unfortunately its capabilities to interpolate between the learned grid data
have been found to not meet the required accuracy. In addition to this, also suffers from the
extrapolation problem occurring when not all possible situations have been trained.

The most important disadvantage of the ORF approach is its linearity. Maximising linear
correlation with the desired output implies that there is a linear correlation between input and
output, which is not necessarily true. An example of the possible problems can be seen in
figure C.27 where the input data is spread on a semi-arc. When training ORF vectors to classify
the data it is reasonably easy to obtain one vector, although the correlation is apparently not
really linear. One way to avoid classification problems in the non-linear areas would be to use a
second vector, hoping that this one would perform better. Projecting the data onto the subspace,
however, leads to a a distribution where not even an roughly approximated linear correlation is
possible. The second vector will be more or less random and will not improve the classification.

???

Figure C.27: A sample data distribution demonstrating problems of the ORF approach.

Using ORFs is only feasible in cases where the correlation between the input and the desired
output is linear, and in high dimensional spaces like images this is difficult to say in advance.
In case of the the recognition of the class and position of the objects used in this work it has
shown to be not the case. ORFs can therefore not be used.

C.2.8 Summary

The history of computer vision has produced a lot of techniques to operate on images, however,
some of them are pretty theoretical and of limited practical use. For example the Sobel filter

25To not make things too difficult only the simple geometric forms used in the PCA tests have been used.

356 C.2. Introduction to Computer Vision

is the “correct” way to detect edges, because edges are derivations of the value and it com-
putes the derivation to detect them. Unfortunately it also “detects” image noise, and as a result
of this the plain Sobel filter is very complicated to use. Other filters that use more complex
computations to avoid these problems like the SUSAN filter are still not of widespread use,
but are urgently needed by a lot of practical applications. The manipulation techniques used in
this work are therefore almost entirely somewhat unconventional, but strongly adapted to the
specific problem.

Concerning classification it has to be mentioned that none of the presented approaches
“recognises” anobject the way a human does, but only a very reduced set of more or less
abstractfeaturesof the object – be that because of explicit feature extraction or because of a
representation in an eigenspace. One reason for this is that it is still not yet known how the hu-
man vision system works. It appears certain that the human brain also reduces a colour image
as delivered by the eye to abstract features like edges, corners and areas, but neither the set of
features nor the exact type of the classificator are known.

With the current level of knowledge about the human vision system the artificial classificators
can only be very coarse approximations. In particular, the PCA and ORF are linear approaches
– a popular simplification – but the problem is obviously inherently non-linear. With such
radical simplifications it is no wonder that their results reach only a fraction of the performance
of the human eye. Computer vision system are usually called “good” if they yield a correct
classification in more than 95% and/or if they compute positions of objects within a range of
a few, but still several pixel. For an automated laboratory robot this would basically mean that
it would not save any money on personnel because a human operator would have to constantly
supervise it. Anything less than 100% performance is therefore not tolerable, and for such
performance ratings other techniques have to be used.

Another aspect is that all the presented classification approaches need a set of learn images
covering theentire range of possible situations. With some objects used in this work it is not
possible to automatically obtain such a set of images, and so the classificators are forced to
extrapolate. This, however, none of them can do in any useful way. It is primarily this reason
why for this work a different approach has been chosen.

Appendix D

C++ Class Documentation

D.1 CINFOBASE – Accessing the INFOBASE

The C++ classCINFOBASEdefined in the header fileinfobase.h implements the client
access to the INFOBASE. It declares methods to access the server that are grouped in primary
and secondary methods. The primary methods are declared as in table D.1 and explained as
follows:

class CINFOBASE
{
public:

CSTATUS Chdir (char *pName);
CSTATUS Mkdir (char *pName, int flags = 0);
CSTATUS Creat (char *fName, int flags = 0);
CSTATUS Read (char *fName, void *buf, int bufMaxLength);
CSTATUS Write (char *fName, void *buf, int bufLength);
CSTATUS Stat (char *eName, int *isDir = 0,int *size = 0, double *time = 0);
CSTATUS Unlink (char *eName);

CINFOBASEDIR *Opendir (char *pName, int flags = 0);
};

class CINFOBASEDIR
{
public:

CSTATUS Readdir (int *isDir = 0, int *size = 0, double *time = 0);
};

Table D.1: A (simplified) declaration of the primary methods of theCINFOBASEclass.

CSTATUS CINFOBASE::Chdir (char *pName) setspNameas the new current
working directory (path). With relative addressing (i.e. paths without a lead-
ing “/ ”) this path is used as prefix.

CSTATUS CINFOBASE::Mkdir (char *pName, int flags) creates a new direc-
tory pName1. No entry (directory or file) with the given name must so far
exist.

CSTATUS CINFOBASE::Creat (char *fName, int flags) creates a new file
fName. No entry (directory or file) with the given name must so far exist.

1Theflags parameter used forMkdir() andCreat() is not used (yet). It is used inOpendir() though.

357

358 D.1. CINFOBASE – Accessing the INFOBASE

CSTATUS CINFOBASE::Read (char *fName, void *buf, int bufMaxLength)
readsbufMaxLength bytes of data from the filefName into the buffer
buf . If the file is smaller than the buffer only the file size is used. If the
file is larger than the buffer only the prefix is used. In both cases the actual
number of bytes read is returned. Data is treated as binary, which means that
strings are explicitly not terminated by a trailing zero. Note that this way it is
possible to read only a fraction of the file, but this fraction always starts at the
beginning. It is not possible to read a fraction from the middle of the file.

CSTATUS CINFOBASE::Write (char *fName, void *buf, int bufLength)
writesbufMaxLength bytes of data from the bufferbuf to the filefName,
discarding its previous contents. There is no limit for the data size except for
the available memory.

CSTATUS CINFOBASE::Stat (char *eName, int *isDir, int *size, double *time)
returns attributes of the entryeName (directory or file). The attributes are:
The boolean flagisDir telling whether the entry is a directory or not and
the integersize giving the entry’s size in bytes (for directories: the number
of its entries). The attributetime is not (yet) used.

CSTATUS CINFOBASE::Unlink (char *eName) deletes the entryeName (di-
rectory or file). In case of deleting a directory all its contents is automatically
deleted too.

CINFOBASEDIR *CINFOBASE::Opendir (char *pName, int flags) opens
the directorypNameand returns a handle for it.

CSTATUS CINFOBASEDIR::Readdir (int *isDir, int *size, double *time)
successively reads a directory, returning the next entry’s name inCSTATUS
and its attributes as inStat() .

In addition to these primary methodsCINFOBASEalso declares a couple of secondary meth-
ods as shown in table D.2. These secondary methods are entirely based on the primary methods
and only given for convenience reasons. Their explanation is as follows:

class CINFOBASE
{
public:

CSTATUS ReadString (char *fName, char *value, int maxSize);
CSTATUS ReadString (char *fName, char **value);

CSTATUS ReadInt (char *fName, int *value, int maxSize = 1);
CSTATUS ReadFloat (char *fName, float *value, int maxSize = 1);
CSTATUS ReadDouble (char *fName, double *value, int maxSize = 1);

CSTATUS WriteString (char *fName, char *value);

CSTATUS WriteInt (char *fName, int value);
CSTATUS WriteInt (char *fName, int *value, int size = 1);
CSTATUS WriteFloat (char *fName, float value);
CSTATUS WriteFloat (char *fName, float *value, int size = 1);
CSTATUS WriteDouble (char *fName, double value);
CSTATUS WriteDouble (char *fName, double *value, int size = 1);

};

Table D.2: A (simplified) declaration of the secondary methods of theCINFOBASEclass.

D.1. CINFOBASE – Accessing the INFOBASE 359

CSTATUS CINFOBASE::ReadString (char *fName, char *value, int maxSize)
reads the contents of a filefName into the C stringvalue , whose size must
be given inmaxSize . If the file is smaller only a fraction of that string will
be used, and if the file is larger only a fraction of the file will be read. In any
case the string is terminated by a trailing zero, so the buffer size must take
that into account.

CSTATUS CINFOBASE::ReadString (char *fName, char **value) reads the
contents of a filefName into the C stringvalue given by its pointer. The
string is allocated bymalloc() with the appropriate size to hold the data
including a trailing zero. The previous value of the pointer is not evaluated. If
it initially pointed to another string that memory reference is lost forever.

CSTATUS CINFOBASE::ReadInt (char *fName, int *value, int maxSize)
reads a set of sizemaxSize of integers from the filefName to the array
value . The array must be preallocated and large enough to hold the
data. The data is read as an ASCII string and converted to integers using
strtol() .

