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Summary

Medicago truncatula is a model plant for studying legume biology. The ability to
interact with beneficial microbial organisms leading to the formation of nitrogen
fixing root nodules and to phosphate-acquiring arbuscular mycorriza (AM) is one
of the main distinctive features of this family of plants. The two different symbioses
of Medicago truncatula are investigated by various international research projects.

Oligonucleotide microarrays are a robust technique to examine the expression of
thousands of genes in parallel. Affymetrix GeneChips®, more recently designed
gene-specifc chips, make it easier for the researcher to compare and evaluate
gene expression and thus will most certainly lead to more accurate results. Not
surprisingly, Medicago GeneChips® are moving into the focus of gene expression
analysis research in this model plant. Software applications for the analysis of
GeneChips® are mostly commercial, or implemented as command-line tools with-
out a user interface. Furthermore, a comparison to the analyses of previously
perfomed oligonucleotide microarrays is difficult, as analysis pipelines and methods
differ in each application. In the scope of this thesis EMMA2, an application for
the analysis of oligonucleotide microarrays, was extended to load, store and ana-
lyze Affymetrix GeneChips® as compareable as possible to oligonucleotide datasets.

Databases for either sequence, annotation, or microarray experiment datasets
are extremely beneficial to the research community, as they centrally gather in-
formation from experiments performed by different scientists. However, datasets
from different sources develop their full capacities only when combined. The idea
of a data warehouse directly adresses this problem and solves it by integrating
all required data into one single database hence there are already many data
warehouses available to genetics. For the model legume Medicago truncatula
there was no such single data warehouse that integrated all freely available gene
sequences, the corresponding gene expression data, and annotation information.
The TRUNCATULIX data warehouse is created in the scope of this thesis to store
Medicago truncatula sequence, annotation, and expression datasets and offer these
to the legume community. Different filtersteps allow a precise query for genes
and expression values in a database of over 200.000 gene sequences and over 200
hybridizations. For the first time users can now quickly search for specific genes
and gene expression datasets in a huge database based on high-quality annota-
tions. The results can be exported as Excel, HTML, or as csv files for further usage.

A multitude of EST and microarray experiments are conducted for Medicago
truncatula covering different tissues, cell states, and cell types. Under these cir-
cumstances the challenge arises to integrate the results of the different expression
analysis methods with the goal to discover novel information from the combined
datasets. The application MediPlEx is designed to allow an integrated expression
analysis for the Medicago truncatula datasets stored in SAMS and in the TRUN-



vi

CATULIX data warehouse. After selecting genes of interest by their expression
conditions, expression profiles are combined for a hierarchical clustering. The re-
sults are presented in a table, as a cluster dendrogram, and in an interactive 3D
application.

The three parts of the thesis have been published by Dondrup et al.| (2009a),
Henckel et al.| (2009), or are submitted (Henckel et al.| (2010)).
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CHAPTER 1

Introduction

Gene expression analysis plays a major role in answering biological questions. Using
recent biological analysis methods like microarrays, the expression of thousands of
genes can be analyzed in parallel. Sequencing based gene expression analysis meth-
ods, like Expressed Sequence Tag (EST) library analysis, or 454 mRNA sequencing
also offer good analysis results. The task of combining the results of different anal-
ysis methods is a challenge for computational biology, providing new insights from
already created datasets.

Medicago truncatula (see Figure is a model plant for studying legume
biology. In addition to the phosphate-acquiring arbuscular mycorrhiza (AM) sym-
biosis, legumes such as Medicago truncatula are characterized by their ability to
form a nitrogen-fixing root nodule to interact with beneficial microbial organisms.
The two different symbioses of Medicago truncatula are investigated by various
international research projects. The AM interactions between the host root and
the fungal partner are an interesting field of research, since more than 80% of land
plants depend on an efficient AM for the uptake of nutrients, primarily phosphate.
By recruiting a basic genetic program allowing microbial infection, legumes such as
Medicago truncatula have evolved the capacity to enter a nitrogen-fixing symbiosis
with the soil bacterium Sinorhizobium meliloti. Symbiotic nitrogen fixation allows
legumes such as Medicago truncatula to grow on nitrogen-depleted soils and to
develop protein-rich seeds, properties exploited in sustainable agriculture|Baier
et al| (2007); |Gallardo et al.| (2007); Hohnjec et al. (2005, 2006); [Barsch et al.
(2006])].
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Broglerick Stearns(The Noble Foundation

Figure 1.1: A picture of Medicago truncatula. The model legume is capable of
forming nitrogen-fixing root nodules in a symbiotic interaction with
fungi and to enter a phosphate-acquiring arbuscular mycorrhiza (AM)
symbiosis. Picture adopted from http://www.noble.org.

1.1 Motivation

There are many freely available tools for the analysis of cDNA microarrays. Un-
fortunately, most applications are not able to load and analyze more than one
kind of microarray (e.g. conventional oligonucleotide microarrays, Affymetrix
GeneChip® microarra,y or Agilent chips). As GeneChips® start playing a major
role in microarray analysis, this feature is mostly requested by biologists recently.
Thus, a free to use application to analyze Affymetrix GeneChips® and compare
them to the results obtained with oligonucleotide microarrays is of essential interest.

Sequencing projects often offer their new results (sequences and annotations)
as downloadable files, or sometimes in an open access database. As time passes,
more and more databases hosting sequences of one organism arise and researchers
can get distracted in searching for results of interest. Microarray gene expression
experiments are often stored in public access repositories, allowing the download
of the datasets, without providing specific analyses or expression queries.

Data warehouses are designed to integrate datasets from different databases, com-
bining information about one specific item (e.g. a gene) from many repositories.
As a benefit, cross-resource analyses are possible, allowing to combine queries for
attributes of different source databases. In the field of Medicago truncatula re-
search, no such data warehouse is available, even though many different sequencing

Thttp: //www.affymetrix.com/
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projects and various microarray expression experiment datasets are available.

As many EST analysis projects and microarray gene expression analyses were
conducted in the recent past, the results of these two transcriptome analysis meth-
ods could be combined and used for an integrative analysis. Only one available
application, Simcluster created by |Vencio et al.| (2007), tries to combine datasets
of different transcriptome analysis methods. Unfortunately, the datasets need to
be converted to the simplex space (a theoretical mathematic space), which is used
in the analysis. Furthermore, the application is unstable, does neither feature a
database connection, nor a user interface, which, altogether, makes it almost unus-
able.

1.2 Goals

As pointed out in the previous section, the currently available tools for transcrip-
tome analysis concentrate on the analysis of only one kind of expression analysis,
which means either EST library analysis, oligonucleotide microarray analysis, or
Affymetrix GeneChip® analysis.

The Medicago truncatula research community cannot access and query all Medicago
truncatula sequence and expression datasets at once, as there is no single data ware-
house offering these datasets and services. To search all information about a single
gene, the researcher has to search manually in different data repositories to find all
available information.

As another point, the combination of the results of the different transcriptome
experiments for further analyses is not practical at the moment.

The three goals of this thesis can directly be derived from these limitations.

Adaption of EMMAZ2 for the analysis of Affymetrix GeneChip® ex-
pression datasets.
As the Affymetrix GeneChip® microarrays and oligonucleotide microarrays should
be analyzed as comparable as possible, EMMAZ2 is to be enhanced to read, store
and analyze Affymetrix GeneChip® microarray datasets. Therefore, the process-
ing of the raw datasets, the analysis of the preprocessed datasets, as well as the
expression analyses are to be implemented in a way that they are comparable to
the classical oligonucleotide microarrays.

Creation of a data warehouse for Medicago truncatula datasets.
For a fast retrieval of sequence and microarray expression datasets in the field of
Medicago truncatula research, a data warehouse is to be created to store freely
available sequences, annotations, and microarray expression datasets. The data
warehouse should be useable as stand-alone tool, as well as a service to offer
the sequence and expression datasets for other applications via an Application
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combined Affymerrix
expression GeneChip®
analyses analysis

Medicago truncatula Other data
data warehouse sources

Figure 1.2: Scheme of the interaction of the proposed applications. EMMAZ2 is to be
extended to analyze Affymetrix GeneChips® and export datasets from
these experiments and classical oligonucleotide microarray experiments
to the Medicago truncatula data warehouse. Sequence and annotation
datasets from SAMS are imported into the data warehouse, additionally
datasets of other freely available Medicago truncatula datasets. The
combined expression analysis, as a part of SAMS, can access the data
warehouse for a fast data retrieval. The grey boxes indicate the tools
to be implemented.

