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Zusammenfassung 

Der elektroporative Transfer von DNA und anderen bioaktiven Substanzen durch 

Zellmembranen mittels elektrischer Pulse gewinnt zunehmend an Bedeutung in den neuen 

Disziplinen der Elektrochemotherapie und Elektrogentherapie. Die Effektivität des 

Elektrotransfers hängt wesentlich von der Adsorption der Gen-DNA und der Oligonucleotide 

an die Plasmazellmembran ab. Hier wird gezeigt, dass die Adsorption von längeren 

Oligonucleotiden, wie zum Beispiel ultraschall-behandelte Kalbs-Thymus DNA-Fragmente 

im Größenbereich von zirka 300 Basenparen an Lipidvesikel mit einem Durchmesser von Φ = 

300 ± 90 nm durch divalente Kationen, wie z.B. Ca2+ -Ionen, wesentlich verstärkt ist. Durch 

Zentrifugation werden freie und gebundene DNA bei der Wellenlänge λ = 260 nm optisch 

bestimmt. Mittels Atom-Absorptionsspektrometrie (AAS) und mit Hilfe des Ca2+-Indikators 

Arsenazo-III werden die Dissoziationsgleichgewichtskonstanten sowohl der individuellen 

Binärkomplexe von Ca2+ und DNA-Bindung: Ca2+/Vesikel, DNA/Vesikel und Ca2+/DNA als 

auch die der drei verschiedenen Prozesse bestimmt, die zu dem Ternärkomplex: 

Ca2+/DNA/Vesikel führen.  

Die Turbiditätsrelaxationen der Vesikelsuspension bei der Wellenlänge λ = 365 nm in 

äußeren elektrischen Feldern mit Feldstärken von E / (kV/cm) = 30 und 40 und der Pulsdauer 

tE = 10 µs deuten an, dass die Elektroelongationen der Vesikel mit der Glättung der 

thermischen Ondulationen, Ausdehnung der Membran und bei höheren Feldstärken E ≥ 40 

kV/cm, auch mit der Elektroporation gekoppelt sind. Die quantitative Analyse der 

Ausdehnungskinetik zeigt, dass die DNA Adsorption an die Vesikeloberfläche als 

Ternärkomplex DNA/Ca/Lipide die Membran weicher macht und damit die Elektroporation 

erleichtert. Beispielsweise, bei E = 30 kV/cm und [Cat] = 0,25 mM bewirken die 

membrangebundenen DNA-Fragmente im Konzentrationsbereich b0 [D ]/µM(bp) 40≤ ≤ , d. 

h. b0 N 118≤ ≤  DNA-Fragmente je Vesikel, dass sowohl die Biegesteifigkeit im Bereich 

2017 /(10 J) 13−≥ κ ≥  als auch der Ausdehnungsmodul im Bereich 1,2 K /(N / m) 0,83≥ ≥  

reduziert werden. 

Mit der Kenntnis aller Gleichgewichtskonstanten der Teilreaktionen der Entstehung 

des Ternärkomplexes und dem Verhalten des Ternärkomplexes DNA/Ca/Lipidvesikel in 

äußeren elektrischen Feldern, kann man nun zielgerichtet die DNA-Adsorption für den 

elektroporativen Gentransfer, auch in der Elektrogentherapie, optimieren. 
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Die vorliegende Dissertation ist in drei Teile gegliedert: die deutsch geschriebene 

Einleitung (I) und zwei Publikationsentwürfe (II) und (III). 

I. Einleitung 

II. ″Interfacial ternary complex DNA/Ca/Lipids at anionic vesicle surfaces″, 

submitted to Bioelectrochemistry 

III. ″Adsorption of DNA and electric fields decrease the rigidity of lipid vesicle 

membranes″, submitted to Physical Chemistry Chemical Physics (PCCP) 
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DNA/Ca –Adsorption an Lipidmembran-

Oberflächen für den effizienten elektroporativen 

Gen-Transfer in Gewebezellen 
 

 

 

I. Einleitung 

In der Elektochemotherapie und der Elektrogentherapie ist der Elektrotransfer von 

DNA und anderen bioaktiven Substanzen durch die Zellmembranen, insbesondere von 

Gewebezellen, von erheblicher biotechnologischer Bedeutung [II, ref. 1]. Der Begriff und die 

Technik der Membranelektroporation (ME) für Gen-Elektrotransfer wurden bereits 1982 

eingeführt [II, ref. 2]. Die  ME ist eine Gentranfer-Alternative zu den viralen Genen, aber 

ohne die bekannten Nebenwirkungen [II, refs. 1, 3, 4]. Die Wirksamkeit des Elektrotransfers 

mit ″nackten″ Oligo- [II, ref. 5] und Polynucleotiden bei moderaten, harmlosen elektrischen 

Feldpulsen, kann deutlich verbessert werden, wenn die Gen-DNA, vor Anlegen der 

therapeutischen Hochfeldpulse, an die Zelloberflächen adsorbiert ist. 

Die gekrümmten Lipidvesikeloberflächen dienen als Modell für den Lipidteil der 

zellulären Membranoberflächen [III, refs. 8, 9]. Die Mehrzahl aller Zellmembranen ist durch 

anionische Lipide negativ geladen. Um nun die Adsorption von negativ geladenen 

Polyelektrolyten wie DNA an Zelloberflächen zu erhöhen, werden entweder Ca2+ oder Mg2+ - 

Ionen als ″verbrückende″ Ionen eingesetzt [II, refs. 2, 15, 16]. In dieser Arbeit wird die DNA-

Adsorption an anionische Lipidvesikeloberflächen als Modell für den Lipidteil der 

Zellmembranen aus anionischen (bei pH 7,4) Lipidmischungen quantifiziert. Ca2+-Ionen 

werden als ″elektrostatische Brücke″ verwendet, um DNA an die Vesikeloberfläche zu 

binden. 

Die Wechselwirkung zwischen Ca2+ - Ionen und Lipidvesikeln aus unterschiedlichen 

Lipiden ist bereits untersucht worden [II, refs. 6-9]. Auch die Bindung von DNA an positiv 

geladene Vesikeloberflächen wurde quantifiziert [III, refs. 17-21] und auch die 

Wechselwirkung zwischen DNA und verschiedenen mono- und divalenten Kationen wurde 

beschrieben [II, refs. 12-14].  
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Im ersten Teil dieser Arbeit wird zunächst das Problem der Ternärkomplexe im 

allgemeinen abgehandelt, um dann die Prozesse zu analysieren, die zum Ternärkomplex 

DNA/Ca/Lipidvesikel führen. Die Entstehung des Ternärkomplexes DNA/Ca/Lipide wurde 

auch an Lipidmonoschichten beobachtet [II, ref. 17]. Durch Zentrifugation des Vesikelanteils, 

optische Indikation und Atomabsorptionsspektrometrie (AAS) des Überstandes werden die 

Dissoziationsgleichgewichtkonstanten sowohl der Binärkomplexe: Ca2+/Vesikel, 

DNA/Vesikel und Ca2+/DNA, als auch aller Ternärkomplex-Bildungsprozesse bestimmt, die 

zur Spezies Ca2+/DNA/Vesikel führen. 

Im zweiten Teil dieser Arbeit wird das Verhalten der Lipidvesikel bei Anlegen von 

Rechteckpulsen mit Feldstärken von E / (kV/cm) = 30 und 40 und der Dauer tE = 10 µs 

untersucht. Es ist bekannt, dass in elektrischen Feldern die fast ″kugelförmigen″ Lipidvesikel 

in ein Rotationsellipsoid mit der langen Halbachse in Richtung des Feldes elongiert werden 

[III, ref. 27]. Die feld-induzierte Dehnung der Membran führt bei konstantem Volumen zum 

Anstieg der Membranoberfläche und bedingt bei höheren Feldstärken E ≥ 40 kV/cm weiteres 

Eindringen von Wasser in die Membran, dass zur Porenbildung führt [III, refs. 26, 27].  

Die elastischen Eigenschaften der Lipidmembran, charakterisiert durch den 

Ausdehnungsmodul Κ und die Biegesteifigkeit κ bestimmen auch die Wechselwirkungen 

zwischen den kolloidalen Nanopartikeln und Polymeren mit positiv geladenen Vesikeln [III, 

refs. 11-13]. Es ist bekannt, dass die Änderung der elastischen Eigenschaften der Membranen 

durch adsorbierte und insertierte Polymere einerseits und durch äußere elektrische Felder 

andererseits geändert werden können [III, refs. 12, 14, 15]. Die Komplexbildung von DNA 

und kationischen Vesikeloberflächen kann zu multilamellaren Partikeln führen. Bei höheren 

DNA Konzentrationen kann es zur Auflösung von Vesikeln und der Bildung von 

multilamellaren Lipidkomplexen kommen [III, refs. 23, 24]. Um Aggregationen zu 

vermeiden, werden hier kleinere unilamellare anionische Vesikel, geringe Lipid [Lt] und Ca2+ 

- Ionen [Cat] Konzentrationen verwendet [III, ref. 25].  

Die elektrischen Pulse führen zur Glättung der Membranondulationen, Ausdehnung 

der Membran und bei höheren Feldstärken E ≥ 40 kV/cm, zur Elektroporation. Die dadurch 

bewirkte Membranoberflächenvergrößerung führt letztendlich zur weiteren Vesikelelongation 

[III, ref. 26]. Hier wird die Wirkung der DNA-Adsorption an die Membraneoberflächen auf 

die Kinetik der Vesikelelongationen in elektrischen Feldern analysiert und der Feldstärke-

bereich ermittelt, oberhalb dessen die elektrische Porenbildung den Durchtritt der DNA-

Fragmente verstärken kann.  
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II. Eingereichtes Manuskript: submittet to Bioelectrochemistry 
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Abstract 

 

The electroporative transfer of gene DNA and other bioactive substances into tissue 

cells by electric pulses gains increasing importance in the new disciplines of 

electrochemotherapy and electrogenetherapy. The efficiency of the electrotransfer depends 

crucially on the adsorption of the gene DNA and oligonucleotides to the plasma cell 

membranes. Here it is shown that the adsorption of larger oligonucleotides such as fragments 

(ca. 300 bp) of sonicated calf-thymus DNA, to anionic lipids of unilamellar vesicles (diameter 

Φ = 300 ± 90 nm) is greatly enhanced by divalent cations such as Ca2+-ions. Applying 

centrifugation, bound and free DNA are monitored optically at the wavelength λ = 260 nm. 

Using arsenazo III as a Ca2+-indicator and atomic absorption spectroscopy (AAS), Ca2+-

titrations of DNA and vesicles yield the individual equilibrium constants of Ca2+- and DNA-

binding not only for the binary complexes: Ca/lipids, Ca/DNA and DNA/lipids, respectively, 

but also for the various processes to form the ternary complex DNA/Ca/lipids. - The data 

provide the basis for goal-directed optimization protocols for the adsorption and thus efficient 

electrotransfer of oligonucleotides and polynucleotides into cells. 

