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Summary 

In this work an extensive proteomic approach for Sorangium cellulosum So ce56 was 

developed and applied encompassing the extraction of different subproteomes: the 

cytoplasmic, membrane, extracellular and outer membrane vesicle fractions of So 

ce56. Consequently, a proteome reference map of Sorangium cellulosum So ce56 

cytosolic proteins was established. Moreover, proteome analyzes were performed for 

the identification of proteins involved in the regulation of secondary metabolite 

biosynthesis, morphogenetic differentiation (fruiting body formation), signal 

transduction, transport process or gliding motility activities. A 2-D proteome map of 

So ce56 cytoplasmic proteins expressed during stationary phase was established 

and analyzed by MALDI-TOF-MS. 115 different cytosolic proteins of the 300 

processed protein spots were identified and classified into COG categories. As 

expected, a large number of identified functionally annotated cytosolic proteins (75%) 

were involved in primary metabolic pathways, e.g. glycolysis, tricarboxylic acid (TCA) 

cycle and fatty acid degradation. This finding was supported by the analysis of 

tyrosine and serine phosphorylated proteins via Western Blot method resulting in the 

detection of many proteins activated during primary metabolism. Differentially 

expressed cytosolic proteins of the exponential phase and stationary phase from So 

ce56 were identified using DIGE technology. Additionally, the use of Blue-Native 

PAGE from the cytosolic and membrane fraction led to the identification of proteins 

belonging to protein complexes which are involved in different cellular processes, 

e.g. secondary metabolite production. Isolation of extracellular proteins by the 

phenol-extraction method resulted in the identification of 41 unique extracellular 

proteins which were shown to be enzymes mainly involved in biomacromolecule 

degradation like cellulase. To overcome analytical limitations created by the 

hydrophobic nature of membrane proteins a specific extraction procedure was 

adapted. SDS-PAGE preparation and consequent nanoLC-ESI-MS/MS analysis led 

to the identification of 66 proteins of the entire membrane fraction. For a detailed 

view, the outer membrane proteins were analyzed separately, which revealed the 

identification of 35 proteins from the outer membrane fraction. The identification of a 

putative serine histidine kinase in the membrane fraction showed a significant 

correlation with a sensor kinase in the jerangolid or ambruticin biosynthetic gene 

cluster isolated from other Sorangium strains. This discovery indicates further genes 
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nearby which might be participating in the jerangolid or ambruticin polyketide 

biosynthetic gene cluster. Genomic and metabolomic approaches are additionally 

needed to characterize this putative fifth polyketide biosynthesis. Moreover, outer 

membrane vesicles (OMVs) of So ce56 could be visualized via electron microscopy, 

which might indicate a transport system of this myxobacteria. In total about 241 

different proteins originating from the different cellular localizations could be 

identified.
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Zusammenfassung 

In dieser Arbeit wurden umfangreiche Proteomanalysen von Sorangium cellulosum 

So ce56 durchgeführt, wobei Proteine aus den verschiedenen zellulären 

Kompartimenten untersucht worden sind: Proteine aus dem Cytosol, sekretierte 

Proteine, Membran- und Vesikelproteine. Diese Untersuchungen hatten zum Ziel, 

Proteine in So ce56 zu identifizieren, die an morphologischen 

Differenzierungsprozessen, wie der Bildung von Früchtkörpern, der Biosynthese von 

Sekundärmetaboliten, sowie an Transportprozessen, bei der Signaltransduktion und 

bei der Zellfortbewegung beteiligt sind. Die isolierten Proteine wurden unter 

konstanten Wachstumsbedingungen in der frühen stationären Phase 

elektrophoretisch aufgetrennt. Die Identifizierung der differentiell auftretenden 

Proteine erfolgte mittels MALDI-TOF-MS und nanoLC-ESI-MS. So wurden 115 

differentielle Proteine aus der cytosolischen Fraktion identifiziert, die vorwiegend an 

Primärstoffwechselprozessen von So ce56 beteiligt sind. Desweiteren wurden 

Phasenspezifische Proteine (exponentielle und frühe stationäre Phase) mittels 

Differentieller Gelelektrophorese (DIGE) analysiert. Proteine, die in der 

Signaltransduktion involviert sind, wurden zusätzlich mit Westernblotanalysen 

detektiert, insbesondere die Phosphorylierungen an Tyrosin und Serin. Die 

Untersuchung des Sekretoms von So ce56 führte zur Indentifizierung von 41 

verschiedenen Proteinen, die hauptsächlich hydrolytische Funktionen aufzeigen. Um 

die Identifizierung und Charakterisierung des So ce56 Proteoms zu erweitern, 

wurden neben den cytosolischen und sekretorischen Proteinen auch die Membran- 

und die Vesikelproteine untersucht. Mit Hilfe von 1-D Gelen und Blue-Native Gelen 

konnten hydrophobische Proteine und Proteine, die in Proteinkomplexen gebunden 

sind, detektiert und massenspektrometrisch analysiert werden. Die Analyse der 

Membraneproteine resultierte in 66 identifizierten Proteinen. Zusätzlich wurden durch 

Untersuchungen der äußeren Membran weitere 35 Proteine identifiziert. Interessant 

war der Fund einer Sensorkinase, die einen hohen Homologiegrad zur Sensorkinase 

des Jerangolid/ Ambruticin Biosyntheseclusters (So ce307 und So ce10) aufzeigte. 

Überdies wurden noch elektronenmikroskopische Aufnahmen von Vesikelproteinen 

erstellt, die möglicherweise eine wichtige Transportfunktion in So ce56 übernehmen. 

Durch diese Proteomarbeit von So ce56 wurden insgesamt 247 verschiedene 

Proteine identifiziert, die ihren funktionalen Klassen zugeordnet werden konnten.



Introduction 

  4 

1 Introduction 

The availability of complete genome sequences allows the entire potential protein 

complement of different organisms to be defined. Sequence analyzes of simple 

organisms like bacteria (e.g. Escherichia coli) to more complex organisms as 

eukaryotes (e.g. Saccharomyces cerevisiae) have already been determined. 

Therefore, it was a matter of time to analyze the large and complex myxobacterial 

genomes such as Myxococus xanthus with 9.14 Mb and Sorangium cellulosum with 

13.2 Mb, which are currently sequenced and annotated resulting in a vast data of 

genome information (Goldmann et al., 2006; Schneiker et al., 2007). Many cellular 

activities in myxobacteria like transcription and translation, post-translational 

modifications and protein turn over underlie changes depending on the environment, 

resulting in qualitative and quantitative changes detectable at different levels, e.g. the 

protein and/or metabolome level. Therefore, a number of different approaches are 

needed for the functional analysis of novel genes and products in myxobacteria. 

These approaches include large-scale analyze of: protein expression (proteomics) 

and metabolite production (metabolomics). The availability of fully sequenced 

genomes of myxobacteria facilitates the discovery of gene products and their 

functions. Proteomics complements genomics because it focuses on gene products, 

which are the active elements of cells (Pennington et al., 1997; Wilkins et al., 1996). 

Moreover, proteins undergo protein-protein interaction and different post-translational 

modifications such as phosphorylation, glycosylation, ubiquititation and acetylation, 

which influence their function but can not be deduced from the RNA or DNA 

sequence. Protein modifications and expression levels can be detected by proteomic 

techniques (Lottspeich, 1999; Nock & Wagner, 2000; Lohaus et al., 1998; Pandey & 

Mann, 2000). 

1.1 Myxobacteria 

Myxobacteria are Gram-negative obligate aerobic bacteria. Characteristic for 

myxobacteria is their ability to glide in swarms, to feed cooperatively, and to form 

under unfavorable conditions fruiting bodies with structures of varying complexity and 

often brightly colored (Reichenbach & Dworkin, 1992). Another interesting feature is 

that myxobacteria produce a high number of bioactive secondary metabolites like 
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fungi or actinomycetes (Hopwood, 1997; Rawlings, 1999). Myxobacteria mainly occur 

in soil, dung, decaying plant material, and the bark of trees and generally prefer a 

neutral pH and are therefore considered as mesophilic soil microbes with a 

temperature optimum of 30 °C. Other reports show that myxobacteria are also able to 

live in extreme environments, e.g., in antarctic soils (Dawid et al., 1988) and in 

marine environments (Reichenbach, 1999). Polyangium vitellinum (today Kofleria 

flava), the first myxobacterium was discovered by the German botanist H.F. Link in 

1809 (Reichenbach & Dworkin, 1992). Due to its fruiting bodies, the bacteria were 

termed as “gasteromycete” (fungi). In 1857, the British mycologist M.J. Berkeley 

discovered two additional species, Stigmatella aurantiaca and Chondromyces 

crocatus, which he classified as hyphomycetes (fungi imperfecti) (Berkeley, 1857). 

The genera name “myxobacteria” was formed by the American botanist Roland 

Thaxter in 1892 who was the first scientist to describe their life cycle (Thaxter, 1892). 

Contemporary, phylogenetic analyze, by comparison of the 16S rRNA, reveal that 

myxobacteria belong to the delta branch of the proteobacteria (Ludwig et al., 1983). 

Based on morphological and physiological features and after several renamings, the 

order Myxococcales (myxobacteria) can be divided into three subgroups 

Cystobacterineae, Sorangineae, and Nannocystineae (Reichenbach, 2004; Shimkets 

et al., 2005), six families, 17 genera and about 50 species (Fig.1).  

Myxococcus xanthus, Corallococcus sp., Archangium sp. and Stigmatella aurea are 

typical members of the first subgroup and mainly obtain nutritional substrates by 

proteolytic or bacteriolytic activities. They feed upon other bacteria, utilizing the 

protein and lipid fraction as carbon and energy sources. The vegetative cells are 

slender and have tapering ends up to 1 µm in diameter and up to 20 µm in length. 

Myxococcus xanthus is the most extensively studied model organism among 

myxobacteria, and has a genome size of 9.14 Mb (Goldman et al., 2006). 

The Sorangineae like Sorangium (Polyangium) cellulosum and the Byssophaga 

genera are cellulose degraders and use inorganic nitrogen compounds while growing 

on cellulose and glucose (Reichenbach & Dworkin, 1992; Reichenbach, 2004). The 

vegetative cells of this suborder are mainly cylindrical rods with rounded ends up to 1 

µm wide and 10 µm long. In contrast, other members of the Sorangineae subgroup 

like Haploangium and Chondromyces and the subgroup Nannocystineae show in 

feeding experiments no cellulolytic activity. The analysis of Sorangium cellulosum 



Introduction 

  6 

provides new insights into the biology of Sorangium species and also for other 

myxobacterial strains. Therefore, the So ce56 strain is used as model organism with 

favorable features compared to other strains which are presented in the next chapter. 

Fig. 1: Taxonomy of myxobacteria (Reichenbach, 2004; Shimkets et al., 2005). 

1.2 Sorangium cellulosum So ce56 

For a better understanding of the genus Sorangium, the model strain Sorangium 

cellulosum So ce56 was chosen for a functional genomic approach in the “Genomik” 

network funded by the German Ministry of Education and Research (BMBF) in 2001. 

With the recent completion of the genome sequence and annotation of So ce56 

(Schneiker et al., 2007) a sound basis information is available to facilitate future 

works. Compared to other Sorangium strains, So ce56 exhibits features like a 

relatively short generation time (7 h) and a homogeneous growth in a defined liquid 

medium, which facilitates handling in the laboratory (Gerth et al., 2003; Müller & 

Gerth, 2006). Sorangium cellulosum So ce56 colonies and fruiting bodies are orange 

coloured and exhibit swarming patterns like other myxobacteria (Fig.2). This 

bacterium harbors the largest bacterial genome (circular) known up to now (13 Mb) 

encoding about 9367 predicted protein coding sequences (CDS) (Schneiker et al., 

2007; Pradella et al., 2002). It can be expected that a high number of proteins 

(enzymes) are needed for the regulation of the various cellular processes involved in 

the complex lifestyle of this bacterium. Putative functions could be assigned to 4895 

(52.2%) of the encoded proteins on the basis of manual annotation. About 1224 

(13.1%) are conserved hypothetical proteins showing similarities to other proteins 

encoded by bacterial genomes. In contrast, the remaining 3248 (34.7%) proteins 
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show no significant similarities to predicted proteins stored in public databases. 

BLASTP comparisons of So ce56 to itself display that 36% (3402) of the predicted 

genes constitute 772 families of paralogous genes. The largest family consists of 

serine/threonine/tyrosine protein kinases (eukaryotic protein kinase-like kinases 

(ELKs)) and histidine kinases with 498 members. The abundance of the high number 

of protein kinases indicates the high activity of this bacterium regulating the complex 

and multicellular lifestyle of this strain. 

Fig. 2: a) Sorangium cellulosum So ce56 swarming after 7 dpi on solid P-medium. b) Colony of 
Sorangium cellulosum So ce56. 

One of the interesting features of So ce56, which has to be controlled, is the ability to 

produce secondary metabolites mainly produced to inhibit eukaryotic and prokaryotic 

competitors in the habitat, e.g. fungi. Up to now, metabolic screening of So ce56 led 

to the characterization of three secondary metabolites of biotechnological 

importance: (i) chivosazol, (ii) etnangien and (iii) myxochelin. 
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Fig. 3: Secondary metabolites of Sorangium cellulosum So ce56 (Schneiker et al., 2007). 

The macrolide chivosazol exhibits cytotoxic effects on fungi but not on bacteria 

(Jansen et al., 1997; Irschik et al., 1995, Perlova et al., 2006). The secondary 

metabolite etnangien inhibits growth of Gram-positive bacteria by acting as a general 

nucleic acid polymerase (DNA, RNA, RT) inhibitor (Höfle, 1995). The third compound 

myxochelin (NRPS) is a catecholate-type siderophore, which belongs to a bacterial 

iron-uptake system that is produced by many myxobacteria (Gaitatzis et al., 2005). 

However, the genome sequence analysis revealed also the existence of further 

putative biosynthetic gene clusters (17 in total). Some of them might be involved in 

carotenoid and terpenoid biosynthesis, but many of them are more or less still 

unknown. The identification and characterization of these secondary metabolites are 

a major goal for the investigators to find a way revealing these natural products. One 

successful method was the heterogeneous expression of a predicted So ce56 

biosynthetic gene cluster in a Pseudomonas strain, which led to the production of a 

fourth metabolic compound named flaviolin (Gross et al., 2006; Bode & Müller, 2006). 

This experiment showed that unknown biosynthetic gene clusters of So ce56 have 

the potential to produce new compounds with interesting activities. For the analysis 

of these and further biosynthetic gene clusters, a gene transfer system (Pradella et 
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al., 2002; Kopp et al., 2004) and a quantitative gene expression system (Kegler et al., 

2006) for S. cellulosum So ce56 have already been established. 

1.3 Molecular and biochemical characterization of myxobacteria 

As Sorangium strains provides no or less information concerning major biological 

processes like the (i) gliding system, (ii) fruiting body formation and cell-to-cell 

interaction, these studies mainly deal with the investigation of the model organism 

Myxococcus xanthus. The reciprocal BLASTP comparison of the two genomes 

shows that only 2857 of the predicted CDS (30.5%) in the So ce56 genome are 

homologous to predicted CDS of M. Xanthus (Goldman et al., 2006; Schneiker et al., 

2007). The production of (iii) secondary metabolites was characterized chemically 

upon different Sorangium strains, Myxococcus xanthus and other myxobacterial 

species. Due to the progress in genomics of myxobacteria, many of the secondary 

metabolite biosynthetic gene clusters can be characterized easily with molecular 

approaches. 

1.3.1 Gliding motility of myxobacteria 

The surface gliding motility of myxobacteria are controlled by two multigene systems, 

the A-system (adventurous system), which is responsible for the movement of single 

cells and groups of cells, while the S-system (social system) mediates only the 

movement of group translocation, which is essential during swarming, aggregation 

and fruiting body formation (Spormann, 1999). The mechanism of A-motility is 

proposed to be slime extrusion from cell ends through nozzle-like structures. For the 

S-motility the cells use type IV pili to pull themselves on solid surfaces (Fig. 4) 

(Kaiser, 1979, 2000; Wolgemuth et al., 2002) and extracellular fibrils to mediate cell 

to cell contact (Kim et al., 1999; Yang et al., 2000). 
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Fig. 4: Modell of the myxobacterial gliding system: the S-motility engine uses pili to pull the cells on 
solid surfaces, whereas the force for A-motility is generated by slime extrusion pushing the cell 
forward (Wolgemuth et al., 2002; Kaiser, 2000). 

Furthermore, the cytoplasmic Frz (frizzy) signal transduction system that interacts 

with the A- and S-machinery controls the directed movement of Myxococcus xanthus 

by modulating their cell reversal frequency (Blackhart & Zusman, 1985; Spormann, 

1999). Frz proteins show homologies to proteins involved in chemotaxis in other 

bacteria. Another chemosensory signaling system is encoded by the dif (defective in 

fruiting) genes, which show also similarity to chemotaxis proteins. The DiF proteins 

are necessary for S-motility, fibril production and fruiting body formation (Yang et al., 

1998, 2000; Lancero et al., 2005). Studies from Kearns and Shimket (1998) revealed 

that the chemoattractant phosphatidylethanolamine (PE), which is a component of 

the bacterial cell membrane, cause chemotactic excitation in Myxococcus xanthus of 

the Dif and the Frz system. During this reaction, the cells are able to distinguish 

between the different PEs: from itself by migrating to an aggregation centre during 

fruiting body formation and from prey to feed upon this (Kearns et al., 2000, 2001). 

Further chemosensory machineries in M. xanthus, like Che3 and Che4 were 

characterized, which are chemotaxis-like two-component signal transduction systems 

(Kirby & Zusman, 2003; Vlamakis et al., 2004). Moreover, there are still 4 more 

chemosensory systems, which are not fully characterized yet (Epperson & Kirby, 

2006). 

1.3.2  Fruiting body formation and cell-to-cell interaction 

Under starvation conditions the myxobacterial cells undergo a remarkable 

cooperative morphogenesis involving 105-107 cells to produce fruiting bodies. These 



Introduction 

  11 

fruiting bodies are resistant to several stress conditions such as desiccation, 

sonication and UV radiation. The morphology of fruiting bodies varies between 

different myxobacterial species. Whereas the Stigmatella and Chondromyces spp. 

form sophisticated multiple tree-like sporangioles, Sorangium strains produce simple 

knobs consisting of slime and myxospores (Fig. 5). 

Fig. 5: Fruiting bodies of different myxobacterial species: a) Sorangium cellulosum So ce56 (Gerth et 
al., 2003); b) Chondromyces apiculatus (Reichenbach, DSMZ); c and d) Chondromyces 
crocatus (Reichenbach & Dworkin, 1992; Manfred Rohde). 

During fruiting body formation the cells interact with each other by using 5 

intercellular signals (A to E), from which only signals A and C have been 

characterized biochemically. It is supposed that the B-, A-, D- and E-signals are 

essential for progression through the first 5 h of development: A- and B-signals are 

important in an earlier developmental state, whereas the signals D- and E-signals 

appear after 3-5 h (Dworkin, 1996; Kaiser, 2004). Fruiting body formation is induced 



Introduction 

  12 

by starvation, and the extracellular A-signal helps the myxobacteria to sense the 

density of starving cells. The A-signal consists of a subset of amino acids and 

represents a typical quorum sensing signal. The C-signal is mediated by a 17 kDa 

extracellular protein, which occurs after 6h of starvation, inducing aggregation and 

subsequent sporulation (Kaiser, 2004). The functions and biochemical nature of the 

B-, D, and E-signals are still not determined and have to be investigated. It is 

assumed that amino acids, peptides, and lipids are critical for the development 

revealed by experiments with sporulation defective mutants (bsg, dsg and esg 

mutants). For example the bsgA gene encodes an ATP-dependent Lon protease 

(LonD), which might be essential to make amino acids available for the synthesis of 

new proteins during starvation-induced development. The sporulation defect can be 

rescued by the transfer of amino acids and peptides from wild type donor cells to a 

bsgA mutant by cell contact (Sogaard-Andersen et al., 2003; Kaiser, 2004). The 

starvation process starts with the accumulation of a large number of vegetative cells, 

where the vegetative growth of the bacteria ceases and the cells begin to migrate in 

traveling wave patterns, called “ripples” (Welch & Kaiser, 2001). Later, cells leave 

these ripples and stream into nascent aggregates. Aggregation leads to an 

unstructured agglutination of cell masses whereof 65 - 90% will be autolysed. The 

maturing phase starts with the formation of special structural elements of fruiting 

bodies, like sporangiole walls or stems. During this period some of the vegetative rod 

cells transform into myxospores, which are resistant to several stress challenges. 

When nutrients are available these spores germinate to produce vegetative cells 

(Fig. 6) (Reichenbach, 1974; Reichenbach & Dworkin, 1992, Dworkin, 1996). 
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Fig. 6: Modell of morphogenesis of multicellular fruiting bodies in myxobacteria (Reichenbach & 
Dworkin, 1992; Sogaard-Andersen et al., 2003). 

The first genetic element of the gliding motility system of myxobacteria was reported 

in the suborder Sorangineae in 2004 (Zirkle et al.) for Sorangium cellulosum So 

ce26, a producer of the agricultural fungicide soraphen A. An mglA gene of M. 

xanthus was used to identify and clone an mglA homolog from So ce26. The 

disruption of this gene led to a non-swarming strain as observed in M. xanthus 

(Stephens et al., 1989). The mglA homolog encodes a small GTPase of the Ras 

superfamily (Hartzell & Kaiser, 1991). In M. xanthus, MglA interacts with proteins of 

the serine, threonine and tyrosine kinase family and is proposed to be the 

intracellular switch that coordinates A- and S-motility (Thomasson et al., 2002). 

1.4 Secondary metabolites  

Many plants, animals and microorganisms produce a wealth of unusual secondary 

metabolites for different purposes like self-defence or intercellular communication. 

For mankind, natural products have been playing an important role due to their 

chemical diversity and various bioactivities against diseases (Fig. 7). 
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Fig. 7: Some known secondary metabolites from different organisms used in clinical medicine: 
Vancomycin (antibacterial); Paclitaxel (Taxol®, anticancer); Penicillin G (antibacterial); 
Erythromycin A (antibacterial); Amphotericin B (antifungal) (Frank, 2007). 

In order to discover new bioactive compounds with improved therapeutic effects 

different sources and antibiotics were screened. Microorganisms like actinomycetes, 

Bacillus sp., pseudomonads, cyanobacteria and myxobacteria are known to 

synthesize antibacterial, antiviral, antitumoral compounds (Grabley & Thiericke, 

1999, Reichenbach, 2001). 

Myxobacteria are known to be prolific producers of interesting and novel bioactive 

substances applied in biotechnology and pharmacology (Gerth et al., 2003; Bode & 

Müller, 2006; Reichenbach & Höfle 1993, 1999). About 7500 different myxobacteria 

have been isolated and many of them were screened for secondary metabolites. This 

way, nearly 500 derivatives from 100 core structures were found forming several 

novel core structures (Gerth et al. 2003). In figure 9, only some medically interesting 

examples out of a huge stock of myxobacterial metabolites are shown. Most of the 

isolated natural products are produced by different strains of Sorangium cellulosum 

(Fig.8). 
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Fig. 8: The myxobacterial secondary metabolite producers given in percentages (Gerth et al., 2003). 
Approximately, 50% of secondary metabolites are synthesized by different Sorangium sp. 

The antifungal soraphen A inhibits the fungal acetyl-CoA carboxylase (Gerth et al., 

1993) and the cytotoxic substances chondramides, disorazoles, tubulysins and 

epothilones interact with actin filaments or influence the microtubule network. 

Chondramides stabilize the actin fibers by binding to F-actin (Grabley & Thierke, 

1999). The disorazoles and tubulysins inhibit the polymerization of tubulin; they are in 

preclinical studies for antitumoral studies (Kopp et al., 2005; Sandmann et al., 2004). 
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Fig. 9: Secondary metabolites of Myxobacteria: Soraphen A (antifungal); Myxochelin A (iron 
siderophore); Chondramid C (anticancer); Epothilone B (anticancer); Tubulysin (anticancer); 
Myxovirescin A (antibacterial); Disorazol A1 (anticancer) (Bode & Müller, 2006). 

In contrast, the epothilones, which are in phase III of clinical studies, stabilize 

microtubules in a way similar to paclitaxel (Taxol®) used in chemotherapy (Gerth et 

al., 1996; Bollag et al., 1995). Many of these compounds belong to the polyketide 

and nonribosomal peptide families. Multimodular enzymatic systems known as 

polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) 

encoded by biosynthetic gene clusters are responsible for the production of this large 

number of interesting secondary metabolites. In many cases NRPSs and PKSs are 

working together giving hybrid products, e.g. chivosazol from So ce56. The 

biosynthetic gene cluster of chivosazol (Fig.10) was currently described by Perlova et 

al. (2006). 
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Tab. 1: Secondary metabolite biosynthetic gene clusters identified from myxobacteria (Bode & 
Müller, 2006). PKS: polyketide synthase; NRPS: non-ribosomal peptide synthetase 

Compound Synthase type Producer 

Soraphen PKS Sorangium cellulosum  
So ce 26 

Myxochelin NRPS Stigmatella aurantiaca  
Sg a15 

Chondramide PKS/NRPS Chondromyces crocatus 
Cm e5 

Tubulysin PKS/NRPS Angiococcus disciformis 
An d48 

Chivosazol PKS/NRPS Sorangium cellulosum  
So ce56 

Disorazol PKS/NRPS Sorangium cellulosum  
So ce12 

Epothilone PKS/NRPS Sorangium cellulosum  
So ce90 

Three types of PKS multienzyme complexes are known: the type I, type II and the 

type III PKSs (Hopwood, 1997, Staunton & Weissman, 2001, Austin & Noel, 2003). 

Type I PKSs are modularly organized giant synthases, each module of which usually 

contains a β-ketoacyl synthase (KS), an acyltransferase (AT), and an the acyl carrier 

protein (ACP) as basic domains that may be complemented by a variable set of 

additional domains. These additional domains lead to the structural diversity of the 

products synthesized by PKSs. Different modifications of the growing acyl chain can 

occur with domains from ketoreductase (KR), enoyl reductase (ER) or dehydratase 

(DH), when starter and extender units (CoA thioesters) are bound within the PKS via 

an acyl carrier protein (ACP). The completed polyketide chain is then released from 

the enzyme complex by a thioesterase (TE) domain (Staunton & Weissman, 2001). 
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Fig. 10: Model of the chivosazol biosynthetic gene cluster of Sorangium cellulosum So ce56. The 
biosynthetic gene cluster spans 92 kbp on the chromosome and contains four polyketide 
synthase genes (chiA, chiB, chiC, chiE and chiF) encoding type I PKSs and one hybrid 
polyketide synthase/nonribosomal peptide synthetase gene (chiD). The five polypeptides 
having two to five distinct modules. Each module catalyzes one condensation of the growing 
chain with an extender unit, and subsequent reduction. The polypeptide ChiD contains one 
module of NRPS and one module of PKS. The NRPS part of the molecule forms an oxazole 
ring derived from serine (Perlova et al., 2006). 

Type II PKS systems are analogous to bacterial Fatty Acid Synthases. The active 

sites of these synthases are distributed among several smaller monofunctional 

polypeptides. Type II synthases catalyze the formation of compounds that require 

aromatization and cyclization, but not extensive reduction or reduction/dehydration 

cycles, e.g. actinorhodin. The type III PKSs or chalcone synthase-like PKSs (CHSs) 

are structurally and mechanistically quite different from type I and type II PKSs 

(Moore & Hopke, 2001). They are relatively small proteins and are involved in the 

synthesis of precursors for flavonoids. This synthase is a homodimer of identical β-

ketoacyl synthase (KS) monomeric domains using free CoA substrates without the 
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involvement of 4’-phosphopantetheine residues on ACPs. In general, PKS 

multienzymes maintain a very high molecular weight, typically above 250 kDa. 

Another class of enzymes for secondary metabolite production is the large 

multidomain enzyme, the NRPS that catalyzes the assembly of complex natural 

peptide products like the prominent bioactive compounds vancomycin and penicillin 

(ACV tripeptide, Fig. 11) (Mootz et al., 2002; Sieber & Marahiel, 2003). At least three 

domains are required for the synthesis of the peptide backbone: the A (adenylation) 

domain for coordinated recognition and activation the PCP (peptidyl carrier protein) 

domain for covalent binding and the C (condensation) domain for incorporation of a 

certain amino acid into the peptide chain. In addition to these so-called core domains, 

optional domains catalyze the modification of the incorporated residues, e.g. the MT 

(N-methylation) domain. Product release is normally achieved by a thioesterase (TE), 

catalyzing the formation of linear, cyclic, or branched cyclic nonribosomal peptides. 

Fig. 11: Organization of a linear NRPS illustrated in the example of the biosynthesis of the tripeptide 
ACV (penicillin and cephalosporin precursor). The three core domains are in the order C-A-
PCP in the elongation module. The first amino acid is incorporated by the initiation module 
which lacks a C domain. The terminal module contains a Te domain to release the full-length 
peptide chain from the enzyme (Mootz et al., 2002). 

1.5 Proteomics of So ce56 

This proteomic approach was performed to complement the So ce56 genome 

project, which was recently completed (Schneiker et al., 2007). 

The methodological approach of proteomics is based on the separation of the whole 

cell proteome by isolating individual proteins via two-dimensional gel electrophoresis 
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or by liquid chromatography subsequently followed by protein identification by mass 

spectrometry (Aebersold & Mann, 2003). 