Programming Interface (API).

Integration and analysis of gene expression datasets from different
transcriptome experiments in the scope of Medicago truncatula.
The main goal of this thesis is to combine EST and microarray expression datasets
and analyze them together. For achieving this, an application is to be created on
the basis of SAMS that allows to select datasets of these different gene expression
analysis methods and to analyze and evaluate them together. The results of this
analysis should be presented in a structured way. The resulting datasets should
also be available for download.

A scheme of the proposed extension and interaction of the applications is shown
in Figure [I.2

1.3 Structure of the thesis

Following this introduction, Chapter 2| introduces the biological and computational
background used within this thesis. In this chapter, the methods used in cDNA
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library analysis are documented. Afterwards, the techniques of EST expression
analysis, as well as the computational EST analysis methods are presented. Subse-
quently, two different kinds of microarrays are illustrated. Referring to this, com-
putational methods for the analysis of the results of the microarray experiments
are pointed out.

Chapter 3 describes the existing systems that are available for the analysis of
the different biological data. SAMS is explained in detail for the analysis of EST
datasets, different applications for the analysis of microarrays are compared. Sim-
cluster, the only application allowing to combine different expression experiment
results is presented.

The fourth chapter deals with the design of an infrastructure to fulfill the previ-
ously developed goals. This includes the extension of EMMA2 to store and an-
alyze GeneChip® datasets, the TRUNCATULIX data warehouse, as well as the
MediPlEx expression analysis tool.

The next chapter provides the implementation of the previously designed applica-
tions and extensions.

Results of the different implementations are presented in Chapter [l The benefit
of each of the implemented tools is demonstrated in the context of Medicago trun-
catula. Additionally, some reslts of Arabidopsis thaliana GeneChip® analyses are
shown.

Chapter 7 reflects the thesis and provides a summary and a discussion. Finally, an
outlook to possible future improvements is given.






CHAPTER 2

Background

This Chapter gives detailed biological and computer science background informa-
tion used in this thesis. In the first part, the techniques of cDNA analysis are
described, among these are cDNA library creation, sequencing, EST expression
analysis and computer aided analysis of these datasets. 454 ultra-fast sequencing
as a new sequencing method is presented, as it can be used to sequence mRNA faster
than using ESTs. Afterwards, gene expression analysis using microarrays is intro-
duced, covering the topics oligonucleotide microarrays, Affymetrix GeneChips®,
and gene expression analysis. As a last topic, the techniques of data warehouses
storing different types of datasets are presented.

2.1 cDNA analysis

Deoxyribonucleic acid (DNA) stores the information coding for all genes of an or-
ganism. During transcription, DNA is transcribed into messenger ribonucleic acid
(mRNA), which then is further translated into proteins. Thus, mRNA is the pri-
mary indicator of gene expression and therefore used in Expressed Sequence Tag
(EST) analysis and for microarray expression analysis |[Knippers| (2006)]. ESTs
are mostly used to gain a first insight into the transcriptome of a species of inter-
est. It has recently become possible to analyze mRNA using ultra-fast sequencing
methods, which is much faster and cheaper than EST analysis.

2.1.1 cDNA library creation & EST generation

Complementary DNA (¢cDNA) libraries provide the biological background that is
used for EST analysis. These datasets can be used for in silico expression analyses.
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To create an EST library for a special tissue, mRNA is extracted from a sample
and further processed synthesizing cDNA. The cDNA is used to create the EST
library (Figure 2.1): An oligonucleotide made of deoxythymidin-nucleotides (oligo
dT) binds at the complementary polyA-tail of the 3’end of the mRNA. This oligo dT
operates as a primer for the reverse transcriptase, which synthesizes the first cDNA
strand on the mRNA. When this step is finished, RNAseH (a special ribonuclease)
is added, hydrolyzing the mRNA. The reaction is stopped before the complete RNA
strand is denatured, so that some short pieces of RNA remain at the DNA strand.
These pieces act as primers for the now added DNA polymerase. The 3’-ends are
used as starting points for this synthesis, while in the same time the remaining RNA
is removed by 5’-3’-exonuclease. For further processing in a vector it is necessary to
chop the overlaying single-strand parts with the use of 3’-5’exonuclease. The next
step is to prepare the ends of the double-stranded cDNA to fit into a cloning-vector.
Therefore, adaptors are added to the ends of the cDNA. The adaptors are care-
fully selected to fit the cleavage site of the target vector-DNA. The double-stranded
c¢DNA is cloned into a plasmid vector. A ¢cDNA library is created by inserting the
plasmid vector into a target bacteria by transformation. Afterwards the clones are
cultured. Finally the plasmid DNA is extracted from the clones and the cDNA is
sequenced: This step is done with the chain terminator sequencing method using
dye terminator marking. In this linear PCR~based (polymerase chain reaction) se-
quencing technology (Sanger sequencing), extension is initiated at a specific site on
the template DNA by using a short oligonucleotide primer complementary to the
vector. The oligonucleotide primer is extended using a DNA polymerase. Included
with the primer and DNA polymerase are the four deoxynucleotide bases, along
with a low concentration of a chain terminating nucleotides marked with different
fluorescent dyes. Limited incorporation of the chain terminating nucleotide by the
DNA polymerase results in a series of related DNA fragments that are terminated
only at positions where that particular nucleotide is used. A gel electrophoresis is
applied to these DNA fragments (Figure . The fragments pass a laser (begin-
ning with the shortest fragment), the fluorescence-marked nucleotides emit different
wavelengths of light, which are observed and stored as raw chromatogram files.

2.1.2 Expression analysis using pyrosequencing

In the last years, pyrosequencing technologies evolved and revolutionized sequenc-
ing all over the world. The probably most widespread pyrosequencing technology
is the 454 sequencing developed by 454 Life Sciences (Roche). Due to the ex-
perimental setup the sequencing steps for different samples (genomic DNA, PCR
products, bacterial artificial chromosomes (BACs), and cDNA) are nearly the same
and differ only in preprocessing. Short reads like cDNA are used as they are, longer
reads, like genomic DNA and BACs are fractionated into fragments of 300 to 800
basepairs length. Short PCR products are amplified using Genome Sequencer
fusion primers. mRNA is transcribed into ¢cDNA, which can subsequently be
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Figure 2.1: Scheme of cDNA library creation from mRNA. The first cDNA strand is

synthesized to the mRNA single-strand by reverse transcriptase. After-
wards the mRNA is hydrolyzed and the second cDNA strand is synthe-
sized by DNA polymerase. The cDNA is cloned into a plasmid vector
which is then transformed into bacteria. Figure adopted from A.M.
Perlick
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Figure 2.2: Scheme of the fluorescence gel electrophoresis. The fragments created
by chain terminated PCR are of different size and mass. They run from
the cathode to the anode at different speeds according to their size and
pass the laser. The detector absorbs the light emitted by the fluorescent
dye and generates a chromatogram file.
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library DNA & capture beads “Water-in-oil”
(limited dilution) emulsion
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Perform emulsion PCR
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Figure 2.3: Scheme of the workflow for 454 pyrosequencing - sequencing by syn-
thesis. Two adaptors are added to the cDNA fragments (A and B).
The fragments bind on special designed DNA capture beads and are
immobilized. By adding amplification reagents in a water-in-oil mix-
ture, the DNA beads are separated, each in one single microreactor.
Amplification of the fragments is done in each microreactor separately,
all microreactors are processed in parallel. The amplified fragments are
loaded onto a PicoTiterPlate for sequencing. Special labeled nucleotides
are added to the wells, each carrying exactly one DNA bead. The se-
quencer detects the emitted light to reconstruct the sequences of millions
of fragments at a time. Figure adopted from http://www.454.com

sequenced. The sequencing steps for a 454 sequencing run are described in the
following text and visualized in Figure [2.3

Preparation

Two different adapters (A and B, specified for the 3’ and 5’ fragment ends) are
added to each cDNA fragment. The adapters are used for the purification, am-
plification and sequencing steps. The single-stranded fragments carrying A and B
adapters compose the sample library used afterwards.