 

 

Introduction 

 

The direct electrotransfer of “naked” gene DNA and other bioactive molecules into 

tissue cells is of crucial interest in the new medical disciplines of electrochemotherapy and 

electrogenetherapy [1]. The concept and technique of membrane electroporation (ME), 

introduced 1982 [2], gains increasing functional importance in medical therapies with 

minimum risk of undesired side effects [1, 3, 4]. The efficiency of the electrotransfer of 

oligonucleotides [5] and polynucleotides, especially at the lower, harmless field strengths of 

the applied electric pulses is greatly enhanced by prior adsorption of the bioactive 

polyelectrolytes on the cell membrane surfaces, before the actual therapeutic pulsing.  

In order to quantify DNA adsorption to electrified cell surfaces, we use anionic lipid 

vesicle surfaces to mimic the lipid parts of cell plasma membranes for the Ca2+-dependent 

binding of DNA. There are many studies on the interaction between Ca2+-ions and lipid 

vesicles with different composition of lipids in the absence of DNA [6-9] or with DNA and 

zwitterionic and positively charged liposomes [10, 11]. Also the binding of different cations 

to DNA has been quantified previously [12-14]. Here, we address the thermodynamics of 
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ternary complexes in general and the ternary complex Ca/DNA/lipid vesicles, in particular. 

We continue to model the lipid part of curved cell membranes by spherical unilamellar lipid 

vesicles, using a mixture of 1 mM PS:2POPC (VET 400) which at pH 7.4 form negatively 

charged lipid surfaces providing electrified interfaces. Since DNA is a negatively charged 

polyelectrolyte, divalent cations such as Mg2+ and Ca2+ have been traditionally used to bridge 

the DNA with negatively charged cell membranes [2, 15, 16]. The formation of ternary 

complexes Ca/DNA/lipids is also indicated at the interface air/solution of lipid monolayers 

[17].  

Here these interface complexes are further quantified. In detail, using centrifugation 

techniques, the individual equilibrium constants of Ca2+- and DNA-binding are determined 

not only for the binary complexes: Ca/lipids, Ca/DNA and DNA/lipids, respectively, but also 

for the various processes to form the ternary complex DNA/Ca/lipids on the electrified lipid 

bilayer surface. The data provide chemical-compositional information for goal-directed 

optimization protocols for the adsorption of oligonucleotides and polynucleotides, to be used 

for the efficient electrotransfer into cells. 

 

 

Materials and Methods 

 

Synthetic palmitoyl-oleoyl-phosphatidylcholine (POPC) is from Lipoid GmbH 

(Ludwigshafen, Germany). Bovine brain extract type III (containing 80-85% 

phosphatidylserine (PS)), for the monolayer experiments, and synthetic PS (98% purity) are 

from Sigma Chemie GmbH (Deisenhofen, Germany). Unilamellar lipid vesicles of 1 mM 

PS:2POPC are prepared by the vesicle extrusion technique (VET) [18, 19]. Pressing the lipid 

mixture 21 times through a porous (400 nm) polycarbonate membrane in a LipoFast Extruder 

(Avestin/Milsch, Germany) yields vesicles with diameters of 300 ± 90 nm. In this way, the 

vesicle samples have been prepared for each individual total Ca2+ concentration [Cat] in the 

suspension. To avoid osmotic pressure problems, CaCl2 is added to the buffer solution before 

the vesicle preparation to balance [Cat]. The DNA has been added to the vesicle suspension at 

various [Cat].  

High polymeric deoxyribonucleates (DNA type I) from calf thymus (Sigma Chemie 

GmbH) has been used to obtain DNA fragments of lengths 102 ± 17 nm or 300 ± 50 bp 

(determined by gel electrophoresis) by 180 sonication cycles (à 30 s) within 90 minutes using 

an ultrasound transducer (Branson Sonic Power Company USA).  
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All solutions are 1 mM HEPES, pH 7.4 buffer, T = 293 K (20° C). The total lipid 

concentration is 1 mM, corresponding to a vesicle density of 6.6 ⋅ 1011 per mL buffer solution. 

The number of DNA molecules, for instance at the lowest concentration 35.5 µM (bp) in 

molar base pairs (bp), refers to 7 ⋅ 1013 DNA molecules per mL buffer. 

The centrifugations have been performed at 2.3⋅105 g, 60000 rotations per min for 45 

min. The total concentration of DNA in the supernatant, [Dt]sup, is determined from the 

absorbance A260 at the wavelength λ = 260 nm using an UVIKON 943, double beam UV/VIS 

spectrophotometer (Kontron Instruments).  

The Ca2+-indicator arsenazo III (Ar) (Aldrich Chemical Company Inc.) is used to 

determine the concentration [Ca] of free Ca2+ in the supernatant. A 100 µM stock solution is 

diluted with Ca2+ solutions to a final concentration of [Ar] = 10 µM. The calibration curve is 

determined from the differences in the absorbances A602 at λ = 602 nm (Ca2+-sensitive 

wavelength) of these samples and a sample with 1 mM EDTA ([Ca] = 0) [20].  

Atomic absorption spectroscopy (AAS, PYE UNICAM SP 1900 (Philips GmbH, 

Kassel, Germany)) has been used to determine the total Ca2+ concentration in the supernatant. 

The calibration of the apparatus has been performed in two ranges. Standard calcium 

solutions have been obtained by dilution of a 1 M standard calcium stock solution. LaCl3 

(stock solution 10%) has been added to yield a final concentration of 1% La. The calcium 

content of the probe is determined by spraying aliquots of 190 µl into an air-acetylene flame 

and measuring the absorbance at the resonance line 422.7 nm. LaCl3 has been also added to 

each supernatant sample (1%). A mean value from 3 measurements is used to quantify the 

total Ca2+ concentration, [Cat]sup, in the supernatant. 

The monolayer experiments have been carried out in a teflon trough (10 x 24 x 0.3; 

cm) from Riegler and Kirstein GmbH, Potsdam, Germany. The trough is filled with 1 mM 

HEPES, 10 mM NaCl, pH 7.4, T = 293 K (20° C). The Ca2+ concentration is varied with 

CaCl2 in the range 0 ≤ [Cat] / mM ≤ 1. The surface pressure is measured by the Wilhelmy 

method. After spreading 20 µL PS:2POPC (1 mg/mL) dissolved in n-hexane at the air-water 

interface and waiting for n-hexane evaporation, the surface pressure-area isothermes are 

recorded. In the case of 1 mM CaCl2 and 35.5 µM (bp) DNA, the DNA is added together with 

the buffer in the subphase. The π/A isothermes are recorded 10 times and a mean isotherm is 

documented. 
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Results 

 

Monolayer/DNA interaction 

In Fig. 1, typical surface pressure/area isothermes of a lipid mixture PS:2POPC are 

shown. In the case of [Cat] = 0, the collapse point is given by Acoll ([Cat] = 0) = 92 cm2. At 

[Cat] = 0.5 mM, Acoll ([Cat] = 0.5 mM) = 93 cm2; the isotherms are almost identical. However, 

at [Cat] = 1 mM, the collapse point is shifted to the lower value Acoll ([Cat] = 1 mM) = 82 cm2. 

When 35.5 µM (bp) DNA is added into the subphase at [Cat] = 1 mM the collapse area Acoll 

([Cat] = 1 mM; DNA) = 97.5 cm2 is larger than that for [Cat] = 0.  
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Fig. 1 Surface pressure (π)-area (A) isotherms of the lipid mixture PS:2POPC (1 mg/ml) in n-hexane 

spread at the air-water interface and subphases at the conditions [Cat] /mM = 0 (─), 0.5 (– –), 1 (  ), 

without DNA and [Cat] = 1 mM (— ) with 35.5 µM (bp) DNA, T = 293 K (200 C), 1 mM Hepes, 10 

mM NaCl, pH 7.4. The arrows indicate the collapse points. 

 

Optical densities of the suspensions 

As seen in Fig. 2, the optical density, OD365, at the wavelength λ = 365 nm of a vesicle 

suspension increases with increasing [Cat]. It is noted that the data points of the two 

documented sets refer to samples which are separately extruded at the given [Cat]-values, 

respectively. The data scatter within the indicated range. OD365 will be used to determine the 

equilibrium constant for the binding of Ca2+ to the vesicle surface. 
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Fig. 2 Spectrophotometric (OD365) Ca2+-titration of two selected sets of vesicle preparations. The data 

of set 1 ( ) and set 2 ( ) refer each to a given [Cat], respectively. The difference ∆OD = OD365 - OD0
365 

is assumed to be proportional to Ca2+ bound [Cab]. The initial OD0
365 = 0.09 ± 0.02 refers to Ca2+ 

bound at [Cat] = 0. The apparent maximum max
365OD = 0.23 ± 0.02 refers to [Cab]max. The dashed lines 

represent the data fit with Eq. (10) of the text, yielding the equilibrium constant 0
CaK = 15 ± 5 µM at 1 

mM HEPES, pH 7.4, T = 293 K (200 C). The full thick line represents the mean of the fitting line for 

the two documented, separated data sets. 

  

Ca2+-binding to DNA 

The absorbance A260 of DNA at the wavelength λ = 260 nm (absorbance maximum) is 

traditionally used to calculate the concentration of DNA and to indicate interactions of DNA 

with other substances. Generally, the concentration [D] of DNA in solution is calculated from 

Lambert-Beer’s law according to: 

260[D]  A / d= ε ⋅              (1) 

where d is the optical path length and ε is the absorption coefficient at λ = 260 nm. In buffer 

solution, the absorption coefficient of the free DNA double strand is given by εD = 13200     

M-1cm-1, where [D] refers to molarity in base pairs (bp). In Fig. 3, A260 decreases with 

increasing total Ca2+ concentration [Cat], starting at [Cat] = 0, where we assume that the 
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degree of binding βCaD = 0, down to apparent saturation Amin referring to βCaD = 1, yielding 

εCaD  = 12600 M-1cm-1. 

0 200 400 600 800
0.38

0.39

0.40

0.41

0.42
βCaD = 0

βCaD = 1

[Cat]0.5

A 26
0

[Cat] / µM

 
 

Fig. 3 Spectrophotometric (A260) Ca2+-titration of a DNA solution at [Dt] = 32 µM (bp). Here the 

initial absorbance A0 = 0.422 ± 0.002 refers to the degree of Ca2+-binding to DNA βCaD = 0.  The 

estimated saturation value Amin = 0.388 ± 0.002 refers to βCaD = 1. The full dashed line represents the 

data fit with Eq. (13) of the text, yielding the equilibrium constant 0
CaDK = 24 ± 5 µM at 1 mM 

HEPES, pH 7.4, T = 293 K (200 C). 

