Internal control for
autonomous open-ended
acquisition of new behaviors

Inna Mikhailova






Dipl.-Ing. Inna Mikhailova

Honda Research Institute Europe GmbH,
Carl-Legien-Strasse 30,

63073 Offenbach / Main, Germany
inna.mikhailova@honda-ri.de

Abdruck der genehmigten Dissertation zur Erlangung des akademischen
Grades Doktor-Ingenieur (Dr.-Ing.). Der Technischen Fakultat der Univer-
sitat Bielefeld am 28.04.2009 vorgelegt von Inna Mikhailova, am 16.07.2009
verteidigt und genehmigt.

Gutachter:
Prof. Dr. Gerhard Sagerer, Universitat Bielefeld
Dr. -Ing. Christian Goerick, Honda Research Institute Europe

Prufungsausschuss:
Prof. Dr. Helge Ritter, Universitat Bielefeld
Prof. Dr. Gerhard Sagerer, Universitat Bielefeld
Dr. -Ing. Christian Goerick, Honda Research Institute Europe
Dr. -Ing. habil. Sven Wachsmuth, Universitat Bielefeld
Dr. -Ing. Stefan Kopp, Universitit Bielefeld

Gedruckt auf alterungsbestandigem Papier nach ISO 9706






Internal control for autonomous
open-ended acquisition of new
behaviors

Der Technischen Fakultat
der Universitat Bielefeld
vorgelegt von

Inna Mikhailova

zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften

Juli, 2009






Acknowledgments

First of all I am grateful to Prof. Edgar Kérner and Andreas Richter for
giving me at HONDA Research Institute a unique opportunity to carry out
a future-oriented, fundamental research with the possibility to validate the
results on a real robot.

I also want to thank the members of the examination board, Prof. Helge
Ritter, Prof. Gerhard Sagerer, Dr. Sven Wachsmuth, and Dr. Stefan Kopp
from Bielefeld University for their time and willingness to review this thesis.

The implementations and experiments carried out in this work are largely
based on the software and the hardware put into practice by my colleagues.
Therefore I would like to thank Mark Dunn, Bram Bolder, Achim Bendig,
Michael Gienger, Benjamin Dittes, Marcus Stein, Antonello Ceravola, Sven
Rebhan, Julian Eggert, Heiko Wersing, Stefan Kirstein, Martin Heracles,
Holger Brandl, Jens Schmiidderich, Martin Heckmann, and Tobias Rode-
mann. [ had a good fortune to meet these excellent team-workers who fill
the everyday life of a researcher with humor, patience, and cooperativeness.

I am profoundly grateful to Prof. von Seelen, Herbert Janssen, Frank
Joublin and Marc Toussaint for the support and fruitful scientific discus-
sions.

My supervisor Dr. Christian Goerick has chosen the best way to guide
my research by showing me the valuable goals and granting the freedom
to decide about the means. I am deeply indebted to Christian who offered
his time and efforts to support my work in all possible ways. Without
his razor-sharp analytic mind I would get lost in the jungles of the details
that accompanies the research and I would be devoured by the self-doubts
without his encouragement.

Finally, I thank my family for their patience and support.



11



Contents

Acknowledgments

1 Introduction and Goals

2 State of the Art

2.1

2.2

2.3

24

Robotics . . . . . . ..o
2.1.1 Development driven by Intelligent Adaptive Curiosity
2.1.2 Intrinsically motivated Reinforcement Learning

2.1.3  Declarative learning with Discrete Event Dynamic Sys-

tems . . ..o
2.1.4 Comparison of developmental processes for different
architectures . . . . . . .. . ... oL
Psychology . . . . . . . .. .o

2.2.1 Drives of child’s development according to Piaget
2.2.2  Principles of development according to Vygodsky
Neurobiology . . . . . . . . ... ... ...
2.3.1 DBrain development in ontogeny and phylogeny . . . .
2.3.2  Models for organization of learning in the brain
SUMMATY . . . . o o o e

3 Design of Developing Systems

3.1
3.2
3.3

3.4

Design of a value system: specific versus unspecific reward
Design of innate behaviors: provide favorable interaction
Design of an abstraction layer: beyond reactivity . . . . ..
3.3.1 Requirements for abstraction layer . . . . ... . ..
3.3.2 Formalization and abstraction types. . . . . . . . ..
3.3.3 Development of the abstraction layer . . . . .. . ..
Summary ... ...

4 Incremental Building of Developing Systems

4.1

Learning in interaction and learning to interact . . . . . ..
4.1.1 Bootstrapping system: saliency-driven gaze selection
4.1.2  Object learning and recognition . . . . . . . . .. ..
4.1.3 Extension by unspecific reward system for behavior

learning . . . . . . ... L
4.1.4 Experimental results . . . .. .. ... ... ... ..
4.1.5 Conclusions . . . . . ... ... Lo

[y

© oo ot

111



Contents

4.2  Exploration of controllability . . . . . . ... .. ... .. .. o4
4.2.1 System instance: autonomous learning of a request
gesture . . . ..o Lo 54
4.2.2  Segmentation of sensorimotor flow into predictive mod-
els with the help of a Gaussian Mixture Model . . . . 56
4.2.3 Experimental results . . . . .. ... ... ... 61
424 Conclusions . . . . . ... ... ... ... ... 64
4.3 Expectation generation: beyond reactivity . . . . ... . .. 65
4.3.1 Experimental setup and system architecture . . . . . 66
4.3.2 Expectation generation and evaluation . . . .. . .. 71
4.3.3 Experimental results . . . . ... ... ... ... .. 7
4.3.4 Analysis: distribution of learning and predesign . . . 78
4.3.5 Conclusions . . . .. ... ... ... ... ..., 80
4.4 SUMMAry . . ... 82
5 Summary and Conclusions 83
List of Used Symbols 87
Bibliography 89

v



1 Introduction and Goals

The humans have a long-lasting dream of understanding intelligence and
creating artificial intelligent machines that would reproduce human abilities.
Initial attempts aimed mainly at systems that can directly solve a specific
task under fixed constraints. This approach targeted primarily such abilities
as logical inference and planning. However, tests on robots acting in the
real world revealed severe problems and led to a shift of the research focus
in Artificial Intelligence in the mid eighties. The scientific community was
forced to reconsider the question which abilities contribute to what is judged
to be intelligent behavior.

Indeed, robots, which are exposed to a huge variety of situations with a
necessity to act in real time, make clear that one of the most amazing ability
of the human brain is the ability to ask new questions and to find tractable
solutions for novel situations. Such autonomous acquisition of a control
which is appropriate for a particular system in a particular environment
is the subject of the research in modern branches of Artificial Intelligence:
Embodied Cognition and Developmental Robotics.

Both Embodied Cognition and Developmental Robotics take as a central
concept the dynamic interaction between the system and its environment.
Developmental Robotics adds to the interaction yet another dynamics, that
of learning and development. Indeed, at the complexity level of the hu-
manoid robots and its interaction with a human it is impossible to preview
and pre-design all necessary behaviors and how they should be controlled
in all possible situations. The expected benefits of artificial development
are a higher degree of adaptivity to unforeseen situations, no necessity to
redesign the system every time the task of the robot changes, and finally
breaking through the limits of the complexity of hand-designed behaviors.

The research in Developmental Robotics has made a big progress in the in-
vestigation of how a system can learn some isolated abilities (for an overview
see [34]). However, the focusing on only one ability often has the following
consequences:

e the design of the system is specific for the desired ability only and can
not be used in a different learning scenario,

e the assumptions concerning the rest of the system are unrealizable
(e.g. assumption that the subsystem gets a perfect, grounded teaching
signal from the rest of the system),
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e the acquired ability is difficult to integrate with other abilities, and
e the learning stops as soon as the desired ability is acquired.

The focus of this work is the design of the development of the system
as a whole instead of the design of the learning in an isolated sub-system.
Two points are particularly important for our approach: we aim at the
autonomous system and task-unspecific, open-ended development. Let us
clarify these two points:

Autonomous system. True autonomy requires the ability of the system
to evaluate the situation according to its own value metric. This evalua-
tion can be implicit (in terms of triggered reaction) or explicit (in terms
of activation of an association to expected value). Important is that this
evaluation assures the survival (self-maintenance) of the creatures. In the
case of robots survival means that the robot does not destroy itself and the
designer does not terminate the acting robot because of ill-behaving.

We aim at robots having a complex behavior in a complex dynamic
environment. For such settings it is impossible for the designer to pre-
view all the situations and pre-design the appropriate detailed evaluations.
The attempts to do so lead to the well-known problems of the GOFAI
(Good-Old-Fashioned-Artificial-Intelligence): “symbol grounding problem”
and “frame-reference problem” [45]. In our work we ask how to design a
core general evaluation and the mechanisms to refine this core evaluation
so as to bootstrap the developmental process. Our aim is that the sys-
tem is complete in the sense that it can autonomously detect and resolve
a mismatch between its behavior and survival purposes. We consider core
evaluation both in implicit form of innate reflexes and explicit form of in-
nate rewards. In this way the bootstrapping provides the system with the
information about both:

e the sort of interaction this particular agent can have in its particular
environmental niche, and

e the particular definition of the value metric.

So that we could speak of a situated system in the sense of [45]: an agent
autonomously acquires information from its perspective in the interaction
with its environment.

Task-unspecific, open-ended development. We already mentioned
at the beginning of this introduction that the majority of machine learning
algorithms use a task-specific learning design. Often the design is very time-
consuming and reduces the part to be learned to a very obvious mapping.
For example, if the sensor data is first subject to complex preprocessing,
it can then happen that the learning design is as time-consuming and as
restrictive as a full design of the behavior itself and the system does not



really gain in adaptivity and autonomy. Another problem of the narrow
task-specific design is that the developmental process stops as soon as the
task is learned.

On the other extreme end we have a learning that is not pre-structured
at all. The designer’s effort is small, but the output is a black-box which
does not generalize neither to slightly different situations nor to the slightly
different problems. Such black-box learning also introduces a typical prob-
lem of distributed representation: the system should care not to destroy
the old information while learning the new one. Our intuition is that such
unstructured learning can not scale up for a complex task and environment.
Therefore our aim is to structure the learning but in a task-unspecific way.

Above we clarified the aim of our work in a descriptive way by explain-
ing our understanding of autonomous, task-unspecific, open-ended develop-
ment. Below we further clarify our aims in a constructive way by formulat-
ing the research questions that we want to answer.

In our work we first ask how to define the system’s internal behavior
evaluation needed for autonomy in a task-unspecific way. The goal is to
have an evaluation that not only allows to solve a specific task in a specific
context but also allows the exploration towards new behaviors. We analyze
then possible structures that can memorize the evaluation of the system-
environment interaction for the purpose of the behavior generation. Based
on the formalization of possible memorization structures we investigate how
existing abilities create a potential for the development of further abilities.
The research objectives listed above reflect our aim at the open-ended task-
unspecific development.

This thesis is organized as follows. Chapter 2 gives an overview of the
research on organization of the development done in robotics, neurobiology
and psychology. In Chapter 3 we discuss which general design principles
for bootstrapping a developing system can be derived from the biological
and psychological insights in order to avoid the problems encountered in
current robotics implementations. Chapter 4 validates the proposed design
principles on the examples of the implementations. Finally, Chapter 5 sum-
marizes the results and gives an outlook on the possible future research
directions.
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The organization of autonomous development is a very general question.
Thus there exists a huge amount of related work done in robotics, psychology
and neurobiology. The observation of the development in psychology and
biology is often reduced to the phenomenological description which does not
necessarily help to discover the process that leads to observed phenomena.
The same is true for robotics, where the mimicking of the development
may reproduce some of the data from experiments with children without
being able to generalize to another experiments. However, there exist also
considerable amount of work that goes beyond the phenomenological level
and aims at understanding the underlying principles. Here we a make a
short overview of the ideas that drive the current interdisciplinary research
on the organization of development.

2.1 Robotics

Developmental robotics is a young research field. It needs first to formalize
used notions and clarify the research aims. By the word ”development”
the community means autonomous acquisition of skills with progressive in-
crease of the task complexity. This process is also referred to as ”ongoing
emergence”. In order to make this notion more precise [47] formulates the
necessary criteria (Table 2.1) to judge whether the robot is developing,.

Below we describe major groups of mechanisms that were proposed in
Development Robotics for creation of ongoing emergence.

The first group of mechanisms guides development by incremental changes
on the morphological level:

e freezing and unfreezing the degrees of freedom of the body control
[33],

e change of the mass of muscles and limbs [57], and
e progressively increasing sensor resolution [40].

This approach is largely supported by the findings in psychology and neu-
robiology. Nevertheless, implementations pursuing the development of the
morphology are currently either very simplistic or do not scale in the direc-
tion of open-endness. We do not have a possibility to influence directly the
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Criterion

Description

1. New skill creation

An agent creates new skills by
utilizing its current environmental
resources, internal state, physical
resources, and by integrating cur-
rent skills from the agents reper-
toire.

2. Incorporation of new skills with
existing skills

These new skills are incorporated
into the agents’ skill repertoire
and form the basis from which
further potential development can
proceed.

3. Autonomous development of
motivations

In a manner similar to its develop-
ment of skills in Criterion 1 and 2,
the robot develops its values and
goals.

4. Bootstrapping of new skills

When the system starts, some
skills rapidly become available.

5. Stability of skills

Skills persist over an interval of
time.

6. Reproducibility

The same system started in simi-
lar initial states in a similar envi-
ronment also displays similar on-
going emergence.

Table 2.1: Criteria for Assessing Robotic Ongoing Emergence, from [47].

robot’s morphology. Still we can use the general principle ”go from coarse
to fine”. In order to guide development we can increase incrementally the

level of control details (see also discussion in Section 2.3).

The second group of mechanisms proposes to guide the development with

the help of a caregiver:

e The caregiver may provide a general support for the learner’s inter-
action with the environment (scaffolding).

the environment (e.g. for the purpose of learning object recognition,
[18] uses the caregiver to bring the object close to the robot so that

the object can be segmented on a disparity map). The caregiver can
also give appropriate opportunities (e.g. orient the object so that it
can be grasped). Finally the caregiver may manually guide the robot
with compliant actuators [24] or trigger by speech command already

acquired skills in order to learn a sequence [66].

e Imitation of human action can guide the robot towards learnable tasks

The caregiver prepares
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faster than autonomous exploration. The most progressive (from the
point of view of autonomy) approaches in imitation allow the system
to recognize the relevant features of the action, [6]. This ability is not
emergent as it is restricted to the choice from several possible pre-
designed features. Still the system can choose autonomously the level
of imitation. It can either learn exactly the trajectory or learn the
action that leads to the recognized goal.

The third group of mechanisms focuses on the statistical learning and
makes use of the Information Theory formalism. The main exploited prin-
ciple here is the fact that the coupling of action back to the sensor intro-
duces a structure in the sensory flow [35]. The authors call it ”principle
of information self-structuring”: the ability of embodied agents to actively
structure their sensory input and to generate statistical regularities in their
sensory and motor channels. A similar idea was used in [28] in order to
enable the system to introduce visual categories by the extraction of the
image parts that are correlated to the own movement. The information-
theoretical framework is often used in combination with evolution, e.g [30].
In this work the authors introduced the term ”empowerment”: agent-centric
quantification of the amount of the control or influence that an agent has and
perceives: the amount of information the agent can transmit to its sensors
by performing a sequence of actions. Maximization of the empowerment
can be used as a drive for the developmental process.

Finally the forth group uses explicitly a value function. A value function
defines a semantics (what is ”good” and "bad”) of the states and actions
and is used to increase the likelihood that a "good” behavior reoccurs in
a similar situation to experienced and evaluated one. The value function
can be based on the sensor measurements, e.g. it can map the red color
to "bad” and green to "good”, or in a more biological example a sweet
taste to "good” and a sour one to "bad” value. In this case it is called
external value function. Alternatively, it can be based on the measurements
generated internally in the system, e.g. such as a prediction error, often used
as a novelty or curiosity reward. The analysis done in [43] shows the full
spectrum of possible classifications of different value function. With respect
to guiding the developmental process we see two classes:

e constant value function can show what has to be learned, e.g [56],

e dynamically changing value function can guide the behavior towards
more complex task, e.g. [41].

The implementations of these approaches interest us the most, because
they consider the system as a whole and not the learning of one isolated
ability as it is often the case for morphology- or caregiver-based approaches.
Further, in difference to the Information-Theory-based approaches, the value-
function-based approaches use more complex test scenarios with non-trivial
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dynamics of the behavior changes. By analyzing these dynamics we can
gain insight on how the design of the initial system influences the resulting
developmental process. For this reason in the following sections we discuss
these approaches in more details.

2.1.1 Development driven by Intelligent Adaptive
Curiosity

The work done in [41] shows to our knowledge the first attempt to design
and to analyze a task-unspecific developmental process. To bootstrap the
development the system is provided with simple motor control primitives.
For example in the experiment with the AIBO-dog the authors used a five
dimensional continuous vector M (¢) with pan/tilt of the head direction,
strength and angle of the leg bash, and crouching depth for biting primitive.
A simple perceptive part S(t) is a vector of sensor values. The pushing force
or drive of the development is the Intelligent Adaptive Curiosity (IAC),
that has a goal to maintain a high learning progress of the system. The
progress is measured as the decrease of the prediction error. The prediction
is done on the base of the segmentation of the sensorimotor space SM(t)
into the regions of low variance of the next sensory input S(¢ + 1). The
system’s policy is to choose an action from a region for which it expects
a maximal learning progress and to choose a random action from time to
time (e-greedy policy in terms of reinforcement learning).

Equipped with this initial design (motor primitives, perceptive input, re-
ward function and algorithm for segmentation of sensorimotor space into
predictive chunks) the system shows a typical, stably reproducible, pattern
of development. It starts with just looking around and finishes with coordi-
nated looking and bashing towards the "bashable” object. In-between the
system concentrates on a particular motor primitive that provides the high-
est learning progress. The most important point about this system is that
the development is task independent. The learning of object affordances
and the coordination of looking with other actions was not explicitly pre-
designed in the system, but emerged from the design of the intrinsic curiosity
reward.