1.5.1 Two-dimensional gel electrophoresis (2-D PAGE) 

Two-dimensional gel electrophoresis (2-DE) was introduced by O’Farrell and Klose 

(1975) and is usually performed as a combination of isoelectric focusing (IEF) and 

sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) for 

resolving complex protein mixtures (O’Farell, 1975; Klose, 1995; Klose & Kobalz, 

1995). The IEF (first dimension) separates proteins according to their isoelectric 

points (pI). Normally, commercially available acrylamide strips (IPG gel strips) with an 

immobilized pH gradient formed with a mixture of ampholytes are used (Corbett et 

al., 1994; Görg et al., 1988, 2000). There, the proteins move to the position of their 

isoelectric point in between the pH gradient. In the second dimension, the proteins 

are separated in an SDS-PAGE according to their molecular weights (Mr). SDS is an 

anionic detergent that denatures proteins, masks the charges and moves in a 

negative SDS-protein-complex into the direction of the electrophoresis anode. Thus 

the proteins are separated in the polyacrylamide matrix proportional to their size. To 

ensure transfer of the proteins from the first dimension matrix to second dimension 

gels, equilibration of the IPG gel strips with a buffer containing SDS and a reducing 

agent is necessary to cleave the disulfide bonds between cysteine residues by, e.g. 

dithiothreitol (DTT) (Görg et al., 2000). The protein spots on the 2-D gel can be 

visualized by several different gel staining methods: silver staining, fluorescent 

staining (e.g. SYPRO) and Coomassie Blue staining. Silver staining is a very 

sensitive method limited to protein concentrations between 1 and 10 ng. The Ag+ 

ions form complexes with glutamine, asparagine and cysteine residues (Collgan et 

al., 1995). The application of new silver staining protocols in which the silver reducing 

agent formaldehyde is used instead of glutaraldehyde allows a MALDI compatible 

analysis (Shevchenko et al., 1996). Coomassie Blue is an organic dye (anionic 

triphenylmethane) that binds non-covalently to the lysyl residues of proteins, which 

are stained in proportion to the amount of their basic and aromatic amino acids and 

the amount of protein in the spot. In contrast to the silver staining method at least 0.1 

µg of protein per spot is required. The colloidal Coomassie staining reveals increased 

sensitivity (ca. 30 ng per band) and shows no background staining (Neuhoff et al., 

1985). Fluorescence staining methods are less sensitive than silver staining (2 - 8 ng 
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protein), but compatible with subsequent mass spectrometric analysis (Berggren et 

al., 2002). The Difference gel electrophoresis (DIGE) is a powerful technique for 

quantitative proteomics that allows simultaneous visualization of multiple protein 

extracts (Unlu et al., 1997). This method is based on fluorescence pre-labelling of 

different protein pools using spectrally resolvable, size and charge-matched 

fluorescent dyes known as CyDye DIGE fluors (Marouga et al., 2005). 

1.5.1.1 Blue-Native PAGE gels from protein complexes 

In contrast to the denaturing SDS electrophoresis, the Blue-Native technique obtains 

the natural form of protein complexes isolated from membranes (Schägger & Jagow, 

1991). Using BN-PAGE, electrophoretic mobility of proteins is obtained through the 

binding of negatively charged amphiphilic Coomassie Blue. This technique separates 

complexes without dissociating them in contrast to SDS. Blue-native gels were 

formerly developed for the characterization of the respiratory complexes in 

mitochondria (Schägger et al., 1994, 2001; Jänsch et al., 1996), but it is also applied 

successfully for the analysis of the prokaryotic membrane complexes (Stenberg et 

al., 2005). Eubel et al. (2005) describe in a review the capabilities and the use of BN-

PAGE in proteomics to investigate protein:protein interactions. 

1.5.2 Phosphoprotein analysis 

Proteomics is a good method to analyze posttranslational modifications, for example 

the detection of protein phosphorylation. In this work, the phosphoproteome analysis 

plays a major role as So ce genome annotations reveal more than 400 protein kinase 

(Schneiker et al., 2007). Protein phosphorylation has been shown in the regulation of 

a number of processes in prokaryotic organisms including chemotaxis, sporulation, 

differentiation, coordination of nitrogen and carbon metabolism and synthesis of 

secondary metabolites (Kennelly, 2001). The phosphorylation status of proteins is 

controlled by two different classes of enzymes: protein kinases which catalyze the 

transfer of phosphoryl groups from a high-energy compound (e.g. ATP or GTP) to a 

nucleophilic acceptor on an amino acid side-chain of proteins, and protein 

phosphatases which catalyze water-driven hydrolysis of phosphoester bonds 

(Hunter, 1995). These amino acid residues are mainly serine, threonine, tyrosine, 

histidine/aspartate (represent a two-component signal transduction system), where 

the phosphorylated and the dephosphorylated state act as a switch to turn on or off a 
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protein activity by changing their conformational structure (Cozzone, 1998). Most 

kinases act on serine and threonine, others on tyrosine, and a number of dual 

specifity kinases act on all three. Protein phosphorylation can principally be detected 

on 2-D gels by a gel shift in a spot position resulting into a mass increase of 80 

daltons. Phosphorylation of proteins can be detected by labeling the cells with 

radioactive isotopes such as 32P or 33P, where inorganic phosphate is taken up by 

cells and metabolized to 32P-γ-ATP which leads to a transfer of 32P on proteins during 

phosphorylation. However, inorganic phosphate is also incorporated into other 

molecules like DNA, RNA, phospho-lipids and sugars, which decreases the 

incorporation rate into proteins (Link, 2006). Therefore, further methods are chosen 

to detect phosphorylated proteins. One sensitive method is the Western Blotting 

analysis using antibodies raised against the phosphoamino acids (Towbin et al., 

1979). The proteins can be easily transferred from the SDS-PAGE onto a blotting 

membrane (e.g. PVDF, nitrocellulose). After the application of specific antibodies, 

visualization of the targeted proteins can be achieved by using a chemiluminescent 

detection method (ECL). 

1.5.3 Mass spectrometry 

Mass spectrometry is a powerful tool in proteome analysis where hundreds of 

different proteins can be identified and modifications can be screened for from a 

crude protein extract separated by 2-D PAGE gels. Two techniques proved to be 

very useful in the proteome analysis: the MALDI-TOF-MS and the ESI-MS/MS 

(Fig.12) (Mann et al., 2001; Aebersold & Mann, 2003). These are soft ionization 

techniques which are used to volatilize and ionize the proteins or peptides for mass 

spectrometric analysis and to determine the mass-to-charge ratios (m/z) of gas-

phase ions. 

Generally, a mass spectrometer has three components: a source of ions, a mass 

analyzer and a detector (Fig. 12). The sample must first be ionized and vaporized in 

a vacuum and exposed to a high voltage, where the produced ions are accelerated 

and separated due to their mass-to-charge ratio by the mass analyzer. Finally, the 

detector records the impact of individual ions, displayed as peaks on a mass 

spectrum. Thus, the mass of a molecule can be calculated from the m/z ratio of its 

derivative ions. 
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1.5.3.1 Matrix-Assisted Laser Desorption/Ionization Time of Flight mass 
spectrometry (MALDI-TOF-MS)  

MALDI, introduced by Karas and Hillenkamp (1988), is an efficient method, which 

ionizes and sublimates the samples out of a dry and crystalline matrix via laser 

pulses usually from nitrogen lasers with a wavelength of 337 nm. Matrices like α-

cyano-4-hydroxycinnamic acid have a strong absorption at this laser wavelength. The 

irradiation by the laser induces a rapid heating of the crystallized sample matrix 

mixture which causes localized sublimation and ionization (i.e. protonation). Matrices 

minimize the high sample fragmentation by absorbing the incident energy and 

increase the efficiency of energy transfer from the laser to the biomolecules. To 

accelerate the ions into the mass analyzer a high potential electric field is applied 

between the sample slide and a sampling orifice (Kussmann & Roepstorff, 2000). 

MALDI mainly produces singly charged ions (Karas et al., 2000) (Fig. 12a). 

1.5.3.2 Electrospray Ionization (ESI) 

ESI, developed by Fenn et al. (1989), is an atmospheric pressure method that 

transfers analyte ions from solution into the gas-phase (Mann et al., 2001), whereby 

a fine spray of the sample of highly charged droplets in the presence of a strong 

electric field produce ions of the sample in the gas phase. With the coat of nitrogen 

gas the liquid sample evaporates and is then moved into the mass analyzer (e.g. Ion 

Trap). In a proteomic workflow, this ion source is usually directly coupled to a liquid 

chromatography system (LC, HPLC) to introduce the separated and concentrated 

peptide mixtures to the ESI-MS/MS, also called on-line method. The generated MS/ 

MS spectra contain information about amino acid sequences which increases the 

database search specificity. 
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Fig. 12: a) Schematic of the MALDI ionization method: Laser pulses sublime and ionize the crystalline 
mixture on the target surface. The ionized analyte pulsed into the mass spectrometer for 
analysis; b) Schematic of the electrospray ionization method: Electric field forces the charged 
liquid at the end of the tip to form a cone (Taylor cone), that minimize the charge/ surface 
ratio. Droplets from the end of the cone move towards the entrance of the mass analyzer 
(Mann et al., 2001; Lottspeich, 2006) 

1.5.3.3 Protein identification 

Peptide mass fingerprinting (PMF) is a high throughput method for protein 

identification by MALDI-TOF-MS to measure the masses of proteolytic peptide 

fragments (e.g. tryptic digested fragments). The PMF is characteristic for each 

protein, and thus can be used for protein identification by comparison with predicted 

peptide masses (Pappin et al., 1993; Mann et al., 1993). A search algorithm such as 
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MASCOT, www.matrixscience.com, (Perkins et al., 1999) compares the theoretically 

digested proteins of the organism of interest in the database with the experimentally 

analyzed and digested proteins. From this comparison a list of possible proteins is 

generated with MOWSE (MOlecular Weight SEarch) scores and probabilities (e.g. 

sequence coverage) to determine the confidence of the identification. If protein and 

genomic sequence are not available for an organism, proteins can be identified by 

sequencing and comparison to sequence databases (e.g. MASCOT and Sequest). 

The tandem mass spectrometry (MS/MS) is a second set of information that can be 

used to identify a protein. The advantage of sequencing by MS/MS in combination 

with liquid chromatography (LC-MS/MS) is that several sequence fragments are 

obtained. Similar to PMF, individual proteins subjected to LC-MS/MS are first 

digested and a fragment spectrum is produced. Finally, the deduced sequences are 

compared with protein or genome sequence databases to identify the protein 

homology. 

1.6 Aim of this work 

This work aims to perform an extensive proteomic approach for Sorangium 

cellulosum So ce56 encompassing the extraction of the cytoplasmic, membrane, 

extracellular and outer membrane vesicle subproteomes in order to analyze the 

different So ce56 proteins. For this purpose it was necessary to firstly develop 

methods to isolate secreted proteins and outer membrane vesicles from the culture 

supernatant as well as a method to extract cytosolic and membrane proteins. 

Furthermore, a proteome reference map of Sorangium cellulosum So ce56 cytosolic 

proteins had to be established and an extensive proteome analysis under standard 

conditions to identify proteins involved in the regulation of secondary metabolite 

biosynthesis, differentiation, signal transduction, or gliding motility and methods such 

as one- and two-dimensional electrophoresis (1-D and 2-D electrophoresis) had to be 

applied. 
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2 Material 

2.1 Sorangium cellulosum strain 
 

Strain Characteristics Literature 

So ce56 Wild type, KanR Pradella et al., 2002 
Müller and Gerth, 2006 

2.2 Growth media 

2.2.1 P-medium (solid)  
 0.1% Probion 
 0.2% Peptone 
 0.5% Starch 
 0.2% Glucose 
 0.05% CaCl2 x 2H2O 
 0.05% MgSO4 x 7H2O 
 50 mM Hepes  (11.9 g/l) 
 1.2% Select agar 
 pH 7.6; autoclaved 

2.2.2 SG-medium (synthetic medium with glucose) 
 100 mM Hepes (23.8 g/l) 
 0.5% Asparagine 
 0.05% MgSO4 x 7H2O 
 10mg/l Fe-EDTA 
 pH 7.2, autoclaved 

Separately autoclaved supplements as stock solutions (concentrations given in brackets) 
added per 100 ml: 

 1 ml CaCl2 x 2H2O (5%) 
 1 ml K2HPO4 x 3H2O (0.6%) 
 5 ml Glucose (20%) 
 100µl ZnSO4 (1mg/ml) 

Antibiotics 100µg/ml Kanamycin 
 10µg/ml Gentamycin 

2.3 Buffers and solutions 

2.3.1 Buffers and solutions for the extraction of proteins 

Cytosolic proteins 
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Washing buffer 50 mM  Tris (pH 7.2) 

Lysis buffer 50 ml  Washing buffer 
 1 tablet  Complete EDTA free for protease inhibition 

Rehydration buffer 8 M  Urea 
 2% (w/v) CHAPS 
 0.01% (w/v) Bromophenol Blue 
 (Solution without Bromophenol Blue is used, when the
 protein concentration was determined with Bradford (Bio- 
 Rad) 

Extracellular proteins 

SDS solution 0.5% Sodium dodecyl sulfate 

Tris buffer 0.5 mM Tris (pH 6.8) 

DTT solution  1 M Dithiothreitol 

Precipitating solution 8 M Ammonium acetate 

Membrane proteins 

Membrane-extraction buffer 50 mM Hepes 
 5 mM EDTA 
 150 mM Sucrose 
 0.5% Triton X 
 1 mM MgCl2 
 0.6% PVP 
 1 mM DTT 
 1 tablet Protease inhibitor cocktail 

Outer membrane proteins 

SM buffer 100mM NaCl 
 10 mM MgSO4 

 20 mM Tris 
 pH 7.5 

OMP washing buffer 10 mM  Tris-HCl (pH 8.0) 
 2% Lauroyl-sarcosine 

Lysis buffer for OMPs 10 mM Tris (pH 8.0) 
 1 mM EDTA 

Vesicle proteins 

Sample buffer for OMVs 0.02%  CHAPS 
 0.4%  SDS 
 0.5%  Triton X 
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2.3.2 Buffers and solutions for the 2-D PAGE gels (Bio-Rad system) 
Tricine gel buffer 3 M Tris 
 0.3% SDS 
 pH 8.45, HCl (37%) 
 (First dissolve Tris and then add SDS and HCl) 

Anode buffer 0.2 M Tris 
 pH 8.9 

Cathode buffer 0.1 M Tris 
 0.1 M Tricine 
 0.1%  SDS 
 pH 8.25 (normally fits) 

Overlay solution 1 M  Tris 
 0.1% SDS 
 pH 8.45 

Agarose sealing solution 100 ml Tricine gel buffer 
 0.5% Agarose 
 0.01% Bromophenol Blue 

DTT solution 28% Dithiothreitol 

SDS solutions 10%  Sodium dodecyl sulfate  

Equilibration buffer 50 mM Tris (pH 8.8) 
 6 M Urea 
 30% (v/v) Glycerol (87%) 
 2% (w/v) SDS 
 0.01% Bromophenol Blue 

EB 1 5 ml Equilibration buffer 
 2% DTT 

EB 2 5 ml Equilibration buffer 
 2.5% Iodoacetamide 

2.3.3 Buffers and solutions for the 1-D PAGE gels 
4x stacking buffer 500 mM Tris 
 0.1% SDS 
 pH 6.8 

4x resolving buffer 1.5 M Tris 
 0.1% SDS 
 pH 8.8 

Protein sample buffer 100 mM Tris 
 4% SDS 
 0.2%  Bromophenol Blue 
 20% (v/v) Glycerol (87 %) 

Cathode buffer (10x) 250 mM Tris 
 1.9 M  Glycine 
 1% SDS 

Anode buffer (10x) 250 mM Tris 
 pH 8.4 
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2.3.4 Buffers and solutions for Blue-Native gels (BN-PAGE) 
5x Cathode buffer 250 mM Tricine 
 75 mM Bis-Tris 
 0.1% Coomassie 250 G 
 pH 7.0 at 4°C 

6x Anode buffer 300 mM Bis-Tris 
 pH 7.0 at 4°C 

6x BN gel buffer 1.5 M 6-amino-n-caproic acid (ACA) 
 150 mM Bis-Tris 
 pH 7.0 at 4°C 

Solubilization buffer 30 mM Hepes 
 150 mM K-acetate 
 10% Glycerin (87%) 

Digitonin solution 10 ml Solubilization buffer 
 1% Digitonin 
 (Digitonin dissolve at high temperature, then keep at  
 -20°C) 

5 % Serva Blue G 750 mM  ACA 
 5% Coomassie 250 G 

2.3.5 Buffers and solutions Western Blot analysis 
TB buffer 50 mM Tris (60.57g) 
 50 mM Boric acid (30.91g) 

TBS buffer 10mM Tris (12.11g) 
 150mM NaCl 
 pH 7.4 

Blocking buffer 1% (w/v) BSA in TBS buffer 

Tab. 2: Antibodies against phosphorylated serine and tyrosine.  

Antibodies Used antibody 
concentrations 

Monoclonal Anti-Phosphotyrosine Clone PT-66 (mouse) 
Biotin Conjugate (B1531, SIGMA)  1:3,000 

Monoclonale Anti-Phosphoserine Clone PSR-45 Biotin 
Conjugated (P3430, SIGMA) 1:3,000 

Streptavidin-biotinylated horseradish peroxidase 
complex (217511, Amersham Biosciences, UK) 

1:20,000 
or 1:4,000 

 

VECTASTAIN® ABC Kit 2 drops REAGENT A (Avidin DH) 
 2 drops REAGENT B (Biotinylated Horseradish 
  Peroxidase H) 
 (mix in 30 ml of TBS buffer and incubated for 30 min at 
 4°Cprior to use) 
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Developing solution (DAB) 5 ml 2 M Tris-HCl, pH 7.4 
(100 ml) 93 ml H2Odist 
 0.5 ml NiCl2 (stock 80 mg/ ml) 
 1.5 ml DAB (diaminobenzidine tetrachloride) 
 30 µl H2O2 (30%) 

2.3.6 Staining buffers and solutions 

2.3.6.1 Coomassie Blue staining 

Fixing solution 10% (v/v) Acetic acid 
 30% (v/v) Ethanol 
 60% H2Odist 

Staining solution 2g/l Coomassie brillant blue CBB-G250 (Roth) 
 0.5/l Coomassie brillant blue CBB-R250 (Roth) 
 5% Methanol 
 42.5% Ethanol 
 10% Acetic acid 
 42.5% H2Odist 

2.3.6.2 Colloidale Coomassie staining (Blue Silver) 

Solution A 2% (w/v) Ortho-phosphoric acid (85%) 
 10% Ammonium sulfate (NH4)2SO4 

Solution B 5% CBB-G250 

Fixation solution 40% Methanol 
 10% Acetic acid 
 50% H2Odist 

Staining solution 98% Solution A 
 2% Solution B 

shaking over night and adding: 80% Staining solution 
 20% Methanol 

2.3.6.3 Silver staining for protein gels (MS compatible) 

Silver staining solution 0.4 g AgNO3 
(prepared fresh) 200 ml  H2Odist 

 150 µl Formaldehyde (37%) 

Developer 15 g Na2CO3 
(prepared fresh) 1 mg Na2S2O3 x 5 H2O 
 250 ml H2Odist 

 125 µl Formaldehyde (37%) 

Sensitizing solution 0.1 g Na2S2O3 x 5 H2O 
(prepared fresh) 500 ml H2Odist  

Fixation solution 50% Ethanol 
 10% Acetic acid 
 40% H2Odist 

 0.5 ml/l Formaldehyde (37%) 
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Washing solution 50% Ethanol 
 50% H2Odist  

Stopping solution 44% Ethanol 
 44% H2Odist 
 12% Acetic acid 

2.3.6.4 DIGE staining for protein gels (GE Healthcare) 

DIGE labeling buffer 8 M Urea 
 4% CHAPS 
 30 mM Tris 
 pH 8.5 (cold 1 N HCl) 

DIGE stopping solution 10 mM Lysine 

CyDye solution 12.5 µl/ 5 nmol  DMF (>99.8%) 
 (keep at -20°C in the dark) 

2.3.6.5 LIVE/ DEAD® BacLightTM viability staining (Molecular Probes) 

Component A 2.5 ml sterilized H2O 
 (1 pipet of STYO® 9 dye) 

 
Component B 2.5 ml sterilized H2O 
 (1 pipet of propidium iodide) 
 (keep solutions at -20°C in the dark) 

2.3.7 Buffers and Solutions for tryptic digest 
Washing solution 0.1% Trifluoracetic acid (TFA) 
 60% Acetonitrile (CH3CN) 

Solution A 50% CH3CN 
 50% H2O 

Solution B 50% CH3CN 
 50 mM  NH4HCO3 

Solution C 50% CH3CN 
 10 mM NH4HCO3 

Solution D 10 mM NH4HCO3 

Trypsin solution (SIGMA) 
proteomic grade 100 µl HCl (1 mM) 
1 vial (20 µg/ml) 900 µl NH4HCO3 (10 mM)
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3 Methods 

3.1 Sorangium cellulosum So ce56 strain 

Sorangium cellulosum So ce56 was isolated in 1985 from a soil sample from 

Indonesia (Pradella et al., 2002) by Dr. Gerth and his group in Braunschweig (former 

GBF, now Helmholtz Centre for Infection Research). Growth adaptation of the wild 

strain was made first in M medium using increasing concentrations of peptone. For 

further experimental approaches, a So ce56 variant from 2002 with enhanced 

cultivation conditions was used (Müller & Gerth, 2006). In order to establish a 

comprehensive proteome map of S. cellulosum So ce56 cultivation of the bacteria 

was optimized and adapted to the technical needs of a proteome study. S. 

cellulosum So ce56 has a slow generation time of about 7 hours and requires high 

cell numbers for sub-cultivation. In addition, these bacteria prefer complex media 

(Müller & Gerth, 2006) containing starch and protein-hydrolysates that interfere with 

protein isolation and identification. For this reason, bacteria were grown on solid and 

complex P-medium, and subsequently transferred to liquid minimal S-medium. 

Beside the good compatibility with proteome studies, the chosen S-medium supports 

biosynthesis of secondary metabolites (Müller & Gerth, 2006).  

3.1.1 Cultivation of So ce56 cells in medium P 

To prepare the inoculum for the liquid medium, S. cellulosum So ce56 cells were 

cultivated on solid P-medium at 30°C, which is a rich and complex medium 

containing starch, peptone and probion. Single cells are able to regenerate on this 

solid medium and additionally, it is also a good detection system for contaminations. 

The generation time of So ce56 is about 7 h and it can therefore easily be overgrown 

by unwanted microorganisms. After one week orange colonies (clumps) appear on 

the agar surface. These colonies were scratched completely with an inoculation 

needle from the solid medium and transferred to 10 ml S-medium, a defined synthetic 

medium developed by Müller and Gerth (2006) consisting of: hepes buffer, glucose 

and asparagine as sole carbon and organic nitrogen sources, respectively, plus the 

trace element zinc, in 50 ml Erlenmeyer flasks. 
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3.1.2 Cultivation of So ce56 cells in medium SG 

The cell cultures were incubated at 30°C in a shaking incubator at 170rpm (GFL, 

Hamburg, Germany). To avoid contaminations the flasks were covered with 

autoclavable cellulose steri-stoppers (Omnilab, Bremen, Germany). Due to the long 

generation time, the clumped cells need about 5-7 days until a homogeneous orange 

cell suspension is reached. After adding an additional 10 ml S-medium, the So ce56 

culture was incubated for another 5-7 days to increase the cell count for inoculation. 

After about 2 weeks in total, the 20 ml culture broth was centrifuged carefully and, the 

cell pellet was transferred into 100 ml S-medium in 250 ml Erlenmeyer flasks and 

incubated at 30°C in the shaking incubator at 170 rpm. The cell counts were detected 

after 2 h of inoculation and after that every 24 hours for the next 7 days using a 

haemocytometer and additionally a spectrophotometer to measure the optical density 

(λ=600 nm) of the population. Growth rates were monitored each day over seven 

days and additionally at 10 and 14 dpi. 

3.1.3 Detection of cell viability 

Viability of the cells was detected using the two-color fluorescence dye LIVE/DEAD® 

BacLightTM Viability Kit (Molecular Probes, Oregon, USA) at a fluorescence 

microscope with a longpass and dual emission filter for simultaneously viewing of 

STYO® 9 and propidium iodide stains. The green fluorescent nucleic acid stain labels 

all bacteria, whereas the red-fluorescent nucleic acid stain propidium iodide labels 

only bacteria with damaged membranes causing a reduction of STYO® 9 stain when 

both dyes are present. The excitation/emission maxima are about 480 nm/500 nm for 

STYO® 9 and 490 nm/635 nm for propidium iodide. Both dyes were mixed together 

according to the manufacturer’s protocol to a final concentration of 6 µM STYO® 9 

stain and 30 µM of propidium iodide. Sample preparation was then carried out by 

incubating 40 µl of the cell suspension with 40 µl of the mixed stock solution 15 min 

in the dark. 5 µl of the stained cell suspension was transferred onto a glass slide. Ten 

fluorescence frames were made of different positions on the slide. From these 

pictures the living and the dead cell numbers were determined and the resulting 

viability was evaluated in percentage. 
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3.2 Isolation of proteins from Sorangium cellulosum So ce56 for 
1-D, 2-D and Blue-Native PAGE gels 

3.2.1 Protein extraction of cytoplasmic fraction 

To isolate the proteins from the cytoplasmic fraction, 100 ml of bacterial suspension 

culture was centrifuged for 25 min at 10,000 x g (6K 15, SIGMA Laborzentrifugen, 

Osterode, Germany) at 4°C. The cells were washed three times with cold 50 mM Tris 

washing buffer (pH 7.2) and centrifuged for 15 min at 10,000 x g at 4°C. The cell 

pellet was resuspended in 1ml lysis buffer including a protease inhibitor cocktail 

(Complete, EDTA free, Roche, Mannheim, Germany) and subsequently disrupted 

with 0.8 g glass beads (SIGMA, Taufkirchen, Germany) in a ribolyser (Thermo Fisher 

Scientific, Waltham, MA, USA) for 20 sec at 6.5 m x s-1. The cells were centrifuged at 

20,000 x g (5417R, Eppendorf, Hamburg, Germany) at 4°C for 20 min, the 

supernatant was incubated at 37°C for 30 min with 1-2 µl benzonase (250 units/µl, 

SIGMA) and centrifuged again at 20,000 x g for 15 min at 4°C. For protein 

precipitation, cold acetone was added to a final concentration of 80% (v/v) and 

samples were incubated over night at -20°C. The precipitate was collected by 

centrifugation at 20,000 x g for 20 min at 4°C. The pellet was dried and dissolved in 

rehydration buffer. The protein content was determined by a Bradford protein assay 

(Bio-Rad Laboratories, Richmond, CA, USA). 

3.2.2 DIGE analysis of cytosolic proteins 

Two types of So ce56 growth conditions - the exponential and stationary phase - 

were compared using Differential Gel Electrophoresis (DIGE, GE Healthcare). For 

each condition 50 µg of protein was independently dissolved in DIGE labeling buffer 

according to the manufacturer’s protocol (GE Healthcare). The proteins of the 

exponential phase were labelled with 1 µl of Cy3TM and for the stationary phase the 

equal amount of Cy5TM Dye was used. Finally the two labeling reactions were mixed 

and focussed isoelectronically on one IPG strip (18 cm) as described above. For spot 

detection, quantitation and matching the Delta2D 3.1.2 software (DECODON, 

Greifswald, Germany) was used. 
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3.2.3 Isolation of extracellular proteins 

The extracellular proteins were isolated according to an adapted protocol for phenol 

extraction (Watt et al., 2005). First, the supernatant of the 100 ml centrifuged culture 

broth (early stationary phase) was filtered in a cross-flow system (Vivaflow 200, 0.2 

µm polyethersulfone membrane, Vivascience AG, Germany) on ice. After filtration, 

the sample was lyophilized and solubilized in protein extraction buffer (0.5% SDS, 

250 µl 1 M DTT and 1 ml 0.5M Tris-HCl, 12.5 ml MilliQ, pH 6.8). Protein samples 

were incubated at room temperature for 30 min. After adding 5 ml of phenol, samples 

were carefully mixed and centrifuged at 10,000 x g for 30 min at 4°C. 10 ml of cold 

methanol, 100 µl 1 M DTT and 150 µl 8 M ammonium acetate were added to the 

phenol phase and this fraction was precipitated over night at -20°C. Proteins were 

harvested by centrifugation at 10,000 x g for 20 min at 4°C. The resulting pellets 

were washed twice with 70% (v/v) of cold ethanol. The proteins were dissolved in 

rehydration buffer for a 2-D SDS-PAGE. 

3.2.4 Membrane protein extraction 

50 ml cells were harvested after 7 days and centrifuged for 15 min at 10,000 x g at 

4°C. The pellet was dissolved in a membrane extraction buffer and sonicated 

(Bandelin Sonoplus, Berlin, Germany) 6 times at maximum speed for 30 sec. 

Between each step, the sample was cooled on ice for 1 min. The disrupted cell 

fractions were centrifuged at 10,000 x g for 40 min at 4°C to remove cell debris. The 

supernatant was ultracentrifuged at 100,000 x g (Optima L-90K, Beckman Coulter, 

Krefeld, Germany) for 2 h to separate the membrane protein fraction from the 

cytoplasmic protein fraction. The membrane fraction was dissolved in a solubilizing 

buffer (30 mM HEPES, 150mM potassium acetate, 10% glycerol and 1% digitonin). 

After adding 4% SDS (w/v), 1 mM DTT and 0.005% (w/v) Bromophenol Blue, 

electrophoretic separation was carried out on a 12.5% SDS-PAGE gel at 15 W.  

3.2.5 Isolation of Outer Membrane Proteins (OMPs) 

The cell extract of So ce56 was harvested after centrifugation of the bacterial 

suspension culture at 8000 x g for 45 min at 4°C. The resulting cell pellet was 

washed twice with SM buffer for 15 min and centrifuged again as described before. 

The pellet was resolved in 10 mM Tris HCl (pH 8.0) and 1 mM EDTA and sonicated 
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on ice 10 times for 6 seconds at 80% intensity. Between the sonification steps the 

sample was cooled for 30 seconds. The disrupted cells were centrifuged at 8,000 x g 

for 30 min at 4°C to remove the cell debris. The supernatant was then 

ultracentrifuged at 100,000 x g for 90 min at 4°C, followed by an incubation step of 

the pellet with 10 mM Tris-HCl (pH 8.0) and 2% lauroyl-sarcosine for 30 min at 30°C. 

