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Abstract

In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions
by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing
chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The
results presented are based on quenched gauge field configurations generated with the standard Wilson
plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a)
improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we
utilize the maximum entropy method in order to determine physically relevant pole masses and to
investigate thermal modifications of physical states and possible lattice artefacts in the interacting
case.

The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and
spectral functions essentially yield no significant modifications of the zero-temperature behavior up
to 0.55 T,. Close to the phase transition in-medium effects seem to appear, which lead inter alia to
significant differences between pole and screening masses. The decay constants are in good agreement
with the experimental values. We have simulated above T, at nearly zero quark masses. At 1.24 T,
the occurrence of topological effects, a sign for the presence of a still broken U(1)4 symmetry, prevent
a more thorough analyses close to the phase transition.

A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice
effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T, cannot be
explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an
unbound state.

Zusammenfassung

In dieser Arbeit untersuchen wir anhand von Gittersimulationen der Quantenchromodynamik thermi-
sche in-medium Modifikationen fiir unterschiedliche Mesonkorrelationsfunktionen bei leichten Valenz-
quarkmassen und verschwindenden chemischen Potentials. Mesonische Eigenschaften werden in der
Regel anhand raumlicher Korrelationsfunktionen extrahiert. Die Ergebnisse basieren dabei auf ge-
quenchten Eichfeldkonfiguration, die mit Hilfe der standard Wilson Plaquette Eichwirkung erzeugt
werden. Beziiglich des fermionischen Anteil der Wirkung verwenden wir die nicht-storungstheoretische
O(a) verbesserte Sheikholeshami-Wohlert sowie eine auf den Hyperkubus trunkierte perfekte Wirkung.
Ferner wird die maximale Entropie Methode verwendet, um anhand von Spektralfunktionen physika-
lisch relevante Polmassen zu bestimmen und thermische Modifikationen physikalischer Zustdnde sowie
moglicher Gitterartefakte im wechselwirkenden Fall zu untersuchen.

Die Auswertung von Pol- und Screeningmassen, Dispersionsrelationen, Wellenfunktionen, Zerfallskon-
stanten und Spektralfunktionen hat im wesentlichen ergeben, dass wir bis 0,55 T, keine signifikante
Veranderungen zum null Temperatur Verhalten erkennen kénnen. Erst nahe des Phaseniibergangs
scheinen sich in-medium Effekte bemerkbar zu machen, was u.a. zu einer signifikanten Abweichung
zwischen Pol- und Screeningmassen gefiihrt hat. Die Zerfallskonstanten sind in guter Ubereinstimmung
mit den experimentellen Werten. Oberhalb von T, haben wir mit einer quasi null Quarkmasse simuliert.
Bei 1,24 T, hat das Auftreten topologischer Effekte als ein Zeichen fiir eine immer noch vorhandene
U(1) 4 Symmetriebrechung eine eingehendere Analyse in direkter Nihe des Phaseniibergang verhindert.
Eine vollstindige Kontinuums- und Volumen-Extrapolation der Screening Massen orientiert an dem
Verhalten freier Gitter effektiven Massen wird durchgefiihrt. Diese zeigt, dass noch vorhandene kollektive
Phénomen bei 1,5 und 3 T, nicht durch einfache Gittereffekte erkliart werden kénnen. Anders als das
Vektormeson ist das pseudoskalare Meson weit davon entfernt ein ungebundener Zustand zu sein.
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Introduction

Physics is like sex - sure, it may give some
practical results, but that’s not why we do it.

RICHARD P. FEYNMAN

All of known particle phenomena are well described within the Standard Model (SM) of
elementary particles and their fundamental interactions, see Tab. [I| and, e.g., text books [IH4].
It provides an elegant theoretical framework and has successfully passed precision tests in
the past. Agreeing with both quantum mechanics and special relativity the SM is a quantum
field theory (QFT) based on the gauge symmetry SU(3)c x SU(2) xU(1)y. This gauge
group includes the symmetry group of strong interactions, SU(3)¢c, which we will address in
this work, as well as the symmetry group of the electroweak interactions, SU(2) xU(1)y.
The corresponding electroweak gauge theory is the GWS-theory formulated by GLASHOW,
WEINBERG and SALAM. This theory manages to describe the weak and electromagnetic
interactions, although they appear very different at everyday low energies, as two different
aspects of the same force. The group symmetry, U(1)em, of the QFT describing electromagnetic
interactions called Quantum Electrodynamics (QED) appears in the SM as a subgroup of
SU(2),xU(1)y and it is in this sense that the weak and electromagnetic interactions are said
to be unified.

The gauge sector of the SM is composed of eight gluons which are the spin-1 gauge bosons
of SU(3)c and the electromagnetic photon 7 together with the weak W= and Z particles
which are the four gauge bosons of SU(2);, xU(1)y. Except for gravitational interactions,
all relevant interactions in particle physics are known to be mediated by exchange of those
elementary particles.

The matter sector is composed of fermions of spin %, which are classified into leptons [
and quarks gq. The known leptons are: the electron e™, the muon p~ and the tau 7= with
electric charge Qem = —1 and their corresponding neutrinos ve, v, and v, with Qem=0. The
known quarks come in six different flavors: u,d, s, ¢, b and ¢t and have fractional electric charge
Qem = %, —%, —%, %, —% and % respectively. Additionally all quarks carry three different color
(red, , blue) or anti-color (red, , blue) charges. Leptons and quarks are organized in
three families with respect to their behavior under electromagnetic and weak forces. Related
members of different families are even equivalent under all three SM interactions. The particle
content in each family is

15t family: ( Vf ) y €, ( Z > , UR,dR,
€ L L

274 family: < Vﬁ ) MR <C> » CR;SR,
K )L S/)L

grd family: <:T > y TR (Z) , trR,bR,
L L

and their corresponding antiparticles. The left-handed and right-handed fields are defined by
means of the chirality operator 75 as usual.



2 INTRODUCTION

Since explicit mass terms in the gauge sector of the SM Lagrangian would break the SM gauge
symmetry explicitly, weak gauge bosons appear as massless particles. This is in contrast to
nature, where we observe massive weak gauge bosons, mﬁ/, my # 0. This discrepancy can be
resolved by the Higgs mechanism. In the evolution of our universe, i.e., by going to smaller
energy scales the SM undergoes a phase transition where its symmetry is spontaneously broken
down to

SUB)exSUR2)LxU(1l)y — SU(3)cxU(1)em.

This mechanism provides not only proper masses to the W* and Z gauge bosons but also to
the fermions and leaves as a consequence the prediction of a new particle: The Higgs boson.
This scalar and electrically neutral particle has not been seen experimentally so far. However,
it is hoped that the Large Hadron Collider at CERN will be able to confirm the existence of
the Higgs boson.

Various ideas to fully unify all three symmetries (forces) of the SM to just one common overall
gauge symmetry like SU(5), SO(10) or ES8 in a so-called Grand Unified Theory (GUT), are
supported by the fact that the renormalized running gauge couplings seem to approach each
other at high energies. However, no experimental findings in this direction, such as the proton
decay, have been made until today. Beyond grand unification, there is also speculation that it
may be possible to merge even gravity with the other three gauge symmetries into a Theory
of Everything (TOE).

interaction relative strength range ex. particle | example
electromagnetic | a, = % = é o0 ~y force between electro-
magnetic charges
weak Gr = 107°m,? myt ~ 1073 fm | WE 20 B-decay
9 o 1
= Ix X3
strong s~ 1 confinement gluons forces between quarks
gravity Gy ~6-10739GeV? | 00 graviton ? attraction between
matter
GUT M)}Q R 10_3077152 Mgl ~107%fm | X,Y p-decay

Tab. 1: Table of the four fundamental forces in nature including a hypothetic GUT interaction
at high energy scales. The relative strength of the interaction is given, its range, the exchange
particles, and a phenomenological example.

The strong interactions between the color charged quarks and gluons are described by a
QFT called Quantum Chromodynamics (QCD). Its simple and elegant Lagrangian is based
entirely on the invariance under non-Abelian local gauge transformations, which are elements
of SU(3)c. Mediated by gluon exchange at small temperatures the quarks are bound in
colorless 'white” hadronic states, i.e., singlets under the color gauge group, which built up
nuclear matter. The force between quarks increases with the distance between them until it
becomes energetically favorable to create a quark-anti-quark pair (string breaking). No quarks
can be found individually. This confinement property is in opposition to QED where the
charge is screened at large distances by vacuum fluctuations. It is supposed to be intimately
connected with the non-Abelian nature of QCD, corresponding to the fact that the QCD
gauge bosons, unlike photons, carry color charges and thus are self-interacting.

This general accepted picture is supported by the celebrated principle of asymptotic freedom.
It states that on the other hand the effective (running) coupling constant of QCD falls with
increasing momentum transfer or, equivalently, short distances. In a thermal medium, e.g., at
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energy densities which have been reached in the early universe or today in large (heavy-ion)
colliders, the characteristic momentum transfer between (nearly) massless particles is of
the order of the temperature T', and thus the effective coupling between quarks and gluons
becomes weak when T grows large. The complicated structure of nuclear matter at low
temperatures, where it is composed of a multitude of hadronic particles, baryons and mesons,
is expected to give way at asymptotically high temperatures to the relative simplicity of a
plasma composed of weakly interacting quarks and gluons (quasi particles), the Quark Gluon
Plasma (QGP), often referred to as a new state of matter. At the same time, chiral symmetry
— a symmetry of the QCD Lagrangian, which is spontaneously broken in the confined phase —
is expected to be restored. This transition from a phase with pions acting as the Goldstone
bosons of the broken chiral symmetry, to a chirally symmetric one seems to occur at the
same temperature as the confinement-deconfinement transition. Within the confinement

16.0 | .

4 4
140 (4 e 1 P PselT

12.0 + -t * —>

10.0 -

8.0 r

3 flavour

6.0 3 flavour

2 flavour
pure gauge

4.0 2 flavour

20

TTe T [MeV]

0.0 : : : : : : :
10 15 20 25 30 35 40 100 200 300 400 500 600

Fig. 1: The LQCD energy (left) and pressure (right) as a function of temperature with
staggered fermions and in pure gauge theory. The arrows indicate the continuum ideal gas
limits for two and three flavor QCD with quarks of mass m/T =0.4 and an additional heavier
quark of mass of m/T =1, from Ref. [5].

regime and close to the phase transition, where the coupling constant «ay is large, i.e., of
order unity, conventional perturbation methods fail. Hence, the investigation of the phase
transition or of low energy, static hadron properties is only feasible in a non-perturbatively
manner such as a lattice regularized version of QCD, which we address in this work. One
introduces a space-time lattice and formulates the theory by a lattice regularized path integral.
In numerical simulations of such systems the transition from a hadronic gas to a QGP appears
to take place at temperatures between 160 and 190 MeV and is presumably characterized by
a crossover behavior. Indeed heavy ion collisions conducted at CERN and BNL give some
indication of a QGP formation. However, the precise value of the transition temperature, below
called the critical temperature T, and how high the temperature must rise before the plasma
can be considered as weakly coupled, can only be determined by accurate, non-perturbative
simulations of the equation-of-state of QCD. Many static properties of the high-temperature
phase of QCD, e.g., energy density €(T") and pressure p(T) (Fig. , have already been studied
with results consistent with the notion that indeed states with open color are almost liberated
above T, and chiral symmetry is restored. However, explanatory statements for the persistent
deviations from the free gas limit even to the highest studied values of T'/T, are of great interest
and are still waiting to come. Perturbative calculations based on dimensional reduction exists
up to O(a?In(1/as)) [6] and results agree with the pressure data at T' 2> 3T,.. Nowadays there
are speculations that the QGP, e.g., studied at RHIC at T, < T < 27, with a center of mass
system (CMS) energy of /s ~ 200 AGeV, is very different from a plasma of weakly interacting
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quarks and gluons [7]. A well defined measure of the interaction strength in a QGP is the
ratio between its shear viscosity 1 (mean free path of particles) and its entropy density s
(inter-particle distance). A small ratio within the collision region (fireball) as indicated by
experimental findings, has reinforced speculations that the QGP near T, is a rather strongly
coupled one with the properties of a liquid with very low viscosity rather than a dilute gas []].
Our understanding of the QGP strongly depends on the matter, hadrons (baryons and mesons)
and leptons, inside the plasma and their changing properties under such extreme conditions.
Studying strongly interacting mesonic matter at finite temperature in the framework of Lattice
Gauge Theory (LGT) in the context of light quark masses is the objective of this work.
Among the light vector mesons p,w and ¢, the p is of considerable importance, due to its strong
coupling to the 77 and possibly ¢¢ annihilation channel and its short lifetime of 1.3 fm/c.
Hence, its fast decay in thermal dileptons via wvirtual photons might encode information of
the early stage of fireball evolution. These properties have given it a key role as test particle
for studying the QGP by its in-medium modifications.

In the heavy quark sector, vector bound states like the charmonium states J/v¢ and v’ are
also in the focus of current research as their formation should be suppressed within a QGP
background in comparison to a hadronic background due to color screening. This has been
predicted by MATsUI and SATZ based on potential models [9]. At what temperatures exactly
heavy quarkonia states dissolve is the objective of many present studies.

Finally, due to their negligible final-state interaction with the strongly interacting medium
(ae < as) from the entire reaction volume throughout the evolution of a heavy-ion collision,
real, so-called direct photons are the ideal candidates to probe the QGP electromagnetically.
The corresponding photon spectra are defined as the spectra remaining after subtraction
of final-state decays (background or decay photons), whereas in measured dilepton spectra
the latter are usually included and assessed separately being referred to as hadronic decay
cocktail. Unfortunately, the same property that allows photons to escape freely also leads to
major experimental challenges — low rates and large backgrounds from the above mentioned
hadronic decays.

An important and challenging step towards an understanding of in-medium particle modi-
fications and photon production would be the determination and investigation of spectral
functions (SPFs), 0. Especially in the vector channel, where they are directly linked to the
lepton pair production rate [10] *

dw 50 1
= o
dwd®p 212 2T —1) "

(w,p, T), (0.1)

they may offer explanations for the observed enhanced rates of low-mass eTe™ pairs below
the p resonance, the suppressed high mass p™p~ pairs at J/v¢ and 1’ and the excess of
direct photons. However, the extraction of SPFs suffers from a lack of information, since
measurements on the lattice at imaginary time and finite temperature can only be carried
out on a very finite set of discrete points. The Maximum Entropy Method (MEM) [I1],
applicable in various kinds of research, opened the access to study these modifications from
first principles, i.e., without a definite SPF parameterization. However, it still relies on a
priori knowledge given by a default model, e.g., the free, T' = co, SPFs.

Especially at high temperatures the physically interesting small energy part of the SPFs might
be strongly disturbed by lattice induced effects (artefacts). Hence, a proper disentanglement
between physical bound states or resonances and lattice artefacts becomes necessary.

'For w = |p| one obtains the direct photon rate
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In respect thereof we choose two types of actions with small discretization errors and compare
their usability with respect to the MEM.

The need for better suitable lattice actions, concerning O(a) cut-off effects has lead in recent
years to miscellaneous improved actions in the fermionic and gluonic sector. Following
Wilson’s renormalization group theory [12], the so-called fixed point perfect actions, e.g., are
per definition free from any cut-off effects. As we will see, for free quarks the perfect action
is known analytically and can be obtained with a technique called blocking from continuum.
In lattice simulations one truncates this action to a unit hypercube to render it ultralocal
and one finally gets the on a hypercube truncated fixed point action, also called hypercube
fermion (HF) action.

Another approach is given by the Symanzik improvement scheme [13],[14]. Here the convergence
to the continuum limit can be accelerated by including counter terms of O(a) (and higher
orders) in the lattice action and the local operators of interest.

One of the central goals of this work is thus to study lattice data, Euclidean meson correlation
functions extracted from improved actions, and the corresponding spectral functions using
the MEM. Both can provide a better understanding of mesonic properties particularly above
the phase transition.

This thesis is organized chapterwise as follows.

In the we give a short introduction to QCD, formulated as an SU(3) gauge
theory in the FEYNMAN path integral formalism in continuous space-time. We start at
zero temperature in real-time and switch over to finite temperature in the imaginary-time
formalism. Important symmetries of the QCD Lagrangian, which determine some of the main
properties like confinement-deconfinement, broken-restored chiral symmetry or the general
particle spectrum are discussed. The chiral condensate as order parameter of chiral symmetry
is introduced and its connection to the low eigenvalues is shown. Finally, the phase diagram
at zero and/or finite baryon density is given together with a short motivation for studying
QCD in the light of present experimental and theoretical findings.

In the the discretization of QCD leading to lattice QCD (LQCD) is carried out.
Both the gauge and various realizations of the fermionic part of QCD are introduced. Con-
cerning the former, the standard plaquette Wilson action is used. For the latter in particular
two fermionic discretization schemes, the non-perturbatively improved Sheikholeslami-Wohlert
(SW) and the HF action, are explained. After that, the simulation techniques as well as
the data analysis (fitting) and error determination are described. Our chosen parameters
and renormalization constants are presented and we show how the scale is set. Next the
improvement scheme for the local operators, the corresponding correlation functions (CF) and
their connection to the SPFs are given. Finally, the specific particle properties are discussed
and various energy extraction methods applied on those CFs are described.

The is mainly devoted to the MEM and gives an outline of its application.
Furthermore, free (I'=00) CFs and SPFs in the continuum as well as in both discretization
schemes are calculated (semi-)analytically. They will be used in as a default model
for MEM. This partially builds upon and extends earlier work carried out by S. STICKAN
and I. WETZORKE. Finally consistency checks and important properties of the MEM are
recapitulated.

The [fourth and main chapter| combines the findings concerning the temperature dependence
of mesonic properties. This includes ground state masses, dispersion relations, current quark
masses and wave functions. We also evaluate the pion and rho decay constants. We examine
how and whether the application of MEM for reconstructing thermal SPFs works in both
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fermion discretizations and present for the first time HF SPF. Furthermore chiral and Ux4(1)
symmetry restoration is investigated by studying CFs close to and far above the phase
transition.

In order to systematically investigate lattice effects, then describes the infinite
volume and continuum extrapolation of effective screening masses. Partial results were
presented at the conference Lattice 2005 in Dublin [I5].

The last chapter summarizes the results and provides an outlook on viable directions for
future investigations. Several short appendices serve to complete the material presented in the
main body of the text and give a short description of the database we used to store our data.



1 Quantum Chromodynamics in the
continuum

Symmetry, as wide or as narrow as you may define it,
s one idea by which man through the ages has tried to
comprehend and create order, beauty, and perfection.

HERMANN WEYL

The strong interactions between quarks and gluons are successfully described by QCD, a local
gauge theory introduced over 30 years ago. As part of the SM, it is a QFT based on the
unbroken non-Abelian SU(N.=3)¢ color gauge group and seems to be capable of describing
the features of its participating particles in a very elegant and compact way. Its dynamics is
formally defined by the following Lagrange density

LQCD[A/LJZ’%Z)](:E g,mfaﬁf) :EG($)+£F(.CL'), (11)
N2 1

Lg == Z x)FI* (x), (1.2)

Lr(x,g,myp, puf) = Zl/} — m0ag0ab + Mf7aﬂ5ab)¢f (). (1.3)

The Grassmann valued four spinor fields 1 and ¢ (Dirac bispinors) describing the quarks
are members of the SU(3)¢ triplet color representation. The index f denotes the Ny =6
quark flavors, while Greek letters will be used as Dirac indices throughout this chapter. The
Roman letters are the color indices representing the corresponding color charges of quarks
and gluons — thus the name chromo in QCD. The quark masses are denoted by my and the
chemical potentials are given by pr. Even though this work is completely dedicated to QCD
with vanishing chemical potentials j1y =0, we will utilize it in the more phenomenological part
of this thesis. The six quarks can be grouped in three flavor families: the u(p)- and d(own)-
(Muyq ~ 5 MeV), the s(trange)- and c(harm)- (my ~ 140 MeV, m, ~ 1.2 GeV) and finally
the b(ottom)- and t(op)-quark (my ~ 4 GeV, m; ~ 175 GeV). This thesis concentrates on the
issue of the light quark sector (15¢ family), while heavier quark masses are neglected or in
other words treated as infinitely heavy.

The dynamics of the N>—1 massless gluons Af(z), which transform in the adjoint representation

of SU(3),
N2-1

=) AYx)T, (1.4)
a=1
is constrained in Lg via the field strength tensor

N2-1

z)= Y Fp(x)T, (1.5)
a=1
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with
i, (2) = 0, AL (x) — 8, A5 () + g fabe A () A (). (1.6)
The matrices T, = \,/2 are the eight generators of the SU(3) defined in Appendix The

gluons couple to the quark fields via the covariant derivative D, equivalently, the massless
Dirac operator

D =9"Dy =" (0 —igAu(z)) (1.7)
with the bare coupling g, where the Dirac matrices are defined by {v*,7"} = 2¢*. This

ensures the local gauge invariance of the Lagrangian under the SU(3) transformation Eq. ((1.22)).
Finally the theory is defined by its partition function

Ny

Zgmy.6) = [ T1DA, T DDy exp(-iSacnly by vs] +iovla)  (18)
H f=1
with
Sacolidus 0] = [ e Lacoldu iy, y) (1.9)

The real parameter 6 is the vacuum angle and v the topological charge (density Q) defined by

2
VA, = /d4x Q(x) Qx) = &eww Tr (FP7FHY) (1.10)

where €50 is the antisymmetric unit tensor of rank four. The topological charge v[A,],
sometimes also called the winding number of a field configuration, takes integer values for
finite action field configurations.

1.1 QCD at finite temperature

Since our investigations are made at finite temperature the main modifications towards a
finite temperature field theory living in Euclidean space-time is presented below. Again we
show the partition function of the Euclidean path-integral formulation

Ny
ZE(T,V) = / [12A ] Doy exp(=SEcplAu bp, g (T, V). (1.11)
W =1
It depends now on temperature 1" and is considered in volume V. The Euclidean action reads
p=1/(ksT)
Seoldp )T V) = [ ar [ d Choplay. s (112)
0

It is derived from Eq. (1.1)) by going from Minkowski to Euclidean space ,i.e., g"¥ — 0"¥, or in
other words by a (Wick-)rotation from real to imaginary time, i.e., substituting ¢ — —i7 with
7 € R [16]. The corresponding Euclidean Lagrangian assuming zero topological charge is then

N2-1 Ny
1 a v 7o
L&ep = LE+LF = ; Y Ea (@) F (@) + @) (PP 4 mpls — ppa)astf (). (1.13)
a=1 f=1

The Euclidean Dirac operator becomes

DY =A7D} =~ (0, + igAf(x)T), (1.14)
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where the v¥ are the Euclidean Dirac matrices defined in the Appendix The temperature
is defined through restricting the Euclidean time interval to [0,1/(kpT)) Eq - To make
this correspondence more clear one can relate this formal construction to Feynman’s path
integral formalism of the grand canonical partition function in the framework of statistical
quantum mechanics. Consider the thermodynamic expectation value of an operator O in a
system, which is in thermal and chemical equilibrium

_ TrO(A,, Ve 0p)p . R
(O(Apy D )Ty = ( “ZW Y ith Z = Trp, (1.15)

Here Z is the quantum statistical partition function and p the spectral density operator

Ny
1
- _ _ 1.16
p = exp T H fél,uf/\/f (1.16)

with the Hamiltonian H, the baryonic number operator Ny = [ d3x 1s(x)yabs(x) and the
Boltzmann constant kp. Since Tr p can be rewritten in the language of path integral by using
a complete set of eigenvectors of the position operators

Z= /dm (x|plx) (1.17)

one can also interpret p as an evolution operator in imaginary time from 7 = 0 to 7 = 1/(kgT)
and write the expectation value in Eq. (1.15) as path integral

(O(Ap, s, )y = /HDA HDWDW O(Ay, by, p) exp(=ST[A L, ¥p, vf]).
H f=1
(1.18)

Because of the trace and in order to satisfy the spin statistics, periodic (antiperiodic) boundary
conditions must be imposed on generic bosonic ¢ (fermionic ¢) degrees of freedom in the time
direction [17]

o(r=0,x) = o(r=p0,x)
Y(r=0,x) = —¢Y(r=/0x%). (1.19)

Since only quantities in the Euclidean metric are utilized, we stay in the Euclidean formulation

and the index E will be omitted from now on?.

1.2 Symmetries of the Lagrangian

Symmetries play an important role in physics because they reduce the number of degrees of
freedom. Depending on the type of symmetry the theory will have certain conserved currents,
corresponding charges, quantum numbers or other related properties. Furthermore it allows
for classifying particles as members of irreducible representations. The Poincaré invariance
for instance leads to energy, momentum and angular momentum conservation.

The local SU(3) color symmetry, which is given by the invariance of Eq. with respect
to the local transformation G(z) € SU(3) (see

P@) — Gla)y() (1.20)
B) — D)G(a) (1.21)
Auz) = G(2)Au(@)G () — g~ (0,6(2)G (), (1.22)

!Note that Lorentz 4-vectors are denoted by z,p and so on, whereas 3-vectors x,p are printed in bold font.
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leads to the gluons having color charges and thus to interactions among them. For the time
being there is no analytic proof, but intuitively confinement is due to these force-carrying
color charged gluons.

In flavor space the equality m, =mg in Eq. implies an exact global U(2)y = U(1)y ®
SU(2)y flavor symmetry, where U(1)y expresses the conservation of quark (fermion) number,
and SU(2)y is the isospin symmetry. At zero quark mass, which is a good approximation
for the u, d-quark compared to a typical strong interaction scale, e.g., Aqcp =~ 200 MeV, this
symmetry can be extended further to U(2)y @ U(2)4a =U(1)y @ U(1)4 @ SU(2)y ® SU(2) 4.
All symmetry transformations of this chiral symmetry group can be described (for a general
number of quark flavors Ny) by

Y(x) — exp(—idTp @ Tr)(x) (1.23)

where Tp = {14;75} acts only on the Dirac indices and T = {]le,Ta} on the flavor indices.
Tp generates the vector (axial-vector) transformation U(1)y, 4 with Tr = 1, while combined
with T, it gives the corresponding SU(Ny)y,4 transformations. Noether’s Theorem gives the
corresponding conserved currents and charges

Ju(@) = Y(@)v(Tp @ Tr)y(z) (1.24)
0 - / Ba P(2)r0(Tp © Te)(). (1.25)

The question arises, what impact the physical non-zero masses have.

The axial SU(2)4 symmetry allows the right-handed and left-handed quarks PRIl =1 /2(1 +
~5)% to be rotated independently such that the approximate massless fermions become also
parity eigenstates. SU(2)4 symmetry would therefore lead to almost degenerate hadronic
isospin multiplets (a; <> p) , which is not observed, so that the SU(2) 4 must be spontaneously
broken. This phenomenon occurs when the Lagrangian possesses a symmetry, but its ground
state does not. For massless quarks, the Goldstone theorem [I8, [19] then states that the
particle spectrum should include NJ% — 1 massless Goldstone bosons. In reality the finite
u, d-masses or u, d, s-masses could make these Goldstones massive, which is actually observed

in nature. These ’quasi-Goldstones bosons’ are supposed to be the pions 70

or pions,
kaons and the eta for Ny = 2,3 respectively. The U(1)4 symmetry is broken by the famous
Adler-Bell-Jackiw anomaly [20], 21], meaning the symmetry is fulfilled classically, concerning
the invariant S, while it is broken on the quantum level due to the non invariance of the
measure DDy [22]. Correspondingly, the divergence of the appropriate flavor singlet axial

current in the limit of vanishing quark masses is non-zero

2
) - g
5% = Fpyu(vs @ D)y = Nf7327r2 €uvpo Tr (Foo Fluy) (1.26)

and is a consequence of a linear divergence in the triangle graph with an internal fermion
loop, and either three axial-vector insertions or one axial and two vector current insertions?.
The anomaly is governed by a term which is proportional to the topological charge density
Eq. of the underlying gluon field. Therefore, topologically non-trivial gauge configura-
tions (instantons) break U(1)4 symmetry and are responsible for the large ' meson mass

(960 MeV), due to the Witten-Veneziano mechanism [23| 24] following 't Hooft’s idea [25], 26].

20n the lattice the fermion doublers encoded in the anomalous Ward-Takahashi identity (X in Subsection

2.3.2) contribute to this anomaly.
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In a somewhat worse approximation also the strange quark mass can be neglected, leading
to the chiral symmetry group U3)y @ U(3)a =U(1)y @ U(1)4a ® SU(3)y @ SU(3) 4. Here
again SU(3)y is expected to be realized for degenerate quark masses leading to Gell-Mann’s
eightfold way, namely to the irreducible 3@ 3 — 1@ 8 representation, representing the colorless
meson multiplet Fig. and the 3®3®3 — 106G 8@ 8D 1, representing the baryon-multiplet.
The Uy (1) symmetry still implies baryon number conservation, i.e., the number of quarks
minus the number of anti-quark is conserved. Thus the net baryon number observed in our
Universe cannot solely be explained by QCD.

Fig. 1.1: The lightest meson multiplet of the SU(4)y flavor symmetry group for the pseu-
doscalar (a) and vector (b) mesons. The nonets of SU(3)y light mesons occupy the central
planes [27].

1.3 Phases in finite temperature QCD in theoretical framework

1.3.1 Phases at vanishing density

The strong interaction at finite temperature and van- Nf=2 Pure
- Gauge

ishing density is characterized by two qualitatively  «

different phase transitions, which definitely® occur at p g;g)f’;d” o order
different limits of zero and infinitely heavy dynamical 2(2)
(sea) quarks. i
The first transition is the confinement-deconfinement
transition at T,. At large separation (small momenta)

and low temperatures the coupling strength is strong m,
and the quarks are confined in colorless hadronic
bound states Gg or gqqq ((color) confinement). In con-
trast due to asymptotic freedom quarks and gluons »
are only weakly coupled at small distances (large mo- 0 m, , my o
menta) or high temperatures. Their color charges are
screened and they behave at least at asymptotically
high temperatures as freely propagating particles (
(deconfinement). Together they build up the QGP, from [2§)].

the regime which is believed to be formed a short time (1076 s) after the Big Bang.

In pure gauge (quenched) theory, which corresponds to sea quark masses m,, 4, — 00, the

phase transition coincides with a spontaneous breaking of the Z(N,) center symmetry of the

Nf=3

Nf=1

2nd order

¥ Z22)

Fig. 1.2: Order of the phase transition
for u,d and s (2+ 1) sea quark flavor

3by means of a clean order parameter and in the infinite volume limit
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gluonic action. In this regime the Polyakov loop, see serves as an order parameter,
which is zero for an infinite volume in the low temperature phase and non-zero in the high
temperature phase. The transition is of first order [29] and takes place at T, =270(5) MeV[30].
The second transition goes from the chiral symmetric to a non-symmetric phase. At very
high temperature the spontaneously broken SU(Ny)a symmetry gets restored with the chiral
condensate <1/;1/1> for my, 4 — 0 as its order parameter. Thus for Ny = 2 the pseudoscalar
pions are no longer Goldstone bosons and should become degenerate with the scalar singlet
meson o, see Fig. The same behavior is also anticipated for the flavor triplet (axial-)
vector mesons a1 and p.
In the presence of fermions, i.e., in full QCD, the action is no longer Z(N.) symmetric. Thus
the Polyakov loop loses its clean order parameter characteristic. Nevertheless, it still can serve
as an indicator of the confinement-deconfinement transition. At the same time the chiral
condensate becomes more important as the order parameter of the chiral phase transition, as
long as the explicit breaking of the chiral symmetry by the mass is not too strong.
Although deconfinement and chiral symmetry restoration are apparently related to different
non-perturbative mechanisms, they seem to be somehow coupled. Lattice computations
show a sharp increase of the Polyakov loop around the critical temperature where the chiral
condensate vanishes [31], in contrast to quarks in the adjoint representation [32]. However,
the interplay between these two effects is not clear yet, and lies in focus of many current
studies, see e.g., [33].
The nature of these transitions, i.e., first order, second order or crossover, as studied by lattice
simulation and/or effective models, depends strongly on the number of quark flavors Ny and
their masses my. The corresponding findings are summarized and depicted in Fig.
When the sea quark mass is lowered the former (pure gauge) first order transition passes over
to a line of a second order phase transition, which belongs to the three dimensional Ising Z(2)
universality class. Decreasing the quark masses further, a crossover behavior is expected. As
can be seen from Fig. [I.2] the majority of possible quark masses, most likely also the physical
ones with very light u- and d-quarks seems to fall into this region.

Recent lattice simulations with Ny =

2+ 1 staggered fermions with sev-

— . impr. stagg., p4, N=2 —m—
Karsch et al, NPB 605 (01) 579, N;=4 eral light u,d-masses and a physical
e impr. Wilson, N2 —e—

CPPACS, PRD 63 (01) 034502, N s-mass, using a so called (p3)fatd-

impr. Wilson, N=2 —e action and the RHMC algorithm,
Nakamura et al, PoS (Latt05) 157

*

give a crossover temperature of T, =

. e el ET A 192(5)(4) MeV [35]4. This result was
i impr. stagg., HYP, N=2+1 —— obtained by a combined chiral/con-
Pereerky. Phy;z 3;:4> Sl;”_’;ff tinuum extrapolation to the physical
- Fodor:Katz, JHEP 0404 (og)gdéo‘ ;1;4 o pion mass. For a collection of current
To e . (;mpkf-MS‘agi-)gtguz :‘f=2+1 —o— critical temperatures on the lattice

atz, Quarl atter , Ni=4- .

— A impr. stagg., ;;4, NFE2+1 —a— see Flg‘ @‘

RBC-Bielefeld, 2006, Ni=4-6 The basic features for small quark

155 165 175 185 195 205 . .

T. Mev] masses were first investigated by Pis-
ARSKI and WILCZEK [36]. They used
Fig. 1.3: Lattice data on the transition temperature a Ginsburg-Landau effective theory,
and the chemical freeze-out at RHIC. Picture taken called the o-model, which shares the

from Ref. [34]. same global symmetries as QCD. For

4This result is somewhat larger compared to former values of ~ 170 MeV, which is mainly due to a different
scale-setting.
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two massless flavors m, 4 — 0 this model suggests again a transition of second order and
of first order for three massless flavors. Lattice simulations confirm this prediction with a
transition, which is supposed to fall into the three dimensional O(4) universality class [37] and
T. = 173(8) MeV [38]. In the chiral limit m,, 4, — 0 lattice results give a first order transition
with a transition temperature of ~ 154 MeV [38]. Like in the regime of heavy sea quarks,
a second order line, which falls into the three dimensional Ising universality class Z(2)[30],
separates the first order from the crossover regime. It ends in a tricritical point and continues
according to my, mg ~ (Mt — m )3
At (very) high temperatures also the quantum effects leading to the U(1)4 anomaly become
less important and a slow restoration may thus be observed. For Ny=2 this should result in a
degeneracy of the flavor triplet 7« § and flavor singlet o <7’ [36], see Fig. [1.4(a)l Fig. [L.4(b)|
shows the integrated meson CF (susceptibility x ), which corresponds to the inverse of a

squared thermal mass yg ~ ml_{2 here for staggered fermions [39]. Their masses indicate in
fact a SU(2)4 symmetry restoration, while the U(1)4 restoration is only proceeding slowly.
The effective U(1) 4, i.e., U(Ny¢) x U(Ny) restoration seems to be taken place only at very high
temperatures. However, the data have to be interpreted with caution, since in the continuum
correlations diverge at 7 = 0, such that a proper renormalization of yf is indispensable.

0.6

051 MM&XX 6/g§ EE 1
_ _ XXX&X
T (5 @ Tq) wmazw(ﬂ(@b)w 04} ﬂ%& o
U(l)Ai U(I)Ai 0.3} X%%K** ;gg;gﬁ%*w
— — 0.2} ES g”ﬁ
00 (M@ Te) ¥ grpr v (s © 1) v s
0.y m=002 |
L=8
0.0 L L L L L
5.24 5.26 5.28 53 5.32 5.34

(a) (b)

Fig. 1.4: (a) The transformations which relate different particles in the chiral limit. (b) The
temperature dependence of the square root of the inverse susceptibilities in different quantum
number channels [40)].

1.3.2 Chiral condensate and the Dirac eigenvalue spectrum

As stated above, the chiral condensate serves as the order parameter of the chiral phase
transition. To make this more clear, we investigate the eigenvalue spectrum of the Dirac
operator in real-time formalism. The massless Dirac operator Eq. is anti-Hermitian
Pt = —D and fulfills y5-Hermiticity v50vs = IPT. Hence it satisfies the anticommutator
relation

{75, D} =0, (1.27)

which is a compact expression of chiral symmetry SU(Ny)r ® SU(Ny)g. Namely decomposing
1 and 1 in left and righthanded spinors one can easily see that the massless fermionic action

Sp = / de (RPYFR + PPyt (1.28)
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is invariant under the chiral transformation
Yl — Lyt | v — Pt

R (1.29)
wR —>¢RR_1 , ¢R N RwR
with L € SU(Ny¢)r and R € SU(Ny)g. Following the spontaneous symmetry breaking pattern

the SU(Ny¢)r ® SU(Ny¢)r symmetry equivalently is broken down to
SU(Nys)r, @ SU(Ny)r — SU(Ny)y. (1.30)

This implies that the ground state of the quantum system is invariant with respect to the
SU(Ny)y, the SU(Ny) subgroup with L= R, but not with respect to the SU(Ny)4 symmetry,
the axial subgroup of SU(Ny) with L=R™!, see Working on a finite lattice, D is
a finite dimensional matrix and for any given gauge field one can consider its eigenvalues and
eigenvectors

Being an anti-Hermitian operator, the eigenvalues of ) are purely imaginary and from
Eq. it follows further that non-zero eigenvalues occur in pairs +i\, with eigenfunctions
Un, V5Wn. There can also be eigenvalues equal to zero, A\, = 0. Because of Eq. the
corresponding eigenfunctions can be arranged to be simultaneous eigenfunctions of ) and ~s
with eigenvalues 41, i.e., these states have a definite chirality. Denoting the number of zero
eigenvalues per flavor with positive and negative chirality by Ny and N_ respectively, the
Atiyah-Singer index theorem [41), [42] states that

v =Ny(Ny—N_) (1.32)

is a topological invariant that does not change under continues deformations of the gauge
field. The spectral density of the Dirac operator is given by

p(N) = <Z S\ — An)> (1.33)

and is related to the chiral condensate

- . . 1 0
<¢¢> - 7&}%0 Vlgnoo VNf 3mf

log Z(T, V). (1.34)

Using Eq. (1.11)) with fermion degrees of freedom integrated out,

Ny

Z(T,V) = /DAM ] det(® + my) exp(—Sqcp[Au), (1.35)
f=1

this yields,
n . . 1 1 . . 1 me
(o) == lim Jim <v Z m+mf> == Jim Jim <v§1 A2+m;> (1.36)

where the contribution of the zero-modes |v| /mV was dropped®, assuming that it becomes
small in the infinite volume limit. This relation shows that spontaneous breaking of chiral

°Tt is believed that |v| = Ny(Ny + N_) ~ V.
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symmetry is manifest in an accumulation of small Dirac eigenvalues. In the infinite volume
limit the sum over eigenvalues can be converted to an integral and this leads to

(Y1p) = —lim lim lim 7p(e)/V,. (1.37)

e—0 my —0V -0

This connection between eigenvalue density and chiral condensate is known as the Banks and
Casher relation [43]. The order parameter is non-zero only if p(0)/V > 0. It is necessary to
take the limits in the order indicated.