The main limitation of the system is the simplicity of the used represen-
tation. The acquired segmentation is valid only for the static environment
seen during the experiment. It can not generalize to the changes in the
environment. The learnt segmentation is not used directly in the control
architecture, but only for the calculation of the value function. The authors
see the increase of the representational complexity as a necessary step and
propose an extension in the direction of a reinforcement-learning framework
that we describe in the next section.
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2.1.2 Intrinsically motivated Reinforcement Learning

One of the most extensively used frameworks for behavior control and learn-
ing by trial-and-error is the reinforcement learning (RL), [54]. This formal-
ism uses pre-designed action primitives a(t), a state representation s(t), and
a reward function r(¢). What is learned is an approximation of either the
state-value function V' (s(t)) or the action-value function Q(s(t),a(t)). The
first one defines the maximal possible future reward that can be acquired
starting from the state s(t). The second one defines the maximal possible
future reward that can be acquired starting from the state s(t) if the first ex-
ecuted action is a(t). The learning of the action-value function is preferred
to the state-value function because it does not require the search over all
actions that can be performed in every state. If the system knows the state-
value or action-value function, then the action selection is straightforward.
The action is chosen according to a greedy policy. If the state-value func-
tion is known, then a greedy action is the one that appears the best after a
one-step search on the state-value function. If the action-value function is
known, then we can simply take the action that maximizes the action-value
function. As the future return is already calculated into the value functions,
the greedy policy is sufficient to ensure the best reinforcement in the future
without making a search in the tree of all possible action consequences.
This is the main achievement of the reinforcement learning framework.
However the framework also has several limitations:

1. The expected future reward is calculated with the help of an artificial
construct of the discounting rate: reward that lies further in the future
is weighted by a smaller rate.

2. The system can build the policies from initially designed actions, but
can not optimize the primitive actions themselves. The good choice
of the action and state representation is crucial for the success of
reinforcement learning.

3. The reward function has to be designed to match the task. For com-
plex tasks it can become a non-trivial problem.

Recently attempts were made to overcome the last two limitations. In [54]
the authors introduce an intrinsically motivated RL in order not to design
a task-specific reward function. They also use a concept of options in order
to have learnable modules available for behavior organization besides pre-
designed action primitives.

An option is described by an initiation set, a transition probability model,
a termination set, and an option policy. Every time an agent observes a
new salient event it creates an option that achieves this salient event. The
value function can take as an argument the whole option and the agent can
choose to execute an option policy (authors call it ”skill”) in the same way
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as it can choose a primitive action. Thus with the help of options an agent
can plan on a higher abstraction level. The fact that the option achieves
the salient event is not coded into the reward function (as it would be the
case for the policy learning in the classical RL), but into the termination
set. The reward is a combination of extrinsic reward and intrinsic reward.
The extrinsic reward is the reward the system gets for achieving a particular
state as in the classical RL. The intrinsic reward is proportional to the error
in prediction of the salient event done according to the option for this event.
Thus the options as they are used in [54] can be seen as a way to segment
the sensorimotor space into predictor-controller pairs as presented in [41]

The segmentation is based on two facts. First, the internal action-value
function of options takes into account only the extrinsic reward. It means
that the adaptation of the option is independent of the segmentation that
uses predictivity of the salient event. In the course of development the
predictivity changes but it has an effect only on the intrinsic reward used
on the higher level of action/option selection, not on the level of the option
policy. Thus the option-specific controller can be stably learned. Second,
the prediction model of an option is updated only if the action is a greedy
action for this option. Thus the coherence of the predictor-controller pair
is assured.

The authors experimentally show that the usage of options and intrinsic
motivation speeds up the learning of a specific task. ”Speeds up” means
here that the system needs to experience a smaller number of task-specific
rewards to learn the task. The dynamics of the developmental process is
structured by the scenario. Some salient events are easy to produce and
thus occur at earlier stages of the learning. These events become soon
predictable and not reinforcing any more. Other salient events require a
whole sequence of actions to be done and thus such events occur at later
developmental stages.

Although the results are promising, some simplifications used in this ap-
proach are critical. The experiment is done in a simulation only. The action
has no time dynamics, is always successful, and the reaction is directly mea-
surable at the next time-step without measurement noise. Everyone who
worked with a real hardware in the real-time scenario knows that these
assumptions are not realistic.

The design of the learning also has some points to be criticized :

e the decision on what is salient is made by the designer and is innate,
the system can not increase the set of salient events,

e the salient events can play the role of subgoals only for a restricted
class of goals, not always a subgoal can be associated to some salient
event,

e the only possible exploration is the random one, and

10
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e the extrinsic reward defines the option-specific policy and thus it is
not clear what would happen if the system uses several rewards or if
the options are not needed to get the final extrinsic reward.

2.1.3 Declarative learning with Discrete Event Dynamic
Systems

The work described in the previous section show that the pre-designed struc-
ture of behavior organization simplifies the learning. These idea is further
developed in [21]. Pendant to ”options” are the "behavior schema”. Similar
to options, schemas capture three facts:

1. possible transitions between the states with the help of the controllers
(pendant to the option policy),

2. the set of controllers and schemas available to this schema (pendant
to the initial set of an option),

3. and set of absorbing states (similar to the termination set of an op-
tion).

The crucial difference to options is the choice of the state representation.
Instead of a traditional vector of sensor readings the authors use the state of
the error function of controllers. This state can be undefined, converging,
or converged (absorbing state). For example instead of representing the
distance to the object in the state vector s(t) the authors encode the state
of the reach controller. It is undefined if no object is present, it converges if
the distance decreases, and is converged (in absorbing state) if an object is
reached. On this example it becomes clear why we make a parallel between
the initial set of an option and the set of controllers available to schema:
the schema can be initialized whenever for some of its controllers the error
function is defined. We can interpret the set of absorbing states as a pre-
diction for the results of executing a schema. Contrary to an option, which
predicts a single salient event, different absorbing states are possible for a
schema. The state prediction is not used by the framework. The reward
is directly calculated from the tactile sensor and the novelty of the vision
Sensor.

The big advantage with respect to classical RL is that the state abstrac-
tion used in [21] not only effectively reduces the dimension of the state space
but also allows a new way of time representation. Instead of representing
the system’s state one represents the state of the dynamical processes going
on in the system. We refer later to this approach as the Discrete Event
Dynamic Systems (DEDS) schema.

There exist successful DEDS-based implementations of the learning on
different levels, [26]. In [25] the authors learn the policy that combines basic

11
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controllers to a schema. In [46] the authors show how using abstract schema
the system can learn the needed parameters for particular instantiation of
the schema. In [21] the authors focus on the declarative learning, it means
the learning of the better abstract schema. They propose to observe the
entropy of the state-action transition distribution in the current policy. The
high entropy means that the used representations are not enough to model
the environment. In this case a new controller and thus a new state is
introduced. For example in the grasping scenario the robot discovers that
the presence of the human is correlated to the successful touching of the
object that was out of reach (because the human holds the object out). Then
the "localize-reach-grasp” schema is augmented by a ”search” controller to
test the assertion that a human is present. The state space representation
is accordingly augmented by the state of the search controller. In this way
active perception is nicely incorporated in the framework. Unfortunately
different types of learning were not yet integrated into one scenario with
simultaneous learning.

2.1.4 Comparison of developmental processes for different
architectures

By setting a particular control architecture the designer defines how the
system interacts with the environment and what are the free parameters
and free structures that can be learned. In this section we compare the
presented approaches first with regard to the dynamics of interaction and
then with regard to the dynamics of changing knowledge representations.

The diagrams of Figure 2.1 visualize the design properties of different ap-
proaches. All these approaches segment the flow of interaction between the
agent and its environment and use the segments to create policies. In Table
2.2 we summarize the features of different ways to segment the sensorimotor
space. During the developmental process the interaction flow between the
agent and the environment has the following attractors:

e TAC: The sensorimotor region where the separation into smaller re-
gion leads to lower variance of the sensory input at the next time
step.

e Intrinsic-RL: Salient events that are not yet predictable, but are
achievable with a sequence of actions that leads to extrinsic reward.

e DEDS-schema: Absorbing states of controllers that build greedy
policy for the reward function.

With the help of these attractors we can analyze the stability of the
learning:

12
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b)Intrinsic RL ¢)DEDS-schema

Diagrams of different system designs. The arrows describe the
dependencies over the used representations and structures (not
the data flow). The dashed line shows how new structures are
created. a) Intelligent Adaptive Curiosity, [41]. b) Reinforce-
ment learning with intrinsic motivation, [54]. ¢) Declarative
knowledge learning in Discrete Event Dynamic Systems (DEDS)
schema, [21].
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Approach/ IAC Intrinsic RL DEDS-schema
criteria
Segments no yes, guided by | yes
sub-policy the overall ex-
exists? trinsic reward
What defines || stable prediction | salient event | the attractor of
a segment? for S(t+1) from | (sensor  space) | controller
SM(t) as termination
set
System  au- || yes, splits seg- | yes, adds new | yes, adds new
tonomously ment to decrease | segment for not | controller if
adds new | the variance of | predicted salient | the state-
segment? prediction event representation is
not sufficient to
define a stable
policy
What has || the thresholds of | salient events controllers and
to be pre- || allowed predic- error functions
designed? tion variance
Task specific || no depends on gen- | depends on
design? erality of extrin- | generality of
sic reward and | extrinsic reward
salient events and available
controllers

Table 2.2: Sensorimotor segmentation in different learning approaches.

1. Does the system learn the noise? In the sense that if the action-
response pattern is not causal, but random, does the system try to
learn it?

2. What happens if the system makes an observation of an interaction
pattern that contradicts the learnt segmentation?

3. How the learning of the segmentation is decoupled from the learning
of the segment-specific controllers?

To 1) (learning noise): TAC system tries to learn the random interaction
flow only after the causal flow regions are learned. Intrinsic-RL: The random
salient event is always attractive for the system. However, whether the
system executes the option to achieve this event or not depends also on the
extrinsic reward for this salient event. DEDS makes the assumption that
the high entropy is caused not by noise but by missing sensor information or
missing state representation, i.e. missing controller. Thus it tries to learn
and to control the noise.
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To 2) (plasticity /stability): TAC splits the segment further, without con-
sidering a possibility of having observed an outlier. Intrinsic-RL changes
a prediction inside of the option with small learning rate: it averages over
the seen data. DEDS makes a statistical evaluation by calculating the en-
tropy of the state-action transition distribution. Thus the observation is
only important if it affects the policy.

To 3) (decoupled learning): TAC does not learn controllers, only the over-
all policy. Intrinsic-RL allows only one policy to get to the salient event,
which defines the segment. The option’s internal policy is driven by ex-
trinsic reward and is thus completely decoupled from segmentation. DEDS:
The error function of the controllers is pre-designed, not learned. The seg-
mentation is tightly coupled to the controllers because the state is defined
by the controller’s error function.

In sum, all discussed approaches aim at a segmentation of the sensori-
motor flow of interaction between the system and the environment. The
acquired segmentation allows for discretization and the usage of the clas-
sical reinforcement learning for Markov Decision Processes. The choice of
segmentation criteria leads to different stability properties of learning. The
advantage of IAC and Intrinsic-RL is that these approaches do not attempt
to learn to control a noisy environment. The price that they pay for having
such advantage is the low flexibility of control structures.

The TAC and IRL approaches formulate the developmental drive explic-
itly as striving for better prediction. The DEDS approach instead uses
implicitly the necessity to disambiguate the situation as the drive of the
development. Observation of the ambiguity in control allows to resolve the
mismatch between the design of the reward and the initial design of the
state/action representation (see Figure 2.1). This refinement of the repre-
sentations together with the usage of abstract knowledge transfer and the
usage of the controllers superpositions create a high potential for further
success of the DEDS framework.

Although the principles, the guidelines, the constraints, and the require-
ments became more and more clear in the last decades, the implementations
of the systems that display truly autonomous development are rare. The
complexity of practical problems forces researchers either to introduce short-
cuts (predesign the parts that should be learned) or to turn to simple toy
problems. The fundamental principles of behavior organization have still to
be understood. For this reason the researchers in robotics are looking for
inspiration in psychology and neurobiology.

2.2 Psychology

The two most prominent psychologists who investigated the drives and
mechanisms of the child’s development were Piaget and Vygodsky.
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2.2.1 Drives of child’s development according to Piaget

Piaget described behavior organization with the help of the notions ”schema”
and ”operation”. A schema is an abstraction of a stimulus-reaction asso-
ciation. An operation is an action on higher mental level, e.g. mental
reflection or logical analysis. Piaget postulates that the schemas develop
through assimilation and accommodation. Assimilation is an interpretation
of an unknown stimulus via a known schema. For example a child knows
the schema to suck on the mother’s bosom and later assimilates the schema
to suck on a bottle. Accommodation is a change of an existing schema. For
example as the child changes the sucking to drinking. Acquisition of the
concept of "wind” gives another, more abstract example of assimilation and
accommodation. The child questioned in the Piaget’s study explained that
the wind comes from waving trees. Here the child assimilates the known
schema ”"waving hand makes wind”. Confronted with the fact that there
also exists wind on the sea, the child needs to change the schema of causal
relations, i.e. to make accommodation. Piaget postulated that the devel-
opmental drive is equilibration - a drive to obtain a balance between the
schemas and the environment. According to Piaget the development takes
place in four stages described in Table 2.3.

Stage Description
Sensorimotor
(Birth-2 years)

Egocentric; acquires pragmatic intelligence;
object permanence, symbolic schemas

Pre-operational

(2-7 years) Still egocentric; uses symbols but yet no hi-

erarchies (no class inclusion)

Concrete operational

(7-11 years) Can think logically about objects and events.

Decentration possible (more than one aspect,
no visual dominance)

Formal operational

(11 years and up) Can think logically about abstract proposi-

tions and test hypotheses systematically. Be-
comes concerned with the hypothetical, the
future, and ideological problems.

Table 2.3: Developmental stages according to Piaget.

The principle of equilibration can explain the acquisition of a consistent
knowledge base represented by schemas. However Piaget’s work did not pay
enough attention to the question how the schemas are used for behavior
control. Also in the case of the mental operations Piaget was interested in
logical reasoning for building a consistent world model, but not for behavior
control. Nowadays the researchers in robotics are aware of the fact that
construction of the world-model is not sufficient for intelligent behavior in

16



2.2 Psychology

dynamic environments. From this perspective it is clear that the essential
question of the development: ”"How does the acquired knowledge enhance
the control of the behavior” was not sufficiently well approached by Piaget’s
theory. That is why it does not provide a sufficient explanation for the
transition from sensorimotor stage to symbolic stages.

2.2.2 Principles of development according to Vygodsky

The theory of Piaget is well known. The concepts of schemas and devel-
opmental stages found its adepts in the robotic community ([2], [32]). The
work of Vygodsky is less known. It is mainly reduced to the concepts of
social learning and the zone of proximal development. Here we would like
to discuss less known ideas of Vygodsky on what he called "the system of
the higher psychological /mental functions” [59].

While Piaget described what a child can or cannot do at a particular age,
Vygodsky was interested in transition from ”cannot” to "can”. To explain
the transition from sensorimotor to symbolic stages Vygodsky introduced
the concept of mediation.

Mediation can be shortly described as breaking the entity of a stimulus-
response loop by introducing a symbol to represent a possible answer. In
this process the lower ("natural” in Vygodsky’s words) layer of established
stimulus-response reaction is rewired by the higher layers. While the selec-
tion on the lower level is the ”winning the access to the motor space”, the
selection on the higher level is the ”winning the access to closing a particular
stimulus-action loop”.

The role of psychological tools for the control of the behavior is to in-
troduce a media (symbols) to support the selection process. Vygodsky de-
scribes an experiment that shows the transition of the control from a natural
to a mediated level. In this experiment a child is asked to remember which
piano tab to push for shown stimuli. If the child solves the problem directly,
without any tools for memorization, then the solution is coded directly into
the sensorimotor loops. One observed that if the child is uncertain, then it
moves its hand back and forth before it could decide which tab to push. If
the child uses helping pictures that it can attach to the tabs, then there is
no "testing” hand movement. The selection happens on the level of sym-
bolic associations between the shown and the attached pictures, not on the
motor level. The motor system is only executing the action chosen on the
symbolic level.

The above example pin-points the main idea: the symbols are not the
tools for building a world model, but the tools for behavior control. Vygod-
sky sees also the speech as a psychological control tool that is first applied
to the child from outside by the parents, then applied by the child to par-
ents and finally applied by the child to its own planning routines, first as
”external speech” (children’s commentary to what they are doing) and next
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as mental speech - thought.

Consequently Vygodsky characterizes the developmental process as a
change of used control structures: ”Perestrojka of needs, goals, values con-
stitutes the basis of developmental stages”. He proposes the same stages
for development of different psychological tools (see Table 2.4). In contrast
to Piaget these stages are not coupled to a particular age because they cor-
respond to functional distinction and not to phenomenological description.
Vygodsky’s stages characterize the same ’internalization’ process applicable
to different abilities at a different age.

Stage Counting Writing Speech
Natural Counting ges- | Gesture  with | speech as a tool
(me- tures without | a pen (pierce | to manipulate
chanical knowing  the | to draw a | other (mama
repetition) | result mosquito) means —mama
put me up)
External Counting with | Drawing = | egocentric  or
(natural the help of fin- | object (turn a | private speech
function gers page to see the | (counting 1-2-
but related back of object) | 3-Go! in order
to a goal) to jump)
Internal Symbolic Symbolic writ- | Inner  speech
abstraction || counting with- | ing in order to | linked to con-
out fingers remember cepts and
thoughts used
for self-control

Table 2.4: Developmental stages for higher psychological functions.

Since Piaget and Vygodsky the developmental psychology has become
a separate strong branch of psychology. Much interesting work has been
done in specific domains of development of language and gestures, walking,
and imitation. However we have to be careful about using the results from
psychology. Psychology often aims at describing and modeling observed
data. Unfortunately a phenomenological behavior description gives often a
wrong idea about the processes that generate the observed behavior.

In the next section we look at the intelligent system not from outside but
from inside with the help of the research done in neurobiology.

2.3 Neurobiology

Artificial systems can profit from the findings in neurobiology on different
levels. One can take inspiration from the brain in order to improve the
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computer chips and the hardware. One can adapt the principles of low-level
information processing from the spiking neurons and cortical columns. As
we are interested in system aspects, we will consider the level of integration
of different brain subsystems to a developing system.

2.3.1 Brain development in ontogeny and phylogeny

The embryo development (ontogeny) undergoes similar stages as evolution
(phylogeny). This fact inspired the researchers to ask if the mental devel-
opment on the life-time span also follows the evolutionary changes in the
brain.

An attempt to compare a child directly with our ancestors, human-like
apes, shows that the similarities are only shallow. The same observable
behavior of a child and an ape is often produced by functionally different
control mechanisms, [59]. Both a child and an ape can learn to use a stick
to get an inaccessible object. But the ape learns only if the stick and the
object are in the same field of view, whereas the child can switch the gaze
direction and use the stick which lies far apart.

