
SEMEDA (Semantic Meta-Database):
Ontology Based Semantic Integration of

Biological Databases

Dissertation zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

Eingereicht an der Technischen Fakultät der Universität Bielefeld von

Jacob Köhler

Dipl. Biol. Jacob Köhler
“SEMEDA (Semantic Meta-Database): Ontology Based Semantic Integration of
Biological Databases”
PhD Thesis
Bielefeld 2003
Technischen Fakultät der Universität Bielefeld
AG Bioinformatik, Prof. Dr. Ralf Hofestädt
Gedruckt auf alterungsbeständigem Papier °° ISO 9706

Title page:
The Tower of Babel, 1563
Pieter Bruegel (about 1525-69), usually known as Pieter Bruegel the Elder
Oil on oak panel, 114 x 155 cm
Kunsthistorisches Museum Wien, Vienna
http://www.khm.at/system2E.html?/staticE/page437.html
The Book of Genesis tells of a great tower built by men not only from fear of a second
Flood but above all "to make a name for themselves”. Gods punishment was the
Babylonian confusion of tongues, with men unable to understand each other, the
result being that the tower was never finished.

2

Mein Dank

gilt Prof. Ralf Hofestädt für die Betreuung der Arbeit, die Freiheit die er dabei
gewährte und dafür, dass er es mir ermöglichte die Arbeit an der Universität Bielefeld
fertig zu stellen. Dr. habil. Steffen Schulze-Kremer (RZPD Berlin) führte mich in die
Thematik der semantischen Datenbank Integration ein und unterstützte die Arbeit
während der gesamten Zeit durch Diskussionen und Vorschläge bei der Umsetzung.
Prof. Ipke Wachsmuth danke ich für das Interesse welches er der Thematik
entgegenbrachte sowie für stimulierende Diskussionen. Dr. Christian Bauckhage
danke ich dafür, dass er sich so kurzfristig bereiterklärte mit Interesse in der
Prüfungskommission mitzuwirken.
Mein besonderer Dank gilt Matthias Lange in dem ich neben einem zuverlässigen
stets hilfsbereiten Kollegen auch einen guten Freund gefunden habe, der mir von
Anfang bis Ende der Arbeit mit Rat und Sachverstand zur Seite stand. Obwohl ich Dr.
Stephan Philippi erst ein Jahr vor Fertigstellung der Dissertation kennerlernte, trug er
durch Sachverstand und konstruktiver Kritik in der entscheidenden Phase der Arbeit
sehr zu ihrem Gelingen bei. Meinem Kollegen Dion Whitehead danke ich für die
sprachlichen und inhaltlichen Korrekturen und die alltägliche Englisch Nachhilfe.
Obwohl ich Werner Ceusters (Language & Computing, Belgien) nur einen Abend
lang kennen gelernt habe, lernte ich viel von ihm, unter anderem die ontologisch-
multilinguale Definition von Spargel. Prof. Martin Wahl (IfM Kiel) wird überrascht
sein, dass ich ihm hier danke, doch half mir vieles was ich durch seine
ausgezeichneten Betreuung meiner Diplomarbeit gelernt habe auch bei meiner
Dissertation. Dr. Thomas Steger-Hartmann (Schering AG, Berlin) danke ich für sein
Interesse und dafür, dass er mich in einigen wichtigen Fragen beriet.
Meinen Kollegen der Technischen Fakultät Bielefeld, insbesondere der AG
Bioinformatik, danke ich für anregende Diskussionen und konstruktive Kritik. Den
mittlerweile am IPK Gatersleben arbeitenden Kollegen danke ich für Rat, Support und
die Tatsache, dass ich SEMEDA auf den dort befindlichen Systemen entwickeln
konnte. Den Mitarbeitern des RZPDs Berlin danke ich für die Unterstützung bei der
Anbindung ihrer Datenbank an SEMEDA. Als assoziiertes Mitglied des Graduierten
Kollegs “Dynamics and Evolution of Cellular and Macromolecular Processes“ der
Humboldt Universität Berlin hatte ich die Möglichkeit an Seminaren und
Veranstaltungen des GKs teilzunehmen, und dadurch meinen fachlichen Horizont
auch jenseits der Datenbank Integration zu erweitern.
Vielen unerwähnten Freunden, Kollegen und Studenten danke ich für die schöne Zeit
und für das was ich im Laufe der Dissertation in Seminarräumen sowie bei Kaffee,
Cocktails und bei vielen anderen Gelegenheiten gelernt habe.
Meinen Verwandten danke ich dafür, dass sie stets für mich da waren. Meiner Frau
Regina danke ich für Geduld, ihre beständige alltägliche Unterstützung sowie für den
Rat bei der Gestaltung der Nutzer Schnittstelle. Meinen Söhnen Milan und Louis
danke ich dafür, dass es ihnen immer wieder aufs neue gelingt die Wichtigkeit der
hier vorliegenden Arbeit zu relativieren.

3

4

Table of Content
1 INTRODUCTION ...11

2 STATE OF THE ART ...15

2.1 Molecular Biological Databases ...16
2.2 Database Heterogeneity ..17

2.2.1 Storage ..17
2.2.2 Semantic Heterogeneity ..21
2.2.3 Access Methods ..23

2.3 Database Integration ...23
2.3.1 Hypertext Navigation Systems ...24
2.3.2 Indexing Systems ..25
2.3.3 Database Mediation and Federation..26
2.3.4 Data Warehouses ..28

2.4 Ontologies ...28
2.4.1 Using Ontologies for Database Integration.......................................30
2.4.2 Ontologies and Standards ...31
2.4.3 Ontology Editors...32

3 PRINCIPLES OF SEMANTIC DATABASE INTEGRATION35

3.1 Database Metadata ..35
3.2 Controlled Vocabularies and Ontologies ..35
3.3 Semantic Database Definitions ...37

3.3.1 Attribute semantics ...37
3.3.2 Table Semantics ..38
3.3.3 Attribute Value Semantics ..39
3.3.4 Database Links and Cross-references ...41

4 REQUIREMENTS ANALYSIS..43

4.1 Prototype ...44
4.2 General Requirements...44
4.3 Using the BioDataServer to Access Data sources ..46
4.4 Multi User Support ...49
4.5 User Interface..49

4.5.1 Querying Databases: SEMEDA-query ...50
4.5.2 Semantically Defining Databases: SEMEDA-edit50

4.6 Tool Interface..52

5

5 METHODS ..53

5.1 Data Structure ...53
5.2 Editing Data and Multi User Support ...56
5.3 Querying the Data Structure ...57

6 DESIGN AND IMPLEMENTATION ..59

6.1 System Architecture..59
6.1.1 Overview...59
6.1.2 Scenario...61
6.1.3 Backend...64
6.1.4 Middle Tier ...65
6.1.5 Frontend (User Interface)..71

6.2 BioDataServer access..72
6.3 Multi User Support ...73
6.4 Tool Interface..76

6.4.1 Read-only Access..76
6.4.2 Write Access ...76

6.5 Resources and Programming Languages ..77

7 USING SEMEDA..79

7.1 Client requirements...79
7.2 Import Metadata from the BioDataServer. ...79
7.3 SEMEDA-edit...80

7.3.1 Attribute Semantics...84
7.3.2 Table Semantics ..84
7.3.3 Attribute Value Semantics ..85

7.4 Release Suggested Objects ...85
7.5 Submit BioDataServer Schemata..86
7.6 SEMEDA-query..87

8 EVALUATION OF EXISTING ONTOLOGIES..93

8.1 Criteria ..93
8.2 Evaluation ...95
8.3 Conclusion ..98

9 ONTOLOGY DESIGN..101

9.1 General Ontology Design Principles ..101
9.2 Implicit Database Table Semantics...105
9.3 SEMEDAs "Main Ontology"..107
9.4 Semantic Definition of Databases...109
9.5 Custom Ontology versus Import...109

6

10 PRACTICAL APPLICATIONS OF SEMEDA ..111

10.1 Modelling Integrated BioDataServer Schemata ...111
10.2 Integration of the RZPD Clone Database ...113

10.2.1 The RZPD Clone Database...114
10.2.2 Connecting the RZPD to SEMEDA ...115

11 DISCUSSION..117

11.1 Comparison with other Systems ...117
11.1.1 Ontology Editors/Browser ..117
11.1.2 Database Integration Systems ...119

11.2 Outlook ...121
11.2.1 Improving Performance using a Database Mirror121
11.2.2 Extensions of SEMEDA ...124
11.2.3 Database Integration in Other Knowledge Domains126

11.3 Conclusion ..127

12 LITERATURE...129

7

Abbreviations
BDS BioDataServer. The MARGBench component which provides SQL

access to heterogeneous data sources
DAG Directed Acyclic Graph
DBMS Database Management System
GUI Graphical User Interface
JDBC Java Database Connectivity
JSP Java Server Pages
OODBMS Object Oriented Database Management Systems
RDBMS Relational Database Management System
RDF Resource Description Framework. The RDF specifications provide a

lightweight ontology system to support the exchange of knowledge on the
Web.

SEMEDA Semantic Meta Database
SQL Structured Query Language

8

Chapter 1: Introduction

1 Introduction

Searching a
research in t
importance o
plethora of
(Davidson e
fact that mo
database int
(Fujibuchi e
most molec
management
ODBC for d
problems of
described fo
problems sti
summarized
1) The fact
results in pr
ontologies
Consortium
Registry (Bu
no tools avai
controlled v
which datab
vocabularies
2) Attribute
attributes ha
example use

And the Lord said, ‘Behold, they are one people, and they
all have the same language. And this is what they began to
do, and now nothing which they purpose to do will be
impossible for them’
 Genesis 11:6
nd integrating data from various sources is often a prerequisite for
he field of Molecular Biology and Bioinformatics. Due to the obvious
f data integration for the life science community (Stevens et al. 2001), a

approaches for the integration of molecular biological databases exists
t al. 1995, Karp 1995, Jakobovits 1997, Freier et al. 2002b). Due to the
st 'databases' were started as flatfiles, the most common approach to
egration is based on indexed flatfiles, for example DBGET/LinkDB
t al. 1998), SRS (Etzold et al. 1996) and SIR (Ramu 2001). Nowadays,
ular biological databases are implemented on relational database
 systems (RDBMS) that provide standard interfaces like JDBC and
ata and metadata exchange. By using these interfaces, many technical

 database integration can be overcome and semantic issues remain as
r example in (Kim and Seo 1991, Karp 1995, Williams 1997). As these
ll challenge current approaches to database integration, they are briefly
in the following:
that different databases often use different words for the same things

oblems that can be overcome by using either controlled vocabularies or
like the Gene Ontology (Ashburner et al. 2000, Gene-Ontology-
2001), EC numbers (International-Union-of-Biochemistry 1992), CAS
ntrock 2001) etc. However, a related problem in this area is that there are
lable, which enable database owners to collaboratively edit and maintain

ocabularies or ontologies. Also, there is no systematic method to define
ase uses which controlled vocabulary. Therefore, often 'uncontrolled
' and different controlled vocabularies are used across databases.
 names are often not self-explanatory or misleading and equivalent
ve different names in different databases. Whereas one database might for
 the attribute name 'ec_nr', another database might use 'id' for an attribute,

11

Chapter 1: Introduction

which also contains EC numbers. Out of this, attributes cannot be easily mapped
between different databases.
3) Querying databases often requires knowledge about the content of its tables, e.g. if
a table only contains data about one species or one enzyme group. About which
mouse species does the mouse genome database ‘http://www.informatics.jax.org/’
contain data? The database schema does not contain an attribute 'organism'. Unless
the user is a biologist who knows that mouse experiments are generally done with
special strains of Mus Musculus, it is impossible to find species information via the
database query forms on the web page. This is no problem, as long as the interface of
the source database is used. As systems for database integration have their own query
interface, tables as described above have to be semantically refined with additional
information.
4) Due to the lack of a systematic linking mechanism between databases, even up to
date integration systems such as SRS (Etzold et al. 1996) and KEGG (Kanehisa
1997a, b, Kanehisa et al. 2002) only link the 'most important' attributes. This is due to
the fact that the number of existing molecular biological databases is too high to
survey. Therefore, compared to the fact that at present more than 400 molecular
biological databases exist (Discala et al. 2000, Baxevanis 2002), the degree of
interlinking is low (Williams 1997).
These issues related to semantics become more significant when more than a few
databases have to be integrated. For example the BioDataServer, a mediated database
integration system that was developed within the MARGBench project (Freier et al.
1999, Freier et al. 2002a, Freier et al. 2002b), can at present be used to query about 15
different databases. Each database has between 2 and 250 database tables. Each
database table has between 2 and 15 attributes. Thus the simple task to find all
relevant database attributes that might be searched for the enzyme “amylase” becomes
a challenge, because it requires that the user has in depth knowledge about all
databases. This problem is even more eminent in existing database integration
systems such as SRS. Typical SRS (Etzold et al. 1996, Etzold and Verde 1997,
Zdobnov et al. 2002) installations integrate more than 100 databases, although SRS
does not solve many of the issues related to semantic database heterogeneity.

Starting from this perspective, the aim of this thesis is the development of concepts
suitable to solve most of the aforementioned problems of semantic database
heterogeneity. To demonstrate the practical use of the presented ideas, the SEMEDA
system is developed.

The work presented in this thesis is outlined in the following,. The state of the art in
the relevant disciplines is introduced and reviewed in chapter 2. This includes on the
one hand the current state of molecular biological databases, their heterogeneity and
the integration of molecular biological databases. On the other hand the current usage
of ontologies in general and with special regard to database integration is described.

12

Chapter 1: Introduction

The principles of semantic database integration as introduced in this thesis are new
and suitable to be used also in other database integration systems, which have to deal
with a high number of semantically heterogeneous databases. Therefore in Chapter 3
the newly introduced principles for ontology based semantic database integration are
presented independent of their implementation.
Chapter 4 introduces the requirements for the implementation of a semantic database
integration system (SEMEDA). Several general requirements for the integration of
molecular biological systems from the scientific literature are discussed with regard to
the feasibility of their implementation in general and in SEMEDA. In addition, the
requirements specific to semantic database integration are introduced. In addition how
the BioDataServer is used to overcome "technical" heterogeneity, so that SEMEDA
only has to deal with semantic heterogeneity is analysed.
In chapter 5, an appropriate data structure for storing ontologies, database metadata
and the semantic definitions as described in Chapter 3 is developed. Subsequently, it
is discussed how this data structure can be edited and queried.
In Chapter 6, SEMEDAs software design, implementation and system architecture is
given.
Chapter 7 describes the use of SEMEDA and its interfaces. The user interface
SEMEDA-edit is used to collaboratively edit ontologies and to semantically define
databases using ontologies. SEMEDA-query is the query interface that provides
uniform access to heterogeneous databases. In addition, a set of procedures exists
which can be used by external applications.
In order to use SEMEDA to semantically define databases, an appropriate ontology is
needed. Although SEMEDA allows building ontologies from the scratch, due to the
fact that generating ontologies is a labour intensive time-consuming task, it would be
preferable to use an existing ontology. Therefore, in chapter 8 several ontologies were
evaluated for their usability in SEMEDA. The intention was to find out if a suitable
ontology can be found and imported or whether it is more appropriate to build a
custom ontology for SEMEDA.
It turned out that the existing ontologies were not well suited for semantic database
integration. In chapter 9 general and SEMEDA specific ontology design principles are
introduced which were then followed to build a custom ontology for database
integration. The structure of this custom ontology and some issues concerning its use
for semantic database integration are explained.
In chapter 10, the practical use of SEMEDA is described by two examples. The first
section of this chapter shows how SEMEDA supports the building of user schemata
for the BioDataServer. The second section describes how the clone database of the
RZPD Berlin (Deutsches Ressourcenzentrum für Genomforschung GmbH) is
connected to SEMEDA and thus linked to the other databases.
In the discussion (chapter 11) SEMEDA is compared to existing database integration
systems, especially other ontology based integration systems. It is further discussed
how principles for semantic database integration apply to other database integration

13

Chapter 1: Introduction

systems and how they might be implemented there. A database mirror is proposed to
improve the overall performance of SEMEDA and the BioDataServer.
Whereas parts of this thesis were previously published in (Köhler et al. 2000, Köhler
and Schulze-Kremer 2001), only the parts of the publications that represent the work
of the author are incorporated in the thesis. Information about the MARGBench
System (mainly parts of section 4.3) are compiled from personal communication
(Matthias Lange, IPK Gatersleben, Germany, January 2002) and (Freier et al. 1999,
Freier et al. 2002b).
SEMEDA is available at:
http://www-bm.ipk-gatersleben.de/semeda/
Login: semeda
Password: pw

14

2.1 Molecular Biological Databases

2 State of the Art
This chapter gives an overview about the state of the art in research areas relevant to
semantic integration of molecular biological databases. These are molecular
biological databases, the different storage methods and DBMS of molecular
biological databases, existing database integration systems and the use of ontologies.

Figure 1: Exponential growth of major molecular biological databases (logarithmic
scale). See http://www.genome.ad.jp/dbget/db_growth.html.

In conjunction with the rapid progress of biotechnologies and the human genome
project (Aldhous 1990), an increasing amount of data is being generated (Figure 1).
The amount of new data is that big that human genetics journals are increasingly
reluctant to publish mutation reports (Krawczak et al. 2000). However much data is
often published in publicly accessible data sources. At the moment, more than 400
molecular biological databases exist (Baxevanis 2002). The various data sources are

15

Chapter 2: State of the Art

maintained by many different institutions and companies and vary widely in their
content, formats and access methods. They contain data about metabolic pathways,
protein structures, DNA sequences, organisms, diseases, etc. These databases do not
only vary with regard to their content, but also in the way they are stored and how
they can be accessed.

2.1 Molecular Biological Databases
Why does molecular biology generate such an increasing amount of new data? There
are mainly two driving factors: on the one hand, molecular biology is a highly
complex field of research. Thousands of enzymes, genes, chemical compounds,
diseases, species, cell types, organs etc. exist, interact and are related in many
different ways. On the other hand, new molecular biological methods are permanently
developed. By automating these methods robots are developed that enable scientists to
gain more and more data and insights into biological systems per time. Such robots
are used for DNA sequencing, gene expression profiling, drug screening etc. These
two factors and the (expected) results of molecular biological research, explain why
so much molecular biological data of various types is being generated.
In molecular biology, one can discriminate between primary and secondary databases.
Primary databases directly store the experimental results of scientists, whereas
secondary databases are derived by one or several of the subsequent procedures:
1) manual or automatical enrichment of data (annotation)
2) removing redundancy of primary databases and validation
3) manually collecting data from literature references (curated databases)
4) compiling data from several databases
Three primary nucleotide databases exist: EMBL, GenBank and DDBJ. They include
both sequences submitted directly by scientists and sequences taken from literature
and patents. Comparatively little error checking is applied and there is a fair amount
of redundancy. The entries in the EMBL, GenBank and DDBJ databases are
synchronised on a daily basis.
The fact that the data in the primary nucleotide databases is fairly redundant needs
further explanation. In relational databases, redundancy of data can be avoided simply
by setting unique key constraints and equivalent mechanisms can comparatively
easily be implemented in non relational DBMSs. However, the main reason why
redundancy cannot easily be overcome in primary nucleotide databases is that it is
non trivial to decide when two nucleotide sequences should be considered to be equal:
Are sequences which exactly match, but where one sequence is a bit longer than the
other redundant? Or can sequences that differ only in one nucleotide be considered as
equal under certain conditions? Those are questions, which cannot be unequivocally
answered. In order not to lose data, which might become valuable in the future, the
primary nucleotide databases store data redundantly when in doubt and little error
checking is applied. They leave it to the secondary databases to clean up the data

16

2.2 Database Heterogeneity

following their own policy. Therefore, the quality of the data stored in molecular
biological databases has recently become a matter of concern (Harger et al. 1998,
Andrade et al. 1999). Errors can originate at several levels, starting from the
experimental generation of data (PCR errors) and ending at the reporting of data to
databases (Aboa et al. 2000, Cotton and Horaitis 2000). Quality of data also applies to
the incompleteness and missing links between well-known databases (Macaulay et al.
1998) such as the MGD (Blake et al. 2000) and GDB (Letovsky et al. 1998). Bork
showed that data that is gained by automated methods such as sequence analysis,
often do not hold experimental validation (Iyer et al. 2001). This leads to the
development of databases that emphasize on data quality, such as HGVBase
(Fredman et al. 2002) and SWISS-PROT (Bairoch and Apweiler 2000).
An example for a secondary nucleotide database is UniGene (Schuler 1997) which
attempts to process the GenBank sequence data into a non-redundant set of gene
clusters. Each UniGene cluster contains a set of sequences, which represent a unique
gene along with related information for this gene.
Several molecular biological databases of many different types exist: SWISS-PROT
(Bairoch and Apweiler 2000) contains general protein data, PDB (Persson 2000,
Westbrook et al. 2002) contains protein 3D structures, OMIM (Hamosh et al. 2002)
contains genetic disease, BRENDA (Schomburg et al. 2002a, Schomburg et al.
2002b) contains enzyme data and metabolic reactions etc. In total more than 400
molecular biological databases exist (Baxevanis 2002).
The various data sources are maintained by many different institutions and
companies, and vary widely in their content, formats and access methods. Whereas
only a few years ago proprietary solutions often based on flatfiles were used for data
storage, nowadays RDBMS are the de facto standard. Many biological databases were
started in the early 80s, i.e. at times when the Internet was not widely used, and
DBMSs by themselves required advanced technical skills. Data was made available
by proprietary methods, later via static web pages, and even later when flatfiles grew
too big, server side scripts like CGI scripts, were used for searching and data retrieval
from flatfiles. For data exchange, usually proprietary flatfile formats were used, and
several flatfile formats evolved.

2.2 Database Heterogeneity
Molecular biological databases are heterogeneous on several levels: in their storage
methods (flatfiles and different DBMS), the structure and naming of database tables
and attributes, the data entries and in their access methods.

2.2.1 Storage
Whereas many different DBMS exist, only the DBMS and storage methods, which are
actually used in molecular biological databases are introduced in this section.

17

Chapter 2: State of the Art

2.2.1.1 Flatfiles
Only a few years ago, molecular biological data was most commonly stored in ASCII
text files. These flatfiles are structured by using letter codes at the beginning of each
line or paragraph (see Figure 2).
Nowadays, the number of "databases" which are implemented as flatfiles dicreases
and many databases are moved from their old flatfile representations to DBMSs.
Flatfiles are no longer considered to be an appropriate alternative to DBMSs, but
rather as a data exchange format (see 2.2.3) between molecular biological databases.
However, flatfiles are still not obsolete, since many molecular biological applications
operate on flatfiles. Many biologists start database searches by searching for specific
patterns in sequences or by searching for sequences that are similar to a given
sequence. Sequence analysis tools such as for example BLAST (Altschul et al. 1990),
FASTA (Lipman and Pearson 1985) and REPuter (Kurtz et al. 2001) generally
operate on flatfiles.
Searching, analysing and comparing nucleotide or amino acid sequences is not
possible within relational databases, although recently some systems have been
developed which facilitate collaboration of sequence analysis and relational databases
(Banerjee 2000, Xie et al. 2000, Inman et al. 2001). The implementation of such
hybrid systems is generally non trivial and requires that proprietary DBMS specific
techniques are used. Therefore it is likely that in spite of the many good reasons
against flatfiles, it is likely that flatfiles will remain the de facto standard for data
exchange.

ID APHSFRAG standard; RNA; VRL; 368 BP.
XX
AC L11360;
XX
SV L11360.1
XX
DT 12-OCT-1993 (Rel. 37, Created)
DT 04-MAR-2000 (Rel. 63, Last updated, Version 3)
XX
DE Aphthovirus S fragement RNA.
XX
KW .
XX
OS Foot-and-mouth disease virus (strain A12)
OC Viruses; ssRNA positive-strand viruses, no DNA stage; Picornaviridae;
OC Aphthovirus; Foot-and-mouth disease virus A.
XX
RN (1999)
RP 1-368
RX MEDLINE; 94353645.
RA Bunch T., Rieder E., Mason P.;
RT "Sequence of the S fragment of foot-and-mouth disease virus type A12";
RL Virus Genes 8(2):173-175(1994).
XX
FH Key Location/Qualifiers

18

2.2 Database Heterogeneity

FH
FT source 1..368
FT /db_xref="taxon:12114"
FT /organism="Foot-and-mouth disease virus (strain A12)"
FT /strain="119ab"
FT 5”UTR 1..367
XX
SQ Sequence 368 BP; 53 A; 125 C; 105 G; 85 T; 0 other;
 ttgaaagggg gcgctagggt ctcaccccta gcacaccaac gacagtccct gcgttgcact 60
 ccacacttac gttgtgcgta cgcggggccc aatggacctt cgttcaccca cctacagctg 120
 gactcacggc accgcgtggc cattttagct ggactgtgcg gacgaacgcc gcttgcgcaa 180
 ctcgcgtgac cggttagtac tcttaccact ctccgcctac ttggtcgtta gcgctgtctt 240
 gggcactcct gttgggggcc gttcgacgct ccacgggttc ccctgtgcgg caactacggt 300
 gatggggccg tttcgcgcgg gctgaccgcc tggtctgttt cggctgtcac ccgacgtccg 360
 cctttcac 368
//

Figure 2: Example for an EMBL flatfile entry. Whole databases can be stored by
concatenating such flatfiles. At the start of each line, a two-letter code is used to
distinguish between different kinds of information about the sequence. Besides the
nucleotide sequence (SQ), EMBL stores identifier (ID), accession number (AC),
timestamp (DT), description (DE), keywords (KW), organism name (OS), taxonomic
data (OC), and literature references (RX,RN,RP,RA,RT,RL). Features (FT) describes
features found in the sequence, and when applicable the positions of those features in
the sequence. At the end the sequence (SQ) is provided.

2.2.1.2 ACeDB
The best description of ACeDB can be found at its homepage http://www.acedb.org/:

"ACeDB is a genome database system developed since 1989 primarily by Jean
Thierry-Mieg (CNRS, Montpellier) and Richard Durbin (Sanger Institute). It
provides a custom database kernel, with a non-standard data model designed
specifically for handling scientific data flexibly, and a graphical user interface
with many specific displays and tools for genomic data. AceDB is used both
for managing data within genome projects, and for making genomic data
available to the wider scientific community.
ACeDB was originally developed for the C.elegans genome project, from
which its name was derived (A C. elegans DataBase). However, the tools in it
have been generalized to be much more flexible and the same software is now
used for many different genomic databases from bacteria to fungi to plants to
man. It is also increasingly used for databases with non-biological content."

ACeDB is the incarnation of the German chimera "Eierlegende Wollmilchsau". It
runs on Windows, several Unix versions and Macintosh, provides Java, C, CORBA

19

Chapter 2: State of the Art

and Perl interfaces, is published under the GNU license and includes various custom
methods for visualisation and analysis of molecular biological data.
A small but significant proportion of the molecular biological databases are
implemented using ACeDB (Bry and Kröger 2001). It seems to be especially suitable
for small to medium sized in-house databases. Further information about ACeDB can
be found in (Walsh et al. 1998, Kelley 2000).

2.2.1.3 Object Oriented Database Management Systems
According to (Bry and Kröger 2001), about 7% of all molecular biological databasese
are implemented on Object Oriented Database Management Systems (OODBMS),
and another 3% are implemented on object relational DBMS. Although OODBMS are
relatively new, they are reasonably well standardised and have a sound theoretical
background. Many OODBMS can be accessed via JDBC.
In OODBMS any complex data types that can be implemented in the object oriented
programming language that is used to generate the objects, can be stored simply by
storing objects. In addition, along with the data the methods of the objects can be
stored. Thus the commonality between the application programmed in an object
oriented language and the databases type systems preserves the datatypes when data is
stored in an OODBMS.
An in depth discussion of OODBMS is beyond the scope of this short introduction.

2.2.1.4 Relational Database Management Systems
Most molecular biological databases are implemented on relational database
management systems (RDBMS) (Bry and Kröger 2001). Since a considerable amount
of molecular biological databases are based on proprietary flatfile solutions, relational
DBMS are not as much used for molecular biological databases as in other application
domains of databases (for example economics). Recently more and more flatfile
databases are migrated to relational DBMS.
In contrast to OODBMS, in relational databases new datatypes cannot be defined.
Date (Date 2000) criticises this fact, since this is not an inherent property of relational
databases (Date 1982, Louis and Pirotte 1982, Pirotte 1982), but rather a result of how
relational DBMS were implemented.
Relational databases were firstly introduced in 1970 (Codd 1970). Since then, a strong
theoretical background and many RDBMS have been developed. Nowadays most
databases are implemented on relational DBMS. Subsequently it will be assumed that
the reader is familiar with the basic concepts of relational databases. For further
information the reader is referred to the already existing literature on relational
databases, for example (Heuer and Saake 2000, Vossen 2000).