 

Ternary complex DNA/Ca/lipids 

The Ca2+-titrations of lipid vesicles in the presence of DNA of total concentration [Dt] in 

the suspension show that the absorbance A260([Dt]) = OD260(Ves+[Dt]) - OD260(Ves) changes 

differently with increasing total Ca2+ concentration [Cat], see Fig. 4 A. The A260-values are 

calculated from the differences of the optical densities OD260(Ves+[Dt]) in the presence of 

DNA and vesicles, and that in the absence of DNA, respectively. As already seen in Fig. 3, 

A260([Dt]) of DNA in the absence of vesicles reflects both the complexed DNA and free DNA 

starting with A0 = εD⋅d⋅[Dt] and heading at the saturation value Amin = εCaD⋅d⋅[Dt], where all 

DNA is complexed; see below.  
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Fig. 4 Ca2+-titration of the DNA/vesicle suspension at [Dt] = 35.5 µM (bp) and of the supernatant 

(sup), respectively. Measured data points (A): (■) A260([Dt]) = OD260(Ves+[Dt]) - OD260(Ves) of the 

suspension; (●), (◇) A260([Dt]sup) refer to the supernatant. The values (▲), (▽) are calculated from 

A260([Db]) = A260([Dt]) - A260([Dt]sup) of the pellet. (B): (■) [Dt], calculated with Eq. (1) of the text; (●), 

(◇) refer to the total DNA ([Dt]sup = [D] + [CaD]) in the supernatant;  (▲), (▽) refer to the calculated 

concentration ([Db] = [DB] + [DCaB]) of bound DNA in the pellet. Note, that the data points at the 

various [Cat] refer to aliquots of the same vesicle preparation, the supernatant data to two aliquots at a 

given [Cat]. T = 293 K (200 C), 1 mM HEPES, pH 7.4. 
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The absorbance A260([Dt]sup) of the supernatant of the centrifuged mixture of vesicles 

decreases after a ‘delay’ range of 0 ≤ [Cat]/mM < 0.1, tending finally to an apparent saturation 

value. The difference A260([Db]) = A260([Dt]) - A260([Dt]sup) reflects the increase of bound 

DNA with increasing [Cat]. If higher concentrations of DNA are used, all A260-values are 

larger, but the relative changes with increasing [Cat] are the same as for the lowest DNA 

concentration with [Dt] = 35.5 µM (bp). Using Eq. (1), the quantities A260 of Fig. 4 A are 

converted to the respective concentrations: [Dt] and [Dt]sup of Fig. 4 B. Mass conservation 

dictates that the bound DNA is given by: 

[Db] = [Dt] - [Dt]sup.             (2) 

In Fig. 4 B, it is seen that [Db] sigmoidally (delay) increases and then appears to saturate 

with increasing [Cat]. Note that already at [Cat] = 0, there is some DNA bound to the vesicle 

surface, denoted by [Db
0]. 

 

Determination of [Ca] with arsenazo III (Ar) 

The Ca2+-indicator arsenazo III is traditionally used for the optical indication of Ca2+ at 

the wavelength λ = 602 nm [21]. Here, we apply Ar to the supernatant of the centrifuged 

samples. First the absorbance A602 of a solution of [Ar] = 10 µM is measured as a function of 

[Cat] to yield an optical calibration curve (data not shown). Formally, the assumption of a 

simple stoichiometry Ca:Ar = 1:1 [20, 22] is sufficient to estimate the concentration [Ca] of 

free Ca2+ according to the mass conservation: 

[Ca] = [Cat] - [CaAr] = [Cat] - βCaAr[Art]          (3) 

where the degree of Ca2+ bound to Ar is given by: 

 602
CaAr max

t CaAr 602

A[CaAr] [Ca]      
[Ar ] [Ca] K A

∆
β = = =

+ ∆
         (4) 

It is readily shown that the concentration of free Ca2+ is given by: 

t t CaAr
1[Ca] [([Ca ] [Ar ] K ) X]
2

= − − +            (5) 

where 2
t t CaAr t tX ([Ca ] [Ar ] K ) 4 [Ca ] [Ar ]= + + − ⋅ ⋅ .  

As expected, [Ca] = [Cat] for a solution without DNA and without vesicles. See the Fig. 1A of 

the appendix.   

 

The total Ca2+ concentration in the supernatant by AAS 

The calibration line, A422.7 versus [Cat]sup, at the resonance line for Ca2+, λ = 422.7 nm, 

is established with standard solutions containing 1% (weight) La3+ for the two concentration 
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ranges: 0 ≤ [Cat] / µM  ≤ 100 and 100 ≤ [Cat] / µM  ≤ 500 (data not shown). The La3+-ions 

displace Ca2+-ions from the binding sites and make them available for the AAS measurements 

in the supernatant [23, 24]. 

0 50 100 150 200
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100
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 / 
µM

[Cat]
sup / µM

 
Fig. 5 Ca2+-binding isotherms. [Ca] versus [Cat]sup = [Ca] + [CaD] in the supernatant of the centrifuged 

vesicle suspensions for different DNA concentrations: [Dt] / µM (bp) =  (■) 0, (●) 35.5, (▲) 71,        

(▼) 107 and  (◆) 143;  from top to bottom. The data fit, using Eq. (12) of the text with [CaD]max = 

[Dt]sup, yields 0
CaDK = 24 ± 5 µM at T = 293 K (200 C), 1 mM HEPES, pH 7.4. The straight full line 

refers to: [Ca] = [Cat]sup at [Dt] = 0. 

 

As seen in Fig. 5, at a given [Cat]sup, [Ca] in the supernatant decreases with increasing 

amounts of DNA [Dt] in the suspension. Comparisons refer to the same [Cat]sup consistent 

with [Ca] = [Cat]sup - [CaD]. As expected, with increasing concentration of free DNA, [D], in 

the supernatant, the concentration [CaD] is also increasing. In the case of vesicle suspensions 

without DNA, the equality [Cat]sup = [Ca] holds (straight full line). The scatter of the data 

points is relatively large, because two methods are used to determine the Ca2+ concentrations 

in the supernatant. [Cat]sup is measured by AAS and [Ca] is determined by using arsenazo III 

as an optical indicator.  
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Data Evaluation and Discussion 

 

Evidence for DNA binding to a PS:2POPC lipid monolayer  

As recalled from Fig. 1, the monolayer data exhibit different values for the collapse 

area in the π/A isotherms. The area per molecule at collapse, acoll, is calculated according to: 

coll coll coll Aa A / N A M /(N c V)= = ⋅ ⋅ ⋅                      (6) 

from the experimental collapse area, Acoll, of the lipid film. NA is the Avogadro constant, M = 

784,06 g/mol is the average molar mass of a lipid in the mixture PS:2POPC, N the number of  

lipid molecules in the mixture, c = 1 mg/ml the mass concentration and V = 20 µl the volume 

of the lipid solution spread on the surface. The areas per molecule occupied by the lipids are: 

acoll([Cat] = 0) = 0.6 nm2, acoll([Cat] = 0.5 mM) = 0.605 nm2 and acoll([Cat] = 1 mM) = 0.535 

nm2. The quantities acoll = 0.58 nm2 for PC and acoll = 0.574 nm2 for PS have been obtained by 

NMR studies [25]. A value of 0.42 nm2 has been found for DMPC [26].  

The decrease of the area per molecule at collapse in the presence of Ca2+-ions (see also 

Huster et al. [25]) is consistent with the binding of the divalent cations to the negatively 

charged groups of phosphatidylserine [27], leading to a denser packing of the lipids in the 

monolayer films; hence a smaller area is occupied by one lipid molecule. When DNA is 

added to the aqueous phase at [Cat] = 1 mM, the area per molecule increases up to 0.635 nm2, 

indicating DNA inserting into the lipid film. It appears that DNA binds at the lipid monolayer 

interface through Ca2+-ions, providing indirect evidence for the ternary complex 

Ca/DNA/lipids.  

  

Overall scheme for the Ca2+ and DNA binding reactions  

 Fig. 6 displays the overall scheme for the various binary complexes and the ternary 

complex DNA/Ca/B, where B refers to binding sites on the vesicle surface. In detail, DNA 

(D), Ca2+-ions and the binding sites B on the surface of the vesicles form the complex DCaB 

along different pathways. The scheme expresses all binding steps as 1:1 complexes. Note that 

D refers to one base pair (bp) and B to probably two charged lipid head groups (of two PS 

molecules).  

The apparent dissociation equilibrium constants of the binary complexes are defined as:  

[ ] [ ]
[ ]

0
Ca

B
K Ca

CaB
= ⋅  ,     [ ] [ ]

[ ]
0
CaD

D
K Ca

CaD
= ⋅ ,      [ ] [ ]

[ ]
0
D

B
K D

DB
= ⋅            (7)    

respectively. The three different ternary complex formations are characterized by:  
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[ ] [ ]
[ ]D

CaB
K D

DCaB
′ = ⋅  ,     [ ] [ ]

[ ]CaD

B
K CaD

DCaB
′ = ⋅  ,     [ ] [ ]

[ ]Ca

DB
K Ca

DCaB
′ = ⋅ .             (8) 

The individual reaction steps are treated now separately. 

D + CaB

DB + Ca

CaD + BCa + D + B DCaB

Ca
0K

0
DK K‘Ca

0KCaD ‘CaDK

‘DK

2+

2+

 
Fig. 6 Overall cyclic reaction scheme for the binding of Ca2+-ions to DNA (D) and to B-sites on the 

lipid vesicle surface, leading to the various binary complexes and the ternary complex DCaB on the 

outer vesicle surface. The B-sites for the binding of DNA and Ca2+ are the anionic head groups of the 

lipids. 

 

 

Ca2+-binding to sites B on the vesicle surface 

In the absence of DNA, the binding of Ca2+ to surface sites B is described by: 

+Ca B  CaB , where B represents one or more anionic lipid head groups. Written in 

dissociation direction, we have: 

 +CaB  Ca B                         (9) 

characterized by the dissociation equilibrium constant 0
CaK , defined by Eq. (7). The degree of 

Ca2+-binding, βCa, to B-sites on the vesicle surface is given by: 

b
Ca max 0

b t Ca

[Ca ] [CaB] [Ca]
[Ca ] [B ] [Ca] K

β = = =
+

      (10) 

where [Bt] is the total concentration of B-sites. The differences in the optical densities 

(turbidities), 0
365 365 365OD = OD - OD∆  and max max 0

365 365 365OD OD OD∆ = −  (Fig. 2), where 

0
365OD refers to [Cat] = 0, are used to determine max

Ca 365 365OD / ODβ = ∆ ∆ . In Eq. (10), [Cab] is 
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the concentration of bound Ca2+ in the pellet, max
b[Ca ]  is the maximal concentration term and 

[Ca] is determined in the supernatant (by AAS and with arsenazo III). 