Much more useful is the comparison of developmental and evolutionary
processes directly on characteristics of the brain architecture [53]. It has
been shown indeed [49] that the older cortical areas have adult-like pat-
terns of responsiveness earlier than evolutionary younger parts. The older
cortical regions (hippocampical cortex and paleocortex) are less special-
ized: they have lower resolution in the representation of the sensory input
and get inputs from all modalities. Whereas the younger cortical areas
(primary motor and sensory areas) are more detailed and devoted to one
particular modality. Basing on these observations authors in [53] propose
to bootstrap the incremental development with the help of an ”evolutionary
older” brain-part. This part provides 1)fast action-perception loop without
fine resolution and 2)control and coordination of "newer” specialized sensor
processing.

Strikingly, most approaches in developmental robotics follow exactly the
opposite way. They start with specific behavior with high resolution on the
motor and sensory side and learn abstract concepts and associations that
fuse different sensory modalities.

2.3.2 Models for organization of learning in the brain

The above stated hypothesis about the propagation of the learning from
general to specialized control is supported by existing models for organiza-
tion of the learning in the brain, e.g. Haruno-Kawato’s heterarchical model
for reinforcement learning in cortico-striatal loops [22].

According to this model, in the early stage the learning uses the coarse de-
scription of the situation (limbic and associative part of the cortico-striatal
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loop). Later stages of the learning focus on more detailed descriptions in
the motor part of cortico-striatal loops. The advantage of this model is that
the gradual propagation of prediction error facilitates the learning.

Next we describe another point where neurobiological models are consid-
erably different from the robotics applications. Most approaches in devel-
opmental robotics support only one type of learning in only one part of the
system. In contrast, neurobiology shows that in the brain there are multiple
structures that are all learning in qualitatively different ways. Doya’s model
[14] proposes the following mapping between brain structures and the type
of learning, see Figure 2.2:

e cerebellum - supervised learning of internal models of the world;

e basal ganglia - reinforcement learning of action selection by the eval-
uation of environmental states;

e cerebral cortex - unsupervised learning of statistically efficient repre-
sentation of the environment and the system.

Doya focuses on the reinforcement learning of the action selection in basal
ganglia. The working hypothesis is that the part of this brain structure,
the striatum, encodes the action value, i.e. the expected future reward if
executing this action, whereas the neuromodulator dopamine encodes the
error of reward prediction, [15]. This error is used for updating of the
value function in accordance to the classical reinforcement learning theory.
The dynamics of the dopamine release was shown to be modeled sufficiently
good by this theory. Although the hypothesis about the role of dopamine in
action value learning is well accepted, it is worth to mention that the value
or reward is coded by several areas in the brain and the role of dopamine
can vary across this different areas [63].

The brain organization is much too complex that we could go into details
of the reward processing by the brain. We would like however to emphasize
some features which we consider as important for us.

First of all, the neurobiologists rarely speak about reward representation
in one isolated area, but often about processing in loops. For example one of
the reward related loops, called limbic circuit, [1], contains amongst others
the hypothalamus, which participates in homeostatic control of the body
functioning; the amygdala, which is a crucial structure for signaling the
input relevance needed in conditional learning; the ventral part of the basal
ganglia, which are thought to control the actions selection; the thalamus,
which gates the input to the cortex; and several cortical regions, which
participate in the storage of the experience in an appropriate form. If we
want to learn from this feature of the brain architecture, then we have to a
allow coupled dynamics of changing needs, changing behavior and changing
internal representations and focus on coupling between these parts.
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Figure 2.2: Multiple learning structures, adapted from [15]. The parts of
the basal ganglia (NAcc - nucleus accumbens, DLS - dorsolateral
striatum) that learns different types of behavior communicate
mainly over a spiral interconnections to midbrain and thalamo-
cortical loops.

Second, the different areas that participate in the reward representation
and processing can be correlated with different levels of behavior complexity
but there is no explicit hierarchy between these levels. For example one part
of the basal ganglia, nucleus accumbens, is crucial for the conditional learn-
ing, while another part, dorsolateral striatum is crucial for the instrumental
learning [63]. The interaction between these parts occurs rather over spiral
connections between the basal ganglia and midbrain as well as the thalamo-
cortical loops, not over direct communication, see Figure 2.2. This structure
inspires us to use a design with parallel multiple reward representations and
parallel control loops, rather than a strict behavior hierarchy.

A final issue about reward is the following: the brain researchers differ-
entiate between ’liking’ or hedonic pleasure as mediated by opiodes and
hedonic circuit, and 'wanting’ or predictive and motivational signals as me-
diated by dopamine [5, 63]. This fact supports the assumption that there
exists an initial pre-designed reward system together with a motivational
system for learning to refine the initial value system, [31].
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2.4 Summary

In this chapter we discussed existing approaches that address the dynamics
of developmental process

e as guided by incremental changes on the morphological level (matu-
ration of sensors and actuators),

e as guided by the social interaction with a teacher,

e as guided by the improvement of interaction with environment from
information-theoretical point of view,

e and as guided by the value function (by extrinsic reward or by changes
in the intrinsic reward)

These mechanisms have been observed in psychology (section 2.2) and have
been proved to be useful in technical implementations (section 2.1). Still
there exists no artificial system that exhibits truly open-ended development.
It means no system that would continuously acquire new skills (physical or
mental) and integrate them with existing skills (see criteria for ongoing
emergence in table 2.1).

In our analysis of existing approaches (section 2.1.4) we observed that the
critical step in the design of the developing system is the decision how the
segmentation of the sensorimotor space is done. The purpose of the segmen-
tation is to introduce abstraction units (prediction model, option, schema)
used for non-reactive control, e.g. for planning. On one extreme end we
have the high adaptivity of the units without true abstraction and support
of the hierarchy building (IAC approach). While on the other extreme we
have an architecture that allows for a hierarchy at the price of no possibil-
ity to refine the basic elements (IRL approach). The DEDS approach has
an advantage of allowing for both units refinement and hierarchy. Another
big advantage of this approach is the coupling of the reactive controllers
with planning. Unfortunately, as every reinforcement learning approach,
it optimizes only one specific reward and it is not clear if it can lead to a
task-unspecific open-ended development.

Exactly these two requirements: being task-unspecific and open-ended
have a high priority in our research on developing systems. For this reason
we propose to change the view-point. We do not fix a particular task as the
end-point and ask how the system could develop to this point. Instead we
look at the system as a starting point and ask how we have to design it in
the way that existing abilities support further development of the system.
In other words we ask what is a good system design for bootstrapping of
the development. In our work we will make an attempt to follow the neu-
robiological principles discussed in Section 2.3 and use the multiple layers
of the control architecture, the propagation of the learning from general to
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specific behavior, and the multiple structures for the learning of regularities
in system-environment interaction.
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The developmental approach supposes that the innate bootstrapping con-
sists at least of a self-motivation or value system, an abstraction and antic-
ipation system, as well as innate behaviors, see e.g. [34], [8] and Figure 2.1.
The design of these parts constraints what the system can learn and what
the resulting behavior will be. For this reason we devote this chapter to
design questions before in the next chapter we move on to realizations.

We discuss first how we should choose the rewards used in the value sys-
tem so that the developmental process does not stagnate. We consider then
what we have to take into account in implementation of innate behaviors
if we want that they favor the developmental process. Finally, we formu-
late the requirements on the abstraction system. Here again we focus our
attention on the open-endness of the development. We ask how the sys-
tem uses already present abilities for the acquisition of new ones. This is
different from the question "how the abilities would emerge from tabula
rasa” discussed in earlier times of Developmental Robotics with a radical
"no pre-design” philosophy. The idea of incremental building helps not only
to structure the research. It also emphasizes that we want that ”learning”
becomes ”development”, in the sense that not only quantitative knowledge
accumulation in one subsystem is possible, but also qualitative changes in
the overall system behavior, e.g. extension from reactive behavior to expec-
tation driven behavior.

3.1 Design of a value system: specific versus
unspecific reward

In the literature several proposals for the design of reward have been made
varying from very sensor-close and specific, e.g. red objects, [56], to very
sensor-far and unspecific, e.g. learning progress, [42], novelty and predictabil-
ity, [36].

The specific rewards are easy to implement, but they can lead to severe
symbol grounding problems. Indeed, the value function is the last mean
for the system to self-monitor its behavior. Thus the 'recognition’ errors
in measurement of the value function are fatal. Still such errors can easily
happen, similar to object recognition errors, if the designer reduces the
reward to one source and one context only. For example in [51] a “social
reward” is given if the human comes closer to the robot. However, in a
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natural environment the human could come closer to the robot because the
human is angry and not because he wants to reward the robot.

An additional issue of specific reward is its locality. It rewards the end-
point without rewarding the way towards it. Thus it can not help to find
a temporary extended strategy. For example associating red objects with
reward does not help to grasp a red object from an inaccessible position.

In contrast, unspecific rewards cover large parts of the behavior space,
it means the space spanned by all possible sensory inputs and all possible
motor commands available for chosen hardware. The unspecific rewards can
provide the evaluation of unknown situations not foreseen by the designer.
Such an evaluation can considerably speed up the exploration compared
to a pure random search. For example, the work presented in [42] uses
the learning progress as an unspecific reward. The results of this approach
confirm that specific behaviors can emerge from unspecific reward.

Except for qualitative reviews of approaches in developmental robotics,
e.g. [34], there exists yet no well-established methodology for comparing
different designs. We propose a simple empirical consideration which can
help to design a motivational system.

It makes no difference whether one pre-designs some reactive, innate,
task-specific solution or a self-motivation system if the reward chosen for
motivation occurs only in the situations which correspond to this very task-
specific solution.

In other words: with the introduction of the self-motivation system one
can gain more adaptivity only if the reward used in this system covers
more possible patterns of system-environment interaction, than the patterns
produced by reactive behavior.

From the point of view of adaptation it means that the system can adapt
if it can go back to the general evaluation (general description of “good”
and “bad”) once the specific evaluation (specific strategy) turns out to be
wrong.

Consequently, for our goal of increasing adaptivity of a reactive system
unspecific, general, grounded rewards are a better design choice. This is
validated by an experiment that will be described in section 4.1. It does
not necessarily mean that there is no need for specific rewards, it only means
that they are probably playing a different role, e.g. for conditioning.

We would like to make a short notice on the influence of the value sys-
tem on the control system. The classical reinforcement learning considers
only one reward source and the aim of the control system is to optimize the
actions as to maximize this reward. However, a complex system such as a
robot interacting with a human, has to satisfy multiple, conflicting needs.
While one variable is driven to an optimal value, another variable is neces-
sarily pushed out of the optimum. Another cause of unavoidable deviations
from an optimum is the fact that in many cases the reward comes only with
a time delay. Thus we need more flexible control than a classical control to
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a) Cost function b) Cost function

Cptimal value parameter Acceptable range  parameter

Figure 3.1: Optimal parameter setting versus homeostatic control. a) The
system is controlled to a fixed set-point where the costs are
minimal. b) Homeostasis: the system is allowed to take a range
of states as long as the average costs are not too high.

a stable set-point or an optimal value, see Figure 3.1.

We favor the idea of homeostatic control in the sense of Ashby [23]:
"Homeostasis is a process by which the certain variables, the essential vari-
ables, remain within given limits.” In our case the variable to keep within
given limits is the average amount of the reward. The system is allowed to
execute not optimal actions, but it should not be the case that the system
does not get a particular reward for a long time period. In order to monitor
the average reward and to provide this information to the action selection
mechanism we introduce the vector of needs N (t). They grow in absence

of rewards R(t) and decrease in presence of rewards. This coupling can be
modeled for example by following dynamic equation:

TndN /dt = N(t). (éo - é(t)) ;

where .x means component-wise multiplication, the positive time constant
Ty regulates the rate of changes in N and the constant vector Ry is the
desired reward average. Can such a dynamics have stable solutions other
than a constant need level with a constant reward I-?(t) = Ry? The answer is
yes. For example, if the dynamics of the reward acquisition can be modeled
by the equation TrdR/dt = —R(t).%(No—W N (t)) then the resulting system

—

mvdN/dt = N(t). (Ro— R(1))
rrdRJdt = —R(t). % (Ny — WN(1))

is a well-known Lotka-Volterra system that has been proved to have a stable
periodic solution, see [64]. In [38] we analyze also other possibilities to model
a homeostatic process by means of a dynamic system. The assumption that
we can model the dynamics of the reward acquisition is surely unrealistic.
But in this way we can see that the homeostatic control allows not only
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set-point solutions but also stable periodical solutions. In Section 3.3 we
discuss in more detail how the mapping from the needs to the system’s
behavior can be organized.

3.2 Design of innate behaviors: provide
favorable interaction

The evaluation of the situation can be encoded into the system in two ways.
Above we discussed an explicit way - coding of the reward signal. An im-
plicit way is to directly encode the reaction to the situation. A reader famil-
iar with Braitenberg’s vehicles, [10], can use his example for understanding
this point: your can directly code your robot to turn towards the light, with
no explicit coding of reward coming from the light. In the earlier times of
Developmental Robotics the researchers argued against the pre-design per-
se. In contrast, we support the idea of using known solutions whenever it is
possible to encode them as fast, stable, and general reactive behaviors. The
argument that the engineers can only roughly estimate the parameters in
use (e.g. geometry of the robot) does not hold, because nowadays a num-
ber of algorithms exists for the parameter estimation. The implementation
of higher level learning, in the sense of open-ended development, is only
obstructed by argumentation against the pre-design of innate behaviors.

From the developmental perspective the goal of simple innate behaviors
is to close the loop and to bootstrap the interaction with the environment.
This interaction should be robust in order to enable stable observations.
The tracking of an object, for example, stabilizes the position of the object
in the center of the image, so that the system can stably learn the object’s
visual properties (see Section 4.1 for a corresponding experiment).

Further we require that the bootstrapping involves the interaction with a
human. The system should use a simple strategy that can motivate a human
to provide a learnable interaction. Similar to the compliance control, that
uses adaptiveness instead of perfect position control, the system should
use the intelligence of the human that helps to fulfill the (may be even not
intended) goal. We give an example below in order to clarify this point. If we
bootstrap the system with grasping only at the accessible positions we can
maybe optimize the grasping parameters. But if we bootstrap the system
with erroneous grasping towards all objects, even those positioned far
away, the system can learn not only to grasp, but also to request an object
because the action of the system provokes the help of the user. For successful
learning from interaction the system has to care about two aspects. First,
it has to provoke a stable reaction of the user. Second, it has to make its
internal states observable for the user so that he can interfere and correct
the learning process. In the sections 4.2 and 4.3 we give the examples of
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implementations that actively use the user’.

Some approaches in developmental robotics, e.g. [42], design the initial
behaviors as 'open-loops’, i.e. the parameters of the behavior are set by a
higher instance. We favor the closed-loop type, so that the innate behavior
is an autonomous controller. For example, instead of the ability to move the
gaze at a commanded position we start with the ability to track an object.
Such a design has two advantages: first, the overall system architecture is
more stable as the reactive layer can still act in absence of the higher layers;
second this design prevents an artificial separation of ’action’ from ’per-
ception’. Instead we pursue the detachment of the higher mental concepts
from the initially given sensorimotor loop in the course of development. Still
for the generation of new behaviors we need direct access to the controllers.
Thus we require that reactive behaviors have a continuous parameterization
or accessible neighborhood that can be used for exploration.

3.3 Design of an abstraction layer: beyond
reactivity

In the last two sections we discussed a reactive system that bootstraps the
interaction with the environment on a fast time-scale and the value system
that monitors the reward on a slow time-scale. With these two systems we
create a basis for development of the abstraction layer on an intermediate
time-scale that would allow a transition from a stimulus driven reaction to
a stimulus expecting behavior.

3.3.1 Requirements for abstraction layer

Obviously the design of the abstraction layer and its building blocks (aka
action and perception primitives, schemas, mental concepts, etc.) is one
of the hardest problems in the current research on cognitive systems. This
question can not be tackled in a sufficiently deep way within the scope
of this work. What can be done as a first step of the design process is
the clarification of goals and resulting requirements. While introducing an
abstraction layer over a reactive one we request that:

1. The abstraction layer is not blocking the reactive layer.

One aim of incremental system building is to guarantee the robustness
of the system. In the case of failure of a later added layer, the older
layers have to be allowed to take over the control. There exist different
possibilities to implement the take-over. For example, both layers can
emit the commands with different priorities, so that the command
with the highest priority inhibits all the other ones. With such a
design, if one command is not emitted at all, this does not block
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another commands. Quite a different design possibility is to make
first the decision which layer emits the command and then trigger the
processing only in the selected layer. In this case, if the chosen layer
is not able to emit the command, then no command can be emitted
at all and the whole system is blocked. On these two examples we
see the difference between inhibition and blocking. Hence, we have
to carefully design the interaction between abstraction and reactive
layers with respect to blocking.

. There is autonomy to inhibit reactive actions.

As explained above, this requirement does not contradict the first
one. The abstraction layer is introduced in order to refine the initial
reactive behavior with the help of learning. The enhanced behavior
may require the inhibition of the innate reactions. An example of such
reflex inhibition is provided by experiments with frogs, which are one
of the simplest animals with a cortex. The frog is shown a black dot
which looks like a fly. First the frog keeps on jumping to the dot, but
then it can inhibit this unsuccessful reactive behavior.

. There is autonomy to have a competition of multiple triggers.

A reactive innate behavior is a fixed map that assigns to each trigger
only one action. An abstraction layer represents a qualitative advan-
tage only if it introduces new degrees of freedom and allows to choose
which trigger can activate which action.

. There is autonomy to act in absence of reactive actions triggers.

Apart of inhibition of the innate reactions and the freedom to choose
dynamically the triggers of the reactions, the behavior enhancement
may require behaviors that can not be implemented with the help of
sensory triggering. The exploratory behavior or searching are exam-
ples therefore.

. There is an interface to the external commands.

Since we aim at a robot acting in a human environment, it is natural
to require that the human should be able to influence the robot’s
behavior by commands. This requirement has to be made explicit
because it has direct consequences for the design of the system.

. An abstraction can fuse information over time and over sensory chan-

nels.

This requirement is a simple consequence of the fact that detection of
correlations in time or between different sensory channels is the source
of learning and robust processing of the abstractions of the sensory
information.
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7. An abstraction allows a generalization for evaluation of unknown be-
haviors and intelligent exploration.

The memorization of the experience in the abstraction layer can be
subject to different optimization criteria. For example minimization of
memory resources, minimization of the time needed for memory recall,
etc. One of our aims is the qualitative enhancement of the behavior
both in terms of efficient execution and efficient learning. For this
reason we explicitly formulate the requirement on the generalization
ability.