20

2.2 Database Heterogeneity

2.2.2 Semantic Heterogeneity
In computer sciences, the semantics of a programming language describes the
relationship between the syntax and the model of computation. Whereas the syntax of
a programming languages can usually well be formalised, the semantics of
programming languages more or less defy formalisation. However, with regard to
linguistics, the term semantics applies to the meaning of words. In a linguistic sense,
semantic conflicts occur for example when the same symbol is used for different
things (mouse as computer device or an animal), or when different symbols exist for
the same thing (Mus Musculus and house mouse). Thus dealing with semantics in a
linguistically sense, involves for example dealing with synonyms or with the
disambiguation of the meaning of homonyms.
Such semantic conflicts that are due to inconsistent naming of database tables,
attributes or entries also occur between relational databases. In Figure 3, examples for
the various semantic conflicts that occur between relational databases are given.
These conflicts occur in an equivalent way between other database types. These
semantic conflicts are described in more detail in section 2.2.2.1 - 2.2.2.3, and chapter
3 describes methods that are suited to overcome semantic heterogeneity of databases.
Semantic conflicts between relational database schemata are well known since (Kim
and Seo 1991), but have not yet been solved sufficiently.
In (Hammer and McLeod 1993) semantic heterogeneity is described as "By this
(semantic heterogeneity) we mean variations in the manner in which data is specified
and structured in different components. Semantic heterogeneity is a natural
consequence of the independent creation and evolution of autonomous databases
which are tailored to the requirements of the application system they serve."
A more vivid description is given in (Kim 1995): "A schema contains a semantic
description of the information in a given database. It is possible to define equivalent
schemas in as many ways as there are data models. Further, the same (or similar)
information can be represented in many ways in the same data model. Given such
inter- and intra-model variability, it is indeed a formidable task to integrate many
schemas into a homogeneous schema."

2.2.2.1 Attributes
At the attribute level, different attributes can have the same name and semantically
equivalent attributes may have different names.
In Figure 3, the attribute ID in the table SEQUENCES and the attributes MEDLINE
in the table DNA both store Medline IDs, but are named differently. On the other
hand, both tables have an attribute ID that contains different data. In the table
SEQUENCES, ID stores the Medline ID, whereas in the table DNA the attribute ID
stores an internal identifier.
Further conflicts at the attribute level arise when equivalent attributes use different
datatypes. For example a Medline ID can either be stored as an integer or a string.

21

Chapter 2: State of the Art

2.2.2.2 Tables
Similar conflicts can occur between database tables. Databases can contain different
tables, which have the same name, or tables that store equivalent data but use different
names.
In addition, table structure conflicts arise when similar tables have partly different
attributes. For example in Figure 3 the table SEQUENCES has an attribute AB that
does not exist in the table DNA and on the other hand, DNA has an attribute ID which
is used for different kind of data entries the table SEQUENCES.
After (Kim and Seo 1991) "missing but implicit conflicts" occur when database tables
miss an attribute which would always have the same entry. Such situations occur in
databases which for example store data about one species. Such database tables often
do not have an attribute for the species name, since it would always have the same
value.
Further syntactic conflicts arise when tables use different primary, unique or foreign
key constraints. These conflicts do not matter when databases are integrated for read
only access, which is the case for the integration of molecular biological databases
(Karp 1995). Thus for the integration of molecular biological databases such
constraints can simply be ignored.

SEQUENCES
AU SQ AB ID OC

Lenz, A cctgga... The prot... 82247835 rat
Coen, A ctggat... Analysis... 81245818 mouse

DNA
ID AUTHOR SEQUENCE MEDLINE SPECIES

22 Lenz, A cctgga... 82247835 Rattus Norvegicus

23 Coen, A ctggat... 81245818 Mus Musculus

Figure 3: Semantic conflicts between relational database schemas. Although the two
database tables store basically the same data, to integrate those two tables into one
table, conflicts at several levels have to be solved. The different conflicts between the
two tables are described in the text.

2.2.2.3 Data entries (Attribute values)
Different people use different words for the same things. An interesting example is
the use of species names. Common English names, systematic species names, a
species identifier or a mix of common English names and systematic species names

22

2.3 Database Integration

are often used. Even within systematic species names differences exist: Sometimes
genus names are abbreviated, sometimes the subspecies is included etc. In addition,
since species names are dependent from their phylogenetic relationship, species
names are unstable, i.e. are subject to change over time. Whereas this unsystematic
naming helps biologist to learn phylogenetic relationships, such unsystematic
"systematic naming" makes database integration difficult.
Besides the use of different vocabularies, measurement units and the precision at
which data is stored may vary. Temperature might be stored in Celsius or Fahrenheit
and with a different precision. Therefore, scientists in the field of bioinformatics
spend an significant amount of their time for data conversion (Stevens et al. 2001).

2.2.3 Access Methods
Most Databases can be accessed and searched via web pages. Usually appropriate
HTML forms support the user at querying the databases. Whereas web pages are
appropriate for humans, other interfaces are more suitable for computers. Common
interfaces of relational and object orientated databases are JDBC and ODBC.
Most DBMS nowadays have built in support for various data exchange methods, such
as JDBC, ODBC, XML etc. Probably mainly due to security concerns, access via
those structured query methods is generally not granted. The reasons for such
concerns have recently become insubstantial, since JDBC type 3 drivers which
provide restricted and secure access to source databases have recently become
available for all major RDBMS (see also section 11.2.1).
It can be summarised that in spite of the fact that most DBMS support structured
access methods which are well suitable to overcome “technical” heterogeneity, access
to these interfaces is not granted. The most common way of data exchange is by using
flatfiles. Most molecular biological databases provide flatfiles or database text dumps
which can be downloaded via ftp.

2.3 Database Integration
A prerequisite for database integration is the appropriate availability of the databases
that are to be integrated. Although this seems to be trivial, it should not be left
unmentioned, since this is often the most difficult part of database integration.
Molecular biological databases are either the result of many molecular biological
experiments or of manual extraction of literature data. Thus it took often several man-
years to acquire the data. Therefore it is understandable that in many cases even
owners of databases, which have been developed within publicly funded research
projects, do not make their data completely available. The fact that most databases
can be searched and queried via a web page, does not mean that the data is completely
available. Compared to the total size of the databases, often only small amounts of
data can be retrieved per query via the HTML frontend. Since outside of Europe

23

Chapter 2: State of the Art

copyright protection of databases is non-existent (Maurer et al. 2001), database
providers often use the limited accessibility via web pages as a way to protect their
intellectual property, i.e. data retrieval is limited by the speed with which a human can
interact with a web page.

Different approaches to database integration of molecular biological databases are
discussed and reviewed in (Davidson et al. 1995, Karp 1995, Jakobovits 1997, Parent
and Spaccapietra 1998, Freier et al. 2002b).
Karp (Karp 1995) discriminates four approaches for database integration. These are:

• Hypertext Navigation, i.e. the HTML frontends of molecular Biological Databases
are interlinked.

• Data Warehouse, i.e. physically merging (converting, importing...) of several
databases into one big database.

• Multi Database Queries, i.e. querying several databases at the same time.

• Federated Databases. In contrast to “Multi Database Queries”, federated databases
integrate database schemata in a federation layer, although like in multi database
approaches each database remains autonomous.

Pro and cons of these approaches are discussed by (Karp 1995). However, the aims of
these approaches are the same: providing a technique to overcome the several kinds of
data heterogeneity to build an unique data retrieval environment for biologists to
support their research activities.

2.3.1 Hypertext Navigation Systems
At present, most databases are connected to the Internet and can be accessed via web
pages. Many databases provide hypertext links to entries in other databases. In most
cases, AC numbers (accession numbers) or other database specific identifiers which
are generated when a new entry is added to a database are used for interlinking. Those
identifiers are often used for interlinking between databases via their web pages. Due
to the fact that in many cases different databases use different identifiers or terms for
equivalent entries, interlinking databases is labour intensive. Usually, pair-wise
mappings between database entries have to be generated in order to be able to provide
links between databases. Therefore, databases usually only provide links to the “most
relevant” databases by using accession numbers.
In addition, besides accession numbers, many other database attributes which use
common controlled vocabularies such as EC numbers (NC-IUBMB 1992), CAS
Registry numbers (Buntrock 2001), GO terms (Ashburner et al. 2000, Gene-
Ontology-Consortium 2001), etc. are suitable for linking between databases. Even
when databases use the same controlled vocabularies, they are often not used for
linking between databases. This is due to the simple fact that in order to be able to
generate and maintain pair wise links between the more than 400 molecular biological

24

2.3 Database Integration

databases (Discala et al. 2000, Baxevanis 2002) all database providers would have to
be aware of the all other relevant databases.
None the less, in spite of the fact that the databases are not as much interlinked as
would be useful, (Williams 1997), interlinked web pages are the most often used way
of database "integration". According to (Bry and Kröger 2001) 97% of all databases
provide at least some links to other databases.

2.3.2 Indexing Systems
Database integration solutions based on indexed flatfiles such as DBGET/LinkDB
(Kanehisa 1997a, b, Kanehisa et al. 2002), SRS (Etzold et al. 1996, Zdobnov et al.
2002) and SIR (Ramu 2001) are the de facto standard for the integration of high
numbers of heterogeneous databases.
The main principle of indexing systems is simple: The databases to be integrated are
provided as flatfiles. The integration system indexes these flatfiles using a script
which has to be provided for each database. Thus an indexing system can support
various flatfile formats. The indexing script is also responsible for discriminating
datatypes and for generating links to other relevant databases. For example within
SRS, a proprietary indexing scripting language called Icarus exists which has to be
used for writing the indexing scripts. Therefore the aforementioned low degree of
interlinking between databases also applies to indexing systems. Based on the
indexes, users can search all indexed databases in one step. When indexing systems
discriminate between datatypes, the databases can also be searched using common
datatype specific comparison operators. In addition, indexing systems can be searched
using sequence similarity search tools and the results are visualised in an appropriate
way.
Since indexing systems do not require the maintenance of an integrated database
schema of all integrated databases, indexing systems enables the addition or removal
of any number of flatile databases without affecting other databases in the integration
system.
SRS can be accessed either via a comparatively user-friendly HTML frontend or via a
command line utility. Figure 4 shows some molecular biological databases accessible
via SRS. The degree of interlinking seems to be high at the first glance, but many
important databases are only linked to SWISSPROT, and many databases of the same
application domain are not directly interlinked. Whereas Figure 4 shows about 30
databases, at present about 500 databases can be accessed via SRS, and typical SRS
implementations integrate between 50 and 100 databases.
The hardware requirements of SRS are comparatively moderate: a minimum server
can be installed on an Intel Pentium computer with 200 GB of hard disk space and
256 MB of RAM. The SRS server installed at the EBI (Zdobnov et al. 2002), runs on
2 Compaq ES40 servers (4 processors each), 300 GB of hard disk space and 256 MB
of RAM in each server. The EBI server supports 2.7 million hits per month (see also
http://www.lionbioscience.com/repository/srs-product-sheet.pdf).

25

Chapter 2: State of the Art

Figure 4: Molecular biological databases accessible via SRS. Each node represents
one database (Etzold et al. 1996). The colours encode the application domain of the
databases. The edges represent links between databases. The degree of interlinking
seems to be high at the first glance, but many important databases are only linked to
SWISSPROT, and many databases of the same application domain are not directly
interlinked.

2.3.3 Database Mediation and Federation
Database integration systems which use mediation or federation typically consist of
three elements: wrappers, an integration layer and a query interface (see Figure 5).
The wrappers provide uniform access to the heterogeneous data sources. The
integration layer decomposes user queries, sends them to the relevant wrappers and
finally integrates the query results before the result is returned to the user via the
query interface. In addition, often several other components such as administrative
tools and query optimiser exist.

26

2.3 Database Integration

In contrast to mediated databases, in federated databases wrappers mainly map the
different interfaces between the data sources. Thus in database federations it is
required that the data sources provide the main search and query functionality via
different interfaces so that the wrappers mainly have to translate between the different
interfaces.
In many cases the data sources do not provide suitable search or query methods.
Examples are web pages, flatfiles and other more or less unstructured data sources. In
mediated databases, as the term mediation emphasizes, the wrappers play a more
active role and implement when necessary missing search or query methods for the
data sources.

DS 1 DS .. DS n

Query Interface

W1 W... Wn

Integration Layer

Figure 5: Typical architecture of database mediation and federation systems. The
wrappers provide uniform access to the data sources. The integration layer
decomposes user queries, sends them to the relevant wrappers and finally integrates
the query results before the results are returned to the user.

Several different integration systems exist. They vary in the degree of integration,
query interfaces they provide, cost based query optimisation, access methods to the
source databases and the integration of data source specific methods.
An elaborate commercial system which has been developed with "life sciences" in
mind, is IBMs DiscoveryLink (Haas et al. 2001) which has evolved out of the Garlic
project (Haas et al. 2000). In addition, several mediated and federated integration
systems exist (Hammer and McLeod 1993, Croft et al. 1995, Jakobovits 1997, Chung
and Wong 1999, Freier et al. 1999, Matsuda et al. 1999, Critchlow et al. 2000, Wong
2000, Freier et al. 2002b). These federated databases do not systematically solve the
above-mentioned issues related to semantics.

27

Chapter 2: State of the Art

2.3.4 Data Warehouses
Data Warehouses and DataMarts are mostly used in business informatics. Data
Warehouses integrate and aggregate data of several different DBMS into one system.
In the creation of Data Warehouses, direct access to source databases is usually
granted, and techniques like views and materialised views can be used. Usually an
elaborate integrated database is developed once. This integrated schema is more or
less stable once it has been filled with data.
Systems, which integrate databases in a Data Warehouse approach, are usually
restricted to integrating only a few source databases and manage to achieve a higher
degree of interoperability of the integrated systems. Warehouse systems are limited by
the fact that it is generally not possible to integrate new databases without changing
the schema of the Data Warehouse, since this is usually associated with many
conflicts between the new database schema and the Data Warehouse schema. Even
updating such closely integrated databases from source databases can be difficult and
sometimes impossible, especially when database schemas of the source databases
change, which is often the case in molecular biological databases (Karp 1995).
The requirements for molecular biological databases are completely different. In
(Critchlow et al. 2000) the reasons why the traditional warehouse approach is not
applicable to molecular biological databases are summarised:

"First, schema integration is more difficult for scientific databases than for
business sources, because of the complexity of the concepts and the associated
relationships. While this difference has not yet been fully explored, it is an
important consideration when determining how to integrate autonomous
sources. Second, scientific data sources have highly dynamic data
representations (schemata). When a data source participating in a warehouse
changes its schema, both the mediator transferring data to the warehouse and
the warehouse itself need to be updated to reflect these modifications. The cost
of repeatedly performing these updates in a traditional warehouse, as is
required in a dynamic environment, is prohibitive."

Another situation that Data Warehouses cannot handle, is the integration of varying
combinations of databases. For example in SRS it is possible to add or remove new
databases to the integration systems on the fly.
Therefore traditional Data Warehouses play practically no role for molecular
biological database integration.

2.4 Ontologies
In Artificial Intelligence ontologies are data structures for knowledge representation,
which originated from philosophy and are related to conceptual graphs and semantic
nets. In the following, ontologies are introduced informally. A formal definition is
given in section 3.2. According to Gruber "an ontology is a specification of a
conceptualisation" (Gruber 1993b, a). The notion about ontologies, their formal

28

2.4 Ontologies

notation and how they should be implemented varies between people and research
groups (Noy and Hafner 1997), although most ontologies share a few core items
(Stumme and Maedche 2001). Most ontologies consist of a set of concepts which
represent real world things such as "enzyme", "amylase" or "amino acid". These
concepts are connected by typed relations, which describe how the concepts are
related. For example a relation of type "is a" can be used to state that "amylase" "is a"
"enzyme" and by using the "is part of" relation type one can state that "amino acid"
"is part of" "enzyme".
In order to be language independent, ontologies use concepts and not words. Two
things are semantically equal if they address the same concept, i.e. the same real
world entity. For example, “zebrafish” and “Danio rerio” address the same fish
species, although by a different name. A homonymous example is the term “hybrid”:
On the one hand “Hybrid” can be hybridised DNA as “DNA hybrid”, on the other
hand “hybrid” can be crop which results from crossing crop varieties or lines that
have little or no direct relationship with each other as in “hybrid crop”.
Further informal definitions for ontologies are given in (Schulze-Kremer 1997b,
Stevens et al. 2000b, Schulze-Kremer 2002). A more formal definition and examples
are given in (Guarino 1998) and in section 3.2.
The vision of the Semantic Web is based on ontologies
http://www.semanticweb.org/introduction.html.

"The Semantic Web is a vision: the idea of having data on the web defined and
linked in a way, that it can be used by machines - not just for display purposes,
but for using it in various applications.
...
Indeed, we have the technology available for realizing the Semantic Web, we
know how to built terminologies and how to use metadata. The whole vision
depends on agreeing on common standards - something that is used and
extended everywhere."

Thus Barners-Lee who invented the World Wide Web(Berners-Lee et al. 1992) has
the vision that the Semantic Web becomes the "next generation" of the internet, where
data on the web is defined and linked in a way, that it can be used by machines.
Therefore ontologies have recently developed to a big topic in commercial
information technologies.
Also in bioinformatics, ontologies found many applications. They are used for
Medical image searching (Greenes et al. 1992, Frankewitsch and Prokosch 2001),
metabolic pathways (Karp et al. 1999, Karp et al. 2000, Karp 2001), protein database
annotation (Xie et al. 2002) and metasearches to taxonomic/biodiversity data
(Edwards et al. 2000). In addition several data formats are being developed based on
ontologies such as for storing and exchanging macromolecular structures (Westbrook
and Bourne 2000), results of microarray experiments (Brazma et al. 2001) and

29

Chapter 2: State of the Art

medical image processing results (Aubry and Todd-Pokropek 2001). Further
applications of ontologies in molecular biology are reviewed in (Volot et al. 1998).
The use of ontologies for database integration is reviewed in the next section.

2.4.1 Using Ontologies for Database Integration
Ontologies can on the one hand be used to define a common controlled vocabulary
and on the other hand to semantically define databases.
Homologous genes are generally differently named in different species. The fact that
for the annotation of genes and other entities in molecular biological databases no
common controlled vocabulary existed, which made it difficult to search databases for
special traits, genes, functions, cell organelles etc. Therefore the Gene Ontology
Consortium http://www.geneontology.org was founded by a group of database
providers with the goal to "produce a dynamic controlled vocabulary that can be
applied to all organisms even as knowledge of gene and protein roles in cells is
accumulating and changing". Using ontologies as controlled vocabularies, is similar
to using EC numbers, CAS-registry numbers etc. The hierarchical structure of
ontologies helps users to find concepts in the ontology. In addition, by using
ontologies it is possible to add relations between concepts. The Gene Ontology
Consortium consists of about ten institutions, among others the EBI, TIGR and the
MGD. Further information on the Gene Ontology can be found in (Ashburner et al.
2000, Gene-Ontology-Consortium 2001).
Once a database uses a controlled vocabulary, ontologies can also be used to translate
between different vocabularies. Giudicelli (Giudicelli and Lefranc 1999) describe a
system where an ontology is used within a frontend to a relational database, which
enables users to use their own terminology.
Thus, ontologies and other controlled vocabularies can be used to overcome
heterogeneity of the entries of molecular biological databases. The use of ontologies
to define the semantics of databases at the schema level has been suggested by (Karp
1995, Kashyap and Sheth 1996a, Kashyap and Sheth 1996b, Schulze-Kremer 1997a,
b, Goksel and McLeod 1999, Hakimpour and Geppert 2001).
TAMBIS (Baker et al. 1998, Baker et al. 1999, Stevens et al. 1999, Stevens et al.
2000a) is an example for such a system. TAMBIS uses the GALEN ontology (Rector
and Nowlan 1994) to semantically define databases. Based on a graphical
representation of the ontology, the user can construct appropriate database queries
which are subsequently processed against the source databases. TAMBIS uses the
Kleisli system (Chung and Wong 1999, Wong 2000), a mediated database integration
system to process the user queries against the data sources.
Another ontology based database integration system (Ludäscher et al. 2001) was
implemented by using F-LOGIC to semantically define and query wrapped XML data
sources. This system, TAMBIS and the differences to the approach described in this
thesis will be discussed in more detail in the discussion.

30

2.4 Ontologies

2.4.2 Ontologies and Standards
In this section, the efforts to standardise ontologies are discussed. The notion of the
data structure of ontologies varies widely. Therefore, a definition of ontologies that is
valid for the scope of this thesis is given in section 3.2.
In (McEntire et al. 2000) a list of some ontology exchange data formats/languages is
given and evaluated and a standard for conceptional graphs has been proposed
http://www.bestweb.net/~sowa/cg/cgstand.htm. In (Hendler and McGuinness 2000)
the "semantic web and its languages" are discussed. Interestingly, at present most
"real world" applications do not make use of these formats or standards. Almost none
of the existing ontologies or knowledge resources such as WordNet (Fellbaum 1998)
or the Unified Medical Language System (UMLS) supports any of the exchange
formats, but rather provide database dumps, tab-delimited ASCII files or proprietary
data formats. This might on the one hand be due to the fact that most systems, which
can handle large ontologies, are implemented as databases, i.e. both for importing and
exporting, database dumps and tab-delimited files are easier to handle than the
elaborate exchange formats. On the other hand, some ontologies use proprietary
flatfile formats, which were co-developed with software tools or applications.
Since there are as many different formats for storing ontologies as there are
ontologies, exchanging ontologies is tedious. Therefore the obvious solution would be
to agree upon one generally accepted exchange language. However, the
expressiveness and the data structures of the ontologies widely varies, and so do their
proprietary exchange formats. Thus a standard exchange language which can store
most ontologies would have to be quite complex, probably so complex and hard to
use that most people would not use it. Therefore also (Hendler and McGuinness 2000)
conclude "It is unlikely that a single ontology language can fulfill all the needs of the
semantic Web’s large range of users and applications".
Often in applications that use ontologies, the data that represents the ontologies and
the applications are not strictly separated. In some systems relations cannot easily be
modified or added since relations between concepts are often more or less hardcoded.
However, even such hardcoded ontologies should be capable of exporting the
ontology.
Alternatively an ontology exchange language might include only the "most important"
features which most ontologies have in common. Such a language could not substitute
the many more or less proprietary data formats, but would allow to exchange at least
some data. The RDF standard http://www.w3.org/RDF/ that was recently released by
the W3 consortium might play this role. The RDF standard is a dataformat based on
XML that is well suited as an interchange format of ontologies and controlled
vocabularies. Although it is likely that RDF will become the lingua franca for the
exchange of controlled vocabularies and ontologies, at present from the ontologies
listed in Table 7, only the Gene Ontology (Ashburner et al. 2000, Gene-Ontology-
Consortium 2001) can already be downloaded in this format. Recently many tools and
applications which are based on RDF have been developed, such as for example the
feature rich Redland RDF application framework (Beckett 2001)

31

Chapter 2: State of the Art

(http://www.redland.opensource.ac.uk/), the RQL query language (Karvounarakis et
al. 2002), SquishQL (http://swordfish.rdfweb.org/rdfquery/) and several others as
discussed in (Silvonen and Hyvönen 2001a).
There are also attempts to standardise the content of ontologies. The goal of the SUO
working group (IEEE P1600.1, http://suo.ieee.org/) is to develop a "Standard Upper
Ontology" which is used as a standardised set of high level ontology concepts. The
idea is, that the interoperation between different application specific ontologies can be
facilitated, when they agree upon this basic sets of concepts. Due to the fact that
several older and more widely used ontologies such as CYC
(http://www.cyc.com/cyc-2-1/toc.html) exist, it is not clear whether or not the SUO
will de facto become a standard toplevel ontology.

2.4.3 Ontology Editors
Ontology editors are important components of semantic database integration systems,
i.e. for database integration systems that are suitable to overcome semantic
heterogeneity in databases as introduced in section 2.2.2. Ontology editors allow on
the one hand building and maintaining an ontology, which is used to semantically
define databases. On the other hand, ontology editors can be used to edit ontologies
like the Gene Ontology, which serve as controlled vocabularies.
Whereas several ontology editors, browsers and related tools have been built, the lack
of a common ontology exchange format makes it hard to exchange ontologies,
although recently several tools started to support the RDF format. The various
ontology exchange formats and the lack of a common standard has already been
discussed in section 2.4.2.
Ontology editors usually implement the “is a” hierarchy of ontologies as a tree in
which the concepts are the nodes which are connected by the relations. Several
methods to edit the ontology are provided. Figure 6 displays a screenshot of the OE
(Schulze-Kremer 1997b) as an example for an ontology editor. In this ontology editor
the functionality is implemented in PROLOG. Therefore, PROLOG can be used to
derive inferences on the ontology or to define constraints on the ontology structure.

32

2.4 Ontologies

Figure 6: Example for an ontology editor. Screenshot of the OE ontology editor
(Schulze-Kremer 1997b). The “is a” hierarchy of the ontology is visualised as a tree,
which can be edited by drag and drop and by using the buttons on the left hand side.

The focus of the ontology editor of the Gene Ontology (GO Edit) lies in building and
maintaining large ontologies, which are used as controlled vocabularies. In order to be
able to handle the increasing size of the Gene Ontology, the Gene Ontology is stored
in a relational database. The support for collaborative ontology editing in the ontology
editor of the Gene Ontology is weak, since the tool that exist for editing the Gene
Ontology does not operate directly on the ontology which is stored in the database,
but imports the whole ontology, edits it and subsequently writes it back to the
database. When the ontology is written back, and other users have also updated the
ontoloy meanwhile, conflicts at different levels have to be resolved. When biologists
want to suggest that a new concept is introduced to the Gene Ontology, they can do so
by a HTML form or by writing an email to the person in charge of maintaining the
ontology. Thus the ontology editor used for the Gene Ontology is more or less a
“stand alone” system, although an ontology editor which supports collaborative
ontology editing via the internet would be more appropriate for building and
maintaining such ontologies that serve as controlled vocabularies for several research
groups and database providers.

33

Chapter 2: State of the Art

The size of ontologies is also a challenge for the visualisation of ontologies. Therefore
techniques for the visualisation of large graphs (Herman et al. 2000) have been
applied to ontologies, for example in Jambalaya (Storey et al. 2001), in Thinkmap®
http://thesaurus.plumbdesign.com/index.html or in the OntoRama ontology browser
(Figure 7).
Several other ontology editors exist: PROTEGE (Musen et al. 1995, Li et al. 2000a)
Ontolingua (Farquhar et al. 1996, 1997) and WebOnto (Domingue 1998) are just a
few examples. Comprehensive reviews of the existing ontology editors and related
tools can be found in (Duineveld et al. 1999, Silvonen and Hyvönen 2001b).

Figure 7: For displaying large knowledge sources, recent ontology browsers like
OntoRama use advanced graph visualisation techniques.
http://www.webkb.org/ontorama/demo/index.html

34

3.1 Database Metadata

3 Principles of Semantic Database
Integration

No common generally accepted definition for ontologies exists. Therefore, this
chapter introduces ontologies and gives a definition of controlled vocabularies and
ontologies. Subsequently the main principles of semantic database integration are
described.

3.1 Database Metadata
Database metadata is data about a database, which describes the logical structure, and
other relevant information about a data source. The term metadata will be used in the
following for database schema information, data about the DBMS, and for relevant
technical data required to access a data source. Database metadata does not include
data entries of the source databases.
The schema of relational databases consists of datatypes (domains) and tables
(relations). Tables consist of attributes (fields) with an associated datatype as domain,
and may contain data within the limits of these domains (Date 1982, Louis and Pirotte
1982, Pirotte 1982).

3.2 Controlled Vocabularies and Ontologies
As no generally accepted definitions for controlled vocabularies and ontologies exist,
definitions of these terms are provided in the following as a prerequisite for further
discussions.
Controlled vocabularies are named lists of terms that are well defined and may have
an identifier. The elements of a controlled vocabulary are called concepts. Concepts
can either be defined implicitly or by explicitly listing them. An example for a
controlled vocabulary, which is defined implicitly without listing all concepts is
temperature in °C. The terms or identifiers of controlled vocabularies are often used
as database entries.

35

Chapter 3: Principles of Semantic Database Integration

Definition:
Controlled Vocabulary CV:= named set of concepts c, with c:= (term,
definition, identifier, synonyms)

Example:
An example for a controlled vocabulary is the Enzyme Nomenclature
(International-Union-of-Biochemistry 1992). Each concept (enzyme) has a
term (recommended name), an identifier (EC number) and synonyms
(systematic name, other names). The definition of an enzyme is given by
references to literature, which describe the enzyme in more detail.

In practice, controlled vocabularies can be defined using a text definition. Thus it is
not necessary that all elements of the controlled vocabulary are explicitly listed in the
integration system, i.e. a text definition is sufficient: "A number which uniquely
identifies enzymes following the conventions of the Nomenclature Committee,
International Union of Biochemistry and Molecular Biology, "(International-Union-
of-Biochemistry 1992).
As opposed to a controlled vocabulary, an ontology consists of concepts which are
linked by directed edges, thus forming a graph. The edges of an ontology in fact
specify in which way, e.g. “is a” or “part of”, concepts are related to each other. This
definition of an ontology is similar to (Stumme and Maedche 2001) and differs
somewhat from (Guarino 1998) who defines ontologies and their interoperability on a
higher abstraction level.
Definition:

Ontology O := G(CV,E), with E ⊆ CV × CV and a totally defined function
t: E → T which defines the types of the edges. T is the set of possible edge
types, i.e. the semantics of an edge in natural language and its algebraic
relational properties (transitivity, symmetry and reflexivity). All ontologies
have an edge type “is a” ∈ T. If two concepts c1, c2 ∈ CV are connected by an
edge of this type, the natural language meaning is “c1 is a c2”, or more exactly
“c1 is subclass of c2”. O is formal, if in its projection to the “is a” hierarchy all
concepts are connected so that all concepts are arranged as a tree or directed
acyclic graph (Kingston 1998) in which all definitions of super-concepts are
valid for all sub-concepts.