As seen in Fig. 2, the data fit using Eq. (10) faces the problem of large data scatter, 

inherent in the method of vesicle preparation and handling as a pellet and the supernatant. 

Nevertheless, the fit yields reliably 0
CaK = 15 ± 5 µM and [Cab]max = 170 ± 20 µM at T = 293 

K (200 C), 1 mM HEPES, pH 7.4. 

 

Tab. 1 Apparent dissociation equilibrium constants of the binding of Ca2+ to lipids 
0
CaK  Lipid composition  Buffer  Reference 

0.07 µM (7 mN/m) 

0.035 µM (32.4 mN/m) 

 

PS (monolayer) Distilled  water, T = 293 K (200 C)  [29] 

6 µM PS (bilayer, vesicles) 1 mM Ca2+, T = 293 K (200 C)  [9] 

 

98 µM PA/PS (1:5)  

100 µM 

 

 PA/PS (1:2)  

79 µM  PA/PS (4:5)  

145 mM NaCl, pH 7.4, T = 293 K (200 C)  [30] 

 

85 µM             PC/PS 

 

  

83.3 mM 100 mM NaCl, pH 7.5, T = 293 K (200 C) 

27.7 mM 

PS (vesicle) 

  10 mM NaCl, pH 7.5, T = 293 K (200 C) 

 

 [8] 

28.6 mM  PS (vesicle) 100 mM NaCl, 2 mM L-histidine, 2 mM 

TES, pH 7.4, T = 293 K (200 C) 

 

 [6] 

265 µM  PS (vesicle) 100 mM NaCl, pH 7.4, T = 293 K (200 C) 

 

 [7] 

124 mM  PC/PE/PS (4:4:1) 

multilamellar liposomes 

100 mM NaCl, 10 mM Hepes, pH 7.4, T = 

298 K (250 C) 

 

 [25] 

1.8 ± 0.3 mM Yeast cells 1 mM sorbitol, 1 mM Tris-HCl, pH 7.4 

T = 293 K (200 C)  

 

 [16] 

39.5 mM  Neuroblastoma cells Dulbecco’s, Eagle’s   [31] 

 

For consistency check, two other methods, AAS and arsenazo III, have been used to 

determine the dissociation equilibrium constant 0
CaK  and [Cab]max in the pellet; here [Cat]sup = 
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[Ca]. See the Fig. 2A of the appendix. The data fit for the relation [Cab] = [Cat] - [Ca] versus 

[Ca] yields the same values for 0
CaK  and [Cab]max as obtained from the spectrophotometric 

Ca2+-titration of the vesicles.  

If B for the binding of Ca2+ refers to 2 anionic PS molecules, the maximum 

concentration of the bound Ca2+ on the vesicle surface is [Cab]max =[Ca(PS)2]max = [PSb]max/2; 

that is approximately equal to half the concentration of complexed (or bound) PS on the 

vesicle membrane. With the total lipid concentration [Lt] = 1 mM, we obtain [PS] = [Lt]/3 = 

0.33 mM. Since DNA-binding in the titration method occurs only on the outside monolayer of 

the vesicle bilayer, the head group concentration available for the DNA/Ca/PS complexation 

on the outside is [PS]/2 = 0.165 mM.  

A survey of the binding of Ca2+-ions to membrane surfaces, modelled by monolayers, 

bilayers and lipid vesicles, indicates largely different equilibrium constants. Note that 

apparent equilibrium constants are dependent on the ionic strength. In particular, when [NaCl] 

decreases from 100 mM to 10 mM, the apparent dissociation constant of the Ca/PS system 

decreases about two orders of magnitude [8], [28]. See Tab. 1. 

 

The binding of Ca2+ to DNA 

The binding of Ca2+ to DNA in solution (without vesicles) 

If the binding of Ca2+ to DNA (D) is specified as a dissociation reaction according to: 

 CaD  Ca D+ ,           (11) 

the degree of Ca2+ binding to DNA in solution is defined as: 

CaD max 0
CaD

[CaD] [Ca]
[CaD] [Ca] K

β = =
+

         (12) 

where 0
CaDK  is the respective apparent equilibrium constant (Eq. (7)) and βCaD is obtained 

from the absorbance ratio according to CaD 0 0 0 minA / A (A A) /(A A )β = ∆ ∆ = − −  (Fig. 3). Note 

that D represents two neighbouring phosphate residues or, formally, one base pair. Here, the 

maximum concentration [CaD]max, of the CaD complex is approximated by max
t[CaD] [D ]= . 

The data (Fig. 3) are evaluated according to: 
0
CaD

min 0 min 0
CaD

KA A (A A )
[Ca] K

− = −
+

.                    (13) 

with A0 = 0.422 ± 0.002 and Amin = 0.388 ± 0.002. 0
CaDK  is calculated from the half-point at 

βCaD = 0.5, using: 
0
CaD 0.5 t 0.5 tK [Ca] [Ca ] [D ]/ 2= = − .         (14) 
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In the example shown in Fig. 3, [Cat]0.5 = 40 ± 5 µM and thus 0
CaDK 24 5 µM= ±  at T = 293 K 

(20° C), 1 mM HEPES, pH 7.4. 

 

The binding of Ca2+ to DNA in the supernatant 

In the presence of vesicles, the Ca2+-binding to DNA is evaluated from the supernatant 

data. The equilibrium constant 0
CaDK  is related to βCaD with the specification [CaD]max = 

[Dt]sup; Eq. (12).  

 

0 50 100 150
0.0

0.5

1.0

β C
aD

[Cat]
sup / µM

 
Fig. 7 The degree of binding βCaD in the supernatant, calculated with Eq. (12) (or (A2) of the appendix) 

at [Dt] / µM (bp) = (●) 35.5, (▲) 71, (▼) 107 and (◆) 143. [Dt] refers to the total concentration of DNA 

in the vesicle suspensions. The arrows represent [Cat]sup at βCaD = 0.5. 

 

Graphically (Fig. 7), for a given total DNA concentration, [Dt]sup, in the supernatant, 

the equilibrium constant 0
CaDK  is determined from the half-points at βCaD = 0.5. See Eq. (A2) 

of the appendix. There is another consistency check for the determination of 0
CaDK  according 

to the relationship: 



 23

 
sup

0 t
CaD sup

t

[D ]K [Ca]( 1)
[Ca ] [Ca]

= −
−

                    (15) 

which is obtained from Eq. (12) by using [CaD]max = [Dt]sup and mass conservation according 

to: sup
t[CaD] = [Ca ] [Ca]− . See the Fig. 3A of the appendix. The calculation yields 0

CaDK = 26 

± 6 µM, being close to 0
CaDK = 24 ± 5 µM from Fig. 3. Previous documentations of Ca/DNA 

dissociation equilibrium constants strongly vary. Apparent dissociation constants of 0.3 mM 

and 0.5 mM have been reported for DNA from Micrococcus lysodeikticus in 50 mM 

electrolyte solution at 23° C [12]. The equilibrium constant of 7.14 µM in 5 mM Tris and 50 

mM NaCl obtained for the binding of Ni(II)-ions to calf thymus DNA [13] is comparable with 
0
CaDK  = 24 ± 5 µM found here. Generally, however the binding of divalent ions to DNA is 

sensitive to both the type of divalent ions [13] and the ionic strength.     

  

Overall DNA-binding to sites B on the vesicle and to the complex CaB 

It is appropriate to describe the overall binding of DNA by the overall reaction 

scheme: 

D (B CaB)  (DB DCaB)+ + +                     (16) 

where the Ca2+-dependent overall dissociation equilibrium constant is given by: 

D

(Ca) D
D  0.5

D

1[B] [CaB]K [D] [D] [D]
[DB] [DCaB] β =

−β+′ = ⋅ = ⋅ =
+ β

                 (17) 

and the overall degree of binding Dβ refers to: 

b
D (Ca)max max

b D

[D ][DB] [DCaB] [D]
([DB] [DCaB]) [D ] [D] K

+
β = = =

+ ′+
 ,                 (18) 

where max D
b t[D ] [B ]=  is the total concentration of B sites available for the DNA-binding on 

the vesicle surface. The concentration [D] of free DNA in the supernatant decreases with 

increasing concentration [Ca] of free Ca2+ in the supernatant, as expected in line with the 

relationship:  

[ ] [ ]
0

sup CaD
t 0

CaD

KD D
[Ca] K

= ⋅
+

                                                                                         (19) 

obtained by substitution of [CaD]max = [Dt]sup and [CaD] = [Dt]sup - [D] in Eq. (12). See the 

Fig. 4A of the appendix. The overall equilibrium constant 
(Ca)

DK′  can also be expressed as: 

 
0

(Ca) Ca
D D

Ca

[Ca] KK K
[Ca] K

+′ ′= ⋅
′+

.                    (20) 
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Eq. (20) is derived from Eq. (17); see Eq. (A4) of the appendix. In the case [Cat] = 0 (full line 

in Fig. 8), the reaction scheme (16) reduces to: 

D B  DB+             (21) 

and Eq. (20) yields: 
(Ca) 0 0

D D Ca Ca DK K K / K K′ ′ ′= ⋅ = ,         (22) 

where 0
DK ( [D] [B] /[DB])= ⋅  refers to the adsorption of DNA to lipid surfaces in the absence 

of added Ca2+-ions [32].  
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Fig. 8 The graphical determination of [Db]max and 
(Ca )

DK′  from the double-reciprocal relationship 

according to Eq. (23) for [Cat] / µM = (■) 0, (●) 25, (▲) 75, (▼) 100, (◆) 200 and (□) 300. The insert 

shows the enlarged intercept and the abscissa intersections. 

 

Rearranging now Eq. (18) as a double-reciprocal relationship we obtain: 
(Ca)

D
D

b t

K1 1 (1 )
[D ] [B ] [D]

′
= ⋅ + ,                     (23) 

for different [Cat] of the suspension (Fig. 8). In the case of DNA binding in the absence of 

Ca2+-ions ([Cat] = 0), we obtain the solid line in Fig. 8. The intercept yields the common value 

D
t[B ] 160 20 µM= ±  and the abscissa yields the various numerical values of 

(Ca)

DK′ . The 

-0.010 -0.005 0.000 0.005
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/ (

[D
b] 
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concentration [Bt
D] of binding sites for DNA is approximately equal to the maximum 

concentration, [Cab]max/2, represented by the head group concentration [PS]/2 of PS available 

at the outer vesicle surface. For 
D

(Ca)

D  0.5K [D]
β =

′ = , at each value of [Cat] and at the half–point 

of bound DNA, max D
b 0.5 b t[D ] [D ] / 2 [B ] / 2 80 µM= = = , we obtain the respective value for the 

DNA-binding (data not shown) and a value [Ca]0.5 of the free Ca concentration at D 0.5β =  

according to:  
0 sup

0.5 CaD t 0.5 0.5[Ca] K ([D ] /[D] 1)= ⋅ − .          (24) 
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Fig. 9 The overall equilibrium constants 
(Ca ) 0

D Ca CaDK K ([Ca] K ) /([Ca] K )′ ′ ′= + +  obtained from the 

abscissa intercepts in Fig. 8. The data fit with Eq. (20) yields 0
DK = 1.7 ± 0.1 mM (bp) and DK′ = 85 ± 

15 µM (bp) at T = 293 K (200 C), 1 mM HEPES, pH 7.4. 