8. The system is suited to limited reaction time and memory resources.

We aim at real-world applications running on autonomous robots. The
abstraction layer introduces internal states and models that can get
quickly out of sync with the changing real world. Thus the reaction
time is limited, otherwise the action selection based on the old mea-
surement becomes outdated. Not only the processing time, but also
the memory consumption has to be carefully monitored, even though
in the research phase we can use external computers for memorization
and processing, hoping that in the future the hardware will be further
improved so that we can do all processing on-board.

9. Processing can be reduced to a minimum for speed up in critical
phases. It can be extended to parallel consideration of multiple pos-
sibilities in a phase of search or exploration of behavior.

This requirement specifies one of the possible ways to assure fast re-
actions of the system. In this form it can be easier translated into
design features.

10. An active testing/grounding procedure is available for created abstrac-
tions.

The ability to create abstraction (aka mental concepts, schemas, per-
ceptive/motor primitive etc.) relies on the ability to detect correla-
tions that are relevant with respect to value function, e.g. correlations
in time, in space, or over different sensory channels. We require that
together with memorization of these correlations in form of abstrac-
tions, the system memorizes also the active procedure how it can
reactivate the observation of these correlations. This procedure can
be seen as testing or hypothesis resolution that is a necessary part of
the information processing in the real-word environment.

One may notice that we do not include any requirements implied by
planning, sequencing, and memorization, as these aspects are not in focus
of our work. Indeed, we aim at the very first steps towards anticipation,
not at a perfect planning system.
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3.3.2 Formalization and abstraction types

In this section we take a very general view on the behavior generation in
order to analyze the existing possibilities to introduce an abstraction layer.

Let us denote a reactive layer by B". A reactive layer consists of a num-
ber of simple local controllers L;, i € [1,..., N"] and a competitive selection
mechanism D (arbiter) in form of a non-linear dynamical system [4, 9]. Ev-
ery controller implements a certain behavior as a mapping W, from sensory
input S(t), including both external (camera, touch, audio, etc.) and in-
ternal (posture, forces, etc.) sensors, to the motor command M (t). These
controllers are local in the sense that they are independent of other con-
trollers and get from sensory input all the information they need in order
to produce an output. The behavior selection is solely based on a fitness
value F; that is provided by each controller. We denote by N?® the subset
of the indexes of the selected controllers. In sum

B = {Li:S(t)%:M(t),ie [,...,N"], D: Fy(t) — N*, N* C [1,...,N”]}.

The system that occupies a simple ecological niche can evolutionary adapt
the reactive layer as to ensure its survival. However an agent within a
complex ecological niche needs an explicit reward monitoring.

Let us denote by R(t) the innate rewards and by N(¢) the corresponding
needs of the system as described in Section 3.1. The extension of a reactive
layer by an abstraction layer B* introduces an autonomy of the system from
the immediate action triggering encoded in the reactive layer. The abstrac-
tion layer aims at an explicit regulation of the system needs in difference to
the reactive layer that implements an implicit regulation. From a general
point of view an abstraction layer implements a mapping from the needs to
the motor commands:

B — {Aj L N(E) 2 M(t), j € [1,...,N“]}.

There exist different possibilities of interfacing the motor commands. An
abstraction layer can add to a reactive layer a new controller that is driven
exclusively by the abstraction layer or it can modulate a reactive controller:

we ,
Wiewr =S Wi ielP c,...,N"], je[l,..., N,
where I/ denotes a subset of indexes of the modified controllers. The clas-
sical reinforcement learning (RL) formalism is the realization of the first
possibility (restricted to one need only) whereas more advanced versions of
RL, e.g. [58] or the hybrid architectures e.g. [21] also use the modulation of
the local controllers.

There exist also different possibilities to let the value system influence the

building of the abstraction layer. We distinguish the following three ways:
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1. evaluation of the system-environment interaction with respect to the
reward,

2. optimization of the reward,
3. and optimization of internal processing on the abstraction layer.

In the following we discuss these ways in more details.

Creation of abstractions by structuring of the system-environment
interaction with respect to reward

We consider first how the system can use the reward signal to structure
its observations O. The system can observe its current state in sensorimo-
tor space as well as causalities either between time-delayed measurements
(predictive model) or between measurements in different channels (associa-
tive model). Both type of causalities can be formalized as expectations
S(t+ At) ~ E(S(t), M(t)) where E is the expectation model because the
usage of an associative model can be seen as a process in time. In sum
the observations are O = {S(t), M(t), S(t + At) — E(S(t),M(t))}. As the
observation space is huge, the most implementations aim at discretization
of this space: O =~ Ufj 41 Og4, where Oy are clusters in one of described above
spaces (sensory, motor, sensorimotor, or causality) and N¢ is the number
of necessary clusters. This is how the abstractions, i.e. action or percep-
tion primitives, come into the play. The aim of the clustering is to allow
to memorize the evaluation of the system-environment interaction and use
this information for behavior generation. The approaches in the vision do-
main focus on the processes of clustering of the sensory space that lead
to robust differentiation with regard to a metric defined by value function
[31]. Whereas the classical RL let the designer decide on the discretization

k=1
that it is appropriate for the learning of value function. As the RL deals
with one-dimensional reward only, there exists no necessity to discretize the
reward space. In simple cases the RL can also skip the discretization of
the observation space, e.g. [50], [58], by solving the problem with only one
adaptive control algorithm without introducing the abstractions.

We already mentioned that the structure of appropriate knowledge repre-
sentation is one of the hardest problems in the actual research on cognitive
systems. Here we do not ask what is the best way of knowledge represen-
tation, instead we make an overview on different possibilities seen from the
perspective of a complete system that monitors its reward acquisition.

How can the memorized evaluation of the system-environment interaction
be used for the behavior generation? Generally speaking, there exist two

Ng Ng
0= { U Sk, U Al} with discrete sensory states Sy and actions A;, hoping
=1
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qualitatively different ways for behavior generation: either using a fixed
policy or online inference and planning.

In the first case, which can be compared to habits, the action selection
is done in one step without using explicit models for future prediction. For
example, in the classical model-free RL the system chooses the action that
directly maximizes the action-value function. Although there is no explicit
future prediction, still the future is taken into account as the action-value
function memorizes the maximum expected reward that can be achieved
if starting with a particular action. This standard maximization approach
can be replaced by ranking of memory according to the current need. This
ranking can be applied to any type of observations: sensory, motor, or
expectation-based. If we rank the sensory input, then the mapping W of
the abstraction layer, introduced on page 32, can act as a filter on the reac-
tive layer so that only the relevant sensory input can trigger an action. In
the case of memorized motor commands the system can directly derive the
priorities of memorized commands from the ranking. In the case of memo-
rized expectations, the mapping W' can activate the motor command that
lets the system re-experience the situation where the expectation E(S(t))
is true. Chapter 4 will give the examples of implementations for some of
described above mechanisms for behavior generation.

Our work does not consider explicit inference and planning. Still we would
like to make a short comment on this second way of using memorization
for behavior generation. In this case the system first uses the memorized
evaluation in order to generate a valuable goal for the current need state.
For example, from evaluation of red color as the ’good’ one it sets the
position of the red object as the target. In the second step it has to use
prediction models and inverse models in order to generate a sequence of
actions leading to the target. The planning steps may be time consuming
and the action selection may be slower compared to the described above
model-free mechanism of habits. However the model-based approach has
an important advantage: as it separates the creation of goals and the policy
search, it can adapt faster to the change of valuable goals. Indeed if only
the goal is shifted, the predictive and inverse models for the actions need
not to be re-learned. The inference and planning can be directly applied
and find the new policy for the changed goal In contrast, in the case of
memorized policy or habit, all the mappings have to be re-learned for the
changed goal.

The decomposition of the system into the subsystems according to the re-
ward metrics conceals the danger of an artificial credit assignment. Indeed,
it is dangerous to give the credit to one subsystem only because the behavior
of the system is the product of the activity of all subsystems. Considering
our formalization of the abstraction layer with respect to this problem we
would like to emphasize two points. First point is that the mappings real-
ized by the abstraction layer are not exclusive. In contrast, they may run
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in parallel and thus they can share the credit. Second, we mentioned that
instead of a central instance that judges what is the best mapping, one can
use the ranking and prioritization. In this case the credit is distributed both
in the monitoring and decision phases. Still we are aware of the fact that we
may face the credit assignment problem as our system gets more complex.

Optimization of abstractions with respect to reward

A second qualitatively different way how the reward can influence the build-
ing of abstractions is the optimization [22]. The authors assume that there
exists an initial clustering of the sensorimotor flow into the predictive mod-
els

S(t+1) = E«S(t),M(t)),de1,...,NY,

where the S (t + 1) is the prediction of the sensory input and the N¢ is the
number of the models.

Each model is given the responsibility value which is inverse proportional
to the prediction error of the model. The model with the smallest error
thus has the highest responsibility. Every predictive model has its corre-
sponding inverse model that is used for calculation of the action that leads
to the maximal reward. The action proposals are weighted by the models
responsibilities and summed up to the final action that is then executed.
The weighted sum is a tractable operation in [22] because the used examples
are the trajectory and the force control for the arm, and not a higher level
of action description where summing up would make no sense. After the
action is executed, the prediction models and corresponding inverse models
are updated in a weighted manner: the higher is the responsibility of the
model, the stronger is the update. As a result of the reiteration of differen-
tiated updating, each pair of prediction and inverse models get specialized
to a particular context. The sensorimotor space becomes segmented into
a set of optimally tuned controllers for particular contexts. The predictive
models tell what the current context is. Thus the system can do context
recognition and switching of the controllers.

Optimization of abstractions with respect to internal processing on
the abstraction layer.

Finally, the abstractions can be introduced as a result of the optimization of
the operations to be executed on the abstraction layer, e.g. optimization of
planning [58] or optimization of search [16]. As we already mentioned in the
previous section, we aim at the very first steps from reactive to expectation
driven behavior. Thus we focus first on the control-oriented memorization
as a mean for reward monitoring, and do not consider the next step of
‘monitoring the monitoring’.
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tion. See the text for more details.

Comparison of different influence of value function on abstraction
layer

Let us summarize the alternatives discussed above. First of all, the abstrac-
tions can result from structuring of the observation space with respect to
reward. The system can memorize either clusters in sensor space, or clus-
ters in sensorimotor space, or the expectation models that describe observed
causalities. We call these cases respectively A:S:R, A:SM:R, and A:SE:R.
Further, the abstraction clusters can follow the process of refinement of the
prediction model driven by the optimization of action according to the re-
ward. We call this case A:SE:O. Finally, the clusters can be a result of
the optimization of the abstraction layer itself. This case is referred to as
A:0:0. Figure 3.2 shows schematically the different types of abstraction
building discussed above.

It depends on the final system implementation rather than on the used
abstraction type if the requirements on the abstraction layer formulated in
the previous section are fulfilled. For example the first two requirements
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on our list concern the coexistence of the abstraction layer parallel to a
reactive one: the higher level has to be non blocking but able to inhibit the
lower one. These properties are independent of the type of the abstraction.
The desired loose coupling of different control layers can be achieved if we
provide different priorities to the actions issued by different levels or if the
higher levels do not set, but modify the parameters of the actions issued on
the lower level.

In contrast, not all abstraction types allow for autonomy to act in absence
of the reactive trigger (requirement 4). This requirement is fulfilled only by
abstractions based on expectations (A:SE:O and A:SE:R). The clustering
types A:SM:R and A:S:R provide only the possibility to make an evaluation
of a present stimulus and thus can be used only for the competition between
the triggers but not in the absence of the triggers.

A natural question arises whether we should prefer one type of abstraction
building to another. In robotics there exists implementations of all types
discussed above (see Section 2.1). Also during the experiments on animals
one observes all types of learning [3]:

e stimulus-response (reinforcement learning, case A:SM:R );
e stimulus-response-stimulus (expectation learning, case A:SE:0);
e stimulus-response-good stimulus (reward expectation, case A:S:R);

e stimulus-stimulus (stimulus submission: bell is associated to food,

case A:SE:R).

For this reason we believe that the discussion about the best suited ab-
straction type is contra-productive. Instead we investigate if we can in-
crementally build a system so that one type of abstraction supports the
building of another abstraction type.

3.3.3 Development of the abstraction layer

As already mentioned in the introduction to this chapter, we see the develop-
ment not as emergence of abilities from "tabula rasa’ but as an incremental
process of the improvement of a bootstrapping system. After we have for-
malized what the system can learn, it is now time to describe more formal
the possibilities to learn incrementally. The question asked in this section is
how the system builds up on its current abilities. We list below three cases
to be analyzed with help of formalization introduced in the last section.

1. Creating a favorable interaction with the environment. In
order to learn existing regularities the system e.g.

e provides a stable sensor information for learning associations;
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e provokes learnable reactions of users or objects.

2. Optimization. The system optimizes the parameters of the con-
trollers in use, e.g.

e progresses from random motor babbling to coordinated action;

e applies known skills in a new situation and optimizes the control
parameters.

3. Reorganization. The system reorganizes its control structure and
launches the skills that use newly learnt regularities, e.g.

e concatenates sub-routines to a routine and builds a hierarchy;

e uses the acquired concepts, models, abstractions as subject of
higher mental functions (e.g. simulation, planning, attention
control).

In the terms of the formalization done in the last section, to make a
developmental progress according to case 1 it is sufficient that

e the system can create evaluative abstractions (type A:S:R, A:SM:R)
for the general reward of being in interaction;

e the system can explore and optimize its interaction with the help of
those evaluative abstractions;

e and the system can memorize in abstraction type A:SE:R the causal-
ities experienced during the enhanced interaction.

In such a way, using evaluative abstractions A:S:R, and A:SM:R the system
can make progress in acquisition of expectation-based abstractions A:SE:R.

The abstractions of the type A:SE:R can in their turn bootstrap the
optimization (case 2 from the list on the page 37). They can be used as
an initial clustering or can define what has to be predicted in the A:SE:O
abstraction type. The prerequisite is that the system is provided with an
explicit local reward function or an implicit heuristics for optimization of
the action for the refinement of A:SE:O abstractions.

Furthermore, the expectation-based abstractions A:SE:R can be used as
a basis for reorganization (case 3 from the list on the page 37). Indeed, with
help of this abstraction type we can turn a reactive system into a goal-driven
system by generating some behavior until the expectation is met. We re-
call that the expectations are generated starting from current observations:
S(t+1)~ E(S(t)) or S(t+1) ~ E(S(t), M(t)), where E is the expectation
model. These expectations can be ranked according to the system need (see
Section 3.3.2) and those with high ranking trigger the actions that can po-
tentially lead to the re-experience of the expected situation. One may ask
why do we need the current observations and the expectation models, why
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don’t we let the system generate expectations by an internal process start-
ing directly from needs? The advantage is that the gap between the current
and expected situation stays small so that it could be potentially bridged
by a behavior that does not require an extensive planning. We call such be-
haviors 'resolving the expectation mismatch’. The resolving behaviors can
range from very simple and general to precise and complex. For example the
expectation of particular visual feature can activate a random search with
cameras or a more advanced modulation of attention. Similarly, the mis-
match in audio channels can activate a simple user-directed behavior that
requires the user to pronounce a new word (e.g. showing at the object) or it
can trigger the system to pronounce the right word by itself. The link from
expectation-based abstraction to the resolving behavior is crucial because it
allows us to make a step from reactive to expectation-driven behavior. The
essential difference to the reactive behavior is that the system has a local
value to be monitored: the expectation mismatch. Thus it can judge on the
local success and switch alternative resolving behaviors without monitoring
a general reward that may be delayed. In difference to this closed loop, the
abstractions of the type A:S:R and A:SM:R can only modify the reactive
behavior in an open-loop manner.

The link from the expectations to the resolving behavior is especially
important as it gives the system a possibility to re-enact the observation.
The system can re-experience the situation were it observed and created the
expectation model. Thus it can verify whether this model is appropriate as
an observation used for memorization of the experienced reward and refine
or correct the model.

The above analysis shows that different abstraction types create a syn-
ergy: the extension of the reactive system by simple abstraction types
for general reward (A:S:R, A:SM:R) enhances the process of development
of expectation-based types (A:SE:R, A:SE:0O) for specific rewards. The
expectation-based abstraction finally allows for a transition from a reactive
to an expectation-driven behavior.

We would like to emphasize that we speak about enhancement of the de-
velopment, not an emergence. Indeed the introduction of particular abstrac-
tion types requires specific interfaces to the reward system and to behavior
generation as well as specific internal structure. In the next chapter we will
give examples of how this specific structures can be implemented and how
a reactive system can be extended by different types of abstraction.

3.4 Summary
In this chapter we discussed general design principles for bootstrapping a

task-unspecific open-ended development.
We propose to start with a reactive layer that can work in absence of
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higher levels and can generate a robust, non-trivial interaction with the
environment including basic interaction with humans.

Considering the second element of the bootstrapping - the value system
- we propose to implement a homeostatic control of needs in contrast to
reward maximization used in other developmental systems based on rein-
forcement learning. The homeostatic control is more suited to the system
that has to satisfy multiple, conflicting needs. We favor the combination
of specific rewards (e.g. pleasure to activate sensory channels, pleasure to
get human’s approval) with general rewards (e.g. controllability, learning
progress) that can recompense the intermediate steps from known situa-
tions with specific reward to new rewarding situations.

The third component of our proposal for the bootstrapping is the ab-
straction layer which is an initial structure to memorize the interaction
with environment in relation to experienced reward. In difference to the
standard approaches that stick to some particular type of memorization,
we analyze different possibilities of how the value system can influence the
building of the elements of the abstraction layer. First, the signal from
the value system can be used for classification, (case A:S:R and A:SM:R,
A:SE:R). Second, it can be used for the optimization of the motor action
as a part of the abstraction (case A:SE:O). Finally, the elements can be the
result of the optimization of the abstraction structure itself with respect to
the cost of internal actions e.g. planning, attention, that have to be carried
out on this structure (case A:A:O). We consider the first two cases and we
show how the usage of one abstraction type can support the building of
another abstraction type so that we can organize an incremental process
improving the bootstrapping system. In the next chapter we present the
implementations that validate our approach.
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Developing Systems

The following chapter presents the implementation of our proposal for boot-
strapping a developing system. We start first with testing the idea of homeo-
static control while keeping the representations in the abstraction layer very
simple. Then we move on to increasingly complex representations following
the incremental process of improvement described in Section 3.3.3.

