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1 Introduction

We experience our environment through different sensors that deliver large amounts of
visual, acoustic, and other sensory data. But for organizing our knowledge and commu-
nicating about the experience we abstract from the sensory data and assign symbols.
Computer systems that aim at extracting knowledge from sensory data and/or commu-
nicating with a human user or a second computer system need some kind of symbolic
representation, too. The visual sensory data that is available for a computer system is
constituted by digital images and the task of assigning symbolic knowledge to them is
called object recognition.

But what is an object? The answer to this rather philosophical question is given prag-
matically here: An object is something that carries an object label. Either the nose within
a face, the face itself, the whole person or even the person walking in the forest or
standing at the street border are thinkable object units. It depends on the recognition
task, which object unit is suited and whether it is necessary to represent several levels
of object information. The recognition task also determines, whether instances of one
object class, like John’s and Helen’s cup, are differentiated or summarized by the unique
class label.

Before an object label can be assigned an assumption about the affected image data
has to be made. It depends on the characteristics of the image material, whether one
centered and image filling object is assumable or the detection of perhaps more than
one object is part of the recognition process. Furthermore, many approaches to object
recognition rely on segment information for determining the object label, others exploit
the image data without information about the detailed object boundaries. Concerning
the subsequent use of the object recognition results, the label and, in case of more than
one object is visible, the position constitute the minimal information for communicating
about the object. Additional tasks, like estimating the object position in three dimen-
sions or grasping it, require the complete information about the object boundaries. The
very general term of object recognition denotes all systems providing any kind of ob-
ject labels, independent of whether object detection and segmentation are part of the
system, required from preprocessing steps or not addressed at all.

Within the decades of object recognition research many approaches are developed
and applied to more or less specific tasks. But the enormous human abilities of recog-
nizing objects in arbitrary environments remain unrivaled.

1.1 Combining Simple Methods

G. Wong and H.P. Frei published a paper in 1992 that they called ’Object Recogni-
tion: the Utopian Method is Dead; the Time for Combining Simple Methods Has Come’
[Wong 92]. This paper is representative for a significant part of the object recogni-
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1 Introduction

tion community that proposes the explicit postprocessing integration of results delivered
from several independent modules for solving recognition problems.

Combining several unreliable modules in order to get more reliable results is done
since the first days of computing [Neum 56]. The usage of vacuum tubes as primary
logic components of computers at that time, with a lifetime in the orders of days to
years, caused the necessity to make explicit consideration for reliable computing in the
presence of failure.

In the context of object labeling and segmentation the diverse modules are also more
or less reliable in the sense that they generally produce both, correct and false results
with regard to the recognition task. If the individual modules differ internally by exploi-
ting diverse features and/or by following different recognition strategies, it is justified
to assume the failures to be mainly uncorrelated. A failure of one module can then
be probably compensated by modules providing correct results within a combination
scheme.

Modules used for integrating their resulting object labels by a general purpose combi-
nation scheme are required to share a common object label alphabet. The combination
result is the element of the set of labels that is mostly supported by the individual mo-
dules. It is either right or wrong.

The situation is not comparably clear for two dimensional segmentation results. A
boundary, that is supported by more than one module can be assumed to be more re-
liable than others. But it is very unlikely that two segmentation approaches produce
results that cover each other exactly. Segments will at least differ by several pixels, as
also segments generated by different humans do. Coping with this effect requires an
unprecise combination scheme. Additionally, different segmentation approaches deliver
coarser and finer segments, dependent on the segmentation strategy and parameter set-
tings. The subsumed finer segments of one module may support the outer boundary of
a coarser segment delivered from another module. But this constellation does not finally
clarify, how much objects are involved and which of the segments represent correctly
an object region. A combination scheme for two dimensional segment information is
desirable but its realization is not as presaged as the integration of discrete object label
information.

The main advantages of combining explicitly rather small systems instead of genera-
ting more and more complex holistic ones are the simplicity of the individual modules,
the higher transparency of the decision process, and the flexibility in exchanging mo-
dules or adding new ones to the system. Easy exchangeability becomes important,
if the recognition task changes and modules are involved that base on task specific
assumptions. Adding new modules to the system is desirable, if either the system quality
has to be further improved, the image context changes, or the set of objects to be
recognized is extended by instances providing additional object characteristics.

1.2 Recognition Strategies

The recognition strategy roughly separates the existing systems into two categories
[Tous 78]: Systems that start processing with the raw image data and go further to
higher levels of abstraction are called data driven or bottom up systems. Those that
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1.3 Object Context Knowledge

start from expectations or domain specific knowledge and search for the fulfillment of
this abstraction within the image data are called conceptually driven, model based, or
top down systems.

High level knowledge and expectations respectively are thought to be essential for
successful object recognition approaches. Already in 1982 Dana Ballard and Christopher
Brown wrote in the introduction of their book ’Computer Vision’ [Ball 82]:

We perceive a world of coherent three-dimensional objects with many in-
variant properties. Objectively, the incoming visual data do not exhibit
corresponding coherence or invariance; they contain much irrelevant or
even misleading variation. Somehow our visual system, from the retinal
to cognitive levels, understands or imposes order on chaotic visual input.
It does so by using intrinsic information that may reliably be extracted from
the input, and also through assumptions and knowledge that are applied at
various levels in visual processing.

Conceptually driven systems exploiting high level knowledge have to be integrated
with data driven generated information. A problem with solely conceptually driven
systems is the effect of hallucination. If the expectation for an object is very dominant,
the image structure that fits best will be identified, even, if there is nothing relevant in
the scene. This problem can be addressed by defining constraints for the image material
concerning the occurring objects, their positions, and their number. For more generally
applicable systems prior high level knowledge is applied to intermediate data driven
results for supporting or disputing them, for clarifying ambiguities, or for extending
incomplete results.

1.3 Object Context Knowledge

An important special kind of high level knowledge is context. The term summarizes
knowledge that is based on relations between several instances rather than on the in-
stances themselves. For example, if a hypothesis for a nose arises, the object below
is likely to be the mouth. Besides those explicitly defined context constraints between
high level symbols, also context information incorporating interdependencies between
lower level features, like the colors of neighbored regions, may be exploited. ’The use
of context in pattern recognition’ [Tous 78] is on the one hand an old idea of the 70’s,
but on the other hand identified by Jain et al. [Jain 00] as one of the frontiers of pattern
recognition in the year 2000:

It is well-known that the human recognition process relies heavily on context,
knowledge, and experience. The effectiveness of using contextual informa-
tion in resolving ambiguity and recognizing difficult patterns is the major
differentiator between recognition abilities of human beings and machines.

The usage of object context knowledge also for improving the image segmenta-
tion step was already proposed by Feldman and Yakimovsky in 1974 [Feld 74]. Their
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1 Introduction

’semantics-based region analyzer’ does segmentation in the form of region growing al-
ternated with object label assignment to the intermediate segment hypotheses. For
this assignment a rule based system exploits image features, like the mean color, and
contextual object knowledge constraints, like ’the heaven is above the street and their
boundary is rather horizontal’. Candidates for further region growing are neighbored
segments that carry the same object label and provide a ’weak boundary’ concerning
image feature differences. Main parts of this early system are realized by explicitly for-
mulated task specific rules and thresholds that have to be reformulated in the case of
a changing task. The strict coupling does not allow the integration of additional mod-
ules. Nonetheless, the authors show the capabilities of the strategy to integrate data
and conceptually driven aspects exploiting knowledge about objects and their context
for simultaneously improving both, object segmentation and labeling.

1.4 Proposed Integrating Framework

Following the presented considerations about object recognition and segmentation sys-
tems leads to the conclusion that the integration of several modules that independently
rely on different recognition and segmentation strategies is a promising approach for
realizing successful recognition systems. These systems unify the exploitation of mani-
fold general and task specific knowledge with the simplicity of individually implemented
recognition strategies. Integrating independent image data based modules with those
that deliver additional information dependent on preliminary generated hypotheses, like
modules exploiting object context knowledge, results in an architecture for such a sys-
tem as shown in Fig. 1.1.

The heart of this architecture constitutes the integrating component that has to cope
with several kinds of available segment and object information. Besides the visual data
based results the integration of additional information that is derived from intermediate
results has to be provided. I propose an implementation for the integrating compo-
nent that relies on generally applicable mechanisms and is, thereby, independent of the
recognition task and the participating modules. The implemented generally applicable
integrating module together with the proposed system architecture constitutes a frame-
work for realizing an integrated recognition system for a given task that has to be filled
with suitable task specific modules.

Many modules that implement different recognition and segmentation strategies are
trainable or adaptable to different tasks and, thereby, reusable. The generally applicable
modules may be complemented by modules exploiting special characteristics of the task.
The modules are, generally, different in their value for a definite task, concerning the in-
dividual evaluation of their results, but also concerning their combination with other
modules. The choice of modules is leaded by the idea of integrating as many aspects
as necessary, while keeping the whole system as small as possible. The finding of the
optimal choice of modules for fulfilling the given recognition task is supported by the
implemented integrating modules. It handles segments and object labels delivered by
several modules without making general constraints concerning the number of elemen-
tary modules which allows flexible changes within the set of participating modules. This
flexibility is not only indispensable during the setup of a new system for a given task,
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Figure 1.1: Architecture of an integrated object recognition system.

but supports later refinements by taking into account newly available modules.
The requirement of integrating object label and segment information of existing mod-

ules necessitates the integrating module to handle several kinds information. There,
generally, may occur labels concerning different object units that are either accompa-
nied by segment information or not. Additionally, segment information that is not as-
signed to object information may be available. The integrating modules accounts for the
different kinds of valuable object and segment information within its internal data rep-
resentation. In representing the fully detailed available information, the system remains
open for equitably integrating additional information, as it is delivered from either very
time consuming processes or the modules exploiting higher level knowledge, like object
context.

Integrated object hypotheses are generated by analyzing the available represented
information. However, all the occurring object and segment information has to be as-
sumed to contain more or less failures leading to disagreements within the represented
information. These disagreements are considered by the interpretation process for gen-
erating object hypotheses that is part of the integrating module.

The proposed integrating module enables the realization of object recognition systems
that integrate manifold available information by the flexible reuse of existing modules.
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1 Introduction

1.5 Outline

The outline of this thesis is as follows: Before starting the integration topic, I introduce
some principles of image segmentation, on the one hand, and object recognition, on
the other hand. The following Chapter 2 starts with an overview of image segmenta-
tion approaches. Segments group pixel information to meaningful units and, therefore,
constitute the basis for many object recognition systems that aim at determining object
regions in addition to the object labels. I present some techniques in more detail that
are used within the realized integrated recognition systems of this thesis.

Chapter 3 does so for the recognition part. First some basic concepts of object
recognition systems, object descriptions, and general purpose object label combination
schemes are described shortly. Then, I present the exemplary individual modules that
provide the basic object information for the realized integrated systems. Modules that
rely on intermediate object hypotheses instead of basing on raw image data or seg-
ments are the topic of the final section of this chapter. Those modules deliver additional
information about object labels and the evaluation of object hypotheses.

Chapter 4 describes the implementation of the proposed general integrating module.
Segmentation results and different kinds of object information are stored within a unified
common representation. The common representation builds the backbone for generat-
ing intermediate hypotheses and for integrating additional object information that leads
to the final hypotheses.

The applicability of the general framework for realizing integrated systems that ad-
dress different recognition tasks and rely on different recognition modules is shown by
two examples. The first system deals with baufix R© elements, which is a wooden con-
struction system for children. The set of elementary pieces consists of colored bolts,
nuts, and further connection pieces that can be used for constructing manifold assem-
blies. The baufix R© domain is the common topic of the research projects within the
Collaborative Research Center (SFB) 360 at Bielefeld University, see Appendix B for de-
tails. The second application of the integrating framework is the interpretation of scenes
containing objects of an office domain. Here the determination of the object region is
challenging due to the generally rich surface structure, see Appendix C for details. The
realized systems and their quantitative results are described in Chapter 5.

Chapter 6 gives a summary and conclusions drawn from the realized systems.
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2 Image Segmentation

Image segmentation is an essential part of many image processing systems. The re-
presentation in the form of segments decreases the amount of data to be handled by
the following processing steps, while preserving as much image information as possible.
The segmentation process is demanded to divide the image into semantically meaningful
units, which are objects or parts of them and background information. These units build
the input data for subsequent processing steps, like recognition or tracking approaches.

Due to its importance to image processing many segmentation approaches have been
suggested during the last decades (see, e.g., [Fu 81], [Pal 93], [Skar 94], [Chen 01],
[Frei 02], [Cufi 02] for reviews), but, nonetheless, the problem of image segmentation
remains an active field of research.

In the following a short survey of the basic concepts and ideas concerning segmenta-
tion approaches is given, before I present some chosen algorithms in more detail. Those
are the ones that are used within the systems presented in Chapter 5.

2.1 Basic Concepts

A set of segments S constitutes a compact description of the image I. It is character-
ized by a set of disjunct segments and a homogeneity prediction P that holds for each
segment, but not for the unity of two neighbored ones.

Given the set of segments S = (S1, S2, ..., Sn), it is

S1 ∪ S2 ∪ ... ∪ Sn = I ∧
Si ∩ Sj = ∅, ∀i, j ∈ {1, ..., n} ∧ i �= j

The homogeneity prediction P is defined as a bivalued function on the segments. For
a segmentation S it is:

P (Si) = true, ∀i ∈ {1, ..., n} ∧
P (Si ∪ Sj) = false, if i �= j ∧ Si neighbor of Sj,

The process of segmentation is generating a set of segments that fulfills the homo-
geneity requirements. Generally, there are several possibilities of defining the homo-
geneity criterion. The heart of such a definition is a distance measurement that has to
be chosen adequately given the set of features to be used. Applying a threshold to the
distance measured between, for example, the mean feature values of two segments is
the simplest and commonly used method for generating a homogeneity criterion based
on the distance function. The detailed formulation of the homogeneity predicate de-
pends on the segmentation task, the chosen segmentation strategy and, finally, on the
selected features and the appropriate distance measurement function. Some approaches
are in common use and will be presented in the following.
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2 Image Segmentation

2.1.1 Image Data Driven Features and their Distances

The quality of the segmentation result rises and falls with the calculation of suitable fea-
tures from image data and the definition of the distance measurement and homogeneity
criterion, respectively. Some basic ideas for features in common use and their distance
measurements are given in the following.

Pixel Values The information basically given within image data is the grey level or color
value of each pixel. Exploiting the distance between pixel values for measuring homo-
geneity therefore is the most conventional method. Defining City Block or Euclidean
distance on grey level values is straightforward. Dependent on the chosen segmenta-
tion approach the criterion is defined for finding either a homogeneous area becoming
one segment or the discontinuity in homogeneity dividing two segments.

From the psychological research concerning color perception, see, e.g., [Wand 95],
[Kais 96] and [Webs 96], one knows how important color impressions are for human
perception. Fig. 2.1 shows an example from the baufix R© scenario that shows the dis-
criminative power of color information in comparison to grey level values for segmenting
the upper bolt and the cube.

Figure 2.1: Example from the baufix R© scenario for the discriminant power of color in
comparison to grey level values for segmentation purposes.

Color comes into the focus of automatic segmentation research within the last years
due to the fact that that increasing computational power makes an increased amount
of data treatable. Instead of one grey level value, three coordinates related to a color
space definition are commonly used for representing one color value. Thereby a variety
of definitions for color spaces exist. A detailed presentation and discussion of common
technical color spaces can be found in [Plat 00], [Fole 93], [Wysz 82].

From the technical point of view the basic color space is the RGB. Cameras possess
sensors that are mostly sensitive for three different wavelengths within the light spec-
trum, corresponding to red, green, and blue. Also monitors realize the appearance of
colors over a combination of red, green, and blue components. The RGB color space
therefore is widely used for color image representation. Other color spaces that result
from linear transformations of the RGB are used for special purposes, like the Y UV
for PAL and Y IQ for NTSC video standard. The linear color spaces have in common
the high mutual dependence between the components. This necessitates to take into
account three or, at least, two of the color components for color comparisons.
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2.1 Basic Concepts

Besides the linear transformations, there are several non linear color spaces, like the
HSI or HSV that represent the hue, saturation, and intensity value, respectively, within
separate components. The non linear color spaces need more computational effort for
conversions and provide essential and non removable singularities. However, the com-
ponents are rather independent from each other. That makes an analysis with a reduced
number of color components more promising.

The CIELAB and CIELUV spaces are defined according to human color percep-
tion. The Euclidean distance calculated for the three dimensional color vectors of two
pixels corresponds to human color distance perceptions. The meaningful definition of a
color distance measurement distinguishes the CIE spaces from all the others.

Due to the complexity of the non linear transformation of color information to the
CIE spaces, often the linear spaces or the HSV or HSI are used for segmentation.
Many applications use standard distance measurements applied to the color components
in spite of the lack of comparability to human color perception due to their generality and
simplicity. Rehrmann [Rehr 97] uses the HSV together with manually defined distance
tables, instead of a closely defined distance function.

Visual Texture Based Features Dependent on image characteristics also spatially ex-
tended patterns, called textures, may serve for the segmentation process. Fig. 2.2 gives
some examples.

Figure 2.2: Example images with textures segments. (Left image from the texture
lab database [Rand 99], right one origins from the database presented in
[Mart 01])

An accurate definition of visual texture can not be found in literature, but it is common
to call a spatial extended pattern generated by repetition to be texture. Wilson and
Spann [Wils 88] formulate this as: ’They are spatially extended patterns based on the
more or less accurate repetition of some unit cell.’ This formulation shows that neither
the kind of unit cell nor the manner how it is repeated is clearly defined. Especially for
natural images the repetition process often shows irregularities and fluctuations.

Due to its occurrence in natural scenes as well as in scenes containing artificial ob-
jects texture analysis is a longterm and active field of research. This covers research
concerning texture perception (e.g. [Jule 65], [Jule 81], [Gibs 87], [Saun 03]) on the
one hand and technical approaches for automatic texture analysis and synthesis (e.g.
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[Zhan 02b],[Chan 05]) on the other hand.
Automatic texture analysis searches for valid features that are characteristic for the

special texture and are suited for discriminating different textures. Gonzalez [Gonz 87]
classifies the approaches to texture analysis into three classes, the statistical, structural,
and spectral approaches. Statistical approaches rely on the moments of the grey level
distribution, while structural approaches rely on finding the texture elements and the
rules of their repetition [Hara 79]. Spectral analysis exploits the periodic characteristic of
texture by the projection onto a suitable set of basis functions, like Gabor functions or
wavelets. Each of the basis functions is concentrated in a different area of the frequency
domain. For a comparative study of various types of functions see [Pich 96], [Rand 99].
Also approaches using combinations of statistical and spectral features are proposed
(e.g. [Clau 04]).

Besides standard distance measurement functions applied to the components of tex-
ture feature vectors, special multi dimensional distance functions are are designed and
optimized for proceeding segmentation based on texture features, see e.g. [Do 00],
[Abba 03].

In spite of the longterm and intensive research on texture, the progress in texture
analysis has been very slow, because natural textures turned out to be highly variable.
Nonetheless texture is an important feature for image segmentation and one way of
its successful exploitation is combining it with other features, like contour [Mali 01] or
brightness and color [Mart 04] for natural image segmentation.

2.1.2 Approaches for Segment Generation

The great amount of different approaches to determine segments are divided roughly
into three classes [Fu 81]: edge detection, region based approaches, and clustering,
where region and edge based approaches work within the image domain, while cluster-
ing is accomplished within the feature domain.

Region Based Approaches to image segmentation generate segments by merging re-
gions according to the defined homogeneity criterion. Starting from a set of primitive
segments merging is done until the homogeneity criterion is violated. Within the clas-
sical approaches to region growing just local information, like the mean color values of
segments, are compared to each other. Those approaches are simple and fast in com-
putation (e.g. [Zuck 76],[Adam 94]). Problems arise in choosing suitable starting points
for the region growing process, the seeds. This choice often is decisive for the seg-
mentation result, as well as the merging sequence. Additionally, adaptions of the mean
feature value of a segment that grows along the direction of a slight, but monotone,
change in feature values lead finally to segments that cover very different pixels, called
the chaining effect. For coping with those aspects, split-and-merge-approaches take the
whole image as their starting point. The algorithms consist of a sequence of alternat-
ing splitting steps, following a predefined strategy, and merging steps according to the
homogeneity criterion (e.g. [Fuka 80], [Rehr 98]).
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Edge Detection The complementary edge detection approaches base on the assump-
tion that abrupt changes of image features occur at the boundary between two seg-
ments (e.g. [Huec 73], [Marr 80]). Classically just very local information of a few pixels
is exploited in searching for these discontinuities. After identifying edge pixels they have
to be concatenated to boundary pieces by chaining [Rosi 89] or model approximation
[Kass 88, Leon 93]. For getting closed boundaries that correspond to object surfaces,
edge linking, or grouping techniques have to be applied to the mostly disconnected
boundary pieces, which is in general a challenging problem [Schl 01].

Due to the local information determining the boundary location the results are sus-
ceptible to noise and difficult to group to closed segments on the one hand, but they
preserve many details of the image, on the other hand. At image locations with low
contrast, for example, edge detection successfully extends region based approaches. In-
tegration of both strategies is done either by edge detection results taking influence on
the parameters of the region based algorithm or vice versa or by combining the inde-
pendently computed results within a postprocessing step. [Cufi 02] gives a survey and
a discussion of integrated approaches.

Using global information of the image for edge detection is the main idea of graph
based approaches to segmentation that deliver very promising results [Wu 93], [Cox 96],
[Shi 00], [Felz 98]. Here, a weighted graph is generated with nodes representing the
segments and edges representing the relations between the segments. Primitive seg-
ments are the individual pixels. The edge attributes are calculated based on spatial
neighborhood and feature based relations between the segments represented by the
participating nodes. Edge detection then becomes a partitioning problem. Global image
information is taken into account for defining the location of cuts within the graph that
correspond to boundaries of segments. Best results deliver the cut criterion proposed by
Shi and Malik in [Shi 00] that integrates the within-group similarity and the between-
group dissimilarity within one measure of dissociation. A disadvantage of this approach
is the complexity of the problem associated with high computational effort necessary for
getting results. But there are possibilities for simplifications conserving the main ideas
that accelerate the process noticeably for practical use [Shar 00], [Felz 98].

Clustering Features Data clustering techniques are in common use for feature space
analysis (see [Jain 99] for a review). Clustering techniques work primarily within the
feature space. They identify areas within the feature space that are dense according
to the defined distance measurement. The elements of each area are assigned to their
representative or a class label. The reprojection of the quantized feature space to the
image domain delivers an intermediate label image, whose segmentation is done by
applying a region based approach, as described above.

Most clustering techniques are either hierarchical or they do iterative square-error
clustering [Jain 00]. Hierarchical methods aggregate or divide the data based on a pro-
ximity measure comparable to the region based segmentation approach in the image
domain. Iterative square-error clustering methods aim at finding a partition that mini-
mizes the within-cluster scatter or maximizes the between-cluster scatter. The overall
optimal solution to this problem is not computationally feasible due to the fact that
all possible partitions has to be tested. Therefore, several simplifications and heuristics
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have to be introduced involving the loss of the global optimality. Parametric techniques
rely on prior knowledge about the number of clusters or make assumptions about the
shape of the clusters. Non parametric methods regard the feature space as an empirical
probability density function, whose maxima correspond to dense areas in the feature
space. A cluster is associated firstly to each mode of this probability density function.
The local structure of the feature space determines the final localization and form of
the cluster [Robe 97], [Coma 02]. Practical problems arise for the reprojection of the
clustered data to the image domain in the form of small and fragmented regions that
have to be handled either by smoothing and/or by integrating image domain knowledge
into the clustering process [Coma 02], [Makr 05].

2.1.3 Integrating Task Specific Knowledge to Segmentation

The concepts of feature distance measurements and segmentation approaches, as de-
scribed above, are principally applicable to many segmentation tasks. But task specific
knowledge is necessary for choosing the appropriate features and algorithmic strategies
in order to achieve good segmentation results. Parameter settings like, for example, the
threshold for the distance function or the number of feature values to be calculated, are
mostly optimized based on a set of images that is characteristic for the task.

Using a classifier for representing a suitable definition of the homogeneity criterion is
a further possibility of integrating task specific knowledge The classifier is trained based
on a labeled testset in order to distinguish several classes based on the given features. As
described already for the unsupervised clustering an intermediate label image is gener-
ated, that has to be postprocessed. Using the classifier concentrates the task specific
knowledge mainly within the classification step. Further on, the classifier is trained
to implicitly represent an optimal homogeneity criterion, whose explicit formulation is
problematic due to complex features or different kinds of features [Mart 04].

Texture features often have high dimensionality and the definition of similarity mea-
sures is not straight forward. Therefore texture classification as the first step of seg-
mentation is in common use. [Turt 03] addresses the problem of defining classes of
texture within natural outdoor images by applying self organizing maps for the training
as well as for classification. A survey of proposed texture classifiers gives [Rand 99] and
comparisons of classification power are done in, e.g., [McGu 02], [Hori 04].

Domain specific knowledge like restrictions in the appearance of colors are exploited
in systems where pixel color values are classified and the resulting label image is seg-
mented in a following general step. [Heid 96a] uses a polynomial classifier for the limited
number of colors within the baufix R© scenario (see Fig. 2.1 and Appendix B). Classify-
ing pixel values to color classes is also done e.g. using histograms of a labeled testset
[Band 00] or applying constant thresholding in appropriate color spaces [Bruc 00] for
the RoboCup scenario. A special color tone that is important for many applications,
like face and gesture recognition, is skin color. Pixel color based methods are applied
for distinguishing skin or non-skin colors based on histograms or mixtures of Gaussians
[Raja 98b], [Sori 00], [Jone 02]. Those pixel color based approaches deliver very fast
and rather good results, as long as the environment remains constant. In the pres-
ence of changing illumination the appearance of colored surfaces changes, too, if no
corrections are done. Applying processes for conserving the appearance of color sur-
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faces in the presence of changing illumination is called color constancy. The human
visual system possesses several adaptation steps for implementing its color constancy
system [DZmu 86], [Webs 96]. For technical systems there are several approaches to
color constancy (see [Funt 98], [Barn 02a], [Barn 02b] for a survey and comparison). All
the approaches are computational time consuming. A possible way to cope with slightly
changing illuminations is the application of adaptive systems, where classification cri-
teria are adapted based on classification results of preceding steps (e.g. [Raja 98a],
[McKe 98], [Weig 04]).

Besides domain specific information about color appearances, also object knowledge
is usable for segmentation, if object classes can be distinguished based directly on pixel
information of rather small windows [Heid 00]. The size of these windows determine
then the final precision of the segmentation approach.

2.1.4 Model Based Top Down Segmentation

If prior knowledge about the desired segmentation result is available, expectations may
lead the segmentation process top down from a model to the data. Segmentation then
becomes a matching problem, where given templates are compared to the image, with
the aim of detecting the corresponding structure in the image and segmenting it from
the background. Templates may be either rigid or deformable. Examples for rigid mod-
els are image patches or shape models. In matching those templates directly to the
image data, the best position for the template in the image is determined and the stored
segmentation information is transfered to the image data. This requires the image data
to correspond rather exactly to the template. Xu et al. [Xu 03] use rigid image patches
or silhouettes and match those queries to the results of a multi scale data driven seg-
mentation approach. The process generally determines a set of data driven segments
to correspond to the query and to constitute the figure that is segmented from the
background. The quality of the final shape is given by the data driven segments.

Deformable or active models are characterized by the adaptation of model parame-
ters according to the image material during the matching process. This leads to good
segmentation results even in case of variations between the model and the image data.
However, an external process is needed to perform the initial localization of a model
within the image data, which is crucial for the success of the adaptation process.

Kass et al. [Kass 88] introduce active contours, which are parameterized basic con-
tour models that are deformed according to image material. [Yuil 92] uses deformable
prototypes based on several contour elements for segmenting the facial elements eyes
and mouth. The approach of active contours is extended in [Coot 95] to account for
object specific flexibility of a shape. The shape is represented by a set of points and their
geometric distribution. Knowledge about object specific flexibility is acquired during the
training phase of the system. [Mard 97] applies shape based deformable templates on
images showing multiple and partly occluded objects.

Another attempt to a flexible representation of shapes is to represent characteristic
parts and flexible combinations of these parts. In using exemplar based models for
those parts, model knowledge is automatically acquirable. [Bore 02] proposes an object
class specific segmentation approach based on fragments. Prototypical shape fragments
of an object class are determined in advance and stored together with a segmentation
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template. The image is assumed to contain one object of the given class that is al-
most centered. A finer localization of the object is part of the segmentation approach
that determines an optimal cover of the image with fragments. The final figure ground
segmentation results from summarizing the segmentation information accompanying
the fragments. A comparable approach to segmentation in combination with preced-
ing object part detection is proposed in [Leib 04a]. Both approaches apply models for
the characteristic parts that they acquired automatically in advance. Consequently, no
further adaptation to the image data is possible. The segmentation is given within the
model and the quality of the segmentation result is determined by the degree of cor-
respondence between the fragment and the image. Model based systems generally
deliver good segmentation results, as long as their assumptions are sustainable. Even for
cluttered images, where data driven systems tend to lose themselves in details, model
based approaches focus on their expectation and organize the chaotic input in direction
of their model. However, this leads to the tendency of hallucinations, which are false
positive results in the absence of the expected image content. Data driven verifications
avoid those effects.

Additionally data driven results refine model based segments in cases, where the re-
ality of image data goes beyond the model representation. [Bore 04] extends the frag-
ment based top down approach by integrating it with a multi scale bottom up process.
The final figure ground segmentation constitutes a compromise between model require-
ments and data constraints. A cost function determines the best compromise in evaluat-
ing the discrepancy between the segmentation hypothesis based on object knowledge
on the one hand and the homogeneity concerning the image data on the other hand.
Compared to the solely model based approach the results for unexpected part constel-
lations are improved by the influence of the data driven generated segments.

A combination of data driven generated segments and expectations given as de-
formable shape model is the topic of [Liu 01]. Starting point of the algorithm are seg-
ments determined by a general purpose color segmentation process. A deformable
shape model decides about merging neighbored regions and splitting others. The initial-
ization of the deformable model is given by the data driven segments, whose deficiencies
concerning under and over segmentation as well as smoothness of shape are corrected
by the model knowledge.

The preceding descriptions show that data driven generated segments are crucial ba-
sics for image segmentation systems, where sparse prior knowledge about the scene
makes the application of model knowledge difficult or where models are incomplete.

From the variety of existing data driven approaches those that are suited for a given
task has to be selected and parameterized. The concrete segmentation modules used
for the realized integrated object recognition systems of Chapter 5 are presented in the
following.

2.2 Choice of Color Image Segmentation Algorithms

When building systems, one needs to choose from the great amount of segmentation
approaches in the literature. But rather independent of the given task the selection of the
one method that works successfully is mostly impossible. However, due to the variety
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of approaches the integration of their results for improving the final segmentation is
promising. This idea is realized with the general integrating framework as described in
Chapter 4.

In the following, I will present those data driven color image segmentation approaches
that are used within the realized integrated systems presented in Chapter 5. The seg-
mentation modules are chosen to cover a wide range of the algorithmic spectrum in
order to provide results that complement each other.

2.2.1 Hierarchical Region Growing: Color Structure Code

The segmentation algorithm proposed in [Rehr 98] uses a hierarchical region growing
method that combines the advantages of local region growing with global split and
merge techniques in order to find homogeneous color regions. It is called Color Structure
Code (CSC). The algorithm is very efficient, running in linear time in the number of
image pixels. It is mainly based on a local region growing technique. Global information
makes it independent of the choice of the starting point and the order of processing. This
is achieved by processing the region growing in the frame of a hierarchical hexagonal
topology, formed by so-called islands. Islands of level 0 are formed from 7 pixels and
overlap each other so that each pixel is covered by two islands (see Fig. 2.3). Islands of
level l consists of 7 islands of level l − 1. They also overlap, means one island in level
l−1 is covered by two islands of level l. The island structure ends up in 1 island covering
the whole image.

island, level 0 island, level 1

image pixel

Figure 2.3: Hierarchical hexagonal island structure used for color structure code (re-
draw with variation from [Rehr 98]).

The hexagonal topology ends up in an intuitive topology, but brings problems in
application because of the orthogonal grid of image pixels. Therefore, the hexagonal
scheme is mapped on the orthogonal grid, as shown in Fig. 2.4. For simplicity the
hexagonal structure will be assumed for further explanations.

The segmentation algorithm consists of three phases. In the initialization phase the
values of the pixels within each island of level 0 are compared to each other according
to the defined color similarity measurement. Those pixels that are neighbored and have
similar colors are summarized to one code element, where a code element represents a
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Figure 2.4: Mapping of hexagonal island structure to cubic pixel grid [Rehr 98].

connected region in the image. After the initialization phase one or more code elements
are built up from the 7 pixels within each island of level 0, as shown in Fig. 2.5.

Island of level 0 and 

Initial code elements

dedicated pixels

Figure 2.5: Examples for initial code elements according to color similarity of pixels
assigned to one island of level 0 (redraw with variation from [Rehr 98]).

In the linking phase code elements of level l + 1 are generated separately for each
island of level l + 1 by taking into account the associated code elements and islands of
level l, as depicted in Fig. 2.6.

level l

level l+1

Figure 2.6: Linking of code elements (redraw with variation from [Rehr 98]).

Code elements of level l are linked, if the regions represented by them are neighbored
and of similar color, analogous to the criterion applied in the initialization phase. Within
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the hexagonal overlapping structure code elements are neighbored, if they share a com-
mon sub region in their common sub island. See Fig. 2.7 for an illustration. On level 1
this implies that they share a common pixel. For measuring color similarity of two code
elements, the mean color values of the regions represented by the code elements are
calculated and compared applying the color similarity measurement.

2

r
r

II1 2

1

Figure 2.7: Two neighbored islands I1,I2 with their common sub island I (printed
bold) and the common sub region of r1 and r2 located within I. [Rehr 98].

The new code element of level l + 1 is stored together with pointers to the code
elements of the lower level from which it is generated. A homogeneous region within
the image then is represented by a tree of code elements where the root of the tree is
the highest level code element that is not linked to another element.

For region growing approaches that are based solely on local color similarity a chain
of neighbored pixels with smoothly changing colors causes the linkage of differently col-
ored regions. The CSC solves this problem in its splitting phase by exploiting the global
information stored within the island hierarchy. In the chaining situation two neighbored
code elements of level l+1 like r1 and r2 in Fig. 2.7 have mean colors that are not similar
enough to link them. Because of the smoothly changing colors, there exists a common
subregion within the common sub island in level l that is similar to both code elements
of level l + 1. If this situation is detected, one must partition the common subregion be-
tween the two differently colored regions, which means that a low contrast contour has
to be detected. This is done by recursively assigning common submode elements to the
one code element that provides a smaller color difference than the other. By doing this
along the code element tree the region boundary is found rather accurate and the con-
nectivity of the two regions is ensured. The described splitting allows to detect contours
with low contrast using the global information stored within the island structure.

Until now the definition of color similarity is still open. The original implementation
uses a scheme based on 48 thresholds within the HSV color space. The thresholds were
determined by analyzing examples. Heidemann [Heid 98] uses in his implementation
that is also used here the standard Euclidean distance calculated for RGB color values
and applies one threshold for parameterizing the segmentation procedure.

Fig. 2.8 shows an exemplary image from the office domain together with two seg-
mentation results delivered from differently parameterized CSC runs. The thresholds
for the Euclidean distance between the RGB color values are 15.0 (middle) and 25.0
(right), respectively. For the results shown here no threshold for a minimal region size is
applied resulting in many very small regions. It is obvious that the algorithm is able to
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identify the main structures of the image in locating segment boundaries at the object
boundaries. However, many small structures, like the image on the cup, result in rather
small segments that have to be summarized for analyzing the image content. Adapting
the threshold to a less strict homogeneity criterion results for the example in melting
the black part of the mouse pad with the blue background. This shows the difficulty in
defining those constant thresholds for region based segmentation approaches. Note the
segmentation boundaries within the color ramp at the lower part of the pad. Locating
boundaries within the area of slight changes is generally problematic, but the algorithm
solved this problem well.

Figure 2.8: Example image with CSC segmentation results for two color distance
thresholds. Euclidean distance between RGB color values is used with
threshold 15.0 (middle) and 25.0 (right), respectively.

2.2.2 Graph Based Segmentation Using the Local Variation Criterion

A graph-based segmentation algorithm exploiting a criterion measuring the local varia-
tion of an image region was introduced by [Felz 98]. The key aspect of the segmenta-
tion algorithm is defining a predicate for measuring the evidence of a boundary between
each two regions. This evidence depends on the intensity differences across the boun-
dary, on the one hand, and the intensity differences between neighboring pixels within
each region, on the other hand. Integrating these two measures allows, in principle, to
preserve details in low-variability image regions, while ignoring details in high-variability
regions. Fig. 2.9 shows an example with three perceptually distinct but non homo-
geneous regions that are separated well by the algorithm given a suitable parameter
setting.

For starting the segmentation procedure, the image data is represented within a graph
G = (V,E). G is an undirected graph with vertices v ∈ V , the set of elements to be
segmented, and edges (vi, vj) ∈ E corresponding to pairs of vertices. Each edge has a
corresponding weight w((vi, vj)) In this graph based formulation, a segmentation S is
a partition of V into components such that each component C ∈ S corresponds to a
connected component in a graph G′ = (V,E′) , where E′ ⊆ E. With other words, any
segmentation S of G = (V,E) is induced by a subset of the edges in E.

The pairwise region comparison predicate D(C1, C2) determines, whether or not there
is evidence for a boundary between two components of a segmentation. For taking into
account local characteristics of the data, the predicate compares an indicating measure-
ment for the occurring differences between the nodes within each component with an
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Figure 2.9: Example image with three perceptually distinct but non homogeneous
regions and result of graph-based color segmentation. Results are calcu-
lated using the parameters s=0.8 and k = 1000, k = 500, and k = 300
respectively. For parameter explanations, see text.

appropriate one concerned with the differences between the nodes of two components,
instead of applying any global threshold. Differences between two nodes thereby are
coded based on appropriate features and their distance function by the weight of the
connecting edge w((vi, vj)). Per definition a high value for w denotes a high difference.

For determining the measurement for the internal differences of a component C, the
minimum spanning tree MST of the component is determined. MST (C,E) denotes
the cheapest subset of edges that keeps the graph connected. The internal difference
values for the component C then is defined to be the largest weight occurring in the
MST (C,E):

Int(C) = max
e∈MST (C,E)

w(e)

The given component C only remains connected, if edges providing a weight of at
least Int(C) are considered.

The difference measurement for two components C1, C2 is defined to be the minimum
weight edge connecting the two components:

Dif(C1, C2) = min
vi∈C1,vj∈C2,(vi,vj)∈E

w(vi, vj)

If there is no edge connecting C1 and C2, Dif(C1, C2) is set to ∞. Taking into account
only the smallest edge weight between two components instead of a more intuitive
measure, like the median weight, simplifies the problem significantly: The problem of
finding the median weight would be NP-hard.

Evidence of a boundary between two components is given, if the difference between
the components, Dif(C1, C2), is large relative to at least one of the internal difference
values, Int(C1) and Int(C2):

D(C1, C2) =
{

true, if Dif(C1, C2) > min(Int(C1) + τ(C1), Int(C2) + τ(C2))
false, otherwise

The threshold function τ(C) is introduced to allow some external influence on the
region comparison predicate. Any non-negative function of a single component can be
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used. It causes the segmentation method preferring components with special character-
istics concerning, e.g., size or shape. Per default a normalization of the component size
is used:

τns(C) = k/|C|
This threshold function ensures that for small components there must be a high dif-

ference between the components in order to have an evidence for a boundary. The
constant k then sets a scale of observation, with increasing k the preferred size of a
component is increased, too. This does not imply that smaller components are not al-
lowed, but there must be an even stronger difference between them to get evidence for
a boundary.