Finally, the sample was centrifuged at 15,000x g for 60 min at 4°C. The resulting 

pellet with the outer membrane proteins was dissolved in rehydration buffer with 

0.5% Triton X. 

3.2.6 Extraction of Outer Membrane Vesicle proteins 

The isolation of the outer membrane vesicle (OMV) from the supernatant of the cell 

fraction was carried out using a modified method from Wai et al. (1995, 2003). For 

this purpose, the supernatant was centrifuged two times at 6000 x g for 45 min at 

4°C. The cell free supernatant was filtered on ice with the Vivaflow 200 cross-flow 

system (Vivascience) as described before, followed by an ultracentrifugation step at 

100,000 x g for 3 h at 4°C. 

For electrophoretic separation, the pellet was dissolved in sample buffer (0.02% 

CHAPS, 0.4% SDS and 0.5% Triton X) and loaded onto a 12.5% SDS-PAGE gel.  

3.3 One-dimensional (1-D), two-dimensional (2-D) and Blue-
Native (BN) Polyacrylamide Gelelectrophorese (PAGE) gels 

of Sorangium cellulosum So ce56 proteins 

3.3.1 One-dimensional SDS-PAGE gels for membrane proteins, outer 
membrane proteins and outer membrane vesicle proteins 

The 1-D SDS-PAGE gel (size: 18 x 16 x 1.5 mm) was prepared in the Hoefer600 gel 

casting system (GE Healthcare). Protein fractions were separated in a 12.5% SDS-

PAGE (Laemmli, 1970), which was prepared as followed (Tab.3): 
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Tab. 3: Components of the one dimensional 12.5% SDS-PAGE for protein separation 

SDS-PAGE was performed for 3.5h at 5-15 W. 

3.3.2 Two-dimensional gel electrophoresis of the cytosolic and 
extracellular proteins 

For isoelectric focussing (IEF), 18 cm immobilized dry strips (IPG strips) with linear 

pH gradients 3 – 10 (GE Healthcare, Uppsala, Sweden) were rehydrated with 

rehydration buffer containing 600 µg of isolated protein according to the 

manufacturer’s protocol. The IEF was carried out in an IPGphor with voltages from 

30 to 8,000 V for 24h. 

IPGphor running protocol for 18 cm strips: 

20°C, max. 50 µA per strip 1h 0V (Rehydration) 

 12h 30V (Step&Hold) 

 2h 500V (Step&Hold) 

 1h 1,000V (Gradient) 

  4h 8,000V (Gradient) 

  6h 8,000V (Step&Hold) 

  Total: 67610Vhs 

For the second dimension, a 13% SDS-Tricine-PAGE gel was carried out in a Bio-

Rad gel system (PROTEANTM II xi Cell). 

 

 

 Resolving gel Stacking gel 

Acrylamide (40/1) 12.5 ml 1.55 ml 

4x resolving buffer 10 ml - 

4x stacking buffer - 2.75 ml 

H2O 17.4 ml 8.25 ml 

TEMED 20 µl 25 µl 

APS (10%) 75 µl 60 µl 
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Tab. 4: 13% Tricine-PAGE gel, the Bio-Rad glass plate size is 20 x 20 x 1 mm 

This combination of the Amersham and Bio-Rad system was described previously 

(Colditz et al., 2004). Before the IEF strips were embedded on the SDS-Tricine 

PAGE gel, they were first equilibrated for 15min in equilibration buffer 1 with 2% (w/v) 

DTT and in the second equilibration step, the strips were incubated 15 min in 

equilibration buffer 2 supplemented with 2.5% (w/v) iodoacetamide. Electrophoresis 

was performed at 30 mA/ mm gel for 24h. 

3.3.3 Blue-Native PAGE (BN-PAGE) proteins from the cytosol and 
membrane fraction 

First dimension (BN-PAGE): 

To analyze soluble and membrane protein complexes in S. cellulosum, the protein 

extracts from the cytosol and from the membrane (4.2.1 and 4.2.3) were used for 

Blue-Native PAGE. The preparation of the gradient Blue-Native PAGE was carried 

out according to the protocol of the Plant Proteomics group of Prof. H.P. Braun in 

Hannover (Eubel et al., 2003, 2005). An acrylamide gradient from 4.5% to 16% was 

chosen to maximize the resolution of the BN-gel for protein complexes with high 

molecular weights (> 300kDa). The gradient was prepared with a two-chamber 

gradient mixer using the components listed in table 5: 

 

 

 

SDS-Tricine-PAGE gel 

H2O dest. 24.39 ml 

Tricine gel buffer 30 ml 

Glycerol (87%) 12 ml 

Acrylamide (49.5/3) 23.61 ml 

APS (10%) 300 µl 

TEMED 300 µl 
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Tab. 5: Components for the BN gradient PAGE gel for the separation of protein complexes. 

BN resolving gel 
Mixing chamber 
(Light solution) 

Reservoir 
(Dense solution) 

4.5% 16% 

H2Odist 15.6 ml 6 ml 

6x BN gel buffer 3.5 ml 3 ml 

Acrylamide (49.5/3) 1.9 ml 6 ml 

100% Glycerol - 3.5 ml 

Σ Total volume 21 ml 18.5 ml 

APS (10%) 95 µl 61 µl 

TEMED 9.5 ml 6.1 µl 

The gel solution was pumped slowly from the gradient mixer upwards into the 

electrophoresis chamber (Hoefer SE 600, glass plate size 18 x 16 cm, Amersham). 

For this purpose, a needle was injected between the glass plates to load the gel 

chamber. After polymerization of the gradient BN gel, a 4% stacking gel was loaded 

onto the gradient gel. 

Tab. 6: Components for the stacking gel of 
the BN gradient PAGE.  

BN stacking gel 

H2Odist 11.3 ml 

6 x BN-gel buffer 2.5 ml 

Acrylamide (49.5/3) 1.2 ml 

TEMED 6.5 µl 

APS (10%) 65 µl 

Solubilization of the protein complexes was carried out using the mild non-ionic 

detergent digitonin prepared as followed: 

• dried protein pellets from the membrane and cytosolic fraction (max. 1 mg 

protein) was dissolved in solubilization buffer containing 1% digitonin (100 µl 

solubilization buffer used for 1 mg protein) 
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• samples were incubated on ice for 20 min and then centrifuged at 14,000 for 

10 min at 4°C 

• the supernatant was mixed then with 5 µl of 5% Serva Blue G stain. 

Before loading the protein samples, cathode and anode buffers were filled into the 

gel chamber and incubated for 25 min at 4°C. Electrophoretic separation of the BN 

gels was carried out at 4°C (100 V, max. 15 mA, 45 min; 500 V, max 15 mA, 11-13 

h). 

Second dimension (Tricine-SDS-PAGE): 

For the second dimension a lane of the BN-gel was cut out and placed horizontally 

on an SDS-Tricine-Gel. Before loading, the cut out gel lane was incubated in 1% 

SDS and 1% β-mercaptoethanol for 30 min to denaturate the protein complexes for 

subsequent separation of their subunits. The lane was then washed for 30-60 sec 

with H2Odist as β-mercaptoethanol inhibits the acrylamide polymerization. Finally, the 

lane was placed between the glass plates as shown in Fig. 13. For a better transition 

of the proteins from the first into the second dimension, an additionally spacer gel 

was prepared. The stacking gel was then casted around the BN lane. 

Tab. 7: Components of the second dimension of the BN analysis. 

 Resolving gel 
16.5% Spacer gel 10%  Stacking gel 

10% 

Acrylamide (49.5/3) 10 ml 2 ml 2 ml 

H2Odist 6 ml 4.6 ml 3.4 ml 

Tricine gel buffer 10 ml 3.4 ml - 

6 x BN gel buffer - - 3.4 ml 

Glycerol (100%) - - 1 ml 

Glycerol (87%) 4 ml - - 

SDS (10%) - - 100 µl 

APS (10%) 100 µl 34 µl 83 µl 

TEMED 10 µl 3.4 µl 8.3 µl 
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Fig. 13: Casting the second dimension for the BN gel. 

Electrophoresis was performed at room temperature starting with 30 mA for 1 h and 

50 mA over night (max. 500 V). 

3.4 Protein staining methods 

3.4.1 Coomassie Blue 

Gels were incubated in fixing solution for at least 45 min and Coomassie stained 

overnight. Destaining was performed for 2 h with fixing solution and then overnight 

with 7% acetic acid. 

3.4.2 Colloidale Coomassie Blue (Blue Silver) 

Gels were incubated for 1 h with fixing solution and then stained with colloidale 

Coomassie for 3 h or over night. Destaining was carried out only with H2Odist. 

3.4.3 Silver staining method 

The low abundant proteins in 2-D SDS-PAGE gels were visualized with the MALDI 

compatible silver staining method based on the protocol from Shevchenko et al. 

(1996). The MALDI-TOF-MS analysis was carried out immediately after the staining 

process, because of the reducing agent formaldehyde, which leads to cross-linking of 

proteins. The silver staining process was carried out as followed: 

• fixing: 1 h or over night, washing: 2 x 25 min with washing solution 

• sensitizing: 1 min with sensitizing solution, washing: 3 x 20 sec with H2Odist 
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• staining: 20 min in silver staining solution, washing: 3 x 20 sec with H2Odist 

(changing of the staining tray) 

• developing: gel was shaken until spots were visible (3-5 min), washing: 20 sec 

with H2Odist 

• stopping: 10 min with stopping solution, washing: 3 x 10 min with H2Odist  

• keeping the gel at 4°C in 1% acetic acid 

3.5 Western Blot analysis of phosphorylated proteins from the 
cytosolic fraction of Sorangium cellulosum So ce56 strain 

Detection of phosphorylated proteins was carried out by Western Blot analysis using 

antibodies against phosphoamino acids (tyrosine and serine). Therefore, separated 

proteins from the 2-D SDS-PAGE gel were transferred electrophoretically onto a 

hydrophobic, microporous polyvinylidine (PVDF) membrane (Roth), which was 

chosen for its high binding capacity for proteins and its mechanical stability compared 

to other membranes. Due to its hydrophobic character, the membrane had to be 

activated prior to usage with methanol; the membrane maintains a hydrophilic 

character. For protein transfer, a vertical tank-blot system (Hoefer) was used, where 

the gel and blotting membrane was clamped in grids between filter papers (Whatman 

3 MM) and sponge pads suspended in the tank filled with TB buffer (Fig. 14). Before 

loading the tank-blot, the blotting membrane and the 2-D gel were prepared as 

followed: 

• cutting the membrane and the filter papers according to the size of the 2-D gel 

• incubation of the unstained gel with TB buffer for 15 min 

• activation of the PVDF membrane by wetting 15 sec in methanol, 2 min in 

H2Odist and 5 min in TB buffer 



  Methods 

  43 

Fig. 14: Diagram of a vertical tank-blotting system setup. 

After blotting the membrane, a blocking-step was carried out over night at 4°C in 1 % 

BSA (in TBS). The membrane was then washed three times for 10 min with TBS. 

The primary antibody (Anti-Phosphotyrosine, 1:3000) was incubated for 2 h or over 

night at 4°C and washed 20 min with 2 changes of TBS. The secondary antibody 

(Streptavidin-biotinylated horseradish peroxidase complex) was incubated for 30 min 

and washed three times for 15 min with TBS. Detection of the phosphorylated 

antigens conjugated to Horseradish Peroxidase (HRP) labeled antibodies was 

carried out using the ECLTM Plus detection reagents (Amersham Biosciences). 

Chemiluminescent signals were detected on autoradiography films (HyperfilmTM ECL, 

Amersham Biosciences). Alternatively, detection of the proteins with the primary 

antibody Anti-Phosphoserine was carried out directly on the Blotting membrane using 

the VECTASTAIN® ABC Kit (Burlingame, CA, USA). For this technique, the blot was 

washed after the incubation with the primary antibody two times à 10 min with TBS. 

The secondary antibody (1:4000) was incubated for 2 h and twice à 10 min with TBS 

and then incubated for 2 h with Vectastain® Complex. Detection of Avidin-HRP was 

carried out with the chromogen diaminobenzidine tetrahydrochloride (DAB) for 5-15 

min as brown signals on the membrane. The reaction was stopped with TBS buffer. 
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3.6  Mass spectrometry 

3.6.1 Tryptic digest 

After staining the gel, the bands/spots of interest were excised and digested with 

trypsin as described in the protocol on the KECK home page 

(http://info.med.yale.edu/wmkeck/prochem/geldig3.htm). The protein gels were 

washed 5 min with 50% acetonitrile in prewashed tubes. In the next step, the gel 

pieces were washed with solution B for 30 min, another 30 min with solution C and 

dried in a vacuum centrifuge (Speedvac). 15 µl of a digestion buffer containing 

solution D and trypsin (Proteomic grade, Sigma) was added to the small gel pieces (1 

mm2) and samples incubated 1h at 4°C. After adding another 15 µl of solution D, the 

enzymatic cleavage was carried out at 37°C for 24h on a shaking incubator. 

3.6.2 MALDI-TOF analysis of proteins 

For protein MS analysis the digested samples were mixed with a matrix solution 

containing 33% (v/v) acetonitrile, 0.1% (v/v) trifluoroacetic acid (TFA),and α-cyano -4-

hydroxy-trans-cinnamic acid (Sigma) and loaded on anchor chip targets. Mass 

spectrometric analysis was performed on a MALDI-TOF Ultraflex (Bruker, Bremen 

Germany) mass spectrometer. MALDI-TOF settings: the N2-laser is operating at a 

wavelength of 337 nm with a laser frequency of 20 Hz (pulse ion extraction: 100ns; 

shots: 50 (sum 200) in a positive mode)  

MASCOT database queries (www.matrixscinece.com) were performed spectra 

analysis. The MASCOT settings: monoisotopic; peptide tolerance: 50 – 150 ppm; 

missing cleavages: max 2; fixed modifications: carbamidomethyl. 

3.6.3 NanoLC-ESI-MS/MS analysis of membrane proteins and outer 
membrane proteins 

The digests of membrane proteins were analyzed using an online nanoLC-ESI-

MS/MS, an automated nano-electrospray (Eksigent Technologies, USA) coupled with 

a Thermo Finnigan LCQ Deca ion trap mass spectrometer (Thermo Electron 

Corporation, USA). After adding 200 µl 60% acetonitrile and 0.1% TFA the samples 

were kept at room temperature for 60 min. This step was repeated after samples had 
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been transferred into prewashed tubes and the mixtures had been dried in a 

Speedvac. The dried samples were dissolved in 10 µl 5% acetonitrile, 0.05% TFA. 2 

µl of this solution was separated chromatographically on an RP-18 capillary column 

(50 µm i.d., Dionex, USA) at a flow rate of 200 nl/ min. The gradient profile consisted 

of a linear gradient from 98% A (acetonitrile/H2O/formic acid, 5/95/0.1) to 50% B 

(acetonitrile/H2O/formic acid, 80/20/0.1) over 40 min followed by a linear gradient to 

98% B over 5 min. The eluted peptides were analyzed by nano-spray MS/MS using 

the LCQ Deca ESI-ion trap MS. The MS instrument was operated with the following 

settings: spray voltage 1.3 kV, heated capillary voltage and temperature 14 V and 

165°C, respectively. Collision energy was set to 35%. Upon a full scan a zoom scan 

was recorded to determine the charge state of the peptide, followed by the isolation 

of the particular mass and an MS/MS scan. The instrument executed one full scan, 

followed by a zoom in scan and MS/MS scan of each one of the three most intense 

peaks from the MS scan. The generated peptide sequence tags were analyzed by 

the MASCOT database query. Proteins were identified by two or more tryptic peptide 

matches and MOWSE scores of more than 40 were reported. 

3.6.4 Protein annotations/online resources/databases 

All predicted open reading frames (ORFs) of Sorangium cellulosum So ce56 were 

used to establish a So ce56-database (Schneiker et al., 2007). The search engine 

MASCOT was used to compare the peptide mass fingerprints obtained by MALDI-

TOF-MS and the sequence data for peptides obtained by nanoLC-ESI-MS/MS with 

this database. MALDI-TOF-MS analyzed proteins were regarded as identified if their 

MOWSE score was higher than 50%, with sequence coverage of at least 10%. The 

two open source systems GenDB 2.4 (Meyer et al., 2003) and ProDB (Wilke et al., 

2003) were used for automated and manual gene prediction and “post-genomic” 

analysis, respectively. The system ProDB handles data conversion from the mass 

spectra software and automates data analysis. The genome annotation system, 

GenDB, automatically categorizes the annotated genome into functional classes 

supported by different schemes, like GO, TIGR, COG, SWISS-PROT, TMHMM, HTH, 

Signal P, BLASTP. Almost 40 – 60% of the genes on the new genome sequence can 

be classified automatically based on sequence similarity (Fraser et al., 2000). This 

sequence similarity is the first step for assigning function to new proteins. With the 

Signal P, TMHMM and HTH search tools the topology and signal peptides of the 
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gene products were predicted based on Hidden Markov Models (HMM). The 

prediction of N-terminal signal peptide cleavage sites in amino acid sequences was 

carried out with the Signal P software. The analysis of the first 60 amino acids started 

from the N-termini (Nielsen et al., 1997). The TMHMM software predicts putative 

transmembrane domains in amino acid sequences (Sonnhammer et al., 1998; Krogh 

et al., 2001). This software combines hydrophobicity, charge bias, helix lengths of 

integral membranes, and grammatical constraints in one algorithm. Different BLAST 

programs were used automatically to compare the So ce56 database with other 

available databases, also to other myxobacterial strains like Myxococcus xanthus DK 

1622 (NC_008095), Anaeromyxobacter dehalogenans 2CP-C (NC_007760), 

Stigmatella aurantiaca DW4/3-1 and also to the database of the actinomycete 

Streptomyces coelicolor A3(2) (NC_003888). Tools like KEGG (Kyoto Encyclopedia 

of Genes and Genomes), GO (Gene Ontology) and COG (Clusters of Orthologous 

groups) were shared to predict physiological functions and probable biochemical 

pathways of the putatively encoded proteins. To obtain good results, the 

automatically collected data from databases and the human expert annotation is 

combined. Therefore, manual comparisons and searches were performed to identify 

bacterial lipoproteins from the DOPOL database (Babu et al., 2006). All identified 

proteins with signal peptides were scanned for the presence of lipobox sequences 

[LVI]-[ASTVI]-[GAS]. Furthermore, FASTA files from identified proteins were blasted 

with the PRIAM (Claudel-Renard et al., 2003) Database and the Transport 

Classification Database (TCDB, Saier et al., 2006). The PRIAM database was used 

for the automated enzyme detection in a fully sequenced genome, based on the 

classification of enzymes in the ENZYME database (Bairoch, 2000). The results of 

this detection can be visualized on KEGG graphs in order to facilitate the 

interpretation of metabolic pathways. The data of the TC database (www.tcdb.org) is 

a compilation of published information from over 10,000 references encompassing 

nearly 3,000 representative transporters and putative transporters, classified into 

>400 families. 
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4 Results 

4.1 Cultivation of Sorangium cellulosum So ce56 

All approaches described in the present work were carried out with a Sorangium 

cellulosum So ce56 strain obtained from Dr. K. Gerth in Braunschweig at the 

Helmholtz Centre for Infection Research. 

Fig. 15: Growth and viability of Sorangium cellulosum So ce56 cells. The upper curve indicates the 
viability of the cells during the cultivation given in percentages. Cell viability was detected via 
the LIVE/DEAD fluorescence dye. The cultivation of the cells were carried out in 100 ml liquid 
S-medium and incubated at 30°C at 170 rpm. Proteins were harvested from the exponential 
phase (3 dpi) and early stationary phase (7 dpi). 

For stable growing conditions and in order to increase the synthesis of secondary 

metabolites, Sorangium cellulosum So ce56 was cultivated in synthetic medium with 

glucose as carbon source (SG medium). Similar same culture conditions for 

reproducible protein expression and proteomic analysis were achieved and cells 

were grown under nearly constant conditions. Two time points were chosen for all 

harvest and subsequent protein extraction procedure: (i) after 3 days (4x 10E8 cells/ 
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ml) in exponential phase of growth for DIGE analysis or (ii) after 7 days (9x10E8 

cells/ ml) in an early stationary phase of growth, respectively. Growth rate was 

determined by counting the cells each day during a time period of seven days and 

additionally at days 10 and 14 as displayed in the graph (Fig. 15). Additionally to the 

cell counting, the optical density of the cell culture was determined, which facilitates 

later the sampling at the right time point. 

Starting with a high inoculum of about 1x10E8 cells, bacterial growth started 

immediately and reached its maximum at day 7 with approximately 9x10E8 cells (Fig. 

11). At 10 and 14 days after inoculation (dpi), the cell number was decreased to 

7x10E8 and 5x10E8 cells, respectively, indicating cell turn over and lysis. For this 

reason, cell viability was detected using the two-colour fluorescence dye 

LIVE/DEAD® BacLightTM Viability Kit (Fig.16). 

Fig. 16: Sorangium cellulosum So ce56 cells: Cell culture samples from the early stationary phase. On 
the left picture the cells were stained with the LIVE/DEAD Viability Kit and on the right picture 
a microscopic view of the So ce56 cells. 

Further cell detection and counting was carried out via fluorescence microscopy. The 

viability of cells was highest at the beginning of cultivation and stayed constant for 

four days (Fig. 15). Afterwards, cell viability decreased to 90% living cells as 

compared to the initial cell viability at day 7 and was subsequently reduced to 70% 

and 50% living cells at day 10 and 14, respectively. For this reason, cells were 

harvested at 7 dpi, when a high cell number combined with good cell viability was 
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given. Under the cultivation conditions applied, this time point can be assigned as 

early stationary growth phase since no substantial growth occured during the last 24 

hours. Generally, the determined growth rate for So ce56 indicates a typical bacterial 

growth curve in a closed system. The lag phase, the log and the stationary phase are 

well depicted. In the lag phase, cells adjusted to the new medium and cell population 

was maintained at a constant level. Exponential phase was reached between the 

second and the fourth day: the cells divided at a logarithmic rate depending upon the 

composition of the growth medium and the conditions of incubation. After 6 dpi, cell 

growth was retarded indicating the stationary phase. In this phase, the nutrients are 

consumed. In the stationary phase, So ce56 secondary metabolite production is 

initiated (Müller & Gerth, 2006). Furthermore, depletion of nutrients also induces the 

expression of genes involved in sporulation processes (Reichenbach & Dworkin, 

1992). The period between 10 and 14 dpi to represents the death phase, where the 

viable cell population clearly decline. 

4.2 Comprehensive analysis of the cytosolic proteome of So 
ce56 

4.2.1 Gel-based analysis of Sorangium cellulosum So ce56 cytosolic 
proteins 

For the proteomic analysis of So ce56, cells were harvested in the stationary phase 

at 7 dpi (Fig.15). This phase was chosen for protein extraction because protein 

samples led to nearly constant protein expression patterns in the 2-DE. Moreover, a 

relatively high number of viable cells were given during this period. In contrast, gels 

of protein mixtures extracted in the exponential phase revealed high deviations in 

protein expression patterns (data not shown). The cytosolic proteins were extracted 

by mechanic disruption of the cells and precipitation with acetone. 600 µg of proteins 

were loaded onto a gel. The genome sequence of So ce56 predict that nearly 80% of 

proteins exhibit a pI value between 3 to 10, therefore IEF was set between this pI 

range in order to resolve a maximal number of proteins on one gel. This experimental 

setup led to the separation of approximately 300 proteins in Coomassie colloidal 

stained gels (Fig.17). 
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Fig. 17: 2-D map of cytosolic proteins of Sorangium cellulosum So ce56. Proteins were 
electrophoretically separated within a pI range of 3-10. 600 µg of protein was applied. A 
12.5% SDS-tricine-polyacrylamide gel was used. Protein spots are stained with Coomassie 
colloidal and numbered as listed in table 1. 

Tryptic digestions of excised protein spots and subsequent peptide mass fingerprint 

(PMF) analyzes via MALDI-TOF-MS led to the identification of 185 proteins out of 

300 protein spots using the MASCOT database query. Proteins were considered to 

be identified, when: (i) the same proteins excised from three different 2-D gels gave 

the same identification; (ii) the resulting MOWSE score exhibited at least values of 50 

and therefore considered as significant; and (iii) the experimentally determined pI and 

Mr values of the proteins matched the theoretical values calculated from the 

predicted amino acid sequence. Some protein spots were identified as isoforms from 

one protein leading to the identification of 115 different proteins in total (Tab. 8) 
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representing the cytoplasmic proteome. These 115 proteins were further clustered 

into 12 groups according to their homologous relationship (COG classification). As 

expected, the majority of the classified proteins could be assigned to functions in the 

primary metabolic pathways: Assignation to amino acid (14 proteins), carbohydrate 

(13 proteins), lipid (6 proteins) and nucleotide metabolism (6 proteins). (Fig.18) 

Fig. 18: Classification of 115 identified cytosolic proteins (early stationary phase) of Sorangium 
cellulosum So ce56 according to COG categories. The percentages and numbers are given 
with respect to the total number of identified proteins. The functional categories are as follows: 
G, carbohydrate transport and metabolism; I, lipid transport and metabolism; E, amino acid 
transport and metabolism; F, nucleotide transport and metabolism; H, coenzyme transport and 
metabolism; P, inorganic transport and metabolism; Q, secondary metabolites transport and 
metabolism; C, energy production and conversion; O, posttranslational modifications; T, signal 
transduction mechanisms; M, cellwall biogenesis; L, replication; J, translation; K, transcription; 
R, general function prediction only; S, function unknown; X, no functional category. 

In order to illustrate the functional role of the detected enzymes, KEGG pathway 

schemes were generated using the Enzyme Classification (EC) numbers of the 

identified proteins. 

SRX: General function 
prediction only/ not in 

COG
25% (28)

LJK: Replication/
translation/transcription

3% (4)

TM: Signal transduction/
cell wall biogenesis

3% (4)

O: Posttranslational
modification

13% (14)
C: Energy production

and conversion
14% (15) P: Inorganic ion

transport/metabolism
3% (4)

Q: Secondary 
metabolism

2% (3)

H: Coenzyme
transport/metabolism

4% (5)

F: Nucleotide
transport/metabolism

5% (6)

E: Amino acid
transport/metabolism

13% (14)

G: Carbohydrate
transport/metabolism

11% (13)

I: Lipid
transport/metabolism

5% (6)
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4.2.1.1 Identified enzymes involved in the glycolytic pathway 

Nine identified proteins belong to the glycolytic pathway (COG G) starting with 

glucose-6-phosphate isomerase (sce5669, EC 5.3.1.9) and then go further with the 

enzymes 6-phosphofructokinase (sce3426, EC 2.7.1.11); fructose-bisphosphate 

aldolase (sce1923, EC 4.2.1.13); triose-phosphate isomerase (sce7348, EC 5.3.1.1); 

glyceraldehydes-3-phosphate dehydrogenase (sce7350, 1.2.1.12); phosphoglycerate 

kinase (sce7349, EC 2.7.2.3); phosphoglycerate mutase (sce4502, EC 5.4.2.1); 

phosphopyruvate hydratase (sce7698, EC 4.2.1.11) and pyruvate kinase (sce4540, 

EC 2.7.1.40), which catalyze the final step in glycolysis, the conversion of 

phosphoenol-pyruvate to pyruvate. 

Also proteins from the fermentation process were detected: alcohol dehydrogenase 

(sce3952, EC 1.1.1.1); lactate dehydrogenase (sce1050, EC 1.1.1.27); aldehyde 

dehydrogenase (sce0676, EC 1.2.1.3). 

4.2.1.2 Identified enzymes involved in the tricarbon cycle acid (TCA) cycle 

Many proteins of the TCA cycle were detected in the cyctosolic fraction and also from 

the pyruvate dehydrogenase reaction. Two subunits of the pyruvate dehydrogenase 

complex were identified, which converts the endproduct of glycolysis for the TCA 

cycle pathway: pyruvate dehydrogenases sce3800 and sce3801 (EC 1.2.4.1). 

Moreover, four identified proteins were involved in the TCA cycle: Isocitrate 

dehydrogenase (sce5773, EC 1.1.1.41); aconitate hydratase (sce8137, EC 4.2.1.3); 

succinate-CoA ligase (sce9141, EC 6.2.1.5) and malate dehydrogenase (sce1050, 

EC 1.1.1.37).  

4.2.1.3 Identified enzymes involved in amino acid metabolism 

A high percentage (13%) of the identified proteins belongs to the category of amino 

acid metabolism. These include the histidine (sce8010; sce8855), glutamate 

(sce7210), alanine/aspartate (sce5046), glycine/serine/threonine (sce6587) and 

valine/leucine/isoleucin metabolic pathways (Fig.33) with the identified enzymes: 

ketol-acid reductoisomerase (sce3732), branched-chain amino acid transaminase 

(sce6015) and 3-isopropylmalate dehydrogenase (sce3735). 
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4.2.1.4 Identified enzymes involved in lipid metabolism 

The identified enzymes of the category group lipid metabolism are participating in the 

β-oxidation pathway of fatty acids like acyl-CoA dehydrogenase (sce2673) or butyryl-

CoA dehydrogenase (sce1166; sce3575); enoyl-CoA hydratase (0250) and thiolase 

(sce7554) (Fig.22). The 3-oxoid CoA-transferase (sce5785) is involved in the ketone 

metabolism. 