CSTATUS CINFOBASE::ReadFloat (char *fName, float *value, int maxSize)
reads a set of sizemaxSize of floats from the filefName to the arrayvalue .
The array must be preallocated and large enough to hold the data. The data is
read as an ASCII string and converted to floats usingstrtod() .

CSTATUS CINFOBASE::ReadDouble (char *fName, double *value, int maxSize)
reads a set of sizemaxSize of doubles from the filefName to the array
value . The array must be preallocated and large enough to hold the
data. The data is read as an ASCII string and converted to doubles using
strtod() .

CSTATUS CINFOBASE::WriteString (char *fName, char *value) writes the
stringvalue to the filefName, deleting its previous contents. The file must
exist to be written to.

CSTATUS CINFOBASE::WriteInt (char *fName, int value) writes a single in-
tegervalue to the filefName, deleting its previous contents. The file must
exist to be written to. The integer is converted usingprintf() with an%i
argument and stored as an ASCII string.

CSTATUS CINFOBASE::WriteInt (char *fName, int *value, int size) writes
the arraysize containingsize integers to the filefName, deleting its
previous contents. The file must exist to be written to. The integers are
converted usingprintf() with an %i argument and stored as an ASCII
string.

CSTATUS CINFOBASE::WriteFloat (char *fName, float value) writes a sin-
gle floatvalue to the file fName, deleting its previous contents. The file
must exist to be written to. The float is converted usingprintf() with an
%.10e argument and stored as an ASCII string.

CSTATUS CINFOBASE::WriteFloat (char *fName, float *value, int size)
writes the arraysize containingsize floats to the filefName, deleting
its previous contents. The file must exist to be written to. The floats are
converted usingprintf() with an %.10e argument and stored as an
ASCII string.

360 D.1. CINFOBASE – Accessing the INFOBASE

CSTATUS CINFOBASE::WriteDouble (char *fName, double value) writes a
single doublevalue to the filefName, deleting its previous contents. The
file must exist to be written to. The double is converted usingprintf()
with an%.20e argument and stored as an ASCII string.

CSTATUS CINFOBASE::WriteDouble (char *fName, double *value, int size)
writes the arraysize containingsize doubles to the filefName, deleting
its previous contents. The file must exist to be written to. The doubles are
converted usingprintf() with an %.20e argument and stored as an
ASCII string.

The return codeCSTATUSused used these methods is also a C++ class as shown in table D.3.
It implements a container for a pair of one integer and one string to be returned simultaneously.
It has two cast operatorsoperator char* (void) and operator int (void) to
select the desired component. The string may either be a textual description of the error or user
data like the next entry name inReaddir() .

class CSTATUS
{
constprotected:

int i;
char * s;

public:

CSTATUS (void) { i = 0; s = 0x0; }
CSTATUS (int i, char *s = 0x0);

operator char* (void) { return s ? s : "(null)"; }
operator int (void) { return i; }

};

Table D.3: A (simplified) declaration of theCSTATUSreturn code
class used to return both an integer error code as well as a string
(printable error description or other content) at the same time.

Since theint cast is applied automatically by the C++ compiler for numerical comparisons
this allows for a totally transparent usage like in:

if (infobase.Chdir ("/not-existent-directory") < 0)
{

fprintf (stderr, "directory does not exist! \n");
abort ();

}

If both values are needed the status can be stored and used as in:

D.2. CNETOBJ – Communicating over a TCP/IP network 361

CSTATUS status = directory->Readdir ();

if (status < 0)
{

fprintf (stderr, "no more files \n");
return;

}

printf ("%s \n", (char*)status);

D.2 CNETOBJ – Communicating over a TCP/IP network

D.2.1 CCHUNK

CCHUNKimplements a (dynamic) buffer that the object isserialisedinto before being trans-
mitted over the TCP/IP connection to the remote host. This buffer needs the same amount of
memory as the object itself, which can become a problem for extremely large objects. On the
other hand it is a simple solution to avoid a number of problems:

• Calling the system callwrite() for each individual data presents an overhead that is
untolerable. WithCCHUNKall data is written with a singlewrite() call and the problem
avoided.

• The TCP/IP stack of the operating system may buffer data before sending it, so if too few
data is written it may actually not send it at all. WithCCHUNKonly large amounts of data
are written and the problem avoided.

• In order to allow the receiver to skip unknown objects the size of the data to be trashed
must be known. With no special encoding this requires the data size to be send before
the data itself. Approaches like the ones used by Y. Collani and M. Ferch require an
additionalGetSize() recursion over the data before sending it to establish that size,
which in turns reduces the encoding speed. WithCCHUNKthis second step is avoided at
the price of an only slightly increased memory requirement that is certainly not a problem
for the objects used in this work.

CCHUNKdefines severalPack() methods to push data into the buffer andUnpack() meth-
ods to pop data from the buffer as in table D.4. Overruns are avoided by dynamically increasing
the buffer size and underruns cannot occur2. The methods accept the commonly knownchar ,
short , int , long , single anddouble data types3 used in C/C++, as well asunsigned
versions of the integer ones and arrays. They properly encode the data so that hosts with differ-
ent byte-ordering (big-endian vs. little-endian) can exchange data.

The most frequently needed pack/unpack methods are implemented directly:

2Since upon receiving an object its size is transmitted first and the buffer allocated and read accordingly no
underrun can later occur when unpacking the object. If it does this means that the pack/unpack routines are not
symmetric, which is a programming error and not one of the transmission framework.

3Currently,char is assumed to have 1 byte,short 2 bytes,int and long 4 bytes andsingle to be the
4 byte anddouble the 8 byte ANSI/IEEE-754 floating point values (see [IEEE 1985]). As far as the floating
point formats are concerned this assumption is legal because virtually all contemporary architectures use them.
The integer formats are a bit more troublesome, especially on 64-bit architectures. In case this should become a
problem explicits8 /u8 , s16 /u16 ands32 /u32 (ands64 /u64) data types can easily be used instead.

362 D.2. CNETOBJ – Communicating over a TCP/IP network

class CCHUNK
{
public:

CCHUNK (int chunkSize = 4096);
CCHUNK (const void *data, const int size);

virtual ˜CCHUNK (void);

int GetSize (void) const {return written; }
void *GetData (void) const {return data; }

// implement the (probably) most used methods directly...

void PackInt (const int i);
int UnpackInt (void);

// ...all other are mapped to these by inline methods

void Pack8BitArray (const void *ptr, int size);
void Pack16BitArray (const void *ptr, int size);
void Pack32BitArray (const void *ptr, int size);
void Pack64BitArray (const void *ptr, int size);

void Unpack8BitArray (void *ptr, int size);
void Unpack16BitArray (void *ptr, int size);
void Unpack32BitArray (void *ptr, int size);
void Unpack64BitArray (void *ptr, int size);

// all the following pack and unpack methods are based on the above

void PackChar (const char c);
void PackShort (const short s);
void PackLong (const long l);
void PackFloat (const float f);
void PackDouble (const double d);

void PackCharArray (const char *c, int size)
void PackShortArray (const short *s, int size)
void PackIntArray (const int *i, int size)
void PackLongArray (const long *l, int size)
void PackFloatArray (const float *f, int size)
void PackDoubleArray (const double *d, int size)

char UnpackChar (void);
short UnpackShort (void);
long UnpackLong (void);
float UnpackFloat (void);
double UnpackDouble (void);

void UnpackCharArray (char *c, int size)
void UnpackShortArray (short *s, int size)
void UnpackIntArray (int *i, int size)
void UnpackLongArray (long *l, int size)
void UnpackFloatArray (float *f, int size)
void UnpackDoubleArray (double *d, int size)

};

Table D.4: CCHUNK declaration. Methods withunsigned
data types exist too, but are for brevity not listed here.

~

D.2. CNETOBJ – Communicating over a TCP/IP network 363

void CCHUNK::PackInt (const int i) pushes the 32 bit integeri into the buffer.

int CCHUNK::UnpackInt (void) pops a 32 bit integer off the buffer.