An algorithm for calculating a segmentation S with components C1 ... Cr from an
input Graph G = (V,E) containing n vertices and m edges using the criterion D can be
formulated as follows:

1. Sort E into π = (e1, ..., em) by non-decreasing edge weight.

2. Start with a segmentation S0, where each vertex vi is located at its own compo-
nent Ci.

3. Repeat step 4 for q = 1, ...,m.

4. Construct Sq from Sq−1:
Let vi and vj denote the vertices connected by the q-th edge in the ordering,
i.e. eq = (vi, vj). If vi and vj are located at disjoint components of Sq−1 and
w(eq) is small compared to the internal difference of both those components, then
merge the two components, otherwise do nothing. More formally, let Cq−1

i be
the component of Sq−1 containing vi and Cq−1

j the component containing vj .

If Cq−1
i �= Cq−1

j and w(eq) ≤ MInt(Cq−1
i , Cq−1

j ), Sq is obtained from Sq−1 by
merging Cq−1

i and Cq−1
j . Otherwise Sq = Sq−1.

5. Return S = Sm.

For doing image segmentation with this algorithm it must be defined, which data
should be represented in vertices, edges and weights.

Felzenszwalb and Huttenlocher [Felz 98] define in their original implementation that
is used here the undirected graph G = (V,E) by generating for each pixel a vertex. Ver-
tices are connected by edges corresponding to the pixels of an eight neighborhood in
the image. The weight of an edge is calculated from the difference in intensity provides
by the connected pixels. The authors call this ’grid-graph’. Color images are handled
by independently segmenting each color plane and fusing the results by calculating the
intersection between the detected components. This procedure avoids the definition
of a color value distance function and turns out to be less susceptible to low contrast
edges, because each color channel has to provide low contrast to fail the edge. Two fur-
ther aspects concerning the practical use of the segmentation modules are the intended
preprocessing application of a Gaussian filter for smoothing that is parameterized by its
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standard deviation s and the implemented postprocessing step for avoiding small seg-
ments that is parameterized by a threshold m for the minimal segment size. Segments
that are smaller than the threshold are pixel wise merged with the most similar neigh-
bored segment.

The general graph cut algorithm is implemented to run in O(m log m) time, where
m is the number of edges in the graph. In this point the algorithms differs from most
graph-based approaches. For the application to image segmentation the number of
edges, m, is of the same magnitude than the number of vertices or image pixels, n,
resulting in the algorithm running in O(n log n).

Figure 2.10: Example image from the office domain (left) and segmentation results
delivered from the segmentation method proposed in [Felz 98]. Parameter
settings are k=150, s=0.8. Results without accounting for segment sizes
(middle) and with additional postprocessing using minimal segment size
threshold m=64 (right).

Fig. 2.10 shows an exemplary image from the office domain and the appropriate
segmentation results. The careful application of the threshold for the minimal segment
size reduces the amount of noise segments significantly. The algorithm was able to
segment the main object structures by locating segment boundaries correctly at the
object boundaries. The letters on the pad demonstrate an interesting effect. It would
be desirable for this task to handle them as one structure, comparable to the random
area in Fig. 2.9, and not to separate each letter out. For the example with the applied
parameterization some letters are summarized to one structure (upper left corner), while
others (upper right and lower right) constitute separate segments.

2.2.3 Feature Clustering Using Mean-Shift Algorithm

The mean-shift algorithm is a general non parametric technique for feature space anal-
ysis. Clustering following this approach works without prior knowledge about the num-
ber of occurring clusters and without making assumption about the feature distribution.
Clusters are located at dense areas within the feature space, where many instances of
feature vectors occur. They are identified from the feature probability density function
by determining areas of high feature probability.

The procedure is applied to color image segmentation by Comaniciu and Meer, pro-
posed in [Coma 97]. The significant colors of the image are identified as the centers
of dense areas within the color feature space. The available color information is ap-
propriately reduced and reprojected to the image plane for generating segments, see
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Sec. 2.1.2. Fig. 2.11 shows an example grey level image together with its histogram
approximating the feature probability density and the estimated cluster locations at the
modes of the function. The results of assigning the image pixels to one of the five
dominant colors is shown by pseudo color coding at the right side.
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Figure 2.11: Example for mean-shift segmentation. Left: Grey scale example image.
Middle: Histogram of grey values corresponds to probability density func-
tion. The five stars indicate the cluster localization done by mean-shift.
Right: Image pixel assignment to the significant colors determined by the
mean-shift approach.

The mean-shift idea was proposed in 1975 by Fukunage and Hostetler [Fuku 75],
generalized by Cheng [Chen 95] and further analyzed by Fashing and Tomasi [Fash 05].
The mean-shift procedure generally locates dense areas within the feature space by de-
termining the modes of the appropriate probability density function. There, the feature
probability is high and the gradient of the probability density function is low or zero. For
determining these areas a search window is located firstly randomly at feature vector x.
The algorithm aims at determining a vector, that is added to the central vector x and
thereby shifts the search window in the direction of the next mode of the probability
density function. The process works iteratively and ends, if the window is centered at
the location of the mode.

For starting the calculation, the search window has to be defined in its form and size,
before it is randomly located at the feature vector x. The search window Sx is demanded
to contain all feature vectors y near the central vector x up to a given maximal distance
threshold r.

|y − x| ≤ r ∀y ∈ Sr
x

By using, for example, the Euclidean distance applied to the d dimensional feature
vectors, the distance does not depend on the location of the vectors within the space
and the search window becomes a sphere of radius r.

The mean-shift vector µ(Sr
x) is determined based on the given probability density

function p as the expected value of the vector z = y − x

µ(Sr
x) = E[z|Sr

x] =
∫

Sr
x

(y − x)p(y|Sr
x)dy =

∫
Sr

x

(y − x)
p(y)

p(y ∈ Sr
x)
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2.2 Choice of Color Image Segmentation Algorithms

This value denotes the region within the search window, where the probabilities for
features vectors to be located is highest. The formula given above can be rewritten, as
shown in [Coma 97].

µ(Sr
x) =

r2

d + 2
�p(x)
p(x)

The mean-shift vector is proportional to the gradient of the probability density func-
tion and reciprocal to the value of the probability density function. If the center of the
search window is located near a mode of the density function, this results in already large
p(x) and small �p(x) leading to small shifts. Larger shifts occur, if the dense region is
located at the border of the search window.

The iterative algorithm for localizing a mode of the probability density function can
be summarized, as follows.

1. Choose the radius r of the search window.

2. Choose randomly the initial location of the window.

3. Compute the mean-shift vector and shift the search window by that amount.

4. Repeat step 3 till convergence.

For the image segmentation task, the feature space to be analyzed is the color space.
In order to get an isotropic feature space, calculations are done in the CIELUV color
space, where the Euclidean distance between two color values is perceptually motivated.
The steps necessary for image segmentation are:

1. Definition of segmentation parameters

The user has to set the parameter for the radius of the search window. Instead of
setting a constant value, it is set dependent on the visual activity in the image. Be-
cause for an image with large homogeneous regions, the radius is chosen smaller
than for an image with many textured areas. The radius parameter pr is set by
the user and determines the final color radius of the search window by multiply-
ing it with the normalized square root of the trace of the image covariance matrix
that is a measurement for the visual activity. The user has the possibility to set
some additional parameters. For the determination of significant colors, a thresh-
old for the minimum number of pixels generally supporting this color, Nmin and
a threshold for the minimum size of at least one connected component providing
this color, Ncon are accounted for. Additionally, a threshold for the minimal general
connected component size, Nreg, avoids the generation of too small segments.

2. Definition of the location search window

The initial location of the search window in the feature space should be close to a
high density region. To support this, about 25 locations within the image domain
are randomly chosen and examined. The mean color values calculated within
small neighborhoods of these locations are mapped into feature space. Chosen
for starting the algorithm is the feature point, where the sum of densities within
the search window is maximal.
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3. Mean-shift algorithm

The mean-shift algorithm, as described above, is applied to the selected search
window until the magnitude of the shift becomes less than a given threshold.

4. Removal of the detected feature

Feature values lying inside the final search window are removed from the feature
space and the pixels of the image domain carrying these features are discarded
for further processing. The pixels located within an eight neighborhood of con-
cerned pixels are additionally discarded, in order to account for artifacts probably
occurring at the borderline between two colors in the image.

5. Iterations

Repeat steps 2 to 4, until the number of feature vectors no longer exceeds the
given minimum number required for a significant color, Nmin, which implies that
no significant color remains.

6. Determining the initial feature palette.

For initializing the feature palette, the significant colors from those so far extracted
are determined. At least Nmin pixels must support the color and a significant
region containing at least Ncon connected pixels providing the color has to exist.
Extracted colors that are not significant are not accepted for the feature palette.

7. Determining the final feature palette.

All pixels are reallocated based on the feature palette. In succession pixels yielding
feature vectors inside the final search windows of a significant color are allocated
to that color, i.e., one value of the initial feature palette. After that, the search
windows are inflated to double volume. Pixels providing features of the extended
window and being neighbored in image domain to a pixel that is already assigned
to the appropriate class are allocated now.

For determining the final feature palette the mean value of all feature vectors
assigned to one class is taken. There may remain a few pixels unclassified. They
are mapped to the closest color in the final feature palette.

8. Postprocessing

Within the image domain all connected components with less than Nreg pixels are
removed. They are allocated to the majority color of their 3x3 neighborhood. A
smoothing step follows optionally .

The implementation of the segmentation algorithm used here, is mainly based on the
available original one of [Coma 97], but the interfaces are adapted to the locally used
inter process communication system and the local implementation allows the external
adjustment of the occurring parameters.

Fig. 2.12 shows an example from the office and the baufix R© domain and the segmen-
tation results delivered from the mean-shift approach, applying different color radius pa-
rameters. In the result images each color class is coded by one pseudo color tone. The
lower color radius and thereby smaller search windows leads to the results shown in the
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Figure 2.12: Example image from the office and the baufix R© domain and results of the
mean-shift color segmentation applying color radius parameter pr=3.0 and
pr=7.0, respectively. Other parameters are constant, Nmin=Ncon=648,
Nreg=64. Each detected significant color is coded by one pseudo color
tone.

middle of Fig. 2.12. The main object boundaries are mostly detected, except from the
rhombs within the baufix R© example, but there are always several segments represent-
ing inner structures of the object regions that have to be taken into account for object
segmentation. The number of color classes and the number of segments decrease with
increasing the color radius, as shown in the right of Fig. 2.12. Although, here also the
main object boundaries are detected and even less segments representing inner struc-
tures occur, single contours are not located as well as with the former threshold. For
example, the lower contour of the cup is mixed with the edge of the pad and the yellow
cube is merged with parts of the upper bar.

Generally, due to the image feature clustering approach, segments are assigned to few
globally comparable color classes. Subsequent color classification or other assignment
processes may benefit from this.

2.2.4 Image Segmentation by Pixel Color Classification

If the significant colors of an image domain are known a priori, this domain specific
knowledge can be exploited for segmentation, see Sec. 2.1.3. Under the additional
precondition that the illumination remains constant and thereby no significant changes
in the color appearances arise, an appropriate static classifier for color values can be
generated. The resulting label image is segmented by the comparably simple search for
connected components.

Segmentation by pixel wise classification was successfully applied to the baufix R© do-
main [Heid 96a], where the significant baufix R© colors are known a priori. A static poly-
nomial color classifier is trained based on a test set of appropriately labeled color val-
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ues and applied for pixel wise classification. After classification the resulting image is
smoothed within a 11x11 window by setting the central pixel to the color class that
holds the majority of pixels in the window. The smoothing reduces noise caused by
individual classification failures. Connected components are determined for the smooth
label image.

For the practical use of this approach to image segmentation the classification is not
explicitly calculated for each pixel. Instead a lookup table that contains an entry for
each occuring color value and the assigned color label is determined once in advance
and used for each segmentation procedure. Doing so the segmentation for an image is
reduced to generating the label image from the original via the lookup table, smoothing
it and searching connected components.

Under the assumption of constant conditions concerning occurring color tones and il-
lumination, this procedure delivers very fast results of good quality, as shown in Fig. 2.13.

Figure 2.13: baufix R© example image and results from pixel wise color classification
and and subsequent smoothing.

2.2.5 Perceptual Grouping of Contour Information

In contrast to segmentation systems that search for homogeneous areas providing sim-
ilar features, edge based segmentation identifies discontinuities in the feature distribu-
tion, see Sec. 2.1.2. Edges and corners are thought to play a role in human attention and
recognition mechanisms [Sano 98] and are used as basic features in technical systems
for segmentation [Cufi 02] and also for recognition systems, e.g., [Brau 98, Mali 87].

Candidates for edge pixels are identified from the image from analyzing the feature
distribution. Neighbored edge pixels are summarized to elementary contours that repre-
sent more compactly, for example, parts of an object boundary. Larger image structures,
like the surfaces of an object, will generally be constituted from several firstly discon-
nected elementary contours. For reconstructing them, appropriate contour elements
have to be grouped together.

The grouping process of elementary contours is motivated by the Gestalt laws that are
known for long terms in psychology [Wert 23], [Lowe 85]. Several approaches attempt
to make use of the Gestalt laws for designing the perceptual organization of technical
systems [Sark 94], [Kubo 00]. In [Mass 95], [Schl 01] a hierarchical grouping process for
elementary contours following the ideas of the Gestalt laws was developed, as shown in
Fig. 2.14.
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Figure 2.14: Hierarchy of contour based grouping mechanism (reprinted from
[Schl 01]).

The procedure of generating contour based hypotheses starts by detecting edge pixels
within an image. This is done by a standard Sobel filter after smoothing the images by
a median filter. Edges are thinned by applying a non-maximum suppression. After
binarizing using a hysteresis threshold edge pixels are identified. In order to reduce the
amount of data and to get to a more robust description the resulting edge pixels are
approximated by contour primitives, namely line and ellipse segments. Within a first
step, edge pixels are described by several, differently parameterized contour models.
The best fitting model is chosen within a separate second step according to an error
function based on the distances between parameterized contour model and edge pixels.
The contour models are in principle allowed to overlap each other, which implies that
one edge pixel may be approximated by one or more contour models.

These contour models are the basis for the following hierarchical process that groups
together disjunct contour models that are neighbored to each other. In order to con-
cretize the term of neighborhood or proximity, experiments with humans were done,
resulting in areas for the perceptual focus, that depends on the grouping task to be
done (for details s. [Mass 95]).

In the first step linear structures are searched for, i.e. pairs of line segments that are
neighbored and collinear and pairs of ellipse segments, that are neighbored and curvi-
linear, respectively. Additional pairs of neighbored contour models constitute proximity
groups. The basic contour models and the linear groups generated within the 1D level
are referred to as linear groups and treated equally in the following. On the 2x1D level
of the grouping hierarchy all linear groups are taken into account in order to identify par-
allel structures. Parallel structures often occur at the boundaries of rectangular shaped
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objects and therefore build the basis for finding these object surfaces in the following
step. The groups of level 2D are the closenesses. For identifying these all grouping
hypotheses of the lower levels are taken into account and a closed path via different
groups is searched for. A closed group represents an image segment, that is thought
to be handled as a whole, comparable to the segments resulting from region based
segmentation approaches. The elements of the upper level of the hierarchy which are
linearities of closenesses will not further be regarded here. For results of the hierarchy
based grouping process see Fig. 2.15.

Figure 2.15: Example image (left), contour approximation of edges as lines and curves
(middle) and results after perceptual grouping of contours (right).

The groups of level 1D are drawn in yellow, those of level 2x1D in blue and those of
level 2D in red, respectively. Notice, that higher level groups overwrite lower level ones
in this depiction. The curvilinearity of the bottom of the cup is described well, but it
was not possible to find the closed boundary of the cup, because of the great distances
between the contour models occurring due to bad contrasts within the original image.
On the other hand, the collinear group between the disc box and the bag describes a
non existing structure. Parallel structures are found well for the surface structures of
the remote control and the stick within the mug, but were not established describing
the boundaries of the disc box. The closeness groups found within the example image
describe several small and non interesting surface structures like the letters on the bag.
On the other hand, for example, the boundary of the mouse pad was found as a close-
ness. The mouse pad was thereby segmented as a whole from the ground, although the
surface is not homogeneous in color or texture.

In a postprocessing step the generated grouping hypotheses are evaluated by apply-
ing a Markov random field. Based on the great set of redundant grouping hypotheses
the globally most suitable hypotheses are rated high (for details see [Schl 01]) and may
be chosen by thresholding the evaluation value.

Fig. 2.16 shows another example from the office domain, where objects have com-
mon borders. The perceptual grouping here is able to identify the main object structures
as closed segments (red). But there are ambiguous solutions as can be seen on the right,
were the closeness hypotheses are extracted. Besides the segments belonging to the
pad and the cup respectively, there is also one including both objects into one segment.
In addition, the handle for the cup is described by several overlapping hypotheses, that
also overlap the hypothesis for the whole cup. The given evaluation of the closeness
hypotheses makes a first selection. Applying a threshold of 0.6 to the evaluation value
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Figure 2.16: Example image from the office domain and results of the perceptual
grouping segmentation process (middle). Closed structures (on the right)
divided into good (up) and less good (below) by applying a threshold of
0.6 to the evaluation value given.

(parameter setting derived from personal communication to D. Schlüter) leads to the
separation shown in the right part of Fig. 2.16. The closeness hypotheses shown in the
upper drawing are evaluated good, the ones in the lower image less good with respect to
the threshold. Nonetheless, ambiguous structures remain in principle independent from
the choice of the value for the threshold. Within the example the handle segment and
the cup segment are both evaluated with a value of 1.0. Processes, that incorporate the
closeness hypotheses of the perceptual grouping approach must be able to handle non-
disjunct results. The groups thereby differ from the strict definition of a segmentation
constituted by disjunct segments, given in the beginning of this Chapter.

For integrating grouping hypotheses with region based segmentation results, a pro-
cess for matching groups and region based generated segments is available, as described
in [Schl 98, Schl 00]. The matching results are used there for supporting the grouping
process of contours by region based generated segments, on the one hand, and for
complementing region based generated segments with more detailed contour informa-
tion. The matching process is mainly based on distance values, calculated between the
support points of the group and the boundary of the segment. A polynom classifier
is used for distinguishing, whether the group matches the boundary or a structure of
the individually generated segment or does not match at all. The matching process will
be applied for integrating groups with individually generated segments that is topic of
Chapter 4.

2.3 Summary

Any kind of image segmentation process aims at summarizing image pixel data to seg-
ments that are assumed to constitute a semantically meaningful unit. The representation
of an image in the form of homogeneous segments decreases the amount of data to be
handled by the following processing steps, while preserving as much image information
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as possible. As presented in the preceding sections, there exist many approaches to im-
age segmentation. They differ in the definitions of the homogeneity criteria that take
into account features from simple grey value to anyway determined object affiliation.
Further, the different processing strategies reach from local region growing based on
spatial nearest neighbor tests over global graph cut optimization to object based model
applications. Each approach exploits different image characteristics and requires more
or less specific knowledge about the task and the occurring objects.

From the amount of algorithms those that are suited for a given task has to be selected
and parameterized appropriately. Generally, due to the variety of approaches, individual
methods will fails, where others are successful and vice versa. Therefore, the integra-
tion of several individually generated segmentation results is a promising strategy for
achieving an improved final result. This idea is realized by the the proposed integrating
framework, as it is described in Chapter 4.

The recognition systems of Chapter 5 that are realized based on the integrating frame-
work uses the presented data driven color segmentation modules. They have been
chosen to cover a variety of different segmentation approaches in order to support a
successful integration.

As with segments also object information is derived from many sources that may
complement one another within an integrated object recognition system. Approaches
for object recognition are the topic of the following chapter.
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Object recognition is the part within the field of computer vision, that assigns symbolic
object knowledge to the image data. This implies that an object recognition system
interconnects low level sensory image data with high level symbolic object knowledge
represented within the system.

In the following section some basic concepts of object recognition are introduced. This
includes the problem definition and a discussion of the general components of an object
recognition system. Further, some paradigms for object knowledge representation and
acquisition are presented. As the last general aspect, some strategies for integrating
object labels from several modules are presented. This leads to improved recognition
results, if the assumption is justified that the failures of the individual modules are not
correlated to each other.

After the general aspects, some available recognition systems are presented. They fol-
low different recognition strategies and are used within the realized integrated systems
presented in Chapter 5.

3.1 Basic Concepts

Before addressing some general aspects in the field of object recognition, first, the defi-
nition of a recognition problem containing the demands for the information content of
the resulting object hypotheses, are discussed.

3.1.1 Recognition Task: Detection, Segmentation, and Labeling

The main information about an object that is expected to be delivered from a recognition
system is the object label. For characterizing and comparing systems their abilities of
distinguishing the elements of different object label alphabets is therefore commonly
used.

But besides object labeling also object detection and object segmentation are sub-
sumed by the general term object recognition. In analyzing and comparing recognition
systems one must take into account, whether detection and segmentation are done
within the system, or such information is assumed as a prerequisite, or this aspect is
not addressed at all. Of course, the requirements for the information content of an
object hypothesis depend on the predefined recognition task. Assume, for example,
the recognition task is to distinguish the different objects of an image database, like
the commonly used Columbia Object Image Library (COIL) [Nene 96]. Each image of
this database contains one centered object and provides a homogeneous background.
For this task, object detection and segmentation can be avoided, due to the constraints
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of the image material. The same situation occurs generally for all tasks, where an im-
age as a whole has to be distinguished from others, e.g. [Swai 91],[Mura 95],[Schi 96],
[Schm 97].

However, think of quality inspections for industrial constructional elements, where an
exact segmentation of the element shape is necessary to detect the differences from the
demands. It depends on the given constraints, whether the object must be detected
within the image first or whether knowledge about the object position is available from
the system design, like it is in e.g., [Khaw 96], [Stos 04]. Without exploiting prior knowl-
edge and for images containing more than one object, their detection is an essential part
of the recognition system.

An object region segmentation is not necessarily part of the recognition system, for
example, for systems that aim at verbal communication with the user concerning objects,
e.g., [Heid 05], [Haas 04]. Also for detecting given objects within other images which
is one possible application of content based image retrieval systems, detailed object
segmentation is mostly not necessary, e.g., [Smeu 00].

But for analyzing less restricted scenes, where, in principle, many objects may occlude
each other, object segmentations are generally needed. Final conclusions about the
number of objects within those scenes are solely possible based on the segmentation of
the object borders within the image. This situation is given, for example, for the analysis
of assemblies that is based on the recognition of their parts, e.g., [Khaw 96], [Bauc 02].

These considerations show that the term object recognition system is used for a sys-
tem that classifies a formerly detected and segmented region to represent a specific
object, as well as, for a system that generates object segmentation and classification
results from less restricted image material. For characterizing object recognition sys-
tems besides the object labeling also their assumptions and approaches concerning the
aspects of object detection and segmentation have to be taken into account.

3.1.2 General Components of Object Recognition Systems

Recognition systems are roughly distinguishable into two categories concerning their
recognition strategy [Tous 78]. Systems that start processing with the raw image data
and go further to higher levels of abstraction are called data driven or bottom up sys-
tems. Those that start from expectations or domain specific knowledge and search
for the fulfillment of those abstraction within the image data are called conceptually
driven or top down systems. As introduced before, both reliable data driven features
and knowledge based approaches are desirable and necessary for building successful
recognition systems.

The general components of an object recognition system, as identified by [Dick 99]
and shown in Fig.3.1 remain constant, independent of the applied recognition strategy.

Based on the image data, suitable features are extracted and groups of features are
generated. The chosen recognition strategy determines the details of the processes.
Data driven processing generates groups based on feature characteristics, like a pre-
defined feature homogeneity criterion, as described already in Chapter 2. The pre-
sented perceptual grouping of contour information follows more complex but still gen-
eral strategies for generating groups without exploiting details of the object database.
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Figure 3.1: Components of an object recognition system (redraw from [Dick 99])

The data driven generated groups are used for indexing the object database by applying
a suitable matching approach.

Conceptually based processing determines groups that matches the object context by
projecting model knowledge either down to the image features or to an intermediate
level like data driven generated segments.

The central aspect of each object recognition system is the representation of object
knowledge and the interrelated matching process which will be discussed in more detail
in the following section. Object hypotheses are the result of the matching process. De-
pendent on the recognition task and the chosen methods, each hypothesis consists of an
object label, the object position and/or segment information. A subsequent verification
step supports or disputes object hypotheses and clarifies disambiguities. Verification can
be done by just ranking the object candidates based on a measurement derived from
the matching process. If additional object knowledge either defined for each individual
object or based on the context of several objects is available, this knowledge may be
exploited to extend incomplete results, as will discussed below.

The following subsection deals with some general aspects of object knowledge repre-
sentation used for recognition systems.
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3.1.3 Object Knowledge Representation

Within the last decades of object recognition research many approaches for object
knowledge representation are proposed.

The Development of Object Modeling Techniques

In [Kese 01a] the development from the very general geometrical models of the 1970’s
to the exemplar appearance based models of the 1990’s is drafted. The early systems
represent general prototypical objects by their decomposition into volumetric basic parts,
like generalized cylinders or the more general set of distinct volumetric shapes, called
geons. Matching those general high level components to reliably detectable low level
image features turned out to be generally impossible. For realizing recognition systems
only idealized images are suited, where feature extraction and grouping are feasible.
Image data has to be adapted to these object models, for solving the recognition task.

In order to enable systems to cope with more realistic image data, models become
more sophisticated in the following. Detailed geometrical characteristics are modeled,
for example, in three dimensional CAD models. This requires, firstly, the reliable detec-
tion of the corresponding feature groups, like contours, within the image data. Further-
more, these feature groups have to be assigned to characteristic object model features
which depends, in general, on the viewpoint. Either hierarchical or graph based struc-
tures containing several view dependent model features are used, in order to disburden
the matching process from the view dependence, e.g., [Bowy 90],[Gigu 91]. Establish-
ing those geometric models for new objects requires more or less manual work.

The approach that becomes popular and computationally feasible in the 1990’s is
storing and matching appearance based object models. Models are acquired directly
from image data either by storing characteristic image patches or by calculating and sto-
ring a prototypical set of suitable features from the image patches. In order to cope with
slight variations within the appearance of an object, the mean values of several image
patches are taken into account for the model generation. This implies that for acquiring
new models appropriate image material from the new object has to be generated and
integrated in the existing framework. But no or less manual modeling work is needed.
Real image data is used for the model generation process and the models are applicable
to real image data also for the recognition step. Due to the fact that the appearance of
an object may vary significantly dependent on the view points, most appearance based
models represent the appearance of one view of an object. For recognizing objects
without predefining one view either some characteristic views and the appropriate view
based object models have to be taken into account [Ullm 91] or the appearance based
model must become more complex and flexible to represent several viewpoints, as well
as, their characteristic appearance [Mura 95]. Additionally, the appearance based model
generally represents one exemplar object, while another exemplar of a geometrically or
functionally equivalent object class is content of a second independent model.

Going along with the drafted development within object recognition research from
geometric to appearance based models the problem definition altered from generic to
exemplar object recognition [Kese 01a]. Due to their different tasks, systems applying
geometric models are hardly comparable to those applying appearance based models.
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Part Based versus Holistic Modeling

The main object units that occur within the resulting recognition hypotheses are deter-
mined by the recognition task. But the object models may be generally structured by
defining parts and their relations. Parts thereby may be characteristics that are easy to
detect within the image features, like the corners within a shape based model [Lour 98],
or parts may be semantically meaningful or functional sub units, like the eyes and the
nose within a face [Wisk 97] or the handle of a hammer [Rivl 95]. Several levels of
semantic object information are valuable for enhancing the resulting object hypothesis
with part information. In addition, the part definition allows the representation of a great
object variability with one object model, because many constellations of sub objects can
be modeled by appropriate definitions of part-to-part-relations. This flexible knowledge
representation is the prerequisite for recognizing the flexible part constellations.

Graph based approaches are commonly used for representing topological or geomet-
rical constraints between parts, where the relational information is stored within the
edges, e.g., [Lade 93], [Wisk 97], [Lour 98], [Bauc 04a]. Matching image features to
object model data then becomes a graph matching problem. General frameworks for
representing functional or semantic knowledge about parts and their relations are graph-
ical models. Semantic networks, see, e.g.,[Ball 82], [Brac 85], [Niem 90], and Bayesian
networks, see, e.g., [Pear 88], [Jens 96], [Jord 99] provide formalisms for structured ob-
ject knowledge representation and knowledge propagation.

In [Hans 78] a system for understanding natural scenes is proposed, where a set of
coupled semantic nets is used for representing object knowledge at different levels of
abstraction. They reach from vertices and edges over regions and surfaces to objects and
scenes. A Bayesian network is used, for example, in [Luo 05] for integrating low level
features and semantic labels for image understanding tasks. The system is applied to
the automatic detection of the main subject of photographs. The fixed structure of the
Bayesian network thereby represent the specific aspects of the task, like the influence
of face detector results or the general dependence between an object location and its
probability to be main subject. The conditional probabilities connecting the different in-
fluences represented within the nodes and steering the knowledge propagation through
the net are trained based on training data.

Within those structured approaches of knowledge representation the designer decides
about the features and the object part relations that he considers to be discriminative and
models this task specific and subjective knowledge explicitly. A commonly used proce-
dure to avoid some of this manual work, but to conserve the advantages of structured
knowledge representation, is implementing a hierarchy or cascade of classifiers. They
are called multiple or learning classifier systems, see, e.g., [Lanz 03], [Oza 05] for an
overview and some state of the art systems. (General classifier combination strategies
that are independent from the knowledge representation aspect will be discussed be-
low.) Classifier systems acquire knowledge about the relations between part during the
training phase of the higher level classifier, instead of explicitly modeling them. Doing
so, the two aspects of recognizing parts and joining parts to a whole are separated from
each other. For example, [Moha 01] proposes a classifier system for the recognition of
persons. Individual classifiers are trained and applied for the parts of a body, like arms,
head, etc, before a second level classifier recognizes the whole person, based on the
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part classification results. The decision about relevant parts thereby is taken by selecting
the training data for the component classifier manually from the image material.

Favoring machine learning approaches instead of manual adaptations leads to com-
plex holistic appearance based object models. Those approaches require large amounts
of preprocessed training material for estimating many model parameters and sophis-
ticated statistical matching processes, but they avoid further manual object modeling
effort. Good discriminative power is achieved for textured objects like the COIL objects
[Mura 95] or human faces [Turk 91], [Viol 04]. Heidemann and Ritter present a holistic
appearance based model for assemblies of baufix R© elements [Heid 96b] and show its
limitations in discriminating exemplars, that differ in details. For analyzing those differ-
ences a decomposition of the complex object into its elements is proposed. Another
drawback of holistic object models arises in case of occlusions. In this case, a significant
part of the object is probably not visible and does not contribute to the feature cal-
culations, but these just partly appropriate features are matched to the model features
concerning the whole object. With part based recognition approaches, the situation of
occluded parts may be taken into account in the realization of the matching strategy and
then, it depends on the non occluded object part, whether this is discriminative enough
for recognition.

Combining the advantages of part based approaches concerning their performance in
case of occlusions and their model compactness with the machine learning abilities of
holistic appearance based models leads to the approach of generating holistic models
for more or less small object parts. For detecting the characteristic parts in the image,
so called interesting or key points are taken as candidates. They are located by search-
ing for special characteristics within the pixel values. The arrangement of the points,
on the one hand, and/or characteristic features calculated at those points, on the other
hand, are exploited for generating object models. Desirable characteristics of those
points and their features are stability against changes in view point, lighting and scale.
Several methods for key point detection are proposed, see, e.g., [Schm 98], [Heid 04],
[Lowe 04]. The cloud of interesting points of a query image as a whole is used for im-
age retrieval within a database by [Schm 97], [Mohr 97]. Thereby, local invariants are
calculated at different scales and matched individually without taking into account rela-
tions between the points and without assigning any semantics. The matching results for
the individual points of the cloud are evaluated as a whole in order to retrieve the best
fitting image from the database. Heidemann [Heid 98] uses interesting points for de-
tecting parts of baufix R© elements. The individual points are classified appearance based,
without taking into account other points and without any further object model based
on the parts. Lowe [Lowe 04] detects key points and calculates characteristic features at
their positions, the so called SIFT features. For object detection and recognition, the key
points and features are calculated for the image and matched to model data acquired
from training images. For verifying the matching result, feature points that agree on an
object and its pose are clustered and those clusters are checked by a detailed geometric
fit to the model. Query objects can be detected within cluttered scenes and in the pres-
ence of occlusions by exploiting characteristic image features located at the key points
and information about the location and arrangement of the points.
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Appearance Based Object Categorization

If appearance based features are invariant between exemplars of one class, those models
are also applicable to object categorization. Weber et al. [Webe 00] present a system
for object categorization, where object classes are represented as flexible constellations
of parts which are constituted by image patches. The generated model consists of a
number of parts and the shape that describes the mutual geometric relations of the
parts. The initial set of candidates for object parts is given by images patches at key
points of training images. Prototypical parts are calculated from them by clustering
the patches applying a vector quantization approach. For determining the object class
model possible constellations of a given number of the prototypical parts are generated
and tested on a validation data set until no further model improvement occurs. The
approach is applied to faces and the backview of cars. This approach of detecting object
parts based on image patches at interesting points and their clustering is also used by
[Agar 04] for generating a part vocabulary for the sideviews of cars. For the recognition
step, parts are identified within an image and their mutual relations are determined by
distance and direction. The indices of the occurring parts and their mutual geometric
relations are used as features for a classifier. The classifier avoids the explicit probabilistic
model is for the part constellation used in [Webe 00].

Leibe et al. [Leib 04a] extend the approach of [Agar 04] by an implicit shape model
used for the recognition step and an additional model based segmentation step. For
each characteristic part of an object class its position relative to the object center within
the training images is stored. Additionally, a segmentation mask for the part at that
position is extracted from manually segmented training images and stored. Doing so,
with the detection of a part during the recognition step hypotheses for the object center
position and the object boundary are available. A probabilistic framework integrates the
contributions from all parts to the final object segmentation result. Leibe and Schiele
[Leib 04b] extend the approach further to multiple scales in using scale invariant inter-
esting points and consequently different characteristic parts for several scale levels.

Ullman et al. [Ullm 01] also propose an object categorization system based on auto-
matically detected parts. In contrast to the systems presented above, the characteristic
image patches, the so called fragments, are not determined by evaluating general pur-
pose interesting point detectors. The fragments are identified specifically for an object
class by comparing training images containing an object of the class with each other and
with images not containing an object of the class. Several scales are involved in those
comparisons. For object recognition the results of the individual fragment identifica-
tion for a test image are integrated using two different definitions for the combination
scheme. A simple scheme that bases primarily on the presence or absence of fragments
and a more complex scheme that models the probability distribution of the fragments
are shown to deliver comparable results.

The latter approaches to object categorization take a step from the conventional ap-
pearance based recognition of exemplars to the more general recognition of object
classes using appearance based models. Keselman and Dickinson [Kese 01b], [Kese 05]
go further in the direction of acquiring generic object models from the appearance of ex-
emplars. They aim at generating the invariant shape properties of an object class based
on the segmentation results for each object. The segments concerning one object are
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summarized within a region adjacency graph representing an exemplar segment based
appearance of the object. The model generation process finds common representation
for the class based on the exemplar graphs by iteratively merging neighbored regions
and comparing the occurring graphs to each other. The method is suited to generate an
object model from exemplar sideviews of cups that consists of the characteristic regions
also occurring in line drawings of cups. The approach thereby decreases further the gap
between appearance based and generic object models.

The preceding sections should give an idea of the great variety of existing approaches
to object knowledge representation and the resulting different methods of determining
symbolic object labels. Independent of the internal representation of object knowledge,
the used features and features groups, and the applied recognition strategy, the heart
of each object recognition system constitute one or more modules that finally assigns
symbolic labels to more or less preprocessed image data, the classification modules.
Mostly, different features, different levels of symbolic data and different classification
methods contribute their part of valuable information for solving a recognition task. Be-
sides integrating these aspects implicitly into one classification module, systems realizing
combinations of multiple classifiers are in common use. In the following, basic general
combination schemes for results from different classifiers are discussed.

3.1.4 Classifier Combination

Combining several classifiers for solving a given task has mainly two reasons: effi-
ciency and accuracy [Kitt 98]. A large number of general combination schemes exist,
see [Xu 92], [Jain 00] for an overview. In [Jain 00] various combination schemes are
grouped into three main categories according to their architecture: 1) cascading (or
serial combination), 2) hierarchical (tree-like), and 3) parallel. In the cascading archi-
tecture, individual classifiers are invoked in a linear sequence. The number of possible
classes for a given pattern is gradually reduced as more classifiers in the sequence are
invoked. For the sake of efficiency, inaccurate but cheap classifiers (low computational
and measurement demands) are considered first, followed by more accurate and expen-
sive classifiers.

In the hierarchical structure, individual classifiers are combined into a structure that
similars a decision tree. The tree nodes, however, may now be associated with complex
classifiers. This structure is flexible in exploiting the discriminant power of different types
of features.

In the parallel architecture, all the individual classifiers are invoked independently and
their results are integrated afterwards by a combination step. Most implemented sys-
tems rely on this parallel architecture [Jain 00], because the systems are flexible in ex-
changing individual classification modules.

Within the parallel combination architecture there are several approaches for design-
ing the individual classifiers. Either the classifiers follow the same strategies and work
on the same feature based representation of the input pattern or not. In the first case
the individual classifier are of equal type, like neural nets with given net topology or
k-nearest-neighbor classifiers using the same measurement vector, but vary in their pa-
rameter setting. This variation occurs due to different training settings, namely the
choice of training samples or the choice of training parameters like distance functions
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and thresholds [Opit 99]. The ensemble is usually better than an isolated classifier in
dealing with outliers and non optimal training sample constellations. The opposed strat-
egy is to set up classifiers that rely on explicitly different internal representations just
solving the same classification task [Kitt 98], [Haym 02].

For the combination step, Jain et al. [Jain 00] distinguish between static and trainable
combiners, on the one hand, and adaptive and non adaptive schemes, on the other
hand. Combination schemes that take into account the confidence value delivered with
the classification result at least for the most probable class are called adaptive, while
non adaptive algorithms treat all their inputs the same. Static combiners treat the re-
sults of the individual classifiers along a fixed decision rule for deducing their result, e.g.,
[Kitt 98], [Haym 02]. The decision rule remains constant and independent from the in-
volved modules or image data. In contrast to that, trainable combiners generally lead
to further improvements [Chou 03], but are specialized to the given ensemble of classi-
fiers results. Exchanging the classification task and/or individual models necessitates an
additional training set that bases on additional training material.

The combination schemes that allow the highest flexibility concerning the usage of
available classifier modules and the exchange of individual modules are those that are
parallel and static. In order to exploit the information given by the individual modules
completely, the combination scheme should be adaptive to the delivered confidence
values. Combination schemes providing these characteristics are discussed in more detail
in the following.

Parallel, Static, and Adaptive Schemes for Classifier Combination

The simplest form for realizing a parallel, static, and adaptive combination scheme is
voting. Its definition and some aspects of voting schemes will be discussed in the fol-
lowing section. The voting strategy and some other static combination rules in common
use are covered by a more general theoretical framework for probabilistic integration
that is presented afterwards.