4.2.2 The detection of differently regulated proteins from the exponential 
and early stationary phase of So ce56 cytosolic proteins via 
Differential Gel Electrophoresis (DIGE) 

Different growth phases of So ce56 are accompanied by differential metabolic fluxes, 

which is reflected by up- and down- regulation of proteins. The Differential Gel 

Electrophoresis (DIGE) technique allows the seperation of two proteomes on one gel 

using fluorescent dyes. In this experiment, the cytosolic proteins of Sorangium 

cellulosum So ce56 from the exponential and stationary phase were compared in 

order to identify the up- and down-regulated proteins which might play a role in the 

different metabolic pathways. For subsequent protein identification, DIGE gels were 

stained after visualization of the fluorescence-labeled proteins additionally with a 

MALDI-compatible silver-stain. The CyDye labeled gel image revealed a similar 

protein spot pattern as the silver stained gel (Fig. 19). 
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Fig. 19: Comparison of the So ce56 proteome in exponential and stationary growth phase. The 
cytosolic proteins were labelled with CyDyes (total protein content 100 µg) and separated on a 
2-D gel (Biorad). Proteins isolated from the exponential phase labelled with Cy3TM (red spots, 
red arrows). The proteins of the stationary phase marked with Cy5TM (green spots, green 
arrows) following the numeration of the proteome map (Fig. 17 and Tab. 8). 

For quantifications of protein abundances in both samples the Delta2D image 

analysis software was used. This led to the detection of 90 differentially expressed 

proteins in total, whereof 40 proteins appeared to be up-regulated in the stationary 

phase and 50 up-regulated in the exponential phase. However, overlay images with 

gels from previous experiments and the MALDI-TOF-MS analysis of the silver-

stained 2-D DIGE gel (data not shown) reveal only the detection of 28 differentially 

regulated proteins (Tab. 9 and Fig. 19). Protein identification was assumed to be 

significant in case the PMF analysis of the silver stained gel and the according 

predictions of the proteome map as a second affirmation were coincident. Thus, 16 
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different proteins were identification from the up-regulated proteins in the exponential 

phase, whereas 9 up-regulated proteins from the stationary phase were identified 

(Tab. 9). The identified proteins are grouped according to the different COG classes. 

4.2.3 Western blot analysis of the So ce56 phosphoproteome from the 
cytosolic fraction 

The complex life cycle of Sorangium cellulosum So ce56 and the annotation of about 

498 members of serine/threonine/tyrosine kinase and histidine kinase families (the 

majority are eukaryotic kinase-like kinases (317 ELKs)), implies that this bacterium 

requires broad regulation mechanisms for multiple signaling pathways (Schneiker et 

al., 2007). Therefore, it was of interest to detect So ce56 proteins that are involved in 

different signaling cascades during the early stationary phase. 

4.2.3.1 Anti-phosphotyrosine analysis of tyrosine phosphorylated proteins and 
anti-phosphoserine analysis of serine phosphorylated proteins 

For the detection of tyrosine and serine phosphorylated proteins, Immuno- (Western) 

Blot analysis of the 2-D PAGE gels was performed using antibodies against the 

phosphorylated amino acids. For the detection of the proteins the 2-D Blots were 

compared to the 2-D proteome map of cytosolic proteins (Fig.24). Western Blot 

analysis led to the identification of 23 serine-phosphorylated and 28 tyrosine-

phosphorylated proteins listed in table 10.12 proteins are proposed to be 

phosphorylated on both serine and tyrosine phosphorylation sites. Additionally, 

neural network predictions for serine, threonine and tyrosine phosphorylation sites of 

the proteins were performed using the NetPhos 2.0 database (Blom et al., 1999). 
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Fig. 20: Western Blot analysis of So ce56 cytosolic proteins with antibodies against phosphorylated 
serine and tyrosine. The numbering was according to the So ce56 proteome map as shown in 
a) (Fig. 17). b) Detection of tyrosine phosphorylated proteins. c) Detection of serine 
phosphorylated proteins. 

4.2.4 Blue-Native PAGE of So ce56 for the identification of protein 
complexes in the cytosolic fraction 

The Blue-Native PAGE was initially performed to analyze polyketide synthases 

(PKSs) of high molecular weight (>300 kDa). As no exact information was 

documented about the localization of these huge multienzymes, the cytosolic and the 

membrane fractions were investigated here with this method. 1 mg of cytosolic 

proteins was loaded per BN gel lane. The separated proteins from the first and the 

second dimension of the Blue-Native PAGE were analyzed with MALDI-TOF-MS. 

Mass spectrometric analyzes led to the identification of 5 proteins in the first 

dimension and of 24 different proteins from the second dimension (Fig. 21). The 

detected proteins were classified into their specific COG categories (Tab. 11). 
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Fig. 21: Blue-Native PAGE of cytosolic proteins of So ce56 from the early stationary phase. The 5 
identified proteins of the BN gel lane were given in letters (a-e) and the detected proteins of 
the Tricine-SDS-PAGE approach, which led to the identification of 33 proteins, were given in 
numbers (1-33). 

4.3 Proteomic analysis of the So ce56 extracellular proteins 
(secretome) 

The extracellular proteins of the cellulose degrading Sorangium cellulosum So ce56 

were extracted in the stationary growth phase from the cell-free culture supernatant. 

To eliminate polysaccharides and lipids present in the extracellular fraction, a phenol-

extraction method was applied (Watt et al., 2005). After Coomassie staining, protein 
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spots were excised and analyzed by MALDI-TOF-MS. The resulting peptide mass 

fingerprints were used for MASCOT database queries, which resulted in the 

identification of 82 extracellular proteins (Fig. 22). As some proteins occur as 

isoforms on different positions in the gel, a total of 41 different proteins could be 

detected (Tab. 12). 

Fig. 22: Extracellular proteins of Sorangium cellulosum So ce56. Coomassie Blue stained 2-D gel of 
500µg phenol extracted So ce56 secreted proteins in a pI range of 3-10 (GE Healthcare). 
Identified protein spots are numerated and listed in table 12. 

The identified proteins could be classified into 7 functional groups according to their 

function or cellular localization (Tab. 12). As expected, the majority of the identified 

proteins (24%) are predicted as extracellular proteins. This functional group contains 

mainly secreted enzymes involved in degradation and cell protection processes, like 



  Results 

  59 

the predicted exoprotease (sce3910). Also with a high number found in the 

extracellular fraction are the membrane proteins (22%) assumed to derive from the 

inner membrane, periplasm and outer membrane. Interesting are the identification of 

proteins from the functional groups “DNA-interacting proteins” (7%), “protection” 

(10%) and “protein folding” (12%), which are known to be localized in the cytosol or 

in the periplasm. Only one hypothetical protein (sce1224) could not be assigned to a 

functional category. 

Fig. 23: Identified extracellular proteins of So ce56 grouped into seven functional subgroups 
represented in a pie chart diagram. The number of identified proteins is given in numbers and 
percentages, which relate to the 41 different extracellular proteins. The classification was 
carried out according to the protein’s predicted function (metabolic enzymes; DNA-interacting 
proteins; protective enzymes; protein folding; proteins involved in the secondary metabolism)  
or proposed cellular occurrence (extracellular proteins; membrane and periplasmic proteins). 

The presence of an N-terminal signal sequence was checked for each identified 

protein by the Signal P software to estimate the amount of proteins secreted to the 

extracellular space. Signal peptides are necessary in order to initiate protein export 

via the Sec translocation system. Signal peptides generally consist of three distinct 

domains: a basic amino-terminal n-region followed by a hydrophobic h-region and 

then a hydrophilic c-region containing the recognition site for the signal peptidase 

(Nielsen et al., 1997). The destinations of the identified proteins with predicted signal 
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peptides might be the periplasm or the outer membrane (OM). Approximately 22% 

(about 2083) of the annotated proteins (9367) contain a potential signal peptide. 

Nevertheless, the signal sequence prediction reveals that 11 proteins of the 41 

identified proteins contain a signal peptide and thereof 4 proteins reveal a twin-

arginine translocation (Tat) signal peptide, which indicates that proteins may be 

transported in a folded way (Tab. 12). The Tat signal peptides resemble somehow to 

the Sec signal peptides. In contrast the Tat signal peptides contain a conserved 

amino acid sequence motif at the n-region/h-region boundary. This motif can be 

defined as S-R-R-x-F-L-K, where the consecutive arginine residues are almost 

invariant (Palmer & Berks, 2003). While the Sec system only transports unstructured 

substrates, the function of the Tat pathway is to translocate folded proteins. 

Furthermore, proteins with a helix-turn-helix motif (sce3479) and a transmembrane 

domain (sce1365; sce1531) were detected indicating that these proteins interact with 

the DNA or are integrated into the membrane, respectively. Additionally, all predicted 

signal peptides in So ce56 were manually screened for the presence of lipobox 

sequences [LVI]-[ASTVI]-[GAS]-C by using the DOPOL database (Babu et al., 2002). 

Two lipoproteins were identified with this tool: the putative lipoproteins sce5067 and 

sce4343. The identification of possible transport proteins of So ce56 was carried out 

with the Transport Classification (TC) Database, the significantly identified transport 

proteins in So ce56 were assigned with TC numbers, e.g. Cyanate ABC transporter 

(TC 3.A.1.16.2) (Tab. 18). 

4.4 Comprehensive analysis of So ce56 membrane proteins, 
outer membrane proteins and outer membrane vesicle 
proteins 

In the following, proteomic analysis of So ce56 membrane proteins, outer membrane 

proteins and outer membrane vesicle proteins are presented. In addition to the 

proteomic results of the outer membrane vesicle proteins, electron microscopy 

studies of the vesicles were carried out.  

4.4.1 Identification of membrane proteins of So ce56  

Similar to other Gram-negative bacteria, the envelope of So ce56 is composed of 

inner (cytoplasma) and outer membranes separated by the periplasm that contains a 
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thin peptidoglycan layer (Duong et al., 1997). The So ce56 membrane acts as a 

barrier against external influences in the soil, where many proteins were integrated or 

associated to the membrane. In order to obtain insights into the functional role (e.g. 

transport processes, cell-signaling and gliding motility) of the So ce56 membranes, 

proteins integrated into or associated to the membrane were analyzed. Their 

hydrophobic nature makes them difficult to solubilize and resolve on gels, resulting in 

a consistently underrepresentation in 2-D gel based proteomic analyzes. Therefore, a 

membrane extraction protocol for So ce56 membrane proteins was developed. 

The membrane proteins from Sorangium cellulosum So ce56 cells were extracted 

from the early stationary phase. After extraction, the membrane proteins were 

solubilized with 1% digitonin and separated on a 1-D SDS-PAGE. After Coomassie 

staining, the gel was excised in segments containing approximately 10 visible protein 

bands each (Fig. 24). The gel-pieces were digested with trypsin and the peptides 

were loaded onto a nanoLC system coupled to an ESI-IonTrap instrument. MS/MS 

spectra were generated from peptides with a high signal to noise ratio to gain 

sequence tags. The peptide fragments were used together with its parent mass to 

query the sole protein database utilising the MASCOT software. Proteins were 

regarded as identified peptides with a MOWSE score of > 40. 
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Fig. 24: Separation of Sorangium cellulosum So ce56 membrane proteins by 1-D SDS-PAGE, which is 
stained with Coomassie Blue and analyzed with nanoLC-ESI MS/MS. The gel was cut into 10 
segments (I – X) containing at least 2 - 10 visible protein bands. Proteins were tryptically 
digested and analyzed by nanoLC-ESI-MS/MS. The identified proteins of each segment are 
listed in table 13 

A total of 66 different proteins were identified from the membrane extract and are 

listed in table 13, each gel-segment revealed at least 5 different proteins. 

The identified proteins from the membrane fraction were divided into eight functional 

classes considering their functionality and their localization in the cell (Fig. 25). 
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Fig. 25: Pie chart diagram representing the identified 66 So ce56 membrane proteins (given in 
numbers and percentages) which were divided into nine functional subgroups. Classification: 
DNA-interacting proteins; protective enzymes; metabolic enzymes; protein folding; 
degradative enzymes; protein modification; extracellular proteins; membrane proteins; 
hypothetical proteins. 

The majority of the identified proteins (31%) could be assigned to membrane or 

membrane-associated proteins. TMHMM analysis reveals the detection of only one 

protein with three transmembrane domains, which is probably involved in potassium 

transport at the inner membrane (sce0244). 9 of 21 membrane proteins have a 

secretion signal and seven proteins of them contain a putative twin-arginine motif. 

The analysis of the signal sequences reveals the detection of one putative lipoprotein 

(sce5067), which might belong to the outer membrane. Additionally, the identified 

proteins were blasted in the Transport Classification (TC) Database to identify 

possible transport proteins in So ce56 listed in table19. Thus, the identification of 

many “DNA-interacting proteins” (18%) and “metabolic enzymes” (23%) from the 

membrane fraction reveals no apparent association to the membrane components 

known so far, they might belong to the cytosolic fraction. 
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4.4.1.1 Membrane protein analysis of So ce56 with the Blue-Native PAGE 
method 

As described in section 4.2.4, the extracted membrane proteins were analyzed from 

protein complexes, which are associated to the membrane. The main focus of this 

analysis was the identification of multienzyme complexes such as the polyketide 

synthases and the transport protein integrated in the So ce56 membrane. The 

extracted membrane proteins were solubilized with 1% digitonin and 500 µg proteins 

were loaded onto the BN gel. The resolved protein complexes were then separated 

in a second dimension, the Tricine-SDS-PAGE, to identify individual proteins (Fig. 

26). 4 proteins from the first dimension and 37 proteins of the second dimension 

were identified by MALDI-TOF-MS analysis. The identified proteins were classified 

into their COG categories. Signal sequence analysis reveals the detection of 3 out of 

37 proteins with an N-terminal signal peptide. Only one protein with a 

transmembrane domain was detected with the TMHMM software (Tab. 14). As 

described before, the TC and the DOPOL database searches was also applied in this 

case. 
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Fig. 26: Blue-Native PAGE of So ce56 membrane proteins extracted from the early stationary phase. 
Identified proteins from the BN gel lane were given in letters (a-d) and the detected proteins of 
the Tricine-SDS-PAGE were given in numbers (1-30). 

4.4.2 Identification of outer membrane proteins of So ce56 

Additional analysis of the outer membrane proteins might reveal detailed information 

about outer membrane vesicle formation and further transport systems. Therefore, 

the outer membrane proteins of So ce56 were extracted using cells from the early 

stationary phase for ultrasonification. To isolate the outer membrane proteins from 

the cell-free supernatant, an ultracentrifugation step was carried out. After protein 

separation with an SDS-PAGE, tryptically digested gel segments (I-VII) were 

analyzed with nanoLC-ESI-MS/MS (Fig. 27). MASCOT analysis leads to the 

identification of 36 proteins from the outer membrane fraction. Furthermore, all 

predicted signal peptides were manually screened for the presence of lipoproteins by 



  Results 

  66 

using the DOPOL database revealing two putative lipoproteins (sce2691 and 

sce4176) transported by the Tat-signalling pathway (Tab. 15). 

Fig. 27: 1-D SDS-PAGE of outer membrane proteins (OMPs) of So ce56 analyzed by nanoLC-ESI-
MS/MS. To obtain OMPs of So ce56 the bacterial cell was ultrasonificated and centrifuged to 
remove the cell debris. The pellet, which was obtained after ultracentrifugation of the 
supernatant at 100,000 x g, was washed with 2% Lauryl-Sarcosine and ultracentrifuged again. 
The washed pellet was then separated on a SDS-PAGE and stained with Coomassie Blue. As 
described before, the gel was cut into 7 segments (I-VII) and digested with trypsin. The 
analysis of the tryptic digests was carried out with nanoLC-ESI-MS/MS. The identified proteins 
of each segment were shown in table 15. 

The identified proteins were divided into eight different functional subgroups relating 

to their functionality and their locality. 
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Fig. 28: The 35 identified So ce56 outer membrane proteins (OMPs) were divided into eight different 
functional groups. The sorting of the proteins was carried out according to the following 
functionalities or cellular compartments: signal transduction, secondary metabolism, metabolic 
enzymes, DNA-interacting proteins, hypothectical proteins without any function, extracellular 
proteins, inner membrane/periplasmic proteins and outer membrane proteins. The number of 
identified proteins was given in numbers and percentages (Tab. 15). 

As expected, the main part of identified proteins (39%) belongs to the functional 

group of putative outer membrane components. Nearly each of them contains a 

signal peptide with a twin-arginine motif. The identified proteins occurring in the outer 

membrane are mainly transport or receptor proteins. The TC database query detect 

about 12 transport proteins compared to characterized and published from other 

organisms (Tab. 20). 

But of main interest are the identified proteins from the outer membrane fraction 

occuring also in the outer membrane vesicle fraction, which may indicate the origin of 

vesicle formation. These are two components of the outer membrane: a putative 

maltoporin (sce7619) and a phosphate selective porin (sce7966). Another protein, 

which occurs in both compartments, is a predicted phosphatase (sce0936) normally 

active in the periplasm. 
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A large number of the extracted outer membrane proteins were inner membrane and 

periplasmic proteins (31%). The main part of these proteins were putative ABC 

transporters or ATPases located in the inner membrane or in the periplasm, like the 

identified putative ABC dipeptide transporter (sce7548) or a probable cation 

transporting ATPase (efflux, sce2485), which contains 10 transmembrane domains 

predicted by TMHMM. The identified putative nitrogen sensor histidine kinase 

(sce7800) from the outer membrane fraction shows homologies to Jer3/Amb3 

(identity of 85%/ 81%) (Tab.21). Jer/Amb proteins belong to the jerangolid and 

ambruticin polyketide synthase clusters produced by Sorangium cellulosum strains 

So ce307 and So ce10, respectively. Jer3/ amb3 genes encode also a putative 

sensor kinase component. These results imply that So ce56 has a putative jerangolid 

or ambruticin biosynthetic gene cluster. 

4.4.3 BLASTP comparisons to proteins involved in the 
jerangolid/ambruticin biosynthesis 

In order to validate this finding and to find further genes which might be also involved 

in the jerangolid/ ambruticin, the genome sequence of So ce56 was blasted against 

the jerangolid/ ambruticin biosynthetic gene clusters of the Polyangium (Sorangium) 

cellulosum database (NCBI). BLASTP search reveals more genes with high 

similarities (>60) shown in table 21. Furthermore, the BLASTP search engine was 

used to scan predicted polyketide synthases of So ce56 with putative homologies to 

jerangolid/ ambruticin polyketide synthases from the Polyangium cellulosum 

database. But the predicted PKSs from So ce56 revealed no significant identities 

(less than 50%) to PKSs encoded by the jerangolid/ ambruticin biosynthetic gene 

cluster from P. cellulosum. 

4.4.4 Characterization of the outer membrane vesicle proteome 

A number of Gram-negative bacteria naturally produce extracellular outer membrane 

vesicles (OMVs). Similar to the outer membrane, OMVs contain lipopolysaccharides, 

outer membrane and/or periplasmic proteins, and phospholipids. Possible functions 

of these vesicles are cell-to-cell signalling, protein and DNA transfer between 

bacterial cells and transporting toxins (Mashburn-Warren et al., 2006). Since so 

many outer membrane proteins could be identified in the extracellular proteome from 

the culture supernatant of So ce56 was analyzed for the existence of OMVs and their 
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protein content. The analysis of outer membrane vesicles (OMVs) from the cell-free 

culture supernatant of So ce56 was carried out in two steps described in 4.4.4.1 and 

4.4.4.2: 

4.4.4.1 Electron microscopic analyzes of outer membrane vesicles of So ce56 

The existence of membrane vesicles in the culture supernatant of So ce56 was 

investigated by electron microscopy. Visualization of OMVs was achieved by 

negative staining of the OMV-fraction with 1% uranyl acetate. The electron 

micrographs of the outer membrane vesicle preparation of So ce56 displayed 

spherical structures with a mean diameter ranging from 30-120 nm (Fig. 30). These 

micrographs indicate that So ce56 extrude OMVs from its outer membrane into the 

culture supernatant. 
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Fig. 29: Electron microscopy of 1% uranyl acetate stained outer membrane vesicles extracted from 
cell free supernatant of Sorangium cellulosum So ce56 at 27,000 fold magnification. 

4.4.4.2 Proteome analysis of outer membrane vesicle proteins of So ce56 

In a second approach, the outer membrane vesicle proteins of So ce56 were 

analyzed. Therefore, the outer membrane vesicle proteins were separated on a 1-D 

SDS-PAGE and the resulting protein bands (Fig. 30) were analyzed by MALDI-TOF-

MS and MASCOT database query of the So ce56 genome sequence. 
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Fig. 30: Outer membrane vesicle proteins separated on a SDS-PAGE gel stained with Coomassie 
Blue and analyzed by MALDI-TOF-MS. Identified proteins from the gel bands were given in 
numbers. 

The analysis of protein bands resulted in the identification of 5 different proteins 

summarized in table 16. Three of five identified proteins possess a secretion signal, 

whereas one of these proteins, a putative outer membrane lipoprotein (sce5067), 

occurs in 5 positions on the gel as isoforms. The putative outer membrane lipoprotein 

and the putative phosphate-selective porin O and P (sce7556) could possibly be 

enclosed from the outer membrane during OMV formation. This could be an 

explanation why membrane proteins occur in the extracellular environment. Only one 

protein could not be allocated to a functional group. 
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5 Discussion 

In the present study a comprehensive proteome analysis of Sorangium cellulosum 

So ce56 was achieved under standardized conditions. 

Sequencing of the Sorangium cellulosum So ce56 genome and subsequent 

sequence annotation was performed in parallel to this work with participation of the 

authors from the currently submitted So ce56 genome paper (Schneiker et al., 2007). 

This comprehensive proteome analysis led to the detection in total 286 proteins with 

247 distinguished proteins classified in COG categories (Tab. 22). The availability of 

this accumulated proteomic data concerning the identified proteins derived from the 

cytosol, extracellular, membrane, and outer membrane fractions has allowed 

proteomic verifications of the genome-based predictions of So ce56. Although 2-D 

gel-based approaches of total protein extracts only open a limited window to the 

proteome of So ce56, they provide plenty of information about cellular processes, 

protein expression differences as well as changes in protein modifications about the 

more abundant proteins. 
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5.1 Proteomic analysis of So ce56 cytosolic proteins resulted in 
the identification of enzymes involved in primary metabolism 

From the 115 identified cytosolic proteins of the proteome map, specific proteins are 

involved in different important metabolic pathways. In the following the carbon, 

nitrogen and lipid metabolism were discussed. Despite its great potential, 2-D gel 

technology has its limitations. To work under standardized conditions and to set the 

proteomic basis for further analysis, the isoelectric focusing was carried out with IPG-

strips ranging in a pH-value of 3 – 10 in a 12.5% SDS-PAGE gel, which allows the 

separation of proteins in a range of about 10 – 100 kDa. Therefore, the recovery of 

basic small and large proteins was negatively influenced. Additionally, numerous 

proteins were not expressed or only expressed in low concentrations during the early 

stationary phase. Since the high abundant proteins tend to mask the low abundant 

proteins with similar physiochemical properties, it is difficult to visualize them properly 

(Gygi et al., 2000). The silver staining method used in So ce56 detects the low 

abundant proteins apparent in a number of 800 – 1,000 protein spots (data not 

shown), whereas the Coomassie staining protocols led to the detection of the more 

abundant proteins (300 proteins visualzed). Furthermore, membrane proteins are 

generally underrepresented on current 2-D gels due to their hydrophobic character, 

so that they are solubilized incompletely by the detergents that are compatible with 

isoelectric focusing. Moreover, the secretome of So ce56 is almost completely 

missing, as only whole cell extracts were used. Thus, efforts were made to overcome 

this problem by analyzing in addition, the membrane, outer membrane, outer 

membrane vesicle, and secreted proteins with different methods, e.g. BN-gels. 

5.1.1 Growth in the early stationary phase of So ce56 leads to high 
expression of enzymes involved in carbon metabolism 

The So ce56 cells were cultivated in a defined medium with glucose as carbon and 

asparagine as nitrogen source. The fact that glucose was the sole sugar source in 

the growth medium could explain the relative high abundance and completeness in 

identification of enzymes of the glycolytic pathway (Fig. 31). 
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Fig. 31: Glycolysis KEGG-pathway scheme of Sorangium cellulosum So ce56. The red-colored EC 
numbers depict the identified proteins from So ce56 involved in the glycolysis and in the 
fermentation process. The identified proteins of the glycolysis are displayed in red: glucose-6-
phosphate isomerase (sce5669, EC 5.3.1.9); 6-phosphofructokinase (sce3426, EC 2.7.1.11); 
fructose-bisphosphate aldolase (sce1923, EC 4.2.1.13); triose-phosphate isomerase 
(sce7348, EC 5.3.1.1); glyceraldehydes-3-phosphate dehydrogenase (sce7350, 1.2.1.12); 
phosphoglycerate kinase (sce7349, EC 2.7.2.3); phosphoglycerate mutase (sce4502, EC 
5.4.2.1); phosphopyruvate hydratase (sce7698, EC 4.2.1.11); pyruvate kinase (sce4540, EC 
2.7.1.40); pyruvate dehydrogenase (sce3800, sce3801, EC 1.2.4.1). Proteins from the 
fermentation process: alcohol dehydrogenase (sce3952, EC 1.1.1.1); lactate dehydrogenase 
(sce1050, EC 1.1.1.27); aldehyde dehydrogenase (sce0676, EC 1.2.1.3). 
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Proteins of the glucose uptake system could not be detected in the proteome 

analysis, but genome sequence annotations exhibit the sequences for a glucokinase 

(sce4351), which converts glucose in the cell, derived from the glucose-containing 

disaccharides (e.g. lactose, maltose or trehalose). Moreover, four compounds of a 

PTS-system (ptsP, sce8622; ptsH, sce5765; ptsN, sce2509 and ptsI, sce5764) were 

revealed by the genome sequence, which are responsible for transport and activation 

of glucose to form glucose-6-phosphate for the glycolytic pathway, and thus 

eliminating the need for glucokinase (Saier et al., 1995; Meyer et al., 1997). The end-

products of glycolysis, phosphoenol-pyruvate and pyruvate build the link to the 

tricarboxylic acid (TCA) cycle as to fatty acid synthesis and other central metabolic 

steps (Fig. 32). The TCA cycle serves as a major converter to supply the cell with 

usable energy from carbohydrates, proteins or fatty acids (Voet et al., 2006). This 

could explain the high abundance of the putative TCA pathway proteins, e.g. 

isocitrate dehydrogenase (sce5773) or aconitase hydratase (sce8137) in the 

cytosolic proteome. 
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Fig. 32: TCA cycle scheme of So ce56. The identified enzymes are written in red. Pyruvate 
dehydrogenase (sce3800, sce3801, EC 1.2.4.1); Isocitrate dehydrogenase (sce5773, EC 
1.1.1.41); aconitate hydratase (sce8137, EC 4.2.1.3); succinate-CoA ligase (sce9141, EC 
6.2.1.5); malate dehydrogenase (sce1050, EC 1.1.1.37). 

Between the TCA cycle and the glycolysis metabolic pathway, the intermediary 

enzyme complex pyruvate dehydrogenase (sce3800, sce3801) is required to convert 

the end product of glycolysis phosphoenolpyruvate for further processes. Detection 

of proteins most probably coding for a lactate-dehydrogense (sce1050) and for an 

alcohol-dehydrogenase (sce3952), could indicate that S. cellulosum So ce56 

undergoes fermentation at the point of harvest due to an oxygen limitation in the 

culture (Fig. 31). Pyruvate is oxidized and decarboxylated in a complex reaction 

involving NAD, coenzyme A and pyruvate dehydrogenase, forming a central 

molecule in metabolism, the acetyl-CoA. Acetyl-CoA not only forms the first stable 
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intermediate of the TCA cycle, but it also plays a main role in the fatty acid 

biosynthesis (Voet et al., 2006). 

The significant identification of a putative xylose isomerase (sce5429) from the 

cytosolic fraction and the identification of a putative ABC-type xylose transport 

glucose (sce6008) from the outer membrane protein fraction of So ce56 is surprising 

since no xylose was present in the medium. Further on, xylose can not be used as a 

sole carbon source by S. cellulosum So ce56 (Müller & Gerth, 2006). Xylose 

isomerase converts xylose to xylulose, but is also usually referred to as glucose 

isomerase converting glucose into fructose (Asboth & Naray-Szabo, 2000). The 

identification of a putative ABC-type xylose transport system leads to the assumption 

that during the stationary phase when glucose is nearly depleted So ce56 possibly 

use alternate sugar uptake systems. Presumably, the xylose transport protein is 

constitutively expressed to activate further components for a functional high affinity to 

xylose during growth on glucose (Gonzales et al., 2002). As cellulose and 

hemicellulose are components of plants, degradation of these biopolymers by 

microorganisms like So ce56, leads to the release of xylose and glucose monomers. 

For example, the genome sequence reveals the occurrence of the putative endo-1.4-

beta-xylanase (sce4601) enzyme, which degradates the plant cell wall component 

xylan to obtain the pentose sugar xylose (Prescott et al., 2005). Another sugar of the 

plant polysaccharides is the pentose arabinose (Hespell, 1998), where genome 

sequences reveal two putative arabinose uptake systems (sce3306 or sce3310). 

Maybe these alternate sugar uptake systems of So ce56 were used under natural 

conditions, much likely under starvation conditions in soil. 

5.1.2 Nitrogen metabolism and supply in So ce56 is indicated by the 
identification of various enzymes involved in amino acid 
metabolism 

The constantly abundant metabolic enzyme glutamate-ammonia ligase (sce7210) 

represents another interesting enzyme in So ce56. The central role of this enzyme in 

nitrogen metabolism is the ATP consuming condensation of ammonia with glutamate 

to yield glutamine (Voet et al., 2006). Glutamine is important for further amino acid 

biosynthesis reactions. As asparagine is the main nitrogen source in the S-medium 

and a good reservoir for chemically fixed aspartate and ammonia, it could be 
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processed in further pathways, like the glutamine synthesis and the tricarboxylic acid 

cycle. In addition, three proteins were identified, which are involved in alanine and 

aspartate metabolism: argininosuccinate synthase (sce5046), adenylosuccinate 

synthase (sce8895) and aspartate transaminase (6239). Aspartate and glutamate as 

sole nitrogen sources are not useful substrates for growth of So ce56 (Müller & 

Gerth, 2006). 

