
Diploma Thesis

Multimodal Augmented Reality to
Enhance Human Communication

Christian Mertes

31 August 2008

Supervised by

Dr. Thomas Hermann
Dr.-Ing. Marc Hanheide

Dipl. Inform. Angelika Dierker
Prof. Dr.-Ing. Gerhard Sagerer

Multimodal Augmented Reality to
Enhance Human Communication

Christian Mertes

31 August 2008

Diploma Thesis submitted to the
Faculty of Technology of Bielefeld University

Abstract

Humans naturally use an impressive variety of ways to communicate.
In this work, we will investigate the possibilities of complementing
these natural communication channels with artificial ones. For this,
augmented reality is used as a technique to add synthetic visual and
auditory stimuli to people’s perception. A system for the mutual dis-
play of the gaze direction of two interactants is presented and its ac-
ceptance is shown through a study. Finally, future possibilities of pro-
moting this novel concept of artificial communication channels are ex-
plored.

i

A Note on the Use of Pronouns

For the sake of readability, I will exclusively use male pronouns when refer-
ring to individuals who may as well be female as they may be male. I believe,
in a work like this, cognitive capacity is better spent on understanding a sen-
tence’s meaning than on the also important reminder of the falseness and
injustice of male prototypes forming mental representations of descriptions
using this admittedly unfortunate and biasing diction.

Nevertheless, I apologize to anyone who does not accept this explanation
as satisfactory and might feel offended or segregated.

Contents

Abstract i

Contents iii

List of Figures vi

1 Introduction 1
1.1 Overview . 1

Motivation . 1
Goals . 3

1.2 Nonverbal Communication 4
1.3 Augmented Reality . 5

Definition and Examples . 5
Hardware . 6

1.4 Sonification . 8
1.5 Alignment in Communication 9

Definition . 9
Relation to this Work . 10

2 Preliminary Considerations 11
2.1 Technical Possibilities . 11

Basic Prerequisites . 11
Our Input Data . 12
Major Dimensions of Gaze Direction Display 12
Alternative Possibilities of Gaze Direction Augmentation . . . 16
Non-Gaze-Direction Displays 17

2.2 Implemented Channels . 18
Visual Augmentations . 18
Auditory Augmentations . 19

3 Implementation 21
3.1 Hardware . 21
3.2 Framework . 23

Overview . 23

iii

iv Contents

Inter-Process Communication 26
3.3 Subsystem Implementations 27

The Visual Subsystem – LAFORGE 27
The Control Module – PICARD 35

4 Evaluation 43
4.1 Method . 43
4.2 Results . 46
4.3 Discussion . 49

5 Conclusion 57
5.1 Summary . 57
5.2 Prospects . 58

Future Communication Channels 58
Mobility . 61
Multiple Users . 61
More Studies . 61
Communication Research . 62
Virtual Environments . 62
Better Hardware and Software 63
Ambient Intelligence . 64

Bibliography 65

Appendices 69

A Software Installation 71
A.1 XCF . 71
A.2 ICL . 72
A.3 PICARD . 72
A.4 LAFORGE . 72
A.5 MILES . 73
A.6 SuperCollider . 73
A.7 Wii Software . 74

B Usage Information 75
B.1 Using the GUI . 75
B.2 Manual Execution . 75

C Doxygen Documentation 79
C.1 PICARD Class Documentation 79

CalculateHelper Class Reference 79
ConfigWin Class Reference . 91
Idler Class Reference . 97
Main Class Reference . 99

Contents v

MarkerListGenerator Class Reference 103
MarkerListPoller Class Reference 108
MessageWindow Class Reference 110
ObjectCreator Class Reference 112
ObjectHighlighter Class Reference 117
ObjectViewListener Interface Reference 124
PicardInterceptor Class Reference 126
Properties Class Reference . 133
ScottyRetransmitter Class Reference 148
Sonificator Class Reference . 159

C.2 LAFORGE Class Documentation 168
ARTObjectList Class Reference 168
glhelpers::Colorset< T > Class Template Reference 170
laforgetimer::ControlledValue Class Reference 173
objectloader::Face Struct Reference 177
FlatObjectList Class Reference 179
laforgetimer::FunctionControlledValue Class Reference 182
FuzzyRect Class Reference . 185
graphObject Class Reference 190
laforgetimer::LaforgeController Class Reference 197
LaforgeInterceptor Class Reference 199
objectloader::LoadableObject Class Reference 204
glhelpers::Material_t< T > Class Template Reference 208
objectloader::Object3D Class Reference 211
ObjectList Class Reference . 215
objectloader::ObjectPart Class Reference 220
laforgetimer::PointerControlledValue Class Reference 224
ScottyCommunicator Class Reference 227
ScottySubscriber Class Reference 230
objectloader::Texture Class Reference 235
uniqID Class Reference . 237
laforgetimer::ValueID Class Reference 239
glhelpers::Vector2< T > Class Template Reference 241
glhelpers::Vector3< T > Class Template Reference 243
WorkThread Class Reference 246
XCFThread Class Reference 249

D Questionnaire 253

Glossary 255

List of Figures

1 Natural communication . 4
2 Science fiction example of augmented reality 6
3 Google Maps as AR predecessor 7
4 Attention trace . 14
5 Exemplary ASR envelope . 15
6 Arrow guidance . 16
7 Fuzzy area . 17
8 Discrete visual augmentation . 18
9 Complete hardware setup . 22
10 SCOTTY hardware . 23
11 Module overview . 25
12 AR Toolkit demonstration . 28
13 Fuzzy rectangle construction . 30
14 Envelope types . 31
15 Logarithmoid-logarithm comparison 32
16 Rectangle projection . 36
17 Rectangle projection intermediate step 37
18 PICARD GUI . 39
19 PICARD initialization sequence diagram 41
20 Experiment overview . 44
21 Marker placement . 44
22 Wiimote GUI . 45
23 Running experiment . 45
24 System uncomfortableness . 47
25 Speed of adaptation . 48
26 Helpfulness of visual highlighting 49
27 Visual highlighting usage . 50
28 Helpfulness of auditory display 52
29 Auditory display usage . 52
30 Search time comparison . 53
31 Box plot of search speed . 54
32 Error rates for object-choice task 54
33 Gesture cone . 58
34 Voice pitch . 60

vi

List of Figures vii

35 Spectrogram of laughter . 60
36 Vision cones in video games . 63
37 Screenshot start.py . 76
38 Sigmoid function plot . 86
39 Venn diagram of the sets diffLists() uses 121

1

1 Introduction

In this first chapter I will write some introductory words on the idea
behind this work, sum up very briefly the various manners people use
to communicate besides speech, explain what augmented reality is,
outline shortly what devices we use to put it into practise, and intro-
duce you, again rather briefly, to the relatively unknown auditory ana-
logue to visualization called sonification. The chapter will be concluded
by explaining the background of this work, therein summarizing what
alignment means in the context of human communication and giving
you an idea of how augmented reality can be used for its study.

1.1 Overview

Motivation

Perhaps the most important property that separates humans from all other
animals is the way we interact with each other, which first and foremost
means our ability to speak. Yet human communication and interaction on
the whole is much more multilayered and complex than only spoken lan-
guage itself. A wide variety of nonverbal means of communication con-
tributes a great deal, and humans usually learn to interpret very subtle and
often culturally dependent cues early in life [L. Knapp and A. Hall, 2001].

These natural communication channels have been working well enough for
millennia at least, yet new media pose new challenges for these well proven
patterns and technical means might be needed to provide solutions to these
– in a sense – self-made problems. But what is more, technological progress
is reaching a level that makes it possible and even intriguing to think about
technical means to improve human communication even when people in-
teract face to face with one another, thereby creating something that could
be called artificial communication channels.

2 CHAPTER 1. INTRODUCTION

An emerging technological field called augmented reality (or AR in short)
seems most promising for realizing this idea. Using head-up displays and
other means to directly augment the normal sensory stimuli a person would
receive without using any device, it seems perfect for providing the addi-
tional input as transparently and unobtrusively as desired.

Current AR research usually focuses on tutoring and assistance scenarios.
While some work has been done to explore the use of AR in multi-user sce-
narios, called collaborative or sometimes shared augmented reality, there is
very little research exploring the use of AR for human interaction itself. Tang
et al. [2002] superimposed something like panoramic photographs of one
user’s surroundings into their equivalent positions of another user’s view.
While this work is a step in the direction described above, no systematic
exploration of using augmented-reality-related techniques for the creation
of artificial communication channels has taken place so far. We will go about
doing so in Chapters 2 and 5 but first let us have a look at why there might
be a chance for current technology to hold its ground alongside the supe-
rior human cognitive abilities and under which circumstances it might even
complement them effectively.

For remote applications, it is quite easy to conceive how technology can
be used to smooth out difficulties which technology itself created. Mod-
ern media often cut down on the natural communication channels heavily.
For example, interlocutors do not see each other or even if they do, they
cannot use the gaze direction either because they do not share the same
physical space. AR itself is a technical system that hinders reading facial ex-
pressions and gaze in particular. Here, restoring such information with novel
techniques is a still quite conceivable yet important goal. Billinghurst and
Kato [2002], for example, describe the important role AR might play in en-
hancing collaborative interaction in the future. In their work, they present
a system for remote collaboration. Vertegaal [1999] also describes a system
for “mediating joint attention” in videoconferencing applications. Just as we
do, they focus on gaze direction. In our setup, though, the interlocutors are
sitting at the same table in front of or next to each other, sharing the same
interaction space. It is recognized that remote applications may profit from
the techniques described in this work as well. However, in the following,
we will focus on the creation of new communication channels in addition
to those occurring naturally and on the influence these artificial communi-
cation channels have on human interaction.

The question remains how today’s dumb software cognition and clumsy
hardware can achieve something people cannot. In future, computers might
gain an advantage over humans by using their access to online information
and sensory input which humans do not have the sensory organs to per-

1.1. OVERVIEW 3

ceive. In order to make these sources of information available in an intuitive
way, machines would need some kind of understanding of the data, which
they do not yet have. For the time being, there is another advantage per-
sonal assistance systems have over human interactants which is that they
remain with their user all the time and never have to focus on anything
else.

Humans might indeed be better at figuring out what someone is pointing
at, but when the dialogue partner is not looking at the pointing person
in the right moment, this ability is of no avail. The same applies for the
detection of gaze direction. People are great at doing this but they have
to look someone into the eyes for accomplishing it. In many situations,
though, looking into one another’s eyes is cumbersome. This is, for example,
the case when sitting or standing side-by-side or otherwise not facing each
other or when the attention is bound by performing a common task. In any
case, one first has to look someone into the eyes or at his hands before
following the gaze or the pointing gesture which may already be distracting
and costs time. Also, people sometimes do not take into account the time
it takes to follow such a gesture. One person might point “over there” but
take his hand down before the other had time to look where he pointed.

Such a collaborative task in which the visual attention is bound to something
else is one example where a technical device doing the job might actually
be helpful and it is the path we chose to take for our system.

Goals

The work at hand has three main goals. First of all, I will explore some basic
prerequisites and fundamentals of possible artificial communication chan-
nels in general and will propose a systematization of the artificial channels
that are feasible with our current hard- and software. Secondly and most
importantly, some of these proposed channels will be implemented and
this implementation will be concisely described. The implemented channels
will finally be evaluated regarding their usefulness and proposals for further
development will be made accordingly.

Before presenting and explaining our system in Chapters 2 and 3, presenting
the results we got so far in Chapter 4 and venturing a glimpse into the future
in Chapter 5 though, I will give an overview over some of the concepts that
are used in the chapters that follow.

4 CHAPTER 1. INTRODUCTION

Figure 1: Natural nonverbal communication cues cover a wide range, all the way
from facial expressions to accessories and clothing. Photographed by Mo Riza, published
under the Creative Commons by-nc licence on Flickr.

1.2 Nonverbal Communication

Humans naturally harness a surprising variety of means for communication
in addition to words, thereby posing a significant challenge for artificial sys-
tems that try to contribute anything to this vast pool of information every
human being uses intuitively. L. Knapp and A. Hall [2001] compiled an ex-
haustive list of these natural nonverbal communication channels of which an
aggregation shall be given to clarify the breadth of natural communication
cues.

Their taxonomy includes

– body motions and reactions such as
· hand and head gestures, including touching,
· movements of other body parts like legs, feet, shoulders or the

torso,
· facial expressions, in particular
· gaze direction and length,
· posture and
· vegetative reactions like pupil dilation, rubescence or perspira-

tion,
– prosodic features such as

· voice pitch,
· loudness and
· tempo,
· rhythm and syllable length and
· voice timbre,

http://www.flickr.com/photos/moriza/
http://creativecommons.org/licenses/by-nc/2.0/deed.en

1.3. AUGMENTED REALITY 5

– other nonverbal vocal cues as
· laughing,
· crying and
· moaning to name a few and
· parts of the lexicon usually not considered to be words (like “uh-

huh” or “um” in English),
– interpersonal distance (proxemics) and finally even
– the use of objects such as cloths, make-up, accessories and furnishing.

1.3 Augmented Reality

Definition and examples

The term of augmented reality was first coined in the literature by Caudell
and Mizell [1992] and further explored by Milgram and Kishino [1994], who
placed it into a continuum with virtual reality at one end and the everyday
world at the other. Basically, it means that the perception of the world peo-
ple live in and interact with is augmented with artificial stimuli in order to
provide additional information or to assist the user in extracting relevant
information out of the percepts.

Current research and early applications focus mainly on visual augmenta-
tions, but other modalities are included by the definition as well. Azuma
[1997] provides a collection of ideas related to AR technology and possible
AR applications.

However, applications that are in actual use are currently quite rare be-
cause AR still faces many largely unsolved technological obstacles, of which
Azuma [1997] and Azuma et al. [2001] provide a good overview. There is
some preliminary work, though, that is in common use already. One prime
example are television broadcasts of sport events, which are often aug-
mented with virtual markings appearing to be embedded into the actual
environment. Offside or first down lines or live distance labels next to the
athletes, for example, are displayed like this. Yet, there is no interaction
with these markings and so it is not AR as it is most commonly understood.

Google Maps might also be considered such a precursor of real AR that is
already suitable for everyday use. It definitely can augment real-world data
but it does not augment reality itself as the user interacts with a picture,
not with what is depicted. From a technical point of view, this is much
easier to put into use than real AR as the underlying real-world data do

6 CHAPTER 1. INTRODUCTION

Figure 2: Early science fiction view on augmented reality from the 1991 movie
Terminator 2: Judgment Day. c©1991/STUDIOCANAL – All rights reserved

not change at a rate that would require a dynamic readjustment of the
augmenting data. In any case, Figure 3 demonstrates nicely how neither
human-generated information nor unprocessed real-world data alone have
the same information density and in many cases not the same usefulness
as their combination. Bringing the same level of helpfulness to everyday
interaction as well as to special applications is the main objective of current
AR research.

Hardware

The devices most commonly associated with wearable AR are head-
mounted displays (HMD).1 There are two basic types of those, called op-
tical see-through and video see-through. Optical see-through HMDs use a
semi-transparent display in front of the eye while video see-throughs use
a camera and a conventional display. Both techniques have their specific
advantages and limitations [Azuma, 1997].

We decided to use video see-through devices primarily because they al-
low real objects to be occluded whereas optical see-through generally can
only add objects to the visual input (a system developed by Kiyokawa et al.
[2000] is a notable exception to this).

To further shield the subjects from their environment and to enable multi-
modal – namely auditory in addition to the common visual – augmentation,

1Although handheld displays might be more common in actual AR applications outside
the lab.

1.3. AUGMENTED REALITY 7

(a) A map of the 5th arrondissement of Paris

(b) The same area as an aerial view

(c) A combination of map data and photographic imagery

Figure 3: Google Maps showing the same area as (a) a map, (b) a satellite picture
and (c) a hybrid view combining data from (a) and (b)

8 CHAPTER 1. INTRODUCTION

we use circumaural headphones in our setup. See Section 3.1 for further
details on the hardware we used.

1.4 Sonification

As just stated, the augmentations that we add to the sensory input of the
users of our system comprise auditory stimuli in addition to the visual ones.
While most people have little trouble imagining virtual objects being em-
bedded into a real environment, sound seems to be a less obvious modality.
While sound could be used to accompany the visual virtual objects to en-
hance the immersive qualities of the system, we chose to use it to convey
arbitrary data to the user, employing a technique called sonification.

Sonification is generally defined to be the use of non-verbal audio to convey
information [cf. Kramer et al., 1999]. So just as visualization transforms data
into a visual stimulus to make use of the human brain’s unsurpassed image
processing capabilities, sonification transforms data into sound to use the
equally astounding yet different perceptional abilities of the human auditory
system.

Hermann [2002] lists some advantages auditory displays have over visual
ones. These include

– being eyes-free, which means they can be used without demanding
visual attention,

– having a high temporal resolution,
– coping better with overlap,
– backgrounding is possible, meaning one becomes unaware of a sound

right until it changes in any significant way,
– the ability to complement visualizations instead of competing with

them like other visualizations would and
– an increased realism when virtual objects produce realistic sounds.

Additionally, the response time to sudden stimuli might decrease because
auditory reaction time is generally about 40 ms lower than visual reaction
time [Kosinski, 2002] and one might even speculate that using redundant
input modalities might further decrease reaction time as the overall stimu-
lus intensity increases. Redundancy, moreover, has the potential to increase
the reliability of recognition so that the combination of visual and auditory
displays might make the user miss less information compared to the use of
only one visual channel.

1.5. ALIGNMENT IN COMMUNICATION 9

There are potential problems, too. Hermann [2002] enumerates some, like

– difficulties for listeners to quantify sound properties,
– complex mutual interactions between different sound properties,
– interference with speech,
– the alien appearance of many sonifications as most people are not

used to interpret the information that is presented to them in this
way, and

– the fact that it is very easy to get annoyed by acoustic input, especially
as it is impossible to shut oneself off from it.

The aforementioned redundancy has a drawback, too, as people could suffer
from information overload if they failed to effortlessly integrate the informa-
tion from different modalities.

1.5 Alignment in Communication

Definition

To conclude our introduction, let us take a look at this work’s context which
lies in linguistic alignment research.

Alignment is a comparatively recent concept in human communication re-
search, first presented by Pickering and Garrod [2004]. It describes the im-
plicit mutual convergence of the internal states of dialogue partners through
very basic mechanisms.

On the level of the representation of a certain situation, this means that in-
terlocutors can focus their exchange on the chunks of information that are
most responsible for this particular mental representation. They do this by
relying on the assumption that their vis-à-vis functionally shares the same
underlying structure to represent situation models and thus can be shifted
into the same condition by some key stimuli. Obviously, this greatly reduces
the amount of information that has to be transmitted, compared to a com-
plete description of all relevant parts of their internal state.

Because the assumption of equal underlying structures usually does not per-
fectly hold true though, alignment is an interactive process during which the
right amount of information that is necessary to reach a common ground is
progressively established. It is also an automatic process which means that
it goes easy on cognitive resources.

10 CHAPTER 1. INTRODUCTION

The Collaborative Research Centre (CRC) Alignment in Communication (Son-
derforschungsbereich 673) – from which the project described in this work
originates – was founded for the sole purpose of studying this phenomenon.
While Pickering and Garrod in their original paper focused on a more lin-
guistic view on alignment, highlighting alignment at the different structural
levels of language, the CRC takes a more general approach to alignment as I
did with the above characterization. So in the CRC’s proposal Rickheit et al.
[2005] define alignment very similarly to be

[. . .] an ensemble of verbal and non-verbal means that serve
to increase the similarity in structure of two interacting dynamic
systems in a largely automatic and non-reflexive fashion, without
an explicit exchange of information on system states.

This definition is not even restricted to human interactants, so in the CRC
there are many different research projects, ranging from purely linguistic
ones to those situated in the field of cognitive robotics.

Relation to this work

One part of this CRC on alignment is the research project C5 Alignment in
AR-based cooperation. Its goal is to use augmented reality for the benefit of
alignment research in three main ways: (1) To record data from two inter-
locutors and to analyze this data with respect to alignment that might take
place, (2) to interfere with the subjects’ interaction by augmenting their
perception differently, leading to controlled mis-alignment, (3) to create ar-
tificial means by which alignment might be facilitated.

To tackle this last task is what this project set out to do. At the time of
this writing, it will not, however, be able to make any progress in alignment
research itself because the recording and more so the analyzation part of
the project is not finished yet. However, it aims to enable such a progress
as soon as these means become available.

11

2 Preliminary Considerations

In this chapter I will describe what confines artificial communication
channels in general, what kinds of artificial communication channels
could be realized with the hardware we have at hand and which of
these possibilities were actually implemented.

2.1 Technical Possibilities

Basic prerequisites

Let us have a look at the fundamental possibilities and limitations a designer
of artificial communication channels is facing in general, without going into
the unedifying details of the everyday struggle with image recognition and
the like. At the most basic level, any such technical system has to have at its
disposal the information it wants to convey to the user, either directly from
some means of information retrieval such as sensors or by further processing
its input data. This may seem obvious, but it provides a good starting point
when thinking about such systems. Therefore one has to contemplate what
information exists, how it can be used and how it can be processed to be
more helpful.

In a next step, the system has to present the information acquired in one
way or another to its user. This should happen in an intuitive and unobtru-
sive way. If the user is forced to put too much cognitive resources into the
interpretation of the presented data, the probability of the system to actu-
ally aid the user diminishes. If he, for example, needs to “switch contexts”
between the real world and the virtual augmentation or if the superimposed
data occludes or obscures important real world input, this obviously has a
negative impact on the helpfulness of the augmentation.

12 CHAPTER 2. PRELIMINARY CONSIDERATIONS

Unfortunately, current AR systems can not only easily impair the user’s abil-
ity to perceive his environment but can also hamper its manipulation.

This is surely about to change since AR systems, like all electronic devices,
shrink rapidly. It poses a problem, though, when trying to evaluate the ideas
for tomorrow’s AR applications with today’s equipment.

Our input data

Now what consequences does this very basic picture of AR system design
have for the potential capabilities of our own system, whose hardware setup
was described briefly in Section 1.3 and will be presented in more detail
later on in Section 3.1?

The direct sensor inputs that are available with the current setup comprise

– head position and orientation,
– head movements,
– the user’s view and
– his vocal output.

From this we currently2 derive

– the gaze direction3 and
– the marker positions from the AR Toolkit (see Section 3.3) software.

From these data we deemed the gaze direction by far the most promising
but I will shortly discuss other possibilities further below as well.

Major dimensions of gaze direction display possibilities

We can use the data just listed for the display of one user’s area of at-
tention to his interaction partner in a variety of ways. There are two main
dimensions by which the different types of common FOV display can be
systematized into a general scheme. For a first discrimination, the area of
attention can be displayed either discretely or continuously. Discrete in this
case means, that not the whole field of view (FOV) is displayed as such but
a finite number of entities within it are used for the display. These entities

2For a list of potential future processing possibilities see 5.2 “Prospects”.
3disregarding eye movements because of the narrow field of view of the cameras

2.1. TECHNICAL POSSIBILITIES 13

discrete continuous

no temporal
dynamic/
memoryless

binary highlighting of
objects

highlighting of
partner’s area/volume
of attention

temporal dynamic/
e.g. memory

fading highlighting of
objects

gradually decaying
trace of area/volume
of interest

Table 1: Main augmentation possibilities for gaze direction

can, for example, be virtual or real objects. Continuous means the opposite
of this, which is to say that the FOV is displayed regardless of its current
content4. Independent from this difference and thus forming the second
dimension of the classification, the display could possess a memory of its
recent past or it could just show things as they currently are. The variant
with memory is true to the paradigm of Section 1.1 which asserts that, with
the current state of the art, a system that makes use of its constant pres-
ence has the most potential to be of actual help to the user. It can provide
information from the recent past the user might have missed. On the other
hand, in scenarios where AR is used anyhow, a means to reestablish the
data lost by the loss of eye contact through intransparent AR goggles is very
important and probably a huge help.

The concept of memory can be extended to any kind of temporal dynamic.
Especially a short delay before the highlighting reaches its full intensity
might be useful in many cases, to be able to distinguish between a quick
glimpse or an accidental glance while sweeping over some objects and an
intentional fixation.

Table 1 recapitulates the two axes just described and briefly depicts their
intersections.

So combining the attributes continuous and memoryless yields systems that
could display a kind of vision cone or a kind of gaze beam in 3D or a conic

4“Regardless” might actually implicate the wrong thing if understood in its strong sense,
as our own continuous visual display is a two-dimensional shape on the table which, of
course, is an object in the field of view. More sophisticated implementations might even
project a continuous two-dimensional field of view on the surface of any object in the sur-
rounding world. This would not change the fact, however, that the content of the field of
view is not what such a visualization is about and therefore it is still clearly a continuous
one.

14 CHAPTER 2. PRELIMINARY CONSIDERATIONS

Figure 4: Conception of the trace a user’s wandering eyes might leave with a con-
tinuous 2D implementation with temporal dynamic

section, quadrilateral or other according shape (depending on the assumed
or actual shape of the field of vision) on the interaction surface in 2D.

Adding memory to this might manifest as a shape that leaves a trace where
it recently passed. In 3D this probably becomes quite muddled very quickly,
but for the two-dimensional augmentations, this might be a useful exten-
sion. Figure 4 shows a conceptual design of such a system. You can clearly
see that the current focus probably lies on the candy in the lower right cor-
ner while the eyes wandered roughly from left to right over the table with
fixations on most of the objects and only very little visual attention on the
empty space in between.

On the other hand, the field of view could also be displayed discretely,
which in this case means that only the objects the respective interaction
partner can see are highlighted and not the whole area. This idea, too, can
appear in a plain and memoryless variety and in one that makes sure objects
are not switched on and off instantly but rather their highlight fades in and
out according to some envelope function. Figure 5 shows such a so called

2.1. TECHNICAL POSSIBILITIES 15

0 2 4 6 8

0
20

40
60

80
10

0

time

in
te

ns
ity

Figure 5: Exemplary attack-sustain-release envelope

ASR envelope where the three phases called attack, sustain and release are
nicely visible. While the release phase has the above-mentioned memory
function, the attack phase might serve as a low-pass filter to suppress short
saccade-like head movements with little or no relevance to the interaction
partner5 or accidental glances at objects that incidentally crossed the line of
sight for a very small amount of time during a head movement.

As for how the highlighting is actually done, almost any kind of visual effect
filter is conceivable. For this work, a simple colouring was chosen. Real-
world objects identified by some object recognition module probably re-
duce the freedom of choice regarding the highlighting methods compared
to the virtual AR Toolkit (ART) objects we use (see Section 3.3). As most ob-
ject recognition techniques only return bounding boxes, not accurate object
surfaces, one would probably resort to rectangles or transparent cuboids
around the objects although a fuzzy roundish effect filter might do the job
as well.

Another problem for two interlocutors trying to find out each other’s field of
view is the case when there is no overlap between the two. In this case, the
restricted FOV due to the AR devices becomes a real obstacle. The previous
vampire project used small arrows at the edge of the screen to guide the
user’s attention to some place outside his FOV. However, a study by Han-
heide [2006, p. 149] showed that users did not accept this way of guidance

5Within the C5 project there is currently a study in the planning phase to find out
whether such movements take place and how AR gear affects a person’s overall head move-
ments.

16 CHAPTER 2. PRELIMINARY CONSIDERATIONS

Figure 6: The vampire system uses arrows to direct the user’s attention to some
spot outside his FOV. Image used with permission from Marc Hanheide.

very well. Neither accuracy nor helpfulness were rated good. Therefore, we
decided to try another technique that currently only works for the 2D con-
tinuous FOV display: Instead of a mere perspectively distorted rectangle
representing the partner’s field of view, the system adds a highlight gradi-
ent (Figure 7) to the rectangle’s edges, giving it a fuzzy appearance. This
means even without overlapping FOVs the interlocutors still see the gradi-
ent and can follow it upwards to find each other’s centre of focus. It should
also be quite intuitive since the same representation is used as for the FOV
display itself (that is, a coloured area on the table) and people should be
familiar with the concept from the shine of a lamp.

Alternative possibilities of gaze direction augmentation

Outside the scheme presented in Table 1, there are some more possibilities
of using the data we have at hand. A technically quite direct way would be a
picture-in-picture display of the partner’s camera signal inset into one’s own
view. This idea can be developed further. For example, one could use the
position of the other’s picture within one’s own as an indication as to where
he is looking. The work of Tang et al. [2002] I mentioned in Section 1.1 can
also be considered such a sophisticated picture-in-picture implementation.

2.1. TECHNICAL POSSIBILITIES 17

Figure 7: The fuzzy area of the continuous field-of-view visualization. The actual
rectangle is beyond the edges of this image, above and left of it.

Finally one could leave the realm of visual augmentation altogether and use
techniques from the field of sonification mentioned in Section 1.4. This, of
course, opens a whole new range of possibilities which can be grouped in
two main categories: (a) Sonifying single events (like “object leaves FOV” or
“object enters FOV”) and (b) a more or less continuous sonification of the
interaction partner’s current centre of focus or of the objects currently in
view. The advantages of sonifications in general were already presented in
Section 1.4. Apart from these general factors, there is another noteworthy
difference between the content of the information provided by the auditory
displays compared to the visual ones. This is that, while the former mostly
provide the same information in a different way, they do so constantly, not
only when the user is looking at a certain area. So they could be seen as
displaying the interaction partner’s FOV in general, not only the common
field of view of both partners.

Non-gaze-direction displays

As the main input data for our system is the gaze direction, there is not
much left to display to the user without further post-processing. There still
is the input from the inertial sensor, though, which could be displayed visu-
ally (although this would probably be most useful with a downstream head
gesture recognition and classification) or a sonification. The latter, though,
probably would have a hard time providing information that a scotty6 soni-

6scotty is the name of the 6 DOF head tracker, see Section 3.1 and Section 3.2.

18 CHAPTER 2. PRELIMINARY CONSIDERATIONS

Figure 8: Snapshots of the discrete visual augmentation in action. The left picture
shows three unhighlighted and two highlighted virtual objects projected on ART
markers. The right picture shows two fully highlighted objects and two which are
partially highlighted which means they either just went into the interaction part-
ner’s FOV or they recently left it.

fication could not provide. Section 5.2 will look at possibilities further post-
processing could enable.

2.2 Implemented Channels

Visual augmentations

In the previous section, some possibilities to visually display the gaze direc-
tion were pointed out and systematized using a 2×2 table. However, every
cell within this table allows some freedom of how to actually implement the
respective concept. Furthermore, in this project, the continuous augmen-
tation with temporal dynamic was not implemented at all. How the other
three cells’ augmentation principles were implemented will be described in
the following.

Figure 8 shows the two discrete systems at work. In the simple memoryless
case, objects instantly turn from grey to yellow when they are in the inter-
action partner’s field of view. Adding temporal dynamic means that they
change colour, too, but they do so in a gradual way, first fading in until
they are fully highlighted, then fading out again as soon as they get out of
the partner’s view. As described in Section 2.1, different types of envelopes
can be used for this and each type can stretch over an arbitrary time frame.

2.2. IMPLEMENTED CHANNELS 19

The current default is an exponential onset of 300 ms and a “logarithmoid”7

decay of 2 s is used. Naturally, the values can easily be adjusted and the
defaults should be backed experimentally by future studies.

Auditory augmentations

Independent from the visual augmentations, there can be auditory ones as
well. As described in Section 2.1, these can be discrete – that is, event-driven
in this case – or continuous as well. The events that trigger sounds in our
system are: (a) an object leaves the interaction partner’s field of view and
(b) an object enters the partner’s field of view. The particular sound to play
can easily be changed of course; at the moment the sound for appearing
objects is a simple 880 Hz 0.6 s percussive sine and the one for disappearing
objects is a duller sounding 440 Hz sine with a percussive envelope half as
long, mixed with a 1/f noise at 30 % the sine’s volume.

A bit more thought had to be spent on the continuous sonification which
uses the line of sight and turns it into sound. Here, too, a future study would
be desirable. It should bring evidence as to which parameters mapped to
which sound attributes work best. As no such study has yet been conducted,
we took a choice of features and a mapping that we deemed reasonable to
begin with. The following table shows which features of the head move-
ments or the line of sight derived from that are mapped to which attributes
of the sonification. The mapping is always done using a sigmoid function
because for none of the input data there is a definite maximum or minimum
value although extreme values should make less of a difference than more
common and thus more interesting moderate values. The only exception is
the speed of head movement, which cannot be negative. So a function with
a horizontal asymptote was chosen which can of course be seen as (and
was in fact implemented in terms of) the positive part of an odd sigmoid
function.

feature sound attribute
speed of head movement amplitude
X-intercept panning
proximity to own centre of focus consonance
Z-intercept fundamental frequency

7This is actually the software’s terminology for exponential convergence (see Sec-
tion 3.3).

20 CHAPTER 2. PRELIMINARY CONSIDERATIONS

In a less condensed form this means the following:

1. The pitch is raised when the subject looks up and lowered when he looks
down. This might be important for distinguishing easily between an inter-
locutor who looks down onto the table surface to perform a task and one
who looks up to seek conversation.

2. The tone gets more consonant and hence more pleasant when the foci
of interest of the two subjects are close to each other and more dissonant
the farther they are apart.

3. The stereo position of the focus of interest as the virtual sound source
corresponds qualitatively to its position in space. So when the focus of in-
terest of one’s partner is to his left, he will hear the sonification more to the
left.

4. The more a subject moves his head around, either by changing its posi-
tion in space or by tilting it, the louder the signal gets. This means especially
that there will be no or almost no sound when the gaze direction does not
change, which should not only be quite intuitive but also help to reduce the
annoyance of the sonification.

21

3 Implementation

In this chapter we will present what hardware and software compo-
nents are used to collect the required data, to process them and to
feed them back to the user. We will also show how these components
talk to each other, and feature some of the more important implemen-
tation details.

3.1 Hardware

The system as depicted in Figure 9 uses the hardware components listed in
the following. Trivisio GmbH manufactured the AR goggles we used. They
customized their ARvision-3D model8 for us to make it use Point Grey Fire-
fly MV9 cameras. These are IEEE 1394 (FireWire) CMOS cameras, deliv-
ering an uncompressed 640 × 480 pixels video stream at 60 frames per
second. The video signals are then processed by one Lenovo ThinkPad T61
laptop computer per HMD. These laptops are equipped with Intel Core 2
Duo CPUs at 2.2 GHz, 2 GiB of RAM, an nVidia Quadro NVS 140M graphics
adapter and an Intel 82801H chipset with integrated audio. As operating
system Ubuntu Linux 7.10 is used, running kernel version 2.6.24 with the
CONFIG PREEMPT RT real-time patch set10 applied. For the user space soft-
ware that processes the video data refer to Section 3.3. The resulting aug-
mented video stream is then fed back to the HMD via a conventional VGA
connector. The Trivisio HMDs feature one 800 × 600 pixel display for each
eye; so along with the two cameras this would allow stereo vision. However,
we process only a single channel because otherwise the computational re-
quirements would double and a couple of new problems would arise when
trying to deliver convincing stereo vision [Drascic and Milgram, 1996]. For
our current goals, the benefit of stereo vision was not considered important
enough to justify meeting the resulting challenges.

8http://www.trivisio.com/tech_ARvision3DHMD.html
9http://www.ptgrey.com/products/fireflymv/

10http://www.kernel.org/pub/linux/kernel/projects/rt/

http://www.trivisio.com/tech_ARvision3DHMD.html
http://www.ptgrey.com/products/fireflymv/
http://www.kernel.org/pub/linux/kernel/projects/rt/

22 CHAPTER 3. IMPLEMENTATION

Figure 9: C5 team member Angelika Dierker wearing the complete hardware setup,
comprising of a pair of AR goggles, a microphone, headphones and an inertial
sensor.