Integration by Voting Voting deals with the integration of several input data objects
and the deduction of an output data object that is supported most by the input data.
Generally each input data object and the output data is accompanied by a confidence
value, also called the vote for the data object. The voting scheme specifies, how the
result is determined from the input data (for an overview, see [Parh 94]).

Voting has a long tradition in its application for integrating multiple unreliable im-
plementations in order to get reliable data [Neum 56]. At that time it was mainly the
unreliable hardware that causes failures. The earliest software voters were used in the
design of modular multiprocessors with replicated software. Nowadays, voting schemes
are used for integrating the results obtained from several programs that solve the same
task applying different methods.

Based on the occurring variations in input and output data and the accompanying
confidence values, voting algorithms are classified using a binary 4-cube scheme, as
shown in Fig. 3.2.

Input data is defined to be exact, if the values of the input objects are discrete, like
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Figure 3.2: Binary 4 cube classification scheme for voting algorithms (redraw from
[Parh 94]).

integers or the members of a predefined set of symbols. Inexact input data is continuous,
like float values, and has to be compared using a distance measurement function.

Output data of type consensus denote output data elements to be one of the input
data elements opposed to output data generated, for example, by the mean of input
data objects. It depends on the input data and the task, whether a consensus or a
compromise is suitable. If the input data is ordered, as, for example, integer values are,
principally both kinds of output data can be calculated. However, if the input consists
of a set of unordered data, as, for example, symbolic class labels, a consensus has to
be found. The integration of the competing class labels ’mouse’ and ’elephant’ has to
deliver one of both and not a compromise between them.

Preset input votes are defined during the design time of a voting scheme, while adap-
tive votes accompany each individual input data object.

The output data vote serves for distinguishing two voting strategies. Threshold voting
requires the output vote to exceed a given threshold in order to decide on this output.
Plurality voting always delivers the output data object that is supported most by the
input and thereby guarantees an output, even if it might provide low confidence.

For the integration of symbolic class labels generally delivered together with confi-
dence measurements, the scheme of adaptive or weighted consensus voting of exact
input data is suitable, which is defined in Tab. 3.1 [Parh 94].

The selection of one of the weighted consensus voting strategies depends on the
participating input data and the integration task. For realized systems, see among many
others [Brau 98],[Faym 99],[Camp 00], [Haym 02].

Common to all voting strategies is the definition of the input to consist of N scalar
data objects. This results for the task of integrating object label information from sev-
eral classification modules in each module contributing one label, possibly accompanied
by a confidence value. If the individual classifiers deliver their output with confidence
information for all classes, this information for less probable classes can not be exploited
by the voting approach. In this case more general probabilistic integration methods are
suitable that are described in the following.
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Definition: Weighted Consensus Voting

Given N input data objects xn with N associated non-negative real votes/weights vn,
with

∑N
n=1 vn = V . Compute the output data object y and its vote w such that y is

supported by several input data objects, where the exact input data xn supports y, if
xn = y. w has to satisfy a condition associated with the desired threshold or plurality
voting sub scheme.

A. Threshold voting sub schemes:
Unanimity voting: w = V
Byzantine voting: w > 2

3V
Majority voting: w > 1

2V
t-out-of-V voting: w ≥ t; if t ≤ 1

2V , then y can be non-unique
m-out-of-n voting (vi = 1): w ≥ m; if m ≤ 1

2n, then y can be non-unique
B. Plurality voting sub scheme:

No other y′ is supported by inputs having more votes

Table 3.1: Definition for weighted consensus voting according to [Parh 94].

Probabilistic Methods for Integration Probabilistic integration methods fully exploit
the confidence information given from several classification modules. In contrast to the
simpler voting strategy, where only the most confident class delivered by each module
contributes with its weight, the probabilistic method generally takes into account also
the confidence information given for the less probable other classes. This improves the
integration quality, as shown, for example, in [Mohr 97] for the integration of many
individual classifications results for image retrieval.

Kittler et al. [Kitt 98] develop a common theoretical framework for probabilistic com-
bination methods and derives from that the voting approaches, as sketched in the fol-
lowing.

The task is to assign a pattern Z to one of m possible classes (ω1, . . . , ωm) based on
R classifiers. Assume that each classifier i represents the given pattern Z by a distinct
measurement vector xi. In the space of these measurements each class ωk is modeled by
the probability density function p(xi|ωk) and its a priori probability of occurrence P (ωk).
Classes are considered as mutually exclusive that results in one class is associated with
each pattern. The pattern should be assigned to class ωj, if the a posteriori probability
of that interpretation is maximal, i.e.,

assign Z → ωj if
P (ωj |x1, . . . , xR) = maxk P (ωk|x1, . . . , xR)

Using Bayes’ theorem the a posteriori probability can be written as:

P (ωk|x1, . . . , xR) =
p(x1, . . . , xR|ωk)P (ωk)

p(x1, . . . , xR)

The joint probability distribution of the representations extracted by the classifiers
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p(x1, . . . , xR) are expressed by the sum of the conditional distributions given the pattern
belongs to class ωk:

p(x1, . . . , xR) =
m∑

j=1

p(x1, . . . , xR|ωj)P (ωj)

Assuming the occurring representations to be statistically independent results in:

p(x1, . . . , xR|ωk) =
R∏

i=1

p(xi|ωk)

where p(xi|ωk) describes the measurement model of the ith representation or classi-
fier. Applying again Bayes’ rule to the distribution p(xi|ωk) results in:

p(xi|ωk) =
P (ωk|xi)p(xi)

P (ωk)

Substituting the formulas leads for the a posteriori probability to:

P (ωk|x1, . . . , xR) = P (ωk)
QR

i=1 p(xi|ωk)Pm
j P (ωj)

QR
i=1 p(xi|ωj)

= P (ωk)−(R−1)
QR

i=1 P (ωk|xi)p(xi)Pm
j P (ωj)−(R−1)

QR
i=1 P (ωj |xi)p(xi)

Simplifying this expression further by assuming equally distributed classes ωk (P (ω1) =
. . . = P (ωm)) and patterns xi (p(x1) = . . . = p(xR)) and substituting the a posteriori
probability within the decision rule leads to the, so called, product rule:

assign Z → ωj if∏R
i=1 P (ωj|xi) = maxk

∏R
i=1 P (ωk|xi)

The product rule is used for classifier combination, but the fact that one classifier can
inhibit all the others by delivering a probability or confidence value close to zero is often
not tolerable.

Kittler et al. [Kitt 98] derive further the a posteriori probability for cases, where the
available discriminatory information is highly ambiguous. This results in the assumption
of:

P (ωk|xi) = P (ωk)(1 + δik)

with δik � 1. By substituting the term within the a posteriori probability and neglect-
ing higher powers of the δik’s results in:

P−(R−1)(ωk)
∏R

i=1 P (ωk|xi) = P (ωk)
∏R

i=1(1 + δik)
= P (ωk) + P (ωk)

∑R
i=1 δik

Using this expression for the decision rule leads to the, so called, sum rule:

assign Z → ωj if∑R
i=1 P (ωj|xi) = maxk

∑R
i=1 P (ωk|xi)
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The sum rule accounts for the sums of all a posteriori probabilities for one class k for
deciding for the resulting class. Even if there are many approximations and assumptions
to be made on the way to this expression, it shows in experiments to be better or equal
to the product rule [Kitt 98], [Alex 01].

Demanding each individual classifier to make a decision for one class before integrat-
ing them transfers the probabilistic decision rule into a voting scheme. In the present
nomenclature the decision of one classifier for the most probably class can be written
as:

Pki =
{

P (ωk|xi) if P (ωk|xi) = maxl P (ωl|xi)
0 otherwise

Substituting this term to the sum decision rule leads to the plurality voting sub scheme:

assign Z → ωj if∑R
i=1 Pji = maxk

∑R
i=1 Pki

Restricting the information delivered from the individual classifiers even more by ne-
glecting the confidence value can be written as:

∆ki =
{

1 if P (ωk|xi) = maxl P (ωl|xi)
0 otherwise

Substituting this to the sum decision rule leads to the majority voting sub scheme:

assign Z → ωj if∑R
i=1 ∆ji = maxk

∑R
i=1 ∆ki

The presented derivation identifies many existing decision schemes as special cases of
the general compound classification, where all representations are used jointly to make
a decision. In experimental comparisons that are presented in [Kitt 98] the sum rule
turns out to deliver the integrated results. based mainly on its ability to compensate for
estimation errors of individual classifiers.

With discussing these general combination strategies for integrating individually gen-
erated symbolic class labels, the part of introducing basic concepts of object recognition
ends. In the following realized and available systems are presented that are used for
realizing the integrated object recognition systems of Chapter 5.

3.2 Object Recognition Systems

In the following, four available recognition systems are presented, with each of them
realizing different object knowledge representation and recognition strategies. Three of
them are implemented for recognizing objects of the baufix R© domain, see Appendix B,
and one for classifying office domain objects, see Appendix C.

First, a recognition system is presented that is based on a hybrid object knowledge rep-
resentation scheme integrating holistic and semantic part based modeling for baufix R©

elements. Thereby an artificial neural network classifier constitutes the the holistic part

43



3 Object Recognition

of the system and generates initial hypotheses. The semantic part based object knowl-
edge is used for verifying and evaluating the initial element hypotheses.

The second module does not contain any predefined geometrical or semantic model
of the baufix R© objects, but acquires knowledge based on color segmentation results
during its training phase. The object units are defined by the strong dependence on
segmentation results to be the uniformly colored parts of baufix R© elements, which are
identical to the elements, except for the bolts.

The third module provides object detection and classification based on appearance
based object models. For classifying the characteristic appearance the color pixel infor-
mation within an image window of predefined size is used. It does not rely on seg-
mentation results and makes no attempt to object segmentation. In order to address
occlusions of the baufix R© elements that are assembled, the object units are chosen to
be sub elementary. Relations between sub elements and elements are not modeled
within this module but has to be generated by a subsequent module.

Besides these baufix R© recognizers, a shape based recognition for the office domain
objects is realized. Based on segments the object silhouette is determined and shape
features are classified using a support vector machine.

This short presentation of the modules shows that they follow different recognition
strategies which makes them promising candidates for further improvement by integra-
tion. However, they provide different kinds of object information concerning the object
units and the presence of segment information that has to be accounted for in the inte-
gration process. The individual modules are presented in more detail in the following.

3.2.1 Hybrid System Integrating Neural and Semantic Networks

The hybrid recognition system described in the following, consists of a holistic appear-
ance based classification step and a semantic verification step exploiting part based ob-
ject knowledge [Heid 96a], [Kumm 98] . The system is designed for recognizing isolated
or slightly occluded elements of the baufix R© scenario. The original implementation is
available and used here. For exemplary results, see Fig. 3.3.

Figure 3.3: Exemplary results of the hybrid recognition system for baufix R© objects.
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For detecting objects or, in other words, for focusing the classification system to inter-
esting regions segment information is used. Segmentation results are delivered from the
pixel classification approach that is already described in Sec. 2.2.4. These color regions
serve as regions of interest for the holistic recognition system that is realized in the form
of an artificial neural network of the type local linear map (LLM).

Each centroid of a segment determines the center of an image window with a size in
the order of magnitude of a baufix R© rhomb. The edge enhanced intensity image data
within the window is taken into account for calculating features based on Gabor filter
masks. The features resulting from a training set of images and their assigned class labels
are used for the combined unsupervised and supervised training of the local linear map.

The verification step for the initial neural hypotheses is based on part based object
knowledge that is modeled in the form of a semantic network realized in the network
language ERNEST [Sage 97]. The knowledge base represents object information like the
bars containing three, five or seven holes or the decomposition of a screw into its parts
head and thread and the correspondence between objects and parts of them to image
color regions. Fig. 3.4 shows the knowledge base together with the data base and the
connection to the holistic recognition for the example ’screw’.

ANN

region

screw

partpart

concconc

head thread

data base knowledge base holistic recognition

Figure 3.4: Example for hybrid representation (figure redrawn from [Kumm 98])

The knowledge base of the semantic network generally consists of concepts and links
between them. For the links three different types are defined namely the decomposition
’part’, the specialization ’spec’ and the concretization ’conc’. Decomposition links ’part’
connect, for example, the baufix R© screw with its head and thread. Further on concepts
representing objects at different concretization levels, like the thread or the head and the
corresponding color region, are connected by a link of type ’conc’. Finally, a concept and
a specialized form of it are connected by a ’spec’ link. For example, a concept describing
a three holed bar is specialized form of the concept representing the bar.

Fig. 3.5 gives an overview of the hybrid system realized for the baufix R© scenario,
including the semantic knowledge base and its connections to the holistic recognition
system, on the one hand, and to the segment information, on the other hand. The
holistic hypothesis activates the instantiation process for the semantic network at the
concept OBJECT and results in a holistic instance for one of the specializations of the
concept OBJECT, like SCREW or CUBE. Based on the holistic instance a structured instance
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Figure 3.5: Hybrid recognition system constituted from neural and semantic networks
(figure from [Kumm 98]).

is generated by exploiting the part based object knowledge stored within the knowledge
base. Object parts are instantiated based on their concretizations, the color regions,
by exploiting the stored procedural knowledge about suitable color regions for specific
object parts. The final structured instance contains the complete information about the
holistic object, its parts and the assigned image regions. The holistic recognition system
delivers up to three competing results accompanied by an evaluation that are analyzed
semantically. The instantiation process starts with three holistic instances in parallel and
either verifies or rejects them.

Measurements of the recognition rate of the system are done in [Heid 96a] and
[Kumm 98]. The recognition rate for the holistic system on a testset is about 80% that
is improved by the semantic verification achieving finally 90%. The hybrid recognition
system relies on segments delivered from the pixel based color classification approach
and, therefore, requires constant lightning conditions. Additionally, due the predefined
knowledge base has to be reimplemented, when transferring the recognition system to
other domains. However, the hybrid approach turns out to be is highly reliable for the
task it is designed for, namely the recognition of isolated and slightly occluded objects.
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3.2.2 Combining Region Based Classifiers for Recognition

A recognition system that integrates object hypotheses generated based on individual
segment based features is proposed in [Menz 99]. The original implementation of the
system by M. Menzel is available and described in the following.

For generating the individual classifiers, the distribution of confidence values for each
feature and each object label is estimated in a training phase. In the classification step,
a single feature value, then, leads to the confidence values for the participating object
labels. The confidence values determined from several features are integrated afterwards
using a static, parallel, and adaptive combination scheme that results in a recognition
system that is simple, flexible and does not apply predefined object models.

Menzel [Menz 99] compares several feature combinations and different integration
schemes for the baufix R© domain based on features calculated from the the segments
delivered from the pixel color classification approach presented in Sec. 2.2.4. This implies
for the baufix R© domain, that the object labels correspond to the unicolored elements,
while the head and the thread of bolts occur as two independent objects within the
recognition result. The system delivers 12 region based object labels, that are listed
in Appendix B, Tab. B.1. For each segment up to four features are calculated that
are ’baufix R© color class’, ’size’, ’eccentricity’, and ’compactness’. Menzel [Menz 99]
analyzed additionally three features from contour information provided by the contour
based grouping process, see Sec. 2.2.5. Fig. 3.6 shows at the left side segments and
groups that are used for calculating the region based features. The features are classified
individually and the results are finally combined according to their confidence values
resulting in the recognition results depicted at the right side.

Figure 3.6: Left: Exemplary segments and groups used for feature calculation and
classification. Right: Recognition result after combining individual classi-
fiers.

The approach for extracting and preparing individual segment based features for ob-
ject recognition and the applied integration mechanism are the topics of the following
section.
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Feature Evaluation

The different nature of features determine different kinds of processing for creating
object label hypotheses from the feature values. There are either features with discrete
values and providing no defined order or features that provide such an order, because
the feature values are numerical values.

For evaluating the discrete and non ordered feature values for estimating object labels,
one estimation value per feature value and per object label is necessary. It is convenient
to arrange this data within a matrix. For the baufix R© system implementation the matrix
representation is used for the feature ’baufix R© color class’. It is composed by multiplying
one matrix that contains the fixed object color code based on prior knowledge with
another, that takes into account color classification errors based on a test set. The color
code matrix is defined by the baufix R© element set as, for example, the color ’blue’
occurs for the heads of the bolts and the cubes but not for bars or rhombs. The color
code matrix, therefore, gets for the feature value ’blue’ entries of 0.33 for the object
labels ’cube’, ’head of a round bolt’, and ’head of a hexagonal bolt’, respectively, and
zero otherwise. For taking into account color classification errors, a color error matrix is
generated from a test set. For the baufix R© task the color classification process is very
reliable and therefore most entries of the color error matrix are zero. Multiplying the
color code matrix and the color error matrix results in the evaluation matrix that contains
estimations for object label confidences based on one value of the feature ’baufix R© color
class’. Parts of this matrix are shown in Tab. 3.2. Note that different values of this feature
are very different in their discriminant power for the baufix R© recognition task.
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Table 3.2: Parts of the estimation matrix encoding the relation between the color
feature value and object labels for the baufix R© task.

Besides those features that deliver non ordered and discrete values, most features
result in numeric values, whose order is obvious. For estimating the confidence of an
object label derived from a given feature value the probability for an object label occur-
ring together with a special feature value is determined from exemplars within a training
set of images. A histogram for each feature and each label that plots the frequency of
label occurrence for a given interval of feature values, the histogram bin, is desirable.
Thereby, the silhouette of the histogram function strongly depends on the mostly fixed
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definition of the width of the histogram bins. If the bins are too small, many of them
gets no entry and most of them will contain very few data points each. If they are too
large, they subsume probably inner structures of the data. In general, bins should be
small in areas of many data points in order to account for the data structures and may
be wider in areas of few data points.

This motivates a different definition of the histogram, where the value of the his-
togram function h(xn) is set for each individual data point xn dependent on the neigh-
bored points xn−1 and xn+1. Each of the N data points xn is assigned to its own his-
togram bin with a normalized area AN of size 1/N . The width of the bin belonging to
data point xn is half the distance from xn−1 to xn plus half the distance from xn to xn+1.
The value for the histogram function h(xn), then, results from the area normalization,
see Fig. 3.7.
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2
N · (xn+1 − xn−1)

(3.1)

Figure 3.7: Definition of the feature value histogram function for a given object label
based on N data points xn (redraw from [Menz 99]).

In order to achieve a more compact representation and, particularly, to cover the
whole range of possible feature values without holes, a functional representation of the
confidence value for an object label dependent on the feature value is desirable. This
functional representation is generated by approximating the histogram data by a mixed
normal distribution function, using the vector quantization approach LBG [Lind 80]. The
function is determined by Γ Gaussian functions with individual weights wγ and each of
them parameterized by its mean value µγ and its standard deviation σγ :

f(x) =
Γ∑

γ=1

1
wγ

1√
2πσγ

· e−
1
2

“
x−µγ

σγ

”2

(3.2)

For evaluating the approximation of the histogram data by the mixed Gaussians the
difference area between the two functions of Eqn. 3.2 and Eqn. 3.1 is estimated by:

Ferr =
N∑

n=1

Fn =
N∑

n=1

|h(xn) − f(xn)| · (xn+1 − xn−1)
2

According to the error function the approximation is optimized by testing several
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values for the number of Gaussians Γ to be used by the LBG vector quantization and
determining the parameters of the function f(x) that provides minimal error.

Fig. 3.8, left, shows the histogram data together with the approximation function for
the feature ’size’ and the object label ’hexagon bolt head’. The right side shows the
approximations for some additional object labels and the feature ’size’.
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Figure 3.8: Histogram data and approximated function for feature ’size’ for object
label ’hexagon bolt head’ (left) and approximated functions for some ad-
ditional objects (right).

Calculating the approximation function according to Eqn. 3.2 for each feature k and
each object i results in a set of approximation functions fk

i (xk). Based on this set and
one value xk

0 of feature k object label estimations for all objects i are available and
subsumed to a normalized object estimation vector with the components vk

i (xk
0):

vk
i (xk

0) =
fk

i (xk
0)∑I

i=1 fk
i (xk

0)

The estimation vectors resulting from classifying different features are combined in
the subsequent, independent step as described in the following.

Combining Feature Evaluations by Extended Voting

In Sec. 3.1.4 general approaches for combining classifier results are described. For paral-
lel, static and adaptive integration there are, on the one hand, the voting strategies that
are characterized by accounting for one object label and its evaluation per classification
module. The probabilistic integration schemes, on the other hand, take into account
the complete object label confidence vector. Menzel [Menz 99] implements and tests
several voting schemes and the probabilistic sum rule for integrating the region based
feature classifier for the baufix R© scenario. The best results delivers a combination of
voting and probabilistic integration that Menzel called ’extended voting’. The integra-
tion is basically done following the probabilistic sum rule but some basics of the voting
ideas are implemented for rejecting probably bad results. This is firstly the m-out-of-n
strategy implying that at least m modules have to support the final objects label. After-
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wards a threshold for the minimal evaluation of the final object label is defined also for
rejecting probably bad hypotheses.

For the region based baufix R© recognition system in [Menz 99] seven features are
taken into account and classified individually, which are ’baufix R© color class’, ’compact-
ness’, ’eccentricity’, ’size’, ’lines’, ’circles’, and ’ellipses’. The results are probabilisti-
cally integrated where the individual confidence values are additionally weighted with
the confidence of the source of information. These weights are set according to the
individual recognition rates to 0.228095, 0.106667, 0.156667, 0.188571, 0.112857,
0.085714, and 0.121429 respectively. At least five of the seven modules have to support
the integrated label and a minimal final evaluation of 0.005 has to be achieved. Other-
wise the object label is rejected. This system delivers for the testset used in [Menz 99]
and based on a detailed system containing 17 classes a recognition rate of about 76%,
where 90% of all regions are classified, while 10% are rejected due to the threshold set-
tings. The recognition results of this system are dependent on the segments that serve
for feature generation. Occlusions that change significantly the size and shape of ob-
ject regions, therefore, generally cause problems. The test set evaluated above contains
non or just slightly occluded elements. Because the selected segmentation approach, the
pixel based classification approach, is susceptible to changes in illumination that changes
the color appearance, also the recognition system needs a constant environment.

3.2.3 Appearance Based Recognition System

A trainable appearance based object recognition system is presented in [Heid 98] and
[Heid 99]. The original implementation of the system by G. Heidemann is used here and
presented in the following.

The system does object detection as a processing step independent from the object
classification by applying an interesting points detector. At these points the classification
step of the system assigns one object class label or the rejection class based on appear-
ance based object models. The system is trained for the detection and classification of
parts of baufix R© elements that remains visible within assemblies, where elements are
often occluded. The system provides its object labels without further information about
object segmentation and about the combination of parts belonging to one element.
Exemplary results of the system are shown in Fig. 3.9.

Data Driven Focusing

For recognizing objects within an image that contains generally several objects at ar-
bitrary locations systems that do not rely on segment information can either apply a
classifier at any location and analyze the results for simultaneous object detection and
classification , like it is done in, e.g., [Viol 04] or they apply the classifier only at locations
that are assumed to to be probable object locations. Selecting promising locations for
applying a classifier is done here and called focusing.

For the data driven identification of characteristic image locations several kinds of
key point detectors are proposed, as described in Sec. 3.1.3. As also presented there,
key points are often used for representing the characteristics of an image as a whole
or for coding characteristics of an object in combination with neighbored points. The
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Figure 3.9: Example image and recognition results of the appearance based recognition
system applied to parts of baufix R© elements [Heid 98].

key points here are used individually for focusing and therefore called focus points in
the following. The focus points determine the location where the classifier is applied
and therefore the focusing and the classification step has to be adjusted in order to take
care of focusing to the object units that the subsequent classifier supports. Similarly, the
classifier has to support object units that can be focussed by the data driven process.
For the baufix R© domain these object units are characteristic parts of elements, as, for
example, the holes.

The focusing step analyzes three image data based features, namely entropy, symme-
try, and color homogeneity and is adapted to the required object units by parameteriza-
tion.

Local Entropy The local entropy evaluates the local information content of an image
area and image areas that carry a high amount of information are assumed to be inter-
esting, e.g., [Kali 96].

The term information content originates from information theory, where the informa-
tion content of a message is defined over the probability for this message in comparison
to all possible messages. The information content is high, if the probability of this mes-
sage is low and vice versa. A way of calculating the information content S from the
probability of a message Xi is:

S(Xi) = − log p(Xi)

The expected value for the information content of messages Xi then is given as:

E{S(Xi)} = −
∑

i

p(Xi) log p(Xi)

This term matches the thermodynamic definition of the entropy and was introduced
by Shannon ([Shan 48]). It is adapted to image processing in taking the pixel grey level
value I(x, y) at position (x, y) the role of the message and approximating the probability
of the message by the normalized histogram H̃(x, y, q). The histogram H(x, y, q) is
calculated for a window containing n x n pixels (n ≥ 3) that is centered at position (x, y)
by counting the occurrences of each pixel value q:
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H(x, y, q) =
y+ñ∑

y′=y−ñ

x+ñ∑
x′=x−ñ

δI(x′,y′),q , with ñ =
n − 1

2

H̃(x, y, q) =
H(x, y, q)∑
q′ H(x, y, q′)

Based on the normalized histogram the local entropy or information content can be
calculated for every pixel position (x, y):

BE(x, y) = −
∑

q

H̃(x, y, q) · log H̃(x, y, q)

The local entropy is used in [Heid 98] for doing rough focusing, i.e. identifying inter-
esting areas with high information content for accelerating subsequent detailed focusing
steps. Therefore, the entropy calculation is done based on down sampled grey level im-
ages. The attention map is binarized applying a given threshold resulting in the image
to be divided into interesting and non interesting areas, as shown in Fig. 3.10 for the
example image of Fig. 3.9.

Figure 3.10: Entropy map and result of binarization for distinguishing roughly inter-
esting areas (white) from non interesting (black) for the example image
of Fig. 3.9.

Local Symmetry Symmetry plays an important role in human attention. This turns
out of several experiments, where the trajectories of humans looking at images were
analyzed. For example, in [Loch 87] it was found that people first attend to symmetry
axes and afterwards look at the modern art images that are mirrored along these axes.
In experiments described in [Bruc 75] people had to find the discrepancies between two
almost identical images. They found the differences better when comparing a pattern
and its mirrored image than in comparing a pattern and its repetition. For applying
symmetry in computer vision Reisfeld et al. [Reis 95] introduce a continuous evaluation
scheme based on local grey level gradients.

Heidemann [Heid 98] exploits these ideas together with an extension to color infor-
mation for determining focus points. The process starts with identifying edge pixels p
in the input image by applying a Laplace filter and binarizing the resulting image. From
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applying Sobel filter masks in two directions at these positions two maps, one contain-
ing the gradient amplitude G(x, y) and the other containing the gradient direction to
the x-axis θ(x, y), are calculated.

For calculating the symmetry value for a pixel p pairwise opposing pixels (pi, pj) within
its environment of radius r are taken into account. The pairs are analyzed independent
from each other before the results are summarized leading to the final value for pixel p.
For each pair of opposed pixels (pi, pj) the relation between the gradient directions of
the two pixels, their individual gradient amplitudes and a color similarity estimation are
taken into account:

BS(pi, pj) = PGF (pi, pj)︸ ︷︷ ︸
gradient relations

·GGF (pi) · GGF (pj)︸ ︷︷ ︸
gradient amplitudes

· FGF (pi, pj)︸ ︷︷ ︸
color similarity

The gradients of the opposed pixel pair (pi, pj) are in case of perfect symmetry both
parallel to the connection line between pi and pj with opposed orientation. These as-
pects are accounted for the estimation of symmetry by combining the evaluation of
each gradient direction relative to the connection line with the evaluation of the relative
orientation:

PGF (pi, pj) = (1 − cos((θi − αij) + (θj − αij))) · (1 − cos(θi − θj))

with αij denoting the angle between the connection line of pi and pj and the x-axis.
The gradient amplitude refers to the contrast of an image structure. Symmetry struc-

tures with high contrast are assumed to be more significant and, therefore, the individual
gradient amplitudes of the opposing pixels pi and pj are taken into account as one part
of the symmetry measurement:

GGF (pk) = log(1 + G(xk, yk)) , with k = i, j

Finally, color similarity between the opposed pixels is evaluated. In taking into account
only grey level values, symmetries are found also between two neighbored similarly
formed but differently colored objects and between objects and their shadows. These
effects are reduced in weighting the symmetry between similarly colored pixels higher
than the symmetry between differently colored pixels. For evaluating the color similarity
of the opposed pixels pi and pj, the color angle or hue h(pk), a component of the
color coordinates of the HSV color space (see Sec. 2.1.1), is calculated for each pixel.
The difference between the two color angles is compared to a threshold tcolSim, for
evaluating the color based symmetry:

FGF (pi, pj) =
{

1 , if |h(pi) − h(pj)| < tcolSim ∨ 2π − |h(pi) − h(pj)| < tcolSim

gf otherwise

The choice of the parameter gf influences the strength of the color similarity evalua-
tion within the overall symmetry value.

The symmetry value for each pixel p is calculated by summarizing the symmetry values
for all pairs of opposed pixels (pi, pj) within an environment of radius r of pixel p. Focus
points are generated from the map containing all the symmetry values by smoothing
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the map using a Gaussian filter, binarizing the result and finding centers of blobs in the
binarized map. Fig. 3.11 shows the symmetry map and the resulting focus points for
the example image shown in Fig. 3.9. The most significant parameter for this focusing
step is the radius r determining the environment of pixel p. It determines the scale at
which symmetry is accounted for. For the baufix R© task the environment covers roughly
the size of a hole. The influence of the color symmetry is selected to be high by setting
the parameter gf to zero, according to the saturated colors of the baufix R© scenario.

Figure 3.11: Symmetry map and derived focus points for the example image of Fig. 3.9.

Color Homogeneity and Contrast Factor The second independent way of calculating
focus points in [Heid 98] is based on homogeneous color regions that provide high
contrasts to their surrounding. Candidates for focus points are the centroids of segments
that are delivered from the region based color segmentation approach CSC, described
in detail in Sec. 2.2.1. For estimating the contrast of a segment to its surrounding the
mean local contrast for all border pixels is determined and compared to a threshold. The
local contrast is given by evaluating the results of a Laplace filter located at each border
pixel.

The initial segmentation results and the selected segments with high contrast deter-
mining the focus points are shown in Fig. 3.12 for the example image of Fig. 3.9.

Figure 3.12: CSC color segments and selected segments that provide high color con-
trast and determine focus points for the example image of Fig. 3.9.

An evaluation of the focusing step, including the entropy, symmetry and color based
approaches, is presented in [Heid 04]. The focus points show good stability under
changing lighting conditions and object rotations.
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Classification of Focus Points

Focus points determine the locations in the image, where a classification step is applied.
This implies, on the one hand, that non focussed objects get lost for the recognition
system which has to be avoided by parameterizing the focusing step accordingly. On
the other hand, the classification step has to deliver an object label for the focussed
locations. Therefore, the object label alphabet has to be determined by clustering the
focus points of an image training set into semantically meaningful and for the classifier
distinguishable object classes.

For identifying parts of baufix R© elements, this results in the following object label
alphabet [Heid 98], see also Appendix B, Tab. B.1:

part_cube, hole_cube, edge_cube
part_rhomb, hole_rhomb, side_rhomb
head_round_bolt, head_side_round_bolt
head_hexagon_bolt, head_side_hexagon_bolt
hole_bar, edge_bar
felly, hole_felly
tyre
undefined

The classification step constitutes of a combination of vector quantization, local prin-
cipal component analysis and neural networks. The image data information within a
window centered at a focus point is taken into account. The window size generally de-
pends on the recognition task. For the baufix R© parts, it is chosen to cover a bit more
than the area of a hole. The color pixel values within the window are summarized to
one feature vector used for classification.

For the classifier training a set of feature vectors is generated by localizing focus points
for representative sample images and cutting out the appropriate image data. The first
part of the training is an unsupervised clustering of the feature vectors. The vector
quantization approach structures the input features by generating a given number of
clusters and their centroids or representatives. The clusters are analyzed separately in
the following by calculating their local principle components and using them for the
supervised training of an artificial neural net classifier, of type local linear map (LLM).
For details about the classification step, see [Heid 98]

For classifying the image at focus points the feature vector is generated from the
window data, it is assigned to the appropriate cluster and the locally valid principal
components are calculated. These features are the input of local linear map.

Fig. 3.9, on page 52, already presented an exemplary result showing classified focus
points for the baufix R© domain. A quantitative evaluation of the classification step that
determines the part of correctly classified points from all the focus points for a test
set is reported in [Heid 98]. For the detailed object label alphabet given above the
classifications rate is 80.3 %. Ignoring exchanges between those classes that belong to
one baufix R© element, for example, hole_bar and edge_bar are counted both to
be correct, if located at a bar, increases the classification rate to 86.7 %.

The detailed evaluation of the correct and false classifications on the test set delivers
information about the exchange of classes. This information is summarized in an error
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matrix and estimates, after normalization, the probability for the existence of a class n
in the image, if the classifier gives class m. Thereby, the error matrix delivers confidence
values for the classification results. The error matrix for the presented baufix R© sub
element classifier is given in the Appendix Sec. B.3.

3.2.4 Shape Based Recognition

Shape is an important visual feature for object recognition and categorization within
the human perception system [Imai 94], [Lako 87]. Consequently, shape is used in
many technical systems for object categorization and recognition [Supe 04], [Seba 04],
[Belo 02], where the silhouette is characteristic for an object or object category. Many
different shape features are developed and used for object recognition and image re-
trieval tasks. An overview can be found in [Zhan 04]. Shape features are either based
solely on the outer boundary of the shape or they are calculated based on the shape re-
gion which describes the interior of the boundary. Fig. 3.13 shows two example shapes
together with a possible boundary and region based description, respectively.

Figure 3.13: Two example shapes (left), described either by their boundary (middle)
or by their medial axis based on the shape region (right). (A point on the
medial axis is the midpoint of the greatest possible circle that fits into the
shape.)

The boundary is represented in the simplest form as an unsorted cloud of points
([Gold 96], [Kend 99]), extended in [Belo 02] by defining the shape context as the rela-
tionship of a boundary point to all the other boundary points. Matching is done based
on structural and local features of the shape boundary. Global information about the
shape is taken into account, for example, in matching the whole set of boundary points
to a query set or in calculating general features like perimeter, eccentricity or compact-
ness. Global shape information is also represented in calculating 1-D functions based
on the sorted sequence of all the boundary points (x(t), y(t)), t = 0, 1, . . . , L − 1. The
functions are called shape signatures ([Zhan 02a]). Among others a shape signature
may describe the distance of the boundary point to the centroid or the curvature of the
boundary at a boundary point. Besides matching shape signatures in the spatial domain,
often a Fourier transform is done and several Fourier coefficients constitute the feature
vector for matching.

Region information generally affects global features like the area of the shape or dif-
ferent kinds of moments, e.g., geometric, Zernike, and Legendre moments [Teag 80].
The region information is also taken into account by representing the topology of the
shape in the form of a skeleton-graph. Zhu and Yuille [Zhu 96] find the descriptor by
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using two deformable primitives (worm and circle). Blum [Blum 67] defines the medial
axis by the centers of the maximal disc that fits into the shape (Fig. 3.13, right).

Sebastian et al. [Seba 04] propose a graph representation based on a set of shocks
that are derived from the propagation of boundaries by a grass fire algorithm [Sidd 99].
Matching of shapes then becomes a graph matching problem. In general, information
about the shape region is especially important for recognition tasks, where the inter-
nal structure is more discriminant than the boundary information or in cases, where the
boundary information is not reliably available. Local or structural information allows
partial mapping especially needed in cases of strong occlusions or clutter. However, the
descriptors are more complex in calculation and the relationships between different por-
tions of the shape are often not captured in the match. Spatial domain shape matching
methods are in general more sensitive to noise and boundary variations than methods
that describe shapes in transform domains, like scale space or spectral space.

In [Zhan 01a], [Zhan 01b], and [Zhan 02a] comparative studies are reported applying
different descriptors to databases with shapes resulting from affine distortion, rotation
and scaling of basic shapes. The shapes are not occluded and have no inner struc-
ture. [Zhan 01a] and [Zhan 02a] show that within the descriptors based on Fourier
transform of several shape signatures the central distance function leads to best results.
In [Zhan 01b] the descriptor based on the Fourier transform of the centroid distance
function is compared to an approach representing the boundary in scale space and two
region based approaches. The Fourier descriptor was shown to be better or at least
equivalent to the others. In [Zhan 02a] the centroid distance function was shown to
be one of the most discriminative descriptors for shape. This results in just few of the
Fourier descriptors, namely about ten, are needed to describe the shape well. The cho-
sen Fourier coefficients are used as features for the classification step.

In the task here I attempt to categorize objects from an office domain based on their
characteristic boundary. Objects with different inner structure arising from different
coloring should be assigned to one class. Additionally, the algorithm should be robust
against effects caused by scaling, rotation, distortions due to image noise, view point
changes and slight occlusions. Following the considerations above, a student worker, C.
Lange, and I decided to implement a boundary based system that provides features in
the form of Fourier coefficients determined based on centroid distances.

In a digital image the boundary of a shape is described by the sequence of boundary
coordinates. In order to compensate for scaling effects the sequence of L boundary
points is sampled to a fixed number of N points. This sampling is done by taking
equidistantly every L/N point from the chain of original points. Based on the N sampled
boundary points (x(t), y(t)), t = 0, 1, . . . , N − 1 the centroid distance function r(t) is
calculated based on the centroid of the shape (xc, yc):

r(t) =
√

(x(t) − xc)2 + (y(t) − yc)2 with xc =
1
N

N−1∑
t=0

x(t), yc =
1
N

N−1∑
t=0

y(t)

The centroid distance is invariant to translation. The discrete Fourier transform of r(t)
is given by:
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un =
1
N

N−1∑
t=0

r(t) exp
−i2πnt

N
, n = 0, 1, . . . , N − 1

The coefficients un, n = 0, 1, . . . , N −1 are called the Fourier descriptors of the shape.
They serve as features for shape based recognition by classifying them using a support
vector machine (SVM) 1. For details of the classification approach, see [Bose 92].

The functionality of the shape based recognition module is tested by applying it to
manually generated silhouettes of two different objects. The resulting silhouette is varied
by rotation, changing its size and adding artificial noise, see Fig 3.14(a). Exemplary
calculated Fourier descriptors are shown in Fig. 3.14(b).

(a) Exemplary artificial shape variations for two objects.

(b) Exemplary resulting Fourier descriptors.

Figure 3.14: Images and results for functional test of Fourier based shape recognition.

1The software library libSVM used here, is distributed for free by Chih-Jen Lin,
working at the Department of Computer Science at the National Taiwan University,
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/index.html
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The parameter setting used here is a fixed number of 50 equidistant sample points
on the shape. The first 24 descriptors are used for classification. As expected, the rep-
resentations for the two rotated mushrooms are very similar. The occurring differences
are caused by the sampling of the shape. The two shapes representing the cup differ
principally caused by the added noise. These differences has to be tolerated by the clas-
sification step. It turns out that the SVM classifier trained with just 24 images for each
of the both classes is able to solve this two class problem reliably.

For the office domain addressed by the integrated system of Chapter 5 The system is
exemplary applied for distinguishing six object classes of an office domain: cup, com-
puter mouse, mouse pad, pen, hole punch, stapler and, additionally, the rejection class.
Segments representing one object each are generated for training by applying the mean-
shift segmentation algorithm, presented in Sec. 2.2.3, to images that contain the isolated
objects and manually correcting over segmentations by merging. For the proof of con-
cept just 93 objects are used for training which are too few for realizing a working shape
classifier for seven classes (evaluations are given in Chapter 5). Nonetheless the module
shows its principal applicability to this recognition task.