Example:
In Figure 8, the concepts vertebrate, animal and organism are connected by
transitive "is a" relations, i.e. vertebrate "is a" animal and animal "is a"
organism. The transitive "is a" relations can then be used to derive the fact that
vertebrate "is a" organism. Examples for informal ontologies are the Gene
Ontology (Ashburner et al. 2000), UMLS (Srinivasan 1999). Examples for
formal ontologies are the MBO (Schulze-Kremer 1998), EcoCyc/MetaCyc
(Karp et al. 2000, Maranas and Burgard 2001) and WordNet (Fellbaum 1998).

36

3.3 Semantic Database Definitions

The natural language meaning of “is a” can either relate to “subclass of” or “instance
of”. In the following, “is a” always relates to “subclass of”. Whereas classes describe
categories of things, an instance of a class is an individual element in a class. For
example Homo sapiens is a “subclass of” vertebrate and Jacob Köhler is a
“instance of“ Homo sapiens. Therefore, in the following the terms sub-concept and
super-concept refer to sub-classes and super-classes.
As can be seen from the definition of ontologies and controlled vocabularies,
ontologies can be reduced to controlled vocabularies simply by dropping information.
This “reducibility” can be used when ontology editors and browsers are developed: a
database schema, which can store ontologies, can also store non formal ontologies or
controlled vocabularies.

3.3 Semantic Database Definitions
How can databases be semantically defined using ontologies and controlled
vocabularies? The main idea to do so is to map tables and attributes of a database to a
given ontology. This ontology should be formal with respect to the implementation of
a transitive “is a” hierarchy, which connects all concepts. Although other hierarchies
can be defined, only the “is a” hierarchy is used for query processing.
In the following, principles of semantic database integration are defined and examples
are given to explain how semantic definitions can be used to overcome semantic
heterogeneity as introduced in section 2.2.2. The example queries use the syntax “a:t”
which has the meaning to search in the database attribute “a” for the term “t”. Such
queries are sufficient to illustrate the principles of semantic database queries, although
the query interface of SEMEDA is implemented in a more user friendly and powerful
way.

3.3.1 Attribute semantics
Databases attributes can be semantically defined by linking them to concepts of an
ontology. In consequence, attributes cannot only be addressed by a mapped concept c,
but also by the sub- and super-concepts of c.
Definition:

A semantic attribute definition is a tuple (A, c) where c ∈ O is a concept of the
Main Formal Ontology and A is a database attribute.

Example Query:
“animal:mouse” - search in the attribute “animal” for “mouse”. In Figure 8 no
database attribute is defined as animal. However, some sub- and super-
concepts of animal are mapped to database attributes and should therefore be
searched for “mouse”. For this query, the fact that “invertebrate” is unlikely to
contain mouse data cannot be derived, thus both “invertebrate” and

37

Chapter 3: Principles of Semantic Database Integration

“vertebrate” should be searched. “Plant” will not be searched because it is not
a sub- or super-concept of animal, and also because no attribute is defined as
“Plant”. If the user query is more specific, for example “vertebrate:mouse”, the
irrelevant database attribute “invertebrate” would not have to be searched.

3.3.2 Table Semantics
The content of a database table can be refined by linking the table to a concept of the
ontology.
Definition:

A semantic table definition is a tuple (T, c) where T is a database table and
c ∈ O is a concept of the ontology O.

Example query:
‘animal:mouse’ (Figure 9). An imaginary ‘mouse enzyme database’ only
contains information about mice; therefore no attribute for species exists. The
database table ‘enzyme_tab’ is refined with a semantic table definition to
contain mouse data. Refining a table this way is similar to adding an attribute
to a table, which has the same value for each row.

Thing

Animal

Vertebrate Invertebrate

animal_tab

spec_tab
sp

Organism

Specs

invert_tab
org

enz

spec

Enzyme

Databases Tables Attributes Ontology

ec_nr

Vert

Inv DB

Plant

ename

Figure 8: Databases attributes can be defined by linking them to concepts of an
ontology (thick arrows). ‘ename’ and ‘enz’ are defined in this example as the same
concept ‘Enzyme’, i.e. they both contain enzyme names. ‘org’ contains only
invertebrates, whereas ’sp’ contains both animal and plant.

38

3.3 Semantic Database Definitions

Figure 9: The content of a database table can be refined by linking the table to a
concept of the ontology. The database table ’enzyme tab’ only contains mouse data in
this example, but does not have an attribute ‘species’. For database integration
purposes the table has therefore to be refined in order to indicate that it contains
mouse data.

3.3.3 Attribute Value Semantics
To define the semantics of attribute values (all entries of an attribute of a database),
the simplest (but not easiest) approach would be to map all entries of a database
attribute to an ontology O. This would require that all database entries of an attribute
have a synonymous concept c ∈ O. Since the construction of large formal ontologies
is a time consuming work that takes several man-years, this approach will only work
for database attributes with few distinct entries. An easier approach to semantically
define attribute values is to use controlled vocabularies as datatypes for attributes in
the first place, which is actually done in many existing databases.
Definition:

If the datatype D(A) of an attribute A is a controlled vocabulary CV, i.e.
D(A) = CV, the controlled vocabulary semantically defines the values of A
(attribute values definition).

Example:
Searching a database attribute ‘organism’ with the controlled vocabulary
‘systematic species name’ assigned as datatype for ’Mus Musculus’ makes
sense, since ’Mus Musculus’ is a systematic species name. Searching this
attribute for ‘mouse’ makes no sense, because ’mouse’ is not an element of
‘systematic species name’.

By listing synonymous concepts between controlled vocabularies in a translation list
it is possible to relate entries between databases that use different terms for the same
things. Concepts, which do not have a synonym counterpart, cannot be translated.

39

Chapter 3: Principles of Semantic Database Integration

Definition:
Translation list := {(c1, c2) | c1 ∈ CV1, c2 ∈ CV2 and c1 is a synonym of c2}
CV1 and CV2 are controlled vocabularies.

Example:
Without a translation list a search in both databases in Figure 10 would only
find ’mouse’ in the attribute ‘english_spec_name’ of DB1. By using the
translation list it is possible to translate ’mouse’ to ’Mus musculus’ and in
consequence also search the attribute ’systematic_spec_name’.

With this approach, controlled vocabularies do not need a synonym counterpart in the
underlying ontology. Still, the development of translation lists between controlled
vocabularies can be a time consuming work. However, pairwise translations between
several controlled vocabularies exist, e.g. CAS Registry numbers (Buntrock 2001)
versus EC numbers, the Gene Ontology (Ashburner et al. 2000) versus SWISS-PROT
(Bairoch and Apweiler 2000), EC numbers, InterPro (Apweiler et al. 2000), etc. If
transitivity and symmetry relations are used, this method can be extended for
translations between more than 2 controlled vocabularies.
Some controlled vocabularies can be translated by using context specific functions.
Definition:

A translation function tf is a function tf:CV1 → CV2 with tf(t1) = t2, t1 = term
of c1, t2 = term of c2, c1 ∈ CV1, c2 ∈ CV2 and c1 and c2 are synonyms. CV1
and CV2 are controlled vocabularies.

Examples:
Temperature in F can be converted by a translation function to temperature C°,
upper case notation can be converted to lower case notation, etc.

40

3.3 Semantic Database Definitions

Figure 10: By mapping synonymous concepts of controlled vocabularies, it is possible
to relate database entries that use different terms for the same things.

3.3.4 Database Links and Cross-references
The previous definitions can be used to derive cross-references for a database
attribute A, i.e. the set of all attributes which share the same semantic attribute
definition and use the same controlled vocabulary (attribute values definition). It is
important to note that these cross-references explicitly include attributes which are
mapped to sub- and super-concepts of A. Cross-references can be used to
automatically generate database links as well as to automatically derive which
database tables can be joined.
Example:

In Figure 11, the query ’animal:mouse’ would find the EC number of mouse
enzymes. By using semantic cross-references, a system can automatically
generate links to other database tables that contain further information about
EC numbers. In the example additional information can therefore be found in
the ‘enzymes’ database.

Semantic cross references go further than "ordinary" referential integrity constraints
since they can be applied between databases, and because all semantic cross-
references can automatically be generated once a database has been semantically
defined.

41

Chapter 3: Principles of Semantic Database Integration

Figure 11: Database attributes which are defined as the same concept and share the
same controlled vocabulary as their domain can be used for cross-referencing
between database attributes.

42

3.3 Semantic Database Definitions

4 Requirements Analysis
In the previous chapter, principles and methods for semantic database integration
were introduced independent of their implementation. These principles are well suited
to be used within existing database integration systems such as SRS (Etzold et al.
1996, Etzold and Verde 1997, Zdobnov et al. 2002) or IBMs DiscoveryLink (Haas et
al. 2001).
In this chapter, the requirements for the implementation of a semantic database
integration system SEMEDA (Semantic Meta Database) are introduced. General
requirements for the integration of molecular biological databases are discussed with
regard to the feasibility of their implementation in general and in SEMEDA. Further
requirements specific to SEMEDA are introduced. It is also analysed how an existing
system, the BioDataServer, can be used for homogeneous SQL access to
heterogeneous data sources which cannot be directly accessed via JDBC, like flatfiles
and web pages. Thus SEMEDA only has to deal with semantic heterogeneity.
The sequence in which the chapters “Requirements Analysis” and ”Design and
Implementation” are presented might imply that this is the sequence in which
SEMEDA was developed, but this was not the case. The requirement analysis and the
design and implementation evolved more or less in several iterative steps. Thus the
software engineering process followed, could be described best as the spiral process
(Boehm 1988), although it was not followed in a formal way.
For example, being able to port SEMEDA to any relational DBMS that uses JDBC
was originally a requirement. This requirement was sacrificed in order to be able to
use an efficient method for "tree processing" within SQL (see below). Another
example is the frontend: originally it was a requirement to be able to use "drag and
drop" for ontology editing, i.e. the implementation of the frontend as a Java applet,
but this conflicted with the requirement to be able to access SEMEDA via the Internet
from within as many browsers (and browser versions) as possible, since Java versions
differ between browsers.
In addition, at the beginning it was intended to access all data sources via the
BioDataServer. After first tests, it turned out that also databases that are accessed by
the BioDataServer via JDBC respond slowly. Thus, the system was extended to
access relational DBMS directly via JDBC, whereas heterogeneous data sources still
were accessed via the BioDataServer.
In addition, many features were added/modified after the frontend was implemented
and after the first users used it to semantically define databases and to query
databases.

43

Chapter 4: Requirements Analysis

4.1 Prototype
Requirement 1: SEMEDA should be implemented as a prototype that fulfils the
purpose of semantic database integration as described in the previous chapter.

The main goal of the development of SEMEDA is to demonstrate the potential of the
principles of semantic database integration.

Requirement 2: It should be possible to extend the system so that it can be used as a
real world application, i.e. the system should be scaleable without being completely
rewritten.

Well-established features, which already exist in other systems, like views, integration
of bioinformatic analysis tools/applications, are beyond the focus of this work.
Systems which already provide such functionality are for example OPM/MQS
(Topaloglou et al. 1999), IBMs DiscoveryLink (Haas et al. 2000, Haas et al. 2001)
and SRS. Database integration Systems like SRS were developed in many man-years
by many developers, i.e. for practical reasons this prototype does not have to
implement all features which are generally useful in database integration systems.
Nonetheless, all features that are required to demonstrate the main principles of
Semantic Database Integration should be implemented and the architecture should
allow that general features useful for database integration systems can be added.

Requirement 3: The architecture should be flexible, i.e. it should be possible to
incorporate new ideas and principles as easily as possible.

The principles for Semantic Database Integration as introduced in the previous
chapter are new and some were actually developed during the implementation
process. Therefore the System had to be implemented in a way that it could integrate
new methods as seamless as possible.

Requirement 4: The system should be modular in a way that functionality and
components of the System can be reused for the development of related applications.

Examples for applications which might be implemented based on one or more
components of SEMEDA are discussed in section 11.2.

4.2 General Requirements
Requirements for the Integration of Molecular Biological Databases in general exist.
In (Karp 1995) several requirements and assumptions about molecular biological
databases and integration systems are listed (see Table 1). Since some of the
requirements contradict each other, these cannot be met at the same time.
In order to process multidatabase queries (Requirement 5 and Requirement 7) and
querying source databases “timely” (Requirement 6), all relevant databases would
have to be able to answer complex declarative queries via Internet (Assumption 3).

44

4.2 General Requirements

However, as (Karp 1995) also mentions, most source databases do not support
“complex queries” and in many databases even attributes exist which cannot be
searched.
In addition, the methods by which databases can be searched via the internet vary
widely: some databases can be searched by regular expressions, some can only be
searched case sensitive, whereas others can only be searched case insensitive. In
addition, some databases discriminate between data types and allow that datatype
specific operators are used (for example the < operator on integer values), whereas
others do not discriminate between data types.
Therefore the BioDataServer supports the “smallest common denominator” for
database queries, i.e. in a timely manner only “one step accessible” attributes can be
searched and only the = operator is supported, i.e. for example it is not possible to
search all integer entries in a database which are smaller than a certain value. Due to
these facts and due to the performance issues intrinsic to database mediation as
discussed in section 2.3.3 “timely” multidatabase queries which query several data
sources in one step in real time cannot be implemented. Therefore Requirement 5,
Requirement 6 and Requirement 7 cannot be met at the same time. Therefore in
section 11.2.1 an architecture for “database mirrors” which enables multidatabase
queries at the price of older data is described.
However, Requirement 8 - Requirement 10 are feasible.

Table 1: Requirements and Assumptions for Molecular biological database
Integration (Karp 1995).

Requirement 5 Users must be able to issue complex declarative multidatabase
queries.

Assumption 1 Write access to member DBs is not required by most users, and
will be provided by special "backdoor" mechanisms.

Requirement 6 Updates to member DBs occur frequently (roughly every day),
and users place high priority on timely access to the newest data.

Assumption 2 The schemas of member DBs change quickly --- on the average
of two or three times per year.

Requirement 7 Users should not be forced to circumscribe their queries in
advance to a relatively small number of DBs (on the order of one
or two dozen DBs).

Requirement 8 Special high-level tools must be provided for handling the rapid
pace of schema change (multiple changes across all member
DBs).

Assumption 3 All relevant DBs can answer complex declarative queries via
Internet

45

Chapter 4: Requirements Analysis

Assumption 4 Sophisticated user interfaces will emerge to help biologists
compose complex queries

Requirement 9 Database heterogeneity is here to stay, at a variety of levels. We
need powerful tools for managing heterogeneity.

Requirement 10 We should not require users (who formulate queries) to know of
the existence, or the physical location, or the access mechanisms,
for every DB that is relevant to their query.

Requirement 11

(Williams 1997)

Mechanisms for automatic generation of links between databases
are needed.

Another requirement is that mechanisms for automatic link generation between
databases are needed (Requirement 11). Due to the lack of a systematic linking
mechanism, even up to date database integration systems such as SRS (Etzold et al.
1996) (Zdobnov et al. 2002), KEGG (Kanehisa 1997a, b, Kanehisa et al. 2002) and
PEDANT (Frishman et al. 2001, Mewes et al. 2002), only link or merge the "most
important" database attributes. Therefore, as already mentioned the degree of
interlinking in these database integration systems is sub-optimal.
Whereas the requirements listed in this section are requirements, which apply to most
database integration systems, in the subsequent sections specific requirements for
SEMEDA are given.

4.3 Using the BioDataServer to Access Data sources
Although at present most molecular biological databases are implemented using
DBMS, which enable structured access methods like JDBC or ODBC, most database
integration solutions use flatfiles or other proprietary methods for data exchange. For
example in SRS the source database has to export the data and the integration system
has to import the data. Both for exporting and importing, source database specific
scripts have to be used.
The situation that the structured access methods are rarely used seems to be paradox
and has mostly historical reasons (see chapter 2), but still at present time most
database owners would not grant JDBC access to their databases. The main reasons
for this are security concerns although nowadays all major DBMS have mechanisms
to restrict user rights. Usually it is possible to restrict read only access to a few tables,
and to hide table attributes and even tablerows by using views. By using user specific
grants, it is possible to grant different privileges on the user level. In addition, JDBC
type 3 drivers have recently become available for all major DBMS
http://industry.java.sun.com/products/jdbc/drivers. JDBC type 3 drivers usually
support encryption and provide additional new methods (besides user grants) to deny
write access.

46

4.3 Using the BioDataServer to Access Data sources

To be able to access data sources that cannot be accessed via JDBC, the
BioDataServer of the MARGBench system can be used. The BioDataServer is a
mediated integration architecture that provides SQL access to heterogeneous data
sources. The BioDataServer was developed within the MARGBench (Modeling and
Animation of Regulatory Gene Networks) project.

Requirement 12: Data sources, which can be accessed directly via JDBC, should be
accessed directly by JDBC. Other data sources should be accessed via the
BioDataServer of the MARGBench system.

Subsequently a brief overview of the MARGBench is given, and performance and
special features of the BioDataServer are discussed as far as they are relevant for
SEMEDA. The information in this section is based on (Freier et al. 1999, Freier et al.
2002b) and on personal communication (Matthias Lange, IPK Gatersleben, Germany,
January 2002).
The BioDataServer is a system, which provides wrapper based SQL access to
heterogeneous distributed data sources. As already discussed, Molecular Biological
Data sources use many different interfaces: whereas some databases provide SQL
access via JDBC or ODBC, at present most molecular biological databases can still
only be accessed via form based dynamic web pages, structured (XML) or proprietary
flatfile formats. The BioDataServer supports all those data sources, although the
amount of work required for writing different wrapper types varies.
The main factors influencing performance of queries to distributed databases are the
client side costs for data extraction, and server side costs for data provision. Table 1
compares those factors and estimates the work required for implementing adapters for
different data sources. Those characteristics are intrinsic properties that are
independent of the way adapters are implemented (Davidson et al. 1995).

Table 2: Comparison of costs for querying different types of heterogeneous data
sources, and the work required for the implementation of adapters.

Data source Data extraction
costs at the

BioDataServer

Data source side
performance

costs

Work for Adapter
implementation

Dynamic web pages high high very high
Dynamic XML files low high medium
Static XML files low low - medium low
Proprietary flatfiles medium low - medium high
DBMS very low low - medium low

Some dynamic web pages cause further download and extraction costs: some
attributes cannot be searched directly within the source database, i.e. when such an
attribute is queried, an adapter has to implement the access method to the attribute.
This access method may require downloading and parsing all entries of an attribute,

47

Chapter 4: Requirements Analysis

i.e. depending on the source database, querying such attributes may take several
minutes up to several hours. Such attributes are said to be not one step accessible. The
concept of one step accessible attributes is important and will be used often in
SEMEDA, since only one step accessible attributes can be queried at a speed which is
acceptable for interactive database queries.
But also remote DBMS, which can be directly accessed by SQL via JDBC, can cause
high costs when tables between different DBMS have to be joined. DBMSs use
indexes to improve the performance of the join operation. This is not possible in
heterogeneously distributed databases: indexes on source databases cannot be used,
and global indexes cannot be generated since the data is not known before it is
queried. In addition, it may be necessary that all values of the attributes that are used
for joining are compared, what may cause high download and extraction costs. In
some situations, probe based optimisations (Shahabi et al. 2000) or cost based query
optimisations based on metadata are possible (Haas et al. 2000, Haas et al. 2001),
although they cannot overcome all performance issues of database mediation.
The BioDataServer was developed as a component of the data integration layer of
MARGBench, a workbench for bioinformatic tools, i.e. it was important that imported
data from source databases always reflect the current state of the source database. For
this scenario, response times between a few seconds and several minutes (Freier et al.
2002b) are acceptable and the price for “fresh” data.
What has to be implemented to be able to use the BioDataServer?

Requirement 13: Import methods for reading database metadata from the
BioDataServer have to be implemented.

Some databases consist of hundreds of tables and attributes. Although it should also
be possible to add and enrich database metadata in SEMEDA manually, metadata
should be imported whenever it is possible. The BioDataServer uses a proprietary
protocol for retrieving database metadata for the databases that are accessible via the
BioDataServer.

Requirement 14: Methods to generate and submit a global integrated database
schema to the MARGBench are required.

The BioDataServer can be used by several users and applications, which may require
different database schemas. Therefore, for each user a global integrated database
schema has to exist which is used to model user specific views of the integrated
databases. Database queries are based on these global integrated databases schemas.

48

4.4 Multi User Support

4.4 Multi User Support
Requirement 15: Several users should be able to simultaneously query the data
sources.

This is a prerequisite to make SEMEDA available as a web service.

Requirement 16: Several users should be able to edit the ontology and the database
metadata collaboratively.

The provider of a database usually knows the content and the data formats of his
database best. Therefore database providers should be able to semantically define
their own databases. Therefore three groups of users with different permissions have
to be differentiated:
Everybody: All users should have the permission to query databases and to browse all
metadata. Confidential database information (host, port, login/password) may only be
browsed by the database owner and by administrative accounts.
 DB Provider: Objects, which are generated by a DB provider, should be treated as
"suggested objects” which can only be released by administrative accounts. It should
not be possible for other users to add objects, which are dependent on the suggested
objects. For example, it should not be possible to add sub-concepts to an ontology
concept, which was suggested by another user before the concept is released by an
administrative account
Admins: Full permission on everything. Only few people should use administrative
accounts, and only administrative accounts should have the permission to release
suggested objects. After an administrative account has released objects, which were
suggested by a database provider, the database provider should no longer be able to
edit these objects. SEMEDAs administrative accounts are only used for issues related
to semantically defining databases and making database available via SEMEDA.
Therefore, in addition to SEMEDAs user groups, accounts for managing the resources
that are used to implement and deploy SEMEDA are needed. Such accounts (UNIX
root accounts, administrative database accounts etc.) are not integral part of SEMEDA
and may differ between different deployments of SEMEDA.

4.5 User Interface
SEMEDA should have mainly two user interfaces, one for querying databases and
one for semantically defining databases.

49

Chapter 4: Requirements Analysis

4.5.1 Querying Databases: SEMEDA-query
The query interface should give an example how the different semantic database
definitions introduced in chapter 3 can be used to semantically integrate source
databases at query time.

Requirement 17: Both the query interface and the interface for semantic database
definitions should be accessible via the Internet.

This is especially important for the query interface since SEMEDA should be
available as a web service. Potential users should be able to access SEMEDA from
within a web browser as it is the case in successful database integration systems like
SRS (Etzold et al. 1996, Etzold and Verde 1997, Zdobnov et al. 2002) and PEDANT
(Frishman et al. 2001).
By making the interface for semantic database definitions available via the Internet,
database providers can semantically define their own databases.

Requirement 18: The query interface should not rely on any other relation type than
the “is a” hierarchy in the ontology.

The common smallest denominator of existing ontologies is the existence of an “is a”
hierarchy (see Table 7). The query interface might use other relation types than the "is
a" hierarchy when an ontology provides them. However it should not require the
existence of other hierarchies for database queries, since this would make it a priori
impossible to use many of the existing ontologies from within SEMEDA. The
mechanisms of semantic database integration as introduced in the previous chapter do
not make use of any other hierarchies than the "is a" hierarchy.

Requirement 19: The query interface should hide the ontology from the user.

One lesson that had to be learned in the GALEN project (Rector et al. 1998), was that
the data structure of ontologies could not be understood by most medical doctors.

4.5.2 Semantically Defining Databases: SEMEDA-edit
The Use Case diagram in Figure 12 gives an overview of the operations, which are
required to add databases to SEMEDA, and summarises some of the requirements
given in the previous sections.
The Use Cases are simplified, and most of the Use Cases displayed in the diagram
actually consist of several Use Cases: For example the Use Case “Edit ontology”
consists of adding, deleting and modifying concepts, relations and relation types.
Most methods, which are required for each Use Case are more or less self-
explanatory. Therefore it is sufficient to state here that the Use Cases had to be
implemented in a way, that the semantic database definitions as defined in Chapter 3
can be applied. In addition it has to be possible to query data sources once the
database metadata has been imported and databases have been semantically defined.

50

4.5 User Interface

Requirement 20: Adequate methods for browsing and displaying the hierarchical
structure of ontologies are required.

Ontologies can become big and thus hard to survey. Ontologies have typically a few
hundred up to 1 million concepts (see Table 7), i.e. more concepts than can be
displayed at the same time at a computer screen. Therefore adequate methods for
browsing the ontology are required.

Figure 12: Use Cases of the operations, which are needed to add databases to
SEMEDA. The Use Cases are displayed from top to bottom in the sequence in which
they have to be used to add a database.

51

Chapter 4: Requirements Analysis

4.6 Tool Interface
The database metadata in SEMEDA and the semantic database definitions may also
be useful for other applications. For example the database metadata might be used to
support writing global integrated MARGBench Schemata (see previous section). For
example, a user who models an integrated MARGBench schema might need to find
all data sources, which contain Enzyme numbers, i.e all database attributes which
contain information about a certain concept.

Requirement 21: Tool interface which supports: a) searching for a concept in
SEMEDA b) retrieving database metadata for a database c) retrieving database
attributes which are defined as a given concept.

In addition, several other methods may be useful for other applications. Therefore it
should be possible to add further methods when they are required.

52

5.1 Data Structure

5 Methods
Whereas chapter 3 describes principles for semantic database integration, in chapter 4,
the requirements for the database integration system are derived. In this chapter, the
methods that are suitable to implement the introduced principles are described as a
prerequisite for their realisation in SEMEDA.
To do so, an appropriate data structure for storing ontologies, database metadata and
the semantic definitions as described in Chapter 3 is developed. Subsequently, it is
discussed how this data structure can be edited and queried.

5.1 Data Structure
An Entity-Relationship (ER) diagram (Chen 1976) was chosen for the representation
of the data structure, since it allows to represent the data structure in an
implementation independent manner, although it is relatively easy to derive an
appropriate table structure for a relational database, based on an ER diagram.
Figure 13 shows the data structure that is appropriate for storing ontologies, database
metadata and the semantic definitions as described in chapter 3. The left part of the
ER diagram contains the parts, which are relevant for representing the ontology.
Concepts (NODE) are connected by relations (EDGE), and relations are typed
(EDGE_TYPE). Concepts, relations and relation types belong to an ONTOLOGY
(Element of), which allows storing several ontologies. For ontologies that are
imported, the URL where they were imported from can also be stored. Concepts
(NODE) have a name and a definition. In addition, a subclassifying criterion
(Schulze-Kremer 2002) can also be stored. The type of a relation (EDGE_TYPE) is
defined by its name and its algebraic relational properties such as transitivity,
reflexivity, symmetry (as defined in section 3.2).
The right part of the schema shows the structure to handle database metadata: Each
database (DB) can contain several tables (DB_TABLE), and each table can contain
several attributes (DB_ATTRIBUTE). The datatypes that attributes can have (String,
Integer, Boolean etc.) are stored in the table INTERNAL_DATATYPE. In this table,
also different labels used for equivalent datatypes are stored, i.e. JDBC datatypes are
mapped to BioDataServer datatypes and Oracle datatypes. In the database table (DB)
relevant information about the database is stored: the name of the database, the type
of the DBMS, technical data needed to access the database (host, port, login password
etc) and whether the database should either be directly accessed or via the
BioDataServer. The database table (DB_TABLE) stores the name of a table and also
data, which is relevant for generating BioDataServer user schemata (see section 4.3).
Metadata of database attributes are the name, the fact if an attribute is a database key
and if it is one step accessible (see section 4.3). To know if an attribute is one step
accessible is important, since it determines how fast a database can be queried, i.e. if

53

Chapter 5: Methods

an attribute responds fast enough for interactive database querying. In addition
functional dependencies between attributes are stored. A database attribute is
functionally dependent from another, if its entries are uniquely determined by the
other. The information about functional dependencies is important for generating an
integrated user schemata for the BioDataServer (which in turn is a prerequisite for
using the BioDataServer to query data sources).
Semantic database definitions are represented by the relations
DEFINE_ATTRIBUTE, REFINE_TABLE and
ATTRIBUTE_VALUE_DEFINITION. DEFINE_ATTRIBUTE links database
attributes to ontology concepts and thus semantically defines them (see section 3.3.1).
In an equivalent way, REFINE_TABLE refines the content of database tables (see
section 3.3.2). The Table DATATYPE defines which vocabulary is used for which
database attribute (see section 3.3.3). Whereas the table
DATATYPE_REPRESENTATION stores generic datatypes such as String, Integer or
Boolean, the table DATATYPE stores which vocabulary is used, i.e. it defines the
values of a database attribute more precisely (Enzyme Number, Systematic Species
Name, CAS registry number etc.).
ONTO_USER is important for multi user support (see section 4.4), and contains a list
of all users. Therefore it stores all user related information such as login, password,
session timeout, activation state of user accounts etc. For reasons of conciseness, not
all attributes of the entities in Figure 13 are displayed. All tables that require support
for multi user editing (i.e. all tables but DATATYPE_REPRESENTATION,
ONTO_USER and CONFIGURATION) have the attributes OWNER and
EDITED_BY. OWNER_FK is a foreign key to the ONTO_USER who suggested an
entry. In the ER diagram (Figure 13) this OWNER_FK is represented by the
BELONGS_TO relations. Until the OWNER_FK of an entry is not NULL, the entry
is treated as "suggested" (see also section 4.4). In every insert or update statement, the
attribute EDITED_BY is set to the user name of the user who tries to execute the
insert or update statement. Thus, database check triggers can evaluate if the user has
the permission to execute the respective data manipulation and if necessary raise an
error and prevent the modification (see section 5.2). In addition, the tables
ONTOLOGY, DB and DATATYPE have an attribute LOCKED_BY as a foreign key
to ONTO_USER. Setting this attribute to an ONTO_USER locks the respective
ontology, database or vocabulary for other users, i.e. only the user who set the lock
can edit elements of the respective ontology, database or vocabulary, until the lock is
released by setting LOCKED_BY to NULL.