 

Again, Eq. (24) is obtained by substitution of [CaD]max = [Dt]sup and [CaD] = [Dt]sup – [D] into 

Eq. (12). In Fig. 9, it is seen that 
(Ca)

DK′ decreases with increasing half-point concentration 

[Ca]0.5, according to Eq. (20) with 0
Ca CaK K′ . At [Ca] = 0, 

(Ca) 0 0
D D Ca Ca DK K K / K K′ ′ ′= ⋅ =  and 

at 0
Ca[Ca] K  and Ca[Ca] K′ , we have 

(Ca)

D DK K′ ′= . The data fit with Eq. (20) yields 

0
DK 1.7 0.1 mM= ± (bp) and DK 85 15 µM′ = ± (bp) at T = 293 K (200C), 1 mM HEPES, pH 
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7.4. The results are in line with 0
CaK 24 5 µM= ± , being indeed larger than 

CaK 0.75 0.25 µM′ = ± ; see below. As a further consistency check, the values of 
(Ca)

DK′  are 

calculated for each value of [Db], [Dt]sup and [Ca]. Introducing Eq. (19) into Eq. (23), 

rearrangement yields: 
D sup 0

(Ca) t t CaD
D 0

b CaD

[B ] [D ] KK ( 1)
[D ] [Ca] K

⋅′ = − ⋅
+

.                   (25) 

Data fit analogous to the data fit with Eq. (20) yields DK′  = 85 ± 15 µM (bp) and 0
DK  = 

1.7 ± 0.1 mM (bp). See the Fig. 5A of the appendix. The results are consistent with those 

obtained from Eq. (23). 

 

Overall Ca2+-binding to sites B on the vesicle and to the complex DB 

Similar to the overall reaction scheme (16) for DNA-binding, we express the overall 

binding according to: 

Ca (B DB)  (CaB DCaB(DCa))+ + +                    (26) 

where the DNA-dependent overall equilibrium constant is defined by: 

Ca

(D) Ca
Ca  0.5

Ca

1[B] [DB]K [Ca] [Ca] [Ca]
[CaB] [DCaB(DCa)] β =

−β+′ = ⋅ = ⋅ =
+ β

.     (27) 

The overall degree of Ca2+-binding refers to: 

b
Ca (D)max max

b Ca

[Ca ][CaB] [DCaB(DCa)] [Ca]
([CaB] [DCaB(DCa)]) [Ca (D)] [Ca] K

+
β = = =

+ ′+
.     (28)  

The part (DCa) in the complex DCaB(DCa) accounts for the Ca2+-binding to those base pairs 

of DNA which are not yet bridged by Ca2+-ions to the lipid surface. Consistent with 

expectations, the concentration of bound Ca2+ in the pellet [Cab] = [CaB] + [DCaB(DCa)] 

increases with increasing [Cat] and [Dt], respectively (Fig. 10). Trivially at [D] = 0, [Cab] = 

[CaB]. With increasing [Dt], [Cab] in the complex [DCaB(DCa)] increases first due to Ca2+-

bridging D and B as complex DCaB and then additionally due to further Ca2+-binding to the 

DNA (as DCa) not yet bridged to B-sites as DCaB, reducing the amount of CaB. 

Parallel to the formalism used for the overall DNA-binding, the overall equilibrium 

constant 
(D)

CaK′  for the Ca2+-binding is given by: 

 
0(D) D

Ca Ca
D

[D] KK K
[D] K

+′ ′= ⋅
′+

,                    (29) 

Eq. (29) is derived from Eq. (27); see Eq. (A5) of the appendix. From Eq. (28) we obtain the 

double–reciprocal relationship: 
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(D)

Camax
b b

1 1 1(1 K )
[Ca ] [Ca (D)] [Ca]

′= + .                  (30)  
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Fig. 10 The concentration [Cab] = [CaB] + [DCaB(DCa)] = [Cat] - [Cat]sup of bound Ca2+ in the pellet 

for [Dt] / µM (bp) = (■) 0, (●) 35.5, (▲) 71, (▼) 107 and (◆) 143 versus [Cat]. Note, that [Dt] refers to 

the concentration of DNA in the vesicle suspension. 

 

Using Eq. (30) at different [Dt], the intercepts yield  max
b[Ca (D)]  and 

(D)

CaK′ , respectively 

(Fig. 11). For each 
(D)

CaK′ at a given [Dt] there is a half-point concentration 

max
b 0.5 b[Ca ] [Ca (D)] / 2=  at given [Cat]0.5, [Ca]0.5 and  [D]0.5, respectively. It is seen that the 

values of 
(D)

CaK′ are equal to those of [Ca]0.5, within the error margin. The coordinates of the 

intersection point are given by Eq. (A6) of the appendix. 
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Fig. 11 Determination of 
(D)

CaK′ and [Cab]max from the double-reciprocal relationship Eq. (30) for [Dt] 

/ µM (bp) = (■) 0, (●) 35.5, (▲) 71, (▼) 107 and (◆) 143. (The intersection point is at: 1/[Ca]i = -0.03 

µM-1 and 1/[Cab]i = 0.0032 µM-1 (see the appendix)). 

  

As seen in Fig. 12, the overall equilibrium constant 
(D)

CaK′ decreases with increasing 

half-point concentration [D]0.5 according to Eq. (29) with 0
D DK K′ . At [D] = 0, 

(D) 0 0
Ca D Ca D CaK K K / K K′ ′ ′= ⋅ =  and at t[D] [D ]  (saturation) we obtain 

(D)

Ca CaK K′ ′= . The 

data fit with Eq. (29) yields 0
CaK 15 5 µM= ±  and CaK 0.75 0.25 µM′ = ±  at T = 293 K (200C), 

1 mM HEPES, pH 7.4, confirming that indeed 0
Ca CaK K′ . 

The maximum concentration max
b[Ca (D)]  of Ca2+ bound to the outer vesicle surface in 

the presence of bound DNA increases with increasing total concentration of DNA according 

to mass conservation: 

[Cab(D)]max = [CaB]min + [DCaB(DCa)]max = [CaB]max + [Dt] – [DCaB].                 (31) 

Note that [DCaB]max + [DCa]max = [Dt] and [CaB]min = [CaB]max – [DCaB]. See the Fig. 6A of 

the appendix. 
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Fig. 12 The overall equilibrium constants 
(D)

CaK′ determined with Eq. (30). Data fit with Eq. (29) 

yields 0
CaK 15 5 µM= ± and CaK 0.75 0.25 µM′ = ±  at T = 293 K (200 C), 1 mM HEPES, pH 7.4. 

 

As a further consistency check, 
(D)

CaK′  is calculated using the values for [D], [Cat]sup, 

[Cab] and [Cab(D)]max. Introducing Eq. (12) into Eq. (30) and rearranging yields: 

 
max sup 0

(D) b t CaD
Ca 0

b CaD

[Ca (D)] [Ca ] KK ( 1)
[Ca ] [D] K

⋅′ = − ⋅
+

.                    (32) 

Data fit with Eq. (29) yields 0
CaK 15 5 µM= ±  and CaK 0.75 0.25 µM′ = ±  at T = 293 K 

(200C), 1 mM HEPES, pH 7.4. See the Fig. 7A of the appendix. These results are consistent 

with those obtained with Eq. (30). 

The equilibrium constant CaDK′  is calculated using the definitions of the apparent 

equilibrium constants in Eqs. (7) and (8), respectively; according to: 
0
Ca

CaD D 0
CaD

K[CaD] [B] [D] [CaB] [Ca] [B] /[CaB]K K
[DCaB] [DCaB] [Ca] [D]/[CaD] K

⋅ ⋅ ⋅′ ′= = ⋅ = ⋅
⋅

.     (33) 

Eq. (33) yields CaDK 53 10 µM (bp)′ = ±  at T = 293 K (200 C), 1 mM HEPES, pH 7.4.   
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As seen in Tab. 2, the dissociation equilibrium constants for the binary complexes are 

greater as the respective constants for the ternary complexes, i.e. the ternary complexes are 

more stable than the binary complexes. 

 

Tab. 2 The apparent dissociation equilibrium constants for the system DNA, Ca2+-ions, lipid vesicle 

surface (PS) in 1 mM HEPES, pH 7.4, T = 293 K (200 C). 

             Binary complexes Ternary complexes 

            0
CaK  15 5 µM= ±  CaK  0.75 0.25 µM= ±′  

            0
CaDK 24 5 µM= ±  CaDK 53 10 µM (bp)= ±′  

0
DK   1.7 0.1 mM (bp)= ±  DK   85 15 µM (bp)= ±′  

 

 

Conclusions 

 

Using centrifugation, atom absorption spectrometry and arsenazo III absorbance, the 

binding of DNA at lipid vesicle surface mediated by Ca2+-ions is measured. The independent 

spectroscopic measurements permit the determination of the apparent dissociation equilibrium 

constants for the binary complexes: Ca/lipid vesicles, Ca/DNA and DNA/lipid vesicles and 

for the various processes leading to the ternary complex DNA/Ca/lipid vesicles. The 

thermodynamic formalism has been developed such that the experimental overall dissociation 

equilibrium constants for the binding of Ca2+ and DNA to the vesicle surface, respectively, 

appear as combinations of the individual binary equilibrium constants. The thermodynamic 

stabilities of the respective ternary complexes are two orders of magnitude greater than that of 

the binary complexes: Ca/lipids and DNA/lipids. 

The knowledge of the equilibrium constants for the adsorption of DNA and the 

binding of DNA to the vesicle surface, provide the basis for choosing the respective optimal 

concentrations, to optimize the conditions of the adsorption for the direct electrotransfer of 

gene-DNA into biological cells and tissue. 
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Appendix 

 

The binding of Ca2+ to DNA in the supernatant. In the presence of vesicles, the degree βCaD of 

Ca2+ binding to DNA is given by: 

CaD max sup 0
t CaD

[CaD] [CaD] [Ca]
[CaD] [D ] [Ca] K

β = = =
+

      (A1) 

where the relation [Dt]sup = [CaD]max holds.  

