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Abstract

“Mortgage-related hit worse than expected has been a frequently cited phrase in
recent months, and is usually followed by a list of victims consisting of banks and
hedge funds. Although the current mortgage mess was caused by the subprime
mortgage or bad credit mortgage, the broad impact of this subprime crisis promotes
more concern in the loan lenders, the borrowers and mortgage-related products like
mortgage backed securities. Since credit market is one of the successful application
areas of statistics, we think a better understanding of MBS and its related risk and
a more accurate credit risk assessment due to the application of more advanced
statistics would contribute to the rebuilding of the credit market.
Nonparametric methods have proven to be useful in terms of capturing the flex-
ible relationship between economic variables, while fewer assumptions about the
economics constraint are made than in the traditional structural approach. This the-
sis follows the nonparametric trend and applies a new practical method, penalized
splines, to investigate the issues on mortgage-backed securities (MBSs) and credit
risk. The first application is to investigate the impacts of different interest rates on
the prices of MBSs and show the hedging strategy based on the estimated smoothing
functions. The second application concerns the stability of the impact of burnout
effect on the prices of MBSs and its indication to the prepayment modelling. Fi-
nally, a credit risk model with varying coefficients is provided to explore the credit
risk of small and medium-sized enterprises (SMEs) in China.
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Chapter 1

Introduction

1.1 Application of Nonparametric Methods in Finance

Financial markets are nowdays closely related to statistical theory. Campbell et al.
(1997) describes this connection between financial models and statistical theory,
the random fluctuations that require the use of statistical theory to estimate and test
financial models are intimately related to the uncertainty on which those models
are based. The break through idea of Black and Scholes (1973) and Merton (1973)
promoted the usage of more sophisticated financial models in some financial ap-
plications such as pricing derivatives, modelling term structure of interest rate and
credit risk modelling. As a result using different methods to calibrate these models
have become popular, but most of the models to be calibrated are based on paramet-
ric functional relations between variables. Meanwhile, the nonparametric methods
have been rapidly developed in the last two decades. Due to few assumptions about
the underlying data structure, nonparametric methods are widely used in each area
in the finance. Fan (2005) provides an overview of the application of nonparametric
methods to financial econometrics. Here we use option pricing as an example to
illustrate how nonparametric methods are used in finance area along with the devel-
opment of nonparametric method itself. As in Aı̈t-Sahalia and Lo (1998), the price
of a European call option can be written as

Ci = g(Si, Ki, Ti, ri, σi) + εi (1.1)

1



2 Chapter 1. Introduction

where Ci, Si, Ki, Ti, ri and σi are observations of call prices, stock prices, exercise
prices, time to maturities, interest rates and volatilities respectively. Once the func-
tion form g is estimated, the state price density can be calculated by the following
formula based on Banz and Miller (1978) and Breeden and Litzenberger (1978)

f̂(ST ; t, T ) =
∂2ĝ

∂K2
exp(rt,T (T − t)) (1.2)

Aı̈t-Sahalia and Lo (1998) use the Nadaraya-Watson kernel estimator to estimate g

in (1.1) and then calculated the second derivatives of ĝ to substitute into (1.2). The
Nadaraya-Watson estimator is also called local constant weighted estimator, pro-
posed in Nadaraya (1964) and Watson (1964). Another widely used nonparametric
method is the local polynomial model, which can be seen as the general model of
the Nadaraya-Watson kernel estimator and the local linear estimator. Details can be
found in Fan and Gijbels (1996). Aı̈t-Sahalia and Duarteb (2003) make use of the
local polynomial method to find the risk-neural measure using (1.2) and price op-
tions. Härdle and Yatchew (2002) apply the spline method together with a penalty
to option pricing following (1.2). From this example, we see the development of
the nonparametric approach. Other applications in finance reflecting the idea of fit-
ting with a penalty go back to Rubinstein and Jackwerth (1996) and Lagnado and
Osher (1997). Different from some of the above penalties, which have economic
meaning, penalties can also be used to penalize the smoothness of the nonparamet-
ric unknown function in regression analysis, in which case this approach is called
penalized splines. The application of penalized splines in the finance area can be
observed in Jarrow et al. (2004), Kawasaki and Ando (2005), Krivobokova et al.
(2006) and Wegener and Kauermann (2008). Penalized splines approach has the
advantage of spline methods, the computational advantage of low-rank smoothers
and the link to mixed models. This part will be discussed in Chapter 2.

1.2 Structure of the Thesis

Penalized splines have become a popular smoothing technique over the last couple
of years. Originally introduced by O’Sullivan (1986), it was Eilers and Marx (1996)
who demonstrated the simplicity and efficiency of the technique. Its link to a mixed
model framework has been demonstrated in Ruppert et al. (2003). The link to mixed
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model provides penalized splines with the ability to deal with correlation in error
terms. This link makes it a more attractive tool among the nonparametric methods
for financial data since a well-known feature of financial data is that they are usually
serially correlated. Meanwhile, the process of globalization, the emergence of new
economic powers such as in China and India and the technological improvement
have had an impact on the evolution of the financial market. The banking sector is
now actually facing a varying operation environment. This challenge also spurs the
demand for new statistical methods, which can answer whether the change of basics
exists and how to incorporate the potential changes into modelling.

The purpose of this thesis is to investigate the application of penalized splines
smoothing to mortgage-backed securities and credit scoring in the banking indus-
try. It begins with a theoretical introduction to penalized spline smoothing tech-
niques. The main part of this thesis is concerned with three financial applications.
Chapter 3 is devoted to the analysis of the impact of different interest rates on the
prices of MBS. Although parametric models are popular, nonparametric techniques
are also applied to problems related to MBS. Boudoukh et al. (1995), Boudoukh
et al. (1997), LaCoure-Little et al. (1999), and Maxam and LaCour-Little (2001)
demonstrate the application of kernel based nonparametric approach to pricing and
prepayment modelling. To avoid the curse of dimensionality suffered by the ker-
nel approach, Jegadrrsh and Ju (2000) model the prepayment rate using another
nonparametric approach, the generalized additive model (GAM). We follow this
nonparametric trend to explore the impact of different interest rates by using penal-
ized splines smoothing, as recent powerful smoothing techniques. We first consider
modelling the prices of a special MBS portfolio with similar maturities as nonpara-
metric unknown functions of short term and long term interest rates together with
random intercepts and correlated errors. Then we estimate these unknown functions
and consider the use of the derivatives estimated by the nonparametric methods for
hedging purpose.

Chapter 4 is concerned with the impact of burnout effect on the prices of MBS.
Most reduced form prepayment models use constant coefficients for the explanatory
variables in hazard models and model burnout independently. The coefficient sign
of burnout is typically predicted to be negative according to economic intuition
in advance and then verified by the estimation results later like in Schwartz and
Torous (1993), Mattey and Wallace (2001) and Charlier and Bussel (2003). Kau
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et al. (1992) and LaCour-Little and Green (2002) found that the coefficients are
not constant. We illustrate the scheduled factor varying relationship between MBS
prices and burnout effect. The result of this chapter indicates that the burnout effect
has a different impact on the prices in different stages.

In the following chapter we introduce penalized splines smoothing to the credit
risk assessment model. Chapter 5 deals with a credit risk assessment model with
varying time effect for small and medium size enterprises (SMEs) in China. Among
the consumer credit scoring methods the logistic model is quite popular due to its
good balance between simplicity and accuracy. Altman and Sabato (2007), Behr
and Guttler (2007) and Phillips and Vanderhoff (2004) show its application to pre-
dict loan default. We introduce a generalized smoothing model to credit scoring by
the following procedures. We first assume a baseline risk related to time and then
extend the commonly used constant coefficients assumption to a logistic model with
time-varying coefficients. Finally, we estimate these unknown smoothing functions
by using the penalized splines method. We also perform the out-of-sample vali-
dation and the out-of-time validation to illustrate the superiority of the model with
time varying effect by comparing the results with other modelling strategies.

The common theme throughout all chapters of this thesis concerns the empirical
application of the P-spline method. Most models used in the credit market are based
on linear and constant coefficients assumptions. The main result of this thesis justi-
fies the realization that these models are not flexible enough in order to exhaustively
characterize the data. Even though this thesis is purely empirical, it is hoped that
these results will broaden the insight into theoretical and empirical work.

Chapter 3 and Chapter 5 are in great part based on the joint work with Profes-
sor Kauermann. He provides ideas, discussion and suggestions for the following
papers,

• Yao, Z. and Kauermann, G. (2008). Exploring the Credit Risk for Small and
Medium-sized Enterprises in China. (submitted to The Journal of Credit Risk)

• Yao, Z. and Kauermann, G. (2008). Exploring the Impact of Different Inter-
est Rates on the Prices of MBS using Penalized Splines. (submitted to Real
Estate Economics)

• Yao, Z. (2008). Investigating the Burnout Effect of of MBS using Penalized
Splines.



Chapter 2

Penalized Spline Smoothing and Its
Extension

Nonparametric methods have been developed in the last two decades and Kauer-
mann (2006) provides a summary of the main nonparametric models. In this chap-
ter we focus our attention on one of these nonparametric models, penalized splines
2.1. Its link to a mixed model framework has been demonstrated in Ruppert et al.
(2003). The advantage of penalized splines is that the penalty prevents overfitting
automatically and the estimation can be easily achieved due to its link with mixed
models. We first introduce the penalized spline method and its extensions before
the application part is discussed.

2.1 Penalized Splines Smoothing

Given scatterplot data (xi, yi), 1 ≤ i ≤ n, the traditional way to summarize the
relationship between xi and yi is to fit a linear model. In smoothing framework,
we extend this linear restriction and assume that there is a smoothing functional
relationship between xi and yi as follows,

yi = f(xi) + εi, i = 1, · · · , n (2.1)

2.1See O’Sullivan (1986) or Eilers and Marx (1996)

5



6 Chapter 2. Penalized Spline Smoothing and Its Extension

where f(xi) = E(yi|xi), is a unknown smoothing function, and εi are independent
normally distributed residuals. To estimate the smoothing function f(·) we replace
it by a linear combination of high dimension basis functions such that the nonlinear-
ity can be captured by f̂(·), the basis could be B-spline basis, truncated polynomial
or radial basis e.t.c.2.2 For the sake of simplicity, we illustrate the idea of penalized
spline using linear basis like,

f(x) = β0 + β1x +
K∑

k=1

uk(x− κk)+ (2.2)

where β0, β1 and uk are coefficients to estimate and κ1, . . . , κk are fixed knots. The
location of knots κk are chosen either as sample quantiles or equidistantly. Ruppert
(2002) suggests min{n/4, 40} as a choice for the number of knots. Instead of fitting
(2.1) by least squares P-spline considers penalized least squares as follows,

Min ‖y −Xβ − Zu‖+ λuT Du (2.3)

where β = (β0, β1), X = (1, x)T , Z = [(x−κ1)+, . . . , (x−κk)+], u = (u1, . . . , uk)
T

λ ≥ 0, is a smoothing parameter and D is a penalty matrix, which is an identity ma-
trix in case of truncated polynomials basis.2.3

The solution of (2.3) and fitted values are,

θ̂λ = (CT C + λD)−1CT y (2.4)

ŷλ = C(CT C + λD)−1CT y (2.5)

where θ = (βT , uT )T , C = [X,Z], λ controls the tradeoff between the goodness
of fit and the roughness. Figure 2.1 shows three penalized spline regression fits for
λ values of 1, 0.1311 and 0.002. 25 knots are used. We estimate the true function
sin(3.14xi/0.5)+2 using 100 observations generated from yi = sin(3.14xi/0.5)+

2+ εi for 100 xi in [0,1] and εi ∼N(0, 0.16). The case λ = 0.1311 corresponds to a
very satisfying fit. If we take λ to be larger, then the fit is similar to linear regression,
as shown in Figure 2.1 (a). For λ = 0.002 we have decreased the penalty, so the fit
is rougher. The large difference between these three fits illustrates the impact of λ

2.2The discussion of basis see Section 2.1.2
2.3See Ruppert et al. (2003) for the choice for penalty matrix of other basis.
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on the fitting. Hence, the need for smoothing parameter selection arises if we want
to decide on the amount of smoothing.

2.1.1 Data Driven Smoothing Parameter Selection

As we discussed earlier, the performance of the penalized smoothing depends on the
choice of the smoothing parameter λ. To select the smoothing parameter automat-
ically, we first require the specification of appropriate error criteria for measuring
the error of the penalized smoothing at a single point as well as the error over the
whole sample.

Let f̂λ be an estimate of the function in (2.1). Define the mean squared error
(MSE) at xi by

MSE(λ) = E((yi − f̂λ(xi))
2)

It is clear to see that the MSE represents the bias-variance trade-off when it is de-
composed into two components,

MSE(λ) = V ar(f̂λ(xi)) + (E(yi − f̂λ(xi)))
2

To choose the smoothing parameter in a global sense instead of only at the point xi,
we consider the average mean squared error,

AMSE(λ) =
1

n

n∑
i=1

E(yi − f̂λ(xi))
2

Another criterion that measures the performance of a model’s prediction power is
the average predictive squared error (APSE)

APSE(λ) =
1

n

n∑
i=1

E(y∗ − f̂λ(xi))
2 = AMSE(λ) + σ2

where y∗i = f(xi) + ε∗i is a new observation at xi, ε∗i are independent of εi and
identically distributed with mean 0 and variance σ2. APSE differs from AMSE by
a constant σ2. Let us denote Sλ = X(XT X +λD)−1XT as a smoothing matrix, set
RSS(λ) = ‖y − ŷλ‖2 and dffit(λ) = tr(Sλ). Then we have AMSE and APSE for
linear smoother as follows
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Figure 2.1: The impact of smoothing parameter selection on the fitting based on 25
knots. The blue dashed line represents the true function while the upper solid red
line is the penalized spline fit with the lower red basis
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AMSE(λ) =
tr(SλS

T
λ )

n
σ2 + RSS(λ)/n

APSE(λ) = [1 +
tr(SλS

T
λ )

n
]σ2 + RSS(λ)/n

The bias-variance trade-off can be easily seen from the above equations. As shown
in Figure 2.1, the bias increases as the amount of smoothing increase while the
variance decreases, and vice versa. We can use residual sum of squares (RSS) as
a measure of how well the spline fits observations. But only minimizing RSS over
the smoothing parameter will result in an interpolating estimate. Therefore, we aim
to find an optimal smoothing parameter that compromises between the goodness of
fit and model complexity.

There are many model selection methods which can be used to select a smooth-
ing parameter, such as Akaike’s AIC (Akaike 1973), Mallow’s Cp (Mallows 1973),
cross-validation (CV) (Stone 1974), and generalized cross-validation (GCV) (Craven
and Wahba 1979). We will briefly introduce these most commonly used methods.