54

5.1 Data Structure

Figure 13: ER-schema of SEMEDAs backend. The diagram is further explained in the
text.

55

Chapter 5: Methods

5.2 Editing Data and Multi User Support
Based on the data structure introduced in the previous section, the algorithms for
editing the data are mainly self-explanatory. With regard to the implementation of the
data structure on a relational database, modifying data relates to SQL insert, update
and delete statements. For example, to add a concept to the ontology, an entry is
added to the entity NODE. In order to relate two concepts of the ontology, an
ontology relation is added by an insert statement to the entity EDGE.

User updates,
deletes or inserts

data

User
logged in?

TRUE

Object
locked (edit

mode)?

User
Is Admin?

Is Owner
and DB

provider?

TRUE

FALSE

Deny

Deny

Deny

FALSE

FALSE

FALSE

Update delete
or insert

TRUE TRUE

TRUE

Figure 14: Permission checks required for multi user support.

56

5.3 Querying the Data Structure

For multi user support, it has to be assured that whenever a user tries to modify data,
he has the right grants to do the data manipulation. Based on the requirements for
multi user support (see section 4.4) several checks have to be performed before a user
is allowed to modify data (Figure 14). First of all, the user has to be logged in, and the
user session should not have timed out. When this is true, it has to be checked if the
account is still activated. As described in the previous section, locks had to be
implemented. This is necessary to prevent conflicts that arise when two users edit the
same data elements at the same time. When all those checks have succeeded,
administrative accounts may modify the data, whereas database providers may only
update or delete elements that they suggested themselves.

5.3 Querying the Data Structure
Based on the data structure of Figure 13, many different possibilities to query
SEMEDA exist. Examples for common queries are:
1) Get the semantics of a given database attribute (see section Attribute semantics,

3.3.1).
2) Get all database attributes of a given database table.
3) List all database attributes that have the same semantic attribute definition and use

the same vocabulary (to generate Database Links and Cross-references, see
section 3.3.4).

4) Get all sub-concepts of a given ontology concept (this is for example useful to
display the hierarchical structure of the ontology).

With regard to the data structure displayed in Figure 13, the queries 1-3 require
selecting data from the respective entities, and connecting those elements by
traversing the relevant relations. For example in query 1, the respective entry from the
entity DB_ATTRIBUTE is selected, and by following the relation
DEFINE_ATTRIBUTE, the semantics of the database attribute is found. With regard
to the implementation of the ER schema as a relational database, those queries can be
formulated using SQL 92 queries.
Query 4 cannot be formulated using standard SQL queries, since it requires traversing
the entities NODE and EDGE recursively via the relations FROM_NODE and
TO_NODE. However, by using recursive SQL queries (Wang and Zaniolo 1998),
which were defined in SQL 99, such queries can also be handled within relational
databases, if the standard is fully implemented.

57

Chapter 5: Methods

58

6.1 System Architecture

6 Design and Implementation

6.1 System Architecture

6.1.1 Overview
Figure 15 shows how SEMEDA and the BioDataServer of the MARGBench
interoperate. The BioDataServer is mainly used for SQL access via JDBC to
heterogeneous data sources. Thus SEMEDA could focus on semantic heterogeneity,
whereas the BioDataServer provides homogeneous SQL access to heterogeneous data
sources (flatfiles, web pages, XML files etc). SEMEDA provides mainly two user
interfaces: SEMEDA-edit for semantically defining databases following the principles
described in chapter 3 and SEMEDA-query for querying databases. SEMEDAs query
interfaces guides the user to the relevant databases for his query, offers appropriate
HTML forms for querying the data sources and converts the form based queries to
appropriate SQL queries, which are subsequently processed by the BioDataServer or
directly by the source databases if direct SQL access is granted by the source
databases.
SEMEDA itself was implemented as a 3-tiered system consisting of a relational
database (Oracle 8i backend) and JSP 1.1 (Java Server Pages) as the middle tier,
which dynamically generates the HTML frontend (Figure 16). The backend
(relational database) stores the ontologies, database metadata and the semantic
definitions of the databases, whereas the middle tier connects the HTML frontend to
the database by mapping and validating the HTML form based user actions to
appropriate SQL statements. Much functionality of SEMEDA was implemented using
Oracles PL/SQL functions, procedures and triggers. PL/SQL is a proprietary
procedural programming language, which is an integral part of Oracle.
By using this architecture the requirements introduced in the previous sections can be
met: The system is modular, extensible and flexible (see Requirement 1, Requirement
2 and Requirement 4), i.e. the relational backend could be (re)used independently of
the JSP middle tier component. In order to keep the functionality independent of the
JSPs, much functionality was implemented as PL/SQL procedures, and the JSPs were
mainly used for user session tracking and for dynamic generation of the HTML
frontend. In addition, keeping the functionality in the relational DBMS improves
performance (see section 6.1.3), which is crucial for efficient “tree generation”. A
disadvantage of using Oracles PL/SQL programming language is that the system
cannot so easily be ported to other DBMS, although it should be possible in a
straightforward manner to port the relational backend and the data to other DBMS.

59

Chapter 6: Design and Implementation

Figure 15:Interoperation of SEMEDA and the BioDataServer. The interface
SEMEDA-edit is used to semantically define databases, whereas the interface
SEMEDA-query is used to query databases. The BioDataServer provides SQL access
to the mediated data sources. W1, ..., Wn are the wrappers of the data sources DS 1,
..., DS n.

Further requirements closely related to the system architecture are accessibility via the
Internet (Requirement 17) and the provision of a tool interface to SEMEDA
(Requirement 21). Accessibility via the Internet is achieved via the dynamically
generated HTML frontend, whereas the tool interface is implemented by granting
JDBC read access to the relevant parts of the databases and to relevant PL/SQL
procedures (see section 6.4).
The BioDataServer was used for data access (Requirement 12) using its JDBC
interface from within the JSP middle tier component.

60

6.1 System Architecture

Further advantages of this architecture are that data (ontologies and database
metadata) can be consistently stored independently from the application and that data
can also be retrieved or imported by using the various built in interfaces and tools of
the DBMS. In addition this design keeps the application scalable, since both the
relational backend (Oracle) and the middle tier (JSP) can be deployed on different
systems and thus are both scalable.
The other requirements introduced in the previous section are more or less
independent of the system architecture. In the subsequent sections of this chapter it
will be explained how the different components of SEMEDA were implemented to
meet the requirements introduced in the previous chapter.

6.1.2 Scenario
In this section it will be described how the main components of SEMEDA and the
BioDataServer interoperate to provide the required functionality. In order to query
databases via SEMEDA, database metadata of the relevant databases has to be
incorporated to SEMEDA and semantically defined. Subsequently databases can be
queried.

SEMEDA
Frontend
(HTML)

Middle Tier
(JSP + PL/SQL)

Backend
(relational DB)

1

2
3

4
5

Figure 16: Editing ontologies and database metadata: Collaboration of SEMEDAs
components.

Figure 16 shows the scenario for editing data in SEMEDA. Data are ontologies,
database metadata and vocabularies.

61

Chapter 6: Design and Implementation

1.) User inserts, updates or deletes data in SEMEDA via the HTML frontend using
HTML forms. For example, the user wants to add a new ontology concept or to
semantically define a database attribute. The HTML form data is sent to the middle
tier.
2.) Using JSP and PL/SQL procedures, it is validated if the user has the required
permissions to perform the required operation. In addition, it is checked that the data
does not create inconsistencies in SEMEDA.
3.) SEMEDAs backend (relational DB) is updated.
4 + 5.) The success of the operation is reported to the user and the data is refreshed in
the frontend.

Once databases are semantically defined in SEMEDA, an integrated BioDataServer
schema for all databases, which are semantically defined in SEMEDA, have to be
submitted to the BioDataServer. After this step, databases can be queried via
SEMEDAs query frontend (SEMEDA-query). Figure 17 shows how the different
components of SEMEDA and the BioDataServer interoperate to query databases:
1,2): SEMEDA guides the user based on semantic attribute definitions (section 3.3.1)
and semantic table definitions (section 3.3.2) to appropriate database tables. For
example if the user wants to search databases by EC Numbers, he can choose a
database table from a list of all database tables which contain attributes which are
semantically defined as EC Numbers.
3.) User submits the database query by using a source database specific query form. In
this query form the table attributes are labelled using concept names besides the
attribute names of the source database. In addition, the vocabulary of the data-sources
is displayed by using the attribute value semantics (see section 3.3.3).
4.) The JSP processes the user query and translates it to an appropriate SQL query,
which is sent to the BioDataServer via the JDBC, interface of the BioDataServer.
4a.) If the source database can be directly accessed via JDBC, the query is directly
sent to the source database.
5.) Based on the integrated BioDataServer database Schema, the query processor
determines which adapters have to be used to process the query.
6.) The appropriate subqueries will be generated by the subquery builder and sent to
the adapters. The Integration layer sends the SQL query to the respective adapter.
7.) The adapters translate and send the subqueries to the appropriate databases.
8.) The databases send the replies to the adapters.
9.) The adapters send the replies to the “result set integration”, where the different
formats of the replies will be unified. From databases which provide HTML files as
replies, the relevant information will be extracted. Finally the result sets will be
merged to a global result set.

62

6.1 System Architecture

10.) From the “Integration Layer” the BioDataServer returns these replies to the query
processor.
11, 11a) The result set is returned to the middle tier component of SEMEDA.
12.) The JSP returns the results to the user. Along with the results, links to other
relevant databases are displayed which are generated by using semantic cross-
references (see section 3.3.4).

SEMEDA

BioDataServer

Frontend
(HTML)

Middle Tier
(JSP + PL/SQL)

Backend
(relational DB)

Query processor

Integration Layer

Adapter 1

DB 1 DB ... DB nDB2

Adapter ... Adapter ...

DB ... DB ...

3 1, 2

4

5

6

7 8

9

10

11

4a 11a

12

Figure 17: Querying databases: collaboration of the components of SEMEDA and the
BioDataServer.

63

Chapter 6: Design and Implementation

6.1.3 Backend
The data structure introduced in chapter 5 was implemented using Oracle 8i as a
relational DBMS system, although any other database system could also have been
used for storing the data. Whereas often the "application logic" is located in the
middle tier, in SEMEDA it was partly implemented in JSP and partly by using DBMS
features such as constraints and PL/SQL (trigger, procedures, functions). This results
in better performance (fewer JDBC calls, query optimisation by the DBMS) and has
the advantage that much of the implemented functionality can be used by other
applications without having to use the middle tier. On the other hand, the use of
DBMS features makes it more difficult to port SEMEDA to other DBMS. However,
this does not affect raw data exchange of ontologies and database metadata between
SEMEDA and other systems.
Database identifiers are often considered to be an unimportant issue, but in order to
facilitate data- and ontology exchange, finding a good solution was crucial and
several requirements had to be met. IDs should be referable from external
applications. Therefore they should not change and be unique, also between
SEMEDA implementations. Thus IDs do not have to be adjusted when an ontology is
transferred between two SEMEDA implementations or with other ontology
applications. The IDs should further be able to cope with IDs of other ontologies to
facilitate import of ontologies (a number can be stored as a string, a string cannot
easily and unequivocally be stored as a number).
In order to account for these requirements, it was decided to use a prefix, which is
unique for each SEMEDA deployment. Such a prefix could be similar to a stock
symbol. For example, concepts generated at a SEMEDA version deployed at the
Resource Center Primary Databases might use the prefix RZPD, followed by an
integer. Such concept IDs should not be modified when ontologies or metadata are
traversed between SEMEDA implementations. Also, when ontologies are imported
from other systems, the original IDs should be used and only when necessary be
extended by a unique, source ontology specific prefix. Thus SEMEDAs identifiers are
similar to Gene Ontology accession numbers, but whereas all GO concepts use the
same prefix “GO:”, independent of the tools that are used to edit ontologies,
SEMEDAs prefixes are specific for each installation of SEMEDA. To make sure that
these prefixes remain unique is rather a “political” than a technical issue: recently
several different ontologies are being developed, and a mechanism for assigning such
prefixes should be negotiated between the research groups involved. Technically this
could be solved using a web page that automatically generates a prefix after
successful registration of a user.
To improve the consistency of the data stored in SEMEDA, database integrity
constraints were used. Some inconsistencies cannot be caught by using constraints.
When this was the case, PL/SQL "check triggers" (Oracle-Corp. 1997) were
implemented. These and the functionality of the middle tier are described in the
subsequent section.

64

6.1 System Architecture

6.1.4 Middle Tier
The middle tier indirectly connects the frontend with the backend, i.e. maps HTTP
GET and POST requests to the appropriate SQL/DML statements and PL/SQL
procedures via JDBC. In addition, JSP is used for session tracking.

6.1.4.1 PL/SQL Procedures, Functions and Triggers
PL/SQL stands for "Procedural Language extensions to SQL." PL/SQL is available
primarily as an "enabling technology" within Oracle, i.e. it does not exist as a
standalone language. It can be used in the Oracle relational database, in the Oracle
Server, and in client-side application development tools, such as Oracle Forms.
PL/SQL is closely integrated into Oracles SQL implementation and adds
programming constructs that are not native to SQL. PL/SQL allows combining SQL
statements with "standard" procedural constructs such as iteration, loops and if-then-
else statements.
PL/SQL can be used to write procedures, functions and triggers. Procedures, functions
and triggers are program units, which can execute one or several blocks of code.
Procedures and functions can have parameters and only differ in the fact that
functions can return a value. Triggers are blocks of code, which are executed on
predefined events: such events can for example be SQL insert, update or delete
statement on predefined tables or table columns.
Therefore, triggers can be used to check if an insert, update or delete statement may
be executed, and if necessary a trigger can raise an error which prevents the execution
of the code ("check triggers").
PL/SQL procedures, functions and triggers can be called via the various interfaces
Oracle provides. Whereas SEMEDAS JSPs access the procedures and functions via
JDBC, other tools could be implemented which access SEMEDAs PL/SQL functions
and procedures via other interfaces. Therefore, whenever it was possible, the
application logic was implemented in PL/SQL. Thus SEMEDA remained modular in
a way which would allow to reuse SEMEDAs application logic without requiring the
use of JSP or other components of the frontend. The disadvantage of this architecture
is that this makes SEMEDA more difficult to port to another DBMS than Oracle.
In total about 150 PL/SQL functions, procedures and triggers have been implemented.
Table 3 lists the most important procedures, functions and triggers of SEMEDA and
describes their functionality. These functions could also be used by external tools (see
section 6.4).
The details of the implementations of the procedures, functions and triggers will not
be discussed any further. Only the mechanism of "tree walking" which is used in
several procedures and functions (generation of semantic cross-references, browsing
the ontology, keeping the "is a" hierarchy cycle free etc.) will be described in more
detail. As can be seen in the ER schema (Figure 13) ontologies are basically stored as
a set of nodes, which are connected by edges. However, a tree or a net representation
of the ontology is needed when a user browses an ontology, or when all "child nodes"

65

Chapter 6: Design and Implementation

of a given hierarchy have to be selected. In simple words, large hierarchical data
structures like ontologies require efficient methods for tree-processing within the
DBMS. It is important that these computations are performed within the DBMS since
this enables that controlled vocabularies and ontologies, which consist of millions of
concepts, can be handled by the system. SEMEDA makes intensive use of Oracles
proprietary "connect by prior" extension (Oracle-Corp. 1997) for tree processing,
which performs "excellent" compared to other methods for "tree-walking" (NHS
Information Authority 2000).
Subsequently a simplified minimalistic example query of the "connect by prior"
statement is given:

SELECT id, level

 FROM edge

 WHERE LEVEL <= 5 and etype = “is_a” and onto= “GO”

 CONNECT BY PRIOR from_node = to_node

START WITH edge.id = “root”;

This example statement generates an "is a" tree from the imported Gene Ontology of
depth <= 5 starting with the "root" node. The actual implementations of the
procedures, which use the “connect by prior” statement, were quite complicated since
several SQL constructs do not work in conjunction with the "connect by prior"
statement. For example, Oracle 8i does not allow to use the "connect by prior"
statement in conjunction with the join operator, a problem which can be worked
around by using inline views.
ANSI/ISO SQL99 introduced an equivalent feature called "recursive queries". This
feature would facilitate porting SEMEDA to other DBMS, although only few DBMS
have implemented "recursive queries". In addition it is likely that the first
implementations do not perform very well.
Besides using PL/SQL procedures, functions or triggers, much functionality was
implemented by using Oracles cascading delete. This proprietary oracle extension
allows that tablerows that have a foreign key to another tablerow can be deleted
automatically when the foreign key is deleted. Thus when for example an ontology is
deleted, all relations, relation types and concepts of this ontology can be deleted in
one step.

66

6.1 System Architecture

Table 3: List of the most important PL/SQL functions, procedures and triggers of
SEMEDA

Name of the function,
procedure or trigger

Description

Function MARGBSCHEME_ALL ():
 MargBench Schema
Function MARGBSCHEME (database):
 BioDataServer Schema

Returns an integrated MARGBench
Schema either for all databases in
SEMEDA or for a specific database.

Function CROSS_REFERENCES
 (attribute, ontology): db attributes

Lists the semantic cross-references of
an database attribute (see section
3.3.4).

Function LOGIN (login, pw):user ID Logs a user in if the login/pw is
correct and the account is activated.

Procedure LOCK_O (user, ontology)
Procedure LOCK_DB (user, database)
Procedure LOCK_DT (user, datatype)

Locks the ontology, database or
datatype (vocabulary) for other users,
i.e. makes sure that only one user at a
time can edit an ontology, database or
datatype. Denies lock if the object is
already locked by another user.

Procedure UNLOCK_O (user, ontology)
Procedure UNLOCK_DB (user, database)
Procedure UNLOCK_DT (user, datatype)

Unlocks the ontology, database or
datatype. Denies unlock if the object is
locked by a different user than the user
who tries to unlock an object.

Procedure RELEASE_IDLE_LOCKS () Is called by a oracle job at an
configurable interval. Releases locks
of users who have been idle for a
certain amount of time. The trigger
LAST_ACCESS_TABLENAME is a
prerequisite for this method.

Trigger LAST_ACCESS_TABLE For each table this trigger is fired
whenever an attribute is inserted,
updated or deleted. Sets in the table
ONTO_USER the attribute
LAST_ACCCESS to the current date.

Trigger CK_I_PERMISSION_TABLE (ID)
Trigger CK_U_PERMISSION_TABLE (ID)
Procedure CK_D_PERMISSION_TABLE
 (ID)

Checks if a user has the permission to
execute an insert, update or delete
statement (See Figure 19) on a table.
For each table in SEMEDAs database
schema, all three triggers/procedures
were implemented.

67

Chapter 6: Design and Implementation

Name of the function,
procedure or trigger

Description

Trigger CK_I_E
 (all attributes of the edge to be inserted)
Trigger CK_U_E
 (all attributes of the edge to be updated)

Inserts/updates a new edge and checks
for consistency of the ontology. The
consistency cannot be checked by
triggers because triggers cannot query
the table which fired the trigger.

Trigger CK_I_U_DEPEND_E

Checks on insert or update of edges if
1.) the nodes which the edge connects

is released or suggested by the
user who inserts the edge

2.) the edgetype of the edge is
released or belongs to the user
who inserts the edge

3.) if the user who inserts the edge is a
SYS Account, he is allowed to
omit these checks.

Trigger CK_I_U_DEPEND_D Checks on insert or update of a
semantic attribute definition if the
database attribute which is defined and
the node as which it is defined is
released or suggested by the user who
inserts/updates the definition

Trigger CK_I_U_DEPEND_R Checks on insert or update of a
semantic table definition if the
database table which is refined and the
node as which it is refined is released
or suggested by the user who refines
the database table.

Procedure REFRESH_EDGES () This procedure has to be executed
every time an edge, node or edge type
has been inserted, deleted or updated.
This procedure is a prerequisite for the
execution of the "connect by prior"
statement. The details of this
procedure are of technical nature and
will not be discussed here any further.

Function FIND (ontology, reg. Expression):
 List of ontology concepts

Searches concept names and
identifiers of an ontology by a regular
pattern using SQL92 syntax and
returns the matching concepts.

68

6.1 System Architecture

Name of the function,
procedure or trigger

Description

Function BROWSE (node, ontology, edge
type, inverse, depth):ontology subtree

Generates a depth and relation type
filtered tree-representation for
browsing the ontology

Procedure CK_CYCLES (node, ontology,
edge type, inverse, depth)

This check makes sure that the
ontologies in SEMEDA are directed
acyclic graphs (DAG), i.e. it prevents
that situations like A "is a" B, B "is a"
C and C "is a" A occur. The check is
executed each time a relation (edge) is
inserted or updated

6.1.4.2 Java Server Pages
Java Server Pages (JSP) is a technology for building dynamic web pages, similar to
cgi, Microsofts Active Server Pages (ASP) or PHP. It is based on Java, i.e. developers
who use JSP have the full Java API at their disposal. JSP is a technology developed
by Sun Microsystems which is based on the Java Servlet technology
(http://java.sun.com/products/jsp/). In principle, there is no difference between a JSP
and Servlets, since JSPs are translated to a Servlet. When a request is mapped to a JSP
page, it is handled by a special servlet that first checks whether the JSP page”s servlet
is older than the JSP page. If it is, it translates the JSP page into a servlet class,
compiles the class and executes the servlet.
The main advantage of JSP compared to Servlets lies in the development mode.
Whereas in Servlets the developer has to use many "println" commands to generate
the HTML source code at request time, in JSPs the developer can first develop a static
HTML page, and subsequently substitute the parts of the HTML source code, which
has to be generated at request time. This enables to develop a static HTML prototype
of the frontend, which can already be presented to potential users and readily be
adjusted to meet the user requirements. Once such a static HTML version of the
frontend exists, all the HTML pages can one by one be transferred to JSPs by
substituting the parts of the source code, which has to be generated at request time.
As already mentioned, the main application logic of SEMEDA was implemented by
using PL/SQL procedures, functions and triggers. In order to access SEMEDAs
relational backend, JDBC was used. SQL cannot only be used to access databases by
using SQL, but also to call the PL/SQL procedures and functions. Thus the main
functionality of the JSPs implemented was to mediate between the HTML frontend
and the relational backend. Therefore JSP was used to dynamically generate the
HTML frontend and for session tracking. In addition, for SEMEDAs database query
interface, the source databases were queried from within JSP via JDBC, either directly
or via the BioDataServer.

69

Chapter 6: Design and Implementation

Since different parts of SEMEDA required different HTML representations (a page
for querying databases has a different structure than a page for browsing an ontology),
several different JSPs had to be developed.
However, adding, editing, deleting or showing ontology concepts, attributes of
databases, database tables, database attributes, relation types etc. is technically
similar, since it always applies to a single row SQL insert/update/select or delete
statement. Therefore these functions were implemented by a few generic JSPs (Table
4) which could be configured by request parameters, i.e. each page is called with two
HTTP request parameters: table = name of the database table + id of the respective
tablerow. For example:
 www-bm.ipk-gatersleben.de/semeda/browse.jsp?table=ontology&id=GO
displays the tablerow of the table ONTOLOGY with the identifier "GO".
Respectively
 www-bm.ipk-gatersleben.de/semeda/browse.jsp?table=datatype&id=MGDB48015
displays the properties of the vocabulary with the internal identifier "MGDB48015"
(enzyme number). To test these examples you have to login to SEMEDA first.
In addition, some functionality which was the same on most pages, such as
connecting to the relational database backend or printing a HTML"head" was
implemented by using the JSP include directive, which allows to include external
code at compile time of a JSP. Thus the database connection of all JSPs can be
changed without having to edit every JSP separately.

Table 4: Generic JSPs which are used to display, insert, update and delete data in
SEMEDA.

JSP Name Description
browse.jsp show the attributes of an object (i.e. attributes of a tablerow).
insert.jsp
update.jsp

generate appropriate html forms dynamically. Once a user filled
in the html form data and pressed the "submit" button, the
attribute/value pairs are posted to the process_insert.jsp and
process_update.jsp files.

process_insert.jsp
process_update.jsp
process_delete.jsp

process the forms, i.e. execute the insert/update or delete
operation. These JSPs can either be called from the generic
insert.jsp/update.jsp forms, or directly by providing the
appropriate parameters.

70

6.1 System Architecture

6.1.5 Frontend (User Interface)
For the frontend, dynamically generated HTML was used. By using Cascading Style
Sheets, the layout (fonts types, font sizes, font colour, background colour etc.) of the
frontend can easily be adjusted.
SEMEDA used the same page layout for all pages. By using tabbed panes for the top-
level menus, and by arranging the submenus below the selected top-level menu,
SEMEDAs frontend stayed in a way modular, which allows to add or delete menus
without requiring that the frontend is redesigned (see Figure 18). The rest of the
screen was used for the application, which was selected via the menus. Using HTML
frames further enhanced the modularity of SEMEDA, i.e. the lower part of the
window was divided into three equal sized HTML frames. Thus single frames could
be edited without affecting other parts of SEMEDAs frontend. Since SEMEDA is a
frontend for a database integration, it is rather an application than a website.
Therefore it is not required that individual pages of SEMEDA can be bookmarked or
searched by search engines. Therefore, although HTML frames are generally not
recommended for building websites, in SEMEDA the use of frames had more
advantages than disadvantages.
Basic Software ergonomy principles such as warning a user before he updates or
deletes data and visually grouping related form elements have been followed. For
visually grouping of HTML form elements, which belong together, such form
elements which are submitted together are grouped by underlying them using a
background colour which differed from the main background colour.
The use of JavaScript could not completely be avoided. JavaScript had to be used to
display warning messages, checking HTML form data, display ToolTips and to
submit HTML form data across HTML framesets. All JavaScript functions were
implemented Netscape 4.5+ and Internet Explorer 5.5+ compliant.
SEMEDAs main functionality also runs on Opera 6.01+. For the query interface, the
overlib (http://www.bosrup.com/web/overlib/) was used to display additional
information about databases, database attributes, concepts etc. by using mouse over
effects. The overlib supports Netscape/IE 4.x and newer browser versions, but due to
Operas limited JavaScript support, Opera does not work with the overlib.
The main top-level menus of SEMEDA from the left to the right are the database
query interface (“Query DBs”), the interface for editing database metadata and
ontologies (“Meta DB”), an user interface for various administrative tasks (“Admin
tools”) and in “about” information about SEMEDA is provided.
The details of SEMEDAs frontend will be described in chapter 7.

71

Chapter 6: Design and Implementation

Logo
Menue Selected Menue Menue

Submenu | Submenu | Submenu

Frame 1 Frame 2 Frame 3

Figure 18: Page layout of SEMEDAs frontend. The top-level menus were arranged as
tabbed panes. When submenus were needed, these were provided as links below the
selected main menu. The rest of the screen was used for the application, which was
selected via the menus. This area was divided in three areas, which corresponded to
HTML frames. HTML form elements, which are submitted together, are grouped by
using a different background colour than the main background.

6.2 BioDataServer access
The BioDataServer was used to query heterogeneous data sources and to import
database metadata. In addition as a prerequisite for database queries, an integrated
BioDataServer schema had to be submitted to the BioDataServer.
Whereas for the database queries the JDBC interface of the BioDataServer could be
used, the metadata import and the transfer of the integrated schema to the
BioDataServer had to be executed via a proprietary telnet protocol of the
BioDataServer (see section 4.3).

72

6.3 Multi User Support

6.3 Multi User Support
The implementation of multi-user support required a high proportion of the total time
used for the implementation of SEMEDA. According to Requirement 16 for multi-
user support, the three user groups (admins, DB providers and everybody) were
distinguished. Table 5 lists the groups and permissions implemented in SEMEDA. In
addition, a fourth user group ("system accounts") has been implemented which
completely omits all consistency checks and is exclusively used by internal
procedures.
All SEMEDA users are allowed to query databases and to browse ontologies,
database metadata and vocabularies. Only confidential database metadata such as
port, login, password etc. for accessing a database are exclusively accessible by the
owner of a database and by administrative accounts.
As already discussed (Requirement 16), users can only suggest objects. Before other
users can also use the suggested objects, they have to be released by an administrative
account. The idea was first to make objects "invisible" until they have been released
by an administrative account, but it was decided later on that this is not a good
solution since it might be confusing: for example a database provider might want to
add a new concept, but SEMEDA would have to refuse to generate this concept
because this concept already exists, but is invisible. Therefore it was decided that it is
better to show all nodes, but to implement it in the above-mentioned way, i.e. to
indicate when a concept has been suggested and hence may only be used by the owner
until it has been released.

Table 5: User groups and permissions in SEMEDA.

 Query
databases

Browse
ontologies and

database
Metadata

Suggest changes to
ontologies,

databases and
vocabularies

Release
suggested
changes

Administrators
DB providers
Everybody

SEMEDA can handle several ontologies, databases and vocabularies. Each ontology,
database and datatype can be edited by only one user at the same time. Before a user
can edit one of these objects he has to "lock" it, i.e. these objects are usually accessed
in "browse mode", and when a user wants to edit one of the objects, he has to switch
to the "edit mode". When a user locks one of these objects (enters one of the objects
in edit mode), only he and no other user can edit it. Ontologies, databases or
vocabularies are locked, by setting the attribute LOCKED_BY to the user id of the
user who locks the object.