As additional hardware component, an Xsens MT9 inertial sensor can be at-
tached to the head of each user. These 39 mm×54 mm×28 mm sensor units
contain three solid state accelerometers, three solid state gyroscopes, three
thin film magnetometers and a thermometer. The data from these sensors
can be used to calculate an orientation with 3 degrees of freedom (DOF)
that does not drift (that is, it does not accumulate measurement errors over
time). We only use the accelerometers and the gyroscopes though, because
in the C5 project we want to record head movements with 6 DOF instead
of 3. This has the drawback of being prone to coordinate drift.

The noise root mean square of the accelerometers is 0.7 deg/s and that of
the gyroscopes 0.01 m/s2.

To get a stable head position with 6 DOF, we will use the infrared marker
tracking system scotty [Hobein, 2007]. It will use four of the same Fire-
fly MVs that are built into the goggles, except that the scotty cameras do
not use a Bayer filter for colour images but a 880 nm infrared band-pass
filter in front of the lens. The cameras are mounted above the users in such
a way that one pair of them always sees one goggle. For tracking the AR
gears, passive markers will be attached to the goggles and two cameras per
goggle will track its position with the required 6 DOF. The required light of

3.2. FRAMEWORK 23

Figure 10: One of the cameras scotty uses. To the left the LED array can be seen
that projects infrared 880 nm light along the cameras optical axis. Right in front of
the camera a band-pass filter is mounted with a fitting manufactured by C5 student
assistant Alexander Neumann using a 3D printer.

880 nm will be generated by LED arrays next to the cameras. For a picture
of one such camera along with the filter and an LED array, please refer to
Figure 10.

We do not use any eye-tracking hardware. This draws on the assumption –
based on observations from the vampire project – that there usually are only
very few eye movements due to the restricted field of view. This means that,
throughout this work, when speaking of gaze direction or the field of view
this refers always to the camera’s optical axis and the camera’s field of view.
We assume the person wearing the system to see what the camera sees
and we assume the user’s eye movements to be negligible. Within the C5
project a survey is being envisaged that is aimed at confirming or disproving
these assumptions.

3.2 Framework

Overview

Figure 11 is a diagram of all components needed for the AR setup used
in the C5 project (see Section 1.5). The most important parts are the two

24 CHAPTER 3. IMPLEMENTATION

laforge systems, which are tasked with grabbing the camera images, aug-
menting them and displaying them back to the users via their AR goggles,
and the central picard controlling software. picard is the module one
would adapt or exchange to implement different tasks or augmentations
for the AR users. Both of these central subsystems will be elaborated on in
Section 3.3. For a short explanation on the naming scheme, see Box 1.

While the visual output is rendered by laforge, there is also acoustic output
to the users which is generated by SuperCollider’s11 scsynth, which is ba-
sically a digital audio synthesizer. The SuperCollider programming language
itself is not needed as picard sends network packets triggering prestored
parametrized sound units called synths directly to the scsynth synthesizer.
The parameters of these sounds are computed by picard and – along with
the synth names – sent over the network via an application layer protocol12

called Open Sound Control (OSC) [Wright and Freed, 1997].

On the input side of the system, there are mainly scotty and miles. Both
track the head movements of the users with six degrees of freedom, scotty
does so using infrared markers fixed to the AR goggles, providing good ab-
solute position and orientation data which do not drift. miles, on the other
hand, uses MT9 inertial sensors fixed to the users’ heads, which are suited
to observe minute movements. Yet integrating this data to determine the
absolute head position would accumulate errors over time. While the MT9
is capable of compensating for this, resulting in a stable and accurate head
orientation, the position information is lost in this process, which means
translational movements would go unnoticed. scotty is furthermore able
to inform the laforge modules about their location in the global coordi-
nate system, which identifies a position relative to some fix point in space
(like the middle of the table the users sit at).

The visualization module laforge also feeds data back into the system,
namely the positions and orientations of the ART markers. If needed, it will
be able to output the video streams from the cameras in the AR goggles.

In future, the overall inter-process communication will be intercepted and
stored automatically in the XML format used to exchange data (see next
section), without any action needed by the processes themselves. For the
time being, all data that needs to be stored gets written on disc in plain text
by the processes that produce it.

11http://www.audiosynth.com/
12For an explanation of the ISO/OSI network layer model see http://en.wikipedia.

org/w/index.php?title=OSI_model&oldid=227491223.

http://www.audiosynth.com/
http://en.wikipedia.org/w/index.php?title=OSI_model&oldid=227491223
http://en.wikipedia.org/w/index.php?title=OSI_model&oldid=227491223

3.2. FRAMEWORK 25

head movements

PI
C

A
R

D
C

om
m

an
d

M
od

ul
e

G
U

I

Su
bj

ec
t

B

M
em

or
y

(C
ur

re
nt

ly
 p

la
in

 t
ex

t
on

 d
is

k)

D
at

a
C

ol
le

ct
io

n

M
IL

ES
 (n

ot
 u

se
d)

In
er

tia
l H

ea
d

Tr
ac

ki
ng

(3

 D
O

F
A

cc
.,

3
D

O
F

V
el

.)

A
cc

el
er

at
io

n
Se

ns
or

D
at

a
pr

ep
ro

ce
ss

in
g

A
ud

io
 O

ut
pu

t

So
un

ds
ca

pe

O
ve

rla
y

co
nt

ro
ls

head movements

LA
FO

R
G

E
V

is
ua

l d
is

pl
ay

 /
 O

bj
ec

t
tr

ac
ki

ng

O
bj

ec
ts

 w
ith

A

RT
 M

ar
ke

r

O
bj

ec
t

D
et

ec
tio

n

Im
ag

e
O

ve
rla

y

V
R

 G
og

gl
es

O
bj

ec
t

M
ap

pi
ng

w
or

ld
 c

oo
rd

in
at

es
 f

or
 b

ot
h

sy
st

em
s

SC
O

TT
Y

 (n
ot

 u
se

d
ye

t)

H
ea

d
Po

si
tio

n
Tr

ac
ki

ng
 (

6
D

O
F)

D
as

 S
C

O
T

Sy
st

em
SC

O
T

co
nt

ro
ls

head positions

Su
bj

ec
t

A

M
IL

ES
 (n

ot
 u

se
d)

In
er

tia
l H

ea
d

Tr
ac

ki
ng

(3

 D
O

F
A

cc
.,

3
D

O
F

V
el

.)

A
cc

el
er

at
io

n
Se

ns
or

D
at

a
pr

ep
ro

ce
ss

in
g

A
ud

io
 O

ut
pu

t

So
un

ds
ca

pe

O
ve

rla
y

LA
FO

R
G

E
V

is
ua

l d
is

pl
ay

 /
 O

bj
ec

t
tr

ac
ki

ng

O
bj

ec
ts

 w
ith

A

RT
 M

ar
ke

r

O
bj

ec
t

D
et

ec
tio

n

Im
ag

e
O

ve
rla

y

V
R

 G
og

gl
es

O
bj

ec
t

M
ap

pi
ng

w
or

ld
 c

oo
rd

in
at

es
 f

or
 b

ot
h

sy
st

em
s

co
nt

ro
ls

co
nt

ro
ls

ob
je

ct
 p

os
iti

on
s

ob
je

ct
 p

os
iti

on
s

Fi
gu

re
11

:
O

ve
rv

ie
w

ov
er

th
e

m
od

ul
es

us
ed

fo
r

a
co

m
pl

et
e

tw
o

pe
rs

on
se

tu
p.

Th
e

th
re

e
m

od
ul

es
th

at
ar

e
gr

ey
ed

ou
t

ar
e

pa
rt

of
th

e
C

5
in

fr
as

tr
uc

tu
re

an
d

ar
e

re
le

va
nt

to
th

is
pr

oj
ec

t,
to

o,
bu

t
th

ey
w

er
e

no
t

us
ed

in
th

e
st

ud
y

(s
ee

C
ha

pt
er

4)
.

D
ot

te
d

lin
es

si
gn

ify
co

m
m

an
d

pa
ck

et
s,

da
sh

ed
lin

es
se

ns
or

da
ta

,
an

d
ar

ro
w

s
w

it
h

do
ub

le
lin

es
re

pr
es

en
t

th
e

in
te

rf
ac

e
to

th
e

us
er

.
D

er
iv

ed
fr

om
a

di
ag

ra
m

by
C

5
te

am
m

em
be

r
Ti

ll
B

ov
er

m
an

n.

26 CHAPTER 3. IMPLEMENTATION

Box 1: The naming scheme
The naming scheme developed because scot was the first software module
that was to be used. I decided the other modules which were not written
at that time had to follow a common scheme and since scot reminded me
of Scotty (which would even become its name when modified later on to
suit our needs) I chose the scheme you see below. The names miles, la-
forge, Taibak, leah, picard, singh and finally the scot-based scotty were
invented in this order. Except for Taibak they are all backronyms with the
following meanings:

miles: MT9 input leverage and encapsulation system

laforge: lightweight augmented-reality facility with open
real-world–based graphical enhancement

picard: personal interface for controlling AR devices

scotty: Scot, customized to overlook and track this tunnel vision of yours

leah: Laforge examination and analysis helper application

singh: simple numerated items generating helper

leah and singh are only debugging applications and a Taibak is not a soft-
ware module at all but a command package sent by an external application
to control what laforge does.a

aIn our case this external application is picard, which does not fit the scheme that well
but then the acronyms go a long way already.

Inter-process communication

XCF

For all communication between modules the XML enabled Communication
Framework XCF [Wrede et al., 2004] is used.13 XCF is a publish/subscribe
implementation supporting C++ and Java, designed to use XML messages
(and some optional binary attachments). It can be extended to a blackboard
system with a software module called Active Memory. This work only uses
the publish/subscribe functionality though.

This means sensor data as well as visualization commands are encoded as

13The only exception being data sent to the audio synthesizer which only understands
OSC.

3.3. SUBSYSTEM IMPLEMENTATIONS 27

XML and are then sent via TCP to the modules subscribed to the corre-
sponding publisher without the latter having to care about whom it is send-
ing the data to. This alleviated the architecture design and module imple-
mentation a lot. The use of XML facilitates future backward compatibility
when the use of different software versions with slightly different interface
specifications will still work well together.

Anticipated performance issues lead to the design decision not to use the
full capabilities of XCF and Active Memory. Namely the XML packets to re-
ceive are selected by publisher, not by content, thus saving an extra parsing
of the XML content. This introduces some inconveniences, though, espe-
cially when a subscriber creation has to be delayed until a certain publisher
is available. The worst case example in our system is the case when the cre-
ation of a laforge publisher (sending ART marker coordinates) triggers an
associated picard subscriber creation, which in turn triggers the creation
of a picard publisher (sending visualization commands), triggering laforge
to subscribe to this new publisher while picard has to wait for this last
subscriber to get ready until it can use its own publisher to send the visual-
ization initialization packets. Active Memory could have made this scenario
a lot easier but the anticipated latency increase during runtime was not con-
sidered to compensate for the saving of some complexity during the startup
phase.

It has to be said though that, in general, the interprocess communication –
thanks to XCF – is clean, easy and scalable.

3.3 Subsystem Implementations

The visual subsystem – LAFORGE

Introduction

laforge is the module that captures the goggle camera images, augments
them according to the previously received XML command packages (called
Taibaks, see Box 1) and displays them back to the user. It is written in C++

for both performance reasons and its heavy use of the Image Component Li-
brary ICL [Elbrechter] and the AR Toolkit (ART) [Kato and Billinghurst, 1999],
a software library to project virtual objects onto fiduciary markers as if they
were actually fixed on top of these markers. Figure 12 will demonstrate this
process.

28 CHAPTER 3. IMPLEMENTATION

(a) Markers without augmentation

(b) Markers with virtual objects (c) Markers with highlighted virtual ob-
jects

Figure 12: Marker cubes without any augmentation (a), with virtual objects using
AR Toolkit (b), and with all ART objects highlighted to indicate that they are being
looked at (c).

This section only features some selected aspects of laforge’s implementa-
tion. For more details please refer to the detailed Appendix C.2 “LAFORGE
Class Documentation”.

XML parsing

The Taibaks are parsed using the XML Template I/O (xmltio) framework14

which is an XML parser whose API uses XPath to access single elements.
The only exception are the top level tags which are identified using a perfect
hashing algorithm by Majewski et al. [1996]15.

14http://xcf.sourceforge.net/docs/xmltio/index.html
15The software that generates the hash function was written by Taj Khattra. Many thanks

for writing it and making it freely available. I wrote my own C++ output generator based on

http://xcf.sourceforge.net/docs/xmltio/index.html

3.3. SUBSYSTEM IMPLEMENTATIONS 29

This exception is made mainly for clarity and maintainability reasons be-
cause with the hash function a switch/case construct can be used instead
of a long series of if/else statements. In addition, it has the convenient
side-effect though of making the run-time complexity of the tag classifica-
tion Θ(1) instead of Θ(n) (with n being the number of possible tag names;
assuming constant time for the processing of a single string in both cases)
for the string comparisons16.

As the C++ language does not allow code like case hash("SIZE"): to check
for a SIZE keyword because this does not count as a constant expression,
precalculated constants are used (i.e. case SIZE_HASH:). These and the
hash function itself are created from a list of reserved words17. This list
can be extended easily and a run of make18 will create a new header file
containing the appropriate hash function and the _HASH constants.

Continuous field of view display

The continuous field of view display consists of a rectangle that is projected
onto the table surface and that describes the exact area the interaction part-
ner is currently seeing with a fuzzy area around it. This fuzzy area should
enable the user to intuitively find the current attention focus even when
the field of views do not overlap, just by following the colour gradient. Fig-
ure 13 shows what rectangle and fuzzy area19 look like and how they are
drawn in OpenGL. How the transformation matrix is calculated that trans-
forms this rectangular shape into the projection on the table will be shown
later in this section.

Highlighting envelopes

There are currently three different functions (see Figure 14) that can be used
to control the shape of the attack and the decay phase of the highlighting
envelope for discrete objects (see Figure 5). laforge has a general frame-
work for this that can be used to change any variable directly or via a setter

his C code generator but used his parameter generating back-end unalteredly. Source code
is available from http://www.ibiblio.org/pub/Linux/devel/lang/c/mph-1.2.tar.gz.

16A single string comparison is still needed to detect hash collisions from unknown key-
words. This does not affect the asymptotic complexity though.

17located at ext/mph-1.2/taibakkeywords
18manually in ext/mph-1.2
19The rectangle and the fuzzy area surrounding it will in the following simply be called

fuzzy rectangle as a whole for the sake of conciseness.

http://www.ibiblio.org/pub/Linux/devel/lang/c/mph-1.2.tar.gz

30 CHAPTER 3. IMPLEMENTATION

(a) Fuzzy rectangle as it
looks in the software

(b) Gradual colour change
to visualize the order in
which the vertices are
drawn

(c) Each triangle coloured
separately to visualize the
patches the fuzzy area con-
sists of

Figure 13: The fuzzy rectangle that is used to display the interaction partner’s vi-
sual field is implemented in terms of a GL TRIANGLE STRIP. Figures (b) and (c)
illustrate how it is constructed by circumscribing the HSV colour space from red to
magenta during its rendering. For the productive version (a) the colour is set uni-
formly except for the outer vertices whose alpha channel is set to 0. For efficiency
reasons the algorithm can be modified slightly to include the inner rectangle itself
(not shown).

method as a function of time. When such a Taibak is received, a controller
object is created that changes a given variable20 with a constant rate (100 Hz
currently). If a new command concerning the same variable is sent while this
first controller is still running, it is simply overwritten with the new values.
The start value of the new function will be the last value the old controller
set. This is surely desirable but it is important to understand the implication
that setting a fixed time for any given function does not assure a fixed slope,
even if only changing between two fix values, say 0 and 1. This means that
if one wants to assure a constant feel to an envelope, one has to calculate
the internal parameter a oneself. picard currently does this but it has to
use internal constants of laforge like the controller update rate. It would
be desirable to change this in future development of laforge.

One reason for this dependency on internal constants is the fact that the
controller currently only uses iterated functions so that it only needs the
current value of a variable to compute the next one. To change this to a
stateful approach should not raise major problems and is indeed intended in
order to implement more complex functions for other tasks than highlight-
ing such as bouncing movements or rotating objects. It was not necessary
so far, however, and therefore only iterated functions are used as of now.

20Which one this is for any given XML tag has to be hard-coded into laforge though.
XML can not be used to manipulate laforge internals directly. This was a conscious design
decision.

3.3. SUBSYSTEM IMPLEMENTATIONS 31

0.0 0.5 1.0 1.5 2.0
t in seconds

0

20

40

60

80

100

f(
t)

"log"
"lin"
"exp"

Figure 14: The attack phase of the envelope function f(t) in its three different
occurrences described in the text. The parameters T = 2 s and ∆t = 10 ms are
taken from the software’s default values and D = 100 was chosen not to make the
function values unnecessarily unsighty. From these follows the parameter a. For
the “log” curve this is a = 0.95 and for the “exp” curve a = 1011/200 ≈ 1.0233. In
the linear case a is obviously 1

2 . The corresponding decay curves are just like the
attack curves but rotated by -90◦. Please refer to the text for an explanation of the
parameters and the tokens in double quotes.

The three functions that are currently implemented are called linear, ex-
ponential and logarithmoid. The corresponding values of the XML attribute
<ENVELOPE shape=""/>21 have to begin with lin, exp and log respectively.
Of these three types, the so called logarithmoid one surely requires the most
explanation. Actually it does not correspond to a logarithm at all but rather
to an exponential convergence. It is not called so, though, because the sim-
ilar names of exponential convergence and exponential growth (which lies
behind the exponential keyword) fail to convey their substantial difference
(Figure 14). Also, while exponential growth and exponential decay are fa-
miliar concepts, exponential convergence – although being very similar to
exponential decay – is not. Of course, from a mathematical point of view

21This notation actually means the “shape” attribute of the ENVELOPE tag.

32 CHAPTER 3. IMPLEMENTATION

0.0 0.5 1.0 1.5 2.0
t in seconds

0

20

40

60

80

100
f(

t)

logarithmoid
compressed logarithm
logarithm

Figure 15: Side-by-side comparison of a real logarithm (f(t) = logb(t + 1) with
b =

100√3 ≈ 1.011), a horizontally compressed logarithm (f(t) = logb(t
b−1

2 + 1) with
parameter b =

100√51 ≈ 1.040) and the caricature laforge uses. The compressed
logarithm looks a lot more like the “logarithmoid” curve while the normal logarithm
in comparison is hardly distinguishable from a linear graph. The choice of t ∈ [0, 2]
and f(t) ∈ [0, 100] was made to be consistent with Figure 14.

the logarithm and the exponential convergence have different properties.
Perhaps most importantly the latter converges, as the name implies, while
the logarithmic function shows proper divergence. From the point of view
of a user, though, exponential convergence has a certain logarithmic feel to
it in that its slope is high at the beginning and then gradually diminishes.
Figure 15 shows how one could get the impression that exponential conver-
gence could actually be described as an “idealized” version of the common
picture of a logarithm, disburdened from the x = 0 singularity and the im-
practical behaviour for x < 1 but still retaining its overall look, especially
that of the x < 1 part, compressed into the usable range (the middle graph
in Figure 15).

The following equations describe how the three functions are calculated. For
each function f(t), we will first give its formula, which has a parameter a that
corresponds to the XML attribute <ENVELOPE a=""/> and controls the du-

3.3. SUBSYSTEM IMPLEMENTATIONS 33

ration of the attack or decay. This duration can also be set directly with the
attribute <ENVELOPE t=""/> which does not correspond to the indepen-
dent variable t but rather to the function’s duration T (t ∈ [0, T]). See above
for the disadvantage of using this direct way of setting the duration. The sec-
ond parameter the functions take is the destination value D = f(T) − f(0).
They do not, however, take the start and target values as parameters di-
rectly. Instead, we will define a second function F(t) which is simply set off
from the start value by f(t) so that F(t) = f(t) + F(0) which means that
D = F(T) − F(0), too. While the highlighting functions normally go from
F(0) = 0 to F(T) = 1 for the attack and from F(0) = 1 to F(T) = 0 for the
decay, any values are possible here. This is not true for the f(t) which have
a specific f(0) and f(T).

We will finally write the function in its iterated form, computing f
(
(n+1)∆t

)
from f(n∆t), with n being the number of iterations of which there are 1 s

∆t
every second.

The simplest of the three functions is surely the linear one:

f(t) = a
t

∆t
(1)

From this, these properties follow:

f(∆t) = a (2a)

f(0) = 0

f(T) = D = a
T

∆t

(2b)

With Eq. 2b we can calculate a from a given T and D:

a =
D∆t

T
(3)

And by setting t = (n+ 1)∆t in Eq. 1, we obtain the iterated equation

f(0) = 0 (4a)

f
(
(n+ 1)∆t

)
= a+ f(n∆t). (4b)

q.e.f.

For the exponential growth, we use

f(t) = sa
t
∆t − s (5a)

s = sgn(D), D , 0 (5b)

34 CHAPTER 3. IMPLEMENTATION

which means that

f(0) = 0 (6a)

f(T) = D

= sa
T
∆t − s

(6b)

a =

(
D+ s

s

)∆t
T

(6c)

and whose recursive definition is

f(0) = 0 (7a)

f
(
(n+ 1)∆t

)
= a(f(n∆t) + s) − s. (7b)

q.e.f.

Finally, the logarithmoid exponential convergence is an exponential decay
which is shifted along the ordinate. Luckily, “shifting along the ordinate” is
what F(t) does in relation to f(t) anyway. We write the function as

f(t) = −De− t
τ . (8)

The parameter τ is a growth constant for which f(τ) = D1
e . Because f(t)

never reaches the target value 0, we define an ε so that we can abort the
iteration when this value is reached. Regardless of the function used, la-
forge sets a variable it was instructed to change over time to the designated
target value as a last step, right before disposing of the controller. This is
done to avert round-off errors. For the exponential convergence this means
that it does not harm to return ε as its last value, as long as ε is close
enough to zero (and yes, unorthodox as this may be, it can be negative for
D > 0). This ε can be freely chosen using a constant k22 which assures that
the number of iteration the function needs to reach ε does not depend on
D:

ε = −Dk

= f(T)

= −De− T
τ

(9)

From this we get the parameter τ of Eq. 8.

τ = −
T

lnk
(10a)

which confirms f(τ) = D
1
e

(10b)

22The software currently uses k = 2 · 10−4 which looked good on the plots.

3.3. SUBSYSTEM IMPLEMENTATIONS 35

We still need our factor a which, dealing with an exponential function, we
introduce like this:

f(∆t) = af(0) (11a)

a =
f(∆t)

f(0)

= exp
(

−∆t

τ

)
= exp

(
∆t lnk
T

) (11b)

With this we can write f as a discrete system, too:

f(0) = −D (12a)

f
(
(n+ 1)∆t

)
= af(n∆t) (12b)

q.e.f.

The control module – PICARD

Field of view

The conversation partner’s field of view is displayed in laforge with the
fuzzy rectangle described above. The function FuzzyRect::draw() gener-
ates the shape’s coordinates with (0, 0, 1) as its centre, the shape itself be-
ing parallel to the xy plane; that is, around the origin, but with z = 1. The
reason for this offset is going to be explained below. To move each of the n
coordinate vectors given in homogeneous coordinates ri ∈ R4 (i = 1, . . . ,n)

of the fuzzy rectangle to the place corresponding to the actual field of view
to be displayed, laforge expects a transformation matrix M that is multi-
plied with each coordinate vector by OpenGL internally according to

Mri = r?
i (13a)

or simply MR = R?, R = (r1, . . . , rn). (13b)

So how is M actually calculated by the computeTransformationMatrix()
function of picard? From scotty it receives three vectors: The position vec-
tor p, the direction vector d and the up vector u (p, d, u ∈ R3).

First we do almost the same steps as the glut command gluLookAt [Sil,
2006]. This command takes an eye position, a point to look at and an up

36 CHAPTER 3. IMPLEMENTATION

Figure 16: Illustration of the projection of the fuzzy rectangle onto the table surface.
In this figure, the projected shape R ′ is a simple 4:3 rectangle of width 1, not
the more complicated shape used in the actual software. Also, its column vectors
are not drawn as arrows but rather the shape itself represented by these vectors
is shown (the same is true for R?). The vectors controlling the projection in this
example use the values p = (5, 5, 5)T , d = (1, 1, −1)T and u = v = (1

2 , 1
2 , 1)T .

vector. From the two position vectors it calculates a direction vector. Since
we already have one we skip this step but otherwise proceed just as the
standard library function does: If we cannot be entirely sure that d and u are
orthogonal, we define s to be the normalized cross product of d and u (so s
is a vector that points to the right of the projection centre’s point of view)

s ′ = d× u (14a)

s =
s ′

‖s ′‖
(14b)

and v to be the normalized cross product of s and d (so if d and u actually
were orthogonal in the first place, v should be equal to u23)

v ′ = s× d (15a)

v =
v ′

‖v ′‖
. (15b)

Then we can create a transformation matrix L in homogeneous coordinates
that will transform our coordinate system as to be “looking” along the di-

23One could consequently think about checking d and u for orthogonality to save us the
calculation of one cross product and two normalizations, especially since we get orthogonal
vectors anyway as long as scotty does its job right. This is not done yet though and is
probably a bit less straightforward than it might seem at first glance due to floating point
round-off errors.

3.3. SUBSYSTEM IMPLEMENTATIONS 37

Figure 17: Close-up of the intermediate step before the actual projection. The vec-
tors pointing upwards (v) and sideways (s) are also shown.

rection vector d with v pointing upwards perpendicularly:

L =

sx sy sz 0
vx vy vz 0

−dx −dy −dz 0
0 0 0 1

 (16)

This has then to be translated by p with the translation matrix

T =

1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1

 . (17)

Now, thanks to being initially translated by 1 along the z axis, our shape lies,
figuratively speaking, like a slide at the tip of the direction vector if this is
considered to be looking down at the xy plane from the end of the position
vector (see Figure 17). These intermediary coordinates

r ′i = LTri (18)

need to be projected back to the xy plane, with p being the position vector
of the centre of the projection, to yield the final vectors r?

i = Pr ′i.

38 CHAPTER 3. IMPLEMENTATION

Aumann and Spitzmüller [1993] describe how to do this using the 4 × 4
matrix

P =

 A t

−nx −ny −nz 〈n, p〉

 (19)

where n is the normal vector of the projection plane (so n = (0, 0, 1)T in
this case) and

A = dI3 − pnT , d = ‖h − p‖ (20a)

t = (nTh)p (20b)

with h = (px,py, 0)T and I3 =
(

1 0 0
0 1 0
0 0 1

)
.

So our projection matrix is

P =

pz 0 −px 0
0 pz −py 0
0 0 0 0
0 0 −1 pz

 . (21)

We can now combine all these steps into a single transformation matrix M
that will – applied to each ri – yield the vectors r?

i on the xy plane according
to the current field of view defined by the vectors p, d and u. So we can now

3.3. SUBSYSTEM IMPLEMENTATIONS 39

Figure 18: picard’s optional graphical user interface

write Eq. 13b as

MR = PLTR

=

pz 0 −px 0
0 pz −py 0
0 0 0 0
0 0 −1 pz

sx sy sz 0
vx vy vz 0

−dx −dy −dz 0
0 0 0 1

1 0 0 px
0 1 0 py
0 0 1 pz
0 0 0 1

R

=

pzsx + pxdx pzsy + pxdy pzsz + pxdz

pxpzsx + p2
xdx

+ pypzsy + pypxdy
+ p2

zsz + pzpxdz

pzvx + pydx pzvy + pydy pzvz + pydz

pxpzvx + pxpydx
+ pypzvy + p2

ydy

+ p2
zvz + pzpydz

0 0 0 0

dx dy dz
pxdx + pydy

+ dzpz + pz

R

= R?

(22)

q.e.f.

The dimensions of the projected rectangle have to be specified by picard,
too. For them to match the actual field of view of the user, the field of view
of the camera model needs to be known. This was already needed for the
virtual camera setup in laforge where the FOV α was calculated according

40 CHAPTER 3. IMPLEMENTATION

to

α = 2 arctan
(s

2f

)
(23)

with s being the sensor size along one given axis and f being the camera’s
focal length in the same unit as s (see the begin_3D_drawing(void *) ref-
erence).

With this FOV angle α, the size r of the rectangle along this particular axis
can be calculated using simple trigonometry by bisecting the isosceles FOV
triangle into two right triangles. To visualize this, take the arrows in Fig-
ure 17 as segments instead of as vectors. Then d and a line of length r

2 from
the tip of the arrow to the edge of the rectangle, parallel to s, form the legs
of a right triangle. The leg of length ‖d‖ and the hypotenuse of this triangle
then include the angle α

2 . We write down the tangent of this bisected FOV
angle in Eq. 24a and substitute α from Eq. 23 in Eq. 24b:

tan
α

2
=

1
2r

‖d‖
(24a)

tan
(

2 arctan(s(2f)−1)

2

)
=
r

2
(24b)

s

f
= r (24c)

To summarize Eq. 23 and Eq. 24: The width of the “slide” rectangle is rx =
sx/f and its height ry = sy/f where sx usually is the horizontal resolution of
the sensor, sy its vertical resolution and f the focal length in pixels.

3.3. SUBSYSTEM IMPLEMENTATIONS 41

Fi
gu

re
19

:
Se

qu
en

ce
di

ag
ra

m
of

pi
ca

rd
du

ri
ng

it
s

qu
it

e
co

m
pl

ex
in

it
ia

liz
at

io
n

ph
as

e.
In

th
is

ex
am

pl
e,

on
e

la
fo

rg
e

sy
st

em
is

al
-

re
ad

y
ru

nn
in

g
w

he
n

pi
ca

rd
is

st
ar

te
d.

Th
e

se
co

nd
on

e
ap

pe
ar

s
a

sh
or

t
w

hi
le

af
te

r.
So

m
e

ar
ro

w
s

th
at

do
no

t
co

nt
ri

bu
te

an
yt

hi
ng

to
th

e
pr

oc
es

se
s

or
th

ei
r

un
de

rs
ta

nd
in

g
w

er
e

le
ft

ou
t.

Th
is

in
cl

ud
es

m
an

y
re

tu
rn

ar
ro

w
s

w
he

re
th

e
co

nt
ro

l
flo

w
sh

ou
ld

be
ob

vi
ou

s.
Th

e
ca

ll
of

c
o
n
n
e
c
t
S
u
b
s
c
r
i
b
e
r
T
o
P
u
b
l
i
s
h
e
r
(
1
,
0
)

is
al

so
m

is
si

ng
as

w
el

l
as

th
e

as
so

ci
at

ed
ob

je
ct

s
o
b
j
e
c
t
H
i
g
h
l
i
g
h
t
e
r
s
[
1
]

an
d

l
i
s
t
G
e
n
e
r
a
t
o
r
s
[
1
]

an
d

fin
al

ly
re

gu
la

r
X

C
F

in
pu

t
–

m
os

t
no

ta
bl

y
th

e
sc

o
tt

y
H

M
D

da
ta

–
is

no
t

re
pe

at
ed

ne
ed

le
ss

ly
,

no
t

to
cl

ut
te

r
th

e
di

ag
ra

m
m

or
e

th
an

ne
ce

ss
ar

y.

43

4 Evaluation

In this chapter, it will be explained how we aimed to find out whether
the artificial communication channels actually help people, what re-
sults these trials produced and how we interpret these data.

4.1 Method

Having implemented the various ways of a mutual gaze direction display
described in the previous chapter, we were eager to see how useful they
would actually turn out to be. Yet, while the continuous FOV visualization
and sonification were implemented, they could not actually be used at the
time of this writing due to a lack of suitable head tracking data. So the
survey we pursued only deals with the discrete cases – the highlighting of
the virtual objects and the sound events when such objects enter or leave
the field of view.

We let two collaborating subjects at a time perform a total of two tasks. The
subjects were sitting next to each other at a table and were both wearing
the AR goggles and headphones. The goggles did not fully shield their eyes
laterally, allowing the subjects to see their partner’s head movements from
the corner of their eyes. During the first task object highlighting and discrete
sonification were switched on; the second task was performed twice, once
with the two augmentations and once without any. Half of the pairs of
subjects started the second task with the augmentations turned off, the
other half began with the augmentations switched on and had them turned
off later on (cf. Figure 23).

After being explained the mode of operation of the AR system and the visual
and auditory augmentations, they had to perform the first task, which was
meant to give them a feel for the system in a relatively free collaborative
context. The two subjects were first asked to sort six virtual objects24 before

24which were projected onto marker-bearing 5 cm× 5 cm× 5 cm cubes of acrylic glass

44 CHAPTER 4. EVALUATION

task 1

sort group

task 2

with highlighting

A gazer
(10×)

B gazer
(10×)

A gazer
(10×)

B gazer
(10×)

without highlighting

A gazer
(10×)

B gazer
(10×)

A gazer
(10×)

B gazer
(10×)

Figure 20: Process flow of the experiment. The tree is traversed left to right, every
leaf being an action the subjects had to take. The order of with highlighting and
without highlighting was interchanged for half of the subject pairs. The leaf nodes
for the second task indicate whether subject A or subject B takes the role of the
gazer and that ten objects are to be chosen before switching roles.

Figure 21: The placement of the ART markers for the second task of the experiment.
The subjects were sitting at the side of the trapezoid table that is at the bottom of
the image. This side measured 140 cm, the opposite side 70 cm and the depth of
the table was 61 cm.

them by size and then to group the objects by any system to their liking.
They should solve both subtasks cooperatively and were allowed to speak
and act as they pleased.

For the second task, the six movable markers were replaced by five 9 cm ×
9 cm cardboard markers that were arranged on the table surface as shown
in Figure 21. The subjects were then given one Nintendo Wii Remote con-
troller each as synchronization devices. Now they were assigned two dif-

4.1. METHOD 45

Figure 22: GUI to control the repetition count and the gazer/searcher role alloca-
tion. This application also wrote the times and accompanying status data of the Wii
Remote button presses to disc. The controls from top to bottom serve to (1) de-
termine the current gazer and searcher, (2) display the run count (one run being
defined to be a single choose–find sequence), (3) toggle the highlighting status in
the log file, and (4) switch from introduction mode (displayed as “Run 0”) to the
actual experiment .

Figure 23: Two interactants solving the second task of the experiment.

ferent roles alternatingly, nicknamed gazer and searcher. The gazer had to
randomly select one of the objects and just focus on it centrically. At the
exact moment he picked the object and began staring at it he had to press
two buttons simultaneously. This button press made the second Wii con-
troller vibrate for 0.1 s which was the signal for the searcher to look at the
same object centredly, too, and press the same two buttons as quickly as
he could. The searcher was free to try to follow his coplayer’s gaze before
the signal. The two players were not allowed to speak or gesture, though,
except to verify whether they had actually looked at the same object after
the event, which they were actually asked to do.

46 CHAPTER 4. EVALUATION

This cycle was repeated about ten times25 before switching the roles of
gazer and searcher. Every subject incarnated each role twice for each of the
two conditions “with augmentations” and “without augmentations”.

Before the second task actually started, the above rules were explained to
the players and they had the opportunity to familiarize themselves with
these rules by trying the game out as many times as they deemed neces-
sary. These familiarization runs were specially marked and taken out of the
evaluation.

The times of the button presses were recorded, along with the current role
allocation, whether the button press caused a vibration or was extraneous,
and if the highlighting was switched on or off. Additionally, the IDs of the
detected markers of both laforge systems were saved along with their
positions and a timestamp, and the trials were videotaped.

After being finished with the tasks the subjects were asked to fill in the
questionnaire whose German original can be found in Appendix D.

4.2 Results

Eight pairs of subjects participated, all previously known to each other to
varying degrees, making for a total of n = 16 subjects. Among these, 11
were male and 5 female and they were ranging from 26 to 33 years in age.

The first of the multiple-choice questions on the questionnaire was about
whether the subjects had any prior experience with AR systems. 9 of them
had, 7 had not, but the answer to this question did not predict the outcome
of any of the following questions.