3.3 Additional Information: Context Based Systems

Besides the individual, visual data based recognition of objects applying either data or
conceptually driven approaches the integration of additional high level knowledge deliv-
ers valuable information for the recognition step. Besides knowledge derived from other
modalities like results of speech and gesture understanding processes, knowledge about
the object context constitutes an important kind of additional information. Therefore, in
the following firstly some basic concepts and approaches of generating context based
information are presented, before afterwards available modules for exploiting context
knowledge that are used in the integrated systems of Chapter 5 are discussed in more
detail.

Generally, different kinds of context of an object can be distinguished. First, there
is the scene as a whole, where an object is located in. Analyzing and classifying the
scene delivers information about typical occurring object types and positions. Bose
and Grimson [Bose 04] use scene specific context for identifying objects like cars and
pedestrians in far field surveillance video sequences. Torralba [Torr 03] exploits statis-
tical background features for scene classification. Typical object types and localizations
are learned from scene features. Scene based predictions for object locations are used
in [Murp 04] for controlling the application of data driven object recognition modules.
The final evaluation for an object location is determined from probabilistically combin-
ing the evaluation of the context based expectation with the belief of the data driven
recognition result.

Instead of taking into account global features of the scene Campbell et al. [Camp 97]
use local neighborhoods for determining context based features. The results of pixel
wise classifying the neighbored pixels of the current region constitute the base for de-
termining local context based features. They are used together with data driven ones
within a unique classification step for image regions. Fink and Perona [Fink 04b] at-
tempt of parallel learning the detection of multiple objects within an image window in a
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boosting framework. They train several classifiers exploiting local dependencies, where
the relevant relations occur during the training phase.

Besides characteristics of the surrounding scene the context of an object may be repre-
sented by spatial relations between formerly determined semantic object units. Knowl-
edge about object constellations thereby can be represented explicitly or implicitly by
system parameters learned from training material. Hanson and Riseman propose in
1978 their system VISIONS [Hans 78], where related objects are explicitly described in
the form of typical arrangements of objects in scenes: cars are driving on the street,
sky is blue and is located above other objects like houses or grass. Explicitly rule based
formulations of object neighborhood relations are used in [Feld 74] to control a simulta-
neous segmentation and recognition procedure.

Strat and Fischler [Stra 91] also define explicitly their context sets that contain rules for
hypothesis generation and verification. Thereby the generation rules control specialized
operators that run successfully if special assumptions are fulfilled which is ensured by the
context set. A similar idea is realized in [Bobi 95] for static recognition and tracking. For
example, a tracking algorithm is started, if an appropriate special object, like the head
of a person, is detected in the image.

Probabilistic spatial context models are realized in [Sing 03] together with a set of in-
dividual material detection algorithms for realizing a ’context-aware material detection
system’. The recognition of key semantic material types in images such as sky, grass,
foliage, water, and snow is improved by constraining the beliefs to conform to the prob-
abilistic spatial context models.

Instead of reducing the context of an object to its direct neighbors, Torralba at al.
[Torr 05] model context between object classes by a dense and long range Conditional
Random Field. Object classes are firstly detected by template based data driven clas-
sifiers. In a training step context relations between objects like monitor, mouse and
keyboard that are represented as connections within the random field are learned. Car-
bonetto et al. [Carb 04] generate a statistical model based on a Markov Random Field
that learns spatial context between blobs, which are feature sets calculated based on
data driven generated segments or grid segments. The random field calculates a global
optimization of isolated blob assignment and spatial context.

Besides exploiting spatial context occurring within one image that represents the scene
at one point of time temporal context may support the analysis of the current scene. In
[Kolo 04] the rules of a tennis match are used for generating a contextual model for
event based sequence annotation. The event sequence that is represented by a Hidden
Markov Model constitute the temporal context for an isolated event and is exploited to
compensate detection errors for the isolated event.

Also symbolic information different from objects like detected actions and/or gestures
and their typical coexistence with an object may constitute the context for object recog-
nition. Moore at al. [Moor 99] realize a general class model for each object, where
besides image templates and image data based statistical features also associated ma-
nipulative gestures like flipping for the book or picking up for the telephone are stored.
Gestures are detected based on Hidden Markov Models and hand trajectories. Experi-
ments are described, where action recognition results and the stored relation to objects
are used for object recognition. Hanheide et al. [Hanh 04] also model the relations
between objects and typical manipulative gestures. They use a common Bayesian net-
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work for both kinds of symbolic information, whose structure mirrors the dependencies
between object and action recognition. For example, a typing action occurs probably
together with objects like monitor, mouse, and keyboard.

Object context delivers valuable information for supporting the object recognition
process. However, this information should be integrated with data based information
in order to avoid hallucinations. Mechanisms for the integration step are part of the
description of the proposed general integration framework in Chapter 4. But before ad-
dressing this, the available recognition modules for exploiting different kinds of context
knowledge that are applied for realizing the integrated systems presented in Chapter 5
are described in the following.

3.3.1 Semantic Region Growing

Object regions often are over segmented by data driven general purpose segmentation
approaches, due to significant inner structures within the object surfaces. This is caused
intentionally by, e.g., paintings or accidentally by shadows or highlights. For generating
the object region as a whole appropriate neighbored segments have to be merged. The
criterion for this region growing step is the semantic information that the segments get in
the form of symbolic object labels from the object recognition modules. Consequently,
candidates for merging are neighbored areas that carry the same object label. This
strategy of semantic region growing delivers new hypotheses for object regions based
on the object context.

3.3.2 Recognition based on Assemblage Rules

Within the baufix R© scenario assemblies can be built from the set of elementary parts,
like cubes, bars or bolts. For some examples, see Fig. 3.15. Generally, a huge amount
of assemblies can be built that makes it impossible to model each individual assembly
in advance, whether in the form of training images nor as symbolic construction plans.
Therefore, the recognition of those assemblies is done in [Bauc 02] based on recogni-
tion results for the elementary parts as input and modeling the construction rules for
assemblies within this domain.

Figure 3.15: Example image for different baufix R© assemblies.
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Assemblies are defined to be a set of interconnected parts representing a stable unit,
where attachments eliminate all degrees of freedom for relative motion. In the baufix R©

construction kit the elements are bolts of different length, some miscellaneous parts that
can be put on the bolt threads but not fastened and finally nuts that are fastened to
the bolts. The given definition of assemblies leads to the demand of having at least a
bolt and a nut in every assembly and optionally one or more miscellaneous parts. The
functional parts may be fulfilled by a sub assembly that contains itself at least a bolt and
a cube. The construction rules of the domain are formalized as a context free grammar
G = (N, T, P, S). The variables of this grammar are assemblies and their functional parts:

N={ASSEMBLY, BOLT PART, MISC PART, NUT PART}.

The set of terminal symbols contains the baufix R© elements:

T={bolt, bar, ring, felly, socket, cube, rhomb nut}.

The start symbol is S = ASSEMBLY and the productions P are:

ASSEMBLY → BOLT PART NUT PART | BOLT PART MISC PART NUT PART
BOLT PART → ASSEMBLY | bolt
NUT PART → ASSEMBLY | cube | rhomb nut
MISC PART → ASSEMBLY | felly | socket | ring | bar |

ASSEMBLY MISC PART |
bar MISC PART | ring MISC PART |
felly MISC PART | socket MISC PART

The rules of the context free grammar are transfered directly to the knowledge base of
a semantic net realized within the semantic network formalism ERNEST. The variables of
the grammar become concepts of the knowledge base and the production rules occur
as part-of-links between the concepts. Furthermore, attributes are associated to the
concepts that model context sensitive and domain specific aspects.

The analysis starts from the recognition results for the baufix R© elements that are ex-
pected in the form of labeled image regions. A necessary but not sufficient precondition
for an assembly is the existence of a cluster of neighbored labeled image regions. Within
the cluster a region that is labeled as a bolt is instantiated for the BOLT PART of an as-
sembly. After marking the region as considered, the adjacent elementary objects are
considered. They are tested for being miscellaneous or nut parts of the assembly. The
process ends, if no longer valid constellations for assemblies are found.

Fig. 3.16, left, shows the recognition results for the elements for an example assembly.
On the right, the resulting description for this assembly within the above described
formalism is given. The assembly as a whole is built from the red bolt, an assembly
that fulfills the MISC PART role, and the red cube. The miscellaneous sub assembly
contains another sub assembly that fulfills the role of the BOLT PART and the green
cube constitutes the NUT PART. Finally, the BOLT PART sub assembly is built from the
blue bolt, the bar, and the rhomb nut. Note, that the given description is not unique.
There are other possibilities to describe the assembly within this formalism like there are
different ways to build this assembly from the given set of elements. For the purpose
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ASSEMBLY → bolt MISC 1 cube
MISC 1 → BOLT 1 cube
BOLT 1 → bolt 3 h bar rhomb nut

Figure 3.16: Exemplary recognition results for baufix R© elements within an assembly
and resulting assembly structure description.

of recognition dealt with here, one possible description is sufficient. Problems occurring
from the ambiguity are discussed in [Bauc 02].

So far, I described how assemblies can be recognized from visual input data applying
syntactical analysis. But, the other way around, information gathered during the syntac-
tical analysis allows to make predictions for elementary objects that are not recognized
by the data driven modules. Based on the construction rules and the contextual infor-
mation about a partial assembly predictions about further essential components, can be
made within a rather small image area. If there exists a suitable region that was not
labeled yet a prediction for the label of this region is possible. Fig 3.17 shows an as-
sembly where the element recognizer fails to label the upper blue cube due to its partly
occlusion. During the syntactical analysis of the assembly the missing object label is
predicted.

Figure 3.17: Example for the generation of a hypothesis about a baufix R© element
based on assemblage knowledge: The blue cube was not recognized data
driven due to occlusions, but the hypothesis can be made from assemblage
knowledge.

Besides missing elementary object labels ambiguous object labels may occur. If within
a cluster of labeled object regions a region gets two labels, for example, a ’cube’ and
a ’felly’ label, the syntactical assembly recognition process delivers the information that
the cluster with the cube hypothesis leads to a valid assembly description but the cluster
with the felly does not, as it is shown in Fig. 3.18. Assuming that there is an assembly
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in the image, the recognition result is favored that leads to more elements participating
in assemblies than others.

Figure 3.18: Two competing results of elementary recognition (top) lead to different
results for assembly recognition (bottom). The competing results are
evaluated based on the number of assembled elements.

The recognition module for baufix R© assemblies relies on the one hand on valid recog-
nition results for the elements but on the other hand supports the elementary recogni-
tion modules with contextual knowledge by delivering predictions for object labels and
evaluations.

3.3.3 Monitoring the Assembly Construction Process

Within the approaches presented so far, visual information from static scenes is used
for recognizing baufix R© elements or assemblies. Recognition of the objects of a given
static scene and monitoring the process leading to this scene, in this case the assembly
construction process, complement one another [Sage 02]. Monitoring the process of
constructing assemblies happens over a period of time and can support the recognition
process with expectations based on the temporal context of the current scene. The
process of building an assembly from a given set of elements can be described as a
sequence of the actions picking a part from the table/scene, connecting two parts that
are in the hands and placing the connected parts onto the table again.

The approach for detecting these actions, proposed in [Bauc 99], is based on informa-
tion about changes within the set of objects in the scene and a model for the content of
the two hands of the constructor. Each hand is either empty or contains an element, a
partial assembly, for example, a bolt and a bar put on it, or a complete assembly with at
least a bolt and a nut that are connected rigidly. Two hand models represent the content
of the two hands of the constructor.

Possible states of a hand model:
Empty | BOLT | MISC | NUT | (BOLT MISC+ 2) | ASSEMBLY

2The plus operator indicates the possibility to put at least one MISC on a BOLT limited by its length.
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Information about symbolic changes, namely new and disappeared parts, is obtained
by comparing object recognition results in every time step with the previous state of the
scene. Actions are inferred following a set of rules based on the symbolic scene changes
in connection to the states of the two hand models.

Pick X
Preconditions: X disappeared ∧ hand: Empty
Effects: ¬ (X on table) ∧ hand: X

Connect X Y
Preconditions: hand 13: X (BOLT PART) ∧

hand 23: Y (MISC PART | NUT PART)
Effects: hand 1: XY ∧ hand 2: Empty

Place X
Preconditions: X new ∧ hand: X
Effects: X on table ∧ hand: Empty

When a scene change is detected, the preconditions for the different actions are
checked and, if met, the action is inferred and the state of the two hand models is
changed appropriately. The Connect action does not change the content of the scene
and, therefore, its detection can not be triggered directly by a symbolic change. Instead,
when the next scene change occurs the Connect is assumed to have happened to ei-
ther construct an assembly before placing it or to provide a free hand to pick an object.
If a part disappears while both hands contain parts so that the preconditions for a con-
nection are met, a Connect action is inferred, resulting in one hand becoming empty.
This empty hand and the disappeared part are valid preconditions for a Pick action.
If a Connect action is not possible and both hands contain parts an error message is
generated because the disappeared part can not be taken by the hands. If, in contrast,
a new object appears in the scene and none of the hands contain a rigidly connected
assembly, but the precondition for a Connect action are met, it is assumed that the
connection was done before placing the complete assembly.

As long as the action detection relies solely on the information about new and dis-
appeared parts the constructor must obey some restrictions in order to avoid erroneous
action detection:

• No parts are put down outside the visible scene.

• New elements may only be put into the scene if no similar elements (same type
and color) are in the hands.

• Another constraint for a human constructor which is implicitly true for a robotic
manipulator is that each hand can hold only one element or (partial) assembly.

Additionally, the action detection module relies on valid recognition results for the
elementary objects. If an object label is false, the element can not fulfill the functional

3The notation hand 1 and hand 2 is only used to indicate different hand states, each of the two hand
states can be hand 1 or hand 2.
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role within an assembly and therefore actions may not be detected correctly because the
predictions for applying the rules are not given. If element detection is not stable in time,
namely an object label disappears from one image to another caused by a recognition
failure, this scene change may misleadingly be detected as a Pick action. These restric-
tions can be relaxed, if another camera is available that observes the hands of a human
constructor [Frit 03]. In this case actions are detected based on visual information about
the hand trajectory in connection to symbolic information about the relevant objects.

Based on reliable recognition results for the baufix R© elements the action detection
module collects information about elements within assemblies from the temporal con-
text or construction process. At the end of a construction process, when the assembly
is replaced into the scene the action detection module has collected information about
the contained elements that serve as predictions for the element recognition [Brau 01].

Fig. 3.19 shows some steps of building an assembly and replacing it into the scene.
Parts of the scene are shown together with detected scene changes, derived actions,
and the states of the hand models. For the first three steps objects disappear from
the scene and are consequently assumed to be content of one of the hands. In the
last step new regions appear in the scene and the hand models are not empty. Then,
a Place action is assumed and expectations for the appearing elements are generated
based on the state of the hand models. These expectations are not located within
the image but may support the data driven element recognition process. The Place
is accomplished by updating the content of the hand models appropriately not before
the element recognition process delivers its results and thereby confirm the assumption
formerly based on region information.

3.4 Summary

The procedure of assigning symbolic object knowledge to visual sensory data is generally
called object recognition. Object symbols are used as a basis for higher level processing
like for example scene analysis and human computer communication.

The variety of object recognition tasks is enormous and a manifold of different ap-
proaches are developed. Systems can be distinguished by their (main) processing di-
rection from the data to the model (bottom up) or vice versa (top down). Further, the
kind of features and models determine, whether a system is designed for recognizing
object exemplars or the members of object classes. And finally, systems differ in their
strategy of proceeding a holistic recognition of objects or dividing objects into charac-
teristic parts. For the selection of promising approaches one has to take into account
the detailed requirements for the recognition task, available a priori knowledge about
objects and their locations, lightning conditions, occurring occlusions, and many other
aspects.

For complex recognition tasks the combination of different characteristics of an ob-
ject will be generally necessary for distinguishing it from others. This can be realized
by either using appropriate high dimensional features and complex processing strategies
within one recognition module or by externally comparing the object symbols delivered
from specialized recognizers. Different integration strategies are proposed in the liter-
ature where the probabilistic sum rule that takes into account all the available object
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Figure 3.19: Image sequence showing the scene and detected changes as well as con-
tents of the hand model, while building an assembly. After the assembly
is placed into the scene again the expectation for the contained elements
is generated from hand contents based on process knowledge.

symbols and their beliefs turns out to be the most general and promising. The exter-
nal combination of several recognition modules leads to systems that are constituted
from several comparably simple modules. The system is flexible according to module
exchanges.

68



3.4 Summary

The presented recognition modules are available for the two exemplary tasks of rec-
ognizing baufix R© elements and office objects that are the fields of application of the
integrated systems evaluated in Chapter 5. The modules are differently specialized for
the task and there is an approach relying directly on the image data for detecting object
parts and some relying on preprocessed segment information for recognizing the whole
objects. The differences between the approaches makes a successful external integration
of their results probable.

For segmenting and recognizing an object additional information delivered based on
preliminary hypotheses constitutes valuable information for complementing data driven
results, clarifying ambiguities and evaluating competing one. A prominent kind of this
additional information is knowledge about the spatial or temporal context of individual
objects. A simple and task independent applicable module of that kind is the procedure
of assuming two neighbored regions with same object label to descend from one ob-
ject instead of two. For the baufix R© task there are two further context based modules.
The first one compares the spatial neighborhood of objects with the domain specific as-
semblage rules and the second one generates expectations for objects to be recognized
from the history or temporal context of the present scene. Context based information
has to be integrated with the sources of individual object information in order to find
the recognition result that is mostly supported from the participating modules.

The following chapter introduces a general integrating framework that realizes a strat-
egy for integrating individually generated segment and object information with addi-
tional high level knowledge.
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The preceding two chapters show the great variety of existing modules for image seg-
mentation and object recognition. They reach from data driven image segmentation
and segment labeling approaches to conceptually driven strategies for segment and la-
bel determination based on the fulfillment of prior expectations. Different aspects and
strategies have to be integrated in order to generate successful systems. Following the
idea of explicitly combining simple modules, instead of generating monolithic complex
systems, I propose a general framework, that allows the integration of several kinds of
object related information resulting from independent modules. The framework is open
for adding new modules and removing others and it is independent from the given
recognition task. Instead of either relying on segments for object recognition or on ob-
ject models for segmentation all sources of information are integrated equivalently, in
order to solve the joint problem.

Already Feldman and Yakimovsky [Feld 74] propose the ’semantics-based region ana-
lyzer’, which iteratively applies a segment based object recognition and an object based
image segmentation process. Object labels are assigned based on segments by exploit-
ing image features, like color, and context knowledge about the objects, like favored
neighborhoods. Candidate segments for region growing are identified in detecting
neighbored segments of same object labels and weak boundaries in the sense of im-
age features. Object labels are assigned again to the new segments. Many decisions
within the system are taken based on rules that require detailed knowledge about the
task and much manual adaptation work when changing the task.

The joint problem of segmentation and part based object recognition is also addressed
in [Yu 02], [Yu 03]. An affinity graph is built up with one node for each pixel and the
edges representing the affinity between pixels determined based on image data driven
edge features. An object recognition algorithm independently detects object patches,
their partial segmentation and information about the spatial configuration of patches
constituting the whole object. A patch graph represents the object patches as nodes
and their relation within its edges. These two graph based representations are coupled
and the global partition is calculated based on a cost function that integrates pixel level
saliency and patch level consistency. The approach successfully segments and labels
persons [Yu 02] and other objects [Yu 03] from cluttered background. Graph matching
and cost functions are specialized for the concrete modules applied here. The system is
not open for integrating further components.

Addressing the joint segmentation and recognition problem and being open for ad-
ditional and belated information leads to the strategy of independently generating a
common representation for the available information and analyzing it. The formalism
defines as few requirements as possible for the individual modules, in order to make
the integration of existing modules possible. The representation is open for integrating
additional information without starting all calculations from the beginning. At any point

71



4 The Integrating Framework

of time, where the representation is internally consistent, after completely integrating
one piece of information, an analysis process can generate object segmentation and
recognition hypotheses by identifying those that are mostly supported by the integrated
information delivered from the individual modules.

Before discussing the integration module in more detail, first its interaction with the
other components of the whole integrated system are presented in the following.

4.1 Integrated System Architecture and Component Interaction

The idea of integrating information from several independent data based and high level
knowledge based modules requires a flexible architecture for the integrated recognition
system. Fig. 4.1 shows an overview of the system components.

Object Knowledge

Image Data

Representation
Analysis of Scene

Integration of Available

1

Object/Segment

n.....

Competing Hypotheses
Evaluated

Information

Modules for Recognition &
Segmentation Based on

Derived Hypotheses
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and

Representation
Common

Information
Object/Segment

Information

Figure 4.1: General system architecture for integration of several sources of informa-
tion for object segmentation and recognition.

Image data is processed in several segmentation and classification modules that ex-
ploit more or less specialized object knowledge. This data based information is inte-
grated within a common representation that is analyzed subsequently to obtain object
hypotheses. They serve as input for modules that deliver additional information based
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on the input hypotheses by exploiting higher level knowledge, like object context mod-
els. The additional information that is constituted from object hypotheses and/or con-
fidence measurements is integrated with the already represented information and the
analysis is restarted for identifying consistent hypotheses for object segmentation and
labeling.

The system consists of several individual segmentation and recognition modules and
the integration unit. Existing modules should be reusable and exchanging single modules
within the integrated system should be possible without great efforts. This leads to the
implementation of individual processes for the system components and the necessity
for a flexible communication network that synchronizes and transfers data between
the processes. In order to accelerate the overall calculation time the communication
framework should be able to connect processes running on one machine as well as
those distributed over several machines.

These requirements are fulfilled by the Distributed Applications Communication Sys-
tem (DACS) [Fink 95], [Jung 98] that was developed within the SFB360 at Bielefeld
University and, therefore, is available here. DACS provides inter process communica-
tion facilities by establishing data streams between processes and by supporting remote
procedure calls.

The data streams allow user defined data packages, like segmentation results for an
image or the image itself, to be transfered from one process to another. The offering
process creates the stream by denominating it with a system wide unified name and
describing the data format. Other processes that know about the data format and the
name order the stream and wait until a data package is available, before starting their
work on this data. The demand streams, as realized in DACS, are a suitable mechanism
for building up cascades of processes, where one process works on the results of the
previous ones. The second communication mechanism that DACS provides are remote
procedure calls. This mechanism simplifies the definition of a function, including input
and output parameters, to be called from external processes. Within the integration
scheme described here, both methods of communication are used. The independent
segmentation and classification processes offer their results on demand streams that are
read from the integration module. The higher level processes that exploit preliminary
hypotheses are called using the remote procedure call mechanism. Intermediate and
final results of the system are available via a demand stream for further use.

The realization of the integration modules is the topic of the remaining part of this
chapter. The description starts with the generation of the common representation for
segmentation and object information and its analysis. The incorporation of additional
information that is based on intermediate results is described after that, before finally
the evaluation scheme for determining confidence values for the recognition results is
presented.

4.2 Common Representation of Segment and Object Information

As the backing of the integration system serves a common representation for the results
of different segmentation and classification processes. In order to do object segmenta-
tion and recognition the recognition system has to identify the region within the image,
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that is covered by an object and the associated object class label.
The common ground for both the segment information and the object information is

the image. Therefore, the main idea for generating a common representation is repre-
senting the image in the form of related segments and assigning the object information
to the segments, where the segments influence the assignment of object labels and the
object labels influence the choice of segments to be candidates for object regions. For
motivating the generation strategies for the segment representation, in the following
first, some general effects occurring in data driven segmentation results are described.

4.2.1 Exemplary Effects in Data Driven Segmentation

The ideal result of an image segmentation process from the point of view of object
recognition is a set of segments, where each segment represents one object region. But
in reality, object regions are split into several segments, on the one hand, or adjacent
objects are covered by just one segment, on the other hand. The splitting of the object
region, over segmentation, often is caused by shading or highlights, but also by the
inner structure of the objects surface. Merging more than one object region, under
segmentation, is mostly caused by low contrasts at the object boundaries. In Fig. 4.2
some objects from an office environment and in Fig. 4.3 an example for a baufix R©

assembly are shown together with some segmentation results that illustrate the effects
mentioned above.

Fig. 4.2 illustrates the effects of shading and inner structure of the object surface and
the problems with low contrast at the borders. The segments are delivered by three re-
gion based segmentation algorithms, namely the approaches based on local color vari-
ation (Fig. 4.2(b), see Sec. 2.2.2), the mean-shift approach applied to color features
(Fig. 4.2(c), see Sec. 2.2.3), and the hierarchical region growing approach color struc-
ture code (Fig. 4.2(d), see Sec. 2.2.1), and the forth contour based perceptual grouping
approach (Fig. 4.2(e), see Sec. 2.2.5). All the segmentation approaches work image
data driven based on different general purpose homogeneity criteria and do not exploit
object knowledge.

(a) Original Data (b) Local Variation (c) Mean-Shift (d) Structure Code (e) Contour Group

Figure 4.2: Two objects from an office domain with different segmentation results.

The surface of the black remote control has an inner structure caused by the array
of buttons. This structure is handled different by the individual approaches. Either
it is represented as a whole in form of a separately extended area within the object
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surface (local variation, Fig. 4.2(b) and mean-shift approach, Fig. 4.2(c)), or many small
segments arise within the object region, as for the color structure code, Fig. 4.2(d). The
contour based perceptual grouping, Fig. 4.2(e), delivers some parallel but no closeness
groups for the button structure. All algorithms identify the silhouette or object region of
the remote control. Different from this, the silhouette of the mug is available only from
one approach, namely the local variation criterion, Fig. 4.2(b). The others have problems
with the low contrast and merge the cup with the background. The inhomogeneity
given by the shading of the front of the mug results in separate segments for three
approaches, while the mean-shift based segmenter, Fig. 4.2(c), subsumes the parts of
the mug and even the stick to one segment.

Fig. 4.3 shows results for a baufix R© assembly. This example illustrates mainly effects
of shading and highlighting. The results are delivered by three region based approaches,
the pixel based classification (Fig. 4.3(b), see Sec. 2.2.4), the mean-shift algorithm ap-
plied to color segmentation (Fig. 4.3(c), see Sec. 2.2.3), and the color structure code
(Fig. 4.3(d), see Sec. 2.2.1), and the forth contour based perceptual grouping approach
(Fig. 4.3(e), see Sec. 2.2.5).

(a) Original Data (b) Pixel Classes (c) Mean-Shift (d) Structure Code (e) Contour Group

Figure 4.3: Example for a baufix R© assembly and different segmentation results.

The approach based on pixel wise classification, Fig. 4.3(b), uses knowledge about the
objects or, to be more precisely, about the object colors occurring within the domain. It
is able to deliver good results for the three bolts, apart from the one small shadow region
of the green bolt. Due to the classification strategy of the algorithm, it is not able to
distinguish the two red cubes, but the correct result of this algorithm would cover the
two cubes within one segment. Instead, at the right side two individual black shadow
regions arise. The upper right part of the cubes is merged to the background. Shading
and highlighting reduce the color saturation and lead the algorithm to classify the colors
to the grey background. The other region based and edge based segmentation processes
do not use domain specific knowledge. The mean-shift approach, Fig. 4.3(c), typically
results in two distinguished tones for each baufix R© color and the background, where
one represents the bright and the other the shaded tone. For the green bolt at the top,
for example, the algorithm identifies the bright upper side (pseudo colored in bright
grey) and the darker surrounding (pseudo colored in pink). This results in at least two,
mostly more regions per object. The two red cubes are mainly covered by one segment,
because of low contrast and just small shadow at the boundary. There are many more
segments than objects, but apart from the borderline between the two equally colored
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cubes the object boundaries correspond to segment boundaries. This implies that the
object regions are principally reconstructible from the segments by generating the union
of several suitable ones. The color structure code algorithm is based mainly on local
information following region growing ideas, Fig. 4.3(d). Although the color distance
threshold is selected to be so small that the bolts get two or more segments caused by
the contrast between the highlighted and the shaded area, it is not possible to distinguish
the two cubes. Even the highlights and shadows on the two cubes are covered by the
resulting one segment for the two cubes. Finally, the contour based grouping, Fig 4.3(e),
is able to detect the border between the two cubes, but is not able to find appropriate
closeness groups for the two cubes. The lower cube is left out, the upper cube is merged
with a bolt.

Fig. 4.4 shows another example of a baufix R© assembly together with segmentation
results that is especially interesting due to the result for the bar delivered by the con-
tour based perceptual grouping process (Fig. 4.4(d), see Sec. 2.2.5). For completion
the results of the segmentation based on the pixel based classification (Fig. 4.4(b), see
Sec. 2.2.4) and the mean-shift approach (Fig. 4.4(c), see Sec. 2.2.3) are depicted, too.

(a) Original Data (b) Pixel Classes (c) Mean-Shift (d) Contour Groups

Figure 4.4: Example for a baufix R© assembly with results from three different segmen-
tation algorithms, especially interesting due to the contour based grouping
hypothesis for the bar.

The two region based segmentation processes both are able to detect the object
boundaries. The pixel wise classification, Fig. 4.4(b), delivers well formed segments for
the cube and bar, just a yellow colored highlight is separated from the orange bolt. The
mean-shift approach, Fig. 4.4(c), delivers several regions for each object due to high-
lights and shadows, as already discussed for the previous example. The most remarkable
result here delivers the grouping process, Fig. 4.4(d), with the original rectangular seg-
ment for the bar. In contrast to the other segmentation approaches, the perceptual
grouping is able to bridge over the gap within the upper contour of the bar resulting
from the occlusion by the bolt.

The effects of highlights, shadows, low contrast etc., illustrated by the examples, are
well known in the area of image segmentation. Integration of several, independent ap-
proaches often allows to detect and even to solve those problematic cases. This is done
based on the main idea that disagreements for the borders of the resulting segments
indicate uncertainties. In order to integrate the segments information a common hierar-
chical representation is built up that establishes special relations between segments that
cover the same image area.
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4.2.2 Generating a Hierarchical Representation of Segmentation Results

Segments from independent segmentation approaches have different characteristics that
complement one another. For exploiting the different sources of segment information a
common representation is generated that differently relates those segments that cover
the same image area and those that do not.

Boundary Representation for Segments Resulting in Areas

The segmentation approaches originally assign each pixel to one segment and, thereby,
deliver disjoint segments that cover the whole image plane. For embedded segments
the area for the inner segment is explicitly excluded from the outer one. Nevertheless,
both segments are related because they describe the same image area, as, for example
the bar and its holes in Fig. 4.4.

For determining the image area that a segment covers the outer boundary of the seg-
ment is decisive. To get an even more compact representation, the boundary is approx-
imated by support points that are considered to be connected by lines. The number and
position of support points is controlled by an error threshold, that defines the maximum
difference between the approximation and the original chain of boundary pixels. The
outer segment border finally is described by a polygon consisting of linear connected
support points. Considering areas derived from segments by just taking into account
their outer boundary, the relation between areas is characterized by their intersection.

Considering the disjoint set of segments delivered from one segmentation module,
a pair of derived areas either provide no intersection, called they are independent in
the following, or one area constitutes the intersection area, if it is completely contained
within the other. Fig. 4.5 shows the set of segments resulting from the mean-shift
approach, as shown in Fig. 4.4(c), ordered by descending pixel counts and the boundary
based representation of differently related areas. Two independent areas are connected
by a white edge and one area that contains another is connected to it by a black edge.

Figure 4.5: Upper part: Segments resulting from the mean-shift approach, see
Fig. 4.4(c), ordered by decreasing size. Lower part: Relational representa-
tion of the areas descended from the mean-shift segments. White: areas
are independent, Black: one area contains another.
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Determining the relations between all pairs of areas results in a fully connected graph.
For avoiding redundant information just necessary relations are explicitly represented,
while others are avoided.

Classifying Relations between Areas from Different Processes

The situation concerning the occurring area intersection changes significantly, if the seg-
ments delivered from more than one segmentation approach are taken into account.
Fig. 4.6 shows the three different segmentation results, already presented in Fig. 4.4,
depicted by the outer boundaries of the segments in red, blue, and green, respectively.

(a) Pixel Classes (b) Mean-Shift (c) Contour Groups (d) Merging Segments

Figure 4.6: Segments of Fig. 4.4 shown by their boundaries.

By merging all available segment information, as shown in Fig. 4.6(d), it becomes
obvious that for the bolt only the summary of the four segments delivered from the two
region based approaches deliver a good object region, while the contour based grouping
provides no hypothesis at all.

The grouping results do, generally, not constitute a disjoint set of segments, as shown
in Fig. 4.6(c), that provides two rather similar closeness groups representing the bar,
see also 2.2.5. The groups are delivered as boundary descriptions. Relating groups by
evaluating the overlapping area works, although more general cases of intersection has
to be expected.

Areas derived from segments that originate from different segmentation approaches
also provides more variety in their intersections. However, all segmentation processes
work on the same image data and, therefore, the resulting segments are not arbitrarily
distributed and not arbitrarily overlapping. There are common boundaries, if theses
boundaries are meaningful and there will be disagreements for boundaries due to the
different characteristics of the segmentation processes including their different handling
of shadows, highlights, bad contrast etc. Based on this fact, the relation between a pair
of overlapping areas is not just represented by the continuous value for the intersection
area, but the relation is classified into semantically meaningful classes based on the
degree of intersection, as already done above for the two classes of independent and
contained areas.

Besides them, there are additionally areas that are similar to each other, if inde-
pendent segmentation processes almost agree on the boundary of an area or similar
closeness groups are identified. The general case of partialoverlap occurs, where there
is a remarkable intersection, but this intersection does not cover at least one of both
areas. This case suggests disagreements and, therefore, uncertainty for a (part of a)
boundary.
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For classifying the relation between two areas, the ratio between the intersection area
and the original areas is calculated, respectively. A certain degree of deviation from the
ideal case for this ratio has to be tolerated that is caused by slight differences in locating
boundaries between the different segmentation approaches in the presence of real and,
therefore, noisy data. The tolerated deviation is steered by a threshold, leading to the
definitions for area relation given in Tab. 4.1.

similar(ai, aj) ⇐⇒ ai ∩ aj

ai
> t ∧ ai ∩ aj

aj
> t

contains(ai, aj) ⇐⇒ similar(ai, aj) ∧
ai > aj ∧ ai ∩ aj

aj
> t

partialOverlap(ai, aj) ⇐⇒ similar(ai, aj) ∧
contains(ai, aj) ∧ contains(aj , ai) ∧
((ai > aj ∧ ai ∩ aj

aj
> 1 − t) ∨

(ai ≤ a2 ∧ ai ∩ aj

ai
> 1 − t))

independent(ai, aj) ⇐⇒ similar(ai, aj) ∧
contains(ai, aj) ∧ contains(aj , ai) ∧
partialOverlap(ai, aj)

Table 4.1: Definition of relation classes between two areas ai and aj according to their
intersection with fixed threshold t ∈ (0.5, 1)

Given one pair of areas the definition for the type of relation is unique. As mentioned
above, calculating relations between all possible pairs of areas would lead to a fully con-
nected graph of related areas. For avoiding redundant relations and further structuring
this representation, I exploit the different characteristics of the relations.

As already shown in Fig. 4.5, for a group of independent areas not all relations are
explicitly established, but instead each area is connected to not more than two areas, re-
sulting in a list of independent areas. This is sufficient under the precondition that other
relations would be explicitly represented and, therefore, the avoided relations between
the list members are defined to be of type independent. Furthermore, several areas
that are contained within a superior one are not individually related to this. Instead, the
group of contained areas is related to each other, for example, as being independent,
and just one element of this group is related explicitly to the superior area. Establishing
additionally relations to all the other contained areas constitutes redundant information
and is, therefore, avoided.
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Additionally, the relation between contained areas is transitive, because it is:

contains(ai, aj) ∧ contains(aj, ak) → contains(ai, ak)

This allows in the case of a region ai containing aj and ak and aj containing ak to avoid
the explicit representation of the relation between ai and ak. Doing so, the represen-
tation becomes hierarchical and expresses in general several layers of contained areas.
The relations are represented explicitly just for neighbored layers.

If two areas are similar, their relations to other areas are comparable. Therefore, a
set of similar regions is handled as a union concerning the representation of relations to
other areas. Relations are represented explicitly just for one representative of the set of
similar areas.

For partially overlapping areas, the part of the boundary that is controversial is located
at the intersection of both areas. The controversy can not be solved here, therefore, the
two areas are handled as a strongly related union, by generating the union of the two
areas as a new artificial area, as shown for the bolt in Fig. 4.7

Figure 4.7: Relations between segments of two segmentation processes that cover the
same image area. All original segments area related to the unified area
built from the originals.

Further calculations for relations to other regions are carried out based on this union
area. As an exception from this, partially overlapping areas resulting from perceptual
grouping are handled. The perceptual grouping mechanism delivers boundary informa-
tion based on the Gestalt laws, where possibly no edges are present in the image, see
Sec. 2.2.5 for details. Therefore, partial overlaps with those areas are not necessarily
caused by uncertainty but occur also due to occlusions, as for the bolt occluding the up-
per boundary of the bar in Fig. 4.4 and Fig. 4.6. If grouping hypotheses partially overlap
other areas, no artificial union area is generated, in order to avoid merging several object
regions into one area. Nonetheless, such a closeness group constitutes an alternative to
the representation given by one or more region based segments that is taken into ac-
count later on for hypothesizing object regions. Due to their special characteristic the
partially overlapping groups remain firstly independent until the construction of the hier-
archical representation is finished. Then, a group is related to an appropriate represented
region based generated area, if the matching procedure is successful that has been al-
ready proposed in [Schl 00] for supporting object recognition by grouping results, see
Sec. 2.2.5. Partially overlapping grouping hypotheses that does not match to any re-
gion based generated area are not incorporated within the common representation and
remain within a separate list for further use.
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Fig. 4.8 shows the hierarchical representation of the segmentation results shown in
Fig. 4.6.

Figure 4.8: Hierarchy of segmentation results including the segments from the three
segmentation processes shown in Fig. 4.6, related according to the defini-
tions given in Tab. 4.1 with threshold t set to 0.85. Red: Similar areas.
Blue: Partially overlapping areas and artificially generated union represen-
tative. Green: Partially overlapping grouping areas. Black: Area contain-
ing another area. White: Areas are independent.

The representation is mainly characterized by the independent areas of the upper
level (white edges) most of them constituting the root of a tree of contained areas
(black edges). The relation between similar areas (red) simplifies the representation by
finally reducing the number of areas to be considered. The two occurring union areas of
partially overlapping ones (blue) lead to better object region representations for the bolt
and just slightly changes for the bar in comparison to the original segments. Partially
overlapping grouping hypotheses are explicitly related (green) but no artificial union
area is generated. This avoid the merging of the area representing the bar with those
representing the bolt. The closeness group representing the front of the cube is left out
for this representation because it is not matched to one of the region based generated
segments.

The hierarchical representation is based on the classification of the pairwise relations
between areas which is controlled by the threshold parameter t. The hierarchy shown
in Fig. 4.8 is calculated by setting t to 0.85. In comparison, Fig. 4.9 shows the repre-
sentation resulting from changing the threshold from 0.85 to 0.83 for this example. A
difference occurs for the bar, where no longer partial overlaps are detected and instead,
the area derived from the greatest original segment occurs in the upper layer. The less
strict formulation of similarity leads to the classification of the two main bar areas to be
similar instead of one is contained in the other. A comparable situation occurs for the
small long bar area that is classified to be contained now, while before it was partially
overlapping. The two parameter settings take influence on the representation, but it
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is hardly to decide, which representation is better. The detailed discussion of this pa-
rameter concerning its numerical setting and its influence on the results is part of the
evaluation of the realized integrating systems given in Chapter 5.