73

Chapter 6: Design and Implementation

In order to make sure that a user cannot permanently lock an object, the lock is
released when a user was inactive for more than 30 minutes. Different lock-timeouts
can be defined at the user level. The "unlocking" of objects was implemented by using
a PL/SQL job, which sets all LOCKED_BY, attributes for all idle users to NULL. In
order to be able to determine how long a user was idle, each successful insert update
or delete operation of a user sets the attribute LAST_ACTIVITY in the table
ONTO_USER to the current time.
In Figure 19 the checks, which are executed each time a user tries to update, delete or
insert data in SEMEDA are displayed. First it is checked if the user is logged in, and
if he is logged in it is checked if his session has not timed out. If the session timed
out, he is redirected to the login page. These two checks were implemented by using
JSPs session tracking mechanisms (see
http://java.sun.com/products/servlet/2.3/javadoc/javax/servlet/http/HttpSession.html).
All other checks were implemented using Oracles PL/SQL either within the
procedures, which execute the modifications, or within PL/SQL triggers, which are
fired on, insert or update of data. The fact if an user account is activated is stored in
the table ONTO_USER. Thus it is possible to deny editing data by simply setting in
table ONTO_USER the attribute ACCOUNT_ACTIVATED to false. If the account
of the user is activated, it is checked if the user is in "edit mode", i.e. whether he has
locked the respective ontology, database or datatype. Thereafter it is checked if the
user who tries to update, or delete an object has an administrative account or is an
database provider who tries to update or delete data which "belongs" to himself, i.e.
data which he himself had suggested.
It is also checked if dependent objects are only suggested or already released, i.e. if
for example a concept that shall be used to semantically define a database attribute is
only suggested, thus may only be used by the owner, unless it has been released by an
administrative account. This prevents potentially faulty concepts being used. Thus it
is possible to undo changes of one user without having to deal with multiple
dependencies, which may occur when other users use faulty concepts. This step is not
displayed in Figure 19 since it is different for different objects. For example when a
new concept is added and connected by an edge, it has to be checked if the relation
type ("is a", "is part of" etc.) by which it is connected to another concept is released,
and also if the concept to which it is connected is released. When a database attribute
is semantically defined (see section 3.3.1), it has to be checked if the concept as which
it is defined has already been released, and when the vocabulary of a database
attribute is defined (see section 3.3.3) it has to be checked if the vocabulary has been
released etc.
Once an insert, update or delete operation has passed all those checks it is executed
and the respective object is suggested. Thereafter administrators can list all concepts,
relations, relations types, vocabularies etc. which have not been released via a special
interface. From the listed concepts the administrator can select and release the objects,
which are correct.

74

6.3 Multi User Support

User updates,
deletes or inserts

data

Session
timed out?

User
logged in?

TRUE

TRUE

Account
activated?

FALSE

Object
locked (edit

mode)?

User
Is Admin?

Is Owner
and DB

provider?

TRUE

TRUE

FALSE

Deny

Deny

Deny

Deny, redirect
to login page

Deny, redirect
to login page

FALSE

FALSE

TRUE

FALSE

FALSE

Update delete
or insert

TRUE TRUE

PL/SQL

JSP

Browser

Figure 19: User authentication on update, insert or delete. Besides DB Provider and
Admin accounts, System accounts exist, which have full access on everything, unless
the account is deactivated.

75

Chapter 6: Design and Implementation

In addition, further checks can relatively easily be implemented by adding appropriate
PL/SQL triggers or procedures, which are executed on insert, update or delete SQL
statements. This is useful for implementing consistency checks of the ontology: for
example a check, which prevents relations to connect concepts as loops, has been
implemented (see Table 3) procedure CK_CYCLES). This check makes sure that the
ontologies in SEMEDA are directed acyclic graphs (DAG), i.e. prevents that
situations like A "is a" B, B "is a" C and C "is a" A occur. The check is executed each
time a relation (edge) is inserted or updated.

6.4 Tool Interface
Other applications can access SEMEDAs relational backend directly via JDBC. This
does not only enable other applications to read data directly from SEMEDA backend
via SQL, but also to use the many PL/SQL procedures and functions implemented in
SEMEDA. As already mentioned, much of the application logic of SEMEDA was
implemented using PL/SQL procedures and functions.

6.4.1 Read-only Access
Read only access to SEMEDA is provided by granting read access to an Oracle
account on all database tables and attributes of SEMEDAs backend. Tables such as
the ONTO_USER table (user data of SEMEDA which contains login, passwords, user
rights etc.) or confidential database metadata such as host, port, login etc. of source
databases can be hidden. In addition, access to PL/SQL procedures/functions, which
do not modify data can be granted. Such PL/SQL procedures are for example
procedures for searching an ontology concept (see Table 3, function FIND), for
generating subtrees of ontologies in SEMEDA (Table 3,, function BROWSE), for
creating integrated BioDataServer schemata (Table 3, function
MARGBSCHEME_ALL) etc.

6.4.2 Write Access
In principle tools could be granted write access in an equivalent way as read access is
granted, i.e. by granting read, insert and update permissions to an oracle account.
Write access for external applications is neither required for the functionality of
SEMEDA, nor would it be useful for the MARGBench to get write access in
SEMEDA.
However, "good willing" tools that follow certain conventions might be granted write
access. Those conventions are:
1.) Before a tool starts editing data in SEMEDA it has to use the LOGIN procedure
and use the user ID returned by this procedure subsequently.

76

6.5 Resources and Programming Languages

2.) The tool has to LOCK (see Table 3) the database, ontology or datatype
(vocabulary) before it edits data of these objects by SQL statements or PL/SQL
procedures.
3.) In each SQL insert or update statements, the attribute EDITED_BY has to be set to
the user ID. Thus, respective database triggers can check user permissions and throw
an exception if a user does not have the permission to insert or update an entry.
4.) SQL delete statements may not be used directly. Instead of using the delete
statement, for each database table in SEMEDA a procedure
CK_D_TABLENAME(user_id, row_id) exists which does the permission checking
and consistency checking before an entry is deleted.
When an external application follows these 4 conventions, the tool permissions are
checked in the same way as user permissions are checked when a user edits data in
SEMEDA via the frontend.

6.5 Resources and Programming Languages
SEMEDA was implemented using Oracle 8i, but also runs on newer Oracle versions.
SEMEDA was recently deployed at the IPK Gatersleben on Oracle 9i without
requiring any modifications of the database or the PL/SQL code. To deploy SEMEDA
on older Oracle Versions than Oracle 8i would require substantial modifications
because features that are only available since Oracle 8i were used.
Due to the use of PL/SQL, SEMEDA cannot easily be ported to other DBMS systems.
In addition, the fact that most other relational DBMS do not provide adequate
methods for "tree processing" such as oracles "connect by prior" statement would
make it especially difficult to port SEMEDA to other relational DBMS. However,
with SQL 99 "recursive SQL" queries have been introduced, which will presumably
be suitable for "tree generation".
Resin was used to run the JSPs although in principle any other JSP engine, which
supports the JSP 1.1 standard, should be capable of running SEMEDA. Resin was
configured to run with the Apache webserver although Resin can also be deployed
standalone. A very useful feature of resin was its database connection pooling
support, which was much used. A prerequisite for running Resin is the installation of
the Java Programming language. SEMEDA has been tested using Java 1.3 and Java
1.4.

In addition, taglibs were used. In simple words, taglibs are custom defined JSP tags
similar to HTML tags. Every tag is mapped to a particular Java class file, which is
executed whenever the tag is encountered in a JSP file.

For SEMEDAs query interface (SEMEDA-query) the overlib was used for mouse
over tool tips. The overlib is a highly configurable JavaScript Library, which works
both in Netscape and Internet Explorer.

77

Chapter 6: Design and Implementation

Table 6 summarises the resources and programming languages that were used for the
implementation of SEMEDA.

Table 6: Resources and programming languages used for the implementation of
SEMEDA.

Resource URL Description
Oracle 8i http://www.oracle.com/database/

oracle8i/
Relational DBMS, includes
PL/SQL

Apache http://www.apache.org/ Webserver
Resin http://www.caucho.com/ JSP Engine
Java 2 http://java.sun.com/ Programming Language Java
Jakarta Taglibs http://jakarta.apache.org/taglibs/ Taglibs for database connection,

accessing session variables, etc
were used

JavaScript http://www.netscape.com/eng/m
ozilla/3.0/handbook/javascript/

Some functionality of the
frontend was implemented using
JavaScript.

Overlib http://www.bosrup.com/web/ove
rlib/

JavaScript Library for mouse
over tool tips

78

7.1 Client requirements

7 Using SEMEDA
In this chapter the usage of SEMEDA is described. The different usages of SEMEDA
will be described in the sequence of a user who wants to add a new database to the
system: First database metadata has to be imported from the BioDataServer (7.2).
Then the database metadata can be complemented and semantically defined using
SEMEDA-edit (7.3). To semantically define a database, it may also be necessary to
suggest new vocabularies or modifications to SEMEDAs main ontology. These
suggested modifications can subsequently be released by an administrative account
(7.4). Finally an integrated BioDataServer Schema for all databases in SEMEDA has
to be generated and submitted to the BioDataServer (7.5) before the databases can be
queried (Error! Reference source not found.).
SEMEDA can be found at http://www-bm.ipk-gatersleben.de/semeda/. A demo
account (login:semeda, password:pw) can be used to access SEMEDA in read only
mode, i.e. with this account it is possible to query databases, browse database
metadata and ontologies, but not to edit database metadata, ontologies etc.

7.1 Client requirements
SEMEDA was tested with Netscape 4.7, 6.2, IE 5.5+ and Opera 6.01. Netscape was
tested on SUN, Windows and Linux computers, but as already mentioned, the
JavaScript mouse over tool tips based on the overlib do not work for Opera.

7.2 Import Metadata from the BioDataServer.
Database Metadata can be imported using "Import Metadata from Adapters" from the
"Admin Tools" menu (Figure 20). Alternatively it is possible to enter all database
metadata manually using SEMEDA-edit (see below). The database schema
information of a database adapter (the names of the tables, the names of the attributes,
the datatypes of the attributes etc.) is imported from the BioDataServer. Only
administrative accounts can import database metadata to SEMEDA.
When a user selects this menu, SEMEDA connects to the BioDataServer, reads a list
of all adapters that are available and displays them to the user. By clicking on a
specific adapter, a user can preview the database metadata of the adapter without
importing it. Before a user executes the import by clicking the "import" button, he can
adjust several import options: Set the name of the database (the BioDataServer lists
adapter names, but adapter names sometimes differ from database names), determine
which database attributes are key attributes and which attributes are functional
dependent on the keys, and determine if attributes are one step accessible (see section
4.3). If "all attributes are one step accessible" is not selected, only the key attributes
are set to one step accessible. As a rule of the thump, only in relational databases that
can be accessed directly via JDBC, this checkbox should be set.

79

Chapter 7: Using SEMEDA

1

3

2

Figure 20: Import of Database Metadata from BioDataServer adapters: 1) list of
available BioDataServer adapters. 2) A preview of the database metadata of an
adapter can be displayed by clicking on one of the adapters. 3) Import options.

7.3 SEMEDA-edit
SEMEDA-edit can be found in the "Meta DB" menu. The frontend consists of three
frames: the left frame is used for database metadata editing and editing of
vocabularies, the middle frame is used for ontology editing and browsing and the right
frame is used context dependent on both frames. Figure 21 shows the start menu of
SEMEDA-edit where users can choose a specific database, ontology or vocabulary to
be opened, deleted or added. Since several users can co-operatively edit databases,
ontologies or vocabularies, a refresh button exists which can be used to update the
respective dropdown menus and thus display changes other users may have
incorporated meanwhile. In addition, some properties of databases, ontologies or
vocabularies can be displayed ("Properties") or edited ("Edit Prop"). By using this
option for databases, it can be specified if the database should be directly queried via
JDBC, or if a database should be accessed via the BioDataServer.

80

7.3 SEMEDA-edit

1

2

3

Figure 21: Start screen of SEMEDA-edit. When a user enters SEMEDA-edit, he can
choose if he wants do open, add or delete a specific database (1), ontology (2) or
vocabulary (3).

After a user has selected a specific database or ontology and opened it, he can browse
the database metadata or ontology. After opening the database or ontology, he can see
all database metadata/ontology concepts but not edit it. In order to edit the database
metadata or ontology, the user has to click the button "Edit Mode". This button
switches to edit mode, i.e. it displays buttons required for editing the ontology or
database metadata and locks the ontology/database metadata for other users. When a
database, ontology or datatype is locked for a user, other users cannot edit it at the
same time. Thus locking avoids conflicts which otherwise might arise from several
users editing the same objects. Figure 22 shows SEMEDA in edit mode.
Both in the ontology and the database metadata editor frames, concept, database, table
and attribute information etc. can be viewed in the right frame by clicking the
appropriate objects. These objects can be edited by selecting the appropriate radio-
button or dropdown menu option before clicking on the appropriate "add", "edit" or
"delete" button.

81

Chapter 7: Using SEMEDA

In the left frame that displays the database metadata, a dropdown list of all database
tables of the selected database is displayed. Below this dropdown list, a list of all
attributes of the database table, which is selected in the dropdown menu, is displayed.
The middle frame is used for ontology editing. The ontology editor, can be used to
add/delete/edit concepts, connect concepts, add synonyms to concepts, and to move
concepts. Connecting concepts inserts a relation between two concepts whereas
moving a concept disconnects a concept from its parent concept and connects it to the
concept to which it is moved.

1

2

3

4

5

6

7

Figure 22: Screenshot of SEMEDA in edit mode. Left: Database metadata editor,
middle: Ontology Editor. Right: context dependent frame (7). 1) Browse, edit and
semantically define database tables. 2) Browse, edit and semantically define database
attributes of the selected database table. 3) Browse and edit vocabularies. 4) Search
for an ontology concept. 5+6) Browse and edit ontologies and ontologies.

Ontologies are often large (see Table 7). Thus for a visual representation of the
ontology, only a subset of all concepts can be displayed at a time. For visual
representation of the ontology a by depth and by relation type filtered tree is used,
which is equivalent to a depth limited closure of a node over a given hierarchy. To

82

7.3 SEMEDA-edit

browse the ontology, a user has to select the radio button of an ontology concept,
choose the hierarchy (relation type) he wants to browse and choose how deep the
ontology should be expanded before he clicks the "browse" button. The hierarchical
structure of the ontology is displayed by indenting sub-concepts relative to their
parent concepts. The option to browse “inverse” enables the user to select whether he
wants to browse all super-concepts or all sub-concepts of a selected concept. The
inverse relation of “is a” relations is for example “can be a”. All proteins are organic
compounds (protein “is a” organic compound), but organic compounds are not
necessarily proteins (organic compound “can be a” protein).

Figure 23:” is a” hierarchy of the sub-concepts of "Substance" in SEMEDAs "Main
Ontology". Left: screenshot. The hierarchical structure of the ontology is displayed by
indenting sub-concepts relative to their parent concepts. In addition, the relation
typeand the inverse relation type is displayed (explanation see text). Right: equivalent
graph visualisation.

Although ontologies in SEMEDA are directed acyclic graphs (DAG), ontologies are
represented as trees in SEMEDA, i.e. concepts that have two parent concepts are
displayed under each parent concept. Figure 23 shows some concepts of SEMEDAs
“Main Ontology” and the equivalent graph representation. Since the “is a” relation is
transitive, SEMEDA can derive: (enzyme “is a” protein) and (protein “is a” organic
compound) → (enzyme “is a” organic compound). On the other hand, if a user wants

83

Chapter 7: Using SEMEDA

to find all organic compounds, all sub-concepts of "organic compound" can be
derived (in this example: protein, enzyme, DNA). This is for example useful, when a
user wants to know which databases contain attributes which can be searched for
organic compounds, since all relevant database attributes are defined as "organic
compound" or as sub-concepts of "organic compound”. A clear distinction between
browse and edit mode exists and the user always sees in which mode he is working.
"Suggested objects" are visually differentiated and the username of the owner, i.e. the
user who suggested an object is always displayed, thus a user can see if he has the
permission to modify an object. Objects, which do not "belong" to somebody specific,
can only be edited by administrative accounts. Such nodes should be 100 % correct
and not be modified. Thus a DB provider can rely on the semantics of the concepts in
SEMEDA, and he can be sure that the semantics will not change after he defined
database attributes as concepts.

7.3.1 Attribute Semantics
Database attributes can be defined using the "define" button after selecting both the
attribute and the appropriate concept in the ontology. By "defining" a database
attribute as a concept, the database provider states: "entries of this database attribute
are ‘is a’ children or instances of the selected concept". Whether the attribute contains
instances, sub-concepts or both, can be defined indirectly by defining the vocabulary
used by a database attribute (see below, section 7.3.3). A database attribute can be
defined more than once, since database attribute contents sometimes are
heterogeneous: for example the attribute "source" in the Protein Data Bank (Berman
et al. 2000) may contain tissue, species, cell line etc. information. Another example is
the table REFERENCES in the MDDB (Hofestädt et al. 1998, Hofestädt et al. 2000),
which is used to store literature reference data. Whereas separate attributes for author,
title and year of a publication exist, only one attribute ANNOTATION exists which is
used to store journal name, volume, issue and the page numbers.

7.3.2 Table Semantics
The "refine" button refines the content of a database table, i.e. makes statements about
all entries of a table. Database tables are refined in a similar way as attributes are
defined, i.e. to define a database table a user has to select the database table he wants
to define from the dropdown menu and the concept to which he wants to refine the
attribute and finally press the “refine” button. Refining a table for example to mouse
means that all data in this table is mouse data. Tables can also be refined to more than
one concept, since for example a table may contain protein data from mice.

84

7.4 Release Suggested Objects

7.3.3 Attribute Value Semantics
The vocabulary, which is used in a database attribute, is defined by selecting the
database attribute in the left frame, clicking the “edit” button. This displays a form
where several properties of the database attribute can be manually edited, among
other things the vocabulary (datatype) used can be specified by selecting the
appropriate vocabulary from a dropdown menu. In addition to the vocabulary, the
JDBC datatype of the source database can be defined. In simple words, the JDBC
datatype stores generic datatypes such as String, Integer or Boolean, whereas the
vocabulary is much more specific and stores which vocabulary is used, i.e. it defines
the values of a database attribute more precisely (Enzyme Number, Systematic
Species Name, English species name, CAS registry number etc.).
If a vocabulary does not already exist in SEMEDA, it is possible to add new
vocabularies at the bottom of the left frame. After a user suggested a new vocabulary,
he can use it to define attribute values of database attributes.

7.4 Release Suggested Objects
Modifications to the ontology and vocabularies are only suggested, i.e. the
modifications have to be released by an administrative account before other users can
edit these objects. Suggested objects can be released by selecting "Release suggested
objects" from the "Admin Tools" menu (see Figure 24). This displays a dropdown list
from which the user can select the ontology for which he wants to release objects.
Subsequently the user can choose if he wants to release Concepts, Edges (relations),
E-Types (relation types), Attribute Definitions, Table Definitions or Vocabularies. By
clicking the respective option, all suggested objects of one of these categories are
displayed. By using checkboxes, the user can select which objects he wants to release
and finally release the objects by clicking the “release” button.

85

Chapter 7: Using SEMEDA

1 2

Figure 24: User interface where administrative accounts can release suggested
modifications. 1) Select ontology of which suggested concepts, edges (relations),
attribute definitions etc. are to be listed. 2) Select the objects to be released.

7.5 Submit BioDataServer Schemata
Before SEMEDA can use the BioDataServer to query heterogeneous data sources by
SQL, an integrated database schema has to be created and submitted to the
BioDataServer. This can be achieved by selecting "Create MARGBench schemata"
from the "Admin Tools" menu (see Figure 25). Users can choose to either create one
big integrated database schema for all attributes, or to create a BioDataServer schema
for a specific database. When the user clicks the "submit" button, SEMEDA connects
to the BioDataServer and transfers the integrated schema to the BioDataServer. Only
administrative accounts can submit integrated BioDataServer schemata.

86

7.6 SEMEDA-query

1 2

Figure 25: Interface for creating and submitting integrated BioDataServer schemata.
1) Select whether to create one big integrated schema for all databases or only for a
specific database. 2) The generated integrated schema is displayed in an HTML
formfield where it can be manually edited before it is submitted to the BioDataServer.

Creating a database schema for a specific database is not useful for SEMEDA. It was
implemented since it might be useful for applications of the MARGBench project. In
the MARGBench project a schema editor for building and editing integrated
schematas was developed. In this schema editor a user has to enter the whole schema
manually. Therefore this option of SEMEDA might be useful to generate a template
schema for a specific database, which can be copied and pasted to the MARGBench
schema editor, where it can subsequently be adjusted.

7.6 SEMEDA-query
SEMEDAs database query interface makes use of the semantic database definitions of
the previous sections.
The most useful features of semantic database integration as introduced in chapter 3
are the semantic attribute definitions and the semantic cross-references (which in turn
are based on semantic attribute and attribute value definitions). In addition, by storing

87

Chapter 7: Using SEMEDA

database metadata (database names, table names attributes and their datatypes, etc.), a
source database specific form based query interface supports user queries. In addition,
BioDataServer specific information such as whether or not a database attribute is one
step accessible, enables to discriminate between attributes which can be searched
within a response time which is acceptable for human interaction. It is also
differentiated between databases that can be directly accessed via JDBC, and data
sources that are accessed via the BioDataServer. Databases that can be directly
accessed via the JDBC, can be searched using SQL 92 pattern matching.
The query interface (see Figure 26 and Figure 27) was implemented to illustrate the
potential of semantic database integration based on these main principles.
SEMEDA-query can be found in the "Query DBs" menu. When a user selects this
menu option, a list of concepts is displayed. Behind each concept, a set of colored
icons is displayed. Each icon represents one database table, which has an attribute for
the concept. These icons are based on semantic attribute definitions (see 3.3.1).
Database tables in which this attribute can only retrieved in the result set, but which
cannot be searched are represented by a green icon. Otherwise the table is represented
by a red icon. This colour code is based on the fact whether or not an attribute is one
step accessible. A mouse over ToolTip displays the names of the database, database
table and attribute. After clicking one of the icons, an appropriate query form for the
respective database table can be used to query the database.
The query form displays all database attributes of the database table and the user can
select the database attributes to be included in the result. The database attributes
which are semantically defined (see 3.3.1) are labelled using concept names rather
than the often misleading attribute names of the source databases. Mouse over
ToolTips of the attribute labels display further information about a database attribute,
such as its datatype (=attribute value definition, see 3.3.3), a description of the
datatype, an example entry of the attribute and also the attribute name used in the
source database. A text informs the user when a database can be searched using SQL
92 patterns matching, which is the case for databases, which can directly be accessed
via JDBC. In addition, when semantic table definitions (see 3.3.2) exist for a database
table, these are displayed. Semantic table definitions indicate if the table contains only
data of a certain group, e.g. for example only data for a certain species or a certain
compound class.

88

7.6 SEMEDA-query

1

2 3

Figure 26: SEMEDAs database query interface. 1) All concepts for which database
attributes exist are listed. Each of the round icons represents a database table, which
contains attributes for the concept. 2) After clicking one of the icons, an appropriate
query form for the respective database can be used to query the database. 3) Result
set. Round icons can be used to cross-reference to other relevant databases (see next
Figure).

89

Chapter 7: Using SEMEDA

4

5 6

Figure 27: SEMEDAs database query interface (continued, see previous figure). 4)
After clicking one of the cross-reference icons (see previous figure), the user can link
to other relevant database tables. 5) These can again be searched using an
appropriate form, and from the result set (6) the user can link again to other
appropriate databases.

90

7.6 SEMEDA-query

After the user entered the search terms and submitted the query form, the source
database is queried and the result set is displayed. Along with the result, round icons
provide cross-references (see 3.3.4) to other relevant databases. If for example, a
result set contains an Enzyme Number, the user can click the icon to get a list of other
database tables that can also be searched using this Enzyme Number. Thus the user
can search for further information in other databases just by linking to them. By
clicking one of these icons, a query form for the selected database table is displayed
with the Enzyme Number field filled out which was used for cross-referencing. Now
the user can further refine the query before he submits the form and gets the results
for this second database table. From these results, the user can again link to other
databases etc.
Thus the user can browse across several source databases without having to know the
databases. However, the system is transparent in a way that it always displays from
which database the data was retrieved. This is important, since most users would not
trust a system, which retrieves data without reporting where the data was retrieved
from.
The main limitation of SEMEDA-query is the low speed of the BioDataServer.
Therefore, in a scenario where more than a few users use SEMEDA, the performance
of the BioDataServer would have to be improved. One way how this could be
achieved is discussed in the "database mirror" section of the discussion (see 11.2.1).

91

8.1 Criteria

8 Evaluation of Existing Ontologies
In the previous chapter, SEMEDAs user interface was described. In order to use
SEMEDA in the described way, an appropriate ontology is needed. Therefore, several
ontologies were evaluated for their usability in SEMEDA. The intention was to find
out if a suitable ontology can be found and imported or whether it is more appropriate
to build a custom ontology for SEMEDA.
Since generating large ontologies is a labour intensive time-consuming task (Schulze-
Kremer 1997b), it would be preferable to use an existing ontology. In order to keep
the ontologies up to date, it should be possible to re-import ontologies when they have
been updated in the source ontology. It is important to realise that although SEMEDA
can handle several ontologies, all databases should be semantically defined by using
the same ontology.
In this chapter, the specific requirements to ontologies for SEMEDAs database
integration approach are derived. Subsequently ontologies which might be appropriate
for semantic database integration are evaluated, then the ontologies are matched
versus SEMEDAs requirements and it is finally discussed how and if ontologies can
be merged and supplemented to meet SEMEDAs requirements, or whether it is more
appropriate to build a custom ontology for SEMEDA.

8.1 Criteria
Subsequently, criteria to ontologies and "knowledge sources" for SEMEDA are listed.
General requirements for molecular biological ontologies are given in (Schulze-
Kremer 1997b, Rector et al. 1998, Schulze-Kremer 1998), although requirements for
ontologies to be used in SEMEDA are more specific:

1. IDs: unique id of concepts or unique label of ontology concepts.
2. Stability of concepts: Whereas the text of concept definitions and the name (label)

of concepts may change the semantic of a concept should remain the same. This,
and the "unique id" criteria are important for "re-importing" ontologies and
referencing ontology concepts.

3. Valid “is a” hierarchy: the “is a” hierarchy is important, for "intelligent" database
queries; hence the transitive closure of the “is a” hierarchy has to be
mathematically sound.

4. Size: The ontologies may be small as long as they cover the database attributes to
be integrated. Small ontologies are easier to survey, but a high number of
synonyms would be very useful, since it would enable the users to use their own
terminology.

93

Chapter 8: Evaluation of Existing Ontologies

5. Availability: The ontology has to be available, free of charge is a plus but not a
prerequisite.

6. Wide use: wide acceptance and use is not essential, but makes sure that the
potential users are familiar with the terminology/structure of the imported
ontology.

7. Maintenance: the ontology should still be maintained and updated and it should be
possible to suggest new concepts. Although it is possible to add new concepts
within SEMEDA, it would be helpful if the newly needed concepts could also
become part of the public domain/source ontology.

8. Precise definition of concepts.

In addition, the ontologies to be imported have to cover the field of research of
molecular biological databases. Since SEMEDA maps database attributes, not
database entries, the ontologies generally do not have to be very deep. In order to get
an overview of the terminology needed in SEMEDA, the most common attributes
from some molecular biological databases were compiled. The SRS implementation
of the European Bioinformatics Institute gives a good overview of molecular
biological databases (http://srs.ebi.ac.uk/srs6bin/cgi-bin/wgetz?-page+databanks+-
newId). From each database category (group) the attributes of the databases, which
have the highest number of entries, were checked. In addition, databases which are
already connected to the MARGBench were investigated: Brenda, RegulonDB
(Salgado et al. 2001), TRANSFAC/TRANSPATH (Wingender et al. 2000,
Schacherer et al. 2001) and MDDB (Hofestädt et al. 1998, Hofestädt et al. 2000).
The aim was to get a broad overview of the knowledge domain needed for database
integration. Therefore the database attributes were not exactly matched nor are all
attributes of the selected databases listed.
Common database attributes are: Molecule, Enzyme, Organelle, Gene, Transcription
Factor, Transcription Binding Sites, Chromosome, Author, Title, Journal, Abstract,
MedlineID, Reference, Comment, Specie, Organism, Tissue, Organ, Reaction,
Compound, Age, Date, Sequence, Sequence length, Protein Chain, Evidence, EC-
Number, Link, Sequence Type, Cell Lines, NMR Experimental Data, Atomic
coordinates, Crystallographic Protein Coordinate Information, Protein Residues,
Codon Change, Codon Change Position, Substrate, Product, Cytogenetic Location,
Phenotype, Mutation, Mutation Type, Amino Acid Changes, Pathology, Therapy,
Clotting Activity, Validated, Allele, Reaction Equation, Reaction Direction, Specific
Activity, Purification Steps, Storage Conditions, Temperature, Coenzyme, Optimal
PH, Michaelis Constant, Molecular Mass, Restriction Enzyme, Restriction Position,
Vendor, Accession Number, Reference.