The next two questions concerned the uncomfortableness of the system:
“How uncomfortable did you find the system of this experiment?” with four
answers ranging from “not at all” to “very awkward” followed by an open
question “In case you found it uncomfortable: How did this lack of comfort
manifest?”

The results for the rest of the multiple-choice questions will be presented
as bar charts. For all bar charts, the horizontal axis represents the response

25Very quick pairs of subjects led to difficulties of stopping them in time without interfer-
ing with the measurements. On the other hand, there were false button presses that misled
the run counter. On average, there were 9.8 cycles per turn.

4.2. RESULTS 47

Figure 24: Bar chart of the questionnaire results to the question “How uncomfort-
able did you find the system?”

options. Unlabelled options were not labelled on the questionnaire either
and of course the relative order of the response options is preserved. We
chose not to provide a middle option. So all responses had to be either on
the negative or on the positive half of the spectrum. For each question at
least for one half it will be said what percentage of the subjects chose a
response therefrom.

Figure 24 shows that everybody felt somehow impaired by the system.
62.5 % of the subjects chose a response from on the negative (more un-
comfortable) half of the four response options.

According to the open question asking for the reasons, people found the
goggles irritating, too heavy, hard to adjust, and a strain on head and eyes.
The resolution was perceived as too low and the lag as too high. Many
complained about the pressure to their heads and one subject even got a
headache. Many of the subjects found this issue to be so important that
they used the more general questions about the system further below on
the questionnaire to express their concerns regarding the uncomfortable-
ness again. Also, when talking during or after the trials, this topic was much
raised. What ranked highest among the wishes for a less irksome device
were less weight, a sharper image and stereo vision. Beyond the cumber-
some hardware, it was the unsteady recognition of the fiduciary markers
that annoyed or irritated people the most while using the system, judging
by the comments on the questionnaires.

48 CHAPTER 4. EVALUATION

Figure 25: Bar chart of the questionnaire results to the question “How quickly did
you adapt to the system?”

The next question prompted for the speed of adaptation to the system (Fig-
ure 25). There were four possible answers from “not at all” to “very fast”.
87.5 % of the subjects chose an answer from the positive (faster) half. One
subject put a remark on the questionnaire pointing out the intuitiveness of
the visualization.

The last four multiple-choice questions queried how useful the subjects
found the visual and the auditory augmentations and how much they
thought they had used them. The scale for the questions about the intensity
of usage went in four steps from “not at all” to “very strongly”. The scale for
the helpfulness questions had four similar options from “not at all” to “very
helpful” and an additional fifth option “distracting” that was placed next to
the “not at all” option but visually separated from the rest of the scale to
indicate the discontinuity.

Figures 26 to 29 show the results from these questions. The percentages
of responses from the positive half are: 93.75 % for the visual helpfulness,
100 % for the visual usage, 0 % for the auditory helpfulness, and 0 % for the
auditory usage. Nobody found any of the augmentations distracting.

We did not find any significant pattern in the time measurements. Figure 30
shows the means of these measurements per subject pair, broken into runs
with highlighting and those without. The box plots of the measured search
speed data in Figure 31 further illustrates the large variance of search times

4.3. DISCUSSION 49

Figure 26: Bar chart of the questionnaire results to the question “How helpful did
you find the visual highlighting?”

within and between the individual pairs of subjects and the lack of any ap-
parent structure. The breakdown of the boxes is the same as for the columns
in Figure 30: per subject pair and per state of the highlighting. Outliers with
more than two standard deviations difference from the mean were removed.

From the video the error rates were obtained by evaluating the oral veri-
fications. Figure 32 shows these error rates as percentages. Except for the
three pairs whose columns are rightmost in the figure, few errors were made
in any condition. Said columns belong to subject pairs who decided not to
look each other into the eyes at all, which increased their mean error rate
more than sixfold.

4.3 Discussion

The resonance to the visualization was very positive, judging from both the
multiple-choice answers and those to the open questions. This approving
view of the visualization was further confirmed by spontaneous oral com-
ments during or after the experiment26. This positive personal assessment
was not, however, reflected by the performance in a significant way.

26like after switching off the highlighting: “This is no fun [like this].” or even “And how
are we supposed to solve this [without the highlighting]?”

50 CHAPTER 4. EVALUATION

Figure 27: Bar chart of the questionnaire results to the question “How much did
you use the visual highlighting?”

This may have several reasons. For one thing, the relatively few objects were
positioned far apart from each other. This was done to partially compensate
for the current lack of a possibility to distinguish between objects that the
interaction partner was directly looking at and those that were only de-
tected at the edge of the camera’s field of vision. Judging by utterances
during the task this peripheral object detection often went unnoticed even
by the person having this object in his field of view27. This relatively large
amount of space between the objects made it quite easy for many subjects
to tell which object their partner was looking at just by seeing the head
movements at the corner of their eyes. One pair of subjects was even able
to look at their respective partner all the time and tell which object he was
looking at by heart, without ever looking back onto the table. A random-
ization of the objects would have prevented this last way of “cheating” in a
way, which would have made sense since there are few real-world situations
in which such a strategy could actually be used. But the more general lesson
from this probably is that the implementation of a “laterality display”28 and

27There were remarks like “The pagoda is yellow, too. Why is that?” – “I have no idea.”,
“There were two yellow ones, strange.”, and “I thought to be looking at the sofa.”

28Which may for example just result in the highlighting to have a different colour depend-
ing on whether the object is near the centre of the partner’s FOV or towards its edge. This is
a feature that has been in the pipeline for quite a while and so will probably be implemented
soon.

4.3. DISCUSSION 51

a more realistic scenario with more objects closer to each other might shift
the actual usefulness into the direction of the already perceived utility.

Some subjects actually proposed the implementation of a kind of a line of
sight display or arrows to direct the user’s attention towards his partner’s. So
the employment of the already written head-tracking visualization will meet
both these perceived problems and is hence a most promising approach.

Noteworthy but hardly surprising is the distinctive drop of accuracy for the
three rightmost columns in Figure 32(b): These were the cases in which the
subjects decided only to use the corner of their eye to determine where their
partner was looking instead of direct eye contact. Although the error rates
are also slightly higher for the rest of the pairs when having their highlighting
turned off, this can be explained by chance and a small irritation caused
by the highlighting deactivation. Except for the three cases mentioned, the
overall error rates were very close to zero anyway, so single mistakes already
had a large effect.

The wearing comfort was not only given bad marks but it was also by many
considered the major reason not to use the system outside the lab. As stated
in Chapter 1, this is not much of a surprise. All we could hope for with
this study was a proof of the concept and an idea of its usefulness once
the fundamental issues of object detection and cumbersome hardware will
somehow be resolved. Considering these conditions, the results are more
pronounced than they could have been.

Some subjects noted that the highlighting was hard to see under certain
circumstances (like for certain objects – cf. Figure 12(c) –, when looking from
certain angles or with badly adjusted goggles) and proposed highlighting in
red instead of yellow or rectangles around the objects. An adjustment of
the OpenGL material and lighting parameters would probably also fix this
problem, but then more colourful objects might worsen it again.

The auditory augmentation on the other hand was not rated nearly as well
as the visual one. Neither was the auditory presentation of data perceived
as very helpful nor did the subjects state to have used it a lot. First of all,
though, it has to be argued that auditory stimuli, mostly unlike visual ones,
can be backgrounded, which means that they are still processed but on a
subconscious level. It is hence possible that the subjects underestimated
their own usage of the auditory cues. However, since the performance was
not influenced significantly even by both sound and visual highlighting at
the same time, the low usefulness estimates seem correct. It could even be
said that the subjects overestimated the actual usefulness of the visual aug-
mentation in a way. In any case, as the amount of information encoded in

52 CHAPTER 4. EVALUATION

Figure 28: Bar chart of the questionnaire results to the question “How helpful did
you find the auditory display?”

Figure 29: Bar chart of the questionnaire results to the question “How much did
you use the auditory display?”

4.3. DISCUSSION 53

Figure 30: Comparison of mean search times with highlighting (yellow columns)
and without it (grey columns). One data record was corrupted so there was only
data from seven subject pairs.

the auditory augmentation is less than in the visual one, its general short-
fall is not overly surprising, but the extent of this contrast is unexpected.
Some participants said they had used the auditory cues as a kind of activity
monitor; this is probably the most one could expect from this simple kind of
sonification. Even for this use it was compromised, though, by the fact that
most subjects tended to move their head very fast to a certain spot when
choosing a new object. Fast movement leads to a blurred image which in
turn impairs the recognition of the ART markers. So there were no sounds
played although the line of sight crossed several objects.

Some subjects proposed to make the presented sound depend either on
the objects seen (which would make it the auditory analogue of the current
discrete visualization, except that it would not be restricted to the own field
of view) with each object having its own specific sound, or to encode things
such as the direction of the partner’s focal point into a stereo signal. This
is encouraging as the current continuous sonification already includes these
latter data as well as some other.

The previously mentioned blurring and subsequent temporary deactivation
of the virtual objects also diminished the usefulness of the visualization.
Colour is a very salient and very effective feature to draw people’s attention
to one object out of many [Wolfe and Horowitz, 2004]. So, in principle, one
quick glance over all of the objects on the table would reveal the ones that

54 CHAPTER 4. EVALUATION

Figure 31: Box plot of the search speed. Yellow boxes represent activated highlight-
ing, grey ones deactivated. The pairs are in chronological order. Outliers with more
than two standard deviations difference from the mean were removed.

(a) Error rates with highlighting (b) Error rates without highlighting

Figure 32: Error rates in the object-choice task with highlighting (a) and without
(b). The upper part of each column is the percentage of wrong guesses, the lower
part is the percentage of right guesses. Only the first guess per object chosen by
the gazer was counted. The three rightmost columns in each of the two figures are
the subject pairs who chose not to look each other into the eyes, not even when
being deprived of the highlighting.

4.3. DISCUSSION 55

are highlighted. In fact, though, one has to look at one marker at a time
and fixate it for a short while to allow the image to stabilize and the virtual
object to appear. This is far less effective than it could be but little can be
done about it at the moment.

All in all, the results of this first study are almost surprisingly positive, not
only in the face of the remaining technical obstacles, but also considering
the small amount of information that was conveyed compared to the tech-
niques using head tracking that are waiting to be tested and furthermore
considering the challenging direct competition with the largely intact natu-
ral channels.

57

5 Conclusion

In this final chapter I will recapitulate the content of the previous
chapters, and hazard a guess how this work could be continued and
whether it will change people’s lives.

5.1 Summary

Humans naturally use a variety of communication channels to a great ef-
fect. Nonetheless, technology has reached a level that makes it interesting
to think about complementing these natural channels with artificial ones.
Augmented reality provides the means to do that.

One type of artificial communication channel conveys to the user what an
interaction partner currently looks at or where he looked a short while ago.
This can be done by displaying the gaze direction directly or on the basis of
the objects that are being seen. Also, this data can be visualized as well as
sonified.

We implemented four distinct modes of data presentation, which can be
used together or separately:

– A highlighting of virtual objects by changing their colour when they
are in the other’s view, using a freely configurable temporal envelope,

– an outline of the interaction partner’s field of view on the surface of
a table, using an optional surrounding colour gradient to intuitively
guide the user’s gaze towards his partner’s,

– an event-based sonification of objects leaving and entering the part-
ner’s view and

– a continuous sonification of the horizontal position of the centre of
focus, its height, its proximity to one’s own centre of focus and the
speed of the partner’s visual movement.

58 CHAPTER 5. CONCLUSION

Figure 33: Hand gesture visualization from vampire [Heidemann et al., 2004]. Image
used with permission from vampire team members Holger Bekel and Ingo Bax.

We tested the highlighting and the event sonification using an object-choice
task and found that the subjects accepted the new technique surprisingly
well, given the small amount of information that is encoded in these two
channels – compared to the more sophisticated head-tracking–driven aug-
mentations. The overwhelming majority found the visualization helpful or
very helpful, while the simple sonification was not perceived to be help-
ful. There is no performance gain yet, but we have reasons to be optimistic
towards the two other already implemented augmentations and further de-
velopment.

5.2 Prospects

Future communication channels

From the raw input data listed in Section 2.1, one can obviously extract
much more data than we do currently. This additional information might for
example include

– voice pitch,
– distinct head gestures,

5.2. PROSPECTS 59

– uttered keywords,
– hand gestures,
– laughing [Truong and Leeuwen, 2005] or similar vocal characterizers

[Zeng et al., 2007] or
– real objects in the field of view.

Hand gestures are probably the most promising of these choices and would
be a great addition to the existing FOV displays. Figure 33 shows how such
a pointing gesture visualization looked in the vampire project and could
serve as a model for an implementation in our system. The implementation
shown in this image counts as a 3D continuous visualization, but the gen-
eral classification from Section 2.1 could surely be applied here, leading to
discrete visual displays as well as audible ones.

Voice pitch, spoken words and vocal characterizers such as laughing are less
likely to provide much aid to most people when displayed visually. They are
highly salient audible features and are unlikely to be missed by an interlocu-
tor in a dialogue and even in small groups. On the other hand, they might
be all the more helpful for hearing impaired persons. In situations with more
than two interactants or when being distracted, for example by a common
task, an unobtrusive visual display of these important cues could provide a
great help. A simple speech detection display, perhaps showing the direc-
tion the voice is coming from, might help hearing impaired persons who can
lipread. A voice pitch graph (cf. the more detailed but also more flamboyant
voice pitch spectrogram in Figure 34) provides more information and even
deaf persons who have no way of understanding spoken language might
learn to interpret basic intonation patterns. Figure 35 illustrates that one of
the most important vocal nonverbal cues – laughter – looks quite striking in
a spectrogram and might therefore be detected automatically [Truong and
Leeuwen, 2005] to display it with an unostentatious icon.

As with the rest of the artificial communication channels, whether these
techniques actually provide any real help fully depends on the hardware
used. Few people will want to wear heavy gear that makes them look
strange just to get some nice helpful audio cues visualized.

I just presented some ideas for new data sources that could be exploited
for artificial communication channels. But even the possibilities of gaze di-
rection displays were not exhausted implementation-wise. There is no vi-
sion cone yet, and since the fuzzy rectangle already is implemented using
OpenGL, it would only be required to add the eye point as a vertex to every
corner. This is too simple an extension not to try it out. On the sonification
side, a continuous sonification of the objects seen is missing. One imple-
mentation of this concept is a soundscape that is created from the ART

60 CHAPTER 5. CONCLUSION

Figure 34: Voice pitch of the same phrase with different intonations

Figure 35: Spectrogram of laughter giving way to speech

objects currently in the other’s view. This soundscape could be generic and
thus generalizable or each object could have a sound with which it is in-
tuitively associated (like a bouncing sound for a ball). Picture-in-picture is
a visualization technique we do not use yet, but it would be interesting to
see how it performs compared to the other display possibilities.

Finally, the trials revealed one more useful special case of gaze direction
display: This is a notification (visual or auditory) when someone is looking
at you. Due to the restricted field of vision it was very difficult to get a
subjects’ attention when they were distracted, for example by looking at
the table. Very often they would not notice being talked to if not called by
their name. While for the only two users of the current system this is less
of a problem, in general this impairs human communication a lot and could
easily be helped with a slight extension of the present means.

5.2. PROSPECTS 61

Mobility

It is difficult to say, whether, in a scenario in which both interactants are
sitting at a table, the system is more helpful when both are sitting next
to each other where they can see each other’s head movements from the
corner of their eyes, or when they are sitting in front of each other where it
is not so cumbersome to look up to see what the partner is looking at. To
investigate these two cases in a study might therefore be quite interesting.

It is not hard to imagine, though, that leaving the table and moving about
would already drastically improve the helpfulness of the system. It becomes
much easier to lose track of your interaction partner’s focus of attention if
you have some business of your own and there are few sensory cues to help
you once the other is no longer right in front of you. On the other hand, this
would result in much higher demands for the system in terms of mobility,
range and accuracy.

Multiple users

The system is not in principle limited to two interactants. It is obvious that
under normal circumstances you can keep a close eye on one of the people
around you at most. So, say, differently coloured highlights with a long de-
cay time should have much potential here. On the other hand this bears the
risk of overburdening the users who would have to remember the assign-
ment of colours to persons if there is no effective AR cue to take this extra
task from him.

More studies

It is obvious that the study presented in Chapter 4 only covers small parts
of what should be investigated. Some parts that are already implemented
were not included in this study and, moreover, it became evident that some
minor improvements – such as a feedback about the proximity to the cen-
tre of the field of view – would probably increase the helpfulness a lot. In
addition, even for the channels used in the study presented above, more
scrutiny is needed to differentiate between the effects of the various arti-
ficial communication channels, be they visual or auditory. Finally, each of
these channels has parameters that were chosen randomly so far.

62 CHAPTER 5. CONCLUSION

There are the following variables for the already implemented techniques
alone:

– attack envelope shape
– attack duration (with notable special case T = 0)
– decay envelope shape
– decay duration (with notable special case T = 0)
– highlight colour/intensity
– choice of event sounds
– parameter-attribute choice and mapping of the sonification
– allow or disallow gestures
– allow or disallow speech
– positioning of the interactants at the table

Finding adequate tasks and scenarios will be a further crucial challenge.
After all, it is to be expected that the various gaze direction display types
are suited for different applications and conditions and even their respective
parameters might be tailored to perfectly fit a particular setting. To find
general rules that provide your ready-made artificial communication channel
for any given application is probably a long-term objective.

Extending the range of scenarios is interlinked with other issues previously
mentioned such as mobility and multi-user capability, and it might suggest
further improvements such as an object-recognition module to deal with
real-world objects.

Communication research

As the idea for this work was born within the C5 project from the wish to
better understand human communication, this is a path that shall be further
explored. The idea of gaining insight into human communication, especially
regarding alignment, by recording and selectively impairing or enhancing it
remains intriguing. Other research might investigate the impressive human
capability to quickly adopt to such novel forms of input and to effectively
integrate these forms with the variety of channels they already use.

Virtual environments

The scheme of Chapter 2 and the idea of enhancing human communication
using artificial communication channels might not only be used for aug-

5.2. PROSPECTS 63

Figure 36: Three examples of vision cones in video games. From left to right these
are from the 1994 Nintendo game Super Metroid, the 1998 Konami game Metal
Gear Solid and the 2006 EA Sports game Madden NFL 06.

mented reality but it might also prove useful for purely virtual reality (VR)
applications. While there are currently no plans to take any steps into that
direction ourselves, it might apply even more, as there are of course no
natural communication channels in VR. They could be simulated but this is
probably difficult. Exploring channels that come easier to machines while
being intuitive and unobtrusive for humans might be a common interest
for both AR and VR researchers. A kind of purely virtual environment (al-
though not necessarily VR) in which gaze direction displays have been used
are video games. As Figure 36 exemplifies, vision cones are probably the
most prevalent type. We can only speculate whether this is because they
simply are the most intuitive and most informative type or because there is
a lack of alternatives. It is somehow doubtful, though, that they are perfect
for every application and they probably are not the least obtrusive display
variety.

Better hardware and software

As pointed out in Chapter 1 and by many participants of our study, the
uncomfortableness of the goggles and the lag and the reliability of the im-
age recognition are major issues. While the advancement of AR hardware
and image recognition algorithms is beyond the scope of C5 or any project
derived thereof, there might be room for improvements of laforge’s per-
formance.

Up to now, the priority of the visualization software development has rather
been on the setup of the artificial communication channels than their com-
putational efficiency. Profiling the software would reveal where time and
energy can be fruitfully employed. What is probably only a small fraction of
the overall computing time, yet a part of the program very easy to improve,
is the XML parser. Xmltio builds a DOM tree from every packet received.

64 CHAPTER 5. CONCLUSION

This is a waste of resources and a SAX or pull parser combined with the
perfect minimal hash function already in place would probably have a fairly
large effect on this fraction of the code.

Ambient intelligence

At the time being, the display techniques are quite prominent in the users’
perception. This might change with habituation but one can also think of
how the system itself could become more subtle. A philosophy called ambi-
ent intelligence treats software systems that have no clear-cut incarnation
like a user interface or an agent. Instead, the intelligent system is “just
there”, constantly working in the background but only to become visible
when such help is likely to be appreciated. Artificial communication chan-
nels may well turn out to be such a means by which an ambient system can
subtly act upon the user. It might switch them on when the user is likely to
seek conversation and off when he is not, it might change their parameters
according to the situation and it might even use the same channels to aug-
ment its communication with the user. Objects that are referred to by other
means like language might light up just as objects that are looked at by a
person do. Furthermore, an advanced system might guess the user’s inten-
tions and point out some areas or objects of likely interest to him, thereby
guiding his attention in an unobtrusive way.

In summary, the work at hand represents a solid basis for future interac-
tion technology including mobile assistance systems, social and collabora-
tive contexts, and communication research. It is difficult to predict how
such techniques will change human interaction in the future but with de-
creasing weight of the gear the applicability of the presented methods will
doubtlessly increase.

65

Bibliography

G. Aumann and K. Spitzmüller. Computerorientierte Geometrie, volume 89
of Reihe Informatik, chapter Projektionen, pages 203, 204, 215–217. B.I.
Wissenschaftsverlag, 1993.

Ronald Azuma, Yohan Baillot, Reinhold Behringer, Steven Feiner, Simon
Julier, and Blair MacIntyre. Recent advances in augmented reality. IEEE
Computer Graphics and Applications, 21(6):34–47, 2001. URL http:
//www.cs.unc.edu/~azuma/cga2001.pdf.

Ronald T. Azuma. A survey of augmented reality. Presence: Teleoperators
and Virtual Environments (1054-7460), 6(4):355–385, 1997. URL http:
//www.cs.unc.edu/~azuma/ARpresence.pdf.

M. Billinghurst and H. Kato. Collaborative augmented reality, 2002. URL
citeseer.ist.psu.edu/billinghurst02collaborative.html.

T.P. Caudell and D.W. Mizell. Augmented reality: an application of heads-
up display technology to manual manufacturing processes. In Proceedings
of the Twenty-Fifth Hawaii International Conference on System Sciences,
volume ii, pages 659–669, January 1992.

D. Drascic and P. Milgram. Perceptual issues in augmented reality. SPIE,
2653:123–134, 1996.

Christof Elbrechter. Neuroinformatics Group Wiki – Vision Main Page. Neu-
roinformatics Group Bielefeld University. URL https://niwww.techfak.
uni-bielefeld.de/wiki/index.php/VISION:Main_Page.

Marc Hanheide. A Cognitive Ego-Vision System for Interactive Assistance.
PhD thesis, Bielefeld University, 2006.

G. Heidemann, I. Bax, H. Bekel, C. Bauckhage, S. Wachsmuth, G. Fink,
A. Pinz, H. Ritter, and G. Sagerer. Multimodal interaction in an augmented
reality scenario. In Proc. Int’l Conf. Multimodal Interfaces, pages 53–60,

http://www.cs.unc.edu/~azuma/cga2001.pdf
http://www.cs.unc.edu/~azuma/cga2001.pdf
http://www.cs.unc.edu/~azuma/ARpresence.pdf
http://www.cs.unc.edu/~azuma/ARpresence.pdf
citeseer.ist.psu.edu/billinghurst02collaborative.html
https://niwww.techfak.uni-bielefeld.de/wiki/index.php/VISION:Main_Page
https://niwww.techfak.uni-bielefeld.de/wiki/index.php/VISION:Main_Page

66 BIBLIOGRAPHY

New York, NY, USA, 2004. ACM Press. URL http://www.bax.at/pdf/
HeidemannEtAl-2004-ICMI.pdf.

Thomas Hermann. Sonification for Exploratory Data Analysis. PhD
thesis, Bielefeld University, Bielefeld, Germany, February 2002. URL
http://www.techfak.uni-bielefeld.de/ags/ni/publications/
media/Hermann2002-SFE.pdf.

Henrik Hobein. Entwicklung eines online-kalibrierenden systems zur 3d-
positionsbestimmung. Diplomarbeit, Bielefeld University, Neuroinformat-
ics Group, 2007.

H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a
video-based augmented reality conferencing system. Proceedings of the
2nd IEEE and ACM International Workshop on Augmented Reality, 99:85–
94, 1999.

K. Kiyokawa, Y. Kurata, and H. Ohno. An optical see-through display for
mutual occlusion of real and virtual environments. In Proc. IEEE and ACM
International Symposium on Augmented Reality (ISAR 2000), pages 60–67,
October 2000.

R.J. Kosinski. A literature review on reaction time. On-line document, 2002.
URL http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm.

G. Kramer, B. Walker, T. Bonebright, P. Cook, J. Flowers, N. Miner,
J. Neuhoff, et al. Sonification report: Status of the field and research
agenda. Report prepared for the National Science Foundation by mem-
bers of the International Community for Auditory Display. Santa Fe, NM:
International Community for Auditory Display (ICAD), 1999. URL http:
//www.icad.org/websiteV2.0/References/nsf.html.

Mark L. Knapp and Judith A. Hall. Nonverbal Communication in Hu-
man Interaction. Wadsworth/Thomson Learning, 5 edition, 2001. ISBN
9780155063723.

B.S. Majewski, N.C. Wormald, G. Havas, and Z.J. Czech. A family of
perfect hashing methods. The Computer Journal, 39(6):547–554, 1996.
URL http://www.math.uwaterloo.ca/~nwormald/papers/hashcompj.
ps. Source code: http://www.ibiblio.org/pub/Linux/devel/lang/c/
mph-1.2.tar.gz.

Paul Milgram and Fumio Kishino. A taxonomy of mixed reality visual dis-
plays. IEICE Transactions on Information Systems, E77-D(12):1321–1329,
December 1994.

M.J. Pickering and S. Garrod. Toward a mechanistic psychology of dialogue.
Behavioral and Brain Sciences, 27(02):169–190, 2004.

http://www.bax.at/pdf/HeidemannEtAl-2004-ICMI.pdf
http://www.bax.at/pdf/HeidemannEtAl-2004-ICMI.pdf
http://www.techfak.uni-bielefeld.de/ags/ni/publications/media/Hermann2002-SFE.pdf
http://www.techfak.uni-bielefeld.de/ags/ni/publications/media/Hermann2002-SFE.pdf
http://biae.clemson.edu/bpc/bp/Lab/110/reaction.htm
http://www.icad.org/websiteV2.0/References/nsf.html
http://www.icad.org/websiteV2.0/References/nsf.html
http://www.math.uwaterloo.ca/~nwormald/papers/hashcompj.ps
http://www.math.uwaterloo.ca/~nwormald/papers/hashcompj.ps
http://www.ibiblio.org/pub/Linux/devel/lang/c/mph-1.2.tar.gz
http://www.ibiblio.org/pub/Linux/devel/lang/c/mph-1.2.tar.gz

67

G. Rickheit, G. Jäger, H. Ritter, G. Sagerer, I. Wachsmuth, H. Strohner,
S. Wachsmuth, L. Sichelschmidt, S. Kopp, H. Rieser, H.M. Müller,
A. Mehler, M. Hielscher-Fastabend, H.-J. Eikmeyer, R. Weingarten,
W. Kindt, J. Steil, and T. Hermann. Proposal for the establishment and
funding of collaborative research centre 673 “alignment in communica-
tion” for 2006/2–2010/1, December 2005.

OpenGL 2.1 Reference Pages – gluLookAt. Silicon Graphics, Inc., 2006. URL
http://www.opengl.org/sdk/docs/man/xhtml/gluLookAt.xml.

F. Tang, C. Aimone, J. Fung, A. Marjan, and S. Mann. Seeing eye to eye:
a shared mediated reality using eyetap devices and the videoorbits gyro-
scopic head tracker. Mixed and Augmented Reality, 2002. ISMAR 2002.
Proceedings. International Symposium on, pages 267–268, 2002. URL
http://eyetap.org/papers/docs/eye2eye.pdf.

K.P. Truong and D.A. Leeuwen. Automatic detection of laughter. In Ninth
European Conference on Speech Communication and Technology. ISCA,
2005.

R. Vertegaal. The gaze groupware system: mediating joint attention in mul-
tiparty communication and collaboration. Proceedings of the SIGCHI con-
ference on Human factors in computing systems: the CHI is the limit, pages
294–301, 1999.

J. M. Wolfe and T. S. Horowitz. What attributes guide the deployment of
visual attention and how do they do it? Nature Reviews Neuroscience, 5
(6):496–501, 2004.

Sebastian Wrede, Jannik Fritsch, Christian Bauckhage, and Gerhard Sagerer.
An xml based framework for cognitive vision architectures. Pattern Recog-
nition, 2004. ICPR 2004. Proceedings of the 17th International Conference
on, 1, 2004.

M. Wright and A. Freed. Open sound control: A new protocol for commu-
nicating with sound synthesizers. Proceedings of the 1997 International
Computer Music Conference, pages 101–104, 1997.

Z. Zeng, M. Pantic, G.I. Roisman, and T.S. Huang. A survey of affect recog-
nition methods: audio, visual and spontaneous expressions. Proceedings
of the ninth international conference on Multimodal interfaces, pages 126–
133, 2007.

http://www.opengl.org/sdk/docs/man/xhtml/gluLookAt.xml
http://eyetap.org/papers/docs/eye2eye.pdf

Appendices

69

71

A Software Installation

This appendix tells you everything you need to know to build the
software presented in this work. If you have access to the wiki
of the Neuroinformatics group of Bielefeld University, you can find
the same information at https://niwww.techfak.uni-bielefeld.
de/wiki/index.php/C5:FOV_display_(usage) in a form better tai-
lored to the setup of that group.

If you have further questions or if you read this without having access
to either the Bielefeld University intranet or the accompanying DVD,
please do not hesitate to contact me by writing an email to cmertes@

techfak.uni-bielefeld.de.

A.1 XCF

For picard you need xcf4j. The 1.1 branch was used which can
be checked out from https://xcf.svn.sourceforge.net/svnroot/xcf/
xcf4j/branches/rel_1_1_maint. You also need an C++ XCF implemen-
tation recent enough to use spread in order to build laforge. For fur-
ther documentation concerning XCF please refer to http://sourceforge.
net/projects/xcf/. After building xcf4j with ant, you will find a file
named xcf4j-<date>.jar in the lib/ directory. This will be referred to
as xcf4j.jar in the following so it makes sense to create a symlink.

On every computer you want to use XCF software on, you have to create
a .xcfrc file containing a line XCF.Initial.Host=<hostname>, replacing
<hostname> by the name of the machine the dispatcher will run on (see the
usage hints below).

https://niwww.techfak.uni-bielefeld.de/wiki/index.php/C5:FOV_display_(usage)
https://niwww.techfak.uni-bielefeld.de/wiki/index.php/C5:FOV_display_(usage)
cmertes@techfak.uni-bielefeld.de
cmertes@techfak.uni-bielefeld.de
https://xcf.svn.sourceforge.net/svnroot/xcf/xcf4j/branches/rel_1_1_maint
https://xcf.svn.sourceforge.net/svnroot/xcf/xcf4j/branches/rel_1_1_maint
http://sourceforge.net/projects/xcf/
http://sourceforge.net/projects/xcf/

72 APPENDIX A. SOFTWARE INSTALLATION

A.2 ICL

Please refer to the installation instructions at https://niwww.techfak.
uni-bielefeld.de/wiki/index.php/VISION:ICL or use the version on
the DVD as it is.

A.3 PICARD

Check out svn+ssh://priamos.techfak.uni-bielefeld.de/vol/align/
c5/share/repos/picard/trunk and make sure your CLASSPATH con-
tains xcf4j.jar and NetUtil.jar which can be obtained from http:
//sourceforge.net/projects/netutil. Then change to the directory you
downloaded picard to and execute

javac de/unibi/techfak/romulus/picard/*.java

A.4 LAFORGE

Make sure your ICL installation is correct and all due paths are set
accordingly, especially ICL_ROOT and ICL_INSTALL_ROOT. Check out
svn+ssh://priamos.techfak.uni-bielefeld.de/vol/ni/src/svnroot/
vision/ICLProjects/trunk, change to the directory and then execute the
following:

cd ICLART
make depend all installlink
cd ../ICLLaforge

You can now edit the file makeVar and change DEBUG_ON:=FALSE to
DEBUG_ON:=TRUE to enable assertions and more warnings. You can then also
choose one of the “debugging flags” lines below the DEBUG_ON option. The
one with -DLAFORGE_NOVIDEOGRAB allows you to debug the program with-
out cameras attached. Finally you will want to execute

make depend all

or

make depend all 2>&1 | ./filterwarnings.py

https://niwww.techfak.uni-bielefeld.de/wiki/index.php/VISION:ICL
https://niwww.techfak.uni-bielefeld.de/wiki/index.php/VISION:ICL
svn+ssh://priamos.techfak.uni-bielefeld.de/vol/align/c5/share/repos/picard/trunk
svn+ssh://priamos.techfak.uni-bielefeld.de/vol/align/c5/share/repos/picard/trunk
http://sourceforge.net/projects/netutil
http://sourceforge.net/projects/netutil
svn+ssh://priamos.techfak.uni-bielefeld.de/vol/ni/src/svnroot/vision/ICLProjects/trunk
svn+ssh://priamos.techfak.uni-bielefeld.de/vol/ni/src/svnroot/vision/ICLProjects/trunk

A.5. MILES 73

if you enabled the warnings and do not want to see the whole lot of them
XCF produces.

You finally have to set the environment variable ART_PATTERN_PATH
to $ICLPROJECTS/ICLART/Data/usedPatterns where $ICLPROJECTS is a
placeholder for the directory you checked the above repository out to.

A.5 MILES

Check out svn+ssh://priamos.techfak.uni-bielefeld.de/vol/align/
c5/share/repos/mt9/branches/altsmooth. Change to the directory and
edit the Makefile if you want to switch off XCF or OSC support. You can
do so by removing the 1 after the USEXCF = or USEOSC = definition respec-
tively. You might also have to adjust path names in the Makefile and the file
miles which is a wrapper script for mt9. If you use MT9-A inertial sensors,
you need a calibration file which usually has a .xmu file name extension.
Create a symbolic link to this file named calib.xmu.29 To build just execute
make.

A.6 SuperCollider

Get SuperCollider from http://www.audiosynth.com/ and install it accord-
ing to the instructions found there. The sclang mode for emacs or the sced
plugin30 for gedit also come in handy. You only need to run sclang once,
though. You need to store the synths on disc in order to allow scsynth to
play them later when receiving the OSC command to do so. The continu-
ous sonification uses the synth \fovSon, the discrete one the synths \objIn
and \objOut. To produce the synths described in Section 2.2 you need to
execute in sclang the following two lines of code:

SynthDef(\objIn, {
Out.ar(0, SinOsc.ar(880) *
EnvGen.kr(Env.perc, doneAction: 2, timeScale: 0.6))

}).store;
SynthDef(\objOut, {

Out.ar(0, (SinOsc.ar(440, 0, 1) + PinkNoise.ar(0.3)) *

29Actually you can use any .xmu file in the miles home directory as long as it is the only
one.

30http://artfwo.googlepages.com/sced

svn+ssh://priamos.techfak.uni-bielefeld.de/vol/align/c5/share/repos/mt9/branches/altsmooth
svn+ssh://priamos.techfak.uni-bielefeld.de/vol/align/c5/share/repos/mt9/branches/altsmooth
http://www.audiosynth.com/
http://artfwo.googlepages.com/sced

74 APPENDIX A. SOFTWARE INSTALLATION

EnvGen.kr(Env.perc, doneAction: 2, timeScale: 0.3))
}).store;

After that, scsynth should run out of the box. jack might still pose prob-
lems, though. For the hardware described in Section 3.1 we needed the
following $HOME/.jackdrc:

/usr/bin/jackd -R -dalsa -dhw:0 -r44100 -p128 -n4

or the sound would stutter heavily despite the real-time kernel. Finally you
need to specify the host and port the scsynth for system 1 and 2 run on by
setting the LAFORGE_SC_HOST1 and LAFORGE_SC_HOST1 environment vari-
ables in the usual <host>[:<port>] style. If no port is given, 57110 is used.