4.1 Learning in interaction and learning to
interact

In our first implementation we follow the principle of horizontal simplifica-
tion. We include all three ingredients of the bootstrapping proposed in the
previous chapter: an innate reactive layer, a homeostatic control of general
rewards, and an abstraction layer, but we keep these ingredients simple.
Our goal is a system that builds-up on its abilities by creating a favor-
able interaction with the environment so as to learn existing regularities,
see Section 3.3.3. As an example we take here a human-robot interaction
with online learning of visual object recognition. The innate behavior is not
task-specific. Instead it provides a general ability to make a visual search
between all interesting (regarding color, contrast, structure, etc.) locations.
This ability bootstraps the interaction with environment. We define how
the system can measure the quality of interaction and use these measure-
ments as general, task-unspecific rewards. The system explores its behavior
and memorizes its experience with respect to these rewards. In this way the
system acquires the elements of the abstraction layer that can be used for a
better control of the interaction. Figure 4.1 shows the focus of this section
with respect to overall design proposal made in Chapter 3.

4.1.1 Bootstrapping system: saliency-driven gaze
selection

For our experiments we use a humanoid stereo camera head (see Figure 4.3)
which is compatible with the hardware of the ASIMO robot (see the home-
page http://world.honda.com/ASIMO /technology/spec.html for ASIMO’s
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Figure 4.1: Incremental building of the bootstrapping system for open-
ended development. The dark area shows the focus of this
section.

hardware specifications). The stereo camera head can move in pan and
tilt direction.

The system selects its gaze direction ¢r according to a saliency map S in
the spirit of [27]. This map is a weighted sum of visual saliency Sy, disparity
saliency selection Sp, and motion saliency selection Sy, as illustrated by the
lower part of Figure 4.2. The visual saliency computation provides a map
Sy of “interesting” (regarding color, contrast, or structure) locations. The
disparity saliency selection Sp computes disparities and selects the clos-
est region within a specific distance range and angle of view. This simple
mechanism represents a first approximation to the concept of the periper-
sonal space (see Figure 4.3). This concept allows to create shared attention
between the system and the human on a very low level without any psycho-
logical concepts. The motion saliency selection produces a map Sy, with an
activation corresponding to the largest connected area of motion within a
defined time-span. All the maps are transformed from camera coordinates
(pixels) to the motor coordinates that describe the necessary pan-tilt head
rotation (gr) in order to move the pixel in the center of the left camera. All
transformed maps are weighted and summed up to the final saliency map
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S™ (see Figure 4.2). The final map is the input to the gaze selection that
uses a Dynamic Neural Field (DNF) governed by Amari equation [37, 39].
The dynamics of DNF supports a spatio-temporal integration and allows
the selection to have a hysteresis.

The weights of the maps define the behavior of the system. The weights
(wy for visual saliency, wp for disparity, and w,, for motion) are set accord-
ing to the information priority (from highest to lowest): disparity, motion,
visual saliency (wp = 3.0, wy = 2.0, wy = 1.0). Without any interac-
tion the gaze selection is autonomously driven by the visual saliency and
the memory of the gaze selection. A natural way for humans to raise the
attention is to step into the field of view and wave at the system. Due to
the chosen weights the system will immediately gaze in the direction of the
detected motion. The motion cue can be used continuously in order to keep
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Figure 4.3: Schematic visualization of the peripersonal space approxima-
tion. The inner volume represents the peripersonal space, the
outer volume the complete field of view with the sensitivity to
visual and motion cues.

the gaze direction of the system oriented towards the hand until the hand
enters the peripersonal space. Again, due to the chosen weights the signal
from the peripersonal space will dominate the behavior of the system. This
means that the system will continuously fixate the hand and what is in the
hand of the user. Finally the object recognition learns whatever is shown
to the system in this way:.

4.1.2 Object learning and recognition

The visual region comprising the closest “object” within the peripersonal
space, described in section 4.1.1, is the candidate / hypothesis of the object
to be learned or recognized. This region comprises usually the object of
interest and the hand of the presenter. With a segmentation based on
the adaptive scene dependent filters proposed in [20] the visual elements
corresponding to the hand are removed and the segmentation of the object
with respect to the background is improved. The classifier then has then to
deal with the remaining visual parts not belonging to the object of interest.

Those enhanced segments are further processed by the model of the ven-
tral visual pathway of Wersing & Kérner [61] to obtain a complex feature
map representation that is based on 50 shape and 3 color feature maps. The
color channels are just downsampled images in the three RGB channels. The
output is a high-dimensional view-based representation of the input object,
that serves to classify or learn the current object. Those representations
are stored within the sensory memory as long as the object did not leave
the peripersonal space. This time history of sensory object hypotheses is
communicated to the object memory.

Within the object memory, a persistent representation that carries con-
solidated and consistently labeled object views is created. As long as an
object is presented within the peripersonal space and has not been labeled
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or confirmed, the obtained feature map representations of views are stored
incrementally within the sensory memory. At the same time, all newly ap-
pearing views are being classified using the persistent object memory. If
the human teacher remains silent, then the system will either generate a
class hypothesis, or reject the presented object as unknown and verbalize
this using the speech output module. The human teacher can confirm the
hypothesis or make a new suggestion on the correct object label. As soon
as feedback by the teacher is available, the learning architecture starts the
concurrent transfer from the sensory memory buffer into the consolidated
object memory. This extends over the whole history of collected views dur-
ing the presentation phase and also proceeds with all future views, as long
as the object is still present in the peripersonal space. The labeling of the
current object can be done by the teacher at any time during the dialogue
and is not restricted to being a reaction on a class hypothesis of the recog-
nition system. The concept of a context-dependent memory buffer makes a
separation into training and testing phases unnecessary. The transfer from
the sensory to the object memory is sufficiently fast to remain unnoticed
to the human trainer and the learning success can be immediately tested,
allowing for a real online learning interaction.

The mechanism facilitating the online learning is an adaptive vector quan-
tization working on the feature representations as detailed in [29]. For each
class a set of reference vectors is maintained. During learning, new refer-
ence vectors are created if the incoming patterns are sufficiently different
from the already stored reference vectors for this class. For recognition, the
incoming patterns are efficiently compared to the reference vectors of all
classes.

The speech input and output is very important for the intuitive training
interaction with the system. We use a system with a headset, which is the
current state-of-the-art for speaker-independent recognition. The vocabu-
lary of object classes is specified beforehand, to be able to label arbitrary
objects we also use wildcard labels such as “object one”, “object two” etc.

The resulting system shows a natural and smooth interaction with users.
The hypothesis built into the system is that objects are presented within the
hand, otherwise there are no assumptions about the objects. The properties
leading to the robust recognition are distributed over the system. Trans-
lation invariance is achieved by gazing, scale invariance by normalizing the
3D object hypothesis by distance estimation delivered by the disparity com-
putation. Rotation invariance is enhanced by normalizing the first principle
axis of the object. The online learning performance is facilitated by the
efficiency of the hierarchical processing and by the locality of the plasticity,
i.e. learning only on the highest hierarchy level.

For more details on the vision part the reader is referred to [60]. Here
we focus on the more abstract level of elements in order to present the
coupling with the behavioral part. The most significant elements here are
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the disparity saliency selection with the correspoding weight wp and the
object memory. The modulation of wp determines whether the attention
of the system is drawn towards the object within the peripersonal space
(wp > 0) or whether it is repelled by the object within the peripersonal
space (wp < 0). The behavior learning will build on this modulation. The
object memory provides the signal for the learning progress. It is based
on the number of reference vectors that are transferred from the sensory
memory buffer into the consolidated object memory.

4.1.3 Extension by unspecific reward system for behavior
learning

The previous section described gaze selection with fixed weights of saliency
channels. Our experiments ([19],[18]) show that such an attentional system
provides a natural means of interacting with a robot for learning object
recognition. However it has a following drawback: if an object is not pre-
sented by a human, but is close to the system, then it will also be fixated.
This can be interpreted as a symbol grounding problem. Indeed, the map-
ping from the depth signal to the interaction hypothesis is created by the
designer. The reality does not always correspond to this mapping but the
system can not find out the discrepancy on its own. It can not detect if
the depth signal comes from “background” or from the user who wants to
interact.

One possible solution would be the redesign of the hypothesis about the
object to learn. Additionally to the closeness we could require the presence
of motion, skin color or speech. There are two reasons why we prefer another
solution.

First, the mentioned above percepts are not sufficiently robust. The user
can present an object for a while without moving and saying anything. He
can do it also in a way that the skin is not visible. Also vice versa, it is
possible that the speech, skin color and movement are present without an
intention of the user to teach the system an object. The state of an object
as "learnable” or not is rather hidden than perceptive.

The second, and more important reason is our aim to equip the system
with means to recognize on its own the failure of the reactive behavior
and to adapt appropriately. For this purpose we introduce two measures
of the quality of system’s behavior: the quality of the interaction with the
environment and the learning progress of the object recognition.

Generally speaking, the quality of the interaction with the environment
is high if the action of the robot leads to consistent sensory observations. In
our example we measure directly the correlation between the gaze direction
and the position of the salient object. Thus the quality of interaction is high
if either the robot tracks the object, or the object follows the gaze direction
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of the robot. Both situations are favorable for object recognition learning.
Below we describe how we measure the correlation. First, the current gaze
direction g¢ is represented as a gaussian blob with the center at ¢ in the 2D-
motor-map Qg (ip, i), i, = [1..N,], iy = [1..]N;] of possible gaze directions,
where N, N; are the dimensions of the discretized motor space of pan/tilt
rotation of the head. This is the same representation type as the saliency
map S after the visiomotor mapping and thus the two maps Q¢ and S
can be compared for the measurement of the correlation, (see Figure 4.2).
Both non-weighted saliency map S and the gaze representation ()¢ become
subject to low-pass filtering in time because we want to capture not only
strict synchrony between the gaze direction and the object position, but
also correlations within a certain time-window. In order to estimate the
degree d,. of correlation, the two low-passed maps S and Q are element-wise
multiplied and the result is summed-up and scaled as follows:

1 Nyp,Nt R R
dC(t) = OT Z S(t’ip’ it)Q(ta Up, Z‘t) )
€ ip=1,iz=1

where «. is the scaling factor:

Np,Nt prNt ~
(. = max { Z S(t,ip,it), Z Q(t,ip, it), 1} .
ip=1,iy=1

ip=1,i;=1

The correlation degree d.(t) reflects the quality of interaction only if the
head is moving. To measure the intensity of the head movement we look if
the changes in the gaze direction map () are high:

Np,Nt B N
dm(t) = al Z fl (Q(ta 7;pait) - Q(t - 1a Z.p7it)> )
mop=1,14=1

where f;(z) is a linear threshold function with zero threshold:

0, if z<0;
fl(x)_{x, if +>0,

and «,, is again the scaling factor:

NpNe
Oy = max{ Z Q(t,ip, ir), 1} .

ip=1,i;=1

To get the final measure of the interaction quality r; we multiply the corre-
lation degree by the movement intensity:
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Next we describe how we measure the learning progress. An evidence for
learning of the object recognition is the transfer from the sensory memory
buffer into the consolidated object memory (see Section 4.1.2). Every time
this transfer occurs the learning module produces a ”spike”:

1, if memory transfer,
m(t) = { 0, else .

These spikes are integrated over time in order to have a signal that reflects
how often the transfer occurs:

r(t) = 1t — 1) + m(t).

The relaxation constant 7, was chosen during the experiment to fit the
dynamics of the learning so that the resulting measurement r; lies in the
interval comparable to the measurement of the interaction quality (= [0, 2]).

In [42] it was proposed to use the learning progress as a measure of getting
better in predicting the results of one’s own behavior. Here the learning
progress is not a general measure for all behaviors, but specific to the object
recognition. In this way we can decouple the general evaluation of the
situation as favorable for learning (captured by unspecific interaction quality
measure 7;(¢)) from the learning progress r;(t) which can be delayed, and
can be specific to the implementation of the learning algorithm. Let us
recall the discussion about specific and general rewards in Section 3.1. In
terms of that discussion, by using a general interaction reward 7;(t) we can
better guide the exploration and evaluation of a large parameter space than
with delayed and punctual specific reward r;(t). But we need both for the
behavior generation.

In order to let the system monitor the described above rewards ﬁ(t) =
[:i Em we introduce a corresponding needs vector with two elements N () €
R?. The needs are satisfied if their values are close to zero. If the needs are
below a chosen threshold ]\70 > 0 they are set to this threshold. Otherwise
they change according to dynamics of the Lotka-Volterra type:

TNdN/dt = N(t) * (éo - é(t)) )

where .x means component-wise multiplication, 7y is a time constant, con-
stant vectors ﬁo € R? characterize the speed of the need growth in absence
of rewards, and ﬁ(t) € R? are the corresponding rewards.

If the reward is absent for a long time the need overcomes the thresh-
old where the exploration starts. As stated previously, the character of
the visual behavior is defined by the weights of the saliency maps. The
most relevant weight for the interaction is the weight wp of the depth
saliency selection map, because this map represents the objects that are
in the peri=personal space, see Figure 4.3. In the following we will de-
scribe how new values for wp are explored for improving the behavior with
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respect to the needs. The system tries out a different weight w}™ of the
depth saliency selection map according to the following simple heuristic:
wyv = w%d + SgDg, where Dpg is the direction and Sg the strength of
exploration. Exploration makes Njys steps in one direction. If in all of
these steps the need continues to increase, then it changes the direction Dg
and increases the strength Sg.

As the system explores negative weights wijy® it starts to avoid the object
in peri-personal space. Indeed, the negative values suppress the selection
of the region. If the object is just “background”, then it does not react to
avoiding and there is nearly no correlation between the action of the system
and the saliency map. If the object is shown by a user, then it is natural
for the user to slightly follow the head movement of the robot in order to
stay in interaction. Hence through avoiding of the object the system can
differentiate between an object shown by a user and a background object.
Furthermore it can force the user to provide a new view of the object or to
provide a new object.

This means that for the most effective learning the systems should know
that

1. the tracking provides the maximal learning progress,

2. it should stop the tracking if learning progress is missing for a long
time,

3. if interaction is observed while avoiding the object, then it is probable
to get a learning progress by tracking and the best strategy is to switch
to tracking.

Below we describe how we implement the system with properties stated
above. Point two is provided by the introduction of a monitoring mech-
anism. Point three is covered by our choice of the rewards because the
probability of “good” tracking can be derived from the similarity of re-
wards in interactive tracking and avoidance. The first point requires the
representation of possible rewards and careful vector quantization of the
behavior-reward space.

The actual implementation of the vector quantization is very simple be-
cause we were interested more in the interplay of the different parts of
the system than in the perfect working of one part. We record the disparity
weight and corresponding reward into a table of possible constellations. The
table has the following format: [We (i), Re(i), C(i)],i € [1... M], where M
is the number of recorded constellations, W is a weight used for disparity
saliency selection, and R is the vector of observed rewards. The confidence
C keeps the track of how good the entry matches the observing data. It is
initialized with 1.0 and its updating will be described later.
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The situation at the time-step t is compared to the entries of the table
according to following formulae inspired by [62]:

Aw (i, 1) = exp(—|[We (i) — wp()|[*/05)
Ar(i, t) = exp(—||Ro(i) — R(t)|[*/0%)) ,
Aiyt) = Aw (4, ) Ar(i, 1)

~ ~—

The similarity measures A\ (i,t) and Ag(i,t) are close to 1.0 if the actual
constellation is close to the table entry with index 7. The most similar to
the actual constellation is the entry with the highest responsibility A(7,t).
The parameters oy and dr define the responsibility radius of the recorded
constellations and thus the sampling rate of recording.

Every time a highest responsibility of known constellations is lower than
a threshold Ar, a new entry is appended to the table. The confidence of the
best matching entry 4.5 (with highest responsibility: 7.5 = arg max(A(i, t)))
is increased if the responsibility is over a threshold C'r and decréased oth-
erwise:

C(ibesta t) = f(c<ibest7t - 1) + TC()\<ibesta t) - CT)) )
where f(z) is a step function, so that the confidence is truncated over 1.0

and below 0.0:
0.0, if =z <0;
ﬂ@{LQifx>0

If the confidence of the best matching entry is too low, then the entry is
changed to the actual constellation (wq(t), R(t)).

While exploring possible constellations the system may record a very
improbable situation (high learning progress while avoiding of the object).
On the other side some typical situations are not always persistent. For
example the tracking behavior can give a high learning progress if user
shows different object views and gives no learning progress if the user does
not move an object. For this reason we can not use statistical learning.
We have to decide whether a constellation has to be unlearnt or whether it
is only actually not possible for a short time period. For this purpose we
introduce a temporary measure of a reward mismatch:

Bt (i) { (Ifét?elsEC(Z) + Ry, if i = ipea
This value is positive if the actual reward is higher than recorded and neg-
ative if the difference to the recorded reward exceeds the tolerance margin
Rr.

The reward mismatch gives an a-posteriori information about how likely
a reward recorded in the best matching entry is. For a-priori decision to
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switch the behavior we also need an a-priori information. We suppose that
constellations with similar reward to the observed one are a-priori more
likely.

The similarity Ag(é,t) as a-priori information and the reward mismatch
R (i, 1) as a-posteriori information both give us a hint if it is likely to get
the reward recorded in entry ¢. This information is accumulated over time
as likelihood [g(i,t) of getting reward recorded in entry i:

Ir(i,t) = Tilg(i,t — 1) + (1.0 — ) (Ag (i, t) + Rarar(is 1))

where parameter 7; expresses the conservatism of systems belief about the
actual context. This parameter together with the parameter of confidence
decrease 7¢ has to be chosen in the way that the switching of behavior occurs
on the faster time-scale than switching of the entries in the recording table.
Finally the weight of the disparity map is selected in three steps:

1. The system monitors in which constellation it is by calculating re-
sponsibility A(i,t).

2. The system calculates the likelihood of recorded constellations (i, t).
The constellations are possible if their likelihood is higher than a
threshold 7.

3. The system chooses the weight from the possible constellation with
maximal reward for the highest need. We call the index of the chosen
constellation 4,,,.. If both needs are at the lowest level, the priority
is given to the need of the learning progress.

In the next section we will report on the character of the achieved behavior
adaptation.