Figure 4.9: Hierarchy of segmentation results similar to the one presented in Fig. 4.8,
but with threshold parameter t set to 0.83.

Algorithmic Aspects of Generating the Hierarchical Representation

The simplest way for building up the hierarchical representation is considering all possi-
ble pairs of areas, calculating their pairwise intersection, and determining their relation
by classifying the intersection. This results for N areas in calculating N ·(N−1)

2 intersec-
tions which means a quadratic increase with the number of areas. For example, twenty
original areas have to be taken into account from two segmentation processes, shown in
Fig. 4.6(a) and Fig. 4.6(b), resulting in 190 possible pairs of areas to be compared. Due
to the fact that one new artificial area is introduced by two partially overlapping areas,
see Fig. 4.9, the overall number of comparisons increases even by 18 resulting in 208.
These numbers are just to give an impression of the number of necessary calculations for
the small example assembly. The number of necessary comparisons and the time neces-
sary for each comparison are the two rather independent parameters that determine the
processing time for the whole process of generating the area based representation. Both
parameters are topic of the following considerations about accelerating the process.

The general intersection calculation for a pair of areas based on their boundary data
is time consuming and, therefore, is avoided whenever possible. If the two areas do not
intersect and are even in a certain distance from each other the simple comparison of
the rectangular bounding boxes of the two areas is sufficient for detecting this case of
no intersection. The rectangular bounding box is a rough approximation of the areas
boundary and, therefore, the support points of the polygons are compared next, if the
bounding boxes overlap. The number of support points of the smaller area of the pair
that are inside and outside the bigger area are counted, respectively. In case of all points
of the smaller area are excluded from the bigger one, there is no intersection. If all
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points are contained the whole area is contained resulting in the intersection area given
directly by the pixel count of the smaller area. Finally, the situation that some points are
contained and others are excluded leads to the conclusion that there is an intersection
whose area has to be calculated for classifying the relation between the pair of areas.

I do the general intersection calculation using a rectangular pixel mask that corre-
sponds to the rectangular bounding box of the bigger area. The entries of the pixel
mask represent, whether the corresponding pixel is included in none, one or both areas.
Those pixels marked as included in both areas are counted for the intersection area. For
classifying the relations between the 208 pairs of areas for the example, just 13 general
intersection calculations are necessary. In 145 cases the simple comparison of the rect-
angular bounding box is sufficient for concluding that no intersection is present and 50
decisions are made based on the support point comparisons.

Besides accelerating the individual comparison the number of pairs of areas that have
to be compared to each other is reduced by exploiting the characteristics of the relations.
In the beginning, the list of all areas is sorted according to descending pixel counts. In
a first pass through this list, those areas that are similar are marked. Just one of them
has to be taken into account for finding candidates for partial overlaps and for finding
contained areas. In a second pass, partial overlapping areas are identified. The artificial
union area is generated and further compared instead of the original ones. For these
two passes, pairs of areas originating both from one segmentation process, that delivers
an unambiguous partition the image plane, can be skipped for the comparison. Those
areas can not be similar or partially overlapping. However, the grouping process does not
deliver disjoint segments, as described above, leading to the necessity for carrying out
the calculations in this case. In a final third pass areas that are contained within others are
determined. An area that is contained within another one is removed from the list and
related appropriately to the bigger area. The algorithm for searching contained areas is
recursively started for the contained area and the list of remaining, smaller, areas. For
data sets providing more than one layer of contained areas this procedure avoids the
explicit generation of relations between areas that are implicitly given by the transitivity
of the contain relation. In a postprocessing step the partially overlapping groups are
matched to areas of the hierarchy.

To summarize, the following steps for building up the hierarchical representation of
segmentation results are performed:

1. Sort list of areas:
Sort the list of areas according to descending pixel counts.

2. Relate similar areas:
Search for each area of the list similar areas within the rest list starting with the
next element. Search stops, when elements of the rest list become too small for
being similar. Similar areas are taken from the rest list and related to the area they
are similar to.

3. Relate partially overlapping areas:
Search for each area of the list partially overlapping areas within the rest list start-
ing with the next element. If list elements are linked to similar ones, the partially
overlap criterion must be fulfilled for all the similar areas. If at least one of the
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areas is descending from a grouping process, mark the relation and continue the
search. Else exchange the partially overlapping elements in the list by the artificial
union area and link the originals to this. Search further partially overlapping areas
for the artificial union area, until nothing more found. Search similar areas for
the final new artificial one. Finally, reorder the list again in descending order pixel
counts.

4. Relate contained areas:
Search for each element in the list areas that are contained. If one is contained,
delete it from the list and relate it to the surrounding area. Start recursive search
of the rest list with the contained area, possibly building up several layers of con-
tained areas.

5. Match partially overlapping groups to areas of the hierarchy.

This process results in a list of independent areas that themselves are differently related
to other areas.

For the example discussed at the beginning of the considerations about algorithmic
aspects 20 original areas have to be taken into account, resulting, firstly, in 190 cal-
culations for intersections. Due to a newly generated artificial union the number of
comparisons increases for the example to 208.

Applying the stepwise procedure, 10 candidate pairs for similarities descending from
different segment sources and providing similar pixel counts are identified, where 5
simple bounding box comparisons are negative. 5 general intersections have to be cal-
culated, where 4 pairs of similar areas are found. 1 calculation does not result in a
similarity classification, but the information about the intersection of the pair is stored
for later use.

Instead of the original 20 areas, the following pass is started with a list length of 16
areas. The 4 similar ones are just considered, if possible partial overlaps have to be
confirmed. This case does not occur within the example. Therefore, the complete set of
area pairs reduces from 190 to 120 elements after the first pass.

Within the second pass of the example 54 pairs of areas are extracted, as descending
from from different segment sources They are candidates for partial overlaps. 30 pairs
are rejected by the simple bounding box criterion, another 17 by the support point com-
parison. For the remaining 7 pairs, general calculation of the intersection was necessary,
where 1 result was already calculated and stored during the first run. 1 pair is identified
as partially overlapping and the new artificial union area is generated during the pass.

Finally, for the third and last pass the segment list includes 15 areas, resulting in theo-
retically 105 comparisons. For the calculation of parts that exploits the transitivity of the
relation 63 comparisons have to be done, where 25 of them have already been done
during the first and second pass. For the remaining 38 pairs, 29 relations are decided by
the simple bounding box criterion and another 8 relations by support point comparisons.
Just 1 general intersection has to be calculated.

Summarizing all these numbers, for the example, the given stepwise procedure re-
duces the number of necessary pairwise comparisons from 208 to 101. Considering
the individual intersection calculations, 12 instead of 13 general calculations have to be
processed. The number of calculations based on the support points of the boundaries
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is halved by decreasing from 50 to 25, the number of bounding box comparisons drops
from 145 to 64.

In general, the computational time depends on the composition of the considered N
areas. If there are many independent sources of areas, more comparisons for finding
similar areas have to be made. However, there will occur more similar areas that are
identified at the first stage of calculation reducing the number of effective areas for
the following steps. Applying stricter segmentation parameters or analyzing objects that
exhibit more inner structure, increases the amount of areas, but the number of contained
layers will also increase. Then the acceleration caused by the recursive processing for
contained areas attains good results. If the increase of areas is due to enlarged objects
more and more classifications of pairs of areas can be decided based on the simple
bounding box comparison. For systems with critical processing time constraints, these
aspects should considered for selecting the number of different segmentation processes
to be integrated and the parameterization of the processes themselves.

The generated representation contains besides area representing objects also those
representing the background. Background areas generally enlarge the representation
without supporting the recognition task. Their identification within the uppermost layer
of the hierarchy is rather simple, if there exists one area or several similar ones that
contain all the other areas. If the representation contains more than one independent
area at the uppermost level, additional candidates can be optionally identified by their
size, where the threshold applied for the realized system is set to about half of the
image size. The identification of all background areas is not a requirement for applying
the following interpretation, but it simplifies and accelerates it.

This is also the motivation for further generating sub units within the representation
concerning a whole image by constituting clusters of neighbored areas/objects and sep-
arating the clusters from each other. Therefore, the independent areas at the uppermost
layer of the hierarchy that do not exceed a given distance to each other are summa-
rized into a cluster. The smaller sub units are treated independent from each other and
thereby simplifies the interpretation and the evaluation.

4.2.3 Image Data Based Object Information

Object recognition processes, such as described in Sec. 3.2, deliver object information
that is based on image data. Like discussed for the segmentation problem before, a
single recognition process is generally not able to do a recognition task without failures.
In order to get more reliable results, different recognition processes based on different
approaches and assumptions should complement one another.

Thereby, the question arises, what object units are suitable to identify. For example,
within the baufix R© scenario elements as well as parts of elements, like a hole or the head
of a bolt, and also assemblies of elements are meaningful object units. For the objects
from an office environment, either the cup standing on a table or its handle, but also the
fish sketch printed on the cup are candidates for the object units. The main object units
are defined by the recognition task. Other object labels generally occur by applying
different recognition strategies to the task. Their integration becomes important for the
interpretation step, which is topic of the next section.
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Additionally, the results of different recognition processes are distinguished by either
containing segment information accompanying the object label or not. This difference
is firstly independent from the given task. Generally applicable data driven recognition
processes either base on segment information for object classification and, therefore,
deliver segments together with an object label or they directly use the image pixel infor-
mation and, consequently, deliver no segment information. The appropriate pixel data
is collected from a predefined image area, like the circular or rectangular surrounding
of an object location point. The two strategies lead to segment and point based object
information, respectively.

Fig. 4.10 shows object recognition results for the baufix R© domain generated from the
hybrid approach (Fig. 4.10(b), Sec. 3.2.1) and the neural appearance based approach
(Fig. 4.10(c), Sec. 3.2.3)

(a) Original Data

bolt

cube

3−hole−bar

(b) Hybrid Recognition

hole_cube

hole_bar
head_side_round_bolt

hole_bar

head_hexagon_bolt

(c) Appearance Based Recognition

Figure 4.10: Exemplary object recognition results generated from two different recog-
nition approaches for the baufix R© domain.

The hybrid approach consists of a neural hypotheses generation and a semantic ob-
ject model based verification step realized for baufix R© element recognition. Color re-
gion information is used for detecting objects for the neural classification and influences
strongly the model based verification step. Occlusions of elements within assemblies
that result in significant changes of the object region shape, therefore, principally lead
to uncertain recognition results and failures. The bar in Fig. 4.10(b) is an example for
that even if the recognition process tolerates the slight occlusion here. Generally, the
approach delivers a recognition result consisting of object label and object region infor-
mation.

In contrast to this segment information, interesting points and the pixel information
within a fixed circular surrounding are used for detecting and classifying objects by the
appearance based neural classification approach. The module is parameterized to the
baufix R© task by taking into account image areas of sizes in the order of magnitude of
the size of a typical hole. These small areas correspond to characteristic inner struc-
tures of the elements that mostly remain visible and, thereby, detectable even in the
presence of occlusions of elements within assemblies. However, the classification itself
is rather uncertain (about 30% misclassification on average), caused by the smallness
of the windows and the accompanying small amount of underlying image information.
Additionally, the results in the form of classified focus points do not contain any in-
formation about the number of objects and their segmentation from the ground, see
Fig. 4.10(c).

The different segment information accompanying the object labels lead to different
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strategies for their integration with the hierarchical representation of segmentation re-
sults, as described in the following.

Region Based Object Label Integration

For object labels delivered with region information the corresponding area is already
included within the hierarchical common representation. Consequently the object label
is assigned firstly to this one area, reflecting the complete information given by the
recognition task. If this area is member of a set of similar ones, the object information
is transfered to all members of the set. The object information assigned to an area that
partially overlaps another one and, therefore, is part of an artificially generated union
area is assigned also to the union area. The information about the special situation
remains within the system for probable later use.

Figure 4.11: Simplified hierarchical representation of Fig. 4.8, on page 81, extended
with region based object information of Fig. 4.10(b), on page 86. Object
labels are color coded with blue for ’bar’, black for ’cube’, and yellow for
’bolt’.

Fig. 4.11 shows the hierarchical segment representation, already presented in Fig. 4.8,
on page 81, extended by the region based object information depicted in Fig. 4.10(b),
on page 86. The hierarchical representation is simplified by just showing independent
and contained areas and leaving out similar and partially overlapping original ones.

The region based object labels are attached to the superior areas representing the bar,
cube, and bolt, respectively. Thereby the superior bar and bolt areas are artificial union
areas that each get the object information from one of its members.

Point Based Object Label Integration

Point based object hypotheses identify the surrounding of the focus point to depict some
object class. The object region information has to be taken from the independently
generated segmentation results by assuming image areas to be probable object regions
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that cover the focus point carrying object information. Special attention must be paid
to points that are located near the border of an area and with this near the neighbored
or superior area. The surrounding of those points whose pixel information leads to the
object label classification then is shared by the two areas and an unique assignment to
one of the two areas may be not justified. For taking care of this situation, I introduce
a threshold for the minimal distance between a focus point and the boundary of the
related area. By choosing an adequate value for this parameter it is possible to require a
significant part of the surrounding being covered by the area in order to assign the point
based object information directly to it.

(a) No minimal distance (b) Min. distance: 6 pixels (c) Min. distance: 12 pixels

Figure 4.12: Effects of three different distance parameter settings on the point based
object label assignment to segment information. Objects labels are color
coded for visualization purposes.

Fig. 4.12 shows exemplarily the effect of three different distance parameter settings
for the assignment of point based object labels delivered by the neural appearance based
recognition approach, see Sec. 3.2.3, and the pixel color classification based segmenta-
tion, see Sec. 2.2.4, for the baufix R© domain. The classification module uses image data
within a radius of 25 pixels for determining the object label. Fig. 4.12(a) shows all object
labels and their location relative to the segment information. Some of the object labels
are located near object borders which makes the assignment to the appropriate object
area doubtful. The most evident example is the ’bolt’ label located on the bar between
the lower bolt and the rhomb. Requiring a minimal distance between the object label
location and the boundary of the area as a prerequisite for the assignment leads to less
object labels being assigned. A distance threshold of 6 pixels results in 2 missing object
labels, see Fig. 4.12(b) in comparison to Fig. 4.12(a). Because both former assignments
were incorrect, the effect of the threshold is solely positive. A distance threshold of 12
pixels, which corresponds to the half of the radius that has been used for classification,
results in already 8 missing labels of a whole of 18, with four of them were correct, see
Fig. 4.12(c) in comparison to Fig. 4.12(a).

For integrating the point based object information with the hierarchical common rep-
resentation of segmentation results, all segments that cover the object location by taking
into account the potentially set distance threshold parameter are related to the object
information. This relation is realized by directly assigning the object information to the
innermost of these areas, i.e., the one not containing another area covering the point.
The relation between the object label and the superior areas is given indirectly by the
relation between the areas.

Fig. 4.13 shows the simplified hierarchical segment representation already used in
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Fig. 4.11 with integrating the point based object knowledge that is depicted in Fig. 4.10(c),
on page 86. For the area assignment a minimal distance between object location and
area border of 6 pixels is required.

Figure 4.13: Hierarchical representation of Fig. 4.11 extended with point based object
information of Fig. 4.10(c), on page 86. Minimal distance between object
location and area border is 6 pixels. Objects labels are color coded with
blue for ’bar’, black for ’cube’, and yellow for ’bolt’ parts.

The point based object labels from the appearance based neural approach identify
characteristic structures of the baufix R© elements, like the holes of the bar and cube
and the characteristic surfaces of the head of the bolt. These structures are mainly also
represented by the segment information. Consequently, most object labels are directly
assigned to subordinated areas that represent these structures. The minimal distance
threshold thereby prohibits well the assignment to the very small inner areas located
at the hole of the cube or the head of the bolt. However, for the object label located
at the border of the left hole of the bar the application of the threshold results in the
assignment of the point to the superior area representing the whole bar and inhibits
a relation to an area representing the hole. The detailed discussion of the threshold
parameter concerning its numerical setting and its influence on the results of the realized
integration system is part of Chapter 5.

4.2.4 Summarized Characteristics of the Common Representation

The common hierarchical representation of segment and object information presented in
the preceding section constitutes a general tool for structuring independently generated
information of different types with regard to their integrated use for solving an object
segmentation and recognition task. The representation scheme collects and stores the
available information and structures it by establishing relations between different parts
of information.

Independently generated segmentation results are related based on their common
ground, the image plane. For the comparison each segment is represented by its outer
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boundary and the degree of overlap between each two of the resulting areas determines
their relation. A threshold based classification of the intersection area and the original
areas delivers one of four different types of relations for pair of areas. The two areas are
identified to be either similar to each other, one is contained within the other, they over-
lap partially, or they are independent, i.e., they have no or just a small intersection area.
The common representation is generated by exploiting the semantics of the relations. A
set of similar areas is represented by one member of the set and partially overlapping
areas are merged resulting in an artificial union area that represent them within the hi-
erarchy. For areas that contain others and those that are independent from each other
not all of the pair relations are represented explicitly, but instead each area does not get
more than two explicit relations of each of the two types. With this simplification the
resulting representation is characterized by lists of independent areas that each generally
constitutes the superior of a list of independent contained areas and so on. Individual
ones of the independent areas are further related to similar or partially overlapping ones.
The structure thereby provides less explicit and many implicit relations and is recursive
without preferring one layer to another.

Exceptions have to be handled, if grouping hypotheses are integrated into the system
due to the special capabilities of bridging gaps within the sensory data which complicates
the comparison to other segment information principally. Partially overlapping groups
get a special type of relation to areas within the hierarchy, which does not disturb the
general structure.

The resulting representation of all the occurring segment information is simplified by
identifying and deleting areas that represent the background and by generating inde-
pendently treatable smaller sub units of the data constituted by clusters of neighbored
areas.

Available object information is integrated with the hierarchical representation of the
segmentation results by attaching object labels to appropriate areas within the repre-
sentation. For object information accompanied by segment information the label is
attached to the corresponding area. Point based object information is directly attached
to the smallest area that covers the point and indirectly related to all superior areas via
the area relations.

Due to the general formulation of the data integration the common hierarchical repre-
sentation can be generated based on available segment and object information without
the need of defining the number and kind of processes in advance. The set of processes
may change from one run to another. This allows the flexible exchange of modules for
firstly finding a good composition of the available processes and for replacing modules
by improved ones with their availability.

Additionally during one run a representation generated based on the available infor-
mation at one point of time can be extended by belatedly arriving parts of information.
Belated information in this sense is not only delivered from time consuming processes
for which the integrating system does not have to wait with its first results. The situation
also principally occurs, if modules are included that are based on preliminary results like
those exploiting object context. For generating the preliminary results available informa-
tion is collected , represented, and interpreted. The new pieces of information generated
based on that have to be integrated with the existing representation in order to provide
an integrated reinterpretation. New segment information, potentially accompanied by
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object information, introduce new relations into the system that generally change, at
least locally, the former calculated structure. However, most of the earlier calculated
relations remain valid. Especially the relations between the areas that are contained in a
new one are not affected and constitute together with the attached object information
the base of the extended representation. Belated object information either accompanied
by already known segment information or not based on segments at all can be added
without any changes in the structure of the former representation.

The common representation of available segment and object information constitutes
the base for the following interpretation step that identifies object regions and labels
based on the stored information.

4.3 Generating Hypotheses by Analyzing the Hierarchical
Representation

The hierarchical common representation of segmentation and object information con-
tains many pieces of information that have to be integrated to come to a consistent
interpretation of the image containing of hypotheses for object regions and appropriate
object labels. In the presence of uncertainties and failures the success of the approach to
come up with indisputable object recognition results seems doubtful. A more promising
proceeding is to identify generally several competing solutions in order not to loose the
correct result by a precipitate decision.

By the integrating additional high level knowledge, like knowledge from object con-
text (see Sec. 3.3), former less probable hypotheses might become favorites and vice
versa. An early decision for one hypothesis prevents the integration of additional knowl-
edge but allows its application just for verifying or discarding the candidate.

Due to the amount of information stored within the representation it is not desirable
to generated hypotheses for all possible combinations of areas and occurring object
labels. Instead a manageable reduced set of competing probable hypotheses has to be
identified.

For generating this set, the interpretation step needs criteria for identifying probable
object regions within the hierarchical representation and a mechanism for integrating
the occurring different object labels.

The latter is the topic of the following subsection, before in the successive subsection
the criteria for the identification of probable object regions are discussed.

4.3.1 Object Labels from Probabilistic Integration

Accounting for different recognition modules leads generally to several different object
hypotheses that are related to an area within the hierarchical representation and have to
be integrated in order to generate a resulting label for the area. There are different point
or region based object labels directly attached to the area. Additionally, point based
object information that is attached to contained areas has to be taken into account, if
the contained areas are assumed to represent inner structures of the object. The choice
of candidate areas and the treatment of contained areas is the topic of the following
subsection and is assumed to be given here. Among the related object labels, there are
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besides the correct labels generally also false ones, due to recognition failures within
the individual recognition modules or due to establishing false relations between point
based hypotheses and the available segment information.

Independent of their characteristic to be point or region based different object label
alphabets may occur within the object information, like holistic labels for the whole ob-
ject or recognition results for object parts delivered from part based modules. Collecting
the object information related to an area of the hierarchical representation, therefore,
generally results in a set of firstly incomparable object labels from that an integrated
resulting label according to the recognition task and an appropriate evaluation of its
(un-)certainty have to be determined.

For making the occurring different labels comparable the occurring original label al-
phabets, OL1 . . . OLn, the alphabet of the resulting object labels, RL, and their coher-
ence have to be defined in once advance. The alphabet of the resulting labels may
be equal to one of the incoming sets or may be additionally defined. A standardized
coherence definition containing the mapping from each original label into the alphabet
of resulting labels make these labels addressable for a general integration mechanism.
The table containing the occurring object labels for the baufix R© task is shown in the
Appendix B, Sec. B.2.

An object recognition result consists in its general form of a vector of confidence
values, where each component represents an object label of the corresponding alpha-
bet. A special result that is constituted by a label without any confidence information is
equivalent to a vector with just one entries being non zero. It depends on the recogni-
tion module that generates the object hypothesis which amount of information about
confidence is available.

Tab. 4.2 illustrates the different incoming pieces of object information for an area
representing a baufix R© cube. The region based ’undefined’ hypothesis is based on the
element label alphabet, while the point based hypotheses are defined within the set of
sub elementary parts. The element label is given without any confidence information
while for the sub elementary hypotheses evaluations are determined from the appropri-
ate classification error matrix, see Appendix B, Sec. B.3 for details.

Mapping an incoming evaluation vector corresponding to an original object label set,
OLi, to another one corresponding to the resulting label alphabet, RL, is defined by the
label to label mapping. If different original labels are summarized by one resulting label,
their evaluations are summarized. The other way around, if one original label supports
different resulting ones the corresponding evaluation is split. The resulting confidence
vectors based on the common resulting object label alphabet RL are comparable and
thereby integrable.

Integrating several object labels is the focus of classifier combination schemes, as
presented and discussed in Sec. 3.1.4. The scheme that turns out to be generally most
promising is the probabilistic integration by applying the sum rule. This rule demands
to summarize the participating evaluation vectors and to determine the most probable
label and its confidence value from this sum vector by identifying the component that
provides the maximal value. This rule is applied here for integrating the set of object
labels attached to a chosen area of the hierarchical representation. If several labels
provide the maximal confidence, they are treated further as competing hypotheses.

If information about the relative reliability of the different sources of object hypothe-
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hole_cube

undefined part_cube

OL1 ’undefined’
3 hole bar 0.0
5 hole bar 0.0
7 hole bar 0.0
cube 0.0
rhomb 0.0
felly 0.0
tyre 0.0
socket 0.0
ring 0.0
bolt 0.0
undefined 1.0

OL2 ’part cube’ ’hole cube’ (2 times)
undefined 0.1199 0.0510
part cube 0.5341 0.0848
hole cube 0.2125 0.8277
edge cube 0.0899 0.0000
part rhomb 0.0000 0.0000
hole rhomb 0.0000 0.0000
side rhomb 0.0109 0.0064
head round bolt 0.0109 0.0036
head side round bolt 0.0109 0.0000
head hexagon bolt 0.0109 0.0064
head side hexagon bolt 0.0000 0.0137
hole bar 0.0000 0.0000
edge bar 0.0000 0.0064
felly 0.0000 0.0000
hole felly 0.0000 0.0000
tyre 0.0000 0.0000

Table 4.2: Object hypotheses related to an exemplary baufix R© cube presented as eval-
uation vectors based on different object label alphabets.

ses is available this can be generally accounted for by weighting the confidence values
of a hypothesis dependent on its origin before integrating it, as, for example, done in
the system presented in Sec. 3.2.2. In the application here, where the recognition mod-
ules delivering object labels are flexible exchangeable, relative reliabilities between the
sources of information are not applied. Instead, each object label contributes confidence
values that are normalized to sum up to one, independent of its origin.

Tab. 4.3 shows the unified evaluation vectors of Tab. 4.2 and the integrated vector
after applying the probabilistic sum rule and normalizing the resulting confidence values.
In spite of the one occurring false label ’undefined’, the integration step results in the
correct object label ’cube’ evaluated by a value of 0.67.

RL ’undefined’ ’part cube’ ’hole cube’ (2 times) integrated result
bar 0.0 0.0000 0.0064 0.0032
cube 0.0 0.8365 0.9125 0.6654
rhomb 0.0 0.0109 0.0064 0.0059
felly 0.0 0.0000 0.0000 0.0000
tyre 0.0 0.0000 0.0000 0.0000
socket 0.0 0.0000 0.0000 0.0000
ring 0.0 0.0000 0.0000 0.0000
bolt 0.0 0.0327 0.0237 0.0200
undefined 1.0 0.1199 0.0510 0.3055

Table 4.3: Object hypotheses of Tab. 4.2 unified to the common label set of general
baufix R© elements with their appropriate evaluation vectors and the inte-
grated evaluation vector resulting from applying the probabilistic sum rule
and normalizing.
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For generally analyzing the common hierarchical representation of segment and object
information the described probabilistic sum rule is implemented and applied, whenever
an object label is assigned to an area of the hierarchy based on the different pieces of
related object information. The integration step accesses the encapsulated task specific
implementation concerning the occurring object label alphabets and their mappings via
a generalized functional interface.

Equipped with the mechanism of integrating a given set of different object labels
the analysis of the common hierarchical representation concerning the identification of
probable object regions is addressed in the following.

4.3.2 Selecting Hypotheses for Object Regions

Probable object regions has to be identified from the great amount of segment infor-
mation that is represented in the hierarchical structure. The represented relations sup-
port this interpretation process by clustering the the information that has to be taken
into account for interpreting an image area. Further on, the one representative that is
chosen for a set of similar areas and the one artificially generated union area covering
several partially overlapping areas reduce the number of areas to be considered. Re-
lated grouping hypotheses are used as alternative object region representation within a
postprocessing step after selecting probable object regions from the hierarchy.

Nonetheless, even for rather small examples the hierarchy contains several layers of
contained areas that has to be taken into account for identifying object regions, as
shown for two examples in Fig. 4.14 and Fig. 4.15. Areas that are contained within
others occur due to inner structures of the object surfaces resulting from either surface
paintings or highlights and shadows. Additionally different object sizes resulting in em-
bedded object area projections, as for the bolt, felly, and tyre in Fig. 4.14, and under
segmentation, as for the two bars in Fig. 4.15, are responsible for contained areas.

Figure 4.14: Exemplary hierarchical representation for a baufix R© assembly. Projection
of differently sized object regions determine the location of object regions.
Left: Original image. Middle: Individual segment and color coded object
recognition results (yellow: ’bolt’, cyan: ’tyre’, magenta: ’undefined’,
blue: ’bar’). Right: Common hierarchical representation.

These considerations also show that it is not sufficient just to assume each area of the
uppermost level to represent one object and interpret the contained ones as less impor-
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Figure 4.15: Exemplary hierarchical representation for a baufix R© assembly. Under
segmentation of the bar causes the location of object regions at the sub-
ordinated level. Upper left: Original image. Upper right: Individual
segment and color coded object recognition results (yellow: ’bolt’, cyan:
’tyre’, magenta: ’undefined’, blue: ’bar’). Lower: Common hierarchical
representation.

tant inner structure. Instead, object regions possibly occur at each layer of the hierar-
chical representation. Criteria taking into account the contained areas and the attached
object information are necessary for identifying them. This results in the general strat-
egy for the analyzing step to interpret each area independent from its location within
the hierarchy based on its directly attached information and the formerly generated in-
terpretation for the contained areas. The analysis for each area proceeds recursively by
first calling the analysis procedure for the contained areas and taking into account these
results for the interpretation of the current area. Independent recursive interpretation
procedures are started for the areas of the uppermost layer.

Uncertainties in the interpretation arises generally anywhere within the recursive in-
terpretation process. Therefore, the interpretation step is generally allowed to deliver
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several competing hypotheses, that constitute the basis for the integration of additional
information like results from the context based modules, presented in Sec. 3.3.

After determining the general analyzing strategy the details of generating object hy-
potheses for a given area are as follows.

Rule Based Generation of Competing Hypotheses

The basic consideration for the interpretation of a given area within the hierarchical
common representation is that it is firstly assumed to represent a significant structure of
the image. This leads to generally hypothesizing the current area representing one object
region and contained areas corresponding to inner structure of the one object. In the
presence of structured surfaces and lighting effects causing highlights and shadows this
hypothesis is justified. In addition to this unified hypothesis, competing interpretations
arise by assuming the contained areas to represent individual objects. In order to keep
the number of competing hypotheses small, the alternative interpretation is just build
up if there is a hint for its justification.

This is given, if the current area is similar to the union of the directly contained areas.
Then, it is not decidable without additional information, whether the current area is
the result of under segmenting the individual object regions or the contained areas are
the result of over segmenting the object region represented by the current area. The
definition of two areas being similar to each other has already been used for generating
the common representation, as described in Sec. 4.2 and is used here appropriately.
The hypothesis providing individual objects for contained areas competes the unique
interpretation of the current area.

Furthermore, an additional interpretation is justified by disagreements within the ob-
ject information related to the current and the contained areas. A hypothesis containing
several objects instead of one unique reduces the necessity of integrating disagreeing
object label and, therefore, better corresponds to the given object information. One or
more directly or indirectly contained areas are assumed to represent individual objects
besides the current area embedding them and carrying the remaining object information.

These considerations lead to the rules for generating competing object hypotheses for
a given area within the hierarchy, as summarized in Tab. 4.4.

Recursive Interpretation Procedure

The given set of rules is applied for generating competing hypotheses for a selected area
of the hierarchy. For interpreting the current area by applying rule 2 and 3 object hy-
potheses for the contained areas have to be available. They are calculated by recursively
starting the analysis for the contained areas, before the competing hypotheses for the
current area are generated based on these results. The recursive analysis function pro-
ceeds a list of independent areas by interpreting each area dependent on the results of
analyzing its list of contained areas. The resulting competing hypotheses for each area
of the list are combined leading to a set of competing hypotheses each concerning the
whole list of independent areas. The set of competing hypotheses interpreting the in-
dependent areas of the list constitutes the return value for the analysis function at each
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1. Generate the unified hypothesis for the current area by assuming all the contained
areas and related object labels constituting one object.

2. Are the current area and the union of the directly contained areas similar to each
other?
If so, generate a competing hypothesis for the current area by assuming the
equivalent contained areas to represent individual objects.

3. Are there disagreements between the object information directly attached to the
current area and that delivered from the analysis of the contained, not equiva-
lent, areas ?
If so, generate a competing hypothesis for the current area including the inter-
pretations of those subordinated areas carrying the disagreeing labels and the
current area, together with the remaining segment and object information, as
separate objects, respectively.

Table 4.4: General rules for generating competing object hypotheses for an arbitrary
area within the hierarchical representation based on the results for the con-
tained areas and the directly attached information.

step of the recursion. The algorithm for the recursive analysis of a list of independent
areas is summarized in the following:

Analyze(independent_areas):

FOREACH area FROM independent_areas
competing_independent_area_hypotheses = Apply_rule_1(area)
competing_contained_hypotheses = Analyze(contained_areas)
FOREACH contained_hypothesis FROM competing_contained_hypotheses

competing_independent_area_hypotheses +=
Apply_rule_2(area, contained_hypothesis)

competing_independent_area_hypotheses +=
Apply_rule_3(area, contained_hypothesis)

END.
Append (hypotheses, competing_independent_area_hypotheses)

END.
competing_list_hypotheses =

Combine_independent_area_hypotheses(hypotheses)
RETURN (competing_list_hypotheses)

Starting the analysis for the independent areas located at the uppermost layer of the
hierarchy, results in a set of competing hypotheses for these areas by considering the
stored segment and object information.

The example, already used in Fig. 4.14, serves for illustrating the interpretation pro-
cedure. Fig. 4.16 shows the known hierarchical representation at its left and competing
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hypotheses generated rule based during the recursive interpretation procedure at its
right side. For simplicity the areas carrying no object information at the leaves of the
tree that do not influence the interpretation procedure are left out.

undefined

undefined undefined

undefined

rule 1

rule 3rule 3rule 3rule 1

undefined

...

0

undefined undefined

rule 1 rule 3 rule 3

1

2

undefinedundefined

rule 1 rule 2

3

...

...

Common Representation Derived Competing Hypotheses

undefined

Figure 4.16: Rule based generation of competings hypotheses during the recursive
analysis of the exemplary common hierarchical representation, already
shown in Fig. 4.14. The result of the analysis are the competing hypothe-
ses for the areas located at the uppermost layer that take into account
the subordinated areas and related object information.

The hierarchy contains three areas at the uppermost layer due to the over segmen-
tation of the area representing the tyre by all the integrated segmentation approaches.
Without additional information this over segmentation can not be detected and, con-
sequently, the two separated areas representing the contact surface of the tyre are as-
sumed to represent individual objects and analyzed separately. Their analysis is rather
simple and will not be shown in detail here. More interesting is the interpretation of the
big area that represents the main part of the tyre and that includes the object regions
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for the felly and the bolt. The analysis of this area first generates a hypothesis based on
rule 1 by assuming the whole area representing one object and integrating all directly
and indirectly attached object information. The object label integration, as described in
Sec. 4.3.1, results in assigning the label ’bolt’ due to the amount of indirectly attached
point based ’bolt’ labels. Further competing hypotheses for the interpretation of the
area are generated based on the hypotheses for the contained areas. For the interpre-
tation of the area at layer 1 again the unique hypothesis is generated following rule 1
and further interpretations depend on the contained areas. The recursion stops at layer
3, where no more areas are contained. The two innermost areas at level 3 are inter-
preted following rule 1 resulting in a hypothesis containing two independent bolts. This
result determines the interpretation of the area representing the bolt at layer 2. Rule 2
is applicable for this area. The current area is similar to the union of contained areas and
consequently the hypothesis containing the two independent bolts competes the unique
interpretation of the bolt. For the area representing the felly at this layer just the unique
interpretation with the object label ’undefined’ is generated, because the requirements
for further competing hypotheses are not fulfilled. The hypotheses for the interpretation
of the areas located at layer 2 leads to the competition in the interpretation of the area
at layer 1. Both results for layer 2 provide disagreements within the object information
and thereby fulfill independent from each other the prerequisite for applying rule 3 for
competing interpretations of the area at layer 1. This situation occurs again at the next
level resulting in competing hypotheses for the areas at layer 0, which constitute the
result of the interpretation step.

Fig. 4.17 shows some of the competing hypotheses generated for the example of
Fig.4.15, on page 95. The special feature of this example is the simultaneous existence
of over and under segmented areas for the bars and the bolt, respectively. It demon-
strates the justification of rule 2 that leads to competition, if the layers at different areas
are equivalent. A decision for one of the competing hypotheses is not possible without
additional knowledge. The two competing hypotheses for each of the two areas result
after generating all possible combinations in four competing hypotheses at all. Addi-
tional competition for the bars that is not shown here is caused by the different object
labels related to this area and the application of rule 3.

undefined undefined undefined

boltbolt
bolt

undefined

bolt

...
bolt

bolt

bar bar
barbarbarbar

Figure 4.17: Chosen competing hypotheses for the examples of Fig. 4.15, on page 95.

The recursive procedure for analyzing the hierarchical representation exploits its recur-
sive structure resulting in a short and comprehensive algorithm. The stored information
about related segment and object information is exploited for generating object hy-
potheses for the image area that is covered by the areas at the uppermost level of the
hierarchical representation. If there are uncertainties for the interpretation due to equiv-
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alent, but different segmentation results, or disagreements within the object information
competing hypotheses are generated in order to allow the integration of additional, for
example context based, knowledge for clarifying and/or evaluating the results. The
recursive procedure selects areas from the hierarchical presentation that are assumed
to represent objects. Possible alternatives for these object regions are given by related
grouping hypotheses that are analyzed within a postprocessing step.

Postprocessing Grouping Hypotheses

Grouping hypotheses that partially overlap other areas are exceptionally handled during
the generation process of the hierarchical representation, as described in Sec. 4.2. This
refers to their special characteristic concerning bridging gaps within the sensory data.
Those groups are either matched to the areas originating from other sources by applying
a matching procedure that is applied already in [Schl 00] or they remain in a list separate
from the common representation.

A matched group is related to the appropriate area within the hierarchy. The matching
process determines, whether the group is assumed either to represent an alternative for
the boundary of the area, or to represent an inner structure of the area. Each matched
group opens an alternative for the related area that does not influence the generation
of competing hypotheses during the recursive interpretation step. Therefore, the groups
are not taken into account during this process, but just for the finally selected areas
that are assumed to represent object regions. Within a postprocessing step, additional
competing hypotheses are generated, by assuming the closeness group to represent an
object area. In case of a boundary match, the appropriate area does not occur within
the hypothesis, in case of a structure match, the hypothesis gets an additional object
assumed to be represented by the group. The object information formerly related to the
area is integrated appropriately.

The closeness groups that does not match to one area and, therefore, remain within
a separate list are, finally, taken into account. A matching area can principally not be
identified, if the group concerns more than one area. Such a group is used, also, for
generating a competing interpretation by hypothesizing the group to represent an object
region and leaving out the objects whose areas are contained within the group.

The postprocessing of partially overlapping grouping hypotheses generate competing
hypotheses in addition to the rules, given in Tab. 4.4, as formulated in Tab. 4.5.

The rule is applied to all the competing hypotheses resulting from the recursive anal-
ysis. Fig. 4.18 shows examples for additional competing hypotheses based on matched
grouping hypotheses. The first example, shown in Fig. 4.18(a), demonstrates the effect
of a boundary match, where the group substitutes the appropriate area. Fig. 4.18(b)
shows the competing interpretation based on a structure match. The group represent-
ing the upper bar is matched as a structure to the cross area at the upper level, while the
expectable boundary match to the corresponding area at the subordinated layer can not
be established. In this case, the structure is assumed to represent an individual object,
while the superior area remains within the set of hypotheses and is assumed to be hidden
by the object represented by the group. Object information is assigned correspondingly,
resulting, here, in the two hypotheses for a bar and a tyre, respectively.
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G Do one or more object regions of the current set of object hypotheses overlap
one or more grouping hypotheses ?
If a region hypothesis matches a group, generate a new competing hypothesis by
adding the group as newly assumed object region and substitute the matched
area, if its boundary matches the group.
If a group is not matched, generate a new competing hypothesis by adding the
group as newly assumed object region and substitute the object region hypotheses
that are contained within the group.
Newly assign and integrate the involved object information.

Table 4.5: Rule for additionally generating competing hypotheses based on partially
overlapping grouping hypotheses.

...

(a) Boundary group match within the representation already shown in Fig. 4.13, on page 89

...

...