94

8.2 Evaluation

8.2 Evaluation
In Table 7 some ontologies, controlled vocabularies and other structured knowledge
sources are listed and evaluated against the above-mentioned criteria and terms. The
criterion "good definition of concepts" is more or less subjective and therefor not
discussed in the table.
Some other ontologies which are listed and evaluated in (Schulze-Kremer 1998) or
(Noy and Hafner 1997) were not further investigated because they obviously did not
cover the knowledge domain of molecular biology.

Table 7: Evaluation of ontologies and knowledge sourcae for semantic database
integration.

Ontology Evaluation
MBO URL: http://igd.molgen.mpg.de/~www/oe/mbo.html

Info: Uses IDs, fairly stable, transitive “is a”, size: 1272 concepts
available for free, rarely used, is maintained.
Comment: Covers fundamental molecular biological concepts and
some general terms and concepts.

"upper" CYC URL: http://www.cyc.com/cyc-2-1/toc.html
Info: Uses IDs, fairly stable, transitive “is a”, size: 3000 concepts,
available for free, sometimes used, but not as much as WordNet, is
maintained.
Comment: The "upper CYC" ontology is a general "top-level
ontology", commercial extensions to the upper CYC ontology are
available.

WordNet 1.7.1
(Fellbaum
1998)

URL: http://www.cogsci.princeton.edu/~wn/
Info: Uses IDs, fairly stable, fairly transitive “is a”, size: 66025
concepts (noun synsets), available for free, widely used, is
maintained. Covers most common English words.
Comment: Fundamental molecular biological concepts are also
covered. Specific molecular biological concepts are not covered.
Word, id, and lex_file_num together identify concepts. "Semantic
Concordance Package" can be used to trace updates between
WordNet versions, but its complicated proprietary structure and
flatfile format make imports and updates tedious.

95

http://www.cogsci.princeton.edu/~wn/

Chapter 8: Evaluation of Existing Ontologies

Ontology Evaluation
EcoCyc/
MetaCyc(Karp
et al. 2000,
Maranas and
Burgard 2001)

URL: http://ecocyc.pangeasystems.com
Info: IDs: uses IDs from the sources where it was compiled from
(for example EC Numbers), fairly stable, fairly transitive “is a”,
available free for academic use, mainly used within the CYC
system, is maintained.
Comment: small but "deep". All entries are sub-concepts of
Metabolic Pathways, Signaling Pathways, Reactions, Enzymes,
Genes, tRNAs, Compounds or Citations. Data is Escherichia coli
centric.

GO (Ashburner
et al. 2000)

URL: http://www.geneontology.org
Info: Uses IDs, fairly stable, non-transitive “is a”, size: about
11000 concepts, 14000 relations (June 2002) available for free,
widely used in genome databases, is maintained. Covers
exclusively genetic and closely related terminology.
Comment: The Gene Ontology actually consists of three
ontologies where some concepts are defined in more than one of
the ontologies, but have different IDs in each ontology. The "is a"
hierarchy is not a formal “is a” hierarchy.

UMLS

URL: http://www.nlm.nih.gov/research/umls/umlsmain.html
Info: Uses IDs, fairly stable, non-transitive “is a”, size: about:
800 000 concepts, available for free, widely used, is maintained.
Comment: The Unified Medical Language System maps the
terminology of 60 different biomedical source vocabularies.

MeSH URL:http://www.nlm.nih.gov/mesh
Comment: The Medical Subjects Headings are a subset of
UMLS.

MmCIF,
(Westbrook and
Bourne 2000)

URL: http://ndbserver.rutgers.edu/mmcif/
Info: Uses IDs, fairly stable, non-transitive “is a”, available for
free, widely used in protein-databases and protein structure related
sciences, is maintained.
Comment: The Macromolecular Crystallographic Information
File is a very specific large detailed ontology of crystallographic
information, closely integrated to the Protein Data Bank (Berman
et al. 2000)

96

http://ecocyc.pangeasystems.com/
http://www.geneontology.org/
http://www.nlm.nih.gov/research/umls/umlsmain.html
http://www.nlm.nih.gov/mesh
http://ndbserver.rutgers.edu/mmcif/

8.2 Evaluation

Ontology Evaluation
Controlled
Anatomical
Vocabulary

URL: http://www.cbil.upenn.edu/anatomy.php3
Info: Uses IDs, fairly stable, mixed “is a”/”is part” hierarchy, size:
about 500 concepts, available for free, concepts compiled from
several sources, is maintained.
Comment: Concept Definitions have to be looked up in the
appropriate sources from which the controlled vocabulary has
been compiled.

LinkBase
(Ceusters 2001)

URL: www.landc.be
Info: Uses IDs, fairly stable, transitive “is a”, size: 950.000
concepts, commercially available, used in L&C products and
custom tailored systems, is maintained.
Comment: Biomedical terminology as well as basic general
concepts are covered. In addition to the "is a" hierarchy, LinkBase
implements several other relation types in a strictly formal way
and 2.100.000 instantiated relations exist. In addition, 300.000
cross references to foreign systems exist.

GALEN
Common
Reference
Model (CRM)
(Rector and
Nowlan 1994)

URL: www.opengalen.org
Info: Uses IDs, fairly stable, transitive “is a”, size: about 1200
concepts, available for free (GALEN Open Source License),
widely used, is maintained.
Comment: Extensible Core Model of Biomedical Terminology.
Many instantiated relations exist. The core model is a tree and not
a directed acyclic graph, i.e. multiple inheritance is not used.

SNOMED

URL: www.snomed.org
Info: Uses IDs, fairly stable, information on transitive “is a” was
not available, size: about 200 000 concepts, commercially
available, widely used, is maintained.
Comment: Biomedical Terminology.

Taxonomy
(Benson et al.
2000)

URL:http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.ht
ml
Info: Uses IDs, fairly stable, phylogenetic trees can be seen as
excellent transitive “is a” trees, size: huge, most relevant species to
molecular biology are covered, available for free is maintained
Comment: Changes are documented from update to update. Is
part of NCBI and thus closely integrated and referenced to and
from other applications.

97

http://www.cbil.upenn.edu/anatomy.php3
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html
http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html

Chapter 8: Evaluation of Existing Ontologies

Ontology Evaluation
Tree of Life URL:http://phylogeny.arizona.edu/tree/phylogeny.html

Info: IDs: Phylogenetic groups seem to be mapped as a file
structure, thus no ids exist, fairly stable, phylogenetic trees can be
seen as excellent transitive “is a” trees, size: huge, unclear license
restrictions
Comment: Taxonomic multiauthored phylogenetic tree. Uses also
a picture for phylogenetic groups and implements a review process
and much useful information. The information seems to be stored
as plain html files, which would make importing the phylogeny
labour intensive. Larger than necessary for the purpose of
semantic database integration.

8.3 Conclusion
Of the aforementioned criteria, formal transitive “is a” hierarchies and coverage of
database knowledge domains are the most important criteria for "intelligent" ontology
based database queries. Therefore, non-commercial ontologies, which might be suited
for our purposes, are the Molecular Biological Ontology (MBO), WordNet and
GALENs Common Reference Model. Commercial systems are LinkBase and
SNOMED. The size and the fact that LinkBase covers many other relation types in a
formal way, makes it especially interesting. However, for SNOMED information
concerning the transitivity of the “is a” hierarchy was not available, neither from the
documentation nor on request. None of the ontologies, which are listed in Table 7,
covers all relevant database concepts and thus would have to be supplemented either
manually or by merging ontologies (Uschold et al. 1998), although merging
ontologies is a nontrivial task (Russ et al. 1999). In ontologies, which consist mainly
of an “is a” hierarchy, merging specialised ontologies by substituting whole “is a”
branches is possible. For example NCBIs Taxonomy could be merged into Wordnet
although this would have to be done with some care: for example substituting
WordNets "organism" hierarchy with NCBIs Taxonomy would also erase Author,
since "Author ‘is a’ Human and Human ‘is a’ ... ‘is a’ organism". Since parts of non-
formal ontologies such as GO are often correct “is a” hierarchies, merging parts of
such hierarchies into a top-level ontology would also be possible. A labour intensive
approach for using ontologies with valuable concepts (UMLS, GO, MmCIF) but non-
formal “is a” hierarchies would be to introduce a formal “is a” hierarchy.
Even though it is possible to transfer any of the mentioned ontologies to formal
ontologies, the time needed would be a matter of many days (MmCIF) or several
"man-years" (UMLS). In ontologies, which were generated by merging ontologies,
keeping track of updates and re-importing the updated source ontologies would be
cumbersome.

98

http://phylogeny.arizona.edu/tree/phylogeny.html

8.3 Conclusion

Therefore two realistic options existed: either to build a small custom ontology or to
import one of the ontologies, which has a formal “is a” hierarchy. For importing, non-
commercial candidates are GALENs CRM, MBO and WordNet. The commercial
LinkBase might be best suited due to its formal modelling of the “is a” hierarchy and
since due to its size it covers the knowledge domain best.
However, it was decided to try to build a small custom ontology for SEMEDA first. If
it would have turned out that this approach does not lead to good results, or is too
time-consuming, one of the aforementioned ontologies would have had to be used.
In addition the Gene Ontology was imported anyway, to demonstrate SEMEDAs
potential to edit big ontologies collaboratively. The Gene Ontology was chosen,
because it is widely used and accepted for molecular biological applications.

99

9.1 General Ontology Design Principles

9 Ontology Design
SEMEDAs semantic database definitions are based on one central ontology. At the
end of the previous chapter it was decided to try to build a custom ontology rather
than to import an existing ontology. In this chapter, it is described how general
ontology design principles were used to build SEMEDAs main ontology.
Subsequently the structure of SEMEDAs main ontology is described, and how it was
derived based on the implicit semantics of relational database tables.

9.1 General Ontology Design Principles
Before one builds an ontology, one has to decide what kind of ontology is required,
and how the ontology should be build.
Domain ontologies describe a particular small model of the world, which is relevant
for a specific application. In contrast, top-level ontologies contain generally
applicable concepts and relations, which are likely to be used in different applications.
Sometimes, top-level ontologies are used as a base ontology, which is extended by
adding application specific concepts. It was decided to build a small domain ontology
for SEMEDA. This is not only less work, but also such an application specific
ontology is easier to survey. In addition, since an ontology, which contains only the
concepts required for SEMEDA, is smaller such an ontology can be searched faster,
i.e. common queries such as finding all sub-concepts of a concept perform faster.
It further had to be decided whether an ontology should be manually build or
automatically from text sources. Several publications deal with automatic ontology
building and information extraction from free text (Craven et al. 1998, Ceusters et al.
1999, Sanderson and Croft 1999, Khan and McLeod 2000, Maedche and Staab 2000,
Nobécourt 2000, Hahn et al. 2002). The basic idea is, to parse in a first step
ontological concepts from texts. In a second step relations between concepts are
generated by parsing texts for sentences in which any two concepts occur. By
analysing such sentences, the type of the relation between the two concepts is
determined ("is a", "is part", "synonym" etc.). This is a very simplistic description of
the process of automatic ontology construction. The actual techniques involved are
nontrivial and based on Natural Language Processing, although in some more or less
formalised texts, for example the Enzyme Nomenclature, patents and laws,
hierarchies which can be adopted as “is a” hierarchies already exist. Interestingly,
whereas several "hand made" ontologies were found (Table 7), not a single
automatically build ontology could be found. Although it does not seem completely
unfeasible to automatically construct ontologies from texts, it is unlikely that by using
nowadays techniques an ontology could be automatically build which would meet
SEMEDAs requirements.
Also one has to decide whether an ontology should be built top-down or bottom-up.
Top-down ontologies are started with the concepts which stand at the top of the "is a"

101

Chapter 9: Ontology Design

hierarchy. Manually constructed ontologies are mostly built top down. In
automatically generated ontologies, concepts or relations are added whenever a
relevant concept or relation is found. Thus bottom up ontology building is more
appropriate for an automated approach. Nothing the less, it was decided to build
SEMEDAs ontology more or less bottom up, i.e. to add concepts whenever a new
database attribute has to be semantically defined. Manual bottom up building of
ontologies is not completely uncommon (van der Vet and Mars 1995, 1998).
Several techniques and conventions for ontology design exist (Gruber 1993a,
Schulze-Kremer 1997a, Blázquez et al. 1998, Ceusters 2001, Noy and McGuinness
2001, Hovy 2002, Schulze-Kremer 2002). Subsequently, the most important ontology
design principles and how they were used in SEMEDA are given.

Multiple Inheritance

Multiple inheritance should be used whenever it is applicable (see Figure 28).
By using multiple inheritance, the ontology becomes less arbitrary and needs
fewer concepts to represent the same facts. Using multiple inheritance, often
also eliminates the need to invent long unnatural concept names. The
downside of it is that the ontology cannot directly be used as a decision tree as
suggested by (Schulze-Kremer 2002), although a decision tree could
automatically be generated from an ontology, which uses multiple inheritance.

Coherence (valid transitive "is a" hierarchy)

After (Gruber 1993a): “An ontology should be coherent: that is, it should
sanction inferences that are consistent with the definitions. At the least, the
defining axioms should be logically consistent. Coherence should also apply to
the concepts that are defined informally, such as those described in natural
language documentation and examples. If a sentence that can be inferred from
the axioms contradicts a definition or example given informally, then the
ontology is incoherent.”

As already mentioned, a valid "is a" hierarchy is important for the
functionality of SEMEDA so that SEMEDA can make transitive inferences
such as:

If B "is a" A and C "is a" B, then C "is a" A
 This seems to be trivial, but mistakes can easily be made:

EC_NR "is a" Enzyme, Enzyme "is a" Protein -> EC_NR "is a"
Protein

Which is an example for how a wrong “is a” relation results in faulty
inference, i.e. correctly EC_NR should be a sub-concept of identifier and not
of enzyme.

102

9.1 General Ontology Design Principles

Avoiding cycles in the "is a" hierarchy

A hierarchy has a cycle when a concept A has a sub-concept B and at the same
time B is a super-concept of A. Such cycles are automatically caught in
SEMEDA, i.e. an error is thrown when a user tries to generate a cycle.

compound

inorganic compound organic compound

catalytic inorganic
compound

non-catalytic
inorganic compound

catalytic organic
compound

non-catalytic
organic compound

compound

catalyst non-catalyst

catalytic inorganic
compound

catalytic organic
compound

non-catalytic inorganic
compound

non-catalytic
organic compound

Enzyme

Enzyme

compound

inorganic compound organic compound catalyst non-catalyst

Enzyme

A

B

C

Figure 28: Multiple inheritance versus single inheritance. By not using multiple
inheritance, the structure of the ontology becomes arbitrary, and depends on which
concepts are placed higher in the ”is a” hierarchy (A versus B). When multiple
inheritance is used (C), this problem does not occur. In addition, by using multiple
inheritance, the ontology still represents the same facts but needs fewer concepts.

103

Chapter 9: Ontology Design

Complete Connectivity

All concepts should be part of the "is a" hierarchy. Although it is possible to
introduce any new relation types to SEMEDA, SEMEDAs database query
interface makes exclusively use of the "is a" hierarchy. By requiring that all
concepts be interconnected, it is avoided that SEMEDAs ontology falls apart.

Branching level

To improve human readability of an ontology, each concept should not have
too many sub-concepts in the next level, but also not too few. (Noy and
McGuinness 2001) states: "If a class has only one direct subclass there may be
a modeling problem or the ontology is not complete. If there are more than a
dozen subclasses for a given class then additional intermediate categories may
be necessary."

Concept names

Concept names should be self-explanatory, so that a user can identify the
concept by its name without having to know its sub-concepts or super-
concepts. For example, “organic compound” which is a sub-concept of
“compound” should not just be named “organic” (see Figure 28). An exception
are names of things: whereas a concept “enzyme identifier” might exist, a
concept should not be labelled “enzyme name” but just “enzyme”.

Renaming Concepts

Ontology concepts may be modified even after database attributes have been
defined as the concept. This is possible since SEMEDA internally identifies
concepts by an identifier and not by their name. This is useful when a better
name for a concept is found, to correct spelling mistakes or to improve concept
definitions. However, when a concept is edited, the semantics of a concept
should not change, i.e. "EC number" may be changed to "enzyme number"
since it is just a different word for the same thing, but it may not be changed to
"enzyme" which is an entirely different concept.

Concept Definitions

All concepts should have a natural language definition. In addition, when
possible a linkout to an online dictionary or another external definition should
be provided.
Often "implicit knowledge" is associated with the term of a concept. For
example the definition of the term "Gene" is defined in the glossary of (Lewin
2000) as:

104

9.2 Implicit Database Table Semantics

"Gene: (cistron) is the segment of DNA involved in producing a polypeptide
chain; it includes regions preceding and following the coding region (leader
and trailer) as well as intervening sequences (introns) between individual
coding segments (exons)"
Although it is not explicitly stated in this definition, the fact that genes usually
carry heredity information is generally implicitly associated with the concept.
When ontologies are built, implicit knowledge plays a major role, since it is
generally not feasible to provide all information about each concept in the
definitions.

Capitalization

It is sometimes suggested that concept names be capitalised to improve
readability (Noy and McGuinness 2001). Since this differs from written
English and from most thesauri, SEMEDAs concept names were not generally
capitalised, but only when the word would also have been capitalised in
written English. This is practically the same approach, which is recommended
by (Schulze-Kremer 2002).

Delimiters

Many concept names consist of more than one word, for example "organic
compound" or "nucleic acid". Therefore ontology editors that cannot handle
space characters use underscores or run the words together while capitalising
each word (OrganicCompound). Using space characters is the most natural
way of representing concept names. Since SEMEDA supports space
characters, there was no reason not to use them.

Singular or Plural

For concept names always the singular is used.

British English

British English spelling was used. Although this is merely syntactic, by always
using the same spelling, the user does not have to search for the same concept
twice by using different spellings.

9.2 Implicit Database Table Semantics
Whereas in some cases the name of database attributes is not self-explanatory, the
way in which attributes within one table relate to each other is usually obvious, once
the semantics of the attributes is understood (see Table 8). This is due to the fact, that
database tables usually have been designed carefully by humans. Such implicit table
semantics work in most cases well, but is not very useful in highly decomposed
database schemata such as of the EMP database (Selkov et al. 1996). EMP basically

105

Chapter 9: Ontology Design

uses for each attribute a separate database table, although this database design is
unique and would for any other purpose than that of the EMP project be considered to
be bad database design.

Table 8: Attributes of the table GENE from RegulonDB (Salgado et al. 2001).
Whereas for some attributes it is obvious from the table names what kind of data they
contain (GENE_ID, GENE_NAME, GENE_SEQUENCE), for other attributes a
concept name or a description is helpful (B_NUMBER, GENE_STRAND). However,
it is usually clear how the attributes relate to each other, i.e. it is obvious that
GENE_POSLEFT is a property of GENE which has the two identifiers GENE_ID and
B_NUMBER.

Attribute Name Adequate Concept
Name

Description

GENE_ID gene identifier The identifier of the gene in
RegulonDB (ID).

B_NUMBER
gene identifier ID assigned to each gene.

GENE_NAME gene The name of the gene.
GENE_POSLEFT gene position left The left absolute position in the

genome of the gene.
GENE_POSRIGHT gene position right The right absolute position in the

genome of the gene.
GENE_STRAND transcription direction The direction of the transcription

in relation to the orientation of the
chromosome, forward means
coding strand and reverse lagging
strand.

GENE_SEQUENCE DNA sequence The gene sequence.
GENE_NOTES gene description Any comments about the gene

In general, database attributes store names, identifiers, properties or free text
descriptions of real world objects. Names and identifiers serve to identify the real
world objects, whereas the properties and descriptions store facts about those objects.
Therefore “name”, “identifier”, “description” and “property” are used as top-level
concepts, which were direct sub-concepts of the root concept from SEMEDAs main
ontology (see below).
These characteristics could have been formalised by also using relation types "is
identifier for", "is property of" and "is description of" which would connect sub-
concepts of "identifier", "description" and "property" with sub-concepts of "name".
Since SEMEDAs query interface does not use any other relation types but "is a",
introducing such relation types creates only unnecessary overhead. In addition, during

106

9.3 SEMEDAs "Main Ontology"

the work on SEMEDA, the experience was made that most people understand the data
structure of an ontology, which uses only an "is a" hierarchy reasonably easy, but the
existence of other relation types was often a source for confusion. Also in the GALEN
project (Rector et al. 1998) it was learned that the data structure of ontologies could
not be understood by most medical doctors.
Finally, by not relying on any other hierarchy than the "is a" hierarchy (class
hierarchy, see section 3.2), compatibility with other ontologies and ontology editors is
facilitated.

9.3 SEMEDAs "Main Ontology"
The top-level concepts of SEMEDAs main ontology are “name”, “identifier”,
“description” and “property” and “literature reference data” (see Table 9).
Not all concepts, which are potentially useful for database integration, were created in
SEMEDA, i.e. concepts were only added when they were needed to semantically
define a specific database. Thus, at present SEMEDAs main ontology is small and
easy to survey.
In addition to the “name”, “identifier”, “description” and “property” top-level
concepts, the concept “literature reference data” was also used as a sub-concept of the
root concept (see Table 9). At first the concepts, which are now below “literature
reference data”, were sub-concepts of the other four top-level concepts. However,
when a database table that contained literature data had to be defined, some concepts
were found below name (journal), others below properties (page number) etc. Putting
all “literature reference data” below one single top-level concept was possible, since
for those data the semantic cross-references (see 3.3.4) could be generated without
using the “is a” hierarchy, i.e. neither the sub-concepts nor the super-concepts of
literature reference data could be used to generate semantic cross-references.
In SEMEDAs main ontology, the concepts "compound" and "substance" are
considered to be synonyms, since most people do not properly differentiate those
terms. The definition and usage of "substance" and "compound" varies even between
chemistry textbooks. Since databases usually also do not discrimination these
concepts, it was decided to use them as synonyms. Thus, this subtle impreciseness
avoids inconsistent definitions of database attributes.
Whereas most databases use specific identifiers (such as for organisms, enzymes,
diseases etc.), in few cases unspecific identifiers are used. For example the EMP
database (Selkov et al. 1996) uses for each table an attribute COL_ID. COL_ID is
used in a way that all entries that have the same COL_ID belong to the same entry.
Since EMP entries can be completely different biological objects, such as diseases,
enzyme numbers, metabolic pathways etc., a concept "unspecific identifier" is used as
a sub-concept of "identifier".

107

Chapter 9: Ontology Design

Table 9: SEMEDAs five top-level concepts that are directly linked below the root
concept, and some of their sub-concepts.

description
 enzyme description
 prognosis description
 therapy description
 …
name
 body part
 gene
 organism
 …
literature reference data
 issue (publication)
 author
 title
 …
property
 unit
 locus (gene)
 sequence
 …
identifier
 metabolic pathway identifier
 disease identifier
 unspecific identifier
 …

108

9.4 Semantic Definition of Databases

9.4 Semantic Definition of Databases
By using SEMEDAs main ontology to semantically define database attributes, two
problems are frequently met. Those problems, and how they can be overcome is
described subsequently.
Semantically defining all database attributes of all tables of a database can be time-
consuming, since often new concepts have to be added to SEMEDA. Therefore,
SEMEDA was implemented in a way, that all database attributes of a database table
for which at least one attribute is semantically defined can be searched. Thus, to make
a database table accessible via SEMEDA, only one database attribute has to be
semantically defined. Such, database attributes which are not semantically defined can
only be addressed by their original name, and cannot be used to link to other
databases by using semantic cross-references. Thus it is possible to make a databases
accessible via SEMEDA by just a few mouse clicks, i.e. by semantically defining only
their most common attributes such as EC numbers (NC-IUBMB 1992), CAS numbers
(Buntrock 2001), OMIMs mim numbers (Hamosh et al. 2002) etc.
Another common situation is that some database attributes contain data of more than
one concept. For example in the Metabolic Disease Database (Hofestädt et al. 1998,
Freier et al. 2000.), in the database table REFERENCES the attribute ANNOTATION
stores the journal, issue, volume and page number of publications. Such database
attributes should be semantically defined as all relevant ontology concepts.

9.5 Custom Ontology versus Import
Thus it turned out, that building and using a custom ontology for SEMEDA worked
well. By building a custom ontology, the structure and concepts of the ontology could
be build to suit the requirements of SEMEDA much better than any of the existing
ontologies. Although the SEMEDAs main ontology was kept as small as possible, and
the structure of SEMEDA was kept as simple as possible by exclusively using the "is
a" hierarchy, SEMEDAs main ontology differs from existing ontologies. Thus, the
experiences made are similar like (Russ et al. 1999), who concludes that "it is difficult
to simultaneously obtain high usability (i.e., adequacy for a specific use) and
reusability (i.e., adequacy for several uses)".

109

10.1 Modelling Integrated BioDataServer Schemata

10 Practical Applications of SEMEDA
In this chapter, the practical use of SEMEDA is described by two examples. The first
section of this chapter shows how SEMEDA supports the building of user schemata
for the BioDataServer. The second section describes how the clone database of the
RZPD Berlin (Deutsches Ressourcenzentrum für Genomforschung GmbH) is
connected to SEMEDA and thus linked to the other databases.

10.1 Modelling Integrated BioDataServer Schemata
Within the MARGBench project, the BioDataServer was developed as a mediator
based solution for the integrated retrieval of molecular biological data (see also
section 4.3). Since the BioDataServer is designed as a mediator, no single global
integrated data schema exists, but a collection of user specific global views called user
schemata. For building user schemata, the ‘BDSSchemeEditor’ has been developed
within the MARGBench project. Besides editing user schemata, the
BDSSchemeEditor supports loading and sending user schemata to/from the
BioDataServer. In addition it checks the syntactical correctness of user schemata and
supports schema editing by syntax highlighting and tree-view navigation elements.
User schemata are modelled according to user needs. Therefore, modelling user
schemata requires the identification of an appropriate subset of all database tables and
attributes from the mediated databases. At present (November 2002) more than 1000
database tables with a total of more than 3000 attributes are accessible via the
BioDataServer. Therefore, identifying database attributes appropriate for a specific
user schema is often difficult.
This task is supported by SEMEDA. To identify relevant database attributes,
SEMEDAs semantic database definitions are used and displayed (see Figure 22). To
do so, the appropriate ontology concept is selected, in order to display a list of all
databases that contain relevant data. If for example database tables are required that
contain enzyme data, the ontology concepts ‘enzyme’ and ‘enzyme identifier’ can be
selected in order to display a list of tables that can be searched using enzyme names or
EC Numbers.
Besides identifying appropriate database tables and attributes, SEMEDA is used to
automatically generate user schemata (see also section 7.5). The syntax for user
schemata is quite complex. This is due to the intricacy of the mechanisms for user
schema based multi-database views (Freier et al. 2002b). Therefore SEMEDAs
automatically generated schemata can be used to serve as templates, which are copied
to the BDSSchemeEditor where they can be adjusted according to user needs. Figure
29 shows such an automatically generated user schema that was copied to the
BDSSchemeEditor (Figure 30).

111

Chapter 10: Practical Applications of SEMEDA

Figure 29: SEMEDA can automatically generate BioDataServer schemata either for
all databases that are semantically defined in SEMEDA or for individual databases.

112

10.2 Integration of the RZPD Clone Database

Figure 30: Screenshot of the BDSSchemeEditor. The user schema displayed in the
editor was automatically generated using SEMEDA (see Figure 29) and serves as a
template that is adjusted according to user requirements.

10.2 Integration of the RZPD Clone Database
Connecting the RZPD database directly via JDBC to SEMEDA serves to demonstrate
that real world databases that contain business-critical and confidential data can safely
use SEMEDA to provide semantically integrated real time access to their data.
By connecting the RZPD clone database to SEMEDA, the clone information can be
directly linked to other databases within the system using HUGO gene names and
Gene Accession numbers. At present (November 2002), this allows to link RZPD
clones, SWISSPROT protein data and MDDBs metabolic disease data using HUGO
gene names. As soon as other databases that use HUGO gene names or GenBank
accession numbers are connected to SEMEDA, these databases are also automatically
linked to RZPD clone data.

113

Chapter 10: Practical Applications of SEMEDA

In addition, connecting the RZPD database to SEMEDA allows the RZPD database
and all other databases available in the system to be queried using one and the same
query interface.

10.2.1 The RZPD Clone Database
The RZPD is an important provider of clones. According to information of the RZPD,
the RZPD (http://www.rzpd.de/about/)

“… harbors one of the most comprehensive clone collections world-wide. 225
cDNA libraries and 126 genomic libraries from 32 organisms contain about 30
million clones, which are arrayed in 384-well microtiter plates. Each clone
stored in our freezers can be instantly addressed via the Primary Database
regarding storage location, condition for distribution, additional data available
etc. Since RZPD is one of only 5 authorized distributors of I.M.A.G.E. ESTs,
this collection includes with more than 4.6 million clones, the largest public
EST-collection currently available.”

MASTERCLONE

OID
CLONENAME
PLATEFORMAT
LIBRARY

LIBRARY

OID
LIBNO
LIBNAME
LIBTYPE

KEY_CLONE_ACCESSION

OID
ACCESSIONNO
DATABASE

KEY_CLONE_GENE

OID
NAME
TYPE

CA 300 OTHER_TABLES

OID
...

RZPD

Figure 31: Database schema of the RZPD tables that are connected to SEMEDA
(IDEF1X notation (Bruce 1992)).

