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Abstract

In the past decade with the advent of high-throughput technologies, biology has migrated from
a descriptive science to a predictive one. A vast amount of information on the metabolism
have been produced; a number of specific genetic/metabolic databases and computational
systems have been developed, which makes it possible for biologists to perform in silico
analysis of metabolism. With experimental data from laboratory, biologists wish to
systematically conduct their analysis with an easy-to-use computational system. One major
task is to implement molecular information systems that will allow to integrate different
molecular database systems, and to design analysis tools (e.g. simulators of complex metabolic
reactions). Three key problems are involved: 1) Modeling and simulation of biological
processes; 2) Reconstruction of metabolic pathways, leading to predictions about the
integrated function of the network; and 3) Comparison of metabolism, providing an important
way to reveal the functional relationship between a set of metabolic pathways.

This dissertation addresses these problems of in silico systems analysis of
biopathways. We developed a software system to integrate the access to different databases,
and exploited the Petri net methodology to model and simulate metabolic networks in cells. It
develops a computer modeling and simulation technique based on Petri net methodology;
investigates metabolic networks at a system level; proposes a markup language for biological
data interchange among diverse biological simulators and Petri net tools; establishes a web-
based information retrieval system for metabolic pathway prediction; presents an algorithm for
metabolic pathway alignment; recommends a nomenclature of cellular signal transduction; and
attempts to standardize the representation of biological pathways.

Hybrid Petri net methodology is exploited to model metabolic networks. Kinetic
modeling strategy and Petri net modeling algorithm are applied to perform the processes of

elements functioning and model analysis. The proposed methodology can be used for all other



metabolic networks or the virtual cell metabolism. Moreover, perspectives of Petri net
modeling and simulation of metabolic networks are outlined.

A proposal for the Biology Petri Net Markup Language (BioPNML) is presented. The
concepts and terminology of the interchange format, as well as its syntax (which is based on
XML) are introduced. BioPNML is designed to provide a starting point for the development of
a standard interchange format for Bioinformatics and Petri nets. The language makes it
possible to exchange biology Petri net diagrams between all supported hardware platforms and
versions. It is also designed to associate Petri net models and other known metabolic
simulators.

A web-based metabolic information retrieval system, PathAligner, is developed in
order to predict metabolic pathways from rudimentary elements of pathways. It extracts
metabolic information from biological databases via the Internet, and builds metabolic
pathways with data sources of genes, sequences, enzymes, metabolites, etc. The system also
provides a navigation platform to investigate metabolic related information, and transforms the
output data into XML files for further modeling and simulation of the reconstructed pathway.

An alignment algorithm to compare the similarity between metabolic pathways is
presented. A new definition of the metabolic pathway is proposed. The pathway defined as a
linear event sequence is practical for our alignment algorithm. The algorithm is based on strip
scoring the similarity of 4-heirachical EC numbers involved in the pathways. The algorithm
described has been implemented and is in current use in the context of the PathAligner system.

Furthermore, new methods for the classification and nomenclature of cellular signal
transductions are recommended. For each type of characterized signal transduction, a unique
ST number is provided. The Signal Transduction Classification Database (STCDB), based on
the proposed classification and nomenclature, has been established. By merging the ST
numbers with EC numbers, alignments of biopathways are possible.

Finally, a detailed model of urea cycle that includes gene regulatory networks,
metabolic pathways and signal transduction is demonstrated by using our approaches. A
system biological interpretation of the observed behavior of the urea cycle and its related
transcriptomics information is proposed to provide new insights for metabolic engineering and

medical care.
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Chapter 1
Introduction

1.1 The Problem

In the past, much of biological research has focused on data collection. The main reason for
this is that gathering data was by itself much work. However biology is changing, especially
because of the availability of large amounts of data that is easily accessible via the Internet
[Col02]. Genome projects generate enormous amounts of information. The amount of
sequence data is increasing exponentially over time (Figure 1.1a), and this growth will likely
continue for the foreseeable future. The diversity and accumulating of biological data both on
genomic and metabolic levels from different species (Figure 1.1b) bring a new challenge for
revealing what life really is. Extraordinary successes of the genome projects push the need for
the development of more sophisticated and powerful computational techniques.

We are in a "post-genomic” era. Although sequence analysis have been and still are
the most common topics in the bioinformatics studies, we are looking for computational
methods and tools to predict functional details. It takes bioinformatics beyond its original
boundaries. It is certainly not data acquisition for molecular biology, but it is about the
application of computer techniques, such as data abstraction, data manipulation, modeling,
simulation, and functional analysis. The data generated by the experimental scientists requires
annotation and detailed analysis in order to turn it into knowledge that can then be applied to,
for example, healthcare, agriculture, industry and environment, to improve health care via

gene prediction, drug design, gene therapy, and much more.
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Figure 1.1 Ever growing biological data and their complexity. (a) The exponential growth of DNA
sequences in GenBank over time (http://www.ncbi.nlm.nih.gov/Genbank/genbankstats.html). (b) This
chart indicates the known genes and their functional contribution in different species. The source data is

taken from KEGG, 12.04.2003 (http://www.genome.ad.jp/kegg/docs/upd_genes.html).

Moving from sequence to structure to function to application, bioinformatics developments are
occurring in genome modeling and annotation, comparative protein modeling and folding
assignment, algorithmic development, in silico drug design, mechanistic enzymology and
modeling of cellular processes. Biological data functional analysis is a major topic beyond
genome research. Computational metabolics focuses on the computational interpretation of
cellular phenomena that involve not only nucleic acid and protein sequences, but also
metabolic pathways, gene regulatory networks and signaling pathways. In this sense systems
analysis of metabolic network is becoming a promising field.

The development of computer science makes it possible to represent the complex
metabolic network of physical and functional interactions, which take place in living cells, in
ways which enable us to manipulate, analyze and achieve understanding of how cells function.

In order to understand the logic of cells, methods of systems modeling and simulation
are needed to find the interrelationships among different molecules and reactions. Fortunately
the data and knowledge of genes, proteins and pathways are available, and various biology
database systems are accessible. The status quo in modern biology, especially in molecular
biology, is that exponential growing biological data are produced. For instance, with powerful
computers and robot sequencers, small genomes, such as bacterial genomes, can be completely

sequenced in a matter of weeks or days. Protein substances can be promptly analyzed by



automatic amino acid analyzer and latest development of high technology in GS-MS, HPLC,
NMR and others accelerates the data accumulation. In the meantime, some of these
experimental data are collected and stored into a well-formatted way and provide an easy
access for the public.

Now, suppose a patient gets a diagnosis of metabolic disease (a disorder caused by
malfunction of normal enzyme reactions), what is the metabolic mechanism of it? Most
diseases are related to some kind of enzyme insufficiency and the malfunction of signal
transduction pathways which regulate the expression of the genes that encode the desired
enzymes. How does the gene or enzyme defect, that leads to a blocked biochemical reaction
function? A good model of the metabolic reactions is appreciated to see the detail information
about the essential proteins or enzymes and their regulations to the disease. With such a
model, we might easily figure out the real causes, further development of the disorder, and
possible alternative pathways to overcome the blockades. Unfortunately, due to the complex
interconnection among metabolic reactions, current models are only present parts of the whole
metabolic network in a living cell. It is necessary to develop a large-scale network model
automatically.

Although a lot of biological data are available today, some other data, especially those
on metabolic regulation, are still insufficient. Given a set of rudimentary biological data, such
as DNA and protein sequences, some enzymes and chemicals, can we predict the complete
gene controlled metabolic pathway, understand the complexity of networks (cross interaction
and regulation both on biochemical reactions and gene regulation, transcription factors, etc.),
and try to model and simulate it? Considering the availability of metabolic databases we try to
find relations of the rudimentary data. Is it possible to develop a web-based information
system for biopathway retrieval and functional analysis with the emphasis on analysis rather
than storage? Can this information system ensure that analyzed data remains up-to-date in the
light of new data, as well as reporting new information as it becomes available?

If the data is still rough, can we make a comparative analysis of pathways between
human and mouse or some other model animals that have more detailed pathway information?
In order to find function-related pathways, to interpret evolution processes on metabolic level
and to determine alternative pathways, pathway alignment is needed. That is, given two
biopathways (metabolic pathways or signaling pathways), can we calculate the similarity of

them?

1.2 Three Profiles

The problem mentioned above contains three main profiles of in silico systems biology
research: 1) Modeling and simulation of biological processes, i.e. computer modeling of

metabolism, based on experimental data. 2) Prediction of metabolic pathways based on



annotated genome (or transcriptome) sequences and metabolic data, leading to predictions
about the integrated function of the network. 3) Comparison of metabolism based on the
analysis of presence/absence of sequence and/or metabolite patterns, providing an important
way to reveal the functional relationship between a set of metabolic pathways.

Various groups of academic scientists and researches from biotechnology, informatics
and pharmaceutical companies are coming together to try to solve these problems. A little
more description of the motivation of the three problem profiles is presented in the following

three sections.

1.2.1 Metabolic Networks Modeling, Simulation and
Analysis

New high-throughput technologies in genomics, transcriptomics, proteomics and
metabonomics enable us to estimate the metabolism on a system-wide level and decipher the
biological regulatory processes in a quantitative manner. Modeling and simulation is a
fundamental and quantitative way to understand complex systems, which is complementary to
the traditional approaches of theory and experiment. In some cases, simulating increasingly
complex networks will help us to understand the impact of various factors (e.g. enzyme
insufficiency, metabolic blockade, drugs effects, etc.) on metabolic systems. This is
particularly useful in the pharmaceutical industry for designing site-directed drugs to target
mutant enzymes.

Nevertheless, it is very difficult and challenging to model metabolic systems and to
perform computer simulations on them, as metabolic systems are inherently complex
information processing systems that are governed by numerous biological and natural
processes. The availability of high performance computers, coupled with mathematical
modeling, has contributed to the development of increasingly accurate models of metabolic
systems. This makes it possible to represent the complex metabolic network of physical and
functional interactions in ways which enable us to manipulate, analyze and understand cell
functioning. Several well-known biological simulation software packages such as Gepasi
[Men93], Dbsolve [Gor99] and DynaFit [Kuz96] for quantitative simulation of biochemical
metabolic pathways, based on numerical integration of rate equations, have been developed.
Those studying biochemical system simulations usually limit their models to focus on only
one of the several levels of time-scale hierarchy in cellular processes. Linking the gaps
between the various levels of this hierarchy is an extremely challenging problem that needs to
be addressed. Several approaches such as E-Cell project [Tom01] are attempting to achieve a
systems cell modeling. We propose to model and simulation integrated metabolic networks by
using Petri net methodology [Pet62] and hope to give a highlight on the field. We want to use

Petri net methodology to explore the cellular processes on a system-wide level. The aim is to
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understand not only the functions of individual genes, proteins and smaller molecules like
hormones, but also to learn how all of these molecules interact within a cell. We hope to use
this information to generate more accurate computer models that will help unravel the
complexities of cellular functions and the underlying mechanisms of metabolic disorders.

In the past years, different Petri net tools were used to model and simulate metabolic
pathways and gene regulatory networks. However, most of Petri net tools import and/or export
Petri net diagrams in a binary file format, which poorly supports the possibility of making
diagrams distributed in multiple format files or constructing a net by a text format file. That
means it was impossible to extract data from biology databases and construct a Petri net model
automatically. Although several Petri net tools such as PNK [Jue0O], Renew [KumOO] and
CPN [Lyn98] have been equipped with an XML based file format, they have their different
definitions and ontology because of the differences of design destinations. As a result it is
difficult to exchange models between different analysis and simulation tools and take
advantage of them. One cannot adapt ones Petri net XML file to fit without any modification.
Moreover, every user has to write an XML file from the original data source, which is time-
consuming. With regard to applying the Petri net methodology to metabolic networks, a new
standard would be helpful. With so many software tools, but few common exchange formats,
even with XML format, we are motivated to propose a common exchange language — Biology
Petri Net Markup Language (BioPNML) for metabolic networks Petri net modeling. The aim
is to enable exchange of models between metabolic data and Petri net tools, as well as other
bio-simulators. It uses a simple, well-supported textual substrate (XML) and adds components

that reflect the natural conceptual constructs.

1.2.2 Biopathway Prediction

More than 500 database systems are available which represent molecular data. Therefore,
experimental data and experimental results of fundamental metabolic processes like gene
regulation, metabolic pathway control, signal pathway control and cell differentiation
processes are available via the internet [Col02].

In order to improve our understanding of cells and organisms as physiological,
biochemical, and genetic systems, we have to study them as an integrated metabolic system. It
is clear that the next step of implementing these databases is to integrate them under a specific
biological perspective. Retrieving metabolic pathways from current biological data,
reconstructing metabolic pathways from some rudimentary components such as genes, gene
sequences, proteins, protein sequences and other biological molecules are one of the major
tasks in bioinformatics. Broadly speaking, there are two senses in which reconstruction of
metabolic pathways is being done: (1) Completing metabolic pathways by mining genomic

databases to ‘discover’ enzymes and proteins that are not cloned and that may not have been
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suspected to exist. (2) Integrating available genome, transcriptome, and proteome information
into useful computer models of pathways and cellular processes without the global,
quantitative comprehension, that at first sight seems necessary.

Attempts have been made to reconstruct metabolic pathways either via genome
sequence comparison [Mus96] [Bon98] [Sun02], enzyme assignment [van00] and enzyme EC
numbering [Oga98]. However, they have a number of limitations. Predicting each gene
function based solely on sequence similarity often fails to reconstruct cellular functions with
all the necessary components. They do not contain comprehensive information about
metabolic pathways, such as physical and chemical properties of the enzymes that are
involved. Some approaches are not fully computer-aided. The individual database search
process requires too much human intervention, and the quality of annotation largely depends
on the knowledge and work behavior of human experts. The future of metabolic pathway
analysis may depend upon its ability to capitalize on the wealth of genetic and biochemical
information currently being generated from genomic and proteomic technologies. An ideal
system for metabolic pathway prediction would include a web-based architecture to allow
remote and local access to the different biological databases. It would offer a proven approach
that can perform complex queries, data transformations, and data integration under one simple
interface, without requiring extensive programming. We are motivated to develop such a web-

based information retrieval system that will help the prediction of metabolic pathways.

1.2.3 Biopathway Alighment

Nucleic acid and protein sequence comparison is an important tool in genome informatics.
Initial clues to understanding the structure or function of a macromolecular sequence arise
from homologies to other macromolecules that have been previously studied. Many
applications and tools, such as BLAST [http://www.ncbi.nlm.nih.gov/BLAST] and FASTA
[http://www.ebi.ac.uk/fasta3], are developed to further understand the biological homology
and estimate evolutionary distance.

Recently the emphasis of research efforts begins to turn back from gene sequences to
metabolic pathways. It is therefore not surprising that the development of computational
algorithms to predict metabolism function from gene, amino acid sequences and metabolic
networks is now a core aim of bioinformatics. As more genomes are sequenced and the
metabolic pathways reconstructed, it becomes possible to perform biological comparison from
a biochemical-physiological perspective. Alignments represent one of the most powerful tools
for comparative analysis of metabolism. Metabolic pathway alignment is of importance to
study biology evolution, pharmacological targets and other biotechnological applications
[Dan99], such as metabolic engineering and metabolism computation. A metabolic pathway

alignment is a mapping of the coordinates of one pathway onto the coordinates of one or more
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other pathways. For example, the same metabolic pathway from two organisms may have
diverged if the organisms evolved from a common ancestor, where individual metabolites and
enzymes may have been changed, added or lost in one pathway. It involves recognition of
metabolites that are common to a set of function-related metabolic pathways, interpretation of
biological evolution processes and determination of alternative metabolic pathways.
Moreover, it is of assistance in function prediction and metabolism modeling. Although
researches on genomic sequence alignment have been intensively conducted, so far the
metabolic pathway alignment is less studied. Several approaches of metabolic pathway
alignment have already been made by Dandekar et al. [Dan99], Forst C.V. [For99] and
Yukako T. [Toh0Oa] [TohOOb]. However, their definitions of pathways are traditional
biochemical pathways such as glycolysis, the pentose phosphate pathway, and the citric acid
cycle. Less effort is made on analysis of gene regulatory networks as well as signaling
pathways.

In this thesis, we try to give out basics of common definitions of metabolic pathway,
gene regulatory pathway and signaling pathway. We also present a biopathway alignment to

characterize comparatively the metabolic pathways and signaling pathways in cells.

1.3 Content of Dissertation

This thesis is primarily concerned with systems analysis of biopathways. It provides a toolbox
to predict metabolic pathways from rudimentary data, to automatically construct a Petri net
model for modeling and simulation, and to comparatively analyze biopathways. In Chapter 2 a
brief overview of systems metabolic analysis and literature review is provided on the
biological complexity, Petri net based modeling and simulation, and prediction of metabolic
pathways, as well as algorithms for biopathway alignment with particular emphasis on
metabolic pathways. Chapters 3, 4 and 5 are the core of the thesis. Chapter 3 presents the Petri
net methodology for metabolic network modeling and simulation. An explicit example is
explained. A proposed standard for biological data interchange, BioPNML, is presented.
Chapter 4 presents the theoretical and practical approaches for the retrieval and reconstruction
of metabolic pathways from rudimentary components. In Chapter 5 we present a new
algorithm for metabolic pathway alignment. A classification of signal transductions is
recommended and we discuss biopathway alignment in Chapter 6. Chapter 7 presents a case

study of urea cycle biopathway. The conclusion of the study is presented in Chapter 8.
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Chapter 2
State of the Art

2.1 Biology Basics
2.1.1 Biological Complexity

Life is the process of metabolism that transforms compounds such as carbohydrates, amino
acids and lipids, and the energy required and all the other components that take up living
systems to synthesize them and to use them in creating proteins and cellular structures as well
as sustaining life. A cell contains a great numbers of organelles, specific proteins, and much
more (Figure 2.1.1a). There are thousands of biochemical reactions taking place per second in
a living cell. In Escherichia coli, for instance, there are 225,000 proteins, 15,000 ribosomes,
170,000 tRNA-molecules, 15,000,000 small organic molecules and 25,000,000 ions inside the
a few um cell [Goo93]. There are estimated 10'*-10"® biochemical reactions in a cell [End01].
These reactions are interconnected by the metabolic molecules. Many molecules involved in
one reaction can also be found in other reactions where the molecules act as substrate or
activator or repressor, the activities of enzymes are enhanced or inhibited by some molecules.
Proteins and enzymes are synthesized from encoding genes which can also be switched on or
off by some other molecules. Thus a densely connected, intricate and precisely regulated
reaction network is built (Figure 2.1.1b). These connected biochemical reaction is normally
called a metabolic network. Obviously, the more interconnections exist, the harder it gets to
predict how the system will react. When systems reach a certain size, they will be become
unmanageable and difficult to understand without the help of computational support. It also

gets harder to change any part of the system without influencing other parts.
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Figure 2.1.1 Illustration of complexity of cell. (a) A typical illustration of a mammalian cell structure
[Rud97]. (b) Representation of about 500 common reactions of the basic metabolic network [Alb94].
Each point (node) represents a distinct chemical substance and each line (edge) represents a simple
chemical transformation, catalyzed by a separate enzyme. A typical mammalian cell synthesizes more
than 10,000 different proteins, a major proportion of which are enzymes. The central vertical line and
circle represent what biochemists call the "glycolytic pathway" and the "citric acid cycle", the bases of

cellular energetics.