(b) Structure group match for the example of Fig. 4.15, on page 95

Figure 4.18: Exemplary competing object hypotheses generated based on matched
grouping hypotheses.

Fig. 4.19 shows an example, where a group is not included within the hierarchical
representation, because it provides partial overlaps with some of the shadow areas at
the border of the mousepad and is not matched, because it concerns more than one
area. The structured mouse pad is over segmented by the integrated segment informa-
tion. The contour based grouping is able to identify the object region as a whole and
summarizes the three former independently hypothesized object regions.

By the postprocessing analysis of the group matches the additional independent seg-
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· · · · · ·

Figure 4.19: Competing hypotheses arising from an assigned grouping hypothesis that
summarize several hypothesized object regions.

mentation information that is provided by the groups is exploited, in spite of their ex-
ceptional status that results from their special characteristics.

The competing object hypotheses generated by integrating independent image data
based modules constitute the basis for integrating additional sources of knowledge. In-
formation that depends on intermediate hypotheses is, for example, context knowledge
that exploits relations between neighbored objects. The competing hypotheses are pre-
pared to enable the equitable integration of the additional information by preserving the
information that caused each hypothesis.

4.3.3 Information Content of the Competing Hypotheses

Competing hypotheses constitute, generally, not the final result, but serve as a basis for
integrating further information, for example from context knowledge or expectations.
For the belated integration of information, the hierarchical common representation is
suited, as discussed in Sec. 4.2. Therefore, the information that is used for deriving a
hypothesis is stored in the form of the hierarchical representation.

Fig. 4.20 shows the configurations for the competing hypotheses of Fig. 4.16. The
area at the uppermost level represents the assumed object region, while contained areas
are assumed to represent inner structures. Object information remains related to the
appropriate area.

The given competing hypotheses together with their knowledge representation are
open for additional information by reusing the described integration and interpretation
mechanisms.

4.4 Additional Information Dependent on Preliminary
Hypotheses

Independently generated image data based segment and object knowledge are inte-
grated for generating intermediate object hypotheses. These hypotheses are verified,
extended and evaluated by appropriately exploiting and integrating additional modules.
They are characterized here by their dependence on preliminary results, in contrast to
the already discussed independent modules that work directly on the image data, see
Fig. 4.1, on page 72. The so defined additional modules can be divided into two classes
dependent on their output.
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Object 1

Object 3Object 2Object 1 ...

...Object 2Object 1

...Object 4Object 3Object 2Object 1

Object 2 Object 3

Figure 4.20: Information content of the competing hypotheses of Fig. 4.16 preserved
in the form of the hierarchical representation.

On the one hand, there are the modules that take preliminary object hypotheses as
their input and generate their additional information related to this input data. The
sources of knowledge they exploit internally can be very different reaching from high
level context knowledge, as for the baufix R© assembly recognition module, to a compa-
rably low level classifier, like the shape based recognition module for office objects.

On the other hand, sources of information that are beyond the visual data, like the
temporal context or history of the scene and other modalities, like speech recognition
and understanding, provide valuable additional data. Their output consists of object in-
formation that constitutes expectations for the recognition results without being firstly
related to the image data or the preliminary object hypotheses. For integrating this in-
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formation the relation has to be established explicitly, as described in the following. The
subsequent section, finally, treats the integration of the localized additional information
originating either from related expectations or from applying higher level recognition
modules directly to the preliminary object hypotheses.

4.4.1 Localizing Object Information from Expectation

Expectations for the objects to be recognized in an image are characterized by consisting
of object labels and probably additional features, like the object color, but generally not
containing any information about the object localization in the image. Furthermore,
often no information about the visibility of the object in the image is given. For example,
monitoring the construction process of an baufix R© assembly, as described in Sec. 3.3.3,
provides expectations for the participating elements, when the assembly is finished and
placed onto the table again.

Visual Data Based Generated Competing Hypotheses Expectations

bolt

undefined

rhomb

bolt

tyre

tyre
undefined

bolt

bolt

undefined

undefined
tyre

bolt

undefined

undefined
tyre

bolt

felly

Figure 4.21: Left: Competing hypotheses generated from integrating image data based
color segment and object information. Right: Expectations derived from
additional sources of information, here construction process monitoring,
containing color and label information.

Fig. 4.21 shows on the left for an example assembly already discussed before four
competing results containing object region, color and label hypotheses and on the right
side an appropriate set of expectations. The example motivates, on the one hand, that
the localization and integration of the expectations offer the possibility of recognizing
elements, here the felly, which the image data based modules are not able to identify.
On the other hand, the integration step has to avoid to hallucinate the rhomb anywhere
in the image, although it is also expected. For generating the desired hypothesis con-
taining the object label ’felly’ together with the red region, the expectations has to be
related to the existent hypotheses.

The process of establishing relations is complicated by occlusions and recognition fail-
ures, like occurring false color classes and false, missing, or superfluous object labels.
Therefore, determining locally correct assignments is not promising, but a set of globally
consistent and probable matches has to be identified. The procedure is implemented
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based on definitions of costs for possible pairwise matches. For a set of object hy-
potheses and appropriate expectations all possible pairwise matches are generated and
evaluated. Additionally, a match of each expectation to no object that may occur due
to an occlusion and a match of each hypothesis to no expectation that may occur due
to a falsely identified object are considered. From the created area of costs the globally
most consistent matches are identified by minimizing the summarized matching costs.

The definitions of the cost for a match, thereby, depend on the kind of expectations
and the amount of object features and therefore, generally, have to be adapted to the
recognition task. For the baufix R© task, where expectations from monitoring the con-
struction process are available, information about object labels and colors are given and
considered for the cost definitions, given in Tab. 4.6.

Cost Assumed for a Match between
0.0 equally colored and labeled hypothesis and expectation
0.5 hypothesis and equally labeled but differently colored expectation or

color region with no object label and equally colored expectation or
expectation and no hypothesis

1.0 hypothesis and equally colored but differently labeled expectation or
color region with no or undefined object label and no expectation

100.0 differently colored and labeled hypothesis and expectation or
hypothesis and no expectation

Table 4.6: Definition of costs for matches between an object expectation generated
from monitoring the baufix R© assembly construction process and a image
data based generated preliminary object hypothesis.

These costs are determined manually following the assumptions that matches be-
tween partners that agree on color and label cause no costs. Isolated disagreements in
either color or type and due to missing information has to be tolerated, because they
are assumed to originate from recognition failures and occlusions. Thereby color mis-
classifications are assumed to be more probable than label misclassification. High costs
are defined for matches, where both color and type disagree and in case of a valid
hypothesis can not be matched to an expectation.

After generating an area of costs containing all possible pairwise combinations be-
tween expectations, hypotheses and the special matching partners representing no hy-
pothesis and no expectation the globally most consistent solution has to be identified
by minimizing the sum of costs caused by the assumed matches. Thereby, each ex-
pectation has to be matched definitely once and each hypothesis has to be matched
definitely once, while matches containing the special matching partners representing no
hypothesis or no expectation are allowed to occur more than once. The search for the
optimal match is implemented by searching an optimal path through the area of costs
taking into account the prerequisites of unique matches. First, the match for the first
hypothesis that causes minimal costs is identified. Possible successors are determined by
identifying the remaining possible matches for the second hypotheses. The summarized
costs for all intermediate path possibilities decide about, whether one path is followed
for the next hypothesis or an alternative path has to be chosen that provides different
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4 The Integrating Framework

matches for the last and actual hypothesis. After assuming a match for each hypothesis,
possibly remaining expectations are handled separately. By taking into account all pos-
sible matches the optimal solution is found by this procedure. In case of more than one
path with equally minimal summarized costs exist, the resulting matches finally depend
on the sequence of the occurring hypotheses and expectations.

Fig. 4.22 shows the areas of matching costs and the resulting optimal path for match-
ing the four sets of competing hypotheses to the appropriate expectations for the
baufix R© assembly depicted in Fig. 4.21 by applying the matching cost definitions given
in Tab. 4.6.
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Figure 4.22: Matching results for expectations and the four sets of competing hypothe-
ses for the baufix R© assembly shown in Fig. 4.21 using the matching cost
definitions given in Tab. 4.6.

For the third and forth set of hypotheses, the occuring red object region labeled ’un-
defined’ is correctly matched to the ’felly’ expectation. The expected rhomb that is not
visible is also matched correctly for all sets of hypotheses leading not to a false knowl-
edge based object label. The marked matches of the forth set of hypotheses (lower
right) are not unique, because the both yellow bolt hypotheses are equivalent and it is
not decidable based on the costs, whether one or the other matches the expectation
and, thereby, is supported by integrating the information from expectations. Besides
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additional information about objects the matching of expectations delivers a valuable
aspect for evaluating one set of competing hypotheses in comparison to the others. The
formulation of an evaluation criterion based on the degree of fulfilled expectations is
described in Sec. 4.5. In the following firstly the mechanism of integrating the addi-
tional information with the data driven information represented within the competing
hypotheses is described.

4.4.2 Integrating Additional Information

Additional information is characterized by its dependence on preliminary recognition
hypotheses, as stated above. Therefore, its integration has to be done independently
for each of the competing results. Thereby, a equivalent integration of the additional
information is aspired, instead of a general dominance of one source of information.
Image data based objections to a knowledge based information are possible. Similarly,
agreements between data based and additional high level information increase the belief
in this information or clarify formerly uncertain situations.

Fig. 4.23 shows exemplary integrated visual data based object information for a
baufix R© assembly, where the disagreement within the object information for the up-
per cube leads to a false recognition result. As shown, the difference between the
weights for the ’cube’ and the ’undef’ label is very small, the decision is uncertain result-
ing in a confidence value of just 0.52 (after normalization) for the winning ’undef’ label.
An additional ’cube’ label from higher level knowledge, like for example the context
based assembly recognition module or an expectation localized by matching, as de-
scribed above, clarifies the situation. Then, two ’cube’ labels from different sources are
opposed to one ’undef’ label, leading to a rather sustainable decision without preferring
one source of information to the other.

The belated integration of additional knowledge with the image data based infor-
mation is supported by the internal knowledge representation of each preliminary hy-
pothesis. It is of the form of the common hierarchical representation for segment and
object information used for formerly generating the hypothesis, see Sec.4.2. belated
integration of information. Additional segment information probably changes parts of
the hierarchy. Object information is related to the appropriate area, where an individual
weight for the given label is accounted for, if it is delivered from the recognition mod-
ule, as it is done with the data based information. In order to preserve the flexibility of
exchanging modules the different sources of information do not get individual weights,
as also argued for the data driven integration. The integration of additional information
is completed by reinterpreting the hierarchical representation using the mechanism de-
scribed in Sec. 4.3 resulting in competing hypotheses taking into account all available
information. For further processing the object recognition results either a decision for
the best believed hypothesis or at least accompanying confidence values are necessary.
The following section deals with this topic.
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Figure 4.23: Integrating data driven information containing disagreeing object infor-
mation leads to a false and uncertain interpretation for the upper baufix R©

cube. The situation can be clarified by additional object knowledge.

4.5 Evaluation of Competing Hypotheses

For generating a unique recognition result the competing object hypotheses generated
by analyzing the common representation has to be evaluated. Even if a unique result is
not required, a belief value that accompanies each of the competing hypotheses consti-
tutes valuable additional information for subsequent processing, like, for example, the
integration with results from other modalities, as proposed in Wachsmuth [Wach 01].

For reliably evaluating competing hypotheses, on the one hand, different kinds objects
characteristics should be exploited, and, on the other hand, a resulting system should be
comprehensible and flexible for integrating new aspects. This results in the need for a
flexible integration scheme for evaluation information, as it is argued for the recognition
step. Independent evaluation criteria that are either generally applicable or task specific
constitute the basis of the evaluation step.

In the following first individual criteria are shortly discussed, before the general com-
bination scheme is addressed in the subsequent subsection.

4.5.1 Independent Evaluation Criteria

For the evaluation of object hypotheses, besides task specific aspects, a generally appli-
cable criterion is applicable that measures the degree of accordance for the integrated
object information, as described in the following.
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Mean Degree of Object Label Accordance

The competing hypotheses that have to be evaluated and compared to each other con-
sist of object hypotheses whose object labels are integrated probabilistically from dif-
ferent sources of object information, as described in Sec. 4.2.3. Each integrated object
label, thereby, gets a confidence value that accounts for agreements and disagreements
within the related object information.

For all systems realized based on the general integrating framework, where object
information is available from at least either one individually evaluated source or two not
necessarily individually evaluated independent sources the criterion can be calculated
and applied for evaluating competing results.

Because a competing result consists, generally, of a set of object hypotheses, the set
is evaluated by the mean object label confidence:

evalmeanObj =
1

#all objects
·
∑

evalindividualObj

Fig. 4.24 shows the competing hypotheses of Fig. 4.20 with appropriate confidence
values for the individual objects and the mean value calculated for the competing sets
of hypotheses.
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mean evaluation(0.893)
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Figure 4.24: Image data based generated competing hypotheses of Fig. 4.20 with ob-
ject label confidence values resulting from the probabilistic integration of
different sources of object information and the mean values evaluating the
competing sets of hypotheses.

The belief value is maximal for the third set of hypotheses, which is really the best. The
mean object label evaluation differs significantly for the first set of hypotheses due to
the low individual value for the ’bolt’ label that is caused by the disagreement between
’bolt’ and ’tyre’ labels. In identifying the tyre as an individual object this disagreement
is avoided and the individual as well as the mean object label evaluations increase ap-
propriately. The two remaining sets provide with the felly area labeled ’undefined’ an
additional, well believed object that increases the mean evaluation further. The differ-
ence between them is caused by the object information concerning the bolt. A region
based object hypothesis, see Fig. 4.20, supports the correct interpretation and is not
taken into account for the variation of splitting the area representing the bolt, as it is
part of the last set of hypotheses.

However, the criterion based on the mean object label evaluations tends towards
favoring over segmented hypotheses, because they provide, generally, fewer disagree-
ments within their related object information.
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Domain Specific Criteria

Besides the generally applicable criterion for evaluating competing hypotheses a realized
recognition system addressing a definite task often provides specialized strategies for
evaluation. For example, for the baufix R© task, a set of neighbored object hypotheses
is assumed to represent the elements of a valid baufix R© assembly. A set of hypotheses,
therefore, is evaluated by taking into account the part of assembled elements from all.
Besides calculating such continuous confidence values, the bivalued evaluation, whether
individual object hypotheses or a constellation of objects fit into appropriate models or
not is applicable to do a rough division of the competing hypotheses. The pre divided
hypotheses have to be finally processed by applying additional criteria concerning the
object labels and regions.

4.5.2 Combination of Individual Criteria

The general integrating module realizes the combination of individual evaluation criteria
by implementing a frame for realizing a cascade of evaluation steps.

Thereby, the system designer defines a sequence for the application of available cri-
teria dependent on the task. The integrating module calls the evaluation function with
highest priority first and determines the ranking of competing hypotheses following its
results. In case of ambiguity, the criterion located at the next step of the cascade is
called and its results are applied for ranking within the sub set of formerly ambiguous
hypotheses, etc.

The strategy of independently calculating and applying criteria at different levels of
the cascade provides the great advantage of avoiding the direct comparison of the dif-
ferent confidence values. This comparison is carried out, for example, by calculating a
sum, product, or other functional value based on the participating confidence values.
Calculations based on the independent values become easily comparisons of apples and
oranges that do not provide a common basis. For example, what is the common basis
for comparing a confidence value based on a object region criterion with one evaluating
the object context, in spite of their probable common data range, the interval [0, 1]?
Independent of the semantic of the confidence value, the direct comparison is, gen-
erally, problematic and leads to undesired effects in case of very differently distributed
confidence values. Examples are the continuous evaluation of the mean object label
accordance in contrast to a bivalued pre dividing function.

The cascade for integrating evaluation information preserves the independence of the
individual criteria that are made available from the system designer. Thereby, applicable
criteria reach from simple plausibility tests to complex evaluation functions that might
internally consider several aspects of the hypotheses for determining their result.

The ranking of the competing hypotheses and, thereby, the selection of the best
believed one is done based on the defined cascade of evaluation criteria. The individual
resulting object hypotheses are accompanied by the confidence value determined from
evaluating the integrated object label information.

In summary, the cascade for integrating evaluation information implemented within
the general integrating module provides a basis for flexibly realizing an evaluation scheme
for a given task based on generally applicable or task specific criteria.
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4.6 Summary

This chapter describes the implemented integrating module that constitutes the central
part of a general framework for realizing recognition systems by integrating different
segment and object recognition modules. The framework proposes the explicit integra-
tion of independently generated image data based information with additional informa-
tion that is characterized by being dependent on preliminary object assumptions. The
framework addresses the joint problem of object segmentation and object recognition.

The implemented integration module is characterized by three major parts, the com-
mon representation of available information, its analysis resulting, generally, in compet-
ing object hypotheses, and the comparison and evaluation of these competing hypothe-
ses.

The common representation of the available information concerning segment and
object knowledge has to store the amount of different pieces of information and simplify
the interpretation by establishing suitable relations between them. Segment and object
information is related, if it concerns common areas of the image plane. The integration
step is flexible concerning the number of integrated modules. Further on, the data
structure is open for the belated integration of additional information descending from
modules with longterm processing times or modules relying on previously generated
hypotheses.

The analysis of the generated representation constitutes the second major part of
the integrating module. It exploits the information stored within the relations of the
common representation and generates hypotheses containing object region and label
assumptions. The process follows general rules and results due to uncertainties and
failures mostly in several competing hypotheses. The rules fulfill the task of concurrently
avoiding premature and, thereby, probably false decisions and constraining the amount
of occurring hypotheses in order to keep the system capable for further processing.

Competing hypotheses, firstly, generated from integrated image data based infor-
mation constitute the basis for further considering additional information. It is deliv-
ered from sources, whose applicability depends on preliminary results, like knowledge
about spatial object context, or non localized expectations. The integration of addi-
tional knowledge with the data based generated hypotheses is equitable without one
source of information dominating the other, which is supported by the strategy of the
constructing the common detailed representation.

The evaluation strategy for competing hypotheses constitute the third part of the inte-
grating module. The evaluation serves for generating a unique, best believed result and
provides additional information about the confidence of the object hypotheses for sub-
sequent use. The evaluation scheme is implemented as a cascade of individually applied
evaluation criteria, where the first step determines the main ranking of the competing
hypotheses and the following ones are applied in case of ambiguity.

The proposed integrating module implements general and, thereby, domain inde-
pendent strategies for explicitly and flexibly considering different kinds of segment and
object information. For realizing an integrated recognition system for a given task, indi-
vidual modules following more or less domain specific strategies are reused, adapted or
newly implemented. The integration of the available information does the general im-
plemented module that is supplemented with task dependent information. This concerns
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object labels and their coherence, as well as suitable criteria for evaluating competing
hypotheses and localizing expectations, if they are available.

The topic of the next chapter is the qualitative and quantitative evaluation of recog-
nition systems that are realized based on the proposed integrating framework providing
different system configurations and addressing two different recognition tasks.
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The general framework proposed in the previous chapter is able to integrate different
kinds of information for object segmentation and recognition. This chapter deals with
the realization of recognition systems addressing two different tasks based on the inte-
grating framework. Fig. 5.1 shows exemplary images and recognition results.

A qualitative and quantitative evaluation of the system facilities is discussed. Thereby,
the quantitative evaluation is not restricted to the final result, the rate of correctly seg-
mented and labeled objects, but addresses the key aspects of the integration method.
These aspects are the construction of the common representation, the process for ex-
tracting object hypotheses from the representation, the integration of additional knowl-
edge and the estimation of confidence values for the results. Before getting into the
detailed evaluation, the recognition tasks and the components of the realized systems
as well as the conditions, their evaluation is based on, are presented in the following.

Figure 5.1: Example images for the two tasks of recognizing elements within baufix R©

assemblies and office environment objects.
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5.1 Realized Systems and Evaluation Conditions

The integrating framework is applied for realizing systems addressing two different tasks.
baufix R© elements that are isolated or built into assemblies are the topic of the collabora-
tive research center 360 at Bielefeld University, for details, see Appendix B. This implies
that within the different projects of the center different aspects concerning these objects
are addressed that can be exploited for recognition.

The second task concerns objects within an office environment that are commonly
available and aware. Therefore, I chose this domain for demonstrating the facilities of
the integrating framework concerning the adaption to different recognition tasks and
conditions without significant changes. The task is defined to be categorization of the
objects into object classes in contrast to the also justified task of individual exemplar
based recognition. For details about this task, see also and C.

5.1.1 Components of the Realized Integrated Recognition Systems

For the task of recognizing baufix R© parts several modules dealing with segmentation
and recognition are available, as described in Chapter 2 and Chapter 3. They cover
a wide range of processing strategies and, therefore, the integration of their results in
order to improve them is promising. For addressing the office object categorization
task the generally applicable segmentation approaches, presented in Chapter 2 and the
shape based recognition module, described in Chapter 3, Sec. 3.2.4 are available. The
office objects provide, in contrast to the baufix R© objects, rich surface structure which
complicates the identification of the object region.

Fig. 5.2 shows the available modules for addressing the tasks and their location within
the general integrating architecture that is presented in the previous Chapter 4, Sec. 4.1.

For recognizing the baufix R© elements segmentation processes based on the mean-
shift algorithm, the pixel classification approach and the edge based contour grouping,
see Sec. 2.2, are applied. For visual data based object labels the appearance based fo-
cus point classifier, the hybrid baufix R© element detector, and the region based classifier
combination, see Sec. 3.2, are used. Thereby, the two region based recognition modules
are not used simultaneously, but two system constellations are realized, one combining
the hybrid module with the appearance based approach and the segmentation mod-
ules and one integrating equivalently the region based classifier combination approach.
The two different module constellations lead to different image data based information,
whose integration and interpretation is compared to each other within the later evalu-
ation. Besides the visual data based processes, additional information is integrated for
extending and evaluating the preliminary recognition results for the baufix R© task. This
is delivered from the context based semantic region growing approach, the assembly
recognition module and the construction process monitoring, see Sec. 3.3.

For recognizing the objects of the office environment, three data driven segmentation
processes are integrated. These are the modules based on the mean-shift algorithm, the
color structure code and the local variation approach, see Sec. 2.2. The shape based
recognition process, see Sec. 3.2.4, delivers object labels based on the previously inte-
grated segment information. Note this system does not contain an independent visual
data based recognition module.
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Figure 5.2: System components for recognizing baufix R© elements and office objects
and their location within the general integrating architecture presented in
Sec. 4.1.

5.1.2 Test Sets and Evaluation Guidelines

The following quantitative evaluation is done based on image testsets as given in Ap-
pendix B and Appendix C. For the baufix R© domain a set of 10 images containing 167
elements at all is used. 130 of the elements are built within 34 assemblies, resulting
in 37 being isolated. The testset is designed from a naive user with the aim of being
challenging for recognition. This results in complex assemblies causing occlusions and
many examples of neighbored elements of same or similar color which complicates the
segmentation task.

For the office domain a test set of 12 images containing 40 objects is used. This testset
is also designed to show some aspects of the integrating system and account for the
demands of the available modules, rather than to generate a representative sample. The
objects are arranged to be close to each other, which mirrors the realistic situation and
complicates the generation of suitable object regions. But the individual objects remain
visible with regard to the applied global shape recognizer that is not very robust against
shape deformations, as they occur due to occlusions. The system addressing the office
domain shows what is possible based on the integration of few general purpose modules
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without claiming to solve the object categorization task for general office objects.
Both testsets are rather small, because the following evaluation addresses various as-

pects of the integrating framework, instead of aiming at maximizing the resulting ab-
solute recognition rate for both tasks. This requires much more effort but, therefore,
allows insight into the integration step by identifying the reasons for success and also
for failure of the approach. Identifying the reasons for failure is the first step of refining
the system.

The small test sets generally cast doubt on the relevance of quantitative evaluation
results. However, for evaluating the different aspects of the integration method not
absolute rates but relative improvements constitute the core of the quantitative evalua-
tion. The occurring differences are evaluated applying the method of determining their
statistical significance, see Appendix D.

5.2 The Integration of Segment Information

Results from different segmentation processes are integrated within the hierarchical
common representation, as presented in Sec. 4.2.2. By evaluating this integration step
first, I conclude for the realized systems, whether the number of represented object re-
gions is improved in comparison to the individual modules and what modules contribute
to that improvement.

5.2.1 Evaluation Strategy

For evaluating the integration procedure for segmentation results the number of repre-
sented areas that correctly segments an object region is counted and compared with the
appropriate results determined based on the individual modules. The evaluation is done
manually without relying on a ground truth for the segmentation result. Instead of clas-
sifying the deviation from the correct result, the decision, whether an area represents the
significant parts of an object region or not, is made by individual inspection of the areas.
This definition is somewhat subjective, but it allows to differentiate. For example, if an
area is in its whole some pixels to small, it will be counted to represent the object region
correctly, while another is not, whose numerical deviation from the correct area may be
similar, but that misses a part of the object region, for instance, due to a highlight.

A special situation occurs, if the object region is divided into several parts that are not
neighbored to each other. This occurs in the baufix R© domain, if the end of a thread is
visible after a rhomb nut or cube is fastened. Such divided object regions are probably
detectable by postprocessing matching of a detailed object model for the bolt in this
example. Due to the fact that an appropriate module is not available for the chosen
task, I take into account just the head of the bolt for the segment evaluation, while
the segmentation and labeling of the thread is ignored. For the long green bolt, shown
in Fig. 5.3, whose thread is visible behind the red cube, the segment for the head is
sufficient for evaluating the object to be correctly segmented.

Based in this strategy for determining areas that correctly represent object regions,
firstly the individual modules are evaluated. Fig. 5.3, left, shows exemplarily the region
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Figure 5.3: Segments originating from pixel color classification based segmentation
(left) and the best fitting areas from the common hierarchical representa-
tion of several independently calculated segmentation results (right).

hypotheses originating from the segmentation approach based on the pixel color classi-
fication. Four of the five object regions are determined to be correctly segmented by this
module, while there is no representation for the object region of the red cube. Minor
differences, like for the yellow bolt in front are tolerated.

These individual quotes are compared to that determined for the common representa-
tion of several sources of segments. Fig. 5.3, right, shows those areas from the common
representation that fit best to the object regions. It turn out that all object regions are
represented well by at least one area of the common representation, which constitutes
an improvement to the individual source concerned above.

Besides the total number of area correctly segmenting object regions that occurs
within the hierarchy their origin is worth analyzing. For the example, shown in Fig. 5.3,
both bolts and the bar are best segmented by the pixel color based segmentation pro-
cess, as depicted at the left side. The red cube is correctly represented by an area
originating from the mean-shift approach. For the blue cube, there exist several good
candidates that are similar to each other. Although the area delivered by the pixel color
classification approach is also denoted to be correct for the individual analysis, the best
region representation originates from the contour based grouping. It is slightly better,
because it covers also the lower corner of the cube. A special source of areas is the
generation of union areas from partially overlapping ones during the construction of the
common representation. It occurs within the evaluation of the integration scheme for
segmentation results equivalent to the other sources of segment information.

Besides the origin of areas representing correctly segmented objects their location
within the hierarchical representation is interesting with regard to the subsequent in-
terpretation step. And, last but not least, besides analyzing some aspects of successful
representation, also the reasons for failures are interesting. Those results probably show
up possible strategies for system refinements.

The integration process resulting in the common hierarchical representation of seg-
mentation results is influenced by the numerical setting of the threshold parameter t.
This parameter controls the classification of the relation between each two areas based
on their intersection. For determining the influence of the parameter value on the re-
sulting representation and identifying an appropriate numerical setting, the integration
process and the evaluation of its result is repeated with varying parameter values.

The strategy for evaluating the integration of independent segmentation results for
the realized systems applied to the presented test sets is summarized in Tab. 5.1.
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• Evaluate the independently generated segmentation results:
For each object within the testset, determine, which module delivers an appro-
priate area within its individual segmentation result.

• Evaluate the common integrated representation dependent on the construction
parameter value t:
For each object within the testset, proof, whether an area is represented that
correctly describes the object region.
If so,

– denominate one or more sources that deliver areas representing best the
true object region.

– determine the layer of the hierarchical representation, where the best area
is located at.

If not,

– determine, whether is the object region is over or under segmented.

Table 5.1: Strategy for evaluating the integration of independently generated segmen-
tation results within the common hierarchical representation.

5.2.2 baufix R© Task

For the baufix R© task, I evaluate a test set of 167 elements. The segmentation results
of the three segmentation approaches pixel color classification, mean-shift and contour
based grouping are integrated with segment information given by the hybrid recognition
process.

Tab. 5.2 gives the results for the individual modules delivering areas that correctly
represent object regions. For each object several correct sources are possible.

areas correctly representing the regions for 167 objects
pixel color 103 (61.7%)
hyb. rec. 99 (59.3%)
meanShift 44 (26.3%)
grouping 38 (22.8%)

Table 5.2: Evaluation of the individual modules delivering correctly segmented object
regions for the baufix R© task. For each object several correct sources are
possible.

The results show that the pixel based classification approach delivers with 103 cor-
rect areas, which corresponds to 61.7% of the 167 objects, the best results. This does
not surprise, if accounting for the degree of specification and adaption of this process
to the task. The hybrid recognition process uses these segments as input for verifying
and assigning segments to the neural holistic object hypotheses. The hybrid recognizer
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generates additional segments by merging them based on object knowledge. The num-
ber of correct areas for this module is slightly lower than that for the raw segmentation
approach. This is due to the newly generated segments are by their majority false, be-
cause the represented object knowledge is designed for isolated elements and falsely
applied to mainly assembled elements here. The two segmentation approaches mean-
shift and contour based grouping contribute just 26.3% and 22.8% correct areas. Both
approaches are not specialized for the task, but broadly applicable and just adapted
to the task by suitable parameter selections. As discussed above, they are, generally,
not able to deliver one segments per object region due to shadows and highlights that
introduce variance.

The individual segmentation results are the basic material for the integration process
resulting in the hierarchical common representation. The following evaluations con-
cerning the common representation are done for 5 different values for the construction
parameter t varying it within a wide range from 0.7 to 0.9. The numerical setting for
the parameter is discussed at the end of this subsection after evaluating its influence on
the various aspects of the segment integration step.

Tab. 5.3 shows the number of represented areas that correctly describe object regions
and their origins dependent on the integration parameter t.

t=0.90 t=0.85 t=0.80 t=0.75 t=0.70
correct obj. 116 (69.5%) 120 (71.9%) 126 (75.4%) 127 (76.0%) 126 (75.4%)
best areas:
pixel color 38 (32.8%) 44 (36.7%) 49 (38.9%) 50 (39.4%) 52 (41.3%)
hyb. rec. 42 (36.2%) 44 (36.7%) 48 (38.1%) 51 (40.2%) 57 (45.2%)
meanShift 20 (17.2%) 17 (14.2%) 19 (15.1%) 17 (13.4%) 18 (14.3%)
grouping 23 (19.8%) 26 (21.7%) 25 (19.8%) 29 (22.8%) 30 (23.8%)
part.Union 26 (22.4%) 25 (20.8%) 24 (19.0%) 21 (16.5%) 14 (11.1%)
part.Group 3 (2.6%) 3 (2.5%) 3 (2.4%) 3 (2.4%) 2 (1.6%)

Table 5.3: Evaluation of the integration of segmentation results for the baufix R© task
according to the origins of the areas best representing object regions and
dependent on the integration threshold parameter t. Several good areas for
one object originating from different sources are possible and appropriately
counted for each source independently.

The main result from this evaluation is that the number of represented correct ar-
eas clearly exceeds the number of correct areas delivered from the individual modules
shown in Tab. 5.2. All differences are statistically significant. Further, the evaluation
of the sources for each of the best areas shows that all integrated individual modules
contribute. The part of correct areas delivered from the pixel classification segmenta-
tion approach and the hybrid recognition process is highest, as to be expected from
the individual evaluation above. But also the general purpose segmenters contribute to
the improvement and so does also the special segment source, the process of generat-
ing union areas from partially overlapping ones that is executed during the constitution
phase of the common representation. The grouping approaches occurs two times for
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differentiating the hypotheses that are completely integrated to the representation and
those that are exceptionally handled due to their partial overlap to other segments and
the special characteristics of the grouping hypotheses, see Sec. 4.2.2.

As to be expected, the setting of the threshold t influences the result, but the changes
are not statistically significant in spite of the wide range of tested parameter values.
Nonetheless, a parameter setting of 0.8, 0.75, or 0.7 seems most promising for maximiz-
ing the number of represented correct areas.

Generally, lower values for the threshold parameter lead to less strict definitions of
the area relations, i.e., the range of tolerated deviation from the ideal relation increases.
Practically this leads to more independent, contained and similar and less partially over-
lapping areas. Does this have any effect on the quality of the areas represented within
the hierarchy? The evaluation above allows a qualitative answer to this question by
analyzing the part of object regions that are best represented by the union of originally
partially overlapping areas. This part decreases with decreasing parameter, t, because
union areas that are formerly denoted as representing the object region better than
original ones are no longer generated. The sufficient, but suboptimal, original areas take
their place and, thereby, decrease the quality of the area representation with decreasing
parameter. From this point of view the value for the parameter should generally be set
as high as possible, where the quantitative evaluation shows a remarkable effect just for
the lowest values 0.75 and 0.7.

With regard to the subsequent rule based analysis of the hierarchical representation,
as it is described in Sec. 4.3.2 and will be evaluated for the realized systems below, the
location of the areas representing correctly segmented object regions with respect to the
layers of the hierarchy is interesting.

t=0.90 t=0.85 t=0.80 t=0.75 t=0.70
overall correct 116 120 126 127 126
layer 0 77 89 96 99 100
spec. groups related to layer 0 3 3 3 3 2
layer 1 36 28 26 23 21
layer 2 - - 1 2 3

Table 5.4: Distribution of correctly represented object areas over the layers of the
hierarchy for the baufix R© task.

Tab. 5.4 shows that most object areas are located at the uppermost layer 0. This
is due to the area representing the constant background and containing all the other
areas is eliminated successful, as described in Sec. 4.2.2. The table shows further that
also subordinated areas represent object regions. These results underline the motiva-
tion for applying an interpretation strategy that principally includes all layers for object
area assumptions. However, the distribution of the areas representing objects justify
the preference for the upper layers that is implemented within the analysis scheme. An
area at the uppermost layer always is assumed to represent an object, while competing
assumptions based on subordinated layers are connected to special situations. The par-
tially overlapping groups that are handled exceptionally are all concerned with areas at
the uppermost layer.
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Concerning the threshold parameter setting, it is advantageous to decrease the pa-
rameter value, which leads to an increasing part of correct areas represented at layer 0,
as the evaluation results show. Thereby, the effect is comparably small for the parameter
range 0.8 to 0.7.

Finally, for discussing probable refinements of the integrated system the reasons for
not correctly representing areas are interesting. Tab. 5.5 shows, whether these object
regions are over or under segmented.

t=0.90 t=0.85 t=0.80 t=0.75 t=0.70
overall 51 47 41 40 41
over segmented 2 4 5 5 5
under segmented 49 43 36 35 36

Table 5.5: Evaluation of reasons for not correctly represented areas for the baufix R©.

The main part of the not represented object regions are under segmented, i.e., the
automatically determined area covering this regions additionally covers at least parts of
neighbored objects. Under segmentation is caused, generally, by low contrast at the ob-
ject region boundaries. This occurs for the baufix R© task especially in case of neighbored,
equally colored objects, where also very sensitive color segmentation processes get into
trouble. The problem would be addressable by integrating additional knowledge about
object model based segmentation. The over segmentation of object regions can be ad-
dressed by additionally integrating context based methods, like the semantic merging
of neighbored areas. This aspect will be discussed later with view to the whole system
evaluation results.

Concerning the dependence on the threshold parameter value, the number of under
segmented object regions decrease, while the number of over segmented ones increase
with decreasing parameter value t. This is caused by the decreasing number of union ar-
eas generated from partially overlapping originals with decreasing the parameter value.
On the one hand, fewer unions lead to fewer under segmented object regions, if the
missing union falsely merges several areas that actually represent independent objects.
On the other hand, fewer unions lead also to more over segmented object regions if
the overlapping areas are false assumed to be represent independent objects and the
union area is missing. The increase of over segmented object regions is slightly, while
the decrease of the more problematic under segmentations is remarkable for the lower
parameter values 0.8, 0.75, and 0.7.

For finally defining a suitable numerical setting for the threshold parameter t for the
realized system, the different aspects discussed above should be taken into account.
Even, if the differences occurring in dependence on the parameter setting are not sta-
tistically significant due to the small testset, they are remarkable and considered for the
choice. Maximizing the total number of represented correctly segmented object regions
and minimizing the part of under segmentations for the not correctly represented areas
leads to the parameter range 0.8 to 0.7. This range is also promising for enhancing the
representation of correct areas at layer 0 of the hierarchy. However, the lower values
probably decreases the quality of the represented correct areas by avoiding the construc-
tion of artificial union areas, as discussed above. Consequently I take the mediate value
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of t = 0.8 for the further evaluation of the integrated system realized for the baufix R©

task.
The evaluations until now show that the general integrating framework for segmen-

tation results is successfully applicable to the baufix R© domain. In the following the
integration of segmentation results for the office domain is evaluated in the same man-
ner.

5.2.3 Office Environment

The integration of segmentation results for the office domain is evaluated following the
same evaluation strategy as for the baufix R© task. Although the smallness of the testset
with containing just 40 objects does not allow to expect statistically significant results, it
should either affirm or disprove the results for the baufix R© domain.

Segmentation results for the office domain are delivered from four general purpose
segmentation approaches namely the mean-shift, color structure code (csc), local vari-
ation and contour based grouping approach. Their individual results concerning object
region segmentation are the topic of Tab. 5.6. For each object several sources of correct
areas are principally possible.

areas correctly representing the regions for 40 objects
meanShift 12 (30%)
csc 4 (10%)
localVar 2 (5%)
grouping 7 (18%)

Table 5.6: Evaluation of the individual modules delivering segmentation results for the
office domain. For each object several sources of correct areas are principally
possible.

Due to the generally structured surfaces of the office domain objects the individual
segmentation approaches are mostly not able to deliver correctly segmented object re-
gions within one segment. Best of them performs the mean-shift approach with 12
areas representing an object region, while the local variation approach delivers just two.
Nonetheless, all modules are integrated and the results are evaluated dependent on the
integration threshold parameter t, as shown in Tab. 5.7.

The main result of this evaluation is that by integrating the individual segmentation re-
sults into the common hierarchical representation the part of correctly segmented object
regions increases dramatically. In comparison to the individual modules, where maximal
12 out of 40 object regions are correctly segmented within one segment, the integrated
representation provides up to 30 correct areas.

The great increase of the number of areas representing uniquely an object region
origins mainly from generating these areas by merging partially overlapping original
ones during the construction of the common representation. As a consequence of the
important role of merging partially overlapping areas the dependence of the results from
the parameter t is higher than it is for the baufix R© system, evaluated above. However,
the confidence interval for the value 30 is with [24, 34] very wide due to the smallness
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t=0.90 t=0.85 t=0.80 t=0.75
correct objects 27 (68%) 30 (75%) 25 (63%) 22 (55%)
best areas from:

meanShift 2 3 4 3
csc 2 3 4 3
localVar 1 2 2 2
grouping 2 2 2 2
part.Union 22 23 17 15
part.Group 3 4 4 4

Table 5.7: Evaluation of the integration of segmentation results for the office domain
according to the origin of the object area and dependent on the integration
parameter t.

of the testset. Thereby, it includes the results for the upper three of the overall four
parameter settings. This affirms the conclusion taken for the baufix R© domain that the
parameter setting is not critical over a wide range of values.