Instantons, calorons at finite temperature are topological excitations of the QCD vacuum and
seem to be somehow connected to the spontaneous chiral symmetry breaking, for a review
see Ref. [44]. In the confining phase, weakly interacting instantons and anti-instantons lead
to near-zero eigenvalues, i.e., ({1)) # 0, while strongly interacting ‘molecules’ of instantons
and anti-instantons in the deconfined phase open a gap in the eigenvalue spectrum, which
prevents the spectrum from developing near-zero eigenvalues, thus (1)) = 0.

1.3.3 Phases at finite density

Although not an issue in this thesis it might be appropriate to also give a general view on the
phases with non-vanishing chemical potential or baryon density (Figs. and 6.

For non-vanishing chemical potential the line of second order phase transitions in the light
quark regime is expected to become a critical surface, which bends over the quark mass
plane, still separating first order phase transitions from the crossover regime Fig. This
suggest that a system of strongly interacting quarks and gluons, which has only a smooth
crossover transition at p = 0, will nonetheless undergo a thermal phase transition of first
order above a certain critical chemical potential ., which defines the critical point, where the
phase transition is of second order (see Fig. . Its location is still uncertain and lies in
the focus of many current lattice investigations. For an alternative scenario see also Ref. [45].
The first order transition corresponds to the occurrence of latent heat and could lead to a
production of hadron bubbles in a mixed phases. Thus hadrons might survive the phase
transition, still keeping all the information of the primordial system.

Shown in Fig. is an additional first order phase transition for small y, separating the
hadron gas with zero baryon density from a liquid phase with density np ~ 0.17/fm3. At
zero temperature this jump in the density is expected to occur at a baryon potential of a
nucleus minus its binding energy. The endpoint of this phase transition line was estimated
experimentally at GSI to lie in the region of 0.15 — 0.3 times the nuclear density and a
temperature of ~ 10 MeV.

An additional interesting and rich phase structure is suggested to appear at high p and low
T [48,49]. Unlike in electromagnetic superconductivity, where a phonon-induced attractive
interaction is needed to form a Bose condensate of electron Cooper pairs by the Bardeen-
Cooper-Schrieffer (BCS)-mechanism [50], quarks with different color and anti-parallel spin
are already attractive. For instance for Ny = 2 they form an energetically favorable diquark
condensate and open a gap at the fermi surface. Since a pair of quarks cannot be a color
singlet, the local SU(3) color gauge symmetry is broken to SU(2) in this therefore called color
superconductivity phase (CS, 2SC). Since chiral symmetry is restored and no global symmetry
is broken, no order parameter exists, which distinguishes the two flavor superconducting phase
from the QGP. At the highest densities, where the strange quark Fermi momentum is close to

SFurthermore, a non-vanishing chemical potential in lattice simulations induces severe numerical difficulties,
i.e., the sign problem.
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Fig. 1.5: Sketch of first-order/crossover regime and critical surface for non-zero iy [46] (a).
Phase diagram of QCD for non-vanishing iy from [47] (b).

the up and down quark Fermi momenta, the favored phase is the color-flavor-locked (CFL)
phase, in which the strange quark participates symmetrically with the up and down quarks.
Model calculations, using, e.g., Nambu-Jona-Lasino (NJL) model [51), 52] and gluon-mediated
interaction calculations [53], support this scenario. In this phase two global symmetries are
broken, the chiral symmetry and baryon number, so there are two gauge-invariant order
parameters that distinguish the CFL phase from the QGP. Additionally the NJL model
predicts more non-CFL phases. For a review see [54]. In the cores of compact stars, e.g.,
neutron stars, baryon density and temperature conditions might be appropriate to realize
such phases.

early universe

Ms S5 My g 7 0
T
LHC quark—gluen plasma
RHIC
Te - 170 MeV sworer <=0
quark matter
<y 0
hadronic flnid fromerer —]
saperfluid/superconducting
-
Te ~ 16 MeV rhases 7
ng=0 o >0 |/E L0 FL
VaCuuIm nuclear matter REUTFON STAF COFes
U~ 922 MeV

chemical potential p

~v baryon density

Fig. 1.6: Another more detailed sketch of the QCD phase diagram including also the CS
and CFL phases [55].

1.4 Finite temperature QCD in experimental framework

The properties of the nuclear matter at high T and/or various p have been investigated for
quite some time by various experiments at heavy-ion accelerators: SPS at CERN in Geneva
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(Switzerland), AGS, RHIC at BNL in Brookhaven (USA) or, e.g., SIS at GSI in Darmstadt
(Germany) for lower energies. In order to study the QGP nuclei with a large number of
nucleons are accelerated close to speed of light and collided into each other.

Fig. 1.7: Cartoon of an ultra-relativistic heavy-ion collision. Left to right: the two nuclei
approach, collide, form a QGP, the QGP expands and hadronizes, finally hadrons rescatter and
freeze out. Source: http://www. phy. duke. edu/research/NPTheory/transport. ptml

The understanding of the microscopic structure of thermal QCD matter in the region T, <
T < 2T, is of utmost importance for analyzing the results from relativistic heavy ion collisions,
at CERN and RHIC. The experimental observation and study of the QGP must be based
on signals which can provide evidence for its formation and permit a characterization of its
properties. Additionally, our evolving theoretical insight into the nature of this new state
has also led to refinements in our understanding of its signals. The experimental quest must
proceed in steps: first it should be confirmed that the particles produced in the nuclear reaction
really form, at least for a brief period, matter that deserves a description in thermodynamic
terms. Second, it needs to be established that this matter has a novel structure and that
it is not just a dense gas of hadrons; and third, its main physical properties needs to be
characterized.

Important QGP signatures are jet quenching, particle ratios, strangeness enhancement, J/1)
(¢c) suppression or the dilepton and photon production rates. Concerning the latter, vector
SPFs with or without a chemical potential are related to the lepton pair production rate in hot
and dense matter such as the QGP. They provide the key concept to understand the medium
modifications of hadrons. The enhanced low-mass ete™ pairs compared to the cocktail” below
the p-resonance at NA45/CERES [56] in Fig. and the suppressed high mass p*p~
pairs at J/1¢ and v¢’-resonances at NA38/NA50/HELIOS-3 observed in relativistic heavy ion
collisions at CERN-SPS [57] depicted in Fig. or RHIC® [58, [59] are typical examples
which may indicate spectral changes of the ¢q system due to the effect of the surrounding
medium.

At low beam energies the target and projectile nuclei will be destroyed and only partially
stopped, leading to a non-vanishing baryon number density in the collision region (stopping
scenario), see Fig. At high beam energies, however, as it is realized at RHIC the particles
interpenetrate and finally leave each other partly undisturbed. The collider deposits a high
amount of energy density in form of gluons and quark anti-quark pairs in the collision region
(transparent scenario). In both scenarios the hot system (fireball) expands and cools down,
emitting dominantly pions and other hadrons. The whole process proceeds in steps classified
by thermalization, QGP, hadron gas and finally freeze out. During the thermalization time
of the order 2 fm/c the system is out of equilibrium, such that LGT is unable to describe
the situation. Actually, understanding the mechanisms behind the early equilibration and
thermalization is still one of the main unsolved problems in nuclear collisions. Then the QGP

"the total of all known sources, e.g., 7°-, 7- and w-Dalitz-decays, 777~ annihilation and w-decay.
8PHENIX experiment
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Fig. 1.8: Normalized invariant mass spectra of e"e™ pairs from CERES in comparison to the
known hadronic decay sources (a) and focused on the low mass region (b) [50, [60]. Essentially
the low-mass regime is dominated by vector meson decays, the intermediate-mass region by
continuum radiation and QGP emission, while the high-mass region by primordial emission
and heavy quarkonia.

phase shows up consisting of a gas or liquid of quarks and gluons. Afterwards it cools down
through the phase transition and builds up the hadron gas of mostly hot pions, which carry
little if any information about the early stage of the formation (soft probes). The mixed phase
shown in Fig. and corresponds to the strong first order scenario, where bubbles of
hadronic matter are created within the QGP, such that a clear separation between the phases
of QGP and the hadron gas is impossible. However, for matter at zero, or small, net baryon
density, as is relevant for RHIC, first principle studies indicate that the transition is a smooth
(though rapid) crossover. When the expansion reaches a certain extension, the temperature
decreases at a point where hadrons stop interacting in-elastically with each other. The particle
ratios are fixed and the situation is referred as a chemical freeze-out. After further expanding
and cooling, the temperature goes down to a point where the final state interactions between
hadrons are no longer effective and the particle reach the detector undisturbed, the so-called
thermal freeze-out.

In contrast to the final low energy hadrons, dileptons, photons or jets (hard probes) directly
probe the earlier stage interactions. The energy spectrum of photons for instance may reflect
thermal radiation from the hot gas of quarks and gluons. However, the low energy region is
heavily contaminated by a background from decays of hadrons, mainly 7° and 7. Therefore,
the rate is expected to be two orders of magnitude less sensitive compared to the dilepton rate.
In the high momentum region, at high energy, there is a background from “direct” processes
such as g + g and vy + ¢ reaction and Compton scattering. Current experimental sensitivities
are not sufficient enough to observe a clear signal.

Since we will investigate the dilepton spectra from hot QCD in this work, we discuss the
experimental results for dileptons from heavy ion collision experiments below. The measured
dilepton spectra can be chronologically ordered into several emission phases (see also Fig. :
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Before the nuclear surfaces actually touch, dileptons are produced through coherent
Bremsstrahlung. This part populates very low transverse momenta and has so far not
been investigated experimentally.

Within the first 1 fm/c of the nuclear overlap, the excited hadronic system is far from
thermal equilibrium. The pre-equilibrium dilepton radiation emitted at this stage mostly
consists of hard processes such as Drell-Yan annihilation ¢g — v — [T1™, leaving its
trace mainly at large invariant masses > 3GeV/c? [61] .

Following deconfinement and rapid thermalization, (thermal) dileptons are produced
in the partonic phase via ¢gq annihilation with characteristic parameters reflecting the
early temperature history of the system.

After cooling and confinement of the partons to a hot hadron gas, dileptons are created
in pion and kaon annihilation processes, e.g., 7"~ — p — ~ — [T1~. This annihilation
is dominated by the intermediate formation of light vector mesons p,w, ¢ which directly
couple to 7]~ pairs. The invariant masses of these dileptons directly reflect the SPFs of
the vector mesons at the moment of decay. The formation of heavy quark bound states
is suppressed. On the other hand, signatures of particles with open charm, D-mesons,
should be enhanced.

Finally, beyond the freeze-out stage, the remaining sources are hadronic resonances and

0

Dalitz decays mostly from 7°,7 and w mesons, e.g., 7° — ete~ v, all contributing to

the low mass region with M < 1GeV/c?.

electromagnetic observables
-hard(er) probes t
T +
i + - U1 hadronic observables
[ 1
-soft probes

production
thermalization

z

A, Ep, b

Fig. 1.9: Space-time evolution of an A+A collision [62]. The invariant hyperbola in the
space-time diagram allocate the individual stages passed during the heavy-ion collision shown

in Fig. [I.7

Dilepton spectra in the low mass region and the p

In the low-intermediate mass region between the 2m,; threshold and ~ 1 GeV/c?, the dilepton

spectrum is dominated by decays of the vector mesons p, w and ¢. While the vector mesons
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predominantly decay hadronically, they have a significant branching ratio for eTe™ and p*pu~
decays. The dileptons, once generated, do not interact with the fireball and therefore give
information about the hadrons in-media. Of particular interest is the p peak, since due to its
very small lifetime ~ 1.3 fm/c, the p is expected to decay inside the fireball. An in-medium
change® of the p*, associated with interactions with thermal pions and/or chiral symmetry
restoration, should therefore be manifested in the p peak in the dilepton channel.

The early data from heavy ion collisions attracted a lot of interest, since a significant deviation
from the expectation based on hadronic decays was seen. This can be seen in Fig. 1.8, which
shows the experimental data from CERES [56], together with a ‘cocktail plot’ [60] which
includes the prediction based on known hadronic contributions. The clear enhancement in the
invariant mass region 0.3-0.6 GeV/c? implies nontrivial medium effects. At least two major
scenarios have been put forward to explain the data:

*
p

This approach, pursued by BROWN, RHO ET AL. [63], uses effective mean field theory and
scaling-based arguments to connect the in-medium hadron masses with chiral symmetry
breaking. It links the temperature- and baryon-density dependent reduction of the
p-mass directly to the corresponding medium-induced change of the chiral condensate
(Brown/Rho scaling)*’ m;/mg ~ (((jq)*/(q’q))l/2 [65]. The pion propagation remains
unchanged creating a sharp threshold at 2m,. This scenario is also supported by studies
using the QCD sum rules [66].

1. In medium “dropping” p-mass m

2. In medium increase in p*-width I',(T')

Rapp and WAMBACH ET AL. [60, [67], using an effective chiral Lagrangian theory,
determined the in-medium properties of p by calculating the thermal contributions
to the current-current correlator. Their calculations show a considerable increase in
the width of the rho in-medium (but little mass shift), especially when one includes
collisional broadening. Effects of baryons may also be significant [68§].

An unmodified p, i.e., vacuum SPF, is clearly ruled out. Instead, present experimental data
seems to indicate an enhancement of p width in heavy ion collisions [69, [70], in agreement
with Scenario 2 with little indication of a significant mass shift.

While in the theoretical analyses thermal pions and, in particular, a nonzero baryon density
seem to play significant roles, we will investigate here if some modification of the p is also
seen in a thermal gluonic medium close to the transition temperature.

Dilepton spectra in the high mass region and the J /1

J /1 suppression [9] has been one of the most studied signatures of deconfinement and QGP
formation in heavy ion collision experiments [57]. While in a hadronic medium, the potential
between a static gg can be described by the well-known Cornell potential (~ —a/r 4 or), in
a QGP medium, perturbation theory predicts that the potential is of a screened Coulomb
form (similar to Debye screened potential in an electromagnetic plasma). Lattice studies
have also confirmed this. This should in general change the behavior of the in-medium .J/1
significantly and, if the screening radius is sufficiently small, would prevent .J/1 formation
altogether. Since it is very difficult to dissolve J/1 through hadronic interactions, it has been

9denoted by the superscripts *
9Note that the scaling exponent differs from Brown and Rho’s original approach [64] where using Skyrme’s
Lagrangian an exponent 1/3 was obtained.
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suggested that a substantial suppression of the J/¢ peak in the dilepton channel would be
one of the cleanest signals of deconfinement.

Studies based on potentials extracted from lattice studies have predicted that J/v¢ should
cease to exist above ~ 1.17, and the ground state of the (bb) system above ~ 2.3T,. However,
recent lattice studies, based on a direct analysis of SPFs of the éc system in quenched QCD,
indicate the survival of a narrow J/1 state up to at least ~ 1.7T,, or even 2 2.25T, [71l [72],
respectively. And indeed, more recent results using potentials based on the internal energy U
instead of free energy F' = U —T'S [7] seem to support the spectral analysis with a dissociation
temperature of 2 2.17, [73] or 2 1.95T, [74]. While the systematics of these studies are not
completely under control, and the effect of quenching is not known a-piori, the results seem to
indicate that a re-interpretation of NA50 results may be necessary. It has been suggested that
a suppression of excited charmonia states, which may have a lower dissolution temperature, can
explain the experimental data from both CERN and RHIC [75]. Finally, even if charmonium
bound states or narrow resonances survive the phase transition significantly, also inelastic
collisions with the constituents of the medium before or after their formation may lead to the
observed suppression [76H78].

Dynamical properties

The Au-Au collision experiments in RHIC have produced very interesting results, the interpre-
tation of which would be greatly helped by a first principles calculation of transport coefficients
of the QGP. In particular, data for angular distributions of particles seem to require a very
low viscosity of the matter produced [79]. Perturbative estimates of the transport coefficients
are much higher than is required for RHIC data to be explained in terms of thermalized hot
strong matter.

The non-perturbative calculation of phenomenologically relevant transport properties, such as
the shear viscosity, collective modes or the electrical conductivity (Kubo formula)

ou = Jm P 03
thus pose an important challenge. Up to now, lattice simulations which can provide information
are unable to make reliable predictions of most dynamical properties of the QGP. Attempts
to determine the SFPs in various color-singlet channels [80, 81] are still limited by the need to
use the quenched approximation and the systematics are not well understood, especially for
low frequencies [82]. For further discussion of the difficulty of extracting transport coefficients
from Euclidean lattice correlators, see [83].

However, many dynamical properties have been studied in the framework of so-called hard
thermal loop (HTL) effective theory. There are good arguments in support of the notion that
these techniques work reliable for temperatures T' > 37, [84] [85], but it is not known precisely,
whether they can be applied also closer to the phase transition. Also the divergent vector SPF's
at small energies due to cut contributions may be seen as a hint for their inconsistency [82].

Outlook

In the very near future, the Large Hadron Collider (LHC) at CERN will be commissioned for
high energy proton-proton and heavy ion lead-lead reactions. These heavy ion collisions will
be at a total CMS energy of /s = 5.5 ATeV, where A is the nucleon number, thus bringing
1144 TeV in total kinetic energy into the collision. At this highest energy all parameters
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relevant for the formation of the QGP, such as energy density, size and lifetime of the fireball
and relaxation time, will be more favorable.



2 QCD on the lattice - A brief introduction

The mathematical sciences particularly exhibit order,
symmetry, and limitation; and these are the greatest forms
of the beautiful.

ARISTOTLE

As already mentioned in QCD exhibits the crucial character of asymptotic freedom.
Thus the associated coupling constant g decreases and perturbation theory becomes applicable
in the limit of high energies, i.e., at small distances or high momenta. In contrast, at low
energies g is too large (O(1)) to evaluate physical quantities using perturbation theory. LQCD
was introduced as a method to overcome this problem.

In these two different regimes the value of the coupling as a function of the length scale
or momentum transfer g is well known and described through the running of the coupling
or the associated fine structure constant as = g*(q)/(4n), respectively. To lowest order in
perturbation theory, i.e., in the weak coupling regime, it is given by

as(Aqep)

33— 3N; 2\
1+ as(AQCD) In
127 A?QCD

as(q) = (2.1)

as(g) has been determined in various experimental measurements at ¢ > Aqcp [27]. In order
to compare s measured at different energy scales they must be evolved to a common scale
using renormalization group theory. For convenience, this is taken to be the mass of the Z
boson (mz=91 GeV), which results in as(mz)=0.1172(20).

LQCD is based on the path integral method, see e.g., [86H8§]. Since its introduction
by FEYNMAN [89] it has become a very important tool for elementary particle physics.
Unfortunately, like any QFT QCD suffers from divergences and a regularization is needed to
treat them in a proper way, e.g., Pauli-Villars regularization. While these regularizations mostly
work only in the perturbative regime, LQCD allows to study QCD also in the non-perturbative
regime.

In what follows, we will focus mainly on a proposal, first presented by WILsON [90], which is
discussed in more detail in various text books, e.g., [86 Q1] and review articles e.g., [311 [8§].

2.1 The lattice as a regulator of QCD

LQCD is a theory regularized on a 4-dimensional Euclidean discrete space-time lattice so that
one can carry out path integrals like Eq. directly, though approximately, on a computer
with Monte Carlo methods. To formulate the theory on the lattice one has to take care of
preserving the symmetries, like the local gauge invariance and more difficult chiral symmetry.
The Poincaré symmetry is reduced to a cubic symmetry, but this poses no real problem, since
the original symmetry will be restored in the continuum limit.

23
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To construct LQCD, one introduces a hyper-cubic lattice of size N2x N, and a lattice spacing a.
N, and N; correspond to the number of points in spatial and temporal direction respectively.
Volume and temperature are related to these values by
3 3 1 -1

V =L° = (aN,)°, T:B:(NT) . (2.2)
In order to obtain continuum physics again one has to remove the discretization by taking the
limit a—0 at constant V' and T (N, —00). At the same time the momentum cutoff A=m/a
goes to infinity and renormalization is necessary to obtain finite physical quantities, see Sec.
273
For LQCD calculations to be sensible, N, and a have to meet mainly two requirements:

e the spacing should be small in order to keep discretization effects small

e the physical lattice size should be large enough to ensure that, for instance, the particle
one wants to study fits in the box (small finite-volume effects), and the momentum
resolution ]\2,—; < |pu| £ T is suitable.

Since the particle mass is connected to the correlation length by £ =1/m the lattice should
therefore obey the following inequality

a <& << alNy (e.g., mzL > 1). (2.3)

Here we have assumed — and we will further do so — natural units #=c¢ = 1!, so that all
quantities with nontrivial dimension have the dimension of some power of mass or inverse
length. Thus we can rewrite S(gc p in Eq. 1) in terms of dimensionless lattice variables,
denoted with a hat, by scaling x, m and v with a according to their canonical dimension.

1,
r — an = a(n,nyg) = a(ny, ng,ng,ng) m— —m,
a

Ya(z = na) — ag,l/ﬁ;a(n) /d4x —at Z (2.4)

0,0(x) can be defined in various ways, e.g.,

AfZO(n) = 1(O(n+p) — 0(n)), forward derivative
9,0(z) — { ALO(n) := 2(O(n) — O(n — 1)), backward derivative  (2.5)
A5O(n) := 5-(O(n+ i) — O(n — 1)), symmetric derivative

Here, [i represents the unit vector in the direction indicated by u. In what follows we will set
a=1, if it is not explicitly given. These different definitions show already the ambiguity in
choosing a discretization. It is by far not unique and, in particular for the fermion action, we
will see different discretizations with different kinds of lattice artifacts, which reproduce the
correct continuum QCD in the naive (continuum) limit a — 0 .

2.2 Gauge fields on the lattice

The insertion of, e.g., Aj)(n) in the QCD Lagrangian needs now link variables Uy, (z) € SU(3).
They are associated with the link connecting x to x + afi, in order to keep the gauge invariance

1197.33 MeV=1 fm ™!
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of the quark bilinears. This is the analog to the covariant derivative in the continuum. They
are defined in terms of the gauge fields A, = A}T, as

r+afl
Uz =na) = Ulx,z+afr)=Pexp {zg/ dz,,Al,(z)} ~ exp {igaA, (v + aji/2)}
= 1+igad, (z+ afi/2) + O(a*g?)
o Uun) = () (2.6)

where P denotes path-ordering. Note that the U,(n) are elements of the SU(3) transformation
group, i.e., under a local gauge transformation G(n) € SU(3) they transform according to

Uu(n) — G(n)U,(n)G ™ (n+ f) (2.7)
and have the following useful properties

Uun) = UZ\(n+p)=Ul,(n+p) (2.8)
Uun) = 1 asg—0.

Wilson’s action for the gauge field [90] 92] is given by a sum over plaquette variables U, (x)

Sa = BY ). [I;ReTr Uuy(n)}

n pu<v
1
= 8> [1— 3 ReTr DW(”)] B =2N./g*=6/g" (2.10)
n pu<v
The plaquettes (1x1 Wilson loop) are composed of four link variables
U (1) = Uu(m)Us (0 + @) U—p(n+ o+ D)y (n +0) =] 1, (2.11)
such, that Tr Uy, (n) is invariant under the gauge transformation Eq. (2.7). Using the Baker-

A+B+1/2]

Campbell-Hausdorff formula eef =e ABl+- and the Taylor expansion of the gauge

fields A, (x) around the center of the plaquette, U, (n) becomes
Uw(n) — Upw(x) = exp {iga2(auAu($) — Oy Au(z) +ig[Au(z), Ay(2)]) + O(a4)} o (2.12)

so that in the naive continuum limit of @ — 0 the Wilson action approaches the usual
Yang-Mills gauge action

Sa = d Z [ Tr (Fuw(2)Fu(z)) + O(a?)] + O(g%a?)
1 " 3 1/T ,
::0_) 2/‘/d x/o dr Tr (F(2)Fu(x)) + O(g%). (2.13)

Using suitable larger planar Wilson loops one can even better reproduce the continuum action
up to O(a) in lowest order of g (tree-level 1x 2-Improvement). The problem that additional
quantum effects induce O(a*) and higher order corrections in lowest order perturbation theory
can be overcome by using non-planar loops. For gauge theories LUSCHER and WEISZ [93]
developed such an improvement scheme following Symanzik’s improvement program [94. [95]
(see [2.3.3). By adding further gauge invariant terms they showed that it is in principle
possible to reduce the cut-off effects to any order. But this comes along with a higher
computational effort and does not improve the overall error of the complete action, which
in case of Sheikholeslami-Wohlert-Fermions is of order O(a?). So we have used the simple

Wilson gauge action Eq. (2.10]).
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2.3 Matter fields on the lattice

The fermionic part of the action given in Eq. can now be discretized in a straightforward
way. The Grassmann fields 1 on the lattice obey periodic boundary conditions in spatial
directions and according to Eq. antiperiodic boundary conditions in temporal direction.
The derivative in the continuum will be replaced by the symmetric finite difference scheme A},
and gauge links are inserted to maintain the local gauge invariance. This ensures the correct
transformation properties according to the gauge group SU(3). The naive action then reads

Sp = Zw Y Mg (n, m)d(m), (2.14)
where the nalve fermion matrix M IJ?V is defined as
MZ]?V(”’ m) n ,m + 5 Z 'V,u { n-‘ru m Ul(n - ﬂ)én—ﬂ,m} . (2'15)

Using dimensionful quantities, the action Eq. (2.14]) reproduces the correct continuum action
for a— 0, which then respects the global chiral U(Ny)xU(Ny) symmetry of QCD. In order to
see this one has to expand the action in powers of the lattice spacing. For a gauge link we
obtain

1 1
Uu(n) — 1+iga [Au(na) + iaﬁuAH(na) + gaQOZA#(na) + O(ag)} + 0(a?g?) (2.16)

Plugging this expression into the lattice action in Eq. (2.14) with dimensionful variables

Sp = 42

iga(Au(na)s((n + )a) + Au((n — Daybs((n - B)a)) }

Z ) Jalna) 5 {val(n + A)a) — Ys((n — )a)

+map (na)s(na)d®® | + O(ab) (2.17)

a—0

yr
— [ @[ dr @ Py + mas (o) (2.18)
1% 0

the continuum fermion action is reproduced up to order O(a?).

2.3.1 Fermion doublers and Nielsen-Ninomiya theorem

Describing fermionic fields on the lattice by a translationally invariant, i.e., Mp(z,y) =
Mp(z — y), Hermitian and local? matrix and preserving chiral symmetry at the same time,
one inevitablely runs into the problem of fermion doubling. This was formulated in the
no-go theorem by NIELSEN and NINOMIYA [96] O7]. This property can easily be seen by
looking at the (naive) quark propagator Ap, namely the inverse of the fermion matrix of the
non-interacting theory. In momentum space it is given by

—1 Z“ YuSinp,, +m
>, sin® fy, 4 1m?

AY(p) = (MY () = (2.19)

2couplings in the corresponding action need to decay at least exponentially with the distance in order to

guarantee universality,i.e., to obtain the correct continuum limit. More precisely it requires the lattice Dirac
operator Mr(p) to satisfy the inequality, ||Mr(z)|| < Ce~%*! where ||.| denotes a matrix norm for the
kernel Mr(x). C and d are some positive numbers.
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The dispersion relation is then obtained from the pole of this propagator (E:—iﬁ4)

3
sinh® B =)~ sin® p; + 1’ (2.20)
=1
with 5
Di = Fﬂnu 0<n; <Ny (2.21)
g

Thus the propagator does not only have a pole at p=(0,0,0), or E(O) =17, but also 2¢—1
further ones at every corner of the Brillouin Zone (BZ). In each dimension the number of
fermions doubles, hence the name ’doublers’. Since locality is a mandatory property and
because of the no-go theorem, all lattice actions have finally to be a compromise between
breaking chiral symmetry and allowing doublers.

2.3.2 Wilson fermions

Constructing a lattice action one has the freedom to choose additional operators, which vanish
in the continuum limit. Wilson used this property to avoid doublers in the continuum and
introduced a new dimension 5-operator, namely ngi¢: 510,

b()TH(n) = d(n) 3 {UL)Susm + Ufn = )00 m — 200 } $(m) (2.22)

I

with the Wilson parameter r (0 < r < 1)3. Actually 7 is usually set to 1 to benefit from
numerical advantages. The new fermion matrix My then reads

o i L ,
My (nm) = (A7)0 mbas =5 D |7 = Y)apUua()ntjm + ( + %)asUf (0 = £)3nm] -
o
(2.23)

With a redefinition of the dimensionless fermion fields v/7i + 471)(n) — 1)(n) the matrix reads

MG (n,m) = Spmbas — K> [(1 — 108U o + (14 Y)asUl (n — g)(sn_ﬂ,m] ,
I

(2.24)
where we have introduced the dimensionless hopping parameter k = 1/(27m + 8r). The
consequence of Wilson’s construction can again be demonstrated by looking at the new
propagator analog to Eq. (2.19) in dimensionful quantities

—1 Lsinp,a+m
Aw(p) = (M (p)) ™" = Z%f:iggpj;;z(g) (225)

with
m(p) =m+ % Z sin?(ppa/2). (2.26)

From this we see that for any fixed p,, the physical quark mass remains unchanged (m(p)=m)
in the continuum limit, while the doublers with p, near the corners of the BZ receive an
infinitely heavy mass due to the additional 1/a-term. Hence, they decouple from the theory.
However, this procedure exhibits also some unpleasant disadvantages: First, at finite a, the

3this constraint follows from reflection positivity
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doublers still exist and may interact, secondly, discretization errors already start at O(a)
instead at O(a?) as for the former naive action and thirdly chiral symmetry is explicitly
broken, even for m — 0. Nevertheless, in our simulation — at least below T, — a is small
enough, so that the doublers are sufficiently heavy and should not disturb the extraction of
ground state masses. Note that via Symanzik improvement (see one can eliminate the
O(a) deviations from the continuum limit.

The critical value of the hopping parameter . is defined as the limit in which the pion mass
vanishes. Unlike for interacting quarks, the fermion mass for free quarks receives no additional
mass renormalization (mq,=m) and k.=1/(8r). When interactions are switched on this value
has to be determined numerically in advance (fine-tuning). In this case a quark mass can be

defined as /1 )
g = 5 ( - ) . (2.27)

K Ke
This mass is sometimes also called the Vector Ward Identity (VWI) quark mass (see below),
since the divergence of the vector current is proportional to the mass difference of quark flavors
in the current, which looks similar to Eq. . Another way to define a quark mass my is
to use the axial-vector current in combination with the pseudoscalar density. By transferring
the axial current to its naive local

H = T4 = 2 (Tars) () (2.28)

or non-local lattice version

Jn = 2578 = 25 | (G0 + W Tar)Uu0)b)) + (S (Tars)Uf )+ 1))}

(2.29)

its (former) conservation at m,, 4=0 in the flavor non-singlet case is no longer
valid and J§ u needs to be redefined. This can be done by using a Ward-Takahashi identity,
which states, that variations of operators O with respect to the symmetry transformation
phase ¢, Eq. , together with an action which obeys the same symmetry should vanish

0Sw 00
053 - G5

Inserting Eq. (2.29) in this identity with O = 1 gives the Awzial Ward Identity (AWI) [86], O8]

(@] ALTS u18) = (9 Tos miyst + X°|6) (2.31)

)=0. (2.30)

with the dimension 5-operator X*

S z ) TrsUp () (n + 1) + $(n + @) Tays U (n)ib(n + )
(2.32)

+ (n —n —p) —4(n)Tyys0(n)).

Its vanishing in the continuum lim,_ga~*X? is no longer guaranteed, because of mixing with
the lower dimensional operators Jg=vT,75% (dimension 3) and AZJX ., (dimension 4) and
ultraviolet divergences in loops emerging beyond tree level. Explicitly X¢ reads

X = X —p{To,m'}ys9p — (Za — DALTS (2.33)

with a new mass parameter m’ and renormalization constant Z4. It might be the source of
the anomalies in the continuum limit of the divergence of the singlet axial current Eq. (1.26)).
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However, in case of a flavor non-singlet, such anomalies are not present for m ;=0 and still J3
is not conserved. Now, by definition, X is decoupled from the lower dimensional operators,
such that (a|X?|3) — 0. Using Eq. (2.33]) one obtains

a—

(@AY (245 ,)18) = (al{To, mg}yse + X*|8). (2.34)
Hence, the lattice axial current Z AJX, u is conserved for a vanishing quark mass my=m — m/
and a — 0.
Using (o] = (0] and |5) = |Jp(0)) and integrating over space leads to

mg(T) _ ZX<AM*7A,/L($)~71JL(O)>' (2.35)

Z 23 (Tp(x)TH0))

This defines the so-called AWI current quark mass*. Instead of J A, One can also consider the
local axial vector current in Eq. 1) and define a renormalization factor ZXOC), such that

Zadau = ZXOC)JXZC) + O(at). (2.36)

A similar definition also holds for the vector current. All finite vector and axial-vector
renormalization factors tend to 1 in the continuum limit. In the remaining part of this thesis
we will implicitly use local currents and renormalization factors. Concerning our analysis, the
fourth component of the axial current has the largest overlap with the pion state, i.e., it is the
single contribution for p=0, so we only need to determine Eq. for p = 4. We further
improved the signal by using a higher lattice derivative to O(a*) as suggested in [99].

For non-vanishing m, the chiral SU(N¢)4 symmetry is broken explicitly, which leads to the
Partially Conserved Axial Current (PCAC)-hypothesis, which states that the divergence of
the axial current serves as interpolating field of the pseudoscalar density

6ﬂjX,u(n) = fmePin(n), (237)

where mp is the mass of the pseudoscalar particle and fp the pseudoscalar decay constant.
In case of u and d quark this is the pion 7 with f; =93 MeV. It is connected to the chiral
condensate (1)) via the Gell-Mann-Oaks-Renner (GMOR) relation [100]

mzfz = —2mg(p). (2.38)

With this relation the definition of Eq. (2.27) can be justified in the limit of broken chirality
(1p) # 0 below T, while Eq. (2.35)) remains also valid above T,.. One can parameterize the
matrix element of J§ ., between the vacuum and an on-shell pion by writing

(0174 ()| TR (p)) = i0° frpte™ " (2.39)
Together with the AWI for Np=2 in momentum space
(010, T4, (0)| T2 (p)) = P* [0 = (O[{ Ty mg 3159 T2 (p)) (2.40)
with Tr [{Ty, mg}Ty] = 269 (my +mgq) and p = 0 gives
2
m2 = (my +mg)—— o< my. (2.41)

™

The mass parameter M has been estimated to be of order 400 MeV [101]. Thus (m,, + mg) ~
10 MeV is enough to give the pion its observed mass of 140 MeV.

4sometimes also called PCAC quark mass
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2.3.3 Wilson fermions with Symanzik improvement (Sheikholeslami-Wohlert
action)

The problem with the leading cutoff effects has found a clean solution via SYMANZIK’S
improvement program. Its underlying idea is given in [I3] [I4] and has been applied originally
to the ¢* theory on the lattice. He used additional counter terms of dimension d > 4 to the
pure Lagrangian and tuned their coefficients such that all contributions of order O(a%~%)
could be eliminated. SHEIKHOLESLAMI and WOHLERT [102] used this procedure to reduce
the errors of the Wilson fermion action to O(a?). Thereby they used correction terms of
dimension 5, O;, i.e.,

Econt = ﬁlatt +a Z CiOi + O(a2)' (242)

Their number is finite, because they have to be invariant under the same symmetry as the
original action (e.g., U(1) x SU(Ny)) and can be further eliminated by applying a partial
integration. By doing so one ends up with the following five terms

O1 = viowFu (2.43)
Oy = ¢D,D,y (2.44)
O3 = mTr(FuFu) (2.45)
Oy = myy, Dy (2.46)
Os = m*P (2.47)

These terms can be reduced further if one is interested only in on shell quantities. Then
the equations of motion show that O 4 are redundant. Finally the operators O35 already
appear in the Wilson Lagrangian and the utilization of a mass independent renormalization
scheme leads to an absorption of these terms by rescaling the bare mass and coupling. The
O(a)-improved Sheikholeslami-Wohlert action S7" then reads

SV = b(n) Msw (n,m)d(m) (2.48)
with
Msw (n,m) = A(n)6nm — K& m. (2.49)
It is divided in a diagonal and non-diagonal part, which are given by
1
Anm =5 D (1= 2)Un(m)nspm + (M%) U (0 = 1) pum (2.50)
I
and .
A(n) =1- ichW§0-/,wF;w(n) (251)
where

Fyuln) = 5= 32 (Ul = Ufb ) . (2:52)

These terms can be depicted as

SEV=3" 4(n) [n - "“;SW 3 Im N (n) o—,w(n)] S
n,m v puv

—“Z [(]1 =) Ontpom * () + (L4 4) On—pm He'u(m)] } Y(m). (2.53)

M
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The correction term is also called the clover term and it is obvious why this action often is
referred to as clover action. For the tree level (tadpole) improvement cgy can simply be set
to one. A perturbative and non-perturbative evaluation of the coefficient cgy (g) has been
performed by LUSCHER ET AL. [103]. They required that the Ward-Identity of a controlled
quantity, in this case the PCAC-Relation, should be satisfied up to O(a?) corrections within
the Schrodinger Functional formalism. The results for csy were found to be well fitted by

1 —0.656¢9% — 0.152¢g* — 0.054¢°
1 —0.922¢>

csW = for 0<g<1. (2.54)
Calculating CF's of local fields as, e.g., given in Eq. (2.35) one has to improve additionally the
operators in the same way as has been done for the action. This leads to improved currents

Ji,,u, = jA,,u'i_acA%pJP (255)
j&,u = jV,u"‘aCV%z/Tp,v (256)

with 6#: %(Afi + AZ) and the tensor current T#V:QZU“V¢. The coefficient ¢4 has also been
determined by the ALPHA-Collaboration non-perturbatively [103]

1 —0.7484>

= —0.00756¢> -
oA T 1209774

with 0 < g < 1. (2.57)

In case of ‘7& , it could be shown [104] that cy almost vanishes for 3 > 6.4. These new
definitions can be used to improve the PCAC-Relation Eq. . All necessary currents have
been measured. One major drawback of the SW improvement scheme is a bigger susceptibility
to exceptional configurations (see compared to the unimproved case. In
quenched simulations on relatively coarse lattices and for moderately light quark flavors,
gauge configurations can be sampled where the Wilson matrix has one or few real eigenvalues
with norm exceptionally close to zero, i.e., much smaller than the other configurations. The
corresponding eigenvectors of the operator are referred to as ‘spurious’ zero modes, because in
a chirally invariant formulation, the Dirac matrix can have zero modes only if some quark flavor
is massless.” On gauge configurations with spurious quark zero modes, fermionic observables
(quark propagator) in a chirally broken phase may undergo fluctuations that exceed typical
ones by orders of magnitudes, see Fig. Increasing the statistics does not reduce in general
the standard deviation, even larger fluctuations may occur. Using the non-perturbatively
improved action, it could be shown that this problem occurs at values of m of about half of
the strange quark mass if @ ~ 0.1 fm [107]. With unimproved Wilson fermions this limit is
pushed to somewhat lower quark masses.