Specifically designed DNA Capture Beads® are added, immobilizing the single-
stranded DNA fragments. Each bead carries a unique single-stranded fragment.
With adding amplification reagents in a water-in-oil mixture, the beads are emul-
sified and separated resulting in microreactors, each containing exactly one bead
with exactly one unique DNA fragment.

Emulsion PCR Amplification
Amplification of the fragments is done for each fragment in its own microreactor,
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Figure 2.4: Sequencing reaction of the Genome Sequencer System. Millions of
copies of a single clonal fragment are contained on each DNA capture
bead. During the sequencing progress, nucleotides are flown over the

wells in a fixed order. A CCD camera takes an image of each nucleotide
adding flow. Figure adopted from http://www.454.com

keeping out contaminating or competing sequences. The entire fragment collection
is amplified in parallel, resulting in a copy number of several million per bead. The
emulsion PCR is stopped while the amplified fragments are still bound to their
specific beads.

Sequencing

The amplified fragments are loaded onto a PicoTiterPlate for sequencing. The
wells of the PicoTiterPlate allow only one bead per well due to the well diameter
of 44 ym. The Genome Sequencer flows individual nucleotides in a fixed order
across all wells on the PicoTiterPlate, resulting in a chemiluminescent signal. The
addition of a nucleotide complement to the template strand can be detected by the
CCD camera of the Genome Sequencer Instrument. These pictures are stored for
further analysis (see Figure [2.4).

2.1.3 Computer aided analysis of sequence datasets (ESTs)

As mentioned in the previous Sections, information about the sequencing runs is
stored as raw chromatogram files (EST-sequencing) or as raw picture files (454-
sequencing).
In case of a chromatogram file the computer aided analysis starts by obtaining the
base sequence for each template from the chromatogram files|[Ewing et al. (1998))].
The four necessary steps are described in the following.

In the lane tracking step the gel lane boundaries are identified and assigned to
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IG\CGG»‘»‘#\TCGHGGCCﬂTCuMTGGCTGGTTu\CTCTGCCA
ACGG AAAT CGAGGC CATCAATG GCTGGT TACT CT GC CA

Figure 2.5: This picture shows a trace file of a chromatogram resulting from EST
sequencing. The different colors indicate different bases, peaks express
the intensity. Additionally the Phred quality of the sequence is displayed
as blue bars above the peaks. The base sequence is displayed above.

the right probes. After that, the intensities of the four signals are summed up
across the lane width. During this lane profiling, a profile (or trace) is created,
consisting of four arrays indicating signal intensities during the gel run. Each list
consists of the signal intensities of the considered fluorescent dye. In the next step
(trace processing) signal processing methods are used to deconvolve and smooth the
signal estimates. This step also reduces noise and corrects dye effects on fragment
mobility. Base-calling is the last processing step. Hereby the processed trace is
translated into a sequence of bases. Figure [2.5| shows a trace file. The resulting
EST sequences are stored in fasta files estabhshed by Lipman and Pearson| (1985).

In case of 454 sequencing and raw image files, the analysis is performed using
the software provided by Roche. The position specific signal intensities allow the
software to reconstruct the sequences of each well such that over 1 million reads
can be processed in parallel: The raw data from the CCD camera is processed and
the intensity for each well is extracted, quantized, and normalized. The series of
reads generates a flowgram for each well, similar to the chromatogram files from
EST sequencing. The proportional growing signal intensity indicates the number
of identical bases incorporated. Thus, the sequence can be generated for each
well. The sequences can be assembled afterwards using different bioinformatic
applications, concerning the individual purpose (see Figure .

To reduce redundancy, the sequences are grouped (clustered) on sequence level
using a clustering tool (e.g. tgicl by [Pertea et al. (2003)). Afterwards the clusters
are assembled to Tentative Consensus sequences (TCs) (assembly), or in case
of only one remaining read, this read is stored as singlet. This is commonly
done using CAP3 by Huang and Madan (1999) or the Genome Sequencer De
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Figure 2.6: Obtaining the base sequence for a fragment from the raw images files.
For each of the microreactors all images are analyzed, the intensity val-
ues are extracted, quantified and normalized. This data is then stored
as a flowgram from which the sequence is obtained. Figure adopted
from http://www.454.com
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Figure 2.7: This figure shows the processing steps to generate TCs from sequencing
reads (ESTs or 454 reads). The reads are clustered according to their
base sequence. The clusters are assembled gaining TCs and singlets.
The different colors indicate the different libraries of the reads.

Novo Assembler Software (Roche Applied Science, Mannheim, Germany). It
is possible to cluster and assemble reads from more than one EST/454 library
together, so that sequences occurring in both libraries are assembled to one TC.
Figure shows the clustering and assembly of reads to TCs. The resulting TCs
and singlets can be analyzed functionally using different bioinformatic applications.

2.1.4 cDNA expression analysis

In order to compare gene expression of different samples in-silico, it is fundamental
to define a formula which calculates comparable values for the expression rate of
genes. For all types of gene expression analysis in ¢cDNA libraries the assembly
information of each TC has to be known (which reads from which library were
assembled). There are different approaches in defining this formula. One approach
by Audic and Claverie| (1997)) is to compare the expression in two different cDNA
libraries, or two sets of cDNA libraries.

A second approach calculates an expression value for TCs according to the number
of libraries clustered, the size of the libraries, the size and composition of the TC.
For this so-called logarithmic likelihood ratio, only one set or subset of libraries is
used[Stekel et al.| (2000))].

Enhancing this formula, |Journet et al| (2002) developed the likelihood ratio &
frequency ratio, which compares the expression of a gene in two sets of libraries
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according to the logarithmic likelihood ratio.

In contrast to the proposed formulas from Audic et al. and Journet et al., the
formula of Stekel et al. is not limited to two libraries or sets of libraries, but can
contain numerous libraries that are used for the expression analysis. Because of
this feature, the logarithmic likelihood ratio is described here in detail.

The logarithmic likelihood ratio (R-value) expresses the contribution of the TC
from reads of different libraries. The formula for the R-value is denoted as follows:
Let z;; be the number of reads for gene j in the i-th library and N; the total
number of reads in the i-th library. The equation

R] ;Q:ZJZOQ (le]) ( )

is calculated for the number of cDNA libraries, m, and for the frequency of gene
product, f;, defined by

f =l (2.2)

==
>N
i=1
Unfortunately there is no universal scale for the R-value, as there are many

factors in this formula which differ for experiment and library sizes. However, the

expression values within one analysis are comparable to each other. The larger the
logarithmic likelihood is, the more significant is the expression of the gene.

2.2 Microarray gene expression analysis

This Section focuses on explaining the main principles of microarray gene expres-
sion experiments and analyses.

The first experiments attaching cDNA to a glass surface were made by [Schenal

and Davis| (1992) and further more by Schena et al.| (1998). Since then, a variety
of different microarray types evolved, the two most interesting ones are cDNA mi-
croarrays and oligonucleotide microarrays.
These two cover more than 90% of the hybridized microarrays (65% cDNA & 26%
oligonucleotide microarrays [Schenal (2002)]). Other microarray types to be men-
tioned here are protein microarrays and tissue microarrays. The length of the
spotted reporter sequences for microarrays may vary from 15 nucleotides (shortest
oligonucleotide fragment) to 2500 nucleotides (longest cDNA fragment), common
lengths range between 150 to 300 nucleotides.

The main principles of DNA microarrays can be summarized as short reporters
complementary to the genes to be analyzed are spotted on a surface; extracted
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Figure 2.8: This picture shows an oligonucleotide microarray using a glass slide.

mRNA from cells of interest is washed, marked with dye and hybridized on the
microarray.