A.7 Wii Software

First you need the tool xcfWiiAdapter written by Marc Hanheide. You can
check it out from https://code.ai.techfak.uni-bielefeld.de/scm/
ai/trunk/xcfWiiAdapter. To build, execute

rm -rf CMakeFiles/ CMakeCache.txt
ccmake .
make

in the xcfWiiAdapter directory. You then need the Wiibrations tool, whose
repository is located at svn+ssh://priamos/vol/align/c5/share/repos/
wiibrations/trunk. Change to its directory and execute

javac de/unibi/techfak/romulus/wiibrator/*.java

https://code.ai.techfak.uni-bielefeld.de/scm/ai/trunk/xcfWiiAdapter
https://code.ai.techfak.uni-bielefeld.de/scm/ai/trunk/xcfWiiAdapter
svn+ssh://priamos/vol/align/c5/share/repos/wiibrations/trunk
svn+ssh://priamos/vol/align/c5/share/repos/wiibrations/trunk

75

B Usage Information

B.1 Using the GUI

The easy way to start the components of the system that you need is by
using the Python script start.py. You will have to go through it and change
paths, environment variables and host names where needed and you might
want to change the directory the text output is written to. But once you did
that, you can simply execute this script and start and stop the programs you
need with the click of a button.

Below all other buttons is what is called the trial counter. By pressing the
next button, you can increment a variable whose value is added to every file
name of the output files, along with the time and date of the button press in
a human-readable format and in milliseconds since 1970. This only applies
for new files, so you have to stop and restart data-producing programs in
order for the increment to have an effect. Figure 37 shows a screenshot of
a vertically shortened start.py instance.

B.2 Manual Execution

Comfortable as it is to use the GUI, it might be necessary or educational to
know how the various tools are executed manually.

For XCF to work, you first of all need to execute the so called dispatcher.
For xcf4j this is done with

java -jar xcf4j.jar

while xcf4j.jar still refers to the file created by building xcf4j. You might
want to define an alias to this command using an absolute path name to

76 APPENDIX B. USAGE INFORMATION

Figure 37: Screenshot of the graphical startup script start.py. romulus and remus
are the names of the two laptop computers our system runs on.31 You will want to
adapt this to your setup.

this file. You have to start the dispatcher on only one machine – the one
you set in your .xcfrc (see above).

On any one computer, go to the picard directory and execute

java de.unibi.techfak.romulus.picard.Main --gui --highlight

You can add the java option -ea to enable assertions in picard. The --gui
option is not required but you will not be able to change any settings during
run-time if you run picard without its GUI. To get a list of options that
control its start-up settings, run picard with --help. See Figure 18 for a
screenshot of the picard GUI.

The last tool you have to start only once is the Wii GUI for task 2 of our
experiment (Section 4.1). If you need this, go to the Wiibrations directory
and execute

java de.unibi.techfak.romulus.wiibrations.Main > $WIIDATAFILE

$WIIDATAFILE is the file you want your Wii data in.

The following commands you have to execute once per HMD. We use two
laptops but in principle with the right configuration it should work with only
one computer. Getting both augmented video streams out would probably

31As you are probably a curious person if you read this far: These names are not primarily
part of the naming scheme from Box 1 but rather the scheme prescribing moon names for
laptops in our group. So for our twin computers this pair came in handy (http://apod.
nasa.gov/apod/ap050818.html).

http://apod.nasa.gov/apod/ap050818.html
http://apod.nasa.gov/apod/ap050818.html

B.2. MANUAL EXECUTION 77

be the greatest challenge and would require a more sophisticated X Window
configuration.

In order to use sound, you need to start scsynth. You should do this in
accordance with the environment variables you set but given you did not
change the port and use two computers, you would execute

sudo scsynth -u 57110

on both of them. If you have trouble here, let me recommend an ugly
workaround that works like a charm for me: Run gedit (as superuser,
if needed) with the sced plugin, choose “SuperCollider Mode” from the
“Tools” menu and from the then appearing “SuperCollider” menu choose
“Start Server”.

In the following, <1|2> should be replaced with either 1 or 2, depending
on which HMD this instance shall be responsible for (so normally which
computer it is running on). This is called the system ID. In the laforge
directory, execute

dc1394_reset_bus &&
./application/laforge -xcf -text -lt -sytemID <1|2>\

> $LAFORGEDATAFILE<1|2>

It is important not to cd into application/ but into its parent directory.
laforge can be used with the --help option, too. The dc1394_reset_bus
is not strictly necessary but the libdc32 more or less forces this habit upon
you of executing the command every time you access the FireWire cameras.

When using the Wiis, change to the xcfWiiAdapter directory and call

./xcfWiiAdapter -a false -p WiiData<1|2> -s WiiFeedback<1|2>

Do not do this at the same time for both systems, as the tool will ask you
to press buttons 1 and 2 on the Wii Remote simultaneously. This is needed
to associate the Wii Remote with the instance of xcfWiiAdapter so you
must wait until the synchronization is complete before you proceed with
the second system. The xcfWiiAdapter understands --help.

Finally, if you want to use the inertial sensors, cd to the miles directory and
call

./miles --text --raw --time -d, --out $MILESDATAFILE<1|2>

miles, too, will tell you more about its usage when called with --help.

32http://sourceforge.net/projects/libdc1394/

http://sourceforge.net/projects/libdc1394/

79

C Doxygen Documentation

This appendix includes documentation that was created automatically
from the sources of picard and laforge using the tool Doxygen33.
This may serve as an excuse for the comparatively poor typesetting and
the inconsistencies between this appendix and the rest of this work. I
hope you will find the following sections insight- as well as helpful
nonetheless.34

C.1 PICARD Class Documentation

CalculateHelper Class Reference

Detailed Description

This class provides several mathematical functions that can be used by other
classes.

Author:

cmertes

Static Public Member Functions

– static double[] xyIntersection (double[] pos, double[] normal)
Calculates the intersection of a given ray with the plane E12 spanned by the
x and y axes.

33http://www.doxygen.org/
34If you prefer browsing the source documentation in HTML, you might want to have a

look at the file doc/html/classes.html in the root directory of picard or laforge respec-
tively.

http://www.doxygen.org/

80 APPENDIX C. DOXYGEN DOCUMENTATION

– static double[] xzIntersection (double[] pos, double[] normal)

Calculates the intersection of a given ray with the plane E13 spanned by the
x and z axes.

– static double[] xyProjection (double[] vec)

Calculates the parallel projection of a given n-dimensional vector onto the
plane E12 spanned by the x and y axes.

– static double vecDist (double[] pos1, double[] pos2)

Calculates the distance between two points in n-dimensional Euclidean
space.

– static double dotProduct (double[] vec1, double[] vec2)

Calculates the scalar product of the two input vectors.

– static double[] crossProduct (double[] v1, double[] v2)

Calculates the cross product of two three dimensional vectors in respect to a
right-handed coordinate system.

– static double abs (double[] vec)

Calculates the magnitude of a vector, i.e. its length in Euclidean space.

– static void normalize (double[] vec)

Normalises the vector it gets passed.

– static double[] vecDiff (double[] vec1, double[] vec2)

Subtracts one vector from another, returning vec1 − vec2.

– static double cosOfAngle (double[] vec1, double[] vec2)

Calculates the cosine of the angle between two vectors.

– static double angleDirection (double[] vec1, double[] vec2)

Uses the z component of the cross product of two vectors to determine
whether the angle between the two vectors is clockwise or counterclockwise.

– static double sig (double d)

A sigmoid function.

– static double mapAroundZero (double d, double bound)

Maps any value d to [-bound, bound] in a sigmoid manner using the hyper-
bolic tangent.

C.1. PICARD CLASS DOCUMENTATION 81

– static double mapTo (double d, double lowerBound, double upper-
Bound)

Uses the sig function to map any value to [lowerBound, upperBound].

– static double mapAroundZero (double d, double bound, double factor,
double offset)

Maps any value d to [-bound, bound] in a sigmoid manner using the hyper-
bolic tangent.

– static double mapTo (double d, double lowerBound, double upper-
Bound, double factor, double offset)

Uses the sig function to map any value to [lowerBound, upperBound].

– static int nearestExtreme (int value, int minimum, int maximum)

This function returns either minimum or maximum, depending on which one
is closer to value.

Member Function Documentation

static double [] CalculateHelper.xyIntersection (double[] pos, double[]
normal) [static]

Calculates the intersection of a given ray with the plane E12 spanned by the
x and y axes.

Parameters:

pos The position vector of the ray’s starting point.

normal The normalized direction vector of the ray.

Returns:

A two-dimensional array containing the x and y coordinates of the in-
tersection. The z coordinate is always 0 and thus omitted. For a ray
parallel to the plane null is returned.

82 APPENDIX C. DOXYGEN DOCUMENTATION

static double [] CalculateHelper.xzIntersection (double[] pos, double[]
normal) [static]

Calculates the intersection of a given ray with the plane E13 spanned by the
x and z axes.

Parameters:

pos The position vector of the ray’s starting point.

normal The normalized direction vector of the ray.

Returns:

A two-dimensional array containing the x and z coordinates of the in-
tersection. The y coordinate is always 0 and thus omitted. For a ray
parallel to the plane null is returned.

static double [] CalculateHelper.xyProjection (double[] vec) [static]

Calculates the parallel projection of a given n-dimensional vector onto the
plane E12 spanned by the x and y axes.

Parameters:

vec The vector to project.

Returns:

The resulting two-dimensional vector.

static double CalculateHelper.vecDist (double[] pos1, double[] pos2)
[static]

Calculates the distance between two points in n-dimensional Euclidean
space.

n being the lesser of the two dimensions of the input vectors.

C.1. PICARD CLASS DOCUMENTATION 83

Parameters:

pos1 Position vector of the first point.

pos2 Position vector of the second point.

Returns:

The Euclidean distance between the points specified by the two input
vectors.

static double CalculateHelper.dotProduct (double[] vec1, double[]
vec2) [static]

Calculates the scalar product of the two input vectors.

The vectors can be of any dimension but for vectors with different dimen-
sions excess values are ignored.

Parameters:

vec1 First input vector.

vec2 Second input vector.

Returns:

The dot product of the two input vectors.

static double [] CalculateHelper.crossProduct (double[] v1, double[]
v2) [static]

Calculates the cross product of two three dimensional vectors in respect to
a right-handed coordinate system.

Parameters:

v1 first input vector

v2 second input vector

Returns:

the cross product v1× v2 of the two input vectors

84 APPENDIX C. DOXYGEN DOCUMENTATION

static double CalculateHelper.abs (double[] vec) [static]

Calculates the magnitude of a vector, i.e. its length in Euclidean space.

Parameters:

vec The input vector.

Returns:

The magnitude ‖vec‖ of the input vector.

static void CalculateHelper.normalize (double[] vec) [static]

Normalises the vector it gets passed.

Parameters:

vec The vector to normalise

static double [] CalculateHelper.vecDiff (double[] vec1, double[] vec2)
[static]

Subtracts one vector from another, returning vec1 − vec2.

Parameters:

vec1 The minuend.

vec2 The subtrahend.

Returns:

The difference between the two input vectors.

static double CalculateHelper.cosOfAngle (double[] vec1, double[]
vec2) [static]

Calculates the cosine of the angle between two vectors.

C.1. PICARD CLASS DOCUMENTATION 85

So Math.acos of this method’s result would be the angle between two
vectors. The arccosine isn’t precalculated because this method’s return value
can be used for further calculations itself.

Parameters:

vec1 The first input vector.

vec2 The second input vector.

Returns:

The cosine of the angle between the two input vectors, that is
vec1 · vec2
‖vec1‖‖vec2‖ .

static double CalculateHelper.angleDirection (double[] vec1, double[]
vec2) [static]

Uses the z component of the cross product of two vectors to determine
whether the angle between the two vectors is clockwise or counterclock-
wise.

Parameters:

vec1 An at least two-dimensional input vector.

vec2 An at least two-dimensional input vector.

Returns:

-1.0 or 1.0, determined by sgn (vec11vec22 − vec12vec21).

static double CalculateHelper.sig (double d) [static]

A sigmoid function.

The logistic function sig(d) = 1
1+e−d is used. This function is bounded below

by 0 and bounded above by 1.

86 APPENDIX C. DOXYGEN DOCUMENTATION

Figure 38: Sigmoid function plot

Parameters:

d The function parameter.

Returns:

The result of sig(d) as described above.

static double CalculateHelper.mapAroundZero (double d, double
bound) [static]

Maps any value d to [-bound, bound] in a sigmoid manner using the hyper-
bolic tangent.

Parameters:

d The value to be mapped.

bound The bound to be mapped into.

Returns:

A value between -bound and bound, calculated by tanh(d)bound.

C.1. PICARD CLASS DOCUMENTATION 87

See also:

mapAroundZero(double, double, double, double)

static double CalculateHelper.mapTo (double d, double lowerBound,
double upperBound) [static]

Uses the sig function to map any value to [lowerBound, upperBound].

Parameters:

d The value to be mapped.

lowerBound The lower bound of the mapping range.

upperBound The upper bound of the mapping range.

Returns:

sig(d)(upperBound − lowerBound) + lowerBound

See also:

mapTo(double, double, double, double, double)

static double CalculateHelper.mapAroundZero (double d, double
bound, double factor, double offset) [static]

Maps any value d to [-bound, bound] in a sigmoid manner using the hyper-
bolic tangent.

Before mapping offset is added to d and the result is multiplied by factor.
This means offset influences the zero of the function and factor its
slope.

Parameters:

d The value to be mapped.

bound The bound to be mapped into.

factor The factor by which d is multiplied.

offset The offset added to d.

88 APPENDIX C. DOXYGEN DOCUMENTATION

Returns:

tanh((d + offset)factor)bound

See also:

mapAroundZero(double, double)

static double CalculateHelper.mapTo (double d, double lowerBound,
double upperBound, double factor, double offset) [static]

Uses the sig function to map any value to [lowerBound, upperBound].

Before mapping offset is added to d and the result is multiplied by factor.
This means offset influences the zero of the function and factor its
slope.

Parameters:

d The value to be mapped.

lowerBound The lower bound of the mapping range.

upperBound The upper bound of the mapping range.

factor The factor by which d is multiplied.

offset The offset added to d.

Returns:

sig((d + offset)factor)(upperBound − lowerBound) + lowerBound

See also:

mapTo(double, double, double)

static int CalculateHelper.nearestExtreme (int value, int minimum, int
maximum) [static]

This function returns either minimum or maximum, depending on which one
is closer to value.

C.1. PICARD CLASS DOCUMENTATION 89

If both extremes are equally close to value, maximum is returned. If value is
not within [minimum, maximum], the result is undefined.

Parameters:

value The value which must be between minimum and maximum and
which determines the extreme to be chosen.

minimum The smaller extreme.

maximum The greater extreme.

Returns:

minimum or maximum, whichever is closer to value.

The documentation for this class was generated from the following file:

– CalculateHelper.java

90 APPENDIX C. DOXYGEN DOCUMENTATION

C.1. PICARD CLASS DOCUMENTATION 91

ConfigWin Class Reference

Collaboration diagram for ConfigWin:

de.unibi.techfak.romulus.picard.ConfigWin

- sShell
- areaHighlightGroup
- objectHighlightGroup
- variousOptionsComposite
- areaCheckBox
- angleComposite
- angleLabel
- angleScale
- fuzzynessComposite
- fuzzynessLabel
- fuzzynessScale
- fuzzynessDisplay
- angleDisplay
- objectHighlightCheckBox
- memoryCheckBox
- envelopeGroup
- attackComposite
- attackLabel
- attackSpinnerComposite
- attackSpinner
- attackUnitLabel
- attackTypeComposite
- logAttackRadio
- expAttackRadio
- linAttackRadio
- decayComposite
- decayLabel
- decaySpinnerComposite
- decaySpinner
- decayUnitLabel
- decayTypeComposite
- logDecayRadio
- expDecayRadio
- linDecayRadio
- movementSonificationCheckBox
- eventSonificationCheckBox
- alwaysPingCheckBox
- props
- display
- windowIcon

+ ConfigWin()
~ [static initializer]()
- createSShell()
- createAreaHighlightGroup()
- createObjectHighlightGroup()
- createVariousOptionsComposite()
- createAngleComposite()
- createFuzzynessComposite()
- createEnvelopeGroup()
- createAttackComposite()
- createAttackSpinnerComposite()
- createAttackTypeComposite()
- createDecayComposite()
- createDecaySpinnerComposite()
- createDecayTypeComposite()

Scale

angleScale
fuzzynessScale

Group

envelopeGroup
objectHighlightGroup
areaHighlightGroup

de.unibi.techfak.romulus.picard.Properties

+ maxHighlight
+ controlRate
+ expBase
+ epsFactor
+ fuzzyRectID
- relativeValues
- attackEnvelope
- decayEnvelope
- attackTime
- attackValue
- decayTime
- decayValue
- fuzzyRectWidth
- fuzzyRectHeight
- fuzzylength
- use_sound_events
- use_fov_sound
- use_fov_display
- use_highlighting
- create_origin_cube
- alwaysPing

+ beRelative()
+ isRelative()
+ setAttackEnvelope()
+ getAttackEnvelope()
+ setDecayEnvelope()
+ getDecayEnvelope()
+ setAttackTime()
+ getAttackValue()
+ getAttackTime()
+ setDecayTime()
+ getDecayTime()
+ getDecayValue()
+ getDecayTerm()
+ getAttackTerm()
+ useSoundEvents()
+ useSoundEvents()
+ useFoVSound()
+ useFoVSound()
+ useFoVDisplay()
+ useFoVDisplay()
+ useSonification()
+ useScotty()
+ useHighlighting()
+ useHighlighting()
+ useMemory()
+ getFuzzyRectWidth()
+ getFuzzyRectHeight()
+ getFuzzylength()
+ setFuzzylength()
+ doCreateOriginCube()
+ doCreateOriginCube()
+ alwaysPing()
+ alwaysPing()
+ parseEnvelope()
+ calcA()

props

Spinner

decaySpinner
attackSpinner

Button

objectHighlightCheckBox
expDecayRadio
logAttackRadio
logDecayRadio

eventSonificationCheckBox
linAttackRadio

expAttackRadio
movementSonificationCheckBox

linDecayRadio
areaCheckBox

...

Composite

attackTypeComposite
decayComposite

attackSpinnerComposite
variousOptionsComposite

fuzzynessComposite
angleComposite
attackComposite

decayTypeComposite
decaySpinnerComposite

Shell

sShell

Display

display

Label

angleLabel
angleDisplay

fuzzynessLabel
decayUnitLabel

fuzzynessDisplay
decayLabel

attackUnitLabel
attackLabel

Image

windowIcon

92 APPENDIX C. DOXYGEN DOCUMENTATION

Detailed Description

This is the main window controlling all important parameters for both
LAFORGE systems that can be connected to the controlling PICARD soft-
ware.

Author:

cmertes

Public Member Functions

– ConfigWin (Properties properties)
The class constructor.

Static Package Functions

– [static initializer]

Private Member Functions

– void createSShell ()
This method initializes sShell.

– void createAreaHighlightGroup ()
This method initializes areaHighlightGroup.

– void createObjectHighlightGroup ()
This method initializes objectHighlightGroup.

– void createVariousOptionsComposite ()
This method initializes variousOptionsComposite.

– void createAngleComposite ()
This method initializes angleComposite.

– void createFuzzynessComposite ()
This method initializes fuzzynessComposite.

C.1. PICARD CLASS DOCUMENTATION 93

– void createEnvelopeGroup ()

This method initializes envelopeGroup.

– void createAttackComposite ()

This method initializes attackComposite.

– void createAttackSpinnerComposite ()

This method initializes attackSpinnerComposite.

– void createAttackTypeComposite ()

This method initializes attackTypeComposite.

– void createDecayComposite ()

This method initializes decayComposite.

– void createDecaySpinnerComposite ()

This method initializes decaySpinnerComposite.

– void createDecayTypeComposite ()

This method initializes decayTypeComposite.

Private Attributes

– Shell sShell = null
– Group areaHighlightGroup = null
– Group objectHighlightGroup = null
– Composite variousOptionsComposite = null
– Button areaCheckBox = null
– Composite angleComposite = null
– Label angleLabel = null
– Scale angleScale = null
– Composite fuzzynessComposite = null
– Label fuzzynessLabel = null
– Scale fuzzynessScale = null
– Label fuzzynessDisplay = null
– Label angleDisplay = null
– Button objectHighlightCheckBox = null
– Button memoryCheckBox = null

94 APPENDIX C. DOXYGEN DOCUMENTATION

– Group envelopeGroup = null
– Composite attackComposite = null
– Label attackLabel = null
– Composite attackSpinnerComposite = null
– Spinner attackSpinner = null
– Label attackUnitLabel = null
– Composite attackTypeComposite = null
– Button logAttackRadio = null
– Button expAttackRadio = null
– Button linAttackRadio = null
– Composite decayComposite = null
– Label decayLabel = null
– Composite decaySpinnerComposite = null
– Spinner decaySpinner = null
– Label decayUnitLabel = null
– Composite decayTypeComposite = null
– Button logDecayRadio = null
– Button expDecayRadio = null
– Button linDecayRadio = null
– Button movementSonificationCheckBox = null
– Button eventSonificationCheckBox = null
– Button alwaysPingCheckBox = null
– Properties props

Static Private Attributes

– static Display display
– static Image windowIcon

Constructor & Destructor Documentation

ConfigWin.ConfigWin (Properties properties)

The class constructor.

It needs to be passed the global properties. This must be called last be-
cause this method never returns. When the window is closed, the program
exits.

C.1. PICARD CLASS DOCUMENTATION 95

Parameters:

properties All configuration changes are stored here and the presets
are read from this object.

Member Function Documentation

void ConfigWin.createAreaHighlightGroup () [private]

This method initializes areaHighlightGroup.

void ConfigWin.createObjectHighlightGroup () [private]

This method initializes objectHighlightGroup.

void ConfigWin.createVariousOptionsComposite () [private]

This method initializes variousOptionsComposite.

void ConfigWin.createAngleComposite () [private]

This method initializes angleComposite.

void ConfigWin.createFuzzynessComposite () [private]

This method initializes fuzzynessComposite.

void ConfigWin.createEnvelopeGroup () [private]

This method initializes envelopeGroup.

96 APPENDIX C. DOXYGEN DOCUMENTATION

void ConfigWin.createAttackComposite () [private]

This method initializes attackComposite.

void ConfigWin.createAttackSpinnerComposite () [private]

This method initializes attackSpinnerComposite.

void ConfigWin.createAttackTypeComposite () [private]

This method initializes attackTypeComposite.

void ConfigWin.createDecayComposite () [private]

This method initializes decayComposite.

void ConfigWin.createDecaySpinnerComposite () [private]

This method initializes decaySpinnerComposite.

void ConfigWin.createDecayTypeComposite () [private]

This method initializes decayTypeComposite.

The documentation for this class was generated from the following file:

– ConfigWin.java

C.1. PICARD CLASS DOCUMENTATION 97

Idler Class Reference

Detailed Description

What do idlers do? Idle!

Author:

cmertes

Public Member Functions

– void idle ()

Calls wait() till the end of time.

The documentation for this class was generated from the following file:

– Idler.java

98 APPENDIX C. DOXYGEN DOCUMENTATION

C.1. PICARD CLASS DOCUMENTATION 99

Main Class Reference

Collaboration diagram for Main:

de.unibi.techfak.romulus.picard.Main

+ xcfManager
+ hasgui
+ display
+ props
+ interceptor
+ sonificator
+ configWin
+ debug

+ signalError()
+ signalWarning()
+ main()
- parseOptions()

de.unibi.techfak.romulus.picard.PicardInterceptor

+ artPrefix
+ scottyName
+ objectHighlighters
- subscribers
- publishers
- names
- objectCreators
- listGenerators
- xcfManager

+ PicardInterceptor()
+ handleEvent()
+ handleEvent()
- connectSubscriberToPublisher()
- becomesComplete()
- losesCompleteness()
- extractSystemID()
- addLaforgeSystem()

interceptor

SystemEventAdapter

Publisher

publishers

de.unibi.techfak.romulus.picard.ObjectCreator

+ objectFilename
~ polling_interval
- publisher
- objectList
- randomNumberGenerator
- objectIDLimit
- maxObjects

+ doesExist()
+ ObjectCreator()
+ run()
+ getIDfromART()
- createObject()
- initialize()
- createOriginCube()

publisher

de.unibi.techfak.romulus.picard.ObjectHighlighter

~ EOL
- xcfPublisher
- oldIDs
- newIDs
- addedIDs
- removedIDs
- objectList
- listener
- ownIndex
- otherIndex

+ ObjectHighlighter()
+ getPublisher()
+ registerListener()
+ unregisterListener()
+ isInView()
+ wasInView()
+ update()
+ unhighlightAll()
+ highlightShared()
- getNext()
- diffLists()
- getShape()
- sendTaibak()
- highlight()
- unhighlight()

xcfPublisher

de.unibi.techfak.romulus.picard.ScottyRetransmitter

- oscTransmitter
- freq
- amp
- dissonance
- pan
- eye
- direction
- up
- ownEye
- ownDirection
- lastOwnEye
- lastOwnDirection
- ownUp
- matrix
- publisher
- beamSynthID
- beamOnMessage
- beamOffMessage
- objInMessage
- objOutMessage
- minFreq
- maxFreq
- maxAmp
- maxDissonance

+ ScottyRetransmitter()
+ setPartnerEye()
+ setPartnerDirection()
+ setPartnerUp()
+ setOwnEye()
+ setOwnDirection()
+ setOwnUp()
+ startAcousticBeam()
+ startVisualBeam()
+ updateBeam()
+ stopAcousticBeam()
+ stopVisualBeam()
+ objectAppears()
+ objectVanishes()
+ dispose()
+ finalize()
+ setXCFPublisher()
- send()
- computeSonData()
- computeTransformationMatrix()

publisher

objectCreators

objectList

Random

randomNumberGenerator

Map< Integer, Integer >

objectList

Map

< Integer, Integer >

Map< String, Integer >

< String, Integer >

objectHighlighters

de.unibi.techfak.romulus.picard.MarkerListGenerator

+ queue
~ poller
- markerList
- highlighter
- parserFactory
- parser
- incompleteRun
- name

+ MarkerListGenerator()
+ endDocument()
+ startDocument()
+ startElement()
+ error()
+ fatalError()
+ warning()
+ handlePacket()
+ getName()
+ setName()
+ getQueue()
+ dispose()
+ finalize()

highlighter

de.unibi.techfak.romulus.picard.ObjectViewListener

+ objectAppears()
+ objectVanishes()

listener

SortedSet< Integer >

oldIDs
newIDs

markerList

SortedSet

< Integer >

List< Integer >

addedIDs
removedIDs

List

< Integer >

XcfManager

xcfManager

xcfManager listGenerators

de.unibi.techfak.romulus.picard.MarkerListPoller

+ pollingInterval
~ parent
~ keepRunning

+ MarkerListPoller()
+ end()
+ run()

parent

DefaultHandler

de.unibi.techfak.romulus.picard.Sonificator

+ transmitters
+ environment_variable_prefix
+ defaultOSCPort
~ hmdNameTable
- currPartnerTransmitter
- currOwnTransmitter
- scottySubscriber
- scottyConnected
- usedFoVSound
- usedFoVDisplay
- parserFactory
- parser
- name
- xpath

+ Sonificator()
+ createTransmitter()
+ deleteTransmitter()
+ registerScotty()
+ removeScotty()
+ handleEvent()
+ getName()
+ setName()
+ setXPath()
+ getXPath()
+ startDocument()
+ startElement()
+ endElement()
+ error()
+ fatalError()
+ warning()
+ getListener()
~ activateBeam()
~ deactivateBeam()
~ [static initializer]()
- activateVisualBeam()
- deactivateVisualBeam()

poller

SAXParser

parser parser

ReceiveLastQueue< XOPData >

queue

ReceiveLastQueue

< XOPData >

SAXParserFactory

parserFactory parserFactory

Subscriber

subscribers

scottySubscriber

de.unibi.techfak.romulus.picard.Properties

+ maxHighlight
+ controlRate
+ expBase
+ epsFactor
+ fuzzyRectID
- relativeValues
- attackEnvelope
- decayEnvelope
- attackTime
- attackValue
- decayTime
- decayValue
- fuzzyRectWidth
- fuzzyRectHeight
- fuzzylength
- use_sound_events
- use_fov_sound
- use_fov_display
- use_highlighting
- create_origin_cube
- alwaysPing

+ beRelative()
+ isRelative()
+ setAttackEnvelope()
+ getAttackEnvelope()
+ setDecayEnvelope()
+ getDecayEnvelope()
+ setAttackTime()
+ getAttackValue()
+ getAttackTime()
+ setDecayTime()
+ getDecayTime()
+ getDecayValue()
+ getDecayTerm()
+ getAttackTerm()
+ useSoundEvents()
+ useSoundEvents()
+ useFoVSound()
+ useFoVSound()
+ useFoVDisplay()
+ useFoVDisplay()
+ useSonification()
+ useScotty()
+ useHighlighting()
+ useHighlighting()
+ useMemory()
+ getFuzzyRectWidth()
+ getFuzzyRectHeight()
+ getFuzzylength()
+ setFuzzylength()
+ doCreateOriginCube()
+ doCreateOriginCube()
+ alwaysPing()
+ alwaysPing()
+ parseEnvelope()
+ calcA()

props

de.unibi.techfak.romulus.picard.ConfigWin

- sShell
- areaHighlightGroup
- objectHighlightGroup
- variousOptionsComposite
- areaCheckBox
- angleComposite
- angleLabel
- angleScale
- fuzzynessComposite
- fuzzynessLabel
- fuzzynessScale
- fuzzynessDisplay
- angleDisplay
- objectHighlightCheckBox
- memoryCheckBox
- envelopeGroup
- attackComposite
- attackLabel
- attackSpinnerComposite
- attackSpinner
- attackUnitLabel
- attackTypeComposite
- logAttackRadio
- expAttackRadio
- linAttackRadio
- decayComposite
- decayLabel
- decaySpinnerComposite
- decaySpinner
- decayUnitLabel
- decayTypeComposite
- logDecayRadio
- expDecayRadio
- linDecayRadio
- movementSonificationCheckBox
- eventSonificationCheckBox
- alwaysPingCheckBox
- props
- display
- windowIcon

+ ConfigWin()
~ [static initializer]()
- createSShell()
- createAreaHighlightGroup()
- createObjectHighlightGroup()
- createVariousOptionsComposite()
- createAngleComposite()
- createFuzzynessComposite()
- createEnvelopeGroup()
- createAttackComposite()
- createAttackSpinnerComposite()
- createAttackTypeComposite()
- createDecayComposite()
- createDecaySpinnerComposite()
- createDecayTypeComposite()

props

configWin

Scale

angleScale
fuzzynessScale

Group

envelopeGroup
objectHighlightGroup
areaHighlightGroup

Spinner

decaySpinner
attackSpinner

Button

objectHighlightCheckBox
expDecayRadio
logAttackRadio
logDecayRadio

eventSonificationCheckBox
linAttackRadio

expAttackRadio
movementSonificationCheckBox

linDecayRadio
areaCheckBox

...

Composite

attackTypeComposite
decayComposite

attackSpinnerComposite
variousOptionsComposite

fuzzynessComposite
angleComposite
attackComposite

decayTypeComposite
decaySpinnerComposite

Shell

sShell

Display

display

display

Label

angleLabel
angleDisplay

fuzzynessLabel
decayUnitLabel

fuzzynessDisplay
decayLabel

attackUnitLabel
attackLabel

Image

windowIcon

sonificator

PublishEventListener

XPath

xpath
transmitters

currOwnTransmitter
currPartnerTransmitter

OSCTransmitter

oscTransmitter

OSCMessage

beamOffMessage
objInMessage

beamOnMessage
objOutMessage

hmdNameTable

100 APPENDIX C. DOXYGEN DOCUMENTATION

Detailed Description

This is the main class of PICARD, containing the main() method.

It parses the command line options, creates the main window if told so,
creates an XcfManager and a Sonificator and instantiates PicardInterceptor,
too, which in turn instantiates most other classes needed to run PICARD.

Author:

cmertes

Static Public Member Functions

– static synchronized void signalError (final String title, final String mes-
sage)

This method is used throughout the program to signal an error condition to
the user.

– static synchronized void signalWarning (final String title, final String
message)

This method is used throughout the program to signal a non-critical abnor-
mal condition to the user.

– static void main (String[] args)

Program execution starts here.

Static Public Attributes

– static XcfManager xcfManager
– static boolean hasgui
– static Display display
– static Properties props
– static PicardInterceptor interceptor
– static Sonificator sonificator
– static ConfigWin configWin
– static final boolean debug = true

C.1. PICARD CLASS DOCUMENTATION 101

Static Private Member Functions

– static boolean parseOptions (String[] args)
Writes a string to autolastwords.log.

Member Function Documentation

static synchronized void Main.signalError (final String title, final String
message) [static]

This method is used throughout the program to signal an error condition to
the user.

Depending on whether PICARD is running in GUI mode or not a message
window is opened or the message is sent to stderr. The function does not
terminate the program execution. If this is the desired behaviour after an
unrecoverable error, the calling function must do so itself.

Parameters:

title A very brief phrase summarizing the error.

message A preferably verbose description of the error.

See also:

signalWarning(String, String)

static synchronized void Main.signalWarning (final String title, final
String message) [static]

This method is used throughout the program to signal a non-critical abnor-
mal condition to the user.

Currently the message is just sent to stdout. The program should never
terminate after a warning.

Parameters:

title A very brief phrase summarizing the warning.

102 APPENDIX C. DOXYGEN DOCUMENTATION

message A preferably verbose description of the problem.

See also:

signalError(String, String)

static boolean Main.parseOptions (String[] args) [static, private]

Writes a string to autolastwords.log.

Parameters:

message The string to write to the log file Parses the command line
options and sets Properties accordingly.

args The String array passed to main.

Returns:

Whether the options could be parsed correctly.

static void Main.main (String[] args) [static]

Program execution starts here.

Parameters:

args The command line options passed to PICARD. Use -help for a
summary.

The documentation for this class was generated from the following file:

– Main.java

C.1. PICARD CLASS DOCUMENTATION 103

MarkerListGenerator Class Reference

Inheritance diagram for MarkerListGenerator:

de.unibi.techfak.romulus.picard.MarkerListGenerator

+ queue
~ poller
- markerList
- highlighter
- parserFactory
- parser
- incompleteRun
- name

+ MarkerListGenerator()
+ endDocument()
+ startDocument()
+ startElement()
+ error()
+ fatalError()
+ warning()
+ handlePacket()
+ getName()
+ setName()
+ getQueue()
+ dispose()
+ finalize()

DefaultHandler

104 APPENDIX C. DOXYGEN DOCUMENTATION

Collaboration diagram for MarkerListGenerator:

de.unibi.techfak.romulus.picard.MarkerListGenerator

+ queue
~ poller
- markerList
- highlighter
- parserFactory
- parser
- incompleteRun
- name

+ MarkerListGenerator()
+ endDocument()
+ startDocument()
+ startElement()
+ error()
+ fatalError()
+ warning()
+ handlePacket()
+ getName()
+ setName()
+ getQueue()
+ dispose()
+ finalize()

de.unibi.techfak.romulus.picard.MarkerListPoller

+ pollingInterval
~ parent
~ keepRunning

+ MarkerListPoller()
+ end()
+ run()

parent

DefaultHandler

poller

SAXParser

parser

de.unibi.techfak.romulus.picard.ObjectHighlighter

~ EOL
- xcfPublisher
- oldIDs
- newIDs
- addedIDs
- removedIDs
- objectList
- listener
- ownIndex
- otherIndex

+ ObjectHighlighter()
+ getPublisher()
+ registerListener()
+ unregisterListener()
+ isInView()
+ wasInView()
+ update()
+ unhighlightAll()
+ highlightShared()
- getNext()
- diffLists()
- getShape()
- sendTaibak()
- highlight()
- unhighlight()

highlighter

Publisher

xcfPublisher

de.unibi.techfak.romulus.picard.ObjectCreator

+ objectFilename
~ polling_interval
- publisher
- objectList
- randomNumberGenerator
- objectIDLimit
- maxObjects

+ doesExist()
+ ObjectCreator()
+ run()
+ getIDfromART()
- createObject()
- initialize()
- createOriginCube()

publisher

objectList

Random

randomNumberGenerator

Map< Integer, Integer >

objectList

Map

< Integer, Integer >

de.unibi.techfak.romulus.picard.ObjectViewListener

+ objectAppears()
+ objectVanishes()

listener

SortedSet< Integer >

markerList

oldIDs
newIDs

SortedSet

< Integer >

List< Integer >

addedIDs
removedIDs

List

< Integer >

ReceiveLastQueue< XOPData >

queue

ReceiveLastQueue

< XOPData >

SAXParserFactory

parserFactory

C.1. PICARD CLASS DOCUMENTATION 105

Detailed Description

This class gets XML data packages containing the list of objects seen by a
LAFORGE system and parses them using a SAX parser.