Furthermore the histidine (urocanate hydratase sce8010, histidinol-phosphate 

transaminase sce8855) and the purine (IMP dehydrogenase sce0088: 

ribonucleoside-diphosphate reductase sce3875; nucleoside diphosphate kinase sce 

2949; phosphoribosylamine-glycine ligase sce9014; adenylosuccinate synthase 

sce8895) metabolic pathways were highly active during this growth phase. Histidine 

biosynthesis is a metabolic cross-road and plays an important role in cellular 

metabolism being interconnected to both the de novo synthesis of purines and 

nitrogen metabolism. The connection to purine biosynthesis results from an 

enzymatic step catalyzed by imidazole glycerol phosphate (IGP) synthase. The 

important connection to nitrogen metabolism is due to a glutamine molecule, the 

source of the final nitrogen atom of the imidazole ring of IGP (Fani et al., 2007). 

Nucleotides are components of some central metabolic cofactors, including FAD, 

NAD+, and coenzyme A probably supporting the various metabolic pathways in So 

ce56 (Voet et al., 2006). 

The branched chain amino acids valine and isoleucine are synthesized from the 

central intermediary metabolite pyruvate, using nearly the same biosynthetic pathway 

and enzymes (Fig. 33). However, the leucine biosynthetic pathway branches off from 

the valine pathway at the branchpoint 2-oxoisovalerate, which is required for the 

biosynthesis of coenzyme A and branched chain fatty acids. 
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Fig. 33: Valine, leucine and isoleucine biosynthesis KEGG pathway scheme of So ce56. The red 
highlighted EC numbers correspond to the identified enzymes from the cytosolic fraction of So 
ce56. Branched-chain-amino-acid transaminase (sce6015, EC 2.6.1.42); ketol-acid 
reductoisomerase (sce3732, EC 1.1.1.86); 3-isopropylmalate dehydrogenase (sce3735; 
1.1.1.85); pyruvate dehydrogenase (sce3800, sce3801, EC 1.2.4.1). 

Similar to the β-oxidation, degradation of these amino acids delivers CoA derivatives 

and intermediates, which could be used in metabolic pathways. Experiments by 



  Discussion   

  80 

Müller and Gerth (2006) showed that addition of leucine and isoleucine has negative 

effects on the production of secondary metabolite whereas valine increases the yield 

of chivosazol production. This might be explained by synergistic effects on the 

pantetheine biosynthesis. Pantothenic acid is a precursor of coenzyme A, which is 

required for the synthesis of the secondary metabolites (Fig.34) (Jansen et al., 1997; 

Müller & Gerth, 2006). 

Fig. 34: A valine biosynthesis pathway scheme of the identified enzymes involved in the valine 
synthesis from S.cellulosum So ce56. The identified enzymes are colored in red: Ketol-acid 
reductoisomerase (sce3732) and branched-chain amino acid transaminase (sce6015). The 
intermediate 2-oxoisovalerate from the valine biosynthesis is necessary for the construction of 
the vitamin (R)-pantothenate, which is used in turn as substrate for the coenzyme A 
biosynthesis (based on KEGG pathway schemes). 

5.1.3 Identified enzymes involved in the lipid metabolism are mainly 
participating in the β-oxidation of fatty acids 

Proteomic analysis resulted also in the identification of various proteins of So ce56 

that are involved in the fatty acid metabolism. For example the enzymes acyl-CoA 

dehydrogenase (sce2853), acetyl-CoA C-acetyltransferase or thiolase (sce7554) and 

the enoyl-CoA dehydratase (sce0250) are important for the fatty acid degradation (β-
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oxidation) shown in figure 35 (Michal, 1999). Butyryl-CoA dehydrogenase (sce1166 

and sce3575) belongs, like the acyl-CoA dehydrogenase, to the family of 

flavoproteins and differ only in the preference of substrates (Battaile et al., 2002).  

Fig. 35: The β-oxidation of a fatty acyl CoA of So ce56 illustrated in a diagram (based on Michal, 1999, 
Biochemical pathways). The identified enzymes are coloured in red. 

The β-oxidation pathway provides the bacterial cell with acetyl-CoA fed in different 

metabolic pathways and with cell energy produced in the form of FADH2 and NADH 

(Nyström, 2004). The identified enzyme 3-oxoid CoA-transferase (sce5785) 

catalyzes the reversible transfer of CoA from CoA-thioesters, e.g. the endproduct of 

the β-oxidation: acetoacetyl-CoA, to free acids. In contrast to the fatty acid 

degradation, chain elongation of the fatty acids is catalyzed by several individual 

enzymes associated into a large complex with acetyl-CoA and malonyl-CoA as 
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substrates and NADPH as electron donor. To summarize, fatty acid chain elongation 

is carried out stepwise by adding two-carbon units deriving from acetyl-CoA over and 

over until a fatty acid of the appropriate length has been made (Prescott et al., 2005). 

The focus of So ce in this growth phase might be to supply the cell with energy and 

metabolic intermediates by the degradation of fatty acids for further cellular 

processes. 

5.1.4 Differential Gel Electrophoresis (DIGE) from the exponential and 
early stationary phase of So ce56 cytosolic proteins reveals 
different regulation of metabolic enzymes 

The study of So ce56 cell cycle-regulated protein expression by using differential gel 

electrophoresis has provided insights into the complexity of the myxobacterial cell 

cycle. Even though only 28 proteins could be detected significantly, it gives a first 

impression how So ce56 utilizes resources and maintains the functioning of the cell 

cycle. The majority of identified proteins in both growth phases are involved in 

cellular nutrient uptake and energy supply (14 proteins of 28 identified proteins). The 

data reveal that enzymes in the carbohydrate metabolism involved in glycolysis, like 

the triose-phosphate isomerase (sce7348), xylose isomerase (sce5429), 

phosphoglycerate kinase (sce7349) and fructose-bisphosphate aldolase (sce1923), 

are assumed to be more abundant in the exponential phase than in the stationary 

phase (Grünenfelder et al., 2001). These enzymes are necessary for increased cell 

growth during exponential phase to provide the bacteria with energy for further 

cellular processes. Moreover, it might be also an indication for the depletion of 

carbon, i.e. the depletion of one energy source during the early stationary phase. 

This assumption is supported by the identification of the enzyme thiolase (sce 7554) 

involved in the β-oxidation during the early stationary phase. It has been suggested 

that So ce starts to provide itself with carbon and energy by generating fatty acids 

from the degradation of membrane lipids (see 5.1.3; Nyström, 2004). Furthermore, 

the detection of xylose isomerase in the exponential phase supports the presumption 

that this enzyme converts glucose into fructose during glycolysis (Asboth & Naray-

Szabo, 2000). Therefore, it could be excluded that xylose isomerase acts as an 

alternative sugar uptake system. Metabolic conversions lead to the generation of 

radicals like superoxides during oxidative phosphorylation of metabolic products 

(NADH, FADH) (Schaechter, 2007). This might explain the expression of antioxidants 
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like superoxide dismutases (SodA, sce0071; SodB, sce4167) in the exponential 

phase, which are needed to protect the bacterial cell from the increasing toxic side 

products during nutrient conversion. These enzymes catalyze the reaction of free 

oxygen radicals produced during the aerobic respiratory chain reaction into oxygen 

and hydrogen peroxide, which in turn is used by a catalase. Normally, it is expected 

that the production level of superoxide dismutases is higher in the stationary phase 

than in the exponential phase, as the cell is entering a stress phase (starvation) as 

described in E.coli (Nyström, 2004; Barriere et al., 2001). Another protective protein 

is the organic hydrogen peroxide resistance protein (sce0181).  

A further protection system is the degradation of misfolded proteins in the cytoplasm 

with a putative endopeptidase (sce3147). Identification of a relatively low number of 

metabolic proteins, especially for carbohydrate metabolism, during the early 

stationary phase leads to the assumption that the bacterial cell down-regulates the 

metabolism as a consequence of nutrient depletion during this phase (Kolter et al., 

1993). Additionally, a high number of synthesized proteins were of unknown function 

in both growth phases (6 proteins of 28 identified proteins) and represent candidates 

for putative regulators of the Sorangium cell cycle.  

5.1.5 Identification of enzymes involved in primary metabolism were 
detected via Western Blot analysis of serine and tyrosine 
phosphorylated proteins 

Since the discovery of eukaryotic-like serine/threonine kinase in Myxococcus xanthus 

(Munoz-Dorado et al., 1991), M. xanthus becomes an excellent model system to 

study bacterial signal transduction and developmental processes, where many 

interesting findings followed. For example, a novel bacterial signaling system with a 

combination of a two-component system and a serine/threonine kinase cascade was 

discovered, which is involved in the fine tune regulation of developmental processes 

(Lux & Shi, 2005). Moreover, the characterization of a complete functional protein 

serine/threonine kinase signaling cascade in a prokaryotic organism was performed 

with M. xanthus (Nariya & Inouye, 2005). The recent completion of the So ce56 

genome with 9367 CDSs revealed about 498 predicted serine/threonine/tyrosine 

kinases (eukaryotic-like kinases) and histidine kinases involved in regulatory 

processes (Schneiker et al., 2007). Therefore, serine and tyrosine phosphorylation in 
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So ce56 were investigated via Western Blot analysis using Immunoblot methods 

leading to the identification of 23 serine-phosphorylated and 28 tyrosine-

phosphorylated proteins, whereby 12 proteins are assumed to be serine and tyrosine 

phosphorylated. So far, no detailed information about So ce phosphorylation and 

their cellular functions was reported. Thus, this work introduces possible functional 

roles of different biological processes in So ce56. 

As phosphorylation plays an important role in the regulation of several metabolic key 

enzymes in different organisms (Kennelly & Potts, 1999), it is not unusual to find a 

high number of serine or tyrosine phosphorylated enzymes involved in the metabolic 

pathways of So ce56 (e.g. glycolysis and TCA, assigned as COG G and COG C). 

Protein phosphorylation on tyrosine residues in bacteria was discovered more 

recently and was long considered specific for eukaryotes (Cozzone et al., 2004). The 

detection of tyrosine phosphorylation involved in the regulation of the developmental 

cycle in M. xanthus (Frasch & Dworkin, 1996), lead to the assumption that So ce56 

also uses tyrosine phosphorylation to control different regulatory processes such as 

multicellular development or diverse metabolic pathways. Tyrosine phosphorylation 

of enolase (phosphopyruvate hydratase, sce7698) was described by Cooper et al. 

(1984) in virally transformed chicken fibroblasts, where the phosphorylation sites 

from enolase and lactate dehydrogenase was utilized by tyrosine protein kinases 

encoded by Rous sarcoma virus. In another experiment with [32P]-labeled proteins in 

E.coli, Dannelly et al. (1989) demonstrated the presence of phosphoserine in 

enolase. In both cases phopshorylated enolase might play an important role as a 

possible control mechanism of glycolysis and gluconeogenesis. In contrast, 

Bergmann et al. (2003) reported that the export of enolase in E. coli to the 

extracellular medium is dependent on the modification of this enzyme, but it does not 

change the glycolytic activity. 

Tyrosine phosphorylation on thiolase (sce7554), an enzyme of the fatty acid β-

oxidation cycle, was reported by Fukao et al. (2003) occurring in glyoxysomes from 

etiolated cotyledons of Arabidopsis. The degradation of triglycerides is an important 

reaction in early post-germinative seedlings growth to produce sucrose as energy 

source, because the etiolated seedlings cannot produce energy autotrophically by 

photosynthesis. They suggest that protein phosphorylation is required during β-

oxidation to regulate the overproduction of sucrose, i.e. not to waste energy in early 
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post-germinative seedlings. In So ce56 tyrosine phosphorylation on thiolase might 

also be needed to control fatty acid degradation and possibly to regulate the energy 

production between nutrient depletion for the availability of nutrient during cell 

growth. 

Furthermore, the tyrosine phosphorylated protein UDP-glucose dehydrogenase 

(sce2793) identified in So ce56 were also found to be tyrosine phosphorylated by 

protein tyrosine kinases (PTKs) in several other bacterial UDP-glucose 

dehydrogenases, like E.coli and Bacillus subtilis (Grangeasse et al., 2003; Mijakovic 

et al., 2003, 2005). The UDP-glucose dehydrogenase converts UDP-glucose to UDP-

glucuronate for the synthesis of acidic polysaccharides. In other organisms tyrosine 

phosphorylation is involved in exopolysaccharide (EPS) synthesis and assembly, 

especially for virulence (Vincent et al., 2000), e.g. pathogenic E. coli. The PTK in E. 

coli is membrane-associated and is expressed specifically by pathogenic strains of E. 

coli (Ilan et al., 1999). The role of the EPSs is the formation of a capsule that protects 

the pathogen (Ofek et al., 1993). Sorangium cellulosum is regarded as a 

nonpathogenic bacterium, but it is assumed that tyrosine phosphorylation in So ce56 

might be involved only in the EPS production, e.g. to protect them against 

competitors. 

An unknown tyrosine phosphorylated protein in So ce56 was detected which contains 

a forkhead-associated (FHA) domain (sce8329). The FHA domain is a 

phosphopeptide-binding domain identified in a wide variety of proteins such as 

protein kinases, phosphatases, adenylate cyclases and proteases from eukaryotes 

and prokaryotes to coordinate diverse cellular processes (Li et al., 2000). These 

domains vary also in their binding specifities, they can interact with 

phosphothreonine, phosphoserine and phosphotyrosine. It is assumed that this 

domain represents a new class of dual specificity phosphoprotein-binding domain 

(Liao et al., 1999). 

The first protein serine/threonine kinase (PSTK) in M. xanthus, the Pkn1, was 

characterized by Munoz-Dorado et al. (1991) playing a key role in cellular 

differentiation. Since then several PSTKs characterizations followed, which are 

involved in the M. xanthus life cycle like Pkn2 (Udo et al., 1995) and Pkn5/Pkn6 

(Zhang et al., 1996), whose expression levels are needed for fruiting body formation 

and sporulation. Two putative serine kinases and a putative serine specific 
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phosphatase (sce7256) were found in So ce56. The kinases are involved in the 

carbon metabolism (sce7349; sce7348) and the phosphatase is assumed to be 

regulating the ATP biosysnthesis. 

The superoxide dismutase SodA (sce0071) is serine phosphorylated in So ce56, 

whereas the SodB (sce4167) is assumed to be phosphorylated on serine and 

tyrosine sites. In Listeria monocytogenes, a facultative intracellular pathogen causing 

severe food-borne disease in humans and animals, the manganese-superoxide 

dismutase (MnSOD) is phosphorylated on serine/threonine residues during stationary 

phase down-regulating the activity. In contrast, the nonphosphorylated form of 

MnSOD is highly active secreted via the Sec-pathway. This post-translational 

modification plays a critical role in intracellular survival in macrophages and is 

required for full virulence of L. monocytogenes (Archambaud et al., 2006). 

It is striking that many reported phosphorylations of specific proteins are mainly used 

for pathogenicity or still not investigated in prokaryotes. Sorangium is regarded as 

non-pathogenic, thus, these informations can only give assumptions to the putative 

roles of some of the listed phosporylated proteins identified in So ce56 (Tab. 10). In 

addition, numerous enzymes in So ce56 were phosphorylated on tyrosine and serine 

residues, indicating that these phosphoproteins have multiple phosphorylation sites 

(Roach, 1991). The neural network Netphospho 2.0 (Blom et al., 1999; 

www.expasy.ch) predicted that these proteins contain a serine and a tyrosine site, 

which supports the assumption of multiple phosphorylation sites. The differences in 

spot intensity between the tyrosine and serine blots might also reflect the changing 

signal intensity between tyrosine and serine phosphorylation in the myxobacterial 

cell. Putatively two different kinases (serine and tyrosine kinases) are involved in this 

regulation process cooperating possibly together as a complex in So ce56 (Gompert 

et al., 2004). Nariya and Inouye (2005) described a complex of serine/threonine 

kinase network in M. xanthus that share common modulating factors, the multi-kinase 

associated proteins (Mkaps) for signal transduction required for fruiting body 

formation. 
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5.1.6 The analysis of So ce56 cytosolic proteins by Blue-Native PAGE 
led to the detection of enzymes involved in the primary and 
secondary metabolic pathways 

A 2-D Blue-Native/SDS-PAGE was used to analyze protein complexes of the 

cytosolic fraction in So ce56 in order to elucidate their putative functional role in 

myxobacteria. The main focus was to detect the large polyketide synthases, which 

are responsible for synthesis of secondary metabolites. In this method, Coomassie 

Blue G-250 is added to the solubilized proteins introducing a negative charge-shift 

that enhances the migration of the proteins in a gradient native gel system without 

dissociating them according to their size and shape (Schägger & Jagow, 1991). The 

so resolved protein complexes were further separated in a second dimension (SDS-

PAGE) after soaking the gel in denaturing SDS buffer. MALDI-TO-MS analysis of the 

proteins from the BN gel lead to the identification of additionally 14 different cytosolic 

proteins (in total 32 proteins were identified) additionally coming to the already 

described 115 identified proteins of the cytosolic proteome. The majority of identified 

proteins are involved in the lipid, carbon and amino acid metabolism. These findings 

are coincident with the results of the proteome map, where the majority of detected 

proteins can be assigned to the primary metabolism. One protein of the chivosazol 

secondary metabolic pathway was identified in the second dimension of the BN gel, 

the polyketide synthase ChiF (sce4133). It can be expected that further chivosazol 

PKSs of the multienzyme complex appeared in this gel, but the MALDI-TOF-MS 

analysis revealed no other corresponding enzymes. Rather components of the fatty 

acid metabolism complex/group could be detected like 3-hydroxybutyryl-CoA 

dehydratase (sce0250). It is not clear, if these enzymes (sce1166; sce3575), are also 

involved in the secondary metabolism providing substrates (e.g. CoA) required for 

polyketide biosynthesis. 

Moreover, large proteins like the putative serine/threonine kinase two component 

sensor domain (sce5838), which reveals a molecular mass of 201 kDa, could be 

detected with this BN method. Presumably, the serine/threonine kinase is combined 

with the two component signaling system to achieve fine-tune regulation of central 

signaling events described in Lux & Shi (2005). 
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The heat shock protein GroEL requires for proper folding the help of the co-

chaperonine GroES (Rye et al., 1999). As the GroEL complex is composed of 

fourteen identical 60 kDa subunits arranged in two stacked rings, and GroES of 

seven identical 10 kDa subunits, therefore it is not unusual to find in the BN-analysis 

of So ce56 GroEL subunits (sce5911). 

The membrane-bound succinate dehydrogenase (sce6554) was also found in the 

cytosolic fraction of So ce56, which is involved in the TCA cycle transferring electrons 

from succinate to ubiquinone during respiration (Fuchs, 2007). Succinate 

dehydrogenase forms a complex (II) with four so far known subunits: the flavoprotein 

subunit, the iron-sulfur subunit, subunit III and subunit IV (Eubel et al., 2003; 

Yankovskaya et al., 2003). It is assumed that the flavoprotein subunit (70 kDa) was 

detected, but the other three smaller subunits could not be identified. As the Blue-

Native method is applied for the first time on myxobacteria, these results gave 

primary impressions of So ce56 protein:protein interactions. 

5.2 The identification of exoenzymes achieved by proteomic 
analysis of the secretome of So ce56 

The analysis of the extracellular proteins of So ce56 from the cell culture supernatant 

was carried out to find proteins or enzymes involved in (i) polymer degradation, (ii) 

protection against enemies in soil and (iii) protein signaling functions. 

The identification of a cellulase in the extracellular fraction (sce8953) is interesting, 

due to the fact that So ce56 was cultivated in S-medium with glucose and harvested 

in the early stationary phase without exposure to cellulose supplements. This 

phenomenon could be explained by the fact that Sorangium cells start to produce 

these exoenzymes in the early stationary phase when glucose is nearly depleted to 

mobilize the reserves avoiding starvation. It is supposed that the depletion of readily 

metabolisable glucose monomers in the medium induces the production and release 

of extracellular enzymes to hydrolyse organic polymers like cellulose into monomeric 

substrates (glucose) (Ali & Sayed, 1992). Low concentrations of glucose might act as 

inducers for cellulase synthesis. For example, the cellulose degrading actinomycete 

Thermomonosporata curvata and the fungi Aspergillus terreus might be controlling 

their cellulase biosynthesis via this catabolite repression system (Fennington et al., 
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1984). Other putatively secreted proteins identified from the extracellular fraction 

might have proteolytic activities like the putative peptidase (sce4529) and the 

exoprotease (sce3910). These enzymes probably hydrolyze nutritional polymers to 

protect Sorangium from probable competitors or to provide themselves with 

substrates (Müller & Gerth, 2006). The PRIAM enzyme database classified the 

sce3910 enzyme as xanthomonalisin, which is normally secreted by Xanthomonas 

sp. for the degradation of casein. It is assumed that this exoprotease also belongs to 

the peptidase family S53, which might have a proteolytic activity. Five putative 

extracellular proteins are predicted as exported or secreted (sce8614; sce2969; 

sce0172; sce7128; sce3202), but they have no concrete functional categories. The 

twin-arginine motif of the putative secreted protein sce8614 indicates that this protein 

may be transported in a folded state over the twin-arginine translocation pathway 

(Tat-pathway). It is assumed that some of them might be involved in enzymatically 

activities or have signaling functions outside the cell. The identified and putatively 

secreted protein sce4161 shows sequence similarities to the secreted VasA-L protein 

encoded by the vas gene (virulence-associated secretion) of Vibrio cholerae (TC 

database query). The VasA-L is transported via the “type VI” secretion system, as it 

is distinct from the secretion systems type III and type IV (Pukatzki et al., 2006). This 

new system does not require the presence of a hydrophobic N-terminal signal 

sequence for secretion into the extracellular medium, and possibly into eukaryotic 

cells. Many Gram-negative bacteria seem to have homologous genes to these vas 

genes and potential effector proteins secreted by this pathway, such as hemolysin-

coregulated protein (Pukatzki et al., 2006). However, the function of sce4161 in So 

ce56 is still unclear. Maybe it is used for defence against enemies or competitors in 

the soil. Moreover, this example explains why so many proteins of So ce56 are 

secreted without having a signal P in their N-terminus.  

Furthermore, a putative UDP-glucuronosyltransferase (sce3098) was reported in the 

extracellular proteome of So ce56, which might be involved in the teichoic acid 

biosynthesis (Ginsberg et al., 2006) or in the changing of polyketide activity in the 

bacterial cell (Bode & Müller, 2007). BLASTP information reveals a significant identity 

of 57% to a putative teichoic acid biosynthesis related protein from the Gram-

negative myxobacterium Stigmatella aurantiaca. Interestingly, teichoic acid normally 

occurs in Gram-positive bacteria (Ginsberg et al., 2006). Another possible functional 

role of this putative UDP-glucuronosyltransferase could be the probable self-
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resistance mechanism of macrolide-producing organisms. This was observed in the 

actinomycete Streptomyces antibioticus, where glycosylation of a hydroxyl group 

using UDP-glucose as cofactor inactivates the macrolide oleandomycin (Hernandez 

et al., 1993). The conversion of the inactive oleandomycin into an active antibiotic 

was carried out by a glycosidase outside the cell (Quiros et al., 1998, 2000). But 

glycosylation of a natural compound means not always inactivating of antibiotic 

effects. It is also possible that some secondary metabolites gain changed specifities 

after glycosylation (Bode & Müller, 2007). In contrast, the glycosides chivosazoles A - 

E have the same antibiotic and cytotoxic activity as the aglycon chivosazol F shown 

in figure 36 (Jansen et al., 1997; Perlova et al., 2006), i.e. in this case no changes 

could be detected after glycolysation with a putative glycosyltransferase. 

Fig. 36: The chemical structure of chivosazoles A – F (Irschik et al., 1995; Jansen et al., 1997; Perlova 
et al., 2006). 

A high number of proteins (22%) from the inner membrane, outer membrane and 

from the periplasm designated to the group “membrane/periplasmic proteins” were 

detected in the extracellular fraction. It raises the question, how these proteins get 

into the outside of the cell. Unfortunately, no detailed information for comparison 
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about further transport processes, signaling and motility from Sorangium cellulosum 

are available so far, since many experiments and results derived from the bacteria 

preying Myxococcus xanthus (Nicaud et al., 1984; Yang et al., 1998; Kaiser, 2004; 

Kimura et al., 2006). Even though there are many homologous expressed proteins 

between these two strains, many proteins remained undefined or poorly defined in 

So ce56 (Schneiker et al., 2007). 

The membrane and membrane-associated proteins were analyzed by the TC 

database query to find possible transport proteins or structures, which might be 

involved in transport processes. This database search resulted in the identification of 

two putative ABC transporters: a cyanate or an aromatic sulfonate porter (sce5488) 

and an aromatic sulfonate porter (sce1321). ABC transport proteins are mainly 

located in the inner membrane, but periplasmic components of the ABC transporter 

were translocated through the cytoplasmic membrane. As the putative ABC 

transporter sce1321 contains a signal sequence with a twin-arginine motif, it is 

assumed that this protein might be translocated in a folded state by the Tat-signaling 

pathway. Further periplasmic components, which are transported via this system, are 

the putative hydrogen/potassium exchanging ATPase (sce5843) and the putative 

phosphohydrolase (sce0969). It is assumed that not a whole ABC and ATPase 

complex will be transported to the periplasmic side, but periplasmic components of 

these proteins complexes. The putative periplasmic superoxide dismutase SodC 

(sce8431) protects the cell from incoming radicals and is putatively transported by 

the sec-translocation system. Two putative lipoproteins with signal sequences 

(sce5067, sce4343) were recognized by the DOPOL database. It is not clear, how 

these proteins are translocated outside the cell and above all, what might be their 

functions. It is possible that these lipoproteins might be involved in sensory signaling 

systems (Sutcliffe & Russell, 1995). Three proteins, the chaperone protein DnaK 

(Hsp70) (sce9025), the chloroplast GrpE protein (sce0004) and the probable DnaJ 

molecular chaperone (0617) were identified and also detected in the TC database as 

transport proteins. The Hsp70 in E.coli and its co-chaperones (DnaJ and GrpE) are 

involved in several cellular processes including folding accompanying protein 

synthesis, remodeling of protein complexes (Liberek et al., 1988), regulation of the 

heat shock response and also translocation through membranes (Arispe & De Maio, 

2000; Zietkiewicz et al., 2006). As heat shock proteins are highly conserved families, 

it is also expected that these proteins have the same functions in So ce56 (Fenton & 
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Horwich, 1997). A large number of identified proteins, which also occur in the 

extracellular fraction, were proteins involved in metabolic pathways (e.g. glycolysis), 

or interaction with DNA. These proteins should be normally located in the cytoplasm 

or associated to the cytoplasmic membrane. Secretome approaches of Xanthomonas 

campestris (Watt et al., 2005) and Bacillus subtilis (Tjalsma et al., 2004) showed that 

the secretion of cytoplasmic proteins, e.g., enolase (sce7698), is not very unusual. 

Extracellular enolase of numerous bacterial and fungal pathogens has a plasmin 

(ogen) binding function (e.g. Streptococcus pneumoniae), but the role for non-

pathogenic organisms like So ce56 are still not determined (Bergmann et al., 2003). 

The transport of enolase might be carried out via the type I secretion system, which 

implies an ABC transporter and an outer membrane porin, such as TolC (Boël et al., 

2003) as no specific export signalings in enolase exist. 

5.3 Comprehensive proteomic analysis of membrane proteins 
yields the detection of a high number of transport proteins in 
So ce56 

The envelope of Sorangium cellulosum So ce56 consists, like other Gram-negative 

bacteria, of two distinct lipid bilayers, the inner membrane (IM) and the outer 

membrane (OM), separated by a dynamic aqueous peptidoglycan-containing 

periplasm (Duong et al., 1997). Proteomic analyzes of the myxobacterium 

Myxococcus xanthus resulted in the identification of membrane proteins involved in 

social gliding motility (Kaiser, 2000; Simunovic et al., 2003), cell-cell signalling 

(Kaiser, 1998) and polyketide biosynthesis (Rosenberg & Dworkin, 1996).  

5.3.1 Identification of membrane proteins participating in transport 
processes are located mainly in the inner membrane 

Thus, it is much likely that So ce56 also shows this typical myxobacterial membrane 

proteome. The combination of membrane isolation techniques, SDS-PAGE and 

nanoLC-ESI-MS/MS proved to be a powerful tool to analyze membrane proteins (Wu 

et al., 2003). Mass spectra analyzes of the membrane protein fraction resulted in the 

detection of 66 different proteins revealing a high number of membrane and 

membrane associated proteins in So ce56 (Tab. 13). 
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The majority of the identified membrane proteins belong to different transport 

systems. Some identified proteins are probably localized in the inner membrane and 

periplasm using ATP hydrolysis for substrate translocation or providing the cell with 

ATP via H+-transporting, e.g. ABC transport systems (sce7548) and H+-transporting 

two-sector ATPases (sce4444; sce9361), respectively (Schneider & Hunke, 1998; 

Yuriy, 2005)). The ATPase uses the ion flow to catalyze the reaction ADP + Pi → 

ATP. Further enzymes integrated in the cytoplasmic membrane such as the putative 

NADH dehydrogenase (sce0528) and the putative molybdopterin oxidoreductase 

(sce7585) are involved in the electron transfer system during bacterial respiration to 

transfer electrons from the substrates to oxygen. Three identified proteins assumed 

to be integrated in the OM, like the maltoporin (sce7619) the outer membrane protein 

(sce5128) and the efflux transporter (sce8709), which mediates the export of heavy 

metal cations (cobalt, zinc, cadmium) and probably function in conjunction with a 

primary cytoplasmic membrane transporter (e.g. ABC transporter or RND 

superfamily). Efflux proteins are mainly responsible for the extrusion of toxic 

substances, e.g., detergents, antibiotics or heavy metals as mentioned before (Poole, 

2004). Another two identified efflux pumps belong to the drug resistance-nodulation-

division (RND) family transport system (sce2988; sce1628). The RND proteins need 

three components for antibiotic translocation including a periplasmic membrane 

fusion protein and an outer membrane protein, e.g. in E. coli the AcrBA - TolC 

system (Klebba, 2005; Nikaido, 1996). The detection of these proteins might explain 

the high resistance of So ce56 towards kanamycin, as sce1628 putatively exports 

this antibiotic and various other antibiotics (e.g. nalidixic acid, norfloxacin) (Tab.19). 