Cross-Validation

Unlike RSS, which uses the same sample for model fitting and model evaluation,
cross-validation uses the principle of “leave-one-out prediction. The idea is to leave
the data points out one at a time and to select the smoothing parameter under which
the removed data points can be best predicted by the remaining data. The cross-
validation criterion to be minimized is as follows,

CV (λ) =
1

n

n∑
i=1

(yi − f̂−i(xi, λ)
2

where f̂−i(xi, λ) is the estimation based on leaving out data point (xi, yi). Craven
and Wahba (1979) show that CV can also be represented as,

CV (λ) =
1

n

n∑
i=1

(yi − f̂(xi, λ))2

(1− Sii
λ )2

(2.6)
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where f̂(xi, λ) is the fit using all data points, Sii
λ is a diagonal element of Sλ. The

CV in expectation approximates APSE if we assume Hii ≈ {SST}ii, 1/(1−Hii)
2 ≈

1 + 2Hii and bi = yi − f̂(xi, λ), we have

E{CV (λ)} = APSE(λ) +
1

n

n∑
i=1

Hii(λ)b2
i (λ)

Mallows’s Cp

Mallows’s Cp approximates APSE by adding 2tr(Sλ)σ
2/n to RSS/n. For unknown

σ2 we use an estimator σ̂2

Cp(λ) =
2tr(Sλ)

n
σ̂2 + RSS(λ)/n (2.7)

where
σ̂2 =

RSS(λ)

n− tr(2Sλ − SλST
λ )

Generalized Cross-Validation

Replacing Sii
λ in CV by the average of all diagonal elements tr(Sλ)/n, Craven and

Wahba (1979) also propose the following generalized cross-validation

GCV (λ) =
1

n

n∑
i=1

(yi − f̂(xi, λ))2

(1− tr(Sλ)/n)2
=

RSS(λ)/n

{1− tr(Sλ)/n}2

Here we could also find the difference between RSS and GCV. The probability
that GCV(λ) select λ = 0 ( interpolation ) is non-zero, otherwise tr(Sλ) = n and
the denominator is zero. GCV is a weighted version of CV with weights (1 −
Sii

λ )2/(1 − tr(S(λ)/n)2. Moreover, if tr(Sλ) is small, using the approximation
(1− x)−2 ≈ 1 + 2x,

GCV (λ) ≈ 1

n
RSS +

2tr(Sλ)

n

n∑
i=1

(yi − f̂(xi, λ))2 (2.8)

Comparing (2.8) to (2.7), we find that the GCV approximate Cp if RSS/n is re-
garded as an estimate of σ2.

Akaike Information Criterion
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Assuming the data y are generated from the distribution with true density e0(y) and
eθ̂λ

(y) represents the density generating observations y for estimate θ̂λ, then the
Kullback-Leibler discrepancy of the estimator θ̂λ is defined as

K(eθ̂λ
, e0) =

∫
{log[e0(y)]− log[eθ̂λ

(y)]}e0(y)dy

It can be shown that

E{K̂(eθ̂λ
, e0)} = −l(θ̂) + p +

∫
log[e0(y)]e0(y)dy

where −l(θ̂) = −log[eθ̂λ
(y)], is the maximized log likelihood function. AIC is the

double of the first two terms.

AIC = 2[−l(θ̂) + p] (2.9)

In (2.9), the compromise takes place between the maximized log likelihood and
p, the number of free parameters estimated within the model, which can be seen
as a measure of complexity. If the model errors are normally and independently
distributed, then we obtain

AIC(λ) = log{RSS(λ)}+ 2dffit(λ)/n

Following the idea of Hurvich and Tsai (1989), Hurvich et al. (1998) propose the
following modified AIC for smoothing parameter selection corresponding to finite
sample,

AICm(λ) = nlog{RSS(λ)}+
n(2tr(Sλ) + 2)

n− tr(Sλ)− 2

2.1.2 Basis

To apply penalized splines, basis functions will be chosen so that a balance of nu-
merical stability and practicality can be reached. Here we first briefly consider some
popular choices for the basis functions in a one dimension case. The basis used in
bivariate case will be discussed in Section 2.2.
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Truncated polynomials

In addition to the truncated linear function used in (2.2), a truncated basis function
of pth-degree is as follows,

1, x, . . . , xp, (x− κ1)
p
+, . . . , (x− κk)

p
+ (2.10)

and the corresponding spline is,

f(x) = β0 + β1x + . . . + βpx
p +

p∑

k=1

uk(x− κk)
p
+ (2.11)

An example of truncated polynomial spline is shown in Figure 2.1. A benefit of
choosing truncated polynomials is its ease in calculating its derivatives, which is
used for some problems in finance such as the impact of interest rates discussed in
Chapter 3. However, the truncated lines do not have optimal numerical properties
2.4.

B-spline

B-splines are numerically more stable than truncated polynomials. We define m+1

nondecreasing numbers, k0 ≤ k1 ≤ k2, . . . ,≤ km, as knots. Then, the i-th B-splines
function of order p is obtained by recurrence from first-order B-splines,

p = 1 Bi1(x) =

{
1 if ki ≤ x < ki+1

0 otherwise

p > 1 Bip(x) = x−ki

ki+p−1−ki
Bi,p−1(x) +

ki+p−x

ki+p−ki+1
Bi+1,p−1(x)

The whole process is shown in Figure 2.2. Figure 2.3 shows two examples. The
properties of B-spline include,

∑p
i=0 Bip(x) = 1, Bip(x) > 0 if ki < x < ki+p,

Bip(x) = 0 k0 ≤ x ≤ ki, ki+p ≤ x ≤ kn+p and Bip(x) is (p−2) times continuously
differentiable if knots are pairwise different from each other. Given a set of n+1
control points (called de Boor points), β0, β1, . . . , βn, and knots discussed above, a
B-spline f(x) of order p is defined as

2.4see Aerts et al. 2002
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Figure 2.2: Generation of B-spline

f(x) =
n∑

i=0

Bip(x)βi

where Bip(x) is the B-spline function of degree p − 1 based on the corresponding
knots. The degree of the polynomial does not exceed p−1. The first p−2 derivatives
are continuous.

Radial basis functions

A radial basis of pth degree is as follows,
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Figure 2.3: Examples of B-spline
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Figure 2.4: Radial basis functions of degree 3

1, x, . . . , x
p−1
2 , |x− κ1|p, . . . , |x− κk|p p = 1, 3, 5, . . . (2.12)

and the corresponding spline is,

f(x) = β0 + β1x + . . . + βpx
p−1
2 +

p∑

k=1

uk|x− κk|p (2.13)

An example of radial spline is shown in Figure 2.4. Radial basis is numerically
more stable and easy to implement in any number of dimensions. A two-dimension
case can be found in Figure 2.6.
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2.1.3 Number and Location of Knots

The first approach in choosing the number of knots is analogous to the model se-
lection. The model selection criterion described in Section 2.1.1 can be used to
choose the combination of knots automatically. Another approach, which is very
simple, Ruppert (2002) investigates the impact of the number of knots on the per-
formance of penalized splines using two algorithms and recommends a default that
uses K = min(n/4, 40). However, a researcher with some knowledge of the shape
of the smoothing function may very well be able to select the number of knots
without using an automatic algorithm.2.5 This should be an important point as the
penalized splines method is applied to empirical data in economics, because people
always have more or less information about the relationship between economical
variables. The location of the knots is usually chosen either as sample quantiles or
equidistantly.

2.1.4 Link with Linear Mixed Model

Mixed models are models including random effect terms in addition to a random er-
ror term and fixed effect term. They are often used to cope with data with clustered
structures, where the classical statistics assumption that observations are indepen-
dent and identically distributed (iid) could fail. Linear mixed effect (LME) models
may be viewed as a generalization of the variance component and regression mod-
els. Penalized likelihood is frequently used to cope with parameter multidimension-
ality. Penalized likelihood may be derived from a mixed model as an approximation
to the marginal likelihood after applying the Laplace approximation. Moreover, the
penalty coefficient, often derived from a heuristic procedure, is estimated by max-
imum likelihood as an ordinary parameter. Since the mixed model naturally leads
to penalized likelihood, it can be applied to penalized smoothing. In particular, the
difficult problem of selecting a smoothing parameter (penalty coefficient) selection
can be solved by the mixed model technique by estimating this coefficient from the
data.

Model (2.2) can be represented as a mixed model by treating the coefficients u

as a random effect, thus the estimation of model (2.2) can be accomplished by using

2.5See Ruppert (2002), page 753
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the well-developed algorithms and softwares for mixed models. A matrix form of
model (2.2) like,

y = Xβ + Zu + ε, ε ∼ N(0, σ2
εI), u ∼ N(0,

σ2
ε

λ
D̃−1),

where λ = σ2
ε

σ2
u

, is a variance ratio, D̃−1 is a penalty matrix. More generally, we
assume ε ∼ N(0, R) , u ∼ N(0, G) and set V = Cov(y) = ZGZT + R. Hence y
has a multivariate normal distribution N(Xβ, V ), then the loglikelihood of y is,

l(δ, V ) = −1

2
{nlog(2π) + log|V |+ (y −Xβ)T V −1(y −Xβ)} (2.14)

Given that V maximizes log-likelihood function (2.14) we get the estimate of β,

β̂ = (XT V −1X)−1XT V −1y

For known β, G and R the random coefficients u can be predicted as following
BLUP,2.6

ũ = GZT V −1(y −Xβ)

For unknown G and R, the parameters in covariance matrices G and R can be esti-
mated by the most widely used algorithms, maximum likelihood (ML) or restricted
maximum likelihood (REML).2.7 Then we obtain the estimated best linear estimate
(EBLUE) and the estimated best linear predictor (EBLUP) as follows,

β̂ = (XT V̂ −1X)−1XT V̂ −1y

ũ = ĜZT V̂ −1(y −Xβ̂)

2.1.5 Correlated Errors

It is well known that the automatic smoothing parameter chooser such as GCV and
AIC tend to undersmooth (positive correlation) or oversmooth (negative correla-
tion) the data when correlated errors exist. Methods of smoothing with correlated

2.6See Robinson (1991).
2.7See Harville (1977) and Harville (1974).
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errors have been proposed as in many applications such as in finance where the
data are usually serially correlated. Opsomer et al. (2001) investigates several
data driven smoothing parameter selection methods as well as regression models
and shows that data driven smoothing parameter selection tends to undersmooth or
oversmooth corresponding to cases of positive or negative correlation. Currie and
Durbán (2002) found that a good estimate of the underlying smoothing function and
the correlation coefficients can be achieved when REML is used. Durbán and Currie
(2003) represent penalized spline smoothing as linear mixed model and use REML
to estimate correlation parameters. Krivobokova and Kauermann (2007) show that
REML outperforms AIC when the correlation structure is misspecified.

2.2 Bivariate Smoothing

So far we have only considered models with a single covariate, which only captures
a function of one variable. In many cases, the interaction between variables is also
of interest. So ideally, we want a two-dimensional function which captures both
variables. Thus, a bivariate smoothing function is to be estimated. The general
bivariate smoothing model as an extension of (2.1) is,

yi = f(x1i, x2i) + εi (2.15)

To estimate the unknown two dimensional function in (2.15), bivariate basis func-
tions are required. Bivariate basis functions can be generated by two methods.
One such method is taking products of two one-dimensional basis such as trun-
cated power functions and B-spline, while the other is directly using radial basis
functions which are defined as functions of the distances between the data and
the knots. Suppose that we have two sets of one dimensional basis functions,
B1 = {Bx1j1

: j1 = 1, 2, . . . , Kx1} and B2 = {Bx2j2
: j2 = 1, 2, . . . , Kx2}, for

x1i and x2i respectively. The tensor product of these two sets of basis functions is

B12 = B1 ⊗ B2
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Figure 2.5: An example of tensor product basis function. Here we only show one
surface.

The function f(x1i, x2i) in (2.13) is now modelled as follows,

f(x1i, x2i) =

Kx1∑
j1=1

Kx2∑
j2=1

βj1j2Bx1j1
(x1i)Bx2j2

(x2i) (2.16)

In case of taking products of basis functions such as in (2.16), the penalty part in
(2.3) also extends to two penalties corresponding to two directions. An example of
these basis functions is shown in Figure 2.5.

Radial basis functions of (x1i, x2i) are of the form

C(‖(x1i, x2i)− (k1j, k2j)‖) j = 1, 2, . . . , K

where C(·) is an univariate function as follows,

C(r) = ‖r‖2mlog‖r‖ m = 1, 2, . . . (2.17)

(2.17) are also called polyharmonic spline radial basis functions. f(x1i, x2i) in
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(2.15) is now modelled by radial basis functions of form,

f(x1i, x2i) = 1 + β1x1i + β2x2i +
K∑

j1=1

C(‖(x1i, x2i)− (k1j, k2j)‖) (2.18)

Figure 2.6 shows an example of radial basis functions.

2.3 Varying Coefficients Model

The varying coefficients model is introduced in Hastie and Tibshirani (1993), as
an extension of the linear regression model. The varying coefficients model has
different slopes while the linear assumption remains. Suppose that we have three
variables(yi, x1i, x2i), i = 1, 2, . . . , n, then a varying coefficients model describes
the structure of these data as

yi = g(x1i) + f(x1i)x2i + εi, (2.19)

where f , a function representing the coefficients of x2i, is assumed to change smoothly
over x1i. Substituting (2.2) into g and f in (2.19) respectively, we can rewrite a
varying coefficients model as a penalized linear spline,

yi = β10 +β11x1i +
K∑

k=1

u1k(x1i−κk)+ +[β20 +β21x1i +
K∑

k=1

u2k(x1i−κk)+]x2i +εi,

(2.20)
where κk are knots chosen for x1i. Fitting this model and linking it to a mixed
model are standard as in Section 2.1. The extension of (2.19) includes replacing
the univariate functions g and f with two dimensional surface functions in Rau
et al. (2007). The varying coefficients model is useful in economics and financial
application when we want to trace the effects of some variables, or to find out, when
the effects come to play a role and how the effects vary over the observation period.
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Figure 2.6: An example of 2-D radial basis function with (1.5, 1.5) as one of the
knots. Plot (b) is the rescaled center part of plot(a).
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2.4 Additive Model

Analogous to the extension of an univariate linear regression model to (2.1), the ad-
ditive model is an extension of the multiple regression model. For one-dimensional
response variables yi and d-dimensional covariates Xi = (x1i, ..., xdi), i = 1, ..., n,
the additive regression model is defined as

yi = β0 +
d∑

j=1

fj(xji) + εi, (2.21)

where fj(·) are univariate smooth unknown functions of xj respectively and β0 is
an intercept. The standard approach to estimate (2.21) is the backfitting algorithm
which is described in Hastie and Tibshirani (1990) 2.8. In order to ensure the func-
tions fj are uniquely identifiable, the intercept term can be held at β̂0 = ȳ, the
sample mean, and the additional term can be held,

∑d
j=1 fj(xji) = 0. An easier

way to estimate (2.21) is to use penalized splines. For example, let d = 2 and a
truncated linear basis should be used. By substituting (2.2) to (2.21), a penalized
spline is obtained as follows,

yi = β0 +β11x1i +

K1∑

k=1

u1k(x1i−κ1k)+ +β21x2i +

K2∑

k=1

u2k(x2i−κ2k)+ +εi, (2.22)

(2.22) can be fitted by penalized least square or by rewriting it as a linear mixed
model with two random effects. The individual components of (2.21) can also be
extended to the bivariate smooth functions or one variable with varying coefficients.