It then passes this list to its associated ObjectHighlighter instance. There
has to be one MarkerListGenerator for every LAFORGE system.

Author:

cmertes

Public Member Functions

– MarkerListGenerator (ObjectHighlighter highlighter, ReceiveLastQueue<
XOPData > queue)

The class constructor.

– void endDocument ()
– void startDocument ()
– void startElement (String namespaceURI, String localName, String

qName, Attributes atts)
– void error (SAXParseException exception)
– void fatalError (SAXParseException exception)
– void warning (SAXParseException exception)
– void handlePacket (XOPData data)

This method is called for every new XML packet received.

– String getName ()
– void setName (String s)
– ReceiveLastQueue< XOPData > getQueue ()
– void dispose ()
– void finalize ()

Public Attributes

– ReceiveLastQueue< XOPData > queue

Always contains the last XCF packet.

106 APPENDIX C. DOXYGEN DOCUMENTATION

Package Attributes

– MarkerListPoller poller

Private Attributes

– SortedSet< Integer > markerList = null
– ObjectHighlighter highlighter
– SAXParserFactory parserFactory
– SAXParser parser
– boolean incompleteRun = false

Debug variable to check for incomplete or concurrent calls to the parsing
method.

– String name

Constructor & Destructor Documentation

MarkerListGenerator.MarkerListGenerator (ObjectHighlighter
highlighter, ReceiveLastQueue< XOPData > queue)

The class constructor.

Parameters:

highlighter The ObjectHighlighter that the object lists get passed to.

queue The queue the new XCF packets can be found in.

Member Function Documentation

void MarkerListGenerator.handlePacket (XOPData data)

This method is called for every new XML packet received.

It is then parsed using this class itself.

The documentation for this class was generated from the following file:

C.1. PICARD CLASS DOCUMENTATION 107

– MarkerListGenerator.java

108 APPENDIX C. DOXYGEN DOCUMENTATION

MarkerListPoller Class Reference

Collaboration diagram for MarkerListPoller:

de.unibi.techfak.romulus.picard.MarkerListPoller

+ pollingInterval
~ parent
~ keepRunning

+ MarkerListPoller()
+ end()
+ run()

de.unibi.techfak.romulus.picard.MarkerListGenerator

+ queue
~ poller
- markerList
- highlighter
- parserFactory
- parser
- incompleteRun
- name

+ MarkerListGenerator()
+ endDocument()
+ startDocument()
+ startElement()
+ error()
+ fatalError()
+ warning()
+ handlePacket()
+ getName()
+ setName()
+ getQueue()
+ dispose()
+ finalize()

poller parent

DefaultHandler

SAXParser

parser

de.unibi.techfak.romulus.picard.ObjectHighlighter

~ EOL
- xcfPublisher
- oldIDs
- newIDs
- addedIDs
- removedIDs
- objectList
- listener
- ownIndex
- otherIndex

+ ObjectHighlighter()
+ getPublisher()
+ registerListener()
+ unregisterListener()
+ isInView()
+ wasInView()
+ update()
+ unhighlightAll()
+ highlightShared()
- getNext()
- diffLists()
- getShape()
- sendTaibak()
- highlight()
- unhighlight()

highlighter

Publisher

xcfPublisher

de.unibi.techfak.romulus.picard.ObjectCreator

+ objectFilename
~ polling_interval
- publisher
- objectList
- randomNumberGenerator
- objectIDLimit
- maxObjects

+ doesExist()
+ ObjectCreator()
+ run()
+ getIDfromART()
- createObject()
- initialize()
- createOriginCube()

publisher

objectList

Random

randomNumberGenerator

Map< Integer, Integer >

objectList

Map

< Integer, Integer >

de.unibi.techfak.romulus.picard.ObjectViewListener

+ objectAppears()
+ objectVanishes()

listener

SortedSet< Integer >

markerList

oldIDs
newIDs

SortedSet

< Integer >

List< Integer >

addedIDs
removedIDs

List

< Integer >

ReceiveLastQueue< XOPData >

queue

ReceiveLastQueue

< XOPData >

SAXParserFactory

parserFactory

Detailed Description

This class is a thread that checks the MarkerListGenerator.queue variable of
its parent every 5 milliseconds and if a new XCF packet is available it triggers
its parent to parse it via MarkerListGenerator.handlePacket(XOPData).

This is done to prevent too many data to come in. A solution without polling
would be great though.

C.1. PICARD CLASS DOCUMENTATION 109

Author:

cmertes

Public Member Functions

– MarkerListPoller (MarkerListGenerator parent)
– void end ()
– void run ()

Static Public Attributes

– static final int pollingInterval = 5

Package Attributes

– MarkerListGenerator parent
– boolean keepRunning = true

The documentation for this class was generated from the following file:

– MarkerListPoller.java

110 APPENDIX C. DOXYGEN DOCUMENTATION

MessageWindow Class Reference

Collaboration diagram for MessageWindow:

de.unibi.techfak.romulus.picard.MessageWindow

+ sShell
+ display
+ errorIcon
+ windowIcon
- button
- cLabel

+ MessageWindow()
~ [static initializer]()

CLabel

cLabel

Button

button

Shell

sShell

Display

display

Image

windowIcon
errorIcon

Detailed Description

A little helper class to display error messages to the user when the GUI is
used instead of the console.

Author:

cmertes

Public Member Functions

– MessageWindow (String name, String message)

The class constructor takes two strings.

Public Attributes

– Shell sShell = null

Static Public Attributes

– static Display display

C.1. PICARD CLASS DOCUMENTATION 111

– static Image errorIcon
– static Image windowIcon

Static Package Functions

– [static initializer]

Private Attributes

– Button button = null
– CLabel cLabel = null

Constructor & Destructor Documentation

MessageWindow.MessageWindow (String name, String message)

The class constructor takes two strings.

One to use as a window title and the other as the textual window con-
tent.

Parameters:

name The window title to use

message The textual content of the message window

The documentation for this class was generated from the following file:

– MessageWindow.java

112 APPENDIX C. DOXYGEN DOCUMENTATION

ObjectCreator Class Reference

Collaboration diagram for ObjectCreator:

de.unibi.techfak.romulus.picard.ObjectCreator

+ objectFilename
~ polling_interval
- publisher
- objectList
- randomNumberGenerator
- objectIDLimit
- maxObjects

+ doesExist()
+ ObjectCreator()
+ run()
+ getIDfromART()
- createObject()
- initialize()
- createOriginCube()

Publisher

publisher

Random

randomNumberGenerator

Map< Integer, Integer >

objectList

Map

< Integer, Integer >

Detailed Description

Author:

cmertes

C.1. PICARD CLASS DOCUMENTATION 113

Public Member Functions

– synchronized boolean doesExist (int objectID)
– ObjectCreator (Publisher newPublisher)

The class constructor.

– void run ()

When called polls regularly to see whether the newly started LAFORGE sys-
tem is ready to receive our taibaks.

– synchronized Integer getIDfromART (Integer artID)

Returns the object ID that belongs to a given ART ID.

Static Public Attributes

– static final String objectFilename = "object_uris"

The name of the configuration file that contains the names of the mesh
description files on the system running LAFORGE.

Static Package Attributes

– static final long polling_interval = 100

At the beginning we have to wait until the LAFORGE system gets ready to
receive our initialization taibaks.

Private Member Functions

– void createObject (int artID, String objFileURI)

Sends a taibak to create a new mesh object.

– boolean initialize ()

Initializes a single LAFORGE system2.

– void createOriginCube ()

Mainly a debug function that creates a unit cube around the origin.

114 APPENDIX C. DOXYGEN DOCUMENTATION

Private Attributes

– Publisher publisher
– Map< Integer, Integer > objectList

Static Private Attributes

– static Random randomNumberGenerator = new Random()
– static final int objectIDLimit = 10000
– static final int maxObjects = 6

Generate no more objects than this.

Constructor & Destructor Documentation

ObjectCreator.ObjectCreator (Publisher newPublisher)

The class constructor.

Needs an XCF publisher to send the taibaks to that create the ART ob-
jects.

Parameters:

newPublisher The publisher to use

Member Function Documentation

void ObjectCreator.createObject (int artID, String objFileURI)
[private]

Sends a taibak to create a new mesh object.

Parameters:

artID The ART marker to create the object on

objFileURI The path to the file containing the object desciption of the
mesh that shall be created

C.1. PICARD CLASS DOCUMENTATION 115

boolean ObjectCreator.initialize () [private]

Initializes a single LAFORGE system2.

Returns:

Currently always true. Errors in this function cause the program to
abort.

void ObjectCreator.run ()

When called polls regularly to see whether the newly started LAFORGE
system is ready to receive our taibaks.

Then it is initialized and this method begins to idle, the object waiting to
answer questions about ART ID → object ID mappings. This method gets
called by Thread.start().

synchronized Integer ObjectCreator.getIDfromART (Integer artID)

Returns the object ID that belongs to a given ART ID.

Parameters:

artID The ART ID to check for

Returns:

An Integer containing the object ID that can be used in taibaks to
manipulate the object

Member Data Documentation

final String ObjectCreator.objectFilename = "object_uris" [static]

The name of the configuration file that contains the names of the mesh
description files on the system running LAFORGE.

116 APPENDIX C. DOXYGEN DOCUMENTATION

Each line is interpreted as one file name except when preceded by #or if
there are more lines than the value ofmaxObjects.

final long ObjectCreator.polling_interval = 100 [static, package]

At the beginning we have to wait until the LAFORGE system gets ready to
receive our initialization taibaks.

This variable contains the number of milliseconds to wait between checks
for a remote subscriber listening to us.

The documentation for this class was generated from the following file:

– ObjectCreator.java

C.1. PICARD CLASS DOCUMENTATION 117

ObjectHighlighter Class Reference

Collaboration diagram for ObjectHighlighter:

de.unibi.techfak.romulus.picard.ObjectHighlighter

~ EOL
- xcfPublisher
- oldIDs
- newIDs
- addedIDs
- removedIDs
- objectList
- listener
- ownIndex
- otherIndex

+ ObjectHighlighter()
+ getPublisher()
+ registerListener()
+ unregisterListener()
+ isInView()
+ wasInView()
+ update()
+ unhighlightAll()
+ highlightShared()
- getNext()
- diffLists()
- getShape()
- sendTaibak()
- highlight()
- unhighlight()

Publisher

xcfPublisher

de.unibi.techfak.romulus.picard.ObjectCreator

+ objectFilename
~ polling_interval
- publisher
- objectList
- randomNumberGenerator
- objectIDLimit
- maxObjects

+ doesExist()
+ ObjectCreator()
+ run()
+ getIDfromART()
- createObject()
- initialize()
- createOriginCube()

publisher

objectList

Random

randomNumberGenerator

Map< Integer, Integer >

objectList

Map

< Integer, Integer >

de.unibi.techfak.romulus.picard.ObjectViewListener

+ objectAppears()
+ objectVanishes()

listener

SortedSet< Integer >

oldIDs
newIDs

SortedSet

< Integer >

List< Integer >

addedIDs
removedIDs

List

< Integer >

Detailed Description

Gets the list of visible ART markers and thereby determines which objects
to highlight and to unhighlight.

Author:

cmertes

118 APPENDIX C. DOXYGEN DOCUMENTATION

Public Member Functions

– ObjectHighlighter (Publisher publisher, ObjectCreator creator, int in-
dex)

– Publisher getPublisher ()
– void registerListener (ObjectViewListener objectViewListener)

Registers a single ObjectViewListener whose methods get called when an
ART object appears or disappears.

– void unregisterListener ()

The same as registerListener(null).

– boolean isInView (Integer artID)

Returns whether an ART marker with a given ID is currently in view.

– boolean wasInView (Integer artID)

Returns whether an ART marker with a given ID was in view during the last
iteration.

– void update (SortedSet< Integer > artIDs)

Updates the list of ART IDs that are in view.

– void unhighlightAll ()

Use this when object highlighting is switched from on to off to unhighlight
the remaining highlighted objects.

– void highlightShared ()

Use this when object highlighting is switched from off to on to highlight the
currently unhighlighted objects in the partner’s FOV.

Package Attributes

– final int EOL = -1

End Of List.

Private Member Functions

– int getNext (Iterator< Integer > iter)

C.1. PICARD CLASS DOCUMENTATION 119

A very small helper function to diffLists().

– void diffLists ()
Determines which objects are new and which disappeared.

– String getShape (Properties.envelope_t env)
Associates a Properties.envelope_t with a string that can be used in taibaks.

– void sendTaibak (String highlightXML, Integer objectID)
Sends a taibak to highlight or unhighlight a given object.

– void highlight (Integer objectID)
Highlights an object.

– void unhighlight (Integer objectID)
Unhighlights an object.

Private Attributes

– Publisher xcfPublisher
– SortedSet< Integer > oldIDs
– SortedSet< Integer > newIDs
– List< Integer > addedIDs
– List< Integer > removedIDs
– ObjectCreator objectList
– ObjectViewListener listener = null
– int ownIndex
– int otherIndex

Member Function Documentation

void ObjectHighlighter.registerListener (ObjectViewListener
objectViewListener)

Registers a single ObjectViewListener whose methods get called when an
ART object appears or disappears.

Currently only a single ObjectViewListener can be registered at any given
time.

120 APPENDIX C. DOXYGEN DOCUMENTATION

Parameters:

objectViewListener The ObjectViewListener which shall be informed
of appearing and disappearing objects in the FOV of the current
HMD

int ObjectHighlighter.getNext (Iterator< Integer > iter) [private]

A very small helper function to diffLists().

Returns the next element in a list of Integers or the EOL constant if there is
no next element.

Parameters:

iter An iterator to a list of Integers

Returns:

The respective int (not Integer)

void ObjectHighlighter.diffLists () [private]

Determines which objects are new and which disappeared.

For this the function takes the current list C and the last list L of visible mark-
ers and generates the two lists addedIDs A = C \ (L ∩ C) = C \ L of mark-
ers that appeared since the last update from LAFORGE and removedIDs
R = L \ (L ∩ C) = L \ C of markers that disappeared (L ∩ C terms added for
descriptiveness).

This is done by iterating through both ascendingly sorted lists at the same
time: When both IDs are equal (i.e. the current ID is ∈ L∩C), both iterators
are advanced. If the old ID is smaller, it is added to the list of disappeared
objects and only this iterator is advanced, if the new ID is smaller, it is
consequently added to the list of appeared objects and the new ID iterator
is advanced. This is repeated until the end of both lists is reached.

C.1. PICARD CLASS DOCUMENTATION 121

Figure 39: Venn diagram of the sets diffLists() uses

String ObjectHighlighter.getShape (Properties.envelope_t env)
[private]

Associates a Properties.envelope_t with a string that can be used in taibaks.

Parameters:

env The envelope type to translate

Returns:

The associated string

void ObjectHighlighter.sendTaibak (String highlightXML, Integer
objectID) [private]

Sends a taibak to highlight or unhighlight a given object.

Parameters:

highlightXML A string containing the XML that constitutes the suc-
cessors of the <OBJECT> tag.

objectID The object ID of the object to (un)highlight

122 APPENDIX C. DOXYGEN DOCUMENTATION

void ObjectHighlighter.highlight (Integer objectID) [private]

Highlights an object.

Parameters:

objectID The object ID of the object to highlight

void ObjectHighlighter.unhighlight (Integer objectID) [private]

Unhighlights an object.

Parameters:

objectID The object ID of the object to unhighlight

boolean ObjectHighlighter.isInView (Integer artID)

Returns whether an ART marker with a given ID is currently in view.

Parameters:

artID The ID of the AR Toolkit marker to check for.

Returns:

true or false

boolean ObjectHighlighter.wasInView (Integer artID)

Returns whether an ART marker with a given ID was in view during the last
iteration.

Parameters:

artID The ID of the AR Toolkit marker to check for.

C.1. PICARD CLASS DOCUMENTATION 123

Returns:

true or false

void ObjectHighlighter.update (SortedSet< Integer > artIDs)

Updates the list of ART IDs that are in view.

Compares this new list with the last one and figures out which objects
are new and which can no longer be seen. Then it highlights and unhigh-
lights accordingly and calls the appropriate methods of the registered Ob-
jectViewListener (if any).

Parameters:

artIDs A list of ART IDs

The documentation for this class was generated from the following file:

– ObjectHighlighter.java

124 APPENDIX C. DOXYGEN DOCUMENTATION

ObjectViewListener Interface Reference

Inheritance diagram for ObjectViewListener:

de.unibi.techfak.romulus.picard.ObjectViewListener

+ objectAppears()
+ objectVanishes()

de.unibi.techfak.romulus.picard.ScottyRetransmitter

- oscTransmitter
- freq
- amp
- dissonance
- pan
- eye
- direction
- up
- ownEye
- ownDirection
- lastOwnEye
- lastOwnDirection
- ownUp
- matrix
- publisher
- beamSynthID
- beamOnMessage
- beamOffMessage
- objInMessage
- objOutMessage
- minFreq
- maxFreq
- maxAmp
- maxDissonance

+ ScottyRetransmitter()
+ setPartnerEye()
+ setPartnerDirection()
+ setPartnerUp()
+ setOwnEye()
+ setOwnDirection()
+ setOwnUp()
+ startAcousticBeam()
+ startVisualBeam()
+ updateBeam()
+ stopAcousticBeam()
+ stopVisualBeam()
+ objectAppears()
+ objectVanishes()
+ dispose()
+ finalize()
+ setXCFPublisher()
- send()
- computeSonData()
- computeTransformationMatrix()

Detailed Description

An instance of a class inheriting from this interface can be registered to an
ObjectHighlighter which will in turn notify the object when objects appear
and disappear from the user’s view.

C.1. PICARD CLASS DOCUMENTATION 125

Author:

cmertes

Public Member Functions

– void objectAppears ()

This method will be called by ObjectHighlighter whenever an object is de-
tected that wasn’t there in the previous time step.

– void objectVanishes ()

This method will be called by ObjectHighlighter every time an object is no
longer detected although it was there in the last time step.

The documentation for this interface was generated from the following file:

– ObjectViewListener.java

126 APPENDIX C. DOXYGEN DOCUMENTATION

PicardInterceptor Class Reference

Inheritance diagram for PicardInterceptor:

de.unibi.techfak.romulus.picard.PicardInterceptor

+ artPrefix
+ scottyName
+ objectHighlighters
- subscribers
- publishers
- names
- objectCreators
- listGenerators
- xcfManager

+ PicardInterceptor()
+ handleEvent()
+ handleEvent()
- connectSubscriberToPublisher()
- becomesComplete()
- losesCompleteness()
- extractSystemID()
- addLaforgeSystem()

SystemEventAdapter

C.1. PICARD CLASS DOCUMENTATION 127

Collaboration diagram for PicardInterceptor:

de.unibi.techfak.romulus.picard.PicardInterceptor

+ artPrefix
+ scottyName
+ objectHighlighters
- subscribers
- publishers
- names
- objectCreators
- listGenerators
- xcfManager

+ PicardInterceptor()
+ handleEvent()
+ handleEvent()
- connectSubscriberToPublisher()
- becomesComplete()
- losesCompleteness()
- extractSystemID()
- addLaforgeSystem()

SystemEventAdapter

Publisher

publishers

de.unibi.techfak.romulus.picard.ObjectCreator

+ objectFilename
~ polling_interval
- publisher
- objectList
- randomNumberGenerator
- objectIDLimit
- maxObjects

+ doesExist()
+ ObjectCreator()
+ run()
+ getIDfromART()
- createObject()
- initialize()
- createOriginCube()

publisher

de.unibi.techfak.romulus.picard.ObjectHighlighter

~ EOL
- xcfPublisher
- oldIDs
- newIDs
- addedIDs
- removedIDs
- objectList
- listener
- ownIndex
- otherIndex

+ ObjectHighlighter()
+ getPublisher()
+ registerListener()
+ unregisterListener()
+ isInView()
+ wasInView()
+ update()
+ unhighlightAll()
+ highlightShared()
- getNext()
- diffLists()
- getShape()
- sendTaibak()
- highlight()
- unhighlight()

xcfPublisher

objectCreators

objectList

Random

randomNumberGenerator

Map< Integer, Integer >

objectList

Map

< Integer, Integer >

objectHighlighters

de.unibi.techfak.romulus.picard.MarkerListGenerator

+ queue
~ poller
- markerList
- highlighter
- parserFactory
- parser
- incompleteRun
- name

+ MarkerListGenerator()
+ endDocument()
+ startDocument()
+ startElement()
+ error()
+ fatalError()
+ warning()
+ handlePacket()
+ getName()
+ setName()
+ getQueue()
+ dispose()
+ finalize()

highlighter

de.unibi.techfak.romulus.picard.ObjectViewListener

+ objectAppears()
+ objectVanishes()

listener

SortedSet< Integer >

oldIDs
newIDs

markerList

SortedSet

< Integer >

List< Integer >

addedIDs
removedIDs

List

< Integer >

XcfManager

xcfManager listGenerators

de.unibi.techfak.romulus.picard.MarkerListPoller

+ pollingInterval
~ parent
~ keepRunning

+ MarkerListPoller()
+ end()
+ run()

parent

DefaultHandler

poller

SAXParser

parser

ReceiveLastQueue< XOPData >

queue

ReceiveLastQueue

< XOPData >

SAXParserFactory

parserFactory

Subscriber

subscribers

128 APPENDIX C. DOXYGEN DOCUMENTATION

Detailed Description

This class monitors the XCF dispatcher and triggers actions according to
relevant events.

This is the most central back-end class apart from Main. The latter instanti-
ates this class directly after it takes over.

Author:

cmertes

Public Member Functions

– PicardInterceptor (XcfManager manager)

The class constructor.

– void handleEvent (AdditionEvent e)

Checks for new XCF entities whether they are LAFORGE or SCOTTY sub-
scribers.

– void handleEvent (DeletionEvent e)

Checks for newly disappeared XCF entities whether they were registered
ones to clean up when necessary.

Public Attributes

– final String artPrefix = "ARTCOORDS"

The prefix by which ART.

– final String scottyName = "SCOTTY"

The name of the SCOTTY publisher.

– ObjectHighlighter[] objectHighlighters = {null, null}

Private Member Functions

– void connectSubscriberToPublisher (int id1, int id2)

C.1. PICARD CLASS DOCUMENTATION 129

As soon as both LAFORGE systems are present this function gets called
twice, each time connect the output of one system to the input of the other.

– boolean becomesComplete ()
Gets called as soon as both LAFORGE systems are present.

– void losesCompleteness ()
If both LAFORGE systems were present but at least one ceases to exist (or
to be visible for that matter), the actions of becomesComplete need to be
undone which this function does.

– Integer extractSystemID (String publisherName)
A little helper function to extract the system ID from an ARTCOORDS pub-
lisher name.

– boolean addLaforgeSystem (String publisherName)
When a new LAFORGE system appears this method is called.

Private Attributes

– Subscriber[] subscribers = {null, null}
– Publisher[] publishers = {null, null}
– String[] names = {null, null}
– ObjectCreator[] objectCreators = {null, null}
– MarkerListGenerator[] listGenerators = {null, null}
– XcfManager xcfManager

Constructor & Destructor Documentation

PicardInterceptor.PicardInterceptor (XcfManager manager)

The class constructor.

Takes an XcfManager and uses it to check for already existing publishers
(LAFORGE and SCOTTY).

Parameters:

manager The XcfManager object

130 APPENDIX C. DOXYGEN DOCUMENTATION

Member Function Documentation

void PicardInterceptor.connectSubscriberToPublisher (int id1, int id2)
[private]

As soon as both LAFORGE systems are present this function gets called
twice, each time connect the output of one system to the input of the other.

This is crucial for all visualizations used.

Parameters:

id1 The system ID of the data producing LAFORGE system (output
system)

id2 The system ID of the receiving LAFORGE system (input system)

boolean PicardInterceptor.becomesComplete () [private]

Gets called as soon as both LAFORGE systems are present.

Then both subscribers are created and connectSubscriberToPublisher(int,
int) is called twice.

Returns:

false if the subscriber creation failed, true othewise

Integer PicardInterceptor.extractSystemID (String publisherName)
[private]

A little helper function to extract the system ID from an ARTCOORDS pub-
lisher name.

Parameters:

publisherName ARTCOORDS_1 or ARTCOORDS_2

Returns:

0 or 1 (or null if no valid system ID could be extracted)

C.1. PICARD CLASS DOCUMENTATION 131

boolean PicardInterceptor.addLaforgeSystem (String publisherName)
[private]

When a new LAFORGE system appears this method is called.

It creates a publisher to send taibaks to this LAFORGE system and uses
this via ObjectCreator to initialize it with ART objects. Finally it checks
whether this is the second LAFORGE already to call becomesComplete()
in this case.

Parameters:

publisherName The name of the new system’s publisher

Returns:

true if everything went fine

void PicardInterceptor.handleEvent (AdditionEvent e)

Checks for new XCF entities whether they are LAFORGE or SCOTTY sub-
scribers.

Gets called by the XcfManager.

void PicardInterceptor.handleEvent (DeletionEvent e)

Checks for newly disappeared XCF entities whether they were registered
ones to clean up when necessary.

Gets called by the XcfManager.

Member Data Documentation

final String PicardInterceptor.artPrefix = "ARTCOORDS"

The prefix by which ART.

132 APPENDIX C. DOXYGEN DOCUMENTATION

coordinate sending XCF publishers are identified.

The documentation for this class was generated from the following file:

– PicardInterceptor.java

C.1. PICARD CLASS DOCUMENTATION 133

Properties Class Reference

Detailed Description

In this class properties and settings are stored, set and read out again.

Command-line arguments as well as GUI elements manipulate the various
parts of the program they affect via this class. It also contains some constants
(a.k.a. magic numbers) that are needed at various places throughout the
program.

Author:

cmertes

Public Types

– enum envelope_t

Public Member Functions

– void beRelative (boolean b)

Sets the relativeValues variable which determines, whether envelope du-
rations are transformed to a parameter a (true) or not (false).

– boolean isRelative ()

Returns the relativeValues variable.

– void setAttackEnvelope (envelope_t env)

Sets the shape of the highlight attack envelope.

– envelope_t getAttackEnvelope ()

Gets the shape of the highlight attack envelope.

– void setDecayEnvelope (envelope_t env)

Sets the shape of the highlight decay envelope.

– envelope_t getDecayEnvelope ()

Gets the shape of the highlight decay envelope.

134 APPENDIX C. DOXYGEN DOCUMENTATION

– void setAttackTime (double t)

Sets the time of the attack phase of the highlight envelope.

– double getAttackValue ()

Gets the a parameter of the attack envelope.

– double getAttackTime ()

Gets the parameter setAttackTime was last called with.

– void setDecayTime (double t)

Sets the time of the decay phase of the highlight envelope.

– double getDecayTime ()

Gets the parameter setDecayTime was last called with.

– double getDecayValue ()

Gets the a parameter of the decay envelope.

– String getDecayTerm ()

Gets the attribute the <ENVELOPE> tag takes for the decay envelope set-
tings.

– String getAttackTerm ()

Gets the attribute the <ENVELOPE> tag takes for the attack envelope set-
tings.

– boolean useSoundEvents ()

Returns whether the event sonification is switched on.

– void useSoundEvents (boolean b)

Sets whether the event sonification should be used.

– boolean useFoVSound ()

Returns whether the FOV sonification is switched on.

– void useFoVSound (boolean b)

Sets whether the FOV sonification should be used.

– boolean useFoVDisplay ()

Returns whether the fuzzy rectangle FOV visualization is switched on.

C.1. PICARD CLASS DOCUMENTATION 135

– void useFoVDisplay (boolean b)

Sets whether the fuzzy rectangle FOV visualization should be used.

– boolean useSonification ()

Returns whether any sonification is switched on.

– boolean useScotty ()

Returns whether any feature that uses SCOTTY is switched on.

– boolean useHighlighting ()

Returns whether the object highlighting is turned on.

– void useHighlighting (boolean b)

Sets whether the object highlighting is turned on.

– boolean useMemory ()

Returns whether the object highlighting uses any attack or decay envelope.

– double getFuzzyRectWidth ()

Gets the width of the rectangle to project onto the table surface to mark the
user’s FOV.

– double getFuzzyRectHeight ()

Gets the height of the rectangle to project onto the table surface to mark
the user’s FOV.

– double getFuzzylength ()

Gets the width of the fuzzy area around the rectangle which is projected
onto the table surface to mark the user’s FOV.

– void setFuzzylength (double d)

Sets the amount of fuzzyness the FOV display has.

– void doCreateOriginCube (boolean b)

Whether to create a unit cube in the origin of a new LAFORGE system.

– boolean doCreateOriginCube ()

Whether to create a unit cube in the origin of a new LAFORGE system.

– boolean alwaysPing ()

136 APPENDIX C. DOXYGEN DOCUMENTATION

Whether event sounds shall always be triggered or only when the event
happens in the field of view of the user.

– void alwaysPing (boolean doAlwaysPing)

Sets if event sounds shall always be triggered or only when the event hap-
pens in the field of view of the user.

Static Public Member Functions

– static envelope_t parseEnvelope (String envstr)

The different shapes the attack and decay parts of the envelope can take.

– static double calcA (envelope_t env, double t)

Given an envelope shape and a time this method calculates the parameter a
the <ENVELOPE> tag takes.

Static Public Attributes

– static final double maxHighlight = 1.0

The value an object is fully highlighted with.

– static final int controlRate = 100

Frequency of LAFORGE’s control rate.

– static final double expBase = 1.0

Internal LAFORGE constant.

– static final double epsFactor = 1.0/5000

Another internal LAFORGE constant.

– static final int fuzzyRectID = 0xFADE

The fix object ID used in taibaks to refer to the fuzzy rectangle.

Private Attributes

– boolean relativeValues = true

C.1. PICARD CLASS DOCUMENTATION 137

– envelope_t attackEnvelope = envelope_t.ENV_EXP

– envelope_t decayEnvelope = envelope_t.ENV_LOG

– double attackTime
– double attackValue
– double decayTime
– double decayValue
– double fuzzyRectWidth = 376.0/515.0

– double fuzzyRectHeight = 48.0/103.0

– double fuzzylength = 3.0

– boolean use_sound_events = false

– boolean use_fov_sound = false

– boolean use_fov_display = false

– boolean use_highlighting = false

– boolean create_origin_cube = false

– boolean alwaysPing = true

Member Function Documentation

static envelope_t Properties.parseEnvelope (String envstr) [static]

The different shapes the attack and decay parts of the envelope can take.

Identifies an envelope type from a string.

Parameters:

envstr A string starting either with "log", "lin" or "exp"

Returns:

The according envelope_t value or ENV_INVALID if no match was found.

static double Properties.calcA (envelope_t env, double t) [static]

Given an envelope shape and a time this method calculates the parameter
a the <ENVELOPE> tag takes.

138 APPENDIX C. DOXYGEN DOCUMENTATION

Parameters:

env A member of envelope_t

t The time to convert in seconds

Returns:

The value that produces an attack or decay time of t or NaN if an invalid
envelope type was passed. The latter should never happen.

void Properties.beRelative (boolean b)

Sets the relativeValues variable which determines, whether envelope du-
rations are transformed to a parameter a (true) or not (false).

If this flag is not set, is has the effect that every time an envelope gets
updated the timer restarts at 0 yet the value and thus the difference doesn’t.
This means the actual speed the value changes with varies, which is probably
not what you want. Therefore the relativeValues flag is set by default. If
the time within a value reaches 0 or its maximum is more important though
than the speed it does this with, then you should call this function with
false.

Parameters:

b Set true for absolute value change speed and relative value change
time, set false for the opposite.

boolean Properties.isRelative ()

Returns the relativeValues variable.

See beRelative(boolean) for an explanation.

Returns:

true or false, see above

C.1. PICARD CLASS DOCUMENTATION 139

void Properties.setAttackEnvelope (envelope_t env)

Sets the shape of the highlight attack envelope.

Parameters:

env A value from envelope_t

envelope_t Properties.getAttackEnvelope ()

Gets the shape of the highlight attack envelope.

Returns:

A value from envelope_t

void Properties.setDecayEnvelope (envelope_t env)

Sets the shape of the highlight decay envelope.

Parameters:

env A value from envelope_t

envelope_t Properties.getDecayEnvelope ()

Gets the shape of the highlight decay envelope.

Returns:

A value from envelope_t

void Properties.setAttackTime (double t)

Sets the time of the attack phase of the highlight envelope.

140 APPENDIX C. DOXYGEN DOCUMENTATION

Parameters:

t The attack time in seconds

double Properties.getAttackValue ()

Gets the a parameter of the attack envelope.

Returns:

The internal attackValue variable

double Properties.getAttackTime ()

Gets the parameter setAttackTime was last called with.

Returns:

The internal attackTime variable

void Properties.setDecayTime (double t)

Sets the time of the decay phase of the highlight envelope.

Parameters:

t The decay time in seconds

double Properties.getDecayTime ()

Gets the parameter setDecayTime was last called with.

Returns:

The internal decayTime variable

C.1. PICARD CLASS DOCUMENTATION 141

double Properties.getDecayValue ()

Gets the a parameter of the decay envelope.

Returns:

The internal decayValue variable

String Properties.getDecayTerm ()

Gets the attribute the <ENVELOPE> tag takes for the decay envelope set-
tings.

Returns:

a="decayValue" or t="decayTime" (with decayValue and decayTime
replaced by the according values of course), depending on whether or
not relativeValues is set.

String Properties.getAttackTerm ()

Gets the attribute the <ENVELOPE> tag takes for the attack envelope set-
tings.

Returns:

a="attackValue" or t="attackTime" (with attackValue and
attackTime replaced by the according values of course), depend-
ing on whether or not relativeValues is set.

boolean Properties.useSoundEvents ()

Returns whether the event sonification is switched on.

Returns:

true if the event sonification is switched on, false otherwise.

142 APPENDIX C. DOXYGEN DOCUMENTATION

void Properties.useSoundEvents (boolean b)

Sets whether the event sonification should be used.

Parameters:

b Set true if the event sonification shall be switched on or false oth-
erwise.

boolean Properties.useFoVSound ()

Returns whether the FOV sonification is switched on.

Returns:

true if the FOV sonification is switched on, false otherwise.

void Properties.useFoVSound (boolean b)

Sets whether the FOV sonification should be used.

Parameters:

b Set true if the FOV sonification shall be switched on or false oth-
erwise.

boolean Properties.useFoVDisplay ()

Returns whether the fuzzy rectangle FOV visualization is switched on.

Returns:

true if the continuous FOV visualization is switched on, false other-
wise.

C.1. PICARD CLASS DOCUMENTATION 143

void Properties.useFoVDisplay (boolean b)

Sets whether the fuzzy rectangle FOV visualization should be used.

Parameters:

b Set true if the FOV visualization shall be switched on or false oth-
erwise.

boolean Properties.useSonification ()

Returns whether any sonification is switched on.