One rather new approach, which could be very helpful to avoid exceptional configurations,
especially also for low quark masses below and close to the phase transition is the twisted mass
formulation. Here one writes the fermion action with a twisted mass u-term proportional to
Y573 where 73 acts in flavor space and bounds the fermion spectrum from below. For large
enough u exceptional configurations are absent, Fig. Additionally for k& =£ k. (u = 0)
extrapolated from x.(u) by PCAC masses to p=0 (maximal twist), see e.g. [108, [109], the
action is automatically O(a) improved [I10]. The twisted mass theory has its own problems,
though. The appearance of 73 in the twisted mass term means that the up- and down-type

5In unquenched simulations configurations with spurious or genuine zero-modes play almost no role, due to
their vanishing or small fermion determinant, which determines their weight or probability respectively, see
however [105].
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Fig. 2.1: Examples of exceptional configurations close to (above) T, in the P CF (left) and
the corresponding SW-Dirac eigenvalue spectrum with the apparent zero mode [106] (right).
Configuration 18800 (green) is somewhat extreme, since the real part of its Polyakov loop
is very small and one might speculate that it is still located in the chiral broken phase. For
comparison also the zero-mass Ginsparg-Wilson circle, see is shown (solid red
curve).

quarks have opposite signs for the twisted mass term, and hence isospin is no longer conserved
as long as pu # 0. Whether and how this effects physical properties is an open question.
Furthermore dynamical simulation show a first order phase transition and metastability
characterized by a jump in the plaquette expectation value. This prevents a proper simulation
close to the chiral limit. However, the metastability weakens using improved gauge actions.
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Fig. 2.2: Impact of the twisted mass term on the (exceptional) configuration number 18800
at 1.2 T.. We have chosen k.(u=0)=0.13558. The twisted mass term forbids the strip
Im A\, € [—u,p] to be filled with eigenvalues. Note the tiny different shifts of \,, with
increasing p in real and imaginary direction, see [I11]. They probably explain the necessity
to use k& for O(a)-improvement, see also [112]. The topological eigenvalue is shifted to
negative imaginary direction. In case of a chiral perfect Ginsparg-Wilson operator this would

imply Q=+1.
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2.3.4 Staggered fermions

Another way to handle the fermion doublers is to introduce staggered fermions (or Kogut-
Susskind fermions) [113, 114]. They are obtained by so-called spin diagonalization of the
Dirac matrices, where a local change of fermionic variable

b(n) = T)p(n),  d(n) = BT (n) (2.58)
P )yl + ) = nu(n)1 = Ay(n) € U(1)> (2.59)

is performed. Here I'(n) is a d x d unitary matrix leading to the spin diagonalization and
A, is a diagonal unitary matrix belonging to the direct product of U(1) groups denoted by
U(1)®4. One possible choice is T'(n) =~7"752v52~4*, which leads to the staggered phases
nu(n)=(—1)"m+Fm=1 The resulting fermion action is now diagonal in the Dirac components.
The number of degenerate flavors can then be reduced by taking only one component of the
new action into account. By doing this one can reduce the fermion multiplication factor 2¢ to
2%/4. The 4 remaining degenerate fermion states for d=4 are interpreted as states of different
fermion species (pseudo-flavors).

Due to a remnant chiral symmetry (U (1)evenxU (1)oqq) for fermions on the even and odd sites® of
the lattice separately, staggered fermions are protected against additive mass renormalization

and exceptional configurations (see [2.3.2] and [2.3.3)), which are genuine problems for the
Wilson operator. The discretization errors behave like O(a?), instead of O(a) for pure Wilson-
Fermions. However, a great disadvantage is that one always has to deal with exactly four
flavors, conventionally called tastes in the continuum. At least for sea quarks in unquenched

simulations one can overcome this problem by taking the fourth root of the staggered Dirac
operator (fourth-root trick). This operation, however, is dangerous, since the locality of the
resulting action is questionable, e.g., CREUTZ argued, that it is flawed for theories with an
odd number of flavors [I15]. For a current status report on the validity of this procedure
see Ref. [116].

2.3.5 The Ginsparg-Wilson relation and the overlap operator

In 1982 GINSPARG and WILSON [I17] were the first who found a way to circumvent the Nielsen-
Ninomiya no-go theorem. They proposed to give up chiral symmetry in its conventional

formulation Eq. (1.27))
{M,ys} =0, (2.60)

and to use an operator which fulfills a remnant chiral symmetry condition instead
Mys +vsM = (a/u)MysRM = M 'ys5+4sM " = (a/p)vsR. (2.61)

In this Ginsparg- Wilson relation (GWR), the continuum condition that the right hand side of
Eq. vanishes is now transferred to a term of O(a). R(z,y) is a local operator, whose
structure in Dirac space is constrained by {75, R} =0 and p a mass parameter of order O(1).
Since the GWR is a formulation of chiral symmetry after performing a Wilson renormalization
group transformation (RGT) from the continuum to the lattice, it is supposed to have exact
zero modes with positive and negative chirality. Following the continuum index theorem
Eq. , any operator fulfilling the GWR, can be used to determine the topological charge v.
The domain wall approach [118, [IT9] is one of the solutions of the GWR. An additional fifth
dimension with the extent Ls is introduced. It suppresses the chiral symmetry breaking
exponentially with L5, so that the operator is chirally symmetric in the limit Ls — oo.

6 A site n is called even if n1+n2+ns-+mn4 is even and it is called odd otherwise
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The other solution of the GWR is the overlap operator
My, =21+ A/VATA|, A=all —p (2.62)
a

With the special choice M = My, with zero bare mass and =1 this operator is called the
Neuberger overlap operator. Then u represents a negative Wilson fermion mass. M,, also
obeys vs-Hermiticity. Note that the operator A/v AT A is unitary, hence the spectrum of M,,
in the complex plane lies on a circle, with center and radius u/a, which is the GW circle [120].
Most important is the exact chiral symmetry under the transformations

'lj) N eiGTa’Y5(1_ﬁMov)¢

b = T Mo (2.63)

The axial anomaly in this formulation comes again from a non-invariance of the fermion
measure D)D) [121], similar to the continuum derivations. In this way Ginsparg-Wilson
fermions also correctly reproduce the axial anomaly.

Although these realizations of chiral fermions seem to be very promising, they suffer from the
increase in computer time.

2.3.6 Hypercube fermions

There is another natural way to proceed from the continuum formulation of the action to
a lattice form. In this blocking from continuum, one defines the lattice fermion fields as
block averages of the continuum ones integrated over hypercubes. The lattice action of these
new lattice fermion fields is then connected to the continuum one by the Wilson RGT. The
resulting lattice theory with so-called perfect lattice fermions, is equivalent to the underlying
continuum theory with respect to long distance physics and is free of lattice artifacts. In the
same manner one can also start from a given lattice formulation on a fine lattice and - by
using the RGT - arrive at another lattice formulation at a coarser lattice which is physically
equivalent. Iterating this procedure infinitely many times we arrive at the fixed point action
(FPA), where we assume that this limit exists. The FPA of the quantum renormalization
group trajectory represents perfect lattice fermions since it is insensitive to a change of the
lattice spacing.

In general, a FPA may have an infinite number of local terms in the action. For practical cases,
one usually introduces a scheme for truncating the action after some time. The hypercube
Dirac operator is a free FPA with its couplings being truncated to the unit hypercube. In
this subsection we consider the construction of the hypercube Dirac operator. The discussion
will closely follow Refs. [122), 123]. We start from the case of free fermions and explain how
gauge fields can be introduced.

Let us divide the (infinite) lattice into disjoint hypercubic blocks of n? sites each and introduce
new variables living at the centers of these blocks (block factor n RGT). Then the RGT relates

Yo~ D (2.64)

xEx!

where 1 represents the fermions on the fine lattice and the v’ represents fermions on the
coarser lattice. The points x € Z% are the sites of the original fine lattice and 2’ are those of
the new lattice with spacing n. € 2’ means that the site z belongs to the block with center

x'.
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Now the original action S[¢, 1] transforms into a new action S’[¢/’, '] on the coarse lattice.
The latter is determined by the functional integral

&S — [ DDy (o, vl S5 (2.65)

The kernel K[, 1), 1), ] has to be chosen such that the partition function and all expectation
values remain invariant under the RGT. At the end, one usually rescales the lattice spacing
back to 1. The correlation length in lattice units gets divided by n.

For the kernel functional there are many possible choices [124] [125]. We will use the Gaussian
type kernel

K0 80 = oxp { = o3 [ g 2 ] [ — i 2 ]} - 266)

zex! zeT!

This type of transformation with non-vanishing ayr > 0 is not chirally invariant, which will
lead to the formulation with broken chiral symmetry in its standard form given by {D,~5}=0.
Assume that we are on a ’critical surface’, where the correlation length is infinite. After an
infinite number of RGT iterations we obtain a finite FPA S*[¢,%]. The critical surface needs
a fermion mass m =0 in order to obtain a divergent correlation length, but one can generalize
the consideration to a finite mass.

Assume that we want to perform a number N of RGT iterations. If we start from a small
mass m/(nN), then the final mass will be m. In the limit nN — oo, i.e. we start from an
infinitesimal mass, we obtain a perfect action at finite mass. In this context, 'perfect’ means
that dimensionless quantities do not depend on the lattice spacing, hence they are identical
to the continuum values.

For the block transformation in Egs. and , this perfect action can be computed
analytically in momentum space [126]. The computation simplifies if we let n — oo, so that
N =1 is sufficient. Hence starting from the continuum action (with no momentum cut-off),
we integrate out all momenta above 7/a to get the perfect action

S = G [ DN 0
T(p + 271)?

A* =
(p) Z Z-(pu_'_Qﬂ_lu)’y#_'_m_"aHFa

lezd
d ..

M(p) = HM, (2.67)
p=1 Py

where A* is the free perfect propagator. The same perfect action is obtained starting from a
variety of lattice actions [127], in particular from the Wilson fermion action. In coordinate
space the action can be written as

S 0] = alon(r) v+ M) e - (2.68)

z,r

At the cost of broken chiral symmetry we obtain a theory with its couplings p, and A decaying
exponentially as |r| increases. An exception is the case d=1, where they are confined to one
lattice spacing for the special choice

e —m—1
app = ——p—— . (2.69)
m
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This is still in agreement with the Nielsen-Ninomiya theorem : to obtain a local
perfect action, one must break chiral symmetry explicitly. Although the chiral symmetry is
not manifest in the perfect action, all chiral properties are still correctly reproduced by it.
This is due to the GWR, introduced before in , which the perfect action obeys,

{A*(p),vst = 2amFYs - (2.70)

Here we can identify ayp with the mass parameter p, namely,

1
- 2.71
aHF =5 (2.71)

It turns out that for the choice of « in Eq. the locality is also excellent in higher
dimensions, i.e., the exponential decay of the couplings is very fast. This is important, because
for practical purposes the couplings have to be truncated to a short range, and the truncation
should not distort the perfect properties too much. Ref. [I28] proposed a truncation scheme
that uses periodic boundary conditions over 3 lattice spacings and thus confines the couplings
to a unit hypercube

pu—y) = p(Oyesp—Oyo—p)+ Z P28y e+ it = Oyo—juto)
1ZJ0
+ ) P30y arities — Oya—tirp)
P

+ E P4(5y,a:+ﬂ+ﬁ+/3+€r - 5y,m—ﬂ+ﬁ+ﬁ+&) )
DR
PFED,6FP

)\(.CU - y) = )\05y,x + Z >‘1(5y,x+ﬂ + 5y,:]cfﬂ) + Z >‘2(5y,x+ﬂ+ﬁ + 5y,:rfﬂ+ﬁ)
Iz iz
+ ) Ay etitits + Oya—pititp)
o
£ LD
+ Y MCyatatotpts + Oya—prorire) (2.72)

prdioms
The couplings \; and p; are tabulated in Tab.
It was pointed out that the spectral and thermodynamic properties of the HF are still
drastically improved compared to Wilson fermions [128], see [Section 3.2
It is far more difficult to construct an approximately perfect action for a complicated interacting
theory like QCD. However, it was proposed in Refs. [122] [128] 129] that one can just use this
simple ansatz for HF together with the standard gauge link variables. Apart from nearest
neighbors, one also has couplings over 2, 3 and 4-space diagonals in the unit hypercube.
One connects all these coupled sites by all possible shortest lattice paths, by multiplying
the compact gauge fields on the path links. This procedure was called minimal gauging or
gauging the HF by hand. Note that one can connect the diagonal points of the d-dimensional
hypercube via d! such shortest lattice paths. One averages over all of them to construct the
hyper-link, see Fig. We identify the hyper-link between site z and z + & with Uﬁl)(m)
and the hyper-link in plane, cube and hyper-cube as Uﬁr)l,(m), Ul(t‘i)l,ﬂ(x), and Ul(ﬁwrﬁo(x),
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respectively. Then we can write the corresponding fermion matrix in terms of the hyper-links
which are constructed recursively starting from the gauge links Ulsl) (1 # p2 # ... # pd),

1 (d—1) .
d [ U;ﬁ)(ff) Uty g (@ + 1)

1 (d-1) N
+ U;gz)(x) Uu1+u3+...+ud (l’ + /‘2)
+ ...

1 (d-1 N
™ Ulgd) () UH1+H)2+...+M,1 (z + fia)

d
U/(n)+,u2+...+ud (1") =

(2.73)

I 6\’&—\\“\’\———9

Fig. 2.3: 1-space, 2-space and 3-space hyper-links from Ref. [122].

It is convenient to introduce prefactors which are functions of the HF hopping parameters k;
and \;, i=1,...,4, and sums of «-matrices

Iy, = M+pi(E7)
Piprr = Ao+ pa(Ev, £7)
Lttt A3+ p3(Evu £ £ )
Piptvipte = M+pa(Fvatv 7 £7%). (2.74)

The hypercube operator is organized in sums which run over four different directions for
two l-space links, six directions for four 2-space links, four directions for eight 3-space links,
and one direction for the sixteen 4-space links. Altogether 80 hyper-links plus the term 0,
contribute. With each path of the free HF, a y-matrix is associated. The y-matrices are

action FP W Naive

mass 0.0 1.0 2.0 m m
Ao 1.852720547 | 1.26885069540 | 0.8442376349 | m+4r m
A1 -0.060757866 | -0.03008271460 | -0.0119736477 | -r/2 | 0.0
A2 -0.030036032 | -0.01082956270 | -0.0032647950 | 0.0 0.0
A3 -0.015967620 | -0.00471575763 | -0.0011445684 | 0.0 0.0
A -0.008426812 | -0.00221240767 | -0.0004622883 | 0.0 0.0
p1 0.136846794 | 0.05457967484 | 0.0185415007 | 0.5 0.5
P2 0.032077284 | 0.01101007028 | 0.0031625467 | 0.0 0.0
P3 0.011058131 | 0.00325481234 | 0.0007898101 | 0.0 0.0
P4 0.004748991 | 0.00120632489 | 0.0002501304 | 0.0 0.0

Tab. 2.1: The coefficients for the fixed point action are taken from [128, [129].
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chosen such that they add up to produce a prefactor I', see Eq. (2.74)), which is associated
with a given hyper-link.
The feature Eq. (2.8)) also holds for the hyper-links, e.g.,

d d ~ N N
Ul @) =UY (@t it i) - (2.75)

Therefore, only one half of the 3¢ — 1 hyper-links has to be computed and stored in the
implementation of the HF.
The HF matrix can now be written as [122]

Mprp(z,y) = Xolay
1
+Z [FJruU;(tl)(x)éx,y—ﬂ + F*NUE;Z(:U)&“/*[‘
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(2.76)

Like Wilson fermions the HF matrix exhibits the 'y5-Hermiticity’, 75 Mgpvys = ML F7, i.e.
M is indeed non-Hermitian but its eigenvalues come in complex-conjugate pairs.

"for Wilson fermions see Eq. (2.102)
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2.4 Simulation techniques

In this section, the numerical methods which have been used to obtain our results are described.
First, a basic approximation, the so-called quenched or valence quark approzimation [130, 131]
is discussed, leading to a path integral measure which solely depends on gluonic degrees of
freedom. Next the algorithm for generating the gauge configurations and computing the quark
propagator are explained. For a more detailed discussion see [132, [133]

2.4.1 Quenched approximation

Let us consider the expectation value of the following (general) operator

0= ¢A1$Bl ¢A2$B2 e wAnQZBnF[UL (2'77)

where each of the indices Aq,...,A,,B; ..., B, represents a set of color, flavor and Dirac
indices together with the lattice point positions, and F'(U) is an arbitrary function of link
variables U. The expectation value is then written as

/ DUDyDy e~
(0) (2.78)
/ DUDyDy e~
where DU, Dt and D1 are defined by
DU =[[dUu(n), D¢ =]]dv(n), Dy =]]dw(n). (2.79)
w,m n n

and S =Sg + Sr is the total action. Sg being the purely gluonic part of the action and
fermion fields appear in Sp. For all the actions considered in the previous sections, S is
bilinear in the fermionic fields:

SF U, ¢, ¢ Z 1/)31 Bl,A1¢A1' (280)
A1,B1
After the integral over the fermionic Grassmann variables is performed, the expectation value
contains two point functions (Yav5) = M (U) g5, (Wick’s theorem), and can be written in
the following form with the effective action Sesp(U) = Sq(U) — logdet M(U) = Sq(U) —
Tr log M(U)

(0) = /DU e Sers U p Z e g MU)cla, - MU)coa,
= Z_1 /DU e_SG(U) det( Z EB1 )CllAl o M(U)aiAn
(2.81)
where the generalized Levi-Civita symbol 6 " is defined by
ag; o
o s

and the partition function Z is

/DU —Sers(U) = /DU e™%¢W) det M(U). (2.83)
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An enormous gain in the computing time
can be obtained by setting det(M(U)) =1 181 |
in the expressions above. This approxima- 16 | T
tion, quite common in LGT calculations, ' «;I
is known as the quenched approximation. 14 L = §§ ¢ o |
Physically, this amounts to ignoring all __ z ol 3 =
internal fermion loops in the calculation: E 12 ® A -5 & TT o 1
fermion fields can appear only as exter- ¢ K* N % g
1S

4 , ey as 1o | o g A |
nal (‘valence’) fields. Experiences in zero R
temperature calculations tell us that this 08 | i 83 o K input |
approximation works very well for a qual- o @input
itative understanding of most features of 06 | Kz """" experiment
QCD like confinement, asymptotic freedom, -
spontaneous chiral symmetry breaking etc, 0.4

since most of the interesting dynamics is Fig. 2.4: Quenched light hadron spectrum com-

caused by the gluon fields. Even quantita- pared to the experimental values. The statistical

tively, it has been found that the quenched error and the sum of systematic and statistical

approximation works to ~ 10% accuracy errors are indicated. [I134]

for spectrum and decay constant calcula-

tions [134, [135]. It is important to keep in mind, however, that it is just an approximation:
there is no effective field theory description of the quenched theory. For a numerically accurate
calculation of QCD observables, one has to go beyond the quenched approximation (for
a recent summary of results for QCD observables from the lattice, and comparison with
quenched results, see Ref. [I36]). Also, qualitative questions where fermionic loops play an
important role clearly cannot be studied by using the quenched approximation, for example,
the ‘breaking’ of the QCD string.

Similarly, in finite temperature calculations for studying some questions, in particular issues
in the low temperature phase where the thermal excitations of the pion gas play an important
role, the quenched approximation is clearly inadequate. Also the nature of the transition is
different as has been illustrated in However, for investigating qualitative issues
related to the deconfined phase, in particular the question of strong and/or non-perturbative
interactions above T, and viscosity of the plasma, that are important for understanding many
puzzling features of the RHIC results, it is the gluonic degrees of freedom that are expected
to play the major role. Since our main interest in this work will be to answer such questions,
we will restrict ourselves to the quenched approximation.

2.4.2 Markov chains and Metropolis

Although a large number of degrees of freedom are eliminated, the path integral Eq. is
still high dimensional and usual numerical integration methods are not applicable. Instead,
one has to turn to a Monte-Carlo integration. The aim is to find a representative sequence of
field configurations {€2;} on which the observable O is evaluated,

(OQ)q ~ ;Ze_SG(Q")O(Qi). (2.84)

Since the number of possible gauge field configurations is large, but the weight factor e =S¢ ()

is very tiny for almost all €2;, a simple selection by just randomly picking gauge fields out of
a uniform distribution would only lead to a small contribution, i.e., to a slow convergence
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of Eq. (2.84). What is required therefore is importance sampling, which means to generate
sequences of equilibrium gauge configurations with a probability distribution P(2) equal to
their weight factor in Eq. (2.84]), thus

P(Q) = %eXp(—SG(Q)). (2.85)
One way to generate such configurations is via a Markov process. The idea is to select a new
configuration Q' by a transition probability Pr(€2, ), which depends solely on the new and
the previous configuration (€2). This update is then repeated (chain), so that after some time
of thermalization the equilibrium distribution, Eq. (2.85), of {€;} is reached. For Pr(Q, ()
to be a Markov chain, it has to posses two important properties. First, every configuration
should in principle be reachable in a finite number of steps N (irreducibility), which ensures
the so-called strong ergodicity

PNQ,Q)>0 vQ, (2.86)

Secondly the transition probability must map the distribution P(2) on itself
P(Q) = /dQ P(Q)Pr(Q,9) v (2.87)

This guarantees that the appropriate distribution is realized irrespective of the starting
configuration. A sufficient (but not necessary) condition for Eq. (2.87) to hold is detailed
balance,

P(Q)Pr(Y, Q) = P(Q)Pr(Q, Q) Y. (2.88)

It can be shown, see e.g. [91], that (O(Q))q evaluated with such a Markov chain indeed
approaches the ensemble average (O) with a statistical uncertainty of order O(1/y/n).
METROPOLIS ET AL. [I37] found that a probability P4 of changing configurations 2 to a
randomly chosen Q' defined via

P4(2,9) = min (1, ii%;) . (2.89)

satisfies indeed the required ergodicity and detailed balance. However, if the trial configuration
Y is chosen randomly, i.e., completely independent of €2, an acceptance becomes rather unlikely,
which results in a very small acceptance rate and the system will move only slowly through
configuration space. This problem can be solved by using configurations €', that are closer to
the former €, for instance by a local (link) update. However, such algorithms then suffer from
1arge autocorrelation times 7. These grow exponentially with the lattice correlation length
5, ie, 7~ 52 with z =2 for the Metropolis algorithm. ¢ itself depends on the simulated
System and the observables of interest. Since its physical length is fixed 5 and thus 7 increases
dramatically by going to finer lattices. This is known as critical slowing down.

2.4.3 Heat bath and overrelaxation

One important feature of S¢ is its locality, meaning that a change 55 due to an update of
one single link U can be calculated very fast.

0Sg = —gRe Tr 6UV + terms not involving U, (2.90)
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with V being the remaining links in the plaquettes containing U. Thus a single link update
can easily be carried out several times before one proceeds to the next link. This method is
called the multi-hit Metropolis. The pseudo heat bath algorithm [138] [139] on the other hand,
updates individual links by putting them into a local equilibrium with their neighboring links
(heat bath) using the probability distribution

dP(U) = exp <—§Re Tr UV) du. (2.91)

In one heat bath iteration this is done again successively for every lattice link, sweeping
over the whole lattice. The crucial difference between the heat bath and the Metropolis
algorithm is that the new link is less correlated with the old one, which reduces £, while z
is still approximately 2. This algorithm works fine with SU(2), but for SU(3) it is rather
slow [140].

CABIBBO and MARINARI [I38] circumvented this problem, by doing the updates in the SU(2)
subgroups of the SU(3) link. Together with an improved way to (approximately) do the
integral over the group manifold this leads to the FHKP updating scheme [139] [141], which
has been used in our work.

One further step to reduce the correlations between updated configurations is the overrelazation
update [142] [143]. After some sweeps with FHKP one takes the opposite in the parameter
space of the SU(2) submatrices, to change U while keeping S fixed. With this combination of
FHKP and overrelaxation one is then able to reduce z to nearly one. In our simulation, we
have used, depending on the temperature, 3 — 5 overrelaxation steps per heat bath step.

2.4.4 Inversion of the fermion matrix

The most fundamental fermionic quantity in LQCD is the quark propagator, ((z)1(y)). It
describes the propagation of a quark from x to y and is equivalent to an element of the inverse
of the fermion matrix, M ~1(z,y) Eq. . This corresponds to finding the solution of the
inhomogeneous equation

> Map(n,m)ipp(m) = ¢a(n) (2.92)

m,B
with a point-like source ¢ 4(n) for every color-spin combination A. Choosing n=0, A=(a, a),
¥p(m) represents the (a,a,0)-th column of Mz, (m,0) and contains all propagators from
the origin to all other points m and color-spin combinations.
Since M is sparse and its dimension N = N;"NT-NC‘Nd-Nf is very large, Eq. {) can
only be solved approximatively by an iterative method, e.g., minimizing the error function
of residuals 7, (r,r) = (M1 — ¢, Mp — ¢), below some certain value e. The algorithms we
have used are based on the conjugate residual method [144]. Starting with a trial residual
vector rg, one uses conjugate search directions p, within the Krylov space K(M,rg, k) =
span{rg, Mo, ..., M¥*~'rq} instead of local gradients for finding a minimum of (¢)—a, M (p—a)).
This guarantees convergence in N iterative steps. The conjugate gradient (CG) algorithm [145]
needs M to be Hermitian and positive definite, a condition which can be fulfilled by using the
equation

MMy = MT¢ (2.93)

instead of Eq. . This means, however, that the number of operations 'matrix times vector’
doubles. An alternative is the application of algorithms which do not require Hermiticity like
the minimal residue (MR) algorithm [144] or the stabilized biconjugate gradients (BiCGStabl)
algorithm [146]. Both need larger memory resources and the latter has an unorthodox
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convergence behavior, see e.g. [147]. We have found that the CG is fast for large quark
masses or above T, while the BiCGStabl performs best for small quark masses below T,. The
convergence time of such methods is governed by the condition number, which is the ratio of the
largest to the smallest eigenvalue of the matrix. Since the smallest eigenvalue approaches zero
for k — K¢, i.e., if a zero-mode exists, light quark masses for T' < T, result in large condition
numbers and correspondingly larger inversion times. In order to decrease the condition number
of the matrix to accelerate the inversion, we used even-odd preconditioning [148]. The idea
is to divide the lattice in even and odd points and to calculate first the inverse just on the
even points. Afterwards one can reconstruct the inverse on the odd points by one matrix
multiplication. The system of equation can thus be written as

Ace —KAeo e be
(s o) G- () 259

where A and A are defined in Eq. (2.51)) and Eq. (2.50). Multiplying this with

lee KALAZL
< o 0 ) (2.95)
one gets
Meetbe = (Ace — K DeoAog Doe)te = Pe + Ko Ags b0 = e (2.96)
Yo = Agy (do+ KAsetbe). (2.97)

And indeed substituting . into Eq. 1, can be deduced. While the number of operations
per iteration is preserved by this procedure, the non-diagonal part of M contains x2 instead
of k and M comes closer to the unit matrix for small k. In practice the smallest eigenvalue of
M increases compared to M by a factor of about two.

The computational effort can be further reduced by setting » = 1. In this case the term
(r +74)/2 becomes a projector, which decomposes the four spinor ¢ into two two-spinors and
saves computing time in the inversion [149].

Another very important property of M~ is its v5-Hermiticity. Using the charge conjugation
operator C'=~4y, and C = Crs

CyuC™ ' = -, CrysC7t = AT (2.98)
CyuC ' =71 CysC 1t =1f (2.99)
one finds
CM Mz, y;)C™" = (M) (y, 2,07 (2.100)
CM Yz, y;Q)C7 = (MY (2,y;,Q), (2.101)

where 2* denotes all complex conjugate U. Combining Eq. (2.100) and Eq. (2.101)) therefore
gives
M 2,y Qs = CCys (M) (z,y; Q)5 1C7HC!

= CC (M_l) (z,y;Q)C~'C™!

= C (Mﬁl) (z,y; Q)*C !

= (MY (20 (2.102)
This relation between forward and backward propagators is rewarding since the inversion of
the fermion matrix is the most time consuming step in the complete calculation. Rewriting the

backward propagator for degenerate flavors, e.g., in Eq. (2.152) (M (2, 2;) = (M1 (a4, xyf)),

we need to invert the matrix only once.
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2.4.5 Errors and fitting

Unfortunately every physical quantity determined by numerical simulations on the lattice
suffers from statistical as well as from systematic errors. The latter may come from finite
volume or finite lattice spacing effects due to the discretization or the fact that one uses
quenched simulations. These errors can be reduced by studying different lattice sizes keeping
the lattice spacing fixed or vice versa.

The statistical errors on the other hand are due to the finite number of measurements, i.e., only
a finite set of configurations has been used to sample the path integral. Both are unavoidable
and a clear systematic study has to be undertaken. Finally it is always desirable to keep the
systematic error below the statistical. Now we will discuss how to obtain estimates for the
statistical errors.

Statistical error for primary quantities

Let A be the exact expectation for primary quantities, and A,, n=1,..., N the finite set of
measurements. For large enough statistics (N > 1), one can use A as an estimate for A:

1 N
N; (2.103)

In case of independent configurations with respect to the measured quantities, A is normally
distributed around A with the simple variance

~ A

—=% o5 2
s o(A)? (A-Ap A4
A =y 1T NZ1L TN

(2.104)

which is a consequence of the central limit theorem and gives a reliable error estimate
A=A+ o(A). Otherwise one has to consider the autocorrelation of the measured quantity.
The error is then given by
—_ 27; t (—5 —2
A2 = tim Tt (47 A7) 2.105
U( ) Ngnoo N ’ ( )

where the (integrated) autocorrelation time Tin is taken from the normalized autocorrelation
function

(AiAite)
t) = —+. 2.1
Caalt) A (2.106)
For large t it typically decays exponentially
It
Cau(t) —e T(A) (2.107)

which immediately leads to the definition of the (exponential) autocorrelation time Tezp(A):

2]
eap(A) = — lm S . 2.108
T p( ) 1 upln‘CAA( )| ( )

This quantity naturally lends itself to the interpretation of being the decay time of the slowest
mode in A. The integrated autocorrelation time on the other hand is defined as

1 & [~
Tint = 5 D Caalt) = 5+ > Caalt). (2.109)
t=1

t=—00
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In case of independent measurements 7;,; is equal to % and Eq. 1} reduces to the simple
variance. However, in practice it is not always possible to compute 7;,,¢(A) reliably, due to low
statistics, and there is no straightforward way of its determination for secondary quantities
y(A), e.g. masses or wave functions. In both cases a jackknife analysis is suitable.

Statistical error for secondary quantities: Jackknife error estimation

If y(A) is given explicitly, the best estimate is y=y(A) (not y(A)) and the corresponding error
can be deduced by a simple Gaussian error propagation. The idea of Jackknife-blocking [150] is
to treat the process of measurement and subsequently the transformation of primary quantities
to secondary ones as a black box. From that perspective one can get a more stable estimate
of the error by simply deleting one measurement from the sample and determine its impact
on the average value. Let A7 be the average over the sample with the j-th measurement
removed on which the secondary quantity is going to be extracted, e.g. by the fitting procedure
presented below,

N
) 1 —J 1 .
J— . - = J
A _N—IZAl and A _N.ZA' (2.110)
7] Jj=1

Then A7 =NA— (N —1)A’ are members of the so-called pseudo jackknife dataset. They yield
improved jackknife estimators y; = y(A’), instead of y;=y(A7), of the secondary quantity y
with its improved mean and variance

N
> (-9 (2.111)

1Y 1
=_ 1 ' 207 —

For primary quantities, y(A) = A, 02(y) coincides with the Gaussian standard deviation

(Eq. (2-104)):

N
A = %ZAJ':NZ—(N—I)ZJ (2.112)
j=1
T N
o} (A) = (“(4];__“;‘))2 = NA_[ ! > (A Sy (2.113)
j=1

Using the improved mean of the observable 7, one corrects for a possible bias in the sample
data, i.e. A # A7, So far we have achieved nothing more than getting a stable estimate of the
error of secondary quantities, although still implicitly assuming uncorrelated measurements
and thus underestimating the true error. The missing enhancement to this method is to
aggregate n subsequent measurements into a block and treat the average of that block as one
measurement, repeating the same procedure on the blocked data. The block size is then to be
increased successively until the measured error approaches a plateau from below. In the limit
of an infinite number of measurements, the stabilized error is the correct one for completely
uncorrelated measurements. It can easily be seen that this method also serves as an implicit
determination of the correlation time 7;,¢(y(A)). In fact, it can be extracted via
103, (®)

Tint(Y(A)) 9 a%@) )

where 02 (7) denotes the obtained error at block size n and n,, being the block size at which

(2.114)

the blocked data appears uncorrelated. Concerning this work, we have seen just minor or no
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significant increase of jackknife errors for n ranging between 1 and 5. Thus we consider our
gauge configuration each separated by 300 — 500 update steps to have almost no correlations
left. In order to be on a safe side we choose a block size of 5, namely y =7 + 05(%) which
should in any case be large enough to avoid correlations.

Fitting
A standard procedure to fit a function g(f,a) with parameters a to a set of data points
((fw(ti),sts); E=1,..., Noample; =1, ..., Npoints) is to minimize the x?(a)-measure®

@) = D (ft:) —gltia)) C (i ty) (f(t;) — 9(tj,)) (2.115)

tit;

Nsample
Ut = ey 2 Uil = Tt — ). (116)
sample\ < VYsample =1

A meaningful number of samples Ngymple With respect to Eq. must at least be larger
then the dimension of the symmetric covariance matrix C in order to prevent its singularity.
However, for an insufficient number, small eigenvalues in the covariance matrix can appear,
which lead to unreasonable large values in the inverse. In this case eigenvalue smoothing
proposed by MICHAEL and MCKERREL [152] can be applied. Consider Npoints eigenvalues A;
with \; > A\;11, then the smoothing method leads to N new eigenvalues with

pomts

)\; = max(/\i, )\mm) with  Apin = N (2.117)
Npomts NR i NZRJrl

and Ng denotes the number of retained eigenvalues. This procedure increases the stability of
the fit, and is particularly important for the MEM, see

For a perfect Gaussian distributed set of data, one can show that y? in fact should have a
value which corresponds to the number of degrees of freedom Ngof = Npoints — Nparameter- In
this respect, x?/Ngof can be used as an indicator of the quality of fit. x?/Ngof > 1 is a sign
that g(t,a) is a poor model for describing the data while x2/Ngot < 1 shows overestimated
errors. As Eq. is just an estimation of the 'true’ covariance matrix, we will also use a
simplified version of y?

Xlg@) =) <f(tz)g(tZ)> , (2.118)

- o(ti)

which takes just the diagonal elements of C™1, i.e., the standard deviation into account.

2.5 Z(3)-Symmetry on the lattice

The action of the pure gauge theory has an exact global symmetry associated with the center
of the gauge group, Z(3) (Z(N) for SU(N)). This is the symmetry under the simultaneous
transformation of all time-like gauge links on a given three dimensional hypersurface with n4
fixed

Us(n) — zUs(n) with z =exp(il2n/3) € Z(3) (1=0,1,2). (2.119)

8we have used a C-version of the minimization program minuit [T51] using the MIGrad method.
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This Z(3) symmetry plays an important role in our picture of confinement [153] [154]. One
gauge field observable that is not invariant under this gauge transformation is the Polyakov

loop [155]

Nr—1
1 T
L(n) = &~ Tt I Vs(n,na) with L(n) — zL(n). (2.120)
¢ ng=0

This operator acts as an order parameter for the deconfinement transition:

. 1 =0 < confined phase T<T,
L)= 1 — L ’ . (2.121
(D Nolgoo <‘ N3 Zn (n)‘> { >0 < deconfined phase, T > T, ( )

lim
V—o0
Below T, limy oo (|L|) = 0, so the vacuum is Z(3) symmetric. Above T it acquires a nonzero
expectation value, signifying a spontaneous breaking of the Z(3) symmetry. The system

above T, can exist in one of three identical vacua, corresponding to the three values of z (see
Fig.[2.5(c))).

Im(L) Im(L) Ng=32 "~ +

0% :
Re(L) 0% 0.060.06

Re(L) e(l)
-0.01 -0.01
001 001 000 000 001 001 002 004 -003 002 001 000 001 002 003 004

(a) (b) (c)

Fig. 2.5: Z(3)-symmetry: Polyakov loops L in the complex plane for our simulations at
0.9 T¢ (a) and at 3 T, (b) and various volumes. (c) Distribution of the Polyakov loop in the
symmetric phase (blue) and the spontaneous broken phase (red) from [156].