2.1.2 Biopathways

Although many of the interconnected systems of biochemical reaction pathways have been
known for some time, knowledge of integrated functioning of metabolic systems remains
elusive. That is, the functional definition of metabolic networks and their role in the context of
the whole cell is lacking. On the other hand, it is usually impossible to evaluate and analyze
the huge amount of interactions as a whole due to its extreme complexity. People divide those
biological processes into three levels: gene regulation, biochemical reaction and signal
transduction. This classification is helpful when we look into a specific biological process.
Typically metabolic networks deal with the flow of mass and energy; in gene regulation,
process involved in the transforming gene to encoded protein is the essential purpose; while in
signaling networks the purpose is the regulation of other processes, and the use of energy and
mass flow is a requirement, but not really the point. In general, biopathways are those

biological processes taking place in metabolic systems.
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2.1.2.1 Metabolic pathways

Metabolic pathways are so far the most intensively studied by biologists and bioinformatists. It

is not surprising that metabolic pathways are often misunderstood as the whole set of

biochemical reactions that sustain life. But, a metabolic pathway is a subset of these reactions

that describes the biochemical conversion of a given reactant to its desired end product. In

other words, a metabolic pathway is a special case of a metabolic network with distinct start

and end-points, initial and terminal vertices, respectively, and a unique path between them

[For99]. Traditionally, metabolic pathways can be interpreted as relational graphs. Typical

metabolic pathways are given by the wall chart of Boehringer Mannheim [Mic82] [Mic99] and

KEGG [Kan00], which are available via a number of printed and on-line sources (Figure

2.1.2.1A).
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Figure 2.1.2.1A Typical diagram representation of metabolic pathways (urea cycle). (a) ExPASy,
http://tw.expasy.org/cgi-bin/show_image?G8. (b) KEGG, http://www.genome.ad.jp/kegg/pathway/
map/map00220.gif

The prevailing definition of a metabolic pathway is a graph (V, E), where V is a finite vertex
set, whose elements are called vertices and E is collection of edges, where an edge is a pair (u,
v) with u, v in V, that is, the edge is adjacent to u and v and connects these two vertices. Each
vertex represents a metabolite and each edge represents a biochemical reaction that is
catalyzed by specific enzyme. In an undirected graph edges are unordered pairs and connect
the two vertices in both directions, hence in an undirected graph (u, v) and (v, u) are two ways
of writing the same edge (Figure 2.1.2.1Ba). In a directed graph, edges are also called arcs,
connecting a source vertex to a target vertex. In this case, a directed graph is a pair (V, A),
where V is a finite set and A is a set of ordered pairs of elements in V. V will be called the set
of vertices and A will be called the set of arcs (Figure 2.1.2.1Bb). All chemical reactions,
including enzyme-catalyzed reaction, are to some extent reversible. Within living cells,
however, reversibility may not occur, because reaction products are promptly removed by
additional enzyme-catalyzed reactions. Metabolite flow in living cells is largely unidirectional.
Thus an irreversible directed graph is often used to model a metabolic pathway (Figure
2.1.2.1Bc). A weighted graph is a graph, in which each edge has been assigned a number
(usually positive) called its weight (Figure 2.1.2.1Bd).
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Figure 2.1.2.1B Examples of graphs.

2.1.2.2 Gene regulatory networks

Gene regulatory networks have become a significant field of research for biologists and
Bioinformatists. Gene regulatory networks are most often described and interpreted as the on-
off switches and rheostats of a cell operating at the gene level. They dynamically orchestrate
the level of expression for each gene in the genome by controlling whether and how
vigorously that gene will be transcribed into RNA. Each RNA transcript then functions as the
template for synthesis of a specific protein by the process of translation. Process of gene
regulatory networks is not restricted to the level of transcription, but also may be carried out at
the levels of translation, splicing, posttranslational protein degradation, active membrane
transport, and other processes [Ana00]. In addition, such networks often include dynamic

feedback loops that provide for further regulation of network architecture and output.

feedback
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Figure 2.1.2.2 (a) Central dogma (from the City University of New York); (b) A gene regulatory
network (from http://doegenomestolife.org/gallery/REGNET.jpg) Transcription of the genes cro, cIl
and genes followed by cII gene from the promoter PR begin, when neither CI protein nor Cro protein

does not bind to the operator sites OR3, OR2, and ORI. The genes cro, cIl and the genes followed by cII
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will be transcripted from the promoter PR, when neither CI protein nor Cro protein does not bind to the
operator sites OR3, OR2, and OR1. The condition of E. coli gives an effect to the concentration of CII
protein. If the concentration of CII protein is low, the transcription from PR continues and keeps the
concentration of Cro protein at some level by the feedback control of the Cro protein itself. On the other
hand, if the concentration of CII protein is high, the CII protein binds to the promoter PRE as a positive
transcription factor, then the transcription from PRE begins. Then, anti-sense RNA of the gene cro is
produced, which helps to degrade the concentration of Cro protein more rapidly. Transcription of cl
gene is followed and concentration of CI protein keeps at some level by the feedback control of the CI

protein itself. (http://www.genomicobject.net/member3/GONET/img/lambda_switch.jpg)

As indicated in the schematic presentation (Figure 2.1.2.2a), Genes (DNAs) are transcribed
into RNAs by the enzyme RNA polymerases. RNA acts as a go-between from DNA to
proteins. Only a single copy of DNA is present, but multiple copies of the same piece of RNA
may be present, allowing cells to make huge amounts of proteins. RNA transcripts are
subjected to post-transcriptional modification and control: rRNA transcript cut into
appropriate size classes and initial assembly in nuclear organizer; tRNA transcript folds into
shape; mRNA transcripts are modified, noncoding sequences (introns) removed from interior
of transcript; in eukaryotes, all RNA types are transported to the cytoplasm via the nuclear
membrane pores. Then mRNA molecules are translated by ribosomes (rRNA + ribosomal
proteins) that match the 3-base codons of the mRNA to the 3-base anticodons of the
appropriate tRNA molecules. Finally, newly synthesized proteins are often modified after
translation (post-translation) before carrying out its function, which may be transporting
oxygen, catalyzing reactions or responding to extracellular signals, or even directly or
indirectly binding to DNA to perform transcriptional regulation and thus forming a closed
feedback loop of gene regulation. Figure 2.1.2.2b shows a gene regulatory network. The

interaction among different parts makes cellular regulations extremely complex.

2.1.2.3 Signal transduction pathways

Researchers have known for decades that for cells to grow and function in a complex
environment they must communicate with each other. Cell communication, or signal
transduction, is simply the means by which cells in the body respond to signals coming from
outside those cells. A “biological signal” could be defined as a molecule that acts as a pre-
arranged sign, indicating either the commencement and/or the termination of (one or more)
intracellular processes. In other words, the nature of the signaling molecule decides it's effects,
just as pre-arranged signals have pre-arranged effects [Cla96]. Virtually cell behavior is
regulated by a complex network of intracellular and extracellular signal transduction
pathways. Signal transduction, in general, is the mechanism by which a signal encountered at a
cell's surface (i.e. an extracellular signal) is transformed into an intracellular signal that in turn

invokes physiological changes within a cell.
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Research on signal transduction or cell communication, at present, is still basic.
Important biotechnological advances in recent years have allowed increasingly detailed studies
of a variety of signaling pathways. These advances include production of recombinant DNA,
the PCR [Alb94], gel electrophoresis [Vin88], microarrays [DeR99], and the serial analysis of
gene expression (SAGE) technique [Vel95]. Development of such techniques is ongoing, and
large-scale assays of peptides and protein-DNA binding activity are becoming more feasible
[Abb02]. It has a wide range of therapeutic possibilities including novel treatments of cancer
or other abnormal cell growth.

A simple schematic presentation of signal transduction is shown below.
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Figure 2.1.2.3 Graphical representation of signal transduction pathways. Cited from the Emergent
Integrated Circuit of the Cell [Han00]. Dashed arrows are activating reactions, bar-ended arrows are
inhibiting ones; Inhibiting arrows in some cases are shown to act on molecules, in other cases they act

on reactions.
The cascade of processes by which an extracellular signal (typically a hormone or

neurotransmitter) interacts with a receptor at the cell surface, causing a change in the level of a

second messenger (for example calcium or cyclic AMP) and ultimately effects a change in the

20



cell's functioning (for example, triggering glucose uptake, or initiating cell division). It can

also be applied to sensory signal transduction, e.g. of light at photoreceptors [Dow99].

2.2 Molecular Databases and Integration

Modern biology has produced enormous biological data that have been accumulating and
systematically stored in specific databases. For the last 10 years Nucleic Acids Research
(NAR) [http://nar.oupjournals.org] has been devoting a special issue to the molecular biology
database compilation [Gal04]. Figure 2.2 shows the growth of molecular biological databases.

The collection is listed in annual specific database issue of NAR.
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Figure 2.2 Growth of molecular biological databases that are collected by NAR.

The database list and the database descriptions can be accessed online via

http://www3.oup.co.uk/nar/database/a. All databases fall into the following categories:

F Nucleotide Sequence Databases,

F RNA sequence databases,

F Protein sequence databases,

* Structure Databases,

* Genomics Databases (non-vertebrate),
F Metabolic and Signaling Pathways,

¥ Human and other Vertebrate Genomes,
F Human Genes and Diseases,

F Microarray Data and other Gene Expression Databases,
F Proteomics Resources,

F Other Molecular Biology Databases.

All databases included in this Collection are freely available to the public. Computational
analysis of metabolic pathways based on the information of genes, enzymes and metabolites,
which requires access to suitable databases. Table 2.2 lists those major databases that make the
integrative information retrieval of metabolic pathways possible. URLs of these databases are

appended at the end of the “References” section.
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The presence of numerous informational and programming resources on gene networks,
metabolic processes, gene expression regulation, etc., described above, raises an acute
problem of data integration and suitable access. The idea of data integration in molecular
biology is not a new one. There are several previous and underlying projects that focus on the
challenging problem of interoperability among biological databases. P. Karp first addressed
the biological database integration in early nineties [Kar95]. At the same time the
requirements for these integration approaches were formulated [Dav95]. Many integration
approaches for molecular biological data sources are currently available. These systems are
based on different data integration techniques, e.g. federated database systems (ISYS [Sie01]
and DiscoveryLink [Haa01]), multi database systems (TAMBIS [Ste00]) and data warehouses
(SRS [Etz96] and Entrez [Tat99]).

Different approaches have different advantages and disadvantages [Fre02]. ISYS
provides a dynamic and flexible platform for integration of molecular biological data sources.
This system is developed as a Java application and must be installed on a local computer. One
main feature is the global view onto the integrated data sources with the help of a global
scheme. DiscoveryLink system is based on federated database techniques. A federated system
requires the development of a global scheme. Thereby, the degree of integration must be rated
as tight. DiscoveryLink accesses its original data sources through views. Read-only SQL is
supported as query language. TAMBIS integration system is based on multi-database
techniques. It is used through a Java applet. Due to the use of a multi-database query language,
it is not necessary to built an integrated global scheme. But the interfaces and the number of
input formats are disadvantageous. SRS is based on local copies of each integrated data
source. SRS runs on a web-server and is accessible via any web-browser. An HTML-interface
for data queries is provided. Various output formats are possible (HTML or ACSII-text). One
problem with the result presentation in SRS is the necessity to parse the outputs for a further
computer-based processing. The absence of any scheme integration is also disadvantageous
for the use of the SRS system. Similar to SRS is the Entrez system. This system integrates
only data sources of NCBI. HTML is the only interface provided. Another Entrez feature is the
manual construction of special URLs. Various output formats prove to be useful. These
include HTML or ASCII-text, as well as XML and ASN.1 files. The biggest disadvantage of
the Entrez approach is the restricted number of integrated data sources (only NCBI internal
data sources).

Although these integration systems are available to realize the data query process, the
process still requires much human intervention and the quality of annotation largely depends
on the knowledge and skills of human experts. Moreover, scientists have to invest extensive
efforts to learn how to use all different database interfaces, query languages, and parameter

specifications for specific analytical programs. On the other side, biologists wish to perform
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metabolic pathway analysis with easy-to-use local or Internet-based tools with friendly user
interfaces. Simple text mining approaches such as a web-based biological information retrieval

and integration system could be one solution.

2.3 Modeling and Simulation of Metabolic
Networks

The vast complexity of biological systems requires modeling to design and interpret biological
experiments. Computer based models of genes and metabolic networks are the first step to a
complete understanding of the cell. We are at the point where the level of computer
technology and biological knowledge are sufficient to experiment with different approaches to
model cellular metabolism.

Before designing a model, careful consideration must be given to the questions being
asked, and the nature of the biological system. For example, some types of models require a
larger quantity of data, or more accurate data, than others. In other words, a model should be

able to raise additional questions, giving directions to experimental work.

2.3.1 Model Classification

A model is built in order to capture the nature of objects. Models can be divided into many
different types. Not all scientific models are precise, numerical, or quantitative. Neelamkavil
[Nee87] classified models into physical, symbolic and mental ones. To model biological
systems four forms were introduced [Hae96]:

1. Conceptual or verbal - descriptions in a natural language.

2. Diagrammatic - graphical representations of the objects and relations (e.g.,

physiological diagrams of metabolic pathways such as the Krebs cycle).

3. Physical - a real, physical mock-up of a real system or object (a "tinker-toy" model

of DNA or 3D structure of protein).

4. Formal - mathematical (usually using algebraic or differential equations).

Our primary interest here will be in diagrammatic and mathematical.

For many reasons mathematical models are the most important and most widely used
category of models. They are concise, unambiguous and uniquely interpretable, while their
manipulation and the evaluation of alternatives are relatively inexpensive [Mat92]. To show
the scope of the range of mathematical models that are potentially applicable to biological

systems, a simple classification of mathematical models is illustrated in Table. 2.3.1.
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Table 2.3.1 A classification of mathematical models.

Criteria of classification

Yes

No

Having an explicit representation of

mechanistic processes?

Process-oriented or mechanistic models: (e.g.,

mathematical equations)

Descriptive or phenomenological models: (e.g.,

graphics, rule based systems)

Having an explicit representation of future

system states or conditions?

Dynamic models: include the transient as well as

the steady state behavior of a system.

Static models: (e.g., linear regression equation
relating variables x and y) given for the steady

state only, are described with algebraic equations.

Representing time continuously?

Continuous time models, time may take on any

values: described with differential equations

Discrete time models, time is an integer (time
invariant) only: those where the shapes of their
outputs are independent of the moment of onset

of their inputs or disturbances.

Having an explicit representation of space?

Allowing random events?

Spatially heterogeneous models (e.g. objects have
a position in space, or occupy a finite region of
space).

A. Discrete: space is represented as cells or
blocks, and each cell is represented as
spatially homogeneous.

B. Continuous: every point in space is
different (e.g. diffusion equations)

Stochastic models: the relations between variables

are given in terms of statistical values.

Spatially homogeneous models: (e.g., simple
equations of enzyme kinetics) in many cases only
one most important spatial coordinate is taken

into account.

Deterministic models: are those in which the

probability of events does not feature.
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The basis of the classification is whether the mathematics incorporates (or not) a
particular mathematical structure. In some cases it is subjective whether the mathematics has
its characteristics or not.

Historically, mathematical modeling in biology has been of only minor importance.
Unlike physics or chemistry, biology has not discovered underlying principles, such as an
equivalent of Newton’s Laws to build upon. The unit of life, the cell, is an enormously
complicated structure and the behavior and properties of living things are not easily reduced to

equations.

2.3.2 Modeling Metabolism

The complexity of biological systems is in part due to the large number of interactions among
components at different levels of the organizational hierarchies. A mathematical modeler must
combine qualitative knowledge of relationships and desired quantitative data to construct a
model of the system. With numerous data on the structure and processes, it is possible to
construct mathematical computer models that allow the formalization of the knowledge on
complex metabolic systems.

Current applications of metabolic pathways modeling include [BowO01]:

¢ Finding pathways of maximum yield, for example in the area of biotechnology,

where foreign genes are spliced into a host genome to mass-produce a desired
molecule.

¢ Finding non-redundant pathways, important in drug design.

e Testing whether a set of enzymes can produce a desired product.

e Genome comparisons, by aligning metabolic pathways, missing genes can be

identified and new pathways identified.

e Detecting the medical significance of enzyme deficiencies.

To model metabolism requires the concept of a state. A state is a snapshot of the system in
time, and with the knowledge of one state, the future state can be calculated. Depending on the
kind of model used, the state is represented in different ways. Two broad categories of
modeling and simulation exist: deterministic modeling and analytic simulation based on
differential equations, and stochastic modeling and discrete event simulation.

An analytic simulation uses mathematical analysis to represent the temporal behaviors
of components, often in closed form. Analytic simulations capture aggregate system behavior
by modeling small and relatively similar entities. A discrete-event (discrete-state) simulation is
used when the system's overall behavior is not understood well enough to permit formal

mathematical analysis.
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For example, the analytic approach to metabolic simulation typically requires the
determination of steady-state rate equations for constituent reactions, followed by numerical
integration of a set of differential equations describing fluxes in the metabolism. The
feasibility of the analytic approach is however limited by the extent to which the metabolic
processes of interest have been characterized. For most metabolic pathways, either we are
unaware of all the steps involved, or we lack rate constants for each step. This lack of
information precludes the use of the mathematical approach in describing the process. Even
when reaction rates are known, differential equations incur great computational costs. Analytic
representations, such as differential equations, lack the robustness required to handle partial
and uncertain knowledge. In addition, because analytic simulations model relatively similar
structures over relatively similar temporal intervals, interleave simulations are highly
constrained.

The discrete-event approach to simulation, on the other hand, can use all available
data, both quantitative and qualitative, and can even incorporate analytic methods where
applicable; semi quantitative models, which couple symbolic and numeric computing
techniques, have been developed for a number of domains, including the human
cardiovascular system [Sir96] and gene regulation in bacteria [Bru92]. Most importantly,
discrete-event simulations provide natural support for qualitative representation and reasoning
techniques, which offer explicit treatment of causality. The discrete-event approach can
provide declarative representations for both the structures in the domain and the processes that
act on these structures.

1. Structural knowledge

Structural knowledge of a system is the foundation of a simulation. Most analytic and
discrete-event simulations employ state-variable representations of physical entities. State
variables describe the relevant qualitative or quantitative attributes of the system, but the
structure of the system is expressed in terms of mathematical relationships among the state
variables. For example, enzyme and substrate concentrations are state variables in a simulation
of Michaelis-Menten enzyme kinetics.

2. Process knowledge

Structural knowledge alone captures the state of a system at a fixed point in a time-
independent way, but it does not capture the relationships and interactions among structural
components over time. Process knowledge is functional knowledge of dynamic change. A
declarative process representation is critical to the success of a simulation. Process knowledge
can be represented declaratively in several forms. A rule-based representation specifies the
preconditions for change and the effects of the change in a unit known as a rule. For example,
the effect of tetracycline on the mechanism of protein synthesis can be expressed in the

following form:
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(IF tetracycline is present

THEN tetracycline will inhibit the binding of aminoacyl-tRNA to ribosome)

Rules are the predominant declarative representation of processes. Processes can also be
represented with constraints. For example, a chemical reaction can be represented as a set of
reactants, a set of products, and a set of stoichiometric constraints.

3. Declarative device models

A declarative device model allows different computational agents to reason about the
model by accessing its structural and functional components. We should acknowledge that
biological devices are less well understood than manufactured devices; consequently,
biological simulations often yield highly uncertain results. A goal of simulation researchers is
to develop robust methods for quantifying the uncertainty in device models and in simulation
predictions.

In a differential equation based model, the concentrations of enzymes and substrates is
the state. By making assumptions one can transform almost any set of biochemical reactions
into a system of ordinary, non-linear differential equations (ODEs). The equations specify
reaction rates between molecules. If the number of states becomes too large, then coarser
approximations can be used. The equations can be solved numerically, and the trajectory of
the state can be analyzed for dependence on initial parameters. However, not all systems can
be meaningfully modeled by differential equations. One also has to make several assumptions:
that the solution is well mixed, that the number of molecules is sufficiently high, that discrete
changes of a single molecule can be approximated as a change in the concentration, and that
fluctuations around the mean are small compared to the mean itself. For systems consisting of
small number of molecules a stochastic framework is a more realistic choice.

Most stochastic methods consider the exact number of molecules. The state indicates
exactly how many molecules of each type are present in the system. Even though the state
changes discretely, how and when it changes is probabilistic. For example, a simple chemical
equation X — Y, i.e. a molecule of X turns into Y, is governed by a probability. This
probability, multiplied by the time step, is the chance of this molecule changing over the
specified time. Because the outcome is probabilistic, it is possible to get different successor
states. A method to deal with this is to use a Monte Carlo simulation, where a series of random
numbers are generated and decide the next state. For a given set of numbers, the next state is
deterministic, however new random numbers are used for each new state calculation. There
are efficient algorithms for Monte Carlo calculations [Gil77] [Gib00].