Another possible function of the putative RND efflux proteins in So ce56 might be the 

export of self-produced secondary metabolites that have an antimicrobial activity 

directed against competitors. For example Mycobacterium tuberculosis probably 

uses the drug-proton antiporter RND transporter (MmpL7) to excrete the polyketide 

phthiocerol dimycocerosate (PDIM) for infection processes (Jain & Cox, 2005). The 

authors propose that the RND transporter MmpL7 interacts with the PDIM synthetic 

machinery to form a complex that coordinately synthesize and translocate PDIM 

somehow across the cell membrane. The investigation of Myxococcus xanthus 

DK1622 membrane proteins lead to the discovery of a Ta-1 PKS, which is assumed 

to be membrane-associated and facilitates the safe export of the final product 

(Simunovic et al., 2003). The PKS Ta-1 is involved in the production of myxovirescin 
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A, which inhibits the peptidoglycan synthesis of Gram-negative cells (Rosenberg & 

Dworkin, 1996). It is proposed that So ce56 could secrete the self-produced 

secondary metabolites via a similar transport mechanism connecting the PKS 

biosynthesis machinery with a transport protein. 

The putative MglA protein (sce7249) found in the membrane fraction of So ce56 

might be involved in the adventurous or social gliding motility and is containing a 

Ras-like GTPase active site, which has a high similarity to the MglA proteins of the 

myxobacterial strains Myxococcus xanthus and Aneromyxobacter dehalogenans (> 

80%). This protein is involved in fruiting body formation and sporulation showed in 

the experiment of Zirkle et al. (2004), who created the first mglA mutant in a 

Sorangium strain (So ce26) exhibiting similar non-swarming defects like in M. 

xanthus, presumably due to their inability to conduct developmental signals, like the 

C-signal (Spormann, 1999). Genome predictions reveal a putative mglB gene located 

close to the mglA gene of S. cellulosum, which encodes a putative MglB protein 

(sce7248) with a probable Ca2+ binding motif (Womack et al., 1989). Another 

identified protein (sce5071) from the membrane fraction might be a putative 

biopolymer transport protein (TolQ). Youderian et al. (2003) defined 30 new genes in 

M. xanthus required for A-motility, whereby six of the genes encode different 

homologues of the TolR, TolB and TolQ transport proteins, suggesting that 

adventurous motility is dependent on biopolymer transport. As no detailed 

investigations have been carried out in So ce56 about gliding motility proteins, it is 

assumed that So ce56 might also use these transport proteins, consistent with a 

model in which A motility is powered by the secretion of polyelectrolyte (Wolgemuth 

et al., 2002). Another subset of genes that may encode structural components of a 

secretory apparatus involved in A motility includes those encoding proteins with TPR 

motifs. The putative AgmK proteins (sce0252, sce2921 and sce2920) found in So 

ce56, contain TPR motifs and might interact with proteins that form a β-propeller 

structure such as that predicted for the WD-repeat proteins AglU (TolB homologue 1) 

and AglW (TolB homologue 2) described for M. xanthus (White & Hartzell, 2000; 

Youderian et al., 2003). 
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5.3.1.1 Blue-Native PAGE of membrane proteins led to the identification of 
metabolic enzymes and transport proteins attached to the membrane 

In this approach hydrophobic membrane protein complexes in So ce56 were 

investigated with the Blue-Native PAGE method in order to find membrane-

associated proteins involved in transport processes or in diverse metabolic pathways. 

As described in 6.1.6 many detected proteins belong to the protein complex of fatty 

acid oxidation in So ce56 (e.g. sce7555; 7905). Therefore, it is not clear, if these 

enzymes occur in the cytoplasm or in the inner membrane of So ce56 or act in both 

compartments. The identified cyclopropane-fatty-acyl phospholipid synthase 

(sce2529), which is associated to the cytoplasmic membrane, catalyzes the 

modification of the acyl chains of phospholipid bilayers through methylation (S-

adenosylmethionine (SAM)) of unsaturated fatty acyl chains to their cyclopropane 

derivatives (Taylor & Cronan, 1979) for the cell wall biogenesis. For example, in E. 

coli this modification plays an important role in resistance to acidic conditions 

(Cronan, 2002). Furthermore, the detection of the Na+/ H+ antiporter (sce3269) 

located in the inner membrane playing a central role in the internal pH homeostasis 

and in the extrusion of Na+, which is toxic at high concentrations (Hunte et al., 2005; 

Padan et al., 2004). Hayes et al. (2006) reported that E. coli upregulates the 

expression of Na+/ H+ antiporter and the cyclopropane-fatty-acyl phospholipid 

synthase, thus preparing the cell to survive future exposure to more extreme pH 

conditions. Therefore, it is possible that So ce56 also activates this resistance 

machinery towards stressing pH decreasion in the medium. 

The detection of a cytochrome P450 (sce2191), which might be involved in the 

secondary metabolite production leads to the conclusion that BN-PAGE is a good 

method to analyze enzymes of the secondary biosynthesis. Maybe it requires further 

methods or higher protein concentrations for the detection of more polyketide 

synthases or proteins involved in the secondary metabolism. The active site of the 

membrane-attached microsomal P450 oxidizes hydrophobic compounds, which are 

dissolved in the membrane and could enter the P450 acces channel directly from the 

membrane (Peterson &Graham-Lorence, 1995). 

Striking is also the identification of many proteins involved in the translation process, 

in particular the ribosomal proteins (sce7953; sce7939; sce7958). These proteins are 
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major components of polyribosomes. The membrane extraction method supposed to 

solubilize also ribosomal complexes putatively located in the cytosol.  

5.3.2 Many outer membrane receptor proteins and transport proteins are 
found in the outer membrane protein analysis of So ce56 

The analysis of the outer membrane proteins were carried out to find transport 

proteins and cell surface structures integrated in the outer membrane for the social 

gliding motility (type IV pili or fibrils) as described in 2.3.1. From the 35 identified 

proteins, two putative OMP β-barrel autotransport proteins (sce1186; sce7537) 

involved in translocation processes of So ce56 were detected. Autotransport proteins 

use sec-dependent type V secretion systems, where proteins mediate their own 

translocation across the outer membrane by forming a pore structure. This system 

was first described for the protease IgA1 from Neisseria gonorrhoeae, which destroys 

human immunoglobulin A1 (IgA1) (Pohlner et al., 1987). The autotransport protein 

contains an N-teminal signal peptide responsible for the translocation from the inner 

membrane to the periplasm. The next domain is the functional N-passenger domain, 

which could be exposed to the cell-surface or released into the extracellular milieu. 

These domains might obtain enzymatic activities (like the IgA1 protease), adhesion 

functions, actin-promoted motility or cytotoxic effects (Yen et al., 2002). Finally, the 

C-terminal domain of autotransporters is predicted to consist of β-pleated sheets in 

the form of a β-barrel, which is inserted into the outer membrane to export the rest of 

the peptide (Desvaux et al., 2004; Henderson et al., 2004). This might explain the 

occurrence of the OMP β-barrel proteins in the outer membrane fraction of So ce56. 

They could be probably involved in the autotransport processes of cell-surface 

motility proteins of So ce56. A putative identified pilus assembly protein (sce0254) 

might be involved in the type IV pilus biogenesis, which is possibly translocated at 

the cell surface. 

Porins like the putative maltoporin (sce7619) or the putative phosphate selective 

porin (sce7966) are responsible for the uptake of soluble substrates from the 

medium, whereas a probable outer membrane efflux protein (sce3619) was 

determined for the extrusion. Three probable TonB dependent receptors were 

identified for the import of ferric-siderophore complexes. One of them (sce4255) 

might be involved in cellular adhesion reactions during fruiting body formation or in 
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the adventurous gliding motility system (Youderian et al., 2003). DOPOL database 

search lead to the identification of two putative lipoproteins, the sce2691 and the 

sce4176, the latter is a protein kinase transported by the Tat-signaling pathway. 

Strikingly, a putative ABC-type xylose transport system (sce6008) was identified. As 

the medium contains only glucose as sole carbon source and xylose, which is a 

predominant pentose in hemicellulose, is not supplemented. Glucose and xylose are 

the dominant monosaccharides in plant material decayed from this soil-living 

bacterium. It is possible that the enzymes for xylose uptake and turnover are 

constantly present in the cell or that they are produced during the depletion of an 

alternate sugar source (glucose). 

Surprising is also the identification of proteins involved in secondary metabolite 

production in the outer membrane fraction since no secretion signal could be 

detected. Due to their resemblance to the fatty acid biosynthesis, it can be assumed 

that these PKSs mainly appear in the cytosol. The identified putative type I PKS is 

encoded by the chiF gene (sce4133), belonging to the charcterized chivosazol 

biosynthetic gene cluster in So ce56 (Perlova et al., 2006). The PKS ChiF contains a 

C-terminal thioesterase domain and it is assumed that the chiF is the last gene in the 

core biosynthetic gene cluster probably responsible for the release and concomitant 

cyclization of the fully processed polyketide chain (Perlova et al., 2006).  

A putative 390 kDa polyketide synthase (sce3190) could be identified, which has 

similarities to a putative polyketide synthase pksM (sce_20050509_9622, identity 

58%). In other experiments, the putative PKS sce3190 was isolated from the 

extracellular fraction revealing a MOWSE score of 66% and sequence coverage of 

8% (data not shown). Interestingly, membrane proteome analysis of the 

micropredatory model strain Myxococcus xanthus DK1622 lead to the discovery of a 

PKS which might be membrane-associated probably facilitating the safe export of the 

final product myxovirescin A (Simunovic et al., 2003). It is assumed that the PKSs 

sce3190 and sce4133 of So ce56 might be located at the membrane to carry out 

membrane-associated functions.  

The biochemical function of sce3190 is still unknown. The genome annotation of So 

ce56 reveals that this putative protein/enzyme is an etnangien PKS (Schneiker et al., 

2007). The characteristic domains and modules of this PKS are still not available.  
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5.3.3 BLASTP comparisons of So ce56 protein sequences lead to the 
detection of further putative genes, which might be involved in the 
jerangolid/ambruticin biosynthesis 

The identification of a putative sensor histidine kinase in So ce56 reveals an identity 

of 85% to the putative sensor kinase Jer3 and an identity of 81% to the putative 

sensor kinase Amb3, which is encoded by the jerangolid or ambruticin biosynthetic 

gene cluster, respectively (Julien et al., 2006). This lead to the assumption that 

further proteins of the characterized jerangolid/ ambruticin biosynthetic gene clusters 

exist in Sorangium cellulosum So ce56. The NCBI protein BLAST screenings expose 

more proteins in So ce56 which have a high identity to the proteins of the jerangolid/ 

ambruticin secondary metabolite clusters that occur near the identified sensor kinase. 

The discovery of a putative new secondary metabolite biosynthetic gene cluster in 

Sorangium cellulosum So ce56 would help further investigations to reveal this PKS 

secret. 

Ambruticin and jerangolid are structurally related with similar antifungal activity and 

cluster organization, many proteins of So ce56 show a high identity to genes of both 

compounds: a putative LysR-family transcriptional regulator (sce7797) similar to 

Jer1/ Amb1 with an identity of 84%/ 85%, respectively; a sensor histidine kinase 

(sce7799) identical to Jer3/ Amb3 (85%/ 81%); a sigma-54 dependent response 

regulator (sce7800) identical to Jer4/ Amb4 (92%/ 93%); a sensor histidine kinase 

(sce7107) identical to Jer5/ Amb5 (73%/ 72%); a conserved hypothetical protein 

(sce7805) identical to Jer6/ Amb6 (95%/ 95%); a two-component hybrid sensor and 

regulator (sce7807) identical to Jer7/ Amb7 (62%/ 62%). Only a few proteins of the 

ambruticin and jerangolid gene cluster are not related to each other, but nevertheless 

they occur with a high homology in the genome sequence of So ce56: a hypothetical 

protein (sce7798) with 80% identity to Jer2; a putative regulatory protein (sce7810) 

showing 75% identity to Amb8 and a putative xenobiotic reductase (sce7811) with 

84% identity to Amb9. Moreover, three putative genes encoding hypothetical proteins 

without any assignation to a functional group reveal a high identity to genes 

discovered near the putative jerangolid/ ambruticin biosynthetic gene cluster in the  

So ce56 genome sequence: sce7795 (88% identity); sce7796 (64% identity) and 
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sce7812 (87% identity). The putative thioesterase sce0390 of So ce56 has a 40% 

similarity to the PKS JerE, which also contains a thioesterase for the release of the 

secondary metabolite product. 

5.3.4 The electron microscope detection of outer membrane vesicles 
and the proteome analysis of outer membrane vesicle proteins 
indicate vesicles as a new transport system in So ce56 

A large number of Gram-negative bacteria naturally produce spherical bilayered 

outer membrane vesicles (OMVs). Here, such structures could also be identified for 

So ce56 via electron micrograph measurements (Fig. 29). MALDI-TOF-MS analysis 

of the OMV proteins lead to the identification of putative outer membrane 

components probably enclosed during OMV formation (Mashburn-Warren & 

Whiteley, 2006). Putative porins (sce7619; sce7966) and putative outer membrane 

lipoproteins (sce5067) are normally integrated into the outer membrane. It is possible 

that not only outer membrane proteins were entrapped within these vesicles but also 

periplasmic proteins like the putatively predicted phosphatase (sce0936) and 

degradative enzymes such as the putative Clp protease (sce7556). Outer membrane 

vesicles were used mainly from pathogens to transport virulence factors to the host 

(Kuehn & Kesty, 2005). The pathogen Pseudomonas aeruginosa uses OMVs to 

export enzymes like alkaline phosphatase, phospholipase C, proelastase, protease 

and peptidoglycan hydrolase, where several of these components act as virulence or 

lytic factors (Li et al., 1998; Beveridge et al., 1997, 1999). Furthermore, the release of 

a cytolysin A (ClyA) protein from Escherichia coli was also mediated by outer 

membrane vesicle. This cytotoxic protein is translocated without cleavage of any 

signal sequence to affect eukaryotic cells (Wai et al., 2003). Kadurugamuwa and 

Beveridge (1998) developed a model test to deliver the non-membrane-permeative 

antibiotic gentamycin via OMVs of Shigella flexneri into mammalian cells. These 

examples indicate that the OMVs in So ce56 might be a new transport system for 

exoenzymes, secondary metabolites or maybe for signaling proteins, which are 

secreted to degrade nutritional polymers, protect them from competitors in soil 

(Reichenbach & Dworkin, 1992) or to communicate (Kaiser, 2004). 
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5.4 Summary of the discussion 

The aim of this work was the establishment of a proteomic map of Sorangium 

cellulosum So ce56 encompassing cytosolic, membrane, outer membrane and 

extracellular proteins. The annotated genome sequences (Schneiker et al., 2007) 

could be verified and complemented at the proteome level. The extensive proteomic 

analyzes led to the identification of 247 unique proteins (Tab. 22), which are mainly 

involved in primary metabolism (e.g. carbon, amino acid and lipid metabolism). 

Nearly all enzymes of the central metabolic pathways, like glycolysis and the TCA 

cycle could be identified with these approaches. Moreover, the detection of proteins 

involved in the fatty acid degradation, histidine metabolism, valine, isoleucine and 

leucine biosynthesis reveals that these pathways and their intermediates were mainly 

required to support the central metabolic processes. Additionally, the membrane 

protein analyzes reveal that So ce56 uses different transport systems to maintain the 

metabolic pathways. Identifications of proteins involved in fruiting body formation, 

gliding motility and secondary metabolisms were underrepresented in the proteome 

analyzes. Reasons therefore could be the major use of one growth phase (early 

stationary phase) and the defined growth medium. The genome sequence of So 

ce56 reveals a high number of potential proteins, which might be expressed under 

natural conditions, but not under the chosen in vitro conditions. Therefore it would be 

interesting and necessary to make proteome approaches under different conditions. 

However, a basis for further proteomic approaches was achieved with this study.
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Appendix 

Tab. 8: The identified proteins of the cytoplasmic fraction and the Differential Gel Electrophoresis of 
Sorangium cellulosum So ce56 were categorized according to their Clusters of Orthologous 
Groups of proteins (COG) classification scheme. The numeration corresponds to the protein 
spot numbers in Figure 17 and 19. Also given are the accession numbers and the functions 
of the identified proteins from the So ce56 database (GenDB), the observed and theoretical 
Mr and pI values, the sequence coverage and the MOWSE score. 

Spot  Protein (Accession)  MW(calc/gel) pI(calc/gel) Score Coverage 

Lipid transport and metabolism (I): 
7; 80-82 Acyl-CoA dehydrogenase 41728 / 41000  6 / 6.9  92 18 
  (EC 1.3.99.3)   
  sce2853 
12; 36; 37 Butyryl-CoA dehydrogenase 67254 / 68000 5.87 / 5.5 94 17 
  (EC 1.3.99.2) 
  sce3575 
71  Acetyl CoA   40727 / 40000 9.03 / 9.1 102 18 
  C-acyltransferaseTMH 
  Thiolase 
  (EC 2.3.1.9) 
  sce7554 
84  Butyryl-CoA dehydrogenase 42149 / 42000 5.4 / 6.2 76 14 
  (EC 1.3.99.2) 
  sce1166 
115; 143 3-hydroxybutyryl-CoA  28510 / 23000 6.19 / 7.1 127 31 
  dehydratase  
  (EC 4.2.1.55) and 
  Enoyl-CoA dehydratase 
  (EC 4.2.1.17) 
  sce0250 
138  3-oxoid CoA-transferase  23335 / 22000 4.7 / 5.1 84 30 
  subunit B  
  (EC 2.8.3.5) 
  sce5785 

Carbohydrate transport and metabolism (G): 
32; 33  Pyruvate kinase 1  50721 / 52000 6.29 / 7.2 138 28 
  (EC 2.7.1.40)    
  sce4540 
27  Transketolase    71063 / 69000 6.22 / 7.2 128 9  
  (EC 2.2.1.1)  
  sce3987  
26  4-alpha-glucanotransferase  73407 / 75000 6.31 / 7  134 16 
  homolog  
  (EC 2.4.1.25) 
  sce0351 
34  Glucose-6-phosphate   58980 / 57000 5.97 / 6.9 135 20 
  isomerase  
  (EC 5.3.1.9) 
  sce5669 
35  Phosphoglycerate mutase 59882 / 59000 5.94 / 6.8 125 20 
  (EC 5.4.2.1)  
  sce4502 



  Appendix 

  116 

13  Phosphomannomutase  63114 / 63000 4.83 / 5.4 59 6 
  (EC 5.4.2.8)  
  sce4837 
50-57; 125 Phosphopyruvate hydratase 45912 / 45000 5.14 / 5.6 204 34 
  Enolase  
  (EC 4.2.1.11) 
  sce7698 
59  Phosphoglycerate kinase 43679 / 43000 5.55 / 5.4 89 21 
  (EC 2.7.2.3)    
  sce7349 
60; 61  Xylose isomerase  49930 / 48000 5.8 / 6.6 165 59 
  (EC 5.3.1.5)   
  sce5429     
70  6-Phosphofructokinase  44256 / 42000 8.98 / 9.5 78 12 
  (EC 2.7.1.11)  
  sce3426 
73; 74  Glyceraldehyde-3-phosphate 36939 / 36000 7.71 / 8.1 100 29  
  dehydrogenase  
  (EC 1.2.1.12) 
  sce7350 
76  Fructose-bisphosphate  39122 / 39000 6.46 / 7.5 67 24 
  aldolase   
  (EC 4.1.2.13) 
  sce1923 
127  Triose-phosphate isomerase 28490 / 25000 4.74 / 5.4 112 43 
  (EC 5.3.1.1) 
  sce7348 

Energy production and conversion (C): 
99  Alcohol dehydrogenase  39841 / 38000 6.16 / 6.9 67 15 
  (EC 1.1.1.1) 
  sce3952 
101  Pyruvate dehydrogenase  36222 / 39000 5.82 / 6.5 105 25 
  (EC 1.2.4.1) 
  sce3800 
121  Pyruvate dehyrogenase  35930 / 35000 5.2 / 5.9 112 32 
  (acetyl-transferring) 
  (EC 1.2.4.1) 
  sce3801 
106  Isocitrate dehydrogenase 40919 / 36000 9.79 / 7.4 92 18 
  (EC 1.1.1.41) 
  sce5773 
108; 109; Lactate dehydrogenase  33184 / 33000 8.55 / 8.7 108 35 
114  (EC 1.1.1.27) 
  Malate dehydrogenase 
  (EC 1.1.1.37) 
  sce1050 
112  Succinate—CoA ligase  30013 / 25000 8.65 / 7.9 148 32 
  (ADP-forming)  
  (EC 6.2.1.5) 
  sce9141 
16; 21; 22; Aconitate hydratase  98774 / 83000 5.74 / 6.7 114 12 
122; 148 (EC 4.2.1.3) 
  sce8137 
64  Aldehyde dehydrogenase 51881 / 51000 6.52 / 7.3 83 15  
  (EC 1.2.1.3) 
  sce0676 
163  Sulfotransferase   23956 / 17000 5.22 / 5.6 87 27  
  (TC 2.A.53.9.1) 
  sce2035 
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179  Thioredoxin Thiol-disulfide 11520 / 9000 7.27 / 7.9 53 28 
  isomerase 
  (EC 5.3.4.1) 
  sce7351 
15  H+-transporting two-sector  50722 / 51500 4.88 / 5.5 70 18 
  ATPase (atpD)  
  (EC 3.6.3.14/ TC 3.A.2.1.3) 
  sce4444 
25  H+-transporting two-sector  34917 / 78000 9.37 / 6.9 62 11 
  ATPase F0F1-type (atpG) 
  (TC 3.A.2.1.1) 
  sce9360 
159  Conserved hypothetical  42072  / 21000 7.67 / 6.3 56 26 
  protein 
  Electron transport protein yjeS 
  sce4434 
168; 169 Rubrerythrin   15552 / 16000 5.37 / 6.1 116 62 
  sce1753 

Inorganic ion transport and mechanism (P): 
19; 20; 140; Superoxide dismutase sodA 22805 / 22000 6.17 / 5.9 97 32 
157; 160  (EC 1.15.1.1) 
  sce0071 
154  Superoxide dismutase sodB 21115 / 20000 6.32 / 7.5 53 17 
  (EC 1.15.1.1)  
  sce4167 
162; 170 Probable DNA-binding  17634 / 17500 5.65 / 6  105 46 
  stress protein  
  Dps family (starvation inducible) 
  sce6807 
72  Phosphate ABC transporter  38892 / 38000 8.47 / 8.4 65 20 
  PstSSignalP 
  (TC 3.A.1.7.1) 
  sce2946 

Secondary metabolites transport and metabolism (Q): 
14  ABC transporter  27561 / 56000 6.25 / 5.5 64 29 
  ATP-binding protein,  
  (TC 3.A.1.27.1) 
  sce3697 
90  Putative SAM domain protein 56275 / 37000 8.74 / 6.5 67 9 

Methyltransferase slr 0309 
  sce0689 
119  Fumarylacetoacetase   30959 / 27000 5.07 / 5.9 53 16 
  family protein 
  sce8243 

Amino acid transport and metabolism (E): 
43; 45; 46;  Glutamate-ammonia ligase 52171 / 52000 5.84 / 6.6 167 38  
67; 92; 117; (EC 6.3.1.2) 
132-135 sce7210 
44  Urocanate hydratase   60527 / 57000 5.85 / 6.6 54 16 
  (EC 4.2.1.49) 
  sce8010 
63  Argininosuccinate synthase 49631 / 50000 6.07 / 7  71 13 
  (EC 6.3.4.5) 
  sce5046 



  Appendix 

  118 

68  Glycine    45527 / 44000 7.08 / 7.9 138 21 
  hydroxymethyltransferase 
  (EC 2.1.2.1) 
  sce6587 
75; 105  Aspartate-semialdehyde 36930 / 36000 6.72 / 7.6 67 23  
  dehydrogenase  
  (EC 1.2.1.11) 
  sce5347 
18  Oligopeptidase A   76268 / 74000 5.51 / 6.3 53 9 
  Zn-dependent  
  (EC 3.4.24.70) 
  sce6973 
86  Agmatinase    43276 / 39000 6.79 / 5.6 78 18 
  (EC 3.5.3.11) 
  sce4400 
88  Histidinol-phosphate   40190 / 40000 5.58 / 6.4 65 16 
  transaminase 
  (EC 2.6.1.9) 
  sce8855 
89  3-isopropylmalate   37426 / 38000 5.7 / 6.5 112 20 
  dehydrogenase 
  (EC 1.1.1.85) 
  sce3735 
95  Agmatinase    34310 / 34000 6.03 / 6.7 72 20 
  (EC 3.5.3.11) 
  sce0044 
98  Ketol-acid reductoisomerase 36352 / 37000 6.09 / 7  134 35 
  (EC 1.1.1.86) 
  sce3732 
103  Branched-chain-amino-acid 40834 / 39000 6.21 / 7.2 88 19 
  transaminase (ilvE) 
  (EC 2.6.1.42) 
  sce6015 
113  Dihydrodipicolinate synthase 31167 / 24000 7.51 / 7.5 110 22 
  (EC 4.2.1.52) 
  sce8027 
28; 30; 31 ABC-type dipeptide transport  63508 / 60000 8.87 / 7.6 105 13 
  systemSignal P 
  (TC 3.A.1.5.6) 

sce7548 

Coenzyme transport and metabolism (H): 
107  Naphthoate synthase   33145 / 35000 6.51/ 7.5 106 29 
  Dihydroxynaphthoic acid  
  synthase 
  (EC 4.1.3.36)  
  sce5310 
152  Pyridoxine-5-phosphate  26933 / 20000 6.45 / 8.1 85 28 
  synthase, Vitamin B6 
  (EC 2.6.99.2)   
  sce5839 
153; 174 Riboflavin synthase   16258 / 18000 7.64 / 8.5 80 38 
  beta chain, Vitamin B2 
  (EC 2.5.1.9) 
  sce7268 
97  Glutathione synthase (gshB) 34950 / 35000 6.58 / 7  134 36 
  (EC 6.3.2.3) 
  sce7568 
62  Adenosylhomocysteinase 47785 / 48000 5.91 / 6.7 55 10 
  (EC 3.3.1.1) 
  sce2963 
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Nucleotide transport and metabolism (F): 
29  IMP dehydrogenase/  56506 / 58000 6.15 / 7.2 135 25 
  GMP reductase  
  (EC 1.1.1.205) 
  sce0088 
42  Dihydroorotase   46665 / 49000 5.47 / 6.4 98 22 
  (EC 3.5.2.3)  
  sce4269 
78  Ribonucleoside-diphosphate  92960 / 41000 6.95 / 7.2 84 10 

reductase 
(EC 1.17.4.1) 

  sce3875 
128  Phosphoribosylamine-glycine 45271 / 24000 6.22 / 5.5 65 14 
  ligase  
  (EC 2.7.4.6) 
  sce9014 
173  Nucleoside diphosphate  15608 / 14000 7.5 / 8.3 144 65 
  kinase  
  (EC 2.7.4.6) 
  sce2949 
66; 77  Adenylosuccinate synthase 45339 / 45000 6.29 / 7.2 87 19 
  (EC 6.3.4.4) 
  sce8895 

Posttranslational modifications (O): 
141; 144; Glutathione transferase  30236 / 22000 9.86 / 6  78 34 
165; 166 (EC 2.5.1.18)    
  sce4509 
94  Thioredoxin-disulfide   34005 / 35000 5.88 / 6.7 82 21 
  reductase 
  (EC 1.8.1.9) 
  sce7636 
8; 9; 17; Chaperone protein dnaK 68892 / 54000 5.22 / 5.4 140 24 
123; 124 (TC 1.A.33.1.2) 
  sce9025 
38-40  Heat shock protein groEL 57987 / 59000 5.45 / 6.2 131 21 
  (HSP 60 family) 
  sce5911 
131; 136 Chloroplast GrpE protein 21074 / 22000 4.82 / 5  61 16 
  (TC 3.A.8.1.1) 
  sce0004 
150; 151;  Peptidyl-prolyl cis-trans  20646 / 20000 8.81 / 9.1 171 58 
  isomerase  
158  (EC 5.2.1.8) 
  sce0374 
172  Organic hydroperoxide 14487 / 14000 7.41 / 8  87 45 
  resistance protein 
  sce0181 
182; 185 GroES-like protein (HSP 10) 10687 / 10000 5.3 / 6  95 62 
  sce5844 
137  Putative peroxiredoxin  26548 / 21000 5.62 / 4.8 52 12 
  2 family/ glutaredoxin  
  sce0905 
156  Peroxidase  
  (EC 1.11.1.7)   20612 / 20000 6.5 / 7  82 35 
   sce6959 
129  ATP-dependent protease  90380 / 23000 5.6 / 5.5 57 5 
  La (Lon) 
  (EC 3.4.21.53) 
  sce5003 
142  Endopeptidase Clp   24210 / 22000 6.4 / 6.5 123 31 
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  ATP-dependent  
  (EC 3.4.21.92) 
  sce3147 
100  Peptide methionine sulfoxide 42467 / 39000 7.64 / 6.8 157 30 
  reductaseSignal P  
  (EC 1.8.4.11) 
  sce7999 
175; 177 Heavy metal ATPase   10663 / 18500 9.42 / 9.5 112 63 
  (TC 3.A.3.6.5) 
  sce2780 

Replication (L): 
85  DNA polymerase III   39990 / 42000 5.23 / 6.1 80 16 
  β-subunit  
  (EC 2.7.7.7) 
  sce8164 

Translation (J): 
87  Elongation factor – GTPases 43373 / 39000 6.47 / 6  89 18 
  (EF-Tu)  
  (EC 3.6.5.3) 
  sce0402 