Returns:

true if either the event sonification or the FOV sonification is switched
on or both, false otherwise.

boolean Properties.useScotty ()

Returns whether any feature that uses SCOTTY is switched on.

Returns:

true if either the FOV sonification or the FOV visualization or both are
switched on, false otherwise.

boolean Properties.useHighlighting ()

Returns whether the object highlighting is turned on.

Returns:

true if the object highlighting visualization is switched on, false oth-
erwise.

144 APPENDIX C. DOXYGEN DOCUMENTATION

void Properties.useHighlighting (boolean b)

Sets whether the object highlighting is turned on.

Parameters:

b true if the object highlighting visualization shall be switched on,
false otherwise.

See also:

setAttackTime(double)
setDecayTime(double)
setAttackEnvelope(envelope_t)
setDecayEnvelope(envelope_t)

boolean Properties.useMemory ()

Returns whether the object highlighting uses any attack or decay envelope.

Although just an attack phase isn’t what one would normally call "memory"
but well, in the context of this function it is.

Returns:

true if at least one of attackTime and decayTime is non-zero, false
if both are.

double Properties.getFuzzyRectWidth ()

Gets the width of the rectangle to project onto the table surface to mark
the user’s FOV.

Doesn’t include the fuzzy area, whose extent is read by getFuzzylength().

Returns:

The rectangle’s extent along the x axis.

C.1. PICARD CLASS DOCUMENTATION 145

double Properties.getFuzzyRectHeight ()

Gets the height of the rectangle to project onto the table surface to mark
the user’s FOV.

Doesn’t include the fuzzy area, whose extent is read by getFuzzylength().

Returns:

The rectangle’s extent along the y axis.

double Properties.getFuzzylength ()

Gets the width of the fuzzy area around the rectangle which is projected
onto the table surface to mark the user’s FOV.

There’s no difference between the extent along the x and the y axis.

Returns:

The amount of fuzzyness the FOV display has.

void Properties.setFuzzylength (double d)

Sets the amount of fuzzyness the FOV display has.

While the actual FOV is always solid, there is a colour gradient around it
whose length is set with this method.

Parameters:

d A non-negative value.

void Properties.doCreateOriginCube (boolean b)

Whether to create a unit cube in the origin of a new LAFORGE system.

Use for testing purposes. Defaults to false

146 APPENDIX C. DOXYGEN DOCUMENTATION

Parameters:

b Set to true to automatically create a unit cube around the origin of
every registered LAFORGE system.

boolean Properties.doCreateOriginCube ()

Whether to create a unit cube in the origin of a new LAFORGE system.

See also:

doCreateOriginCube(boolean)

Returns:

The value of the internal create_origin_cube variable.

boolean Properties.alwaysPing ()

Whether event sounds shall always be triggered or only when the event
happens in the field of view of the user.

Returns:

true when all events trigger sounds, false when only visible events
trigger sounds.

void Properties.alwaysPing (boolean doAlwaysPing)

Sets if event sounds shall always be triggered or only when the event hap-
pens in the field of view of the user.

Parameters:

doAlwaysPing true to make every event trigger a sound, false to
make only visible events trigger a sound.

The documentation for this class was generated from the following file:

C.1. PICARD CLASS DOCUMENTATION 147

– Properties.java

148 APPENDIX C. DOXYGEN DOCUMENTATION

ScottyRetransmitter Class Reference

Inheritance diagram for ScottyRetransmitter:

de.unibi.techfak.romulus.picard.ScottyRetransmitter

- oscTransmitter
- freq
- amp
- dissonance
- pan
- eye
- direction
- up
- ownEye
- ownDirection
- lastOwnEye
- lastOwnDirection
- ownUp
- matrix
- publisher
- beamSynthID
- beamOnMessage
- beamOffMessage
- objInMessage
- objOutMessage
- minFreq
- maxFreq
- maxAmp
- maxDissonance

+ ScottyRetransmitter()
+ setPartnerEye()
+ setPartnerDirection()
+ setPartnerUp()
+ setOwnEye()
+ setOwnDirection()
+ setOwnUp()
+ startAcousticBeam()
+ startVisualBeam()
+ updateBeam()
+ stopAcousticBeam()
+ stopVisualBeam()
+ objectAppears()
+ objectVanishes()
+ dispose()
+ finalize()
+ setXCFPublisher()
- send()
- computeSonData()
- computeTransformationMatrix()

de.unibi.techfak.romulus.picard.ObjectViewListener

+ objectAppears()
+ objectVanishes()

C.1. PICARD CLASS DOCUMENTATION 149

Collaboration diagram for ScottyRetransmitter:

de.unibi.techfak.romulus.picard.ScottyRetransmitter

- oscTransmitter
- freq
- amp
- dissonance
- pan
- eye
- direction
- up
- ownEye
- ownDirection
- lastOwnEye
- lastOwnDirection
- ownUp
- matrix
- publisher
- beamSynthID
- beamOnMessage
- beamOffMessage
- objInMessage
- objOutMessage
- minFreq
- maxFreq
- maxAmp
- maxDissonance

+ ScottyRetransmitter()
+ setPartnerEye()
+ setPartnerDirection()
+ setPartnerUp()
+ setOwnEye()
+ setOwnDirection()
+ setOwnUp()
+ startAcousticBeam()
+ startVisualBeam()
+ updateBeam()
+ stopAcousticBeam()
+ stopVisualBeam()
+ objectAppears()
+ objectVanishes()
+ dispose()
+ finalize()
+ setXCFPublisher()
- send()
- computeSonData()
- computeTransformationMatrix()

de.unibi.techfak.romulus.picard.ObjectViewListener

+ objectAppears()
+ objectVanishes()

Publisher

publisher

OSCTransmitter

oscTransmitter

OSCMessage

beamOffMessage
objInMessage

beamOnMessage
objOutMessage

150 APPENDIX C. DOXYGEN DOCUMENTATION

Detailed Description

Gets information about a user’s gaze direction, transforms it into OSC pack-
ets and sends these to a given network socket.

This socket is typically a host running scsynth. This class also uses the same
gaze direction data to create a fuzzy rectangle via XCF. Thirdly it implements
ObjectViewListener to send event sound OSC packages. This and Sonificator
were only one class if Java supported multiple inheritance.

Author:

cmertes

Public Member Functions

– ScottyRetransmitter (InetSocketAddress socket)

The class constructor.

– void setPartnerEye (double[] vec)

This method updates the direction vector of the user’s dialogue partner’s
gaze.

– void setPartnerDirection (double[] vec)

This method updates the direction vector of the user’s dialogue partner’s
gaze.

– void setPartnerUp (double[] vec)

This method updates the up vector of the user’s dialogue partner’s gaze.

– void setOwnEye (double[] vec)

This method updates the direction vector of the user’s own gaze.

– void setOwnDirection (double[] vec)

This method updates the direction vector of the user’s own gaze.

– void setOwnUp (double[] vec)

This method updates the up vector of the user’s own gaze.

– boolean startAcousticBeam ()

Starts the continuous sonification of the gaze of the user’s dialogue partner.

C.1. PICARD CLASS DOCUMENTATION 151

– void startVisualBeam ()

Starts the fuzzy rectangle augmentation.

– void updateBeam ()

Updates the continuous sonification of the gaze of the user’s dialogue part-
ner with the most recent data.

– boolean stopAcousticBeam ()

Stops the continuous sonification of the gaze of the user’s dialogue partner.

– void stopVisualBeam ()

Stops the fuzzy rectangle augmentation.

– void objectAppears ()

Sends an event packet to the network socket that is associated with the
sound of an appearing object.

– void objectVanishes ()

Sends an event packet to the network socket that is associated with the
sound of an disappearing object.

– void dispose ()

Switches off all active augmentations and closes the OSC network channel.

– void finalize ()
– void setXCFPublisher (Publisher publisher)

Sets the XCF publisher that is used by this class to send taibaks to LAFORGE.

Private Member Functions

– boolean send (OSCMessage message)
– void computeSonData ()

This method uses the gaze direction data of both interlocutors to compute
the sonification raw data and maps these to the sonification parameters.

– void computeTransformationMatrix ()

Calculates the transformation matrix M.

152 APPENDIX C. DOXYGEN DOCUMENTATION

Private Attributes

– OSCTransmitter oscTransmitter
– Integer freq
– Double amp
– Double dissonance
– Double pan
– double[] eye
– double[] direction
– double[] up
– double[] ownEye
– double[] ownDirection
– double[] lastOwnEye
– double[] lastOwnDirection
– double[] ownUp
– double[][] matrix = null
– Publisher publisher = null

The XCF publisher used to send SCOTTY-dependent taibaks to LAFORGE.

Static Private Attributes

– static final Integer beamSynthID = new Integer(100)
– static final OSCMessage beamOnMessage
– static final OSCMessage beamOffMessage
– static final OSCMessage objInMessage
– static final OSCMessage objOutMessage
– static final int minFreq = 50
– static final int maxFreq = 1000
– static final double maxAmp = 5.0
– static final double maxDissonance = 10.0

Constructor & Destructor Documentation

ScottyRetransmitter.ScottyRetransmitter (InetSocketAddress socket)

The class constructor.

There needs to be one objects for every LAFORGE system.

C.1. PICARD CLASS DOCUMENTATION 153

Parameters:

socket The data structure containing target host name and port num-
ber.

Member Function Documentation

void ScottyRetransmitter.setPartnerEye (double[] vec)

This method updates the direction vector of the user’s dialogue partner’s
gaze.

This data is normally provided by SCOTTY.

Parameters:

vec A three-dimensional direction vector.

See also:

updateBeam()

void ScottyRetransmitter.setPartnerDirection (double[] vec)

This method updates the direction vector of the user’s dialogue partner’s
gaze.

This data is normally provided by SCOTTY.

Parameters:

vec A three-dimensional direction vector.

See also:

updateBeam()

void ScottyRetransmitter.setPartnerUp (double[] vec)

This method updates the up vector of the user’s dialogue partner’s gaze.

154 APPENDIX C. DOXYGEN DOCUMENTATION

This data is normally provided by SCOTTY.

Parameters:

vec A three-dimensional up vector.

See also:

updateBeam()

void ScottyRetransmitter.setOwnEye (double[] vec)

This method updates the direction vector of the user’s own gaze.

This data is normally provided by SCOTTY.

Parameters:

vec A three-dimensional direction vector.

See also:

updateBeam()

void ScottyRetransmitter.setOwnDirection (double[] vec)

This method updates the direction vector of the user’s own gaze.

This data is normally provided by SCOTTY.

Parameters:

vec A three-dimensional direction vector.

See also:

updateBeam()

C.1. PICARD CLASS DOCUMENTATION 155

void ScottyRetransmitter.setOwnUp (double[] vec)

This method updates the up vector of the user’s own gaze.

This data is normally provided by SCOTTY.

Parameters:

vec A three-dimensional up vector.

See also:

updateBeam()

boolean ScottyRetransmitter.startAcousticBeam ()

Starts the continuous sonification of the gaze of the user’s dialogue partner.

Returns:

true if the OSC packet was sent successfully, false otherwise. Please
note that this doesn’t eye the packet could be received successfully by
the remote end.

See also:

updateBeam()
stopAcousticBeam()

void ScottyRetransmitter.updateBeam ()

Updates the continuous sonification of the gaze of the user’s dialogue part-
ner with the most recent data.

Does nothing if Main.sonificator.useBeam is not set. Calling this method
before startAcousticBeam() will lead to an error on the remote end.

Returns:

true if the OSC packet was sent successfully, false otherwise. Please
note that this doesn’t eye the packet could be received successfully

156 APPENDIX C. DOXYGEN DOCUMENTATION

by the remote end. If Main.sonificator.useBeam is not set, false is
returned.

See also:

startAcousticBeam()
stopAcousticBeam()

void ScottyRetransmitter.computeTransformationMatrix () [private]

Calculates the transformation matrix M.

M =

(
eye[2] 0 −eye[0] 0

0 eye[2] −eye[1] 0
0 0 0 0
0 0 −1 eye[2]

)(
s[0] s[1] s[2] 0
v[0] v[1] v[2] 0

−direction[0] −direction[1] −direction[2] 0
0 0 0 1

)(1 0 0 eye[0]
0 1 0 eye[1]
0 0 1 eye[2]
0 0 0 1

)

boolean ScottyRetransmitter.stopAcousticBeam ()

Stops the continuous sonification of the gaze of the user’s dialogue partner.

This only makes sense when startAcousticBeam() had been called before.

Returns:

true if the OSC packet was sent successfully, false otherwise. Please
note that this doesn’t eye the packet could be received successfully by
the remote end.

See also:

startAcousticBeam()
updateBeam()

void ScottyRetransmitter.objectAppears ()

Sends an event packet to the network socket that is associated with the
sound of an appearing object.

No call to an initialization function is required.

C.1. PICARD CLASS DOCUMENTATION 157

See also:

objectVanishes()
ObjectViewListener

Implements ObjectViewListener.

void ScottyRetransmitter.objectVanishes ()

Sends an event packet to the network socket that is associated with the
sound of an disappearing object.

No call to an initialization function is required.

See also:

objectAppears()
ObjectViewListener

Implements ObjectViewListener.

void ScottyRetransmitter.setXCFPublisher (Publisher publisher)

Sets the XCF publisher that is used by this class to send taibaks to LAFORGE.

This should be the same publisher that is used for the other taibaks so we
can’t create it ourselves here.

Parameters:

publisher Either the publisher that should be used or null to delete
the publisher reference in the current ScottyRetransmitter instance

Member Data Documentation

final OSCMessage ScottyRetransmitter.beamOnMessage [static,
private]

Initial value:

158 APPENDIX C. DOXYGEN DOCUMENTATION

new OSCMessage("/s_new", new Object[] {
"fovSon", beamSynthID, new Integer(0), new Integer(0)

})

final OSCMessage ScottyRetransmitter.beamOffMessage [static,
private]

Initial value:

new OSCMessage("/n_free",
new Object[] {beamSynthID})

final OSCMessage ScottyRetransmitter.objInMessage [static,
private]

Initial value:

new OSCMessage("/s_new", new Object[] {
"objIn", new Integer(-1), new Integer(0), new Integer(0)

})

final OSCMessage ScottyRetransmitter.objOutMessage [static,
private]

Initial value:

new OSCMessage("/s_new", new Object[] {
"objOut", new Integer(-1), new Integer(0), new Integer(0)

})

The documentation for this class was generated from the following file:

– ScottyRetransmitter.java

C.1. PICARD CLASS DOCUMENTATION 159

Sonificator Class Reference

Inheritance diagram for Sonificator:

de.unibi.techfak.romulus.picard.Sonificator

+ transmitters
+ environment_variable_prefix
+ defaultOSCPort
~ hmdNameTable
- currPartnerTransmitter
- currOwnTransmitter
- scottySubscriber
- scottyConnected
- usedFoVSound
- usedFoVDisplay
- parserFactory
- parser
- name
- xpath

+ Sonificator()
+ createTransmitter()
+ deleteTransmitter()
+ registerScotty()
+ removeScotty()
+ handleEvent()
+ getName()
+ setName()
+ setXPath()
+ getXPath()
+ startDocument()
+ startElement()
+ endElement()
+ error()
+ fatalError()
+ warning()
+ getListener()
~ activateBeam()
~ deactivateBeam()
~ [static initializer]()
- activateVisualBeam()
- deactivateVisualBeam()

DefaultHandler

PublishEventListener

160 APPENDIX C. DOXYGEN DOCUMENTATION

Collaboration diagram for Sonificator:

de.unibi.techfak.romulus.picard.Sonificator

+ transmitters
+ environment_variable_prefix
+ defaultOSCPort
~ hmdNameTable
- currPartnerTransmitter
- currOwnTransmitter
- scottySubscriber
- scottyConnected
- usedFoVSound
- usedFoVDisplay
- parserFactory
- parser
- name
- xpath

+ Sonificator()
+ createTransmitter()
+ deleteTransmitter()
+ registerScotty()
+ removeScotty()
+ handleEvent()
+ getName()
+ setName()
+ setXPath()
+ getXPath()
+ startDocument()
+ startElement()
+ endElement()
+ error()
+ fatalError()
+ warning()
+ getListener()
~ activateBeam()
~ deactivateBeam()
~ [static initializer]()
- activateVisualBeam()
- deactivateVisualBeam()

DefaultHandler

PublishEventListener

XPath

xpath

SAXParser

parser

de.unibi.techfak.romulus.picard.ScottyRetransmitter

- oscTransmitter
- freq
- amp
- dissonance
- pan
- eye
- direction
- up
- ownEye
- ownDirection
- lastOwnEye
- lastOwnDirection
- ownUp
- matrix
- publisher
- beamSynthID
- beamOnMessage
- beamOffMessage
- objInMessage
- objOutMessage
- minFreq
- maxFreq
- maxAmp
- maxDissonance

+ ScottyRetransmitter()
+ setPartnerEye()
+ setPartnerDirection()
+ setPartnerUp()
+ setOwnEye()
+ setOwnDirection()
+ setOwnUp()
+ startAcousticBeam()
+ startVisualBeam()
+ updateBeam()
+ stopAcousticBeam()
+ stopVisualBeam()
+ objectAppears()
+ objectVanishes()
+ dispose()
+ finalize()
+ setXCFPublisher()
- send()
- computeSonData()
- computeTransformationMatrix()

transmitters
currOwnTransmitter

currPartnerTransmitter

de.unibi.techfak.romulus.picard.ObjectViewListener

+ objectAppears()
+ objectVanishes()

Publisher

publisher

OSCTransmitter

oscTransmitter

OSCMessage

beamOffMessage
objInMessage

beamOnMessage
objOutMessage

Map< String, Integer >

hmdNameTable

Map

< String, Integer >

SAXParserFactory

parserFactory

Subscriber

scottySubscriber

C.1. PICARD CLASS DOCUMENTATION 161

Detailed Description

This class listens to the SCOTTY data and triggers sonifications and – which
admittedly makes the name a bit misleading – field-of-view visualization
accordingly.

It attends to the other sonifications as well, perhaps justifying the name
a bit. This and ScottyRetransmitter were only one class if Java supported
multiple inheritance.

Author:

cmertes

Public Member Functions

– Sonificator ()

Class constructor.

– boolean createTransmitter (int systemID)

Creates a new ScottyRetransmitter.

– void deleteTransmitter (int systemID)

Deactivates and removes the specified ScottyRetransmitter.

– boolean registerScotty (String scottyPublisherName)

Creates an XCF subscriber to SCOTTY given the name of its publisher.

– void removeScotty ()

Deactivates and deletes the SCOTTY subscriber and so stops receiving
SCOTTY data.

– void handleEvent (PublishEvent e)

Gets called by the XCF subscriber when a SCOTTY data packet comes in.

– String getName ()
– void setName (String s)
– void setXPath (XPath xp)
– XPath getXPath ()
– void startDocument ()

162 APPENDIX C. DOXYGEN DOCUMENTATION

Initializes data extraction from SCOTTY packets.

– void startElement (String namespaceURI, String localName, String
qName, Attributes atts)

Reads the actual vectors from the SCOTTY XML data.

– void endElement (String uri, String localName, String qName)

Updates the appropriate ScottyRetransmitter with the new data just re-
ceived from SCOTTY.

– void error (SAXParseException exception)
– void fatalError (SAXParseException exception)
– void warning (SAXParseException exception)
– ObjectViewListener getListener (int index)

Grants access to the two ScottyRetransmitters.

Public Attributes

– ScottyRetransmitter[] transmitters = {null, null}

Array of ScottyRetransmitters.

Static Public Attributes

– static final String environment_variable_prefix = "LAFORGE_SC_-
HOST"

What the environment variable containing the OSC host/port data begins
with.

– static final int defaultOSCPort = 57110

Which port to send OSC packets to if not otherwise specified by the envi-
ronment variable.

Package Functions

– boolean activateBeam ()

Activates both FOV sonifications.

C.1. PICARD CLASS DOCUMENTATION 163

– void deactivateBeam ()

Deactivates both FOV sonifications.

Static Package Functions

– [static initializer]

Static Package Attributes

– static Map< String, Integer > hmdNameTable

Hard-coded map which associates HMD names with their according system
IDs.

Private Member Functions

– boolean activateVisualBeam ()

Activates FOV visualizations for both HMDs.

– void deactivateVisualBeam ()

Deactivates FOV vizualizations for both HMDs.

Private Attributes

– ScottyRetransmitter currPartnerTransmitter = null

The transmitter for which the current SCOTTY HMD is the partner’s.

– ScottyRetransmitter currOwnTransmitter = null

The transmitter for which the current SCOTTY HMD is its own.

– Subscriber scottySubscriber = null

The XCF subscriber listening to SCOTTY.

– boolean scottyConnected = false

true if we are currently subscribed to SCOTTY

164 APPENDIX C. DOXYGEN DOCUMENTATION

– boolean usedFoVSound = false

Whether props.useFoVSound() was true when the last SCOTTY packet ar-
rived.

– boolean usedFoVDisplay = false

Whether props.useFoVDisplay() was true when the last SCOTTY packet ar-
rived.

– SAXParserFactory parserFactory
– SAXParser parser

SAX parser used to parse SCOTTY packets using this class as the event han-
dler.

– String name = "SCOTTY_LISTENER"

– XPath xpath = new XPath("/∗")

Constructor & Destructor Documentation

Sonificator.Sonificator ()

Class constructor.

Only creates the SAX parser. The rest is done when according methods are
called.

Member Function Documentation

boolean Sonificator.createTransmitter (int systemID)

Creates a new ScottyRetransmitter.

Parameters:

systemID The system ID which the transmitter should send its OSC
packets to. Must be 1 or 2, other values lead to undefined be-
haviour.

C.1. PICARD CLASS DOCUMENTATION 165

Returns:

true if the transmitter was correctly created, false otherwise.

void Sonificator.deleteTransmitter (int systemID)

Deactivates and removes the specified ScottyRetransmitter.

Parameters:

systemID Either 1 or 2

boolean Sonificator.activateBeam () [package]

Activates both FOV sonifications.

For a non-existent transmitter a warning is emitted.

Returns:

Currently always true

void Sonificator.deactivateBeam () [package]

Deactivates both FOV sonifications.

For a non-existent transmitter a warning is emitted.

boolean Sonificator.activateVisualBeam () [private]

Activates FOV visualizations for both HMDs.

For a non-existent transmitter a warning is emitted.

Returns:

Currently always true

166 APPENDIX C. DOXYGEN DOCUMENTATION

void Sonificator.deactivateVisualBeam () [private]

Deactivates FOV vizualizations for both HMDs.

For a non-existent transmitter a warning is emitted.

boolean Sonificator.registerScotty (String scottyPublisherName)

Creates an XCF subscriber to SCOTTY given the name of its publisher.

Also starts listening to this publisher and thus parsing its packets as soon as
they arrive.

Parameters:

scottyPublisherName The name of the SCOTTY publisher to subscribe
to

Returns:

false if some error occured, true otherwise

void Sonificator.handleEvent (PublishEvent e)

Gets called by the XCF subscriber when a SCOTTY data packet comes in.

Triggers its parsing.

void Sonificator.startDocument ()

Initializes data extraction from SCOTTY packets.

Gets called by the SAX parser.

C.1. PICARD CLASS DOCUMENTATION 167

void Sonificator.startElement (String namespaceURI, String localName,
String qName, Attributes atts)

Reads the actual vectors from the SCOTTY XML data.

Gets called by the SAX parser.

void Sonificator.endElement (String uri, String localName, String
qName)

Updates the appropriate ScottyRetransmitter with the new data just re-
ceived from SCOTTY.

Gets called by the SAX parser.

ObjectViewListener Sonificator.getListener (int index)

Grants access to the two ScottyRetransmitters.

Parameters:

index Which ScottyRetransmitter to return: 0 or 1

Returns:

The ScottyRetransmitter object requested (might be null if
createTransmitter(index) was not called before)

The documentation for this class was generated from the following file:

– Sonificator.java

168 APPENDIX C. DOXYGEN DOCUMENTATION

C.2 LAFORGE Class Documentation

ARTObjectList Class Reference

#include <globallists.h>

Detailed Description

The list of those objects bound to ART markers.

See also:

ObjectList

Public Types

– typedef ObjectList::ObjectPtr ObjectPtr

Public Member Functions

– void conditional_draw (ICLDrawWidget3D ∗, const graphOb-
ject::artID) const

– void clear ()

– bool does_exist (const graphObject::artID) const

– bool add (const graphObject::artID, ObjectPtr &)

– bool remove (const graphObject::artID id)

– graphObject::artID get_artID (const ObjectPtr &obj)

– graphObject ∗ get_object (const graphObject::artID)

– void release_object () const

Private Types

– typedef std::map< graphObject::artID, ObjectPtr > map_t
– typedef std::map< graphObject::artID, ObjectPtr >::iterator iter_t

C.2. LAFORGE CLASS DOCUMENTATION 169

Private Member Functions

– void lock () const
– void unlock () const

Static Private Attributes

– static map_t art_object_list
– static icl::Mutex art_object_list_mutex

Friends

– class ObjectList

The documentation for this class was generated from the following files:

– globallists.h
– globallists.cpp

170 APPENDIX C. DOXYGEN DOCUMENTATION

glhelpers::Colorset< T > Class Template Reference

#include <glhelpers.h>

Inheritance diagram for glhelpers::Colorset< T >:

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

glhelpers::Material_t< T >

+ name
+ textureID

+ Material_t()
+ Material_t()

glhelpers::Colorset< double >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

< double >

glhelpers::Colorset< float >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

< float >

glhelpers::Material_t< float >

+ name
+ textureID

+ Material_t()
+ Material_t()

< float >

C.2. LAFORGE CLASS DOCUMENTATION 171

Collaboration diagram for glhelpers::Colorset< T >:

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

T

transparency
shininess

Detailed Description

template<class T = float> class glhelpers::Colorset< T >

This data structure stores all colour values OpenGL uses.

Public Member Functions

– Colorset (const Colorset &cs)
– Colorset< T > & operator∗= (const Colorset< T > &rhs)
– Colorset< T > & operator/= (T rhs)

Public Attributes

– Vector3< T > ambient
– Vector3< T > diffuse
– Vector3< T > specular
– T shininess
– T transparency

The documentation for this class was generated from the following file:

172 APPENDIX C. DOXYGEN DOCUMENTATION

– glhelpers.h

C.2. LAFORGE CLASS DOCUMENTATION 173

laforgetimer::ControlledValue Class Reference

#include <laforgetimer.h>

Inheritance diagram for laforgetimer::ControlledValue:

laforgetimer::ControlledValue

+ epsilon
+ baseval
+ epsfactor
+ base
obj
env
a
startval
targetval
localval
@3
normalizedtargetval
parent
do_destroy

+ ControlledValue()
+ step()
+ is_increasing()
+ get_current_value()
+ remove_self()
+ is_destructible()
+ get_objptr()
set()
get_id()
target_reached()

laforgetimer::FunctionControlledValue

objp
func

+ FunctionControlledValue()
set()
get_id()

laforgetimer::PointerControlledValue

value

+ PointerControlledValue()
set()
get_id()

174 APPENDIX C. DOXYGEN DOCUMENTATION

Collaboration diagram for laforgetimer::ControlledValue:

laforgetimer::ControlledValue

+ epsilon
+ baseval
+ epsfactor
+ base
obj
env
a
startval
targetval
localval
@3
normalizedtargetval
parent
do_destroy

+ ControlledValue()
+ step()
+ is_increasing()
+ get_current_value()
+ remove_self()
+ is_destructible()
+ get_objptr()
set()
get_id()
target_reached()

laforgetimer::LaforgeController

- mutex
- uinterval
- value_list
- remove_list
- remove_list_mutex

+ LaforgeController()
+ run()
+ add_value()
+ add_value()
+ add_value()
+ add_value()
+ remove()
+ object_destroyed()
- calculate_a()
- update()
- lock()
- unlock()

parent

Detailed Description

A value that is controlled by LaforgeTimer so that it changes automatically.

This can be used to realize fade-in and fade-out like effects. Do not instan-
tiate these classes yourself! Use LaforgeTimer.

C.2. LAFORGE CLASS DOCUMENTATION 175

Public Member Functions

– ControlledValue (LaforgeController ∗parent_lc, ObjectList::ObjectPtr
objptr, double start, double target, double stepsize, envelope_t enve-
lope, bool destructible)

– void step () const
– bool is_increasing () const
– double get_current_value () const
– void remove_self () const
– bool is_destructible () const
– ObjectList::ObjectPtr get_objptr () const

Static Public Attributes

– static const double epsfactor = 1.0/5000
– static const double base = 1.0

Protected Member Functions

– virtual void set (double val) const =0
– virtual ValueID get_id () const =0
– void target_reached () const

Protected Attributes

– ObjectList::ObjectPtr obj
– envelope_t env
– double a
– double startval
– double targetval
– double localval
– union {

double epsilon
double baseval

};

– double normalizedtargetval
– LaforgeController ∗ parent

176 APPENDIX C. DOXYGEN DOCUMENTATION

– bool do_destroy

The documentation for this class was generated from the following files:

– laforgetimer.h
– laforgetimer.cpp

C.2. LAFORGE CLASS DOCUMENTATION 177

objectloader::Face Struct Reference

#include <objectloader.h>

Collaboration diagram for objectloader::Face:

objectloader::Face

+ vertrefs
+ normrefs
+ uvrefs

std::vector< int >

- elements

normrefs
uvrefs

vertrefs

std::vector< T >

- elements

< int >

T

elements

Detailed Description

A single face of an OpenGL mesh object.

178 APPENDIX C. DOXYGEN DOCUMENTATION

Public Attributes

– vector< int > vertrefs
– vector< int > normrefs
– vector< int > uvrefs

The documentation for this struct was generated from the following file:

– objectloader.h

C.2. LAFORGE CLASS DOCUMENTATION 179

FlatObjectList Class Reference

#include <globallists.h>

Collaboration diagram for FlatObjectList:

FlatObjectList

- flat_object_list
- flat_object_list_mutex

+ clear()
+ add()
+ remove()
+ draw_in_order()
+ clear_owner()
+ incrZLevel()
+ decrZLevel()
+ setZLevel()
- lock()
- unlock()

multi_index_container

flat_object_list

Detailed Description

The list of the 2D objects, sorted by their drawing order.

The underlying data structure is rather complicated and adding and remov-
ing objects - while being O(logn) - would be faster using a different ap-
proach. We do it this way though because we assume that creating and
deleting objects are rare events compared to drawing objects. Should it
ever turn out that objects are created and destroyed at a very high rate,
it would perhaps be worth reconsidering using temporary lists recreated in
every iteration of the render loop.

See also:

ObjectList

Public Types

– typedef ObjectList::ObjectPtr ObjectPtr

180 APPENDIX C. DOXYGEN DOCUMENTATION

Public Member Functions

– void clear ()

– bool add (ObjectPtr &obj, XCFThread ∗owner, const int zLevel=0)

– void remove (ObjectPtr &obj)

– void draw_in_order (ICLDrawWidget3D ∗) const

– void clear_owner (XCFThread ∗owner)

– void incrZLevel (ObjectPtr &obj, int deltaz=1)

– void decrZLevel (ObjectPtr &obj, int deltaz=1)

– void setZLevel (ObjectPtr &obj, int z)

Private Types

– typedef multi_index_container< object_triple, indexed_by<
ordered_non_unique< tag< creator >, member< object_triple,
XCFThread ∗,&object_triple::owner > >, ordered_non_unique< tag<
zlevel >, member< object_triple, int,&object_triple::zLevel > >,
ordered_unique< tag< pointer >, const_mem_fun< object_triple,
icl::ICLDrawWidget3D::GLCallback ∗,&object_triple::getObjPtr > > >
> collection_t

– typedef collection_t::index< creator >::type owner_t

– typedef collection_t::index< zlevel >::type zlevel_t

– typedef collection_t::index< pointer >::type object_t

– typedef owner_t::iterator owner_iter_t

– typedef zlevel_t::iterator zlevel_iter_t

– typedef object_t::iterator object_iter_t

Private Member Functions

– void lock () const

– void unlock () const

Static Private Attributes

– static collection_t flat_object_list

– static icl::Mutex flat_object_list_mutex

C.2. LAFORGE CLASS DOCUMENTATION 181

Friends

– class ObjectList

Classes

– struct creator
– struct object_triple
– struct pointer
– struct zlevel

The documentation for this class was generated from the following files:

– globallists.h
– globallists.cpp

182 APPENDIX C. DOXYGEN DOCUMENTATION

laforgetimer::FunctionControlledValue Class Reference

#include <laforgetimer.h>

Inheritance diagram for laforgetimer::FunctionControlledValue:

laforgetimer::FunctionControlledValue

objp
func

+ FunctionControlledValue()
set()
get_id()

laforgetimer::ControlledValue

+ epsilon
+ baseval
+ epsfactor
+ base
obj
env
a
startval
targetval
localval
@3
normalizedtargetval
parent
do_destroy

+ ControlledValue()
+ step()
+ is_increasing()
+ get_current_value()
+ remove_self()
+ is_destructible()
+ get_objptr()
set()
get_id()
target_reached()

C.2. LAFORGE CLASS DOCUMENTATION 183

Collaboration diagram for laforgetimer::FunctionControlledValue:

laforgetimer::FunctionControlledValue

objp
func

+ FunctionControlledValue()
set()
get_id()

laforgetimer::ControlledValue

+ epsilon
+ baseval
+ epsfactor
+ base
obj
env
a
startval
targetval
localval
@3
normalizedtargetval
parent
do_destroy

+ ControlledValue()
+ step()
+ is_increasing()
+ get_current_value()
+ remove_self()
+ is_destructible()
+ get_objptr()
set()
get_id()
target_reached()

laforgetimer::LaforgeController

- mutex
- uinterval
- value_list
- remove_list
- remove_list_mutex

+ LaforgeController()
+ run()
+ add_value()
+ add_value()
+ add_value()
+ add_value()
+ remove()
+ object_destroyed()
- calculate_a()
- update()
- lock()
- unlock()

parent

graphObject

+ MIN_2D
+ MAX_2D
isvisible
ishighlighted
rotx
roty
rotz
posx
posy
posz
highlighting_amount
anchoring_mode
color
highlight_color
- mutex
- transformationMatrix

+ graphObject()
+ ~graphObject()
+ set_position2D()
+ set_position3D()
+ get_position()
+ set_extent()
+ set_radius()
+ set_rotation()
+ get_rotation()
+ set_caption()
+ set_special_property()
+ set_color()
+ show()
+ hide()
+ highlight()
+ unhighlight()
+ get_highlighting_amount()
+ is2D()
+ is3D()
+ isART()
+ set2D()
+ set3D()
+ setART()
+ loadTransformationMatrix()
translate_self()
rotate_self()
transform_self()
lock()
unlock()
init_draw()
finish_draw()

objp

glhelpers::Colorset< double >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

highlight_color
color

glhelpers::Vector3< double >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator double *()
+ operator*=()
+ operator/=()

ambient
diffuse

specular

glhelpers::Vector3< T >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator T *()
+ operator*=()
+ operator/=()

< double >

T

array

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

transparency
shininess

< double >

Detailed Description

This is a ControlledValue that controls a value indirectly via a setter method
or even more common via a wrapper around a setted method.

You need a value_function_t pointer to use this class. Do not, however, in-
stantiate it directly!