Note that 0
CaD CaD CaDK [Ca] [D]/[CaD] [Ca] (1 ) /= ⋅ = ⋅ − β β ; hence 0

CaD CaD(K [Ca]) [Ca]β ⋅ + =  

yielding Eq. (A1) or the relationship: sup 0
t CaD[CaD] [D ] [Ca] /([Ca] K )= ⋅ + . Insertion into 

[Cat]sup = [Ca] + [CaD] yields: sup sup 0
t t CaD[Ca] [Ca ] [D ] [Ca] /([Ca] K )= − ⋅ + .  

The equilibrium constant 
CaD

0
CaD   0.5K [Ca]β ==  in the presence of vesicles is related to the total 

Ca2+ concentration [Cat]sup of supernatant and the total DNA concentration [Dt]sup in the 

supernatant by: 
sup 0 sup

t 0.5 CaD t[Ca ] K [D ] / 2= + .                               (A2) 

 

Determination of [Ca] with Ar. Similar to Eq. (A2), the equilibrium constant KCaAr = 3.5 ± 0.5 

µM is obtained from the midpoint (half-point) of the relation ∆A602 vs. log ([Cat]/mM) (data 

not shown) according to: 

CaArCaAr t   0.5 tK [Ca ] [Ar ] / 2β == − ,       (A3) 

where 
CaArt   0.5[Ca ]β =  refers to max

602 602A A / 2∆ = ∆  and ∆A602 = A602 – A0
602 and A0

602 = 

εAr⋅d⋅[Art] at [Ca] = 0 (experimentally realised with 1 mM EDTA). 

 

Overall DNA-binding to sites B on the vesicle and to complex CaB. Using the definitions of 

the apparent equilibrium dissociation constants in Eqs. (7) and (8), respectively, of the main 

text, the overall equilibrium constant for the Ca2+-dependent binding of DNA is defined as: 

(Ca)

D
[B] [CaB] [B] (1 [CaB]/[B])K [D] [D]

[DB] [DCaB] [DB] (1 [DCaB]/[DB])
+ ⋅ +′ = ⋅ = ⋅
+ ⋅ +

 

0 0 0
0 0Ca Ca Ca Ca
D D D0

Ca Ca Ca Ca

1 [Ca] / K K [Ca] K [Ca] K          K K K
1 [Ca] / K K [Ca] K [Ca] K

′+ + +′= ⋅ = ⋅ ⋅ = ⋅
′ ′ ′+ + +

  (A4) 

where the relation 0 0
D Ca D CaK / K K / K′ ′= of the cyclic scheme (Fig. 7) is used. See Eq. (20) of 

the main text. 

 



 32

Overall Ca2+-binding to sites B on the vesicle and to complex DB. The overall 

equilibrium constant for the DNA-dependent binding of Ca2+ according to scheme (26) is 

given by: 

 

(D)

Ca
[B] [DB]K [Ca]

[CaB] [DCaB(DCa)]
[DB] (1 [B] /[DB])          [Ca]

[DCaB(DCa)] (1 [CaB]/[DCaB(DCa)])

+′ = ⋅
+

⋅ +
= ⋅

⋅ +

 

0 0
D D

Ca Ca
D D

1 K /[D] [D] K          K K
1 K /[D] [D] K

+ +′ ′= ⋅ = ⋅
′ ′+ +

      (A5) 

where the relation 0 0
Ca D Ca DK K K / K′ ′= ⋅  is inherent; see Eq. (29) of the main text. 

The intersection point in Fig. 11 is obtained from Eq. (30) of the main text for [Dt] ≠ 0 

and [Dt] = 0, where max 0
b b Ca1/[Ca ] (1/[Ca ] )(1 K /[Ca])= + . The coordinates 1/[Ca]i and 1/[Cab]i 

of the intersection point are given by: 
max max

b b
(D)max 0 max

i b Ca b D
(D)0

Ca Ca
(D)max 0 max

b i b Ca b Ca

[Ca (D)] [Ca ]1
[Ca] [Ca (D)] K [Ca ] K

K K1
[Ca ] [Ca (D)] K [Ca ] K

−
= −

′⋅ − ⋅

′−
=

′⋅ − ⋅

                 (A6) 

In Fig. 11, we see that [Ca]i = -0.03 µM-1 and [Cab]i = 0.0032 µM-1.  
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Additional explanatory figures 
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Fig. 1A Ca2+-binding isotherms for different DNA concentrations: [Dt] / µM (bp): (■) 0, (●) 35.5, (▲) 

71, (▼) 107 and (◆) 143; from top to bottom. The data are fitted with Eq. (12) of the text, where [Cat] = 

[Cab] + [Cat]sup. The straight dashed line represents the case without vesicles and without DNA for 

which [Ca] = [Cat] = [Cat]sup. 
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Fig. 2A Ca2+-binding isotherms in the absence of DNA, [Cab] = [Cat] - [Ca], in the pellet as a function 

of [Ca] in the supernatant. The data points represent mean values of two measurements Ca2+ in the 

supernatant by arsenazo III–absorption and atomic absorption spectroscopy. Here, [Ca] = [Cat]sup. Data 

fit with Eq. (10) of the text yields the equilibrium constant 0
CaK = 15 ± 5 µM and [Cab]max = 170 ± 20 

µM at T = 293 K (200 C), 1 mM HEPES, pH 7.4. 
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Fig. 3A The equilibrium constant 0
CaDK  calculated with Eq. (15) for [Dt] / µM (bp) = (●) 35.5, (▲) 71, 

(▼) 107 and (◆) 143 as a function of [Ca]. The straight thick line represents the mean of 0
CaDK = 26 ± 6 

µM. 
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Fig. 4A The relationship between [D] = [Ca] + [Dt]sup - [Cat]sup and [Ca] for [Dt] / µM (bp)  = (●) 35.5, 

(▲) 71, (▼) 107 and (◆) 143. [Dt] refers to the concentration of DNA in the vesicle suspension. The 

data are fitted with the Eq. (19) of the text. 
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Fig. 5A  The overall binding constant 
(Ca )

DK′  calculated with Eq. (25) for [Dt] / µM (bp) = (●) 35.5, 

(▲) 71, (▼) 107 and (◆) 143 as a function of [Ca]. [Dt] refers to the total concentration of DNA in the 

vesicle suspensions. The data fit with Eq. (20) yields DK′ = 85 ± 15 µM (bp) and 0
DK = 1.7 ± 0.1 mM 

(bp) at T = 293 K (200 C), 1 mM HEPES, pH 7.4. 
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Fig. 6A The total concentrations of sites available for Ca2+-binding on the vesicle surface [Cab(D)]max 

= [CaB]max + [Dt] – [DCaB]. max
b[Ca (D)]  increases linearly with [Dt] due to the increased number of 

sites D(bp) not involved in the ternary complex DCaB, but binding Ca2+-ions as CaD within the DNA 

partially attached to the lipid surface. 
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Fig. 7A The overall equilibrium constants 
(D)

CaK′ as a function of [D] calculated with Eq. (32) of the 

text for [Dt] / µM (bp) = (■) 0, (●) 35.5, (▲) 71, (▼) 107 and (◆) 143. Data fit with Eq. (29) yields 

0
CaK 15 5 µM= ± and CaK 0.75 0.25 µM′ = ±  at T = 293 K (200 C), 1 mM HEPES, pH 7.4. 
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Glossary 

 

Ar                         arsenazo III 

acoll                       collapse area per molecule 

B                           binding sites on the outside vesicle surface 

βCa, βCaAr, βCaD     degree of Ca2+-binding to vesicle surface, arsenazo III and DNA, 

respectively 

[Cat], [Dt]             total concentrations of Ca2+ and DNA, respectively 

[Ca], [D]              free concentrations of Ca2+ and DNA in the supernatant, respectively 

[Cat]sup, [Dt]sup      total concentrations of Ca2+ and DNA in the supernatant, respectively 

[Cab], [Db]            concentrations of bound Ca2+ and bound DNA in the pellet, respectively 

[Cab(D)]max       maximum concentration of sites available for Ca2+-binding on the vesicle                   

surface, including the bound DNA 

[Db]0                     concentration of DNA bound to the vesicle surface at [Cat] = 0       
0
CaK , 0

DK , 0
CaDK    dissociation equilibrium constants for the binary complexes 

CaK′ , DK′ , CaDK′   dissociation equilibrium constants for the respective ternary complexe 

formations  
(D)

CaK′ , 
(Ca)

DK′    overall dissociation equilibrium constants for the respective Ca2+- and DNA 

binding 

PS                         phosphatidylserine 

POPC                   palmitoyl-oleoyl-phosphatidylcholine 

PA                        phosphoric acid 

VET                  vesicle extrusion technique 
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Abstract 

The adsorption of calf–thymus DNA-fragments (300 ± 50 bp) in the total 

concentration range 0 ≤ [Dt] / µM (bp) ≤ 142 to the membranes of unilamellar lipid vesicles is 

enhanced by Ca2+ ions (total Ca2+ concentration [Cat]  ≤ 1 mM). The vesicles of  radius a = 

150 ± 45 nm are prepared from bovine brain extract type III containing 80-85% 

phosphatidylserine (PS) and palmitoyl-oleoyl-phosphatidylcholine (POPC) in the molar ratio 

PS:2POPC; total lipid concentration [Lt] = 1 mM in 1 mM HEPES buffer, pH 7.4 at T = 293 

K (20°C). The turbidity relaxations of the vesicle suspension at the wavelength λ = 365 nm in 

the electric fields E / (kV/cm) = 30, 40 and the pulse duration tE = 10 µs indicate that the 

electroelongations of the vesicles are coupled to smoothing of membrane thermal undulations, 

membrane stretching and, at higher fields, to membrane electroporation. The quantitative 

analysis of the elongation kinetics suggests that the DNA adsorption to the vesicle surface (as 

ternary DNA/Ca/lipid complexes) renders the membrane more flexible and prone for potential 

electroporation. For instance, at E = 30 kV/cm and [Cat] = 0.25 mM, membrane-bound DNA 

in the range b0 [D ]/µM(bp) 40≤ ≤ , i.e., b0 N 118≤ ≤  DNA fragments per one vesicle, 

decreases both the bending rigidity in the range 2017 /(10 J) 13−≥ κ ≥  and the stretching 

modulus in the range 1.2 K /(N / m) 0.83≥ ≥ , respectively. 