4.1.4 Experimental results

Figure 4.4 shows the run of a typical experiment. The weight of the disparity
channel is set initially to wp = 4.0. This is a pre-designed solution as
described in Section 4.1.1. The first entry made by the system into the
record table corresponds to just looking around without interaction and
learning. About the time-step 10 the user starts teaching a new object.
The second entry put into the table reflects the fact that the system can
receive a high interaction quality and learning progress during tracking.
About time-step 20 the user introduces a static object. It can not be learnt
because it is not labeled (see the description of the learning in Section
4.1.2). Tt is also not interacting, thus the system decides that it is in the
situation without interaction. However the system does not know yet any
other behavior than tracking and keeps fixating the static object.
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Figure 4.4: Experiment run. The upper graph shows the evolution of the
disparity saliency selection weight wp. The second graph from
the top shows the index of the best matching context (ipes) and
the index (imqz) of the selected weight representing the selected
behavior. The third graph from the top shows the responsibility
A(ipest) of the best matching context and the likelihood (7,4, )
of receiving reward. The fourth graph from the top shows the
learning progress measure as provided from the object memory.
The fifth graph from the top shows the corresponding need. The
last two graphs show the unspecific interaction measure and the
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With time the needs are growing over the threshold and the system starts
exploration. During the exploration (time-steps 30 —70) the system records
3 new constellations: that it can ignore an object (wp = 0.0), avoid a static
object and avoid an object that tries to stay in interaction. After this explo-
ration and learning phase the system shows a more appropriate behavior.
While the user presents the object statically so that the learning progress
decreases (time-steps 100 — 103) the likelihood to get learning progress from
tracking decreases. At the time-steps 114,115 the system switches to the
avoidance mode (wp = —2.0). But because the user follows it, the system
switches back to tracking (time-step 116). Time-steps 180, 181 represent a
similar situation. If the user does not follow, the system remains in avoid-
ance mode or switches to ignoring (steps 188 — 196).

Although the typical runs of the experiment led to stable solutions, we
observed also the runs where the behavior switching destablized the inter-
action. These were the cases where the system erroneously experienced a
high learning progress while avoiding the object. As our simple clustering
is based on the single observations and does not take into account the long
term statistics, it can not deal with such outliers. As a result, in the runs
with erroneous observation the system sticked to avoidance strategy for too
long period and switched to tracking too late while the user already gave up
the interaction. Nevertheless the system shows the feasibility of the chosen
approach under constraint that the clustering can deal with outliers.

4.1.5 Conclusions

In this section we presented an extension of the innate reactive behavior
by a homeostatic control of unspecific needs as it was proposed in Section
3.1. The needs to have an interaction with the environment and to have
a learning progress forces the system to explore the parameters of its reac-
tive layer and to progress from the reactive tracking of any close object to
differentiated tracking. The system continues to track only those objects
that try to gain the attention of the system. These objects are likely to
be presented and named by a human and are thus good candidates for the
object recognition learning. In order to differentiate the control, the system
memorizes its experience with the help of a clustering of the sensorimotor
space according to the reward (type A:SM:R of the formalization made in
Section 3.3). The modification of the gaze selection bases on the ranking of
the clusters according to the current needs of the system and the likelihood
that the cluster describes the current situation.

To summarize, we presented a complete system composed of an innate
reactive layer, a layer of homeostatic control, and a simple abstraction layer.
The system copes with four coupled dynamics: the dynamics of changing
needs, changing memory (as we use an online learning), changing behavior,
and the dynamics of changing reward (as the learning progress is high for
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a new object view and decreases afterwards). Although the typical runs
of the experiment led to stable solutions, the unstable runs show that we
need a stronger decoupling of different dynamics by making active use of
different time scales. For example by differentiation of short-term and long-
term statistics in the abstraction layer. This will be discussed in the next
section.

4.2 Exploration of controllability

In the last section we considered the system as a whole and investigated
the interplay between the dynamics of needs and the dynamics of learning,
while behavior segmentation and exploration stayed very simple. Now we
want to improve these aspects by monitoring the 'controllability’: how re-
liable is the prediction of an answer to some particular behavior. Figure
4.5 shows the focus of this section with respect to overall design proposal
made in Chapter 3. We progress from the simple evaluative type of the
abstraction A:SM:R used in the last section to the abstraction type A:SE:O
that uses optimization of the actions and updating of corresponding expec-
tations. The system explores its behavior and refines the abstractions so as
to achieve higher controllability. We pay particular attention to the distinc-
tion between prediction errors caused by not yet learned regularities versus
prediction errors caused by switching context because we aim at a system
that is potentially able to learn in highly dynamical situations.

4.2.1 System instance: autonomous learning of a request
gesture

A test scenario for our framework is the autonomous learning of a request
gesture. There is a crucial difference between the learning of the response
of an object and the learning of the response of a human. Although hu-
mans give typical responses, these responses can strongly vary depending
on the hidden states of the human, such as e.g. the human’s interpretation
of robot’s behavior. Such hidden states can be detected only after the robot
executes a behavior and no reliable prediction can be done. To our knowl-
edge, until now, the implementations that use the increasing predictability
of an action response as a drive of the developmental process [41], [54] do
not cover the possibility of actions with multimodal response distributions
depending on hidden states of the interaction partner. However, such ac-
tions are an important part of the behavioral repertoire. They can be used
to enquire those hidden states.

For our experiments we use a real stereo-camera head moving in pan-tilt
direction together with a simulation of the rest of the body. The stable
solution can be directly transfered to the AsiMO platform thanks to the
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Figure 4.5: Incremental building of the bootstrapping system for open-
ended development. The dark box shows the focus of this sec-
tion: usage of the optimization process for acquisition and re-
finement of the abstractions of the type A:SE:O.

uniform software-hardware interfaces. In Figure 4.6 we show the experi-
mental setting where the user can interact with the camera in real time
while observing the simulated hand gesture on the screen bellow the head.

In order to bootstrap the interaction with the environment we use the
concept of proto-objects developed at the Honda Research Institute Europe,
[9]. The proto-objects correspond to coherent regions or groups of features
in the field of view that can be re-referenced over time, i.e. can be tracked.
For example a proto-object can be a color blob or a blob of similar estimated
depth (in the same terms as the concept of peripersonal space, see Figure
4.3). It is important not to confuse the re-referencing of a proto-object with
the classification or identification of an object. The re-referencing needs only
a metric in the feature space without having a precise model about what is
tracked. Exactly this is the advantage of proto-objects: they can be tracked
and pointed to without further model-based processing, e.g. without object
recognition. This is a property we need for the bootstrapping of a task-
unspecific interaction with the environment. Figure 4.7 shows the reactive
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Figure 4.6: Give and show: experimental settings. The user shows an ob-
ject to the camera head. The real camera moves and captures
the images while the movement of the robot’s hand is only sim-
ulated. The user can see the gesture displayed on a big monitor
and decide how to react: give the object to the robot or only
show it. The second monitor on the bottom is used to display
internal states of the system for debugging purposes.

bootstrapping (solid box) and the extension by parameter exploration and
behavior clustering.

In the experiment the robot explores the effect of changing its palm ori-
entation while pointing. The hand outstretched with the palm pointing
upwards is typically interpreted as a request (Fig 4.9, b)). For other palm
orientations the ambiguity of the user response is higher because the user
can interpret even a showing gesture as a request. The response is therefore
not fully predictable because it depends on the non-observable interpreta-
tion of the robot’s gesture by the human. Although the response is not fully
predictable, the robot should capture the fact that the hand outstretched
with palm up leads to more predictable responses than other palm orienta-
tions and use preferably unambiguous gestures.

4.2.2 Segmentation of sensorimotor flow into predictive
models with the help of a Gaussian Mixture Model

The robot acquires possible classes of user responses with the help of online
learning of a Gaussian Mixture Model (GMM) for the joint probability dis-
tribution p(a, r) of action a (palm orientation) and user response r. The user
response is measured as the velocity of an object between two subsequent
stops. The coordinates are chosen in such a way that if the user gives the
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Figure 4.7: Give and show: system’s graph. The solid box shows the reac-
tive part: saliency-based gaze selection together with tracking
and pointing to the object. This bootstrapping is used for re-
finement of the pointing by exploration of palm orientation. The
monitoring of the user’s reaction by means of object’s velocity
allows a distinction between request and show gestures. This
part that builds abstractions for the refinement of the reactive
behavior is shown by a dashed box. See text for more details.

object to the robot, then the object’s velocity is positive. By choosing this
way to measure the response we obviate the definition of a particular time to
measure the user’s reaction. The authors of [13] made an attempt to mea-
sure the user reaction at a fixed time, but they report that they encountered
severe problems because the reaction time various strongly across different
users. In our approach only a time-out while waiting for the reaction needs
to be specified, not the specific time of measurement.

The GMM is used to make predictions and to control the palm orientation.
We implicitly encoded a drive towards unambiguous action responses (”con-
trollability”) in the action selection mechanism. The action is chosen such
as to have the highest probability of maintaining the current user response.
The prediction of the response is done with the help of the conditional
distribution p(r|a) of the response r given action a. Due to the normal-
ization factor in the conditional distribution: p(r|a) = p(a,r)/ [ p(a,r)dr,
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the probability of getting the response is higher for unambiguous actions.
Figure 4.8 illustrates this property on a simple example of the mixture of
two Gaussians for an ambiguous action with two possible equally probable
responses. A negligible difference in the centers of Gaussians in the action
dimension (in this example 0.001) leads to strong shifts of the peaks in the
conditional distribution, see Figure 4.8, b). Let us assume that addition-
ally to the statistics of the observations represented by GMM there exists
a small probability to observe any response to any action. This hypothesis
is represented by a uniform distribution that is weighted by a small weight
and added to the mixture. In this example the weight of the uniform dis-
tribution is set to 0.01. Then the shift of peaks away from the ambiguous
action is less strong, see Figure 4.8,c). The higher the weight of the uniform
hypothesis, the weaker the shift, see Figure 4.8,d). The action is chosen
in a straightforward way as an action that maximizes the likelihood of the
desired response. The exploration away from an ambiguous action is just a
consequence of working with the multimodal response distribution and the
conditional probability.

As we accept a multimodal response distribution, the prediction error
does not lead to a change of the model if there exists a cluster that explains
the observed data well. We will discuss next how we deal with the discrep-
ancy between the a-priori prediction based on the long-term statistics and
the a-posteriori classification of a current situation.

The "classical” GMM makes the assumption of observing a stationary
process. The weights of the mixture describe the statistics of the cluster
activations over a very long observation time. However, the activation of
a cluster can be context-dependent and thus can have different statistics
on a short time-scale than on a long time-scale. Therefore we need both
short-term and long-term statistics for better control.

Let us denote by m; the weights of the GMM and by G;(Z, ii;, ;) the
Gaussians, where ¥ = {ﬂ, {i; denote the means and 3; the covariance
matrixes of the Gaussians, ¢ = 1,..., N. With this notations the GMM for
the distribution density is

f:Zm (%, [, 35).

Further we denote by 7;(¢), ¢ = 1,..., N the short-term statistics of the
weights at the observation step t. At the initialization step we set the
short-term statistics equal to the long-term statistics: 7(0) = ;. With

every new observation Z(t) = m?} we proceed first in the same way as the

standard GMM approach: we calculate the a-posteriori likelihood:

pi(t) = mGi(Z(t), fis, & /Zm t), fiiy ), i =1,...,N.
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Figure 4.8: Exploration towards unambiguous actions as a consequence of
usage of conditional distribution. a) An example of GMM p(a, r)
for ambiguous action with two possible equally probable re-
sponses. b) Conditional response distribution p(r|a). The peaks
in the distribution are shifted away from the ambiguous action.
c¢) Distribution p(r|a) for mixture of GMM and uniform distri-
bution weighted by 0.01. The assumption about possible uni-
form action/response distribution reduces the shift of the peaks.
d) Likelihood of the desired response [(r ~ 0.2|a). Different
lines show the likelihood for different weighting of the uniform
distribution.

The action executed by the system influences the statistics. In order to
countermeasure this fact in the short-term statistics, we let the a-posteriori
likelihood change only the weights of the mixture components that are close
to the executed action. For this purpose we calculate the distance measure
d}:

Ja ) a’(t) - )
& = /rGl(l \ ],ul,Ez)dr,
df = de/yde.

For the clusters that describe the result of the action close to executed one
we have df ~ 1.0. The weights of these clusters in short-term statistics are

99



4 Incremental Building of Developing Systems

shifted towards a-posteriori likelihood p;(t). The weights of others clusters
are set according to the old short-term statistics (¢ — 1) and the a-priori
statistics . In sum, the short-term statistics is updated as follows:

o= dipi(t)+ (1 —df) [wem; + (1 — we)7i(t — 1)] ,

milt) = WY _Fi

where the weight w, describes how much the short-term statistics should
be influenced by the long-term statistics.

The effect of filtering according to the executed action becomes clear if
we consider an action with two possible responses: one described by the
cluster 7 and another by the cluster j. Imaging that the system executes
this action and observes the first of the two possible responses so that a-
posteriori likelihoods p;(t) ~ 1.0 and p; ~ 0.0. Let us assume that yet
another action, far from the executed one, is described by the cluster k,
so that pg(t) =~ 0.0. On the one side, in the short-term statistics we want
to reflect the fact that in the current context the cluster ¢ is much more
probable than the cluster j because p; ~ 0.0. On the other side, although
the pi(t) is also small, the only information about the cluster & that can
be used is the a-priori statistics 7, because the executed action is too far
from the action described by the cluster k. Exactly this differentiation
is reflected by weighting of update according to the distance to executed
action: df,d} > 0, d, ~ 0.0. If we would make an update without this
weighting, e.g. 7;(t) = (1 — wo)7™;(t — 1) + wym; + pi(t), then the long-term
statistics would prevent the fast switching to the current context. At the
same time we can not ignore long-term statistics because we want to use
the information about the response distribution of not-executed actions,
like e.g. the action described by the cluster k. Those weight should not be
updated to a-posteriori likelihood py(t) that is approximately zero.

Hence, our update formulas are especially useful if the same action can
have two different responses that may switch. At the same time we keep
the long-term statistics about not-executed actions unchanged, so that in
the choice of the next action the system can profit from both short-term
and long-term statistics.

The action selection is straightforward. It takes the action that maximizes
the conditional probability p(r|a) of the desired response r4 using the short-
term statistics m;(t):

Bla,r) = SN AmOGH(])] i D),
p(rla) = pla,r)/ [ pla,r)dr, (4.1)
a(t+1) = argmax [exp(—||r —ral[*/o3)p(r|a)dr,

where o4 is the variance of an exponential filter that builds a window
around the desired response r; in order to increase the reliability of the
action choice.

60



4.2 Exploration of controllability

4.2.3 Experimental results

Two experiments were conducted. In the first experiment we tested if the
GMM can be learned online and can indeed capture the different ambi-
guities for different gestures. Instead of GMM-based action selection, the
palm orientation just sampled progressively the whole possible interval from
—0.57 to 0.57 independently of the current reaction of the user. In the sec-
ond experiment we coupled the online learning of the GMM with the action
selection described in the previous section.
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Figure 4.9: Online learning of the Gausian Mixture Module for autonomous
gesture acquisition. a) The learnt action-response distribution.
The solid line shows the probability of the response for the am-
biguous the dashed line for the non-ambiguous gesture. b) The
non-ambiguous request gesture with the palm turned up.

The online learning of a GMM in the first experiment is based on the
standard expectation maximization algorithm (EM) for parameter adapta-
tion, see e.g [7]. Following modifications were made in order to enable the
online learning. First, not all the data is always taken for adaptation step,
but only the data that considerably increases the observation likelihood if
the parameter adaptation via EM is applied. Such data is accumulated
in a database. The increase of the likelihood after an EM-step proved to
be a better measure than the likelihood of the observation itself. The in-
crease is a relative value and thus it allows to set a fix threshold for the
decision whether to remember a new data point, e.g at thirty percent in-
crease. In contrast, the likelihood itself depends on the current GMM and
varies considerably (for more details see [65]). Second, we do not take the
whole database and build always a new GMM, but we keep a current GMM
until we get new 20 data points. Then these 20 new data points are used
to create a new GMM with help of a standard EM algorithm with addi-
tional penalty term for a high number of components in order to prevent
an over-fitting. Afterwards the old GMM and the newly created one are
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fused together and a final EM-step is applied on the complete database
with fused GMM as initialization. Surely, this procedure does not solve the
well known plasticity-stability problem that arises because the newly learnt
information can erase the earlier learnt information. However, it prevents
the elimination of currently not observed GMM components which would
occur if we would use the standard statistical learning with EM applied to
all new data. The result of online learning is presented in Fig. 4.9, a). It
shows that the online learnt GMM captures indeed the lower ambiguity of
the "gimme” gesture in a probability distribution.

In the second experiment we focus on the difference between long-term
statistics and short-term statistics and we integrate together the learn-
ing of GMM and the GMM-based action selection described in the pre-
vious section. The action selection uses formulae 4.1. The calculations
are done by discretization of the used variables in observation intervals
a € [—0.5m, 0.571],r € [—0.5, 2.5] with discretization steps A, = 0.1 and
A, = 0.05.

Fig. 4.10 shows a typical run of the experiment. The initial palm orien-
tation is vertical: a(0) = 0. This is an ambiguous gesture. At the time-step
22 the system introduced a first GMM component describing the observa-
tion that the user does not give an object (object’s velocity is nearly 0) if
hand outstretched with palm orientation 0. At the time-step 100 the robot
observes that the user gives an object. This leads to introduction of a new
GMM component at this step, see Fig. 4.10, a), second column. As we
described in the previous section, the aim of the action selection is to repro-
duce the last observation. Thus the robot chooses an action that maximizes
the probability to get the object again. The previous section explained that
due to the usage of conditional distribution in 4.1 the probability peaks are
shifted away from ambiguous action. Indeed, the Fig. 4.10, b), second col-
umn, shows two high peaks away from 0 action. The right peak is slightly
higher (as the second GMM component is centered slightly to the right of
zero) and the upwards orientation of the palm is chosen as shown by the
white cross.

At the step 309 the robot observes that the user sometimes does not give
an object even for the palm-up gesture. The third component is added
to the GMM, see Fig. 4.10, a), third column. In order to reproduce the
observation of the not given object the robot choses again the vertical palm
orientation.

At the time-step 514 the user changes his mind and gives an object to
a robot again. This time the observation can be aposteriori explained by
acquired GMM. Thus the system does not introduce a new component but
only adapts the short-term statistics. This change of GMM weights 7 leads
to the selection of a new action that goes even further towards unamiguos
gesture, see Fig. 4.10, b) for the step 514. The exploration of the palm
orientation in steps 556 and 588 is also due to the adaptation of the short-
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term statistics.
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Figure 4.10: Online learning and autonomous exploration towards unam-
biguous gesture. The rows a) and e) show the changes in p(a, ).
White cross shows the center of added GMM component. The
rows b) and d) show p(r|a). White cross shows the selected
action for desired response. ¢) The run of the experiment. One
time-step is about 0.25 seconds. The solid line shows the cho-
sen palm orientation. The dashed line shows the continuous
object velocity. The stars show the velocity value that was
taken as measurement of user’s reaction, see page 56. See the
text for more details.