2.5 Generalized Smoothing Model

In (2.1) we saw that we could extend the parametric linear regression to nonpara-
metric regression by using the penalized spline method. Similarly, here we relax
the linear part of the generalized linear model assumptions and work in a nonpara-
metric framework. Considering that Chapter 5 depends on this model and it is
relatively more complex than the aforementioned models, we give more details in

2.8See page 91, Hastie and Tibshirani (1990)
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this section. We now consider the following structure as an extension of the gener-
alized linear model. We have y1, y2, . . . , yn independent response observations with
means µ1, µ2, . . . , µn respectively. The model involves regressors x1, x2, . . . , xk.
And yi are drawn from a member of the exponential family with density expressed
in the form,

f(yi; θ̃i, φ) = exp{yθ̃i − b(θ̃i)

a(φ)
+ c(yi, φ)}

where a(·), b(·) and c(·) are specific functions. The parameter θ̃i and φ are a canon-
ical parameter and a dispersion parameter respectively. The response expectation
is linked with canonical parameter by µi = b′(θ̃i). A generalized linear model is
identified through a link function g(·),

g(µi) = ηi i = 1, 2, . . . , n

where ηi = X′iγ = γ0 +
∑k

j=1 γjxji. g(·) is denoted as a canonical link if it is
chosen so that ηi = θ̃i. Here we have the response observations distribution and
choose the link function g(·) as a transformation on the observations mean E(yi).
For each response distribution there exits a specific corresponding link function,
such as identity link, probit link, and logistic link. The extension of generalized
response in a nonparametric way lies in η. If we extend the linear predictor ηi = X′iγ
to nonparametric form ηi = m(Xi) and m(·) is a smoothing function, we get the
following generalized smoothing model with canonical link,

f(yi, θ̃i, φ) = exp{yθ̃i − b(θ̃i)

a(φ)
+ c(yi, φ)} (2.23)

g{E(yi)} = ηi i = 1, 2, . . . , n (2.24)

θ̃i = ηi = m(Xi) i = 1, 2, . . . , n (2.25)

For the sake of simplicity, we here model the multivariate function m(Xi) by penal-
ized splines, m(Xi) = Xiβ + Ziu. Combing (2.23), we have response density as
follows,
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f(yi|m(Xi), φ) = exp{yi(Xiβ + Ziu)− b(Xiβ + Ziu)

a(φ)
+ c(yi, φ)}

The likelihood is

l(y, β, u) =
n∏

i=1

f(yi|m(Xi), φ)

The log-likelihood function is,

L = log l(y, β, u) =
n∑

i=1

{yi(Xiβ + Ziu)− b((Xiβ + Ziu))

a(φ)
+ c(yi, φ)} (2.26)

Assuming we use the truncated polynomial basis, the parameters β and u can be
estimated from the following penalized log-likelihood,

Lp = log l(y, β, u) =
n∑

i=1

{yi(Ciθ)− b((Ciθ))

a(φ)
} − 1

2
λuT u (2.27)

where c(yi, φ) is omitted, Xiβ + Ziu = Ciθ and θ = (βT , uT )T , Ci = [Xi, Zi].
Maximization of (2.27) can be achieved by penalized iteratively re-weighted least
squares (IRLS). The details are as follows,

∂Lp

∂θ
=

∂Lp

∂θ̃

∂θ̃

∂η

∂η

∂θ
(2.28)

Since we have the canonical link, then η = θ̃.

∂Lp

∂θ
=

∂Lp

∂θ̃

∂η

∂θ
(2.29)

Recall that ηi = Ciθ, which implies that

∂η

∂θ
= CT

i (2.30)

We note that b′(θ̃i) = µi
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∂Lp

∂θ
=

n∑
i=1

CT
i {

(yi − µi)

a(φ)
} − λDθ (2.31)

The score equations are

n∑
i=1

CT
i {

(yi − µi)

a(φ)
} − λDθ = 0 (2.32)

We first approximate yi − µi by finding its first-order Taylor series approximation

yi − µi ≈ ∂µi

∂ηi

(η∗i − ηi) (2.33)

Combining ηi = θi and V ar(µ) = ∂θ̃i

∂µi
, we have

yi − µi = V ar(µ)(η∗i − ηi) (2.34)

Substituting (2.34) into the scoring equations, we rewrite them in matrix form as
follows,

CT W (η∗ − Cθ) = λDθ

Rewriting above equation, the Fisher scoring update can be organized as

θk+1 = (CT WC + λD)−1CT Wz

where z is a working vector with components zi = g′(µi)(yi−µi)+g(µi), and W is
the diagonal matrix of working weights 1/[g′(µi)

2ν(µi))]. The updated θ is obtained
from weighted penalized smoothing of the working vector z on X. The smoothing
parameter λ can be chosen by adjusted GCV or AIC, where the deviance is replaced
by Pearson statistic,

GCV p =
n

∑n
i=1 wi(yi − µi)

2

[n− tr(A)]2

AICp =
1

n

n∑
i=1

wi(yi − µi)
2 + 2tr(A)/n
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mgcv SemiPar nlme
Bivariate model X X X

Models Varying Coefficients Model X × X
Generalized Smoothing Model X × ×
Additive Model X X X
Correlation structure X × X

Specific REML X X X
Consideration Grouping X X X

Table 2.1: Nonparametric models in different packages. The sign “X” means that
the model or a specific consideration can be realized by the corresponding package
while the sign “×” has the opposite meaning.

where wi is the diagonal elements of W . There are two methods available for select-
ing the smoothing parameters for the generalized smoothing model. One approach
is to select smoothing parameters by minimizing the above criteria in each iteration.
The other approach is to iterate to convergence for the given smoothing parameters
and find those that minimize the criteria.

2.6 Computation Packages

There are many software packages in current use in addition to the popular R, such
as Matlab SAS. The sample codes for both software can be found in Ruppert et al.
(2003). R is used here as an example. Hence the descriptions and programs in
Appendix D are intended to show how the common idea of penalized spline is im-
plemented. Table 2.1 is a summary of the use of the packages for models discussed
in this thesis. More details can be seen in corresponding reference manuals, which
can be downloaded from,

http://cran.r-project.org/web/packages/SemiPar/SemiPar.pdf and
http://cran.r-project.org/web/packages/mgcv/mgcv.pdf.

An introduction to applying mixed model package nlme for penalized spline can be
found in Ngo and Wand (2004). The generalized mixed model can be applied by
the command glmmPQL in Package MASS.





Chapter 3

Impact of Different Interest Rates on
the Prices of MBS

3.1 Introduction to Mortgage-Backed Securities

3.1.1 Overview of MBS Market

Mortgage-backed securities (MBS) are a type of fixed income investment, which
are collateralized by residential or commercial mortgage loans. Focus on MBS are
important for many reasons. First, mortgage debt contributes to a significant part
of the U.S economy, which is illustrated in Figure 3.1. By the first quarter of 2007,
home mortgage accounts for 35% of the total $29255 billion outstanding debt in
the U.S non-financial sector.3.1 Second, mortgage-related bonds3.2 account for the
largest percentage of the whole U.S bond market by the first quarter of 20073.3. As
shown in Figure 3.2, mortgage-related bonds and corporate bonds together account
for 48% of the outstanding debt in the U.S. bond market. Finally, MBS account for
one of the largest parts of the securitization market.

3.1Source: Federal Reserve, Report Z.1, table D.3
3.2Includes GNMA, FNMA, and FHLMC mortgage-backed securities and CMOs and private-label

MBS/CMOs
3.3Source: Securities Industry and Financial Markets Association
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Figure 3.1: Debt Outstanding of Domestic Nonfinancial Sectors by the first quarter
2007

Figure 3.2: Debt outstanding of U.S. Debt Capital Markets by the first quarter 2007
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3.1.2 Residential Mortgage Loans Basics

The residential mortgage loans in the U.S. can be divided into categories in two
different ways. Firstly, conventional and government loans. Any mortgage loan
other than an FHA3.4, VA3.5 or an RHS3.6 loan is a conventional one. Secondly,
fixed rate loans, adjustable rate loans and hybrid loans. With fixed rate mortgage
(FRM) loan the interest rate and monthly payments remain fixed for the life of the
loan. The most common mortgage terms are 30 and 15 years. The borrower has
the right to prepay the loan at any time. Another loan is called an adjustable-rate
mortgage loan or ARM. The contract rate is adjusted periodically, either annually or
semiannually, based on the changes in a predetermined index, such as London Inter
Bank Offering Rates (LIBOR), Treasury Bill (T-Bill), 12-Month Treasury Average
(MTA or MAT) or Cost of Savings Index (COSI) e.t.c. ARMs typically offer low
initial interest rates that last until the first adjustment. Most ARMs avoid enormous
increases in monthly payments by a lifetime cap or a periodic cap, which limits the
interest rate increase over life and at one time respectively. Some types of ARMs
also offer payment caps to limit the amount that the monthly payment can increase.
Hybrid loan is a combination of fixed and ARM loans. Some hybrid loans provide
a fixed rate for the first several years before periodical adjustments like fixed-period
ARMs while the other comes with an option to convert them to a fixed-rate mortgage
at designated times after periodical adjustment like convertible ARMs.

3.1.3 Mortgage Backed Securities Basics

Mortgage backed securities are bonds backed by mortgage loans, which are prod-
ucts of securitization. The most common type of MBS is called pass through, rep-
resenting the participation certificates. The originator selects the mortgage loans to
create a pool. An investor who owns MBS receives interest and principal from the
servicer. The servicer collects the payment from mortgage borrowers and distributes
them to investors.

Most MBS are issued or guaranteed by one of the following three agencies, Gov-
ernment National Mortgage Association (Ginnie Mae), a U.S. government agency,

3.4The Federal Housing Administration
3.5U.S. Dept. of Veterans Affairs
3.6The Rural Housing Service (RHS) of the U.S. Dept. of Agriculture
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or the Federal National Mortgage Association (Fannie Mae) and the Federal Home
Loan Mortgage Corporation (Freddie Mac), U.S. government-sponsored enterprises.
Each agency provide credit guarantee for the corresponding MBS. Ginnie Mae’s
guarantee is backed by federal government. The guarantees of the other two agen-
cies do not have federal backing, but are regarded by market participants as pos-
sessing extremely high credit quality.

Ginnie Mae is the trade name of the Government National Mortgage Associa-
tion (GNMA). Ginnie Mae does not issue any securities. A mortgage banker first
generate a pool of residential mortgage loans, then applies to Ginnie Mae for a
guarantee commitment. Once Ginnie Mae approves the application, the originator
receives a pool number for the mortgage pool and then issues mortgage pass through
certificates. The issuer can hold the mortgage pass through certificates in its port-
folio or sell the certificates to investors or to dealers. Subsequently, the servicer is
responsible for serving the loans in the pool. Ginnie Mae guarantees full and timely
payment of principle and interest on its MBS. It offers two programs called Ginnie
Mae I and Ginnie Mae II. All mortgage loans in Ginnie Mae I program must be of
the same type, have the same interest rates and be issued by the same issuer. Hence,
all loans in Ginnie Mae I program are approximately homogeneous. The Ginnie
Mae II program allows a wide range of coupons. The Ginnie Mae I program does
not accept ARMs, but the Ginnie Mae II program does.

Fannie Mae and Freddie Mac are “government-sponsored enterprises (GSEs).
Although they are privately owned, they receive support from the Federal Gov-
ernment, and assume some public responsibilities which is to make sure mortgage
money is available for people in communities in America. Fannie Mae and Fred-
die Mac accept both government mortgage loans and conventional mortgage loans.
However, their main emphasis is on conventional mortgage loans. They do not lend
money directly to home buyers, instead, they operate in the secondary mortgage
market to make sure the lenders do not run out of mortgage funds. Their business
focuses on two perspectives. First, they purchase mortgages from lenders and hold
them in their portfolio, keeping money flowing to mortgage lenders. Second, they
issue mortgage-backed securities (MBS) in exchange for pools of mortgages from
lenders. For lenders, these MBS are more liquid than mortgages.
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3.1.4 Risks Related to MBSs

Interest Rate Risk

Like any other fixed-income instrument, mortgage-backed securities bear exposure
to interest rate risk. If interest rates decrease, the payment from mortgage borrowers
may accelerate, which in turn contracts average life. Interest payments will only be
received over a short period of time and investors have to reinvest their interest
income and any return of principal at lower prevailing rates. Conversely, if interest
rates increase, return of payment can decelerate, causing the security’s average life
to extend. The rising interest rates delay the return of principal to their investors
and cause them to miss the opportunity to reinvest at higher yields. In either case,
changes in the level of interest rates can directly affect a mortgage-backed security’s
market value and total return. This topic is partly investigated in the remaining
sections in this chapter.

Prepayment Risk

As previously discussed, a major risk in an investment in MBS is prepayment risk
which is caused by the changes in the prepayment speeds of the underlying mort-
gages. All FHA and VA mortgage loans can be prepaid at any time without any
penalty. An increase in prepayment speeds results in a faster decline of the princi-
ple than what may be expected and a contraction to the average life. Conversely, a
decrease in prepayments will result in a slow down in principal returns and an exten-
sion to the average life. Market participants have developed prepayment models to
evaluate prepayment risks. The burnout effect caused by the prepayment behavior
is discussed in next chapter.

Credit Risk

Credit risk refers to the fact that the mortgage borrowers may not make timely
payments or may default on their loans. Credit risk is thought to be more significant
in private-label MBS than in GSEs or Ginnie Mae MBS because the GSEs and
Ginnie Mae guarantee the timely payment of principal and interest on the MBS. As
discussed above, the Ginnie Mae guarantee is backed by the full faith and credit
of the United States. Fannie Mae and Freddie Mac guarantee also has high credit
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quality. Generally, the credit risk of most mortgage-backed securities carry bond
insurance that guarantees minimal payments of interest and principal to investors.
The guarantee of principal and timely payment means that the credit risk can be
removed from the consideration. With a defaulted mortgage, the payments will
continue until the principal amount is repaid by the guarantor. For example, if the
securities issuer defaults on the monthly payment, GNMA is responsible for the full
and timely payment of principle and interest. The investor also receives additional
amounts for settlement on those loans in the pool which have been foreclosed. Thus,
the insured default may appear to the lender as a prepayment, but the incidence of
these prepayment is nonetheless affected by the factors different from prepayment,
such as house prices.

3.2 Motivation of Nonparametric Modelling

Mortgage backed securities (MBS) are financial assets backed by a pool grouped
by a large number of mortgages. Payments of principal and interest that mort-
gagors make every month are passed through to investors. In this chapter, one
kind of MBS, namely, GNMAs, will be investigated, with the special feature that
the timely payment of principal and interest is guaranteed by the Government Na-
tional Mortgage Association (GNMA). In terms of prepayment modelling, the ap-
proaches to pricing MBS are divided into two categories, namely, the structural
approach and the reduced form approach respectively. The structural approach
models prepayment and default behavior as exercising a call option or a put op-
tion. Dunn and McConnell (1981a) and Dunn and McConnell (1981b) developed
an optimal prepayment model. Timmis (1985), Dunn and Spatt (1986) and John-
ston and Drunen (1988) extend this optimal strategy by also considering transaction
cost. Stanton (1995) introduces heterogeneity of the transaction costs into the ra-
tional prepayment model discussed above and applies discrete prepayment. Kau
et al. (1992), Kau et al. (1995), and Kau and Keenan (1995) explore a two-factor
option-pricing model. Deng et al. (2000) apply a competing risk model to model
prepayment, default and heterogeneity of borrowers using loan-level data. Downing
et al. (2005) introduce the impact of house prices into a valuation model handling
both prepayment and default using pools data. The reduced form approach model
the prepayment or default as a function of selected predictors without any theoreti-
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cal restrictions. Schwartz and Torous (1989) apply methods in survival analysis to
prepayment modelling. Although parametric models are popular with academics,
nonparametric techniques are also applied to problems related to MBS. Boudoukh
et al. (1995), Boudoukh et al. (1997), LaCoure-Little et al. (1999) and Maxam and
LaCour-Little (2001) demonstrate the application of kernel based nonparametric ap-
proach to prepayment modelling. To avoid the curse of dimensionality suffered by
the kernel approach, Jegadrrsh and Ju (2000) model prepayment rate using another
nonparametric approach, generalized additive model (GAM). We follow this non-
parametric trend to explore the impact of different interest rates by using penalized
spline smoothing, as recent powerful smoothing techniques.