Pictures taken from the hybridized microarray indicate genes expression levels for
the spotted reporters.

In contrast to EST /454 analyses, microarrays are no sequencing based technology
and the base sequence of the genes to be analyzed have to be known before an
analysis can be performed. Mircoarrays can be regarded as a quantitative analysis,
whereas EST /454 analysis datasets normally are normally not used for quantitative
analyses.

2.2.1 Oligonucleotide microarrays

For the analysis and profiling of gene expression, oligonucleotide microarrays are
frequently used. Allowing thousands of hybridizations in parallel, microarrays can
be used to detect genes to be expression under different cell conditions. The oligonu-
cleotides are synthesized using PCR and afterwards spotted on the glass surface
using a robotic spotter with print-tips or ink-jet like printing.
A picture of an oligonucleotide microarray is shown in Figure [2.8|

Longer oligonucleotide probes are more specific to individual target genes,
whereas shorter probes may be spotted in higher density across the array and
are cheaper to manufacture.

Oligonucleotide microarrays normally use a two color system, meaning that two
different sample mRNAs are marked with Cy3 (light emission at 570nm = green)



18 Chapter 2. Background

Figure 2.9: This picture shows an image taken from the expression of an oligonu-
cleotide microarray. The red dots indicate genes expressed in one tissue,
the green dots represent genes expressed in the other tissue. Yellow
spots mark genes expressed in both samples. Picture adopted from
http: / /www.wikipedia.com

and Cyb (light emission at 670nm = red) respectively. The Cy-labeled ¢cDNA
targets are used to detect the probes on the microarrays. Both marked cDNA
samples are washed over the chip and hybridized. After the hybridization step, the
microarray can be excited with a laser beam and the emitted fluorescence can be
captured by a CCD camera (see Figure for an example of a resulting image).

The expression of the different genes can be read as green, red, and yellow (red
and green in combination) colors which are normalized using special spotted RNA
spike-ins and added control probes. This two-color technique allows to compare
the expression in one single organism under two different conditions, e.g. healthy
vs. diseased, growing vs. fully-grown, or two different organism types against each
other, e.g. wildtype vs. mutant. The results are relative values, as the expression
intensities (emitted light) are unique to the actual hybridized microarray.

The intensities can be used to identify up-regulated and down-regulated genes in
the two probes.
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Figure 2.10: This schema demonstrates the photolithographic spotting. Reporters
are protected such that no base can bind to them. The protection is
removed using UV light where the new base can be added. The new
base again carries a protection. Schema adopted from http://surf-
chuck.com/research/pagell/pagell.html

R
(REr 1

GeneChip
Human Genome

Figure 2.11: This  picture shows an  Affymetrix GeneChip® and
a match as size comparison. Picture adopted from
http://themedicalbiochemistrypage.org

2.2.2 Affymetrix GeneChip® microarrays

The Affymetrix GeneChip® microarray is a commercially preproduced oligonu-
cleotide microarray. The reporters are synthesized directly in the surface of the
slide using UV-masks and photoactivated chemistry (see Figure : At first, all
reporters sites are protected so that no base can bind to it. Reporter sites and re-
porters that should be extended are lightened by UV light, the others are masked.
The UV light removes the protection so that one base (A, C, T, or G) can be added,
carrying a new protection at the end. This procedure continues until all reporters
are completely spotted. This fast and accurate method allows to spot reporters in
parallel on the whole array.

Each GeneChip® is embedded in a special cartridge, preventing it from contam-
inations and allowing easy handling and transport (see Figure . There are



20 Chapter 2. Background

Figure 2.12: An image of a hybridized GeneChip® taken by a CCD camera.

currently GeneChips® for 75 species available. In most cases one array is sufficient
to carry all reporters for all genes of one species, sometimes related organisms share
one GeneChip®.

The length of the reporters is fixed to 25 basepairs, one gene is represented by 22

to 40 spotted reporters. As a control, one half of the reporters are complemented
at the 13th base, named mismatch probes (vs. perfect match probes). In con-
trast to the commonly used oligonucleotide microarrays, the Affymetrix GeneChip®
seizes an enormous number of reporters (up to 1.000.000 reporters representing over
60.000 genes).
GeneChips® are designed to hybridize only one single mRNA probeset. This tech-
niques requires to hybridize at least two chips to compare the expression from one
chip to the other. This offers the advantage to compare the gene expression from
newly hybridized GeneChips® to experiments performed before, or to GeneChip®
experiments performed in different research labs.

An image taken from a hybridized GeneChip® is shown in Figure

2.2.3 Methods of microarray gene expression analysis

The main principles of microarray gene expression analysis are explained in this
section:

Starting with raw image files, the analysis of the expression values begins with
background-correction, log-ratio computing, and normalization:
Background correction is based on the assumption that the measured signal consist
of the sum of the foreground signal and an unspecified signal of the microarray
surface. Different suggestions on how to deal with the background fluorescence
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were made in the past|Chen et al| (1997)); [Yang et al. (2001); Quackenbush (2002);
Attoor et al. (2004); Yin et al. (2005)].

Ratio computing is used to compute the ratio between the two spotted conditions,
in one oligonucleotide microarray (two-color microarrays), or in two different arrays
(e.g. GeneChips®).

T, = R;/G; (2.3)

with ration 7; for the i-th gene and comparing measurement of a treatment R;

against the measurement of a control condition G;. Using this formula, one has
to keep in mind that the amount of mRNA used for the hybridization can lead to
different results.
The result needs to be logarithmized to reduce noise (the noise error is multi-
plicative - the higher the expression is higher the noise error gets) and to make
the up- and downregulation comparable (0.5 is half the expression and 2.0 is
double the expression)|Chen et al| (1997); Li and Wong| (2001); Sésik et al.| (2002);
Quackenbush| (2002))].

To make different microarrays experiments comparable to each other, normal-
ization is used to remove systematic bias from the datasets |[Quackenbush| (2002);
Smyth and Speed| (2003)]. This bias may originate from differences in RNA-
concentrations between samples, differences in scanner settings, and differences in
labeling, bleaching, and detection behavior of the fluorophores.

Many normalization algorithms have been established in the last years, specializing
on two-color or on single-color microarrays (in this case mostly normalizing all
arrays of an experiment together). The most commonly used normalizations are
the lowess normalization by |Cleveland and Devlin/ (1988) for two-color arrays,
which has been optimized by Dudoit et al.| (2002)) and |Yang et al| (2002). The
algorithm has been adopted for the use with single-color arrays by [Bolstad et al.
(2003), using a pairwise comparison of the intensities of all microarrays in one
experiment(cyclic-loess).

Affymetrix GeneChips are mostly normalized using one of the normalizations
MAS5, RMA, MBEI, or GCRMA [Bolstad et al.|(2003); |Gautier et al.| (2004)].

The next step in microarray data analysis is mostly the identification of signifi-
cant expressed genes. Using a fixed cut-off for ratios or log-ratios is understandably
a bad practice [Quackenbush (2002)]. Statistical tests can bring insight into sig-
nificant gene expression variations, testing if the expression change occurred by
chance, or may be caused by actual expression change. A variety of statistical
tests can be used for the analysis (Student’s T-Test, Wilcoxon’s Rank-Sum Test
by Siegel (1956), CyberT|Baldi and Long| (2001)], LIMMA [Smyth| (2004, [2005))],
SAM|[Tusher et al| (2001))]), where the Student’s T-Test is the mostly used statisti-
cal test for microarray gene expression analysis. Dondrup et al.| (2009b)) compared
these and more statistical tests on the data of specially hybridized microarrays.
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Figure 2.13: A dendrogram of a hierarchical clustering (hclust, complete linkage
clustering). On the x-axis the genes are listed, on the y-axis (Height)
the similarity of the expression profiles of the genes is shown. The
clustering is illustrated by the tree structure from top to bottom.

The study revealed a good usability for the T-test, which does not need many
assumptions for an analysis. Another recommendation is the SAM method, deliv-
ering a very good false-positive rate. This is related to the special design of the
SAM method, as it is a special microarray evaluation method.