Several variations on the stochastic simulation exist, such as Petri nets, which have an

intuitive analogy to biological systems [Red93] (see Section 2.3.4 and Chapter 3).
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2.3.3 Related Simulation Environments

Many attempts have been made to simulate molecular processes in both cellular and viral
systems. Several software packages for quantitative simulation of biochemical metabolic
pathways, based on numerical integration of rate equations, have been developed. A list of
biological simulators can found at http://www.techfak.uni-bielefeld.de/~mchen/BioSim/

BioSim.xml. Table 2.3.3 shows a comparison of the most well-known metabolic simulation

systems.
Table 2.3.3 A comparison of metabolic simulators.

Tools Gepasi® Jarnac” DBsolve®  E-Cell® VON++/GON®
Stoichiometry matrix presentation  + + + + -

Core algorithm and method MCA MCA MCA SRM, MCA Petri net
Pathway DB retrievable - - I\EVI\?I;/MPW’ ]Igfo C(}:Cy‘xc KEGG
Pathways graphic editor - ++++ ++++ - +++++
Kinetic types +H++ +++ ++ ++++
Virtual cell model - - - + +
Simulation graphic display +++ ++ ++ +++
Mathematical model accessible and

modifiable * * * *

Data XML export SBML SBML  SBML SBML iﬁfthway
User interface +++ ++++ +++ ++++
Programming language C++ Delphi 5 C++ C++ Delphi /Java

a.  Gepasi [http://www.gepasi.org/]

b.  Jarnac [http://members.lycos.co.uk/sauro/biotech.htm]

c.  Dbsolve [http://homepage.ntlworld.com/igor.goryanin/]

d.  E-Cell [http://www.e-cell.org/]

e.  VON++ [http://www.systemtechnik.tu-ilmenau.de/~drath/visual.htm] is further developed to GON, later
Cell Tllustrator'™ [http://www.gene-networks.com/ci/]

SBML (Systems Biology Markup Language) [http://www.cds.caltech.edu/erato/] is a description language for

simulations in systems biology. It is oriented towards representing biochemical networks that are common in

research on a number of topics, including cell signaling pathways, metabolic pathways, biochemical reactions,

gene regulation, and many others. SBML is the product of close collaboration between the teams developing

BioSpice [http://biospice.lbl.gov/], Gepasi, DBSolve, E-Cell, Jarnac, StochSim

[http://www.zoo.cam.ac.uk/comp-cell/StochSim.html] and Virtual Cell [http://www.nrcam.uchc.edu/].

A plus symbol “+” indicates a feature which has been implementated/enhanced in the tool. A minus symbol “-

” indicates no such feature available in the tool.

Each tool possess some prominent features which others have only a little or not at all. After a
decade's development, Gepasi is widely applied both for research and education purposes to
simulate the dynamics and steady state of biochemical systems due to its powerful simulation

engine and user-friendly interface. Jarnac, as a replacement of SCAMP, has a nice pathway
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graphic editor, called Jdesigner, which enable users to draw interactively a biochemical
network and export the network in an XML format. Dbsolve is good at model analysis and
optimization. Dbsolve uses numerical procedures for integration of ODEs or NAEs (non-linear
algebra equations) to describe the dynamics of these models and offers explicit solver, implicit
solver and bifurcation analyzer. The primary focus of E-Cell is to develop a framework for
constructing simulatable cell models based on gene sets derived from completed genomes.
Contrast to other computer models that are being developed to reproduce individual cellular
processes in detail, E-Cell is designed to paint a broad-brush picture of the cell as a whole.
There is another program, DynaFit [http://www.biokin.com/dynafit/], which is also useful in
the analysis of complex reaction mechanism for which traditional (algebraic) kinetic equations
cannot be derived.

In predicting cell behavior, the simulation of a single or a few interconnected
pathways can be useful when the pathways being studied are relatively isolated from other
biochemical processes. However, in reality, even the simplest and most well studied pathways,
such as glycolysis, can exhibit complex behavior due to connectivity. In fact, the more
interconnections exist between different parts of a system, the harder it gets to predict how the
system will react. Moreover, simulations of metabolic pathways alone cannot account for the
longer time-scale effects of processes such as gene regulation, cell division cycle and signal
transduction. When systems reach a certain size they will become unmanageable and hard to
understand without decomposition into modules (hierarchical models) or presentation of
graphs. In this sense the tools mentioned above appear week. In comparison, Petri nets capture
the basic aspects of concurrent systems of metabolism both conceptually and mathematically.
The major advantages of Petri nets comprise graphical modeling representation with sound
mathematical background, which make it possible to analyze and validate the qualitative and
quantitative behavior of a Petri net system. Petri nets also provide the ability for clear
description of concurrency and long experience in both specification and analysis of parallel
systems and the ability to describe a Petri net model on different levels of abstraction
(hierarchical models). In addition, the development of computer technology enables Petri net
tools to have more friendly interfaces and the possibility of standard data import/export
supporting. We are motivated to exploit Petri net methodology to model and simulate gene

regulated metabolic networks.

2.3.4 Petri Net Modeling and Simulation

Since 1960's Petri net was first introduced and formally defined by Prof. Dr. Carl Adam Petri
[Pet62], Petri net and its concepts have been extended and developed. Both the theory and the
applications of this model have been flourishing. The properties, concepts, and techniques of

Petri nets are being developed in a search for natural, simple, and powerful methods for
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describing and analyzing the flow of information and control in systems, particularly systems
that may exhibit asynchronous and concurrent activities. The major use of Petri nets has been
the modeling of systems of events in which it is possible for some events to occur concurrently
but there are constraints on the concurrence, precedence, or frequency of these occurrences.
Petri nets are conceptually simple: they consist of places, transitions and arcs. Each
place has a non-negative number of tokens. A transition is enabled if the number of tokens
exceeds the weights of the arcs connecting the places. For metabolic pathways, places could
represent biomolecules and transitions could represent the individual reactions. Arc weights
represent the proportion of a reaction during each discrete step. A definition for the ordinary
Petri net is given in the following [Rei82] [Dav92]:
Definition 2.1 An ordinary Petri net is a 3-tuple, PN=(P,T; F) with
P = {py,ps-....pn} is a non-empty, finite set of places, drawn as circles;
T = {t,t5,...,1,} is a non-empty, finite set of transitions, drawn as bars;
PNT=Cand PUT+J;
F < (PXT) U (TXP) is a non-empty, finite set of arcs, connecting places to transitions
or transitions to places but never two places or two transitions.
The ordinary Petri net given in Definition 2.1 contains only structural elements. To define
dynamic Petri nets and their firing rules, we need some terminology to identify special sets of
places and transitions and the concept of markings.
Definition 2.2 Pre- and Post-Sets
The pre-set °t; of a transition t; € T contains all places that are connected to t; via a
directed arc from the place to the transition: °t; = {pe P: (p, t,)e F'}. The elements of °t;
are often called input places.
The post-set t° of a transition t; € T contains all places that are connected to t; via a
directed arc from the transition to the place: t° = { pe P: (t;, p)e F}. The elements of t°
are often called output places.
The pre-set p; and post-set p; of a place p; € P are defined in the same way:
°pi={teT: (1, p)eF}
p? ={teT: (p;, NeF}
Definition 2.3 Marking
A marking of a Petri net is a mapping M:P — N that assigns a finite non-negative
integer number of tokens to each place of the ordinary Petri net. My:P — N is the
initial marking.

Definition 2.4 Enabled transition
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Let PN be a Petri net with marking M, M(p) be the number of tokens contained in p €

P and t € T be a transition. The transition t is enabled if and only if p € P:M (p) =

Pre(p, 1).

The dynamic behavior of a Petri net is expressed by changing markings. A marking changes
when a transition fires, and a transition may fire when it is enabled.
Definition 2.5 Firing a transition

Let PN be a Petri net with marking M, M(p) be the number of tokens contained in p €

P and t € T be an enabled transition. Firing the transition t results in a new marking

M, written as M\t > M’, given by M’(p;) = M(p)) - Pre(p;, 1) + Posi(p;, ). Hence

Pre(p;, t) denotes the number of tokens needed in p; for the firing of transition t and

Post(p;, t) denotes the number of tokens added to place p; when transition t has fired.
State changes are carried out by firing enabled transitions. In an ordinary Petri net a transition
is enabled when all its input places have at least one token. When an enabled transition ¢ is
fired, a token is removed from each input place of ¢ and a token is added to each output place
of ¢. This gives a new state.

Graph theory has been exploited in metabolic process modeling [Koh83]. In contrast
to naive graph, Petri net is a graph oriented design, specification, simulation and verification
language. It offers a formal way to represent the structure of a discrete and/or event system,
simulate its behavior, and draw certain types of general conclusions on the properties of the
system. Because of their good properties in theoretical analysis, practical modeling, and
graphical visualization of concurrent systems, Petri nets especially high-level Petri nets are
widely used in work-flows, flexible manufacturing, operations research, railway networks,
defense systems, telecommunications, Internet, commerce and trading, and even biological
systems. The Petri net world web site has been set up at http://www.daimi.au.dk/PetriNets/,
where a large amount of investigations on Petri nets have been compiled in the literature, and
various applications have chosen Petri nets as their control models due to the intuitively
understandable graphical notation of Petri nets.

The application of Petri nets for the simulation of biochemical reactions was firstly
formally introduced by Reddy et al. [Red93]. Nevertheless, the model used was a qualitative
one. Ordinary Petri nets models do not have such functions as quantitative aspects, so there are
some extension of Petri nets that can support dynamic change, task migration, superimposition
of various levels of activities and the notion of mode of operations. Various extensions of Petri
nets, such as (Stochastic) Timed PNs [Wan98], Colored PNs [Jen97], Predicate/Transition
Nets [Gen87] and Hybrid PN [Dav92], allow for qualitative and/or quantitative analysis of
resource utilization, effect of failures, and throughput rate. Using suitable Petri nets, we can
extend Petri nets to support flexible modeling of kinetic effects of biochemical reactions

[Hof98]. The desirable Petri nets should allow the modeling of biochemical processes using
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actual concentrations. It should make sense to model this biocatalytic reaction using functions,
which allow each transition to simulate kinetic effects. Moreover, complex relations and
conditions can be combined which will activate transitions.

Following its early application of modeling metabolic pathways [Red93] [Hof94],
Petri nets as a new tool and terms of modeling and simulating biological information system
are investigated more and more. Later in 1996 [Red96], an example of the combined
glycolytic and pentose phosphate pathway of the erythrocyte cell was presented to illustrate
the concepts of the methodology. However, the reactions and other biological processes were
modeled as discrete events and not possible to simulate the kinetic effect. Hofestddt [Hof98]
investigated a formalization showing that different classes of conditions can be interpreted as
gene, proteins, or enzymes and cell communication; and also presented the formalization of
self-modified Petri nets, which allows the quantitative modeling of regulatory biochemical
networks. Chen [Che00] introduced the usage of hybrid Petri nets (HPNs) for expressing
glycolysis metabolic pathways. Using this approach, the quantitative modeling of metabolic
networks is also possible. Koch I. et al. [Koc99] extended the model proposed by Reddy by
taking into account reversible reactions and time dependencies. Kueffener [Kue0O] exploited
the knowledge available in current metabolic databases for the functional predictions and the
interpretation of expression data on the level of complete genomes, described the compilation
of BRENDA, ENZYME and KEGG into individual Petri nets and unified Petri nets. Goss
[G0s99] and Matsuno [Mat00] applied Petri nets to model gene regulatory networks by using
stochastic Petri nets (SPNs) and HPNs respectively. In the DFG workshop "Modeling and
Simulation Metabolic Network" 2000 participants also discussed the applications and
perspective of Petri nets [HofOO]. Genrich et al. [Gen01] discussed executable Petri net models
for the analysis of metabolic pathways. Heiner et al. [HeiOl] studied the analysis and
simulation of steady states in metabolic pathways with Petri nets. R. Srivastava et al. [Sri01]
also exploited a SPN model to simulate the 632 stress circuit in E. coli. Oliveira J.S. et al.
[Oli01] developed the mathematical machinery for the construction of an algebraic-
combinatorial model to construct an oriented matroid representation of biochemical pathways.
Recently a special issue on “Petri nets for metabolic network” appeared at
http://www.bioinfo.de/isb/toc_vol_03.html.

Table 2.3.4 presents a summary of Petri net tools that were used to model biological
systems. Most publications present their models only based on a general Petri net tool
utilization. These publications are not listed in the table. More Petri net tools can be found at
http://www.daimi.au.dk/PetriNets/tools/quick.html. The intuitively understandable graphical
notation and the representation of multiple independent dynamic entities within a system
makes Petri nets the model of choice since it is highly suitable for modeling and simulation of

metabolic networks.
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Table 2.3.4 Summary of Petri net that were used for modeling and simulation of biological systems.

Petri nets type  Petri net tool Tool brief description Application Reference
The STELLA software is based on a feedback control framework. The basic self-regulatory, or Modeling dynamic
. homeostatic, mechanisms that govern the way living systems operate, are reinforced by the way biological systems, [Rut97]
High level Stella . . . L . S - .
the software itself operates, it enables users to make their hypotheses explicit using simple iconic especially ecological [Ela95]
building blocks, and then to test these hypotheses via simulation. system.
Visual Object Net ++ is an innovative Petri net CAE Tool for PC that supports mixed continuous [Doi99]
. . . . .. Gene regulatory; [Mat00]
Hvbrid VON++ and discrete event Petri nets. Beside the new continuous net elements, the whole well tried Metabolic pathways: [Che00]
y concept of the traditional Petri nets is available. The goal of Visual Object Net ++ is to study the . ’
. .. . . Bioprocess [Che02a]
behavior and characteristics of a class of hybrid Petri nets. [Mat01]
UltraSAN employs stochastic activity networks (SANs), a variation of Petri nets, to model and Erlgﬁlxlsynthems from [Gos98]
Stochastic UltraSAN analyze the performance and dependability of software, hardware and network system designs. . S [Gos99]
. . . . Plasmid Replication; .
UltraSAN provides analytic solvers as well as discrete-event simulators. . . [Sri01]
Prion Propagation
Hierarchical PED PED supports basically the const.rl.lctlon of hlerar.chlcal .place/t.ransmqn nets with the specification Pentose phosphate [Koc99]
of different types of places, transitions, and arcs, including their marking. pathway
THORNS is a general-purpose, graphical, discrete-event simulation tool based on a special class
of high-level Petri Nets called Timed Hierarchical Object-Related Nets. THORNs allows the [Gro97]
High level THORNS specification of individual tokens, they provide delay times and firing durations for transitions, Ecological system [Gro98]
and THORN models can be hierarchically structured with respect to transition refinement and
subnet invocation.
Design/CPN supports CPN models with complex data types (color sets) and complex data [Vos00]
High level Design/CPN manipulations (arc expressions and guafds). The functional programming language Standard ML Glycolysis [Kue00]
enable the software package support hierarchical CP-nets and generate a model from the data [Gen01]
extracted from databases.
. GON/Cell . . . . . . . . . Biopathways; [Mat03a]
Functional Ilustrator Genomic Object Net is an environment for simulating and representing biological systems. Cell development [Nag03]
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Among these Petri net tools, VON++ is more suitable for biopathway modeling and simulation
under the following considerations:

1. VON++ is a small, quick, uncomplicated and intuitive Petri net tool that supports
both discrete event Petri nets and timed event/condition Petri nets;

2. VON++ has a user-friendly graphical interface, which consists of object oriented
Integrated Developing Environment, file management tool; it also represents a
class hierarchy in the Factory window;

3. There are animation features to make it easier to observe the dynamic behavior
of the nets.

So its object oriented user interface allows the easy design, simulation, visualization and
documentation of hybrid Petri nets. However, VON++ does not support ASCII file (text
format) import, but its text format file export ability is available in VON2.6 version. VON++
has further developed to GON. GON has been commercialized under the name of Cell
Iustrator™.  Both GON and Cell Illustrator are developed in Java and support XML

import/export.

2.4 In Silico Prediction of Metabolic Pathways

With the achievement of biological data collection and the development of useful biological
tools, metabolic pathway prediction becomes possible. The in silico prediction of metabolic
pathways is already an essential tool for the functional assignment of predicted genes, for
which almost no data exist by biochemical experiments [Mus96] [Dan97]. It is also essential

to do research from genotype to phenotype.

2.4.1 Existing Resources

In the past decade hundreds of biological databases have been set up. Among them several
have became indispensable resources for the development of metabolic databases Such
databases typically describe collections of enzymes, reactions and biochemical pathways and
are used in conjunction with software that allows querying and visualizing metabolic
information [Kar98]. They are used in various contexts and have gained recognition in the
context of functional genome annotation and metabolic pathway reconstruction [Gal98]
[Bon98].

One approach is being achieved by KEGG [Kan02], which contains an EC numbering
scheme for enzymatic functions that integrates different gene names in different organisms.
Under the KEGG project, all known metabolic pathways are computerized as graphical
diagrams. The LIGAND database [Got98] has been organized to fill in the gap between
genomic information and chemical information, and applied to actual reconstruction of

metabolic pathways in the completely sequenced organisms in the KEGG [Kan97]. If the set
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of open reading frames (ORFs) is complete for an organism, the organism-specific pathways
should be reconstructed, which can be visualized by marking the assigned enzymes on
diagrams [Oga98].

WIT/EMP [Ove00] also provides a pathway retrieval web-interface, which can be
queried with initial substrate, coenzyme, enzyme, intermediate, and end product. WIT is a
system designed and implemented to support the curation of functional assignments and
metabolic models for sequenced genomes. It generates metabolic reconstructions based on
chromosomal sequences and metabolic modules from the EMP/MPW family of databases.

EcoCyc/MetaCyc [Kar02] is a comprehensive reconstruction of metabolic pathways
of organisms for which the complete genomes are known. It became a commercial database
one year ago, but it is available to academic users for free.

However, the existing metabolic pathway databases have a number of limitations in
metabolic pathway reconstruction. They do not contain comprehensive information about
metabolic pathways, such as physical and chemical properties of the enzymes that are
involved. None of these databases provides methods for solving the whole complex of tasks
necessary for a gene network effective study, which demands analysis of the large bulk of
heterogeneous experimental data. Some collect information only about metabolism of single
organism and/or attain only special pathways. Moreover, metabolic pathways may not easily
be reconstructed by simple collection of enzymatic reactions, thus assigned solely on sequence
similarity. It often finds missing enzymes and leads to an incomplete set of metabolic

pathways.

2.4.2 Reconstruction Algorithms

The existing resources for metabolic pathway reconstruction use a variety of methods to
predict which enzymes are present in an organism and hence which pathways may be inferred.

KEGG presents a method that utilizes higher-level information of molecular pathways
to reconstruct a complete functional unit from a set of genes. Specifically, a genome-by-
genome comparison is first made for identifying enzyme genes and assigning EC numbers,
which is followed by the reconstruction of selected portions of the metabolic pathways by use
of the reference biochemical knowledge. Then the KEGG’s pathway diagram is utilized as a
reference for the functional metabolic pathway reconstruction [Bon98].

The WIT reconstruction starts with an organism’s whole genomic DNA sequence
[Ove99]. First, a program called CRITICA [Bad99] searches the genome for ORFs using a
combination of comparative and non-comparative methods. Then a “bi-directional best hit”
approach is used to assign a function to each of these predicted genes. WIT also defines a
pathway as a set of reactions that have been observed to form a metabolic unit in some

organisms. Each pathway is evaluated for the new genome on the basis of the proportion of its
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enzymes identified by the above procedure. A prototype called PUMA2 [Ds099] has been
developed to provide a framework for the automated reconstruction of the metabolism of
microbial consortia and individual species, and to be able to comparatively analyze the
metabolic subsystems in different organisms.

The bacterial reconstructions derived from EcoCyc are combined by a program called
PathoLogic [Pal02]. The basic PathoLogic algorithm asserts the presence of an EcoCyc
pathway in the new genome if at least one of its enzymes has been identified. It requires a
fully annotated genome as input, where the function of each gene has been assigned manually.
PathoLogic then uses a text-based approach to link the annotated genes with enzymes in
EcoCyc. Functions are matched either by EC number or by enzyme name. Once the gene-
enzyme matching is complete, the pathways in EcoCyc are evaluated with respect to the
enzymes found in the annotated genome.