Most of the above mentioned papers assume that short term interest rates and
long term interest rates play important roles in MBS pricing. The reason why we
are interested in the impact of interest rates on prices is related to hedging issues.
Hedging the interest rate risk of MBS is to construct a portfolio including MBS and
make this portfolio insensitive to the changes of interest rates. It will be easier to
find such portfolio if we have a better understanding of the following questions. Is
the effect of the long term interest rate on the price the same as that of the short
term interest rate ? Moreover, how do the effects change over time ? We usually get
the answers adapting a structural method, namely, first get the price of MBS as a
numerical solution of some partial differential equation with boundary conditions,
3.7then analyze the plot of price against interest rates or calculate the effective dura-
tion as the sensitivity of the price to changes in interest rates. However, this method
not only depends on the choice of interest rate models and prepayment models, but
also can not include non financial factors. Moreover, the pool-level focus is com-
plicated for portfolio management. We usually can find a large number of GNMA
pools included in the portfolio positions of many funds, such as, Pioneer Govern-
ment Income Fund or HighMark Balanced Fund. Thus, a method that hedges the
homogeneous parts of the whole GNMA portfolio instead of pool by pool against
interest rates risk, will be more efficient. We propose a new strategy to hedge inter-
est rates risk in this way. Firstly, we investigate the impact of different interest rates
on prices of MBS, then turn to the hedging issue.

Figure 3.3 shows the scatter plots of some MBS prices against interest rates.
The visual impression differs from both the theoretic indication that MBSs in the

3.7See Kau and Keenan (1995), Gaussel and Tamine (2004).
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Figure 3.3: Scatter plots of prices against long term interest rates and short term
interest rates for GNMA issued 1992 with 15 years

end phase should be insensitive to changes in the long term interest rates and the
simulation result in Schwartz and Torous (1989), Stanton (1995), Jegadrrsh and
Ju (2000), where the prices of MBS were found to significantly decrease at some
critical point as the long term interest rate decreased. The difference highlights
the demand for a model that is more capable of assessing the relationships among
variables. For this purpose we use nonparametric method. We also know that the
long term interest rate and the short term interest rate have influences on the prices
of MBS, furthermore, these influences are nonlinear from an economic point of
view. Meanwhile, if we observe the market, what we could potentially get is panel
data, namely, the prices of MBS with different coupons and different maturities.
To cope with problems in this setting, we prefer the mixed additive models, which
are able to find the nonlinear relationship and account for heterogeneity by using
grouping factors simultaneously. Pinheiro and Bates (2000) explain the details and
uses of mixed models.

In contrast to other nonparametric works the P-spline approach has the following
advantages. Firstly, we would avoid the extrapolation problem or curse of dimen-
sionality. Secondly, this approach models the panel structure of the market MBS
prices data, which is consistent with the portfolio management. Thirdly, and most
importantly, the influences of the long term interest rate and the short term inter-
est rate could be illustrated respectively, and hence we could identify the evolution
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of the impact of interest rates over time. Finally, we also could directly estimate
derivatives for hedging purpose.

3.3 Nonparametric Modelling

Nonparametric methods have become popular in the last two decades, Kauermann
(2006) provides a summary of the main nonparametric models. Non-parametric
methods also have been used to estimate MBS prices in Boudoukh et al. (1995)
and Boudoukh et al. (1997) or prepayment rates in LaCoure-Little et al. (1999),
Jegadrrsh and Ju (2000), Maxam and LaCour-Little (2001). Boudoukh et al. (1997)
applies a nonparametric technique named multivariate density estimation (MDE)
to estimate MBS TBA prices. Due to the curse of dimensionality of MDE they
use only two variables, the level of interest rates and the slope of the term structure.
Among these nonparametric models we will use the additive mixed model discussed
in Section 2.4 for the purpose of identifying the impact of different interest rates.
An example of an additive mixed model with single grouping factor has a structure
like the following:

yij = Ui + f1(x1j) + f2(x2j) + εij (3.1)

where i is a group index, yij is a univariate response for group i; the f1 and f2 are
smooth functions of covariates x1 and x2 respectively; Ui is the specific effect to
group i ; ε is a residual error vector. In order to fit the nonparametric model (3.1)
we first represent the unknown functions as penalized spline, then the estimation of
additive model (3.1) is transformed to estimate a mixed model, which has previously
been discussed. The only difference in estimation is to account for the grouping
factor by adding more columns to matrix Z in (3.3), for details see Appendix A.

3.4 Data and Empirical Modelling

3.4.1 Data

Our empirical analysis focuses on the functional relationship between the prices of
different mortgages pools and interest rates. To outline the evolution of this rela-
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Coupon Rate 6.95% 7% 7.5% 8% 8.5% 9% 9.5% 10%
Min 94.15 95.26 97.31 100 101.2 102.1 102.3 104.1

Mean. 102.5 103.2 104.6 105.9 106.9 108 108.3 109.9
Max. 106.7 107.5 108.6 109.8 110.5 112.1 111.8 112.9

( a ) Issued in 1992 with 30 years Maturity, Observed in July 98-March 2006

Coupon Rate 9.5% 10% 10.5% 11% 11.5% 12% 12.5% 13%
Min 102.3 103.3 105.1 106.1 107.1 107.2 109.2 109.1

Mean. 108.4 109.3 110.1 111 112.2 113.1 114.4 114.7
Max. 111.5 111.9 112.1 113.4 114.7 115.1 116.2 117.2

( b ) Issued in 1983 with 30 years Maturity, Observed in August 97-March 2006

Coupon Rate 6.5% 7% 7.5% 8% 8.5% 9%
Min 96.01 97.22 99.09 100 100.1 100.8

Mean. 103.00 103.6 104.2 104.1 104.1 103.6
Max. 109.2 108.9 109 108.5 107.7 107.3

( c ) Issued in 1992 with 15 years Maturity, Observed in August 97-March 2006

Table 3.1: Descriptive statistics of prices of different GNMAs

tionship, we use three groups of GNMA II pools. Moreover, each group includes
pools issued in the same year and with the same maturity but with different pass
through coupon rates. We regard the functional relationship as a common charac-
teristic of the corresponding group. The pools data are collected from Reuters 3000
Xtra3.8. It consists of 2038 monthly prices over the period from August 1997 to
March 2006. As mentioned above, the data are classified into three groups, namely,
6 GNMAs with 15 years maturity issued in 1992, 8 GNMAs with 30 years maturity
issued in 1992, 8 GNMAs with 30 years maturity issued in 1983. Table 3.1 shows
more statistical details.

Following Schwartz and Torous (1992), Boudoukh et al. (1997) 3.9 and Kariya

3.8http://about.reuters.com/productinfo/3000xtra/description.aspx
3.9Boudoukh et al. (1997) illustrate that the yield of 10-year Treasury note is closely correlated

with the average 30-year mortgage rate.
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Figure 3.4: Observed monthly short term interest rate and long term interest rate for
period August 1997 - March 2006

et al. (2002), we also use the yield of 10-year Treasury note as a proxy of the
mortgagor’s incentive to prepay the mortgage. The yield of 3-month Treasury bill
represents the overall level of interest rates and plays a role of discounting factor
in pricing. These interest rates represent short term and long term interest rate
respectively. There are two arguments in support of our choice. On the one hand,
theory and actual prepayment experience indicates that the spread between current
mortgage rate and the mortgage contract rate is inversely related to the prepayment
rate. On the other hand, the two factors usually account for 90-95% of the observed
variability of the yield curve.3.10

3.10See Rebonato (1998), P61 .
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Figure 3.4 illustrates the trend of 10 year T-note yield and 3 month T-bill yield
during the period 1997 to 2006. The high volatility in 3 month interest rate path
allows us to verify our assumption on its relationship with the MBS prices. Com-
pared with the strong fluctuation in the 3 month interest rate the 10 year interest
rate demonstrates a moderate decline. In this period the dynamics of the 3 month
interest rate acts as a mean reverting to the 10 year interest rate.

Figure 3.5 shows three groups of the prices of different GNMAs for successive
months. Figure 3.5(a), Figure 3.5(b) and Figure 3.5(c) represent different issue
dates respectively. The responses of prices in each plot are apparently similar except
that they are of different magnitudes. However, there is also some evidence for
differences among the curves.

3.4.2 Empirical Modelling

Inspection of Figure 3.5 indicates that the evolutions of the curves in each plot have
almost the same direction but with different magnitudes of variability at a point in
time. Therefore, we would expect that distinguishing GNMAs from each other by
magnitudes would be beneficial. Normally we regard coupon rates as a important
factor which determines the effect of the interest rates on prices. Due to this, the
different magnitudes of the responses of prices to interest rates can be modelled by a
random intercept controlling for individual heterogeneity mainly related to coupon
rates. The phenomenon of the same direction of the curves can be characterized by
smooth functions representing the nonlinear relationship between prices and inter-
est rates. To cope with this panel data, it is best to select additive mixed models
containing random effects and fixed effects in the context of analyzing a group of
GNMAs with different coupons simultaneously, which are better able to identify
and measure the impacts of interest rates that are not detectable in pure time series
data of one GNMA.

The data are categorized according to time to maturity: 1992 with 30 years
maturity, 1992 with 15 years maturity, 1983 with 30 years maturity. For each group
we fit the model grouped by coupon rates using an additive structure, and then show
how the impact of interest rates on GNMAs change over time by analyzing three
fitting results.

As other option-free bonds, the prices of MBS can be calculated through the
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Figure 3.5: Observed monthly prices of GNMAs with different coupon rates and
issue dates for period August 1997 - March 2006
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net present value of a set of future cash flows. However, due to the prepayment
behavior the cash flows of MBS are uncertain. The relationship between MBS
prices and interest rates is nonlinear. To address the main question of interest, we
have the following model for log prices of GNMAs,

pij = ci + f(sij) + g(lij) + εij (3.2)

where pij denotes the logarithmized price of GNMAi, i=1, ..., n, on date j, j =

1, ..., T . ci i.i.d.N(0, σ2
c ) is the random effect induced by the coupon rate i. f

and g are smooth functions of short term interest rate and long term interest rate
respectively. Financial data are taken to be serially correlated and correlated errors
are usually considered by mixed model software, hence, for the residual structure
we assume an AR(1) process of the form εij = ρ · εi,j−1 + ξi,j , ξi,j i.i.d. N(0, σ2

ξ ).
f(sij), g(lij) can be thought of as the systematic part of the price, whereas ci can be
regarded as heterogeneity between pools and εi,j represents heterogeneity within a
pool.

Fitting model (3.2) via penalized splines is equivalent to looking for a mixed
model and estimating the variance components for random intercept and the amount
of smoothing for f and g. Hence we rewrite additive mixed model (3.2) in matrix
form as follows,

P̃ = Xβ + Zu + ε, (3.3)

The details of (3.3) can be found in Appendix. Table. 3.2 shows the estimation
results of model (3.2). Once we get β̂ and û the nonlinear relationship between
prices and interest rates can be illustrated by the estimated function f̂ and ĝ with
intercepts constrained to zero.

f̂(sj) = β̂11sj + β̂12s
2
j +

ks∑

k=1

ûks(sj − κks)
2
+ (3.4)

ĝ(lj) = β̂21lj + β̂22l
2
j +

kl∑

k=1

ûkl
(lj − κkl

)2
+ (3.5)
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3.5 Impact of Different Interest Rates

Figure 3.6, Figure 3.8 and Figure 3.10 show the curves representing the relationship
between interest rates and prices in different maturities. The GNMAs used to gen-
erate Figure 3.6, Figure 3.8 and Figure 3.10 were issued in 1992, 1983, 1992 and
with 30 years, 30 years and 15 years maturity respectively. To simplify this, we as-
sume that they represent the early period, middle period and end period of GNMAs.
The log prices are constrained to have a mean of zero. The right plots (a) represent
the effect of the long term interest rates on the prices and the left plots (b) illustrate
how short term interest rates impact the prices. By comparing these curves we can
achieve a profound understanding of the impact of different interest rates.

Firstly, there is evident difference between the shapes representing long and
short term interest rates. In right plots the prices increase as the short term interest
rate decrease, which is verified by the negative first derivatives in Figure 3.7 (d),
Figure 3.9 (d) and Figure 3.11 (d). However, the curves in the left plots illustrate
a falling trend when the long term interest rates reach certain points. Analogously,
it is also verified by the phenomenon that the first derivatives become positive for
some long term interest rates. We can find these values by calculating the points
where the first derivatives become significantly positive as the long term interest
rates decrease. These values, 0.03707, 0.06055, 0.03825, are illustrated by vertical
lines in plots (a) in Figure 3.6, Figure 3.8 and Figure 3.10. This falling trend reflects
the well known negative convexity of MBS, namely, due to the refinancing incentive
the mortgagors begin to prepay as the long term interest rate decreases and so cause
falling prices of MBS.

Secondly, the points where the long term interest rate shows the negative con-
vexity are related to both coupon rates and the maturity period. In contrast to the
values, 0.03707 and 0.03825, in Figure 3.6 (a) and Figure 3.10 (a), the turning point
in Figure 3.8 (a) is 0.06055, which is consistent to the economic intuition that the
MBSs issued in 1983 with higher coupon rates should show prepayment at larger
long term interest rates than those issued in 1992 with relatively smaller coupon
rates. To identify the role of coupon rate more precisely, we calculate the differences
between the turning points and average coupon rates of the three groups to repre-
sent the incentive of prepayment of the corresponding group, which is 0.0459925
for early period with average coupon rate 0.0830625, 0.0519 for middle period with
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Figure 3.6: Fitted short term interest rate and long term rate effects on the prices of
GNMAs issued in 1992 with 30 years maturity

average coupon rate 0.1125 and 0.03925 for end period with average coupon rate
0.0775. The larger difference values correspond to the higher coupon rates of GN-
MAs. Figure 3.6 (a) shows that the long term interest rate has almost no impact
on the prices of GNMAs issued in 1983 in the range of its lower values, which is
consistent to the burnout effect of the prepayment behavior. In other words, prepay-
ment is decreasing over time and does not appear even when the spread between
mortgage contract rate and refinance rate are large.

Finally, the first derivatives, which measure the sensitivity of prices to different
interest rates also show different dynamic behavior in each period. Based on the es-
timated derivatives at real interest rates, Table 3.3 shows that the absolute values of
the derivatives of short term interest rates are not only larger than those of long term
interest rates, but are also more variable. The combination of these plots indicates
that the impact of long term interest rate is more evident in the early period than
in the end stage. Conversely, the impact of short term interest rates in end stage is
larger than the impact in early period.
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Figure 3.7: Fitted first derivatives corresponding to Figure 3.6

3.6 Hedging MBS Portfolio against Interest Rates Risk

One advantage of our model is its convenience to calculate the derivatives for hedg-
ing. Ruppert et al. (2003) point out that in mixed model context the optimal smooth-
ing parameter depends not on the order of derivatives to be estimated, but only on
the variance components. Furthermore, its value for estimation of the first derivative
or the second derivative is close to that for the estimation of the function.

In this section we first show how to predict the price changes of a portfolio
consisting of one of the three GNMA groups discussed above in nonparametric
framework given small changes in interest rates, and then discuss some aspects of
hedging such a portfolio against interest rate changes.