184 APPENDIX C. DOXYGEN DOCUMENTATION

Public Member Functions

– FunctionControlledValue (LaforgeController ∗parent_lc, Ob-
jectList::ObjectPtr objptr, value_function_t function, double start,
double target, double stepsize, envelope_t envelope, bool destruc-
tible)

Protected Member Functions

– virtual void set (double val) const
– virtual ValueID get_id () const

Protected Attributes

– graphObject ∗ objp
– value_function_t func

The documentation for this class was generated from the following file:

– laforgetimer.h

C.2. LAFORGE CLASS DOCUMENTATION 185

FuzzyRect Class Reference

#include <FuzzyRect.h>

Inheritance diagram for FuzzyRect:

FuzzyRect

- fuzzylength
- x1
- x2
- y1
- y2
- width
- height

+ FuzzyRect()
+ set_extent()
+ set_radius()
+ set_caption()
+ draw()
+ set_fuzzylength()
+ set_special_property()
- solid()
- transp()

graphObject

+ MIN_2D
+ MAX_2D
isvisible
ishighlighted
rotx
roty
rotz
posx
posy
posz
highlighting_amount
anchoring_mode
color
highlight_color
- mutex
- transformationMatrix

+ graphObject()
+ ~graphObject()
+ set_position2D()
+ set_position3D()
+ get_position()
+ set_extent()
+ set_radius()
+ set_rotation()
+ get_rotation()
+ set_caption()
+ set_special_property()
+ set_color()
+ show()
+ hide()
+ highlight()
+ unhighlight()
+ get_highlighting_amount()
+ is2D()
+ is3D()
+ isART()
+ set2D()
+ set3D()
+ setART()
+ loadTransformationMatrix()
translate_self()
rotate_self()
transform_self()
lock()
unlock()
init_draw()
finish_draw()

186 APPENDIX C. DOXYGEN DOCUMENTATION

Collaboration diagram for FuzzyRect:

FuzzyRect

- fuzzylength
- x1
- x2
- y1
- y2
- width
- height

+ FuzzyRect()
+ set_extent()
+ set_radius()
+ set_caption()
+ draw()
+ set_fuzzylength()
+ set_special_property()
- solid()
- transp()

graphObject

+ MIN_2D
+ MAX_2D
isvisible
ishighlighted
rotx
roty
rotz
posx
posy
posz
highlighting_amount
anchoring_mode
color
highlight_color
- mutex
- transformationMatrix

+ graphObject()
+ ~graphObject()
+ set_position2D()
+ set_position3D()
+ get_position()
+ set_extent()
+ set_radius()
+ set_rotation()
+ get_rotation()
+ set_caption()
+ set_special_property()
+ set_color()
+ show()
+ hide()
+ highlight()
+ unhighlight()
+ get_highlighting_amount()
+ is2D()
+ is3D()
+ isART()
+ set2D()
+ set3D()
+ setART()
+ loadTransformationMatrix()
translate_self()
rotate_self()
transform_self()
lock()
unlock()
init_draw()
finish_draw()

glhelpers::Colorset< double >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

highlight_color
color

glhelpers::Vector3< double >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator double *()
+ operator*=()
+ operator/=()

ambient
diffuse

specular

glhelpers::Vector3< T >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator T *()
+ operator*=()
+ operator/=()

< double >

T

array

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

transparency
shininess

< double >

Detailed Description

Draws a solid rectangle with width and height specified by set_extent and
a rectangular frame around it that fades from solid to transparent.

The frame width is set via set_fuzzylength.

C.2. LAFORGE CLASS DOCUMENTATION 187

Author:

cmertes

Public Member Functions

– FuzzyRect ()

The class constructor does nothing more than to assure that a FuzzyRect is
a 3D object per default so no position has to be specified to activate it being
drawn.

– virtual int set_extent (const int value, const char dimension= ’x’)

Sets the width or height of the rectangle.

– virtual int set_radius (const int value, const int num=1)
– virtual int set_caption (const string content)
– virtual void draw ()

Draws the rectangle and the fuzzy area around it with the parameters set
by set_extent(const int, const char) and (const double).

– void set_fuzzylength (const double fuzzy)

Sets the width of the fuzzy area around the actual rectangle.

– virtual int set_special_property (const double value, const string
name)

Use this method to set the width of the fuzzy area.

Private Member Functions

– void solid ()

Makes the following vertices opaque.

– void transp ()

Makes the following vertices transparent.

Private Attributes

– double fuzzylength

188 APPENDIX C. DOXYGEN DOCUMENTATION

– double x1
– double x2
– double y1
– double y2
– double width
– double height

Member Function Documentation

int FuzzyRect::set_extent (const int value, const char dimension = ’x’)
[virtual]

Sets the width or height of the rectangle.

These values don’t include the fuzzy area around the rectangle. Use set_-
fuzzylength(const double) for this.

Parameters:

value The value to set the current dimension to.

dimension ’x’ to set the width or ’y’ to set the height

Returns:

true if you specified a legal dimension, false otherwise

Implements graphObject.

void FuzzyRect::set_fuzzylength (const double fuzzy) [inline]

Sets the width of the fuzzy area around the actual rectangle.

You generally won’t want to use this function directly as it is not part of
the graphObject interface but FuzzyRect::set_special_property(const dou-
ble, const string) instead.

Parameters:

fuzzy The value to set the length to.

C.2. LAFORGE CLASS DOCUMENTATION 189

Here is the caller graph for this function:

FuzzyRect::set_fuzzylength FuzzyRect::set_special_property

virtual int FuzzyRect::set_special_property (const double value, const
string name) [inline, virtual]

Use this method to set the width of the fuzzy area.

Parameters:

value the value to set the length to

name must be "fuzzyness"

Returns:

true. If the return value is false you passed the wrong string or you
tried to set the fuzzylength of a graphObject that is no FuzzyRect.

See also:

graphObject::set_special_property(const double, const string)

Reimplemented from graphObject.

Here is the call graph for this function:

FuzzyRect::set_special_property FuzzyRect::set_fuzzylength

The documentation for this class was generated from the following files:

– FuzzyRect.h
– FuzzyRect.cpp

190 APPENDIX C. DOXYGEN DOCUMENTATION

graphObject Class Reference

#include <graphobj.h>

C.2. LAFORGE CLASS DOCUMENTATION 191

Inheritance diagram for graphObject:

graphObject

+ MIN_2D
+ MAX_2D
isvisible
ishighlighted
rotx
roty
rotz
posx
posy
posz
highlighting_amount
anchoring_mode
color
highlight_color
- mutex
- transformationMatrix

+ graphObject()
+ ~graphObject()
+ set_position2D()
+ set_position3D()
+ get_position()
+ set_extent()
+ set_radius()
+ set_rotation()
+ get_rotation()
+ set_caption()
+ set_special_property()
+ set_color()
+ show()
+ hide()
+ highlight()
+ unhighlight()
+ get_highlighting_amount()
+ is2D()
+ is3D()
+ isART()
+ set2D()
+ set3D()
+ setART()
+ loadTransformationMatrix()
translate_self()
rotate_self()
transform_self()
lock()
unlock()
init_draw()
finish_draw()

boxObj

- width
- height
- depth

+ boxObj()
+ set_extent()
+ set_radius()
+ set_caption()
+ draw()

circleObj

- set_extent()
- set_radius()
- set_caption()
- draw()

FuzzyRect

- fuzzylength
- x1
- x2
- y1
- y2
- width
- height

+ FuzzyRect()
+ set_extent()
+ set_radius()
+ set_caption()
+ draw()
+ set_fuzzylength()
+ set_special_property()
- solid()
- transp()

objectloader::LoadableObject

filetype
filename
- materials_doubled
- originalGlobalMat
- originalMaterials

+ LoadableObject()
+ ~LoadableObject()
+ draw()
+ set_position()
+ set_extent()
+ set_radius()
+ set_caption()
+ highlight()
+ unhighlight()
loadobj()
load3ds()
parsemtl()
- highlight_intern()

rectangleObj

width
height

+ set_extent()
+ set_radius()
+ set_caption()
+ draw()

192 APPENDIX C. DOXYGEN DOCUMENTATION

Collaboration diagram for graphObject:

graphObject

+ MIN_2D
+ MAX_2D
isvisible
ishighlighted
rotx
roty
rotz
posx
posy
posz
highlighting_amount
anchoring_mode
color
highlight_color
- mutex
- transformationMatrix

+ graphObject()
+ ~graphObject()
+ set_position2D()
+ set_position3D()
+ get_position()
+ set_extent()
+ set_radius()
+ set_rotation()
+ get_rotation()
+ set_caption()
+ set_special_property()
+ set_color()
+ show()
+ hide()
+ highlight()
+ unhighlight()
+ get_highlighting_amount()
+ is2D()
+ is3D()
+ isART()
+ set2D()
+ set3D()
+ setART()
+ loadTransformationMatrix()
translate_self()
rotate_self()
transform_self()
lock()
unlock()
init_draw()
finish_draw()

glhelpers::Colorset< double >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

highlight_color
color

glhelpers::Vector3< double >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator double *()
+ operator*=()
+ operator/=()

ambient
diffuse

specular

glhelpers::Vector3< T >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator T *()
+ operator*=()
+ operator/=()

< double >

T

array

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

transparency
shininess

< double >

Detailed Description

An abstract base class all graphical objects have to inherit from.

Author:

cmertes

C.2. LAFORGE CLASS DOCUMENTATION 193

Public Types

– enum color_t {

COLOR_AMBIENT = 0, COLOR_DIFFUSE = 1, COLOR_SPECULAR =
2, COLOR_SHININESS = 3,

HIGHLIGHT_AMBIENT = 4, HIGHLIGHT_DIFFUSE = 5,
HIGHLIGHT_SPECULAR = 6, HIGHLIGHT_SHININESS = 7 }

– enum anchor_t { ANCHOR_NOPOS, ANCHOR_3D, ANCHOR_2D,
ANCHOR_ART }

– typedef int artID

Public Member Functions

– virtual int set_position2D (const double value, const char dimension=
’x’)

– virtual int set_position3D (const double value, const char dimension=
’x’)

– virtual double get_position (const char dimension= ’x’) const
– virtual int set_extent (const int value, const char dimension= ’x’)=0
– virtual int set_radius (const int value, const int num=1)=0
– virtual int set_rotation (const double value, const char dimension=

’x’)
– virtual double get_rotation (const char dimension= ’x’) const
– virtual int set_caption (const string content)=0
– virtual int set_special_property (const double value, const string

name)

This function can be used to set properties only very few types of graphOb-
jects have.

– virtual void set_color (double r, double g=-1.0, double b=-1.0, double
a=-1.0, color_t color_type=COLOR_DIFFUSE)

– virtual void show ()
– virtual void hide ()
– virtual bool highlight (double amount=1.0)
– virtual bool unhighlight ()
– virtual double get_highlighting_amount ()
– bool is2D ()
– bool is3D ()
– bool isART ()
– void set2D ()

194 APPENDIX C. DOXYGEN DOCUMENTATION

– void set3D ()

– void setART ()

– void loadTransformationMatrix (const vector< double > ∗const ma-
trix)

Loads an OpenGL transformation matrix that is applied before every drawing
operation.

Static Public Attributes

– static const double MIN_2D = -1.0

– static const double MAX_2D = 1.0

Protected Member Functions

– void translate_self () const

– void rotate_self () const

– void transform_self () const

– void lock () const

– void unlock () const

– void init_draw () const

– void finish_draw () const

Protected Attributes

– bool isvisible
– bool ishighlighted
– double rotx
– double roty
– double rotz
– double posx
– double posy
– double posz
– double highlighting_amount
– anchor_t anchoring_mode
– Colorset< double > color

C.2. LAFORGE CLASS DOCUMENTATION 195

Static Protected Attributes

– static Colorset< double> highlight_color = glhelpers::Colorset<double>()

Private Attributes

– icl::Mutex mutex

– shared_ptr< vector< double > > transformationMatrix

Member Function Documentation

int graphObject::set_special_property (const double value, const string
name) [virtual]

This function can be used to set properties only very few types of graphOb-
jects have.

If they’d use their own methods for this, a run-time type checking would
have to be done. This is circumvented with this general method for the small
cost of a string comparison for every call to this function.

Parameters:

value the value the property is to be set to

name a string that should identify the property uniquely

Returns:

true only if the specified property is valid for the current object type
and this property could be set correctly. false in every other case.

Reimplemented in FuzzyRect.

196 APPENDIX C. DOXYGEN DOCUMENTATION

void graphObject::loadTransformationMatrix (const vector< double >
∗const matrix)

Loads an OpenGL transformation matrix that is applied before every draw-
ing operation.

The matrix has the usual OpenGL form

A =

a0 a4 a8 a12
a1 a5 a9 a13
a2 a6 a10 a14
a3 a7 a11 a15

with a[n] written as an for the sake of better readability. It will get multi-
plied to the current modelview matrix M such that Mnew = MA.

Parameters:

matrix A pointer to the matrix or null to delete the current matrix.
The matrix is copied internally so you can pass temporary objects
or modify the data afterwards.

The documentation for this class was generated from the following files:

– graphobj.h
– graphobj.cpp

C.2. LAFORGE CLASS DOCUMENTATION 197

laforgetimer::LaforgeController Class Reference

#include <laforgetimer.h>

Detailed Description

An object of this class constitutes a thread that handles a list of Controlled-
Values.

Public Member Functions

– LaforgeController (unsigned long interval=10000)

The class constructor takes the time between update()s in microseconds as
its argument.

– void run ()

This function is automatically run when the thread is started.

– bool add_value (ObjectList::ObjectPtr obj, double ∗value, double
target_value, double a, envelope_t envelope=ENV_LIN, bool destruc-
tible=true)

– bool add_value (ObjectList::ObjectPtr obj, value_function_t func,
double startvalue, double target_value, double a, envelope_-
t envelope=ENV_LIN, bool destructible=true)

– bool add_value (ObjectList::ObjectPtr obj, double ∗value, double
target_value, unsigned usecs, envelope_t envelope=ENV_LIN, bool
destructible=true)

– bool add_value (ObjectList::ObjectPtr obj, value_function_t func,
double start_value, double target_value, unsigned usecs, envelope_t
envelope=ENV_LIN, bool destructible=true)

– void remove (const ValueID &id)
– bool object_destroyed (ObjectList::ObjectPtr obj)

Private Member Functions

– double calculate_a (envelope_t env, unsigned t, double start, double
target)

– void update ()

198 APPENDIX C. DOXYGEN DOCUMENTATION

– void lock ()
– void unlock ()

Private Attributes

– icl::Mutex mutex
– const unsigned long uinterval
– map< ValueID, shared_ptr< ControlledValue > > value_list
– list< ValueID > remove_list
– icl::Mutex remove_list_mutex

Constructor & Destructor Documentation

laforgetimer::LaforgeController::LaforgeController (unsigned long
interval = 10000)

The class constructor takes the time between update()s in microseconds as
its argument.

Parameters:

interval Time in s between one call to update() and the next.

The documentation for this class was generated from the following files:

– laforgetimer.h
– laforgetimer.cpp

C.2. LAFORGE CLASS DOCUMENTATION 199

LaforgeInterceptor Class Reference

#include <laforgeinterceptor.h>

200 APPENDIX C. DOXYGEN DOCUMENTATION

Collaboration diagram for LaforgeInterceptor:

LaforgeInterceptor

+ timer
- scotty_subscriber
- self
- interceptor
- interceptorID
- threads
- prefix
- scotty_publisher_name

+ LaforgeInterceptor()
+ ~LaforgeInterceptor()
+ addPublisher()
+ deletePublisher()
+ addServer()
+ deleteServer()
+ addDispatcher()
+ deleteDispatcher()
+ does_exist()
- add_if_appropriate()

string

prefix
scotty_publisher_name

shared_ptr< ScottySubscriber >

scotty_subscriber

shared_ptr

< ScottySubscriber >

laforgetimer::LaforgeController

- mutex
- uinterval
- value_list
- remove_list
- remove_list_mutex

+ LaforgeController()
+ run()
+ add_value()
+ add_value()
+ add_value()
+ add_value()
+ remove()
+ object_destroyed()
- calculate_a()
- update()
- lock()
- unlock()

timer

C.2. LAFORGE CLASS DOCUMENTATION 201

Detailed Description

An instance of this class waits for new XCF publishers to appear.

When this happens, it checks if the publisher’s name starts with a certain
prefix and if this is the case a new XCFThread is created for this publisher.

Public Member Functions

– virtual void addPublisher (const string &name, const Re-
mote::PublisherPrx &, const Ice::Current &=Ice::Current()) throw ()

This function inherited from the DispatcherInterceptor interface is called
whenever a new XCF publisher registers itself at the dispatcher.

– virtual void deletePublisher (const string &name, const Ice::Current
&=Ice::Current()) throw ()

This function implements the DispatcherInterceptor interface and is auto-
matically called when an XCF publisher is deleted from the dispatcher.

– virtual void addServer (const std::string &, const Remote::ServerPrx
&, const Ice::Current &=Ice::Current()) throw ()

– virtual void deleteServer (const std::string &, const Ice::Current
&=Ice::Current()) throw ()

– virtual void addDispatcher (const std::string &, const Re-
mote::DispatcherInfoPrx &, const Ice::Current &=Ice::Current()) throw
()

– virtual void deleteDispatcher (const std::string &, const Ice::Current
&=Ice::Current()) throw ()

– bool does_exist (const std::string &publisherName)

Checks whether a publisher certain name is already registered to LAFORGE.

Public Attributes

– laforgetimer::LaforgeController timer

Private Member Functions

– void add_if_appropriate (const string &publisherName)

202 APPENDIX C. DOXYGEN DOCUMENTATION

Private Attributes

– shared_ptr< ScottySubscriber > scotty_subscriber
– DispatcherInterceptorPtr self
– XCFInterceptorPtr interceptor
– Ice::Identity interceptorID
– list< shared_ptr< XCFThread > > threads
– string prefix

Static Private Attributes

– static const string scotty_publisher_name = "SCOTTY"

Member Function Documentation

virtual void LaforgeInterceptor::addPublisher (const string & name,
const Remote::PublisherPrx &, const Ice::Current & = Ice::Current())
throw () [inline, virtual]

This function inherited from the DispatcherInterceptor interface is called
whenever a new XCF publisher registers itself at the dispatcher.

See also:

deletePublisher(const string&, const Ice::Current&) throw()

virtual void LaforgeInterceptor::deletePublisher (const string & name,
const Ice::Current & = Ice::Current()) throw () [inline, virtual]

This function implements the DispatcherInterceptor interface and is auto-
matically called when an XCF publisher is deleted from the dispatcher.

See also:

addPublisher(const string&, const Remote:PublisherPrx&, const
Ice::Current&) throw()

C.2. LAFORGE CLASS DOCUMENTATION 203

bool LaforgeInterceptor::does_exist (const std::string & publisherName)
[inline]

Checks whether a publisher certain name is already registered to LAFORGE.

Parameters:

publisherName The publisher name to check for.

Returns:

true when a publisher with this name already exists, false otherwise.

The documentation for this class was generated from the following files:

– laforgeinterceptor.h
– laforgeinterceptor.cpp

204 APPENDIX C. DOXYGEN DOCUMENTATION

objectloader::LoadableObject Class Reference

#include <objectloader.h>

Inheritance diagram for objectloader::LoadableObject:

objectloader::LoadableObject

filetype
filename
- materials_doubled
- originalGlobalMat
- originalMaterials

+ LoadableObject()
+ ~LoadableObject()
+ draw()
+ set_position()
+ set_extent()
+ set_radius()
+ set_caption()
+ highlight()
+ unhighlight()
loadobj()
load3ds()
parsemtl()
- highlight_intern()

objectloader::Object3D

+ polygonmode
parts
textures
materials
vertices
normals
uvcoords
listID
haslist
usetexture
uselighting
useblending
usematerials
lasttextureID
lastmaterialID
globalMat

+ Object3D()
+ ~Object3D()
+ render()
+ createDisplayList()
+ deleteDisplayList()
+ getFaceCount()
+ getVertexCount()
+ getNormalCount()
+ getUVCoordCount()
+ getVertex()
+ getNormal()
+ getUVCoord()
+ getMaterial()
+ getMaterialID()
+ getObjectPart()
+ getMaterialCount()
+ getObjectPartID()
+ getObjectPartCount()
renderMesh()

graphObject

+ MIN_2D
+ MAX_2D
isvisible
ishighlighted
rotx
roty
rotz
posx
posy
posz
highlighting_amount
anchoring_mode
color
highlight_color
- mutex
- transformationMatrix

+ graphObject()
+ ~graphObject()
+ set_position2D()
+ set_position3D()
+ get_position()
+ set_extent()
+ set_radius()
+ set_rotation()
+ get_rotation()
+ set_caption()
+ set_special_property()
+ set_color()
+ show()
+ hide()
+ highlight()
+ unhighlight()
+ get_highlighting_amount()
+ is2D()
+ is3D()
+ isART()
+ set2D()
+ set3D()
+ setART()
+ loadTransformationMatrix()
translate_self()
rotate_self()
transform_self()
lock()
unlock()
init_draw()
finish_draw()

C.2. LAFORGE CLASS DOCUMENTATION 205

Collaboration diagram for objectloader::LoadableObject:

objectloader::LoadableObject

filetype
filename
- materials_doubled
- originalGlobalMat
- originalMaterials

+ LoadableObject()
+ ~LoadableObject()
+ draw()
+ set_position()
+ set_extent()
+ set_radius()
+ set_caption()
+ highlight()
+ unhighlight()
loadobj()
load3ds()
parsemtl()
- highlight_intern()

objectloader::Object3D

+ polygonmode
parts
textures
materials
vertices
normals
uvcoords
listID
haslist
usetexture
uselighting
useblending
usematerials
lasttextureID
lastmaterialID
globalMat

+ Object3D()
+ ~Object3D()
+ render()
+ createDisplayList()
+ deleteDisplayList()
+ getFaceCount()
+ getVertexCount()
+ getNormalCount()
+ getUVCoordCount()
+ getVertex()
+ getNormal()
+ getUVCoord()
+ getMaterial()
+ getMaterialID()
+ getObjectPart()
+ getMaterialCount()
+ getObjectPartID()
+ getObjectPartCount()
renderMesh()

glhelpers::Material_t< float >

+ name
+ textureID

+ Material_t()
+ Material_t()

globalMat

glhelpers::Colorset< float >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

glhelpers::Vector3< float >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator float *()
+ operator*=()
+ operator/=()

ambient
diffuse

specular

glhelpers::Vector3< T >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator T *()
+ operator*=()
+ operator/=()

< float >

glhelpers::Vector3< double >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator double *()
+ operator*=()
+ operator/=()

< double >

T

array

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

transparency
shininess

< float >

glhelpers::Material_t< T >

+ name
+ textureID

+ Material_t()
+ Material_t()

glhelpers::Colorset< double >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

< double >

string

filename

name

name

< float >

graphObject

+ MIN_2D
+ MAX_2D
isvisible
ishighlighted
rotx
roty
rotz
posx
posy
posz
highlighting_amount
anchoring_mode
color
highlight_color
- mutex
- transformationMatrix

+ graphObject()
+ ~graphObject()
+ set_position2D()
+ set_position3D()
+ get_position()
+ set_extent()
+ set_radius()
+ set_rotation()
+ get_rotation()
+ set_caption()
+ set_special_property()
+ set_color()
+ show()
+ hide()
+ highlight()
+ unhighlight()
+ get_highlighting_amount()
+ is2D()
+ is3D()
+ isART()
+ set2D()
+ set3D()
+ setART()
+ loadTransformationMatrix()
translate_self()
rotate_self()
transform_self()
lock()
unlock()
init_draw()
finish_draw()

highlight_color
color

ambient
diffuse

specular

206 APPENDIX C. DOXYGEN DOCUMENTATION

Detailed Description

This is a 3D OpenGL object that receives its data from a file containing the
vertex data.

Material data can optionally be stored, too. At the moment only Wavefront
.obj is supported.

Public Member Functions

– LoadableObject (const string &uri)
– virtual void draw ()
– virtual int set_position (const int value, const char dimension= ’x’)
– virtual int set_extent (const int value, const char dimension= ’x’)
– virtual int set_radius (const int value, const int num=1)
– virtual int set_caption (const string content)
– virtual bool highlight (double amount=1.0)
– virtual bool unhighlight ()

Protected Types

– enum { OBJ, TDS }

Protected Member Functions

– int loadobj ()
– int load3ds ()
– int parsemtl (const string &mtlfilename, string &texdirname)

Protected Attributes

– enum objectloader::LoadableObject:: { ... } filetype
– string filename

Private Member Functions

– void highlight_intern (double amount=1.0)

C.2. LAFORGE CLASS DOCUMENTATION 207

Private Attributes

– bool materials_doubled
– shared_ptr< Material > originalGlobalMat
– shared_ptr< vector< Material > > originalMaterials

The documentation for this class was generated from the following files:

– objectloader.h
– objectloader.cpp

208 APPENDIX C. DOXYGEN DOCUMENTATION

glhelpers::Material_t< T > Class Template Reference

#include <glhelpers.h>

Inheritance diagram for glhelpers::Material_t< T >:

glhelpers::Material_t< T >

+ name
+ textureID

+ Material_t()
+ Material_t()

glhelpers::Material_t< float >

+ name
+ textureID

+ Material_t()
+ Material_t()

< float >

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

C.2. LAFORGE CLASS DOCUMENTATION 209

Collaboration diagram for glhelpers::Material_t< T >:

glhelpers::Material_t< T >

+ name
+ textureID

+ Material_t()
+ Material_t()

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

T

transparency
shininess

string

name

Detailed Description

template<class T = float> class glhelpers::Material_t< T >

An OpenGL material containing a Colorset, a texture ID and a name.

210 APPENDIX C. DOXYGEN DOCUMENTATION

Public Member Functions

– Material_t (const string &mtlname="")
– Material_t (const Material_t< T > &mat)

Public Attributes

– string name
– int textureID

The documentation for this class was generated from the following file:

– glhelpers.h

C.2. LAFORGE CLASS DOCUMENTATION 211

objectloader::Object3D Class Reference

#include <objectloader.h>

Inheritance diagram for objectloader::Object3D:

objectloader::Object3D

+ polygonmode
parts
textures
materials
vertices
normals
uvcoords
listID
haslist
usetexture
uselighting
useblending
usematerials
lasttextureID
lastmaterialID
globalMat

+ Object3D()
+ ~Object3D()
+ render()
+ createDisplayList()
+ deleteDisplayList()
+ getFaceCount()
+ getVertexCount()
+ getNormalCount()
+ getUVCoordCount()
+ getVertex()
+ getNormal()
+ getUVCoord()
+ getMaterial()
+ getMaterialID()
+ getObjectPart()
+ getMaterialCount()
+ getObjectPartID()
+ getObjectPartCount()
renderMesh()

objectloader::LoadableObject

filetype
filename
- materials_doubled
- originalGlobalMat
- originalMaterials

+ LoadableObject()
+ ~LoadableObject()
+ draw()
+ set_position()
+ set_extent()
+ set_radius()
+ set_caption()
+ highlight()
+ unhighlight()
loadobj()
load3ds()
parsemtl()
- highlight_intern()

212 APPENDIX C. DOXYGEN DOCUMENTATION

Collaboration diagram for objectloader::Object3D:

objectloader::Object3D

+ polygonmode
parts
textures
materials
vertices
normals
uvcoords
listID
haslist
usetexture
uselighting
useblending
usematerials
lasttextureID
lastmaterialID
globalMat

+ Object3D()
+ ~Object3D()
+ render()
+ createDisplayList()
+ deleteDisplayList()
+ getFaceCount()
+ getVertexCount()
+ getNormalCount()
+ getUVCoordCount()
+ getVertex()
+ getNormal()
+ getUVCoord()
+ getMaterial()
+ getMaterialID()
+ getObjectPart()
+ getMaterialCount()
+ getObjectPartID()
+ getObjectPartCount()
renderMesh()

glhelpers::Material_t< float >

+ name
+ textureID

+ Material_t()
+ Material_t()

globalMat

glhelpers::Colorset< float >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

glhelpers::Vector3< float >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator float *()
+ operator*=()
+ operator/=()

ambient
diffuse

specular

glhelpers::Vector3< T >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator T *()
+ operator*=()
+ operator/=()

< float >

T

array

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

transparency
shininess

< float >

glhelpers::Material_t< T >

+ name
+ textureID

+ Material_t()
+ Material_t()

string

name

name

< float >

Detailed Description

An OpenGL mesh object.

It consists of one or more ObjectParts.

C.2. LAFORGE CLASS DOCUMENTATION 213

Public Member Functions

– void render (int partID=-1)
– void createDisplayList (int partID=-1)
– void deleteDisplayList (int partID=-1)
– int getFaceCount () const
– int getVertexCount () const
– int getNormalCount () const
– int getUVCoordCount () const
– Vector3f getVertex (int i) const
– Vector3f getNormal (int i) const
– const Vector2f getUVCoord (int i) const
– const Material & getMaterial (int id) const
– int getMaterialID (string name) const
– const ObjectPart & getObjectPart (int id) const
– int getMaterialCount () const
– int getObjectPartID (string name) const
– int getObjectPartCount () const

Public Attributes

– GLuint polygonmode

Protected Member Functions

– void renderMesh ()

Protected Attributes

– vector< ObjectPart > parts
– vector< Texture > textures
– shared_ptr< vector< Material > > materials
– vector< Vector3f > vertices
– vector< Vector3f > normals
– vector< Vector2f > uvcoords
– GLuint listID
– bool haslist
– bool usetexture

214 APPENDIX C. DOXYGEN DOCUMENTATION

– bool uselighting
– bool useblending
– bool usematerials
– int lasttextureID
– int lastmaterialID
– Material globalMat

Friends

– class ObjectPart

The documentation for this class was generated from the following files:

– objectloader.h
– objectloader.cpp

C.2. LAFORGE CLASS DOCUMENTATION 215

ObjectList Class Reference

#include <globallists.h>

Detailed Description

This class stores a list of all graphObjects that are displayed.

The objecs are stored and referenced by their uniqID. If a given object is a
2D or ART object, you additionally have to store it in the FlatObjectList or
the ARTObjectList respectively. You can get an instance of this class in any
thread to get access to the global object list.

Public Types

– typedef icl::SmartPtr< icl::ICLDrawWidget3D::GLCallback,
icl::PointerDelOp > ObjectPtr

Public Member Functions

– void clear ()

Clears the list.

– void clear_publisher (const string &publisher_name)

Deletes all objects created by given publisher.

– bool does_exist (const uniqID &id) const

Checks whether the given uniqID already exists in the list.

– bool add (const uniqID &id, ObjectPtr &object)

Adds an object to the list.

– bool remove (const uniqID &id)

Removes the object with the given uniqID.

– graphObject ∗ get_object (const uniqID &id)

Gets an ordinary (not smart) pointer to an object in the list.

216 APPENDIX C. DOXYGEN DOCUMENTATION

– void release_object () const

This unlocks the mutex that is locked by get_object(const uniqID&).

– ObjectPtr get_smart_pointer (graphObject ∗obj)

Gets a smart pointer to an object in the list you only have the raw pointer
to.

– void draw_all_3D (ICLDrawWidget3D ∗widget) const

This method calls graphObject::draw() for all 3D objects in the list.

Private Types

– typedef std::map< uniqID, ObjectPtr > map_t

– typedef std::map< uniqID, ObjectPtr >::iterator iter_t

Private Member Functions

– void lock () const

– void unlock () const

Static Private Attributes

– static map_t object_list

– static icl::Mutex object_list_mutex

Member Function Documentation

void ObjectList::clear () [inline]

Clears the list.

This removes all objects from the list, leaving it blank.

C.2. LAFORGE CLASS DOCUMENTATION 217

void ObjectList::clear_publisher (const string & publisher_name)
[inline]

Deletes all objects created by given publisher.

Parameters:

publisher_name The name of the publisher whose object are to be re-
moved from the list.

bool ObjectList::does_exist (const uniqID & id) const [inline]

Checks whether the given uniqID already exists in the list.

Parameters:

id The uniqID to check for.

Returns:

true if an object with this ID exists, false otherwise.

bool ObjectList::add (const uniqID & id, ObjectPtr & object) [inline]

Adds an object to the list.

Parameters:

id The uniqID of the object to add.

object A smart pointer to the graphObject to add.

Returns:

true if the object could be added successfully, false if an object with
this uniqID already existed.

218 APPENDIX C. DOXYGEN DOCUMENTATION

bool ObjectList::remove (const uniqID & id) [inline]

Removes the object with the given uniqID.

Parameters:

id uniqID of the object to remove.

Returns:

true if the object could be removed successfully, false if no such ob-
ject exists in the list.

graphObject ∗ ObjectList::get_object (const uniqID & id) [inline]

Gets an ordinary (not smart) pointer to an object in the list.

You must always call release_object when you are done with the object
you grabbed with this method and before calling any ObjectList method
again! Don’t use this method unless you have to.

Parameters:

id The uniqID of the object to grab.

Returns:

A pointer to the object with the given uniqID.

See also:

release_object

void ObjectList::release_object () const [inline]

This unlocks the mutex that is locked by get_object(const uniqID&).

You must always call this method immediately when you’re done using the
pointer get_object(const uniqID&) returned.

C.2. LAFORGE CLASS DOCUMENTATION 219

ObjectPtr ObjectList::get_smart_pointer (graphObject ∗ obj) [inline]

Gets a smart pointer to an object in the list you only have the raw pointer
to.

Parameters:

obj A pointer to a graphObject.

Returns:

A smart pointer to the given graphObject.

void ObjectList::draw_all_3D (ICLDrawWidget3D ∗ widget) const
[inline]

This method calls graphObject::draw() for all 3D objects in the list.

Parameters:

widget The ICLDrawWidget3D to draw the objects in.

Here is the call graph for this function:

ObjectList::draw_all_3D graphObject::is3D

The documentation for this class was generated from the following files:

– globallists.h
– globallists.cpp

220 APPENDIX C. DOXYGEN DOCUMENTATION

objectloader::ObjectPart Class Reference

#include <objectloader.h>

C.2. LAFORGE CLASS DOCUMENTATION 221

Collaboration diagram for objectloader::ObjectPart:

objectloader::ObjectPart

- name
- faces
- materialID
- listID
- haslist
- parentObj

+ getFaceCount()
+ getName()
+ getFace()
+ getMaterialID()
+ createDisplayList()
+ ObjectPart()
+ ~ObjectPart()
+ draw()
- renderMesh()

objectloader::Object3D

+ polygonmode
parts
textures
materials
vertices
normals
uvcoords
listID
haslist
usetexture
uselighting
useblending
usematerials
lasttextureID
lastmaterialID
globalMat

+ Object3D()
+ ~Object3D()
+ render()
+ createDisplayList()
+ deleteDisplayList()
+ getFaceCount()
+ getVertexCount()
+ getNormalCount()
+ getUVCoordCount()
+ getVertex()
+ getNormal()
+ getUVCoord()
+ getMaterial()
+ getMaterialID()
+ getObjectPart()
+ getMaterialCount()
+ getObjectPartID()
+ getObjectPartCount()
renderMesh()

parentObj

glhelpers::Material_t< float >

+ name
+ textureID

+ Material_t()
+ Material_t()

globalMat

glhelpers::Colorset< float >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

glhelpers::Vector3< float >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator float *()
+ operator*=()
+ operator/=()

ambient
diffuse

specular

glhelpers::Vector3< T >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator T *()
+ operator*=()
+ operator/=()

< float >

T

array

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

transparency
shininess

< float >

glhelpers::Material_t< T >

+ name
+ textureID

+ Material_t()
+ Material_t()

string

name

name

name

< float >

222 APPENDIX C. DOXYGEN DOCUMENTATION

Detailed Description

One or more of these objects constitute one Object3D.