With respect to the small number of uniquely segmented object regions delivered
from the individual modules, the question arises, whether the results of all the four
modules contribute to the integration success or at least one module could be left out
without consequences. For evaluating this, I leave out one module after the other and
repeat the integration step for the three remaining modules using the parameter value
t = 0.85. Tab. 5.8 shows how many of the correctly represented areas remain and how
many disappear, if one module is left out.

correctly represented object regions
integrating 4 modules 30
integrating 3 modules and leaving out

meanShift 9 -21
csc 23 -7
localVar 21 -9
contour 26 -4

Table 5.8: Evaluation of the contribution of the individual modules to the success of
the segment integration scheme for the office domain by leaving out each
one module.

As to be expected from the previous results the mean-shift algorithm plays the dom-
inant role within this integrated system. But also the other modules contribute to the
good integration result to a higher degree than the evaluations concerning the individual
segment sources, see Tab. 5.6, and the sources of best integrated areas, see Tab. 5.7,
allow to expect.

Concerning the distribution of the correctly represented areas over the layers of the
hierarchy, Tab. 5.9 shows a strong concentration within the uppermost layer 0 that re-
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sults from the background elimination, see Sec. 4.2.2. Nonetheless, also other layers are
involved for storing areas that represent object regions, which confirms the appropriate
result stated for the baufix R© domain.

t=0.90 t=0.85 t=0.80 t=0.75
overall correct 27 30 25 22
layer 0 21 24 17 15
spec. groups related to layer 0 3 4 4 4
layer 1 3 2 3 2
layer 2 - - 1 1

Table 5.9: Distribution of correctly represented object areas over the layers of the
hierarchy for the office domain.

As the final step in evaluating the common representation of segmentation results,
I address the reasons causing not correctly represented object regions, as shown in
Tab. 5.10.

t=0.90 t=0.85 t=0.80 t=0.75
overall 13 10 15 18
over segmented 4 4 9 13
under segmented 3 0 0 0
false at all 6 6 6 5

Table 5.10: Evaluation of reasons causing not correctly represented object regions for
the office domain.

Besides the two already known categories of over and under segmented object re-
gions within this domain also completely false segments occur. Bad contrasts at the
object borders coexistent with high contrast within the object surface lead to areas cov-
ering parts of several objects that are denominated to be false at all. Besides these, the
evaluation shows few under segmented, but many over segmented areas that occur due
to inner structures of the object surfaces. The number of over segmented areas increases
with decreasing the integration threshold t. With a lower value for t, greater overlaps
between independent areas are tolerated, while for higher values the areas would be
classified to be partially overlapping causing the generation of an union area. A too
strict definition of the allowed overlap leads to under segmentations for t = 0.9.

Having in mind these evaluations for selecting the numerical setting for the parameter
t for this system results in the value of 0.85. This value leads to the maximum of correctly
represented object regions, even if the maximum is not statistically significant. The other
evaluations concerning the reasons for not correctly represented areas and concerning
the distribution of the correct areas over the hierarchy layers supports this decision.
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5.2.4 Conclusions from Integrating Segment Information

The general integrating framework for segmentation results that results in a common
hierarchical representation is applied to two different domains. The appropriate eval-
uations show comparable results with the key note that the integrated common rep-
resentation improves clearly the participating individual results. For both domains four
available segmentation approaches are integrated and it turns out that they all con-
tribute to the successful integration. The integration process itself generates additional
segment hypotheses by merging areas that originally overlap each other partially due to
uncertainties for the boundary. The generated areas constitute a remarkable fraction of
those that represent correctly segmented object regions.

The integration result is influenced by the threshold parameter t that determines the
classification of the relation between each two areas constituting the basic structure
of the common representation. The evaluation of both systems concerning the two
different tasks show the comfortable result that the numerical setting of this parameter
is not critical over a wide range of possible values. The two selected values that are fixed
for the following evaluations are with t = 0.8 for the baufix R© system and t = 0.85 for
the office object system similar to each other.

With its structured representation of segment information that is delivered from sev-
eral independent sources the common hierarchical representation provides best pre-
requisites for a successful subsequent object knowledge integration and interpretation,
which is the topic of the following section.

5.3 Independent Image Data Based Object Information

The hierarchical representation of segmentation results is extended by independently
generated image data based object information. This kind of object information is
treated here, while the later integration of additional higher level object knowledge is
discussed in subsequent sections.

Looking at the two realized systems as depicted in Fig. 5.2, on page 115, shows that
for the office domain no independent object recognition module is integrated. There-
fore, the rest of this section deals with the baufix R© system that integrates totally three
data based recognition modules within two different configurations.

The independent recognition modules are evaluated individually, before the object
label integration is addressed.

5.3.1 Individual Evaluation of Object Information for the baufix R© Task

The available image data based object recognition modules are evaluated independent
from each other based on the common testset. These results define the baseline for the
integrated system. The individual object recognition modules deliver their results within
different object label alphabets. All the occurring object labels for the baufix R© task are
defined in the Appendix B, Tab. B.1. In order to ensure the comparability between
the individual results and the integrated result the evaluations are done based on the
common general object label alphabet, as defined in Tab. B.1, column 1. Because the
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focus here lies on the evaluation of the integration method, the recognition rates of the
individual modules are not optimized, for example, by parameter tuning or by ensuring
optimal lighting conditions.

Hybrid baufix R© Element Recognizer The hybrid recognition module for baufix R© ele-
ments is described in detail in Sec. 3.2.1. It achieves very high recognition rates with
about 90% correct classification and segmentation for isolated, non occluded elements,
as shown in [Kumm 98]. Because the results of this module contain object label as well
as object segment information, both parts are considered for the evaluation here. The
object classes delivered from the hybrid module are baufix R© elements, as given in the
Appendix B, Tab. B.1, column 2. As discussed above, for ensuring comparability, an
object label is counted to be correct, if it is correct within the general label alphabet.
This implies, for instance, that an exchange between a three hole bar and a five hole bar
that are both summarized by the general element ’bar’ does not have an effect for the
evaluation result.

The definition of a correctly segmented object region corresponds to that applied for
the evaluation of the segmentation results, given in Sec. 5.2.1. An area is manually
classified to represent an object region correctly if it covers the significant parts of the
true object region. Partially correct results occur, if the object label is correct, but the
accompanying segment does not correctly represent the object region.

The hybrid recognition module is applied to the current testset containing 167 objects
with 37 isolated and 130 assembled elements. Results are shown in Tab. 5.11.

# elements to recognize 167
correct 96 (57.5%)

from that
isolated elements 31 (84% of 37)
assembled elements 65 (50% of 130)

partially correct 30 (18.0%)
false 41 (24.6%)

Table 5.11: Individual evaluation of the hybrid recognition module for baufix R© ele-
ments on the common testset, considering object classification and segmen-
tation. Results containing a correct label but a non completely matching
segment are denominated to be partially correct.

The recognition rate for isolated objects is with 84% for the general element set in
the same order of magnitude as the rates for the element set given in the original paper
[Kumm 98] with 89.4% up to 93.5% dependent on the image down sampling rate that
is not applied here.

The recognition rate for assembled elements decreases to 50%, resulting in totally
57,5% correct results for the testset. Further 30 object hypotheses, which corresponds
to 18%, provide at least a correct object label, even if the segmentation fails. Problems
in segmentation of the assembled elements cause the majority of failures. From the 71
just partially correct and false results, there are 68 false due to false segment hypotheses,
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while just in three cases the classification of a correct segment fails. However, this does
not imply that a correct segmentation guarantees a high recognition rate. The algorithm
relies strongly on global element features that change in case of element occlusions
leading to principal problems in recognizing assembled elements with this approach.

Region Based Classifier Combination A recognition module for baufix R© parts follow-
ing the approach of combining classifiers based on isolated region parameters is de-
scribed in Sec.3.2.2. The recognition module used here combines classifiers based on
the four region based features: ’size’, ’compactness’, ’eccentricity’, and ’baufix R© color
class’. For purposes of simplicity a smaller set of features than within the original work
is used. For a given region the label is determined that carries the maximal confidence
value after combining the individual classifier. The region is appropriately classified, if at
least three of the four individual classifiers support this label with a confidence value of
at least 0.005. Otherwise the region is not classified for avoiding false labeling.

The object label alphabet delivered from the module is given in Appendix B, Tab. B.1,
column 3. The labels differ from the baufix R© elements mainly by the fact that bolts are
decomposed into their head and their thread. Thereby, the 167 elements of the current
testset become 186 object regions to be labeled by the classifier combination scheme.

The evaluation is, firstly, based on the 186 object regions. An object label is again
counted to be correct, if it is correct within the general label alphabet. The definition of
a correctly segmented object region again corresponds to that applied for the evaluation
of the segmentation results, given in Sec. 5.2.1. Partially correct results occur, if the
object label is correct, but the accompanying segment does not correctly represent the
corresponding object region.

Tab. 5.12 shows the results for the combination of region based classifiers evaluated
individually for the 186 segments of the testset, which are not simply comparable to the
results generated by the hybrid module above.

# segments to classify 186
correct 112 (60.2%)

from that
isolated elements 38 (84% of 45)
assembled elements 74 (52% of 141)

partially correct 23 (12.4%)
false 43 (23.1%)
not classified 8 (4.3%)

Table 5.12: Results of the region based classifier combination module for the baufix R©

task evaluated individually for each segment.

The recognition rate for the isolated elements is with 84% for the general element set
comparable to the rate of 76% for the detailed class system given in the original work
[Menz 99]. This result is achieved in spite of the the reduced feature set used here.

Taking into account the assembled elements, the recognition rate decreases to 60%,
which does not surprise due to the transfer of the system from mostly isolated to mostly
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assembled elements without any adaptions of the classifiers. At this point, I remind to
the issue of this evaluation, where results for the individual modules serve as baseline
for comparisons but the absolute values are not not within the focus.

For getting a result that is better comparable with the hybrid module and the final
integrated system the results of the region based classifier combination are rearranged
with respect to the baufix R© element object regions. Therefore, I distinguish between
bolts, where heads and threads are represented by neighbored but separated segments
and the other baufix R© elements. The latter also include the heads of bolts, where the
thread is not visible, as it occurs mostly in assemblies, or a part of the thread is occluded,
while the separated rest remains visible. Tab. 5.13 presents the baufix R© element based
evaluation of the region based classifier combination module. The categories for evalu-
ating the separated bolts are adapted by denominating a result correct, if both parts are
correct, false, if both parts are false and partially correct otherwise.

#bolts with # others
neighbored head and thread

# elements 11 156
correct 8 85
partially correct 3 21
false - 42
not classified - 8

Table 5.13: Results of the region based classifier combination for the baufix R© task
evaluated with respect to baufix R© elements.

The process delivers for the existent 11 bolts with visible threads in 8 cases the best
principally achievable result, namely the correct segmentation and labeling for the two
independent parts. For a completely correct object segmentation result this informa-
tion has to be extended with additional information, for example, the context based
approach of semantic region growing, see Sec. 3.3.1.

Completely correct results are delivered for 85 elements which results related to the
167 presented elements in a recognition rate of 50.9%. With respect to the principal
problems concerning the divided object regions for bolts it is justified to leave them
out and relate the correct results to the 156 principally possible correct results which
leads to a rate of 54.5%. The 85 correct results are generated based on 103 correctly
segmented object regions delivered from the pixel classification based segmentation
process that has been analyzed before within the evaluation of the integration scheme
for segmentation results, see Sec. 5.2. Based on the correctly segmented object regions
the multiple classifier combination achieves with its 85 correct results a rate of 83%.
Together with the fraction of partially correct results this shows that failures within the
segmentation results causes the majority of failures for the recognition module. This
result is equivalently stated for the hybrid recognition module. It is also equivalent that
it is not sufficient to deliver correct segments for achieving high recognition rates. The
classification step depends on global segment parameters and is, even after proceeding
an appropriate training step, likely to produce more failures due the higher variability of
segment parameters occurring for elements within assemblies. The classification power
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of the multiple classifier combination module is generally lower than that of the hybrid
recognition module due to its more general approach.

Appearance Based baufix R© Sub Element Recognizer The appearance based recogni-
tion module is described in detail in Sec. 3.2.3. The process is adapted to the baufix R©

task by parameterizing it in order to detect characteristic parts of elements, like the holes.
Interesting points, detected based on general mechanisms exploiting characteristics in
symmetry and color, focus an artificial neural network classifier system to interesting
image areas. The classification bases on image information provided by the surround-
ing of the focus point and delivers sub elementary class labels, as given in Appendix B,
Tab. B.1, column 4. The classified focus points do not deliver information about object
regions and generally more than one are located at one baufix R© element. They are
firstly evaluated point by point, before a manual summary of those points concerned
with one elements is done below.

For the individual point evaluation those points that are located at objects and those
located besides objects are distinguished. This aspect allows to evaluate the quality
of focusing. A focus point is denominated to be correctly classified, if it is located at
an object and carries the correct object label within the general baufix R© element class,
given in Tab. B.1, column 1, for reasons of comparability with other evaluations. Its also
correct, if it is located beside an object and carries the label ’undefined’. The results
generated for the current baufix R© testset are summarized in Tab. 5.14.

total correct false
located at objects 459 332 127
located besides objects 14 10 4

473 342 (72.3%) 131 (27.7%)

Table 5.14: Evaluation of 473 appearance based classified focus points occurring within
the baufix R© test set.

The initial focusing step works well by locating just very few points besides objects.
Concerning the focus point classification the rate of correct class labels is with 72.3%
statistically significant lower than the rate given with about 85% within the original work
[Heid 98], although the evaluation here is done based on the smaller general element
class set. This is a result of porting the original system to a different experimental setup
that provides especially changed lighting conditions. Better results are expectable after
a suitable training phase that is not in the focus here.

The number of generated focus points clearly exceeds the number of elements for
the test set caused by several focus points located at one element in mean. The ap-
propriate focus points have to be summarized and their classification to be integrated
in order to get a recognition result for an element, as desired for the defined baufix R©

task. For evaluating the element recognition abilities of the classified focus points, I
summarize the focus points concerned with one element manually and integrate the
object information using the probabilistic integration that is presented in Sec. 4.3.1 and
applied within the integrated recognition system. The probabilistic integration accounts
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for the classification error matrix of this classifier, as given in Appendix B, Sec. B.3, for
determining confidence values for the class labels. Tab. 5.15 presents the results for the
167 objects of the testset.

total all labels agree labels are different
correct 126 (75.4%) 88 38
false 35 (21.0%) 20 15
elements not focussed 6 (3.6%)

Table 5.15: Evaluation of probabilistically integrating the object information given
by classified focus points that are manually assigned to each one baufix R©

element.

The manual summary of focus points concerning one baufix R© element and the prob-
abilistic integration of their object information leads for 126 of the 167 elements to the
object label that is correct within the general element label set, which corresponds to a
recognition rate of 75.4%. Thereby, for 88 objects the classified points all agree for the
appropriate correct label, while for 38 objects, there exist false labels that are correctly
suppressed by the integration process. For further 15 elements, there exist correct object
information that is outvoted from false labels, but that supports the correct label if it is
integrated with object information from other sources. Concerning the focusing step, it
turns out that 6 elements are not focussed at all, which is a noticeable but not crucial
part.

The evaluation shows that the probabilistic integration of object labels carried by suit-
ably summarized focus points is an appropriate method for baufix R© element recognition.
For additionally determining object regions, the object information has to be related to
segment information within the integrating module. The integration of object informa-
tion is the topic of the following subsection.

5.3.2 Evaluating the Object Label Integration for the baufix R© Task

The object information delivered by the independent object recognition modules has to
be integrated with the hierarchical representation of segmentation results, as described
in Sec. 4.2.3.

The integration process distinguishes region based labels that are already associated
with segments and point based labels that have to be assigned to available external seg-
ment information. Region based object information, as delivered for this task from the
hybrid recognition approach and the region based classifier combination, is integrated
by attaching it to the appropriate area within the hierarchical representation. An ap-
propriate area, thereby, constitutes the represented segment itself, a similar one that
represents the set, or the union area that represents a set of partially overlapping areas.
The assignment is unique and therefore the process of region based object knowledge
needs no further evaluation.

Point based object information has to be related to the areas that are concerned with
the image at the key point. Uncertainties arise for points that are located near area
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borders. This aspect is addressed by introducing a distance parameter whose effect has
to be evaluated here.

Integration of Point Based Object Information The object information given by the
classified focus points for the baufix R© task has to be related to segment information
in order to exploit it for object segmentation and recognition. An object label carried
by a focus point is, firstly, related to all areas that cover the key point. Thereby, it is
not guaranteed that all points can be related to segment information, because not each
image point is covered by an represented area due to the approximation of the segment
boundaries by linearly connected support points and the elimination of background ar-
eas. Additionally, for a point that is located insight, but near the border of an area, a
significant part of the image information that was used for the classification is not con-
tained within the area. The question arises, whether the object label accompanying this
point interprets reliably the area the point is located in.

This problem is addressed by introducing a minimal distance parameter d in the pro-
cess of integrating point based object information, as discussed in Sec. 4.2.3. A focus
point and its object label are related just to those areas within the hierarchy that provide
a minimal distance of d pixels between their boundary and the focus point. The process
of integrating the classified focus point information into the common hierarchy of seg-
mentation results is repeatedly evaluated for several distance parameter settings based
on the current baufix R© testset. The dependence of the number of related point based
object labels on the distance parameter is shown in Tab. 5.16.

d left out localized on objects localized on shadows
0 6 (1.3%) 455 (96.2%) 12 (2.5%)
4 40 (8.5%) 424 (89.7%) 9 (1.9%)
8 72 (15.2%) 392 (82.9%) 9 (1.9%)

Table 5.16: Evaluation of the integration of the 473 classified focus points for the
baufix R© testset with segment information dependent on the required min-
imal distance between point and boundary of the attached area.

As expected, the number of focus points that can not be attached to an area increases
with increasing the required distance between point and area boundary. The differences
are statistically significant. Without applying a distance parameter, d = 0, 6 object labels
are not related due to the approximation of the segment boundary and the elimination
of background areas. With increasing minimal distance, nearly all of the suppressed
points are formerly attached to areas representing object regions. Generally, it is de-
sirable to leave out false information that would disturb the interpretation process, but
it is not desirable to leave out correct information that would support the recognition
process. Tab. 5.17 shows the fractions of remaining and left out points that are correctly
and falsely classified.

The variation of the minimal distance parameter does lead to just small differences
that are not statistically significant for the fractions of correctly classified from the totally
attached point based object labels. This implies that not significantly more false labels are
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left out localized on objects localized on shadows
d all correct false all correct false all undef false
0 6 3 3 455 331 (72.7%) 124 (27.3%) 12 8 4
4 40 31 9 424 305 (71.9%) 119 (28.1%) 9 6 3
8 72 45 27 392 291 (74.2%) 101 (25.8%) 9 6 3

Table 5.17: Evaluating the effect of the minimal distance parameter for integrating
correctly and falsely classified focus points.

left out at the area borders than correct ones. Nonetheless, there is a slight improvement
for d = 8 that seems to justify the appliance of the parameter. For confirming this
suggestion, the evaluation is complemented by considering the manual summary of
object labels concerning each one baufix R© element. Tab. 5.18 shows the dependence
of the baufix R© element based integration on the distance parameter.

d correct false no information for element
0 126 (75.4%) 35 (21.0%) 6 (3.6%)
4 124 (74.3%) 32 (19.2%) 11 (6.6%)
8 116 (69.5%) 33 (19.8%) 18 (10.8%)

Table 5.18: Evaluating the effect of the minimal distance parameter on the baufix R©

element based recognition rate.

The increasing parameter value does not improve the element based recognition re-
sults statistically significant. However, the results show a development. With increasing
distance parameter the number of correctly classified objects decreases and the number
of objects that get no object information increases, while the number of false classifica-
tion remains nearly stable. Demanding a minimal distance is, therefore, counterproduc-
tive for the integration of the point based object information provided by the appearance
based baufix R© sub element recognition module. The numerical setting for the distance
parameter is d = 0 for the following evaluations concerning the interpretation of the
common hierarchical representation.

5.4 Rule Based Analysis of the Common Representation

The common hierarchical representation contains the available segmentation and object
information. The amount of information is structured by establishing relations between
those segments and object labels that should probably be taken into account collectively
for locally solving the object segmentation and recognition task. Hypotheses for individ-
ual objects are generated by analyzing the representation applying a recursive rule based
analysis procedure as presented in Sec. 4.3.2. The interpretation procedure is evaluated
in the following by considering the realized integrated system addressing the baufix R©

and the office task.
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The interpretation step has to identify those areas within the hierarchy that represent
object regions and assign an object label to it which is complicated and lead to uncer-
tainties due to individual failures within the segment and object information. In the
presence of those uncertainties the analysis is allowed to generate several competing
object segment and label hypotheses. The competing results are further open for the
integration of additional information from higher level knowledge, like provided from
context based modules.

The strategy for evaluating the interpretation step is to determine, whether it is able
to identify an area that correctly represents an object region under the precondition that
an appropriate area is represented within the hierarchy. For each correctly selected area,
the procedure of integrating the available object information in order to generate the
final label for the area is evaluated. In order to show, whether all rules are necessary
and contribute, it is analyzed, which of the rules has been applied for correctly selecting
areas.

5.4.1 General Rules

The interpretation step works recursively starting with the uppermost layer of the hierar-
chy. For each area, the generation of object region and label hypotheses is done based
on the set of general rules that are described in Sec. 4.3.2, Tab. 4.4, Tab. 4.5. The appli-
ance of the rules to each area is influenced by hypotheses concerning contained areas
that are recursively calculated and by the related object information that is integrated,
as described in Sec. 4.3.1.

The interpretation step is evaluated, firstly for the baufix R© task. The participating
modules for this task are depicted in Fig. 5.2, on page 115. Based on the available
modules two system constellations for the baufix R© task are constructed, that differ by
involving either the hybrid object recognition module or the region based classifier com-
bination, while the other modules remain without changes. The two module constella-
tions results in differences concerning the available data based object information.

The results of generating hypotheses for object regions and labels based on the com-
mon representation of data based segment and object information shows Tab. 5.19 for
both module constellations applied to the current baufix R© test set.

using hybrid element using region based
recognizer classifier combination

correct object regions 126 (75.4%) 115 (68.9%)
resulting in

correct recognition results 108 (85.7%) 97 (84.3%)
false recognition results 18 (14.3%) 18 (15.7%)

false object regions 41 (24.6%) 52 (31.1%)

Table 5.19: Evaluation of the abilities of the rule based interpretation step in identi-
fying areas from the hierarchy that correctly represent object regions and
assigning correct integrated object labels for the two baufix R© system con-
stellations.
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The system using the hybrid recognizer delivers the better result with 126 of 167
elements represented, see also Tab. 5.3, and 108 of them also selected and classified
correctly. Exchanging the hybrid recognition with the region based classifier combina-
tion module leads to changes within the available information and consequently within
the common representation. The integration of the available segment information leads
to just 115 correctly represented object regions. The decrease is due to the missing ad-
ditional segment information from the hybrid recognition approach. Using the region
based classifier combination module instead of the hybrid recognizer implies that ob-
jects consisting of two differently colored regions, which are the bolts with their head
and thread, cause a principal problem. They can not be recognized correctly without
integrating additional object knowledge, as for example the semantic region merging
does (see Sec. 3.3.1).

The main result of Tab. 5.19 is that the rule based interpretation step is able to gener-
ate correct object segmentation and recognition results for about 85% of the correctly
represented areas for both systems. Tab. 5.20 shows a more detailed evaluation of the
reasons leading to either the correct or the false results regarding the two aspects of the
analysis, namely the integration of available object information for a given area and the
selection of appropriate areas that probably represent object regions.

using hybrid element using region based
recognizer classifier combination

correct recognition results 108 97
object label integration:

overall correct labels 72 54
partially false object information 36 43

false recognition results 18 18
object label integration:

partially false object information 7 8
overall false object information 11 10
no object information - -

area selection:
correctly selected area 18 18
correct area missed - -

Table 5.20: Detailed analysis of the reasons leading to correct or false recognition for
the two baufix R© system constellations.

Concerning the object label integration the results show that even if the great majority
of the correct results provide non contradictory object labels a remarkable fraction of
them is cause by correctly integrating contradictory object information. For the objects
where the integration step delivers false results this is mostly due to completely false
object information.

The interpretation step is able to identify the area within the hierarchy that correctly
represents the object region for both system constellations. The area selection process is
determined by the applied set of general rules, that reduce the complexity of the system
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by selecting promising candidates and suppressing others. The set of rules must be, on
the one hand, as comprehensive as necessary for selecting the best represented result,
but, on the other hand, it should be as small as possible in order to keep the system sim-
ple and avoid the generation of too many superfluous competing hypotheses. Tab. 5.20
shows that all the areas correctly representing an object region within the hierarchy are
identified. This result shows that the set of just 4 rules seems to be comprehensive
enough to reach all desired areas within the hierarchy. For addressing the question, if,
the other way around, there may be rules that do not contribute, Tab. 5.21 contains the
number of appliance of the individual rules for selecting the correct areas.

rule #applications
using hybrid element using region based

recognizer classifier combination
1 93 (73.8%) 93 (80.9%)
2 20 (15.9%) 10 (8.7%)
3 10 (7.9%) 9 (7.8%)
G 3 (2.4%) 3 (2.6%)

126 115

Table 5.21: Evaluation of the appliance of rules, see Tab. 4.4, on page 97, Tab. 4.5, on
page 101, for generating correct object region hypotheses from the common
representation for the two baufix R© system constellations.

Rule 1 is most important, as expected from the fact that most of the areas correctly
representing object regions are located within the uppermost layer of the hierarchy,
as already stated in Tab. 5.4, on page 120, for the baufix R© system using the hybrid
recognition module. The difference between the number of correct areas located at
the uppermost layer (96) and the number of successful applications of rule 1 for this
system constellation (93) is caused by the areas at the uppermost layer that embed
further individual objects. This constellation is addressed by rule 3. Those correct areas
that are located at the subordinated layers are all identified following the rules 2 and
3, respectively. Although their contribution is much smaller than that of rule 1 the
evaluation shows their justification.

Rule G is applied for improving already identified areas by grouping hypotheses. For
the evaluated baufix R© testset this situation occurs rather seldomly, as already stated for
the baufix R© system using the hybrid recognition module in Tab. 5.3, on page 119, and,
consequently, this rule contributes less to the final result here.

The recognition system realized for the office domain works without integrating an
independent visual data based object recognition module. Consequently, for the anal-
ysis of the common representation rule 3 that accounts for disagreements within the
available object information is not applied. Tab. 5.22 shows, that rule 1 is the most
important, while rule 2 does also not contribute to the selection of areas that correctly
represent object regions for the office domain system applied to the testset of 40 objects.

Comparing this results with the distribution of areas correctly representing object re-
gions over the layers of the hierarchical representation, depicted in Tab 5.9, on page
124, shows that the 24 correct areas at the uppermost layers are selected by rule 1,
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rule #applications
1 24
2 -
3 -
G 4

28

Table 5.22: Appliance of rules, see Tab. 4.4, on page 97, Tab. 4.5, on page 101, for
generating hypotheses from the hierarchical representation of segmentation
results for the office domain.

while 2 correct areas located at the subordinated layer 1 can not be identified due to
the missing object information. The 4 grouping hypotheses are correctly selected by the
appropriate rule.

5.4.2 Improvements by Integrating Data Based Modules

Several individual image data based segmentation and recognition modules are inte-
grated within the realized system, as presented above, finally, for improving the recog-
nition rate of the individual modules by the integrated system.

For the office domain no independent recognition approach is available that serves
for the comparison, but for the baufix R© task, there are those modules.

The hybrid baufix R© element recognition approach achieves applied to the current test
set containing 167 elements, a rate of 57.5% correctly segmented and labeled objects
(96 of 167, see Tab. 5.11, on page 126). Integrating this module with two further
color segmentation modules and the appearance based sub element recognition ap-
proach, improves the part of correct results that occur within the competing hypotheses
to 64.7% (108 of 167 objects, see Tab 5.19, on page 133). This improvement is remark-
able, especially taking into account that just one additional source of object information
causes it. The difference is just at the border to be statistically significant due to the
small test set.

The second system addressing the baufix R© task exchanges the specialized hybrid
recognition module with the more general region based classifier combination approach.
The individual module delivers a recognition rate of 50.9% (85 of 167 elements, see
Tab. 5.13, on page 128). The integrated system achieves 58.1% (97 of 167 elements,
see Tab. 5.19, on page 133) of correctly recognized objects. Also this improvement is
remarkable and at the border to be statistically significant.

A similar comparison to the appearance based recognition approach is not possible,
due to the missing segment information accompanying the object labels delivered from
this module.

The comparisons show that the integration procedure is, in fact, able to benefit from
the information delivered from several independently processing modules for improving
their recognition results.
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5.4.3 Competing Object Hypotheses

The preceding subsections deal with the process for extracting object hypotheses from
the common representation of segment and object information within the realized sys-
tems for recognizing baufix R© elements and office objects. The recursive, rule based
interpretation process applied to the common representation delivers, generally, sev-
eral competing hypotheses due to uncertainties caused by missing and false individual
recognition and segmentation results. The competing hypotheses are probably extended
with additional information for refinement and clarification. The number of preliminary
competing results generated by integrating the individual data based modules depends
on many aspects including the number of elements per cluster, their topology and the
amount of occurring disagreements.

Within the baufix R© test set the number of competing hypotheses generated for one
cluster of objects reaches from one to several hundreds, even if the number of compet-
ing hypotheses is restricted by the rule based interpretation step and is far away from
the number of principally possible competing hypotheses. Nonetheless, the effort for
the the subsequent integration of additional information increases with increasing num-
bers of competing hypotheses, because each competing hypothesis has to be handled
independently from the others. From this point of view the question arises, whether
their number can be further restricted by applying domain specific knowledge that is
more restrictive than the general rules. This aspect is discussed exemplary in the next
subsection.

5.4.4 Discussing Domain Specific Restrictions for the baufix R© Task

A domain specific restriction has to ensure that not the correct or the nearly correct
hypothesis is disregarded. Thereby, neglecting hypotheses is a non returnable decision,
in contrast to the evaluation of competing hypotheses discussed in the following section.

The fact that the correct recognition result is, of course, not known, leads to the strat-
egy of comparing competing hypotheses and disregarding those that seem significantly
less probable than others. Promising criteria for the baufix R© task are the color rules of
the elements, excluding, for example, blue rhombs, or rules about the visibility of one
object located behind another based on the relative object sizes. For example, a cube is
a large element that can not be embedded by other baufix R© elements. Fig. 5.4 shows
an example, where the number of competing hypotheses is reduced to be half of the
original number, if the domain specific restriction is applied.

For the example assembly, consisting of eleven elements, six elements provide two
competing hypotheses each. The combinatorial combination results in finally 64 com-
peting hypotheses generated for the assembly. For the left cube a hypothesis containing
a cube embedded by a felly is generated, a constellation that is not possible to create
with baufix R© parts, in contrast to the competing hypothesis containing just the cube.
Disregarding the less probable competing hypothesis, results in 5 instead of 6 elements
providing two competing hypotheses, which leads to 32 hypotheses at all.

The reduced number of competing hypotheses generally accelerates the further pro-
cesses applying additional knowledge based on the preliminary results. The restriction,
as applied above, does not disregard the the correct recognition result, if it is already
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Figure 5.4: Integrated information for an example assembly results after applying the
general rules in 2 competing hypotheses for 6 elements. Combinatorics
delivers 64 competing hypotheses at all.

included within the preliminary result. But problems arise, if this requirement is not
fulfilled, as shown exemplary in Fig. 5.5.

(a) original (b) integrated data

(c) competing hypotheses

Figure 5.5: Assembly with integrated segmentation and object information and the
two competing hypotheses resulting from applying the general rules. The
second hypothesis contains the better result but contradicts the baufix R©

task object constellation constraints.

The two competing hypotheses differ in the interpretation of the rhomb and the
neighbored thread. The area summarizing the rhomb and the thread is hypothesized
to represent a bolt, see Fig. 5.5(c), upper part. A competing hypothesis is generated
based on the disagreement within the object information and assumes the contained
area to represent an individual rhomb that is embedded by a bolt, see Fig. 5.5(c), lower
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part. The latter hypothesis contains the better result, but contradicts the baufix R© ele-
ment constellation rule in contrast to the first one.

In summary, domain specific knowledge may be applied for significantly restricting the
number of preliminary competing object hypotheses and, thereby, accelerating further
processing.

However, making the hard decision of neglecting competing hypotheses may be pre-
maturely, if the correct hypothesis that, of course, fulfills all domain specific expecta-
tions, is not represented. Therefore, if it is compatible with probable computational
time constraints for the system, definite decisions at this early point of processing, based
on probably incomplete information are avoided. Instead, appropriate domain specific
evaluation criteria for the whole set of competing areas may be applied and accounted
for by selecting the sequence of hypotheses for further processing.

The competing object hypotheses constitute the basis for integrating additional infor-
mation. This aspect is the topic of the following section.

5.5 Additional Knowledge Integration

The proposed integrating framework claims the ability of taking into account differ-
ent kinds of object information delivered from different kinds of recognition modules
for generating its recognition result, see Sec. 4.4. There are, on the one hand, the
object recognition modules generating their hypotheses based on the image data, like
presented in the previous section. On the other hand, there are modules that exploit
knowledge about detailed individual object models, object context models, or relations
to other modalities like speech and gesture recognition. Examples are the semantic
region growing approach and the baufix R© assembly recognition module that base on
object segmentation and label hypotheses and extend these hypotheses by additional
information. The integrated system architecture, proposes the equitable integration of
the additional information with the former collected pieces of information in order to
achieve a recognition result that is supported by all available kinds of information. In the
following the integration of additional information is evaluated for the baufix R© and the
office object recognition systems, respectively.

5.5.1 Semantic Region Growing

For each set of object hypotheses neighbored regions carrying the same object labels are
assumed to represent an over segmented form of one object, as described in Sec. 3.3.1.
By applying the merging approach an additional area is generated from two or more
ones represented within the hierarchical representation of the current hypothesis, see
Sec. 4.3.3. Adding the area at the uppermost layer of the hierarchy and re-interpreting
it, results in an additional competing hypothesis assuming the new area to represent the
object region.

For the baufix R© scenario, Tab. 5.5, on page 121, shows that for the system constella-
tion using the hybrid recognizer applied to the current test set containing 167 elements,
there are just 5 object regions that are over segmented. The main part of not correctly
represented object regions are under segmented and, therefore, are not addressed here.
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For the 5 objects, just one correctly represented object region is constructed and gets
the correct label by the merging approach. Semantic region growing does not play a
role within this integrated system.

The situation differs for the system constellation using the less specialized region based
classifier combination module. This module principally delivers the individual parts of an
isolated bolt, instead of an area representing the whole object region. The test set
contains 11 bolts with neighbored head and thread, as already presented in Sec. 5.3.1,
Tab. 5.13, on page 128, with the individual evaluation of the recognition module. For
2 bolts, no areas that correctly segment both parts of the object region are represented.
For 1 further bolt, merging is not carried out, due to different object labels delivered
with the parts. The semantic region growing approach leads to correct segmentation
and object label results for the remaining 8 isolated bolts. Additionally, the head of an
assembled bolt, a bar and two rhombs are merged from their over segmented parts
and labeled correctly. In summary, integrating object context knowledge in the form
of the simple semantic region growing approach improves the rate of occurring correct
recognition results within the set of competing hypotheses for the baufix R© system using
the region based classifier combination module from 58.1% to 65.3% (97 and 109
of 167 objects, respectively, see Tab. 5.19, on page 133). Comparing this result with
the rate of 50.9% (85 of 167 objects, see Tab. 5.13, on page 128) achieved for the
individual module shows a remarkable and, in spite of the small test set, statistically
significant improvement.

5.5.2 Assembly recognition process

The assembly recognition process described in Sec. 3.3.2 is based on recognition results
for the baufix R© elements. Based on the preliminary, competing results generated from
integrating visual data based modules, a semantic model of the current assembly is
constructed that allows hypothesizing the labels for missing elements. Principally, the
approach of delivering additional object labels from assemblage knowledge is reduced
to objects carrying no valid data based object label. Object labels are generated for
colored areas in a way that label and area information fit into the partially constructed
semantic model of the current assembly.

The additional labels are integrated with the existing visual data based information
represented in the common hierarchical form, see Sec. 4.3.3. The object information is
related to the corresponding area that occurs within the upper layer of the hierarchy by
applying the region based object integration approach, see Sec. 4.2.3. Re-analyzing this
representation delivers again a hypothesis for the corresponding area, while the related
object information is probabilistically integrated. Thereby, data based labels that are
formerly outvoted but correspond with the new label come into play again. Similarly,
strong data based hypotheses against a valid object label may be stronger than the new
label. However, if the assemblage recognition module delivers a label for an area that
carries no data based object information this label is accepted and leads to knowledge
based hallucinations.

For the current data set, the integrated system using the hybrid recognition module
delivers just for 6 elements hypotheses for object regions without valid labels that are
candidates for improvements by the assemblage knowledge. For just 2 of them, addi-
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tional object labels are generated based on assemblage knowledge and lead to improved
recognition results. The correct object region hypotheses for the remaining 4 objects get
no additional label, due to the topology of the surrounding parts or due to recognition
errors for the the surrounding parts that inhibit the construction of an appropriate model
for the assembly.

The improvement of the recognition rate by the assemblage knowledge, thereby, is
not significant. This is last but not least caused by the principal restriction that just those
objects hypotheses that carry no valid label are addressed. Many dirt regions carrying
no data based object information get object labels from the assemblage knowledge and
lead to the above mentioned hallucination of elements.

Besides delivering additional object labels the assemblage knowledge may be ex-
ploited for evaluating the competing hypotheses, which is discussed in Sec. 5.6.

5.5.3 Expectations from Monitoring the Construction Process

Knowledge from monitoring the construction actions leading to an assembly constitutes
the temporal context of the given scene and is exploited as an additional source of
information for the recognition process, see Sec. 3.3.3. Therefore, knowledge about
assembled elements is gathered during monitoring the process of taking elements and,
finally, placing the assembly on the table.

The set of probably assembled elements serves as expectations for elements to be
recognized at that point of time, when the assembly is supposed to be placed on the
table. Detecting the point of time of placing an object may be done based on hints from
speech or noise recognition or, as it is done actually here, by monitoring changes within
the scene, in the form of appearing color regions. Color regions delivered from the pixel
color classification approach are used here. If new regions appear and the module mon-
itoring the construction process contains information about disappeared elements that
can be connected to an assembly, the appropriate assembly is supposed to be placed on
the table. The elements of this assembly, then, are expected to be recognized within the
current scene and an appropriate stream of information is generated. Fig. 5.6 shows the
static recognition system and its connections to the components, necessary for monitor-
ing the construction process.

Information about expected elements generated from process knowledge are not re-
lated to an image location, i.e., just element classes and colors are given, but no image
coordinates. Integration into the common representation, therefore, is done based on
matching the expectations to intermediate object hypotheses generated from sources
of data based information, as described, generally, for non located additional object in-
formation in Sec. 4.4. Competing hypotheses are processed independently one after
another.

The matching process is controlled by defining costs for pairwise matches between
each one hypothesis and one expectation dependent on their agreement, here, in label
and color, as described in Sec. 4.4.1. The globally optimal match for a set of objects
is determined by the set of pairwise matches that provides each object hypothesis and
each expectation definitely once and minimizes the sum of costs.