The expectation value of L is related with the excess in free energy AF,(T') of putting one
static color triplet test charge in the gluonic heat bath [86 [157]:

e AAFT) — (|L)). (2.122)

Thus, a single static quark is associated with an infinite free energy below T, as would be
expected for a confining vacuum. Above T, the free energy associated with a single static
quark is finite, signifying deconfinement.

Fermions break the Z(3) symmetry, so the full theory does not have the symmetry: in the
full theory, the [ = 0 vacuum (corresponding to a real (L)) is preferred. In the quenched
approximation, the configurations are generated with the measure of the pure gauge theory.
However, since we then measure expectation values of fermionic observables, the three vacua
are not identical. For example, while the chiral condensate vanishes above T, for the [ =0
vacuum, a nonzero value is seen in the other vacua for some temperatures [I58), 159]. Also
screening masses depend on the specific Z(3) sector, as has been checked by P.ScHMIDT [156].
Note that a change by a Z(3) transformation can also be interpreted as a change in the
boundary conditions of the fermions [I60]. The usual anti-periodic boundary conditions

Eq. (1.19) are twisted to
P(0,x) = —29(1/T, x). (2.123)
This affects the discrete Matsubara frequencies for fermions and hence the screening masses.
Instead of
wp = (2n+ 1) T (2.124)
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we have
wn = (2n+ 1)m — argL)T. (2.125)

Thus in the free-field case the lowest eigenvalue of the Dirac operator in the real sector, 77,
is three times larger than in the complex sector.

For obvious reasons, we prefer to work with configurations around the [ = 0 vacuum. In
finite volumes one can see tunnelings between the three vacua; however, at the temperatures
and lattice sizes that we work with, such tunnelings are extremely rare. If in some of our
simulations such tunnelings occur, we discontinue the gauge field update and start a new run.
Alternately, we also use a Z(3)-transformation on one time slice of the gauge fields to take us
back to the (real) [=0 sector.

2.6 Evaluating physical quantities on the lattice

2.6.1 Continuum limit

The issue of how to connect LQCD expectation values to the corresponding physical observables,
will be addressed in this subsection. As already mentioned, the dimensionless quantity O can
be rescaled to the physical one by

O(g(a), a) = a= OO (g(a), a) (2.126)
and leads to the continuum form with

Ocont = lir% O(g(a),a). (2.127)

Concerning particle masses, e.g., m = my/a this relation gives a finite result only if the
coupling on the lattice g(a — 0) approaches its critical value ¢g*, where the correlation

length é ~ 7’;1-7\' must diverge, in order to keep m, finite. In statistical models this situation
corresponds to a second order phase transition and due to universality the system forgets
about details in the underlying lattice. In QCD this limit should be realized at g*=0 (f=00)
due to asymptotic freedom. At first sight the theory seems to have no interactions in the
continuum, but this is not the case, since the renormalized coupling does not vanish.

Additionally close to the continuum the observable should be independent of the lattice

spacing, leading to the renormalization group equation (RGE)

0 0
a5~ Al | Oa(a).) = (2.129)
with the g-function defined as
_ .Y
B(g) = as (2.129)

Thus it follows, that a change in a can be compensated by rescaling g.

However, for finite a the r.h.s of Eq. is no longer 0 and becomes subject to modifi-
cations depending on the observable (scaling violation). The range where Eq. holds
approximately is called scaling region. The B-function has been calculated perturbatively up
to four-loop order

Bg) = —bog® = Big” — B2g" — 39" + O(g") (2.130)
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giving the first two (universal)? coefficients'”

1 /11 2
Bo = T <3NC ~3 f> and (2.131)
1 34 10 NZ 1
=— [ =N2_- NN, - =< ) 2.132

The solution of Eq. (2.128]) with the two-loop S-function, valid for a < 1/A, and hence the

dependence of a on g is then given by

g %(a) =26y In (alA) + g(l)ln <2 In <;A>> (2.133)

B1
— 1
= alA = lim {R %) = (Bog® 2% exp <—> } 2.134
Tim 4 R(g) = (g?) T (2131)
Here A is an integration constant and depends on the renormalization scheme. It has a
mass dimension one and must be inferred by experimental measurements. R(g?) is just the
integrated (-function.

Inserting Eq. (2.134) in Eq. (2.126]) one gets

A Ocont
O — Ad

. (R(gQ))d asa—0 (g—g°). (2.135)

Quantities which behave like this are said to show asymptotic scaling. For small enough a
the ratio of two such quantities O' and 0? with the same mass dimension approximately
converges to its continuum value, i.e., the system is in the scaling region,

@1 Oéo t
—— = 22 + O(a). 2.136
o (a) (2.136)

The approximate independence of the ratio from the lattice spacing is called scaling.

2.7 Simulation details

In this section an overview of the simulation parameters for the pure gauge as well as for the
fermion sector, both in the Wilson and the HF case will be given. Furthermore we give the
lattice spacings a in physical units and the renormalization constants we used. In addition,
the procedure to determine the HF parameters is described and the results are shown.

2.7.1 Simulation parameters

All computations with double-precision numbers have been performed on the IBM-Jump!!
computer at NIC Jiilich. For our analysis we allow, depending on the lattice size, between
2000-5000 sweeps for thermalization. All subsequent configurations are separated by 300-500
sweeps, each with 3-5 overrelaxation steps per heat bath. A cold (unit) configuration was
used as starting configuration above T, in order to guarantee that the Polyakov loop falls
into the 'right’ real sector, see of the configuration space from the beginning. On
large lattices it stays in this sector, while for smaller lattices and close to the phase transition,
we had to transform the gauge configuration in order to rotate the Polyakov loop back again.

%independent of the renormalization scheme

10Since both coefficients are positive, the S-function itself is negative up to this order. This means that upon
decreasing a the coupling constant reduces, again confirming the fixed point to be g* = 0.

11 JUelich Multi Processor (see http://jumpdoc.fz-juelich.de)
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o] N, | T/T. | alfm] | a=1[GeV] Ke csw
6.000 | 16 | 0.441 | 0.104 1.905 0.13520 | 1.769231
6.136 | 16 | 0.553 | 0.083 2.389 0.13571 | 1.653008
6.499 | 16 | 0.929 | 0.049 4.012 0.13558 | 1.494176
6.205 | 8 | 1.229 | 0.074 2.654 0.13580 | 1.610974
6.499 | 12 | 1.238 | 0.049 4.012 0.13558 | 1.494176
6.721 | 16 | 1.235 | 0.037 5.338 0.13522 | 1.440388
6.338 | 8 | 1.491 | 0.061 3.221 0.13580 | 1.548725
6.640 | 12 | 1.487 | 0.041 4.817 0.13536 | 1.457898
6.872 | 16 | 1.489 | 0.031 6.432 0.13495 | 1.412488
7.192 | 24 | 1.456 | 0.021 9.435 0.13437 | 1.367261
6.872 | 8 | 2.978 | 0.031 6.432 0.13495 | 1.412488
7.192 | 12 | 2.912 | 0.021 9.435 0.13437 | 1.367261
7.457 | 16 | 2.977 | 0.015 12.86 0.13396 | 1.338927
7.457 | 8 | 5.955 | 0.015 12.86 0.13396 | 1.338927

Tab. 2.2: Estimated scales, temperatures and k. for the parameters used.

For the determination of the scales a,a™! and temperature T quoted see The
critical hopping parameters and the non-perturbatively determined cgy shown in Tab.
stem from an interpolation of values from a T'=0 study by LUSCHER ET AL. [103]. The
authors have studied the vanishing of the current quark mass over a large range of (3 values.
For the inversion algorithm we have chosen stopping criterions € in the range of 10712 —10715,
The numerical parameters and statistics we have used below T, are shown in Tab. In

T/T.| B | NixN: | Neons | &
0.44 | 6.000 | 243x16 | 60 | 0.13240 0.13320 0.13420 0.13480

0.55 | 6.136 | 243x16 | 60 | 0.13300 0.13400 0.13460 0.13540
323x16 | 120 | 0.13300 0.13400 0.13460 0.13495 0.13540
483x16 | 60 | 0.13300 0.13400 0.13460 0.13495

0.62 | 6.499 | 323x24 | 120 | 0.13300 0.13460

0.93 | 6.499 | 243x16 | 120 | 0.13300 0.13400 0.13460 0.13540
323x16 | 120 | 0.13300 0.13400 0.13460 0.13531 0.13540
483x16 | 60 | 0.13300 0.13400 0.13460 0.13531

Tab. 2.3: Lattice parameter and number of configurations for the SW-action below T,.

order to study finite volume and lattice spacing effects above T, we have used at least three
different volumes and lattice spacings per temperature, see Tab.

In the vicinity of the phase transition we are faced with non-trivial topological activities,
e.g., zero-modes or exceptional configurations. In the deconfined phase we left them out
for our analysis to avoid unphysical results or, expressed differently, we mimic the role of
suppression of such objects by the fermion determinant in dynamical simulations. In order to
gain some further insight into the topological properties of the gauge configurations and to
give a justification for this approach we studied the eigenvalues \,, and eigenvectors 1, of
the Dirac operator utilizing the SW-Operator, the hypercube operator as well as the overlap
hypercube operator, which has the advantage to respect the index relation and thus shows
exact zero modes. We observe that the exceptional configurations we encounter at 1.2 T,
indeed have zero-modes )\, =0 with chirality (1,751,) =241 of the overlap operator. The
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investigation further showed that the SW-Operator is sometimes blind for zero-modes. In this
case no or very small fluctuations appear in the CF.

As can be seen in Fig. the CF of an exceptional configuration is usually peaked at a certain
spatial position. Around this position the lowest eigenmodes of the SW-Operator are localized.
As expected their number seems to grow with volume close to the phase transition, see Nexcp
in Tab. Fortunately at higher temperature the number of these exceptionals is vastly
reduced as shown in Tab. which according to the anomaly in Eq. confirms that the
U(1) 4 symmetry gets restored effectively. A detailed analysis deserves further investigation
but goes beyond the scope of this thesis.

T/Tc ﬁ Ng X Ny Neont Nexcp R

1.24 | 6.205 | (64]32/24]16)3 x 8 | (46|61[85[118) | (>15|11[18]19) | 0.13599
1.24 | 6.499 |  (48]36]24)3 x 12 (81(81|70) (14]10[3) | 0.13558
1.24 | 6.721 | (64]48|32)% x 16 (84/96/81) (22/2/1) 0.13507
1.49 | 6.338 | (96]64]32]24]16)% x 8 | (3646/62|59/60) |  (1]0j0[0]2) | 0.13581
149 | 6.640 | (48*|36[24)% x 12 (61/59]68) (3/0/0) 0.13536
1.49 | 6.872 |  (64]48]32)3 x 16 (66/62/60) (0/0[0) 0.13495
1.46 | 7.192 643 x 24 80 2 0.13440
2.98 | 6.872 | (96]64/32[24]16)% x 8 | (37[43]65/80[80) |  (0]0[0[0]0) | 0.13494
2.91 | 7.192 |  (48|36]24)% x 12 (85(80/80) (1]0[0) 0.13440
2.98 | 7.457 |  (64|48]32)% x 16 (80[80/60) (0[0[0) 0.13390
5.96 | 7.457 323 x 8 70 0 0.13390

Tab. 2.4: Lattice parameter and number of configurations for the SW-action above T,
(x data at k=0.13525 available).

For the hypercube operator the parameters (A, ..., A4, p1,...,p4) are known in the free case
and have been given in Tab. . In the interacting case we utilized minimal gauging (see
and compensated the resulting additive mass renormalization [I61] by rescaling the
parameters

Ao — Ao,

Al — uA, p1—uvpr,

A — uPhe ., p2— (w)?pa

A3 — uPAz, p3— (ww)’ps

Mo— ut g, pr— (w)ipy (2.137)

with v and w, where 1/u < v < 1. Increasing u towards its critical value corresponds to
decreasing the current quark mass. The factor v controls mostly the imaginary part of the
eigenvalues, i.e., the width of the eigenvalue bulk spectrum.

To further control the chiral quality of this operator following Ref. [I61] we used so called fat
links:

USEW(.%') _ ( )Uold Z Ustaple (2.138)
:I:I/;éu<4
staple _ grold old ~\ rrold T -
UP(x) = Uy (x)U,(x+0) U)S (z + ). (2.139)

All those parameters have been adjusted such that the eigenvalues follow the GW circle closely,
c.f. Fig. The resulting parameters are shown in Tab. 2.5
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Fig. 2.6: The 80 lowest eigenvalues of the HF-action on a 323x16 lattice at 1.5 T, [162]. For
comparison also the GW circle is shown. The right picture shows that the gap scales for the
coarse and fine lattice spacings at the same temperature.

T/T. 8 N3 x N, Neonf Q U v

1.49 | 6.872 | (48|32)3 x 16 | (108|74) | 0.3 | 1.22 | 0.93
7.457 | (48]32)% x 16 | (135[188) | 0.3 | 1.19 | 0.93
7.192 483 x 12 85 0.3 | 1.20 | 0.90

2.98

Tab. 2.5: Parameters for the HF-action above T,.

2.7.2 Determination of the scale

As seen from Eq. and Eq. , once one has determined the lattice spacing a
or A respectively by comparing a quantity on the lattice with the corresponding quantity
measured experimentally, the scale is fixed. Often this is done by using the p-mass, m, =
770 MeV, the nucleon mass, my =940 MeV, or the square root of the string tension, /0.
The latter characterizes the long distance behavior of heavy quarkonia (static) potentials
Vyg(r) = —a/r +or at T = 0. It is somewhat model dependent, but has the advantage to
be insensitive to the quark mass in the quenched case. Therefore it has been used in this
work. Otherwise one has to ensure that the bare quark masses considered are sufficiently
small. Normally one has to extrapolate.

EDWARDS ET AL. [I63] parameterized the string tension in the range 5.6 < 8 < 6.5 using [164]

(@vo)(g) = R(P)(1+cai(g) + cad(g) + c6a6<g>6>/j5
R(g°)

alg) = — 2L (2.141)
R(g*(8 = 6.0))
with the constants co =0.2371, ¢4 =0.01545, ¢ =0.01975 and A=0.01364 and the function
R(g?) defined by Eq. (2.134)). Using T./1/a=0.630(5) [165] and fixing the critical temperature
to T,=270 MeV [31] a can be set and is given in Tab.

An alternative method to introduce a scale by means of potential models uses the Sommer

(2.140)

parameter ro [166]. This length scale is defined in terms of the force F(r) of the potential,
where

reF(ro) = 12 Wg(?‘) = 1.65. (2.142)

The constant on the right hand side was chosen such that ry has a value of approximately

r=rQ

0.49 fm by phenomenological models. The ALPHA-collaboration [167] found a good description
of their data in the range 5.7 < 8 < 6.57 with

In(a/rg) = —1.6805 — 1.7139(8 — 6) + 0.8155(8 — 6)% — 0.6667(3 — 6)°. (2.143)
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The corresponding a and a~! values show a deviation of at most 10%. Because of this we
mostly show data scaled with temperature. Whenever we quote values on a physical scale we
use the string tension values, /o = 420 MeV, for definiteness. However, one should always
keep in mind this uncertainty.

2.7.3 Renormalization constants

The calculation of the renormalization constants Zy for the currents Jpy is presented here.
They can be defined perturbatively and non-perturbatively. From lattice perturbation theory
the expression for the renormalization constants to one loop order and in the chiral limit is

known to be )

g
1272
where vy is the one loop coefficient of the anomalous dimension and C'p :% (N — L) :% is the

N
value of the quadratic Casimir operator in the fundamental representation of SU(3). Ay has

been determined [168] using the SW-action Eq. and is listed in Tab. for various chan-
nels.

Note that in the channels A and V the renormalization
factors are scale independent, as they only arise from the

use of non-conserved (local) currents (see [Section 2.3.2)).

Renormalization constants, calculated in bare lattice per-

ZH(.gzv CLH) =1-

[yuln(ap) + CrAm, ] (2.144)

Ay YHO by
7.08031 | -8 | 0.14434
9.38431 -8 0.11484
4.09381 0 0.11492
2.94256 0 0.11414

> < U ow| D

turbation theory, often show large deviations from the non-
perturbatively determined ones. LEPAGE and M ACKEN-
Z1E [169] explained these deviations by ultraviolet divergen- Tab. 2.6: The values Ag , by,
cies appearing in tadpole loops. They suggested [168-170] Yro as given in the table in [168-
to use 'renormalized’ coupling constants, which greatly 170].

enhance the predictive power of lattice perturbation theory. Using this tadpole improvement

(TI) the renormalization constants are given as

2
Zu(gPap) = wh(6?) {1 = S22, Lo (o) + Cr ] (2.145)
with the plaquette expectation value
4 1 1
= gz Re TrU,,(z) (2.146)

which is calculated non-perturbatively on the lattice. One way to define the tadpole improved
coupling [171] is given by gl%:g2 /u*. To obtain, however, results in the more common MS
scheme the coupling giTS in this scheme has to be evaluated. This computation starts with

2
the determination of the coupling gy~ which is defined by the potential V(i) = Cr? ‘;(2” ) This
is related to the plaquette expectation value through

)
gv (1 {1 _gv ()

g [162(1 1n(6.7117//j‘)} } (2.147)

at the scale p*=3.4018, where the matching should be most accurate [169, [172]. Using now
the non-perturbatively calculated plaquette values, listed in Table the equation can be
used to compute the coupling g%,(u*). The evolution to the scale p=1/a can then be carried
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out with the standard two loop renormalization group equation given by Eq. . The
conversion to the MS-scheme can be achieved with the relation between the scale parameters
A5g=0.6252Ay. The results are also listed in Tab. Now the renormalization factors can
be calculated by using gI%/TS instead of gp in Eq.
The influence of non-vanishing quark masses is given by

ZH(amq,giTs) = ZH(gl%/TS’ ap=1)(1+ bH(gf/[—s) amy) . (2.148)
Here the coefficients by can be expanded again in powers of the coupling,
bu(gas) = 1+ Crbugiss (2.149)

and have been calculated at one loop level [170]. The results, by, are also listed in Tab.
More reliable renormalization constants have to be determined non-perturbatively. In the
vector and axial-vector channel the validity of the Ward identities, Eq. , can be used as
a criterion to determine the renormalization constants Zy, Z4 and by . Using the Schrodinger
functional scheme, LUSCHER ET AL. [I73] calculated these factors near zero quark mass at
various couplings 0 < g2 < 1 and reached an error of less than 1%. Fitting these data leads to
the parameterizations

1 —0.7663g2 + 0.0488¢* 1-0.8496¢2 + 0.0610g*

Zy = Ta—
v 1— 0.6369¢2 A 1— 0.7332¢2
1 —0.6518¢% — 0.1226¢*
by = . 2.150
v 1 — 0.8467¢2 (2.150)

In these channels (V,AV), the non-perturbatively determined renormalization constants will
be used from now on, whereas in other channels (P,S) we rely on the values obtained from
the TI perturbation theory presented above. A complete list of these perturbatively and
non-perturbatively determined constants for the particular couplings and quark masses can
be found in Appendix B (Tabs. and . They differ at most by 2% in those channels
where both values are available. Concerning the HF action we still did not determine the
renormalization constants.

2.8 Mesonic correlation and spectral functions

In this section the formulation of temporal as well as spatial hadronic correlations and their
relation to the SPF is given. Additionally some of their properties are discussed. The local
and flavor non-singlet operators are given and some of their properties are described.

2.8.1 Temporal correlations

Hadronic properties like masses or decay constants of various particles can be extracted from
the CF's of their associated currents Jp,

T (z) = a(x)TMp(2) for mesons, 2.151)
B(1 ; B(2) ,j :

JB(x) = EiijH( )@Z)Z(:E) (7/)33($)FH( %j%(a:)) for baryons.

Here I‘]\H/[ can be any linear combination of the 16 independent Dirac-matrices (I' € Span{1, 5,7,

YuVs, 0w }) and fixes the quantum number of the channel to scalar, pseudoscalar, vector, axial-

vector and tensor channels correspondingly, while Fg(l’Q) e {1,il,~s5,C,Cvs, Cyy, Cyays b
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The correlators in quenched formulation Eq. (2.81) and Euclidian time 7 € [0,1/7T] ({...)
denotes the expectation value at finite 7') have the form

Grlapai) = (Tnles) T ()
= 5 [ Wdide Gateptuvntep) (Gaelhvate)) e
= ;/dU Tr (M_1($f,CUi)FHM_l(xivmf)FL)

— T (CgM~Y(zp,2y)) Tr (FT M~Y(a, Z)) e=56(U) (2.152)

= xl© «Tf—ﬂUiQQ xy, (2.153)

where A and B are the different quark flavors, while Tr implies the trace over color and Dirac
indices. The second term describes disconnected diagrams in which each of the quark line
starts and ends at the same point. In case of the correlators with A # B the contributions
from the disconnected diagram vanishes. Taking advantage of Eq. we then find our
two-point function

Gulog,as) = ( Tr (M7 g 2) s (M) (23T, ) ). - (2.154)
This corresponds to non-singlet (isovector) channels (I =1), which we consider from now
on, see Tab. Due to translation invariance, we can write Gy (zf, ;) =Gg(ry — x;,0)=
Gu(x,0)=Gg(z). Note that this Euclidean correlator is an analytic continuation of the real

time correlator D7 (t) =(Ju(t)Tu(0)), Gu(r,T)=Dz(—ir,T). In spatial momentum space
this correlator is

Gu(t,p) = ZGH(T,x)e*ip'x
= > (01Tn ()T} (0)]0)e~ P>

= Z<0!em’ié"*u7 (0)e~THHA% 7] (0) |0y P
- ZZ/ 2m) 32En <O|e+ﬁ1_iq&jﬂ(O)G_HQ‘HQ"A‘\n, q><n,QL7[L(0)|0)e_lpx

= Z/ 2En (q> <0‘jH(O)’n,Q>< >CI’\7H( —Ef (@) Ze iqx

d3q Al (@ AH (@) sy o)
= X [ G oy e M enaa—p

|AH(P)’ _E7 (p)r
———— ¢ “H . 2.155
2 2 (p) (2.155)

Here A% (p)=(0|Ju(0)|n, p) is the so called Bethe-Salpeter amplitude, which represents the
overlap of the operator Jx(0) with the hadron state |n) and momentum p. Note that the
one-meson states having spatial momentum p are normalized as

(n,pln, p') = (21)°2E"5(p — p'). (2.156)
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The use of periodic boundary conditions gives rise to another term, describing a backward
propagating particle and we arrive at

AEPIAY®) [ o oyr L B () N.r
GH(TJ)) = ZHQET}?)G E; (p) +e B (p)[N~ ]>

- Z %e—ﬂ}(p)]ﬁ cosh [E[Tf[(p) <J\;T — 7)] . (2.157)

Another way of looking at these CFs, Matsubara Green’s function, is given by its Fourier
transform [I74]. Because they satisfy Eq. (1.19)

n

Gp(0,x) =Gg(B,x)  bosonic operators

Gu(0,x) = =Gy (B,x) fermionic operators (2.158)

their Fourier transform is written with the Matsubara frequency w, = 2nnT for bosonic
operators, or wy, =(2n + 1)7T for fermionic operators (n=0,+1,£2,...):

Gu(r,p) =T i /_C:

n=—oo

dgp —i(wnT—Ppx
e @nT=PX) Qs (wy,, X). (2.159)

Gr(wn,p) depends on the discrete Matsubara modes. The SPF op(w,p,T) is the imaginary
part of the momentum space operator

[e.9]

cglw,p, T 1
Gr(wn, P) _/ wli(zwp—i—z)e dw = oy(w,p,T)= p Im G (wn, P).- (2.160)

Using equations Eq. (2.159)) and Eq. (2.160]) together with the identity

—WwnT —TWw

e e 1
T = ith 0< — 2.161
2 e ™ T (2161)

and the property of the SPF o(—w)=—0(w),'? the CF can then be written as

o0

Ggy(r,p) = T Z e_i“"TGH(wn,p)

n=—oo

= / TZ © og(w,p,T) dw

—o W — Wy

o e_T(U
= / T/TUH(MP,T) dw

—ol—e
00 (—TW +e(T—1/T)w
/0 1—e /T
_ /OO cosh(w(T —1/(2T)))
0 sinh(w/(27))

op(w,p,T) dw

UH(w7p7T) dw
- / K(r,w,T)os (w,p,T) dw. (2.162)
0

The function K(7,w,T) is the integration kernel in the continuum representation which is

essential for the MEM analysis. For 7' — 0 this function reduces to K(7,w)=e¢"7%.

2this is a consequence of D7 (—w)= D5 (w) derived from Eq. (1.19) and known as Kubo-Martin-Schwinger
relation [175]
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To get a rough idea how a zero temperature ’pole4continuum’ parameterization for the
SPF looks like, we show a SPF with a ground state energy Fpy =4 /m%[ + p and continuum
threshold F H7013

on(w, p) = (0|Tu|H (p)) Psgn(w)d(w® — By (p)) + 0w O(w® — Efy ). (2.164)

The correct form of the SPF could, however, be quite complicated. However, the continuum
contribution reaches this behavior perturbatively due to asymptotic freedom. Nevertheless
studying G (7) without any closer specified ansétze is one of the aims of this thesis.
Inserting Eq. into Eq. with the kernel at zero temperature, it follows that at
large distance (large 7) the exponential damping is dominated by the pole contribution. On
the other hand, at short distance (small 7), the power behavior 1/7 exp(—E%{’ .7) from the
continuum contribution leads to a divergent CF for 7=0. Just taking the pole contribution
into account, one gets the low temperature and large distance behavior of Gy

{071 |H (p)) | cosh(Ex (p)(r — 1/(2T)))
2Ey(p) sinh(En(p)/(2T))

Gu(T,p) = (2.165)

In order to increase the number of points in time direction, e.g., for studying various tempera-
tures or to get a better time resolution, but keeping the physical lattice size fixed, e.g., to
avoid finite size effects, one can introduce anisotropic lattices with a. # a,. However, this has
the great disadvantage that the anisotropy factor a,/a, has to be tuned through additional
simulations and a scale analysis becomes necessary. To avoid these additional computational
efforts, we use only isotropic lattices.

In the high-temperature limit, where quarks and anti-quarks are supposed to move rather
freely, their dynamics can be described to leading order by a modified SPF for massless
quarks [174]

o (w,p) = oew? tanh(w/4T), (2.166)

see also

In the following we give a list of meson channels we examine in this thesis and their physical
properties, i.e., decay constants fz, masses my and thresholds Ef ., on the basis of their
lowest states.

Pseudoscalar channel (H =P, 7): Jp=1vv5v

The current Jp projects onto the J7¢ =01 state. For a u- and d-quark combination this
current corresponds to the pion, the Goldstone particle in the phase of spontaneously broken
chiral symmetry. Thus, its ground state mass and excitation vanishes in the chiral limit. At
zero temperature its amplitude is given by

E2 _ 2
(01Tp| P(p)) = fp o L-P=" fp P (2.167)

2my P 2my’

13 This simple parameterization of SPF has been commonly used in QCD sum rules [I76]. For a more realistic
(relativistic Breit-Wigner) form of parameterization (see [I77])

2 2 I'ym 1 « 1
= — | F PP — (1 —S) —_— - 2.163
=2 (w? = mp)?* + Tpmy T T +Plome)/d ( :
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Lowest order perturbation theory predicts for the pion state o. = 8]:77—3. The corresponding

experimental values at 7' = 0 are given as fr = 132 MeV, m,; = 139 MeV and Ep. =
1.3 GeV [27, [177] and with Eq. (2.165)) one gets for the large 7 behavior
_ fpm cosh(mp(r — 1/(27))

Gp(t,p=0) = sm2  smh(mp/(2T)) (2.168)

Scalar channel (H =S, ag): Js=14

The current Jg projects onto J©¢=07" quantum numbers. The identification of the scalar
mesons is a long-standing puzzle. The reasons are their large decay widths and the many
inelastic thresholds in the neighborhood of which scalar mesons lie. The established scalars
are the ag(980) and fy(980) [27]. It is believed that the ag is not a regular gg meson but
that it couples to @d5s more than to #d, since it can decay in KK pairs. Because of these
uncertainties we parameterize the scalar CF simply as

cosh(mg(r —1/(2T)))

G =0)= A\ 2.169
5T P =0) = s s/ (27)) (2.169)
Vector channel (H=V, p): Jv=5_, ¥yt
The current Jy,,, projects onto a polarization state of a vector meson JPC =1". In this
channel one has to take care of the polarization ¢,
F%(p
(O[FvulV(P)) = v )eu (2.170)
Zy fv

Summing over the polarizations leads to

3 2 2 2 4
Av()? = 310Vl = - () S (g,m - z) =gl

and therefore using Eq. (2.165))
3
h —-1/2T
GV(T,p = O) = 3m‘;' cos '(mV(T /( ))
2fy  sinh(my/(27))
Perturbation theory and the experiment give o.= 4]\[762 and Ey,.=1.6 GeV, m,=T771(1) MeV,
fy1=0.2 [27,177].

(2.172)

Axial-vector channel (H=AV,a;): Ja= Zfﬂ PYyiys P

The lightest hadron found with the quantum numbers J”¢ =177 is a1 (1260). The experimental
measured mass for the a; is 1230(40) GeV and f,, ~ f,. Its temporal component mixes also
with the pseudoscalar state with a different sign. The ansatz for the SPF is therefore

oa(w,p) =+ (0|74 A(p))|* 6(w® — E%(p)) — [(0|T4|P(p))[* 6(w® — E%(p))
+ oew?O(w? — thpyc(p)) (2.173)

and the matrix element 2
01400 = AP,

This allows in principle for a negative SPF and has to be taken into account for the fit ansatz.

(2.174)
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Channel Correlator JP¢ 1=1 I=0

PS > (0la(@)ysd(@) [w(0)y5d(0)]T [0)e P> 0=+ 0E(138), () 1(547), (1)
S «(0lu(z)d(z) [u(0)d(0 )]TI E 0+ ag(980),(0)  fo(9807), (o)
\ > (Ola(z)yid(x) [w(0)7:d(0)]f \0> X 1T p(770)0F w(782)

AV 3 (0a(z)ysvid() [@(0)757%:d(0)]T 0)e= P> 1++  a1(1260) f1(1285)

Tab. 2.7: CFs and corresponding quantum numbers for spin (J), parity (P) and charge
conjugation (C') used in this thesis. The last two columns show the particles associated with
the flavor triplet (I=1) and singlet (I=0) ground states.

2.8.2 Spatial correlations

Another method to extract hadronic information especially at non-zero temperature is to
analyze the spatial correlators. They are obtained via an integration over the so-called funny
space V' [178], which includes the Euclidean time and two spatial directions, say Xx=(x_,T)

and p=(p.L,pa=wn)

1/T .
Gr(z,pL,wn) / dT/de o i GH(Z X1,T) (2.175)

with p| = (ps, py) and x| = (x,y). Its connection to the temporal correlator can again be
shown by the SPF. As we have seen at zero-temperature the SPF depends on p? only, which
is a consequence of the equivalence between temporal and spatial direction in Euclidean time.
At non-zero temperature the temporal direction is distinguishable from the spatial one by
its finite extent. Physically this corresponds to a four-velocity of a (static) heat bath in
ng-direction. The presence of such a heat bath introduces modification to the dispersion
relation, so that in general p? # m%{ Correspondingly the SPF depends on p4 and p separately.
The corresponding ground state mass in spatial direction, called screening mass, may thus
differ from the one in time direction, called pole mass, which is in contrast to T'=0. The
propagator in momentum space is then modified by the vacuum polarization tensor II(p, T'),
which contains the modifications to the heat bath

l/T
GH(p,Wn) _ / /dSX GH( ) —iwn T—1PX

_ (2.176)
wn +mH +p +H(p7T)

To illustrate such modifications a simple model can be assumed [I79], where the dispersion
relation in Eq. (2.176)) is written as

Ef(p,T) =my +p> +(p, T) = m3(T) + A*(T)p>. (2.177)

In this parameterization the whole temperature dependence is absorbed in the mass my (7))
and an additional factor A(T'), which is equal to one at zero temperature. This should be a
valid description at least for low temperatures. Using Eq. (2.176) one gets

> d Z ipzz
Guleprwn) = [ T Gulpwn)

1
N 2.178
20, AX(T)" (2.178)
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where
2

w2 =EXp,T) = A;"(% +my(T) + p2. (2.179)
and E(0,T)=m?%(T)=mp(T)/A(T) the thermal screening mass. Obviously one still obtains
an exponential decreasing CF with an energy, which is dominated by the thermal screening
mass, that is actually the pole mass divided by A(T). From the evaluation of the meson
screening mass, governing the large distance behavior of the correlator, one can extract
informations on the nature of the excitations characterizing the QGP. In the high-temperature

limit, where mesonic bound state are supposed to be dissolved, their energies are dominated

by the (almost) massless quarks and E.(p,)=2y/w? + p?. Thus at zero momentum and in
the infinite volume the ground state screening mass should be identical to twice the lowest
quark Matsubara frequency, namely 27Ta =27 /N, [180].

2.8.3 Improvements (Fuzzing and Smearing)

To improve the overlap of our operators with their ground states and therefore to extract more
reliable results of the corresponding masses, we use a technique, first introduced by R.GUPTA
ET AL. [I81] and further investigated by LACKOCK ET AL. [182]. The idea is to make the
operators more physical in the sense that one introduces a spatial extension. The former
local operators Jp () become now nonlocal J () =R (2)T y1p(x) by averaging over quarks
separated by a distance Ra. To preserve gauge invariance these new quarks are connected by
gauge links so one ends up with

3
== (Ul(z—p)...Ul(x — R@)p(z — Rj)
pn=1

cn\r—*

+Uu(x) ... Uz + (R — 1)j)(a + Riy))  (2.180)

The new operator is depicted in Fig. and leads to G (z) = <j5(x)j13(0)> In our case
we have used one quark fuzzed operator in the sink not only due to computational reasons
(the source is fixed at £ =0), but also because it has been argued by the authors in [I82] that
contributions from quark and anti-quark fuzzed operators would partially cancel and give rise
to purely local terms. R is varied from 0 to 8.

Another way to mimic the mesonic spatial extent in more appropriate but unfortunately
not gauge invariant way is to use exponential fuzzing. Gy (7,x) with J(z;y) =v(2)T g (y)
becomes

Gu(T,x) ://dyldy2 w1 (y1)wa(y2) (T (1, %371, 0)T ' (y2, 0; 7, %)) (2.181)
and
6(y1)d(y2), point-point
wi(y1)wa(y2) = { 6(y1)e 2l point-exp . (2.182)

b b
efa|y1| e7a|y2‘ , exp-exp

Here a and b have to be adjusted such that the overlap with the ground state is maximized.
This improvement scheme has not been implemented, because it needs an additional gauge
fixing, which would enhance the computational effort.
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To further enhance the contribution stemming from the gluonic cloud, we also spread the
links in space. This is done by a technique called APE—smearing [183]. The old links U
are replaced by new links U™ via

Un(z) = Pspe) | UL ) + Y Usir'e(a) | (2.183)
Trv#£u<d

see Fig. Psu(3) projects back to the SU(3) group and c is an arbitrary parameter.
For lattice cut-offs similar to those used in our calculations, it could be shown [I82] that an
optimum is gained by iterating this procedure eight times using c=2. We used 0,4 and 8
smearing iterations (SI).

R Staples

c —— + + oA -
Old Link * *

(a) (b)
Fig. 2.7: Operator improvements: Fuzzing (a) and Smearing (b).

2.8.4 Determination of meson masses

The meson masses can be extracted from the exponential fall-off of the CFs at zero momentum
G (m,p=0), which is governed by the Energy Er(p=0)=my. In this thesis we have used
formally three different methods to determine the ground state masses of the particles.

The easiest way and a first estimate to determine a ground state mass is to use the so-called
effective energy definition, which is

i T
E.q(,p) = In (M) (2.184)

with the fuzzing radius R. For small distances this energy is strongly affected by higher excited
states until it reaches a plateau. Here excited states have died out and a proper determination
of the energy of the lowest state for p =0 becomes feasible. However, afterwards it falls
down again due to the periodicity (hyperbolic cosine). Another way of defining an effective
energy [184] now in accordance with the temporal periodicity at finite temperatures is to find
a solution of the equation

Gfi(r,p) _ cosh [E2(7,p) (T — N;/2)]
GE(T +1,p) cosh [Egﬁ(T, p)(T+1— NT/Q)] ’

(2.185)

e.g., with Newton-Raphson’s method. This choice extends the plateau to larger distances. In
both cases it is seen that fuzzing and smearing indeed suppresses higher states, so that the
plateau sets in at smaller distances. From Fig. 2.8 on can conclude R=4-5 to be most suitable,
although it depends slightly on the momentum, the mass as well as on the temperature.
However, for definiteness we decided to take R =5 as an optimal value. The number of
smearing iterations plays only a minor role and has no influence on the final result. The
third choice to determine the ground state mass is to fit the CFs via one- or two state fit
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- T ~ | ~ T I T I T
90 . Eg(p=0)a single state fit ——

N
\

R

- A

. \
“a

isviav=viaviaviavhaviaviay)
L VT T

CONDIUIRWND—O
|
I
I

00L" .

1.6 Egﬁ(f):'())a' sihgle state fit ——
1.4
1.2
1.0
0.8
06 o
0.4

02|

0_0- I , I , I , I

invRavaviaviaviaviaviaviay
L T | e T

CONDUIEWN—O
|
I
I

{

0.54 =1\ m(2)a 0.450(2) ——
0.52 l-exp .

0.50
0.48
0.46

0.44
0.42 _

0.40 | | | | | |

Fig. 2.8: Effective screening energy (mass) for a ’smeared’ P at T = 0.55, 483 x 16 and
x=0.13300 with Eq. (a) and Eq. (b) at various radii 0 < R<8. For better
visibility the errors have been omitted but shown in (c). Comparison of various methods on
the same data at R=0 (c). The plateau from the coincidence of one- and two state mass fits
is shown by black lines.
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ansitze Eq. (n=1,2). The fit range of Ty, up to Ny — Tpin is then varied. This
allows also to extract the amplitudes and, by varying R, also the Bethe-Salpeter amplitudes
(see . We used all three methods concurrently as a cross-check where possible.
However, final quotes on mass values are mostly obtained from the global fits of correlators
since, in most cases, the effective mass estimates become noisier and less stable. The same
methods are also applicable to spatial correlators.
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3 Maximum entropy method with free data

A reasonable probability is the only certainty.