3.6.1 Predict the Price Change due to Changes in Interest Rates

Since not all yield curve shifts are parallel moves, we assume that MBS prices are
affected by both short term and long term interest rates. We extend and rearrange
the Taylor series of prices around the current interest rates to first order without
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Figure 3.8: Fitted short term interest rate and long term rate effects on the prices of
GNMAs issued 1983 with 30 years maturity
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Figure 3.9: Fitted first derivatives corresponding to Figure 3.8
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Figure 3.10: Fitted short term interest rate and long term rate effects on the prices
of GNMAs issued 1992 with 15 years maturity
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Figure 3.11: Fitted first derivatives corresponding to Figure 3.10
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Non-linear component edf F p-value
Long term 4.439 7.303 1.85e-08
Short term 3.785 11.697 4.37e-14

n 680 Loglik 2545.215

(a) GNMAs issued in 1992 with 30 years Maturity over the period of July
98-March 2006

Non-linear component edf F p-value
Long term 3.869 11.76 2.8e-09
Short term 3.529 40.05 <2e-16

n 776 Loglik 3030.16

(b) GNMAs issued in 1983 with 30 years Maturity over the period of August
97-March 2006

Non-linear component edf F p-value
Long term 5.38 7.095 3.8e-08
Short term 5.667 18.708 <2e-16

n 582 Loglik 2293.854

(c) GNMAs issued in 1992 with 15 years Maturity over the period of August
97-March 2006

Table 3.2: Estimation results for three groups

9230 8330 9215
short term mean -0.673 -0.796 -0.854

variance 0.079 0.249 0.095
long term mean -0.592 0.062 -0.538

variance 0.0552 0.286 0.075

Table 3.3: Mean and variance of estimated first derivatives
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considering the higher order terms,

∆P ≈ ∂P

∂rs

∆rs +
∂P

∂rl

∆rl (3.6)

where ∆P is the change of MBS price due to changes in interest rates, ∆rs and
∆rl are changes of short and long term interest rates. ∂P

∂rs
and ∂P

∂rl
are sensitivities of

corresponding prices to short and long term interest rates. Since we allow the log
price in the previous estimation step, the estimated derivatives ∂̂P

∂rs
and ∂̂P

∂rs
can be

recovered from the following equations,

∂̂P

∂rs

= P
∂̂f

∂rs

∂̂P

∂rl

= P
∂̂g

∂rl

(3.7)

where ∂̂f
∂rs

and ∂̂g
∂rs

are the estimated first derivatives by P-spline approach, shown in
Figure 9. We get the following equation to approximate price change due to changes
in interest rates by substituting (3.7) into (3.6),

∆P ≈ P (
∂̂f

∂rs

∆rs +
∂̂g

∂rl

∆rl) (3.8)

In empirical analysis it is quite probable that the future interest rates are out of
the range of sample. In this case, we use Taylor expansion from the boundary of
the smoothing function to get the estimated derivatives. For example, the estimated
first derivative d̂(rs1) at rs1 is as follows,

d̂(rs1) ≈ d(rs0) + d′(rs0)(rs1 − rs0) (3.9)

where d(·) is the derivative function of short term interest rate, d(rs0) is the deriva-
tive at the boundary rs0 and d′(rs0) is the first derivative of d(·) at rs0. We use a
portfolio consisting of GNMAs issued in 1992 with 15 years maturity as an example
to illustrate how to predict the price changes by (3.8). To check the out-of-sample
performance of our model, we take the observations of last 17 months as a test
sample. Recall that we already have the estimated function form of ∂f

∂rs
and ∂g

∂rl
in

Figure 3.11. Combining (3.9), the first derivatives of short and long term interest
rates from August 1997 to March 2006 can be obtained. Thus, we can figure out
the price changes due to interest rates using (3.8) and compare it with the empiri-
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Figure 3.12: Observed price changes and estimated price changes due to changes
in interest rates of the portfolio consisting of GNMAs issued in 1992 with 15 years
maturity over the period of August 97-March 2006

cal price changes. Figure 3.12 shows the observed price changes and the estimated
prices changes due to changes in interest rates for both within-sample and out-of-
sample observations. For most of the observations the price changes due to changes
in interest rates can explain a substantial part of the observed prices changes. As
shown in Figure 3.12, our approach works effectively in out-of-sample test. A more
prudent hedging strategy may call for higher order derivatives, which can be simi-
larly obtained from the estimation result as first derivatives.

3.6.2 Hedging Positions

As discussed above, the additive mixed model captures the mean characteristics
of a portfolio. The estimated derivatives can not only be applied to the prediction
of price changes due to interest rates but also to hedge interest rates risk. These
derivatives play a similar role to the conventional duration and convexity. Since
we consider both short term and long term interest rates here, it would be best to
use both short and long term interest rate futures, for instance, 90-day Treasury bill
futures and 10-year Treasury note futures to offset the risks. It is assumed that the
changes of future prices due to changes in interest rates can be approximated as
follows,
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∆Fs ≈ ∂Fs

∂rs

∆rs +
∂Fs

∂rl

∆rl

∆Fl ≈ ∂Fl

∂rs

∆rs +
∂Fl

∂rl

∆rl

where ∆Fs and ∆Fl are changes of short term interest rate futures price and long
term interest rate futures price respectively. ∆rs and ∆rl are changes of short and
long term interest rates. ∂Fs

∂rs
, ∂Fs

∂rl
, ∂Fl

∂rs
and ∂Fl

∂rl
are sensitivities of corresponding

prices to short and long term interest rates. We assume that the future positions ws

and wl exactly offset changes in the price of MBS in (3.6) being hedged,

∆P + ws∆Fs + wl∆Fl = 0

Matching ∆rs and ∆rl we produce,

∂P

∂rs

+ ws
∂Fs

∂rs

+ wl
∂Fl

∂rs

= 0

∂P

∂rl

+ ws
∂Fs

∂rl

+ wl
∂Fl

∂rl

= 0

then future positions ws and wl can be calculated by solving the above equations,

ws =
∂P
∂rs

∂Fl

∂rl
− ∂Fl

∂rs

∂P
∂rl

∂Fl

∂rs

∂Fs

∂rl
− ∂Fs

∂rs

∂Fl

∂rl

(3.10)

wl =
∂Fs

∂rs

∂P
∂rl
− ∂P

∂rs

∂Fs

∂rl

∂Fl

∂rs

∂Fs

∂rl
− ∂Fs

∂rs

∂Fl

∂rl

(3.11)

3.7 Conclusions and Future Extensions

In this chapter we applied P-spline approach to investigate the relationship between
the prices of MBS and interest rates. We find that this technique can easily produce
the nonlinear functions of the short term interest and the long term interest rate
respectively. Due to the flexibility from its nonparametric nature, penalized spline
method also enjoys the ability to capture the evolution of the changing impact of
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interest rates on MBS prices along time to maturity when we implement additive
mixed models to the data of different maturity. Based on the additive models and
their convenience to estimate the derivatives we also propose an approach to hedge
the interest rates risk of the MBS portfolios consisting of one of the group discussed
above.

Future work might begin by using more data from different pools such as TBA
data set. Another extension of this empirical analysis is to apply the method to
GNMA securities representing different risk characteristics. For instance, to con-
sider geographic risks we could add another factor to (3.2) to model pijk and change
ci to cik or change f(sij) and g(lij) to fk(sij) and gk(lij), where k indicate differ-
ent regions. As a result, many nonfinancial factors, which are difficult for struc-
tural model to consider, can be handled in a similar way by using penalized splines
method.



Chapter 4

Investigating Burnout Effect Using
Penalized Splines

4.1 Motivation

The heterogeneity in prepayment behavior within a pool has been identified in pre-
vious research on prepayment models. It is summarized as the burnout effect in
many pieces of literature such as Stanton (1995). In spite of significant academic
and practical development in the prepayment modelling, there has been little re-
search directly focusing on the stability of the impact of the burnout effect. In other
words, whether or not the impact of the heterogeneity within a pool on the prepay-
ment behavior and valuation remains unchanged over time is not clear. Moreover,
how to incorporate this varying impact, if it exists, into prepayment models might
be meaningful. In this chapter we explore the stability of the impact of burnout
on the prices of mortgage backed securities using penalized splines as estimation
method. Before we go to the empirical part we first look at the classical way of
considering burnout effect.

Corresponding to a reduced form approach and structural approach respectively
in prepayment modelling, the burnout effect can be considered in two different
ways. In the structural approach, burnout is explained as the result of heterogene-
ity in the pool. Hayre (1994) proposes a decomposition of a mortgage pool into
slow and fast subpools. These subpools prepay at different speeds, which lead to
the burnout phenomenon. Stanton (1995) extends the rational prepayment models

51
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in Timmis (1985), Dunn and Spatt (1986), Johnston and Drunen (1988) by adding
heterogeneous transaction costs and prepayment decision at discrete intervals to
endogenously produce the burnout effect and finds that different classes of mort-
gage borrowers prepay at different times due to heterogeneous costs. Levin (2001)
applies a two components model, namely, active and passive, to burnout analysis,
mortgage valuation and average life analysis respectively.

In the reduced form approach, the burnout effect is usually defined as a variable,
which has an impact on the prepayment probability through some hazard function.
Survival models or logit models are used in frequently found literatures such Clapp
et al. (2006). In terms of burnout effect, a significant difference among these models
lies in the way in which burnout effect is measured. For example, Richard and Roll
(1989) in defining burnout use an exponent function of the ratio of the mortgage
coupon rate to the refinance rate, whereas Schwartz and Torous (1989) use the log
value of the proportion between the amount of the pool outstanding and the principle
in the absence of prepayment. Schwartz and Torous (1993) model burnout using
the sum of the maximums of the difference between mortgage coupon rate and
refinance cost and risk free rate. Moreover, they explicitly outlines the relationship
between burnout and prepayment probability, which is approximately decreasing.
Charlier and Bussel (2003) uses the difference between the refinance incentive in
the current month and the maximum refinance incentive as a measure of burnout for
the prepayment in the Dutch market.

To directly investigate empirical data on the burnout effect, we here focus on the
reduced form prepayment model. As far as burnout is concerned, most of the above
reduced form prepayment models share the following two features. On the one
hand, they use constant coefficients for the explanatory variables in hazard mod-
els. The sign of the coefficient before burnout is typically predicted to be negative
according to economic intuition and then verified by the estimation results later
like in Schwartz and Torous (1993), Mattey and Wallace (2001), Charlier and Bus-
sel (2003). On the other hand, the burnout effect is typically modelled indepen-
dently. These aspects of prepayment modelling can be improved upon. A growing
literature recognizes the importance of extending the assumption of constant coef-
ficients. Kau and Springer (1992) extend this popular assumption of fixed coeffi-
cients in prepayment modelling and use two different random coefficient models
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(RCM), namely Swamy RCM4.1 and Hildreth and Houck RCM4.2, to model pooled
data and individual securities respectively. They verify the randomness of the co-
efficients and succeed in challenging the fixed coefficient assumption. Kau and
Springer (1993) investigate the impacts of financial and nonfinancial incentives on
prepayment, based on the assumption of the varying coefficients having polyno-
mial structures and the corresponding estimation results. LaCour-Little and Green
(2002) also question the constant coefficients assumption based on technological
improvement and greater efficiency in the mortgage market. They verify the insta-
bility of parameters by comparing two hazard models estimated for different peri-
ods and calculate this impact on pricing mortgage backed securities. Although the
above analyses identify the limitation of the assumption of constant coefficients in
prepayment modelling, the stability of coefficients of burnout effect is beyond their
investigation. Research explicitly highlighting the stability of coefficients includes
Popova et al. (2006), who propose a Bayesian mixture model for prepayment rates
of individual pools of mortgage. They find that the coefficients of burnout effect
can be negative or positive for different pools in their estimated results. In other
words, the burnout effect can have negative or positive impact on prepayment rates,
which is not in line with the economic intuition. They confirm this estimation result
by checking the data but provide no definite conclusions or directions on how to
improve prepayment modelling as they focus on the estimation procedure. In addi-
tion to the coefficients problem, whether the burnout effect is interacting with other
variables is also not clear. This chapter contributes to literature in two perspectives.
First, we link the burnout effect directly with the prices of mortgage-backed securi-
ties. We take advantage of the capability of the nonparametric approach to capture
the nonlinear relationship between prices and burnout. Secondly, we emphasize
the interaction between burnout and the life of the MBS, which is represented by
scheduled factors. From the interaction we could identify how the burnout effect is
affected by scheduled factor.

4.1See Swamy (1970)
4.2See Hildreth and Houck (1968)
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4.2 Measuring Burnout Effect

4.2.1 Burnout

Intuitively, mortgage borrowers who are sensitive to the changes in interest rates
will prepay earlier. Thus, the remaining part of the pool consists of the borrowers
who are relatively insensitive to the opportunity to prepay. Burnout effect is used
to explain this phenomenon. Namely, prepayment is decreasing over time and does
not appear even when refinancing incentives are available. To identify the effect
of burnout we first need a function to quantify the burnout effect. This function
depends on two different factors; observed and scheduled factors. The observed
factor (OF) is the ratio between the observed remaining principal outstanding and
the original principal outstanding. The scheduled factor (SF) is the ratio between the
scheduled remaining principal outstanding and the original principal outstanding.
Since the value of the factor depends on the remaining principal it also reflects any
changes in the principal induced by the prepayment behavior. Therefore, we choose
the following function of factors to measure burnout effect in line with Jegadrrsh
and Ju (2000),

BOt = 1− OFt

SFt

(4.1)

where BOt measures burnout at time t, OFt is the observed factor at time t and
SFt is the scheduled factor at time t. A smaller BO means that the observed factor
is closer to scheduled factor. In other words, there was less prepayment behavior
in the past, which also indicates that prepayment is more likely to happen in the
current period and in the future. Conversely, under the same conditions, the larger
the burnout of a pool is, the less prepayment behavior may appear in current period.

4.2.2 The Behavior of Factor and Burnout

The series OF and SF decrease over time where the speed of decreasing varies
among pools with different coupon rates. Figure 4.2.2 shows an example of sched-
uled factor series of pools with different coupon rates. Since the mortgage with
a higher loan rate will pay more interest, the proportion of principle payment in
the total payment will be smaller in case of amortization. Thus, the factor series
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Figure 4.1: Scheduled factors of pools with different coupon rates over ages

measuring remaining principle balance of higher coupon rates will be larger.

The behavior of the observed factor becomes more complicated as prepayment
is considered. Figure 4.3 shows some observed factor series (OF) of pools with
different coupon rates and three different issue dates. Pools with such high coupon
rates do not have higher factors as in the scheduled case because higher coupon rates
may lead to more prepayment behavior. Plot (b) in Figure 2 shows that the factor
series of a pool with 8.5% coupon rate experiences the largest drop. In contrast
to plot (b), plot (a) shows that a pool with 8% coupon rate has a larger decrease
than a pool with 9% coupon rate. The comparison between the two plots results
in the conclusion that the coupon rate is only one key reason for the prepayment
behavior. As the structural approach demonstrates, a phenomenon named burnout is
produced when prepayment decision is affected by heterogenous costs. Therefore,
adding burnout effect into our models will better explain the prepayment behavior
and the prices. Once we have the scheduled and observed factor series we could
calculate the burnout according to (2). Figure 3 illustrates three different burnout
series. Generally, the burnout remains small at the early phase, then experiences a
climbing process, which results in a relatively stable end phase.