Transcription (K): 
161  Transcription elongation 17498 / 18000 5.01 / 6.4 76 32 
  factor GreA 
  sce3595 
183  Transcriptional regulator 34069 / 11000 4.75 / 5.9 57 14 
  sce6445 

Cellwall biogenesis (M): 
65  UDP-glucose   46492 / 49000 6.12 / 7  93 18 
  6-dehydrogenase  
  (EC 1.1.1.22) 
  sce2793 

Signal transduction mechanisms (T): 
110  Putative protein phosphatase 27907 / 30000 5.38 / 8.7 80 26 
  Diadenosine  
  tetraphosphatase 
  sce7256 
126  Phosphoprotein   29871 / 25000 4.4 / 4.7 82 26 
  phosphatase 
  (EC 3.1.3.16) 
  sce2784 
146; 147 FHA domain protein  38420 / 24000 8.94 / 7.6 104 19 
  sce8329 

General function prediction only (R): 
1  Secreted endonuclease/ 120231 / 90000 4.12 / 4.2 98 8 
  exonuclease/ 
  phosphatase familySignal P 
  sce0688 
2-4; 6  Hypothetical proteinSignal P 85860 / 85000 4.37 / 4.5 163 19 
  Phosphatase  
  sce0936 
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10; 11; 139 Putative secreted   68792 / 68000 4.65 / 5.4 114 23 
  proteinSignal P 
  sce4014 
41  Peptidase U62 Zn-dependent 51116 / 52000 5.52 / 6.4 112 19 
  sce6446 
49  PE-PGRS family protein 60274 / 41000 4.03 / 4.5 53 10 
  probable cell surface protein 
  sce2648 
79  Hippurate hydrolase  42318 / 42000 6.22 / 7.1 59 8 
  (EC 3.5.1.32) 
  sce8630 
91  Conserved hypothetical  36215 /36000 6.16 / 6.5 59 20 
  protein  
  sce5499 
102  Putative phosphoesterase 30420 / 40000 6.05 / 6.9 52 31 
  Phosphohydrolases 
  sce3464 
116; 118 Conserved hypothetical 30520 / 24000 5.56 / 6.3 86 28 
  protein  
  Metallo β-lactamase  
  family protein 
  sce0859 
120  SphH pore forming  31223 / 27000 5.68 / 5.6 153 40 
  hemolysin 
  (TC 1.C.67.1.1) 
  sce4785 

Function unknown (S): 
48  Icm/Dot protein  104637 / 51000  4.23 / 4 67 10 
  secretion system 
  (TC 3.A.7.9.1)  
  sce6785 
58  Conserved hypothetical  44693 / 45000 5.5 / 5.3 86 17 
  protein  
  sce0425 
155  Secreted protein Hcp  18797 / 21000 6.22 / 7.1 108 44 
  Hemolysin 
  sce4994 

No functional category (X): 
5  Hypothetical protein  183013 / 85000  4.6 / 5.3 62 5 
  ATPaseSignal P, Tat 
  sce5843  
23; 24  Hypothetical protein  10456 / 80000 10.22 / 7.4 53 6  
  Clp protease 
  sce7556 
47  Putative outer membrane  49276 / 51000 3.78 / 3.9 63 13 
  lipoproteinSignal P 
  sce5067 
83  BNR repeat domain protein 42577 / 40000 5.74 / 6.6 52 11 
  glycosyl hydrolaseTMH 
  sce7527 
93  Hypothetical protein  44631 / 25000 6.29 / 7  54 19 
  sce6147 
111; 130; Hypothetical protein  24189 / 24000 3.97 / 8.5 87 23 
164  Phycocyanin α lyase 
  sce8617 
69  Aspartate transaminase 45916 / 47000 7.71 / 8.3 131 22 
  (EC 2.6.1.1) 
  sce6239 
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96; 104  Putative nucleotide binding  33383 / 34000 6.19 / 6.9 90 17 
  protein (membrane protein)  
  SRPI protein  
  sce4642 
145; 149 Hypothetical protein  28556 / 23000 6.51/ 7.4 130 34 
  Chlorite dismutase 
  sce4838 
167  Hypothetical protein  16097 / 15000 5.05 / 5.6 45 23 
  glyoxalase family protein 
  sce3094 
171  Hypothetical protein   16074 / 14000 6.1 / 7.5 54 22 
  Secreted proteinSignal P 
  sce9092 
176  Hypothetical protein  18954 / 18500 11.41 /  9.5 52 23 
  sce0142 
178  Conserved hypothetical  10543 / 18000 9.37 / 9.8 105 67 
  protein   
  sce7128 
180; 181 Hypothetical protein  10374 / 8000 5.49 / 6.3 70 47 
  Exported protein 
  sce3202 
184  Hypothetical protein  13068 / 10000 10.2 / 5.5 62 49 

sce8445 
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Tab. 9: List of CyDye labeled identified proteins of the cytosolic fraction from So ce56. 16 proteins 
were up-regulated in the exponential and 9 proteins were up-regulated in the stationary 
phase. The spot numbers correspond to Figure 19, but following the numeration of Fig. 17 
and Tab.8. 

Spot 
No. 

Cy3TM labeled proteins from the 
exponential phase are marked with red 

arrows (red protein spots) 

Spot 
No. 

Cy5TM labeled proteins from the stationary 
phase (green protein spots, marked with 

green arrows) 
36 Butyryl-CoA dehydrogenase 

Sce3575 (I) 
71 Thiolase 

Sce7554 (I) 
27 
 

Transketolase 
Sce3987 (G) 

70 Phosphofructokinase 
Sce3426 (G) 

59 Phosphoglycerate kinase 
Sce7349 (G) 

97 Glutathione synthetase 
Sce7568 (H) 

61 Xylose isomerase 
sce5429 (G)  

72 Phosphate ABC transporter PstSSignalP 
sce2946 (P) 

76 Fructose-bisphosphate aldolase 
sce1923 (G) 

159 Conserved hypothetical protein 
Sce4434 (C) 

127 Triose-phosphate isomerase 
Sce7348 (G) 

9 Chaperone protein dnaK 
Sce9025 (O) 

183 Transcriptional regulator 
Sce6445 (K) 

2 Hypothetical protein / Phosphatase 
Sce0936 (R) 

169 Ruberythrin 
Sce1753 (C) 

155 Secreted protein Hcp  
Sce4994 (R) 

157; 
160 

Superoxide dismutase sodA 
Sce0071 (P) 

171 Hypothetical protein 
Sce9029 (X) 

154 Superoxide dismutase sodB 
Sce4167 (P) 

  

142 Endopeptidase Clp 
Sce3147 (O) 

  

165 Glutathione-S-transferase 
sce4509 (O) 

  

172 Organic hydroperoxide resistance protein 
sce0181 (O) 

  

58 Conserved hypothetical protein 
sce0425 (R) 

  

96 Putative nucleotide binding protein (membrane 
protein) SRPI protein  
sce4642 (X) 

  

11; 
139 

Putative secreted proteins 
Sce4014 (R) 
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Tab. 10: The serine and tyrosine phosphorylated proteins detected in So ce56. 23 serine 
phosphorylated proteins and 28 tyrosine phosphorylated proteins were detected (Fig. 20). 
The spot numbers were the same as given in table 8. The COG categories letters were 
given in in brackets. 

Spot 
No. Serine phosphorylated proteins Spot 

No. Tyrosine phosphorylated proteins 

59 Phosphoglycerate kinase 
sce7349 (G) 

56 Phosphopyruvate hydratase Enolase  
sce7698 (G) 

127 
 

Triose-phosphate isomerase 
sce7348 (G) 

61 Xylose isomerase 
sce5429 (G)  

95 Agmatinase 
sce0044 (E) 

68 Glycine hydroxymethyltransferase  
sce6587 (E) 

98 Ketol-acid reductoisomerase 
sce3732 (E) 

89 3-isopropylmalate dehydrogenase  
sce3735 (E) 

128 Phosphoribosylamine-glycine ligase  
sce9014 (F) 

21 Glutathione synthase (gshB) sce7568 (H) 

152 Pyridoxine-5-phosphate synthase, Vitamin B6 
sce5839 (H) 

62 Adenosylhomocysteinase 
sce2963 (H) 

94 Thioredoxin-disulfide reductase sce7636 (O) 29 IMP dehydrogenase/GMP reductase  
sce0088 (F) 

156 Peroxidase  
sce6959 (O) 

173 Nucleoside diphosphate kinase  
sce2949 (F) 

157 Superoxide dismutase sodA 
sce0071 (P) 

71 Acetyl CoA C-acyltransferaseTMH sce7554 (I) 

110 Putative protein phosphatase Diadenosine 
tetraphosphatase 
sce7256 (T) 

72 Phosphate ABC transporter PstSSignalP 
sce2946 (P) 

11 Putative secreted proteinSignal P sce4014 (R) 147 FHA domain protein 
sce8329 (T) 

  172 Organic hydroperoxide resistance protein 
sce0181 (O) 

  65 UDP-glucose 6-dehydrogenase  
sce2793 (M) 

  102 Putative phosphoesterase Phosphohydrolases 
sce3464 (R) 

  111 Hypothetical protein Phycocyanin α lyase 
sce8617 (X) 

  155 Secreted protein Hcp Hemolysin 
sce4994 (S) 

 
Phosphorylated proteins in So ce56, which have might have serine and tyrosine sites. 

32 Pyruvate kinase 1 
sce4540 (G) 

32; 
33 

Pyruvate kinase 1 
sce4540 (G) 

74 Glyceraldehyde-3-phosphate dehydrogenase  
sce7350 (G) 

74 Glyceraldehyde-3-phosphatedehydrogenase 
sce7350 (G) 

76 Fructose-bisphosphate aldolase 
sce1923 (G) 

76 Fructose-bisphosphate aldolase 
sce1923 (G) 

64 Aldehyde dehydrogenase 
sce0676 (C) 

64 Aldehyde dehydrogenase 
sce0676 (C) 

112 Succinate-CoA ligase (ADP-forming)  
sce9141 (C) 

112 Succinate-CoA ligase (ADP-forming)  
sce9141 (C) 

108; 
109; 
114 

Malate dehydrogenase 
sce1050 (C) 

108; 
109; 
114 

Malate dehydrogenase 
sce1050 (C) 

45 Glutamate-ammonia ligase 
sce7210 (E) 

45 Glutamate-ammonia ligase 
sce7210 (E) 

75 Aspartate-semialdehyde dehydrogenase  
sce5347 (E) 

75 Aspartate-semialdehyde dehydrogenase  
sce5347 (E) 

103 Branched-chain-amino-acid transaminase (ilvE)  
sce6015 (E) 

103 Branched-chain-amino-acid transaminase (ilvE)  
sce6015 (E) 

66 Adenylosuccinate synthase 
sce8895 (F) 

66 Adenylosuccinate synthase 
sce8895 (F) 

154 Superoxide dismutase sodB 
sce4167 (P) 

154 Superoxide dismutase sodB 
sce4167 (P) 

96 Putative nucleotide binding protein (membrane 
protein) SRPI protein  
sce4642 (X) 

96 Putative nucleotide binding protein (membrane 
protein) SRPI protein  
sce4642 (X) 
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Tab. 11: Blue-Native PAGE from cytosolic proteins. 5 proteins in the first dimension and 33 proteins 
of the second dimension were identified (Fig. 21). The identified of the second dimension 
were given in numbers, the identified proteins of the first dimension depicted letters. 

Spot Protein (Accession)   MW(calc) pI(calc)  Score Coverage 

Second dimension (SDS-Tricine-PAGE): 

Lipid transport and metabolism (I): 
20  Butyryl-CoA dehydrogenase 42149  5.4   74 14 
  (EC 1.3.99.2)   
  sce1166 
26  3-hydroxybutyryl-CoA  28510  6.19  119 27 
  dehydratase  
  (EC 4.2.1.55) 
  sce0250 
28  Butyryl-CoA dehydrogenase 67254  5.87  72 19  
  (EC 1.3.99.2) 
  sce3575 

Carbohydrate transport and metabolism (G): 
6  Glucose-6-phosphate   58980  5.97   60 10 
  isomerase  
  (EC 5.3.1.9) 
  sce5669 
9  Xylose isomerase  49930  5.8  165 59 
  (EC 5.3.1.5)   
  sce5429 
10; 11  Glycogen phosphorylase 97724  5.9  88 16 
  (EC 2.4.1.1) 
  sce4388 

Energy production and conversion (C): 
8  Succinate dehydrogenase 70465  8.98  74 8 
  (EC 1.3.99.1) 
  sce6554 

Amino acid transport and metabolism (E): 
2-5  Glutamate--ammonia ligase 52139  5.89  56 16 
  (EC 6.3.1.2) 
  sce7210 
13; 14  Aspartate transaminase 45916  7.71  79 23 
  (EC 2.6.1.1) 
  sce6239 
16  Aryl-alcohol dehydrogenase 49357  10.29  55 12 
  (EC 1.1.1.91) 
  sce5264 
17; 29; 30 Lactate dehydrogenase  33184  8.55   69 13 
  (EC 1.1.1.27) 
  Malate dehydrogenase 
  (EC 1.1.1.37)  
  sce1050 
18  4-aminobutyrate   51002  6.89  107 25 
  transaminase  
  (EC 2.6.1.19) 
  sce9194 
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23  Agmatinase    34310  6.03   59 21  
  (EC 3.5.3.11)   
  sce0044 

Nucleotide transport and metabolism (F): 
7  Aspartate    34648  10.07  70 15 
  carbamoyltransferase     
  (EC 2.1.3.2) 
  sce3822 

Posttranslational modifications (O): 
1  Heat shock protein groEL 57987  5.45   102 18 
  (HSP 60 family) 
  sce5911 
32  Endopeptidase Clp   24210  6.4  50 15 
  ATP-dependent  
  (EC 3.4.21.92) 
  sce3147 
Secondary metabolites transport and metabolism (Q): 
19  Polyketide synthase chiF 626946  6.17  51 7 
  (EC 2.3.1.41) 
  sce4133 

Signal transduction mechanisms (T): 
22  Serine/threonine protein 201467  6.15   
  kinase two-component sensor  
  domain (EC 2.7.11.1) 
  sce5838 

Inorganic ion transport and mechanism (P): 
33  Superoxide dismutase sodA 22805  6.17  72 16 
  (EC 1.15.1.1) 
  sce0071 

Hypothetical proteins (X/S/R): 
12  Conserved hypothetical 36931  7.62  52 8 
  protein 
  sce1792 
15  Conserved hypothetical 38447  5.34  97 25 
  protein 
  sce4374   
21  Hypothetical protein  21255  10.26  48 26 
  sce0278 
24  Conserved hypothetical 30520  5.56  61 18 
  protein 
  sce0859 
27  Hypothetical proteinSignalP, Tat 85810  4.66  62 9 
  Phosphatase 
  sce0936 
 

First dimension (BN-PAGE):  

a)  Conserved hypothetical  25990  12.73  50 14 
  protein 
  sce0860 
b)  Glutamate--ammonia ligase 52139  5.89  62 13 
  (EC 6.3.1.2) (COG E) 
  sce7210 
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c)  Endopeptidase Clp   24210  6.4  79 13 
  ATP-dependent  
  (EC 3.4.21.92) (COG O) 
  sce3147 
 
d)  Maltoporin precursorSignalP, Tat 52055   6.23  92 21  
  (TC 1.B.3.1.1) (COG G) 
  sce7619 
e)  Putative 
  Phosphomethylpyrimidin 28018  7.66  47 36 
  kinase (COG H) 
  (EC 2.7.4.7) 
  sce0656 
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Tab. 12: Identified extracellular proteins of So ce56 analyzed via MALDI-TOF-MS. The 41 identified 
proteins are sorted according to their predicted function and cellular location relating to the 
numeration in figure 22. Furthermore, it includes the Signal P results. The figures MW(calc) 
and pI(calc) were calculated by the MASCOT software, whereas the MW(gel) and pI(gel) 
values were observed spot position in the 2-D gel. 

Spot Protein (Accession)   MW(calc/gel) pI(calc/gel) Score Coverage 

Extracellular proteins: 
1; 2; 9; 11; CellulaseSignalP    86962 / 71000 4.6 / 4.7 197 24 
12; 25; 26; (EC 3.2.1.4) 
27   sce8953 
8  Putative secreted   88530 / 51000 4.36 / 4.0 108 21 
  proteinSignalP, Tat    
  sce8614 
16  Putative peptidase  29790 / 51000 6.8 / 5.7 53 14 
  sce4529 
34; 68  Putative    55609 / 30000 4.35 / 4.4 50 14 
  XanthomonalisinSignalP 
  (EC 3.4.21.101) 
  sce3910 
45; 64; 75 Hypothetical protein  18668 / 16000 6.19 / 6.2 114 73 
  Secreted cytotoxin 
  sce2967 
52  Conserved hypothetical  202861 / 25000 6.51 / 5.3 52 5 
  proteinSignalP 
  Large extracellular α-helical 
  protein 
  sce4409 
61; 62  Hypothetical proteinSignalP 20997 / 21000 4.4 / 4.1 92 52  
  Secreted protein 
  sce0172 
70  Putative typeVI  49851 / 20000 9.13 / 3.3 57 10 
  secreted protein 
  (TC 9.A.34.1.1) 
  sce4161 
72; 80  Hypothetical protein  10708 / 10000 9.37 / 9.4 96 75 
  Possibly exported 

sce7128 
73; 74  Hypothetical protein  10425 /13000 5.48 / 6.5 89 72 
  Exported protein 
  sce3202 

Membrane proteins: 
3; 4; 13; 14; Hypothetical proteinSignalP, Tat 60093 / 62000 5.1 / 5.2 105 24 
17; 18; 19; Phosphohydrolase 
21; 22; 30 sce0969 
7; 29; 32; Putative outer membrane  49703 / 50000 3.78 / 3.1 84 23 
33; 37; 60 lipoproteinSignalP  
  sce5067 
10  Putative ATPaseSignalP, Tat 183013 / 51000  4.6 / 4.3 55 5 
  (EC 3.6.3.10) 
  sce5843 
31  Hypothetical proteinSignalP 60042 / 41000 3.52 / 3.1  76 14 

Lipoprotein 
  sce4343 
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43  ABC transporter   39093 / 49000 9.83 / 9.1 53 19 
  substrate bindingSignalP, Tat  
  nitrate/sulfonate/bicarbonate  
  transporter 
  (TC 3.A.1.17.2) 
  sce1321 
58  ABC transporter 29428 / 27000 6.2 / 3.6 54 23 
  Putative cyanate porter 
  (TC 3.A.1.16.2) 
  Putative aromatic sulfonate porter 
  (TC 3.A.1.17.2) 
  sce5488 
24  Hypothetical proteinTMH 44081 / 35000 9.75 / 5.2 52 10 
  Quinoprotein 
  sce1365 
59; 69  Conserved hypothetical 40423 / 25000 4.38 / 4.1 68 16 
  proteinTMH  
  Cell surface protein 
  sce1531 
77  Secreted superoxide   21907 / 23000 5.7 / 8.4 67 27 
  dismutaseSignalP   
  sod C  
  (EC 1.15.1.1) 

sce8431 

Secondary metabolism: 
71  Hypothetical    40353 / 12000 8.52 / 3.5 50 22 

UDP-glucuronosyltransferase 
sce3098 

Metabolic enzymes: 
40; 41; 47; 53 Phosphoglycerate kinase  43938 / 30000 5.55 / 5.5 103 31 
  (EC 2.7.2.3)  
  sce7349 
5; 49; 57 Phosphopyruvate hydratase  45912 / 52000 5.14 / 5.3 77 23 
  Enolase  
  (EC 4.2.1.11) 
  sce7698 
42; 50; 51  Pyruvate kinase   51032 / 27000 6.29 / 5.4 111 27 
  (EC 2.7.1.40)   
  sce4540 
48  Pyruvate dehydrogenase 36314 / 23000 5.82 / 5.7 103 26 
  (acetyl transferring) 
  (EC 1.2.4.1) 
  sce3800 
65  Pyruvate dehydrogenase  35930 / 15000 5.2 / 5.5 71 21 
  (EC 1.2.4.1)  
  sce3801  
56  Glutamate—ammonia ligase 52367 / 22000 5.84 / 5.0 59 15 
  (EC 6.3.1.2) 
  sce7210 
54  Hypothetical protein  15372 / 20000 5.05 / 5.4 62 35 
  Glyoxalase family protein 
  sce3094 
66  Lactate dehydrogenase 33335 / 13000 8.55 / 4.3 72 18 
  (EC 1.1.1.27) 
  Malate dehydrogenase 
  (EC 1.1.1.37) 
  sce1050 
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Protein folding: 
15  Chaperone protein dnaK 68908 / 51000 5.22 / 5.4 75 13 
  (TC 1.A.33.1.2) 
  sce9025 
35  Chloroplast GrpE protein 21074 / 31000 4.82 / 4.5 70 24 
  (TC 3.A.8.1.1) 
  sce0004 
44; 81; 82 Peptidyl-prolyl cis-trans 20748 / 25000 8.8 / 8.7 62 26 
  isomerase  
  (EC 5.2.1.8) 
  sce0374 
55  Probable DnaJ molecular  34546 / 21000 9.33 / 4.5 76 26 
  chaperone  
  (TC 3.A.5.8.1) 
  sce0617 
79  GroES like protein (HSP10) 10656 / 20000 9.42 / 9.9 132 56 
  sce2780 

DNA-interacting proteins: 
20; 38; 78 Elongation factor tufA  43517 / 50000 6.46 / 6.5 89 20 
  sce0841 
23  Conserved hypothetical 41773 / 40000 10.13 /  5.2 52 18 
  protein   
  Transposase (IS 1 family) 
  sce2831 
36  Transcriptional regulatorHTH 23548 / 29000 9.71 / 4.7 66 37 
  TetR family protein 
  sce3479 

Protection: 
39  Putative    30236 / 28000 9.86 / 6.4 69 25 
  Glutathione S-transferase  
  sce4509 
46  Thiol peroxidase  17714 / 25000 5.74 / 6.5 81 42 
  sce5724 
63; 67  Rubrerythrin   15552 / 15000 5.37 / 4.7 72 47 
  sce1753 
76  Organic hydroperoxide 14592 / 20000 7.41 / 7.6 85 48  

resistance protein 
sce0181 

Hypothetical protein: 
28  Conserved hypothetical  15517 / 35000 6.31 / 4.3 65 40 
  protein   

sce1224 
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Tab. 13: NanoLC-ESI MS/MS analysis of membrane proteins of So ce56. 
List of the 66 identified membrane proteins of So ce56 analyzed with nanoLC-ESI-MS/MS. The 
identified membrane proteins numerated according to each gel-segment, shown in figure 24. The 
identified membrane proteins listed due to their predicted function and cellular location. The calculated 
MW was determined via a 10-150 kDa protein marker. 

Spot Protein (Accession)   MW(calc/gel) pI(calc)  Score Coverage 

Membrane proteins: 
I  Multidrug efflux   59285/>80000  6.46  139 19 
  proteinSignalP, Tat  
  (TC 2.A.6.2.21)   
  sce2988 
I  Metal ion efflux outer 
  membraneSignalP, Tat  43114/>80000  8.85  126 24 
  protein czcC exporter 

(TC 1.B.17.2.2) 
  sce8709 
I  Maltoporin precursorSignalP, Tat  52055/>80000  6.23  393 22  
  (TC 1.B.3.1.1) 
  sce7619 
I  RND family efflux  
  transporter (AcrB)SignalP, Tat 115380/>80000  6.46  51 3 
  (TC 2.A.6.2.14) 
  sce1628 
I  Hypothetical protein   416522/>80000 4.85  296 3 
  adventurous gliding motility  
  protein AgmK 
  sce0252 
I  TPR protein (7x)  237380/>80000  4.9  182 3 
  adventurous gliding  
  motility protein  
  sce2921 
I  TPR protein (2x)  196736/>80000  4.85  158 3 
  adventurous gliding  
  motility protein  
  sce2920 
VIII  Putative MglA1 protein 21939/>18000 7.68  86 13 
  gliding motility protein 
  sce7249 
II  Putative outer membrane  49247/>60000 4.09  53 4 
  lipoproteinSignalP  
  sce5067 
II  Hypothetical protein  66874/>60000 5.00  54 2 
  putative membrane protein 
  sce5122 
II  Molybdopterin   107721/>60000 6.39  143 5 
  oxidoreductase  
  iron-sulfur binding subunit  
  (TC 5.A.3.3.3) 
  sce7585 
III  ABC-type dipeptide   63470/>45000 8.43  178 7 
  transport systemSignalP, Tat  
  (TC 3.A.1.5.6) 
  sce7548 
III  H+-transporting two-sector 68031/>45000 8.13  166 8 
  ATPase   
  (TC 3.A.2.1.2) 
  sce9361 
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IV  H+-transporting two-sector  50692/>35000 5.11  261 18 
  ATPase   
  (TC 3.A.2.1.3) 
  sce4444 
III; V  Hypothetical proteinSignalP, Tat 38745/>25000 4.66  205 15 
  Surface DGF-1 protein 
  sce3201 
VI  NADH dehydrogenase I  25138/>25000 8.52  86 4 
  chain I (nuo I) 
  (EC 1.6.99.3 / TC 3.D.1.2.1) 
  sce0528 
VI  GAF sensor domain protein 31108/>25000 5.22  123 15 
  sce1762   
VIII  Biopolymer transport   24579/>18000 9.16  116 8 
  proteinSignalP, Tat   
  (TC 1.A.30.2.2) 
  sce5071 
IX  Conserved hypothetical  18618/>12000 6.73  100 12 
  proteinTMH   
  sce0725 
X  Hypothetical protein3xTMH  75209/>10000 5.80  43 5 
  Kef-type K+ transport systems  
  sce0244 
VI  Outer membrane proteinSignalP 29508/>25000 8.69  121 12 
  (TC 1.A.30.1.3) 
  sce5128 

Hypothetical proteins with Signal P: 
II  Hypothetical proteinSignalP 79634/>60000 8.78  529 18 
  sce3203 
III  Conserved hypothetical  64535/>45000 6.41  181 8 
  protein TPR like proteinSignalP   
  sce2914 

Extracellular protein: 
II  putative secreted   73837/>60000 8.59  141 5  
  proteinSignalP  
  sce2958 

Modifications: 
V  TPR-like protein (2x)  54400/>25000 8.92  127 5 
  Similar to O-linked  
  GlcNac transferase 

sce7919 

Degradative enzymes: 
II  Predicted subtilisin-like  72356/>60000 6.22  59 1 
  protease  
  sce3206 
II  ATP-dependent protease La 90327/>60000 5.71  285 10 
  (EC 3.4.21.53) 
  sce5003    

Metabolic enzymes: 
I  Carbamoyl-phosphate  119512 />80000 5.92  204 7 
  synthase   
  (EC 6.3.4.16) 
  sce2399 
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II  Protein kinase   79282/>60000 6.23  194 7 
  (EC 2.7.1.37)   
  sce6948  
III  Glutamate – ammonia ligase 52139/>45000 5.89  416 26 
  (EC 6.3.1.2)   
  sce7210 
III  Pyruvate kinase  50691/>45000 6.32  272 16 
  (EC 2.7.1.40) 
  sce4540 
III  Phosphoenolpyruvate  60806/>45000 5.94  181 12 
  mutase  
  (EC 5.4.2.9) 
  sce7305 
IV  Glutamate dehydrogenase 48499/>35000 8.45  86 2 
  (EC 1.4.1.3) 
  sce6195 
IV  Dihydrolipoyl    48957/>35000 7.12  100 7 
  dehydrogenase   
  (EC 1.8.1.4) 
  sce8000 
IV  Citrate synthase  48140/>35000 7.26  110 8 

(EC 2.3.3.1) 
  sce8281 
IV  Histidinol dehydrogenase  47309/>35000 5.8  82 3 
  (EC 1.1.1.23)  
  sce2464 
IV  Methionine    45848/>35000 8.77  117 9 
  adenosyltransferase  
  (EC 2.5.1.6) 
  sce7312 
IV  Dihydrolipoyllysine-residue 45805/>35000 6.99  156 10  
  succinyltransferase  
  (EC 2.3.1.61) 
  sce3802   
IV  UDP-glucose-   48448/>35000 6.62  484 26 
  6-dehydrogenase    

(EC 1.1.1.22) 
  sce0875 
IV; V  Phosphopyruvate hydratase 45885/>35000 5.35  337 20  
  Enolase  
  (EC 4.2.1.11) 
  sce7698 
V  Glyceraldehyde-3-phosphate 36917/>25000 7.14  477 26  

dehydrogenase  
(EC 1.2.1.12) 

  sce7350 
V  Ketol-acid reductoisomerase 36352/>25000 6.09  307 21 
  (EC 1.1.1.86) 
  sce3732 
V  Lactate dehydrogenase 33165/>25000 7.63  146 12 
  (EC 1.1.1.27) 
  sce1050 
IV; V  Agmatinase   34290/>25000 6.03  221 16 
  (EC 3.5.3.11) 
  sce0044 



  Appendix 

  134 

DNA interaction proteins: 
I  DNA-directed RNA   154949/>80000  5.4  142 4 
  polymerase  
  140 kDa subunit (rpo B)  
  (EC 2.7.7.6)     
  sce0410  
I  DNA-directed RNA  158729/>80000  7.36  260 5 
  polymerase   
  β-subunit (rpo C)  
  (EC 2.7.7.6) 
  sce0411 
IX  50 ribosomal protein L7/L12 13435/>12000 5.13  59 14 
  (rpl L) 
  sce0409 
III; VI  Conserved hypothetical  87435/>45000 8.82  188 8 
  protein  
  Rhs element Vgr protein 
  sce6784 
VII  Response regulatorHTH 22872/>20000 6.38  320 30 
  sce0622 
VII  DNA-binding response  26281/>20000 5.57  133 16 
  regulator  
  sce5073 
V  DNA-directed RNA   38452/>25000 5.29  115 7 
  polymerase   
  alpha subunit  
  (EC 2.7.7.6) 
  sce7936 
II  Elongation factor (EF)  76986/>60000 5.68  90 5 
  sce0644 
V  Elongation factor (tuf A1) 43347/>25000 6.44  217 14 
  sce0402  
IX  Putative DNA binding protein 16138/>12000 10.47  285 30 
  sce7400 
X  Histone-like protein  12071/>10000 10.36  155 27 

bacterial nucleoid  
DNA-binding protein  

  sce8278 
X  Histone-like protein  11979/>10000 11.21  64 25 
  bacterial nucleoid  
  DNA-binding protein  
  sce6591 

Proteinfolding: 
III  Heat shock protein groEL 57952/>45000 5.61  380 19 
  HSP60 family 
  sce5911 
VIII  Peptidyl-prolyl cis-trans 20634/>18000 7.83  58 13 
  isomerase  
  (EC 5.2.1.8) 
  sce0374 

Protection: 
VI  Glutaredoxin-like protein 33476/>25000 5.35  122 15 
  sce6471 
VII  Glutathione S-transferase 30218/>20000 9.38  72 8 
  (EC 2.5.1.18) 
  sce4509 
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VII  Peroxidase    23687/>20000 6.3  115 13 
  (EC 1.11.1.7)    
  sce0170 
VIII  Peroxidase   20600/>18000 6.44  96 29 
  (EC 1.11.1.7)  

 sce6959 
VIII  Conserved hypothetical  19140/>18000 7.93  65 7 
  protein   
  Alkylhydroperoxidase  
  AhpD core 

sce5383 

Hypothetical proteins: 
III  Conserved hypothetical 55324/>45000 5.49  163 12 
  protein   
  sce4981 
IV  Conserved hypothetical  44667/>35000 5.59  76 10 
  protein    
  sce0425 
IX  Conserved hypothetical  19091/>12000 7.93  237 24 
  protein   
  sce0957 
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Tab. 14: Blue-Native PAGE from membrane proteins. The identified proteins of the second 
dimension were given in numbers and the identified proteins of the first dimension were 
given in letters (Fig. 26). 