E.W. Howe

In this chapter we will outline the Maximum Entropy Method (MEM), which we will use
to tackle the ill-posed problem of Eq. (2.162). Namely we need to reconstruct SPFs op(w),
which consist of O(103) points from lattice correlations Gy (7, p) available at O(10) points

No,

GH(Ti,P) = / K 7—27 UH 7p ZK Tl7wj oH w]ap)A
7=0
No
= ZKZ']‘UJHAQJ Wi = j : Aw, (31)

where N, is the number of Aw intervals within [0, wya.]. The MEM is based on Bayes’ rule
and has been successfully used over the past years in various fields of research. In LQCD the
MEM has been applied at zero as well as at finite temperature. It was found to work very
well for extracting masses and decay constants of ground and even excited states from CFs at
zero temperature [I85]. Hence, it was also used for analyzing temperature correlators using
Eq. to investigate properties of mesonic observable in heat bath, see e.g. [11l [186]. Here
we will describe its functionality and discuss several features.

The second section of this chapter is devoted to the analytic derivation of the free continuum
and lattice CFs and SPFs for the Wilson and the truncated FPA. The latter can be utilized
as an input (default) model for the MEM in our later analysis in On the lattice
free means g — 0 < B — o0, which corresponds to setting all gauge links to unity. The free
SPFs are considered to better represent the high energy part of the SPF in comparison to the
commonly used continuum form o.w? with an additionally fixed wnqz-

Already the first studies of the MEM in an interacting theory, see e.g. [11] [72, [I85], revealed
the presence of lattice artifacts in the SPF, which are quite different from the cut-off effects in
the free case. Additional bumps in w observed at T' = 0 showed a scaling with a (provided w is
in physical units), which is not physical for higher excited states and lead to the interpretation
as bound states of doublers. We will focus on that also in The next sections serve
as a short summary of what was found and described in more detail in [I87, [I88], with a
small but important correction to the high energy part of the free hypercube SPF. Finally
the dependencies of the MEM on the input parameters is briefly reviewed.

3.1 Bayes’ theorem and maximum entropy method

According to a theorem by BAYES [I89] the joint probability of two events P[A, B] can be
written in terms of a conditional probability as

P[B|A]P[A]

PIA,B] = PIAIBIPIB] = PIBIAIPIA] & PIAIB] = —=p50,

(3.2)

65
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where P[A|B] is the conditional probability of A given B, and P[A] is the probability of A,
and P[B|A] vice versa. This theorem is used to infer the probability of an SPF denoted by o
given the lattice correlator G and prior knowledge parameterized in H:

P[G|o H]P[o|H]
P[G|H]

Plo|GH] = (3.3)

Here Plo|GH], P|G|ocH]|, and P[o|H] are called the posterior probability, the likelihood, and
the prior probability, respectively.

3.1.1 Likelihood and likelihood function

Following the central limit theorem, which states that for a large number of measurements
the data obey a Gaussian distribution, the functional form of P[G|oH] is well known and can
be expressed via usual x? by

2
P[G|oH] ~ exp(—L) = exp(—X?) (3.4)

with

= Y (Glm) — G ()5 ) — (), (35)

ij

where G(7;) is the average over all measurements and G*(7;) = 3, KjjotAw is the CF of
a trial SPF o'(wj). Cj; denotes the symmetric covariance matrix, which has already been
described in Eq. . Without any prior knowledge H, P[o]| = constant and maximizing
P[o|G] is equivalent to maximizing P[G|o] (Eq. (3.3)). This results in the standard y2-fitting
procedure in However, it requires more data points then fit parameters and is
therefore not appropriate for our problem.

3.1.2 Prior probability

The extra ingredient of the MEM is its prior probability P[o|H]. It is obtained by introducing
external information (prior knowledge) H on o, such as ¢ > 0 or even a functional form for o
denoted by m(w) (default model). Using the axioms locality, coordinate invariance, system
independence and scaling [11} T90HI92] a functional S(o), which gives

o1 is a more plausible image than oy < S(o1) > S(02) (3.6)

can uniquely be fixed as the Shannon-Jaynes entropy

50) = [ o) - m) - atom (2] @ (3.7)

(@)
_ NZO 7(03) = ) = ol n ( 22 )| A (55)

The prior probability can then be written as
Plo|H]| = Plo]am] ~ exp(aS(0)). (3.9)

Here the real and positive factor a: controls the weight between entropy and likelihood function
and will be integrated out in the final result. For large « the resulting SPF is dominated by
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the default model, while small o corresponds to best fitting the lattice data. A critical remark
might already be added: because even small differences between a trial SPF and the default
model function make the entropy term large, the default model function strongly affects the
outcome of the MEM when the data quality is not sufficient. Therefore the default model
should include only reliable information we know beforehand. If not, there is a risk the result
might be controlled by hand [193].

3.1.3 Outline of the MEM procedure

In principle there are three different methods, which differ in the way they handle a: The
historical, the classical [190] and R.K. BRYAN’s method [194]. The latter is superior to the
other two in searching for the maximum of P[o|Gam| and can be divided into mainly three
parts.

Searching for the most probable image o, for a given

The most probable SPF with given «, 04, is obtained by maximizing P[o|Gam] thus

P P P
PlolGaml| - SPelemlPlIG)| L (0v,s - v,0),, =0 (310
oo o=04, 00 o=0q o
with (@) t
olw: oL 0G oL
o = — E 1 J O’L = = KT' 11
Vo j n<m(wj)> and -V oGt o AG! (3.1

Since o(w;) is of O(10%), K(r;,w;) is a large matrix, whose dimension can be reduced
substantially using the so-called singular value decomposition. K can be written as product
K = VZUT with U and V being orthogonal matrices and = a diagonal matrix with ordered
singular values ;. Since most §; are very small or even zero, the space can be reduced
to the ‘singular space’ with dimension Ny, < N, by a criterion, e.g., &Emin > 1076602, Its
basis is spanned by the first Ny columns of U containing the N, x Ng matrix U (*) and the
N, x N matrix V). Due to the fact that the SPF ¢ is positive semi-definite, it can thus be
parameterized using the orthogonal matrix U?® and a vector w in this singular space:

N
o(wj) = m(wj)eXpZU](l‘z)uk. (3.12)
k=1

Substituting the decomposition of K and Eq. (3.12)) into Eq. (3.10) gives
OL __
u) = —au— —=V*' =0, 3.13

an equation, which can be solved by a standard Newton search. For a more detailed description
see [I86] or BryaN [194].

Averaging over «

The final SPF is then determined by a weighted (P[o|Gm]) average over all possible o(w)
olw) = /DU o(w)Plo|Gm)]

= /da/Da o(w)Plo|Gam]Pla|Gm)

Q

/da 0o(w)Pla|Gm]. (3.14)
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Here we have assumed that P[o|Gam] is sharply peaked around o, which is considered to be
a valid approximation for data with small errors. Using the identity

P[Glma] = / Do P[GlomalPlo|mal (3.15)

and again Bayes’ theorem leads to

Pla|Gm] = /DJ P[G|oma]Plo|imal - P
x P[a|m]/Da e@e0) (3.16)

with Q(a,0) = aS(0) — L(0). Again the same approximation as in Eq. has been made
for the second line. For P[a|m] any flat function can be used. We use Plajm| = 1/« in
Eq. as proposed by JEFFREY [195] on grounds of scale invariance!. Since o, maximizes
@ and Pla|Gm| turns out to be sharply peaked around some value « (see Fig. [3.5)), a
Gaussian approximation of the integral in Eq. [186, [196] by expanding @ with respect
to (502' = 0; — (Ua)i,

Qe 0) ~ Qlav, o) — % S 60 (ady; + Aiy) b0 (3.17)
4,J

becomes suitable. This gives

Pla|Gm] ~ éexp {; Zln (af)\) + Q(a,aa)} (3.18)

with the eigenvalues \; of the real symmetric matrix

L
7 90005

(3.19)

o=0q

and simplifies the computational effort. Normalizing P|a|Gm], such that [ Pla|Gm]da =1,
the SPF can thus be determined.

Error analysis

Since o(w) for successive w bins are highly correlated, an error can only be estimated over a
certain range of w, I = [w;,wys]. Then

(0a) Jy dwoa(w) ~ >jer Oa(w)Aw
o f[ dw (wf — wi)

((60a)?), = (wf_lw)Q / do /I /30 (w)io ) PlaiGmal (3.21)

12

(3.20)

with do = o(w) — 0a(w). Again the final result is obtained by integrating over « like in
Eq. (3.14).

'a factor, which can be absorbed in the integration measure (do — dIn(«)) in Eq. (3.14)
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3.2 Free correlation functions in their spectral representation

In this section a complete definition of the free CF and their spectral representation in the
continuum is reviewed. Due to asymptotic freedom of QCD the free-field limit is approached
at infinite temperature. Then a discretized version of these for the Wilson and the truncated
FPA is formulated on the lattice. This follows closely the calculations, which have already
been presented in [I87, [197] with only minor modifications. These definitions are necessary for
a complete understanding of the MEM result and the comparisons to the continuum theory

presented in and
3.2.1 Continuum correlation and spectral functions

The computation of the continuum CF starts with the free fermion spectral function op(kg, k)
and the free fermion propagator Sg(iwy,, k) in momentum space,

. > dko o (ko, k)
k) = — .22
S (iwn, k) /Oo 21 iwn — ko (3.22)
op(k) = 2msgn(ko) kv, + mgld(k* — mg) (3.23)

with the fermionic Matsubara frequencies wy, = (2n + 1)77". With these, one obtains the
meson SPF as the imaginary part of the momentum space correlator Eq. (2.160))

con 1 <[ Pk , ,
% t(w,p =0) = - Im TN, Z /// W Tr [vsT'y Sp(iwn, k) I‘L% Sp(iw,—w, k)] ,

n=—oo0 " "
(3.24)
which leads to [174], 187, 198, 199]
cont NC 2 2mf1 2 2mq ?
oM (w) = 5 O(w —2my) wtanh(w/4T) 41— | — ag + by | — +
8T w w

N, o0 m2 m?
c s don 02 11— " [ £1 2 "\ po/T, 2
2T w d(w) /m Po Do p% <fH +f p% nx(po),

where np(w) = 1/(e*/T + 1) is the Fermi distribution. Further SPFs always implicitly assume
zero momentum p = 0. The factors ay, by, f}{ and f12{, introduced here, are given for different
quantum number channels in Tab. In the massless limit SPFs are chirally symmetric,
lop| = |og| and |oy| = |oay|. The first term is the leading order perturbation result for the
continuum and Eq. leads to the constants o, for w — oo as introduced in
The continuum CF's for instance for the P case in the chiral limit can be obtained from this
SPF by using Eq. and equal those derived in Ref. [I80]:

G%(rT)

W = 7TNC(1 — 2TT)

1+ cos?(2m7T) cos(2n7T)
sin®(277T) “sin®(2n7T)

(3.25)

Here G% is rescaled with the temperature to obtain a dimensionless quantity. As in the
high-temperature limit 7" is the only relevant scale, all quantities with a nontrivial dimension
in this chapter will be rescaled from now on, i.e.,

Gy ~

00 = — GH_@H:W r—7=1T. (3.26)
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Thus we have

Gu(7) = / 05 (@, TR (@, 7,7) (3.27)
0
with the dimensionless kernel
K — K = cosh(@(7 — 1/2))/sinh(&/2). (3.28)

However, it is sometimes also useful to maintain the explicit temperature dependence of the
distance, i.e., the notation 71" or zT for discussing the cut-off dependence.

3.2.2 Wilson fermion correlation and spectral functions

The starting point for our discussion is the Wilson fermion propagator in momentum space
generalized to anisotropic lattices £ = a,/a; > 1 and for the moment arbitrary r, and r, = r.
It is given by

—irygsin(ky) —iK + [r-(1 — cos(ky)) + M]

w _
AT = sin?(ky) + K2 + [r;(1 — cos(kyq)) + M2 (3.29)
3
M = é P32 = cos(h) +my | | (3.30)
1 , =1 |
K = EZ% sin(k;) , (3.31)
=1

where we have set a; =1 = a, = £. The corresponding dispersion relation is defined by the
two poles k4 = iF_ and k4 = w4+ ¢E of the propagator

U=Lr(rr+ M)
1—r2

U = (L+rM)*+ (1 =) (K + M?).

cosh(Fy(k)) =

(3.32)

In the limit m,k — 0 and r # 0 # r; Eq. (3.32)) simplifies and leads to cosh(Fy) = E:g If
additionally the limit 7, — 1 is taken, the contribution of the negative pole E_ corresponding
to physical quark mass m at k = 0 is zero, as it should be, while E, as the corresponding
mass for the doublers diverges. However, also for finite k the limit r, — 1 eliminates the

ghost branch by changing the dispersion relation to

K2 + M?

(see Fig. . In the next step we derive an analytic expression for the quark propagator
SYW(7,k) in a discretized time. This can be done by analytic continuation of AW (k) in k4
and by taking the limit NV, — oco. This allows to compute the Fourier transform of the quark
propagator

SW(rk) = / % AW (k) ethaT (3.34)

—T
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analytically [200] by an integration over the contour shown in Fig. Returning now to
finite N, and using the identities given in Appendix C} Eq. (C.1)), leads to the desired form of
the quark propagator? (E = E_)

[e.9]

SY(rk) = > (-)"ST(r+m,k) (3.35)
E isin k; sinh[E(k)N; (7 — 1/2)]
- ; 2(1 + M)sinh E cosh(E /2T) i
. sinh £ cosh[E(k)N.(T —1/2)]
2(1 4+ M)sinh B cosh(E/2T) s
1 —cosh E + M sinh[E(k)N, (T — 1/2)]
2(1+ M)sinh E cosh(E/2T) 1. (3-36)

It can be used to obtain the analytic expression for the meson CF's

SO N, \?
GY(F) = N () > T [T S™ (k)08 ()

EN,) 2
Ny \° < W (k) cosh[2E(k)N, (7 — 1/2)] + d¥ (k)
Nel—) > S . (3.37)
ENs ) A2 (1 + M)2cosh®(E(k)/2T)
where the coefficients
1 S TH sin? k K }
W H iti i H H
cg == |T. T, —T, , 3.38
H 9 [ 4 sinh? E “ “ sinh? E ( )
1 S TH sin? k; K?
dy == |1 &=t 2 _ 7 7H ] , 3.39
2 [ 4 sinh? E “ “ sinh® E ( )
are given by
1 1
i = [FHWFL%W% T = Jmirar)). (3.40)
With the abbreviation
IC2
(k) sinh? E ( )

these parameters can be evaluated with Tab. Note that sinh? E — K2 in the massless
continuum limit. Thus d"V' approaches one for massless quarks.

Now the analytic quark and meson propagators are known, Eq. needs to be transformed
into Eq. , in order to evaluate (compute) the SPFs. In other words one has to reduce
the three dimensional momentum integral (sum) into a one dimensional energy w integral.
This transformation is only possible for a one-to-one relation between momentum and energy,
thus 7 =1 is needed. These transformations are described in [I87, 197] and one ends up
mainly with two numerical integrations within specified boundaries giving & (@), which is
bounded by

Wmin = 2N-In (1 +m/¢) , Wmaz = 2N-In (14 (6+m)/¢) . (3.42)

Alternatively one has to use the binning procedure described in [Section 3.2.4]

*Here the contact term [200] appearing due to a remanent E. contribution, which is proportional to §(7), is
neglected.
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H ag | b | [y | & cy dy; ' "
P 11010710 1 0 52 0
S 1] 10| -1 —dV dV —1 —drr aFr — 2
3
ZV; 2 1|1 |-1]|3-—d" av 362 — gf'P arr
=1
Vi 0] 0 /|-11]0 0 -1 0 —62
4
V=Y Val 2 | 1|0 |-1]|3=dV| d¥V—1 |352-dP| dfFf—¢?
pn=1
3
> A 2 2] -1|-2] 2% | 24 -3 | —2dFF drr — 52
i=1
Ay ol 11 |-1]|1=d" av 62 — gfe arr
4
A=>"A | 2| 3| 0| -3 |1-3d" |3V —1)|06-3d" | 3d"'" - 4%
pn=1

Tab. 3.1: The coefficients ag, by, fi; and f# for the free continuum spectral functions o<¢

cont

and the coefficients cy and dg for the Wilson CF, Eq. (3.37), and the corresponding ones for
the truncated FPA, Eq. .

3.2.3 Hypercube fermion correlation and spectral functions

Although technically more involved, one can follow the same path for the hypercube action.
Like in the Wilson case we start to derive the free FP SPF with the free FP propagator, which
in momentum space is given by a Fourier transformation of Eq. (2.68)) and (2.72):

St (k) =

—iy40sinky — iK1 — iKg cos ky + K1 + Ko cos kg

with

K1 = Z?:1 Vit

-Tt

K2 + k2 + 62) + 2cos ky(K1Ka + Kikg) + cos? ky(K3 + k3 — §2
11K 5 K3

Ko = Z?Zl YiBi

O-Qr +E
N

iE 4

, (3.43)

(3.44)

-1t

Tt

Fig. 3.1: Integration contour and poles in the complex ky plane for the Wilson action (left)
and for the FP-action (right).
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and «;(k), B(k), ki(k) and d(k) listed in the Appendix |Cl The two poles of the propagator

can be written as

)

cosh E = (C;DQ L) (3.45)
sgn(Q)cosh By = P (652 — QR), (3.46)

with the functions

P(k) = K1Ko + k1Ko, Q(k) = K2+ k2 — 6%, R(k) = K2+ 3+ 6% (3.47)

The resulting dispersion relation, shown in Fig. |3.2(b)| along the different lattice directions
lA<, is greatly improved with respect to the Wilson action Fig. It stays close to the
continuum one up to |k| ~ 2.5/a whereas the Wilson dispersion relation starts to deviate
significantly already at |k| ~ 1.5/a. This is also true for the rotational symmetry as can be
seen by comparing the dispersion relations along different axes.

The second step is again the computation of the fermionic propagator in the N, — oo limit
which can be performed analytically by an integration along the contour shown in Fig. [3.1
The two different poles appear as two different contributions, where the second contribution
from Ey(k) is a ghost (doubler) branch similar to the Wilson case with r, # 1 [200]

1
2/ P2 — QR sinh E;
[(k1 — K1) + (k2 — iKCa) cosh By + 74 6 sgn(7) sinh E}]
(_1)79(—62)
P2 — QR sinh E,
[(k1 — iK1) sgn(Q) + (ko — iK3) cosh Ey + 4 0 sgn(7) sinh Es] .

SEP(r k) = e Bir (3.48)

e—EgT

The ghost branch results in an oscillating contribution only for large momenta, where Q(k) < 0.
At small momenta the entire contribution is suppressed because Ey > Fq. Therefore, the

10 B T T T T i T 10 Eia T T T i T
1,0,0) — 1,0,0) —
5T ELLO; — 8T El 170; -
6r cont—_ 6r cont—_
4+ B 4
2 F 2 F B
k k
0 | | | | || | 0 | | | | || |
0 1 2 3 4 5 0 1 2 3 4 5

Fig. 3.2: Dispersion relation of the Wilson action (r-=1) (a) and of the truncated FP action
(b). The higher energy branch of the dispersion relation for the truncated FPA results from
the pole F5 and the lower energy branch from the pole F;.
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second branch contributes only to the short distance part of the CF. Returning again to finite
N; via Eq. (3.35)) leads to the mesonic CF for the truncated FPA

~FP N\ 2 = £ (k) cosh[2E; (k)N (7 — 1/2)] + dEF (k)
G ) = Ne <> Ek: 8 (P2—QR)cosh2(E1(k)NT/2)H

N,
+ AGE? (7). (3.49)

where the functions CZP and dZP are given by

P 1 [ZZ TZH(aZ +2ﬁi cosh Ey)? N TH (k1 + m; cosh F1)? N Tféﬂ (3.50)
8 sinh” F; sinh® F

e L[ X, TH(a;+ Bicosh Ey)?  TH (k1 + kg cosh Ey)? I

R s - T +THS?|
8 sinh® Fy sinh® F4

They are listed in Tab. for different channels. In contrast to the Wilson fermion case they
depend on two different functions d'"’(k) and (k). The first one is given by

(K1 + K2 cosh E1)?
sinh? By

and the second one is defined in Appendix [C| Both approach one for massless quarks in the

d"P (k) = (3.51)

continuum limit. The contribution arising from the second pole is denoted by AG%2 and is
also given in Appendix [C] An analytic expression for the free FP SPF with only the ‘physical’
pole taken into account is given again in [I87, [197]. Here, for the hypercube action we have
derived the SPFs by the binning procedure described in the following section.

3.2.4 Binning

As already mentioned, to transform the three dimensional momentum integral analytically
into a one dimensional integral over the energy, the dispersion relation has to be bijective,
namely a strictly increasing function of the momenta. For the case of Wilson fermions with
r # 1 or the contribution from the second pole of the truncated FPA this is no longer true for
the entire BZ. Hence, one needs to divide the zone into intervals in which this condition is
fulfilled and perform the transformation in every interval separately. This can be avoided if
one assumes the validity of the continuum kernel and transforms the integral with the delta
function. Then one can write the meson CF generically in the form

Gu(®) = /d3k5 F(k) cosh(2E(k)N,(T —1/2)), (3.52)
with the known dispersion relation E(k). Then one rewrites the integral as
o T g~ cosh(@(F — 1/2)
Gulr) = / Wt W) —GmGE2) (3.53)
0
with
Ft@) = /d3l<: d(w—2E(k)N;) [F(k) sinh(N,E(k))] . (3.54)

For the actual computations, one smears the delta function by partitioning the energy interval
into finite elements w,, with wy,+1 — w, = Aw to obtain

Fn = Y OQ2N,E(k) —wn 1) O(w, — 2N, E(k)) [F(k) sinh(N,E(k))], (3.55)
k
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where % (%)=5,, for & € [@p_1,@y]. In the limit of AL — 0 this equation becomes exact.
The SPFs presented in Fig. have been obtained using 500 bins where each bin contains
on average 10° different momenta. The results with only taking the first physical pole into
account have been successfully cross-checked with the integration method. Due to a small error
in the numerical implementation, which did not distinguish correctly between the different
energy contributions, the cut-off effects in the SPF for the truncated FPA have changed
somewhat in the high frequency region compared to [I87].

3.2.5 Summary of observed cut-off effects

In [197] cut-off effects of the free CF as well as of the SPF have been studied extensively.
Some of the findings, which are important for our analysis are recapitulated here:
e Deviations from the free continuum SPF of more than 15% occur already at wa = 1.5

for Wilson fermions, while the truncated FPA stays close to the continuum SPF up to
wa =~ 4.8, see Figs. |3.4(a)|and [3.4(b)]

e A comparison of Gp(7 = 0.5)/T3, which is most strongly effected by finite lattice size
effects, at different volumes (aspect ratios N,/N;) indicates that for N; = 16 fixed,
both formulations achieve the infinite volume behavior N, — oo for an aspect ratio
N,/N; Z 4.

~

e Comparing the ratios of free CFs Gp/Gg at zero quark mass, which should be 1 for a
chirally symmetric action, indicates that the truncated FPA is better suited for larger
distances, i.e., has better chiral properties, than the Wilson action.

e For massive quarks the optimal Wilson parameter for the infrared part of the free SPF
is given by r = 1/£ with small deviations at large distances, but huge cut-off effects at
short distances.

3.2.6 Probing the MEM on free and interacting model data

A lot of tests have been performed on MEM, e.g., Refs. [111 [I86 [188] for its dependence on
various input parameters like N, wyq: and o.. They have been done by using for instance
mock data: Free or interacting CFs G(7) have been constructed by various SPF ansétze like
Delta-, Gaussian- or Breit-Wigner Peaks and continuum contributions. On these Gaussian
distributed data with a variance

J(T)_{ bG(t) T if < N;/2

b G(t) (N, —7) if 7> N, /2 (3.56)

have been generated to mimic the noise level of lattice data. Here b controls the noise and
is chosen in the range 0.0001—0.1. Finally the output of the MEM was compared with the
original SPF. The following list tries to collect the main findings.

e Using Wilson free data, one can reconstruct the (free) continuum SPF Eq. (2.166), if
one uses the lattice kernel K'** (7, w, N,) [186]
N,—1

cosh(w(T — 55)) 2w exp(—i2nm1 /Ny )
K — 2T Klat N’T _ = T ) )
<T7 W) Slnh(%) - (T7 w? ) NT Z 4Sin2(n7r/NT) + w2 (3 57)

n=0
However, calculations for the free theory show that cut-off effects show up in the SPF

rather than in the kernel [I87]. So we use the continuum kernel and the free lattice SPF
as our default model.
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e Peak height and widths are influenced by

— the number of configuration N¢: insufficient N leads to a flattening and broadening
of the peak [180],

— the number of time slices IV-: This could only be studied by leaving out some data
for larger time separation [I1],

— the discretization of w (Aw): peaks broaden and reduce in height for a decreasing
number of N, [186]. In what follows we choose for consistency N,, in the range
500-700.

e The MEM is able to correctly reproduce the free W [188] as well as the FP lattice SPFs
now with the modified UV-part for N, = 12,16, 24, c.f. Figs.[3.4(a){and [3.4(b)l In
the AV channel of the Wilson SPF, one has to modify the default SPF in the UV part
to avoid a non positive definite SPF. Thus the tiny deviations between the free and
reproduced SPF (green).

e Once wyq, is larger as the ultraviolet lattice cut-off for Wilson fermions Eq. (3.42)), i.e.,
Wmaz =, 4N7 10 Wpee dependence in the SPF's for T' < T, is found anymore.

Fuzzing leads to a vanishing of the second bump, but induces also a bump in the free
spectral function [201) 202]. Thus we solely use point-to-point correlators.

In order to handle the problem of very tiny eigenvalues of the covariance matrix due to
limited statistics, which sometimes induces small entries in the first bin of the SPF [186]
and leads to significant shifts in the first peak position, one can use the eigenvalue
smoothing procedure, described in However, a definite criterion for finding
the ‘correct’” SPF cannot be given. Thus we adopt the way this problem is handled
in [I88], which starts with the lowest smoothing level N = 0 until the SPF is insensitive
under small changes of the smoothing level or the entry in the first bin is minimized
(mostly Nr =2 or N = 3), see e.g Fig. In particular above 7T, smearing becomes
relevant, since it leads to shifts of 2 2 in units of w/T in the first peak position.

0.40

i T " 12 i i i ]v‘ _‘ 1 T i 035 T T T T T T T
op(w,T)/w R=1—"1 L op(w,T)/T?
0.35 |- 0.10 . . 0.30 )

0.30 I
, 0.25

0.25 r
0.20

0.20

0.15
0.15 L

010l | 0.10 i
0.05 | \\h\ﬁ_\)\; 0.05 [f

0.00 &

0.00 = :
40 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Fig. 3.3: Dependency of the SPF on the smearing level Ni at 0.97, with « = 0.13460 on a
483x 16 lattice. The right figure is scaled for a better visibility of the entry in the first bin. In
this case the optimal smearing level is Ng = 2.
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0.1 IT ] T T T T 0.16 T T T T
o(w, w 2
o (w,T)/ 1; — | omal ow,T)/w g |
' N- =16 V/2 012 | N7 =16 V/2 .
AV/2 —— AV/2 ——
0.06 - cont. ——+ 0.1 | cont. —
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Fig. 3.4: Reconstructed free SPF of the Wilson (a) and the truncated FPA (b) using the
MEM with b = 0.01 and No = 100. They fall exactly on top of the corresponding free SPF
derived by numerical integration and Binning respectively.
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Fig. 3.5: The posterior probability distribution P[a|Gm| normalized by its maximum for
various combinations of mock data N and b for free Wilson fermions (pseudoscalar) on a
643x16 lattice (left) and at 0.9T, on a 483x16 lattice with k = 0.13300 both with the free SPF
as default model. The better the quality of data the narrower the distribution is.
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4 Analysis of mesonic properties below and
above T,

In this chapter the data concerning CFs and SPFs, are analyzed and interpreted. Using a
fit to the spatial and the MEM analysis of the temporal CFs, we extract screening and pole
energies (masses), Bethe-Salpeter amplitudes (wave functions) and decay constants. Based
on the energies, we discuss various forms of dispersion relations and possible temperature
dependencies. Furthermore, the SPF's for the hypercube action in the interacting case especially
above T, are considered using MEM. They are inter alia compared to the former Wilson SPFs.
The cut-off dependence of Wilson and HF CF's is investigated by studying their ratio to the
free CFs at 1.5 T, and 3 T,. Except for the MEM results, many of our statements rely on
spatial CFs since here the signals can be followed to much larger distances. Even though they
are not directly related to physical observables and their connection to SPFs is more involved,

they still will provide useful physical insight.
4.1 Extracting masses and energies from correlation functions

To extract mesonic properties from spatial CFs, both a single (m=1) as well as a two-state
(m={1,2}) parameterization as Eq. (2.157)), here in spatial direction, is used:

615(:,) = 3 B IO oy (7)) 4 exp (BTN, - )] (4)

where p lies in funny space and AT (R, p) = (0|J4|m, p) corresponds to the overlap of the
(improved) operator with the meson. The strategy is then to increase the starting point of
the fit interval z; = 2initiq successively, where the large z value z¢ = 2fina = Ny /2 is kept
fixed, until the fit stabilizes to a plateau of the fit parameters. The only significant signal
remaining in Gy (z) from a large enough z; onwards will be the one from the lightest state.
Using symmetrized CFs leads thereby to more stable fits, especially for noisy correlators.
Having established further the optimal smearing and fuzzing level for large enough lattices
both parameterizations often lead to common plateau values for the ground state screening
masses listed in Tab. and Tab. (see also [188]). However, for small lattices or quark
masses contamination by higher states or small signal /noise ratios respectively is still present.
It often happened that both fits showed a slightly different plateau value. In Tab. we list
both the single energy value, supported also by the local effective energy Eq. , and an
averaged energy of both fits. Unfortunately for some lattice configurations measurements in
the AV channel do not exists (n.e.), since they have not been measured in the past. As can
be clearly seen in the tables the error increases with decreasing pion mass as expected, since
the correlation length in the chiral limit induces larger fluctuations to the CF. Furthermore,
exceptionals lead to even larger errors in the vicinity of the phase transition below T,. As
already mentioned, close to but above T, we have omitted the corresponding configurations.
Some of the data, especially from small lattices, have been reanalyzed and show only minor
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deviations to Refs. [I86), [I88] which are explainable by the new statistics and/or by the use of
a new fitting program minuit. However, the values coincide mostly within the given errors.

4.1.1 Masses and energies from temporal correlation functions

To extract the pole energies we use the SPF, i.e.; the location of the maximum of the first
(ground state) peak, gained by the MEM with the free lattice SPF as default model. Whereas
here we are focused solely on the masses, we investigate SPFs on the whole in more detail in
The results below T, are listed in Tab. [B.8] In order to get an error estimate, we
use the simple Jackknife procedure. However, due to our low statistics these errors seem to
be rather small compared to the decay widths, which are sometimes also taken as an error
estimate. Systematical errors, introduced e.g., by the eigenvalue smearing procedure are much
larger than the statistical ones.

4.1.2 Masses in the chiral limit

The particle masses for different x values have to be extrapolated to the chiral limit, i.e., to
the physical quark mass value. The critical values of k below T, have been determined by a
linear extrapolation of the squared pion mass vs. 1/k via

m3(k) = cpmy (4.2)

with the VWI quark mass mg defined in Eq. (2.27). Additionally, quenched chiral perturbation
theory (¢xPT) recommends using

1

mp(k) = cpmg ™ (4.3)
with 0 small and positive [203]. Phenomenologically also an ansatz
mib (k) + chib(x) = chmg (4.4)

is suggested [204]. However, all three ansétze lead to similar values of k., so no significant
improvement to Eq. (4.2)) can be observed.
Once &, is fixed, Tab. the V and S masses can then be obtained by

my,s(k) = my,s(ke) + cv,s (i - 1) : (4.5)

Ke
Again this has been done with screening (Tab. and pole (Tab. masses, see Fig.
Deviation from the linear behavior in Egs. or can formally have three reasons.
First, for very heavy quark masses the binding energy can be approximately neglected and
the screening masses in all channels should be equal to twice the quark mass. Secondly, for
small quark masses ¢y PT predicts the occurrence of the so-called quenched chiral logs [203]
arising from so-called hairpin diagrams. And thirdly as the bare quark mass decreases, the
contribution of topological zero modes to the P and S susceptibilities rises as' |v| /(m2V).
On the other hand |v| VV. While in unquenched simulations zero modes are suppressed,
they induce a systematic error in quenched simulations, which increases for smaller m, and
decreases with V. As can be easily shown, the contributions of these zero modes are positive
for the P and negative for the S. In Ref. [205] the authors suggest therefore to add the S to

!This relation holds solely for chiral fermions, but its impact can also been observed with our data. This
might be explained by the smallness of our a.
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the P CF, which leads to a cancellation of the zero modes in the P+S channel. Albeit this
gives an additional contribution to the P CF, it should be suppressed like higher states by
its larger (scalar) mass compared to the pion. Thus a clean pion mass extraction becomes
possible. Although this approach is in principle applicable, this behavior is expected only for
chiral fermions?. However, in our case the problems with exceptional configurations due to the
additive mass renormalization of Wilson fermion still persist. While the P+S remains almost
unchanged compared to the P the negative contributions to S are so large, relative to the S
values, that the CFs even become negative for small quark masses and large distances. Like
the S SPFs the mass fits have small signal/noise ratios, and plateaux, if any, are seen only for
small distances. Hence, any mass values from S CFs quoted should be taken with caution.
Finally we decided to omit the lowest pion masses for the extrapolation in Figs. [4.1(e) and
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Fig. 4.1: Comparison between MEM pole masses and screening masses of the two-exponential
fit in the P and V channel with N, =16 fixed at T'=0.55 T, (a,b,c) and T=0.93 T, (d,e,f).

The bars denote the error ranges in k.. Values omitted for the chiral extrapolation are marked
with circles.

Masses below T,

We start with the investigation of the particle masses below T.. As can be seen in Tab.
differences between the critical k* of screening masses and « of the pole masses are very small.

2The reason for the different behavior in the case of Wilson (non-chiral) fermions is that the real eigenmodes
of the Dirac operator are not eigenfunctions of s with eigenvalues +1 in general.
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T/T. | N, K mia mi, [GeV] mga m%[GeV] | L[fm]

C
0.93 | 48 | 0.13557(8) | 0.214(4) | 0.859(16) | 0.345(10) | 1.384(40) | 2.35
8) 0.353(10) | 1.416(40) | 1.57
)

32 | 0.13549(10) | 0.219(
0.260(8) | 1.023(32) | 1.18
- 3.98

24 | 0.13582(6) | 0.246(12) | 0.986(48
0.55 | 48 | 0.13568(2) | 0.361(6) -
32 | 0.13575(1) | 0.349(8) | 0.834(19) | 0.531(8) | 1.269(19) | 2.66
24 | 0.13606(5) | 0.385(8) 0.404(7) | 0.965(17) | 1.99
0.44 | 24 | 0.13551(5) | 0.399(5) | 0.760(10) | 0.850(30) | 1.619(60) | 2.50

T/T. | N, Ke mya my [GeV] msa mg[GeV] | L[fm]
0.03 | 48 | 0.13556(3) | 0.327(1) | 1.312(4) | 0.338(17) | 1.356(68) | 2.35
32 | 0.13555(5) | 0.297(24) | 1.192(96) | 0.339(8) | 1.360(32) | 1.59
24 | 0.13574(4) 0.299 1.199(16) | 0.280(10) | 1.123(40) | 1.18

)

)

)

(4)
0.55 | 48 | 0.13552(7) | 0.378(6) | 0.903(14) | 0.478( 3.98
32 | 0.13546(4) | 0.398(1) | 0.948(2) | 0.614(11) | 1.467(26) | 2.66
24 | 0.13588(1) | 0.360(1) | 0.860(7) | 0.558(14) | 1.333(33) | 1.99
0.44 | 24 | 0.13553(12) | 0.428(5) | 0.815(10) - - 2.50

Tab. 4.1: Screening (above) and pole masses (below) in the chiral limit together with k% (k.)
as obtained from N,;=16 lattices with the different volumes and temperatures below T,.

At 0.93 T, and 0.44 T, they coincide within the errors, whereas at 0.55 T, the discrepancies
are up to 3%p. Finite size effects in k7 are at most 2.5%p. As we will still see in
the same holds for the k. values using the VWI together with the AWI current quark mass
definition.

At the lowest temperature of 0.44 T, the extrapolated screening V mass 760(10) MeV coincides
with its physical value of 770 MeV. At 0.55 T, and 0.93 T, this mass is significantly larger,
834—920 MeV and 859—986 MeV, respectively. This could indicate either a temperature or
finite size effect, since the spatial extension shrinks with temperature, if N, is kept fixed. In
contrast the V mass on the 48> x 16 lattice at 0.55 7, is larger than on the 323 x 16 lattice,
which is however not significant. Keeping the physical lattice size roughly fixed at all three
temperatures, the V screening masses still increase with temperature.

In Fig. we show the finite volume ex- 4.5
trapolation of the vector screening masses
with m{, (V) = mi (o0) (1 +¢/V) moti- 4}
vated by FUKuGITA ET AL. [206]. This
description works for volumes lower than
< (2.5 fm)3, while a leveling-off might set
in for larger volumes. The final results with
834(32) MeV at 0.55 T and 840(14) MeV

| my /T

- 2.7fm e
at 0.93 T still lie somewhat above the zero 95 L 2.5fm |
temperature result. Earlier theoretical pre-
dictions made by LUSCHER in 1983 offer 1/VT?

an exponential fall-off of the hadron masses %.00 ' 005 010 015 020 025 030 0.35
[207]. The common explanation for the ap-

parent discrepancy is that Liischer’s formula Fig. 4.2: Finite volume extrapolation of vector
deals with asymptotic large lattice volumes Screening masses. The T = 0 vector mass Is
where finite-size effects arise from interac- indicated by the black line.
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tions between copies of virtual pion clouds surrounding the hadron in a box with periodic
boundary conditions. In contrast, FUKUGITA ET AL. ascribe the power-like behavior of their
data to a distortion of the hadron wave-function itself (as it would occur for rather small
lattice volumes). Taking both pictures together one would expect a power-like dependence for
sub-asymptotic lattice volumes that gradually changes into an exponential fall-off towards
larger box sizes.