Aside of approaches of genome sequence comparison [Mus96] [Bon98], genome
annotation data parsing [Geo02], annotated whole genome sequence assembly [Gaa95]
[Ove97] [Sel97] [Nak99] [Cov01] and enzyme assignment [van00], Arvind K.Bansal [Ban00]
describes a framework of automated reconstruction of metabolic pathways using the
information about orthologous and homologous gene groups archived in the GenBank. Ma H.-
W. et al. [Ma03a] conducts further analysis of their global structure for various organisms.
David Allen [AllO1] presents a reconstruction method by the exploration of gene expression
data with factor analysis. Factor Analysis is shown to identify and group genes according to
membership within independent metabolic pathways for steady state microarray gene
expression data. F. Boyer et al. [Boy03] proposes a new formulation for the problem of ab
initio metabolic pathway reconstruction. They use the similar idea of Arita M.’s [Ari00] to
consider chemical compounds as sets of individual atoms and reactions as transfers (partial
injections) of atoms between compounds. Given a source and sink compound, the
reconstruction problem consists in finding all the successions of reactions that result in a
minimum number of transferred atoms from the source to the sink.

Moreover, several software tools have been developed to assistant reconstruction of
pathways. For instance, PathoLogic [Pal02] is used by Sophia T. et al. [Sop03] and PathMiner
by McShan et al. [McS03].

However, these approaches of predicting each gene function based on sequence
similarity searches often fail to reconstruct cellular functions with all the necessary
components. Knowledge of the genome sequence alone is really only the start of the work.
The future of metabolic pathway analysis may depend greatly upon its ability to capitalize on
the wealth of genetic and biochemical information currently being generated from the fields of
genomics and proteomics. The challenge is how to automate and simplify the process of

information retrieval and integration in order to turn this growing deluge of data into
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knowledge. Under these considerations, we are motivated to combine sequence information
with information about the underlying biochemical reactions. We attempted to present a new
framework of metabolic pathway reconstruction and developed a system to integrate the
access to different biological databases, and determine metabolic pathways in the cell.

The ideal system for metabolic pathway reconstruction would at least include a web-
based architecture to allow remote and local access to the different biological databases. It
would offer a proven approach that can perform complex queries, data transformations, and
data integration in one powerful biological tool, without requiring extensive programming. An
automated primary and secondary database update and report system would enable the internal
data to remain consistent, accurate and reliable, with the ability to incorporate information
flowing from experimental validation, such as gene expression, enzyme catalyzation, protein
interaction and pathways. An essential feature would include a quality assurance process, to
allow quick distribute queries and retrieve primary results. In light of these desirable features,
we have designed a prototype system which has a single common data representation to
handle the diverse range of rudimentary data, such as enzymes, proteins, metabolites as well as

incomplete or fragments of gene sequences of metabolic pathways.

2.5 Analysis and Alighment of Biopathways

Beyond the scope of modeling, analysis of metabolic pathways has received an increasing
amount of attention over the past few years. Progress has been made in many aspects such as

the metabolic control analysis, stoichiometric analysis and comparative analysis.

2.5.1 Functional Analysis

The functional analysis of metabolic systems based on the information of genes, signals,
enzymes, etc. will undoubtedly have an impact on our views of metabolism from its
capabilities to its regulation and potentially also on its evolution.

Fell D.A. et al. [FelOOa] studied the structural characteristics of the metabolic network
that is stable and in operation yet evolvable. Relevant characteristics are the number and size
of the modules of metabolism and the number of interconnections between them. As an
example, the analysis of E. coli metabolism may reveal aspects of the evolution of
metabolism. In [Wag01] a graph theoretical analysis of the E. coli metabolic network was
done and found that this network is a small-world graph. Moreover, the connectivity of the
metabolites follows a power law, another unusual but by no means rare statistical distribution.
The small world architecture may serve to minimize transition times between metabolic states,
and contains evidence about the evolutionary history of metabolism. Ma H.-W et al. [Ma03b]

also analyzed the connectivity of metabolic pathways and find that the metabolites in a
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metabolic network are far from fully connected. Elementary modes for the analysis of
metabolism and metabolic engineering are being exploited.

Elementary modes are the smallest functioning subunits of a metabolic network. They
are also genetically regulated as a unit. A formal definition of such elementary flux modes
requires that an elementary mode has a maximal number of vanishing fluxes and cannot be
decomposed into smaller pathways [Sch00a]. Elementary mode analysis has been shown to be
useful for investigating the metabolic capacity and pathway structure of metabolic networks.
They have several promising applications in metabolic design, drug development or functional
genomics [Sch00Oa]. Even though the kinetic characteristics of enzymes play an important role,
many aspects of metabolism are actually constrained by the nature and connectivity of the
metabolic reaction network (e.g. [Fel86]). The existence and number of feasible routes from
nutrients to metabolites, and theoretical maximal yields, can be calculated without recourse to
computer simulation [Sch99]. Schuster et al. [Sch96] [Pfe99] also devised a particularly
efficient algorithm for determining all the available routes in a metabolic network.

Flux Analysis addresses the problems of actually determining the flow of all
metabolites in the pathways through a limited set of measurements in the pathway.
Researchers focusing on metabolic control analysis (MCA) emphasize the importance of
profiling analyses in understanding the effects on metabolic networks when changing the
activity of specific enzymes [Kel02]. Metabolic control theory is a formalism that describes
the control of flux through the network as a function of enzyme and substrate quantities. In
MCA one studies the relative control exerted by each step (enzyme) on the system's variables
(fluxes and metabolite concentrations). This control is measured by applying a perturbation to
the step being studied and by measuring the effect on the variable of interest after the system
has settled to a new steady state. Stoichiometry-based metabolic control analysis complements
the stoichiometric relations by measured fluxes. The interconnectivity of metabolites within a
network of biochemical reactions is given by reaction equations defining the stoichiometric
conversion of substrates into products for every reaction. From a methodological viewpoint
stoichiometry-based metabolic flux analysis is a mature tool for metabolic network analysis.
Several achievements are Mendes’” Gepasi software that enables steady state analysis [Men99]
[MenO1]; works of Palsson, Schilling, and Schuster et al. [Sch00a] [SchO0b] explore pathways
with constrained fluxes and optimal phenotypes. However, without energy balancing the flux
balances are usually underdetermined. On the other hand, the stoichiometric network model is
suitable for metabolic flux analysis but it contains no information about regulatory
mechanisms. Thus it has little predictive power with respect to pathway alterations.

Combining metabolic control analysis with experimental observations on systems
exhibiting large changes in metabolic flux led us to propose that these changes can only be

explained if control mechanisms act at a number of points along the length of the metabolic
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pathway [Tho96] [Tho98]. However, activation of single enzymes is less effective and has
different characteristics [Tho97a] [Tho97b] [Fel00b]

Analysis of metabolic networks based on Petri net theory is also conducted. Kueffener
et al. [Kue0O] present an algorithm to systematically generate all pathways satisfying
additional constraints in Petri nets. Based on the set of valid pathways, so-called differential
metabolic displays (DMDs) are introduced to exhibit specific differences between biological
systems, i.e. different developmental states, disease states, or different organisms, on the level
of paths and pathways. Schuster et al. [Sch02a] presented a decomposition algorithm for
metabolic networks based on the local connectivity of metabolites. The interrelations of

pathway analysis of biochemical networks with Petri net theory are outlined.

2.5.2 Comparative Analysis

Comparative analysis of metabolic pathways in different organisms can give insights for
understanding evolutionary and organizational relationships among species. This type of
analysis allows one to measure the evolution of complete processes (with different functional
roles) rather than the individual elements of a conventional analysis. Comparative analysis
includes pathway clustering where the distances between pathway pairs are calculated by
aligning enzymes, and pathways are classified based on distance measures [For99]. Pathway
comparison can be conducted by comparing assigned genes on the genomes, by comparing
assigned enzymes to specific pathways [Bon98] [Dan99], and by finding similarity of
catalyzed enzymes that are classified according to the EC (Enzyme Commission) numbering
system [Toh0Oa].

Metabolic pathway alignment represents one of the most powerful tools for
comparative analysis. To align sequences, to measure distances, and to use similarity matrices
in multiple sequence alignment algorithms, is a common approach to compare individual
enzymes. Either by direct usage of molecular sequence data with, e.g. parsimony or maximum
likelihood methods, or by a two-step approach via (1) multiple sequence alignment and
calculation of a corresponding distance matrix, and (2) visualization of the distance data as
graphs in that way a phylogenetic graph can be constructed. In Forst's paper [ForO1] these
methods are extended to define distances between metabolic pathways. They combine
sequence information of involved genes with information of the corresponding network.
Metabolic pathways are considered as reaction graphs (networks) with specific graph-
topological information, such as connectivity. For each functional role of a pathway, all genes
in the genomes that code for this functional role are used. The sequences corresponding to the

functional roles are combined into a set of sequences.
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Dandekar et al. [Dan99] studied three alternative ways of comparing biochemical pathways:
(1) analysis and comparison of biochemical data, (2) pathway analysis based on the concept of
elementary modes, and (3) a comparative genome analysis of 17 completely sequenced
genomes. An example is given (Figure 2.5.2) that reveals a surprising plasticity of the
glycolytic pathway. Liao et al. [lia02] have developed a computational method to compare
organisms based on whole metabolic pathway analysis. The presence and absence of
metabolic pathways in organisms is presented as a Boolean vector. Based on this methodology
and by using some specific distance measures on these profiles, pairwise comparison of a set
of completed genomes are performed. Tohsato Y. et al. [TohOOa] [TohOOb] presented a
method for the alignment of reaction similarity of EC numbers. They use a dynamic
programming based technique to align two or more pathways. They also proposed a multiple
(local) alignment algorithm by utilizing information content that was extended to symbols that
have a hierarchical structure like EC numbers. They considered that reaction similarities can
be expressed by the similarities between EC numbers of the respective enzymes and applied
their method to pathway analysis of sugar, DNA and amino acid metabolisms. Maureen
Heymans et al. [Hey03] present a technique for the phylogenetic analysis of metabolic
pathways based on the topology of the underlying graphs. A distance measure between graphs
is defined using the similarity between nodes (enzymes) of the graphs and the structural
relationship between them. This distance measure is applied to enzyme-enzyme relational
graphs (two enzymes are related if they activate reactions which share at least one chemical
compound) derived from metabolic pathways. Using this approach, pathways and groups of
pathways of different organisms are compared to each other and the resulting distance matrix
is used to obtain a phylogenetic tree.

In this thesis, a new algorithm for metabolic pathway alignment to reveal the

similarities between metabolic pathways will be developed.

2.6 Summary

In this chapter we have introduced the complexity of cellular biology and explained the basics
of biopathways and three traditional classifications: metabolic pathway, gene regulatory
network and signaling pathway. The rapid accumulation of biological data makes it possible to
compile detailed schemes of the bioprocesses within a cell. We have outlined several major
molecular biological databases and addressed data integration problems. Concerning systems
analysis of biopathways, the research status quo in modeling and simulation of metabolic
networks, metabolic pathway prediction as well as metabolism comparison has been shown.
Compared with different modeling and simulation approaches, the Petri net methodology is

found to be a promising one. We have briefly given an overview of metabolic pathway
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reconstruction, and discussed the existing approaches and their applicability. We have also
described previous work on functional analysis and alignment of metabolic pathways.

In the next chapter, we will continue the discussion of Petri net-based modeling and
simulation of biopathways with more details. A hybrid Petri net is to be introduced, strategies
on cellular modeling will be suggested, the problem of large scale modeling and simulation is
to be addressed, and finally we will propose a standard language for biological data

interchange and modeling.
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Chapter 3

Hybrid Petri Net Based Modelling
and Simulation of Biopathways

During the last decade applications of Petri nets to modeling and simulation of metabolic
pathways appeared (§.2.3.4). However, these studies focused on either metabolic pathways or
gene regulation separately. Moreover, some Petri net models only present initially qualitative
aspects of a system. We attempt to use the Hybrid Petri nets to model an integrated metabolic
network. Aside from handling discrete events, the hybrid Petri nets also allow the modeling of
metabolic networks using actual concentrations. They are able to model biological processes

with functions, which allow each transition to simulate kinetic effects.

3.1 Hybrid Petri Nets

Let us give a brief description of hybrid Petri nets as follows:
Definition 3.1 A hybrid Petri net is a six tuple Q = (P, T, Pre, Post, h, M) such that:
P={P,, P,,....,P,} is a non-empty, finite set of places;
T={T,T,..T,} is a non-empty, finite set of transitions,
PNT=T i e. the sets P and T are disjointed;
h:PuT— {D, C}, called "hybrid function", indicates for every node whether it is a
discrete node (sets P° and T°) or a continuous node (sets P¢ and T°);
Pre : P XT — R or N, is the input incidence mapping (R* denotes the set of positive
real numbers, including zero, and N denotes the set of natural numbers);

Post : TXP — R ™ or N is the output incidence mapping;

* Parts of Chapter 3 have been published in ESM’02 [Che02a], ISB [Che03] and Lecture Notes in
Informatics [Che(02b].
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M : P — R"orN is the marking.
We denote by M, = (m,', m,',....,n,") the vector which associates with each place of P its
marking at the instant . My = Mo = (mlo, mzo,...,mno) is the initial marking. At any time the
present marking M is the sum of two markings M" and M", where M is the reserved marking
and M" is the non-reserved marking. If 1(P;) = D or C then my(t) = m ; (¢) + m"(¢).

When a variable d7; (called the delay time of 7)) is assigned to each discrete transition
T(W(T;) = D) and Tj is fired at time ¢ + d7}, then

VP; €°T; (°T; denotes the set of input places of transition 7)), m(f) > Pre(P;,T)),

mt + dT;) = m(t) — Pre(P,T)).

VP; e TP (T? denotes the set of output places of transition 7)),

my(t + dT;) = m(t) + Post(P,,T;).
When a variable vT; (called the speed of 7)) is assigned to each continuous transition
T(h(T;) = C) and T; is fired at time ¢ during a delay df, then

VP; €°T;, m;"(t) > Pre(P,T)),

mi(t +d;) = mf(t) — vi(t) x Pre(P;,T) x d, ;

VP eTy,

m(t + d;) = my(t) + vi(t) X Post(P,T)) x d, ;

where v(f) is the instantaneous firing flow of 7; at time ¢.

The concept of an inhibitor arc of weight r from a place P; to a transition 7; allows the firing of
T; only if the marking of P; is less than r. When this is used in a hybrid Petri net, we can
extend the above-defined hybrid Petri net. If the inhibitor arc has its origin at a discrete place
and has a weight r = 1, the corresponding transition can be fired only if m; > 1, actually, only if
m; =0, since m; is an integer. If the origin place is continuous, then a conventional value 0" is
introduced to represent a weight infinitely small but not zero. The new definition of an
extended hybrid Petri net is similar to the definition of a hybrid Petri net (Definition 3.1),
except that:

One can have, in addition, inhibitor arcs;

The weight of an arc (inhibitor or ordinary) whose origin is a continuous place has its

value in R " U{0%} instead of R *;

The marking of a continuous place has its value in R* U{0"} instead of R ™.
So far, the defined hybrid Petri net turns to be a flexible modeling process that makes sense to
model biological processes, by allowing places using actual concentrations and transitions
using functions.

The hybrid Petri net tool, VON++, is exploited to model and simulate gene-regulated
network. Documentations for this tool can be downloaded via its website at

http://www.systemtechnik.tu-ilmenau.de/~drath/visual.htm. Figure 3.1A shows the basis
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elements of VON++, discrete place, continuous transition, continuous place and discrete
transition connected with test arc, normal arc and inhibitor arc, respectively. There are no real
input and output within test arcs, but the value of the places linked are exploited by the

transition firing speed.

continuous transition discrete place
discrete place continuous place
test arc I normal arc inhibitor arc
1 0

Figure 3.1A Elements of VON++.

It is clear that the discrete transition is the active element of discrete event Petri nets. A
transition can fire if it is enabled by a sufficient number of tokens at its input places. It can be
assigned a delay time. A continuous transition differs from the traditional discrete transition;
its activity is not comparable with the abrupt firing of discrete transition. The firing speed
assigned to a continuous transition describes the firing behavior of it and can be constant or a

function, i.e. transport of tokens according to v(t), where in Figure 3.1A v(¢) =1.

The rate of bioprocesses is not defined within a Petri net, it should be specified
separately. In automated control systems represented by Petri nets, execution of transitions
usually depends on the presence of specific number of tokens in all staring places. However, in
most chemical and biological systems the rate of processes (transitions) is defined by the mass
action law. The rate of change in the number of tokens (or concentration) is proportional to the
number of tokens (or concentration) in all starting places as expressed in the Figure 3.1B
below. V is the rate of firing of the transition; k is a constant (called a rate coefficient in
chemical kinetics); m;, my, are the concentration of place S| and place S,. Coefficient k varies
with temperature, pressure, solvent, and other factors. As a result, k will become a function of

several variables.

—k[S1][S2]=k*m1*m2 v=k[S]=k*m4

Figure 3.1B Presentation of transition rate in continuous systems.
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T
P1 P2
2 @——@
vi=k1*m1*m2 v2=k2*m3

d[S1)/dt=d[S2)/dt=-v1
d[P2]/dt=v2
d[P1)/dt=v1-v2

Figure 3.1C Presentation of intermediate reaction rate.

Figure 3.1C indicates the change of the number of tokens (or concentration) of reaction
intermediate P1.

Normal discrete systems are easy to understand, so we emphasize here on continuous,
which are very useful for modeling and simulating dynamic systems. We will describe some

mathematical formulations that occur frequently in biology models, a general differential
. . . . dx . . .
equation for a single state variable is ? = Z flowin — Z flowout , while the expressions
t

for the inflow and outflow can be quite complex, as every bioprocess gives rise to its own
system of differential equation involving many dependent variables (species concentrations)
and many free parameters (reaction rate constants). Mass action law assumes that particles
move incessantly. However, cells are not like gas molecules.

Biochemical reactions are very complex, and interaction delay or saturation effect
often exists in biological system. In these cases, mass action law becomes violated and should
be replaced by equations that better describe the biological interaction while the rest of the

algorithm remains the same.

3.2 Cellular Model Development

To understand the behavior of metabolic networks, modeling and simulation are of
importance. Kinetic models of biochemical networks are becoming very important not only
full genome sequences and biochemical reaction pathways are becoming available but also
kinetic models of biochemical pathways are extremely complex and there is a strict
requirement of software for their simulation, as in general these models do not have a known

analytical solution.

3.2.1 Petri Net Model Construction of Metabolic
Networks

The interpretation of Petri nets as metabolic system will be (Table 3.2.1):
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Table 3.2.1 Mapping Metabolism to Petri nets.

Metabolism terms Petri net terms

S, P, E, metabolites, genes, promoters, signals... Places

Bioreaction, interaction, other bioprocesses, ... Transitions

Defines reagent of bioprocess Input arcs

Defines product of bioprocess Output arcs

Initial token or state of system Initial marking

State of reaction system Marking

Rate of reaction system Weight function or differential function

Enough of all the reagents must be present for the reaction A transition enabled
to complete

A single reaction A firing transition

According to the interpretation, mapping from general metabolic terms to Petri net terms is
reasonable. Places of Petri nets can represent all possible compounds, metabolites, enzymes,
genes and so on; transitions can be interpreted as all possible bio-events such as biochemical
reactions, transcription, transport and so on.

In figure 3.2.1A, an example of gene regulated metabolic network is displayed. The
network consists of gene regulatory, metabolic reactions and signal transductions. The gene
network contains five genes a, b, ¢, d and e that encode molecules A, B, C, D and E
respectively. Gene a encodes a protein A which when binding with a metabolic G to the
genomic site where gene ¢ and d are triggered off. With the availability of binding complex of
A and C at the transcription initiation site, Gene b regulates its own expression by encoding a
repressor protein B which inhibits the transcription of the gene a and e that it regulates. Gene e
regulates its own expression by encoding an enzyme that catalyses a reaction step in the
metabolic pathway that consists of 8 metabolites (D to K). All the metabolites are connected
with straight arrows. The gene e encoded protein E acts as an enzyme in the reaction that
catalyzes F into H and I; while the accumulation of I may result in a feedback on the
transformation of D. The resulting metabolic K represses / induces the regulatory action of
protein B on a by modifying B’s conformation. Moreover, an outer signal S’s approaching to
the complex of B and K may re-modify the conformation and bring more molecular functions.