56 Chapter 4. Investigating Burnout Effect Using Penalized Splines

0 50 100 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Period

O
bs

er
ve

d 
fa

ct
or

7%

8%

9%

(a) Observed factor series of three pools issued in 1992
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Figure 4.2: observed factors of different pools with different coupon rates issued in
different year.
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(a) Observed factor series, scheduled factor series and burnout of a pool issued in
1992 with coupon rate 8% in end phase
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(b) Observed factor series, scheduled factor series and burnout of a pool issued in
1998 with coupon rate 6% in middle phase
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2003 with coupon rate 4.5% in begin phase

Figure 4.3: Observed factor series, scheduled factor series and burnout.
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4.3 Nonparametric Prices Model

4.3.1 Modelling Prices of MBS with Burnout Effect

As discussed in previous chapter the nonparametric approach has been widely used
to investigate MBS prices and prepayment rates. We follow their nonparametric
trend, but add more variables to estimate MBS pool prices by using an additive
model, which is estimated by penalized splines smoothing technique. We demon-
strate that a simple nonparametric model with interaction between burnout and
schedule factors is not only more powerful than structural approach in illustrating
the varying burnout effect, but is also tractable for specific mortgage pool valuation.
We subsequently restrict our attention to variables that are expected to have the most
significant impacts on prices. We specify explicitly three components influencing
prices of mortgage backed securities; a straight bond, an option component and an
interaction between burnout and scheduled factor. The first three parts of the price
are mainly related to coupon rates, the short term rate and long term interest rates,
as proxy of a straight bond. Since the refinance incentive is related to long term
interest rate and hence reflects the prepayment behavior, the long term interest rate
plays the main role in the option part. This is in line with Kau, Keenan, Muller,
and Epperson (1992), who show that the incentive dominate the prepayment rates.
The final part considers the impact of burnout. Here we use the interaction between
burnout effect and scheduled factor to incorporate a varying burnout effect. Thus,
prices of MBS are modelled as follows,

pit = f1(ci) + f2(st) + f3(lt) + f4(BOit, scheduleit) + εit, 1 ≤ t ≤ Ni (4.2)

where pit is the price of the i-th MBS at time t, ci is the coupon rate of i-th MBS, lt

and st are long term and short term interest rates, BOit measures burnout at time t,
scheduleit is the scheduled factor of i-th at time t, f1, f2 and f3 are three univariate
unknown smoothing functions, f4 is a bivariate unknown smoothing function, εit,
t = 1, . . . , Ni are drawn from a AR(1) process, which is assumed to be correlated
within one MBS. The intuition behind (4.2) is as follows. The role of coupon rate,
long term and short term interest rates in the prices of MBS are captured by un-
known function f1, f2 and f3. To identify the impact of maturity on the burnout,
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we set a bivariate function f4. There are two benefits of adding f4. First, the sched-
uled factor and burnout are modelled in an interactive way. This makes it possible
to explicitly model the impact of burnout on prices. Usually, the burnout effect
is assumed to have a negative impact on the prepayment behavior, and in turn a
positive impact on prices. Spahr and Sundermann (1992) shows that the burnout
effect has positive impact on the prices of MBS by comparing Goldman Sachs pre-
payment models4.3, with or without burnout effect being used respectively. To test
and extend their conclusion, the burnout effect is now restricted by scheduled fac-
tor. This gives more flexibility to model the price response to burnout changes.
This is because, the burnout does not have to show the same impacts on prices in
different maturities. The second benefit of adding f4 is that, this model can then
be easily extended to model possible unobserved heterogeneity between pools with
different maturities. The main part of heterogeneity comes from geographic diver-
sity, differences in education level, coupon rates, issue date and other observable
characteristics. Stanton (1996) shows that heterogeneity can be extracted from the
information about prepayment behavior over time. In our model, the heterogeneity
between pools results in each pool having different values for the burnout effect,
BOit, over time. Continuing to assume that prices for each pool is determined by
different unknown functions in (4.2), we can model heterogeneity within a pool or
between pools.

4.3.2 Estimation Methodology

Nonparametric technique is used to uncover the relationships between these finan-
cial variables. Here we estimate these unknown functions by penalized splines,
which is discussed in Chapter 2. An advantage of penalized splines is its link to lin-
ear mixed model. This feature allows to use the software developed for mixed model
can be used to estimate the parameters in a penalized splines model. Moreover, the
link to mixed model makes it easier to cope with smoothing parameter selection in
case of correlated errors, which is shown in Krivobokova and Kauermann (2007).
We will take advantage of the latter subsequently. Numerically, the fit can be cal-
culated with available software using R. In particular, all fits have been calculated
with standard setting using the procedure gamm() provided in package mgcv, see

4.3See Richard and Roll (1989)
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Figure 4.4: 10-year treasury note yield and 3-month treasury bill yield

also Wood (2006). More details are provided in Appendix B and Appendix D.

4.3.3 Empirical analysis

Data

We now estimate the four parts in Model (4.2) using data from different pools.
Our data are collected from Reuters 3000 Xtra. It consists of the pool-specific
information such as prices and factors of 68 single family pools over the period from
August 1996 to February 2007. The pools discussed in this study are backed by
guarantees provided by the Government National Mortgage Association. Due to this
insurance feature, default appears as prepayment behavior. However, in contrast to
other structural approaches concerning house prices like Mattey and Wallace (1998)
and Downing et al. (2005), we will not include house prices in our analysis for two
reasons. Firstly, the house price index increases over our observation period and the
default behavior is more evident in times of decreasing house prices. Secondly, we
do not have a specific house price index related to each pool.

Table 4.2 provides the structure of our data. It shows a decreasing trend in issue
coupon rates during the period from 1992 to 2006. This trend also corresponds to
the dynamics in risk free interest rates such as the 10-year yield of Treasury note
and 3-month yield of Treasury bill, which is shown in Figure 4.4. Figure 4.5 shows
the observed prices of 68 pools. Consistent with the economic intuition, the prices
illustrate opposite movement to the interest rates.
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Figure 4.5: Prices of 68 pools over the period from August 1996 to February 2007
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Figure 4.6: Estimated coupon rate component f1(ct)
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Figure 4.7: Estimated short term interest rate component f2(st)
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Figure 4.8: Estimated long term interest rate component f3(lt)
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Figure 4.9: The interaction between scheduled factors and burnout
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Estimate Std Error t value Pr(> |t|)
Intercept 4.6345179 0.0007722 6001 <2e-16

Approximate significance of smooth terms:

edf Est.rank F p-value
s(c) 3.938 4 462.181 < 2e-16
s(longg) 3.952 4 166.133 < 2e-16
s(shortt) 3.888 4 143.201 < 2e-16
s(sch,burn) 11.960 24 3.818 <1.01e-09
R-sq.(adj) = 0.865 n = 4456

Table 4.1: Estimation result

Result

The nonparametric model (4.2) also captures the main part of the price changes. Ta-
ble 4.1 shows the extracted information about the results of the estimation. 86.5% of
the variance is explained by model (4.2). We can see that the first three components
of fit of (4.2) are consistent with the economic intuition: the prices are decreasing
with long term and short term interest rates and increasing with coupon rates.

Figure 4.9 and Figure 4.10 show the estimated interaction of the scheduled fac-
tors and burnout in two dimension and three dimension, respectively. The estimated
interaction between scheduled factors and burnout exhibits two important features.
First, the relationship between prices and burnout is varying with scheduled factors.
The higher the scheduled factor the stronger the effect of burnout. This means that
our assumption of the interaction between burnout and refinance incentive is rea-
sonable. Secondly, for most part of the surface, the estimated relationship between
burnout effect and prices is increasing. The property of increasing is more obvi-
ous in areas with larger scheduled factor, in other words, at the beginning phase of
the pools. This is in agreement with the economic meaning of burnout. It mea-
sures the contribution of refinance incentive to the prepayment behavior. At the
beginning phase, there is a rapid increase in prepayment rate, therefore the burnout
effect linked to refinance incentive should also be significant. After the middle stage
burnout has little impact on the prices and the surface becomes more flat. To con-
firm the observation that prices are not decreasing with burnout we modify the price
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Figure 4.11: Estimated univariate function of burnout

model by decomposing the bivariate part into two univariate functions. Figure 4.11
shows the estimated univariate function of burnout.

4.4 Conclusion and future extensions

In this chapter we focus on investigating the impact of burnout effect on the prices of
mortgage-backed securities. We first model the prices of mortgage-backed securi-
ties by the linear combination of several unknown functions and then estimate them
using penalized splines method. The results show that the impact of burnout effect
on the MBS prices can be divided into two stages, the evident part in the earlier stage
and the flat part in the later stage. If sufficient prepayment data is available, future
research should include the empirical part of prepayment modelling with burnout
effect using penalized splines.
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Maturity Coupon Rate
2007 7 8 9
2008 6 7 8 9
2009 5 6 7 8 9 10
2010 6 7 8 9 10
2011 6 7 8 9
2012 6 7 8 9
2013 4 4.5 5 6 7 8
2014 4.5 5 6 7 8
2015 5 6 7 8
2016 4.5 5 6 7 8
2017 4 4.5 5 6 7
2018 3.5 4 4.5 5 6
2019 3.5 4 4.5 5 6
2020 4 4.5 5 6
2021 4.5 5 6

Table 4.2: The structure of pool data



Chapter 5

Exploring the Credit Risk for Small
and Medium Enterprises in China

5.1 Introduction to Credit Risk

Credit risk is the risk of loss as a result of unexpected changes in the credit quality
of a borrower or counterparty in a financial agreement. Credit risk models can be
classified into two categories, one is used to price a single credit sensitive security,
and the other is used to investigate the credit risk of a portfolio. In both situations,
credit risk is analyzed by either structural models or reduced form models. Struc-
tural models are based on the work of Black and Scholes (1973) and Merton (1974)
and their extension, Hull and White (1995). In these models, default is a result of
the feature variables of a firm, such as asset value, asset volatility and capital struc-
ture. Industry examples of credit portfolios include J. P. Morgan’s CreditMetricsTM

and KMV’S CreditPortfolioManagerTM . Reduced-form models date back to Jar-
row and Turnbull (1995) and Duffie and Singleton (1999). The default is modelled
as a stochastic process linked to some exogenous random variables like macro-
economic variables, rather than the characteristic variables included in structural
models. Pricing is implemented by a default-risk-adjusted interest rate with inten-
sity considered. Industry examples for credit portfolios include Credit Suisse First
Boston’s CreditRisk+ and McKinsey’s CreditPortfolioView. Further details on the
credit risk modelling are included in Bluhm et al. (2003), Bielecki and Rutkowski
(2002), or Schönbucher (2003).

67



68 Chapter 5. Exploring the Credit Risk for SMEs in China

Credit risk models are becoming popular due to the implement of Basel II ac-
cord. Basel II is a comprehensive framework for regulatory capital and risk man-
agement. Under this framework, a bank is required to maintain capital equal to not
less than 8% of the aggregate value of its risk-weighted assets (RWA). The cap-
ital charge on a portfolio can be obtained by the sum of the capital charges on a
loan-by-loan basis.

RC = 0.08RWA =
n∑

i=1

0.08RWAi =
n∑

i=1

RCi

where RC is the aggregate risk capital, RCi and RWAi are the risk capital and the
risk weighted asset of obligator i respectively. In IRB approach, the risk capital is
calculated as

RCi = c δi Ei φ(
φ−1(pi) +

√
ρiφ

−1(α)√
1− ρi

) (5.1)

where c is an adjustment parameter, δi is the percentage loss given default, Ei is the
exposure, ρi is a correlation parameter measuring dependency, pi is the marginal de-
fault probability, φ is the cumulative distribution function of the standard Gaussian
distribution and α is the confidence level, which is set to 99.9% in Basel II.

As shown in (5.1), δi, Ei, ρi and pi are parameters to be determined for each
obligator, of which pi is more central in credit risk modelling than others. The
default probabilities can be obtained either from an external source like the publica-
tion of rating agencies such as S&P and Moody’s or internal assessment, in which
case statistical models, such as logit or probit-models, are used to assign default
probabilities to non-rated obligors.

5.2 Motivation of Credit Risk Modelling for SMEs in
China

In the Chinese credit markets there is a gap between small and medium size en-
terprises (SMEs) and banks. Each side faces its own dilemma. SMEs become
increasingly important to the rapidly growing Chinese economy. In October 2006,
the number of SMEs in China was over 40 million, 99.6% of all enterprises. SMEs
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also account for 58.5% of the gross domestic product and 75% of urban employ-
ment (See Shanghai Securities News (2006) ). However, most of them are suffering
from the lack of access to finance. Hussain et al. (2006) and reports from the World
Bank and the Peoples’s bank of China show that Chinese SMEs depend largely on
the internal source for financing instead of external sources, furthermore, the ex-
ternal bank credits are mainly short term. The main reasons for Chinese SMEs’
difficulties in accessing the bank credit can be classified into two categories. First,
there are some typical characters of SMEs, such as, less external ratings, less finan-
cial and operational transparency, obscure financial statements, the family-owned
nature of many SMEs and a short history of the relationship with banks. Beck and
Demirguc-Kunt (2006) also show that financial institutions play an important role
in relaxing the growth constraint of SMEs due to lack of access to finance. The
other reason is mainly due to the transition process of Chinese economy from 1978,
which is featured by an increasing market competition, changing policies and the
integration into global economy.

Meanwhile, Chinese banking industry has been open to foreign banks since Jan-
uary 2007. Clarke et al. (2005) shows that Latin America foreign banks with large
local presence lend more to small business. In the past decades relationship and
lending has been based on the information gathered through business over time and
a case by case decision. However, this lending technique is expensive and time
consuming. Thus, Chinese banks face the dilemma, whether they should ignore the
growth of SMEs and implement a profit-oriented strategy requiring them to focus
more on large cities and large-scale enterprises, or they should be more active in
SMEs markets irrespective of cost consideration as a response to the competition
between domestic and foreign banks. To solve this dilemma, Chinese banks could
turn to alternative quantitative lending techniques for SMEs. Unlike the listed com-
panies, the market value of SMEs is usually unavailable. Hence, the credit models
based on the ideas from firm’s value theory introduced by Black and Scholes (1973)
and Merton (1974) can not be applied to SMEs. Thus, the methods used to model
consumer credit, such as credit scoring, are more appropriate to measure the credit
quality of SMEs.

Credit scoring is a statistical method used to evaluate the credit risk. It is impor-
tant for Chinese banks for the following reasons. First, Blöchlinger and Leippold
(2006) show that a good credit scoring model can increase banks’ ability to identify
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risk, implement suitable pricing strategy and hence increase profits. Second, Berger
and Frame (2007) show that credit scoring can also contribute to the availability of
credit for SMEs. Finally, credit scoring model also enable banks to have less capital
in addition to the above advantages. The Basel 2 Accord explicitly requires banks
to calculate the probability of default in case the bank determines the capital using
internal ratings based approaches instead of the standard approach. An advantage
of the former is that it results in less capital requirement for banks.

Credit scoring models are widely accepted in consumer credit industry. The
field of credit scoring is thereby dynamic and new statistical techniques are being
used. Statistical methods used in credit scoring usually include logistic regression,
probit regression, discriminant analysis, neural network, genetic algorithms, linear
programming, K-nearest-neighbor classifier and classification trees. Hand and Hen-
ley (1997) provide a summary of these methods in consumer credit scoring. Tomas
et al. (2005) provide further discussion. Leonard (1992) shows that the implemen-
tation of such credit scoring models for small business loans is feasible as well.
Among these consumer credit scoring methods the logistic model is quite popular
because of its good balance between simplicity and accuracy. Altman and Sabato
(2007), Behr and Guttler (2007), Phillips and Vanderhoff (2004) show its applica-
tion to predict loan default. The impact and recent developments in credit scoring
is discussed in Hand (2005) and Crook et al. (2007).