The fact that the AV CFs have not always been measured in the past, prevent a systematical
study of the AV screening masses.

Concerning pole energies, it is hard to give definite values of the V and S masses and errors,
i.e., the peak position depends on the smearing level. In a reasonable range (Np = 1—4)
fluctuations and thus systematic errors are of the order of 10%, c.f Fig. Using the Jackknife
procedure for optimal Ng gives much smaller statistical errors. The V pole masses are with
one exception somewhat larger (~ 10%), i.e., within the above mentioned systematic error
range, than the screening masses at 0.44 T, and 0.55 T, and significant larger (~ 40%) at
0.93 T,. In contrast the S pole masses match the screening ones at 0.93 T, and are again
larger < 16% at 0.55 T,. Such a behavior is shared also by the P. For 0.44 T, the chiral
extrapolation in the S mass was impossible, since no peaks show up for the two smallest quark
masses. By looking at the corresponding CFs this is not unexpected since the long distance
data is fully disturbed by zero modes.

Masses above T,

Above the critical temperature, close inspection of the masses extracted from fits to spatial
CFs do not reveal a definite plateau behavior. The fit results listed in the are
determined by a plateau fit on few large zy mass parameters. Although the masses are close
to the free limit (277") down to 5%o for 6 T¢, they can only serve as mere estimates. We defer
the discussion therefore to in which a systematic analysis of finite lattice spacing
and finite volume effects is carried out. Here we list only the general features which become
already clear from the fits. In both discretizations the P/S masses approach 27T from below
with increasing temperature, while the V/AV masses are always larger and lie even above
the free value. The effective chiral SU(2)4 and U(1)4 symmetry restoration shows up in
degenerate P/S and V/AV masses, see also The influence of changes in quark
masses here from 5 MeV to 30 MeV at 1.5 T is only weak and within the errors.

4.1.3 Dispersion relations

In this section we study the dispersion relation of the P with non-zero momentum. In contrast
to the continuum, the momenta are discretized and limited on the lattice. Since we study pole
and screening energies at finite temperature, where Lorentz invariance is broken, we restrict
our analysis to projections of meson CF's on truly spatial momenta only, i.e., p; = (p1,p2),
with p;=2mn; /N, € [—7/a,7/a] and n; € [—Ny/2, Ny/2]. The bosonic Matsubara frequencies
are set to zero, since the first non-zero one wy =27 /N;a is rather large. The energies are
extracted again via fits to CFs, Eq. , or utilizing the MEM, respectively. Their functional
dependence on the momenta is compared to various relations on the lattice. Besides the
known continuum relation

E2=p2+m? (A)
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we further check three forms

sinh’ F = Z sin? p; + sinh? m (B),

3

sinhQE = g sin? 2% 4 ginh? (©)

2 £ 2 2 ’
3

sinh? % = Zl: sin’ % + sinh? % (D),
which are all justified by different lattice actions (discretizations) of an free effective meson
(scalar) theory at T'=0. The correct relation is not known a priori and there exist of course
more such relations, but they will not be considered here. It has been found that at T=0 Eq. C
describes the data best for pure Wilson [208], as well as for TI Wilson fermions [156, 209].
Our results concerning the screening energies are shown in Fig. For small quark masses
or momenta one can hardly decide which form is preferred by the data. However, for the
heaviest pion mass also in spatial direction Eq. C seems to be favored, while Eq. B is ruled
out by the data.

The data at 1.5 T, in both fermion formulations lie somewhat above the dispersion relations
and get closer to them at 3 T.. However, the energies of the hypercube fermions even at 3 T,
still lie somewhat above the expectations and have smaller errors. Again no definite conclusion

about the correct form of the dispersion relation can be made. In Figs. [4.3(c)| and [4.3(d)} we

plot the free effective screening energies at z = N, /4, since no energy plateau can be found
(see . They fall significantly above the bound state forms Eq. B-D. Concerning
screening energies we have also checked the V channel, but found no qualitative difference.
The same analysis has been carried out using energies extracted by MEM for the Wilson
action. In contrast to 0.55 T, where the dispersion relation matches the spatial one, the P
pole energies at 0.93 T, lie significantly above the expected form. Assuming a temperature
effect described as in

2

E?=m? + AX(T)p? and (E*)%= ZET) +pl = (m*)?*+pt (4.6)

the ratios (E?/(E?)?) (p.) = A*(T,p.) and m?/(m*)* = A*(T,m) with p = 0 allow for

quantifying A(T') as function of momenta or quark mass (see Figs. [4.3(e) and 4.3(f))). For

the heaviest quark mass we find the averaged A%(T') to be 1.32(1) and 1.35(4), respectively.

These ratios obviously increase with decreasing quark mass. For lighter quark masses the
error bars are too large to decide whether A%(T,p_) is a constant in p; .

Assuming the validity of Eq. C for 0.55 T, allows to quantify the discretization error since in

the continuum, Eq. A, the kinetic mass
Mpin = (32E/8p2|p:0)’1 = sinhm (4.7)

equals the static mass m=FE(p=0). Even for the heaviest pion at 0.55 T, this corresponds to
m=0.446(3) and my;, =0.460(4), which is a difference of just 3% and supports the assumption
that we basically see continuum dynamics.

To summarize, no definite conclusion of the correct form of the dispersion relation can be drawn
from the data. Considering our very small a values they all, except Eq. B, are indistinguishable
and match the continuum dispersion relation like our data do. However, Eq. C seems to be
favored for heavy quark masses. Furthermore no temperature effect can be seen at 0.55 7.
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Fig. 4.3: Screening energies E, of the P at 0.55 T, (a), 0.93 T.. (b) on 483x 16 lattices and
above T, on a 643x 16 lattice (c) for Wilson fermions. (d) shows the energies of the Hypercube
fermions above T, on a 483x 16 lattice. Estimates for the temperature modification factor
A(T) for the P at 0.93 T, (e,f).
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In contrast comparing temporal and spatial dispersion relations at 0.93 T, indeed shows a
temperature effect, which can be described by model assumptions with A?(T) ~ 1.3—1.5.
Above T, the screening energies follow the same behavior. Especially the Hypercube fermion
energies lie somewhat above the expected forms.

4.2 Bethe-Salpeter amplitudes and the pion radius

As a by-product of the smearing procedure described in the Bethe-Salpeter
amplitudes defined in Eq. allow to determine rough approximations about the mesonic
particle extent or the electromagnetic charge radius. Basically they are a measure of the wave
function ¢, (R, p), i.e., the probability of creating a particular quark-anti-quark state m,p
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with spatial extent R. As in the case of the energies we take the parameterization of Eq. (4.1))
for fitting our CFs. Following [210] the corresponding wave function is then given by

A (R, p)

¢m (R, p) = A7(0.p)

(4.8)

The extraction of the amplitudes A%} (R, p) is by far not unique. Fitting CFs for each value of R
separately would be a poor strategy, since spurious dependencies of the ground state mass on R
make it difficult to relate the amplitudes to each other. Alternatively one can use simultaneous
two-state fits at all R values with one common ground state energy. Unfortunately this fitting
procedure was not stable enough to resolve the remaining R dependence of the excited state
energies, so we proceed by setting ground as well as excited mass fixed as has been done
already in, e.g. [132] 211]. For this analysis it is necessary to ensure that solely the ground
and one excited state is present. Therefore we checked for stabilities of both energies by
skipping step by step the first points of the CF. Since the excited state contribution reduces
with the fit range, one should be careful not to omit too many points. Stability was found for
the ground state parameters by omitting the first 3 points. Since we have no such criteria for
the first excited states and indeed a stable excited state was not found, we simply use the
same interval. Nevertheless, all quoted results concerning excited states have larger systematic
errors, such that any conclusions on these are not reliable. In the following we focus on spatial
Bethe-Salpeter amplitudes on N, =48 lattices, where full fuzzed and smeared data sets below
as well as above T, are available. As in the last section we restrict the analysis to spatial
momenta up to |p| < 2]2\,—7;.
As an additional cross check we have used another method for extracting the ground state
wave function namely
_ GII-%I(Z ) pL)
G(I)-I(Z ) pJ-) 7
which holds only if all excited states have completely died out. However, it is not possible to
use this method for extracting excited wave functions. Below T, the ground state parameters
turned out to agree within errors, whereas above 7T, the deviations are much larger, c.f. the
second row of Tab. Obviously a clear separation between ground and excited state is not
possible. For extracting a pion radius we describe the Bethe-Salpeter wave function through
modified hydrogen S wave functions [212]

$o(R) o< exp <— (12))”) (4.10)

P1(R) o <1 - i) exp <— <I§I>V> (4.11)

for the ground and the first excited state. The parameters Ry, Ry, R, and v are again
determined from fits. For a Coulomb potential one would assume to have v=1, whereas for a
purely linear potential one gets v=1.5. A quark anti-quark bound state is expected to have a
value somewhere in between. We use this parameterization to obtain an estimate of the mean
square radius, the second moment of the electromagnetic form factor. According to [212] 213]
it can be calculated with

¢o(R) (4.9)

CreRR iR e

0
<R2>BS T W fd?’é (Z%(‘ﬁb = 541/VF(%) (4.12)
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or equivalently for ¢

. 1 P(5) — #-P(6) + RL%PW)
(R*)ps = — B 2P0 T PG (4.13)
with
P(m)=2"%R"T (%) . (4.14)

Here w is a factor which accounts for the quark anti-quark position relative to the CM, where
the latter depends also on the gluon motion [I81]. If one assumes that both particles are
always fixed on the opposite sides of the CM at R/2, one has w=4, while w=2 for particles
moving uncorrelated.

Analyzing the pseudoscalar data below T, Tab. [£.2] a continuous shrinking of the particle
radius with increasing mass and rising momenta is observable, as expected [214]. It has
been claimed that fast moving particles with high momenta are Lorentz contracted and
show therefore a smaller radius. However, since the momentum directions 27/N,(1,1,0) and
permutations thereof mix contracted with non-contracted directions, while our smearing is
done in a rotational symmetric way, this cannot be a pure Lorentz contraction effect and such
a claim cannot be fully justified by this study. The increase of the v parameter indicates a
more linear behavior of the potential. Thereby the radius as well as the errors extracted from
the ratio method are significantly smaller than the ones extracted from the simultaneous fits
method.

Comparing the almost mass independent radius values in the chiral limit <R2>0 ~ 0.142 fm?
(0.55T..) and 0.103 fm? (0.937,) with the experimental result 0.439(8) fm? [215] shows large
deviations. Even an w value in Eq. , which we have chosen to be 2 to produce the largest
values, cannot remove this discrepancy. This observation is in agreement with earlier findings
in e.g., Ref. [211], where it has been argued that the Bethe-Salpeter amplitudes might not
capture the charge distribution of mesons as e.g. determined by form factors.

1 : 1y
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0.8 FAR T=093Tp=0 o 0.8 it T=093T0p=0rs— ]
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Fig. 4.4: Ground and excited state wave function of the P at all considered temperatures and
Ny=48 (mr=1 GeV below T;). Thin curves in (a) represent the results of the ratio method.

Above the critical temperature, Tabs. and [4.4] we focus on the ground state wave function,
since it gives more precise results and ambiguities regarding the excited state are absent.
Again the radius shrinks with increasing momentum, while nothing can be said about its mass
dependence. On 323 x 8 lattices in Tab. the data do not fit anymore to the functional
dependence of Egs. and over the whole range of R and we had to restrict our
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T = 0.55T,, 48°x16, 3 = 6.136, a = 0.083fm
ground state excited state
My P2 Ry v < > Ry v R, <R2>1BS
0.450 | 0O 4.36(6) | 1.17(4) | 17.8(1 7) 3.98(17) | 1.33(10) | 6.55(8) 6.5(30)
1 4.29(6) | 1.20(3) | 16.2(11) || 3.91(16) | 1.34(10) | 6.52(8) 5.9(24)
2 4.22(6) | 1.21(3) | 15.3(10) || 3.85(17) | 1.35(10) | 6.46(7) 5.5(21)
4 4.10(6) | 1.24(3) | 13.6(9) 3.70(24) | 1.36(13) | 6.37(8) 4.7(21)
0.353 | 0 4.44(6) | 1.16(3) | 18.9(14) || 3.98(20) | 1.31(14) | 7.08(9) 6.0(31)
1 4.36(4) | 1.18(2) | 17.5(8) 3.90(19) | 1.32(12) | 7.02(8) 5.5(22)
2 || 4.29(10) | 1.20(6) | 16.2(22) || 3.84(26) | 1.33(18) | 6.90(9) | 5.2(30)
4 4.17(5) | 1.23(3) | 14.4(9) 3.69(30) | 1.35(20) | 6.76(16) | 4.5(23)
0.286 | 0 4.47(6) | 1.15(3) | 19.6(15) || 3.95(24) | 1.29(17) | 7.51(10) | 5.8(31)
1 4.39(7) | 1.18(4) | 17.7(16) || 3.89(20) | 1.30(14) | 7.40(10) | 5.5(23)
2 || 4.32(10) | 1.20(6) | 16.4(22) || 3.84(30) | 1.32(15) | 6.90(13) | 5.4(29)
4 4.21(4) | 1.22(2) | 15.0(7) 3.66(34) | 1.33(23) | 7.13(19) | 4.4(22)
0.232 | 0 4.49(7) | 1.15(4) | 19.8(20) || 3.93(37) | 1.28(29) | 7.85(23) | 5.6(44)
1 4.40(6) | 1.17(3) | 18.2(13) || 3.87(32) | 1.30(24) | 7.56(16) | 5.3(33)
2 4.32(12) | 1.20(7) | 16.4(25) || 3.84(41) | 1.32(28) | 6.91(21) | 5.3(50)
4 4.23(5) | 1.23(3) | 14.8(9) 3.65(44) | 1.33(29) | 7.37(20) | 4.4(23)
T = 0.93T,, 48°x16, 3 = 6.499, a = 0.049fm
ground state excited state
Mo p? Ry v < > R v R, <R2>119 S
0.361 | O 5.89(10) | 1.15(6) | 34. 1(49) 4.67(14) | 1.38(13) | 7.98(10) 7.1(26)
1 5.73(8) 1.18(5) | 30.1(34) || 4.59(12) | 1.39(11) 7.83(6) 6.7(20)
2 5.58(8) 1.21(6) | 26.8(34) || 4.52(10) | 1.41(9) 7.69(5) 6.2(13)
4 5.35(10) | 1.25(7) | 22.8(31) || 4.31(15) | 1.44(13) 7.49(9) 5.3(12)
0.272 | 0 6.07(12) | 1.14(8) | 37.1(72) || 4.62(19) | 1.34(14) | 8.82(30) 7.0(21)
1 5.89(12) | 1.16(8) | 33.3(63) || 4.56(19) | 1.37(14) | 8.57(27) 6.5(17)
2 5.73(13) | 1.20(10) | 28.9(62) || 4.50(19) | 1.39(17) | 8.27(19) 6.1(19)
4 5.50(12) | 1.26(9) | 23.7(40) || 4.27(15) | 1.42(14) | 7.91(18) 5.3(11)
0.206 | O 6.17(14) | 1.13(8) | 39.3(79) || 4.53(22) | 1.32(11) | 9.56(56) 6.9(12)
1 6.00(10) | 1.16(7) | 34.6(57) || 4.49(18) | 1.35(10) | 9.18(40) 6.4(10)
2 || 5.83(13) | 1.22(9) | 28.7(53) || 4.44(22) | 1.37(19) | 8.60(30) | 6.1(19)
4 5.60(19) | 1.31(15) | 22.5(58) || 4.17(13) | 1.40(12) | 7.86(16) 5.2(9)
0.125 | 0 6.18(12) | 1.11(7) | 41.4(76) || 4.36(37) | 1.28(19) | 9.97(119) | 6.8(20)
1 6.00(10) | 1.16(7) | 34.6(57) || 4.50(18) | 1.35(10) | 9.18(40) 6.4(10)
2 || 5.83(13) | 1.22(9) | 28.7(53) || 4.44(22) | 1.37(19) | 8.61(30) | 6.1(18)
4 5.60(20) | 1.31(15) | 22.5(58) || 4.16(13) | 1.23(12) | 7.86(16) 8.1(45)

Tab. 4.2: Parameters of the Bethe-Salpeter wave functions of the P below T, with w=2. Ry,
v and <R2>%S are given for the ground state and Ry, v, R,, <R2>}3$ for the excited mass.
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T = 1.24T,, 485x16, B = 6.721, a = 0.038fm

ground state excited state
me 9| R v [ [ R v | Ra | (®)
0.342 6.15 1.24(5) | 30.7(30) || 4.93(10) | 1.37(9) | 7.93(7) | 9.1(31)

(7)
(1) | 1.147(1) | 36.4(2)
5.94(8) | 1.28(6) | 26.6(29) || 4.82(10) | 1.40(10) | 7.76(6) | 7.9(25)
(1) | 1.171(1) | 32.1(1)
(8) | 1.33(6) | 22.8(23) || 4.67(8) | 1.42(7) | 7.47(4) | 7.1(19)
(2) | 1.197(1) | 28.3(2)
5.45(10) | 1.40(9) | 18.6(24) || 4.41(10) | 1.45(9) | 7.09(6) | 5.8(13)
5.37(2) | 1.227(2) | 24.0(2)

=R DN~ = OO
ot
\]
e~

T = 1.49T,, 48316, 8 = 6.872, a = 0.031fm
ground state excited state
P Il I R )% N B AR
0.365 | 0 || 6.34(9) | 1.28(7) | 30.3(38) || 5.04(11) | 1.42(9) | 7.61(6) | 9.3(31)
0 || 6.34(1) | 1.160(1) | 38.6(2)
1 || 6.11(4) | 1.32(4) | 26.3(17) 4.93(7) 1.44(7) | 7.41(4) | 8.4(20)
1 || 6.11(1) | 1.187(1) | 33.8(2)
2 || 5.89(8) | 1.37(7) | 22.6(24) || 4.78(10) | 1.46(10) | 7.19(6) | 7.4(23)
2 || 5.87(1) | 1.217(1) | 29.2(1)
4 || 5.55(9) | 1.45(8) | 18.0(19) 4.45(9) 1.51(8) | 6.81(7) | 5.5(10)
4 || 5.51(2) | 1.261(3) | 23.7(2)
0.361 | 0 || 6.73(2) | 1.325(1) | 31.6(2)
1 || 6.50(1) | 1.350(1) | 28.4(1)
2 || 6.27(1) | 1.380(2) | 25.3(1)
4 || 5.93(2) | 1.416(3) | 21.5(2)
T = 2.98T,, 483x16, 3 = 7.457, a = 0.015fm
ground state excited state
m. | p* | R v | @) R v R, | (R,
0.394 | 0 || 6.95(7) | 1.36(5) | 32.0(24) || 5.49(9) | 1.51(7) | 7.42(5) | 11.0(27)
0 || 7.04(2) | 1.217(2) | 42.1(3)
1 || 6.66(4) | 1.41(4) | 27.4(15) || 5.33(5) | 1.51(5) | 7.24(2) | 10.9(20)
1 || 6.73(1) | 1.251(2) | 36.0(2)
2 || 6.39(4) | 1.48(4) | 23.0(11) || 5.16(6) | 1.54(6) | 7.07(3) | 8.5(15)
2 || 6.47(2) | 1.283(2) | 31.4(2)
4 || 6.00(6) | 1.56(6) | 18.6(12) || 4.81(7) | 1.58(7) | 6.70(4) | 6.4(11)
4 || 6.05(2) | 1.331(3) | 25.3(2)
0.390 | 0 || 7.37(1) | 1.383(2) | 34.8(1)
1 || 7.092) | 1.414(2) | 30.8(2)
2 || 6.81(2) | 1.448(2) | 27.2(2)
4 || 6.45(3) | 1.482(3) | 23.4(2)

Tab. 4.3: Parameters of the Bethe-Salpeter wave functions of the P above T, with w=2. R,

v and <R2>?BS are given for the ground state and R, v, R,, <R2>}35 for the excited mass.
FEach second row list the fit results by the ratio method Eq. .
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data to the R€[0,5] or R€ [0, 7] interval, respectively, in order to extract meaningful results.

T = 1.497,, 483x12, 3 = 6.640, a = 0.041fm

ground state excited state
mr | p* || Ro v (R*)] Ry v I, (B*) s
0485 | 0 | 5.15(5) | 1.41(3) | 16.4(7) || 5.14(11) | 1.28(9) | 6.50(4) | 33.6(157)
0 || 5.10(1) | 1.263(2) | 20.3(7)
T = 1.49T,, 32°x8, 3 = 6.338, a = 0.062fm
ground state excited state
me |7 R v [ | R v | Ra [ (R
0713 R=51] 0 3.80(2) 1.41(3) | 8.90(36) || 4.51(20) | 1.34(2) | 4.56(4) | 33.1(55)
R=7 0 || 3.687(4) | 1.444(1) | 8.06(10)
T = 2.98T,, 323x8, 3 = 6.872, a = 0.031fm
ground state excited state
me [0 R [ v [@L N RO[ v [ R | (R
0.736 R=5| 0 || 4.06(5) | 1.55(7) | 8.56(63) || 5.05(64) | 0.97(5) | 4.33(9) | 146.6(448)
R=7 0 || 3.92(2) | 1.596(6) | 7.66(9)

Tab. 4.4: Parameters of the Bethe-Salpeter wave functions of the P above I, with w=2. Ry,

v and <R2>(J]35 are given for the ground state and Ry, v, R,, <R2>]lgs for the excited mass.
Each second row list the fit results by the ratio method Eq. .

By looking at the data at 1.5 T,., Ry and <R2>0 in lattice units increase with 4. One might
argue that the gauge links for larger 3 are closer to the unit matrix and an insertion of links
in the fuzzing procedure increases the wave-function width. However, <R2>0 stays constant in
physical units. Taking on the other hand a constant a at 1.5 and 3 T, Ry shows that the
broadness of the wave functions shrinks. Thus the shrinking of the wave function can be
interpreted as a pure temperature effect.

To also make contact with the temporal Bethe-Salpeter amplitudes, in Fig. we have plotted
both spatial and temporal amplitudes extracted by the ratio method at different small distance
points. While they are indistinguishable below T, clear differences between these amplitudes
appear above T.. The spatial wave functions are smaller than the temporal ones. This effect
might be explained by a confining potential in spatial directions with a string tension, which
increases with temperature as has been found in Ref. [30] in studying the (3+1)-dimensional
SU(3) pure gauge theory

0s(T) = (0.566 + 0.013)¢*(T)T  for T > 2T.,. (4.15)
Furthermore KOCH ET AL. [I78] used a modified Coulomb
Vyg(r) = al—1/r + 2T In(rT)] (4.16)
and a confining (string) effective potential
Vyq(r) = —a/r + osr + const. (4.17)

They plugged both into a two-dimensional Schrédinger equation, solved it numerically and
compared the wave functions to the actual LQCD data. The results suggest that the confining
effective potential reproduces the data well while the Coulomb potential, favored perturbatively,
is definitely too weak at large distances.
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Fig. 4.5: Bethe-Salpeter amplitudes by the ratio method at 0.55 (left) and 3 T, (right) on
483x16 lattices for small distances z and t in CFs by the ratio method.

4.3 Quark masses from axial Ward identities

When chiral symmetry is restored the pion is no longer a Goldstone boson and has a non-
vanishing mass. Therefore the determination of bare quark masses m; by searching the critical
hopping parameter k., where the pion mass vanishes, is obviously not valid above the critical
temperature. Instead one can use the current quark mass definition Eq. using the O(a)
non-perturbatively improved currents Eq. . Since Eq. is an operator identity,
which holds in principle for all distances, it should also be independent of temporal or spatial
direction. In Figs. we show m aw for both directions and at temperature below and
above T, and find indeed no difference. However, since the mass plateaux for spatial correlators
are larger we have used spatial correlators for our calculations only. In Tabs. and we
quote our results. Both, m; and m a7, are connected to the renormalized quark mass mpg via

ZA(1 4+ baamy)
— 7. (1+b,, 4.1
Zp(l+bpamb)mAWI (1 + by,amy)my, (4.18)

mp =

from which it follows expanding in powers of a
mawr = Z {1+ [bm + (bp — ba)|amp} mp + O(a2) = Z(mp)mp + O(a2) (4.19)

with Z=27,,Zp/Z 4. The factors by,, bp — by and Z are known and have been calculated
non-perturbatively by GUAGNELLI ET AL. [216] at zero temperature.

In Tab. we show the k7 values below T, i.e., the extrapolated x parameter, where the
AWTI quark masses vanish. They are in good agreement with the x? values in
Using my and & one can also obtain the corresponding 7 above T, via the VWI, Eq. ,
which are listed in Tab. These values coincide fairly well with the interpolated values
from Ref. [103] in see Fig. At some temperatures, especially for NV, = 8 at
1.5 and 3 T, the tendency to smaller quark masses with increasing volume becomes apparent.
This finite volume effect might explain the rather large deviations at 3 T, and § = 6.872 in
Fig. At 1.5 T, and 3 = 6.640 the critical hopping parameters at two different simulated
x values agree with each other. Hence quark mass effects can be neglected.

All in all these results confirm the findings in [I88] that no clear temperature effect above T,
is observable.
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To compare the quark masses obtained at different scales p=1/a with each other, they have
to be transformed to their physical value at a common scale. This can be done by using
a mass independent renormalization scheme, e.g., MS where the renormalized quark mass
mp is only a function of the scale p or accordingly gr(p). Including a mass into the RGE

Eq. (2.133) one obtains

0
“%R = 7(9r)Mmrg. (4.20)

7(gRr) is the renormalization group function, which can be determined perturbatively

7(9r) = —gk {do + drgh +--- }, (4.21)

where only the first coefficient dy = 8/(47?) is renormalization scheme independent. This
allows to relate the running of the quark mass to the one of the coupling up to order g% with
11

mR(:U’) = M(Qﬁog?%(ru’))do/Qﬁoa Bo = 1672 (422)
M is the renormalization group invariant and scale independent mass, which in contrast to
A in Eq. (2.133) is also renormalization scheme independent [217]. The common scale for
quoting quark masses is p =2 GeV, which is approximately the inverse lattice spacing at
(5=6.0. There the coupling is gI%/TS:2.4288 (Tab. D and allows now to compute the quark
mass at this scale via

do /280
HE) A ) o (12

Garg(1/a) Zp(my, gag(1/a), 1/a)
The perturbative renormalization constants Z4 and Zp stem from Eq. (2.148]). The final
renormalized quark masses can be found in the last column of Tab. and Tab. Different

values at the same temperature might be due to somewhat different scales, i.e., slightly different
temperatures, or effects of order g*, neglected in the RGE or in the renormalization constant.
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0.05

——— — - - .
antawi N, N, d
32 16 2 = B 0.55T, +o— |
sl 01360 1 p) 0937, o
R VN A 1.3T, ——
0.03 | ;é‘v’guiizﬁﬁmmﬁ— 1.5T, —e—i
3T,
0.02 | — 0.1355 67 —— N
T = 0.55T, Liischer et.al. «
001F = 1 Sim
hd
I I I I I I I ZT’\TT 0.1350 I

0
0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

0.03 T

d‘m/\\\'l‘ N, ‘N, (1‘

0.025 - 3216 ¢ —— | 4 0.1345 . E
T o307, |6t 16 :—=

0.02 - 1

0.015 q

0.1340 i

0.01 | B

0.005 - %ﬁ R &)
01335 " 1 " 1 " 1 " 1 " 1 " 1 " 1

0 020 o 060 080 Lon o0 140 6 6.2 6.4 6.6 6.8 7 7.2 7.4

(a) (b)
Fig. 4.6: AWI quark masses below and above T, (a). Critical hopping parameter compared

to those of Ref. [I03] at different couplings and temperatures (b). The black curve is an
interpolation of those points. ’sim’ marks the k values we used in our simulations.

Hal

wE
$%8g pBERE
E4 BEE

588 8 T+T




4.4. DECAY CONSTANTS 93

In Tab. B2 one can also find the AWI quark masses of the HF action. Since improved currents
are not yet known for this action, those have been determined with ¢4 = 0, which might
explain why they are negative for some lattice parameters.

4.4 Decay constants

Mesonic resonances are described by a limited number of parameters, which may vary with
temperature or in-medium. After the investigation of meson masses and energies, amplitudes,
(AWI-) quarkmasses and their temperature dependence, we focus in this section on the decay
constants fr (H=P,V). They are of considerable importance by themselves, but also enter
the couplings of the p-meson, see e.g. Ref. [132],

2
mp m,
g = e g e 4.24
pTT f Py fp ( )

T

Correspondingly they have influence via the process

atnT —— pf —eTe” (4.25)
gormm 9o~y

on the decay width? I' )« (T') and might explain the p* width broadening and the enhanced
dilepton rate as discussed in

Of special interest in this respect is the vector meson decay constant fy,. Experimentally it
can be determined by the p” meson decay into electron-positron pairs p — eTe™ [27, 218],
which rate is given by

41 o?
poetes = T3 3

2\ 2 2

r 2 _dmoe (M) AT po 7 09(11) keV. 4.26
7, = 3§(fp> 3 o = T021) (426)

Here v is the fine structure constant of QED (Tab. [1).

The phenomenologically more important decay constant of the pion as defined in Eq. can

be determined from the leptonic decay of charged pions 7+ — u* +v and is the experimentally

most accurately known decay constant. One finds f(7'=0) ~ 132 MeV. Again a change of

f with temperature would change the decay width I'y_.; in pion states.

Using the PCAC Eq. together with the AWI definition Eq. and Eq. one

can extract the P decay constant fp on the lattice by means of

ZA(0|A, T4, (m)T5(0)[0)

2480, {014, ()| TP)(Te L TH(0)10) }

= fpmpe™(Tp|TH(0)|0) (4.27)
and
Za00lALTA () THO)[0) = 2maw(0]Tp (1) T5(0)]0)
= 2mawre?(0|Tp(0)|Tp)(Tp|T(0)[0) (4.28)
such that
- Z{ = ~ = 2‘41;2)% (4.29)

5T, = 149.2(7) MeV at zero temperature.
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It is this relation we have used with spatial amplitudes Ap(a) and screening masses mp
in order to determine fp/Z(my). At first sight fp or Ap(0) respectively seems to be very
sensitive to the physical quark masses m, and mg, since they are much smaller than m,.
Naively Eq. should vanish in the chiral limit. This is however not the case, since using
the GMOR relation in Eq. gives fp=|(¥)| /(Z(mp)Ap(0)), which is then independent
of quark masses but dependent on the quark condensate. This relation indicates that fp
or Ap(0) extrapolated to m, =mg=0 is still finite and not very different from its value at
physical quark masses. fp can also be studied (in temporal direction) by the fourth component
of the axial-vector current as it couples to the pion state Eq. (2.39). At vanishing momenta
its CF looks as follows

2m
D _{01Taa(m)T44(0)]0) = fgzif” [exp (=mpt) + exp (~mp(N; 1)) (4:30)

n

and we have again
Aa, (0
_ fr _Aw(0) (4.31)
Z A mp

This relation can be safely used below T,.. However, above T, our fitting program did not
converge, which indicates that the overlap with the pion state significantly decreases. This
suggests that the coupling to the pseudoscalar state is lost and the corresponding matrix
element, i.e., fp vanishes. On the theoretical side, Ward Identities imply that the axial current
is degenerate with the vector current when chiral symmetry is restored. Moreover A, and
V,, are conserved currents, i.e., A4 and Vj are operators for a conserved charge. Thus, fitting

their CFs fails, since they are constant for large distances, namely

Qaa(r) = const. = Y (0T44(n) T} 4(0)[0) = (0]Qaa(r) T} 4(0)|0) = const. . (4.32)

The evaluation of the V meson constant equivalently is

2

Zy Ay, (0) = ZV(0|j‘57#(O)|V(p =0)) = Fymye, = %eu
2
= (rf) = 'Avéo)' .
my

The experimental value for the p meson, Eq. , is F,,=220(5) MeV.

First the behavior of the pion decay constant shall be studied. This we have done using single
state fits to the pseudoscalar CFs in spatial direction and utilizing Eq. as well as fits
to the fourth (temporal) component of the axial-vector CFs in temporal direction together
with Eq. . The main focus lies thereby on its value in the chiral extrapolation. Our
analysis is based on the assumption that its dependence on the quark mass is simply linear.
In fact as seen in the figures the linear fit is likely to be appropriate. Below T, Fig. fp
clearly decreases with respect to the bare quark mass. Since the renormalization constants
are known a direct comparison with the experiment becomes possible and is in a surprisingly
good accordance to the measured value of 132 MeV (Tab. (top)). Also concerning the
time direction, we have found with 142(2) MeV at 0.55 T, and 143(6) at 0.93 T, values which
are only somewhat (~ 8%) larger, see Tab. (middle).

Like the screening masses fp changes significantly above the phase transition compared to
the findings below T,.. However, only our data at 1.5 T, on a 483 x 12 lattice allow a chiral
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extrapolation which gives a value that is compatible with zero Tab. (bottom). Effectively
it shows the restoration of chiral symmetry (1)) =0 in the limit of vanishing quark mass.
Similar conclusions can be made for the V decay constant, here only from spatial CFs. In the
confined phase the extrapolated value of Fy, matches the experimental value within the errors,
which additionally may indicate the reliability of the renormalization constant. In contrast
to fp, however, Fy stays finite above T, and no definite mass and temperature dependence
is seen (Fig. . Note that above T, the connection of the decay constant as the decay
width of a rudiment V resonance becomes doubtful. Instead it might give a signature of the
overlap of the operator to a mesonic state of a quark-anti-quark.

0.12 T T = 0.4 J ~ T ! 0.03 .
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Fig. 4.7: Decay constants fp/Z(my) 'z’ (Eq. ) and fp/Za 't’ (Eq. ) (a) and
1/fvZy from Eq. (4.33) (b) above and below T, on 483 x 16 lattices. Area under the ground
state peak (c), which corresponds to the amplitude, see Eq. (4.34).

Once the SPF are determined one might think of extracting the physical width by directly
fitting the ground state peak in the SPF. In this regard a short remark on the finite width of
the SPF: In quenched approximation, where only interactions of the fermions with the gluonic
background are considered, the ground state peak should be zero for the m and very small for
the p meson. However, this holds then only for an infinite statistics and an infinite temporal
lattice extent. Thus the width if non-zero is likely to be an artifact of MEM, or more precisely
due to our limited statistics. We will come back to this in the following section.

Advocated by the authors of [11] [I85], another way to determine the decay constant is by its
relation to the area below the first peak of the SPF Eq. . This relation is given as

/wmax (0T (m) | H(p = 0))]* _ A%(0) (4.34)

d =

Wmin

where [Wmin, Wmax| 1s chosen to bound the one-meson particle state. In our analyses these
are the intersection points with the finite T' continuum SPF Eq. . This approach was
applied to the HF data and gives similar results like fitting the spatial CF, see Tab. It
can be seen as a cross check to the SPF extracted with MEM and more importantly further
supports the fact that the amplitudes of the spatial compared to the temporal CFs almost
coincide if somewhat smaller. It should be mentioned again that concerning the HF data
no clear connection to physical values due to the unknown renormalization constants can be
given.

The final conclusion at these fairly large quark mass extrapolations and without a proper
infinite volume and continuum extrapolation (a— 0) is that no temperature dependence of
decay constants in the confined phase neither in temporal nor in spatial direction is visible.
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T/TC My, MAWT mﬁMeV] Zv Z fp/Z fp[MeV] ]./vav Fv[GeV]
0.55 0 0 0.788 | 1.090 | 0.052(2) 135(5) | 0.327(1) | 0.221(4)
0.93 0 0 0.811 | 1.105 | 0.031(3) 137(8) | 0.318(9) | 0.221(7)
W | 1.2 | 0.00492 37.4(12) | 0.827 | 1.105 | 0.0049(1) | 28.8(5) | 0.226(6) | 0.370(10)
1.5 | 0.001372 | 12.8(9) | 0.830 | 1.104 | 0.0013(1) | 9.2(6) | 0.232(4) | 0.479(8)
3.0 | 0.002508 45.8(12) | 0.854 | 1.097 | 0.0020(1) | 25.7(12) | 0.222(4) | 0.989(21)
1.5 0.0027 CF 1.0 1.0 | 0.0023(1) | 14.8(6) | 0.236(6) | 0.579(15)
HF 1.5 0.0027 SPF 1.0 1.0 0.0025 16.1 0.262 0.571
3.0 | -0.00779 CF 1.0 1.0 | 0.0056(1) | 72.0(12) | 0.231(5) | 1.185(26)
3.0 -0.00779 SPF 1.0 1.0 0.0059 75.5 0.238 1.036
T/TC my mM—S[MeV] ZA Z fp/ZA fﬂ—[MeV} 1/vav Fv[GGV]
w | 055 [ 0 0 0.804 | - [ 0.074(1) 142(2) - -
093 | 0 0 0.828 | - | 0.0433(17) | 143(6) - -
T/Tc my mm[MeV] ZV Z fp /Z fﬂ[MeV] I/Zv fv Fv[GeV]
1.5 | 0.00495 | 30.7(52) | 0.822 | 1.105 | 0.0048(3) | 25.6(16) | 0.211(10) | 0.432(20)
W | 1.5 | 0.00092 | 5.7(6) 0.818 | 1.105 | 0.00088(4) | 4.7(2) | 0.212(21) | 0.425(42)
1.5 0 0 0.818 | 1.105 | -0.000005 -0.02 0.212 0.425

Tab. 4.5: Hypercube (HF) and Wilson (W) fermion decay constant fp and 1/ fy (Fy ) above
and below T, from 483 x 16 lattices in spatial (top) and temporal direction (middle) and on a
483 x 12 lattice (bottom). For the HF we use the mayw instead of my.

Even at 0.93 T¢ the values corresponds to the zero temperature findings, c.f. Ref. [185] 219].
Above T, the pion decay constant comes close to or is even zero in the chiral limit as expected
by its connection to the chiral condensate. The CF's of the fourth component of the axial-
vector current further indicates that the pion state coupling no longer exists above T, at the
temperatures considered. All in all this documents the chiral symmetry restoration in the
limit of vanishing quark masses. In contrast the modifications in the vector decay constant
are, though clearly observable, not as dramatic as in the P case. This supports the assumption
that mesonic like structures are still present even above the phase transition.