 

Introduction 

The membrane electroporation (ME) technique1,2 is widely used for introducing gene 

DNA and drugs, in particular chemotherapeutica, into isolated cells and tissue.3-7 

Traditionally, the lipid part of cell membranes is modelled with lipid bilayer vesicles8,9 and 

many characteristic properties of lipid vesicles scale very well with those of  biological 

cells.10 The elastic properties of membrane, such as the spontaneous curvature and the 

bending rigidity, play an important role in the interactions of charged liposomes with colloidal 

nanoparticles and in the adsorption of neutral and ionic polymers to the outer surface of 

vesicle membranes.11-13 It is known that the elastic properties and permeability of the lipid 

membrane can be altered not only by polymer adsorption and sugar asymmetry but also by 

electric fields.12,14,15 For instance, prior adsorption of the anionic DNA on the outer surface of 

cells facilitates the electrotransfer of genes into the cell interior.16 On the other hand, DNA-

vesicle interactions have been studied intensively with positively charged vesicles,17-21 but 

rarely with anionic liposomes.22 The complexation of cationic liposomes with DNA can lead 
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to multilamellar complexes, vesicle aggregation or even vesicle rupture at higher DNA 

concentration.23,24 To avoid vesicle aggregation, we have used small anionic unilamellar 

vesicles at low total lipid and Ca2+-concentrations, respectively.25 The Ca2+-ions on the 

membrane surface are known to bridge the negatively charged DNA phosphate groups with 

the negatively charged lipid head groups of the vesicles.16  

Further on, the application of electric pulses to vesicle suspensions can lead to 

smoothing of membrane undulations, membrane stretching, electroporation (ME) and to 

elongation of the vesicles at the expense of an increase in the projected membrane surface.26 

Here, the effect of the adsorption of DNA on the outer vesicle membrane surface is quantified 

using kinetic relaxation spectrometry in high electric field pulses.  

 

Materials and Methods 

Materials. Synthetic POPC (palmitoyl-oleoyl-phosphatidylcholine) from Lipoid 

GmbH (Ludwigshafen, Germany) and bovine brain extract type III (containing 80-85% PS) 

from Sigma Chemie GmbH (Deisenhofen, Germany) in the molar ratio PS:2POPC are used to 

prepare unilamellar vesicles of the average radius a = 150 ± 45  nm. The preparations of 

liposomes and of 300 ± 50 base pairs (bp) deoxyribonucleates by sonication of calf thymus 

(DNA type I, Sigma Chemie GmbH) are described elsewhere∗. The total lipid concentration 

[Lt] = 1 mM yields the vesicle number density Nv = [Lt] / nves = 6.7 ⋅1014 / L, where nves = 1.5 

⋅10-18 mol is the content of lipids in one vesicle. The total calcium concentration [Cat] ≤ 1 mM 

is far smaller than the limit for vesicle aggregation and fusion.25 [Cat] in the vesicles equals 

that in the bulk to avoid an osmotic pressure. The total concentration of DNA fragments in the 

vesicle suspension is in the range 0 ≤ [Dt] / µM (bp) ≤ 142.  

Methods. In each case, one rectangular electric pulse with field strengths E = 30 or 40 

kVcm-1 and pulse duration of tE = 10 µs has been applied to the vesicle suspension between 

the two planar graphite electrodes of the measuring chamber by cable discharge.27 The sample 

cell is thermostated at T = 293 K (20° C). The sample chamber of about 1 ml is equipped with 

quartz windows with an optical path length of l = 1 cm. The field induced changes ∆ODλ in 

the optical density ODλ = Aλ + Tλ, where Tλ is the turbidity and Aλ the absorbance of plane-

polarised light are measured at the wavelength λ = 365 nm (Hg-line). The light intensity 

change ∆Iσ, caused by electric pulse and measured at the two polarisation angles σ = 0, 90° 

relative to the applied external field E, is related to the optical density change by: 

                                                 
∗ Frantescu, A., Ph.D. Thesis, University of Bielefeld, 2005 
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0
IOD = OD (E) - OD = -log(1+ )

I

σ
σ σ σ

σ

∆
∆ ,                                                                      (1) 

where ∆Iσ= Iσ(E) - Iσ is the intensity change from Iσ (at E = 0) to Iσ(E) in the presence of E, 

and ODσ(E) and ODσ
0 are the optical densities at E and at E = 0, respectively. 

In the absence of an optical probe and outside the absorption band of the optical probe, 

the optical density OD is given solely by the turbidity T, hence OD = T. The field-induced 

change ∆T in T may be decomposed into a deformational/orientational part ∆Tσ
OR and a 

structural-chemical part ∆Tσ
CH according to ∆Tσ = ∆Tσ

OR + ∆Tσ
CH.28 The reduced turbidity 

minus mode is defined by: 
II

0 0

T T T
T T

− ⊥∆ ∆ − ∆
=                                                                                                        (2) 

where T0 is the turbidity by E = 0 and ∆TII  = TII – T0 and ∆T⊥   = T⊥ – T0 are the field induced 

changes at the two light polarisation modes σ = 0° (, parallel to the direction of external 

field) and σ = 90° (⊥, perpendicular to the direction of external field), respectively. The 

reduced turbidity plus mode is analogous to the respective absorbance term29 and given by: 
+

CH

0 0 0

TT T + 2 T=
T T 3T

⊥∆∆ ∆ ∆
≡ .                                                                                       (3)       

It is recalled that the turbidity term ∆T-/T0 contains also chemical contributions ∆TCH, but 

refers primarily to global elongations of the vesicles in the electric field pulse. The term 

∆T+/T0 relates to chemical changes in the scattering cross section, for instance, due to entrance 

of water and ions in the membrane as well as to changes of the vesicle volume. 

The refractive indices at different wavelengths in the visible range are determined 

using an Abbe-refractometer at T = 293 K (200 C) for different mole fractions xlip of the lipids 

in the lipid/water system.30 The values of the refractive indices at the wavelength λ = 365 nm 

are calculated using the Cauchy dispersion law. The refractive index nlip = 1.3639 ± 0.0005 of 

the pure lipid mixture PS:2POPC is obtained experimentally by the extrapolation of the 

refractive index of the mixture to xlip= 1. The refractive index of the medium (buffer) is nmed = 

1.3483 ± 0.0005.   



 48

Results and data analysis 
 Turbidity relaxations. Since there is no vesicle aggregation, the initial optical density 

OD0 at the field strength E = 0 and at the given [Cat] slightly decreases with increasing total 

concentration [Dt] of DNA (Fig. 1 a).  

 
Fig. 1 Dependences on the total DNA concentration [Dt] of: (a) the optical density OD0 at the wavelength λ = 

365 nm and at zero field strength, E = 0, of the suspension of unilamellar vesicles of radius a = 150 ± 45 nm; (b) 

the concentration [Db] of DNA fragments bound at the vesicle surface. The data points in (a) and (b) refer to the 

two total Ca2+ concentrations [Cat] / mM = 0.25 (▲) and 0.75 ( ) and the total lipid concentration [Lt] = 1 mM, 

PS:2POPC in 1 mM HEPES, pH 7.4, T = 293 K (20 0C). The data in (a) suggest the absence of vesicle 

aggregation and vesicle fusion in the concentration range b0 [D ] / µM(bp) 40≤ ≤ , i.e., b0 N 118≤ ≤  DNA 

fragments per one vesicle. 

 

Note that in the case of vesicle aggregation, OD0 should steeply increase with [Dt]. The 

observed decrease in OD0 can be rationalized by a decrease in the refractive index nlip of the 

vesicle membrane caused by the adsorption of DNA in the membrane surface. Actually, the 

concentration [Db] of bound DNA linearly increases with increasing [Dt] (Fig. 1 b).  
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Fig. 2 High-field relaxation modes. (a) The dichroitic mode ∆T−/T0 and the chemical mode ∆T+/T0 at the 

wavelength λ = 365 nm and at the field strength E = 30 kV/cm, respectively; (ⅹ), [Cat] = [Dt] = 0; (○), [Cat] = 

0.25 mM and [Dt] = 0; (◇), [Cat] = 0.25 mM and [Dt] = 142 µM (bp). Other experimental conditions as in the 

legend to Fig. 1. (b) The axis ratio p = c/b of the electro-elongated vesicles, calculated from the ∆T−/T0 and 

∆T+/T0 turbidity modes for the cases (ⅹ), (○) and (◇), respectively. (c) The relative increase 0S / S∆  in the 

membrane surface area calculated from the axis ratio p = c/b, where ∆S = S – S0 is the increase in the membrane 

area, S0 = 4 π a2 the projected surface area at E = 0 and S the projected area in the field E. The solid lines 

represent the theoretical curves for membrane stretching and smoothing calculated with the membrane stretching 

modulus: K = 0.225 Nm-1, the membrane bending rigidity κ = 3.5⋅10-20 J and the initial surface tension 
4

0 2.1 10 N / m−σ = ⋅  for the case (ⅹ); see (a). For (○): K = 0.83 Nm-1, κ = 1.29⋅10-19 J and  8

0 4.0 10 N / m−σ = ⋅  

and for (◇): K = 1.2 Nm-1, κ = 1.71⋅10-19 J and 8

0 1.0 10 N / m−σ = ⋅ . 
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The turbidity relaxations ∆T−(t)/T0 and ∆T+(t)/T0 at λ = 365 nm in the vesicle suspension are 

opposite in sign and have different kinetics (Fig. 2 a), indicating different processes. 

Specifically, the negative sign of the ∆T+/T0 relaxations indicates a decrease in the refractive 

index nlip of membrane, caused by field-induced entrance of water into the membrane. The 

positive sign of ∆T-/T0 relaxations is dominantly due to the vesicle electro-elongation in the 

direction of the external field vector.27 The turbidity terms ∆T-/T0 and ∆T+/T0 are used for the 

computation of the deformation ratio p (Fig. 2 b, Fig. 3) and the relative refractive index m = 

nlip / nmed (Fig. 4) in the electric field E with the numerical code of Farafanov et al.31, 

respectively. In the electric field, the originally spherical vesicles elongate to ellipsoids of 

revolution, characterized here by the semi-axis c and b, where c > b (Fig. 3).  

 

 
 
Fig. 3 Scheme for the elongation of an undulating spherical vesicle at constant volume by field-induced 

smoothing of the membrane undulations. S0 = 4π⋅a2 refers to the dashed line representing the projected area. 

 

The calculated deformation ratio p = c / b of the lipid vesicles increases with increasing total 

concentration [Dt] of DNA and, as expected, with the field strength E (Fig. 2 b). At the 

relatively low field strength, E 40 kV / cm= ,  the maximum stationary value  1.5 E a∆ϕ = − ⋅ ⋅  

of the induced potential difference ∆ϕ  across the membrane of the pole caps of the vesicles 

of the radius a = 150 nm does not exceed 0.9 V, therefore there is no measurable efflux of 

electrolyte from the vesicles.32,33 Since the vesicle volume remains constant during the whole 

pulse length tE = 10 µs, the relative increase 0S / S∆  in the membrane area is solely 

determined by the axis ratio p:27 
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1/3 22/3

2
0

p arcsin( 1 p )S p 1
S 2 2 1 p

−−

−

⋅ −∆
= + −

⋅ −
                                                                          (4) 

where ∆S = S – S0 is the increase in the membrane area, S0 = 4⋅π⋅a2  the projected membrane 

surface area at E = 0 and S the membrane area in the field E. The membrane surface area 

∆S(t)  increases concomitant with the vesicle elongation ratio p. However, the time constant is 

different  (Fig. 2 c). The relaxation of ∆S(t) for the pure lipid vesicles, without Ca2+ and DNA, 

is faster than the relaxation ∆S(t) in the presence of Ca2+ ions, yet the amplitude ∆S is smaller. 