Except from the above, only the following array pack/unpack methods are implemented di-
rectly too. The pointers are of typevoid * because they are later used for multiple types.

void CCHUNK::Pack8BitArray (const void *ptr, int size) pushes thesize el-
ements from the 8 bit integer arrayptr into the buffer.

void CCHUNK::Pack16BitArray (const void *ptr, int size) pushes thesize
elements from the 16 bit integer arrayptr into the buffer.

void CCHUNK::Pack32BitArray (const void *ptr, int size) pushes thesize
elements from the 32 bit integer or float arrayptr into the buffer.

void CCHUNK::Pack64BitArray (const void *ptr, int size) pushes thesize
elements from the 64 bit integer or double arrayptr into the buffer.

void CCHUNK::Unpack8BitArray (void *ptr, int size) popssize 8 bit integer
elements off the buffer and writes them into the arrayptr .

void CCHUNK::Unpack16BitArray (void *ptr, int size) popssize 16 bit in-
teger elements off the buffer and writes them into the arrayptr .

void CCHUNK::Unpack32BitArray (void *ptr, int size) popssize 32 bit in-
teger or float elements off the buffer and writes them into the arrayptr .

void CCHUNK::Unpack64BitArray (void *ptr, int size) popssize 64 bit in-
teger or double elements off the buffer and writes them into the arrayptr .

The following pack/unpack methods are implemented as inline methods based on the above
methods:

void CCHUNK::PackChar (const char c) pushes a single 8 bit integer (char)
into the buffer (implemented viaPack8BitArray(&c,1)).

void CCHUNK::PackShort (const short s) pushes a single 16 bit integer (short)
into the buffer (implemented viaPack16BitArray(&s,1)).

void CCHUNK::PackLong (const long l) pushes a single 32 bit integer (long)
into the buffer (implemented viaPack32BitArray(&l,1)). Can trans-
parently be used withint data type because the compiler can apply an im-
plicit cast.

void CCHUNK::PackFloat (const float f) pushes a single 32 bit float (float) into
the buffer (implemented viaPack32BitArray(&f,1)).

void CCHUNK::PackDouble (const double d) pushes a single 64 bit float (dou-
ble) into the buffer (implemented viaPack64BitArray(&f,1)).

void CCHUNK::PackCharArray (const char *c, int size) pushes thesize el-
ements of the arrayc of 8 bit integers (chars) into the buffer (implemented
via Pack8BitArray(c,size)).

void CCHUNK::PackShortArray (const short *s, int size) pushes thesize el-
ements of the arrays of 16 bit integers (shorts) into the buffer (implemented
via Pack16BitArray(s,size)).

Pack8BitArray (&c, 1)
Pack16BitArray (&s, 1)
Pack32BitArray (&l, 1)
Pack32BitArray (&f, 1)
Pack64BitArray (&f, 1)
Pack8BitArray (c, size)
Pack16BitArray (s, size)

364 D.2. CNETOBJ – Communicating over a TCP/IP network

void CCHUNK::PackIntArray (const int *i, int size) pushes the size ele-
ments of the arrayi of 32 bit integers (ints) into the buffer (implemented
via Pack32BitArray(i,size)).

void CCHUNK::PackLongArray (const long *l, int size) pushes thesize ele-
ments of the arrayl of 32 bit integers (longs) into the buffer (implemented
via Pack32BitArray(l,size)).

void CCHUNK::PackFloatArray (const float *f, int size) pushes thesize ele-
ments of the arrayf of 32 bit floats (float) into the buffer (implemented via
Pack32BitArray(f,size)).

void CCHUNK::PackDoubleArray (const double *d, int size) pushes the
size elements of the arrayd of 64 bit floats (doubles) into the buffer
(implemented viaPack64BitArray(d,size)).

char CCHUNK::UnpackChar (void) pops a single 8 bit integer (char) off the
buffer and returns it (implemented viaUnpack8BitArray()).

short CCHUNK::UnpackShort (void) pops a single 16 bit integer (short) off the
buffer and returns it (implemented viaUnpack16BitArray()).

long CCHUNK::UnpackLong (void) pops a single 32 bit integer (long) off the
buffer and returns it (implemented viaUnpack32BitArray()). Can trans-
parently be used withint data type because the compiler can apply an im-
plicit cast.

float CCHUNK::UnpackFloat (void) pops a single 32 bit float (float) off the
buffer and returns it (implemented viaUnpack32BitArray()).

double CCHUNK::UnpackDouble (void) pops a single 64 bit float (double) off
the buffer and returns it (implemented viaUnpack64BitArray()).

void CCHUNK::UnpackCharArray (char *c, int size) popssize 8 bit integer
(char) elements off the buffer and writes them to the arrayc (implemented via
Unpack8BitArray(c,size)).

void CCHUNK::UnpackShortArray (short *s, int size) popssize 16 bit inte-
ger (short) elements off the buffer and writes them to the arrays (implemented
via Unpack16BitArray(s,size)).

void CCHUNK::UnpackIntArray (int *i, int size) pops size 32 bit integer
(int) elements off the buffer and writes them to the arrayi (implemented via
Unpack32BitArray(i,size)).

void CCHUNK::UnpackLongArray (long *l, int size) popssize 32 bit integer
(long) elements off the buffer and writes them to the arrayl (implemented via
Unpack32BitArray(l,size)).

void CCHUNK::UnpackFloatArray (float *f, int size) pops size 32 bit float
(float) elements off the buffer and writes them to the arrayf (implemented
via Unpack32BitArray(f,size)).

void CCHUNK::UnpackDoubleArray (double *d, int size) pops size 32 bit
float (double) elements off the buffer and writes them to the arrayd (imple-
mented viaUnpack64BitArray(d,size)).

Versions using unsigned integer types exist too, but are for brevity not listed here.

Pack32BitArray (i, size)
Pack32BitArray (l, size)
Pack32BitArray (f, size)
Pack64BitArray (d, size)
Unpack8BitArray()
Unpack16BitArray()
Unpack32BitArray()
Unpack32BitArray()
Unpack64BitArray()
Unpack8BitArray (c, size)
Unpack16BitArray (s, size)
Unpack32BitArray (i, size)
Unpack32BitArray (l, size)
Unpack32BitArray (f, size)
Unpack64BitArray (d, size)

D.2. CNETOBJ – Communicating over a TCP/IP network 365

D.2.2 CNETOBJ

CNETOBJimplements a base class that all classes to be transferred using the implemented
mechanism must be derived from. It defines macros toregisterthe class, which means that its
name and a staticCreate() method are stored in a global list. Upon receiving an object this
list is then searched for the method to create the object.

It implements a method to send an object to a connected socket and some methods to receive
known and unknown objects from a connected socket, but does not handle the connection of the
socket by itself. The termknown objectrefers to situations where due to an external protocol it is
known which object will be arrive next, and the appropriate method throws an error if it actually
sees a different object. The termunknown objectrefers to situations where such an assumption
cannot be made and any registered object may arrive, and the appropriate methods will then
return that object. If an unregistered object arrives all receive methods will return an error. In
case of any error the data from the associated object is discarded so that the communication
channel is not jammed with junk.

The C++ classCNETOBJis declared innetobj/netobj.h and listed in table D.5. It de-
fines abstractPack() andUnpack() methods that must be implemented by the user in the de-
rived class. These methods are called with aCCHUNKas argument and can use its pack/unpack
methods to buffer the data. Upon returning from thePack() method the object is then send
over the socket. It also provides a set of methods to deal with the sending and receiving of
objects and defines some macros used to register objects.

The following method have to be implemented by derived classes:

virtual const char *CNETOBJ::GetName (void) const = 0x0 returns a unique
name for the class (most likely the class name itself). The name is only used
for comparisons and may therefore point to static or const memory. The rea-
son for this method despite the general existence ofrun time type information
(RTTI) is that the Watcom C/C++ compiler used under QNX did not support
RTTI.

virtual void CNETOBJ::Pack (CCHUNK *chunk) = 0x0 is called for serialisa-
tion when an object is send. It is passed aCCHUNKas argument that has to
be used as buffer. The derived class must ensure that all its data is correctly
buffered tochunk .

virtual void CNETOBJ::Unpack (CCHUNK *chunk) = 0x0 is called for de-
serialisation when an object is received. It is passed aCCHUNKas argument
that has to be used as buffer. The derived class must ensure that all its data is
correctly read fromchunk .

The following methods are implemented to support sending and receiving of objects:

void CNETOBJ::Register (const char *name, CNETOBJ * (*createFunc) (void))
registers the classname and itsCreate() method in a static global list.

int CNETOBJ::SendSocket (CSTREAMSOCK *sock) calls Pack() to seri-
alise an object and then sends the buffer over a socket.