The place/transition Petri net structure of metabolic system (Figure 3.2.1B), without

any specific initial marking, is shown below:
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Figure 3.2.1A An example of a gene regulated metabolic network.
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Figure 3.2.1B Petri net model of the generalized metabolic network.
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Obviously, Petri nets have a simple graphical representation. Moreover, basic aspects of
concurrent systems are captured conceptually as well as mathematically; the ability to
visualize structure and behavior of a Petri net promotes the understanding of the modeled
system; and Petri nets are executed and dynamic behavior observed graphically by various

software tools which also support graphical construction and visualization.

3.2.2 Petri Net Model of Metabolic Reactions

In biochemistry, the most commonly used expression that relates the enzyme catalyzed

formation rate of the product to the substrate concentration is the Michaelis-Menten equation,

) . . . . .
S An example of its Petri net model and simulation result is
+

m

max

which is given as v =

shown as below.

0.005*S/(0.1375+S) !

Figure 3.2.2 Petri net model of a simple enzyme catalyzed biochemical reaction (Michaelis-Menten

reaction).

It is clear that such enzyme reactions are characterized by these two parameters: V,,,, and K,
and biochemists are interested in determining these parameters from experiments. Fortunately,
there are several biological databases available for public access, such as BRENDA, that
provides enzyme reaction parameters. However, only for a subset of the well known pathways,
those parameters are complete, and moreover an enzyme reaction can be affected by the
presence of other compounds, i.e., the simplest form of the Michaelis-Menten equation does
not account for the higher than first order substrate concentration dependence found in many
allosteric enzymes. In the first case, we can introduce a general function v=K,,,-S to meet the
lack of unknown parameters, where K, is the apparent rate constant. As we know the
Michaelis-Menten equation is only valid when the concentrations of substrate and enzyme
meet the precondition [E] is not less than 0.001[S]. When we consider the effect of enzyme
concentration on the reaction rate in case the enzyme is regulated, i.e. the enzyme

concentration is a variable of the model, the Michaelis-Menten equation can be written as

Vo 'S ko E-S

max

v: =
K, +S K, +S

, where k., is known as turnover number. When there are more than
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two substrates and/or products involved in one enzymatic reaction, and its kinetic type is
unknown, one then gets processes more complicated than discussed in the previous section. As

the Michaelis-Menten equation is obviously invalid at this time, we simply apply the

n

following function: v=v,__ -[I
= K 4+ 8§

i

. In fact it is also in Michaelis-Menten form, e.g.

Vmax 'Sl 'SZ
+S5,)- (K

for a two-substrate biochemical reaction, v = . Fortunately, if a two

(K +3S,)

ml m2

or more substrate biochemical reaction is already determined as one of the kinetic types list on

the appendix A, the corresponded function should be applied.

3.2.3 Models of Gene Regulatory Networks

Gene regulatory networks are the on-off switches and rheostats of a cell operating at the gene
level. The regulation of gene expression determines whether a protein is present to carry out
its particular metabolic reaction and reaction specific kinetics. Based on interactions between
genes and proteins, and reactions of genes and proteins, they dynamically orchestrate the level
of expression for each gene in the genome by controlling whether and how vigorously that
gene will be transcribed into RNA. Each RNA transcript then functions as the template for
synthesis of a specific protein by the process of translation. Process of gene regulatory
networks is not restricted to the level of transcription, but may also be carried out at the levels
of translation [Pyr96], splicing [Ya096], posttranslational protein degradation [Hoc96], active
membrane transport [Wei93], and other processes. In addition, such networks often include
dynamic feedback loops that provide for further regulation of network architecture and output.

Building complete kinetic models of gene regulatory systems requires detailed

knowledge on reaction mechanisms. Often the following steps are considered:

1. The gene (DNA) is transcribed into RNA by the enzyme RNA polymerase.

2. RNA transcripts are subjected to post-transcriptional modification and control:
rRNA transcript cut into appropriate size classes and initial assembly in nuclear
organizer; tRNA transcript folds into shape; mRNA transcripts are modified,
noncoding sequences (introns) removed from interior of transcript; in eukaryotes,
all RNA types must move to the cytoplasm via the nuclear membrane pores.

3. Then mRNA molecules are translated by ribosomes (rRNA + ribosomal proteins)
that match the 3-base codons of the mRNA to the 3-base anticodons of the
appropriate tRNA molecules.

4. Finally, newly synthesized proteins are often modified after translation (post-
translation) before carrying out its function, which may be transporting oxygen,

catalyzing reactions or responding to extracellular signals, or even directly or
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indirectly binding to DNA to perform transcriptional regulation and thus forming
a closed feedback loop of gene regulation.
However, at the present time, the information of the bioprocesses from genes to the gene-
encoded products is often unclear or unavailable. In such cases, we can regard the unknown
part as a black box (one transition that stands for several other transitions) and simplify the

whole procedure of a higher level of abstraction (Fig 3.2.3):
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Figure 3.2.3 Petri net model simplification. In case of insufficiency of modeling values, the splicing of
RNAs (upper block) can be abstract simplified modeled as mRNA (middle-inner block), while the
whole process of transcription and translation (middle-outer block) can be simplified as expression

process (bottom block).

Such simplifications do not require a change of the structure of the complete net and any
modification to this subnet should be reflected in the behavior of the transition. Therefore,
Petri net models are extensible and can be extended without significant deviation from the
existing structure.

As to model gene regulatory networks quantitatively, we use the state equations of the
following form to model bioprocesses such as activation of proteins, binding of proteins to

genes, binding of RNA polymerase and so on.
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dstate[.]

If statej;(condition), then 1= statey;) (consequence)
t

For example, the concentration of a gene product is statep;. The condition contains regulatory
terms for this gene and describes whether the gene is being expressed or not. It depends on the
state of the cell, and may contain models for promoters, enhancers, other proteins, nucleic
acid, etc. The consequence is the result of the changed condition, here, the rate of gene
expression.

So that the differential mass balances describing the concentration of mRNA and gene
encode protein can be given as:

If (3 (Gene, transcriptional factor(s), RNA nucleotides, binding of RNA polymerase,
etc.) not 3 (Repressors, etc.)),

then (transcription is initiated and mRNA is produced,
@ = [mRNA](GPC , mRNA) =k, [GPC] —k, [m RN, A]) :

If 3 (Modified mRNA, tRNA, initiation factor(s), amino acid, binding of ribosome,
etc.),

then (the gene-encoded protein is synthesized,

2L (o e mana)= b, lRNAT- [P [PD.

where ki and kq are the rates of transcription and translation respectively, k4 is the rate of
degradation and k, is the rate of consumption of biochemical reaction. GPC denotes the
concentration of the binding complex of gene, TFs, RNA ploymerase, etc. DNA is a stable
molecule, but mRNA and proteins are constantly being degraded by cellular machinery and
recycled. Specifically, mRNA is degraded by a ribonuclease (RNase), which competes with
ribosomes to bind to mRNA. If a ribosome binds, the mRNA will be translated, if the RNase
binds, the mRNA will be degraded. Proteins are degraded by cellular machinery including
proteasomes signaled by ubiquitin tagging. Protein degradation is regulated by a variety of
more specific enzymes (which may differ from one protein target to another). In practice, the

first-order rate constant of degradation k4 often is replaced by a half life H, and the degradation

dac 0.693
rate is expressed as 7 =————C, where H=0.693/ks. mRNAs have specific half-lives
t

H
ranging from hours to days.
Regarding to the model of binding procedures which also are common phenomena in
signal transduction, say
e converting inactive proteins into active proteins, and vice versa;
¢ binding of proteins to genes, proteins;

¢ Dbinding of RNA polymerase to genes and gene-protein complex;
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¢ Dbinding of receptors to transcription factors.
A general model [Complex] =K, - H[Ai ], where K, is the binding constant, is presented for
i=l

systems consisting of one subject A; binding with other subjects.
As in many situations, the information of gene regulatory pathway and mechanism is
not available and one needs to take recourse to more approximate models. In this sense, the

discrete model will be favorable.

3.2.4 Diffusion Transportation

Most of the models deal with the amount of metabolites in a cell. In the simplest case,
we may be able to assume that the cell is a “well-mixed pool”, i.e. the amount of metabolites is
uniform across the cell. In many situations, however, concentration gradients exist which will
affect the local rate of biochemical reactions, in particular for large systems and different
compartments, we have to consider the effect of diffusion or of transport explicitly.

In general, if concentration gradients exist within the spatial scale of interest, it is very
likely that diffusion will have an impact on the modeling results, unless the gradients change
so slowly that they can be considered stationary compared to the timescale of interest. A
growing number of modeling studies [Nar97] [Mar98] have emphasized the important effects
diffusion can have on molecular interactions. Moreover, many bioprocesses take place in
different compartments in a cell, e.g. glycolysis conducts in cyotoplasma while TCA in
mitochondria. Membranes play an important role to separate these bioprocesses and
meanwhile maintain the normal transportation of metabolites inside and outside of them. In
addition, signal transduction also occurs across membranes.

So far, in order to model a metabolic network, not only all effects of metabolites and
reaction behaviors, but different compartments should be considered. Diffusion will be the
most important physical effect in the models we consider, but in other systems active transport
could be as important, or even more important. We will focus on membrane transportation.
The rate of penetration of a metabolite across a membrane is related to the concentration

gradient by Fick’s Law of Diffusion:
Rate of penetration / =D -A- - @ _D5. A-(s],., -Is]).
dx  Ax

where [S],: and [S];, are concentrations of metabolite outside and inside the membrane
respectively; D denotes the diffusion coefficient (D decrease with the size of the metabolite);
A is the area of membrane (the greater it is, the more metabolite that can pass); £ is the

partition coefficient (§ increases with increasing solubility), and d; is the membrane thickness
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D
(the greater the thickness, the slower the rate). Usually EIB is called the permeability

constant (P), a constant for a given substance moving through a given membrane.

Diffusion will be most important physical effect in the models we consider, but in
other systems such as facilitated diffusion and active transport could be as important or more
important. In carried systems, the carrier exhibit saturation kinetics, so this “Michaelis-Menten
equation” formula might be used to describe such process. Low K, means a high affinity and
transport rate, and high K, means a low affinity and transport rate. Some metabolites and/or
signals (hormones) may modify carriers and change K. V,, is related to “carrier mobility”, the

total number of carriers present.

3.3 Petri Net Modeling Strategy

Modeling algorithm and analysis of hybrid Petri nets can be done by the following procedures:

1. Draft network construction

Normally, a Petri net model is built manually by drawing places, transitions and arcs
with mouse events. Fortunately, the XML based Petri net interchange format standardization,
which consists of a Petri Net Markup Language (PNML) [Web03] and a set of document type
definitions (DTD) or XSL Schema is coming into being and intended to be applied. Several
Petri net tools such as PNK, Renew and CPN have been equipped with an XML-based file
format exchange. We have developed an environment to extract data of metabolic networks
from KEGG, BRENDA and RegulonDB and transform them into XML-based files that can be
used by PNK and Renew to display the Petri net models automatically.

2. Data searching

The main feature of metabolic processes is that the concentration of metabolites will
influence the reaction activity of bioprocesses. Therefore, the actual concentration of any
metabolite is an important component of the quantitative model. Although some data
nowadays are available to the public via the Internet, some other data may not be complete. It
requires time-consuming literature searches. Assignment of initial value of places is made
after data gathering.

3. Defining the Kinetics of each reaction

We have collected a series of predefined kinetic types that are the types most often
used in biochemical reaction models (see Appendix A). However there are some
circumstances in which the kinetic types are not yet defined. New kinetic type self-definitions
are handled by the mass law. A certain kinetic type is only presented as a choice for reactions
that have the same number of substrates as marked in that type. If it is a reversible reaction,
then it also needs to match the number of products. Once you have defined all the reactions of

the model, you must assign a kinetic type to each of them. You will also need to provide
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values for all the kinetic constants and information about variables (that is, if the kinetic type
you selected has any).

4. Self-defined kinetics

Many metabolic pathway schemes contain mass conservation relations that must be
taken into account in order to carry out the simulation. To check the mass conservation
relations of a model we can go to the original reaction data from databases. In fact, we
construct the model with the identification of reaction stoichiometry. Otherwise, it will lose
something when the simulation is carried out because in continuous Petri nets, the weight of
arcs is disabled, so that all components involved in the reaction are changed with same rate,
which is defined by the transition function. However, in the reaction 2A+B—C, the change of
A should be twice that of the reaction rate. In VON++, unfortunately, we have to add more
transition from A with the same function in order to obey the mass conservation law.

5. Parameter tuning and simulation

To build a model precisely requires as many variables as possible and parameters
involved in a metabolic network. The values of variables and parameters are determined either
by experimental methods or deduced from other related values. However, it is impossible or
sometimes unnecessary to put all variables and parameters into a model. The model is
plausible when main influences are included. On the other hand, because of different purposes
and situations, most data from laboratory do not fit the model very well, and vice versa. We
have to compare and tune the differences in order to find suitable ones. Then the effects of
various parameters on the gene regulated metabolic networks and their relations can be
determined. The key enzymes/proteins, as well as intermediates related in the metabolic
pathway, can be determined, which can provide the necessary information to identify and

solve metabolic bottlenecks.

3.4 Large Scale Network Modeling and
Simulation

One of the ultimate goals of computational metabolism is the modeling and simulation of the
whole cell - virtual cell development. There are currently several ambitious attempts to build
whole cell models of cellular biochemistry [Gib01], including the virtual cell project [SchOOc]
[SchO1a], E-Cell project [Tom99] [TomO1], and other works [Oli01] [ResO1] [Nob02a]
[Nob02b] [Fel01] [Vo0i00a] [Voi00b] [Hei02a] [Hei02b].
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3.4.1 Problems and Methods

3.4.1.1. Constitutive model development
In order to perform a virtual cell modeling and simulation, the following problems have to be
considered:

1. Cellular process analysis

Metabolisms in living organisms are not at the equilibrium state. Cellular processes
involve material, signal and energy transfer. Metabolic processes involve a high number of
interconnected biochemical reactions. The product of one reaction serves as the reactant for
the next. The same compound may serve as a reactant for several parallel reactions that
produce different products. The mathematical relations between the thermodynamic properties
of a metabolite and its activity in the living environment allow calculating their
thermodynamic properties in the stationary metabolic state. All chemical reactions, including
enzyme-catalyzed reactions, are to some extent reversible; a readily reversible reaction has a
small numerical value of AG. We can then combine this information algebraically to describe
the thermodynamics of metabolism.

A biochemical reaction with a large negative value for AG might be termed
“effectively irreversible” in most biochemical situations. Within living cells, however,
reversibility may not occur, because reaction products are promptly removed by additional
enzyme-catalyzed reactions. Metabolite flow in living cells is largely unidirectional. True
equilibrium, far from being characteristic of life, is approached only when cells die. The living
cell is a dynamic steady-state system, maintained by a unidirectional flow of metabolites. In
mature, the mean concentrations of metabolites in cells remain relatively constant over
considerable periods of time. Short-term oscillations of metabolite concentrations and of
enzyme levels do occur, however, and are of profound physiologic importance. The flexibility
of this steady-state system is illustrated by the delicate shifts and balances by which organisms
maintain the constancy of the internal environment despite wide variations in food, water, and
mineral intake, work output, or external temperature.

2. Regulation mechanism

Metabolic regulation is exerted primarily at branch points, where a metabolic
intermediate is partitioned between two pathways. The branch point metabolite is the substrate
for two or more enzymes, and the relative amount of the metabolite that enters each pathway
depends on competition between the two enzymes. The outcome of such competition depends
largely on the relative affinities of the two enzymes for their common substrates. This
modulation of the affinities of competing enzymes must lead to a kind of interaction between

pathways.
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Net metabolic flow of any enzyme-catalyzed reaction may be influenced (1) by

changing the absolute quantity of enzyme present, (2) by altering the catalytic efficiency of the

enzyme, and (3) by reversibly modifying the catalytic activity of the enzymes. All three

options are exploited in most forms of life.

)

2)

3)

The absolute quantity of an enzyme present is determined by its rate of synthesis
(k) and rate of degradation (k). The presence or absence of substrates,
coenzymes, or metal ions alters proteolytic susceptibility, which can convert an
inactive proenzyme to a catalytically active form. The concentrations of
substrates, coenzymes, and possibly ions in cells may also influence the rates at
which specific enzymes are degraded. Arginase and tryptophan oxygenase
(tryptophan pyrrolase) illustrate these concepts. Regulation of liver arginase levels
can involve a change either in k; or in k4. After a protein-rich diet is ingested, liver
arginase levels rise owing to an increased rate of arginase synthesis. Liver
arginase levels also rise in starved animals. Here however, it is arginase
degradation that is decreased, while k; remains unchanged.

The control of enzyme activity could be allosteric effects. The catalytic activity of
certain regulatory enzymes is modulated by low-molecular-weight allosteric
effectors that generally have little or no structural similarity to the substrates or
coenzymes for the regulated enzyme. Notice that allosteric and catalytic sites are
spatially distinct. Allosteric effects may be on K, or V.. Reference to the
kinetics of allosteric inhibition as "competitive" or "noncompetitive" with
substrate carries mechanistic implications that are misleading. The kinetics of
feedback inhibition may be competitive, noncompetitive, partially competitive,
uncoupled, or mixed.

Reversible, covalent modification of the catalytic activity of enzymes can occur
by covalent attachment of a phosphate group to one or more Ser, Thr, Tyr, or His
residues. Enzymes that undergo covalent modification with attendant modulation
of their activity are termed "interconvertible enzymes." Interconvertible enzymes
exist in two activity states, one of high and the other of low catalytic efficiency.
They play important roles in signaling events, though some precise details by

which these enzymes act are in most instances still far from clear.

3.4.1.2. Model simplification

For a number of practical and esthetic reasons, we wish our models and explanations of

biological phenomena to be as simple as possible. On the other hand, biological systems are

complex, having many processes and variables that interact in complicated, non-linear ways.

There are a few principles for simplifying models:

1.
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Every state variable must have a dynamic equation (differential equation or finite
difference equation) as well as parameters and initial conditions. There are two ways to reduce
model complexity arising from state variables: (1) convert a state variable into a constant, and
(2) aggregate state variables.

2. Make '"'stronger'' assumptions

Two methods are exploited: (1) convert functions of state variables into constants,
and (2) convert nonlinear relationships into linear relationships.

3. Remove temporal complexity

(1) convert random models into deterministic models, and (2) convert driving
variables to constants.

4. Remove spatial complexity

An assumption of the Michaelis-Menten kinetic approach is that the concentration of
total substrate is essentially equal to the concentration of free substrate. This assumption may
be valid when modeling small volumes but should be carefully evaluated in all other contexts,
especially within membrane transportation. The simulation of models with more than one
compartment is not hard to implement in a generic simulation program, but the inclusion of
diffusion effects is more problematic. Studies of realistic reaction-diffusion metabolic models

would greatly increase our understanding of cellular processes.

3.4.2 Prospect of Petri Net Tools

In the following requirements for a biology specific Petri net tool are discussed:

3.4.2.1 Cell modeling theory

1. Metabolic pathway layout

Structural knowledge of a physical system is the foundation of a simulation. As we
know a Petri net representation is a type of object-oriented representation in which metabolites
are grouped together into objects that correspond to real-world entities. Thus, it can present a
structure of metabolism in a natural way. The metabolic pathway editor tends to be based on
the Petri net methodology. Because Petri nets are mathematically well defined and have a
mature theoretical background, so that many static and dynamic properties of a Petri net (and
hence a system specified using the technique) may be mathematically proven. In addition,
Petri nets may be executed and the dynamic behavior observed graphically. As the matrix
format of biochemical reactions are commonly used throughout many tools, our software
should be capable to handle matrix data format. Which on the other hand can simplify the
transfer from other tools.

2. Metabolic data connection
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XML is a standard for storing and transferring data and many biological databases
such as TRANSPATH and MPW have already or are being considering using the technique.
The intended software should support XML import & export, link to internal & external
related databases on gene, enzyme, reactions, kinetics, organisms, compartment and initial
values of (ODE-NAE) system. BioPNML (§ 3.5) could be used as a standard.

Moreover, with the complete annotated sequence of a genome we can generate drafts
of the organism’s metabolic networks. For the next generation of metabolic models, which
will probably be integrated with genome databases, it would be possible to include fields
containing information on the evidence for particular values, e.g. Evidence Codes in Gene
Ontology [http://www.geneontology.org/doc/GO.evidence.html].