At the time-step 924 the system add a new GMM component. It de-
scribes the observation that the user does not give an object if the hand
is stretched out with palm down (showing gesture). As the user changes
its interpretation of the palm-down gesture and gives the object, the sys-
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tem immediately switches to the palm-up gesture (step 940) in order to
re-experience the getting of the object. Thus the system learned to switch
the context estimation with help of the sort-term statistics and to use less
ambiguous gestures instead of initial vertical palm orientation.

In the future, a prediction error on the level of GMM weights estimation
(difference between the a-priori and a-posteriori GMM weights) can be used
for the learning on higher abstraction levels (in similar terms as described
by [62]). For example one could formalize the problem by assuming that
the weights are the hidden states of a Dynamic Bayesian Net. Then the
system may learn the correlation of short-term statistics of the weights to
observable variables. These could be the user’s speech that indicates the
interpretation of a gesture or a decision not to give an object, as well as
observable properties of the objects that can or cannot be given. If the
system learns this correlation, then it can switch faster between states.
Without additional evidence for a state switch we need a certain time for
the accumulation of the a-posteriori statistics in the short-term statistics in
order to prevent an undesired reaction to outliers.

4.2.4 Conclusions

The presented work stresses the necessity of differentiated dealing with pre-
diction errors. On the one hand, these errors can mean that the system
has to change the model on the level of the observed data. On the other
hand, they may be indicators for the need of differentiation and learning on
a higher abstraction level. Finally, for some types of interaction with the
environment prediction errors may be not avoidable, e.g. in interaction with
a human. In these cases it may be more appropriate to use a multimodal
response distribution and an a-posteriori response differentiation as a source
of information for further acting. Therefore, the developmental drive is not
to make no prediction errors but to make informative errors while keeping
the cost of error making as small as possible. The progress of the system
may be expressed by a better choice of how to acquire the information about
the hidden states. “Better” can mean less energy consuming and more in-
formative. For example, in our scenario, the system should adapt its action
from a fully outstretched hand towards a more relaxed gesture accompanied
by speech.

More complex hypothesis testing requires a more advanced representation
and usage of expectations. The expectations should not be coupled one-to-
one with the actions as it is the case for the abstraction type A:SE:O used in
this section. In the next section we move on to the abstraction type A:SE:R
that paves the way for implementing more elaborate hypothesis testing.
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4.3 Expectation generation: beyond reactivity

In the previous two sections the building blocks of the abstraction layer
contained an explicit action representation. Next, following the Section
3.3.3, we implement an indirect coupling of the abstract concepts to the
control by using the generation of expectations. The goal is to extend
the reactive layer by an abstraction layer so as to pave the way towards
hypothesis testing, semantic learning, and grounding. Figure 4.11 shows
the focus of this section with respect to the overall design proposal made in

Chapter 3.
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Figure 4.11: Incremental building of the bootstrapping system for open-
ended development. The dark box show the focus of this
section: expectation-based representation that allows a qual-

itative change from stimulus-driven to expectation-driven
behavior.

Reactive layer {

Design

In Section 3.3 we argued in general terms that the system observes the
causalities that can be used for the memorization of the value function
(abstraction of the type A:SE:R). In this section we call the models for
representation of causalities a 'mental concept’. We say that the system
learns a concept if it can bind different behaviorally relevant features into
one expectation model E(S). We recall that we see the abstraction layer
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as a part of the control system that insures an explicit reward monitoring.
In this context we use the expression 'concept’ not in the sense of a passive
world model, but as a potential trigger of an expectation-driven behavior.
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Figure 4.12: Coupling of mental concepts to a reactive layer. The loop on
the lower part shows the reactive layer. The upper part gener-
ates and evaluates expectations with the help of an associative
memory. In this upper part two loops are active: to the left
the loop of expectation-based perception and to the right the
loop of expectation-based action.

It is crucial to keep concepts embedded in the behavior. The system
should not passively 'perceive’ but actively evaluate and refine/relearn the
concepts. We turn our reactive system into an active system by the genera-
tion of expectations. One part of the bound to a concept features generates
expectation for the rest. These expectations are compared to the current
features. If the difference is high, the mismatch triggers a behavior that can
potentially resolve the conflict as described in Section 3.3.3. This process
brings the system back into the situation where it learned the binding to
the concept, so that the system can check its correctness. In this way our
system achieves a tight coupling between sensing and acting not only on
the reactive level but also on the level of expectations generated by mental
concepts (see Figure 4.12).

4.3.1 Experimental setup and system architecture

One possible instantiation of our architecture is a system that generates
expectations by using associations of speech labels to behaviorally relevant
non-speech feature classes. For example the system learns that humans
use the word ’table’ for flat surfaces at the height of their waist. This is
behaviorally relevant, because the naming of the 'right thing’ with a 'right
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word’ can trigger a primary social reward at the early stage of development
and serve as a sub-goal in later stages (e.g. asking for the table if you need
to deposit something). We want to emphasize that we do not reduce the
learning of concepts to the learning of words. We consider the binding of a
word to behaviorally relevant non-speech features as one possible scenario
for learning mental concepts.

We implement our system on the humanoid robot ASIMO equipped with
stereo vision cameras. The auditory signal for audio saliency is recorded
by microphones mounted on AsiMO. The auditory signal for the speech
recognition is recorded via a headset used by a human. Figure 4.13 shows
the experimental setup while Figure 4.14 shows the overall system design.

Figure 4.13: Experimental setup. The humanoid robot ASIMO interacts
with a user in a reactive way by approaching and reaching
for a proto-object. The user wears a headset for recording the
speech signal. The user can teach the robot speech labels which
describe behavior-relevant features of interaction: properties of
proto-objects or the activity of the robot.

Reactive layer

We build our system incrementally: for the bootstrapping we re-use the
mechanisms introduced in the last two sections: the saliency-driven gaze
selection and the tracking and pointing at the proto-objects. These two
control loops build the reactive layer. They run in parallel and the priority
in conflict resolution is given to the target generated by the proto-objects.
Thus, while there is no proto-object the system is driven by saliency and it
switches to pro-object tracking whenever proto-object appears. The proto-
object generation is enhanced in two directions. First, apart of the depth-
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based and color-based proto-objects the system can now generate proto-
objects for a blob of coherent motion and a blob of coplanar 3D-points.
Second, the blobs of different origins can be merged according to their 3D-
position.

The tracking and pointing uses the whole body motion [17]. The walking
is incorporated into the whole body control and need not to be addressed
separately. During tracking and pointing the robot at the same time adjusts
the distance to the proto-object to its preferred 'comfortable’ distance. We
emphasize that these reactive behaviors are applicable to all proto-objects
and create thus a general ability to interact with environment.

Several behaviors can be active at the same time. The basic behaviors
implemented are: approaching the proto-object and returning to the initial
position, pointing at proto-object with left or right hand, as well as a number
of gestures: nodding the head as a "Yes’, shaking the head as a 'No’, raising
up the left or right hand as to show that the system is learning. The selection
of behaviors is done by a competitive selection mechanism (arbiter) in form
of a non-linear dynamical system [4, 9]. The state of the arbiter, i.e. the
result of the competitive selection, at any time can be described by the
vector @ of current behavior activation values. This vector can be either
stored to bias the reactive layer later on or be mapped bidirectionally to
action classes such as 'forward’ and 'return’.

If no top-down input is present (purely reactive case) the behavior selec-
tion is solely based on a fitness value F; that is provided by each behavior.
Top-down input - in our case from the expectation generation system - can
act as an additional bias [3; to the fitness of each behavior so that the com-
petitive advantage C; provided as input to the selection mechanism is a sum
C; = F; + ;. This serves as both a way to trigger certain gestures - nod
head, shake head, learning gesture - and a way to push the reactive layer in
the direction of a memorized behavior activation state.

Since this external influence to the reactive layer always acts merely as
a bias, the reactive system is still fully functional with respect to non-
biased interaction behaviors while under the influence of top-down input.
Practically this means that AsiMo will e.g. still fixate and reach for objects
when a return’ command was issued and ASIMO is thus walking backwards.

Extension by an abstraction layer

While a proto-object is stably tracked by the reactive layer, the system
extracts the features of the proto-object, the state of the behavior activation,
and the speech features. In order to stabilize the learning we suppose that
all non-speech features can be reliably classified. That means they have
already been acquired in earlier developmental stages - e.g. the classification
of flat surfaces as relevant for depositing behavior - or are predesigned - so
to speak genetically encoded. We use a mask that we call ’evaluation mask’
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Figure 4.14: Incremental system design. The solid box on the bottom
shows the implementation of the reactive part that comprises
saliency-driven gazing and tracking/reaching for proto-objects.
The dashed box displays the layer of feature classification. The
dotted box shows the abstraction layer of expectation genera-
tion based on the associative memory.

& for differentiating between reliable, pre-designed channels and channels
to learn. This mask filters the input to the associative memory in such a
way that data from a learning channel requests a confirmation, whereas the
data from reliable channels sends a confirmation that it can be used as a
teaching signal. This mechanism will be explained in more detail in the
next section.
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An attention mechanism further restricts the channels that can generate
teaching signals. In our framework attention is implemented in form of ex-
pectation for some particular feature channel. This expectation is raised by
specific, predesigned user utterances that we call learning criteria’. For ex-
ample if the user says learn where this object is’, an expectation of activity
for any class in the position classifier is generated. Obviously a predesigned
link from a known ’learning criterion’ utterance to the channel expectation
is a strong simplification. Still, this link is nothing but an association and
thus it could be learned as well.

The fact that humans use words to name the features is also known
to the system and is represented by a predesigned association matrix of
the associative memory. It contains a non-zero element at location (i, j)
if the feature classes (i) and (j) are associated. In contrast to detailed
correlation, associations represent the general information that the features
can be bound together. Using this associative memory the system can
generate a teaching signal and learn the speech classes. The details of
speech processing and learning of the new labels are not the focus of this
work and can be found in [11].

We use online learning, thus the learnt classes can immediately be eval-
uated. By using the associative memory again the speech channel now
generates expectations for non-speech-features. For example when the hu-
man says ‘table’ the system expects to see a flat surface at the height of the
waist. If the currently tracked object does not have the expected features
then the expectation mismatch inhibits the reactive tracking of this object.
The system switches to the tracking of another object until the expected
object properties are seen or a time-out cancels the expectation. The ex-
pectation mismatch in the description of the action executed by the system
can directly activate the respective actions via a bias 5 to the competitive
behavior selection mechanism described on page 68. Thus the system can
be taught ‘command’-like utterances that influence the action of the system
without disabling the autonomy. As soon as expectations are met or the
time-out withdraws the expectations, the system continues to interact with
its environment in a reactive manner.

In order to make the behavior of the system understandable for the user,
the robot communicates the state of the expectation. In case of an expec-
tation mismatch it shakes its head ("No’ gesture) and in case of a match
it nods ("Yes’ gesture). The gestures are triggered via a bias vector 5 in a
way similar to the associated 'commands’. In the future we will extend the
system by means to monitor the human reaction to the Yes/No gestures.
Then the active evaluation of the expectation can be used for the refinement
or relearning of the corresponding concept.

The generation of the proto-objects, the extraction and classification of
the visual features as well as online learning of speech clustering are not the
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subject of this work. These parts were implemented by our colleagues and
are described in more details elsewhere [11], [52]. Focus of this work is a
general system design that allows the extension of the reactive system by
expectation generation and evaluation.

4.3.2 Expectation generation and evaluation

In this section we discuss the details of the expectation generation and eval-
uation that takes place in the bottom-up/top-down loop via the associative
memory (see Figure 4.12).

As we already mentioned, all feature classifiers are treated in the same
way. Let us denote by ¢ the index of the feature channel, by X. the feature,
and by F, the classifier. The output of every classifier at time-step t. is a
vector of values F?(X,) that represent the likelihood that X. belongs to a
class 7. We consider the time-step as being specific for the classifier because
all classifiers are running in parallel and thus have different rates. For
motion the F are binary values: 1.0 if the proto-object is generated from a
motion channel and 0.0 otherwise. For plane and position classification we
use a population code: F! = d(X,, X!), where X! is the center of the i-th

_lz—y)?
o2

cluster and d(x, y) is a metric, e.g. d(z,y) = Aexp( ). Every classifier

output is the bottom-up input fcb"(tc) to a module which we call ‘compare’
(see Figure 4.14). The second input I™(t.) to this module is a top-down
expectation generated via the associative memory. The bottom-up feature
classification is compared to the expectation. The ’compare’ module has
three outputs: ‘request’ H2(t.), 'match’ HY (t.) , and ‘mismatch’ H > (t,).
Figure 4.15 shows the internal logic of the compare module described below.

If the expectations for the particular feature are negligibly small and
the bottom-up input was not yet confirmed by the expectation so that the
internal state is negligibly small as well, the compare module sends the
‘request’ output, see case a) on the top of Figure 4.15.

If both the current feature classification and the expectation are suffi-
ciently large, then they are compared. For this purpose we calulated an
overlap between the two vectors as a vector v, wich is an elementwise prod-
uct of the positive elements of the expectation ]_;td(tc) and the classification
I_;bu(t0>:

¥ = £ (1)) = £ (1))

where f;(z) is a linear threshold function with zero threshold:

0, if =<0;
x, if >0.

fiz) Z{

The elements of 4 are positive, thus the sum of these elements (i.e. the
scalar product of expectation and classification ) can be taken as a measure
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Figure 4.15: Comparison of the bottom-up classification with the top-down
expectation. See the text for more details.

of the overlap. Hence, the distance between the expectation fctd(tc) and the
classification I1"(t.) can be defined as the inverse of a scalar product:

1
fi () i (k) )

If there is no overlap between the two vectors, then the distance d is
infinitely large. If this distance is smaller than a chosen threshold 7', then
we say that the expectation confirms the bottom-up classification. The
result of the comparison m(I'(t,), I*(t.)) is the overlap vector 4 scaled by
scalar product:

d(léd(tc>u I_im(tc)) = (

Jr(TE(0)) = fo (T(8e)
(7 (0) e (102
This result is memorized as the internal state ﬁcs (t.) of the compare module

and is propagated to its output 'match’. The request and mismatch outputs
are set to zero, see case b) on the top of Figure 4.15.

m(1(t.), 12" () =
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If the classification contradicts the expectation, the module resets its
internal state and sends the output 'mismatch’, see case ¢) on the top of
Figure 4.15.

If the bottom-up classification was already confirmed by top-down expec-
tation and saved in internal state and the bottom-up classification did not
considerably changed since that time, then the internal state and match are
kept the same, see case d) on the top of Figure 4.15.

Processing of the 'mismatch’ output is feature-specific. In contrast, the
processing of the 'match’ and 'request’ outputs is not feature specific. The
outputs of all channels are concatenated to a common ’match’ H Y(t) and
a common 'request’ H R(t). These two vectors are multiplied component-
wise with the evaluation mask € that defines which channel should send a
request and which channel a confirmation. In our application the speech is
the channel with low confidence of the bottom-up classification that needs a
confirmation, thus the elements of evaluation mask are one for speech chan-
nel and zero for entries that correspond to non-speech channels. As a result
of masking operation we have masked request and masked confirmation:
ERM)=E «HE®), EY(t) = (I —&). « HY(t), where I is a vector with all
elements equal one. The associations E7 and E' to these vectors are gen-
crated by multiplication with the association matrix A: Ef(t) = AEY (¢)
and Ei(t) = AER(t). Here we use the notation ¢ for time-steps. This no-
tation is different from classifier-specific notation ¢, because the operations
after the concatenation run at their own rate, constrained only by the time
needed to execute these operations. We do not need to synchronize the
vectors that are concatenated because the processing speed is sufficiently
high to react in time to all the changes.

We recall that the 'match’ vector contains the features that were expected.
Thus the association E7 to this vector serves as a confirmation to not
yet expected features. In terms of predictive models this is a ’forward
model’, while the association E' to the 'request’ is analog to an ’'inverse
model’. It shows which features can generate the confirmation for a request.
These two output vectors of the associative memory are combined with the
expectation E! generated by the attention system (learning criterion) and
sent back through the loop as an expectation vector E(t) = E/(t)+ E(t)+
E(t). This vector is then split according to the used feature channel ¢
(we denote this operation by [].) and every ‘compare’ module receives its
corresponding part as top-down expectation I'(t, + 6t.) = [[E(t)].)(te +
dt.)). Here we use the notation []|(t. + dt.) to stress the fact that every
channel can process its top-down input with its specific rate. This splitting
step closes the loop of expectation-based perception. In Figure 4.16 we
schematically unfold an example of 3 successive steps of the loop in the case
of an expectation match. White spaces of request and match vectors show
which parts are inhibited by the evaluation mask.
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Figure 4.16: Unfolded example of 3 successive steps of the expectation gen-
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eration and evaluation loop (the case of expectation match).
The dashed line shows the feedback pathway if not unfolded.
The grey line in the background shows the progress of changes
through the loop.



4.3 Expectation generation: beyond reactivity

Step 1. In absence of the speech signal there exist no expectations
because in our experiment we assume that the non-speech channels alone
are not confident enough to generate expectations. (This can be changed
by setting the evaluation mask to allow also the propagation of the requests
from the non-speech channels.) We start our loop monitoring at the moment
when a new word was pronounced. As there is no speech expectation,
the compare module propagates the bottom-up speech classification to the
‘request’ output. Using the associative memory this request induces the
expectation of non-speech features that correspond to the speech (’inverse
model’).

Step 2. The 'compare’ module at the non-speech side receives at the
input a top-down expectation. We suppose that the word matches the
perceived situation and the non-speech bottom-up classification is confirmed
by the top-down input. It is memorized in an internal state of the compare
module and communicated as a 'match’. With the help of the associative
memory the 'match’ output generates the top-down expectation for the
speech (forward model’).

Step 3. Now the top-down expectation for the speech serves as a confir-
mation of the bottom-up classification. Thus the speech-’compare’ module
accepts the bottom-up classification and transfers it to the 'match’ out-
put. The recurrent processing in the loop is converged to the state where
1) there is no activity in the request vector, and 2) both speech and non-
speech bottom-up activities were confirmed and stay now in the 'match’
vector until either the bottom-up input or top-down input to comparing
modules considerably changes. The top-down expectation contains only
the expectation for the speech as this is the classifier that is considered in
our example as not sufficiently confident.

Organization of the learning

Next we would like to shed the light on the organization of the learning. As
we already mentioned, in this example the system learns only on the level
of feature classifiers. The associative memory represented by a correlation
matrix does not change. This ensures the stability of the learning that we
need for our first steps. We fix the association matrix A as a symmetric
matrix of dimension that doubles the number N, of non-speech clusters
and has a positive entry at the main and (N, + 1)-th diagonal:
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an
[ 0] 1 0 ]
0 1] 0 1
A= 1N 1 0
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This matrix simply encodes the fact that there exist speech labels for non-
speech clusters. Using this correlation matrix we can send a teaching signal
for learning the speech clusters. The learning session is naturally integrated
into the expectation generation loop with the help of two mechanisms.