CNETOBJ *CNETOBJ::ReceiveUnknown (void *data, int size) must be
called as a static method. It reads a buffer from memory, creates the

366 D.2. CNETOBJ – Communicating over a TCP/IP network

class CNETOBJ
{
public:

CNETOBJ (void);
virtual ˜CNETOBJ (void);

static void Register (const char *name, CNETOBJ * (*createFunc) (void));

int SendSocket (CSTREAMSOCK *sock);

// this function ‘receives’ one unknown object from a memory block. ‘unknown’
// means that the type is not predetermined but the object will instead be
// created (if the type is registered).

static CNETOBJ *ReceiveUnknown (void *data, int size);

// these functions receive one unknown object from a socket.

static CNETOBJ *ReceiveUnknown (CSTREAMSOCK *sock);

// the same as above for known objects. the function must be called from the
// object to be received. if the received object is actually a different one
// a negative error will be returned. otherwise the return value will be
// positive.

int ReceiveKnown (CSTREAMSOCK *sock);

// these ones will be overlayed by descendants.

virtual const char *GetName (void) const = 0x0;
virtual void Pack (CCHUNK *chunk) = 0x0;
virtual void Unpack (CCHUNK *chunk) = 0x0;

};

#define NETOBJ DECLARE(TYPE) \
virtual const char *GetName (void) const {return #TYPE; \ }
virtual void Pack (CCHUNK *chunk); \
virtual void Unpack (CCHUNK *chunk); \
static TYPE *Create (void) {return new TYPE; }

#define NETOBJ REGISTER(TYPE) \
TYPE::Register(#TYPE,(CNETOBJ * (*) (void))&TYPE::Create);

#define NETOBJ DYNCAST(obj,TYPE) \
(TYPE *) (((void *)(obj)->GetCreate () == TYPE::Create) ? (obj) : 0x0)

Table D.5: CNETOBJ declaration.

corresponding object not expecting a particular object and de-serialises it
by calling itsUnpack() method. If the object is not registered the data is
discarded andNULLreturned.

CNETOBJ *CNETOBJ::ReceiveUnknown (CSTREAMSOCK *sock) must
be called as a static method. It reads a buffer from a socket, creates the
corresponding object not expecting a particular object and de-serialises it
by calling itsUnpack() method. If the object is not registered the data is
discarded andNULLreturned.

int CNETOBJ::ReceiveKnown (CSTREAMSOCK *sock) must be called as a
normal method of an instance of a derived class. It reads a buffer from a
socket, usesGetName() to ensure that this buffer really contains the ex-
pected object, creates it and de-serialises it by calling itsUnpack() method.
If the object is not registered or not of the expected class the data is discarded
and -1 returned, otherwise the (positive) size of the object data is returned.

~

D.3. CLABDEV – Control of Laboratory Devices 367

The macros defined are:

#define NETOBJ DECLARE(TYPE) has to be included in the class definition
of a derived class to declare a set of required methods.

#define NETOBJ REGISTER(TYPE) must be used once at the beginning of
each program to register the class in the static global list.

#define NETOBJ DYNCAST(obj,TYPE) can be used to check if an object is of
a certain type or not, similar to dynamic casts in RTTI in the C++ compiler.

D.3 CLABDEV – Control of Laboratory Devices

CLABDEVis the communication framework that allows easy and network transparent commu-
nication between devices. It is implemented in three C++ classes,CLABMSG, CLABDEVand
CLABDEVD.

D.3.1 CLABMSG

Communication betweenCLABDEVandCLABDEVDis done by transmitting simplemessages
describing the command and its parameters. These messages are implemented in theCLABMSG
class, containing native variables for the respective host architecture. The class is derived
from CNETOBJand declared inlabdev/labmsg.h and shown in table D.6. It implements
Pack() andUnpack() methods to encode the message.

#define MAXSTRINGDATA 4

class CLABMSG : public CNETOBJ
{
public:

int cmd;
int intData[8];
float floatData[8];
char * stringData[MAXSTRINGDATA];
int auxDataSize;
void * auxData;

};

Table D.6: The message classCLABMSG: “ cmd” holds the command
code on sending commands and the return error code on sending replies,
“ intData ” and “ floatData ” arrays of optional numeric parame-
ters, “ stringData ” an array of strings and “auxDataSize ” and
“ auxData ” a block of auxiliary data that is copied without encoding.

Using the default constructor all values are initialised to0, resulting in empty strings. If
strings are used, they have to be a full copy of the original string (seestrdup() and/or
malloc()), not just a copy of the pointer. This is because the sameCLABMSGinstance will
be used for receiving the reply, at which point the old contents will befree() ed (if non-zero).

368 D.3. CLABDEV – Control of Laboratory Devices

The auxData block of memory can be used to transmit memory whose encoding is oth-
erwise ensured, like JPEG images. If present (non-zero) it must be a block that has been
malloc() ed because it may also befree() ed internally.

D.3.2 CLABDEV

The classCLABDEVimplements the client side, the part that is requesting services. It is declared
in labdev/labdev.h and shown in table D.7. The constructor isprotectedbecause this class
is not supposed to be instantiated directly, but only through a derived class.

class CLABDEV
{
protected:

char * name;
CINFOBASE * ib;
CLABDEV (const char *name);
int RequestService (CLABMSG &msg);

public:
virtual ˜CLABDEV (void);

};

Table D.7: The client classCLABDEV as declared in
labdev/labdev.h . Except for constructors and internal vari-
ables it has only one relevant method,RequestService() ,
that implements the entire message exchange.

Apart from the constructor – which takes thenameof the service under which the server
is looked up in the INFOBASE as argument –CLABDEVhas only one relevant method,
RequestService() , which is described as follows:

RequestService()has to be called with aCLABMSGmessage that must have been
filled by the user of the derived class. This message is send to the server.
When the server completes the command it replies with a message that is
returned by the method, deleting (free() ing where applicable) the previous
contents (which is why themsg argument is notconst).

D.3.3 CLABDEVD

The classCLABDEVDimplements the server side, the part that is providing services. The con-
structor is againprotectedbecause this class also is not supposed to be instantiated directly, but
only through a derived class4. CLABDEVDis declared inlabdev/labdevd.h and shown in
table D.8.

4Actually it is anabstractclass because it also lacks an implementation ofEvent() that has to be filled in by
the derived class.

~

D.4. CROBOT – Accessing the Mobile Robot System 369

class CLABDEVD
{
protected:

CINFOBASE ib;
CSTREAMSOCKsock;
CLABDEVD (const char *name);
virtual int Allow (unsigned int addr);
virtual void Event (CLABMSG &msg) = 0;

public:
virtual ˜CLABDEVD (void);
int Run (const int timeout);

};

Table D.8: The server classCLABDEVDas declared inlabdev/labdevd.h .
Except for constructors and internal variables it has three relevant methods, that
implement the main event loop and a limited access check.

Apart from the constructor – which takes thenameof the service under which it is registered
in the INFOBASE as argument –CLABDEVDhas three relevant methods,Run() , Allow()
andEvent() which are described as follows:

Run() must be called in a loop to wait for messages. If thetimeout argument
(in milliseconds) is positive the method will block for at most that time and
then return (may be used for keepalive tests). If it is negative the method will
block forever.

Allow() is invoked as acall-backwhen a message is received. Theaddr argument
is the IP address of the remote host requesting a service. Using this method
a minimal safety check can be implemented, only allowing requests from re-
stricted hosts. This method may be overwritten by the derived class when the
default behaviour to grant all accesses is not tolerable.

Event() is invoked when a message has passed the above test. This method must be
implemented by the derived class. It can use themsg argument to implement
the service, write the contents of the reply message tomsg and then return.
The reply is then send back to the requesting client automatically.

D.4 CROBOT – Accessing the Mobile Robot System

The entire mobile robot system can be accessed by using a single C++ client class,CROBOT,
which communicates with a server classCROBOTDusing theCLABDEVframework. Both
classes will be documented in this section.

D.4.1 CROBOT

CROBOT(see again table 6.8 on page 232) is derived fromCLABDEVand implements the
client interface to the robot’s functionality. This interface is all that can be externally seen

~

370 D.4. CROBOT – Accessing the Mobile Robot System

from the robot – all the implementation details of the commands are hidden in the scripts and
parameters in the INFOBASE. The methods declared inCMOBILEare defined as follows (see
also the definition of the state automaton on page 219, or tables 7.1 and 7.2 in section 7.1 for
comparison):

PickTubeStorage() drives the mobile platform from wherever it is standing to the
tube storage for NUNC tubeswithout barcode, moves the arm over the ex-
pected position of the marker on the storage, finds the marker using the vision
system, compensates the displacement, selects a slot to take a tube from by
looking at the state information in the INFOBASE, moves the arm to that slot,
uses to vision system to centre on the tube, grasps the tube and retreats the
arm into a park position.

PlaceTubeStorage()drives the mobile platform to the tube storage for
NUNC tubeswithout barcode and places a tube into a slot, similar to
PickTubeStorage() , except that a free slot is selected.