3. Hierarchical concept

Hierarchical biochemical systems are biochemical systems that consist of multiple
modules that are not connected by a common mass flux, but communicate only through
regulatory interactions. The models of a virtual cell should contain metabolic pathways and
the levels of transcription and translation, and so on. Reactions in different compartments
require a hierarchical model representation. The translation rates are increased by the
concentration of mRNAs, the metabolic rates are increased by the concentration of enzyme
and the transcription rates are affected by the concentrations of metabolites. E-Cell models
fulfill this technique very well. With the mature mathematical support, Petri nets also can
handle it and at the same time it make the Petri net structural reduction possible as usually the
state space of Petri net structure will be very large in graphs.

4. Metabolic kinetics

Structural knowledge alone captures the state of a system at a fixed point in time, but
does not capture the relationships and interactions among structural components over time.
Process knowledge is functional knowledge of dynamic change. A dynamic process
representation is critical to the success of a simulation. Traditionally, ODE and NAE models,
such as Michaelis-Menten kinetic models, are used to simulate metabolic reactions. In order to
build a quantitative model, kinetic properties of enzyme-catalyzed reactions involved in
pathways should be outlined.

5. Determining kinetic mechanisms

Different types of enzyme kinetics (Michaelis-Menten equation, Reversible mass
action kinetics equation, Allosteric inhibition equation, etc.) and initial parameter values can
partly be obtained via certain databases and literature. Otherwise, a user-defined model should
be built as E-Cell and Gepasi are. Nevertheless, a Petri net based simulation system still can
deal with it as a discrete-event or semi-quantitative model when the required data are

unavailable. The well-known Michaelis-Menten equation is not a complete description of the
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behavior of single-substrate enzymes in vivo because of product inhibition and reversibility, so
that a new kinetic algorithm should be worked out.

6. Thermodynamic control of reactions

Biochemical reactions are thermodynamically feasible. A link between
thermodynamics and kinetics can show the relation between the kinetic constants, K., AG?
and AG, and the driving forces for the reaction. Factors limiting the rate of an enzyme-
catalyzed reaction include temperature, pH, competitors, ionic, allosteric molecules, substrate

concentration, substrate location and so on, which should be considered for user defined

models.

3.4.2.2 Computation method

In metabolic systems, detailed quantitative knowledge is unavailable today. Models of this
system are to be constructed by combining qualitative knowledge of relationships and partial
quantitative data. In this case, simulating such a model may be the only means for generating
predictions. Initially, Petri nets are developed as a discrete-event modeling and simulation
systems. Traditionally, kinetics has been taught in biochemistry courses in terms of enzyme
steady-state kinetics. This corresponds to a detailed study of the local properties of the
individual enzymes. However, one can go further and create kinetic models of whole
pathways. Such models are composed of coupled ordinary differential (for time courses) or
algebraic (for steady states) equations. These equations are non-linear and most often without
analytical solution. This means that they can only be studied through numerical algorithms,
such as the Newton method for solving non-linear equations and numerical integrators. With
many years of development, quantitative modeling is now possible to be handled by Petri nets.
They have a mature mathematical algorithm and can solve NAE and ODE and stoichiometric
matrices. But biochemical systems are also rich in time scales and thus require sophisticated
methods for the numerical solution of the differential equations that describe them.

Parallel treatment of these equations during simulation is of importance, yet difficult
to achieve. Moreover, when we consider other functions of the metabolism, such as MCA
methodology and bifurcation analysis, it is necessary for the tool to be powered by a more
efficient algorithm. MatLab is one of the most popular software systems in the area of applied
mathematics, so that integrating MatLab [http://www.mathworks.com/] in Petri net models is
probably a good solution. In addition, MatLab itself can be applied as an attractive Petri net
tool builder. Now it is possible to analyze and visualize Petri net models by transferring them
to convenient graphical design tools. Export to matrix representation in MatLab is possible,
and M. Svadova [Sva00] reported an approach to use the MatLab standard libraries and built a
Petri nets toolbox that enabled Petri net modeling, analysis and visualization of simulation

results.
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As metabolism is far less well understood than a manufacture system. Consequently,
biological simulations often yield highly uncertain results. So far, a bifurcation analyzer or
fuzzy analyzer should be included in the software as Dbsolve does. And concentration values
of metabolites within a cell fluctuate in a normal range; pre-arrangement of such data in the
software is necessary.

Furthermore, the pathway simulator is able to predict pathways, from several known
biochemical reactions; we can predict the whole connected network of them based on the tool
algorithm. It can also calculate thermodynamical characteristics. Each reaction is
thermodynamically feasible, that is, AG be equal to or less than zero. Otherwise, the
requirements for coupling of reactions (combined with ATP utilization) should be checked and
any two-coupled reactions must proceed via a common intermediate. The reversibility of one
reaction is determined and displayed in case abnormal situations occur, though the metabolite

flow tends to be unidirectional.

3.5 Biology Petri Net Markup Language

As previously mentioned, there are many biological simulators and Petri net tools available,
but few common exchange formats, even with XML format. As a result it is difficult to
exchange models between different analysis and simulation tools, and take advantage of
different tools. In this section, a proposal for a common exchange language - Biology Petri Net

Markup Language (BioPNML) is presented.

3.5.1 Introduction

In the post-genomic era new methods are proposed to store these data and retrieve them and
analyze and reanalyze. XML, as an emerging standard for data interchanging, is more and
more adopted to structure data exchange in bioinformatics. The following sections briefly

discuss the relationship between XML, bioinformatics and PN.

3.5.1.1 Bioinformatics & XML

There are already two good review papers on this topic by V.H.Guerrini [Gue0OO] and
F.Achard [AchO1]. We would like to highlight a few of their points and supplement them with
a few fresh examples for biopathway applications.

XML is derived from the Standard Generalized Markup Language (SGML), the
international standard for defining descriptions of the structure and content of different types
of electronic documents. XML is a web-dedicated data exchange language, which omits the
complex and less used parts of SGML. The World Wide Web Consortium (W3C) has
supervised the specifications of XML since its inception in 1996. More documentation can be

found at http://www.w3.org/XML/.
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In bioinformatics, XML was widely used within the last few years, and several XML
based data formats have been developed. BSML (Bioinformatic Sequence Markup Language)
[http://www.bsml.org/] uses XML to provide genomic information and a graphical BSML
browser was developed. BioML (Biopolymer Markup Language) [http://www.bioml.com/
BIOML/] integrates nucleotide and protein sequence data. The XML based RDF format
[http://www.w3.org/RDF/] is also adopted by the Gene Ontology Consortium
[http://www.geneontology.org] to provide controlled vocabularies for the description of
molecular functions, biological processes and cellular locations of gene products. Moreover,
major biology databases such as NCBI, WIT and ExPASy also provide XML output after
users’ database queries. Obviously, XML is widely adopted as a standard for the exchange of
biological data.

Both CelIML (Cell Markup Language) [http://www.cellml.org/] and SBML present
description languages for cellular simulation. CellML is intended to be used to represent many
different types of models, for instance biochemical pathway models. Aside from specifying a
model purely in terms of mathematics, CellML can use some additional elements to fully
capture the information in biochemical pathway models. SBML is oriented towards
representing biochemical networks common in research on a number of topics, including cell
signaling pathways, metabolic pathways, biochemical reactions, genomic interactions, and
many others. The main difference is that CellML has a very general and flexible syntax, while
SBML'’s syntax is specific to metabolic pathway modeling. Currently, SBML is closely
collaborated among several teams that develop metabolic simulators.

Although many biological databases and bioinformatics research groups use XML, it
is however so flexible that anyone can create his/her own versions in entirely different ways.
XML enables advancements in application integration, but they are difficult to achieve without

a consistent framework for XML implementations.

3.5.1.2 Petri nets & XML

At present most Petri net tools import and/or export Petri nets in proprietary file formats and
poorly support other data formats. In these proprietary file formats it is difficult to add and
remove features to the language and to make modularization of diagrams as easy as it might be
in an ASCII based text format such as XML.

In order to solve the problems caused by the use of different file formats, many Petri
net tools are currently being equipped with XML support. R.B. Lyngsg et al. [Lyn98]
presented a text format based on SGML for Design/CPN diagrams and proved that the
framework is indeed possible to use SGML to represent High-level Petri Nets. Renew
[KumO0], from its version 1.3, supports XML import and display Petri net automatically.
Matthias Jiingel et al. [JueOO] presented the concepts and terminology of PNML (Petri Net
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Markup Language), and thus provided a starting point for the development of a standard
interchange format for Petri nets.

Although the above-mentioned Petri net XML standards are available, they are
incompatible due to different design destinations. Actually, one cannot adapt ones Petri net
XML file to fit them without any modification. Moreover, a common problem to implement it
is, that every user has to write an XML file from the original data source. For instance, in
order to construct a model out of our database, we have to transform the original data into the
desired XML file. By using the W3C recommended Extensible Stylesheet Language
Transformations (XSLT), new structured data formats can be created from existing XML
documents. That is, XSLT is a language for transforming XML documents into other XML
documents. An XSLT file (appendix B) is developed to convert the original XML source file
from our metabolic pathway data stored in an Oracle system into the desired XML format that
can be executed by the Renew XML parser. Figure 3.5.1.2A shows the automatic layout of
Petri net model with Renew. The Petri net model layout with PNK is shown in Figure

3.5.1.2B.

<?xml version="1.0" encoding="UTF-8"7>
<?xml-stylesheet
href="http://sanfrancisco/xml/db2xml/test.xsl"
type="text/xsl"?>

<database URL="jdbc:oracle:thin: @edradour.cs.uni-
magdeburg.de:1521:orcl">

<table0 QUERY="select * from enzyme where ec =
'3.5.3.1'orec="'4.3.2.1" or ec='6.3.4.5' or ec="2.1.3.3" or
ec='6.3.4.16"

>

utrescine

Al
<record0> .
<EC><![CDATAJ[6.3.4.16]]></EC> -. 2 1N pmeqai-l-Arg ﬂmo)ﬁuccmate
<PRODUCT><![CDATA[ADP]]></PRODUCT> 945
<SUBSTRATE><![CDATA[NH3]]></SUBSTRATE> ' Pyrophasphate
</record0>

(L~ Argml 0 1suc L-Arg [ine

<record0>
<EC><![CDATA[6.3.4.16]]></EC> Cana ?une
<PRODUCT><![CDATA[ADP]]></PRODUCT>
<SUBSTRATE><![CDATA[CO2]]></SUBSTRATE> alpha-N-Subs
</record0>

1| l

</record0>

</table0>
</database>

Figure 3.5.1.2A Petri net model layout based on XML (Renew).
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Figure 3.5.1.2B Petri net model layout with PNK2.

As we know PNML is generic and can be extended according to the user specific needs. So
that a special “Bio-PNTD” for PNML can be defined when a simple biological system is
modeled. However, a metabolic network model can contain a large number of named
components representing different parts of a model. In this case, SBML model definitions are
more suitable. Therefore, with regard to the application of Petri net methodology to
bioinformatics, particularly for modeling and simulation of metabolic networks, a new
interchange format is what is really needed.

The PNML code for the model is translated by an XSLT file and outlined as follows:
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<?xml version="1.0" encoding="UTF-8"?2>
<!-—pnml for metabolic reaction petri nets - mchen@techfak.uni-
bielefeld.de——>
<pnml>
<net id="N" type="PTNet">
<name>metabolic petri nets</name>
<place id="6.3.4.16">
<marking>
<graphics>
<offset page="1" x="-4" y="-10"/>
</graphics>
<value>0</value>
</marking>
<name>
<graphics page="1" x="-15" y="-30"/>
<value>EC6.3.4.16</value>
</name>
<initialmarking>
<graphics>
<offset page="1" x="-4" y="-10"/>
</graphics>
<value>0</value>
</initialmarking>
<graphics>
<position page="1" x="300" y="120"/>
</graphics>
</place>
<transition id="T6.3.4.16">
<name>
<graphics>
<offset page="1" x="-15" y="-30"/>
</graphics>
<value>T6.3.4.16</value>
</name>
<graphics>
<position page="1" x="300" y="160"/>
</graphics>
</transition>
<arc id="ARC6.3.4.16" source="6.3.4.16"
target="T6.3.4.16">
<inscription>
<graphics>
<offset page="1" x="0" y="-1"/>
</graphics>
<value>1</value>
</inscription>
<graphics>
<position page="1" x="300" y="140"/>
</graphics>
</arc>
<place id="NH3">

</place>

</net>
</pnml>

In this following section, the concepts and terminology of BioPNML interchange formats, as

well as its syntax is to be presented.
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3.5.2 Concepts and Terminology of BioPNML

The intended BioPNML is a XML-based description language that allows the representation
of metabolic networks as Petri nets. Before introducing the syntax of the interchange format,
we briefly discuss its basic concepts and terminology, which is independent of the XML
representation. Previous approaches proved, that by using hybrid Petri net methodology, it is
feasible to model and simulate metabolic systems [Mat0O0] [MatO1] [Che00] [Che02a].
Therefore the first version of BioPNML supports the hybrid Petri net type. BioPNML contains
Petri net objects as well as data needed for the exchange and graphical representation of
metabolic networks. An XML schema defines the labels for a Petri net and its objects and

metabolic models.

3.5.2.1 Petri net objects and labels

From Table 3.2.1 we know that places can be used for the representation of biological subjects
such as genes, metabolites, proteins, enzymes, compounds and other molecules, while
transitions represent biochemical reactions and interactions. The value of tokens in places can
represent the actual concentrations of biological subjects. Transitions can be classified into
two types: discrete and continuous. A discrete transition fires, if it has concession, and a delay
time can be assigned to it. Continuous transitions are not comparable to the abrupt firing of
discrete transition. The firing speed assigned to a continuous transition is defined by a constant
or a function. Arcs between places and transitions fall into three categories: normal arcs,
inhibitor arcs and test arcs. In metabolic pathways, arc weights of continuous transitions are

assigned according to the stoichiometric coefficients of the biochemical reactions.

3.5.2.2 Petri net graphics

Every object is equipped with some graphical information. For a place and transition, the
information is its shape, size and position; for an arc, it is a list of positions that defines start
and end points of this arc. In the Biology Petri net, the main properties are, that the arc weights
are described by the stoichiometric coefficient of the biochemical reaction, and the transition
condition is described by using functions or by assigning a delay time. Figure 3.5.2.2 shows
the Petri net representation of a biochemical reaction. S, E, P and ES denote substrate,
enzyme, product and the enzyme-substrate complex respectively. The biochemical reaction
indicates that a substrate is enzymatically catalyzed into a product with a transformation rate v.
Three places represent substrate, enzyme and product with S, E and P as the label of places.
The tokens (real concentrations) of each place in the Petri net can be used as variables, m, m,
and mj;, while the transition rate is assigned with a known function, the Miachlis-Menten

equation.
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Figure 3.5.2.2 Petri net presentation in BioPNML.
3.5.2.3 Classes

Figure 3.5.2.3 shows the class diagram of BioPNML. The left side shows the Petri net part of
BioPNML that was derived by extending PNML slightly. The right part shows the Biological
part that is based on SBML. The Petri net part contains only very few extensions to PNML.
More changes to SBML were made in the biological part, although those changes are open for
discussion. This is due to the fact that Petri nets have a comparatively long history and well-
defined, generally accepted syntax and semantics, whereas molecular biology is still evolving
at a rapid pace. The purpose of the schema is to give a rough idea of how Petri nets and
biological systems are related. This diagram can also serve as a conceptual guidance to
researchers who are designing databases to store networks and reaction data.

Main classes include metabolic pathway, gene regulation and signal transduction,
being consistent with the traditional classification of metabolic networks.

1. Metabolic pathway

In BioPNML, the metabolic reaction class is defined as biochemical reactions and
related objects such as: enzyme, substrate(s), product(s), their stoichiometries, and parametric
values for separately defined kinetic laws. In figure 3.5.2.3, the metabolic reaction class
structure that was derived by extending SBML’s biochemical reaction class [HucO1] is shown.

The metabolic reaction class contains mandatory fields (enzyme, substrate, product,
and KineticLaw), as well as optional fields (enhancer and inhibitor). Enzyme is a reference to
the gene that encodes the enzyme. Both substrate and product are references to molecules
implemented using lists of SpecieReference structures. The SpecieReference structure contains
fields for recording the names of molecules, the types of molecules that are references to lists
of TypeRef structure; the stoichiometry filed indicates the proportions of substrate and product
within a reaction. The KineticLaw structure is an optional field of the type KineticLaw, used to
provide a mathematical formula for the reaction rate. The Boolean field, reversibility, indicates
whether the reaction is reversible. The field is optional, and has default “true” when it is not
specified. Information about reversibility is useful in certain kinds of structural analysis such

as elementary mode analysis [Sch99].
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In addition to these fields, the reaction structure also has a Thermodynamics field as a
reference to ThermodynamicsRef. The ThermodynamicsRef structure is an optional field that is
used to provide the Gibbs energy that indicates the favorability of the reaction.

2. Gene regulatory

In BioPNML, the gene regulation class is defined as a set of objects such as genes,
promoters, transcription factors, inducers, repressors, the gene encoding proteins, other
metabolites and the effect of interaction and kinetics.

3. Signal transduction

The Signal transduction class in the BioPNML is defined as a set of signal instances
through the message passing between source and target. It references molecular interaction
motifs, effects of the signals, components of the transductions, and properties of signal
transduction.

4. Other bioprocesses

Biological cells are highly complex systems. Some biological systems, such as
membrane transportation, do not fit in one of the above-mentioned three basic categories, but
should also be taken into account when required. Many models assume that the amount of
metabolites in a cell is uniform across the cell, i.e. it is assumed that the cell is a “well-mixed
pool”. In many situations, however, concentration gradients exist which will affect the local
rate of biochemical reactions. In particular for large systems with different compartments, we
must consider explicitly the effect of diffusion or transportation.

In BioPNML other bioprocesses classes can be defined. This concerns not only all

effects of metabolites, but also different compartments and properties of biological processes.

3.5.3 An Example

In this section, we present some concrete XML syntax in order to exemplify the concepts
discussed in the previous section by using a simple enzymatically catalyzed reaction (Figure
3.5.3). The model defines the single biochemical reaction from L-arginine to L-ornithine
catalyzed with the enzyme arginase. We assume the reaction kinetics complies with the
Michaelis-Menten equation, and the values of K, and V,, are 0.5mM and 0.3mM

respectively.

arginase

L-arginine L-orithine

0. S#my (0, 3+

Figure 3.5.3 An example for biology Petri net model, where m;, m, and ms are variables for the

concentrations of the substances involved.
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE net SYSTEM "BioPNML.dtd">
<BioPNML>
<Petrinet id="pnl" type="Hybrid">
<!--place-—>
<place id="pl" type="continuous">
<name id="C00062">
<text>L-arginine</text>
<value>ml</value>
</name>
<graphics>
<size>10</size>
<position x="-20" y="10"/>
<color>red</color>
</graphics>
<initialMarking>
<value>1</value>
</initialMarking>
<annotation>
<name>L-arginine</name>
<TypeRef>Amino acid</TypeRef>
<species>human</species>
<location>plasma</location>
<concentration>0.1lmM</concentration>
<comment />
</annotation>
</place>
<!--transition-->
<transition id="tl1l" type="continuous">
<!--reaction—-->
<PathRef>metabolic reaction</PathRef>

<reaction name="reaction_1" reversible="false">

<enzyme>arginase</enzyme>
<substrate stoichiometry="1">L-
arginine</substrate>

<product stoichiometry="1">L-ornithine</product>

<KineticsRef>

<formula>0.5*ml/ (0.3+ml)</formula>

</KineticsRef>
<thermodynamics/>
</reaction>
<graphics>
<size>10</size>
<position x="-30" y="0"/>
<color>yellow</color>
</graphics>
<annotation/>
</transition>
gl ==gieEe==>
<arc id="al" source="pl" target="tl" type="normal">
<graphics>
<size>1</size>
<offset x="0" y="0"/>
<color>blue</color>
</graphics>
<weight>
<value>1</value>
</weight>
<annotation/>
</arc>
<!--more places and arcs——>

</Petrinet>
</BioPNML>
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The first part of the XML example contains the biological information, whereas the second
part is mainly PNML. idref tags are used to link the PNML 'place’ and 'transition' tag to the
respective SBML based 'species' tag. Since it was tried to develop BioPNML in a way that it
should be readable both by existing PNML and SBML tools, some redundancies could not be
avoided, i.e. the names of the compounds and the initial concentrations appear in both parts of
the file. Properties which are not part of the present PNML standard, such as the formula used
to calculate the changes in the concentrations of the substrates and the product, are only stored
in the SBML part of the file. The example shows the basics of idea of BioPNML. In real

applications, the PNML part may contain many reactions.