As a result of this matching process an additional object label from expectation is
available for each object without any segment information. This object label is integrated
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Figure 5.6: System configuration for generating expectations for the integrated
baufix R© element recognition from monitoring the construction process.

with the former available information for this object by relating it to the corresponding
area of the hierarchical representation using the region based object integration step,
described in Sec. 4.2.3. Re-interpreting the hierarchical structure leads to hypotheses
that take into account all the available information for this object.

Correct expectations are generated for the 167 baufix R© elements of the current im-
age test set and integrated with the system constellation using the hybrid recognition
module. The integrated data based processes of this system deliver 6 elements with no
or undefined labels, and 12 with false object labels that are 18 candidates for improve-
ments, see Tab. 5.20, on page 134. The matching process is alway successful, leading
to correctly related additional object labels. For 2 of the undefined objects and 10 of
the false objects the expectations correct the failures of the data based processes. For
the remaining 6 objects the false object labels from the data based processes outvote
the correct one within the probabilistic integration procedure. The integration of cor-
rect expectations improves the number of occurring correct object recognition results
within the competing hypotheses of the system statistically significantly from 108 to
120, corresponding to 64.7% and 71.9%, respectively.
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5.5.4 Shape Based Office Object Recognition

A somewhat different kind of additional knowledge is integrated for the office domain
in the form of a shape based recognition system, as is it described in Sec. 3.2.4. The
recognition module is generally applicable to segment information like it is delivered
from any individual data based segmentation process and it is a candidate for consti-
tuting a data based recognition module within other systems addressing different tasks.
But the recognition process depends crucially on global shape properties and, thereby,
on segment information that correctly represents an object region. The evaluation of the
integration scheme for segmentation results for the office objects, given in Sec. 5.2.3,
shows that nearly no object region is correctly segmented by an individual module, while
the common representation contains 30 of 40 areas at all that correspond to object re-
gions. 28 of them are identified from the rules based interpretation step as probably
representing object regions and contained within the preliminary, integrated, competing
hypotheses. Therefore, for this task the shape based recognition is much more promis-
ing to apply to the integrated results than to the segments delivered from the individual
approaches. The shape based classification module was trained with a very small data
set for this task, as described in Sec. 3.2.4, which results in rather bad recognition re-
sults. From the 28 candidate areas just 10 are classified correctly into one of the 6 valid
object classes. The undefined class was trained with shadow and dirt regions. Within
the test, it covers indeed most of the shadow regions but also many of the valid ob-
jects. Better recognition results are surely expectable after proceeding a more extensive
training phase. Concerning the integration aspect that is the focus here, the integrated
system realized for the office domain shows the flexible applicability of the general inte-
grating framework and the improvements of integration in comparison to the individual
modules.

5.6 Evaluation Scheme for Competing Hypotheses

The interpretation step of the common representation and the further integration of ad-
ditional knowledge generally results in competing hypotheses for an image area. These
results are evaluated based on different criteria that are determined individually and can
be combined by applying the evaluation cascade described in Sec. 4.5.

For the baufix R© domain, the generally applicable criterion concerning the object label
integration and, additionally, an evaluation criterion based on the degree of assemblage
and one based on the degree of fulfilled expectations is applied. The criteria are cal-
culated for the competing hypotheses generated by integrating the image data based
processes of the baufix R© system using the hybrid recognition module. The office domain
system relies currently on the individual confidence value of the shape based recogni-
tion. Its results are not in the current implementation not sustainable and, therefore, not
investigated further concerning their confidence values.

Competing hypotheses are generated and, thereby, have to be evaluated based on
clusters, the image sub units constituted by neighbored areas, as introduced in Sec. 4.2.2.
For the current test set the 167 elements are processed within 64 automatically gener-
ated clusters that mainly but not always correspond to baufix R© assemblies and isolated
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elements, respectively.

Mean Object Label Confidence For evaluating competing results without taking into
account domain specific knowledge, a confidence value is calculated based on the in-
dividually evaluated participating object labels and their integration, as described in
Sec. 4.5. Based on the confidence value for each object generated from the proba-
bilistic integration process, a set of hypotheses is evaluated by the mean object label
confidence.

Within the current test set 64 clusters of baufix R© elements are evaluated. 43 evalu-
ations are successful, i.e., the best competing hypothesis gets the highest score. They
consider 24 isolated elements and 19 assemblies or agglomerates of elements. However,
for 21 clusters, containing 6 isolated elements and 15 assemblies or agglomerates a non
optimal result is chosen. The best evaluated hypotheses contain 85 of 108 correctly
segmented and recognized elements and 24 superfluous elements.

The evaluation method of scoring the mean object label evaluation provides the prob-
lem of tending to score more detailed hypotheses higher than others, because there is a
lower probability of disagreements within the available object information. This fact is
underlined by the number of 24 superfluous elements, which are generated by hypoth-
esizing, for example, two bolts instead of one, if areas representing an over segment
object region exist besides the correctly segmenting one.

Assemblage knowledge The evaluation scheme based on assemblage knowledge is
based on the assumption, that there are one or more assemblies in the image. Then
those elementary results are expected to be reliable that lead to as few as possible
assemblies containing as many as possible elements. This motivates to the following
evaluation function:

evalassemblage =
#assembled elements

#all elements
· 1
#assemblies

This evaluation function is again applied to the competing hypotheses, generated
from the integrated visual data based results, providing 64 clusters of baufix R© elements
for the current test set. 48 evaluations based on assemblage knowledge are success-
ful, scoring the best competing hypothesis highest. These hypotheses contain 106 of
126 correctly represented and 95 of 108 correctly recognized elements as well as 13
superfluous elements.

The domain specific criterion based on assemblage knowledge delivers more sustain-
able evaluations but the results are far from guaranteeing the choice of the best compet-
ing result. What are the reasons for the failure of the evaluation function? The problem
occurs, because a recognition result containing all elements correctly segmented and
labeled is often not available. This is due to recognition failures, but also due to occlu-
sions. Missing and false object hypotheses, especially concerning the functional parts
of an assembly, the bolts and nuts, often avoid the construction of a suitable semantic
assembly model that constitutes the basis of this evaluation criterion.
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5.6 Evaluation Scheme for Competing Hypotheses

Expectations Expectations are non localized and have to be related to the competing
hypotheses by a matching process, as described in Sec. refsecmatchingExpectations.
This matching process is applied in the previous section for generating additional object
labels from expectation. But the accordance between hypotheses and expectations can
also be exploited for determining a confidence value for the set of hypotheses.

The confidence for a set of objects is calculated by, firstly, evaluating each determined
pairwise match between an object hypothesis and an expectation based on the manually
chosen confidence values, given in Tab. 5.23.

Eval Given for a Match between
1.0 equally colored and labeled hypothesis and expectation
0.9 color region with no valid object label and no expectation
0.0 differently colored and labeled hypothesis and expectation or

hypothesis and no expectation
0.5 other constellations, for example,

equally colored and differently labeled hypothesis and expectation or
expectation and no hypothesis, etc.

Table 5.23: Evaluation of matches between an object hypothesis and an evaluation
based on the differences concerning object label and color.

The evaluation of each match is defined to cover the commonly used range between
zero and one. Agreements for color and label are best evaluated, while complete dis-
agreements worst. Good evaluated is also the match between a non valid hypothesis,
carrying an undefined or no label and probably representing a shadow and no expecta-
tion. The remaining cases of partially agreements get the mean value of 0.5.

The resulting confidence value for a set of hypotheses and expectations is calculated
by summarizing the appropriate values for each hypothesis and, additionally, for the the
non matched expectations. The sum is normalized by dividing by the number of entities
accounted for.

This evaluation function is applied to the competing hypotheses generated for the
baufix R© testset from integrating the image data based results and the formerly gener-
ated set of correct expectations.

Within the test set the 167 elements are arranged in 37 isolated ones and 34 assem-
blies. The 71 units are taken into account separately, resulting in 60 successful evalua-
tions. The selected hypotheses contain 116 of 126 correctly represented and 102 of 108
correctly recognized elements as well as 9 superfluous elements.

Because this analysis is done based on completely correct expectations, it delivers
the best result. Nonetheless, also this criterion does not guarantee the selection of the
correct hypothesis, again due to the fact that the correct recognition result for the cluster
often is not available. Too many recognition failures disturb the expectation matching
process resulting in non valid evaluations.

Cascade The different evaluation criteria are organized applying a cascade, i.e., they,
firstly, get a priority. Starting with the highest priority the corresponding function is
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decisive and only for competing hypotheses that get an equal evaluation following this
function the evaluation function of the next priority level is done. Within this scheme it
is no principal problem if single functions are not applicable due to the current system
state, for example, in case of missing data. Evaluating the degree of accordance with
expectations is only possible, if expectations are available. For the baufix R© domain
expectations are just generated at the end of a construction process.

The results for the individual evaluation criteria for the baufix R© domain, which are
described above, show that, if available, the expectations give the most reliable results.
Therefore, the corresponding evaluation criterion gets the highest priority. If they deliver
ambiguous results or are not available, the evaluation based on assemblage knowledge
is calculated. The mean object label evaluation provides principal problems with over
segmentations, as discussed above. Therefore, this evaluation criterion gets the lowest
priority. But it can be calculated as far as one individually evaluated or two not nec-
essarily individually evaluated sources of object information are available and, thereby,
constitutes the fall back of the cascade.

Generally, independent sources of information should be taken into account for hy-
potheses generation and evaluation, if possible. For example, if expectations are used
for generating additional object labels the resulting competing hypotheses should not
be evaluated by the degree of fulfilled expectations in order to avoid hallucinations due
to the strong influence of this knowledge. This also concerns the exploitation of assem-
blage knowledge for the baufix R© domain. The decision, which source of information is
where to use

For improving the evaluation step, besides the presented criteria, further approaches
implementing domain specific restrictions for element colors, constellations, or other
characteristics, as motivated in Sec. 5.4.4, are principally applicable. They can do, for
example, a pre selection of promising candidates by distinguishing valid from non valid
hypotheses at the uppermost level of the cascade.

5.7 Summarizing the Evaluation

The preceding sections contain the evaluation of object segmentation and recognition
systems that are realized based on the general integrating framework proposed by this
thesis. The evaluated systems are concerned with two different tasks, namely the recog-
nition of baufix R© elements and the recognition of objects occurring in an office environ-
ment.

For realizing a system based on the general integrating framework the participating
individual modules have to be available and adapted to the communication framework
DACS. Concerning the integrating module the domain specific parts have to be sup-
plemented, which are the definition of the occurring object labels and their coherence
as well as sustainable evaluation criteria. The heart of the system, the hierarchical rep-
resentation of segmentation and classification results and its interpretation procedure
remains constant and can be adapted to a new domain by setting few parameters. The
two central parameters, controlling the classification of areas relations for the common
hierarchical representation and the integration of point based object information with
external segments, turn out to be uncritical in their numerical setting for the realized
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systems.
For quantitatively evaluating an object recognition system the rate of correct results

from all tested ones is central. Nonetheless, in the scope of the presented evaluations are
relative improvements achieved by applying the integrating framework and intermediate
results for the parts of the integrating module.

For all realized systems the common representation of segment and object informa-
tion is shown to improve the rate of represented correctly segmented object regions in
comparison to the participating modules. The rule based interpretation step is shown to
be suitable for selecting the correct areas from the common representation and include
it into at least one of generally several competing object hypotheses.

For generating an object label for a given area the available object information is in-
tegrated probabilistically. The evaluation of the available baufix R© object data shows
that for many areas contradicting labels from the different sources occur and, there-
fore, underlines the need of a suitable integration scheme. Due to the aim of flexible
combination of available modules, no confidence for the different sources of object are
considered. In spite of these simplifications, the integration scheme turns out to be
successful for the baufix R© labels.

The competing object segmentation and recognition hypotheses that result from in-
terpreting the common hierarchical representation constitute the basis for integrating
additional knowledge that depends on preliminary hypotheses. For the office domain
system the one and only available object recognition module needs the preliminary inte-
grated segment hypotheses. Even, if the recognition rates for this module are not satis-
fying, the realized system shows the principal necessity of integrating object labels based
on preliminary integrated results. For the baufix R© domain, information from assemblage
knowledge, expectations from the temporal history of the scene, and assumptions from
semantic region growing are available for the integration with data based results. The
modules are applied one after the other to the preliminary hypotheses and they show
different degrees of refinements.

Uncertainties in the interpretation of disagreeing different kinds of information lead
to competing results. In order to evaluate the competing hypotheses, generally, the
individually evaluated object labels that are integrated and their accordance, are de-
termined. For the office system just the individual evaluations delivered from the one
source of object information are taken into account. For the baufix R© task, addition-
ally domain specific criteria are supplemented calculating confidence values based on
the degree of fulfilled expectations and the degree of assemblage. It turns out that the
implemented evaluation criteria are not sufficient for guaranteeing the selection of the
best hypothesis out of the competing ones. For optimizing the results additional domain
specific evaluation criteria has to be defined and integrated to the realized systems.

The quantitative evaluation of three realized integrated system constellations for two
different tasks demonstrates the broad applicability of the proposed general integrat-
ing framework. The detailed quantitative evaluations show that the integrated system
exceeds its parts significantly. The results validate the promising results achieved by
a former, smaller system configuration for baufix R© recognition, described in detail in
[Brau 99] and [Sage 01].

147



5 Evaluation of Realized Integrated Systems

148



6 Summary and Conclusion

Object segmentation and recognition is one of the most active research fields in com-
puter science. Symbolic information assigned to visual sensory data plays an impor-
tant role for computational applications reaching from industrial quality assurance to
advanced human machine communication. However, compared to the human object
recognition abilities the automatic systems have to be developed much further to be-
come an adequate communication partner.

Many approaches to object segmentation and recognition exist that follow diverse
processing strategies, rely on different assumptions, and exploit different characteristics
of tasks and objects. Results from data driven processes searching for models that cor-
respond to the data, are opposed to results achieved by conceptually driven processes
that determine sensory data that corresponds to models. For a given recognition task,
generally, various individual approaches deliver valuable pieces of information that are
promising to complement one another. The question arises, how to integrate the differ-
ent aspects within one object recognition system.

One possibility is integrating diverse features and strategies for exploiting different
sources of information implicitly within one monolithic system. Such a system depends
on the set of completely calculated features and, therefore, has to be appropriately
redesigned, if feature sources are exchanged, like a classifier operating on a high di-
mensional feature space. Additionally, the influence of the isolated features is obscured
within the whole system. The contrary approach integrates explicitly individually gen-
erated results, each based on comparably simple recognition mechanisms. Appropri-
ate existent generally applicable recognition and segmentation modules, therefore, may
be reused by adapting them to a given task. Generally applicable external combina-
tion schemes are flexible with respect to exchanges of individual modules. Several ap-
proaches are proposed for combining object labels from several sources based on a
common label alphabet. However, these approaches are not easily extendable to the
simultaneous consideration of segmentation information.

Besides modules that individually assign image data to object symbols following the
one or the other processing direction, additional object knowledge serves for verify-
ing object hypotheses, clarifying ambiguities, and extending missing hypotheses. This
kind of knowledge is concerned with individual object models, object context models
or relations to other modalities, like gestures or speech. It delivers additional valuable
information for recognition, if it is integrated with the image data based generated in-
formation.

This thesis proposes a framework that provides a standardized external integration
scheme for diverse visual data based object labels and segment information with addi-
tional information based, for example, on higher level object model, like context knowl-
edge. The integrating framework supports the fast and flexible realization of integrated
object recognition systems based on a strategy that is independent of the recognition
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task and the set of participating modules. In contrast, systems applying advanced
learning approaches for acquiring knowledge about joint probabilities concerning the
available information depend strongly on the set of participating modules. Realizing a
system necessitates a training phase and exchanging individual parts is equivalent to
re-generating the whole system.

The central part of the proposed framework constitutes the integrating module that
takes into account the available information for generating object hypotheses.

6.1 The General Integrating Module

The implemented general integrating module consists of three major parts, the common
knowledge representation, its analysis resulting in competing object hypotheses, and the
evaluation of the competing results.

The common hierarchical representation of segment and object information collects
the available information from different sources of knowledge. The amount of informa-
tion is structured by relating those pieces of information that cover a common image
area and, therefore, has to be taken into account collectively for the appropriate local
interpretation. The integration of belatedly arriving information concerning an image
area is supported because it leads to just local adaptions of the data structure.

Generating object hypotheses based on the available information is often ambiguous
due to disagreements within the available information caused by individual recognition
failures. Uncertainties in analyzing the available information results in, generally, more
than one competing hypotheses containing different object region and label assump-
tions. Probable candidates are identified from the available information by applying a
set of general interpretation rules. The rules restrict the number of competing results
in order to enable the subsequent integration of additional high level information for
clarifying uncertainties. The premature restriction to one hypothesis is especially not
promising as long as not all information is integrated. However, additional information
is characterized by its dependence on preliminary object hypotheses, like knowledge
from object based context. Consequently, the additional information has to be applied
and its results has to be integrated separately to the competing preliminary hypotheses,
requiring a restricted number of them. The proposed unified knowledge representa-
tion and interpretation strategy applied for integrating individually generated pieces of
information is reusable for the belated consideration of additional information. Its in-
tegration with data based information is equitable and avoids the dominance of one
source of information over the other. The effect of hallucinating objects due to strong
expectations based on object knowledge is avoided, then, by considering contradiction
based on sensory data.

The third part of the general integrating modules constitutes a scheme for compar-
ing and evaluating competing hypotheses in order to identify the most believed unique
result and to provide confidence values concerning the hypotheses to be used by subse-
quent processes. The general evaluation scheme is a cascade that is prepared for analyz-
ing several independent evaluation criteria. The most reliable and adequately prioritized
criterion is applied first, while following ones serve for clarifying ambiguities within the
first one. A generally applicable criterion evaluates the disagreements within the inte-
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grated object information related to each object. For achieving discriminative evaluation
criteria, the scheme can be easily extended by meaningful task specific evaluations.

6.2 Realizing Integrated Object Recognition Systems

For realizing a recognition system for a given task based on the general integrating
framework it is necessary to provide suitable participating recognition and segmenta-
tion modules. In order to enable their communication with the implemented integrating
module their interfaces have to be adapted to the standards supported by the inter
process communication system DACS. Concerning the integration process, itself, the
different occuring task specific object label alphabets, accompanied probably by individ-
ual confidence information, and their coherence have to be supplemented. The main
parameters of the integration module concerned with the determination of relations be-
tween pairs of areas and between areas and object information, are adapted to the task
and the participating modules. The implemented integrating module provides a stan-
dardized data representation and interpretation step that both, generally, do not depend
on the recognition task and remain constant for all systems.

The presented realized systems address two different domains, the recognition of
baufix R© elements and of objects occuring in an office environment. The detailed quan-
titative analysis of the realized application systems underlines the comprehensive rep-
resentation of the integrated information that improves each of the individual sources
of information. Further on, the interpretation mechanism is able to extract the correct
results from the representation together with other competing ones. However, the im-
plemented general and domain specific evaluation criteria should be improved in order
to reliably extract the best unique result from the set of competing ones. The problems
arise mainly due to the rather high rate of recognition failures that disturb especially the
evaluation criteria based on higher level knowledge for the baufix R© domain. Thereby,
neither the selection of participating modules, nor the individual modules, nor the ap-
plied evaluation criteria have been optimized for achieving absolutely optimal results for
the recognition systems. In contrast, the integrated systems are realized for proofing the
standardized and simple integration and interpretation strategy to be able to improve
the results of the participating isolated modules. The systems demonstrate the general
applicability of the general framework to different tasks.

The major part of failures for the realized systems originate from segmentation fail-
ures and from that the under segmentations. There is currently no mechanism imple-
mented for actively splitting under segmented areas. Besides failures within the indi-
vidual modules, also the construction of artificial union areas by the integrating module
from partially overlapping original ones constitutes a source of under segmented ar-
eas. The problem can be addressed within the integrating framework by introducing
a further module into the system that implements an object model based segmenta-
tion approach, like proposed in [Bore 02], [Bore 04], and delivers additional information
based on preliminary object hypotheses.
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6.3 Conclusion

The proposed integrating framework constitutes a valuable tool for addressing a given
object segmentation and recognition task based on the main idea of considering equi-
tably different sources of information. The different sources and kinds of information
complement one another for achieving sustainable object segmentation and labeling
results. Segment information determines the appropriate clustering of available object
information, while object information determines the selection of probable candidates
for object regions from the amount of available segment information.

Individual segmentation and recognition modules deliver the different kinds of infor-
mation by following different processing strategies. The equitable integration of avail-
able information supports the extension of image data based generated object hypothe-
ses with valuable additional information, as delivered, for example, from object context
knowledge. Concurrently, this approach avoids conceptually driven hallucinations by
appropriately considering sensory data.

The applied integration mechanism is external and static in order to preserve the inde-
pendence of participating modules. This guarantees flexibility with respect to exchanges
within the set of participating modules or changes of the application domain. The pro-
posed integrating framework constitutes the basis for realizing successful, as well as,
smart and flexible recognition systems.
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An object recognition system has to deliver symbolic object information assigned to a
digital image. The object module is defined by its interfaces and a parameter setting that
has to be fixed during the adaption of the system to the given task. For a system based
on the proposed integrating framework during the system adaptation phase besides pa-
rameter settings also decisions about the choice of available modules to be integrated
has to be made. Making these decisions just based on the final result is very difficult
due to the manifold effects that happen in the interaction of different input data and
parameter settings. In the phase of the system constitution for a new task the inspection
of the content of internal data structures is indispensable. Additionally, for false recogni-
tion results, an inspection tool helps to identify the reason of the error, which is the first
step of solving the problem.

Given the requirements of providing generally the possibility of system inspection, but
working mostly without visualization overhead leads to an implementation that is man-
aged by a command line containing input and output data descriptions and parameter
settings. A command line parameter also specifies, whether a visualization of system
internals is wanted or not. If so, the necessary information about the system internals
are submitted to a visualization sub system. Besides showing details of the inner data
structures, it provides a graphical user interface to the recognition module. The user
controls the system by selecting the pieces of information to be integrated, changing
parameter values, and introducing break points.

Internal system information that is valuable for visualization occurs at several points
within the recognition module and data is submitted as soon as it is constitutes consistent
units. Otherwise, the visualization would cause the storing of many intermediate data
within the recognition module. The decentral submission of data units is realized by
the interface functions provided by the open source window management library ’Fast
Light Tool Kit’ (FLTK) that is distributed from www.fltk.org. It offers basic windowing
management functionality combined with an easy to use user interface in the form of
C++ classes and methods. It is implemented for several platforms.

Fig. A.1 shows a screen shot of the main window of the visualization sub system
implemented for systems realized based on the general integrating framework.

The main window shows within its central part, firstly, the data that is integrated
within the common hierarchical representation. For addressing the different aspects of
the representation, like the layer structure, sets of similar or partially overlapping areas,
or the relation of object information, the local menu bar of the central window offers
different visualizations. Here, the layers of the hierarchical representation of segment
information are color coded.

Besides the central data part, in the upper left corner of the main window the in-
put streams are listed. A click at the central buttons opens a window presenting the
appropriate input information, as exemplary shown in Fig. A.2.
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Figure A.1: Main window of the visualization tool for inspecting an integrated system
showing, here, the color coded hierarchical common representation of the
individual segment inputs.

Figure A.2: Different input data stream visualizations for segments from the local
variation approach presented uniquely in grey and the mean-shift approach
drawn in random colors.

The available input data streams can individually switched on and off by the radio
buttons of the left column. The two columns of radio buttons right of the input data
buttons within the main window provide the possibility of selecting or neglecting special
data from the input stream, like assigned contours, if available, from a stream delivering
segment information or segment information given with a stream of object information.
This allows to flexibly generate different combinations of input data and test it for its
effects on the integrated representation and, finally, on the recognition result.

The button at the lower left of the main window hides information about the excep-
tionally handled partially overlapping grouping hypotheses.

The menu bar of the main window contains entries for influencing the integration
process by, for example, parameter settings, switching on and off the usage of addi-
tional modules for integration, and controlling the application of different criteria for
evaluating the results.
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The buttons located at the upper right corner of the main window serve for switching
the content of the central area (two buttons) and for controlling the progress of the
program (four buttons). The latter determine, whether the program stops after the
next recognition unit or runs without break just visualizing the data, and, whether the
calculations are repeated on the same data or new data is loaded from the input streams.

For the central area of the main window further contents are selectable, as shown in
Fig. A.3.

Figure A.3: Alternative selectable contents for the main window of the inspection
tool showing either the best believed object hypotheses for the image or
detailed information about one segment cluster.

The upper part shows the main window with its central part visualizing the best be-
lieved object hypotheses for the current image. The lower part presents a central win-
dow divided into three parts providing detailed information concerning one cluster of
areas. The upper left quarter of the central area shows the data integrated within the
common hierarchical representation for the current cluster, comparable to mode for vi-
sualizing these data for the whole image, shown in Fig. A.1. The lower half of the
window shows competing results together with their evaluations that are generated
while interpreting the hierarchy. Finally, the upper right quarter shows the best believed
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result, comparable to mode for visualizing these results for the whole image, shown in
the upper part of the figure.

For a better insight into the hierarchical representation the areas and their relations to
each other may be visualized as a graph within an individual window. Thereby, the graph
consists of nodes representing the occurring areas and edges representing the explicitly
represented relations between them. Areas that are independent are related via a white
edge, while the connection between one area containing another is drawn in black. The
menu bar of the windows allows further variations in the presentation, like showing just
the main structure constituted by independent (white) and contained (black) areas or
extend this by similar and partially overlapping original areas, as depicted in Fig.A.4.

Figure A.4: Exemplary graph presentation of the common hierarchical representation
showing the main structure of independent (white) and contained (black)
areas extended by similar areas (upper) and the partially overlapping orig-
inal areas (lower).

If object information is available from image data based modules, this can also be
depicted within the graph visualization of the common representation, as it is shown in
Fig. A.5.

Besides the overview presentation of the occurring areas and their relations, detailed
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Figure A.5: Graph visualization of the common hierarchical representation containing
segment and object information.

information about each of the areas is also possible to visualize within separate windows.
The information is demanded by a double click to the area within one of the presenta-
tions containing the data of the common representation. Examples for the detailed area
information shows Fig. A.6.

Figure A.6: Examples for individual area information containing spatial informations
and related object information.

The lower part of Fig. A.3 already shows the cluster based version of the central part of
the main window. Within the lower half all the present competing results of the system
are depicted. These are, firstly, the preliminary competing hypotheses that are generated
by interpreting the common hierarchical representation of image data based segment
and object information. For each object within the competing hypotheses, information
about the object label, its evaluation and the rule that cause its existence are available
and printed in user defined combinations for better readability. Fig. A.7 shows the cluster
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based main window containing these preliminary competing hypotheses for a baufix R©

example, where the objects are color coded and the label are printed without further
information. The preliminary competing hypotheses constitutes, generally, the basis for
applying additional higher level modules, like the baufix R© assembly recognition module.
The additional object information delivered for each competing result is visualized by
a separate windows that is opened, if required, by a mouse click on the appropriate
hypothesis. Fig. A.7 shows the windows opened for two hypotheses. One of them gets
no additional object information from the assemblage knowledge, while the second gets
two additional hypotheses for cubes. The next program step integrates this information
with the hierarchical representation of information underlying this hypothesis starts the
re-interpretation taking into account the extended information.

Figure A.7: Image data based generated competing hypotheses with assigned higher
level object hypotheses, here delivered from the baufix R© assemblage know-
ledge.

The implemented visualization tool for recognition systems that are realized based on
the integrating framework allows an insight into the content of the internal data struc-
tures of the recognition system during its runtime. Detailed information about the par-
ticipating original data sets, the common representation, and the resulting hypotheses
allows the user to comprehend the analysis step by step. These features are indispens-
able in the phase of composing new systems. Additionally, for false recognition results
the visualization tools allows the detection of the reason for the failure which may lead
finally to an improvement of the system. Last but not least, the proposed visualization
can be hidden completely and just some requests for the value of the visualization flag
remains within the recognition module. This is the runtime mode, where the recognition
module just has to do its work, as successful as possible.
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As one application for the integrating recognition framework the domain of recognizing
elements and assemblies of the wooden toy kit baufix R© is chosen. baufix R© allows the
construction of assemblies from a set of elementary parts, as shown in Fig. B.1.

Figure B.1: Elementary baufix R© parts and some exemplary assemblies

The following sections motivate this domain by its central position in several research
projects and gives details that are necessary for the realization of the integrated system.

B.1 Motivation

The baufix R© construction process is selected to be the application domain of the re-
search projects summarized by the collaborative research center (SFB 360) at Bielefeld
university. Topic of the SFB 360 is the development of ’Artificial Situated Communica-
tors’ [Rick 96]. Those systems are characterized by their ability to get into a dialog with
a human user, where the dialog is embedded within a predefined situational context.
This context is chosen to be the cooperative construction of baufix R© assemblies. For
realizing a dialog with the human instructor the computer system must be able to deal
with speech and vision perceptions in order to appropriately process the user commands.
Besides speech and object recognition higher level processes like speech understanding
and multi modal scene understanding are necessary. Fig. B.2 shows the SFB scenario
with a human instructor and robot constructor.

Within the vision perception centered projects some modules dealing with segmenta-
tion and recognition of elements and assemblies are developed and applied. The pos-
sibilities of constructing baufix R© assemblies from the set of elements are manifold, but
the construction generally follows some basic rules. Therefore the task of recognizing
assemblies is addressed by modeling the assembly based on the construction rules and
recognition results for the elements, see Sec. 3.3.2 or [Bauc 02]. This attempt requires
reliable element segmentation and labeling that is addressed by the realized integrated
recognition system.
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Figure B.2: The SFB 360 scenario with a human instructor and robotic constructor.

Fig. B.1 shows the elementary baufix R© parts. Bolts and cubes are present in five and
four colors, respectively. Several length occur with bolts and the bars. Additionally bolts
may provide a round or hexagonal head. The remaining parts are unique in color and
form. Each part, except the bolts, exhibit just one color. The set of occurring colors is
reduced to nine rather saturated ones. No texture is provided by the flat surfaces, which
supports the application of color segmentation approaches, but which also complicates
the definition of discriminative features for the recognition.

In spite of the limited set of elements and colors the recognition of elements built
in assemblies is difficult, due to the high spatial dense of elements causing occlusions.
Problems arise in detecting the element boundaries, due to shadows, highlights or neigh-
bored elements of exactly the same color.

B.2 Object Label Alphabets

Different recognition strategies for baufix R© elements that are isolated or connected with
others in assemblies are implemented. Thereby, the modules rely more or less on prepro-
cessing results and on more or less domain specific knowledge. There is the module that
assigns an object label to each segment of unique color, the one that does not rely on
segments at all, but instead identifies characteristic non occluded parts of an object, and
the other one that has an explicit model of the bolt to be constituted from a head and a
thread, see Sec. 3.2 for details. Additionally elements can be hypothesized from assem-
blage knowledge or information about an assembly gathered during the construction
process, see Sec. 3.3. The different recognition strategies cause the individual modules
to deliver different object label alphabets. Tab. B.1 shows the occurring object labels and
their coherence. For applying a general integration scheme, a common label alphabet is
necessary, which is given in the left column of Tab. B.1. The general element alphabet
is designed to ensure that each member of each alphabet can be uniquely assigned to
one of its members.
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B.3 Classification Error Matrix for Probabilistic Integration

General Elements Elements Region Based Parts Sub Elements
3 hole bar 3 hole bar

bar 5 hole bar 5 hole bar
edge bar

7 hole bar 7 hole bar
hole bar

part cube
cube cube cube edge cube

hole cube
part rhomb

rhomb rhomb rhomb side rhomb
hole rhomb
hole fellyfelly felly felly
felly

tyre tyre tyre tyre
socket socket socket
ring ring ring

head round bolt
head bolt head side round boltbolt bolt
thread bolt head hexagon bolt

head side hexagon bolt
undefined undefined undefined undefined
unknown

Table B.1: Object class labels and their coherence defined for the baufix R© element
recognition scheme.

B.3 Classification Error Matrix for Probabilistic Integration

For probabilistic object label integration, see Sec. 3.1.4 and Sec. 4.3.1, an estimation of
the probability for all labels of the actual alphabet is desirable. This kind of data is avail-
able for the appearance based baufix R© sub element recognition system, see Sec. 3.2.3
in the form of a classification error matrix.

Estimations for the probabilities for objects given a classified label m are derived from
a comparison of classification results to a manually labeled ground truth data set. In
counting, how many ground truth class labels n are automatically classified to class label
m, it results a NxN matrix of estimations for probabilities with N the total number of
classes. The true object label n is defined to denote the row index the classified label
m the column index. The diagonal elements of the matrix contain the correct classifica-
tions, which are summarized to determine the classification rate. Row n represents the
distribution of classification results with true object class n, column m the distribution of
true objects that are classified to be m. The latter serve for the probabilistic integration,

after normalizing each column sum to one. Tab. B.2 shows the resulting error matrix
for the baufix R© sub element recognition system that is made available from the author
Gunther Heidemann in personal communication.
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Table B.2: Error matrix for appearance based baufix R© sub part recognition system.
Column m denotes the distribution of objects classified to class label m.
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B.4 Test Set Images

B.4 Test Set Images

An integrated recognition system for the baufix R© domain is realized based on available
individual modules and the general integration framework, see Chapter 5. The images
used for the quantitative evaluation of this system are shown in Fig. B.3.

They are taken using a setup consisting of an operation table of constant background
and a camera directed to the table at an angle of about 45◦ using constant camera
parameters and indoor lighting. The test set consists of 10 images, containing 167 ele-
ments. 130 of the elements are used within 34 assemblies, resulting in 37 being isolated.
The testset was designed from a naive user, the student worker Christian Lange, who
did not know the recognition system. His task was to design a test set that is challenging
for recognition. As a result, the images are characterized by containing complex assem-
blies providing many occluded elements and many examples of neighbored elements
with same or similar color, which constitutes the main difficulty for the segmentation
task within this domain.

Figure B.3: Images containing baufix R© elements and assemblies used for testing and
evaluating the integrated recognition system for baufix R© element recogni-
tion.
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C The Office Domain

As an application for the general integrating framework a system for recognizing objects
within an office environment is realized.

In general, the recognition of objects occurring within an office environment is ad-
dressed within many applications, due to the common availability and presence of those
objects. Object recognition facilities for this domain are used, for example, for realiz-
ing advanced human computer interaction, like described in [Haas 04, Fink 04a, Frit 03,
Bauc 04b]. Within the visual perception based modules of such systems both, object
categorization as well as recognition of individual object exemplars, is needed depen-
dent on the context. These challenges and the common availability of the objects are the
reason for choosing the office environment as an application domain for the integrating
recognition framework.

However, the system realized and evaluated for the office domain, here, is rather
small and does not aim at solving the object recognition task within the office environ-
ment. But it shows the flexibility of the general integrating framework concerning its
application to different domains.

In the following the recognition task is described, before the test data set used for
evaluating the realized system is presented.

C.1 Recognition Task and Strategy

The realized recognition system deals with object categories in contrast to object exem-
plars. Several different exemplars exist for each category, as shown in Fig. C.1.

Figure C.1: Images containing exemplars of office objects belonging to three categories.

Object categorization implies the assignment of a known object category to an un-
known object. Therefore, features are needed that abstract from the exemplar and that
are discriminative for the object class. Shape features serve for this in the system realized
here.
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C The Office Domain

The exploitation of shape features requires a reliable hypothesis for the object region.
Due to the structured object surfaces an individual data driven segmentation process will
not be able to reliably deliver the object region represented as one segment. Therefore,
the recognition strategy applied here, is to determine the object region by the integration
of several data driven segmentation processes. The label class assignment does the
shape based recognizer based on the integrated segment information. The choice of
the best interpretation is done based on the confidence for the object label given by the
recognition step.

Shape based features are rather susceptible for distortions originating from occlusions
and shape is especially discriminative for characteristic views of an object. In the pres-
ence of arbitrary object views one shape based model for each category is not sufficient
and has to be extended, for example, to an aspect graph or something equivalent.
Nonetheless, the shape based classifier is applied to distinguish the object categories:
cup, mousepad, mouse, pen, hole-punch, stapler, and undefined for rejection.

C.2 Test Set Images

An integrated system for office object categorization is realized as described in Chapter
5. The system was tested and evaluated based on a test set of images as given in
Fig. C.2.

The test set consists of 12 images containing 40 objects lying on a table of constant
background. The camera is at a fixed position above the table at an angle of about 45◦

and constant camera parameters and indoor lighting are used.
The content of the images is characterized by objects being close to each other, which

occurs in realistic scenarios and complicates significantly the generation of a suitable
object region hypothesis. But the objects are just slightly occluded in order to give the
shape based recognizer a chance. Some objects within the test data were not included
in the training data, like the orange mouse pad and some of the cups.
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C.2 Test Set Images

Figure C.2: Images containing office objects used for testing and evaluating the inte-
grated system for office object categorization.
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D Statistical Significance of Recognition
Results

The significance a recognition rate that is determined based on a set of samples depends
on the number of tested samples. Therefore, the isolated number for the recognition
rate should be accomplished by a measurement of its significance.

Analyzing a recognition process by counting correct and false recognition results for a
set of samples is from the statistical point of view like an experiment, where n indepen-
dent trials are done, and for each trial the result is either ’success’ or ’failure’.

Such experiments are described by the Binomial probability distribution [Krey 74] re-
sulting in the probability of getting maximal i times the result ’success’ given as:

P (X ≤ i) =
j≤i∑
j=0

P (X = j) =
j≤i∑
j=0

(
n
j

)
pj · (1 − p)n−j

where p is the probability for one isolated trial to be successful.
For the recognition process the probability p is estimated to be the recognition rate,

p = k/n, where k is the number of correct recognition results on a sample of n cases at
all.

The significance of the determined statistical value, here, the the recognition rate is
usually given in the form of a confidence interval [pl, pu]. The borders of this interval
are assigned to fulfill the specification that the real recognition rate lies with a given
statistical certainty or confidence within this interval. It should be:

P (pl ≤ p ≤ pu) = γ

with γ is the confidence number, mostly chosen to be 0.95.
With pl = kl/n, kl is the minimum number of successful trials and with pu = ku/n, ku

is the maximum number of successful trials that fulfill the requirement of the resulting
rate lying within the confidence interval. Then, it is with using the general properties of
discrete distributions:

P (X ≥ kl ∧ X ≤ ku) = P (X ≤ ku) − P (X ≤ kl) = γ

For calculating ku and kl, assuming symmetric characteristics results in:

P (X ≤ kl) = (1 − γ)/2 P (X ≤ ku) = (1 + γ)/2

From these two equations, ku and kl can be calculated, if γ, p and n are given.
Instead of iteratively calculating the interval borders, [Krey 74] gives an analytic ap-

proximation, for the interval boundaries, valid for great n, with given c, k, and n:

169



D Statistical Significance of Recognition Results

pl =
2k + c2

2(n + c2)
−

√(
(2k + c2)
2(n + c2)

)2

− k2

n(n + c2)

pu =
2k + c2

2(n + c2)
+

√(
(2k + c2)
2(n + c2)

)2

− k2

n(n + c2)

The approximation for great n can be applied for n > 100 following [Krey 74].
Fig. D.1(a) shows results of the correct and approximated calculation for n = 40 in
dependence of k using the commonly used confidence number of γ = 0.95. The differ-
ences are very small, so I take the approximated solutions for all calculations within this
thesis.

Results for the approximated interval calculations for n = 40 and n = 167 in depen-
dence of k, are given in Fig. D.1(b). As expected, if a testset of 167 samples is used,
the confidence interval is much smaller than it is based on a test set of 40 samples. A
recognition rate calculated based on the greater testset is more significant.
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Figure D.1: Recognition rates and the corresponding band of significance calculated
with confidence number γ = 0.95.
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