PickTubeStorageBarcode()is equivalent toPickTubeStorage() , only that
the tube storage for tubewith barcode is used.

PlaceTubeStorageBarcode()is equivalent toPlaceTubeStorage() , only
that the tube storage for tubewith barcode is used.

PlaceTubeWaste()drives the mobile platform to the waste bin and drops the
NUNC tube into it. This routine does not use any vision and fine-positioning
because the waste bin does not have a marker.

HoldTubeSampler() drives the mobile platform to the sampler, moves the arm
over the expected position of the marker on the rack inside it, finds the marker
using the vision system, compensates the displacement, selects a slot by look-
ing at the state information in the INFOBASE and places a NUNC tube into it.
To allow the sampler to work properly, the robot then regrasps the tube below
the cap so that it cannot be pulled out of the rack accidentally by the sampler’s
needle. The arm remains holding the tube upon termination of this method.

TakeTubeSampler() reverts the regrasp sequence fromHoldTubeSampler()
and takes the (now filled) NUNC tube out of the sampler again.

HoldTubeSampler2() is equivalent toHoldTubeSampler() , except that the
second sampler is used. Since all samplers use the same number of motions
to manipulate them only a different set of transforms is needed to describe
these motions, hence a different device in the INFOBASE.

TakeTubeSampler2() is equivalent toTakeTubeSampler() , except that the
second sampler is used.

HoldTubePipette() drives the mobile platform to the pipette, moves the arm over
the expected position of the marker attached to it, finds the marker using the
vision system, compensates the displacement, optionally shakes the tube a
given number of times to resuspend the aliquot and moves the NUNC tube
under the needle. The depth how far the needle is inserted into the tube must
be given as a parameter to allow for a different treatment of full and empty
tubes. The arm remains holding the tube upon termination of this method.

D.4. CROBOT – Accessing the Mobile Robot System 371

TakeTubePipette() reverts the sequence fromHoldTubePipette() (except
from the vision) and takes the NUNC tube back from under the needle.

OpenCentrifuge() drives the mobile platform to the centrifuge, fine-positions the
arm over the pattern formed by the coloured buttons on the front panel (us-
ing the same colours as the artificial markers), presses the “open” button to
release the lid, grasps under the lid, performs a short force-aborted motion
upwards to ensure the lid is really unlocked and opens it using a circular mo-
tion. This method is superceded byLoadAndRunCentrifuge() and/or
StopAndUnloadCentrifuge() .

PlaceTubeCentrifuge() drives the mobile platform to the centrifuge, fine-
positions the arm over the pattern formed by the coloured buttons on the
front panel, moves the arm over the cage inside the centrifuge and de-
tects its orientation. Depending on the orientation it temporarily deposits
the NUNC tube in a small storage attached to the centrifuge (which again
uses visual fine-positioning) and adjusts the cage by pushing onto one of
its pads and rotating it with a circular motion so that the free slot is close
to the arm, regrasps the tube and inserts it into the slot and retreats the
arm. This method is superceded byLoadAndRunCentrifuge() and/or
StopAndUnloadCentrifuge() .

PickTubeCentrifuge() drives the mobile platform to the centrifuge, fine-positions
the arm over the pattern formed by the coloured buttons on the front
panel, moves the arm over the cage inside the centrifuge and de-
tects its orientation. Depending on the orientation it adjusts the cage
by pushing onto one of its pads and rotating it with a circular mo-
tion so that the used slot is close to the arm and grasps the tube.
This method is superceded byLoadAndRunCentrifuge() and/or
StopAndUnloadCentrifuge() .

RunCentrifuge() drives the mobile platform to the centrifuge, fine-positions
the arm over the pattern formed by the coloured buttons on the
front panel and presses the “run” button to start the centrifuge.
This method is superceded byLoadAndRunCentrifuge() and/or
StopAndUnloadCentrifuge() .

CloseCentrifuge() drives the mobile platform to the centrifuge, fine-positions the
arm over the pattern formed by the coloured buttons on the front panel, grasps
behind the lid and closes it with a circular motion downwards. The lid is
expected to snap locked when falling down. To ensure it is really closed, a
short force-aborted motion upwards is performed. If the lid is found to be
still open the arm is repositioned over the handle of the lid and slowly pressed
downwards. The snapping of the locking mechanism is detected using the
force sensor. This method is superceded byLoadAndRunCentrifuge()
and/orStopAndUnloadCentrifuge() .

CloseCentrifugeReally() drives the mobile platform to the centrifuge, fine-
positions the arm over the pattern formed by the coloured buttons on the front
panel, grasps under the closed (?) lid and performs a short force-aborted mo-
tion upwards to see if it is really closed. If the lid is found to be still open

372 D.4. CROBOT – Accessing the Mobile Robot System

the arm is repositioned over the handle of the lid and slowly pressed down-
wards. The snapping of the locking mechanism is detected using the force
sensor. This method is superceded byLoadAndRunCentrifuge() and/or
StopAndUnloadCentrifuge() .

LoadAndRunCentrifuge() optimises one of the most common combina-
tions of the above methods by dropping unnecessary park and un-
park motions. The actions performed otherwise correspond to subse-
quent calls toPlaceTubeCentrifuge() , CloseCentrifuge() and
RunCentrifuge() .

StopAndUnloadCentrifuge() optimises another of the most common combina-
tions of the above methods by dropping unnecessary park and unpark mo-
tions. The actions performed otherwise correspond to subsequent calls to
OpenCentrifuge() andPickTubeCentrifuge() .

OpenFridge() drives the mobile platform to the fridge, fine-positions the arm over
the marker, grasps behind the handle of the closed sliding lid and pushed it
sideways to open it. During most of the opening a high force is taken as a
jamming lid and the command aborted, but during the final stage the lid is
deliberately pressed to the stop.

PlaceTubeFridge() drives the mobile platform to the fridge, fine-positions the arm
over the marker, moves the arm over the marker on the rack inside it, fine-
positions over the rack, selects a free slot by looking at the state information
in the INFOBASE and places the NUNC tube into it. It then retreats the arm.
This method is superceded byPlaceTubeAndCloseFridge() .

CloseFridge() drives the mobile platform to the fridge, fine-positions the arm over
the marker, moves the arm behind the handle of the opened sliding lid and
closes it by pushing it sideways similar toOpenFridge() . This method is
superceded byPlaceTubeAndCloseFridge() .

PlaceTubeAndCloseFridge()optimises the most common combination of the
above methods by dropping unnecessary park and unpark motions.
The actions performed otherwise correspond to subsequent calls to
PlaceTubeFridge() andCloseFridge() .

HoldTubeScanner() drives the mobile platform to the barcode scanner, fine-
positions the arm over the marker and holds the NUNC tube above it (which
means that the scanner can read the barcode). The arm remains holding the
tube upon termination of thus method.

RotateTubeScanner()rotates the tube by a small random angle around its current
position over the marker of the barcode scanner. This method is used if the
scanner cannot read the barcode, for example if accidentally only the side
where the barcode is fixed to the tube with adhesive tape is facing the scanner.
The arm remains holding the tube upon termination of thus method.

TakeTubeScanner() takes the NUNC tube from the barcode scanner.

PickCedexStorage()drives the mobile platform to the storage racks for Cedex
tubes, fine-positions over the marker, selects a full slot by looking at the state

D.4. CROBOT – Accessing the Mobile Robot System 373

information in the INFOBASE, fine-positions over that slot and grasps a Cedex
tube from it.

HoldCedexPipette() drives the mobile platform to the pipette, finds the marker
using the vision system, compensates the displacement, and moves the Cedex
tube under the needle. Contrary toHoldTubePipette() the depth how
far the needle inserts into the Cedex tube is determined automatically by using
the force sensor: Once it has detected that the needle has reached the bottom
of the tube the motion is stopped. The arm remains holding the tube upon
termination of this method.

TakeCedexPipette()reverts the sequence fromHoldCedexPipette() (ex-
cept the vision) to takes the Cedex tube from the pipette.

PlaceCedexCedex()moves the mobile platform to the Cedex, fine-positions the
arm over the primary marker on the case, moves the arm over the carousel,
fine positions over the secondary marker on it and places the Cedex tube into
the slot next to it.

PickCedexCedex()moves the mobile platform to the Cedex, fine-positions the
arm over the primary marker on the case, moves the arm over the carousel,
fine positions over the secondary marker on it and grasps a Cedex tube from
the slot next to it.

PlaceCedexWaste()drives the mobile platform to the waste bin and drops the
Cedex tube into it, similar toPlaceTubeWaste() .

ParkCharger() moves the mobile platform to its charging station and docks to it,
waiting for a new sequence to start.