Spot Protein (Accession)   MW(calc) pI(calc)  Score Coverage 

Second dimension (SDS-Tricine-PAGE):   

Lipid transport and metabolism (I): 
5  Butyryl-CoA dehydrogenase 57254  5.86  151 27 
  (EC 1.3.99.2) 
  sce3575 
13  3-hydroxybutyryl-CoA  28510  6.19  80 27  
  dehydrogenase 
  (EC 4.2.1.55) 
  sce0250  
16  Butyryl-CoA dehydrogenase 42149  5.4   170 35 
  (EC 1.3.99.2)   
  sce1166 
22  3-hydroxyacyl-CoA  32527  8.76  58 15  
  dehydratase 
  (EC 1.1.1.157) 
  sce7905 
23  Enoyl-CoA   85579  6.42  152 22 
  dehyrogenase 
  (EC 1.1.1.35) 
  sce7555 

Carbohydrate transport and metabolism (G): 
7  Transaldolase tal1  36144  5.86  71 16 
  (EC 2.2.1.2) 
  sce1460 
6  4-alpha-glucanotransferase 73407  6.31  125 20 
  homolg 
  (EC 2.4.1.25) 
  sce0351 
17  Glyceraldehyde-3-phosphate 36939  7.71  179 54  
  dehydrogenase  
  (EC 1.2.1.12) 
  sce7350 
14  Beta-glucosidase  78220  4.99  119 19 
  bglX (EC 3.2.1.21) 
  sce2601 

Energy production and conversion (C): 
8  Lactate dehydrogenase 33184  8.55  53 15 
  (EC 1.1.1.27) 
  Malate dehydrogenase 
  (EC 1.1.1.37) 
  sce1050 
24  Aryl-alcohol dehydrogenase 49357  10.29  85 18 
  (EC 1.1.1.91) 
  sce5264 

Amino acid transport and metabolism (E): 
4  Glycine   45527  7.07  127 26 
  hydroxymethyltransferase 
  (EC 2.1.2.1) 
  sce6587 
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28  ABC-type dipeptide transport  63871  8.87  50 7 
  systemSignal P  
  (TC 3.A.1.5.6)     

sce8424 
30  Glutamate--ammonia ligase 52139  5.89  104 23 
  (EC 6.3.1.2) 
  sce7210 

Secondary metabolites transport and metabolism (Q): 
3  Cytochrome P450  52423  9.42  50 15 
  sce2191 

Cellwall biogenesis (M): 
15  Cyclopropane-fatty-acyl 33551  8.49  53 12 
  phospholipid synthase 
  (EC 2.1.1.79) 
  sce2529  

Signal transduction mechanisms (T): 
1  Serine/threonine kinase 49942  9.63  49 14 
  (EC 2.7.11.17) 
  sce1019 

Defense mechanism (V): 
21  ABC transporter ATP-binding 33647  5.44  52 30 
  putative lipooligosaccharide 
  exporter 
  (TC 3.A.1.102.1) 
  sce5573 

Inorganic ion transport and mechanism (P):   
11  Na+/H+ antiporter  79773  11.65  59 13 
  nhaA (TC 2.A.33.1.1) 
  sce3269 

Translation (J): 
9  50S ribosomal protein L14 13323  10.58  58 29 
  rplN 
  sce7953 
18  Polynucleotide phosphatase 36854  5.63  50 16 
  pnpA (EC 2.7.7.8) 
  sce4541 
25  30S ribosomal protein S13 14426  11.22  50 25 
  rpsM  
  sce7939 
31  50S ribosomal protein L22 12348  11.64  53 33 
  rplV 
  sce7958 

Coenzyme transport and metabolism (H): 
19  Adenosylhomocysteinase 47785  5.91  111 27 
  ahcY (EC 3.3.1.1) 
  sce2963 

Posttranslational modifications (O): 
27  Heat shock protein  17224  9.41  98 45 
  (HSP20 family) 
  sce0577 
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26  Probable serine protease 98246  12.29  49 4 
  sce1673 

Hypothetical proteins (X/R/S): 
2  Conserved hypothetical 202861  6.51  61 6  
  proteinSignalP 
  α-2-macroglobulin-like protein 

sce4409 
10  Conserved hypothetical 18797  6.22  162 58 
  protein 
  sce4994 
12  Hypothetical proteinSignalP 54580  4.00  34 6 
  sce0478 
20  Hypothetical proteinTMH 46680  9.95  55 18  
  sce4257 
29  TPR domain protein  155131  9.66  59 5 
  sce1616 
 

First dimension (BN-PAGE):  

a)  50S ribosomal protein L14 13323  10.58  53 35 
  rplN (COG J) 
  sce7953 
b)  50S ribosomal protein L22 12348  11.64  53 33 
  rplV (COG J) 
  sce7958 
c)  Carboxyl-and    63144  7.81  51 6 
  carbamoyltransferase (COG O)  
  sce2401 
d)  RHS family (COG M)   60844  9.08  47 12 
  carbohydrate binding protein 
  sce3545 
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Tab. 15: Outer membrane proteins from Sorangium cellulosum So ce56 identified by nanoLC-ESI-
MS/MS. Identification of 35 outer membrane proteins analyzed with nanoLC-ESI. The 
identified proteins of each segment (I-VII) correspond to the numeration in the outer 
membrane 1-D SDS-PAGE gel (Fig. 27). Moreover the calculated MW and pI values were 
given. The observed MW in the gel was estimated by using a protein marker between 10-
150 kDA. 

Spot Protein (Accession)   MW(calc/gel) pI(calc)  Score Coverage 

Outer membrane proteins:   
I  Hypothetical proteinSignalP, Tat 77922/>120000  5.08  48 1 
  accumulation-associated  
  protein 
  sce5126 
II  Probable tonB-dependent  113997/>70000  5.11  79 1 
  receptorSignalP, Tat 
  (TC 1.B.14.1.6) 
  sce9157 
II  Oar proteinSignalP  118450/>70000  5.02  78 2 
  tonB dependent receptor 
  cellular adhesion  
  during fruiting body 
  sce4255 
II  Putative lipoproteinSignalP, Tat 47150/>70000 4.74  44 2 
  sce2691 
III; IV  Conserved hypothetical  52268/>55000 4.49  178 9 
  protein OMP barrel  
  autotransporterSignalP 
  sce1186 
III; IV  Hypothetical proteinSignalP 61246/>55000 5.29  238 11 
  phosphate selective  
  porin O and P 

sce7966 
III  Probable tonB-dependent 7401/>550005 5.68  44 2 
  receptor fecASignalP, Tat  
  (TC 1.B.14.1.5) 
  sce8808 
I; IV; V; VI; Maltoporin precursorSignalP, Tat 52055/>45000 6.23  559 27 
VII  (TC 1.B.3.1.1) 
  sce7619 
IV  OMP barrel    52047/>45000 4.38  94 3 
  autotransporterSignal P  
  (TC 1.B.12.1.1) 
  sce7537  
IV  Putative type VI   139301/>45000  6.28  51 6 
  secretory pathwaySignal P 
  (TC 9.A.34.1.1) 
  sce4985 
IV  Protein kinase   142981/>45000  6.80  48 6 
  putative lipoproteinSignalP, Tat  
  (EC 2.7.11.1) 
  sce4176 
IV  OMP efflux proteinSignalP, Tat 53628/>45000 9.16  45 7 
  (TC 1.B.17.3.1) 
  sce3619 
VI  Unknown proteinSignalP  28592/>35000 4.15  81 9 
  Pilus assembly protein 
  sce0254 
 



  Appendix 

  140 

 
VI  Hypothetical proteinSignalP, Tat 38745/>35000 4.66  70 3 
  Surface DGF-1 protein 

sce3201  

Extracellular proteins: 
I; III; IV; V Putative secreted   68751/>55000 4.9  231 13 
  proteinSignalP 
  sce4014 

Inner membrane and periplasmic proteins: 
I; IV  Hypothetical proteinSignalP, Tat 208040/>120000  5.79  246 12 
  probable ATPase 
  sce5242 
II  Conserved hypothetical  44433/>70000 7.01  40 19 
  proteinTMH  
  Fe2+-dicitrate sensor  
  membrane  
  component 
  sce3657 
II  Hypothetical proteinSignalP, Tat 85810/>70000 4.66  160 5 
  Phosphatase 
  sce0936 
VII  Secreted superoxide   21736/>30000 6.05  204 17 
  dismutaseSignalP   
  sodC  
  (EC 1.15.1.1) 
  sce8431 
III  ABC-type dipeptide  63470/>55000 8.43  221 11 
  transport systemSignalP, Tat 
  (TC 3.A.1.5.6) 
  sce7548 
III  Cation transporting P-type  98954/>55000 5.83  52 4 
  ATPase10xTMH  
  (TC 3.A.3.2.4) 
  sce2485 
I; V  Branched-chain amino  43095/>40000 8.22  103 6 
  acid ABC transporterSignalP, Tat 
  (TC 3.A.1.4.6) 
  sce8312 
V  ABC-type xylose   38721/>40000 6.07  57 4 
  transport system xylF 
  (TC 3.A.1.2.4) 
  sce6008 
VI  Putative nucleotide   33363/>35000 6.19  51 2 
  binding protein 
  SRPI  
  (major membrane protein) 
  sce4642 
VII  Putative membrane   67483/>300007.86  43 3 
  bound zinc metallopeptidase   
  (TC 3.A.16.1.2)   
  sce0417 
VII  Hypothetical proteinSignalP 40244/>30000 5.35  45 7 
  Gluconolactonase  
  precursor periplasma 

sce9199 
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Metabolic enzymes: 
III; IV  4-α-glucanotransferase  71744/>55000 5.42  60 8 
  glycogen debranching  
  enzyme  
  (EC 2.4.1.25) 
  sce2296 
IV  Glutamate--ammonia ligase 52139/>45000 5.89  59 7 
  (EC 6.3.1.2) 
  sce7210 

Signal transduction: 
I  Serine/threonine protein  123037/>120000  6.36  55 6 
  kinase   
  (EC 2.7.1.37)   
  sce0184 
IV  Serine/threonine protein  139820 />45000  5.52  50 8 
  kinase   
  (EC 2.7.1.37) 
  sce8728 

Secondary metabolism: 
IV  Polyketide synthase chiF 626946/>45000   6.17  50 4 
  (EC 2.3.1.41) 
  sce4133 
VI  Sensor histidine   54741/>35000 6.66  51 5 
  kinaseSignalP, Tat  
  Jer3 (Jerangolid gene cluster,  
  identity: 85%) 
  (TC 2.A.21.9.1) 
  sce7800 
VI  Polyketide synthase  389790/>35000  6.06  46 2 

 Etnangien-PKS 
   (EC 2.3.1.41)  

sce3190 

DNA-interacting proteins: 
IV  ATP-dependent DNA ligase 82845/>45000 9.77  63 6  
  sce3523 

Hypothetical proteins: 
IV; VII  Hypothetical proteinSignalP, Tat 72613/>45000 6.23  52 6 
  sce4619 
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Tab. 16: Isolated outer membrane vesicle proteins from So ce56 extracellular fraction. The 10 
identified protein bands from the SDS-PAGE are listed after the numeration in figure 30. The 
score and the sequence coverage were given in percentages. 

Spot Protein (Accession)   MW(calc) pI(calc)  Score Coverage 

1; 3 Maltoporin precursorSignalP, Tat  52086  6.24  82 17 
 sce7616 
2 Hypothetical proteinSignalP, Tat  85860  4.37  161 20 
 predicted phosphatase 
 sce0936 
4 – 8 Putative outer membrane  49276  3.78  80 16 
 lipoproteinSignalP 
 sce5067 
9 Hypothetical proteinSignalP  61282  5.06  60 13 
 phosphate selective porin O and P 
 sce7966 
10 Hypothtical protein   10456  10.22  78 20 
 probable Clp protease 
 sce7556 
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Tab. 17:  Identified proteins from the cytosol (see Tab. 8) involved transport processes based on TC 
database searches. 

SoCe ID TC 
number 

Transporter name E-value 
TCDB 

TC superfamily/ 
TC family 

sce0004 3.A.8.1.1 Mitochondrial protein 
translocase 

2.00E-016 3.A.8 The Mitochondrial Protein Translocase 
(MPT) Family 

sce0181 9.B.74.1.2 The putative ABC-2-
like protein 

0.66 9.B.74 The Phage Infection Protein (PIP) Family 

sce2035 2.A.53.9.1 SulP homologue with 
fused C-terminal 
STAS/Rhodanese 
domains 

2.00E-009 2.A.53 The Sulfate Permease (SulP) Family 

sce2780 3.A.3.6.5 Mono- and divalent 
heavy metal (Cu+, Ag+, 
Zn2+, Cd2+) ATPase 

5.00E-004 3.A.3 The P-type ATPase (P-ATPase) 
Superfamily 

sce2946 3.A.1.7.1 Phosphate porter 1.00E-072 3.A.1 The ATP-
binding Cassette 
(ABC) Superfamily  

3.A.1.7 The Phosphate 
Uptake Transporter 
(PhoT) Family 

sce3697 3.A.1.27.1 The γ-
hexachlorocyclohexane 
(γ-HCH) uptake 
permease 

6.00E-035 The ATP-binding 
Cassette (ABC) 
Superfamily 

The Carbohydrate Uptake 
Transporter-1 Family 

sce4785 1.C.67.1.1 The pore-forming 
hemolysin 

0.14  1.C.67 The SphH Hemolysin Family 

sce6785 3.A.7.9.1 The Icm/Dot protein 
secretion system 

1.00E-008 3.A.7 The Type IV (Conjugal DNA-Protein 
Transfer or VirB) Secretory Pathway Family 

sce7548 3.A.1.5.6 The β-glucoside 
(cellobiose (β-1,4) 
uptake porter 

7.00E-065 3.A.1 The ATP-
binding Cassette 
(ABC) Superfamily 

3.A.1.5 The 
Peptide/Opine/Nickel 
Uptake Transporter 
Family 

sce9025 1.A.33.1.2 Heat shock protein-70 
homologue, DnaK 

0 1.A.33 The Cation Channel-forming Heat Shock 
Protein-70 (Hsp70) Family 

sce9360 3.A.2.1.1 H+-translocating F-type 
ATPase 

8,00E-044 3.A.2 The H+- or Na+-translocating F-type, V-
type and A-type ATPase (F-ATPase) 
Superfamily 
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Tab. 18: Identified extracellular proteins (Tab. 12) involved in transport processes (TC database). 
SoCe ID TC 

number 
Transporter 

name 
E-value 
TCDB 

TC superfamily 
TC family 

sce0004 3.A.8.1.1 Mitochondrial 
protein 
translocase 

2.00E-016 3.A.8 The Mitochondrial Protein Translocase (MPT) 
Family 

sce0617 3.A.5.8.1 The general 
secretory 
pathway (Sec-
SRP) complex 

5,00E-008 3.A.5 The General Secretory Pathway (Sec) Family 
 

sce1321 3.A.1.17.2 Aromatic 
sulfonate porter 

1,00E-017 3.A.1 The ATP-binding 
Cassette (ABC) 
Superfamily 

3.A.1.17. The Taurine 
Uptake Transporter 
Family (Similar to 
3.A.1.12 and 3.A.1.16) 

sce4161 9.A.34.1.1 VasA-L of Vibrio 
cholerae 
(Pukatzki et al., 
2006) 

2,00E-039 9.A.34 The Putative Type VI Symbiosis/Virulence 
Secretory Pathway (VISP) Family 

sce5488 3.A.1.16.2 Cyanate porter 4,00E-034 3.A.1 The ATP-binding 
Cassette (ABC) 
Superfamily 

3.A.1.16. The 
Nitrate/Nitrite/Cyanate 
Uptake Transporter 
Family (Similar to 
3.A.1.12 and 3.A.1.17) 

sce5488 3.A.1.17.2 Aromatic 
sulfonate porter 

6,00E-034 3.A.1 The ATP-binding 
Cassette (ABC) 
Superfamily 

3.A.1.17. The Taurine 
Uptake Transporter 
Family (Similar to 
3.A.1.12 and 3.A.1.16) 

sce5488 3.A.1.16.1 Nitrate/nitrite 
porter 

3,00E-033 3.A.1 The ATP-binding 
Cassette (ABC) 
Superfamily 

3.A.1.16. The 
Nitrate/Nitrite/Cyanate 
Uptake Transporter 
Family (Similar to 
3.A.1.12 and 3.A.1.17) 

sce9025 1.A.33.1.2 Heat shock 
protein-70 
homologue, DnaK 

0 1.A.33 The Cation Channel-forming Heat Shock 
Protein-70 (Hsp70) Family 
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Tab. 19: Identified membrane proteins (Tab. 13) involved in transport processes (TC database). 
SoCe ID TC 

number 
Transporter name E-value 

TCDB 
TC superfamily 

TC family 
sce1628 2.A.6.2.14 Bile salt exporter 1.00E-117 2.A.6 The 

Resistance-
Nodulation-Cell 
Division (RND) 
Superfamily 

2.A.6.2.Hydrophobe/ 
Amphiphile Efflux-1 
Family 

sce2988 2.A.6.2.21 The multidrug 
(aminoglycosides, 
tetracycline, 
erythromycin, ofloxacin, 
etc.) efflux pump 

2.00E-005 2.A.6 The 
Resistance-
Nodulation-Cell 
Division (RND) 
Superfamily 

2.A.6.2 The (Largely 
Gram-negative 
Bacterial) 
Hydrophobe/ 
Amphiphile Efflux-1 
Family 

sce4444 3.A.2.1.3 H+-translocating F-type 
ATPase 

1.00E-170 3.A.2 The H+- or Na+-translocating F-type, V-
type and A-type ATPase (F-ATPase) 
Superfamily 

sce5071 1.A.30.2.2 The TonB energy-
transducing system 

5.00E-018 1.A.30 The H+- or 
Na+-translocating 
Bacterial Flagellar 
Motor 1ExbBD 
Outer Membrane 
Transport Energizer 
(Mot-Exb) 
Superfamily 

1.A.30.2 The TonB-
ExbB-ExbD/TolA-
TolQ-TolR (Exb) 
Family of Energizers 
for Outer Membrane 
Receptor (OMR)-
Mediated Active 
Transport 

sce5071 2.C.1.1.1 The TonB energy-
transducing system 

5.00E-018 2.C.1 The TonB-ExbB-ExbD/TolA-TolQ-TolR 
(TonB) Family of Auxiliary Proteins for 
Energization of Outer Membrane Receptor-
mediated Active Transport 

sce5128 1.A.30.1.3 The flagellar motor (pmf-
dependent) (MotAB) 

4.00E-019 1.A.30 The H+- or 
Na+-translocating 
Bacterial Flagellar 
Motor 1ExbBD 
Outer Membrane 
Transport Energizer 
(Mot-Exb) 
Superfamily 

1.A.30.1 The H+- or 
Na+-translocating 
Bacterial Flagellar 
Motor (Mot) Family 

sce7585 5.A.3.3.3 Anaerobic 
dimethylsulfoxide/trimeth
ylamine-N-oxide 
reductase 

4.00E-035 5.A.3 The Prokaryotic Molybdopterin-
containing Oxidoreductase (PMO) Family 

sce7619 1.B.3.1.1 LamB (MalL) maltoporin 
(maltose–maltoheptose) 

9 1.B.3 The Sugar Porin Family 

sce8709 1.B.17.2.2 CzcC outer membrane 
exporter of Co2+, Cd2+, 
Zn2+ 

0.87 1.B.17 The Outer Membrane Factor (OMF) 
Family 

sce9361 3.A.2.1.2 Na+-translocating F-type 
ATPase 

1.00E-110 3.A.2 The H+- or Na+-translocating F-type, V-
type and A-type ATPase (F-ATPase) 
superfamily 
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Tab. 20: Identified outer membrane proteins (Tab. 15) involved in transport processes (TC 
database). 

SoCe ID TC 
number 

Transporter name E-value 
TCDB 

TC superfamily 
TC family 

sce0417 3.A.16.1.2 ER retrotranslocon 
(yeastl) 

2.00E-037 3.A.16 The Endoplasmic Reticular 
Retrotranslocon (ER-RT) Family 

sce2485 3.A.3.2.4 Ca2+-ATPase (efflux) 1.00E-173 3.A.3 The P-type ATPase (P-ATPase) 
Superfamily 

sce3619 2.A.6.2.23 The multidrug (β-
lactams, 
aminoglycerides 
(gentamycin and 
streptomycin) 
macrolides 
(erythromycin) and dye 
(acriflavin)) efflux pump 

1.00E-008 2.A.6 The 
Resistance-
Nodulation-Cell 
Division (RND) 
Superfamily 

2.A.6.2. The (Largely 
Gram-negative 
Bacterial) 
Hydrophobe/Amphiphile 
Efflux-1 Family 

sce4985 9.A.34.1.1 VasA-L of Vibrio 
cholerae 

1.00E-051 9.A.34 The Putative Type VI 
Symbiosis/Virulence Secretory Pathway Family 

sce6008 3.A.1.2.4 Xylose porter 1.00E-086 3.A.1 The ATP-
binding Cassette 
(ABC) Superfamily 

3.A.1.2. The 
Carbohydrate Uptake 
Transporter-2 Family 

sce7537 1.B.12.1.1 Autotransporter of 
adhesin involved in 
diffuse adherence 

3.00E-005 1.B.12 The 
Autotransporter (AT) 
Family 

 

sce7548 3.A.1.5.6 The β-glucoside 
(cellobiose (β-1,4) 
uptake porter 

7.00E-065 3.A.1 The ATP-
binding Cassette 
(ABC) Superfamily 

3.A.1.5. The 
Peptide/Opine/Nickel 
Uptake Transporter 
Family 

sce7619 1.B.3.1.1  LamB (MalL) maltoporin 
(maltose–maltoheptose) 

9 1.B.3 The Sugar Porin Family 

sce7800 2.A.21.9.1 The nitrogen sensor-
receptor domain of the 
CbrA sensor kinase 

5,00E-028 2.A.21 The Solute:Sodium Symporter Family 

Sce8312 3.A.1.4.6 The neutral amino acid 
permease, N-1 
(transports pro, phe, leu, 
gly, ala, ser, gln and his) 

4.00E-022 3.A.1 The ATP-
binding Cassette 
(ABC) Superfamily 

3.A.1.4. The Hydrophobic 
Amino Acid Uptake 
Transporter Family 

sce8312 3.A.1.4.1 Leucine; 
leucine/isoleucine/valine 
porter (also transports 
phenylalanine and 
tyrosine) 

5.00E-022 3.A.1 The ATP-
binding Cassette 
(ABC) Superfamily 

3.A.1.4. The Hydrophobic 
Amino Acid Uptake 
Transporter family 

sce8808 1.B.14.1.5 IroN ferri-enterobactin 
(also ferricorynebactin) 
receptor 

4.00E-010 1.B.14 The Outer Membrane Receptor Family 

sce9157 1.B.14.1.6 CirA colicin I/Fe3+ 
catecholate receptor 

1.00E-012 1.B.14 The Outer Membrane Receptor Family 
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Tab. 21: Identification of genes related to Jerangolid or Ambruticin biosynthesis clusters in the Sorangium cellulosum So ce56 genome by BLASTP. Moreover, 
putative polyketide synthases from So ce56 are also compared to the Polyangium database to look for putative jerangolid/ ambruticin sequence 
similarities. The identities are given in percentages. 

Accession (TC/EC No.)  Function prediction in So ce56   Ambruticin (%)/ Jerangolid(%)  other % 
 
sce7795    hypothetical protein       -    / -   88 
sce7796    hypothetical protein SignalP      -   / -   64 
sce7797    LysR-transcriptional regulatorHTH    amb1 (85)/ jer1(84)      - 
sce_20050509_8912  cytochrome P450      amb2 (34)/ -    - 
sce7798    hypothetical protein       -    / jer2 (80)      - 
sce7800 (TC 2.A.21.9.1) sensor histidine kinase     amb3 (81)/ jer3 (85)       - 
sce7801    sigma-54 dependent response regulatorHTH  amb4 (93)/ jer4 (92)      - 
sce7107 (TC 2.A.21.9.1) sensor histidine kinase     amb5 (72)/ jer5 (73)    - 
sce7805    conserved hypothetical protein    amb6 (95)/ jer6 (95)    - 
sce7807 (TC 2.A.21.9.1) two-component hybrid sensor and regulator  amb7 (62)/ jer7 (62)    - 
sce7810 (EC 1.6.99.1) putative regulatory protein     amb8 (75)/  -    - 
sce7811    similar to xenobiotic reductase    amb9 (84)/ -    - 
sce7812    hypothetical protein       -    / -   87 
 sce0820 (EC2.3.1.41)  putative polyketide synthase    ambB (35)/ jerB (30)   -  
sce3189 (EC 2.3.1.41) putative polyketide synthaseHTH    ambC (32)/ jerC (31)   - 
sce0819 (EC 2.3.1.41) putative polyketide synthase    ambD (35)/ -    - 
sce0356 (EC 3.1.2.14) putative thioesterase      -    / jerE (40)    - 
sce3188 (EC 2.3.1.41) putative polyketide synthase    ambF (49)/ -    - 
sce3192 (EC 2.3.1.41)  putative polyketide synthase     -    / -    51 
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Tab. 22: Summarization of the identified proteins from each compartment of Sorangium cellulosum So ce56 compared to the predicted proteins of the So ce56 
database and classified according to different COG categories. The identified/predicted proteins were given in numbers and percentages related to the 
total number of identified proteins from each compartment. 

 
COG 

categories 
 

Cytosolic 
proteins (129) 

Membrane  
and periplasmic 

proteins (90) 
Outer membrane 

proteins (35) 
Outer membrane 

vesicle proteins (5) 
Extracellular 
proteins (41) 

 
Predicted  

proteins (9,367) 
(So ce genome) 

E: Amino acid transport and metabolism 17 (13%) 9 (11%)  3 (8%) -  1 (2%) 369 (4%) 

G: Carbohydrate metabolism 15 (11%)  9 (11%) 3 (8%) 1 (20%)  4 (10%) 258 (3%) 

C: Energy production and conversion 15 (11%) 9 (11%)  1 (3%) -  4 (10%)  339 (3.6%) 

P: inorganic ion transport and metabolism 4 (3%)  2 (2%)  5 (14%) -  3 (7%)  217 (2.3%) 

I: lipid transport and metabolism  6 (5%) 5 (5%) - - -  204 (2.1%) 

H: Coenzyme transport and metabolism  6 (4%)  2 (2%) - - - 158 (1.7%) 

F: Nucleotide transport and metabolism  7 (5%) - - - -  74 (1%) 

Q: Secondary metabolite biosynthesis  4 (3%) 1 (1%)  2 (6%) - - 188 (2%) 

B: Chromatin structure and dynamics - - - - -  3 (0.03%) 

L: Replication 1 (1%)  2 (2%)  1 (3%) - - 242 (2.6%) 

K: Transcription  2 (2%)  6 (6%) - -  1 (2%)  775 (8%) 

J: Translation 1 (1%)  7 (7%) - -  1 (2%) 191 (2%) 

D: Cell cycle control - - - - -  34 (0.4%) 

N: Cell motility - 1 (1%) - - - 62 (0.7%) 

M: Cell wall 1 (1%)  4 (4%)  2 (6%) - -  284 (3%) 

V: Defense mechanism - 2 (2%) - - -  83 (0.9%) 

U: Intracellular trafficking -  1 (1%) - - - 48 (0.5%) 

O: Post-translational modification  14 (10%)  12 (13%)  1 (3%) -  8 (20%)  237 (2.5%) 

T: Signal transduction mechanisms 4 (3%)  2 (2%)  3 (8%) -  1 (2%)  383 (4%) 

S: Function unknown  3 (3%)  8 (8%)  1 (3%) -  1 (2%)  514 (5.5%) 

R: General function prediction only 13 (9%)  6 (6%)  1 (3%) 1 (20%)  1 (2%)  632 (6.7%) 

X: No functional category  16 (12%) 8 (8%)  12 (34%) 3 (58%)  16 (39%)  4,068 (43.4%) 

total Signal P number 4 (3%) 7 (7%) 11 (31%) 4 (80%) 8 (20%) ~1,296 
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