=3 Speech top—down

expectatio confirmation
B | ES
\ associative memory |
ten ter

e
frequest

Learning
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Figure 4.17: Generation of the teaching signal for the online-speech learning.
At the bottom the expectation in one feature channel (e.g.
position) is generated from specific utterance (e.g ’learn where
this object is’). This top-down expectation propagates through
the loop in the standard way (see Figure 4.16) and generates
the teaching signal for the speech shown on the top.

The first mechanism is the ’learning criterion’ signal (see Figure 4.14).
This is a pre-designed user utterance that can be recognized from the begin-
ning by the speech classifier and that specifies which classification channel
will be named next by the user. For example if the user says 'learn where
this object is’ the learning criterion generates the expectation of activity for
any class in the position classifier. Supplied with such a global expectation
the ’compare’ module for the position channel accepts any bottom-up input
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and propagates it to the 'match’ output, see Figure 4.17. This output is
processed then by the associative memory. We recall that the correlation
matrix is organized in such a way that every class of the non-speech clas-
sifier is associated to one class on the speech side. Thus the association
can be used directly as a teaching signal for speech clustering. Obviously
the predesigned link from the known ’learning criterion’ utterance to the
modality expectation is a strong simplification. Still, this link has the same
format of 'word’-feature association used in the rest of the system and po-
tentially it could be learned as well. We emphasize that we do not use an
extra system for generating a teaching signal, but use directly the expec-
tation generation system. This design allows for further progress towards
autonomous generation of the teaching signal.

The second mechanism for the integration of the learning is the confidence
of the output of the classifier. As soon as a learning criterion is perceived,
the system sets the confidence of the bottom-up input from the speech
classifier to a small value so that the ‘compare’ module of the speech channel
does not generate any expectations others than the expectation generated
by the learning criterion.

4.3.3 Experimental results

left right right table chair still left return
= ; , Y v WY ¥
T
S

1

57 6672 80 88

104 118125 154 184

seconds

Figure 4.18: One run of the experiment: speech learning and evaluation.
See the text for more details.

Figures 4.18 and 4.19 show a run of the experiment. In this experiment,

the system learns the speech clusters for labels left’, 'right’, "table’, 'chair’,
‘moving’, 'still’; ’approach’ and 'return’. The text in the image shows the

7
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word learning sessions, the text on the top - the utterances for evaluation.
The upper two plots display the proto object information. The labels stand
for the source of proto object: ’D’- Depth, 'M’- Motion, 'P’- Plane; dark
color shows high values. The second plot displays the object’s position in the
cylindric coordinates centered at robot’s torso (waist): thick line shows the
angle (rad), the dashed line - the hight, and the thin line - the depth. The
plot on the very bottom shows the state of the behavior activations: "Y’-
node,’N’-shake, 'LL’,’LR -learning gestures with left /right hand, "PL’,’PR’-
pointing with left /right hand, 'R’-return, ’A’-approach. The behaviors can
run in parallel. Note the switch of the right and left hand doing pointing
and learning gesture at 38 sec as the object moves from left to right. The
middle 3 plots shows the state of the abstraction system. The first 9 values of
expectation-, request-, and evaluation-vectors correspond to speech channel.
The dashed boxes show the expectations in non-speech channels generated
by learning criteria. The corresponding expectations in speech channel is
used as a teaching signal. The evaluation show both the expectation match
(dark) and mismatch (bright).

A typical learning session looks like follows (28-57 sec. in Figure 4.18):
the user says 'learn where this object is!” (learn criteria) and then says
‘left’” a few times while presenting the object on the left side of the robot.
If the user does not speak for 4 seconds the learning session is considered
to be over. Newly learnt clusters can be immediately evaluated: The user
presents an object on the left side of the robot and says ’left’ (66 sec.).
Speech class ’left” now raises an expectation for the interaction on the left.
This expectation is satisfied here since an object is shown on the left side,
so the robot nods (Yes). In contrast, when the user presents an object on
the left side but says 'right’ (72 sec.), this creates a mismatch (white spot
in Evaluation) that triggers head shaking (label "N’ in behavior activation
plot) and stops tracking. The request stays active until the robot finds
the object on the right (80 sec) and nodes (label "Y’).At the end of the
experiment we evaluate some of the learnt labels while ASIMO is tracking a
not yet seen object.

4.3.4 Analysis: distribution of learning and predesign

Our long-term goal is the design of a bootstrapping system for open-ended
autonomous development. For this reason we would like to carefully analyze
which parts of our system can be considered necessary for bootstrapping;
which parts help the designer to make further steps in incremental building;
and which parts would enable the system to make further developmental
steps.

In this work we consider the binding of features to a concept in form of
an associative memory on the level of feature classes. Many approaches in
Developmental Robotics learn models or concepts as correlations directly on
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Figure 4.19: Image series from the experiment on speech learning and eval-
uation. 1)Fixation and pointing while learning the speech label
for the left position. 2,3)Expectation evaluation: nodding as
,Yes’ gesture to show the expectation match. 4)Interaction
with a motion proto-object. Learning of ’still’ and 'moving’ la-
bels. 5,6,7)Interaction with planar proto-objects. 5)Learning
of the ’chair’ label. 6)Fixation and adjustment of the inter-
action distance to the table and learning of the ’table’ label.
7)Testing the independency from visual appearance. 8)Ap-
proaching the user and learning ’forward’ label. 9)Evaluation
of learnt labels on the unknown object.

the level of the features using only the statistics of the data. The problem for
these bottom-up approaches is how to find the right level of generalization
and how to update the models (stability-plasticity problem). As a side
effect of these difficulties the research often stops at the level of correlation
learning without coupling to behavior at all or using it only for simple
reactive behavior.

We do not learn in a bottom-up way, instead we stabilize the learning
with the help of a top-down teaching signal. As we explained in Section
4.3.1, four predesigned parts in our system contribute to the stabilization of
learning at the level of a feature classifiers: predesigned feature classifiers, an
evaluation mask, the way how a user generates attention, and the associative
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memory.

We see fixed classifiers as initial hypotheses for the system. Here our
future work goes into the direction of mechanisms for autonomous genera-
tion and refining of hypotheses. The autonomous generation of hypotheses
is necessary in order to scale up the system, but it does not directly con-
tribute to the development of the behavior. We already have tested an
unsupervised clustering for this purpose. In contrast, the refining of the
classifier hypothesis is crucial for the grounding of the concepts and it has
to be considered in conjunction with the problem of concept representation
by a fixed associative memory.

Similar arguments are valid for the predesign of learning criteria as a
source of attention. Since we use a well defined interface in form of expec-
tations, the source of these expectations can easily be replaced. We have
preliminary results on how to raise the expectation by monitoring repeated
changes in a particular feature channel. The replacement of predesigned
solution by emergent solutions would increase the number of things that
can be taught to the system, without direct improvement of the learning
behavior.

Next we discuss the predesign of the associative memory by fixing the
association matrix instead of learning it. In case of speech learning the pre-
design of the association between the speech classes and non-speech classes
means that the system ’knows’ that the feature classes can be 'named’. In
the future we will extend our system by an autonomous detection of the ne-
cessity to associate particular feature channels by monitoring whether the
correlation of the features is accompanied by a reward signal. Then our
approach could model the explosion of the vocabulary as observed in child
development. First the language is learned slowly. This phase would corre-
spond to bottom-up statistical learning that discovers the fact of 'naming’.
In the second phase children show a rapid vocabulary increase. In our im-
plementation this corresponds to 'naming’ used for the top-down generation
of a teaching signal for the speech classifier.

Crucial steps towards more complex learning behavior and a truly com-
plete, situated system are an integration of more complex behavior for re-
solving expectation mismatches and an integration of rewards as signals for
building an associative memory.

4.3.5 Conclusions

We presented a way how a reactive layer can be extended by an abstrac-
tion layer that generates the expectations. The expectations that are not
matched by sensory input activate the mismatch resolution: a behavior that
stops either if the expectation is matched (with a positive answer) or after
a time-out (with a negative answer). We see this behavior as a first step
towards hypothesis testing and goal-directed behavior.
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The main difference of our approach compared to other architectures
that integrate anticipative and reactive control is that our reactive layer
can be used without any control layer above it. Thus our system is more
robust: if the higher layer does not produce an output the system does not
completely break, but continues to interact with the environment. Further,
our expectation generation layer also does not depend on a higher layer,
e.g. a planning ability, that could be added later.

In contrast, the hybrid architectures that use Reinforcement Learning
(RL), for example [21] with the DEDS formalism, are forced to always
evaluate the future reward and always plan. These architectures do not
switch between reactive and expectation-driven modes, they only use the
reactive controller within a plan. Furthermore the RL-based approaches are
forced to define only one reward function. In our architecture the reward
signal is planned to control the creation of the associative memories and
there is no constraint on the number of such memories. Thus with our
design we create the potential to build a system that can deal with multiple
competing reward signals.

The loose coupling of abstractions to the reactive behavior has several
advantages compared to including a direct action representation into the
abstract concept, as it is usually done in the anticipative systems with pre-
diction of action outcome (see [12] for an overview). First, it allows for a
sufficient decoupling of the dynamics of the concept learning from the dy-
namics of the behavior. This leads both to a stabilization and transparency
of the overall behavior (see [48] for the problems due to the tight coupling).
Second, it allows to link a multitude of behaviors to the same concept. Fi-
nally, it provides the possibility to use the concepts as the subject of higher
mental functions (attention, communication, planning, memorization) in
the sense of symbol detachment problem as discussed in [44].

In the framework of open-ended development we set a high value on
task/scenario independent solutions, flexible interfaces, and the possibility
of growing and scaling up. Below we summarize the design features that
support the incremental building of an intelligent system:

e a generic concept of proto-objects allows for bootstrapping the system
with stable, task-unspecific reactive behavior [9];

e all feature channels are handled in a similar way for easy integration
of additional feature channels;

e a mask decides which feature channel generates an expectation, there-
fore it can be replaced by an internally generated mask later without
a system redesign;

e there is no explicitly coded teaching signal, instead the mechanism of
expectation generation is used.
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In summary, both the coupling of mental concepts to the reactive layer
and a flexible design allow for further steps in incremental building of au-
tonomously developing systems.

4.4 Summary

In this chapter we tested on real-world experiments our general ideas about
the system design formulated in Chapter 3. We built a reactive layer for
general interaction with the environment and extended it by increasingly
complex types of abstraction layers.

We started first with a simple type of abstraction based on a clustering
of the sensorimotor space (type A:SM:R). We showed that with the help
of a homeostatic control of the general rewards for learning progress and
for being in interaction, this simple abstraction type together with a simple
heuristic for parameter exploration can bootstrap the progress of the system
from reflexive to differentiated gazing.

We focused next on the problems of learning in dynamically changing
environments. In order to deal with these problems we used the abstrac-
tion type A:SE:O. We demonstrated that by using a differentiation between
short-term and long-term statistics we can stably couple the exploration
and online-learning with behavior switching.

We finally implemented a system that uses abstractions of type A:SE:R
for generation of the expectations. These are used for learning and for
generation of expectation-driven behavior. The uniform design supports
the processing of multiple different feature channels (in our example: vision,
speech, action). The abstraction layer is coupled to a reactive layer by a link
that activates the resolution of the expectation mismatch. This architecture
allows to use both reactive and expectation-driven behaviors and paves the
way towards goal-driven behavior generation that can integrate planning
and hypothesis testing.
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The majority of applications in Developmental Robotics aim at learning of
one isolated specific ability. The development stops as soon as the ability is
learned and the system has to be redesigned if the robot should learn another
ability. The goal of our work is to investigate the design of an initial system
that can bootstrap an open-ended, task-unspecific development.

In Chapter 3 we formulated general design principles and the requirements
on the bootstrapping system. The bootstrapping consists of three elements:

1. Innate behaviors that provide a general and robust interaction with
the environment on a short-time scale.

2. The value system that monitors the reward acquisition on a long-time
scale.

3. The abstraction system that acts on a middle-time scale.The abstrac-
tion system monitors the interaction with respect to the rewards in
order to provide control alternatives to innate behaviors.

To obtain progress compared to existing approaches we used some design
principles observed in the brain. As for innate behaviors, we start with
an autonomous reactive system instead of basic actions that have to be
controlled by higher layers, which is the conventional way. Such a design
provides a higher stability of the system as well as better possibilities for ob-
servation and control of the reactive layer. Instead of reward maximization
used by classical Reinforcement Learning, we use a homeostatic control that
allows to work with multiple conflicting rewards. And instead of sticking
to one abstraction type we use multiple abstraction types that can support
the development of each other. A crucial difference of our work compared
to the majority of applications is that both the innate behaviors and the
reward system are not task-specific but provide a general ability to interact
with the environment and to judge the quality of interaction. Further, we
do not focus on the quantitative growth of the system’s abilities but on the
qualitative transition from reactive to expectation driven behavior.

We validated our proposed design by giving examples of possible imple-
mentations of the bootstrapping system in Chapter 4. We followed the
guidelines proposed by psychologists to robotics, [55]:

e Be physical. Our tests were done in the real-world, not in a simula-
tion. Although the real-world implementations require an additional
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effort, they prevent a researcher from making unrealistic assumptions
about the system and the environment. Moreover, the hardware is
indispensable in the developmental scenarios that actively use the in-
teraction with the environment, e.g. focusing an object for learning
how to recognize it (Section 4.1).

Be social. Social interaction is an important part of the interaction
with the environment in all of our applications. The human plays
multiple roles: he provides a teaching signal (see Section 4.1) and
structures the statistics of observations so as to facilitate the learn-
ing (see Sections 4.1 and 4.3). Further, by overinterpretation of the
system’s behavior, a human shows regularities that can be used as
new goals (see Section 4.2). Dealing with social interaction made us
aware of difficulties that can appear if we apply standard methods of
statistical learning to a highly dynamic environment. We developed
countermeasures to stabilize the learning. We made a careful differen-
tiation between different types of prediction errors (Section 4.2) and
we designed a system with subparts that are tightly integrated but
decoupled in learning (Section 4.3).

Be incremental. Our aim is to build a comprehensive complex sys-
tem. Such endeavor can be accomplished only in small steps, otherwise
we can not handle the complexity and can not analyze the internal
processes in the system. In our work we increased the complexity of
the hardware from the robot head only, to the head with simulated
hand gestures, to finally the whole humanoid robot AsiMO. On the
software side we progressed from optimization of the parameters in an
existing architecture to adding new layers and from dealing with only
vision to dealing with both vision and speech.

Be multimodal. Multimodality allows to observe correlations, which
exist between different channels. In Section 4.3 we used vision, speech,
and action-related features to create the expectation models. Using
these models the system can qualitatively change the behavior from re-
active to expectation-driven. Further, the expectations cross-support
the learning of the classes in the distinct channels. In our particular
example we investigated the learning of the speech labels but we de-
signed the system in such a way that every channel was treated in the
same way.

Learn a language. In Section 4.3 we have done the first step to-
wards learning a language. This is an important step because with
the help of language a human can attract the attention of a system
to regularities that may be missed otherwise. It introduces the struc-
ture in the observations that can speed up the learning on the higher



abstraction layers. In our system we attached great importance to
embedding language into the behavior generation. First, the behav-
ior labels can be used as commands to a robot. Second, the speech
label associated with visual features activates the undirected search
for these features. This behavior can be useful for the refinement of
concepts. For both cases we use the same mechanism of expectation
generation and resolution of the expectation mismatch. Such uniform
system design increases both the transparency of the architecture and
the consistency of the behavior.

The presented work creates a good starting point for further investigations
on the development of a complete system with coupled dynamics of changing
needs, changing internal representations, and changing behavior, because it
proposes several methods for the stabilization of the system’s behavior.

First, the decomposition of the abstraction layer proposed in Section 4.3
allows learning of different structures at different time-spans. In the current
experiment the system learned only at the level of feature classification. Fur-
ther work can incorporate the learning on the level of the associative memory
guided by observations of the reward. Also the cross-support of learning in
different channels can be investigated further: the current implementation
used only one improvement step where the non-speech channels teach the
speech channel, whereas the steps can be repeated by letting the improved
speech channel teach the non-speech channels. The top-down/bottom-up
loops in the expectation generation mechanisms can account for such incre-
mental progress in multiple channels.

The second stabilizing factor is the loose coupling of the abstractions to
the behaviors over the activation of mismatch resolution. In this way we
can better decouple changing internal representations and changing behav-
iors, compared to a direct representation of the actions in an abstraction
unit. This feature allows to introduce more elaborated hypothesis testing
and disambiguation. The far-future goal can be a system that integrates
planning with hypothesis testing. The expectation mechanism provides a
good starting point because in our architecture it is a uniform interface for
goal-directed behavior, hypothesis testing and learning.

Above we suggested further research in the direction of increasingly com-
plex control. On the other side it is important to make the system broader
and increase the spectrum of behaviors by adding more rewards, both gen-
eral and specific. For example, additionally to the investigated rewards for
interaction, learning progress, and controllability it would be interesting
to investigate the reward that measures agreement of the human with the
robot’s behavior or the specific rewards e.g. for touching sensation. The
proposed homeostatic control was tested for the two-dimensional case and
can be used as a base for investigations of the system behavior in case of
higher dimensions of the reward vector.
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Although the way to the implementation of the task-unspecific open-
ended artificial development is still a long one, this work has shown the first
steps. We proposed a design of the initial bootstrapping system that was
validated by multiple implementations of the real-world online learning from
interaction between the robot and its environment. Several design features
inspired by the brain research - homeostatic control, parallel representation
structures, loose coupling between parallel control layers - contribute to
the overall stability of the proposed architecture and make it attractive for
further research.
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vector of needs

vector of rewards

reactive layer

local controllers of the reactive layer

competitive selection mechanism (arbiter)

fitness of the controller L;

bias of the controller L;

competitive advantage

sensory input

motor command

mapping to motor commands implemented by controller L;
abstraction layer

abstraction unit

mapping to motor commands implemented by abstraction A;
models for expectation generation (associative or predictive)
weights of the channels in saliency map

Gaussian function

the mean of the Gaussian

the covariance matrix of the Gaussian

the weights of the gaussian mixture model (GMM)
the short-term statistics of the GMM weights
index of the feature channel

bottom-up input

top-down input

request

match

mismatch

internal state

evaluation mask

association matrix

expectation generated by match (confirmation)
expectation generated by request (expectation)
expectation generated by learning criteria
combined expectation
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