UnparkCharger() undocks the mobile platform from the charging station.

D.4.2 CROBOTD

CROBOTD(see again figure 6.5 on page 231) is derived fromCLABDEVDand implements the
server providing the robot’s functionality. In addition to the network communication it also
contains the complete robot arm control5, making it quite complex. The declaration shown in
D.9 is therefore only a simplified version of the real declaration.

The main components inherited fromCLABDEVDcan still be recognised, along which the
basic control flow can be shown as follows:

Allow() is called when a message is received to check if it comes from a legal host.

Event() is then called to process the message. This method basically implements
a largecase-switchas in table D.10.

At this stage theCLABDEVframework is left and the implemented robot functionality is
called. Starting withExecuteScript() , this functionality is organised hierarchically to map
high-level commands (likePickTubeStorage()) onto a set of primitives actually accessing

5The mobile platform is accessed using the C++ classCMOBILE. This class implements a remote control that
does not follow theCLABDEVscheme. The reason for this is that theCMOBILEclass was intended to be used in
a much wider range of projects which have got nothing to do with the laboratory setup in this project.

374 D.4. CROBOT – Accessing the Mobile Robot System

class CROBOTD : public CLABDEVD
{
private:

int ExecuteOpen (CRCCLSTACK &stack);
int ExecuteClose (CRCCLSTACK &stack);
int Hand (int open);

int ExecuteCircle (CRCCLSTACK &stack, CARGS &args);
int Track (POS *pTrack, TRSF *tTrack, POS *pMaster, TRSF *tMasterRel, int flag);

int ExecuteFabortMove (CRCCLSTACK &stack, CARGS &args);
int FabortMove (POS *p, double fMax, double diffMax, double diffMaxF) ;

int ExecuteArmCmd (CRCCLSTACK &stack, CARGS &args);
int ArmStart (void);
int ArmStop (void);
int ArmApproach (CRCCLSTACK &stack, CARGS &args);
int ArmRetreat (CRCCLSTACK &stack, CARGS &args);

int ExecuteMove (CRCCLSTACK &stack, CARGS &args);
int Move (POS *p);
int SingMove (POS *p);

int ExecuteMoveJ (CRCCLSTACK &stack, CARGS &args);
int MoveJ (POS *p);
int MoveJ (JNTS *j);

int ExecuteFmove (CRCCLSTACK &stack, CARGS &args);
int Fmove (FMOVEARGS &fmoveArgs);

int ExecuteMobileCmd (CRCCLSTACK &stack, CARGS &args);
int MobileMove (CRCCLSTACK &stack, char *devName);
int MobileForward (double distance);
int MobileScaleSpeed (double speedScale);

bool ExecuteCheckState (CARGS &args);
void ExecuteAbort (CARGS &args);
int ExecutePushSpeed (CRCCLSTACK &stack, CARGS &args);
int ExecutePopSpeed (CRCCLSTACK &stack);
int ExecuteCenterRegion (CRCCLSTACK &stack, CARGS &args);
int ExecuteConfirmModel (CRCCLSTACK &stack, CARGS &args);
int ExecuteAnalyzeModel (CRCCLSTACK &stack, CARGS &args);
int ExecuteCenterModel (CRCCLSTACK &stack, CARGS &args, char *fName = 0x0);
int ExecuteAdjustCentrifuge (CRCCLSTACK &stack);
int ExecuteInstallPID (CRCCLSTACK &stack, CARGS &args);
int ExecuteRemovePID (CRCCLSTACK &stack, CARGS &args);
int ExecuteSelectSlot (CRCCLSTACK &stack, CARGS &args);
int ExecuteLoad (CRCCLSTACK &stack, CARGS &args);
int ExecuteSetTrsf (CRCCLSTACK &stack, CARGS &args);
int ExecuteNewTrsf (CRCCLSTACK &stack, CARGS &args);
int ExecuteAddTrsfTrans (CRCCLSTACK &stack, CARGS &args);
int ExecuteRandomizeTrsf (CRCCLSTACK &stack, CARGS &args);
int ExecuteMultTrsf (CRCCLSTACK &stack, CARGS &args);
int ExecutePrintTrsf (CRCCLSTACK &stack, CARGS &args);
int ExecuteShake (CRCCLSTACK &stack, CARGS &args);
int ExecuteWaitForKey (void);

int ExecuteScript (CARGS &args);
int ExecuteScriptIf (CRCCLSTACK &stack, CARGS &args);

protected:

virtual int Allow (unsigned int addr);
virtual void Event (CLABMSG &msg);

public:

CROBOTD (flags t armFlags, flags t mobileFlags,
flags t forceFlags, flags t visionFlags, char *mobileHost = 0x0);

virtual CROBOTD (void);
};

Table D.9: A (simplified) declaration of the robot server classCROBOTD.

D.4. CROBOT – Accessing the Mobile Robot System 375

void CROBOTD::Event (CLABMSG &msg)
{

switch (msg. cmd)
{
case CMD PICK TUBESTORAGE:
{

CARGS args ("sPickTubeStorage");
msg. cmd = ExecuteScript (args);

}
break;

...

default:
msg. cmd = -1; // unknown command
return;

}
}

Table D.10: The big case switch in CROBOTD.

the mobile platform, the robot arm or the vision system. The topmost layer consists of a number
of ExecuteXXX() methods, each corresponding to a command in the script language.

ExecuteScript() is the topmost method called byEvent() whenever a command
is received. It corresponds to the script commandcall . It loads a new script
and executes it as sub-script. After completition the previous script is contin-
ued.

ExecuteScriptIf() corresponds to the script commandcallif . It also executes
a sub-script, but bound to some conditions. Currently the translational or
rotational part of a transform may be used as condition, so that operations like
“call this is the translation is larger thanN millimetre” are possible.

The followingExecute methods implement functionalities that do not require calling sub-
methods:

ExecuteCheckState()corresponds to the script commandcheckstate and im-
plements the state automaton check. If this method returns anything else but
0 the current script is aborted with an error, which is transferred back to the
caller.

ExecuteAbort() corresponds to the script commandabort and is only used dur-
ing debugging and when severe errors occur (a device is rotated so much that
the robot cannot compensate it).

ExecutePushSpeed()corresponds to the script commandpushspeed and
changes the robot arm speed. The current speed is saved on a stack and the
new speed set as the current speed times a factor smaller than 1. Nesting
commands is explicitly allowed.

376 D.4. CROBOT – Accessing the Mobile Robot System

ExecutePopSpeed()corresponds to the script commandpopspeed and restores
the previous robot speed by popping it off the stack. Using this way instead
of scaling it again with a factor larger than 1 rounding errors can be avoided.

ExecuteCenterRegion()corresponds to the script commandcenterregion
and uses the vision system to centre on whatever coloured region is currently
closest to the image centre. It does so by modifying a transform that must be
present and part of the position equation. The command requires the arm to
be in a position so that the camera is approximately centred over the region in
question.

ExecuteConfirmModel() corresponds to the script commandconfirmmodel
and uses the vision system to assert that the camera is currently positioned
over a specific device.

ExecuteAnalyzeModel() corresponds to the script commandanalyzemodel
and is used to set a transform to the displacement of the given device, which
the camera must be currently positioned over.

ExecuteCenterModel() corresponds to the script commandcentermodel and
actually centres over the device by iteratively changing a transform that must
be present and part of the current position equation.

ExecuteAdjustCentrifuge() corresponds to the script command
adjustcentrifuge and is the only command specific for a single
device. It compensates the rotation of the centrifuge’s cage by applying
several “telephone dialing” motions until the desired slot can be reached by
the arm. The reason for this operation is that the centrifuge does not stop
at a deterministic position, and the reason for a specific function is that the
operation is too complex to be implemented by the other commands.

ExecuteInstallPID() doesnot corresponds to a script command, but is used inter-
nally by ExecuteAdjustCentrifuge() to install a PID controller that
is used in subsequent motions to implement force control. This function is an
anachronism and should not be used.

ExecuteRemovePID()see above – removes the installed PID controller.

ExecuteSelectSlot()corresponds to the script commandselectslot and se-
lects an empty/full slot at a storage rack while changing the slot’s status, de-
pending on a flag parameter. If no matching slot could be found the command
aborts the script and an error is returned to the user. Information about slots is
stored in the INFOBASE under the appropriate device.

ExecuteLoad() corresponds to the script commandload and loads all transforms
onto the stack that are specific for the given device. Due to the stack mecha-
nism used these transforms will automatically be deleted if the current script
is terminated.

ExecuteSetTrsf() corresponds to the script commandsettrsf and sets a trans-
form to either the value of another transform or explicit values.