Often a subset of genes is connected to some biological pathway, activated or
deactivated by some treatment of the cells. A clustering can be performed to
find genes with corresponding expression profiles. Typical clustering methods are
Ward’s clustering, complete and single linkage clustering, McQuitty clustering,
median clustering, and average clustering.

These analyses can be visualized as cluster dendrograms (see Figure [2.13)), as
M/A plots(see Figure [2.14)), or as cluster heatmaps (see Figure [2.15)).

2.2.4 Standards for microarray expression datasets

Due to the complexity and amount of data gathered in a microarray experiment,
standardized data storage and data handling is an optimal goal. The MGED
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Figure 2.14: An M/A plot. Each dot represents a spotted reporter, where M (x-
axis) is the intensity ratio and A (y-axis) is the average intensity of
the spot in the plot.

Society (Microarray Gene Expression Database Society[[) is an international orga-
nization of biologists, computer scientists, and data analysts that aims to facilitate
biological and biomedical discovery through data integration. Within the MGED,
different groups are set up to solve the problems of standardization and deliver rules
for storage and modelling of microarray datasets. The Minimal Information About
a Microarray Experiment (MIAME) describes the information "needed to enable
the interpretation of the results of the experiment unambiguously and potentially
to reproduce the experiment.” [Brazma et al| (2001)]. These information can be
projected using the MAGE-OM (Microarray Gene Expression - Object Model)
[Whetzel et al| (2006)] and can be exchanged using the MAGE-ML (Microarray
Gene Expression - Markup Language) data exchange format described by Spellman:
et al|(2002).

The MAGE-OM schema covers 17 packages, containing 132 classes with 123
attributes. The classes are connected via 223 relations. MAGE-OM has been
modelled using the Unified Modelling Language (UML), MAGE-ML has been
implemented using XML (eXtensible Markup Language@.

Software applications used for the analysis of microarray data should necessarily
be compliant to the MIAME standard, and be able to import and export MAGE-
ML data files. The best case is a software architecture using the MAGE-OM model

thttp: //www.mged.org
Zhttp:/ /www.w3.org/ TR /xml/
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Figure 2.15: A heatmap of a clustering. The x-axis and the y-axis list the clustered
genes, the matrix in the middle indicates the expression correlation in
a white (similar) to red (not similar) scale.
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User
interface

Figure 2.16: Data warehouse structure. A data warehouse integrates datasets from
other databases to combine the knowledge. Additionally, a data ware-
house offers analysis tools, queries, and export options. The user in-
terface uses the API to connect to the database of the warehouse to
use analysis, query, and export options.

to be completely MAGE-compliant.

2.3 Data warehousing

In computational biology datasets are often stored in special databases dedicated
to a certain species, or to certain biological units (proteins, genes, etc.). Collecting
all information about one special gene often demands for manual work, because the
databases storing the desired information have to be queried manually.

The main goal of a data warehouse is the combination of datasets from different
data sources and a fast data access to this data repository. Users should be able
to find datasets they are searching for and be able to extract all information they
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Figure 2.17: Star database schema. Each dataset stored in the main table keeps
references to the foreign keys of the datasets stored in the secondary

tables.
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Figure 2.18: Reversed-star database schema. The main table stores the primary
key, which is referenced by the entries of the secondary tables.

need. Data warehouses may offer analyses for the datasets, like summing up values
of a query, clustering of the datasets, or combining values of different experiments
(see Figure [2.16) [Kimball and Margy| (2002); Kimball and Casertal (2004))].

Most data warehouses use a star- or reversed-star data schema design (see
Figure and Figure . The star data schema defines keys in the main
table referring to the data in the dimension tables. In contrast to the star data
schema, the reversed-star data schema uses one primary key in the main table, all
foreign keys in the dimension tables are referring to this primary key. The benefit
of a reversed-star data schema is the ability to easily add and delete referenced
datasets and associate the datasets to the already existing ones, as they are always
connected to the primary class via the stored primary key. Using a star schema
the primary entry always has to be edited because the associated data changes.

The design of the data import into a data warehouse is characterized in the
three steps export, transform, and load (ETL).
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In the export step, the relevant data is exported from different source databases.
In the transformation step, the data from the different sources is transformed such
that a consistent data structure is created (e.g. one database uses abbreviation
whereas another database does not). The datasets from the different databases are
connected, such that datasets for one object can be stored as one object in the data
warehouse, or as one object with references on the detail information. The load
step inserts the complete data structure into the database of the data warehouse.

A special created user interface allows to query the database for specific datasets
and offers analysis and export options of the results.






CHAPTER 3

Existing systems

This Chapter focuses on the existing systems relevant for the thesis. At first, appli-
cations for the analysis of EST datasets are presented, focusing on the SAMS sys-
tem. Afterwards, microarray gene expression analysis applications are introduced,
with the main focus on EMMAZ2. Different data warehouse solutions are presented
in Section [3.3] In the end, the only so far existing system for the combination of
different gene expression analysis methods is outlined.

3.1 Computer applications for the analysis of EST
datasets

A set of different tools is required to obtain Tentative Consensus sequences (TCs)
from raw chromatogram files or sequence files.

Different applications that combine these tools are available, here only to mention
EST2uni developed by Forment et al.| (2008)) at the Polythechnical University of
Valencia, Spain, ESTExplorer developed by [Nagaraj et al. (2007) at Macquarie
University, Sydney, Australia, and SAMS (Sequence Analysis and Management
System) developed by Bekel et al| (2009) at Bielefeld University, Germany. All
these applications nearly use the same subset of tools and the same pipeline driven
approach to analyze the datasets. A comparison of the three applications can be
found in Table 3.1l

EST2Uni is a local inastallabel application without user authentication and group
management. Providing import of raw datasets as well as Fasta files, it allows clus-
tering, assembly and automatic annotations. Unfortunately, no manual annotation
editing functionality is available. GO categories and annotations are implemented,
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Feature EST2Uni | ESTExplorer SAMS
Installation local web web
User authentication v
User groups v
Data storage permanent 1 week permanent
Import formats Fasta or raw | Fasta or raw | Fasta or raw
Import pipelines v v v
Clustering v v v
Assembly v v v
Automatic annotation v v v
Manual annotation v

GO v v v
Blast sequences against database v v
KEGG pathways v
Expression analysis v
Export of sequences / annotations s v/ /v

Table 3.1: Comparison of the three EST analysis applications EST2Uni, ESTEx-
plorer and SAMS.

just as a possibility to blast new sequences against the imported genes. It is not
possible to project the genes to KEGG pathways, or to perform a gene expression
analysis. Export functions for the sequence and annotation datasets are available.
ETSExplorer is a web based EST analysis application that does not feature a
user authentication or user groups. Datasets are available using shortcuts like
”John_123” and are stored for one week after analysis. Featuring a raw and
fasta import, as well as clustering and assembly functionality and an automatic
annotation. The absence of a manual annotation, KEGG pathways, no possibility
to blast against the sequence database, and no expression analysis features make
the application less attractive to use.

As the only application with a user authentication and group management, SAMS
features a permanent data storage. The imported raw or fasta files are processed
in a clustering and assembly pipeline, fillowed by an automatic annotation and
the possibility to manual edit and add annotations. A KEGG pathway integration
allows a visualization of the genes in the respective pathways and an expression
analysis offers library specific queries. All sequences and annotations can be
exported.

To illustrate an EST analysis, focuses on SAMS, developed at Bielefeld Univer-
sity. SAMS is designed to handle not only cDNA datasets, but also whole-genome-
shotgun reads, metagenome datasets, and other already preprocessed sequence
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Figure 3.1: This scheme depicts the clustering parameters. Two reads have to have
at least 95 percent identity for at least 40 base pairs. The unmatched
overhang must not exceed 20 basepairs. Scheme adopted from T.Bekel.

datasets (gene and protein sequences).