3.5.4 Discussion

BioPNML is a XML framework for the exchange and unification of molecular biological Petri
net models. By formalizing the process of expressing bioprocess interchanges in a consistent
and extendible way, BioPNML makes it easier for users and developers of biological software
to map data in different formats. Easier mapping enables developers of biological software
who are using open standards, such as XML, to adopt changes in biological data formats
faster.

BioPNML defines a core set of XML elements, attributes, and tags that enable
researchers to develop technologies that are optimized for data exchange. This XML based
core data model is important because it eliminates the need to find a common application
programming interface or implementation platform. Currently, its XML schema is based on
the SBML and PNML standard. However, BioPNML is not static; we continue to develop it.
BioPNML will be updated in line with future changes of SBML and PNML.

Extensions to Petri nets have been developed which transform Petri nets into a
powerful tool for modeling biological systems. These enhancements include timing, token
typing, non-homogeneous places, priorities and resources. It is possible to extend our
BioPNML classes to these requirements by using additional tag sets.

BioPNML files can be generated computationally from existing data sources. Users
can extract XML data from molecular biological databases via the Internet and transform them
into BioPNML files via XSLT (Figure 3.5.4).

There are many approaches that address the challenging problem of interoperability
among biological databases. They are based on different data integration techniques, e.g.
federated database systems, multi database systems and data warehouses. In order to model
and simulate gene controlled metabolic networks, we focus on a flexible and thin, but
universally applicable solution with powerful query and retrieval capabilities. The architecture
of our system MARGBench [http://cweb.uni-bielefeld.de/agbi/home/index.html?id=104] is a
mediator-based approach for database integration. The aim of MARGBench is to support the
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seamless integration of multiple heterogeneous molecular biology databases and to allow the
development and the execution of global applications that extend beyond the boundaries of
individual databases [Fre02a].

The general principle of BioPNML data integration is shown in Figure 3.5.4.
Integration of heterogeneous and physically distributed databases is implemented by the
BioDataServer (BDS) system, which provides a homogeneous database view. IITUDB
(Individually Integrated User Database) accesses JDBC (Java Database Connectivity)
interfaces followed up by an object network. Provided with the JDBC driver, the IIUDB is
developed for users to define their own specific integrated schemes, i.e. the system is adaptive
by connecting to heterogeneous databases and integrates the information retrieved into user-
defined persistent databases and analyses the networks that can be found in these databases.
The structure of metabolic networks and the molecular information contained is changing, and
depending on the user view. Then based on the Object Management (OMG) architecture, we
can do SQL queries and build up a metabolic network. IIUDB also includes several interfaces
to export the resulting networks into common formats, e.g., CORBA, GML and XML as well
as BioPNML.

So far, the IIUDB offers integrated access to biological databases, currently mainly to
KEGG, BRENDA and RegulonDB, which cover considerable features including details on the
enzymatic reactions, substrates and products, binding parameters, catalytic constants and gene
regulations. Based on these techniques, bio-Petri net tools could be provided with models of

metabolic pathways, gene regulation and signaling pathways.
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Figure 3.5.4 BioPNML data integration schema.
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3.6 Summary

This chapter shows that the Petri net allows easy incorporation of qualitative insights into a
pure mathematical model and adaptive identification and optimization of key parameters to fit
system behaviors observed in gene regulated metabolic pathways. The advantages of the
hybrid Petri nets applying to model and simulate are: The HPN model has a user-friendly
graphical interface that allows an easy design, simulation and visualization. With the discrete
and continuous events, the HPN can easily handle gene regulatory and metabolic reactions.
The inhibitor arcs are useful for mechanistic studies to learn about how enzymes interact with
their substrates, to know the role of inhibitors in enzyme regulation and gene expression.
Moreover, powered with mathematical equations, simulation is executed and dynamic results
are visualized.

As in the cell, there are usually hundreds of interconnected metabolic pathways and
gene regulatory networks and control of these presents more complex features. It is feasible to
extend the Petri net model with a plug-in way. A large complex network model can be handled
with the same set of structural and behavioral properties. When applying to such a large one,
the HPN model will be very complex and the hierarchical concept makes it possible to develop
a generalized variant of HPN at a global level. On the other hand, the subnet of Petri net model
provides us the basic model that we already know its inner behavior and functions. Then we
can construct a system by plugging together sub-models and can understand the working of
the higher-level system and are able to predict its behavior.

Building integrative models of the whole cell (virtual cell modeling) that incorporate
gene regulation, metabolism and signaling is becoming a promising field during the post-
genomic era. Several projects have been established under way. The challenge created with
Petri nets is to understand how all the cellular proteins work collectively as a living system.
Using powerful Petri nets and computer techniques, data of metabolic pathways, gene
regulation, signaling pathways can be converted for Petri net destination application. Thus, a
virtual cell Petri net model can be implemented; the attempt to understand the behavior of cell
activity could be accomplished.

The aim of the BioPNML is to present a common data exchange format and to enable
exchange of models between metabolic data and Petri net tools as well as other bio-simulators.
It uses a simple, well-supported, textual substrate (XML) and can add components that reflect
the natural conceptual constructs used by modelers in the domain. The ultimate purpose is to
serve as a common framework for exchanging data about metabolic networks, and to provide
guidance to researchers who are designing databases to store pathway and reaction data.

Obviously, in order to model a biopathway, we need a structural knowledge of the

system. Nevertheless in reality, most often only parts of a system are known. Rudimentary
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knowledge, such as sequences, involved metabolites or enzymes, can be examined by
experimental work. The gap between rudimentary experimental data, and a satisfied model,
should be overcomed. In the next chapter we are going to present a metabolic pathway
prediction approach. It is developed as a web-based metabolic information retrieval and
pathway reconstruction system. A predicted metabolic pathway can be assigned with kinetic
values and automatically translated into XML data format that can be parsed by some Petri net

tools for further modeling and simulation.
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Chapter 4

In Silico P*rediction of Metabolic
Pathways

In order to model and simulate a metabolic network, the more information available the better.
Fortunately, there are more than 500 database systems available that represent molecular data.
However, for the analysis of complex metabolic networks only rudimentary data and
knowledge are available today. Therefore, we have to develop and implement special
algorithms for the analysis and synthesis of complex metabolic networks, which are able to
complete the rudimentary data. Previous approaches and existing metabolic pathway databases
have a number of limitations in metabolic pathway reconstruction. Some present knowledge of
the genome alone does not contain comprehensive information about metabolic pathways,
such as physical and chemical properties of the enzymes that are involved. Some are not fully
computer-aided. The individual database search process requires too much human intervention
and the quality of annotation, largely depends on the knowledge and work behavior of human
experts. The aim of this chapter is to develop such a web-based information retrieval system

that will help in the prediction of metabolic pathways

4.1 Introduction

In silico retrieval/reconstruction of metabolic pathways based on the information of genes,
enzymes and metabolites requires access to suitable databases ranging from genomics to
metabolics. In Table 2.2 we have listed some major databases that make the integrative

information retrieval of metabolic pathways possible. Here we describe some of them in more

" Part of Chapter 4 is to be published in IEEE Transactions on Nano-Bioscience [Che04a.
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detail. GenBank [Ben(3] is a database that contains an annotated collection of all publicly
available DNA sequences. Internet access is provided through several interfaces directly from
the NCBI web pages. Each sequence is linked to other sequences that are similar based on
sequence alignments. Swiss-Prot [Boe03] is a curated protein database that provides a protein
retrieval interface that can be searched by AC, ID, description, gene name, organism and
more. Several mirror sites of Swiss-Prot are distributed in Europe, America and Asia.
BRENDA [Sch02b] systematically collects enzyme data. It is essential for both interpretation
of the kinetic aspects of enzymatic reactions and retrieval of enzymes by various query terms.
Metabolic pathway databases such as KEGG [Kan02], WIT/EMP [Ove00] and
EcoCyc/MetaCyc [Kar02] have been developed to present diagrams depicting metabolic
pathways. KEGG is composed of three interconnected sections: genes, molecules, and
pathways. It represents the data of interacting molecules or genes by using the simplest form
of representation: binary relations that correspond to pairwise interactions. It provides both an
online map of metabolic pathways and the ability to focus on metabolic reactions in specific
organisms. WIT/EMP includes some 3000-pathway diagrams covering primary and secondary
metabolism, membrane transport, signal transduction pathways, intracellular traffic,
translation, and transcription. Initially, EcoCyc/MetaCyc described only metabolic pathways.
Now it is extended towards an integrative information system that represents genes
(sequences, function), enzyme (amino acids, function and structure), and metabolic pathways
of E. coli [Kar99]. Figure 4.1 shows the databases that make the integrative information

retrieval of metabolic pathways possible.

Metabolic
Pathways

Figure 4.1 A schematic diagram of information sources for metabolic pathways prediction.

77



We exploited these databases for the construction of our pool of metabolic pathway datasets
that are at present mainly based on KEGG and MetaCyc. Other databases, such as PIR
[McGO0], PDB [Ber02] and TRANSPATH [Kru03] / TRANSFAC [MatO3b] can also be
potentially utilized in our future research for protein information, molecular structure and gene
regulation and signal transduction. The pool database consists of 623 metabolic pathways of
E.coli. Data servers handle the access (storage and retrieval). While the use of an up-to-date
metabolic pathway database is essential to any similarity search. The pool database is
constantly being updated. In the future, a more powerful integrated metabolic pathway
database system, BioDataSever [Fre02b], which contains all metabolic pathway data from
KEGG, WIT and MetaCyc will support our system.

With the achievement of biological data collection, in silico metabolic pathway
retrieval/reconstruction and sophisticate analysis becomes possible. Here we limit our
discussion to sequence analysis. Suppose that we have a set of sequences S={s1,5,...5,}. It is
most widely used to search for each sequence similarity against the sequence databases such
as GenBank. If there is a strong evidence in terms of sequence similarity, we may conclude
that s; belongs to a certain protein family or other similar genes with a known function.
Obviously, one of the main problems with the database search strategy is that the search result
needs to be evaluated manually by human experts. Although there are several integration
systems, such as SRS [Etz96], available to realize the data query process, it still requires much
human intervention, and the quality of annotation largely depends on the knowledge and skills
of human experts. Moreover, scientists have to invest extensive efforts to learn how to use all
different database interfaces, query languages, and parameter specifications for specific
analytical programs. On the other side, for the prediction of metabolic pathways from
rudimentary data, powerful tools are still missing. Biologists wish to perform metabolic

pathway prediction and analysis with local or Internet-based tools.

4.2 Methods and System

In an attempt to answer these questions, a web-based information retrieval system is proposed.
The system would at least include an Internet-based client/server architecture that allows
remote and local access to the system. The main benefit of building such a web-based system
is that it exploits the results of the existing databases on the web, and meanwhile acts as a
virtual environment that allows the access to remote databases using Internet resources.
Internet mechanisms support and maintain communication between web-browsers and
database shells. The system is not transparent to the users. They do not need to known
anything about how the system processed their problems.

We discuss relevant issues for conducting sophisticated metabolic pathway

reconstruction and metabolic information retrieval. The basic methodology used to reconstruct
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metabolic pathways is retrieving all related EC numbers and searching or aligning against our
pool database. This process selects all metabolic pathways from our database that currently

embraces all pathways from MetaCyc.

4.2.1 Pathway Reconstruction Method

We consider a metabolic pathway as a special case of a metabolic network with distinct start
and end-points, initial and terminal vertices, respectively, and a unique path between them
[For99].

Let M={m,my,...,m,} be a set of metabolites that are involved in the enzymatic
reactions acting as substrates and products; E={ey,e,,...¢,,} be a set of enzymes. Normally a 3-
tuple (M,E.A) is called linear metabolic pathway, where A={(m;.e;) U (e;,m;1) | 1<i<n, 1<5j<m}
is the subset of the successive relationship between M and E.

The enzymes normally are separate enzymes. For those enzymes that can form a
multienzyme complex (noncovalent aggregates of enzymes) or may be a membrane-bound
system, we can choose a representative enzyme unless there is a unique term for it. However,
in many of the metabolic reactions in living cells, enzymes act as catalysts in the conversion of
certain metabolites (substrates) into other metabolites (products). So enzymes are the cores of
metabolism and make the whole cellular processes connected, and the metabolic network can
be interpreted as sets of enzyme catalyzed biochemical reactions. The representation of a
metabolic pathway might be given as a set of successive related E. In addition, E can be a set
of enzyme names or the corresponding 4-hierarchical-level EC numbers.

The problem studied here can be stated formally as follows (Figure 4.2.1):

Mo | Fo | Go So

Figure 4.2.1 The concept of functional pathway prediction.
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The aim is to use a rudimentary metabolic pathway, e.g. a list of metabolites (M,), enzymes
(Ey), genes (Gy) and sequences (Sy), either nucleotide or amino acid sequences or both, in
order to retrieve all relevant EC numbers. When they are queried to the remote data resources,
then sets of associated EC numbers are extracted:
My=Eve={ E i, Eng,Epgs- e Emi}s

Gy=>Eo={E;1,.E.Eg,....Eg} s

So=Es={E;|,E,Eg,....Eq};
where E,; is a set of EC numbers related to the m; (m.c M,); E; is a set of EC numbers related

to the g;(g;e Go); Eq is a set of EC numbers related to the s, (s,€S)).

Example 4.1 Given (My,EyGy), where M,={L-arginine, L-ornithine}, Ey={6.3.4.5},
Gy={ASL, OTC}, then Eyy={(1.5.1.11, 1.5.1.19, 1.13.12.1, 1.14.13.39, 2.1.4.1, 2.14.2,
2.3.1.109, 2.4.2.31, 2.7.3.3, 3.2.2.19, 3.4.17.3, 3.4.17.10, 3.5.3.1, 3.5.3.6, 4.1.1.19, 43.2.1,
5.1.1.9, 6.1.1.19, 6.3.2.24), (1.5.1.24, 2.1.3.3, 2.1.4.1, 2.1.4.2, 2.3.1.35, 2.3.1.127, 2.6.1.13,
2.6.1.68, 3.5.1.16, 3.5.1.20, 3.53.1, 4.1.1.17, 4.3.1.12, 5.1.1.12)} and Eg={(4.3.2.1),
(2.1.3.3)}.

Then the sets of associated EC numbers are combined to produce a new list of sets of EC
numbers. That is
Ey={E,\XEpXE;3%..XEyi};

E¢={E XEnXEgsX.. XE,};

Es={E XEoXEgX.. XEy};
In Example 4.1 we get:
Ey={(1.5.1.11, 1.5.1.24), (1.5.1.11, 2.1.3.3), ..., (1.5.1.11, 5.1.1.12), (1.5.1.19, 1.5.1.24),
(1.5.1.19,2.1.3.3), ..., (1.13.12.1, 1.5.1.24), ..., (1.14.13.39, 1.5.1.24), ..., (6.3.2.24, 1.5.1.24),
..., (6.3.2.24,5.1.1.12)};

Eg={(4.3.2.1,2.1.3.3)};
Now we select the set elements of Ey, E¢ and Eg to perform a combinatorial operation. The
results are a set of possible pathways P,

P=Ey+E +E¢+Es={ E,iUEUE4UE},
where E e Ey ; Eie Ey; Eq€ Eg; Ege Es.
Finally we have:
P={P,,P,,..P,},

where P={e;,en,....ei | 1<i<n} is a set of EC number.

When we continue Example 1, we have a set of pathways P,

80



P={(1.5.1.11, 1.5.1.24, 6.3.4.5, 4.3.2.1, 2.1.3.3), (1.5.1.11, 2.1.3.3, 6.34.5, 43.2.1, 2.1.3.3),
...,(6.3.2.24,51.1.12,6.34.5,4.3.2.1,2.1.3.3)}.
P; is then searched against a pool database to find the metabolic pathway with the highest
similarity score.

To execute such data retrieval and combinatorial problems, an algorithm can be
specified, which takes online data query and calculates an integrated relation over all specified
data sources, using the already defined combinatorial operations. The algorithm outlined

above can now be expanded into the following pseudo-code:

Begin: a query with rudimentary element set of M,, Eo, Sy, Go
While (all requests are not processed) loop
while (the Metabolite gqueue is not empty) loop
process My, request: My=>Ey
end loop
while (the Sequence gqueue is not empty) loop
process S, request: Sp=> (M’ )=>Eg
end loop
while (the Gene queue is not empty) loop
process Gy request: Gy=>Ego
end loop
recombine Ey, Egy, Eg => Ey, Es, Eg
end loop
recombine Ey, E;, E;, Ey => P
search P against a pool database

End: a metabolic pathway predicted

In the algorithm, all the three different types of requests are processed in batches. After
processing the queued metabolite requests, batches of sequence requests are processed, before
processing the demands of gene requests. Here, once the control has passed over to the
sequence loop, all retrieved metabolite requests (M,’) will get processed with the metabolite
loop before EC number finding is resumed. The main drawback is that all requests are web-
communication depended. However, there is no problem with the data being out of date
because it queries databases remotely instead of locally. The accessibility and update are
guaranteed since the databases are global oriented and maintained by reputed institutes. The
computing time cost is largely depended on the Internet communication. While in the
combinatorial part, suppose there are k£ rudemantory elements, each element retrieve n EC
numbers, then the combination costs n*. The combination of all assoiated EC numbers cost n*

times n*. Therefor the total complexity is of order O(n™).
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4.2.2 Web-based Metabolic Data Retrieval
4.2.2.1 PathAligner system architecture

PathAligner is a web-based biological information retrieval system designed with one main
purpose: the retrieval and alignment of metabolic pathways. The PathAligner system contains
a PathModeler and a pathway alignment tool (Figure 4.2.2.1). PathModeler consists of four
parts. The first part is a database mining tool that pulls out potential metabolic relationships
from various databases, based on the queried rudimentary components such as metabolites,
genes, sequences, etc. It allows easy access to distributed heterogeneous biological resources
through a simple interface. The relationships are then organized and recombined, and queried
against metabolic pathway database to retrieve a metabolic pathway result. Genetic and
metabolic information involved in the retrieved pathway are extracted and displayed in the
second part. In the third part, the retrieved metabolic information is visualized using an
interactive graph display module. Finally, a XML data file that contains the basic information
of metabolic and regulatory network as well as their kinetic values is formed for further

modeling and analysis.

PathModeler :
List of Metabolites | || L7 DiiA Seenced | 2T Ery)
’{ Paﬂlway Retrieval F"‘ S Ab Sequences fr——" :
List of Genes 4 - ExPasy| §
DNA Bequernces Metabolic Information Retrieval Proteins
# Enzymes BLAST
AA Sequences e : L
Pathway View L ces || B
# R ST
/ ;
Modeling data
Metabolic Pathways ¢
Pathway Alignment

Figure 4.2.2.1 The concept of PathAligner system. An initial set of rudimentary components such as
metabolites, genes and sequences (left side) are submitted to the “Pathway Retrieval”. The core modules
will recognize all components and make queries against relevant remote databases such as BLAST,
KEGG and ExPASy. Then they pull out potential metabolic relationships from these databases, and
search through a pool metabolic pathway database to predict a metabolic pathway. The result pathway
can be further analyzed to retrieve other metabolic information, such as kinetic values of enzymatic
reactions. A graphical model can be constructed based on the retrieved information afterwards. The

result pathway can also be aligned with other pathways by using a “Pathway Alignment” tool.
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By introducing a remote access communication architecture, the system allows different
distributed heterogeneous biological resources communicating through the same common
easy-to-use web-interface and enables researchers to perform efficient and effective biological
data retrieval and metabolic pathway reconstruction. The processes of the core modules are for
distributing and locating the responding database system to answer user’s local queries via the
web-interface. It has a single common data representation to handle the diverse range of
biological data formats, and the ever increasing amount of bioinformatics data can be accessed
and analyzed in a synchronous, integrated manner, allowing biologists to concentrate on
gathering and analysis of data and relieving them of the burden of learning and utilizing
individual stand alone tools. The prototype system is designed to handle enzymes, proteins,
metabolites, as well as incomplete or fragments of gene/protein sequences via the Internet. We
have also constructed a pool pathway database of known metabolic reactions from several
online databases such as EcoCyc/MetaCyc, regarding the metabolism of E. coli and other

organisms. It contains metabolic pathways with EC numbers.