114

10.2 Integration of the RZPD Clone Database

The RZPD database is deployed on Oracle 8i and consists of more than 300 database
tables. Many of those tables contain data such as timestamps, customer data and order
status of clones. Such tables are either not of general interest or strictly confidential.
Therefore, only a subset of the RZPD database tables was connected to SEMEDA. In
addition, data and system security had to be guaranteed.
The core of the RZPD clone database consists of four database tables (see Figure 31).
The table MASTERCLONE lists all clones that are available via the RZPD. The
tables KEY_CLONE_ACCESSION links clones to GenBank/EMBL/DDBJ accession
numbers, the table KEY_CLONE_GENE links clones to HUGO gene symbols
(Cotton and Horaitis 2002) and the table LIBRARY stores information about the
clone libraries of the respective genes. For the connection to SEMEDA, the HUGO
gene symbols and the GenBank/EMBL/DDBJ accession numbers are especially
important, since they are well suited to link the RZPD clone data to other databases of
SEMEDA.

10.2.2 Connecting the RZPD to SEMEDA
The following steps are required to connect the RZPD database to SEMEDA (see also
Figure 12 and chapter 7):

RZPD database administrator

1) Open the firewall to SEMEDA.
2) Create a RZPD database account for SEMEDA. This account is only
granted read access to selected database tables. In addition it can also create
views.
3) An administrative RZPD account creates views for those tables that are
appropriate to be accessed via SEMEDA and that filter out confidential data.
Read only access to those views is granted to SEMEDAs RZPD account.
4) Create views that filter out irrelevant data using SEMEDAs RZPD account.

SEMEDA administrator

5) Generate an adapter for the RZPD database.
6) Import database Meta Data from the adapter to SEMEDA.
7) Semantically define the RZPD database tables in SEMEDA.
8) Test whether the RZPD database is correctly connected to SEMEDA using
SEMEDAs database query interface.

The practical work for connecting the RZPD clone database tables to SEMEDA
required an estimated four hours of work from the RZPD database administrators
(steps 1-4), and about the same amount of time from the SEMEDA administrators

115

Chapter 10: Practical Applications of SEMEDA

(steps 5-8). Thus, connecting the RZPD database required comparatively many steps.
When other databases were added, many of those steps were not required. Step 1 can
be omitted when the database port of the firewall is already open. In many databases a
"guest account" already exists that provides read only access to selected database
tables and entries. In such databases, steps 2-4 are not required.
However, although the amount of time required to connect databases to SEMEDA is
comparatively low, it should be mentioned that usually additional time is required for
consultation and discussing security issues with administrators and officials in charge
of the database to be connected to SEMEDA.
In principle, it would have been possible to merge the four RZPD database tables
using one or two views. Although this would have improved the understandability of
the database tables, this was not possible due to serious performance deficiencies that
occur in Oracle when views are used in conjunction with the outer join operator (see
also http://home.clara.net/dwotton/dba/ojoin2.htm).

116

11.1 Comparison with other Systems

11 Discussion

11.1 Comparison with other Systems

11.1.1 Ontology Editors/Browser
At the beginning of this section, SEMEDAs ontology editor is compared to GOs tools
for ontology editing and browsing, since GO is the best known and most widely used
ontology in the field of molecular biology. GO and its ontology editing tools are being
developed since 1999. At present (November 2002), 18 GO tool developers are
registered at http://sourceforge.net/projects/geneontology.
Figure 32 compares collaborative ontology editing between SEMEDA and the Gene
Ontology tools. Both SEMEDA and the Gene Ontology can use a relational database
to store the ontology. In SEMEDA, all users who edit the ontology work on the same
instance of the ontology, whereas in the GO tools the ontology is imported to the
ontology editor, where it is edited and finally written back to the database. When
several users edited ontologies using the GO tools, conflicts between different
ontology versions have to be resolved. In addition, in SEMEDA users see changes
that other users apply to the ontology immediately, whereas in the GO tools
modifications are only seen when the ontology is written back to the database.
Collaborative ontology editing is also facilitated in SEMEDA by the implemented
“review process” most users may only “suggest” concepts, and only administrative
accounts can release newly suggested concepts.
Another advantage of SEMEDAs architecture is, that SEMEDA has the potential to
handle large ontologies, since it does not require that the whole ontology be loaded to
the frontend. Whereas this might be not important for the current size of GO, editing
large ontologies with millions of concepts using DAG-edit is most probably
impossible.
Whereas GOs DAG-edit is mainly used for editing ontologies, several html based GO
ontology browsers exist. SEMEDAs performance could not directly be compared to
the GO browsers. The fact that SEMEDA is fast at tree-processing is due to the fact,
that SEMEDA uses an efficient proprietary feature of the Oracle database for tree
processing (see section 6.1.4.1), whereas the GO browsers either generate trees from
the database backend by several iterative SQL queries, or they load the whole
ontology to the middle tier application, which dynamically generates the html
frontend. In simple words, SEMEDA can generate a hierarchy within the database
using one transaction, whereas the GO browsers either need approximately one
database transactions per ontology concept, or the middle tier has to load the whole
ontology to memory.

117

Chapter 11: Discussion

GOSEMEDA

Relational
Backend

1

Relational
Backend

Frontend
(DAG-edit)Frontend

31 3

1) import ontology
2) update and check
 for consistency
3) export ontology

1) submit changes
2) update and check
 for consistency
3) update frontend

2

2

Figure 32: Comparison of collaborative ontology editing between SEMEDA and the
Gene ontology tools. In SEMEDA, all users who edit the ontology work on the same
instance of the ontology, whereas in the GO tools the ontology is imported to the
ontology editor, where it is edited and finally written back to the database. When
several users edit ontologies using the GO tools, conflicts between different ontology
versions have to be resolved when the ontology is written back to the database.

Whereas SEMEDAs strength lies in collaborative editing of large ontologies, some
other ontology editors are richer in features. SEMEDAs notion of an ontology is
similar to RDF ontologies, see section 3.2. RDF is sometimes described as a
"lightweight ontology format", i.e. whereas several research groups have developed
different data structures with different features, RDF is not the language which unites

118

11.1 Comparison with other Systems

all those features, but rather serves as the "smallest common denominator" of most
ontologies. Therefore, most ontology editors use their own format for storing data (see
section 2.4.2). Although most ontologies can be imported to SEMEDA by dropping
information, SEMEDA does not support all advanced features of different existing
ontology editors. For example in the PROLOG based OE ontology editor (Schulze-
Kremer 1997b), powerful constraints can be declared using PROLOG.

11.1.2 Database Integration Systems
SRS is the most widely used molecular biological database integration system. SRS
provides many useful features that are not implemented in SEMEDA, such as for
example views, the integration of bioinformatic analysis tools/applications, and the
download of results in different data formats. On the other hand, SRS does not
support semantic database integration as introduced in SEMEDA.
In a limited way, in SRS attribute semantics can be defined by assigning equivalent
database attributes equal names, although this does not systematically cover the
situation where one database attribute is more general than another. An example
would be an attribute organism that stores species names of plants, animal and fungae
versus an attribute animal that stores only names of animal. In SRS such situations
cannot be treated in an appropriate way, whereas in SEMEDA animal could be
defined as a sub-concept of organism. SRS also does not provide a standardised set of
attribute names and it is up to the database provider to define the name for a database
attribute in the Icarus script he has to provide for indexing the database. In SEMEDA,
all database attributes are semantically defined versus the same main ontology. When
a database provider does not find an appropriate concept for a database attribute in
SEMEDA, he can add a new concept which can subsequently also be used by other
database providers.
SRS does not differentiate between different vocabularies used in equivalent attributes
of different databases. One database might for example use English species names for
an attribute “organism”, whereas another database might use systematic species
names. In SEMEDA the vocabulary used can be defined and mechanisms for
translating between different controlled vocabularies are suggested (see section 3.3.3).
In SRS indexing scripts, attributes can be directly linked to attributes of other
databases. Thus, each database would have to provide links to all other relevant
databases. Considering the fact, that at present more than 500 databases can be
integrated using SRS, a database provider would have to know all other databases in
order to be able to decide to which other databases links can be provided. In
SEMEDA, database attributes only have to be defined once to the main ontology.
Based on these definitions and the mechanism for generating semantic cross-
references, links to all other relevant databases can be generated automatically. If n is
the number of database attributes which can be used for linking between databases,
the number of integration steps (database links to be defined) in SRS increases
exponentially with the number of attributes to be interlinked

119

Chapter 11: Discussion

(integration steps = (n*(n-1))/2), whereas in SEMEDA it is sufficient to define each
database attribute only once versus the main ontology (integration steps = n). This
applies also to other database integration systems such as for example PEDANT
(Frishman et al. 2001). The only system that has similar link generation capabilities
like SEMEDA is KEGGs DBGET/LinkDB (Fujibuchi et al. 1998). DBGET/LinkDB
automatically generates links between databases using EC Numbers and
EMBL/Genebank Accession Numbers, but unlike SEMEDA it cannot use any other
database attributes for link generation.
Subsequently existing systems that have the aim to semantically integrate databases
will be discussed and compared to SEMEDA. These systems are mainly TAMBIS
(Stevens et al. 2000a) and a system where the semantics of databases are defined and
mapped using F-LOGIC (Ludäscher et al. 2001).
Several differences between SEMEDA and these two systems exist. SEMEDA makes
only use of the “is a” hierarchy for defining database attributes, whereas both other
systems also use several other relation types. By using several other relation types, the
semantic definitions are more precise, whereas in SEMEDA by not using relation
types that are specific to a particular application domain, SEMEDAs database
integration principles are more generic. Another reason why for SEMEDA only the
“is a” hierarchy was used, is that this made it possible to keep the work required for
semantic database definitions on the one hand minimal, and on the other hand simple
enough that it is possible to define the semantics of database attributes via a relatively
easy to use a GUI frontend.
In contrast to the two other systems, SEMEDA does not require that all attributes of a
table have to be semantically defined, in order to make them accessible via the
integration system. SEMEDA avoids this, by using the table structures and by relying
on “implicite table semantics” (see section 9.4) of the underlying databases. Thus only
one database attribute per table has to be semantically defined to make a table
accessible via SEMEDA. This reduces the work of adding or removing databases
significantly. In addition to this, databases can be added to SEMEDA at runtime
without the need for source code modifications.
To query the system described in (Ludäscher et al. 2001), F-LOGIC is used as a query
language. F-LOGIC is very expressive, but requires programming language skills.
Therefore, form based HTML frontends are used on top of predefined F-LOGIC
queries. However, these HTML frontends are highly specific to queries and data
sources.
The TAMBIS system uses a graphical representation of the underlying ontology to
interactively build database queries. Although this frontend is powerful, building
queries is not trivial and may be too difficult for medical doctors, i.e. in the GALEN
project (Rector et al. 1998), it was learned that medical doctors had difficulties
understanding the data structure of ontologies.
As a consequence of the difficulties in building queries and query frontends with
existing ontology based systems for semantic database integration, the methods
introduced in the course of this thesis, as well as the development of SEMEDA, was

120

11.2 Outlook

driven by ergonomic needs of non computer scientists. In consequence, query
frontends are automatically generated once a database has been semantically defined.
Furthermore, the user of SEMEDA’s query interface is not confronted with the data
structure of the underlying ontology.
Recently, (Hakimpour and Geppert 2001) suggested an approach where the semantics
of each database in a separate ontology. This creates much unnecessary overhead,
since it requires ontology merging and does not facilitate that the databases use and
maintain the same ontology. Ontology merging by itself is a nontrivial task which can
only partly be automated and requires much human intervention (Noy and Musen
1999, McGuinness et al. 2000, Stumme and Maedche 2001). Therefore the suggested
system (Hakimpour and Geppert 2001) probably causes more problems than it solves.
Although the work to semantically define databases was minimised as much as
possible in SEMEDA, it would be useful if this step could be automated. Methods for
automated schema matching are reviewed in (Raham and Bernstein 2001), and (Li et
al. 2000b) implemented a system where neural networks are used to automatically
map database schemata. However, although such automated schema matching
performs in many situations well, it does not always align database schemata correctly
and its performance depends much on the database schemata to be matched.
Therefore, at least at present manual schema matching as applied in SEMEDA, can in
the best case only be supplemented, but not be substituted by automatic schema
matching algorithms.

11.2 Outlook

11.2.1 Improving Performance using a Database Mirror
For the use of SEMEDA, two application scenarios are possible: the implemented
scenario is useful for a workgroup of scientists who need to query source databases in
real-time and where slow response times are acceptable. The reasons why the
BioDataServer responds slowly to some database queries are discussed in section 4.3.
To use SEMEDA as a system, which is intensively used by many people via the
internet, i.e. as a alternative to indexing database integration systems, speedier data
access than that which is intrinsic to database integration by database mediation
(Davidson et al. 1995) would be required. This could be achieved by using a database
mirror (Figure 33).
Such a system mirrors the database tables, maps the datatypes of the source databases
to the datatypes of the mirroring DBMS but drops any other information such as
procedures, functions and other features, which are generally DBMS specific.
Metadata (database schema information) can be imported via JDBC or ODBC to
SEMEDA where this metadata can be supplemented, semantically defined and
adjusted to the requirements of the mirroring DBMS. Subsequently this schema
information can be used to create a mirror schema on the mirroring DBMS, which can

121

Chapter 11: Discussion

then be filled with data via JDBC. Heterogeneous data sources, which are connected
via the BioDataServer, can in some cases not be directly mirrored, due to the lack of
an underlying relational schema, i.e. the BioDataServer may have to implement an
appropriate relational schema.
It avoids schema conflicts, since the generation of one big integrated database schema
is not required. Therefore, in principle, any number of databases can be integrated,
although this approach is limited by disk space and the available computer hardware.
Database federation systems like IBMs DiscoveryLink (Haas et al. 2000, Haas et al.
2001), adjust query plans to take into account specific costs for querying different
types of heterogeneous data sources, but still cannot completely rule out performance
issues which are intrinsic to database integration by database federation. The proposed
database mirror could automatically make use of built in query optimisation
mechanisms of the mirroring DBMS. In addition, SEMEDAs semantic cross-
references can be used to create indexes on relevant columns.
In addition, by implementing a database mirror the user interface could be
implemented much more powerful, since it would not be restricted by the limited SQL
subset the BioDataServer has implemented. Thus, as a side effect, SQL 92 like pattern
matching and datatype operators (<, >, <=, >= etc.) could be used for the
implementation of the database query forms.
This architecture would be especially useful, when source databases can be accessed
by JDBC or other systematic access to database data and metadata is available,
although by using the BioDataServer, heterogeneous data sources can also be
accessed. At present time, due to security concerns, most database owners do not
grant JDBC access to their databases. However, nowadays all major DBMS have
mechanisms to restrict user rights. Usually it is possible to restrict read only access to
a few tables and to hide table attributes and tablerows by using views. In addition,
JDBC type 3 drivers have recently become available for all major DBMSs
http://industry.java.sun.com/products/jdbc/drivers. JDBC type 3 drivers usually
support encryption and can also be used to deny write access.
Several database providers do not grant direct access to their database as a measure to
protect their intellectual property. They often spent several man-years for the
generation of the database, and copyright protection by law is weak in most countries
(Maurer et al. 2001). Those databases can also not be systematically accessed by other
integration systems. However, a high percentage of the databases listed in (Baxevanis
2002) are freely distributed, usually as tab-delimited flatfiles, SQL database dumps,
XML etc. Obviously, the owners of those databases do not mind to share their data.

122

11.2 Outlook

Figure 33: Suggested architecture for database mirrors. Whereas in the implemented
architecture (Figure 17) queries are processed against the mediated source
databases, in this system queries would be processed against a local copy of the
source databases. The mirror is updated at intervals.

When downloading much data from the same source, many database providers
blocked the BioDataServer. This may be due to two reasons: 1.) the database provider
does not want that all his data is downloaded systematically. 2.) the download of the
data is causing too much load on the server. In the latter case, this might be avoided
by updating the different data sources not one after the next, but rather by updating
them at the same time. For example, search engines do not crawl a source in one step,
but rather retrieve one page per five minutes. In a system where data sources are
accessed directly, this would be too slow for user interaction, but by using a database
mirror this could be implemented.

123

Chapter 11: Discussion

Whereas indexing systems such as SRS (Etzold et al. 1996) (Zdobnov et al. 2002)
require that proprietary flatfiles are built at regular intervals, and that scripts for the
integration systems are provided, the work required to install and configure JDBC
type 3 drivers is low. Therefore it is likely that in the near future JDBC and other
direct data exchange methods will be used between molecular biological databases,
not only within, but also between institutions. In addition, the fact that the discussed
mirror is based on a relational DBMS makes it possible to use all built in methods and
extensions of the DBMS on the mirrored databases. Thus, such a relational database
mirror would be much more flexible than indexing systems.
One might argue that the suggested architecture might not be feasible since hard disk
size might limit the number of databases to be mirrored. The simple fact that the SRS
implementation of the EBI stores about 100 flatfile databases on 300 GB of hard disk,
indicates that the amount of data is not too high to be mirrored in relational DBMS.
Recently, a prototypic database mirror based on the principles discussed in this
section was implemented within a Diploma thesis (Reinke 2002). Due to some
shortcomings of this prototype it is not yet really useful. For example, at present it can
only mirror database tables with 6 or less database attributes, database tables which
are being updated cannot be accessed during the update process which may take
several hours, and since it does not use a systematic naming convention for database
tables, conflicts would occur if two database tables of different databases use the same
name. In spite of these shortcomings, the result of the database mirror are promising:
whereas retrieving all EC numbers and enzyme names from BRENDA via the
BioDataServer takes more than 10 hours, the same query took less than a minute via
the database mirror. This example query was executed via a proprietary query
interface of the database mirror. Even shorter response times can be achieved when
the mirrored database tables are accessed directly via the mirroring DBMS, which
was in this case Oracle.

11.2.2 Extensions of SEMEDA
In this section, several features are listed which would be useful in SEMEDA. Many
of those features already exist in other database integration systems and are therefore
not implemented in SEMEDA, i.e. they are not innovative and the aim was to develop
a prototype, which demonstrates the potential of semantic database integration.
Useful features for ontology editing are finer granularity of user rights, history
tracking of ontology editing and merging of ontology concepts. At present each
ontology can only be edited by one user at the same time, and merging ontology
concepts like in GOs DAG-edit is not implemented. In order to use SEMEDA to
collaboratively edit large ontologies, user permissions, it is necessary to restrict user
permissions further. For example, at present everyone who has the permission to edit
ontologies, is allowed to add new concepts or relations to all ontologies in SEMEDA.
In addition, SEMEDA does not track changes, i.e. does not keep a history of the

124

11.2 Outlook

changes of the ontology, although Oracle can be configured to protocol all changes of
data in SEMEDA.
Subsequently, several features for the database query interface are discussed.

Multi Database Views

Multi Database Views require integration of data across several database
tables of the same database or of different databases. Thus Views often use the
SQL join operator or aggregate functions. The join operator in the
BioDataServer is slow, since it requires downloading data from several data
sources and since indexes are not available in mediated systems (see section
4.3). Therefore a prerequisite for the implementation of Multi Database Views
would be the use of a database mirror as discussed in the previous section.

Translation Lists and Translation Functions

Another feature that requires a database mirror to be implemented efficiently
are the concepts of Translation Lists and Translation Functions, which were
introduced in section 3.3.3. The best way to implement translation lists would
be by mirroring database tables that map different controlled vocabularies.
These mirrored tables could then be used to translate between different
vocabularies.
Translation Functions could best be implemented using DBMS specific
scripting languages, such as PL/SQL in Oracle or PGL/SQL in Postgres. Such
functions can then be used within SQL statements. By using a scripting
language of the DBMS, such functions could benefit from internal compiler
optimisations of the DBMS.

Multi Database Searches
Whereas at present the ontology in SEMEDA is among other things used to
guide the user to appropriate tables, it is not possible to query all relevant
database tables/attributes in SEMEDA in one step. Even querying “one step
accessible” attributes via the BioDataServer usually takes several seconds, i.e.
querying several database tables in one step would be too slow for human
interaction. Again, by using a database mirror this problem could be
overcome.

Data formats

At present, in SEMEDA data is displayed using HTML tables. Although this is
an appropriate format for humans, it might be useful to provide data in various
formats such as XML or comma separated flatfiles.

125

Chapter 11: Discussion

Pattern search and comparison operators
The SQL implementation of the BioDataServer only supports the = operator
in the SQL where clause. Thus for example, free text comments cannot be
searched for the occurrence of a specific keyword. In addition, since no other
comparison operators than the = operator is implemented in the
BioDataServer, it is for example not possible to search an attribute "enzyme
temperature optimum" for all entries where the optimum temperature is above
a certain value.

Database Pooling

At present, when SEMEDA connects to a relational database directly and not
via the BioDataServer, each time a user submits a database query, a
connection to the respective database is opened and closed again, after the
result is retrieved. When connection pooling is applied, a predefined number
of database connections are permanently kept open. The time required for
opening and closing JDBC depends on the database, the internet connection
and the JDBC driver. Normally establishing JDBC connections takes less than
2 seconds.

Linkouts

At present, SEMEDA only provides links to other databases within SEMEDA.
Links to external databases are not provided, although it would be possible to
automatically generate HTML links to external databases using EC numbers or
Gene Accession numbers.

11.2.3 Database Integration in Other Knowledge
Domains

Whereas SEMEDA was implemented with molecular biological databases in mind,
databases from other knowledge domains could also be integrated (Ecology,
Chemistry, Agriculture, GIS, Stock-Market related databases, socio-economic etc.).
The top-level structure of SEMEDAs main ontology (see Table 9) is independent of
the type of databases to be integrated. SEMEDAs four SEMEDAs approach is
especially appropriate to semantically integrate databases that come from different
knowledge domains. Thus it would be possible to connect data, which usually is not
connected: a medical patient database might be connected to drug data, which is
connected to databases about drug producing companies, i.e. data of different
knowledge domains can be integrated.

126

11.3 Conclusion

11.3 Conclusion
In this thesis, principles for semantic database integration were developed. These
principles were implemented in SEMEDA in a way, which enables users to query
databases with no knowledge of the database schema of the underlying databases, nor
does the user have to know the location of the databases or any other technical details
of the databases.
Databases can be added or removed from the system with a minimum amount of
work, and all semantic database definitions can be applied without editing source
code. Several ontologies were evaluated and an extensible rudimentary custom
tailored top-level ontology for the semantic definition of database attributes has been
developed. By using SEMEDAs HTML interface, databases can semantically defined
using a web browser.
In addition, SEMEDA can be used to collaboratively edit large ontologies such as the
Gene Ontology via the Internet, thus enabling database providers to collaboratively
edit controlled vocabularies and ontologies. However, at present SEMEDAs ontology
editor requires that users who edit ontologies are “good willing”, i.e. user permissions
are not yet implemented as stringent as they would have to be implemented if
SEMEDA would be used as a generally available WebService.

127

12 Literature

Aboa, E. E., A. Bairoch, C. W. Barker, S. Beck, D. A. Benson, H. Berman, G.

Cameron, C. Cantor, S. Doubet, T. J. P. Hubbard, T. A. Jones, G. J. Kleywegt,
A. S. Kolaskar, A. Van Kuik, A. M. Lesk, H.-W. Mewes, D. Neuhaus, F.
Pfeiffer, L. F. TenEyck, R. J. Simpson, G. Stosser, J. L. Sussman, Y. Tatento,
A. Tsugita, E. L. Ulrich, and J. F. G. Vliegenthart. 2000. Quality control in
databanks for molecular biology. Bioessays 22:1024-1034.

Aldhous, P. 1990. Human genome project. Database goes on-line [news]. Nature
347:9.

Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local
alignment search tool. J Mol Biol 215:403-410.

Andrade, M. A., N. P. Brown, C. Leroy, S. Hoersch, A. de Daruvar, C. Reich, A.
Franchini, J. Tamames, A. Valencia, C. Ouzounis, and C. Sander. 1999.
Automated genome sequence analysis and annotation. Bioinformatics 15:391-
412.

Apweiler, R., T. K. Attwood, A. Bairoch, A. Bateman, E. Birney, M. Biswas, P.
Bucher, L. Cerutti, F. Corpet, M. D. Croning, R. Durbin, L. Falquet, W.
Fleischmann, J. Gouzy, H. Hermjakob, N. Hulo, I. Jonassen, D. Kahn, A.
Kanapin, Y. Karavidopoulou, R. Lopez, B. Marx, N. J. Mulder, T. M. Oinn,
M. Pagni, F. Servant, C. J. Sigrist, and E. M. Zdobnov. 2000. InterPro--an
integrated documentation resource for protein families, domains and
functional sites. Bioinformatics 16:1145-1150.

Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P.
Davis, K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L.
Issel-Tarver, A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M.
Ringwald, G. M. Rubin, and G. Sherlock. 2000. Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nat Genet 25:25-29.

Aubry, F., and A. Todd-Pokropek. 2001. Mimos: a description framework for
exchanging medical image processing results. Medinfo 10:891-895.

Bairoch, A., and R. Apweiler. 2000. The SWISS-PROT protein sequence database
and its supplement TrEMBL in 2000. Nucleic Acids Res 28:45-48.

Baker, P. G., A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. 1998.
TAMBIS: Transparent Access to Multiple Bioinformatics Information
Sources. An Overview. in sixth International Conference on Intelligent
Systems for Molecular Biology, Montreal.

Baker, P. G., C. A. Goble, S. Bechhofer, N. W. Paton, R. Stevens, and A. Brass. 1999.
An ontology for bioinformatics applications. Bioinformatics 15:510-520.

Banerjee, S. 2000. A Database Platform for Bioinformatics. Pages 705-710 in 26 Intl
Conf. on VLDB, Cairo, Egypt.

129

Baxevanis, A. D. 2002. The Molecular Biology Database Collection: 2002 update.
Nucleic Acids Res 28:1-7.

Beckett, D. 2001. The Design and Implementation of the Redland RDF Application
Framework. in Tenth International World Wide Web Conference (WWW10),
Hong Kong.

Benson, D. A., I. Karsch-Mizrachi, D. J. Lipman, J. Ostell, B. A. Rapp, and D. L.
Wheeler. 2000. GenBank. Nucleic Acids Res 28:15-18.

Berman, H. M., J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N.
Shindyalov, and P. E. Bourne. 2000. The Protein Data Bank. Nucleic Acids
Res 28:235-242.

Berners-Lee, T., R. Cailliau, J. Groff, and B. Pollerman. 1992. World-Wide Web: The
Information Universe. Electronic Networking: Research, Applications and
Policy 1:74-82.

Blake, J. A., J. T. Eppig, J. E. Richardson, and M. T. Davisson. 2000. The Mouse
Genome Database (MGD): expanding genetic and genomic resources for the
laboratory mouse. The Mouse Genome Database Group. Nucleic Acids Res
28:108-111.

Blázquez, M., M. Fernández, J. M. García-Pinar, and A. Gomez-Perez. 1998.
Building Ontologies at the Knowledge Level using the Ontology Design
Environment. in KAW'98, Banff, Canada.

Boehm, B. W. 1988. A spiral model of software development and enhancement. IEEE
COMPUTER 21:61-72.

Brazma, A., P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J.
Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F.
C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A.
Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo, and
M. Vingron. 2001. Minimum information about a microarray experiment
(MIAME)-toward standards for microarray data. Nat Genet 29:365-371.

Bruce, A. T. 1992. Designing quality databases with IDEF1X information models.
Dorset House Pub, New York, NY.

Bry, F., and P. Kröger. 2001. A Molecular Biology Database Digest. PMS-FB-2001-
3, Institute for Computer Science, University of Munich, Munich.

Buntrock, R. E. 2001. Chemical registries--in the fourth decade of service. J Chem Inf
Comput Sci 41:259-263.

Ceusters, W. 2001. Formal Terminology Management for Language Based
Knowledge Systems: Resistance is Futile. Pages 135-153 in R. Temmerman
and M. Lutjeharms, editors. Trends in Special Language Technology.

Ceusters, W., J. Rogers, F. Consorti, and A. Rossi-Mori. 1999. Syntactic-semantic
tagging as a mediator between linguistic representations and formal models:
an exercise in linking SNOMED to GALEN. Artif Intell Med 15:5-23.

Chen, P. P. 1976. The entity relationship model towards a unified view of data. ACM
Transactions on Database Systems 1:9-36.

130

Chung, S. Y., and L. Wong. 1999. Kleisli: a new tool for data integration in biology.
Trends Biotechnol 17:351-355.

Codd, E. F. 1970. A Relational Model of Data for Large Shared Data Banks. Comm.
of the ACM 13:377-387.

Cotton, R. G., and O. Horaitis. 2000. Quality control in the discovery, reporting, and
recording of genomic variation. Hum Mutat 15:16-21.

Cotton, R. G., and O. Horaitis. 2002. The HUGO Mutation Database Initiative.
Human Genome Organization. Pharmacogenomics J 2:16-19.

Craven, M., D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and S.
Slattery. 1998. Learning to Extract Symbolic Knowledge from the World
Wide Web. Pages 509-516 in 15th National Conference on Artificial
Intelligence (AAAI-98), Madison.

Critchlow, T., K. Fidelis, M. Ganesh, R. Musick, and T. Slezak. 2000. DataFoundry:
information management for scientific data. IEEE Trans Inf Technol Biomed
4:52-57.