Mostly used for the analysis of EST experiments, SAMS is designed to import
raw chromatogram files as well as already preprocessed (quality clipped and vector
clipped) sequence files in FASTA format. EST datasets are processed as described
previously (cf. Section using phred as a quality clipping tool
(1998)); Ewing and Green| (1998)]. For vector clipping, the sequences are blasted
against a database consisting of the EMBL standard vector database EMVe(ﬂ, the
NCBI vector database UniVecE| and some in-house vector and adaptor sequences.
The sequences are then trimmed off the vectors for further analysis.

For the clustering and assembling process, SAMS uses a pipeline based approach.
The pipeline by default uses a set of standard parameters for the clustering, defined
by the J. Craig Venter Institute (JCVI - previously called The Institute for Genome
Research - TIGR). Using these parameters, reads are clustered into one group
if the following similarity conditions are fulfilled: First, two reads must show an
alignment of not less than 40 base pairs with at least 95 percent identity in a
pairwise comparison. Second, flanking unmatched overhangs next to the alignment
must not exceed a length of 20 bp (Figure .

These parameters can be changed by the user if necessary. After calculating the
clusters, they are assembled using the application CAP3 by [Huang and Madan|
. This application calculates the TCs and leaves some non-matching reads
as singlets. The TCs and singlets together form a nearly non-redundant represen-
tation of the sequenced data.

On the basis of this data an automatic annotation pipeline is started to find a
putative annotation for each TC and singlet. The automatic annotation pipeline

Ltp:/ /ftp.ebi.ac.uk /pub/databases/emvec/
Zhttp:/ /www.ncbi.nlm.nih.gov/VecScreen /UniVec.html
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consists of several bioinformatic tool, namely BLAST[Altschul et al. (1990))] homol-
ogy searches against standard sequence databases (NT, NR, Swiss-Prot[Boeckmann
et al| (2003)], KEGG|Kanehisa and Goto (2000)], KOG[Tatusov et al.| (2003))]),
as well as Interproscan[Mulder and Apweiler, (2007)] and HMMer[Eddy| (1998)].
A manual annotation can be performed on the basis of the observations of the
different tools, afterwards.

3.2 Microarray analysis software

There are different freely available applications for the storage and analysis of mi-
croarray datasets, here mentioning Arrayexpress developed by |Parkinson et al.
(2005, 2007, 2009), MayDay |Dietzsch et al.| (2006)], and EMMA2[Dondrup et al.
(20094)]. The main features of these widely used tools are compared in Table [3.2]
Arrayexpress is a web based application to mainly store microarray expression
datasets. It allows to import MAGE-ML datasets using a user authentication.
Normalization and analysis of the datasets is available using the tool ”Expression
Profiler”. Arrayexpress uses the MAGE-OM schema to model the datasets in
a MySQL or Orcale database with the addition of NetCDF file storage. The
datasets are manually curated in the import step. Export options allow to export
all uploaded datasets as csv or raw files.

MayDay is a Java Webstart based application that can be run local or with
the public webserver as backend server. Due to this, no user authenitication or
group management is needed. The import of raw datasets and MAGE-ML files
is supported, even if no MAGE-OM schema is used. Datasets can be normalized
and a gene expression analysis can be performed. The datasets are stored in a
relational MySQL database and can be exported as MAGE-ML or csv files. There
is no KEGG pathway integration, but due to a plugin-system it could possibly be
added in the future.

EMMAZ2 can be locally nistalled, or run via the web interface hosted at Bielefeld
University. A user and group management allow to analyze datasets in a group
of scientists providing different rights and roles for the data access. The datasets
are stored in a relational MySQL database and HDFb5 files. EMMA2 uses a LIMS
system for raw microarray file storage (ArrayLIMEﬂ). The complete MAGE-OM is
used to provide a MAGE-ML compatibility. Various customizable normalization
and gene expression analysis pipelines are implemented in EMMA2. A KEGG
integration allows to map the gene expression to the KEGG pathway maps and
visualize the expression experiments. MAGE-ML, MAGE-TAB[Rayner et al.
(2006)] and csv export options are provided by this open source system. None of
the three mentioned systems supported one-color microarrays (GeneChips®) at
the start of the project. As EMMAZ2 is developed at Bielefeld University and offers
the most interesting criteria in the comparison, this project will extends EMMA2

3https: //www.cebitec.uni-bielefeld.de/groups /brf/software /arraylims/
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Microarray analysis Arrayexpress MayDay EMMA2
applications
Installation web local & web local & web
Interface web Java WebStart web
Import MAGE-ML raw data MAGE-ML

& raw data

User authentication v v
User groups v
Data normalization v v v
Expression analysis v v v
two-color microarrays v v v
one-color microarrays
KEGG pathways v
MAGE-ML v v v
MAGE-OM v v
Database backend NetCDF & MySQL MySQL

Oracle or MySQL & ADF5 files
Curation of datasets v

Export

MAGE-ML & csv

MAGE-ML & csv

MAGE-ML & csv

& MAGE-TAB
Access control rudimental Ve
Open source v v

Table 3.2: Comparison of three different microarray analysis applications: Array-
Express, MayDay and EMMAZ2.
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to load, store, and analyze Affymetrix GeneChip® datasets.

3.3 Data warehouses

Currently there are many different data warehouses and data warehouse systems
available. Main features of a data warehouses are integrating datasets of different
types and from different resources, rapid and flexible data access, support for easy
integration with third-party programs, and an intuitive user interface. Analyzing
and querying the stored datasets, data warehouses offer their combined knowledge
to the researcher (cf. Section [2.3).

A widely used data warehouse system is the BioMart system, developed by
Smedley et al. (2009) at the Ontario Institute for Cancer Research (OICR) and
the European Bioinformatics Institute (EBI). The BioMart system offers a data
warehouse design tool for the design of the database classes and for the creation of
the MySQL tables. Moreover, a Perl and a Java API are available for an integration
into already existing software applications. A web interface called MartView offers
an easy access to the integrated datasets and allows to process simple analysis like
counting results and exporting of queries datasets.

The HapMap data warehouse is one of the largest instances of the BioMart
data warehouse system. It stores and administers datasets to identify and catalog
genetic similarities and differences in human beings (Haplotype Map of the Hu-
man Genome) [International HapMap Consortium, (2003, 2004} 2005, 2007)]. The
HapMap database contains over 26 million entries and is uses by researchers from
all over the world, as the project is a collaboration among scientists and funding
agencies from Japan, the United Kingdom, Canada, China, Nigeria, and the United
States.

Other widely used data warehouses built upon the BioMart data warehouse sys-
tem are WormBase, storing datasets of the organism Caenorhabditis elegans and
related nematodes [O’Connell (2005); [Harris and Stein| (2006); Harris et al.| (2009);
Schwarz et al.| (2006); Bieri et al|(2007); |Girard et al. (2007)], dictyBase, storing
datasets of the amoeba Dictyostelium discoideum [Kreppel et al. (2004); Chisholm
et al| (2006); Fey et al| (2006, [2009)], and the rat genome database, storing ge-
netic datasets of diverse rat sequencing and expression analysis projects [Twigger:
et al.| (2006); Dwinell et al.| (2009)].

Another exemplary data warehouse is the Genevestigator data warehouse in-
troduced by Zimmermann et al.| (2004), storing genes and gene expression datasets
of the model organism Arabidopsis thaliana. Nowadays, the focus lies on the evalu-
ation of the imported gene expression (over 30.000 hybridized microarray datasets)
datasets of ten different model organisms |[Zimmermann et al. (2005, [2008)); Laule
et al| (2006); Grennan (2006)]. Different analysis tools are implemented to ana-
lyze gene expression in the stored microarray hybridizations. The tools cover an
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expression analysis (Meta-profile Analysis), a Biomarker Search, allowing to find
genes expressed under specific condition, a Clustering Analysis, identifying groups
of genes that have similar expression profiles, and a tool called Pathway Projector,
which projects found genes on the metabolic and regulatory pathways of Arabidop-
sis thaliana.

In the scope of Medicago truncatula research, there is no single data warehouse
storing genes, annotations, and expression datasets, which leads to the idea of
creating a comprehensive data warehouse.