The more DNA is adsorbed to the vesicle surface as a ternary DNA/Ca/lipid complex, the 

larger is the amplitude ∆S. 

 
Fig. 4 The relative refractive index m = nlip / nmed of the vesicle membrane as a function of time t at the two field 

strengths E / (kV/cm) = 30 (1, 2) and 40 (3, 4) and for the two total DNA concentrations [Dt] / µM (bp) = 0 (1, 3) 

and 142 (2, 4), respectively, calculated from the relaxation modes ∆T−/T0 and ∆T+/T0. Here nlip and nmed are the 

refractive indices of the lipids and of the medium (buffer), respectively. At E = 0, the initial values of the indices 

are: nlip(0) = 1.3639, nmed(0) = 1.3483 and m(0) = 1.0116. Other experimental conditions as in the legend to Fig.1. 

 

Kinetic Analysis of Membrane Area Increase. Primarily, the increase S(t)∆  in the 

membrane surface area (Fig. 3) reflects membrane stretching (MS, MSS (t)∆ ) and smoothing of  

membrane undulations (SU, SUS (t)∆ ), respectively.26 The total increase is the sum 

MS SUS(t) S (t) S (t)∆ = ∆ + ∆ . The term g
MS MS MSS S S∆ = ∆ + ∆  refers to both the components 

2
mT (3 / 8) (E a) C= ⋅ ⋅ ⋅  and 2

g 0 wT (3/80) a E= ⋅ ⋅ε ε ⋅  of the local and global Maxwell stress 

tensor, respectively. The individual terms are:27 
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( )2MS
pol

0

S (t) T
1 exp( t / )

S K
∆

= ⋅ − − τ
,
         (5) 

g
gMS

0

TS (t)
S K

∆
= ⋅ ( )pol1 exp( t / )− − τ

,
                                                                                  (6) 

respectively, where K is the stretching modulus of the lipid membrane, 
1 1

pol m in exa C ( / 2)− −τ ≈ ⋅ ⋅ λ + λ  = 0.56 µs the time constant of the ionic membrane polarization and 

C Fcmm = µ −05 2.  the specific membrane capacitance.34 The conductivities inλ and exλ  refer to 

the intra- and extravesicular solution, respectively; here inλ = exλ  = 2.0 mS/m, 0ε  is the 

vacuum permittivity and W 80ε ≈  the dielectric constant of water at T = 293 K.
 

The 

smoothing of membrane undulations is given by26

 

g1SU
2

0 0

SU SU pol pol

SU pol

TS (t) L ln(1 )
S ( / 4 a )

exp( t / ) exp( t / )
(1 )

−∆
= ⋅ + ⋅

π ⋅ κ ⋅ + σ
τ ⋅ − τ − τ ⋅ − τ

⋅ −
τ − τ

                        
(7) 

where κ is the bending rigidity of the lipid membrane, BL 8 /(k T)= π ⋅ κ  is the dimensionless 

smoothing constant, σ0 the initial lateral tension of the membrane. The characteristic time SUτ  

of membrane smoothing is given by26: 
3

SU
2

o 1
o

3 a
48 3 Ka 1

5 2 K L−

η ⋅
τ ≈

 ⋅ κ
+ σ ⋅ ⋅ + σ + ⋅ 

                        (8) 

where η  is the solution viscosity. The eqns. (5-8) of the surface relaxation yield the adequate 

description of 0S(t) / S∆  (Fig. 2 c) and provide the values of the elastic constants κ and K as 

fitting parameters (Fig. 5). 

 

Discussion 

Bending rigidity of curved lipid bilayers is decreased by DNA adsorption.  As seen in 

Fig. 5, the vesicle membrane bending rigidity κ and the compressibility modulus K decrease 

with increasing total concentration of the DNA fragments [Dt]. For instance, at E = 30 kV/cm 

and [Cat] = 0.25 mM, the membrane-bound DNA in the concentration range 

b0 [D ]/µM(bp) 40≤ ≤ , i.e., b0 N 118≤ ≤  DNA fragments per one vesicle, leads to a decrease 

of κ in the range 2017 /(10 J) 13−≥ κ ≥  and of K in the range 1.2 K /(N / m) 0.83≥ ≥ , 

respectively.   
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Fig. 5 The bending rigidity κ (a) and the stretching modulus K (b) of the lipid membrane of the vesicles at [Cat] 

= 0.25 mM as a function of the total DNA concentration [Dt] at the two field strengths: E / (kV/cm) = 30 (□) and 

40 (◇), respectively, calculated from the 0S(t) / S∆ - relaxations in Fig. 2 (c). Other experimental conditions as in 

the legend to Fig. 1. 

 

The decrease of κ and K with increasing [Db] is consistent with the well known fact that 

adsorbed polymers always reduce the membrane stiffness, hence here κ and Κ are reduced by 

the adsorption of DNA-polymers.35,36 In the presence of DNA the membrane is thus more 

flexible and the vesicle can be easier elongated than without adsorbed DNA. Interestingly, the 

relative refractive index m = nlip / nmed of the vesicle membrane in the electric field decreases 

with increasing DNA concentration (Fig. 4), concomitant with the decrease in OD0 at E = 0 

(Fig. 1 b). The decrease in m in the electric field is consistent with a softening of the 

membrane due to entrance of water molecules into the head group region of the membrane 

lipids.37   

Ca2+ adsorption increases the bending rigidity of curved lipid bilayers. The 

adsorption of Ca2+-ions on the surfaces of the two membrane leaflets of the bilayer 

membrane dramatically increases the values of κ and K. For example, at [Cat] = [Dt] = 0 and 
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at E = 30 kV/cm, the compression modulus K = 0.225 Nm-1 and the membrane bending 

rigidity 203.5 10 J−κ = ⋅  are relatively small and compare well with reference values.38 In the 

presence of [Cat] = 0.25 mM and at [Dt] = 0 , the elastic parameters dramatically increase up 

to K = 1.2 Nm-1 and 191.71 10 J−κ = ⋅ . The rigidifying effect of the Ca2+-adsorption on the 

lipid membrane can be rationalized by the ‘electrostatic bridges’, i.e., localized complexes 

between several negatively charged PS-head groups and Ca2+-ions on the membrane surface, 

concomitant with the increase in the hydrocarbon chain order of membrane lipids.39,40 

Differently to K and κ, the initial membrane surface tension 4
0 2.1 10 N / m−σ = ⋅  at [Cat] = 

[Dt] = 0 decreases to  8
0 1.0 10 N / m−σ = ⋅  for [Cat] = 0.25 mM and [Dt] = 0. The decrease of 

0σ  in the presence of Ca2+-ions can be rationalized by the reduction of the electrostatic 

repulsions between the negatively charged PS-head groups of lipids by the adsorbed Ca2+ - 

ions.  

 
Fig. 6 The relaxations of the relative increase 0S / S∆  in the membrane surface area for the two field strengths E / 

(kV/cm) = 30 (ⅹ) and 40 (□) at [Dt] = [Cat] = 0. Other experimental conditions as in the legend to Fig. 1. The 

solid lines represent the membrane stretching and smoothing of undulations with the overall time constant τI = 

0.7 µs. At E = 40 kV/cm, the new (electroporation) phase II 0S (t) / S∆  starts at about 4 µs after the start of pulse 

(indicated by “ME” and the arrow). This second relaxation phase reflects the formation of membrane pores. The 

time constant is estimated τII = 3.5 µs and the amplitude is IIS 0.25 S∆ ≈ ⋅ ∆ , i.e., about 25% of the total increase 

in the 0S / S∆ . 

 

The dependence of K and κ on [Cat] can hardly be justified by a Ca2+-induced gel-

liquid crystalline phase transition in the vesicle membrane,41 because the transition 
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temperature of  the PS:2POPC  lipid mixture is lower than the working temperature 293 K 

(20°C).42 

The electric field decreases the bending rigidity of curved lipid bilayers. The data in 

Fig. 5 suggest that κ and K decrease with increasing field strength E. The decrease in κ and K 

with increasing E is hardly due to membrane electroporation (ME).2 In vesicles, the fraction 

of membrane pores usually does not exceed 1-2% of the total membrane surface area S0.27 As 

seen in Fig. 6, at E = 40 kV/cm, the formation of membrane pores only starts about 4 µs after 

the field application, as a delayed new kinetic phase. At E = 30 kV/cm, the appearance of the 

electropores is still not noticeable. Therefore, all the calculations of the κ and K parameters 

from the increase ∆S in the projected area are not affected by ME. On the same line, 

analogous to the field-dependent decrease in the relative refractive index m (Fig. 4), the 

decrease in κ and K at larger fields (E = 40 kV/cm) is caused by the loss of the membrane 

stiffness due to the field-driven entrance of water into the surface of the outer layers of the 

vesicle pole cap regions. 

 

Conclusion 

In summary, the electrooptic relaxation data of PS:2POPC lipid vesicles of radius a = 

150 ± 45 nm indicate that the bending rigidity κ and the compression modulus K of curved 

lipid bilayers decrease by DNA adsorption. The decrease in κ and K is rationalized by the 

field-induced entrance of water into the outer layer of the membrane bilayer. Differently to 

DNA adsorption and to the presence of fields, the adsorption of Ca2+ -ions to the negatively 

charged lipids of the membrane causes a dramatic increase in the membrane stiffness. 

Membrane electroporation is only ‘visible’ at the field strengths E ≥ 40 kV/cm, characterized 

by a delay time of ≤ 4 µs. 
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Glossary 

 

a  vesicle radius                     

[Cat], [Dt]     total concentration of Ca2+ and DNA, respectively 

E                        external applied field 

[Db]                   concentration of bound DNA in the pellet 

κ, K  bending rigidity and stretching modulus of the membrane, respectively 

[Lt] total lipid concentration 

m = nlip /nmed relative refractive index of the vesicle membrane 

ME membrane electroporation 

nlip, nmed  refractive index of the lipid membrane and medium, respectively 

OD0                    initial optical density at the wavelength λ = 365 nm  

p axis ratio of the elongated vesicle 

PS                       phosphatidylserine 

POPC                 palmitoyl-oleoyl-phosphatidylcholine 

σ0  initial lateral tension of the membrane 

tE pulse duration 

VET                  vesicle extrusion technique 
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