Public Member Functions

– int getFaceCount () const

– string getName () const

– const Face & getFace (int id) const

– int getMaterialID () const

– void createDisplayList ()

– ObjectPart (Object3D ∗parent)

– void draw ()

Private Member Functions

– void renderMesh ()

Private Attributes

– string name

– vector< Face > faces

– int materialID

– GLuint listID

– bool haslist

– Object3D ∗ parentObj

Friends

– class LoadableObject

– class Object3D

C.2. LAFORGE CLASS DOCUMENTATION 223

Member Function Documentation

void ObjectPart::renderMesh () [private]

set material

render mesh

The documentation for this class was generated from the following files:

– objectloader.h
– objectloader.cpp

224 APPENDIX C. DOXYGEN DOCUMENTATION

laforgetimer::PointerControlledValue Class Reference

#include <laforgetimer.h>

Inheritance diagram for laforgetimer::PointerControlledValue:

laforgetimer::PointerControlledValue

value

+ PointerControlledValue()
set()
get_id()

laforgetimer::ControlledValue

+ epsilon
+ baseval
+ epsfactor
+ base
obj
env
a
startval
targetval
localval
@3
normalizedtargetval
parent
do_destroy

+ ControlledValue()
+ step()
+ is_increasing()
+ get_current_value()
+ remove_self()
+ is_destructible()
+ get_objptr()
set()
get_id()
target_reached()

C.2. LAFORGE CLASS DOCUMENTATION 225

Collaboration diagram for laforgetimer::PointerControlledValue:

laforgetimer::PointerControlledValue

value

+ PointerControlledValue()
set()
get_id()

laforgetimer::ControlledValue

+ epsilon
+ baseval
+ epsfactor
+ base
obj
env
a
startval
targetval
localval
@3
normalizedtargetval
parent
do_destroy

+ ControlledValue()
+ step()
+ is_increasing()
+ get_current_value()
+ remove_self()
+ is_destructible()
+ get_objptr()
set()
get_id()
target_reached()

laforgetimer::LaforgeController

- mutex
- uinterval
- value_list
- remove_list
- remove_list_mutex

+ LaforgeController()
+ run()
+ add_value()
+ add_value()
+ add_value()
+ add_value()
+ remove()
+ object_destroyed()
- calculate_a()
- update()
- lock()
- unlock()

parent

Detailed Description

This is a ControlledValue that controls a value directly via a pointer to a
given variable.

Do not instantiate this class directly!

226 APPENDIX C. DOXYGEN DOCUMENTATION

Public Member Functions

– PointerControlledValue (LaforgeController ∗parent_lc, Ob-
jectList::ObjectPtr objptr, double ∗val, double target, double stepsize,
envelope_t envelope, bool destructible)

Protected Member Functions

– virtual void set (double val) const
– virtual ValueID get_id () const

Protected Attributes

– double ∗ value

The documentation for this class was generated from the following file:

– laforgetimer.h

C.2. LAFORGE CLASS DOCUMENTATION 227

ScottyCommunicator Class Reference

#include <ScottySubscriber.h>

Detailed Description

ScottySubscriber stores the values it gets from SCOTTY here.

They are stored in static variables so you can instantiate this class any-
where to access them. No mutexes or similar protection technique is used
but the worst thing that should be able to happen is that you get half up-
dated values which should result in something like an intermediate value
for anything but very fast movements. If it turns out that movements get
too edgy, a mutex should be used.

Author:

cmertes

Public Member Functions

– double getCenterX ()

Gets the x component of the spot the camera currently looks at.

– double getCenterY ()

Gets the y component of the spot the camera currently looks at.

– double getCenterZ ()

Gets the z component of the spot the camera currently looks at.

– double getEyeX ()

Gets the x component of the spot the camera is positioned at.

– double getEyeY ()

Gets the y component of the spot the camera is positioned at.

– double getEyeZ ()

Gets the z component of the spot the camera is positioned at.

228 APPENDIX C. DOXYGEN DOCUMENTATION

– double getUpX ()

Gets the x component of the vector that points upwards in the camera co-
ordinate system.

– double getUpY ()

Gets the y component of the vector that points upwards in the camera
coordinate system.

– double getUpZ ()

Gets the z component of the vector that points upwards in the camera co-
ordinate system.

– double getDirectionX ()

Gets the x component of the vector that’s parallel to the direction the cam-
era currently looks into.

– double getDirectionY ()

Gets the y component of the vector that’s parallel to the direction the cam-
era currently looks into.

– double getDirectionZ ()

Gets the z component of the vector that’s parallel to the direction the camera
currently looks into.

– void setEyeX (double d)

Sets the x component of the spot the camera is positioned at.

– void setEyeY (double d)

Sets the y component of the spot the camera is positioned at.

– void setEyeZ (double d)

Sets the z component of the spot the camera is positioned at.

– void setUpX (double d)

Sets the x component of the vector that points upwards in the camera coor-
dinate system.

– void setUpY (double d)

Sets the y component of the vector that points upwards in the camera coor-
dinate system.

– void setUpZ (double d)

C.2. LAFORGE CLASS DOCUMENTATION 229

Sets the z component of the vector that points upwards in the camera coor-
dinate system.

– void setDirectionX (double d)

Sets the x component of the vector that’s parallel to the direction the camera
currently looks into.

– void setDirectionY (double d)

Sets the y component of the vector that’s parallel to the direction the camera
currently looks into.

– void setDirectionZ (double d)

Sets the z component of the vector that’s parallel to the direction the camera
currently looks into.

Static Private Attributes

– static double eyex = 0.0
– static double eyey = 0.3
– static double eyez = 0.5
– static double upx = 0.0
– static double upy = 0.0
– static double upz = 0.0
– static double dirx = 0.0
– static double diry = 0.0
– static double dirz = -1.0

The documentation for this class was generated from the following files:

– ScottySubscriber.h
– ScottySubscriber.cpp

230 APPENDIX C. DOXYGEN DOCUMENTATION

ScottySubscriber Class Reference

#include <ScottySubscriber.h>

Collaboration diagram for ScottySubscriber:

ScottySubscriber

- comm
- publisher_name
- hmd_name
- xcf_subscriber
- scotty_found
- scotty_search_pause

+ ScottySubscriber()
+ ~ScottySubscriber()
+ run()
- waitForScotty()
- parse_xcf()

string

publisher_name
hmd_name

ScottyCommunicator

- eyex
- eyey
- eyez
- upx
- upy
- upz
- dirx
- diry
- dirz

+ getCenterX()
+ getCenterY()
+ getCenterZ()
+ getEyeX()
+ getEyeY()
+ getEyeZ()
+ getUpX()
+ getUpY()
+ getUpZ()
+ getDirectionX()
+ getDirectionY()
+ getDirectionZ()
+ setEyeX()
+ setEyeY()
+ setEyeZ()
+ setUpX()
+ setUpY()
+ setUpZ()
+ setDirectionX()
+ setDirectionY()
+ setDirectionZ()

comm

Detailed Description

Subscribes to SCOTTY to get the newest camera coordinate system.

C.2. LAFORGE CLASS DOCUMENTATION 231

An instance of this class is a new thread and must be started by start().

Thereafter the data in ScottyCommunicator are updated with every pack-
age from SCOTTY. If no running SCOTTY is found or an old one died,
the Threads polls regularly for a new SCOTTY publisher (ScottySub-
scriber::waitForScotty()). Before the first data from SCOTTY arrived there
is some default coordinate system; when a SCOTTY dies, the coordinate
system is frozen to its last state.

Author:

cmertes

Public Member Functions

– ScottySubscriber (string publisherName, string hmdName)
The class constructor.

– virtual void run ()
Starts the thread.

Private Member Functions

– void waitForScotty ()
If no SCOTTY is found or the connection to an existing SCOTTY died, this
method is called to wait for a new SCOTTY to appear.

– bool parse_xcf (string message)
When SCOTTY sent a new message, the data it contains is extraced by this
function.

Private Attributes

– ScottyCommunicator comm
– const string publisher_name
– const string hmd_name
– XCF::SubscriberPtr xcf_subscriber
– bool scotty_found

232 APPENDIX C. DOXYGEN DOCUMENTATION

this is truewhen we are connected to SCOTTY

Static Private Attributes

– static const unsigned int scotty_search_pause = 1000

time between trials to find SCOTTY in msecs

Constructor & Destructor Documentation

ScottySubscriber::ScottySubscriber (string publisherName, string
hmdName)

The class constructor.

It takes the publisher name and the content of the name attribute of the hmd
tag this thread should evaluate. Normally there are two HMDs, each with
its own block of data. This constructor must be followed by start() for the
thread to start.

Parameters:

publisherName The name of the SCOTTY publisher this thread should
subscribe to.

hmdName The name of the HMD to pay attention to. Normally
"hmd0" or "hmd1".

Member Function Documentation

void ScottySubscriber::waitForScotty () [private]

If no SCOTTY is found or the connection to an existing SCOTTY died, this
method is called to wait for a new SCOTTY to appear.

It polls in intervals specified by ScottySubscriber::scotty_search_pause.

C.2. LAFORGE CLASS DOCUMENTATION 233

Here is the caller graph for this function:

ScottySubscriber::waitForScotty ScottySubscriber::run

bool ScottySubscriber::parse_xcf (string message) [private]

When SCOTTY sent a new message, the data it contains is extraced by this
function.

It also directly sets the ScottyCommunicator accordingly.

Parameters:

The string containing the message as XML

Returns:

true if everything went fine, false if something went wrong

Here is the call graph for this function:

ScottySubscriber::parse_xcf

ScottyCommunicator::setDirectionX

ScottyCommunicator::setDirectionY

ScottyCommunicator::setDirectionZ

ScottyCommunicator::setEyeX

ScottyCommunicator::setEyeY

ScottyCommunicator::setEyeZ

ScottyCommunicator::setUpX

ScottyCommunicator::setUpY

ScottyCommunicator::setUpZ

Here is the caller graph for this function:

ScottySubscriber::parse_xcf ScottySubscriber::run

234 APPENDIX C. DOXYGEN DOCUMENTATION

The documentation for this class was generated from the following files:

– ScottySubscriber.h
– ScottySubscriber.cpp

C.2. LAFORGE CLASS DOCUMENTATION 235

objectloader::Texture Class Reference

#include <objectloader.h>

Collaboration diagram for objectloader::Texture:

objectloader::Texture

+ name
+ image
+ glID
+ isvalid
+ didrun
+ width
+ height

+ Texture()
+ Texture()
+ ~Texture()
+ load()
+ exec()

string

name

Detailed Description

A class representing a texture as referenced by its ID in a Material.

The image data is stored here, too.

Public Member Functions

– Texture (const string &path)
– int load (const string &filename)
– int exec ()

Public Attributes

– string name
– boost::shared_array< GLbyte > image
– GLuint glID
– bool isvalid

236 APPENDIX C. DOXYGEN DOCUMENTATION

– bool didrun
– int width
– int height

The documentation for this class was generated from the following files:

– objectloader.h
– objectloader.cpp

C.2. LAFORGE CLASS DOCUMENTATION 237

uniqID Class Reference

#include <uniqid.h>

Collaboration diagram for uniqID:

uniqID

- ID
- publisher

+ uniqID()
+ set_id()
+ get_id()
+ set_publisher()
+ get_publisher()
+ operator<()

string

publisher

Detailed Description

An ID uniquely referencing graphical objects.

Each taibak generator, that is each publisher sending commands to
LAFORGE, uses internally unique integers to reference the objects it cre-
ated. As more than one publisher is allowed though and they shouldn’t
be forced to create globally unique IDs somehow, this class uses both in-
teger IDs and the publisher name to identify objects. It uses fast integer
comparison as long as this is unambiguous and falls back to slower string
comparison when necessary. Taibak generators should therefore generate
IDs randomly to make collisions rare if they care about performance but the
class is designed to handle any combination of ID-publisher pairs as efficient
as possible while keeping a strict total order on the set of uniqIDs.

To implement a set this class needs to be used in a container class though.
It was designed with std::map in mind for this purpose.

Public Member Functions

– uniqID (const unsigned int id, const std::string &publ)

238 APPENDIX C. DOXYGEN DOCUMENTATION

The class constructor takes the integer ID and the publisher name as argu-
ments.

– void set_id (const unsigned int id)

Resets the ID after creation.

– unsigned int get_id () const

Gets the ID part of the uniqID.

– void set_publisher (const std::string &publ)

Resets the publisher name after creation.

– std::string get_publisher () const

Gets the publisher name part of the uniqID.

– bool operator< (const uniqID &u) const

The comparison operator.

Private Attributes

– unsigned int ID
– std::string publisher

Member Function Documentation

bool uniqID::operator< (const uniqID & u) const [inline]

The comparison operator.

The ID part is given preference over the publisher name part.

Other comparison operators are not implemented but can be constructed
from the lesser than operator if necessary.

The documentation for this class was generated from the following file:

– uniqid.h

C.2. LAFORGE CLASS DOCUMENTATION 239

laforgetimer::ValueID Class Reference

#include <laforgetimer.h>

Collaboration diagram for laforgetimer::ValueID:

laforgetimer::ValueID

+ func
+ valuep
- @1
- objp

+ ValueID()
+ ValueID()
+ operator==()
+ operator<()
+ operator!=()

graphObject

+ MIN_2D
+ MAX_2D
isvisible
ishighlighted
rotx
roty
rotz
posx
posy
posz
highlighting_amount
anchoring_mode
color
highlight_color
- mutex
- transformationMatrix

+ graphObject()
+ ~graphObject()
+ set_position2D()
+ set_position3D()
+ get_position()
+ set_extent()
+ set_radius()
+ set_rotation()
+ get_rotation()
+ set_caption()
+ set_special_property()
+ set_color()
+ show()
+ hide()
+ highlight()
+ unhighlight()
+ get_highlighting_amount()
+ is2D()
+ is3D()
+ isART()
+ set2D()
+ set3D()
+ setART()
+ loadTransformationMatrix()
translate_self()
rotate_self()
transform_self()
lock()
unlock()
init_draw()
finish_draw()

objp

glhelpers::Colorset< double >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

highlight_color
color

glhelpers::Vector3< double >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator double *()
+ operator*=()
+ operator/=()

ambient
diffuse

specular

glhelpers::Vector3< T >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator T *()
+ operator*=()
+ operator/=()

< double >

T

array

glhelpers::Colorset< T >

+ ambient
+ diffuse
+ specular
+ shininess
+ transparency

+ Colorset()
+ Colorset()
+ operator*=()
+ operator/=()

transparency
shininess

< double >

Detailed Description

This class uniquely identifies a ControlledValue.

240 APPENDIX C. DOXYGEN DOCUMENTATION

This happens either by its value pointer or by its function pointer and its
graphObject pointer.

Public Member Functions

– ValueID (double ∗valp)
– ValueID (value_function_t f, graphObject ∗obj)
– bool operator== (const ValueID &rhs) const
– bool operator< (const ValueID &rhs) const
– bool operator!= (const ValueID &rhs) const

Private Attributes

– union {
value_function_t func
double ∗ valuep

};

– graphObject ∗ objp

The documentation for this class was generated from the following file:

– laforgetimer.h

C.2. LAFORGE CLASS DOCUMENTATION 241

glhelpers::Vector2< T > Class Template Reference

#include <glhelpers.h>

Collaboration diagram for glhelpers::Vector2< T >:

glhelpers::Vector2< T >

+ array

+ Vector2()
+ Vector2()
+ Vector2()
+ Vector2()
+ operator[]()
+ operator=()
+ operator T *()

T

array

Detailed Description

template<class T> class glhelpers::Vector2< T >

A simple two-dimensional vector.

Public Member Functions

– Vector2 (T f1=0.0, T f2=0.0)
– Vector2 (T ∗const a)
– Vector2 (const Vector2< T > &a)
– Vector2 (const vector< T > &v)
– T & operator[] (int i)
– Vector2 & operator= (const Vector2 &vec)
– operator T ∗ ()

Public Attributes

– T array [2]

242 APPENDIX C. DOXYGEN DOCUMENTATION

The documentation for this class was generated from the following file:

– glhelpers.h

C.2. LAFORGE CLASS DOCUMENTATION 243

glhelpers::Vector3< T > Class Template Reference

#include <glhelpers.h>

Inheritance diagram for glhelpers::Vector3< T >:

glhelpers::Vector3< T >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator T *()
+ operator*=()
+ operator/=()

glhelpers::Vector3< double >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator double *()
+ operator*=()
+ operator/=()

< double >

glhelpers::Vector3< float >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator float *()
+ operator*=()
+ operator/=()

< float >

244 APPENDIX C. DOXYGEN DOCUMENTATION

Collaboration diagram for glhelpers::Vector3< T >:

glhelpers::Vector3< T >

+ array

+ x()
+ y()
+ z()
+ Vector3()
+ Vector3()
+ Vector3()
+ Vector3()
+ operator[]()
+ operator=()
+ operator T *()
+ operator*=()
+ operator/=()

T

array

Detailed Description

template<class T> class glhelpers::Vector3< T >

A simple three-dimensional vector.

Public Member Functions

– T & x ()

– T & y ()

– T & z ()

– Vector3 (T f1=0.0, T f2=0.0, T f3=0.0)

– Vector3 (T ∗const a)

– Vector3 (const Vector3< T > &a)

– Vector3 (const vector< T > &v)

– T & operator[] (int i)

– Vector3 & operator= (const Vector3 &vec)

– operator T ∗ ()

– Vector3< T > & operator∗= (const Vector3< T > &rhs)

– Vector3< T > & operator/= (T rhs)

C.2. LAFORGE CLASS DOCUMENTATION 245

Public Attributes

– T array [3]

The documentation for this class was generated from the following file:

– glhelpers.h

246 APPENDIX C. DOXYGEN DOCUMENTATION

WorkThread Class Reference

Collaboration diagram for WorkThread:

WorkThread

- xcfPublisher
- textout
- xcfout
- xcfMessage
- publisherName
- w
- g
- databuf
- scotty_comm

+ WorkThread()
+ outputInit()
+ outputNextCycle()
+ outputNextMarker()
+ outputFinishCycle()
+ markerinlastframe()
+ run()
- begin_2D_drawing()
- end_2D_drawing()
- begin_3D_drawing()
- end_3D_drawing()

ICLDrawWidget3D

w

string

publisherName

ScottyCommunicator

- eyex
- eyey
- eyez
- upx
- upy
- upz
- dirx
- diry
- dirz

+ getCenterX()
+ getCenterY()
+ getCenterZ()
+ getEyeX()
+ getEyeY()
+ getEyeZ()
+ getUpX()
+ getUpY()
+ getUpZ()
+ getDirectionX()
+ getDirectionY()
+ getDirectionZ()
+ setEyeX()
+ setEyeY()
+ setEyeZ()
+ setUpX()
+ setUpY()
+ setUpZ()
+ setDirectionX()
+ setDirectionY()
+ setDirectionZ()

scotty_comm

Detailed Description

Contains the program’s main visualization loop.

C.2. LAFORGE CLASS DOCUMENTATION 247

Author:

celbrech

Public Member Functions

– void outputInit ()
– void outputNextCycle ()
– void outputNextMarker (int id, float posX, float posY, float posZ)
– void outputFinishCycle ()
– bool markerinlastframe (iclart::ARMarkerInfo ∗mi_last, int id, int n_-

last)
– virtual void run ()

Static Private Member Functions

– static void begin_2D_drawing (void ∗)
– static void end_2D_drawing (void ∗)
– static void begin_3D_drawing (void ∗)

Initializes the projection and modelview matrices to set up the virtual cam-
era for 3D objects (not ART or 2D objects).

– static void end_3D_drawing (void ∗)

Private Attributes

– XCF::PublisherPtr xcfPublisher
– bool textout
– bool xcfout
– std::ostringstream xcfMessage
– string publisherName
– ICLDrawWidget3D ∗ w
– Grabber ∗ g
– icl8u ∗ databuf

Static Private Attributes

– static ScottyCommunicator scotty_comm = ScottyCommunicator()

248 APPENDIX C. DOXYGEN DOCUMENTATION

Member Function Documentation

static void WorkThread::begin_3D_drawing (void ∗) [inline, static,
private]

Initializes the projection and modelview matrices to set up the virtual cam-
era for 3D objects (not ART or 2D objects).

The projection matrix is set according to some camera dependent constants
and the formula αy = 2 arctan(

dy
2f) with αy being the vertical FOV, dy the

vertical sensor size (e.g. its vertical resolution) and f the focal length in
the same unit as dy (usually pixels). The modelview matrix is initialized
with data from ScottyCommunicator. This function is meant to be passed
to ICLDrawWidget3D::callback(GLCallbackFunc, void ∗data) which explains
the unused void ∗ parameter.

Here is the call graph for this function:

WorkThread::begin_3D_drawing

ScottyCommunicator::getCenterX

ScottyCommunicator::getCenterY

ScottyCommunicator::getCenterZ

ScottyCommunicator::getEyeX

ScottyCommunicator::getEyeY

ScottyCommunicator::getEyeZ

ScottyCommunicator::getUpX

ScottyCommunicator::getUpY

ScottyCommunicator::getUpZ

The documentation for this class was generated from the following file:

– laforge.cpp

C.2. LAFORGE CLASS DOCUMENTATION 249

XCFThread Class Reference

#include <intercomm.h>

Collaboration diagram for XCFThread:

XCFThread

- publisher_name
- parent_interceptor
- xcf_subscriber
- art_object_list
- artidlist
- object_list
- flat_object_list

+ XCFThread()
+ ~XCFThread()
+ run()
+ getName()
- parse_xcf()
- parse_create()
- parse_envelope()
- parse_object_children()
- parse_effects()
- parse_matrix()
- clear_content()

ObjectList

- object_list
- object_list_mutex

+ clear()
+ clear_publisher()
+ does_exist()
+ add()
+ remove()
+ get_object()
+ release_object()
+ get_smart_pointer()
+ draw_all_3D()
- lock()
- unlock()

object_list

ARTObjectList

- art_object_list
- art_object_list_mutex

+ conditional_draw()
+ clear()
+ does_exist()
+ add()
+ remove()
+ get_artID()
+ get_object()
+ release_object()
- lock()
- unlock()

art_object_list

string

publisher_name

LaforgeInterceptor

+ timer
- scotty_subscriber
- self
- interceptor
- interceptorID
- threads
- prefix
- scotty_publisher_name

+ LaforgeInterceptor()
+ ~LaforgeInterceptor()
+ addPublisher()
+ deletePublisher()
+ addServer()
+ deleteServer()
+ addDispatcher()
+ deleteDispatcher()
+ does_exist()
- add_if_appropriate()

prefix
scotty_publisher_name

FlatObjectList

- flat_object_list
- flat_object_list_mutex

+ clear()
+ add()
+ remove()
+ draw_in_order()
+ clear_owner()
+ incrZLevel()
+ decrZLevel()
+ setZLevel()
- lock()
- unlock()

flat_object_list

multi_index_container

flat_object_list

parent_interceptor

shared_ptr< ScottySubscriber >

scotty_subscriber

shared_ptr

< ScottySubscriber >

laforgetimer::LaforgeController

- mutex
- uinterval
- value_list
- remove_list
- remove_list_mutex

+ LaforgeController()
+ run()
+ add_value()
+ add_value()
+ add_value()
+ add_value()
+ remove()
+ object_destroyed()
- calculate_a()
- update()
- lock()
- unlock()

timer

250 APPENDIX C. DOXYGEN DOCUMENTATION

Detailed Description

This thread is created by LaforgeInterceptor to listen to a single XCF pub-
lisher sending {Taibaks} (packets containing control commands, for example
by PICARD).

When it receive such a packet it parses its content and modifies the
LAFORGE object lists and objects accordingly.

Public Member Functions

– XCFThread (const string &name, LaforgeInterceptor &parent)
The class constructor.

– ∼XCFThread ()
Due to some internal problems of XCF this destructor has to sleep a certain
amount of time.

– virtual void run ()
This method is run when the thread is started.

– string getName ()
Gets the publisher name this thread listens to.

Private Types

– enum cmd_t {

CMD_CREATE, CMD_MODIFY, CMD_DELETE, CMD_CLEAR,

CMD_LOGGING }

Private Member Functions

– bool parse_xcf (string &taibak)
– bool parse_create (ObjectList::ObjectPtr &obj_p, const Location

&object_location, const uniqID &curr_uniqid)
– bool parse_envelope (const Location &env_parent_location,

laforgetimer::envelope_t &env, double &a, double &t, bool &use_-
t)

C.2. LAFORGE CLASS DOCUMENTATION 251

– bool parse_object_children (graphObject ∗obj, ObjectList::ObjectPtr
&obj_p, const Location &object_location)

– bool parse_effects (ObjectList::ObjectPtr objptr, graphObject ∗obj,
const Location &effects_location)

– shared_ptr< vector< double > > parse_matrix (const Location
&matrix_location, const size_t numrows, const size_t numcolumns)

– void clear_content ()

Private Attributes

– const string publisher_name
– LaforgeInterceptor & parent_interceptor
– XCF::SubscriberPtr xcf_subscriber
– ARTObjectList art_object_list
– list< graphObject::artID > artidlist
– ObjectList object_list
– FlatObjectList flat_object_list

Constructor & Destructor Documentation

XCFThread::XCFThread (const string & name, LaforgeInterceptor &
parent) [inline]

The class constructor.

Parameters:

name The name of the publisher to listen to.

parent The LaforgeInterceptor that created this thread.

XCFThread::∼XCFThread () [inline]

Due to some internal problems of XCF this destructor has to sleep a certain
amount of time.

This is highly error prone and should be changed as soon as XCF provides
an alternative solution!

252 APPENDIX C. DOXYGEN DOCUMENTATION

Member Function Documentation

string XCFThread::getName () [inline]

Gets the publisher name this thread listens to.

Returns:

The name of the XCF publisher assigned to the current XCFThread in-
stance.

The documentation for this class was generated from the following files:

– intercomm.h
– intercomm.cpp
– intercommold.cpp

253

D Questionnaire

Fragebogen zur Anzeige des Aufmerksamkeitsfokus

Geschlecht Alter

Bitte beschreibe kurz in eigenen Worten deinen ersten Eindruck beim Benutzen des Systems.

Hattest du vor diesem Versuch schon einmal ein Augmented-
Reality-System benutzt?

Ja Nein

O O

Wie unangenehm fandest du das System in diesem Versuch?

Gar nicht
störend

Sehr
unangenehm

O O O O

Falls du es unangenehm fandest: Wie hat sich der fehlende Komfort geäußert?

Sehr schnell Gar nicht

Wie schnell hast du dich an das System gewöhnt? O O O O

Sehr stark Gar nicht

Wie stark hast du die visuelle Hervorhebung genutzt? O O O O

Sehr stark Gar nicht

Wie stark hast du die auditive Hervorhebung genutzt? O O O O

Sehr
hilfreich

Gar nicht
hilfreich Störend

Wie hilfreich fandest du die visuellen Hervorhebungen? O O O O O

Sehr
hilfreich

Gar nicht
hilfreich Störend

Wie hilfreich fandest du die auditiven Hervorhebungen? O O O O O

– Seite 1 von 2 –

254 APPENDIX D. QUESTIONNAIRE

Was hat dir besonders gut, was besonders schlecht gefallen? Was würdest du ändern?

Unter welchen Bedingungen – wenn überhaupt – könntest du dir vorstellen, ein solches
System im Alltag tatsächlich einzusetzen?

Vielen Dank für deine Hilfe!

– Seite 2 von 2 –

Glossary

alignment: A linguistic term describing the implicit mutual convergence
of the internal states of dialogue partners through very basic mecha-
nisms. This can happen on different levels, between different subsys-
tems. The logical connection between these subsystems is called an
alignment channel.

alignment channel: Alignment needs similar information-processing sys-
tems on both sides of a communication which can each consist of
several subsystems. These subsystems can align more or less indepen-
dently, even when hierarchically organized. Therefore one can imag-
ine direct connections on an abstract level between subsystems that
do not talk directly to each other. These are called alignment channels
and there can be as many as there are subsystems. In principle not
more than one modality with one communication channel is needed
to bear all existing alignment channels, although that depends on the
communication channel and the modality used.

AR: Augmented reality. The addition of computer-generated virtual entities
to the real world. This can happen through many means, from semi-
transparent displays or similar hardware up to projecting them onto
real-world objects.

ART: Augmented Reality Toolkit, also AR Toolkit. A system that uses the
distortion and size of square markers to calculate their orientation in
space and identifies them by a pattern inside the square. Like that 3D
models can easily be made to look as if they were sitting on top of the
markers.

blackboard system: Describes a common “space” where information can
be put by processes and then be picked up by others. The processes
do not have to know of each other and they can ask the blackboard
system to retrieve the information they need.

255

256 APPENDIX D. QUESTIONNAIRE

C5: A project within the Collaborative Research Centre Alignment in Com-
munication at Bielefeld University called Alignment in AR-based coop-
eration. It aims to provide means for the investigation of alignment by
using augmented reality.

communication channel: A way by which interlocutors encode informa-
tion. The most obvious and arguably most important communication
channel is the verbal one. Gesture, facial expressions and prosody also
play important roles.

DOF: Degree of Freedom. Every translation along or rotation around an axis
is an additional degree of freedom if it is independent of the others.
So coordinates for the axes x, y and z constitute three degrees of
freedom. Adding the position in terms of −x does not increase this
number, nor does any other linear combination of the first three axes.
Rotations around these axes, however, do add additional information
and hence they add to the number of degrees of freedom.

FOV: Field of view. Designates either the whole volume seen by a person
or a camera, or the area on a plane of interest (a table in our setup). It
can also mean the angle between the planes that restrict the volume
seen (which is then sometimes called the frustum). For cameras with
their rectangular sensors there is a horizontal and a vertical field of
view in this sense of the word.

GLUT: OpenGL Utility Toolkit. Arguably the most important, cross-platform
extension library for OpenGL.

HMD: Head-mounted display. A computer display that can be attached to
someone’s head so he does not have to move his head to look at it.
There are transparent and opaque forms of this.

LAFORGE: The software module that visualizes the camera images and aug-
ments them according to commands it received via XCF.

medium: A way by which encoded information is transmitted or stored.
In prehistoric times there was but the air between people, later the
written word was invented and in recent times a great number of
electric and electronic media followed.

modality: Sensory modalities in the context of this work are the input chan-
nels people have at their disposal. Although sight is said to be the
most important modality for humans, for communication hearing is
probably much more important.

257

OpenGL: Open Graphics Library. A programming interface for 3D graphics.
It is supported natively by almost all modern graphics hardware.

OSC: Open Sound Control. A protocol to transmit data in a fast, binary
way.

PICARD: The software module that controls LAFORGE and provides the
interface to the experimenter.

publish/subscribe: This is a paradigm for messaging between processes.
Any process can provide information and publish it while other pro-
cesses can subscribe to it. The processes themselves do not have to
deal with whom they are sending the data to or where they are fetch-
ing it from.

VR: Virtual reality. The replacement of the normal world around us with a
purely computer-generated one in the perception of a user.

XCF: XML enabled Communication Framework. A XML-based publish/sub-
scribe system.

XML: Extensible Markup Language. XML is a standard for creating custom
markup languages. This means that text can be extended by so called
tags which stand on their own or enclose some other text or further
text. They can also have attributes to provide further details about
them. So the natural representation of XML documents is a tree.

259

Acknowledgements

I want to express my gratitude to many people whose support I can hardly
value adequately through these lines. First and foremost this applies to the
C5 team member and my dear friend Angelika Dierker who provided me
with her expertise, her counsel, her friendship and too much of her time for
me to feel comfortable contemplating it.

The second woman I want to thank is actually the one that comes first in
my life and I dare not think about how much more desperate the difficult
times I had during the writing of this work would have been without the
constant loving support of Daniela Leichsenring. Her patience with me was
admirable and surpassed my own by far.

I would further like to thank Marc Hanheide and Thomas Hermann who
slipped me into their tight schedule more often than it allowed, and whose
advice and knowledge proved invaluable every time they did. It is also they
who made the C5 project what it is, so – although it is a much used phrase
– this work would not exist if it were not for them.

Christof Elbrechter and Alexander Neumann unhesitatingly sacrificed time
they should have spent on their work for mine, again and again, which I
feel very thankful though guilty about. Christof’s knowledge of the ICL and
his debugging expertise are beyond price and Alex had a way of “listening
me into thinking” that was almost as staggering as his tenaciousness when
trying to get scotty to work properly while he should have been writing his
own Bachelor’s thesis.

I am also very grateful to Marcel Martin, Jan Stallkamp and Steve Wolter
who each proved a keen eye for details as well as for the greater picture
when proofreading this work and by this improved its quality a lot through
many valuable remarks. Stefan Vitz even offered me this service without
me begging him for it and I regret not to have provided him with an op-

260 APPENDIX D. QUESTIONNAIRE

portunity to do so early enough for him to proofread this whole work as
distinguishedly as he did with the first chapter.

Furthermore, I should like to thank Till Bovermann, René Tünnermann and
Eckard Riedenklau for their constant availability for questions and their un-
tiring willingness to answer them in the most helpful of ways.

And finally, thank you to each of the sixteen kind persons who agreed to be
a subject in my study for a mere candy bar.

I should like to address a further note of acknowl-
edgement to the Centre of Excellence 673 Align-
ment in Communication and thereby to the Ger-
man Research Foundation (Deutsche Forschungsge-
meinschaft) who kindly provided the technical and
personal resources to conduct this research.

263

Declaration

Bielefeld, 31 August 2008

I hereby declare that this submission is my own work and that, to the best
of my knowledge and belief, it contains no material previously published
or written by another person nor material which to a substantial extent
has been accepted for the award of any other degree or diploma of the
university or other institute of higher learning, except where due acknowl-
edgement has been made in the text.

Christian Mertes

	Abstract
	Contents
	List of Figures
	Introduction
	Overview
	Motivation
	Goals

	Nonverbal Communication
	Augmented Reality
	Definition and Examples
	Hardware

	Sonification
	Alignment in Communication
	Definition
	Relation to this Work

	Preliminary Considerations
	Technical Possibilities
	Basic Prerequisites
	Our Input Data
	Major Dimensions of Gaze Direction Display
	Alternative Possibilities of Gaze Direction Augmentation
	Non-Gaze-Direction Displays

	Implemented Channels
	Visual Augmentations
	Auditory Augmentations

	Implementation
	Hardware
	Framework
	Overview
	Inter-Process Communication

	Subsystem Implementations
	The Visual Subsystem -- LAFORGE
	The Control Module -- PICARD

	Evaluation
	Method
	Results
	Discussion

	Conclusion
	Summary
	Prospects
	Future Communication Channels
	Mobility
	Multiple Users
	More Studies
	Communication Research
	Virtual Environments
	Better Hardware and Software
	Ambient Intelligence

	Bibliography
	Appendices
	Software Installation
	XCF
	ICL
	PICARD
	LAFORGE
	MILES
	SuperCollider
	Wii Software

	Usage Information
	Using the GUI
	Manual Execution

	Doxygen Documentation
	PICARD Class Documentation
	CalculateHelper Class Reference
	ConfigWin Class Reference
	Idler Class Reference
	Main Class Reference
	MarkerListGenerator Class Reference
	MarkerListPoller Class Reference
	MessageWindow Class Reference
	ObjectCreator Class Reference
	ObjectHighlighter Class Reference
	ObjectViewListener Interface Reference
	PicardInterceptor Class Reference
	Properties Class Reference
	ScottyRetransmitter Class Reference
	Sonificator Class Reference

	LAFORGE Class Documentation
	ARTObjectList Class Reference
	glhelpers::Colorset< T > Class Template Reference
	laforgetimer::ControlledValue Class Reference
	objectloader::Face Struct Reference
	FlatObjectList Class Reference
	laforgetimer::FunctionControlledValue Class Reference
	FuzzyRect Class Reference
	graphObject Class Reference
	laforgetimer::LaforgeController Class Reference
	LaforgeInterceptor Class Reference
	objectloader::LoadableObject Class Reference
	glhelpers::Material_t< T > Class Template Reference
	objectloader::Object3D Class Reference
	ObjectList Class Reference
	objectloader::ObjectPart Class Reference
	laforgetimer::PointerControlledValue Class Reference
	ScottyCommunicator Class Reference
	ScottySubscriber Class Reference
	objectloader::Texture Class Reference
	uniqID Class Reference
	laforgetimer::ValueID Class Reference
	glhelpers::Vector2< T > Class Template Reference
	glhelpers::Vector3< T > Class Template Reference
	WorkThread Class Reference
	XCFThread Class Reference

	Questionnaire
	Glossary