3.4 Combination of different gene expression analysis
methods

Currently, the only application that is able to combine the results of different gene
expression analysis methods with each other is Simcluster, developed by [Vencio
et al|(2007) at the Institute for Systems Biology, Seattle, USA.

Simcluster may receive different expression experiment datasets, which include
SAGE|Velculescu et al.| (1995)], MPSS|Brenner et al.|(2000)], and Digital Northern
powered by traditional|[Okubo et al. (1992)] or, recently developed, EST sequencing-
by-synthesis (SBS) technologies[Bainbridge et al.| (2006)], and analyzes them using
the simplex space|Aitchison| (1988, [2001))].

The expression datasets have to be transferred into the simplex space before they
are combined for the analysis. This transfer should make the data from different
data sources and methods more comparable, as the simplex space does not use
absolute values and scales, but relative ones (relative values to the overall expression
for single experiments). With the combined datasets a hierarchical clustering is
performed and the results are presented.

The application neither provides a database connection, nor does it allow to use
expression values ”as they are”, the values have to be transferred to the simplex
space before they can be loaded and analyzed. Due to these two issues in usabil-
ity, Simcluster is not useable for the research community. Picking up the idea of
combining gene expression methods, this thesis will create an application useable
for Medicago truncatula expression analyses.






CHAPTER 4

System Design

This Chapter describes the design of the applications stated as goals in Chapter
1.2

For this purpose, this chapter firstly expounds the extension of the microar-
ray expression analysis software EMMA2 (cf. Section [2.2.4]) to store and analyze
Affymetrix GeneChip® expression data in the same way as conventional oligonu-
cleotide microarrays.
Secondly, the design of a data warehouse named TRUNCATULIX for Medicago
truncatula datasets is presented, focusing on data types and on data storage.
The last part of this chapter describes the design of the tool MediP1Ex (MEdicago
truncatula multiPLe EXpression tool), which combines datasets of different gene
expression analysis methods and analyzes these datasets together.

4.1 Extension of EMMAZ2 to store and analyze
Affymetrix GeneChip® expression datasets

One of the features of EMMAZ2 is the MIAME and MAGE compliancy (cf. Section
[2.2.4). This implies that there is no limitation in storing and processing any MAGE
dataset describing any kind of microarray experiment. Anyhow, the Affymetrix
GeneChip® layout differs from the classical oligonucleotide layout (see Section
. Thus, a new importer for the GeneChip® array layout has to be designed
according to these specialties.

Fortunately, there is no change needed in the EMMA2 database schema to store
the new layout.
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Figure 4.1: This scheme demonstrates the extension of the EMMAZ2 software.
Affymetrix GeneChip® datasets should be analyzed, wherefore the
layout of the GeneChip® array has to be imported and the analysis
pipelines have to be adopted.

Another issue is the creation of experiments in EMMA2, by combining the
datasets of different microarrays and replicates. For the use of GeneChips®, this
setup has to be extended, allowing to combine two (or more) sets of GeneChips®
to form one experiment. Each of these sets contains the slides for the hybridization
of one sample and its replicates. Additionally, the interface of EMMAZ2 has to be
adjusted for this experimental design. A scheme of this extension is shown in Figure

41

Microarray layout
The MAGE-OM schema containing the attributes and relations for an ArrayLayout
is shown in Figure and the schema for the DesignElement (to model reporters)
is shown in Figure The layout of Affymetrix GeneChips® is different from
classical oligonucleotide microarrays (see Chapter and Chapter : Each
gene to be analyzed is represented by 22 - 40 spotted reporters, of which the first
half are perfect match probes (PM) and the second half are mismatch probes (MM).
Missmatch probes have the same sequence as PM probes, with the exception that
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the 13th of the 25 bases is complemented. This information, combined with the
positional information (x and y coordinates) and the sequence information is stored
in the layout files provided by Affymetrix (CDF, SIF, probe_tab). The CDF file
stores the main layout information, containing the reporter positions, the informa-
tion which reporter is a PM or a MM probe, and the reporter names. The SIF file
stores the names and the corresponding sequences of the genes in FASTA format.
The _probe_tab file contains the probe names, the x and y coordinates and the
sequences of the spotted reporters (25 bases).

A new layout importer should handle this new data and create the required
objects in the EMMA2 database.

The import of the microarray layout should be divided in two steps, because of
the complex data structure and the memory management.

Import of GeneChip® datasets

In EMMAZ2, the datasets of hybridized microarrays are stored according to the
referred layout. This allows to easily use the previous imported GeneChip® layout
to store all expression values from the CEL file of a GeneChip® hybridization.
The design of the GeneChip® data import is kept simple:

Load all expression values from the CEL file (which is stored in ArrayLIMS)
and store the raw intensity values into the EMMAZ2 database as MBAD objects
(Measured BioAssay Dataset).

Preprocessing of GeneChip® datasets

The preprocessing of the GeneChip® expression datasets should be handled in a
similar way to the preprocessing of the oligonucleotide microarrays in EMMAZ2, to
make a comparison of the results easier. This means that the expression datasets
in one experiment are preprocessed together in one step.

The preprocessing should be designed as pipeline job, equal to the preprocessing
of the oligonucleotide microarray datasets. There are different algorithms available
for preprocessing GeneChip® raw expression datasets, the ones typically used
should be integrated (MAS5, RMA, MBEI, and GCRMA (see Section [2.2.2)).
The raw datasets (MBAD - Measured BioAssay Dataset) should be read from the
database, normalized using the integrated functions and stored in the database as
DBAD objects (Derived BioAssay Dataset).

Expression analysis of GeneChip® datasets

As the datasets are normalized and stored in the database like the oligonucleotide
microarray datastes (as DBAD objects), the expression analyses should be usable as
for oligonucleotide microarrays before. As has become clear in Section [2.2.3] many
significance tests are available for the analysis of gene expression in microarrays.
For Affymetrix GeneChips®, the two-sample t-statistic, as well as an Affymetrix
optimized version thereof, as well as the LIMMA test should be implemented as
pipeline tools to calculate the significant gene expression in the experiment.
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For clustering expression datasets, the same pipeline tools should be used as for
conventional oligonucleotide microarray datasets(Hclust pipeline tool).

4.2 TRUNCATULIX - a data warehouse for the
legume community

In Chapter [1.2] the need for a data warehouse in the field of Medicago truncatula
research is pointed out. This section focuses on the design of this data warehouse,
called TRUNCATULIX.

TRUNCATULIX should be designed as stand-alone tool for the legume research
community, hosting sequence and expression datasets of the model plant Medicago
truncatula. It should also be useable as a data repository offering the complete
backend query functionality via API to be used from other applications.

For the TRUNCATULIX data warehouse, the Sophia data warehouse backend
developed by Runte| (2010) and the IgetDB data warehouse frontendﬂ should be
used. The Sophia backend is BioMart[Durinck et al.| (2005)] compatible and uses
a reversed-star schema (see Section [2.3), which makes it easy to add additional
datasets to the data warehouse, afterwards. The database schema has to be created
such that information about gene sequences, annotations and expression datasets
can be stored and queried fast and easily. The IgetDB web frontend is modular
and should be adjusted to the TRUNCATULIX data warehouse needs. Therefore,
interfaces for filtering, presentation, and export of the sequence and expression
datasets should be created. As the TRUNCATULIX data warehouse is created for
data integration and fast access, data analysis functions should be not be integrated
in the initial version.