4.5 Spectral functions

Another way to study in-medium properties of mesons is given by investigating the behavior
of the SPFs with MEM as introduced in Having checked that this method works
for free lattice data, we follow again the same path as in [I88] but extend now the analysis to
higher statistics and larger lattices, e.g., 483x16 below T, for the Wilson case. For the first
time SPFs of the hypercube action are shown.

Below the critical temperature the P and V SPFs for Wilson fermions are shown in Figs. 4.8
and in the region of the ground state peak. For comparison also the corresponding
screening masses are shown. As stated already their deviation from the pole masses at 0.55 T,
is only minor, but increases significantly approaching the phase transition. The figures indicate
that the peak heights increase with lowering the quark mass, while they becomes broader at
the same time. The broadening, however, may not imply a physics effect but simply an effect
of moderate statistics. Also at low temperatures for pion, we do not see a d-function peak but
a finite width. This is understandable since with a finite statistics, it is not possible for the
MEM program to resolve a d-function peak. It was observed that the peak becomes sharper
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as we increase the statistics. Since 0.55 T, seems to be a rather moderate temperature, even
more so for the quenched theory, it is reasonable to guess that the width is an effect of the
moderate statistics. Concerning the volume dependence of these SPFs no systematic effect
was observed.

Our results concerning the Wilson SPFs above T, see Fig. [£.10] which follow similar strategies
as in Ref. [I88] but use increased statistics and include larger lattices, are in agreement with
Ref. [188]. In all channels the low energy parts simply scale with temperature and the ground
state peak at w/T ~ 5 even for the highest temperatures remains indicating that correlations
between ¢q pairs still exist. This is in contradiction to Ref. [220], where the authors found
significant changes between 1.4 and 1.9 T, on anisotropic lattices far away from the chiral
limit, a situation, which resembles findings in the charmonium sector [71], [72].

As has been mentioned in lattice artifacts in the SPF of the HF action are shifted
to much higher frequencies. Thus it has been speculated that also in the interacting case the
infrared regime is less disturbed by cut-off effects than the Wilson case. In particular above T
such a behavior is advantageous in order to clearly discriminate lattice artefacts from physical
(bound) states. A comparison of the results we get from MEM is shown in Figs. and
Note, that in the V channel the sum of all four contributions of 7,-matrices is shown,
which yields twice the P CF in the free case. The figures demonstrate that for the Wilson case
the possible bump at around w/T ~ 25 is impossible to disentangle from the cut-off effects.
In contrast the cut-off effects in the HF action are shifted from w/T > 30 towards w/T" > 80
well separated from the infrared regime. In both models the ultraviolet regime is dominated
by the default model. In order to make contact to physical values, one should bear in mind
that the renormalization constants are unknown for the hypercube fermions and have been
set to one.

Although the MEM error bars in Fig. are large also for the Hypercube action a clear
excitation close to 27T appears. Correlations among the gg-pairs are obviously still present.
Additionally two separate structures appear, which are now clearly separated from the bulk
of lattice artifacts. It should be stressed that, unlike in the Wilson case for N, =16, no
eigenvalue smearing is necessary anymore. In order to test whether we see bound states or
lattice artifacts we study their N, dependence. Unfortunately for N =12 eigenvalue smearing
becomes necessary again and the Wilson two peak structure reappears (Fig. 4.11(c)|). The
position of the first peak is however unchanged. The picture, which arises at this point is
twofold. First, it seems doubtful that smearing allows to make reliable statements about the
physical nature of the second bump. In fact the SPF of the hypercube action at N, =16 seems
to resolve the second bump as two bumps. Secondly, the physical nature of the two bumps
at N, =16 themselves can only be analyzed by lattices with even larger N,. The question
how many points in time are needed to determine reliable SPFs, c.g. [11], 221], remains an
unsolved problem.

In Fig. we show indications of an effective U(1)4 as well as the SU(Ny)r x SU(Nyf)r
chiral symmetry restorations at 3 T, by a degeneracy of the P-S and V-AV channels, respectively.
While the first peak is almost identical for the V and AV, the P and S peak positions slightly
deviate, which is due to a small entry for the S in the first bin.

In order to study how strongly the CF is affected by different energy ranges of the SPF or
vice versa, we have plotted in Fig. the ratio

Gy

QL) = /I dw oy (@)K (w, 7T) / /0 dw oy (W) K (w, 7T). (4.35)
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Fig. 4.8: SPF at T=0.55 T, (left) and T'=0.93 T, (right) for the P (top) and the V meson
(bottom), obtained from the N, =32 lattice. The arrows indicate the location of the screening

mass.
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Fig. 4.10: P and V SPFs of the Wilson action at all T. Below T, the quark masses are fixed
to give the same P mass.

for the free as well as the interacting case. The intervals I are chosen to contain the peaks
and lattice cut-offs in the interacting case separately. As expected the long distance part of
the CF is dominated by the IR part of the SPF, while the dominant contribution for small
distances up to 77 < 0.3 comes from the intermediate region 10 <w/T <50. The UV, the
orange, part, which represents the lattice artefacts, essentially affects only the first two points
7=1-2. Looking at the small distance part of the CF in the interacting case at 3 T, one may
speculate that the black line is least affected by the UV artefacts. Comparing the free and the
interacting case it seems that the blue line, however, is mostly affected by UV lattice artefacts.
The red line is somewhat intermediate. Thus, all in all one would say that the ground state
is least affected by the lattice artefacts, the next excited state has a certain admixture of
lattice artefacts and therefore its position cannot be guessed with much certainty. The second
excited state is probably due to the lattice artefacts. The temperature induced changes of
lattice artefacts are for the most part absorbed by the intermediate region of the SPF.
Once the V SPF is known a direct contact to the experiment can be made via the thermal
dilepton production rate, see Refs. [I88] 222]
AN W 5a? 1

d*zd*p  dp*  27mw? exp (w/T

For the free V SPF in the chiral limit and at vanishing momentum this leads to the Born rate
diyyBom 50 1
— 1 (w,p=0)= 2 2
dp 367 (exp (w/2T) + 1)

which is shown in Fig. Plugging in the V SPF without using any renormalization constant
we find again a suppressed dilepton production below w/T < 3 — 4 and an enhancement
between 4 S w/T < 7.
As we know how important cut-off effects are for small distances in the CF and how they might
affect also the intermediate region of the reconstructed HF SPF and to further demonstrate
also the possible influence of renormalization constants, we show Fig. [£.13] Here we have set
Zy such that the midpoint of the V CF matches the corresponding free HF CF. We further
used the continuum default model and the full (N, = 15) HF data at 3 T¢. In the outcome the
present cut-off effects have been completely absorbed in the three peak structure. Omitting
the smallest distance point (N, = 13) in contrast lead to an almost perfect continuum SPF

and continuum Born rate for 1.5 and 3 T,.. Such a behavior becomes clear in view of the next
section. The apparent sharp peak at w/7T ~0 again has to be considered as a MEM artefact.

= 10V(w,p,T). (4.36)

(4.37)
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Fig. 4.12: Contributions of the different energy ranges of the HF SPF to the correlator in
the free case (a,b) and at 3 T, (c,d) on a 483 x 16 lattice.
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Fig. 4.13: HF V SPFs with complete CF and point at t =1 dropped and Zy chosen to
be 0.788 at 3 T, and 0.769 at 1.5 T, on a 483x16 lattice (left). The corresponding thermal
dilepton production rate in the QGP phase using Eq. (right).

4.6 Cut-off and thermal effects in temporal correlation functions

In this section temporal CFs above T, are compared with the free continuum, Eq. , as
well as free lattice CFs as shown in Figs. and This allows for a direct study of
thermal modifications and the influence of possibly remaining interactions or simply cut-off
effects. Since we only show results above the critical temperature* and at almost vanishing
quark masses, an additional discussion of the influence of non-vanishing quark masses like
below T, can be avoided. Furthermore as we have seen deviations from the free theory even
at 3 T, in the SPF which might come up due to MEM uncertainties through the prior default
model function, one can explore how much of these deviations can already be noticed at the
correlator level.

The ratio of the Wilson CF Gy and the free lattice one G};V’free at the same lattice size with
the known Zpy-factors included clearly indicates deviations growing with distance. These
effects are much stronger in the P channel (c.f. Fig. [4.14(a))), than in the V channel (c.f
Fig. , where the data lies closer to the free CF. For large distances large deviations of
the order ~ 45—80% are seen in the P channel, while they are rather small (< 15%) in the V
channel. Similar results have been found at the other temperatures.

Keeping the lattice spacing (N;) fixed at constant temperature allows us to study finite
volume effects. At small 77 these effects seem to be strongly absorbed by the free lattice CF
as the points fall almost on top of each other. On the other hand finite a (cut-off) effects
are still present in the small distance (UV) regime by comparing CFs at different N, and a

. W free
fixed aspect ratio. They are not completely absorbed by G'j;

and one can clearly observe
increasing CFs with decreasing lattice spacing for the P and V. However, one should be
extremely cautious in interpreting these deviations as a pure discretization effect. Ambiguities
from the a, and thus the T" and Zp determination which both depend on a precise knowledge
of the B-function, can play a important role for the ratio heights. Of course for the latter this
should not hold for the non-perturbatively determined V renormalization constants.

The large 7T behavior is somewhat different from the small distance behavior. Here cut-off
effects are small or almost absent, while now the volume effects cannot be completely described
by the free lattice CF. The ratios show a significant but non-systematic effect. However, all
in all these effects are rather small, taken the error bars into account. This indicates that
the corresponding infrared effects are only slightly different in larger volumes and supports
essentially the findings of the MEM analysis in

“for results below T, see again [I88]
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Fig. 4.14: Ratios with the temporal pseudoscalar (left) and vector (right) Wilson CFs at
3 T, and the free lattice CF (top) and free continuum CF (bottom) on all lattices. For the
Wilson case renormalization constants Zy have been taken into account.
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their ratio with the free continuum CF (right) at 1.5 T, and 3 T.. For the Wilson case
renormalization constants Zg have been taken into account.
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Since finite volume effects are overestimated by the free lattice CF, it is useful to study those
ratios also with the free continuum CF shown in Fig. (c,d). Indeed, finite volume effects
at large 71 are not so large anymore. Finite a effects are visible although, when comparing
N,=8 results with N, =12 and 16 data. The latter are already close to each other.

On the other hand comparing both the free Wilson and HF CF above T, normalized to their
free continuum ones, Fig. on a 48 x 16 lattice shows again the advantageous behavior
of the HF formulation. Deviations are at most of order 5% for small distances, while they
are much larger for Wilson fermions (< 20%) due to the known lattice artifacts. However,
by reason of the unknown HF Zp nothing can be said at this time about their quantitative
deviation in the interacting case. KEspecially in the V case, if one would match the ratios
Gy /GS, at 7T = 0.5, their large distance behavior is similar for 1.5 T, and even identical
within the errors at 3 T,. Again the small and intermediate distance behavior lies much closer
to (below) the continuum one for the HF CF.

Comparing both temperatures in Fig. shows that in the HF and Wilson discretization
the V and P CFs approach the free quark limit with rising temperature from above. However,
even at 6 T, not shown in the figures for clearness reasons, the Wilson V CF deviates from the
free continuum CF significantly. Also, taking the cut-off effects of the free Wilson correlators
into account, an enhancement of 10% remains which is in contrast to predictions obtained
from HTL-resummed perturbation theory or quasiparticle models. In the former the V. CF
cannot be computed due to the mentioned strong (linear) divergence at low frequencies in the
SPF [174], whereas the latter leads to a suppression of the correlator, as compared to the free
case [223],224]. Apart from constant factors also in this sense the HF V CF's qualitatively
gives more model consistent results.

The qualitative change of CFs with momentum for Wilson fermions has also been studied in
Ref. [I88]. The hypercube fermions show qualitatively the same behavior. In both channels
the midpoint of the CFs decreases with increasing momenta, see Fig. [4.16
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Fig. 4.16: P (left) and V (right) CFs at different momenta normalized to the free zero
momentum CF at 3 T, on 483x16 lattice for the HF action.
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5 Screening masses and correlation functions
in the high-temperature phase

5.1 Screening masses in infinite volume and continuum
extrapolation

In this section, we will present results from a detailed investigation of the mesonic screening
masses at temperatures above the deconfinement transition. In particular, we will look at the
finite volume effects and finite lattice spacing effects on the screening mass. These results
were presented for the first time at the Lattice 2005 conference in Dublin, see Ref. [15].

As stated in in the infinite temperature limit mesonic CFs are combinations
of two free quark propagators. Correspondingly in the chiral limit and p; = 0 the decay
of spatial correlators at large distances is dominated by twice the lowest quark Matsubara
frequency w, = (2n + 1)7/N;, i.e.,

mi = 2y/m2 + w2 = 20" = 27T for my — 0. (5.1)

This is clearly different from the temporal mass my = 0. The distance between hadronic
screening masses and the free value in the chiral limit can be considered as a measure how
close the interacting system is to a system of free quarks.

This chapter now aims at comparing free spatial continuum CFs at vanishing quark masses
with our findings at m4 ~ 0 above T in order to get control over finite volume and lattice
spacing effects.

The analytical study of continuum spatial CFs, here of quark-anti-quark pair with pion
quantum numbers, was first addressed in Ref. [I80], with the result

Ga(2) = N.T

= 1+ 27Tz coth(27T2)]| . 5.2
27TzQSinh(27rTz)[ mTz coth(2rT2) (5:2)

From this an effective z-dependent screening mass can be defined by

1 0G(z) 1 1 x
z = — =27T< —(2 th — coth
mp(2) Go) o T {m( + z coth(z)) + T 2 coth() <sinh2(gc) co (33)) } ;
(5.3)
where x = 2nTz. At large distances, e.g., x > 5, the exact data is reasonably well approximated

by a leading behavior obtained as

mlz;('z) =2 (1+i+...>. (5.4)

Note that the effective screening mass, which is shown in Fig. does not exhibit any
plateau-like behavior, which otherwise would signal the presence of a genuine pole contribution.
Instead the anticipated value 27T is reached from above, yet only at asymptotically large
distances. Also in the interacting case, e.g., on 643x16 lattices a genuine plateau cannot be
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identified at temperatures above T, for our lattices. For definiteness we therefore will quote
screening masses obtained at a certain spatial separation. The choice z = L/4 then leads in

the free case to
m*(z = L/4)

_onf(1+2 L 4 (5.5)
T =27 Tt ) )

i.e. the leading correction to the continuum screening mass is linearly dependent, ~ 1/(LT),
on the (inverse) separation.

In numerical (lattice) investigation the separation is limited by the box size. In order to
address finite volume effects we have calculated the free spatial lattice CFs! semi-analytically
analogous to Ref. [I87] as sums over (quark) Matsubara frequencies and momenta ki, ko
perpendicular to the correlation direction z

Gm@_éﬁ E:(Himﬁmm;%m{@mmP&<§ﬂwﬂ+@%,@m

-
k1,k2,wn

where M is given by M =3, 5 ,(1 —cos(ki)), k1,2 = 2mn12/No, ks = wy, and

§:4 sin?(k;) 4+ M?
i=1,2,4
2(1+ M)

cosh(Ey) =1+ (5.7)
The coefficients by and dy are given in Tab.

Again the free lattice screening masses are obtained from the free lattice CFs this time via
Eq. and it turns out, Fig. that also in this case the leading finite volume correction
to the screening mass is linearly dependent on 1/(LT) = N;/N,. In the interacting case the
finite volume effects are less severe. This can be understood because freely propagating quarks
feel the box boundaries and the momentum cut-off more strongly than interacting quarks. In
order to describe the volume effects we have therefore taken the exponent of the 1/(LT) term

mH<TL a) _ m';}m) <1 . @)p) (5.8)

as a free parameter,

We expect that p takes values between 3 as in the confined phase, e.g. [206], and 1 as in the

!Contact terms at z= 0are omitted.

bH dH
P 1 0
S d d—1
1 1 sin? (k1 )+sin? (k 1 sin?(kp)+sin? (k
s(Vi+1e) | 1—3 ii;})lQ(El)( 2 T2 gi;ﬁZ(El)( 2
Vs 0 1
sin?(k4) sin?(k4)
Vi o sinh2(E‘/1'1) _sinh2(E41)
1 1 sin? (k1 )+sin? (k 1 sinZ (k1 )—+sin? (k
B(Av+Az) | d— pREEEd -1 - R
A, d—1 d
sin? (k4) sin? (k4)
Ay d— sinhz(gl) d—1-— sinh2(E41)

Tab. 5.1: Coefficients by and dg of the spatial free Wilson lattice meson correlation functions
Eq. @) Hered =73} ,, sin?(k;)/ sinh(E1).
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Fig. 5.1: Effective screening masses on 643x 16 lattices compared with the free continuum
one (a). Extrapolated result compared with former results [188], which have been obtained
via rescaling masses determined at largest lattices with 2w /m%,..(L,a). We give m* below T,

in units of T, from finite volume extrapolation. The physical vector mass is depicted by a
black line (b).

infinite temperature limit. The fits indeed return results which decrease towards 1 with rising
temperature, Tab. To extract mj3;(a) we have fixed p at its value for N, = 8.

The remaining lattice spacing dependence can be inferred from Eq. . The leading behavior
is obtained by taking into account the lowest Matsubara frequency only,

sin®(/Ny) + (1.4 cos(r/Ny))*

h(Ep) ~ 1 5.9
cosh(EL) = 1+ 2(2 — cos(n/N,)) (5:9)
Further expanding in /N, leads to
27 1/ 7)\?
2E1 =m73 ~ —|1—- - d
= mirla) = 2T [ s (3) ol (5.10)

m%; being independent of the hadron quantum numbers. Therefore, the lattice spacing
dependence is expected to be quadratic in a or, equivalently in 1/N;,

1\2
A =
() +

in the free as well as in the interacting case. Note that the continuum limit is approached

Msger

T

my(a) _
T

(5.11)

from below. Thus, infinite volume and continuum limit counteract each other.

As Fig. and Fig. show the coefficient A is rather small, compared to the expected
value 273 /3, and possesses large errors. Hence, finite a effects seem to play only a minor role.
The final numbers are given in Tab. and in Fig. They are significantly closer to the

A b mscr/T
T P Vr T P Vr T P Vr
1.5T, 45(26) 78(15) 1.5T, 2.05(24) 2.21(29) 1.5T, 574(2) 6.18(1)
3T, 06(53) 25(86) 3T, 1.46(15) 1.54(21) 3T, 581(4) 606(4)

Tab. 5.2: Results from the data fit to Eq. (5.§) and Eq. .

free value than the fitted energy values of the largest lattices in [188] rescaled by a factor of
effective screening masses at z = N, /4 on a free lattice divided by 27. Due to the exceptional
configurations it is difficult to analyze the data below 1.3 T..
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As can be seen at both temperatures the pion screening mass is about 9% smaller than in
the free case while the vector meson Vp comes out close to but also below 27. This is to be
contrasted with analytical calculations by LAINE ET AL. based on dimensionally reduced
screened perturbation theory and treating wg"ark as a heavy quark mass [225]. This effective
high-temperature theory predicts screening masses that approach the free result from above
at T'> 1T,

m? ~ 21T + 0.14083730¢°T . (5.12)

At T ~ 2T, the gauge coupling is estimated to be g? ~ 2.7 [226] and thus the second term
corresponds to a 5% correction. Since the screening masses are expected to decrease close
to the phase transition and in the light of our data it seems questionable, whether such an
approach is valid at least at temperatures we observe. Additionally higher order coefficients
in Eq. equivalently to those derived in QCD pressure calculations [6] may significantly
change this evolution.

The final conclusion that can be drawn out of these findings is that at least at 3 T, and 1.5 T,
small residual bindings might still exist, which are stronger for the P than for the V1 channel.
At N; =12 and 16 fit results need to be secured by data points from larger aspect ratios,
otherwise systematic errors are larger than the final fit results imply. Furthermore one should
increase the statistics and could think about using a combined fit with p held fixed at fixed T’
in order to improve the significance of these statements.

For our study finite size effects play a dominant role. However, once a considerably large
aspect ratio 2 12 is reached, Fig. (a,b)7 they are rather small. To verify this conclusion
and to show that finite a effects are still small, again larger lattices in particular for N, = 12
and 16 are desirable. However, they are extremely costly.

5.2 Spatial correlation function in the context of chiral and
Lorentz symmetry breaking

At the end of this chapter we want to have a closer look at the spatial CFs with respect to
chiral symmetry. As discussed at T" = 0 chiral symmetry SU(NNy) 4 is spontaneously broken in
the limit of vanishing quark masses, while the U(1)4 symmetry is broken anomalously. Hence,
V/AV (p/ai) and P/S (7/9) respectively should be non-degenerate. Since we are unable to
carry out our calculations at vanishing quark mass below T, we can only show these channels
for finite quark mass, e.g., at 0.93 T in Fig. The explicit symmetry breaking effects
should be small at these fairly small pion masses in comparison to the vector masses, i.e.,
mp/mv = 0.656.

It has long been speculated by SHURYAK [227] that U(1)4-symmetry might be effectively
restored along with the SU(N¢)4 symmetry in the high temperature phase, in the sense
that no U(1) 4-violating effects can be found among the CF's in this phase. Moreover, it has
been shown that unless there are contributions from non-topological configurations in the
functional integral that form a set of measure zero in the chiral limit U(1) 4-violating CF's
must vanish [228].

For Ny=3 group theoretical arguments constrain every SU(3)4 symmetric two point function
to be automatically also U(1)4 symmetric [229]. More generally U(1) 4 violation cannot occur
in CFs of n quark bilinears if n < Ny. Hence, all two point functions are degenerate, once
SU(3) 4 is restored.

This does not hold for Ny=2. Here there are two chiral (SU(2)4-)singlet two-point functions
with even parity, one U(1) 4-invariant and one U(1) 4-variant. This opens the possibility to
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study the influence of non-topological configurations on U(1)4 symmetry close to the phase
transition. Since V and AV are themselves U(1)4 singlets their correlators can never violate
U(1)4 symmetry. Hence, their degeneracy, in contrast to the P and S, can serve as an indicator
of SU(Ny¢)a symmetry, independently of any U(1)4 breaking. We observe indeed that V/AV
as well as P/S become degenerate above 1.5 T, see Fig. This is the same observation
we have made by studying the corresponding SPFs, which also show a good agreement, see
Fig. Closer to the phase transition at 1.2 T, Figs. [5.3(c) and |5.3(d)| the situation is
different. While the spatially transverse Vip=1/2(V; 4 V3) and the longitudinal Vz, =V} vector
and axial-vector currents respectively are still degenerate, P and S are non-degenerate due

to configurations with non-trivial topological charges. Thus the U(1)4 symmetry for flavor
non-singlet mesons at this temperature is still broken. Predictions about flavor singlet meson
degeneracy, o and 7/, need disconnected propagators. However, those channels are affected by
a high statistical noise and are not part of this analysis.

Finally a few words regarding Lorentz symmetry breaking. In Fig. we compare Vr with
Vi =Vy at 0.93 T, and, similarly, the corresponding AV channels. As can be seen they agree
with each other as should be in case of zero temperature, where Lorentz symmetry holds - the
temporal direction is indistinguishable from the spatial one. The AV CF's even at this rather
high temperature are much smaller than the V CFs. At 1.2 T,, Fig. the situation has
changed and V and AV become degenerate, while at the same time the degeneracy between the
transverse and the longitudinal states is lost. In this regime the former rotational symmetry
SO(3) on the hypertorus orthogonal to the spatial correlation direction, is broken down to
SO(2) x Z(2) leading to the Vp-Vy, and Ap-Af degeneracy. At the same time chiral symmetry
restoration leads to the Ap-Vy, and Vp-Ar degeneracy as already discussed.
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Fig. 5.3: Spatial CFs as indicator of chiral and axial symmetry breaking below and above T,
(top). U(1)4 symmetry breaking effects in spatial CFs above T, (middle). Transversal and
longitudinal vector currents close to the phase transition (bottom).
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Summary, conclusions and outlook

A conclusion is the place where you got
tired of thinking.

ARTHUR BLOCH

In this work we have studied the properties of mesonic correlation functions built from light
quarks at temperatures below, close to and well above the QCD phase transition. There are
several motivations to investigate QCD under such extreme conditions. First, at temperatures
of order of the QCD scale Aqcp ~200 MeV, QCD is expected to undergo a transition from
a hadronic phase to a deconfined phase, which is believed to be the so-called Quark Gluon
Plasma (QGP). Quarks and gluons are no longer bound into hadrons, but can move (almost)
freely over large distances. At the same time chiral symmetry, which at low temperatures
is spontaneously broken is restored. Second, the potential QGP may be created in the
ultra-relativistic heavy-ion collisions experiments at the AGS, SPS and RHIC. Likewise about
1075 seconds after the big bang where the temperature was of the order O(200MeV) the early
universe probably consisted of a QGP. Thirdly, QCD simplifies under extreme conditions. At
scales relevant to hadrons the QCD coupling is large, perturbative calculations fail and we
have to rely on numerical simulations. However, at very high temperatures the coupling is
small and therefore the perturbative treatment of QCD becomes feasible.

In order to describe processes and phenomena occurring during and right after the formation
of a QGP we need to know how static and dynamical properties of hadrons are modified
under changes in the environment. These properties play an important role in the evolution
and the outcome of the (QGP) fireball created in heavy-ion collisions. Signatures of the QGP
in the detectors need to be disentangled from those of the conventional hadronic phase. Since
perturbative methods might be problematic even above the critical temperature due to the
bad convergence of perturbative expansion, e.g., for the pressure, a numerical non-perturbative
study like this work is mandatory.

To set the stage we have given in a short introduction to QCD at finite temperature
in the continuum and the latest experimental findings.

In we have discussed various ways to define (thermal) QCD on the lattice. Our
investigations have been done in the framework of quenched lattice QCD with the standard
Wilson plaquette action for the SU(3) gauge fields. For the fermion action we choose two
different discretizations, the non-perturbatively O(a) improved Sheikholeslami-Wohlert and
the hypercube truncated fixed point action. Beside the simulation techniques, we have
described the phenomenologically important spectral functions and their relation to the
temporal as well as spatial correlation functions for mesonic operators.

In we have introduced the Maximum Entropy Method for extracting spectral
functions. In order to use the free lattice spectral functions as default models we have given
their derivation in both fermion formulations. Since the hypercube fermion propagator is
plagued with two poles, we have used the binning procedure to do the momentum integration.
The UV (lattice artefacts) have been thereby corrected compared to Ref. [I88] by properly
taking the various contributions of poles into account. The hypercube truncated fixed point
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(HF) action shows an advantageous behavior in the IR regime in the free case, since it follows
the continuum (free) dispersion relation as well as spectral function to higher energies. Further
it shows a great improvement with respect to chiral symmetry compared to the Wilson action.
Finally it was checked that the MEM applied to free data is capable of successfully reproducing
the free spectral functions in both cases.

For our quenched simulations we have generated around 40 — 120 gauge field configurations
covering a temperature range of 0.44—5.96 T, with N.=8,12,16 and 24. In order to study
finite volume effects at least three different aspect ratios of N, /N, <12 have been used. At
1.24, 1.49 and 2.98 T, we further choose three different § values to also study remaining finite
lattice spacing effects. All inversions have been done in the chiral limit above T, and in the
Wilson case at at least four different x values below T., which can be used for the chiral
extrapolations.

Conclusions

In this final Section we briefly summarize the main findings of [Chapter 4] and [Chapter 5, They
contain the complete analysis of our data.

Motivated by the fact that there is no effective distinction between spatial and temporal
correlators at zero temperature, we have mainly studied spatial correlators and corresponding

observables. Furthermore spatial correlators can be followed to larger physical distances and
can make use of more data points at finite temperature compared to the temporal ones so
that we can obtain the observables more reliably. However, due to possible changes in the
dispersion relation in the presence of a heat bath (see below), the general equivalence at zero
temperature is lost and no simple connection to physically relevant quantities can be drawn.
Nevertheless at least below T, the findings still well agree with the zero temperature results
concerning for instance critical kappa values as well as vector screening masses. The latter
are only somewhat larger ~ 10% in an infinite volume extrapolation at 0.55 and 0.9 T..

In we have carried out a complete investigation, i.e., a finite lattice spacing and
volume extrapolation, of (effective) screening masses at 1.3, 1.5 and 3.0 T.. Guided by the
infinite volume extrapolation at T'=o00, we find a behavior, which is apparently different from
the expected behavior of free quarks. The volume extrapolations fall between those at T'=0
and T=o00 and only small O(a?) effects are present. Nevertheless the final values are close
but still slightly below the expected free value of 2nT. The difference from the free theory
is largest for the pseudoscalar. Perturbative calculations based on dimensionally reduced
effective theories, on the other hand, predict the screening masses to be above the free theory
value. In comparison to our lattice results these values show a difference within ~ 10% in
the temperature range 1.5-3 T,.. While our detailed investigation of lattice size dependence of
screening masses indicate finite volume corrections which are in-between the confined theory
behavior and free theory behavior, any interpretation of the finite volume dependence in terms
of residual binding would require better control over the systematics and also studies at larger
aspect ratios, e.g., at N, = 12 and 16.

In the same manner, we have explored the axial Ward identity quark masses below and above
the phase transition. Concerning the critical kappa values we find only minor deviations to
the zero temperature results and small (if any) systematic finite volume effects at 1.5 and
3T..

Utilizing a combined fit on correlators for extended mesonic operators the 'Bethe-Salpeter
wave functions’ have been extracted from spatial pion correlation functions. Their second
moments, which might be interpreted as an estimate for the particle radius, decrease with
increasing mass and momenta. However, these values in the chiral limit are much smaller
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than the experimental ones, so that this interpretation becomes doubtful. The particle extent
apparently also shrinks with rising temperature. Differences between temporal and spatial
wave functions above T, in contrast to those below T, can presumably be explained by a
strong confining potential derived from spatial Wilson-loops, i.e., a spatial string tension
growing with temperature.

One of the main topics of our investigation is the analysis of spectral functions with the
MEM. Below and above the critical temperature the first peak position at p=0, i.e., the
pole masses, give consistent results in both discretizations. Above T, spectral functions and
pole masses simply scale with temperature. In the free case spectral functions of the HF
action, unlike those of the Wilson action, clearly disentangle physical information from lattice
artefacts. However, for the time being a clear answer as to whether the additional bumps in
the interacting case are lattice or MEM artefacts or possibly higher excited states cannot be
given even within the hypercube formulation. The number of bumps depends on the unknown
renormalization constants and the number of points in the time direction. The picture that
emerges needs further studies.

By comparing the ratio of temporal correlation functions with the free continuum ones for both
actions and above T, we can clearly observe that the vector channel is much closer to being a
propagation of a free gg-pair than the pion channel. Like the spectral function and the quark
dispersion relation, the ratio reveals clearly a better continuum-like behavior of the HF action.
In fact, besides a multiplicative difference the vector channel, unlike the pseudoscalar channel
falls on top of the free continuum CF. Only the smallest distance point falls significantly below
the continuum CF indicating cut-off effects. In fact, omitting the first point of the vector CF
and choosing the renormalization constant such that the midpoint matches the free CF, we
get an almost free continuum spectral function and hence the Born-Rate of dileptons.

A comparison of both (MEM) pole and screening masses does not indicate strong temperature
deviations until 0.55 T.. At 0.93 T, close to the phase transition, pole and screening masses as
well as the corresponding dispersion relations differ. This behavior can at least for relatively
heavy quarks be explained by a modified dispersion relation. In a simple model assumption
changes due to a non-zero vacuum polarization tensor have been absorbed in a temperature
dependent screening mass mj; (1) =m(T")/A(T). The (mass-dependent) coefficient has been
determined to be A(0.97;) ~ 1.3 — 1.5, in agreement with the fact that pion and vector pole
masses are enhanced compared to their screening counterparts. This temperature effect seems
to disfavor the dropping p mass scenario as one of the explanations for the observed dilepton
excess.

In the second part of we finally explore symmetry patterns of the theory from the
spatial CFs. We find a degeneration of P/S going from 1.2 to 1.5 T,, which is an indication of
U(1) 4 symmetry restoration. In contrast the SU(2)4 symmetry is already restored directly
at 1.2 T, where V/AV CFs are degenerate. The Lorentz symmetry is broken above T, due to
the heat bath. Thus for spatial correlators the former rotational symmetry in the (zyt) space
is broken down as SO(3) — SO(2) x Z(2), which becomes manifest in differences between
longitudinal and transversal vector and axial-vector channels.

The pion decay constant follows the expected behavior of the chiral condensate for SU(2) 4
symmetry restoration and vanishes almost in the chiral limit above T,.. Below T, we found
a good agreement with the experimental values for the pion as well as for the vector decay
constant. The change in the vector decay constant passing the phase transition is not as
dramatic as in the pion channel, though. The pion decay constant extracted by the fourth
component of the axial current in temporal direction below T, is only slightly enhanced but
essentially supports the findings by studying the spatial pion correlation functions. They



118 SUMMARY, CONCLUSIONS AND OUTLOOK

further support the notion that the pion state no longer couples to the fourth component of
the axial-vector current above T;.. For the hypercube fermion action above T, the amplitudes,
i.e., the areas under the ground state peaks, are in good agreement with the results of the
simple exponential fit.

Outlook

At the end of this thesis we want to give a list of improvements and open problems for future
studies:

One very important remaining issue concerns the determination of the HF renormalization
constants. Especially the findings of the last sections of show how important their
knowledge is. They are not only necessary in order to make real physical predictions but also
influence the form of spectral functions by the MEM.

Concerning the MEM analyses lattices with larger IV are desirable and might clarify the unsat-
isfactory situation concerning the lattice-artifacts. Current simulations using the anisotropic
formulation in the presence of dynamical (staggered) fermions might show a way out but
require a simultaneous two-dimensional parameter (bare quark and gluon anisotropies) tuning.
However, it is probably unavoidable to study N, and a dependence of spectral functions.
Further one could try to extend the calculation of free HF spectral functions within the
binning procedure at non-vanishing momenta. This is especially rewarding concerning the
dilepton rate.

Increasing statistics and volumes will basically and essentially improve our analyses, especially
in the extrapolations of screening masses above the phase transition. However, regarding
the Wilson fermions in its quenched form it seems to be hopeless to get closer to the phase
transition with almost zero or physical quark masses or to lower the quark masses below
T, with conventional algorithms. In those regimes exceptional configurations will spoil
every analysis in particular of spatial correlations. A dynamical study should be more
appropriate, since there exceptional configurations should be more suppressed due to their
almost vanishing measure. And, of course, the typical quenched artefacts for simulations
in the quenched approximation are absent. Today these (finite-temperature) simulations
with a proper lattice size are quite tedious and far too expensive and thus remain for further
(super-)computer generations. Nonetheless dynamical simulations with chirally improved or
perfect, e.g., Overlap- and Domain Wall fermions, actions and (physical) light quark flavors
at zero-temperature, which are even more expensive are on their way. Secondly for current
heavy ion collision at SPS and RHIC the chemical freeze-out occurs at p,~100 MeV (baryon
chemical potential pp ~ 300 MeV) and up ~ 15 MeV (up ~ 45 MeV), respectively. Thus
ultimately, a finite chemical potential should be introduced to describe the quark matter
created in these experiments properly.

Unavoidably one should also try get a more sophisticated control over non-trivial topological
configurations whenever one wants to study mesonic properties close to the phase transition.
The role of zero modes, i.e., instantons and calorons, in this regime deserves a more accurate
analysis and its connection to chiral symmetry breaking should be clarified.

Altogether these options are left for future computer and theoretical physicists generations.
On the experimental side CERN’s new experiment, ALICE, will start soon (around 2007-2008)
at the LHC and will probably give more detailed insights into the QGP and its properties.



A Conventions

A.1 SU(N) generators

SU(N), the special unitary group of degree N, is the group of N x N unitary matrices with
unit determinant. Elements G of the group SU(N) can be written as (A€ su(N))

N2-1
G =expA =exp Z iTw (A.1)

a=1

with the hermitian and traceless generators T,, which generate the su(N) Lie-algebra.
In the fundamental representation the T, satisfy an additional relation,

1
{Tm Tb} = Néab + dabCTCa (AQ)
which is consistent with the normalization
1
Tr (T,Ty) = §6ab' (A.3)

The tensor d®° is totally symmetric in a,b and ¢ and is given by
d =2 Tr [{T,, T} , T.] . (A.4)

In the adjoint representation the generator is a (N? — 1) x (N? — 1) matrix and its matrix
elements are given by

(Tw)ye = —if. (A.5)

These generators obey the Jacobi identities
[T, [T® T¢]] + cycl. perm. = 0 (A.6)
[T, {T® T°}] + cycl. perm. = 0. (A.7)

A.1.1 SU(2): Pauli matrices

The generators of the SU(2) group T; =0;/2 are given by the three Pauli matrices

(01 (0 =i (1 0
7\10) P2 i o) P o 1)
They fulfill the (anti)commutation relation

los,05] = 2iejp0p (A.8)
{Ui,O'j} = 25ij]12- (A9)
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A.1.2 SU(3): Gell-Mann matrices

For SU(3) the generators are in general expressed in terms of the Gell-Mann matrices T, = Ao /2,
which have the following representation

010 0 —2 0 1 0 0 0 0 1
A1 = 1 00 Ay = i 0 0 A3 = 0 -1 0 Ay = 0 0 0
0 0 0 0O 0 0 0 0 0 1 0 0
00 — 0 0O 0 0 O 1 0 0
M= 00 0 =001 M=|00 —i Ag:% 01 0
i 0 0 010 0 2z O 0 0 -2
They fulfill the (anti)commutation relations
P\au )‘b] = 2ifabc)\c (AlO)
4
{)‘aa >‘b} = 2dabc)\c + gﬂab (A.ll)
Tr ()\a>\b) = 25ab (A.12)

with a,b,c=1,..., N2 — 1 and fupe, dape the structure functions of the SU(3).