A successful credit scoring model can only work if the data behave somewhat
stationary, that is to say that credit behavior today gives information about credit
behavior in the future. From a statistical point of view this means that covariate
effects which influence the probability of loan default should not change with (cal-
ender) time. Apparently in times of economics transitions this assumption is likely
to be violated and should be replaced by models where covariate effects vary with
time. Models of this kind are known in statistics under the phrase varying coef-
ficient models, see Hastie and Tibshirani (1993), Wood (2000) or Ruppert et al.
(2003). This model class has become quite popular in the last decade. We make
use of this tool and investigate if and how covariate effects have changed in the last
years, that is how the economic transition is mirrored in the credit risk. To do so,
we extend Müller and Rönz (2000) and Liu and Cela (2006) in three aspects. First,
we use several univariate nonparametric functions to model the risk of default in a
nonparametric style. Secondly, we apply time varying coefficients in linear parts,
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that is we show explicitly how the dynamics of the Chinese banking industry is
mirrored in varying effects of risk factors. This change accounts for the transition
of the Chinese economy over the last ten years. Finally, for fitting we make use of
penalized splines, which overcomes the overfitting problem usually occuring with
the high dimensional techniques and provides a simple model selection idea.

The data set for this analysis includes 1379 commerical loans from a Chinese
bank over the years 1998-2005. The data are available from the authors, the name
of the bank however has to be remain confidential according to the agreement with
the bank. The variables consist of risk status, entry time, enterprise types, guaranty
methods and loan amount.

5.3 Credit Scoring with varying coefficients

5.3.1 Credit Scoring Model

Assume that y ∈ {0, 1} is an indicator for default. We model the probability of the
default as a function of selected independent variables. This allows us to classify
the loan to be good (y = 0) or bad (y = 1) in credit scoring. A simple approach for
doing so is the logit model,

P (y = 1|X) =
1

1 + e−(β0+β1x1+···+βkxk)
(5.2)

where X = (x1, · · · , xk) is a vector of covariates. The model is widely used in
practice and classification of whether an existent or new credit is reliable depends
on whether the probability in (5.2) exceeds a given threshold.

Model (5.2) by itself is parametric and therefore static and does not mirror dy-
namic effects. This is what we pursue now by investigating how the dynamics in
the Chinese economy influences the probability of default. Due to the develop-
ment of nonparametric methods in the last two decades the linear part in (5.2) is
extended to be nonlinear. Notice that the parameters in (5.2) are independent of
entry time. Therefore, no matter when a loan is issued, the predictors have the same
effect on the credit score. This is questionable. If a company borrows in a differ-
ent entry time, the credit score should also change correspondingly. This change
is particularly necessary for SMEs in a transition economy like China because the
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macroeconomic environment is changing dramatically. In the last decades China
has been experiencing the transition from a central planning to a market economy.
Thus, the entry time should play an important role for the performance of the SMEs
loans. Similarly, including time-dependent coefficients in the credit scoring can not
only reflect the evolution of the effect of different predictors but also consider the
stability of parameters over time. We realize the consideration of the entry time by
using a varying-coefficient model.

Let J be the index set of categorical variables considered including the inter-
cept, and let I ⊂ J be the subset of these variables having time varying effects
including the intercept. Moreover, we denote with C the index set of continuous,
metrically scaled variables and D ⊂ C are the indices of continuous variables in-
teracting with time. A generalized logit model with time varying effects for credit
scoring is then as follows,

P (Y = 1 | X, t) = F{
∑

j∈J\I
βjxj +

∑
j∈I

βj(t)xj +
∑

j∈C\D
fj(xj) +

∑
j∈D

fj(xj, t)}

(5.3)
where F (η) = 1

1+exp(−η)
is the logistic distribution function and t represents the

calender time. In (5.3) fj(xj, t) are bivariate functions while fj(xj) depend on xj

only. Analogously, βj(t) gives the effects of covaraiate xj which are dynamically
changing with time while βj is a constant effect of covaraiate xj . It is easy to see
that model (5.3) is not identifiable. The usual assumption is therefore to postulate
that the functional components in (2) integrate out to zero, e.g.

∫
fj(xj, t)dx = 0

or
∫

fj(xj, t)dt = 0. Finally, model (5.3) has a sophisticated structure, thought it
might not be parsimonious. Therefore, model selection will be necessary which will
be pursued later on.

5.3.2 Estimation Methodology

Penalized splines have become a popular smoothing technique over the last cou-
ple of years, originally introduced by O’Sullivan (1986), it were Eilers and Marx
(1996) who demonstrated the simplicity and efficiency. Its link to the mixed model
framework has been demonstrated in Ruppert et al. (2003) and Wood (2006). We
take advantage of these developments. Let us first briefly introduce the penalized
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spline method. We replace the smooth functions fj(xj) and βj(t), respectively, by
high dimensional basis functions in the form

fj(xj) = B̃j(xj)ũj, βj(t) = Bj(t)uj

where B̃j(xj) and Bj(t) are high dimensional basis functions built e.g. from vectors
of B-splines or truncated polynomials (see Ruppert et al. (2003) and Wood (2006))
and ũj and uj are the corresponding parameters. By analogy with the univariate
case we replace the two dimensional function with a high dimensional basis

fj(xj, t) = B̄j(xj, t)ūj

where B̄j(xj, t) is a basis in two directions. This gives a high dimensional paramet-
ric model with parameters, βj with j ∈ J \I. uj with j ∈ I, ũj with j ∈ C\D and
ūj with j ∈ D. Apparently, fitting will be unstable due to the high dimensionality,
so that we include penalty terms on the coefficients in the form, λju

T
j Djuj with

j ∈ I, λ̃jũjD̃jũj with j ∈ C\D and λ̄jū
T
j D̄jũj with j ∈ D. Where λj, λ̃jandλ̄j

steer the amount of penalization. Since this has a direct effect on the smoothness of
the fit we also call them smoothing parameters.

Let l(β, u) be the likelihood based on the data, with β = (βj, j ∈ J \I) and
u as vector containing uj , ũj and ūj stacked up to a vector. Then the penalized
likelihood takes the form,

l(β, u, λ) = l(β, u)− 1

2

∑
j∈I

λju
T
j Djuj − 1

2

∑

j∈C\D
λ̃jũ

T
j D̃jũj − 1

2

∑
j∈D

λ̄jū
T
j D̄jūj

(5.4)
Estimation of the smoothing parameters can be done by treating the penalties as
normal priors, e.g. uj ∼ N(0, σ2

j D
∗), ũj ∼ N(0, σ̃2

j D̃
∗), ūj ∼ N(0, σ̄2

j D̄
∗), D∗, D̃∗

and D̄∗ as generalized inverse of D, D̃ and D̄, respectively, and σ2
j = 1/λj , σ̃2

j =

1/λ̃j and σ̄2
j = 1/λ̄j . The model now becomes a Generalized Linear Mixed Model

(GLMM) and the smoothing parameters can be derived as maximum likelihood
estimates. The procedure is implemented in R following the package SemiPar or the
newest version of the gamm() routine in package mgcv for non-normal responses.
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5.3.3 Model selection by using the marginal likelihood

Model selection relates to the exercise of selecting the four set D, C, I and J in
model (2) based on the data. In particular, we need to determine which of the co-
variate interact with time, which determines how subsets I ∈ J and D ∈ C are
chosen appropriately. To tackle the exercise, we consider the marginalized likeli-
hood, that is after integrating out the random spline effects. Based on a Laplace
approximation this results to

lM(β, λ) := log
∫

exp (l (β, u))φ(u, D(λ))du

≈ l(β, û, λ) +
1

2
log |(BT WB + D(λ))−1D(λ)| (5.5)

where λ is the vector of coefficients λj , λ̃j , λ̄j; W is the weight matrix containing
the binomial variances and B is the entire basis matrix with i-th row constructed
from ((Bj(ti), j ∈ I), (B̃j(ti), j ∈ C\D), (B̄j(xij), j ∈ D)) where xij is the
i-th observation of covariate j, i = 1, . . . , n. Finally, D(λ) is the block diagonal
matrix built from D(λ) = diag((λjDj, j ∈ I), (λjD̃j, j ∈ C\D), (λjD̄j, j ∈
D)). Coefficient û in (5.5) is the maximizer of l(β, u, λ) keeping β and λ fixed.
Maximizing l(β, λ) now with respect to β and λ yields the penalized fit of the
cureves in the model. As sketched in the Appendix it can be shown that (5.5) can
be approximated with

lM(β̂, λ̂) ≈ l(β̂, û, λ̂)− edf

where edf is the estimated degree of freedom calculated from the trace of the
smoothing matrix. That is edf gives the estimated complexity of the model with
index sets M = (C,D, I,J ) fixed. Let ˆβM be the estimate based on index set
M and define lM(β̂M) = lM(β̂M, λ̂M), where λ̂M is the vector of fitted smoothing
parameters based on model with index set M. The intention is now to minimize
AIC with respect to the best index set combination. This will be carried out with a
forward selection as described in the next section.
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State-owned Collective-owned Limited-liability Private Others
121 259 736 118 145

Table 5.1: Enterprise type

5.4 Application to China SMEs data

5.4.1 Data Description

The empirical analysis is based upon small and medium enterprises commercial
loan history data from a commercial bank in China over the years 1998-2005. The
dependent variable for our analysis is the risk status of the loan measured at the
maturity, which has binary values 1 for non-performing and 0 for performing loans.
As risk factors we include variables available for all loan contracts. These include
loan amount, the entry time, guaranty method, type of enterprise and maturity. Fig-
ure 5.1 illustrates the entry time, the duration and the risk status of the data using
the lexis diagram. The solid points at the end of the lines indicate that the loans
are in non-performing status. Most loans are provided for 1 year. We therefore
replace maturity as influencing factor by a discrete covariate indicating short term
loans with maturity less than 0.9 and long term loans with maturity larger than 1.1.
Figure 5.2 shows the histograms of entry time and loan amounts. For the analyzes
we adjust the amount by the yearly fixed-base consumer price index (CPI) from
National Bureau of Statistics of China and then take the logarithm as covariate.

The loan applicants are classified into five categories in accordance with the
Regulation of the People’s Republic of China on the Management of Registra-
tion of Corporate Enterprises. Table 5.1 shows the numbers of enterprise types.
When signing the contract, many borrowers may provide guarantary methods such
as third-party guarantors, mortgages or pledges. Table 5.2 shows the numbers of
corresponding guaranty methods. Based on maturity we also define short term and
long term loans in addition to the majority of observations. Thus, we have the fol-
lowing explanatory variables concerned in this study, entry year, log amount, state,
collective, private, limited, credit, guarantee, mortgage, pledge, short term and long
term.
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Figure 5.1: Lexis diagram for loans data.
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Figure 5.2: Histograms of entry time and log loan amount.

Credit Third-party Guarantor Mortgage-backed Pledge-backed Others
19 622 664 61 13

Table 5.2: Classification according to guaranty methods
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Model Potential Combination −2lM(β̂M)

1 f (entry year) + f (log amount) 979.9257
2 f (entry year, log amount) 977.1435

Table 5.3: Model selection for interaction with time

5.4.2 Model Selection

For model selection procedure we follow a forward-backward strategy as proposed
in Edwards and Havránek (1987). The main steps are as follows. First, we look for
a semi-parametric model with nonparametric interaction between time and poten-
tial continuous covariates, that is we first select index set D. Then, we determine
the categorical variables which have time varying effects, that is we find an appro-
priate index set I. Finally, the categorical covariates with constant coefficients are
considered, that is, we look whether we can drop elements of J \I.

Selection for Interaction with Time

We start with models in a form that an interaction and an unknown function exist
for two continuous covariates, here entry year and log loan amount. The other
categorical variables are assumed to have constant coefficients at this stage, that is
I = φ. As shown in Table 5.3, we tend to identify the best nonparametric way to
incorporate the continuous variables by comparing the lM(β̂M) values of model 1
and model 2. The selection turns out that model 2 including the interaction between
entry time and log loan amount has the larger lM(β̂M) value and is therefore chosen.

Selection for Time Varying Coefficients

Now that we have determined the interaction part for continuous variables, we look
for the categorial covariates with time varying effects. To do so, we assume that
each categorical variable could have time varying coefficients. To decrease the nu-
merical effect of the forward-backward step, we first look for an order of the signif-
icances of the time varying effects by repeating the procedure of estimating a model
extended from model 2 with the assumption that only one categorial variable has
time varying effect. The estimate result is shown in Table 5.4 ordered based on the
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values of lM(β̂M). Based on this ordering we now add the time-varying effects of
the candidates in Table 5.4 to model 2 one by one until lM(β̂M) does not increase
anymore. The process is illustrated in Table 5.5. The result of this model selection
shows that we can achieve larger marginal likelihood if we consider time-varying
coefficients for short term and long term loan.

Selection for Variable with Constant Coefficients

The final step is to determine the variables with constant coefficients. This is rela-
tively easy. We first estimate a model extended from model 4 (see Table 5.5) with
the remaining variables and then choose candidates to be excluded by checking the
significance. Each exclusion is also confirmed by the improvement of lM(β̂M). The
result of this step shows that our best model consists of an interaction between entry
year and log loan amount, short term and long term with time-varying effects and a
linear combination of the remaining variables with significant constant coefficients,

η = β0 + f1(entry year, log loan amount) + f2(entry year)× short term

+f3(entry year)× long term + β1mortgage + β2pledge + β3collective +

β4private + β5long term

where η is the predictor in (5.3); Note, enty year, log loan amount, are metric vari-
ables, denoting entry time, log loan amount, respectively, short term, long term,
mortgage, pledge, collective and private are dummy variables for short term loan,
long term loan, mortgage, pledge, collective-owned enterprises and private compa-
nies. The parametric estimates and nonparametric estimates are listed in Table 5.6
and Table 5.7. The graphical illustration of the varying effects is shown in Figure
5.3 and Figure 5.4.

We aim at developing a suitable credit scoring model for the SMEs in China. By
doing so the estimation results mimic the path of the Chinese economy and banking
industry over the last decade. First, in the model selection procedure, two variables
representing the guaranty methods of third-party guarantor and credit are excluded
from the model. It indicates that credit and third-party guarantor do not play an
important role in determining credit risk. Conversely, mortgage is most statistically
significant. As expected, the signs of mortgage and pledge are negative, which
means that both guaranty methods decrease credit risk.
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Variables −2lM(β̂M) Rank
long term 954.3074 1
short term 968.9114 2
mortgage 976.8645 3
guarantee 977.179 4

state 977.493 5
limited 978.0913 6

collective 978.2383 7
pledge 978.3365 8
credit 978.7852 9
private 978.942 10

Table 5.4: Rank of potential varying effects

Second, different enterprise types have different effects on the credit risk. Com-
paring the coefficients in Table 5.6, the loans issued to collective and private compa-
nies are more likely to become non-performing loans than state-owned companies.
This phenomenon verifies the point of Li and Mehta (2001) that issuing loans to
private enterprises does not ensure better performance for banks.

Third, Figure 5.3 shows that most of the credit risk of the same loan amount
along the entry time decrease over our observation period from 1998 to 2004. Since
the loan amounts have already been adjusted by CPI before estimation, the de-
crease reflects the improvement of loan performance over years. The shock from
the Southeast Asian crisis in 1997 and the membership of World Trade Organiza-
tion (WTO) in 2001 stimulated Chinese banks to focus on risk management. Figure
5.3 also shows that, for the loans issued the same year, a larger loan amount does
not mean the larger credit risk.