A scheme of the data warehouse and the source databases is shown in Figure
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Data sources
Sequence datasets

e Medicago truncatula Genelndex 8.0
The Institute for Genomic Research (TIGR - J. Craig Venter Institute since
October 2006) clustered and assembled 226,923 high-quality ESTs from
over 60 different Medicago truncatula EST-libraries sequenced in laborato-
ries all over the world. Using the clustering software tgicl by |[Pertea et al.
(2003), the Medicago truncatula Genelndex (MtGI, hosted at the Dana-
Farber Cancer Institute - DFCI) was built. The MtGI 8.0 contains 18,612

thttp:/ /www.cebitec.uni-bielefeld.de/groups/brf/software/igetdb_info/
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TRUNCATULIX
data warehouse

i Analysis

EMMA=A

Query

Export

various “User
applications interface

Figure 4.4: This scheme denotes the data sources to be integrated into the TRUN-
CATULIX data warehouse. Queries allow to search for datasets of in-
terest and an exporter allows to save the datasets externally. Sequence
and annotation datasets are integrated from various SAMS projects,
expression datasets are imported from EMMA?2 and the Medicago gene
expression atlas. The API is used by the user interface for the inter-
action with the database, it can also be used by other applications to
retrieve datasets from the warehouse.
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Tentative Consensus sequences (TCs) and 18,238 singletons (Jan. 2005
[Quackenbush et al.| (2001))]). The sequences were imported into the Se-
quence Analysis and Management System (SAMS) (see Section [B.1)). The
SAMS system contains an automatic annotation pipeline (Metanor), which
runs several bioinformatics tools for gene annotation (BLAST[Altschul et al.
(1990)], Interproscan[Mulder and Apweiler| (2007)], TMHMM [Sonnhammer
et al|(1998)]). A high quality consensus annotation is created, covering EC
numbers|Kanehisa and Goto (2000)], KEGG functions[Kanehisa and Goto
(2000)], GO numbers[Ashburner et al.| (2000))], KOG numbers[Tatusov et al.
(2003)], putative gene functions, and gene names.

Medicago truncatula Genelndex 9.0

Recently, the J. Craig Venter Institute released a new version of the Med-
icago truncatula Genelndex, now covering over 70 EST-libraries. The
assembly of the 259,642 ESTs led to 29,273 TCs, while 26,696 ESTs
remained as singletons. In addition to the previous Gene Index 8.0,
TIGR used 25,600 mature transcripts (ETs) from the qcGene Database
(http://compbio.dfci.harvard.edu/tgi/qcGene.html) for the EST assembly,
whereof 11,494 ETs remained as singletons. The new sequences were down-
loaded from the DFCI web pages and imported into SAMS, a complete auto-
matic annotation was performed.

Medicago truncatula genome project

The Medicago Genome Sequence Consortium (MGS(fD sequenced the Med-
icago truncatula genome using a classical BAC sequencing approach|[Cannon
et al| (2006); [Young et al.| (2005)]. The project started in 2005, in October
2007 the second sequence assembly was released (version 2.0). This release
contains 38,759 coding sequences (CDS) and the same number of translated
protein sequences. The CDS’s were downloaded from the project web page
and afterwards imported into SAMS. Using SAMS, a complete automatic
annotation was performed.

Affymetrix Medicago GeneChip® probes

Affymetrix offers a GeneChip® microarray holding probes primarily for genes
of Medicago truncatula, but also for the related legume Medicago sativa and
their symbiontic Sinorhizobium meliloti. The sequences used by Affymetrix
to construct the Medicago Genome GeneChip® were downloaded from the
Affymetrix web page and imported into SAMS. That way, 61,103 sequences
containing the Affymetrix annotations were integrated into SAMS and auto-
matically re-annotated using the Metanor pipeline.

Medicago truncatula 454 sequencing project
Cheung et al.| (2006) used the pyrosequencing approach to generate 292,465

2http:/ /www.medicago.org/genome/about.php
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c¢DNA reads of Medicago truncatula using a GS20 sequencer. The reads were
assembled into 3,619 sequences. These sequences were downloaded from the
project web page and imported into SAMS. Using SAMS, a complete auto-
matic annotation was performed.

Expression datasets

e Oligonucleotide microarray expression datasets
In recent years, almost 1,000 oligo-microarrays studying Medicago truncat-
ula gene expression in different conditions were hybridized in the frame-
work of various international projects[Kister et al. (2007)]. These microar-
rays used two chip layouts designated Mt16kOlil[Hohnjec et al. (2005)] and
Mt16kOlilPlus[Thompson et al.| (2005)] (Arrayexpress ID: A-MEXP-85/A-
MEXP-138). These arrays are associated to more than 50 different expression
profiling experiments that were analyzed with the EMMA 2 (see Section
software. Results of these analyses are for example published by Baier et al.
(2007)), \Gallardo et al.| (2007), Hohnjec et al. (2006), and Kiister et al. (2007).

e Affymetrix GeneChip® expression data
Benedito et al| (2008) hybridized more than 50 Affymetrix Medicago
GeneChips®, addressing three major topics: mature organs covering the
whole plant, nodule development, and seed development. For each of these
topics, four to eight experiments were performed in three replicates each. The
expression datasets of the GeneChips® should be downloaded and integrated
into the TRUNCATULIX data warehouse.

As the EMMA2 software should be extended to analyze Affymetrix
GeneChips®, the results of these hybridizations should be integrated into
the data warehouse.

Database schema
To store information about genes, annotations, GO Categories (GeneOntology),
COG groups (Clusters of Orthologous Groups of proteins), and expression datasets,
five classes representing the different aspects are designed, pointed out in the fol-
lowing;:

The main class in the reversed-star schema of the data warehouse is
the class GENE_ANNOTATION MAIN (see Figure . An object of the class
GENE_ANNOTATION MAIN stores the REGION_ID KEY, which is the primary key for
the reversed-star schema. Additionally, the SOURCE of the data (e.g. SAMS)
and the name of the database (DBNAME) are stored. The other attributes of
an object of the class GENE_ANNOTATION MAIN are the GENEID, the NAME of the
gene, the TYPE of the gene, the LENGTH of the gene, the functional annotation
status (STATUS_FUNCTION), and the regional annotation status (STATUS_REGION).
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GENE_ANNOTATION_MAIN

REGION_ID KEY: INTEGER
SOURCE: VARCHAR (255)
DBNAME: VARCHAR (255)
GENEID: INTEGER
NAME: VARCHAR (255)
TYPE: VARCHAR (255)
SEQUENCE: TEXT
LENGTH: INTEGER
STATUS_FUNCTION: VARCHAR (32)
STATUS_REGION: VARCHAR (32)
ANNOTATION_NAME: VARCHAR (255)
ANNOTATION_GENEPRODUCT: VARCHAR (255)
ANNOTATION_DESCRIPTION: ~ VARCHAR (255)
ANNOTATION_COMMENT: VARCHAR (255)
ANNOTATION_ANNOTATOR:  VARCHAR (255)
ANNOTATION_EC: VARCHAR (255)
ANNOTATION_COG: VARCHAR (255)
ANNOTATION_CONFIDENCE:  VARCHAR (255)

Figure 4.5: The class GENE_ANNOTATION_MAIN. The unique key of an object of
the class GENE_ANNOTATION MAIN is the attribute REGION_ID KEY. Each
gene stored in the warehouse is represented by an object of the class
GENE_ANNOTATION_MAIN, which stores all information about the gene
that is imported from SAMS, including the annotation (attributes start-
ing with ANNOTATION_).

If the stored gene has been annotated (automatically or manually), this in-
formation should also be stored in the object. For this purpose, the at-
tributes ANNOTATION_NAME, ANNOTATION_GENEPRODUCT, ANNOTATION_DESCRIPTION,
ANNOTATION_COMMENT, ANNOTATION_ANNOTATOR, ANNOTATION_EC, ANNOTATION_COG,
and ANNOTATION_CONFIDENCE store the entitled values.

The class EXPRESSION_DATA handles information about microarray gene expres-
sion experiments (see Figure . An object of this class refers to exactly one
GENE_ANNOTATION MAIN object by storing the REGION_ID KEY of that object. This
way, the results of many different expression experiments can be referenced to
one GENE_ANNOTATION MAIN object. Each EXPRESSION DATA object stores a unique
EXPRESSION_ID KEY, the name of the respective EXPERIMENT, the name of the
AUTHOR who performed the experiment, the name of the represented GENE, an in-
ternal BRIDGELINK to a linked GenDB or SAMS gene if available, the FACTORVALUE
of the experiment, the GENEID, the name of the applied STATISTICal analysis, the
calculated expression values (PVALUE, APVA