A.1.3 (Euclidean) Dirac matrices

The Euclidian v matrices in the non-relativistic representation are selfadjoint (v, :’yL) and
obey the following anti-commutation relation

Vst =20 (A.13)

They can be constructed in a non chiral represention using the Pauli matrices via

- 0 io; (1,0
"=\ Sy o) P00~

0 0 0 i o 0 0 1 0 0 i 0
0 0 i 0 0 0 -1 0 0 0 0 —i
M=l 0 = o o] "o -1 o ol 7= o o o
i 0 0 0 1 0 0 0 0 i 0 0
1 0 0 0 0O 0 1 0
o 1 0 o0 o o o 1] By
V4 = 0 0 —1 0 V5 = 1 0 0 0 = M172737%4 = V5
0 0 0 -1 0O 1 0 0



B Tables of results

B.1 AWI quark masses below T,

B T/T. | N xN; f«»- Mo (@) | meo (i) [MeV]
32° x 16 | 0.13300 | 0.0771(1) 233.2(3)
323 x 16 | 0.13400 | 0.0494(1) 148.5(3)
323 x 16 | 0.13460 | 0.0326(1) 98.4(3)
323 x 16 | 0.13495 | 0.0226(1) 67.4(3)
323 x 16 | 0.13540 | 0.0097(2) 29.4(6)
6.136 | 0.55 | 323 x 16 | 0.13576(2)
483 x 16 | 0.13300 | 0.0760(1) 222.1(3)
483 x 16 | 0.13400 | 0.0488(1) 142.6(4)
483 x 16 | 0.13460 | 0.0322(1) 94.1(3)
483 x 16 | 0.13495 | 0.0224(1) 65.5(3)

48% x 16 | 0.13579(2)

328 x 16 | 0.13300 | 0.0761(2) 389(1)
328 x 16 | 0.13400 | 0.0476(2) 245(1)
328 x 16 | 0.13460 | 0.0302(2) 158(1)
323 x 16 | 0.13531 | 0.0094(3) 48(2)

328 x 16 | 0.13540 | 0.0066(3) 34(2)

6.499 | 0.93 | 323 x 16 | 0.13565(2)

483 x 16 | 0.13300 | 0.0758(1) 387.9(2)
483 x 16 | 0.13400 | 0.0474(1) 241.6(3)
48% x 16 | 0.13460 | 0.0300(1) 153.5(4)
483 x 16 | 0.13531 | 0.0091(1) 46.6(4)

48% x 16 | 0.13564(2)

Tab. B.1: Quark masses as obtained from axial ward identity below T, in the MS scheme at
i~ 2GeV.
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B.2 AWI quark masses above T,

T/T.| B [ NixN.| & KE mawi(a) [ mig(i)[MeV]
163 x 8 | 0.13599 | 0.13574(2) | -0.00736(64) -23.9(21)
6.205 | 24% x 8 | 0.13599 | 0.13573(2) | -0.00789(46) -25.7(13)
323 x 8 | 0.13599 | 0.13574(2) | -0.00723(36) -23.5(12)
24% x 12 | 0.13558 | 0.13561(1) | 0.00104(22) 5.3(11)
1.2 | 6.499 | 36% x 12 | 0.13558 | 0.13560(1) | 0.00067(31) 3.4(16)
483 x 12 | 0.13558 | 0.13561(1) | 0.00097(24) 5.0(12)
32% x 16 | 0.13507 | 0.13525(1) | 0.00561(12) 38.0(8)
6.721 | 483 x 16 | 0.13507 | 0.13525(1) | 0.00552(11) 37.4(12)
643 x 16 | 0.13507 | 0.13526(1) | 0.00563(11) 38.1(8)
16 x 8 | 0.13581 | 0.13584(1) | 0.00086(60) 3.4(24)
243 x 8 | 0.13581 | 0.13582(1) | 0.00033(76) 1.3(30)
6.338 | 323 x 8 | 0.13581 | 0.13577(1) | -0.00110(41) -4.4(26)
643 x 8 | 0.13581 | 0.13579(1) | -0.00062(20) -2.5(8)
96% x 8 | 0.13581 | 0.13576(1) | -0.00155(15) -6.2(6)
243 x 12 | 0.13536 | 0.13541(1) | 0.00153(21) 9.5(6)
L5 | ¢ oo 363 x 12 | 0.13536 | 0.13540(1) | 0.00127(16) 7.8(10)
' 483 x 12 | 0.13536 | 0.13539(1) | 0.00092(18) 5.7(6)
483 x 12 | 0.13525 | 0.13541(2) | 0.00495(85) 30.7(52)
323 x 16 | 0.13495 | 0.13499(1) | 0.00112(11) 9.4(6)
6.872 | 483 x 16 | 0.13495 | 0.13500(1) | 0.00153(11) 12.8(9)
64% x 16 | 0.13495 | 0.13499(1) | 0.00133(9) 11.2(7)
7192 | 643 x 24 | 0.13440 | 0.13444(2) | 0.00132(4) 11.0(4)
163 x 8 | 0.13494 | 0.13517(1) | 0.00705(34) 59.1(21)
243 x 8 | 0.13494 | 0.13513(1) | 0.00566(28) 47.5(28)
6.872 | 323 x 8 | 0.13494 | 0.13511(1) | 0.00516(26) 43.3(21)
64 x 8 | 0.13494 | 0.13510(1) | 0.00482(19) 40.4(16)
963 x 8 | 0.13494 | 0.13508(1) | 0.00420(11) 35.2(14)
3.0 243 x 12 | 0.13440 | 0.13447(1) | 0.00227(16) 28.6(20)
7.192 | 363 x 12 | 0.13440 | 0.13445(1) | 0.00152(12) 19.2(8)
483 x 12 | 0.13440 | 0.13447(1) | 0.00200(10) 25.2(13)
323 x 16 | 0.13390 | 0.13399(1) | 0.00282(10) 49.3(17)
7.457 | 483 x 16 | 0.13390 | 0.13399(1) | 0.00262(7) 45.8(12)
643 x 16 | 0.13390 | 0.13399(1) | 0.00271(7) 47.4(12)
6.0 | 7.457 | 32° x 8 | 0.13390 | 0.13415(1) | 0.00746(19) 130.4(34)
T/T. g Ny x Ny miwy(a)
323 x 16 | 0.00267(16)
151 6872 s 16 0.00270(9)
457 32% x 16 | -0.00785(10)
3.0 ' 48% x 16 | -0.00779(5)
7.192 | 483 x 12 | -0.0043(1)

Tab. B.2: Quark masses as obtained from axial ward identity above T, in the MS scheme at
i~ 2GeV.
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B.3 Renormalization group factors

Ke ‘ amyg ‘ Z Ke ‘ amyg ‘ Z Ke ‘ amyg ‘ Z H
6 =6.000 06 =16.136 0 = 6.499

0.79 0.80 0.83 ST1

0.1324 | 0.080 | 0.72 || 0.1330 | 0.074 | 0.73 || 0.1330 | 0.071 | 0.77 Py

0.87 0.87 0.89 ap

0.79 0.80 0.83 || AVxp

0.76 0.77 0.80 ST1

0.1332 | 0.057 | 0.70 || 0.1340 | 0.046 | 0.71 || 0.1340 | 0.043 | 0.75 Py

0.84 0.84 0.86 np

0.79 0.80 0.83 || AVnp

0.73 0.75 0.78 ST1

0.1342 | 0.029 | 0.67 || 0.1346 | 0.029 | 0.69 || 0.1346 | 0.027 | 0.73 Py

0.81 0.82 0.84 Vnp

0.79 0.80 0.83 || AVxp

0.72 0.74 0.76 ST1

0.1348 | 0.012 | 0.66 || 0.1349 | 0.021 | 0.69 || 0.13531 | 0.007 | 0.72 Py

0.79 0.81 0.82 ap

0.79 0.80 0.83 || AVxp

0.73 0.76 ST1

0.1354 | 0.007 | 0.67 || 0.1354 | 0.004 | 0.71 Py

0.80 0.82 ap

0.80 0.83 || AVxp

Tab. B.3: Current renormalization factors Zy below T, as obtained from Eq. (tadpole
improved, TI) and Eq. (2.150) (non-perturbatively improved, NP).

3 ut | gi(1/a)
B | St | Pri | Vi | Vae | AVrr | AVie 7457 | 0.91345 | 1.4318
6.338 | 0.76 | 0.72 | 0.81 | 0.802 | 0.84 | 0.818 7.192 | 0.90890 1.5417
6.499 | 0.75 | 0.71 | 0.81 | 0.811 | 0.84 | 0.828 6.872 | 0.90133 1.7378
6.640 | 0.77 | 0.72 | 0.82 | 0.818 | 0.84 | 0.836 6.721 | 0.89928 1.7944
6.721 | 0.78 | 0.74 | 0.83 | 0.822 | 0.85 | 0.839 6.640 | 0.89738 1.8476
6.872 | 0.78 | 0.74 | 0.83 | 0.829 | 0.85 | 0.847 6.499 | 0.89383 1.9513
7.192 | 0.80 | 0.76 | 0.84 | 0.842 | 0.86 | 0.859 6.338 | 0.88938 2.0884
7.457 1 0.81 | 0.78 | 0.85 | 0.851 | 0.87 | 0.868 6.205 | 0.88528 2.9995
o 6.136 | 0.88507 | 2.2294
Tab. B.4: Current renormalization factors above T,. 6.000 | 0.87779 94899

Tab. B.5: The calculated pla-
quette values and the resulting
TI-couplings at p=1/a.
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B.4 Screening masses

T/T. I6; N2 xN, | m%a mga m{a mAa KZ
163 x 8 [ 681(10) | 685(7) | 781(11) | 779(9) | 0.13599
1.24 | 6.205 | 24%x 8 | 686(6) | 704(7) | 760(6) | 761(6) | 0.13599
328 x 8| 660(4) | 751(7) | 712(12) | 716(10) | 0.13599
243 x 12 | 456(7) | 460(7) | 496(6) | 494(4) | 0.13558
1.24 | 6.499 | 36° x 12 | 425(6) | 463(3) | 492(6) | 496(6) | 0.13558
48% x 12 | 436(4) | 460(7) | 496(6) | 494(4) | 0.13558
32 x 16 | 340(13) | 387(20) | 397(4) | 383(3) | 0.13507
124 | 6.721 | 48% x 16 | 342(4) | 339(4) | 371(4) | 370(4) | 0.13507
64° x 16 | 336(7) | 358(11) | 372(5) | 371(4) | 0.13507
165x 8| 750(8) | 760(9) [ 810(8) [ 810(7) [ 0.13581
24% % 8 | 705(6) | 710(4) | 756(7) | 760(6) | 0.13581
149 | 6.338 | 32°x 8 | 713(6) | 723(9) | 750(8) | 749(8) | 0.13581
64°x 8 | 712(8) | 715(9) | 730(2) | 730(2) | 0.13581
96° x 8 | 705(3) | 712(5) | 756(9) | 761(8) | 0.13581
24% % 12 | 503(4) | 505(4) | 530(3) | 537(3) | 0.13536
149 | 6640 | 367 %12 | 450(8) | 491(4) | 488(6) | 488(3) | 0.13536
48% x 12 | 485(6) | 487(4) | 507(6) | 506(5) | 0.13536
48% x 12 | 484(5) | 486(5) | 507(4) | 507(5) | 0.13525
32°x 16 | 380(5) | 379(3) [ 396(4) | 403(3) | 0.13495
149 | 6.872 | 48° x 16 | 365(3) | 365(4) | 386(3) | 387(3) | 0.13495
64% x 16 | 350(9) | 361(10) | 372(6) | 371(6) | 0.13495
165x 8| 775(4) | 766(5) | 799(4) | 776(3) [ 0.13494
243 x 8 | 750(4) | 745(4) | 775(4) | 770(5) | 0.13494
2.98 | 6.872 | 32°x 8| 736(3) | 695(6) | 755(4) | 745(5) | 0.13494
64% x 8 | 740(5) | 741(5) | 768(6) | 769(6) | 0.13494
96% x 8 | 732(5) | 740(6) | 764(4) | 762(5) | 0.13494
243 % 12 | 523(2) | 522(2) | 542(2) | 520(8) | 0.13440
2.98 | 7.192 | 36° x 12 | 496(10) | 500(5) | 510(14) | 510(10) | 0.13440
48% x 12 | 512(3) | 512(3) | 526(3) | 528(3) | 0.13440
328 %16 | 400(6) | 399(15) | 412(6) | 420(5) | 0.13390
2.98 | 7.457 | 48°x 16 | 394(3) | 394(2) | 406(2) | 406(2) | 0.13390
64° x 16 | 383(3) | 383(2) | 395(2) | 395(5) | 0.13390
| 5.96 | 7.457 [ 323 x 8] 768(5) | 768(5) | 782(6) | 793(3) | 0.13390

T/T. 3 N2xN, | mpa msa mya maa

323x 16 | 372(4
483x 16 | 361(3

(@) [ 373(3) | 397(3) | 400(6)
1.49 6.872 ( ) ( ) ( ) ( )
32%x 16 | 408(2) | 406(2) | 419(2) | 417(2)

A7 (2) | 392(2) | 403(2) | 404(2)
(3) | 510(3) | 524(2) | 524(2)

2.98 483x 16 | 390
7.192 | 483x 12 | 512

Tab. B.6: Screening masses as obtained from two exponential fits above T, for Wilson
fermions (top) and HF (bottom)

On the next page the screening masses below 7, as obtained by a two and a single state fit
are shown.
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’ K \ mpa \ mga \ mi a \ mja ‘
T = 0.44T¢, B3 = 6.000, 243 x 16, k2 = 0.13551(5) (60 configurations)
0.13240 | 534(7) 534(7) | 769( 39) 755( 46) | 637( 6) 638( 4) ne. ne.
0.13320 | 457(5) 457(5) | 702( 44) 690( 55) | 576( 7) 572( 5) ne.  ne.
0.13420 | 341(6) 341(6) | 703( 83) ~ | 495(14) 499( 8) ne.  ne.
0.13480 | 252(5) 252 (5) 931(113) 931(108) | 453(31) 456(17) ne.  ne.
extra 0 850( 30) | 399( 5) 399( 5) n.e. n.e.
T = 0.55T¢, 3= 6.136, 243 x 16, kZ = 0.13606(5) (60 configurations)
0.13300 | 498(4) 493(3) | 716( 20) 710(32) | 587( 3) 578( 3) ne. ne.
0.13400 | 403(4) 398(4) | 653( 35) 590(21) | 518( 5) 506( 4) ne.  ne.
0.13460 | 344(6) 337(5) | 631( 38) 460(36) | 479( 6) 466( 5) ne.  ne.
0.13540 | 238(7) 233(9) | 779(160) - | 444(13) 434(13) ne.  ne.
extra 0 0 404( 7) | 385( 8) 364( 3) n.e. n.e.
T = 0.55T¢, 3 = 6.136, 32° x 16,7 = 0.13575(1) (120/60 configurations)
0.13300 | 459(2) 453(4) | 693(29) 702( 41) | 543( 3) 527( 2) | 768(10) 850(77)
0.13400 | 360(2) 360(2) | 623(50) 622( 51) | 470( 4) 452( 3) | 685(32) 740(79)
0.13460 | 292(3) 290(3) | 587(13)591(116) | 423( 6) 425( 6) | 632(82) 649(90)
0.13495 | 242(2) 242(5) | 552(25) 585( 35) | 402( 8) 398( 7) | 614(80) 618(60)
0.13540 | 160(9) 163(9) : - | 414(21) 407(21) ne.  ne.
extra 0 0 531(8) | 349( 8) 339(10) 185(32)
T = 0.55T¢, = 6.136, 48 x 16, xZ = 0. 13568(2) (60 configurations)
0.13300 | 452(2) 450(2) - 540( 4) 530( 4) | 707(54) 780(80)
0.13400 | 353(2) 354(3) . - | 468( 7) 467( 8) | 655(89) 720(80)
0.13460 | 287(2) 287(3) _ - | 430( 8) 428(11) | 670(58) 683(50)
0.13495 | 237(3) 232(3) - - | 416(15) 415(14) | 677(93) 691(62)

extra 0 0 - | 361(6) 358( 6)

T =0.93T¢, B = 6.499, 24 x 16, 7 = 0.13582(6) (120 configurations)
0.13300 | 438(3) 423(3) | 549(10) 536(9) | 452( 7) 461(2) ne ne.
0.13400 | 346(3) 336(3) | 452(9) 440(8) | 378(6) 384(3) ne.  ne
0.13460 | 288(4) 278(4) | 388(10) 379(9) | 339(9) 340(4) ne.  ne.
0.13540 | 189(6) 186(8) | 465(12) 455(11) | 284(15) 281(6) ne.  ne.
extra 0 0 260( 8) | 246(12) 248(2) n.e. n.e.
T =0.93T¢, B = 6.499, 32 x 16, xZ = 0.13549(10) (60 configurations)
0.13300 | 387(2) 353( 2) | 505(13) 492(12) | 432( 3) 419( 2) me.  me.
0.13400 | 296(2) 201( 2) | 425(14) 03(13) 349( 3) 343( 3) ne.  ne.
0.13460 | 235(4) 233(4) | 422(36) 419(31) | 302( 3) 293( 3) ne.  ne.
0.13531 | 161(6) 153(10) . ~ | 266( 9) 247( 8) ne.  ne.
0.13540 | 148(7) 150( 7) ; ~ | 258(14) 248(12) ne.  ne
extra 0 0 353(10) | 219( 8) 226( 4) n.e. n.e.
T =0.93T¢, B = 6.499, 48 x 16, xZ = 0.13557(8) (60 configurations)
0.13300 | 363(2) 361(2) | 483(20) 484(29) | 407( 3) 401( 2) | 543(11) 530(40)
0.13400 | 282(2) 272(2) | 392(43) 389(40) | 332( 3) 323( 2) | 465(12) 448(40)
0.13460 | 212(3) 207(3) | 323(73) 390( 5) | 283( 4) 284( 4) | 380(57) 370(70)
0.13531 126(4) 12 (4) _ - | 244(11) 223(20) | 242(48) 200(40)
extra 345(10) | 214( 4) 207( 3)

Tab. B.7: Screening masses as obtained from one and the two exponential fit. The left
column represents the masses resulting from a single state fit and the right column of a
combined single and double state fit. n.e. abbreviation stands for not available data.
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B.5 MEM pole masses

Tab. B.8: Pole masses as obtained from the SPF by a jackknifed MEM analysis. Wilson

T/T, I} K N, mpa mya msa
0.13240 | 24 | 0.516(10) | 0.657(5) | 0.697(61)
0.13320 | 24 | 0.442(16) | 0.601(2) | 0.612(125)
044 16000 1 13490 | 24 | 0.331(15) | 0.527(3) -
0.13480 | 24 | 0.250(14) | 0.475(4) -
0.13300 | 48 | 0.459(3) | 0.542(5) | 0.698(37)
32 | 0.464(3) | 0.561(5) | 0.723(11)
24 | 0.494(3) | 0.572(8) | 0.716(29)
0.13400 | 48 | 0.342(4) | 0.489(6) | 0.617(24)
32 | 0.357(2) | 0.494(6) | 0.668(12)
0.55 1 6.136 24 | 0.398(3) | 0.498(14) | 0.653(35)
0.13460 | 48 | 0.284(2) | 0.438(9) | 0.537(50)
32 | 0.272(3) | 0.453(3) | 0.646(11)
24 | 0.327(6) | 0.453(8) | 0.631(38)
0.13495 | 48 | 0.214(2) | 0.414(10) | 0.552(91)
32 | 0.246(58) | 0.431(3) | 0.649(15)
0.13300 | 48 | 0.414(3) | 0.486(20) | 0.542(13)
32 | 0.431(2) | 0.487(1) | 0.542(15)
24 | 0.438(5) | 0.509(11) | 0.564(14)
0.13400 | 48 | 0.324(4) | 0.424(1) | 0.450(9)
32 | 0.338(2) | 0.427(1) | 0.457(15)
0.93 1 6.499 24 | 0.346(6) | 0.435(3) | 0.464(11)
0.13460 | 48 | 0.252(5) | 0.384(2) | 0.414(11)
32 | 0.260(2) | 0.361(1) | 0.416(16)
24 | 0.283(8) | 0.387(3) | 0.394(14)
0.13531 | 48 | 0.217(2) | 0.342(3) | 0.521(167)
32 | 0.224(1) | 0.357(1) | 0.645(38)
T/T, 8 N, | mpa | mya | msa | maa
32 | 0.265 | 0.296 - 0.338
15| 6.872 48 | 0.317 | 0.368 | 0.276 | 0.359
32 | 0.307 | 0.349 | 0.255 | 0.307
30| 7457 48 | 0.307 | 0.338 | 0.286 | 0.328

fermions below T, (top) and HF above T, (bottom).




C Auxiliary Functions for the Free Lattice
Field Theory

In this appendix we list various definitions and functions, needed in in order of their
appearance.

The first ones are sum rules for introducing a finite N, for the quark propagator in Eq. .
With f(n)=(—1)"le=Elt+Nrnl one can show that the following equations hold

niof " _ meERwN—o)
nzioosgn(t + N:n)f(n) _ Cosh(i fﬁgg ]/\, ]:,;2; 0.5)) |
nioo(—l)|t+NTn|f(n) —(—1)! Sinh(QCLOES]}\Ing]/V]:;;;) 0.5) | (C.1)
ni:oo(—l)|t+lesgn(t+N7n) Fn) =(—1)! cosh(ifsjl\lfzg]/VJYE 0.5))

Note that the last two equations are true only for even N, .

Definitions for the fixed point action

The following functions are needed for the fermion FP-propagator, Eq. (3.44). With the
shorthand notation ¢; =cos k; and §; =sin k; they are

a1(k) = 281(p1 + 2p2(é2 + ¢é3) + 4pscacs) (C.2)

o (k) = 28(p1 + 202(1 + &3) + Apséiés) | (C.3)

as(k) = 2383(p1 + 2p2(¢1 + ¢2) + 4pséica) (C.4)

Br(k) = 451(p2 + 2p3(éa + ¢3) + 4pacacs) , (C.5)

Ba2(k) = 452(p2 + 2p3(¢1 + ¢3) + 4paciés) (C.6)

B3(k) = 433(p2 + 2p3(C1 + C2) + 4pacica) , (C.7)

S(k) = 2p1 + 4p2(E1 + &2 + &) + 8ps(é182 + 985 + 163) + 16paérinéy ,  (C.8)

and

k1(k) = Ao + 2X\1(¢é1 + é2 + ¢3) + 4X\a(¢1¢ + C2é3 + ¢183) + 8N3¢18283 (C.9)

ko(k) = 21 +4X2(é1 + G2 + ¢3) + 8A3(¢182 + s + C163) + 16A4¢16aCs3 . (C.10)

In [Section 3.2.3] only the contribution of the first pole to the meson correlation function is
discussed. The contribution from the second pole, appearing in Eq. (3.49)), can be divided
into two parts

AGI?(T) = Gua(7) + Gra(7) (C.11)
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with

N N\ 2 = ¢fP2(K) cosh[2Es (K) N, (7 — 1/2)] 4 d5P2 (k)
Cuzl7) = N <> 2 (PQ—QR)coshZ(EQ(k)NT/Z)H o (G1Y)
(—1)0(-@7+1

_ N\ ?
Gma(7) = Ne (Na> Zk:(P2—QR)cosh(El(k)NT/Q)cosh(EQ(k)NT/Q) (C.13)

[gfﬁ 12(k){cosh[Ey(k) N, (7 — 1/2)] — cosh[Eq(k) N, (7 — 1/2)]}
+ 52(k){cosh[ES(k)NT(7- —1/2)] + cosh[E4(k) N, (T — 1/2)]} .
Here the second term represents a mixed contribution from both poles with the energies

E;=Fi + E5 and E;=FE, — E>. The functions CZP 2 and dZP 2 are exactly defined as cflp and
dZP , if one replaces df'"’ with

(K1 + K2 sgn(Q) cosh F5)?

dfP? = qf'P2 (k) = C.14
() sinh? Fy (C.14)
gflp 12 is defined in Table with
JFP12 K2 sgn(Q) + K2 cosh Ej cosh By + K1Ka(cosh Ey + sgn(Q) cosh Ey) (C.15)
1 - sinh F; sinh Fs AT
JFP12 k3 sgn(Q) + k3 cosh B cosh By + k1 ka(cosh By + sgn(Q) cosh Ey) (C.16)
2 B sinh B sinh Fy ' ‘
H gflplz H gflpm
P dy 72+ dy S —dy 7% +dy 2
Vo dfplz + dgpm Ao dfpm - dgpm

Z;:l Vi d{;f;f + 3d§;122 23?:1 A; d{;};f _ 3d£;1;2
Z,u:O VM 2d; 12 4d, 12 Z#ZO AM 2! 12 4d? 12

Tab. C.1: The explicit form of the HF functions gflp 12 appearing in Eq. . The functions
d¥"12(k) and d572 (k) are defined in Eqs. and .



D Storing data - Database SQL with MySQL

To get control over the vast amount of data regarding the CFs, we have decided to implement
a database system based on SQL! [232]. Together with the relational database management
system MySQL it is free of charge, open-source, portable and fast. Today SQL forms the
backbone of most modern database systems.

Its general structure is given as follows

- data is stored in tables
- tables are subdivided in rows, containing the records (datasets), and columns

- each dataset contains various information (attributes), which is distributed over the
columns of the tables

Every database table can have one or more columns designated as the primary key (PRI). It
keeps all of the records straight. The other type of keys is the foreign key (FOR). These keys
are used to create relationships between tables, in order to avoid redundancies and build the
key concept of relational databases.

As an example of our database structure the AZ database is shown in Fig. It contains
our Wilson data Above the critical temperature in Z direction and consists mainly of four
tables:

1. The lattice table stores the lattice parameter data, e.g., lattice sizes, 3 etc..

2. The second momfuzz table contains the fuzzing and smearing parameter as well as the
momenta we used.

3. The configuration number of exceptionals we found in our data is stored in the third
table exceptionals

4. CF data together with their configuration number is given in PS table.

A typical example of a database query is
SELECT * from AZ.lattice where beta=6.499;

or

USE AZ;

SELECT * from lattice where beta=6.499;.
This selects all information (datasets) of table lattice where 5 = 6.499. The database selection
(USE) is always assumed from now on. A somewhat more complicated query is

SELECT PS.value, PS.conf from PS

INNER JOIN lattice ON (where lattice.lattice_id=PS.FK_lattice_id);.
Here both tables —lattice and PS are linked together by a INNER JOIN to a fictive table, in

which only the PS CF values together with their configuration number are selected. Other
examples of join commands are, e.g., JOIN, INNER JOIN, LEFT OUTER JOIN, RIGHT OUTER
JOIN. While INNER JOINS link two tables by selecting only records, which are linked by a

!Structured Query Language, first standardized in 1986 by the American National Standards Institute
(ANSI) [230]. Since then, it has been formally adopted as an international standard by the International
Organization for Standardization (ISO) [231] and the International Electrotechnical Commission (IEC)
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Lattice momfuzz

Field Type Key 1 1 Field Type | Key
lattice_id int(11) PRI momfuzz_id | int(11) | PRI

dir char(1) MF int(2)

Nt int(2) PF int(2)

Ns int(2) MOM_X int(2)

beta double(5,3) MOM.Y int(1)

kappa | double(7,5) MOM_Z int(1)

MOM.T | int(1)

exceptionals PS
« Field Type | Key « Field Type | Key
— | FK_lattice.id | int(11) | FOR > FK lattice.id | int(11) | FOR
confnr int(6) > FK.momfuzz_id | int(11) | FOR
slice int(2)
value int(2)
conf int(1)

Fig. D.1: Schema of our database structure for the AZ table. 1:x denotes a one-to-many
relation, e.g., one record in table momfuzz can be related to many records in PS and each
record in the PS table is related to exactly one record in the momfuzz table.

foreign key, (LEFT/RIGHT) OUTER JOINS collect all entries, regardless of any connections.
The queries can be send directly using the shell to the mysql-server via

mysql -u name -p < ‘‘Select * ...”’
or, e.g., by an C-API library, which allows for further data analysis by a simple C-program
(see e.g., List. . In the following we show, how we have created tables considering as
example PS":

CREATE TABLE ‘PS‘ (

‘slice‘ int(2) unsigned zerofill NOT NULL default ’00’,

‘value‘ double NOT NULL default ’07,

‘conf‘ int(5) NOT NULL default ’0’,

‘FK_lattice_id‘ int(11) NOT NULL default ’0’,

‘FK_momfuzz_id‘ int(11) NOT NULL default ’0°,

PRIMARY KEY (‘slice‘,‘conf‘,‘FK_lattice_id‘, ‘FK_momfuzz_id‘),

KEY ‘FK_lattice_id‘ (‘FK_lattice_id‘),

KEY ‘FK_momfuzz id‘ (‘FK.momfuzz_ id‘)

) TYPE=MyISAM;
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/* PROGRAM WITH DATABASE QUERY

/* AUTHOR Soenke Wissel
/*  DATE 06/29/2006

/3% sk sk ok ok ok sk sk sk ok ok sk sk sk s ok ok sk sk ok R K ok sk sk sk o ok oK sk ok sk o oK ok sk sk sk R K ok sk ok sk K ok oK sk ok ok R oK ok ok ok ok K ok ok ok /)

#include <my_global.h>
#include <mysql.h>
#include <my_getopt.h>
#include <stdio.h>

char xopt_-host_-name=NULL;
char *xopt_-user_name=NULL;
char xopt_-password=NULL;
unsigned int opt_-port_num=0;
char xopt_socket_name=NULL;
char xopt_.db_name=NULL;
unsigned int opt_flags=0;
int ask_password=0;

struct my_option my_opts[]=

NULL,NULL, GET_STR_-ALLOC,

{
{”help”,’?’,”Display this help and exit”, NULL, NULL, NULL, GETNO_ARG, NO_ARG,
0,0,0,0,0,0},
{ ost” ,’h’,”Host to connect to” ,(gptr ) &opt-host_name, NULL,NULL, GET-STR-ALLOC,
REQUIRED_ARG, 0,0,0,0,0,0},
{”password” ,’p’,” Password” ,(gptr x) &opt_-password , NULL,NULL, GET_STR-ALLOC, REQUIRED_ARG,
0,0,0,0,0,0},
{”port” ,’P’,” Port number” ,(gptr =) &opt_port_num , NULL,NULL, GET_UINT, REQUIRED_ARG,
0,0,0,0,0,0},
{”socket” ,’S’,”Socket path” ,(gptr *) &opt_socket_name,
REQUIRED_ARG, 0,0,0,0,0,0},
{”user”,’u’,” user” ,(gptr *) &opt_user_name , NULL,NULL, GET_STR_.ALLOC, REQUIRED_ARG,
0,0,0,0,0,0},
{NULL, 0 ,NULL, NULL, NULL, NULL, GET_NO_ARG,NO_ARG, 0,0 ,0 ,0 ,0 ,0 }
I
void

print_error (MYSQL *conn, char s*xmessage)

fprintf(stderr, ”"%s\n”, message);
if (conn!=NULL)

{
fprintf(stderr, ”Error %u (%s)\n” ,mysql_errno(conn) ,mysql_error(conn));
}
}
my_bool

get_one_option (int optid,const struct my_option *opt, char xargument){

switch (optid)
{case 7’:
my_print_help (my_-opts);
exit (0);
case ’'p’:
if (!argument)
ask_password=1;
else
{
opt_password=strdup (argument) ;
if (opt_-password==NULL) {

print_error (NULL,” could not allocate password buffer”);

exit (1);

while (xargument)
sargument++=>"x";

¥
break;
return (0) ;
}
int

main (int argc,char sxargv[])

int n,time_step , Nset_step , N_set;
unsigned int i,j,*xconf,num_row,N_time;
char query [500];

double *xdat_mes;

char database [4]="AZ";
char meson[6]="PS”;
int Ns=48;

int Nt=16;

double beta=7.457;
double kappa=0.13390;
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86 int MF=0;

87 int PF=0;

88 int MOMX=0;

89 int MOMY=0;

90 int MOM.Z=0;

91 int MOM.T=0;

92

93 const char xclient_groups|[]={"client” ,NULL};

94 int opt_err;

95

96 MYSQL *conn;

97 MYSQLRES *xres_set ;

98 MYSQLROW row ;

99

100 my_init () ;

101

102 load_defaults ("my2” , client_groups ,&argc,&argv);

103

104 if ((opt-err=handle_options(&argc,&argv ,my_opts,get_one_option)))

105 exit (opt_err);

106

107 conn=mysql_init (NULL) ;

108

109 if (conn==NULL) {

110 print_error (NULL,” mysql_init () failed (probapbly out of memory\n”);

111 exit (1);

112

113 opt-db_name=0;

114

115 if (mysql_-real_connect (conn, opt-host_-name , opt_user_name, opt_-password, 0 , opt-port_num,
opt_socket_-name, opt_flags)==NULL){

116 print_error (conn, "mysql_-real_connect () failed:\nError %u (%s)\n”);

117 mysql_close (conn);

118 exit (1)

119 }

120

121 sprintf(query ,”SELECT slice ,value,conf FROM %s.%s inner join %s.lattice ON (%s.%s.

FK_lattice_.id=%s.lattice.lattice_id) inner join %s.momfuzz ON (%s.%s.FK_momfuzz_id=%s
.momfuzz. momfuzz_id) WHERE beta=%g AND kappa=%g AND Ns=%lu AND Nt=%lu AND MFE=%lu AND
PF=%lu AND MOMX=%lu AND MOM.Y=%lu AND MOM_Z=%lu AND MOM.T=%lu ORDER BY conf, slice;”,
database ,meson,database ,database ,meson,database ,database ,database ,meson,database , beta
,kappa , Ns, Nt , MF, PF, MOM.X, MOM.Y, MOM._Z, MOM.T) ;

122

123 if (mysql_query (conn, query)!=0){

124 print_error (conn, ”"mysql_query () failed”);

125 !

126 else

127 {

128 res_set=mysql_store_result (conn) ;

129 if(res_set==NULL){

130 print_error (conn, "mysql_store_result () failed”);
131

132 else{

133 num_row=mysql_-num_rows (res_set);

134 N_set=num_row /Ns;

135 printf ("#of conf:%i\n” ,N_set);

136 conf=(int x) malloc( N_set * sizeof( int ) );
137 dat_-mes=InitMatrix (N_set ,Ns);

138 time_step =0;

139 Nset_step=—1;

140 while ((row=mysql_fetch_row (res_set ) )!=NULL) {
141 if (atoi(row[0])==0) Nset_step-+-+;

142 n=time_step % Ns;

143 dat_mes [ Nset_step ] [n]=atod (row [1]) ;

144 conf[Nset_step]=atoi(row[2]) ;

145 time_step++;

146 }

147

148 !

149

150 for (j=0;j<N_set;j++){

151 printf (”\n”);

152 for (i=0;i<Ns;i++){

153 printf (7%i\t%e\t%u\n” ,i,dat_-mes[j][i],conf[]j]);
154 !

155 }

156 }

157

158 mysql_close (conn) ;

159 exit (0);

160

Listing D.1: Example of a sourcecode in C for a query to the database. User and password
are defined in ~ /.my2.cnf
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In order to import data in our database we have used for instance for PS data into the AZ
database the following script.

USE temp;

CREATE TABLE PS( slice int(2) unsigned zerofill NOT NULL,
value double NOT NULL,

dir char(1) NOT NULL,

Nt int(2) NOT NULL,

Ns int(2) NOT NULL,

beta double(5,3) NOT NULL,

kappa double(7,5) NOT NULL,

MF int(2) NOT NULL,

PF int(2) NOT NULL,

MOM_X int(1) NOT NULL,

MOM.Y int(1) NOT NULL,

MOM_Z int(1) NOT NULL,

MOM_T int(1) NOT NULL,

conf int(5) NOT NULL,
UNIQUE(slice,dir,Nt,Ns,beta,kappa,MF,PF,MOM_X,MOM_Y,MOM_Z ,MOM_T, conf)
);

LOAD DATA INFILE ’/SQL/input/AZ/PS.dat’
INTO TABLE PS FIELDS TERMINATED BY ’ ’;

INSERT INTO AZ.lattice (Ns,Nt,dir,beta,kappa)

SELECT DISTINCT PS.Ns,PS.Nt,PS.dir,PS.beta,PS.kappa FROM PS

LEFT OUTER JOIN AZ.lattice ON (PS.Ns=AZ.lattice.Ns AND
PS.Nt=AZ.lattice.Nt AND PS.dir=AZ.lattice.dir AND PS.beta=AZ.lattice.beta
AND PS.kappa=AZ.lattice.kappa) WHERE (AZ.lattice.Ns IS NULL);

INSERT INTO AZ.momfuzz (MF,PF,MOM_X,MOM_Y,MOM_Z,MOM_T)

SELECT DISTINCT PS.MF,PS.PF,PS.MOM X,PS.MOM.Y,PS.MOM_Z,PS.MOM_T FROM PS
LEFT OUTER JOIN AZ.momfuzz ON (PS.MF=AZ.momfuzz.MF AND
PS.PF=AZ.momfuzz.PF AND PS.MOM_X=AZ.momfuzz.MOM_X AND

PS.MOM_Y=AZ .momfuzz.MOM_.Y AND PS.MOM_Z=AZ.momfuzz.MOM_Z AND

PS.MOM_T=AZ .momfuzz.MOM_T) WHERE (AZ.momfuzz.MOM.Y IS NULL) ;

INSERT INTO AZ.PS (slice,value,conf,FK_lattice_id,FK_momfuzz_id)

SELECT PS.slice,PS.value,PS.conf,AZ.lattice.lattice_id,AZ.momfuzz.momfuzz_id
FROM PS

INNER JOIN AZ.lattice ON (PS.Ns=AZ.lattice.Ns AND PS.Nt=AZ.lattice.Nt

AND PS.dir=AZ.lattice.dir AND PS.beta=AZ.lattice.beta AND
PS.kappa=AZ.lattice.kappa)

INNER JOIN AZ.momfuzz ON (PS.PF=AZ.momfuzz.PF AND PS.MF=AZ.momfuzz.MF

AND PS.MOM_X=AZ.momfuzz.MOM_X AND PS.MOM_Y=AZ.momfuzz.MOM.Y AND

PS.MOM_Z=AZ .momfuzz.MOM_Z AND PS.MOM_T=AZ.momfuzz.MOM_T);

DROP TABLE PS;

It creates a temporary table PS in the database temp, reads in the data and distributes it
among the various tables of the database AZ.
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