Croft, W. B., J. P. Callan, and D. B. Aronow. 1995. Effective access to distributed
heterogeneous medical text databases. Medinfo 8:1719.

Date, C. J. 1982. A Formal Definition of the relational Model. SIGMOD Record
13:18-29.

Date, C. J. 2000. An introduction to database systems, 7th edition. Addison-Wesley,
Reading, Mass.

Davidson, S. B., C. Overton, and P. Buneman. 1995. Challenges in integrating
biological data sources. J Comput Biol 2:557-572.

Discala, C., X. Benigni, E. Barillot, and G. Vaysseix. 2000. DBcat: a catalog of 500
biological databases. Nucleic Acids Res 28:8-9.

Domingue, J. 1998. Tadzebao and WebOnto: Discussing, Browsing, and Editing
Ontologies on the

Web. in KAW 98, Banff, Canada.
Duineveld, A. J., R. Stoter, M. R. Weiden, B. Kenepa, and V. R. Benjamins. 1999.

Wondertools? A Comparative Study of Ontological Engineering Tools. in
Twelfth Workshop on Knowledge Acquisition, Modeling and Management,
Voyager Inn, Banff, Alberta, Canada.

Edwards, J. L., M. A. Lane, and E. S. Nielsen. 2000. Interoperability of Biodiversity
Databases: Biodiversity Information on Every Desktop. Science 289:2312-
2314.

Etzold, T., A. Ulyanov, and P. Argos. 1996. SRS: information retrieval system for
molecular biology data banks. Methods Enzymol 266:114-128.

Etzold, T., and G. Verde. 1997. Using views for retrieving data from extremely
heterogeneous databanks. Pac Symp Biocomput:134-141.

Farquhar, A., R. Fikes, and J. Rice. 1996. The Ontolingua Server: a Tool for
Collaborative Ontology Construction. in KAW 96, Nottingham, UK.

131

Farquhar, A., R. Fikes, and J. Rice. 1997. The Ontolingua Server: a Tool for
Collaborative Ontology Construction. Intern. Journal of Hum. Comp. Studies
(IJHCS) 46(6), pp. 707-728.:707-728.

Fellbaum, C. 1998. WordNet : an electronic lexical database. MIT Press, Cambridge,
Mass.

FlyBase-Consortium. 1999. The FlyBase database of the Drosophila Genome Projects
and community literature. The FlyBase Consortium. Nucleic Acids Res 27:85-
88.

Frankewitsch, T., and U. Prokosch. 2001. Navigation in medical Internet image
databases. Med Inform Internet Med 26:1-15.

Fredman, D., M. Siegfried, Y. P. Yuan, P. Bork, H. Lehvaslaiho, and A. J. Brookes.
2002. HGVbase: a human sequence variation database emphasizing data
quality and a broad spectrum of data sources. Nucleic Acids Res 30:387-391.

Freier, A., R. Hofestädt, M. Lange, and U. Scholz. 2002a. Information Fusion and
Metabolic Network Control. Pages 49-84 in J. Collado-Vides and R.
Hofestädt, editors. Gene Regulation and Metabolism - Post-Genomic
Computational Approaches. MIT Press, Cambridge.

Freier, A., R. Hofestädt, M. Lange, U. Scholz, and A. Stephanik. 2002b.
BioDataServer: An SQL-based service for the online integration of life science
data. In Silico Biol. 2.

Freier, A., R. Hofestädt, M. Lange, U. Scholz, and T. Töpel. 2000. MD-CAVE - The
Metabolic Diseases Database a System for Storing information About Human
Inborn Errors. Pages 66ff in Second International Conference on
Bioinformatics of Genome Regulation and Structure (BRGS2000), ICG
Novisibirsk.

Freier, A., R. Hofestdt, M. Lange, and U. Scholz. 1999. MARGBench - An Approach
for Integration, Modeling and Animation of Metabolic Networks. Proceedings
of the German Conference on Bioinformatics, Hannover.

Frishman, D., K. Albermann, J. Hani, K. Heumann, A. Metanomski, A. Zollner, and
H. W. Mewes. 2001. Functional and structural genomics using PEDANT.
Bioinformatics 17:44-57.

Fujibuchi, W., S. Goto, H. Migimatsu, I. Uchiyama, A. Ogiwara, Y. Akiyama, and M.
Kanehisa. 1998. DBGET/LinkDB: an integrated database retrieval system. Pac
Symp Biocomput:683-694.

Gene-Ontology-Consortium. 2001. Creating the gene ontology resource: design and
implementation. Genome Res 11:1425-1433.

Giudicelli, V., and M. P. Lefranc. 1999. Ontology for immunogenetics: the IMGT-
ONTOLOGY. Bioinformatics 15:1047-1054.

Goksel, A., and D. McLeod. 1999. Semantic heterogeneity resolution in federated
databases by metadata implantation and stepwise evolution. VLDB Journal
8:120-132.

132

Greenes, R. A., R. C. McClure, E. Pattison-Gordon, and L. Sato. 1992. The findings--
diagnosis continuum: implications for image descriptions and clinical
databases. Proc Annu Symp Comput Appl Med Care:383-387.

Gruber, T. R. 1993a. Toward principles for the design of ontologies used for
knowledge sharing. in N. G. a. R. Poli, editor. International Workshop on
Formal Ontology. Kluwer Academic.

Gruber, T. R. 1993b. A Translation Approach to Portable Ontology Specifications.
Knowledge Acquisition 5:199-220.

Guarino, N. 1998. Formal Ontology and Information Systems. in N. Guarino, editor.
Formal Ontology in Information Systems. IOS Press (amended version),
Trento, Italy.

Haas, L. M., P. Kodali, J. E. Rice, P. M. Schwarz, and W. C. Swope. 2000.
Integrating Life Sciences Data - With a Little Garlic. Pages 5-12 in
Bioinformatics and Biomedical Engineering, Arlington, Virginia, USA.

Haas, L. M., P. M. Schwarz, P. Kodali, E. Kotlar, J. E. Rice, and W. C. Swope. 2001.
DiscoveryLink: A system for integrated access to life sciences data sources.
IBM System Journal 40:489-511.

Hahn, U., M. Romacker, and S. Schulz. 2002. Creating knowledge repositories from
biomedical reports: the MEDSYNDIKATE text mining system. Pac Symp
Biocomput:338-349.

Hakimpour, F., and A. Geppert. 2001. Resolving Semantic Heterogeneity in Schema
Integration: an Ontology Based Approach. in FOIS - International Conference
On Formal Ontology In Information Systems. ACM, Ogunquit, Maine.

Hammer, J., and D. McLeod. 1993. An Approach to Resolving Semantic
Heterogeneity in a Federation of Autonomous, Heterogeneous Database
Systems. International Journal of Intelligent & Cooperative Information
Systems 2:51-83.

Hamosh, A., A. F. Scott, J. Amberger, C. Bocchini, D. Valle, and V. A. McKusick.
2002. Online Mendelian Inheritance in Man (OMIM), a knowledgebase of
human genes and genetic disorders. Nucleic Acids Res 30:52-55.

Harger, C., M. Skupski, J. Bingham, A. Farmer, S. Hoisie, P. Hraber, D. Kiphart, L.
Krakowski, M. McLeod, J. Schwertfeger, G. Seluja, A. Siepel, G. Singh, D.
Stamper, P. Steadman, N. Thayer, R. Thompson, P. Wargo, M. Waugh, J. J.
Zhuang, and P. A. Schad. 1998. The Genome Sequence DataBase (GSDB):
improving data quality and data access. Nucleic Acids Res 26:21-26.

Hendler, J., and D. L. McGuinness. 2000. The DARPA Agent Markup Language.
IEEE Intelligent Systems 15:67-73.

Herman, I., G. Melançon, and M. S. Marshall. 2000. Graph Visualisation and
Navigation in Information Visualisation. IEEE Transactions on Visualization
and Computer Graphics 6:24-43.

Heuer, A., and G. Saake. 2000. Datenbanken kompakt, 2 edition. International
Thomson Publishing, Bonn.

133

Hofestädt, R., U. Mischke, and U. Scholz. 2000. Knowledge acquisition, management
and representation for the diagnostic support in human inborn errors of
metabolism. Pages 857-862 in A. Hasman, B. Blobel, J. Dudeck, R.
Engelbrecht, G. Gell, and H.-U. Prokosch, editors. Medical Infobahn for
Europe. IOS Press, Hannover.

Hofestädt, R., M. Prüß, U. Scholz, and H. Urban. 1998. Molekulare Bioinformatik-
Molekulare Informationssysteme zur Erkennung von angeborenen
Stoffwechselerkrankungen. Magdeburger Wissenschaftsjournal 3:29-40.

Hovy, E. H. 2002. Comparing Sets of Semantic Relations in Ontologies. Pages cm. in
R. Green, C. A. Bean, and S. H. Myaeng, editors. The semantics of
relationships : an interdisciplinary perspective. Kluwer Academic Publishers,
Boston.

Inman, J. T., H. R. Flores, G. D. May, J. W. Weller, and C. J. Bell. 2001. A High-
Throughput Distributed DNA Sequence Analysis and Database System. IBM
System Journal 40:464-486.

International-Union-of-Biochemistry. 1992. Enzyme nomenclature 1992 :
recommendations of the Nomenclature Committee of the International Union
of Biochemistry and Molecular Biology on the nomenclature and
classification of enzymes. Published for the International Union of
Biochemistry and Molecular Biology by Academic Press, San Diego.

Iyer, L. M., L. Aravind, P. Bork, K. Hofmann, A. R. Mushegian, I. B. Zhulin, and E.
V. Koonin. 2001. Quoderat demonstrandum? The mystery of experimental
validation of apparently erroneous computational analyses of protein
sequences. Genome Biol 2:RESEARCH0051.

Jakobovits, R. 1997. Integrating Heterogeneous Autonomous Information Sources.
UW-CSE-971205, Univ. of Washington.

Kanehisa, M. 1997a. A database for post-genome analysis. Trends Genet 13:375-376.
Kanehisa, M. 1997b. Linking databases and organisms: GenomeNet resources in

Japan. Trends Biochem Sci 22:442-444.
Kanehisa, M., S. Goto, S. Kawashima, and A. Nakaya. 2002. The KEGG databases at

GenomeNet. Nucleic Acids Res 30:42-46.
Karp, P. D. 1995. A Strategy for Database Interoperation. J Comput Biol 2:573-586.
Karp, P. D. 2001. Pathway databases: a case study in computational symbolic

theories. Science 293:2040-2044.
Karp, P. D., M. Riley, S. M. Paley, A. Pellegrini-Toole, and M. Krummenacker. 1999.

Eco Cyc: encyclopedia of Escherichia coli genes and metabolism. Nucleic
Acids Res 27:55-58.

Karp, P. D., M. Riley, M. Saier, I. T. Paulsen, S. M. Paley, and A. Pellegrini-Toole.
2000. The EcoCyc and MetaCyc databases. Nucleic Acids Res 28:56-59.

Karvounarakis, G., S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
2002. RQL: A Declarative Query Language for RDF. in WWW2002,
Honolulu, Hawaii, USA.

134

Kashyap, V., and A. Sheth. 1996a. Schematic and Semantic Similarities between
Database Objects: A Context-based Approach. VLDB Journal 5.

Kashyap, V., and A. Sheth. 1996b. Semantic Heterogeneity in Global Information
Systems: The Role of Metadata, Context and Ontologies. in Cooperative
Information Systems: Current Trends and Directions.

Kelley, S. 2000. Getting started with Acedb. Brief Bioinform 1:131-137.
Khan, L., and D. McLeod. 2000. Disambiguation of Annotated Text of Audio using

Ontologies. in ACM SIGKDD Workshop on Text Mining, Boston.
Kim, W. 1995. Modern database systems : the object model, interoperability, and

beyond. ACM Press ; Addison-Wesley Pub. Co., New York, N.Y., Reading,
Mass.

Kim, W., and J. Seo. 1991. Classifying Schematic and Data Heterogeneity in
Multidatabase Systems. IEEE COMPUTER 24:12-18.

Kingston, J. H. 1998. Algorithms and Data Structures Design, Correctness, Analysis,
2nd edition. Addison Wesley.

Köhler, J., M. Lange, R. Hofestädt, and S. Schulze-Kremer. 2000. Logical and
Semantic Database Integration. Pages 77-80 in D. C. Young, editor.
Bioinformatics and Biomedical Engineering, Arlington, Virginia, USA.

Köhler, J., and S. Schulze-Kremer. 2001. The Semantic Metadatabase (SEMEDA):
Ontology Based Integration of Federated Molecular Biological Data Sources.
in GCB, German Conference on Bioinformatics.

Krawczak, M., E. V. Ball, I. Fenton, P. D. Stenson, S. Abeysinghe, N. Thomas, and
D. N. Cooper. 2000. Human gene mutation database-a biomedical information
and research resource. Hum Mutat 15:45-51.

Kurtz, S., J. V. Choudhuri, E. Ohlebusch, C. Schleiermacher, J. Stoye, and R.
Giegerich. 2001. REPuter: the manifold applications of repeat analysis on a
genomic scale. Nucleic Acids Res 29:4633-4642.

Letovsky, S. I., R. W. Cottingham, C. J. Porter, and P. W. D. Li. 1998. GDB: the
Human Genome Database. Nucleic Acids Res 26:94-99.

Lewin, B. 2000. Genes VII. Oxford University Press, New York ; Oxford.
Li, Q., P. Shilane, N. F. Noy, and M. A. Musen. 2000a. Ontology acquisition from on-

line knowledge sources. Proc AMIA Symp:497-501.
Li, W.-S., C. Clifton, and S.-Y. Liu. 2000b. Database Integration Using Neural

Networks: Implementation and Experiences. Knowledge and Information
Systems 2:73-96.

Lipman, D. J., and W. R. Pearson. 1985. Rapid and sensitive protein similarity
searches. Science 227:1435-1441.

Louis, G., and A. Pirotte. 1982. A Denotational Definition of the Semantics of DRC,
A Domain Relational Calculus. Pages 348-356 in Eigth International
Conference on Very Large Data Bases. Morgan Kaufmann, Mexico City,
Mexico.

135

Ludäscher, B., A. Gupta, and M. E. Martone. 2001. Model-Based Mediation with
Domain Maps. in 17th Intl. Conference on Data Engineering (ICDE),. IEEE
Computer Society, Heidelberg, Germany.

Macaulay, J., H. Wang, and N. Goodman. 1998. A model system for studying the
integration of molecular biology databases. Bioinformatics 14:575-582.

Maedche, A., and S. Staab. 2000. Discovering Conceptual Relations from Text. in
14th European Conference on Artificial Intelligence (ECAI), Berlin, Germany.

Maranas, C. D., and A. P. Burgard. 2001. Review of EcoCyc and MetaCyc Databases.
Metab Eng 3:98-99.

Matsuda, H., I. Imai, M. Nakanishi, and A. Hashimoto. 1999. Querying Molecular
Biology Databases by Integration Using Multiagents. IEICE TRANS. INF &
SYST. E82-D:199-207.

Maurer, S. M., P. B. Hugenholtz, and H. J. Onsrud. 2001. Intellectual property.
Europe's database experiment. Science 294:789-790.

McEntire, R., P. Karp, N. Abernethy, D. Benton, G. Helt, M. DeJongh, R. Kent, A.
Kosky, S. Lewis, D. Hodnett, E. Neumann, F. Olken, D. Pathak, P. Tarczy-
Hornoch, L. Toldo, and T. Topaloglou. 2000. An evaluation of ontology
exchange languages for bioinformatics. Proc Int Conf Intell Syst Mol Biol
8:239-250.

McGuinness, D. L., R. Fikes, J. Rice, and S. Wilder. 2000. An Environment for
Merging and Testing Large Ontologies. in Seventh International Conference
on Principles of Knowledge Representation and Reasoning (KR2000),
Breckenridge, Colorado.

Mewes, H. W., D. Frishman, U. Guldener, G. Mannhaupt, K. Mayer, M. Mokrejs, B.
Morgenstern, M. Munsterkotter, S. Rudd, and B. Weil. 2002. MIPS: a
database for genomes and protein sequences. Nucleic Acids Res 30:31-34.

Musen, M. A., J. H. Gennari, H. Eriksson, S. W. Tu, and A. R. Puerta. 1995.
PROTEGE-II: computer support for development of intelligent systems from
libraries of components. Medinfo 8:766-770.

NC-IUBMB. 1992. Enzyme nomenclature 1992 : recommendations of the
Nomenclature Committee of the International Union of Biochemistry and
Molecular Biology on the nomenclature and classification of enzymes.
Published for the International Union of Biochemistry and Molecular Biology
by Academic Press, San Diego.

NHS Information Authority. 2000. The Clinical Terms Version 3 (The Read Codes) -
Reference Manual, Woodgate.

Nobécourt, J. 2000. A method to build formal ontologies from texts. in 12th
International Conference on Knowledge Engineering and Knowledge
Management (EKAW), Juan-les-Pins, French Riviera, France.

Noy, N. F., and C. Hafner. 1997. The State of the Art in Ontology Design: A Survey
and Comparative Review. AI Magazine 18:53-74.

136

Noy, N. F., and D. L. McGuinness. 2001. Ontology Development 101: A Guide to
Creating Your First Ontology. SMI-2001-0880, Stanford Medical Informatics
(SMI), Stanford.

Noy, N. F., and M. A. Musen. 1999. SMART: Automated Support for Ontology
Merging and Alignment. in KAW '99, Banff, Alberta, Canada.

Oracle-Corp. 1997. Oracle8i SQL Reference. in.
Parent, C., and S. Spaccapietra. 1998. Database Integration: an Overview of Issues

and Approaches. Communications of the ACM 41:166-178.
Persson, B. 2000. Bioinformatics in protein analysis. Exs 88:215-231.
Pirotte, A. 1982. A Precise Definition of Basic Relational Notions and of the

Relational Algebra. SIGMOD Record 13:30-45.
Raham, E., and P. A. Bernstein. 2001. A survey of approaches to automatic schema

matching. VLDB Journal 10:334-350.
Ramu, C. 2001. SIR: a simple indexing and retrieval system for biological flat file

databases. Bioinformatics 17:756-758.
Rector, A. L., and W. A. Nowlan. 1994. The GALEN project. Comput Methods

Programs Biomed 45:75-78.
Rector, A. L., P. E. Zanstra, W. D. Solomon, J. E. Rogers, R. Baud, W. Ceusters, W.

Claassen, J. Kirby, J. M. Rodrigues, A. R. Mori, E. J. van der Haring, and J.
Wagner. 1998. Reconciling users' needs and formal requirements: issues in
developing a reusable ontology for medicine. IEEE Trans Inf Technol Biomed
2:229-242.

Reinke, M. 2002. Entwurf und Implementierung eines Caches zum effizienten Zugriff
auf integrierte molekularbiologische Daten. Diplom. Magdeburg, Germany,
Magdeburg, Germany.

Russ, T., A. Valente, R. MacGregor, and W. Swartout. 1999. Practical Experiences in
Trading Off Ontology Usability and Reusability. in Twelfth Workshop on
Knowledge Acquisition, Modeling and Management, Banff, Alberta, Canada.

Salgado, H., A. Santos-Zavaleta, S. Gama-Castro, D. Millan-Zarate, E. Diaz-Peredo,
F. Sanchez-Solano, E. Perez-Rueda, C. Bonavides-Martinez, and J. Collado-
Vides. 2001. RegulonDB (version 3.2): transcriptional regulation and operon
organization in Escherichia coli K-12. Nucleic Acids Res 29:72-74.

Sanderson, M., and W. B. Croft. 1999. Deriving concept hierarchies from text. Pages
206-213 in Conference on Research and Development in Information
Retrieval (SIGIR '99). ACM, Berkeley, CA, USA.

Schacherer, F., C. Choi, U. Gotze, M. Krull, S. Pistor, and E. Wingender. 2001. The
TRANSPATH signal transduction database: a knowledge base on signal
transduction networks. Bioinformatics 17:1053-1057.

Schomburg, I., A. Chang, O. Hofmann, C. Ebeling, F. Ehrentreich, and D.
Schomburg. 2002a. BRENDA: a resource for enzyme data and metabolic
information. Trends Biochem Sci 27:54-56.

Schomburg, I., A. Chang, and D. Schomburg. 2002b. BRENDA, enzyme data and
metabolic information. Nucleic Acids Res 30:47-49.

137

Schuler, G. D. 1997. Pieces of the puzzle: expressed sequence tags and the catalog of
human genes. J Mol Med 75:694-698.

Schulze-Kremer, S. 1997a. Adding semantics to genome databases: towards an
ontology for molecular biology. Ismb 5:272-275.

Schulze-Kremer, S. 1997b. Integrating and Exploiting Large-Scale, Heterogeneous
and Autonomous Databases with an Ontology for Molecular Biology. Pages
43-56 in R. Hofestädt and H. Lim, editors. Molecular Bioinformatics,
Sequence Analysis - The Human Genome Project (R. Hofestädt and H. Lim
eds). Shaker Verlag, Aachen, pp. 43-56. Shaker Verlag, Aachen.

Schulze-Kremer, S. 1998. Ontologies for molecular biology. Pac Symp
Biocomput:695-706.

Schulze-Kremer, S. 2002. Ontologies for molecular biology and bioinformatics. In
Silico Biology 2, 0017.

Selkov, E., S. Basmanova, T. Gaasterland, I. Goryanin, Y. Gretchkin, N. Maltsev, V.
Nenashev, R. Overbeek, E. Panyushkina, L. Pronevitch, E. Selkov, Jr., and I.
Yunus. 1996. The metabolic pathway collection from EMP: the enzymes and
metabolic pathways database. Nucleic Acids Res 24:26-28.

Shahabi, C., L. Khan, and D. McLeod. 2000. A Probe-Based Technique to Optimize
Join Queries in Distributed Internet Databases. International Journal of
Knowledge and Information Systems (KAIS) 2:373-385.

Silvonen, P., and E. Hyvönen. 2001a. Semantic Web Kick-Off - Vision,
Technologies, Research, and Applications. Pages 304 in E. Hyvönen, editor.
HIIT Publications, Helsinki Institute for Information Technology (HIIT),
Helsinki, Finland.

Silvonen, P., and E. Hyvönen. 2001b. Semantic Web Tools. Pages 137-152 in E.
Hyvönen, editor. Semantic Web Kick-Off - Vision, Technologies, Research,
and Applications. HIIT Publications, Helsinki Institute for Information
Technology (HIIT), Helsinki, Finland.

Srinivasan, P. 1999. Exploring the UMLS: a rough sets based theoretical framework.
Proc AMIA Symp:156-160.

Stevens, R., P. Baker, S. Bechhofer, G. Ng, A. Jacoby, N. W. Paton, C. A. Goble, and
A. Brass. 2000a. TAMBIS: transparent access to multiple bioinformatics
information sources. Bioinformatics 16:184-185.

Stevens, R., C. Goble, P. Baker, and A. Brass. 2001. A classification of tasks in
bioinformatics. Bioinformatics 17:180-188.

Stevens, R., C. A. Goble, and S. Bechhofer. 2000b. Ontology-based knowledge
representation for bioinformatics. Brief Bioinform 1:398-414.

Stevens, R., C. A. Goble, N. W. Paton, S. Bechhofer, P. Baker, and A. Brass. 1999.
Complex Query Formulation Over Diverse Information Sources Using an
Ontology. Pages 83-88 in Workshop on Computation of Biochemical
Pathways and Genetic Networks. E. Bornberg-Bauer, A. De Beuckelaer, U.
Kummer, U. Rost, European Media Lab (EML).

138

Storey, M.-A. D., M. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. F. Noy.
2001. Jambalaya: Interactive visualization to enhance ontology authoring and
knowledge acquisition in Protege. in Workshop on Interactive Tools for
Knowledge Capture (K-CAP), Victoria, B.C. Canada.

Stumme, G., and A. Maedche. 2001. FCA-Merge: A Bottom-Up Approach for
Merging Ontologies. Pages 225-234 in International Joint Conference on
Artificial Intelligence, Seattle, Washington, USA.

Topaloglou, T., A. Kosky, and V. Markowitz. 1999. Seamless integration of
biological applications within a database framework. Proc Int Conf Intell Syst
Mol Biol:272-281.

Uschold, M., P. Clark, M. Healy, K. Williamson, and S. Woods. 1998. Ontology
Reuse and Application. Pages 179-192 in N. Guarino, editor. International
Conference on Formal Ontology and Information Systems - FOIS. IOS Press,
Amsterdam.

van der Vet, P. E., and N. J. I. Mars. 1995. Bottom-up construction of ontologies: the
case of an ontology of pure substances. UT-KBS, University of Twente,
Enschede, Holland.

van der Vet, P. E., and N. J. I. Mars. 1998. Bottom-up construction of ontologies.
IEEE Transactions on Knowledge and Data Engineering 10:513-526.

Volot, F., M. Joubert, and M. Fieschi. 1998. Review of biomedical knowledge and
data representation with conceptual graphs. Methods Inf Med 37:86-96.

Vossen, G. 2000. Datenbankmodelle, Datenbanksprachen und
Datenbankmanagementsysteme. Oldenbourg-Verlag, München.

Walsh, S., M. Anderson, and S. W. Cartinhour. 1998. ACEDB: a database for genome
information. Methods Biochem Anal 39:299-318.

Wang, H., and C. Zaniolo. 1998. Aggregates in Recursive Datalog and SQL3 Queries.
980043, University of California at Los Angeles, Los Angeles, USA.

Westbrook, J., Z. Feng, S. Jain, T. N. Bhat, N. Thanki, V. Ravichandran, G. L.
Gilliland, W. Bluhm, H. Weissig, D. S. Greer, P. E. Bourne, and H. M.
Berman. 2002. The Protein Data Bank: unifying the archive. Nucleic Acids
Res 30:245-248.

Westbrook, J. D., and P. E. Bourne. 2000. STAR/mmCIF: an ontology for
macromolecular structure. Bioinformatics 16:159-168.

Williams, N. 1997. Bioinformatics: How to Get Databases Talking the Same
Language. Science 275:301-302.

Wingender, E., X. Chen, R. Hehl, H. Karas, I. Liebich, V. Matys, T. Meinhardt, M.
Pruss, I. Reuter, and F. Schacherer. 2000. TRANSFAC: an integrated system
for gene expression regulation. Nucleic Acids Res 28:316-319.

Wong, L. 2000. Kleisli, a Functional Query System Journal of functional
Programming. Journal of Functional Programming 10:19-56.

Xie, G., R. DeMarco, R. Blevins, and Y. Wang. 2000. Storing biological sequence
databases in relational form. Bioinformatics 16:288-289.

139

140

Xie, H., A. Wasserman, Z. Levine, A. Novik, V. Grebinskiy, A. Shoshan, and L.
Mintz. 2002. Large-Scale Protein Annotation through Gene Ontology.
Genome Res 12:785-794.

Zdobnov, E. M., R. Lopez, R. Apweiler, and T. Etzold. 2002. The EBI SRS server-
recent developments. Bioinformatics 18:368-373.

	Dipl. Biol. Jacob Köhler
	Introduction
	State of the Art
	Molecular Biological Databases
	Database Heterogeneity
	Storage
	Flatfiles
	ACeDB
	Object Oriented Database Management Systems
	Relational Database Management Systems

	Semantic Heterogeneity
	Attributes
	Tables
	Data entries (Attribute values)

	Access Methods

	Database Integration
	Hypertext Navigation Systems
	Indexing Systems
	Database Mediation and Federation
	Data Warehouses

	Ontologies
	Using Ontologies for Database Integration
	Ontologies and Standards
	Ontology Editors

	Principles of Semantic Database Integration
	Database Metadata
	Controlled Vocabularies and Ontologies
	Semantic Database Definitions
	Attribute semantics
	Table Semantics
	Attribute Value Semantics
	Database Links and Cross-references

	Requirements Analysis
	Prototype
	General Requirements
	Using the BioDataServer to Access Data sources
	Multi User Support
	User Interface
	Querying Databases: SEMEDA-query
	Semantically Defining Databases: SEMEDA-edit

	Tool Interface

	Methods
	Data Structure
	Editing Data and Multi User Support
	Querying the Data Structure

	Design and Implementation
	System Architecture
	Overview
	Scenario
	Backend
	Middle Tier
	PL/SQL Procedures, Functions and Triggers
	Java Server Pages

	Frontend (User Interface)

	BioDataServer access
	Multi User Support
	Tool Interface
	Read-only Access
	Write Access

	Resources and Programming Languages

	Using SEMEDA
	Client requirements
	Import Metadata from the BioDataServer.
	SEMEDA-edit
	Attribute Semantics
	Table Semantics
	Attribute Value Semantics

	Release Suggested Objects
	Submit BioDataServer Schemata
	SEMEDA-query

	Evaluation of Existing Ontologies
	Criteria
	Evaluation
	Conclusion

	Ontology Design
	General Ontology Design Principles
	Implicit Database Table Semantics
	SEMEDAs "Main Ontology"
	Semantic Definition of Databases
	Custom Ontology versus Import

	Practical Applications of SEMEDA
	Modelling Integrated BioDataServer Schemata
	Integration of the RZPD Clone Database
	The RZPD Clone Database
	Connecting the RZPD to SEMEDA

	Discussion
	Comparison with other Systems
	Ontology Editors/Browser
	Database Integration Systems

	Outlook
	Improving Performance using a Database Mirror
	Extensions of SEMEDA
	Database Integration in Other Knowledge Domains

	Conclusion

	Literature