Finally, the coefficient of long term in Table 5.6 is the time constant effect while
the coefficient of short term is not significantly different from 0 and hence has been
excluded. The shapes of the time-varying effects in Figure 5.4 shows that there is
no significant time varying impact of short term maturities on credit risk while long
term maturities have. The credit risk of a long term loan is always increasing over
the last decade.
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Model time varying −2lM(β̂M)

3 f2(t)× long term 954.3074
4 f2(t)× long term + f3(t)× short term 952.8173
5 f2(t)× long term + f3(t)× short term+ f4(t)× mortgage 954.3189

Table 5.5: Time varying effect selection
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Figure 5.3: The effect of entry year and log loan amount shown with isolines (left)
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Figure 5.4: Varying effect of short term and long term maturities.
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Estimate Std. Error p-value
Intercept -1.1068 0.1507 3.54e-13
mortgage -0.7319 0.1853 8.24e-05
pledge -1.0246 0.6312 0.1053
long term 1.1420 0.2644 1.63e-05
collective 1.0166 0.2213 4.76e-06
private 0.7816 0.3234 0.0158

Table 5.6: Parametric coefficients

edf F p-value
s(entry year,log loan amount) 10.64 6.357 < 2e-16
s(entry year): short term 1.00 2.616 0.106
s(entry year): long term 1.00 18.747 1.6e-05
R-sq.(adj) = 0.504 n = 1379

Table 5.7: Approximate significance of smooth terms

5.5 Model Validation

5.5.1 Out-of-sample Validation

Credit scoring model can be used to measure the credit risk of exiting borrowers
and predict the credit risk of future applicants. For these purposes, we are primately
interested in out-of-sample validation and out-of-time validation. For this reason we
first decompose the sample into training and testing sample according to a uniform
distribution. The training sample with 1236 observations is for model training and
the other with 143 observations used to check the performance of the model. The
training sample covers 1236 commercial loans over the period between 1998 and
2004.

To evaluate the performance of the proposed credit scoring model, we will em-
ploy a Receiver Operating Characteristic(ROC) curve. The ROC curve is a graph-
ical representation of the tradeoff between Type-I (Sensitivity) error and Type-II
(Specificity) error for every possible cut off. Sensitivity is the probability of iden-
tifying a good loan among the loans that have scores indicating that they are good
loans. Specificity is the probability of identifying a bad loan among the loans that



82 Chapter 5. Exploring the Credit Risk for SMEs in China

1−SPECIFICITY

S
E

N
S

IT
IV

IT
Y

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

With Time effect
Without Time Effect

Figure 5.5: ROC curves of testing sample.

Model Value
With time effect 0.8684547

Without time effect 0.6325032

Table 5.8: Area under curve

have scores indicating that they are bad loans. Sensitivity is usually placed on the Y-
axis and Specificity on the X-axis. A good credit scoring model is one that has high
sensitivity and specificity, which means that the ROC curve of this model climbs
rapidly towards upper left corner of the graph.

To show the importance of introducing the time effect we also estimate a model
with the same covariates as obtained from model selection procedure but without
time varying effects. Figure 5.5 shows the comparison of ROC curves obtained by
the model with time varying effect and a model without time varying effect based
on the testing sample. It is easily seen that the performance of model with time
effect is visually better than that of model without consideration of time effect. To
be more accurate, we calculate the area under the ROC curve, which measures the
speed of the rise of ROC curve to upper left corner. In case of perfect performance
the area under the ROC curve is equal to 1. A comparison of the area under the
ROC curves among the models is reported in Table 5.8.
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5.5.2 Out-of-time Validation

Practically more important is an out-of-time validation. This means based on avail-
able data at time point t we want to score a credit starting at time point t + 1. To
arrive this we use the current information on loan performance to estimate a model
and use this to predict the performance of the loans expiring in the coming period.
With time progressing, we get more information due to the expired loans and based
on this new information we update our model parameters and predict again. By
repeating this process, we could practically assess the credit risk in a continuous
way.

We illustrate this idea by an example. Assume that we have loan performance
information prior to August 31st, 2003 and want to predict the loan performance
expired in September, 2003. Since we use entry year as a variable, a possible diffi-
culty here lies in a situation that some entry years of the loans expired in September,
2003 may exceed the range of the entry years of loans prior to August 31st, 2003, So
that nonparametric curves have to be extended out of range of the values their fit is
based upon. We use Taylor expansion from the boundary of the smoothing function
to realize this prediction. For example, for the unknown function f(time, amount)

we use the approximation

f(t1,m0) ≈ f(t0,m0) + f ′(t0,m0)(t1 − t0) +
1

2
f ′′(t0, m0)(t1 − t0)

2 (5.6)

where t1 is the period to predict, t0 is the boundary value of function f(time, amount)

in time direction, and m0 is the amount, which is the same in t1 and t0. For the un-
known time varying functions we use the same strategy shown above. We first
develop a model with the same structure as before based on the data prior to August
31st, 2003. We then calculate the Taylor expansion for each part and predict the
loan performance. The results are shown in Figure 5.6. To show the importance of
added information, we repeat the same procedure for loans expired in July, 2004,
which is shown in Figure 5.7. Comparing the short term effect and interaction in
Figure 5.6 with those in Figure 5.7 we find that the effects have slightly changed,
especially for interaction between the entry year and the loan amount.
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5.6 Concluding Remarks

In this chapter, we show the application of a generalized logit model with time-
varying effect to a credit scoring model for Chinese SMEs loan data and their es-
timation by P-spline. We also demonstrate that the effects of some predictors like
long term maturities and loan amounts are changing over entry time. From the esti-
mation results we can also verify the path of Chinese economy in last decade. The
results of out-of-sample validation and out-of-time validation show that this consid-
eration of varying time effect not only improves the performance of a credit scoring
model, but also can detect a credit crisis earlier.

The current mortgage mess is related to the performace of the subprime mort-
gage or bad credit mortgage. Although a credit scoring model with time varying
effect can do little to prevent the trigger of a credit crisis, it can detect a credit crisis
much earlier and promote banks to react more rapidly than others if the reshuffle
strategy mentioned above is applied to subprime mortgage data.

At the beginning of a credit crisis, the loans will not all suddenly become non-
performing, but only few defaults happen. However, if we reshuffle a model with
consideration of time varying effect or entry year effect monthly and take use of
the information, the model would detect this phenomenon and change the direction
of time varying effect, which is shown in Figure 5.6 and Figure 5.7 as an example.
Thus, a careful check by the analyst will find that the model actually gives signals
that even downgrade the loans that entry later than those default loans. A swift
reaction would help a bank survive a credit crisis.
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Figure 5.6: Taylor expansion and ROC curve for loans expired in September, 2003.
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Figure 5.7: Taylor expansion and ROC curve for loans expired in July, 2004.



Chapter 6

Summary

In this study penalized spline is proved to be a practical tool for some problems
in the credit market. Due to its nonparametric nature, penalized spline is able to
capture the nonlinear relationship between the economics variable as well as to
detect the potential varying effect. The estimation of the unknown smooth function
is relatively easy to implement because of its link to the mixed model.

In Chapter 2 we began with the introduction of penalized spline and its exten-
sion. The statistical models discussed in this chapter were linked to the issues in
the credit market in later chapters. In Chapter 3, an additive model was developed
to capture the nonlinear relationship between different interest rates and the prices
of mortgage-backed securities. To identify the effects of different pools, grouping
factors are used in estimating the unknown functions. To cope with the correlated er-
rors, this additive model is estimated by being rewritten it as a mixed model. Based
on the estimated first derivatives of the smooth functions, hedging the price changes
against changes in interest rates is implemented. The out-of-sample prediction is
considered by using Taylor expansion.

The impact of burnout out is investigated in Chapter 4 through an use of an
additive model with a bivariate function. By analyzing the the estimated bivariate
function we find that there is an interaction between burnout and scheduled factors.
Moreover, the impact of burnout effect on the prices can be divided into two stages.

A generalized model consisting of a bivariate component, a varying coefficient
component and a tradition linear combination component is used to explore the
credit risk for small and medium-sized enterprises in China. The estimation results
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identify not only the existence of the interaction between loan amount and entry
year, but also the varying effects of the loan maturities. The improvement of the
credit risk model is also verified by the out-of-sample and out-of-time validation.
As in Chapter 3, the out-of-time prediction is implemented by the Taylor expansion.
The idea of using the result of out-of-time prediction as an indicator to a credit crisis
could be an interesting area for further investigation.



Appendix A: The Details of the
Matrix in Model (3.1)

The details of the matrix in model (3.1) are as follows,

P̃ = Xβ + Zu + ε

where

X =




1 s11 s2
11 l11 l211

...
...

...
1 s1T s2

1T l1T l21T
...

...
...

1 sn1 s2
n1 ln1 l2n1

...
...

...
1 snT s2

nT lnT l2nT




, β =




β0

β11

β12

β21

β22




, u =




Uc1
...

Ucn

u1s

...
uks

u1l

...
ukl




Cov

[
u

ε

]
=




σ2
cI 0 0 0

0 σ2
us

I 0 0

0 0 σ2
ul

I 0

0 0 0 σ2
εR



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Z =




1 . . . 0 (s11 − κ1s)
2
+ . . . (s11 − κks)

2
+ (l11 − κ1l)

2
+ . . . (l11 − κkl

)2
+

... . . . ...
... . . . ...

... . . . ...
1 . . . 0 (s11 − κ1s)

2
+ . . . (s11 − κks)

2
+ (l11 − κ1l)

2
+ . . . (l11 − κkl

)2
+

... . . . ...
... . . . ...

... . . . ...
0 . . . 1 (sn1 − κ1s)

2
+ . . . (sn1 − κks)

2
+ (ln1 − κ1l)

2
+ . . . (ln1 − κkl

)2
+

... . . . ...
... . . . ...

... . . . ...
0 . . . 1 (snT − κ1s)

2
+ . . . (snT − κks)

2
+ (lnT − κ1l)

2
+ . . . (lnT − κkl

)2
+






Appendix B: Technical Details in
Chapter 4

To cope with the financial data, we also assume the commonly used AR(1) struc-
ture for the correlated errors and estimate the coefficients. We replace the smooth
functions f1(ci), f2(st), f3(lt) and f4(BOit, scheduleit), respectively, by high di-
mensional basis functions in the form

f1(ci) = B(ci)u, f2(st) = B̃(st)ũ, f3(lt) = Ḃ(lt)u̇

where B(ci), B̃(st) and Ḃ(lt) are built as high dimensional basis functions built, e.g.
from vectors of B-splines or truncated polynomials (see Rupper, Wand & Carroll
2003 and Wood 2006) and u, ũ and u̇ are the corresponding parameters. By analogy
with the univariate case we replace f4(BOit, scheduleit) with a high dimensional
basis

f4(BOit, scheduleit) = B̄(BOit, scheduleit)ū

where B̄(BOit, scheduleit) is a basis in two directions. This gives a high dimen-
sional parametric model with parameters, u, ũ, u̇ and ū. To overcome the overfitting
problem due to the high dimensionality, we extend the least square to the penalized
least square by including penalty terms on the coefficients in the form, λuT Du,
λ̃ũD̃ũ, λ̇u̇Ḋu̇ and λ̄ūT

j D̄jūj ,

min
∑

[pit −B(ci)u− B̃(st)ũ− Ḃ(lt)u̇− B̄(BOit, scheduleit)ū]2

+ λuT Du + λ̃ũD̃ũ + λ̇u̇Ḋu̇ + λ̄ūT
j D̄jūj (6.1)
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If we assume the coefficients u, ũ, u̇ and ū to be taken from normal distributions
e.g. u ∼ N(0, σ2D∗), ũ ∼ N(0, σ̃2D̃∗), u̇ ∼ N(0, σ̇2Ḋ∗), ū ∼ N(0, σ̄2D̄∗), D∗,
D̃∗, Ḋ∗ and D̄∗ as generalized inverse of D, D̃, Ḋ and D̄ respectively, σ2 = 1/λ,
σ̃2 = 1/λ̃, σ̇2 = 1/λ̇ and σ̄2 = 1/λ̄. The model now becomes a Generalized Linear
Mixed Model (GLMM). Thus, the estimation of the smoothing parameters λ, λ̃,
λ̇ and λ̄ and the prediction of the coefficients u, ũ, u̇ and ū can be obtained from
standard mixed model software. The estimated price is now as follows,

p̂it = B(ci)û + B̃(st)ˆ̃u + Ḃ(lt)ˆ̇u + B̄(BOit, scheduleit)ˆ̄u

where û, ˆ̃u, ˆ̇u and ˆ̄u are solutions for minimization problem 6.1.



Appendix C: Technical Details in
Chapter 5

For our investigation of (5.5) we assume that the basis components are (approxi-
mately) orthogonal, which holds exactly, if covariates xj are set orthogonal. This
simplification implies that BT WB + D(λ) decomposes to a block diagonal ma-
trix with blocks of the form BT

j WBj + λjDj , j ∈ I and where Bj is the basis
Bj(ti), i = 1, . . . , n analogously for indices j ∈ C\D and j ∈ D. This simplifica-
tion is shown useful to shed some light on our model selection routine. First, it can
be shown that (see Krivobokova and Kauermann (2007))

λ̂j =
tr(Sj)

ûT
j Djûj

with Sj = Bj(B
T
j WBj + λjDj)

−1BjW as j-th component smoothing matrix. In-
serting λ̂j in (5.4) allows to rewrite the maximum likelihood (5.5) to

l(β̂, λ̂) ≈ l(β̂, û)− 1

2

∑
j

{tr(Sj)− log |I − Sj|}

where the sum as over the index sets, I, C\D and D respectively. Let now %k be
the eigenvalues of BT

j WBj , k = 1, . . . , K with K as spline dimension and assume
without loss of generality Dj = I , like for truncated polynomials. Then

log |I − Sj| =
K∑

k=1

log(1− %k

%k + λ
) = −tr(Sj) +

1

2
tr(SjSj) + . . . (6.2)

Assuming truncated polynomials (or B-splines) it is easy to see that %1 = max(%k)
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= O(n/K) and accordingly it follows that λ = O(K) (justification is found in a
technical report by Kauermann & Opsomer). Ignoring the remaining components
in (6.2) we can now approximate

lM(β̂, λ̂) ≈ l(β̂, û)−
∑

j

{tr(Sj(I − Sj/4))} (6.3)

The latter term in (6.3) serves as estimate for edf , the estimated degree of a
model. Then we obtain

AIC = −2l(β̂, û) + 2edf ≈ −2lM(β̂, λ̂) (6.4)

hence, the model selection by maximizing lM(β̂, λ̂) is approximately equivalent to
minimizing Akaike Information Criteria (AIC) (see Table 5.3, Table 5.4 and Table
5.5).



Appendix D: Sample R Codes

R is a free software, which can be used for statistical computing. For the estima-
tion in this analysis the library mgcv is necessary, which can be downloaded from
http://cran.r-project.org/src/contrib /Descriptions/mgcv.html. The variables are
stored in a R data file: “data”. The following R codes show the implementation of
main models in all chapters and the criteria for model selection,
library(mgcv)
attach(data)
Model1<-gamm(price1 ∼ s(st)+s(lt), method = “REML”, data = impactdata, cor-
relation = corAR1())
Model2<-gamm(price2∼ s(ct) + s(st) + s(lt)+ s(burnoutt, SFt), method = “REML”,
data = burndata, random=list(id.num= 1), correlation=corAR1())
Model3<-gamm(status ∼ s(year,amount)+s(year,by=short)+long+s(year,by=long)
+mo+pl+col+priv, family=”binomial”)
n <- length(status)
mu <- Model$gam$fitted.values
resi <- status - mu
A <- mu * (1-mu)
trS <- sum(Model$gam$edf)
dev <- 2*sum(-log(dbinom(status, size=1, prob= mu)))
AIC <- dev + 2 * trS
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