ExecuteNewTrsf() corresponds to the script commandnewtrsf and cre-
ates a new transform on the stack. As with the transforms loaded by
ExecuteLoad() this transform will be automatically deleted if the current
script is terminated.

D.4. CROBOT – Accessing the Mobile Robot System 377

ExecuteAddTrsfTrans() corresponds to the script commandaddtrsftrans
and is used to add a displacement to the translational part of the given trans-
form.

ExecuteRandomizeTrsf() corresponds to the script commandrandomizetrsf
and is used to set the given transform to random translation and orientation
values. This command is only useful for debugging purposes.

ExecuteMultTrsf() corresponds to the script commandmulttrsf and is
used to multiply two transforms. Can be used in conjunction with
AnalyzeModel() to first detect a displacement and then compensate it.

ExecutePrintTrsf() corresponds to the script commandprinttrsf and prints
the translational part of the given transform. This command is only useful for
debugging purposes.

ExecuteShake()corresponds to the script commandshake and is used to shake
a grasped tube the given number of times to resuspend the sedimented cells.

ExecuteWaitForKey() corresponds to the script commandwaitforkey and
waits until RETURN is pressed on the keyboard. This command is only useful
for debugging purposes.

The following Execute methods are based on other methods that do not or not directly
correspond to script commands, but are of more general interest so that they have been imple-
mented separately:

ExecuteOpen() corresponds to the script commandopen and uses theHand()
command to open the gripper.

ExecuteClose()corresponds to the script commandclose and uses theHand()
command to close the gripper.

Hand() does not correspond to a script command. It is the low-level method
to open/close the gripper, based on a RCCL primitive.

ExecuteCircle() corresponds to the script commandcircle and moves the arm
along a circle specified by the arguments. Internally, it uses theTrack()
method to perform the motion. This command is only used during open-
ing/closing of the centrifuge’s lid.

Track() does not correspond to a script command. It creates a virtual arm,
moves it according to a position equation and requests the real arm to
track that motion according to another position equation. The reason for
doing this is that RCCL imposes limitations on the real-time changes
that a manipulator is requested to track while otherwise performing a
normal motion. These restrictions do not apply if the manipulator is not
performing a normal motion, but only tracking a target.

ExecuteFabortMove() corresponds to the script commandfabortmove and is
used to perform a motion with force limits. This method is provided for back-
ward compatibility and should not be used. Instead, theFmove() method
should be used.

378 D.4. CROBOT – Accessing the Mobile Robot System

FabortMove() does not correspond to a script command. It imple-
ments the mid-level details for force aborted motions initiated by
ExecuteFabortMove() .

ExecuteArmCmd() corresponds to the script commandarm. It is the top-level
method for a set of arm related methods. If further parses its command line
and calls the appropriate method.

ArmStart() corresponds to the script commandarm start and is used
to switch the arm power on (start the trajectory generator). Explicitly
switching on/off the arm power can be used to conserve power and re-
duce vibrations.

ArmStop() corresponds to the script commandarm start and is used to
switch the arm power off (stop the trajectory generator).

ArmApproach() corresponds to the script commandarm approach and
implements the initial motion sequence from the arm park position to the
approach position some distance before the target. This sequence con-
tains – depending on the target – joint interpolated motions with config-
uration changes to ensure a maximum operational range.

ArmRetreat() corresponds to the script commandarm retreat and im-
plements the reverse approach sequence back into the arm park position.

ExecuteMove() corresponds to the script commandmove and implements the ba-
sic cartesian motion given by a position equation.

Move() does not correspond to a script command. It implements the mid-
level details of a cartesian motions to a position equation.

SingMove() does not correspond to a script command. It implements the
mid-level details of a singularity-robust cartesian motion to a position
equation. Singularity robustness is achieved by plain velocity clipping,
which means that the motion is not guaranteed smooth. This method
should only be used with a low arm speed.

ExecuteMoveJ() corresponds to the script commandmovej and implements the
basic joint interpolated motion.

MoveJ() does not correspond to a script command. It implements the mid-
level details of joint interpolated motions. Two versions ofMoveJ()
exist: One for cartesian target given by a position equation and one for
targets given as a set of joint angles.

ExecuteFmove()corresponds to the script commandfmove and implements
force affected motions. Both force limits and force compliance can be pro-
grammed during a motion according to a position equation. Contrary to
FabortMove() both types may be active at the same time.

Fmove() does not correspond to a script command. It implements the mid-
level details of force affected motions initiated byExecuteFmove() .

ExecuteMobileCmd() corresponds to the script commandmobile and is the top-
level method for a set of mobile platform related methods. If further parses its
command line and calls the appropriate method.

D.5. CMOBILE 379

MobileMove() corresponds to the script commandmobile move and im-
plements the mid-level details of motions of the mobile platform. At this
level, the platform is always moved absolutely to a device given by its
name. The coordinates of this device are looked up in the INFOBASE and
the platform is moved using theCMOBILEclass.

MobileForward() corresponds to the script commandmobile forward
and implements the mid-level details of relative straight forward (or back-
ward, if the distance is negative) motions. It is used only when docking
to the charging station because during this motion the collision avoidance
of the mobile platform is switched off.

MobileScaleSpeed()corresponds to the script commandmobile
setspeed and is used to set the scale factor of the mobile plat-
form speed.

D.5 CMOBILE

The C++ classCMOBILEdefined inmobile.h and given in table D.11 in a simplified form
implements the client access to the mobile platform. It communicates with the control pro-
grammobiled using a binary protocol instead of theCLABDEVframework. Each method in
CMOBILEcorresponds to one or more of the commands in that protocol. The description of
these methods is as follows:

The first group of methods deal with low-level motion and localisation issues:

GetPosition() returns the current position.

SetPosition() sets a new position as current position (only used during initialisa-
tion).

GetAllMarks() fetches thecurrent coordinates (because the coordinates can
change slightly) of all (not only the visible) reflector marks and returns their
number.

GetAllMarksInitial() fetches theinitial coordinates of all (not only the visible)
reflector marks and returns their number.

GetAllLines() fetches the coordinates of all lines and returns their number.

Stop() stops the current motion by abruptly aborting it (no slow-down phase).

Forward() moves forward a relative distanced (or backwards, ifd is negative).
During this motion the collision avoidance is switched off because this motion
is used to approach the automatic charging station mounted to a pillar.

RotateAngle() rotates the platform on the spot to the absolute target orientationa.

Move() moves the platform to the point(x, y) by first rotating to face towards that
point, then driving there on a straight line and finally rotating on the spot to
the target orientationa.

MovePoint() moves the platform to the point(x, y) by first rotating to face towards
that point, then driving there on a straight line and stopping with whatever
orientation it arrives.

IsCompleted() returns a flag indicating whether there currently is a motion or not.

380 D.5. CMOBILE

class CMOBILE
{

int GetPosition (met t &x, met t &y, deg t &a);
int SetPosition (met t x, met t y, deg t a);

int GetAllMarks (CVEC &marks);
int GetAllMarksInitial (CVEC &marks);
int GetAllLines (CVEC &lines);

// motion related stuff (low-level)

int Stop (void);
int Forward (met t d);
int RotateAngle (deg t a);
int Move (met t x, met t y, deg t a);
int MovePoint (met t x, met t y);
int IsCompleted (void);
int WaitForCompleted (void);

// map related stuff

class CMAP
{

int numLines, numMarks;
CVEC line, mark;

};

int GetMap (CMAP &map);

// scan related stuff

class CSCAN
{

int numScans, numMarks;
float sx[361], sy[361];
float mx[180], my[180], mIdx[180];

};

int GetNumScanners (void);
int GetScannerPosition (met t &x, met t &y, deg t &a, int idx);
int GetScanPlatform (CSCAN &scan, int idx);
int GetScanWorld (CSCAN &scan, int idx);

// motion related stuff (high-level)

int ComputeError (met t xe, met t ye, deg t ae,
met t *xErr, met t *yErr, deg t *aErr);

int MoveDirect (met t xe, met t ye, deg t ae,
met t &xErr, met t &yErr, deg t &aErr);

int MoveViaIntermediate (met t xe, met t ye, deg t ae,
met t &xErr, met t &yErr, deg t &aErr,
met t approachDistance);

// speed (scale) related stuff

int GetScale (double &tScale, double &rScale);
int SetScale (double tScale, double rScale,

double &tScaleRet, double &rScaleRet);
int ModifyScale (double tScaleFactor, double rScaleFactor,

double &tScaleOld, double &rScaleOld);

// mode related stuff

MOBILEMODE GetMode (void);
MOBILEMODE SetMode (MOBILEMODE mode);

};

Table D.11: A (simplified) declaration of theCMOBILE
class used to access/control the mobile platform.

D.5. CMOBILE 381

WaitForCompleted() waits until the current motion – if any – has completed.

Currently, only one command to access the map exists:

GetMap() fetches the map with all lines and marks.

To access the laser scanners several commands exist:

GetNumScanners()returns the number of laser scanners (2 in case of the platform
used in this work).

GetScannerPosition()returns the position of the laser scanneridx in platform
coordinates.

GetScanPlatform() returns a scan from scanneridx in platform coordinates.

GetScanWorld() returns a scan from scanneridx in world coordinates, using the
current position to convert coordinates (may be wrong).

Based on the low-level motion and localisation commands are a set of high-level motion
commands:

ComputeError() computes the error in platform coordinates between a given tar-
get position and the current position in world coordinates. This method can
be used to compute an offset for the arm to compensate the positioning error
of the mobile platform.

MoveDirect() moves directly to the given target likeMove() , returning the posi-
tioning error in platform coordinates.

MoveViaIntermediate() moves to the given target via an intermediate point a dis-
tanceapproachDistance in front of the target as seen by the target orien-
tation like Move() , returning the positioning error in platform coordinates.
This method is used to minimise the positioning error by avoiding rotations
as the last motion component.

GetScale() fetches the current speed scale (1.0 = nominal speed).

SetScale()sets a new speed scale, returning the previous scale.

ModifyScale() modifies the current speed scale by multiplying it with a factor,
returning the previous absolute scale. This method is used in combination
with SetScale() to slow down and later restore the speed of the mobile
platform without introducing rounding errors of the speed.

Finally, two more methods can be used to control the basic operating mode (STANDBY or
TARGET). In STANDBY mode the motors are disabled and the brakes engaged, so it can be
used so save energy and/or ensure that the platform will not move even if it is sent motion
commands. The commands supported are:

GetMode() returns the current operating mode.

SetMode() sets a new mode, returning the previous one.

382 D.5. CMOBILE

Appendix E

Nonsense

For the very impatient, but sharp-eyed reader a condensed version of the entire thesis is given
on the next two pages – enjoy! ;-)

383

384 E. Nonsense

E. Nonsense 385

	I Thesis
	Introduction
	Motivation
	State of the Art
	About this Work
	Thesis Structure
	Terminology
	A Note on HTTP Links

	Automating a Biotechnological Laboratory
	Biotechnology
	Cells Compounds versus Single Cells
	Cultivation of Mammalian Cells in Pilot Scale
	Sample Management
	Preliminary Task Definition

	The Automation System Architecture
	The Laboratory
	The Sampling Device(s)
	The Pipetting Device
	The Cell Counter
	The Centrifuge
	The Fridge

	Task Definition
	Robot Architecture

	Accurate Positioning of a Mobile Platform
	The ``Neobotix MP-L655“ Mobile Platform
	Localisation
	Sensors
	Odometry
	Gyro Compass
	Laser Scanners

	Kinematics Issues
	Dead Reckoning
	Improving the Kinematic Model
	Borenstein Tests
	Summary

	Least Squares Fit
	Initial Guess
	Least Squares Fit
	Summary

	Kalman Filter
	System and Measurement Model
	Predict and Update
	Summary

	Extended Kalman Filter
	Simplifications
	Summary

	The MP-L655 Extended Kalman Filter
	State Definitions
	Models
	Model without Acceleration

	Kalman Filtering Summary
	General Issues
	Localisation Issues
	Numerical Issues
	Consequences

	Realisation

	Path-Planning
	Maps
	Map Design
	Map Expansion

	Graphs
	Visibility Graph
	Tangent Graph

	Path Search
	Arbitrary Start and Goal Points
	A* Algorithm

	Summary

	Motion Execution
	Kinematics and Motion Types
	Neobotix Software
	Tracking & Inverse Kinematics
	Conclusions

	Trajectory Generation Filter with Velocity Profiles
	Velocity Profiles
	Position Setpoints
	Velocity Setpoints
	Summary

	Absolute Rotations
	Absolute Translations
	Relative Translations
	Collision Avoidance
	Realization & Enhancements
	Summary

	Future Work
	Sensors
	Localisation
	Path-Planning
	Behaviours

	Experimental Results
	Localisation Position
	Absolute Verification of Localisation Position
	Relative Visual Verification of Localisation Position
	Summary

	Advanced Robot Arm Control
	The Robot Arm & Tool
	The ``Mitsubishi PA-10'' Robot Arm
	The Tool

	Robot Control Software
	The PA-Library
	The ``Robot Control C-Library'' RCCL
	Consequences

	RCCL on the PA-10
	Kinematic
	ARCNet Interface and Protocol
	PA-10 ARCNet Hardware
	PA-10 Protocol

	Joint Controllers

	Results
	Path Tracking Performance
	Cartesian spiral Motion
	Cartesian square Motion

	Force Control
	Summary

	Robust Colour Vision
	The Implemented Colour Vision System
	Why Colour?
	Vision Hardware
	System Structurisation

	Image Segmentation
	Smart Smoothing
	Colour Similarity
	Fixed Colours
	Adaptive Colours

	Flood Fill

	Object Recognition & Displacement Computation
	Object Models
	Model Generation
	Model Matching
	Displacement Model
	Least-Squares Fit
	Permutations

	Iterative Displacement Compensation
	Experiments & Results
	Experiments
	Basic Repeat Accuracy
	Robot Arm Positioning Noise
	Influence of Vision Parameters
	Planar Marker Displacement
	Tilted Marker Displacement
	Centrifuge Displacement
	Classification Error Comparison

	Summary
	Future Work & Applications

	Realisation and Integration
	Robot Command Scripts
	Custom Script Language
	Script Language Commands
	Example

	Robot State Automaton
	Database
	Database Considerations
	InfoBase

	Networking
	TCP/IP Networking
	CNETOBJ

	Network Support for Laboratory Devices
	CLABMSG / CLABDEV / CLABDEVD
	Laboratory Devices

	The Networked Robot
	CROBOT / CROBOTD
	robotd
	Modifying/Extending the Functionality

	Summary

	Automated Sample Management Results
	Automated Sample Management
	The Sample Management Sequence
	The Robot Actions

	Biotechnological Results
	Summary

	Conclusions & Future Work
	The Robot System
	Roblets
	Applications

	Bibliography
	Index

	II Appendices
	Mobile Platform Documentation
	The ``Neobotix MP-L655“ Mobile Platform
	Hardware
	Software

	The CAN Interface
	CAN Hardware
	CAN Frames
	The C164 Motor Controller(s)
	The C167 I/O Controller

	The LMS-200 Serial Communication
	Serial Communication Hardware Issues
	Serial Communication Software Issues
	Telegrams and Modes
	Summary

	mobiled

	Robot Arm Documentation
	The ``Mitsubishi PA-10'' Robot Arm
	Level 1 -- The PA-10 Arm
	Level 2 -- The PA-10 Controller
	Level 3 -- The PA-10 Motion Control Board / PA-Library
	Newer PA-10 Versions

	The Robot Tool
	The ``ATI Force Torque Sensor''
	The ``phd Electrical Gripper''
	Gripper Fingers

	RCCL
	Mathematic Computations
	Transforms
	Kinematic

	Position Equations
	Arbitrary Motions
	Singularities
	(Virtual) Robot Cooperation
	Cooperation
	Virtual Robots

	Vision System Documentation
	Vision Hardware
	JAI M1250 Microhead Colour Camera
	Matrox Meteor Framegrabber

	Introduction to Computer Vision
	Image Representation
	Colour Spaces
	RGB
	YUV
	HSV / HSI / HSL

	Linear Image Filtering
	Convolutions
	Smoothing
	Laplace Filter
	Sobel Filter

	Non-Linear Image Filtering
	Median
	Smart Smoothing
	SUSAN

	Segmentation
	Top-Down Approaches
	Bottom-Up Approaches

	Feature Based Classification
	Neural Networks
	Fuzzy Controllers

	Appearance Based Classification
	Principal Component Analysis
	Output Related Features

	Summary

	C++ Class Documentation
	CINFOBASE -- Accessing the InfoBase
	CNETOBJ -- Communicating over a TCP/IP network
	CCHUNK
	CNETOBJ

	CLABDEV -- Control of Laboratory Devices
	CLABMSG
	CLABDEV
	CLABDEVD

	CROBOT -- Accessing the Mobile Robot System
	CROBOT
	CROBOTD

	CMOBILE

	Nonsense