4.2.2.2 System workflow

The PathAligner work differs from previous attempts due to a combination of system design
decisions. PathAligner is oriented toward assisting biologists in retrieving and reconstructing
metabolic pathways rather than fully automatic construction and storage, thus avoiding
information retrieval precision limitations. The procedures of PathAligner toward
reconstructing the metabolic network are:

Step 1: User input. Keyboard input of rudimentary pathway components of interest by
the user. Components range from gene names, genomic sequences, enzymes, EC numbers,
other compounds and more.

Step 2: Component identification. Classify all components and query their responding
databases. For example, nucleotide and protein sequences are queried by BLAST, proteins and
other compounds are searched against Swiss-Port, and so on.

Step 3: Data retrieval. The nucleotide sequences and protein sequences are aligned
against the BLAST, with the aim of identifying the aligned encoded proteins. Other
rudimentary metabolic components such as compounds and proteins are searched against
Swiss-Port that provides the richest information on enzymatic reactions. The problem of
synonymy and polysemy is solvable by using Swiss-Port search engineering to obtain all
enzyme EC numbers by remote retrievals.

Step 4: Pathway building. After the relevant EC numbers to all components of the
rudimentary metabolic pathway are retrieved, a set of rough pathways expressed as sequences
of EC numbers are combined.

Step 5: Pathway identification. Using our pool pathway database, map the assigned

pathways (sequence of EC numbers) to find the one with highest similarity.
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The pathways can be modified afterwards. Finally, the reconstructed metabolic
pathways (network) with kinetic values, which might be obtained from BRENDA or from

literatures if any, are ready for modeling and simulation.

4.3 System Implementation
4.3.1 Perl Scripts

Perl originally was designed to be able to easily process text files. Powered by the Internet
connection ability, it becomes the leading language in everything regarding text data mining.
The process can range from simple rearranging of the information to heavy statistical analysis.
The way Perl scripts are capable to grab data from the web and manipulate it, is a Perl module,
which is effectively an optional, very specialized set of Perl commands. One of the particular
Perl modules is called LWP, short for “Library for WWW access for Perl”. LWP is a
collection of programs and programming tools to allow surfing the web from inside your
programs. In general, a “request” is created for data from the web, give it to a “user agent”
which will actually make the request, coordinate the transfer of data, etc., and in return receive
a “response” (called a response object by LWP) is received. An example of using LWP to

retrieve a single protein entry from NCBI web site is shown below.

# This is a Perl program to retrieve a single protein entry from the
entrez web site.
#!/usr/bin/perl -w

use LWP;
# This tells Perl you want to use the web access modules

use strict;

my $url = "http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=search&db=
nucleotide&dispmax=100&term=0TC&doptcmdl=FASTA";

# Here we set a variable with the class URL

my Sagent = LWP::UserAgent->new;
# This initializes the LWP system

my Srequest = HTTP::Request->new (GET => Surl);
# Here we create an HTTP GET request

my Sresponse = S$Sagent->request (Srequest) ;
# Give it to the user agent

Sresponse->is_success or die "failed";
# Get request back & check if agent did the Jjob correctly. Then, print
# the result:

print $response-—>content;

Users can specify the parameters “cmd”, “db” and so on according to their purposes. The
precise form of the query to Medline or any other NCBI database, including GenBank, is

detailed at: http://www.ncbi.nlm.nih.gov/entrez/query/static/linking.html. In this program, we
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just print out the whole big HTML file, although we could choose to parse and extract out
information and analyze it. However, we can often figure out the form of the URL just by
looking something up in a database, then noting the address of the web page with the data. A
brief tour of some of the biological data on the web available for our program is listed below.

Table 4.3.1 A collection of biological database for the construction of metabolic pathways*.

The URL and its parameters

Database Records
(example)
Most known pathways, in 151 http://www.genome.ad.jp/dbget-
KEGG graphical diagrams and 78 bin/www_bfind?reaction or ?compound or
ortholog group tables ?igand
SWISS-PROT 129,768 sequence entries from http://www.expasy.org/cgi-bin/enzyme-
8,202 species search-ec or /enzyme-search-ca

http://biocyc.org/META/substring-
search?type=ENZYME&object=

http://www.ncbi.nlm.nih.gov/entrez/query.f
cgi?db=Nucleotide&cmd=search&term= or
http://www.ncbi.nlm.nih.gov/entrez/viewer.
fcgi?db=nucleotide&val=

EcoCyc/MetaCyc 173 pathways/ 150 species

Genbank 18,197,000 sequence records

http://www.biobase.de/cgi-
bin/biobase/TRANSFAC/8.1/bin/getTFProf
.cgi?

TRANSFAC®/ 5,241 factors; 12,976 sites /
TRANSPATH® 12,262 molecules; 2,604 genes

http://www.brenda.uni-

BRENDA 3635 EC numbers koeln.de/php/result_flat.php4?ecno=

* Last Statistic: July 1, 2003

This very simple approach could easily be the basis for a program to consult biological
databases and to map the Internet in real time. Moreover, some of these computational works
are provided by Bioperl association (http://www.bioperl.org). Bioperl is a collection of Perl
modules that facilitate the development of Perl scripts for bioinformatics applications. It is the
leading open source project. It contains modules for representing biological sequences, protein
structure, sequence alignments, BLAST and FASTA reports, biological maps, sequence
features and their locations including complex locations, annotations & bibliographic
references, phylogenetic trees, and gene structures. Provided by various Bioperl module, it is

becoming more and more easier to automate your request results with a desirable format.

4.3.2 Web Interface

PathAligner provides an easy-to-use interface environment to access the related heterogeneous
databases, analysis and display results. A web-based interface of PathAligner system has been
established to implement the retrieval of metabolic pathways. The web-interface is responsible
for the communication with the client queries. It receives the query in terms of an HTTP
request. After parsing the request, it triggers the corresponding functionality of the query
engine that processes the query and returns the result. Then the result for each query and the
protocols between them are returned as HTML data to be displayed in a browser. The result

includes the responding metabolic pathway, and some URL links to the original databases and
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a graph of the metabolic pathway. There is no problem with the data being out of date because
it queries databases remotely instead of locally. Although the procedure might take a little
while to retrieve the data, the accessibility and update are guaranteed since those databases are
global oriented and maintained by reputed institutes.

Users access the PathAligner system via the web-interface, while standard, platform
independent Perl applications and modules are used to connect the applications to the central
database and external data sources. Using web-browsers, users will not need special hardware
or software to consult these services. The PathAligner home page is located at

http://bibiserv.techfak.uni-bielefeld.de/pathaligner.

4.4 Applications

An example of PathAligner usage is retrieval of a metabolic pathway using several initial

DNA
sequence (ctgtgttcactg...), protein sequence (mtkdfrqnvfq...) and gene symbol (OTC).

rudimentary components: Metabolite (L-citrulline), Enzyme (arginase//4.3.2.1),
PathAligner retrieves all relevant EC numbers from various public databases and searches
pathways against the pool pathway database. The example query and its query result is shown

in Figure 4.4A.

; BiBiServ - Bielefeld University Bioinformatics Server - - Microsoft Internet Explorer - - = |EI 5[
J Eile Edit ‘View Favortes Tools Help |
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Bielefeld University Bioinformatics Server
Education .. Administration ™ Links
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» Metabolic pathway reconstruction/retrieval
= Reconstruction guery
Welcome
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|L-citrulline Alignment
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rvykgsdldtlakeasipiinglsdlyhpigiladyltlgehysslkgltlswigdgnnilhsimmsaak
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or upload frorm local file Browse
[~ Mucleotide segquence
CTGTGTTCACTGTTCGAGTTACTTCTTC TGO TETC TTCCCCAGGEATGGGTTCACTTCCATTATATCTAL &
TCCTGAGAGTAGCCC TGTTTTGTAGATTTCTTC TG TGATGTAGAGACCTTC TCTGTATGTCAGACCTCCC
ACGACTGGTGTGCCAGTAGC TG TTCCTAGTAGATAGCTGAGTGTTTCTTCCATCACCTTGCCAATTCCT.
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Figure 4.4A A pathway retrieval example in PathAligner.
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The highest scoring metabolic pathway “urea cycle pathway”: {6.3.4.16, 2.1.3.3, 6.3.4.5,
4.3.2.1,3.5.3.1} is retrieved and displayed (Figure 4.4B).

3 pathaligner - Results - Microsoft Internet Explorer * = |EI|5|
J File Edit \View Favorites Tools Help |
JAeress Iﬂj http: /bibisery. techfak.uni-bielef eld . de/cgi-bin/pathaligner _0 j @GD
3 1 =
/) f) triennores PathAligner - Retrieval
‘f /' :
/’rﬁ- + Metabolic pathway retrieval
= Result
RESULTS
four query contain compounds:
5 - L-citrulline
£
g g Your guery contain enzymes:
v, Arginase 6.3.4.16
£ 80
" — Yfour guery cantain gene names:
E o 0TC
=]
e
S four query contain protein sequence:
& 'a' mifnirillnnaafrnghnfmyrnfregqplgnkvglkgrdiltiknftgeeikymiwlsadikfrikqkgey!
>
e
7 Qs _ | |
g It most likely belongs to the following pathways, if any! ;-
=
E =2 & Urea cycle pathway::6.3.4.162.1.33->6.3.45>4321>3563.1
g % tare info aboutthe ECs | Aligning against database
b
- %
=  Or your designed pathway::l
E More info aboutthe ECs Aligning against database |
() Ming Chen
1| | _'l_l
|§:| Done I_l_l_ E Local intranet A

Figure 4.4B An example query of the PathAligner for pathway retrieval.

By clicking the button “More info about the ECs” under the retrieved pathway, additional
information about the involved enzymes and enzyme-associated pathways are displayed
(Figure 4.4C). The table lists not only the enzymes that are involved in the query, but also
more related metabolic and genetic information. Clicking the corresponding hyperlinks can
retrieve additional information about the enzymatic reactions and K, values. The K, values
and the reaction data are retrieved from BRENDA. The encoding genes and their transcription
factors are also displayed. The genes involved, as well as the pathways associated, are
obtained from KEGG; while the factors and GeNetView are extracted from BioBase. For
instance, for EC 2.1.3.3, is encoded by gene OTC and a number of transcription factors which
are shown in the column Factor. Moreover, the interactions between the genes and the
transcription factors are also available by clicking the hyperlink OTC in the column
GeNetView. However, not all data is available due to incompleteness of the source database.

In the current version of PathAligner, this additional information is restricted to Homo sapiens.
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Future work will be extended to various species. The enzyme associated metabolic pathways

out KEGG are also presented.
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Figure 4.4C Screenshot of the representation of metabolic/genetic information of the retrieved

enzymes.

PathAligner provides a graphic representation that illustrates the interrelationships between the
retrieved enzymes and their metabolic reactions and gene regulations. The graph visualization
is based on visualizing and interacting with dynamic information spaces. The graph layout
program is dot, which as a part of the Graphviz [Gan00] program, developed at AT&T
(http://www .research.att.com/sw/tools/graphviz/). The web-interface uses the layout and
graphics engine to transform the graph into a picture and delivers it to the client as a PNG
image-file (Figure 4.4D). The graph may just be too large to be viewed as a whole on the
screen. The user can resize the graph to examine different parts of the graph in varying levels
of detail.

PathAligner models the initial rudimentary pathway so that important relationships

can be retrieved and illustrated. The retrieved functional data provide a basis for further
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analysis. For instance, the graph can be used as a blueprint for modeling and simulation with
some biological simulators such as Petri net tools. A hybrid Petri net model that contains
qualitative and quantitative aspects can be used as a predictive tool. As quantitative model
requires kinetic values, assignment of initial value of metabolites and kinetics are to be made
after data retrieval. The table in the Figure 4.4D requires the user to fill in the blanks with
actual concentrations of substrates and products, and K, values involved in responding
enzymatic reactions. Although some of such data nowadays are available, some other data
may not be complete. A series of predefined kinetic types that are most often used in the
biochemical reaction models are available in the literatures. However, there are some
circumstances in which the kinetic types are not yet defined. Then a new kinetic type is to be
self-defined by the mass law. In that case, mass conservation relations must be taken into
account in order to carry out the simulation. In principle, we construct the model with the

identification of the reaction stoichiometry.
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Figure 4.4D Screenshot of a network graph. The bold arrows represent catalyst links. The green arrows
are gene regulation links. The blue arrows are gene-encoding links. Enzymes are shown as red ellipses.
The graph is resizable. The table above the graph indicates an initial kinetic value assignment. These

data are intended for modeling. Some K, values are extracted from BRENDA.

After the assignment of concentration and kinetic values to the reconstructed metabolic
pathway, a data file is generated for storage and interchange. We propose it to be specified in
an XML format, BioPNML (see §3.5 in Chaper 3). Figure 4.4E shows the web-layout of
BioPNML data for the retrieved and value-assigned metabolic pathway. The BioPNML is
designed to provide a starting point for the development of a standard interchange format for
Bioinformatics and Petri nets. The language will make it possible to present biology Petri net
diagrams between all supported hardware platforms and versions. It is also designed to
associate Petri net models and other known metabolic simulators. PathAligner provides a

translation tool to transform BioPNML into other XML.s.
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Figure 4.4E BioPNML presentation of the retrieved metabolic pathway.

90



4.5 Evaluation

The object of the evaluation is to verify the usability of the system. Some evaluation exercises

were undertaken and the results are summarized:

To determine the availability of information retrieval, evaluation is done
programmatically by assessing the accessibility of URL sources. We examined the
source code for URLs of different remote databases, allowing a more complete
assessment.

To evaluate the accuracy of the prediction, we compared automatic searches with
manual searches against various data sources, and then checked back the predicted
results to find the related genomic and metabolic information. Experiment results
show that the predicted pathway consistently contains the known pathway.

To evaluate the comprehensiveness of our approach, we chose fragments of
sequences, genes and metabolites to perform metabolic pathway prediction. We
observed that our approach is quite versatile in the sense that it can handle a variety of
rudimentary elements. Most of pervious approaches can either only accept queries of
metabolites/enzymes, or only require annotated sequences.

In terms of compatibility, several different web-browsers were tested. There are no
significant differences between Internet Explorer, Netscape and Mozilla. The user
interface of the systems is quite simple and very user-friendly. It starts with the main

query page; users can follow the web annotation to perform further steps. The design

is kept simple for clarity.

PathAligner is a web-based information retrieval tool and an alignment tool. The following

table is created to compare the features of PathAligner with other databases and tools.

Table 4.5 Comparison of PathAligner with related approaches.

Features KEGG/WIT PathoLogic PathFinder PathMiner PathAligner
. EC numbering, Genome Annotation Heuristic .Web-bas.e d
Algorithm genome . ) information
. annotation data parsing search .
annotation retrieval
Access WWW Local WWW WWWdava gy
installation applet)
Input Molecules, Specific files  SSdUSNCES,  goccific files  udimentary
enzymes enzymes data
Output Pathway PGDB form  Pathway Unknown Pathway
P_a th“iay . + Database + Unknown +
visualization
Extra linkage + + - - +
Alignment
possibility
User interface  Dialog Complex Dialog Menu Dialog
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4.6 Summary

Modern biology requires rapid development of new methodologies and algorithms in order to
make an optimal use of intelligent computational tools. Our work has lead to the development
of a web-based biological information retrieval system that exhibits an ability to reconstruct
metabolic pathways.

This chapter demonstrated how the PathAligner system implements metabolic
pathway reconstruction problems in a simple way, and significantly reduces the effort and
difficulty involved in data integration and analysis. PathAligner is designed to handle
metabolites, enzymes, proteins as well as incomplete or fragments of gene sequences, it
handles nucleotide and protein sequences from the GenBank, proteins and metabolites from
the ExPASy. By introducing a remote Internet access communications architecture, the ever
increasing amount of metabolic biological related data can be accessed and analyzed in a
synchronous, integrated manner, allowing biologists to concentrate on gathering and analysis
of metabolic data, and relieving them of the burden of learning and utilizing individual stand
alone tools.

In silico metabolic pathway reconstruction from rudimentary components requires
combining information from a large number of sources: classical biochemistry, genomics,
functional genomics (e.g. microarray experiments). As ever more experimental biological data
are generated and analysis tools are developed and accessible to us, the expansibility of
PathAligner system, via simple addition of modules that would allow the system to
incorporate new technologies such as molecules’ physical and chemical properties and
microarray data analysis, become possible.

In summary, PathAligner is such a web-based tool for metabolic pathway retrieval. It
possess the following operation features:

e [t has a simple user interface.

e The web-based system requires no additional hardware or software. Users do not
need to known anything about how the system processed their problems by using
the system itself, or remote system through remote accessing techniques or
communication protocols.

¢ No problem with data updating. With distributed biological and biomedical data
sources supporting online, PathAligner facilitates and retrieves active participation
of all data sources.

e Visualization. PathAligner presents the retrieved pathway using a graph
visualization tool. Results are directly processed as web page layout. PathAligner

implements the alignment algorithm and provides a graphical representation.
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PathAligner focuses efforts on reconstructing metabolic pathways from diverse rudimentary
components. It also provides a method to analysis the similarity and distance of different
metabolic pathways. Assuming that the two pathways are related in some biologically
meaningful way, whether from different organisms or the same, it is capable to discover their

regulation and their evolution (to be discussed in Chapter 5).
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Chapter 5
Metabolic Pathway Alignment

In this Chapter a formal definition of metabolic pathway is given. Metabolic pathway
alignment algorithms are presented and discussed. Alignment examples are demonstrated by

the PathAligner system.

5.1 Metabolic Pathway Definitions

Traditionally biochemical pathways have been defined in the context of their historical
discovery, often named after key molecules (e.g. “glycolysis”, “urea cycle”, “pentose
phosphate pathway” and “citric acid cycle” and so on). In that context, pathway refers to a
path from substrate to product or receptor to transcription factor, even though usually some of
the molecules involved are also found in other pathways. The classification of molecules into
pathways has historical reasons, and is not explicitly based on qualitative differences of the
interactions. One reason for this is that it is easier to think about the network as pathways
which are connected densely. But we should emphasize that the definition of a metabolic
pathway is not exact, there are always interactions among pathways. A pathway's substrates
are usually the products of another pathway, and there are junctions where pathways meet or
cross. Now, the question is how to define a boundary for a pathway under these circumstances
that the biology processes are so interacted and actually there is no such clear boundary
between two pathways (glycolysis and urea cycle pathway, or MAPKinase signaling pathway
and p38 MAPK signaling pathway).

Normally, the basic strategy to represent and compute pathways is the reactant-

product binary relation. Properties of the pathway that rely upon the integration of two or more

" Part of Chapter 5 is to be published in Applied Bioinformatics [Che04b] and BGRS’04 [Hof04]

94



input molecules and unrelated output molecules, and feedback effects are ignored (Figure

5.1A).

ANoaA % A A

Reality: —bﬂ\ A—»B—»C —»
-« T <

Abstractt —» A —» B —» C —»

Figure 5.1A Abstract metabolic pathway with binary relation compare to that in reality.

Obviously, a metabolic pathway is a special part of complex network of reactants, products
and enzymes with multiple interconnections representing reactions and regulation. Metabolic
pathways are defined in the literature [Voe95] [Har97] [Sel98] in various ways with varying
degrees of formality. A biochemical pathway is defined by Mavrovouniotis M.L. [Mav95] as
an abstraction of a subset of intricate networks in the soup of interacting biomolecules. A
prevailing definition is, that a metabolic pathway is a special case of a metabolic network, with
distinct start and end-points, initial and terminal vertices, respectively, and a unique path
between them, i.e. a directed reaction graph with substrates as vertices and arcs denoting
enzymatic reactions [For99]. Some databases such as KEGG, WIT represented metabolic
pathway graphs with labeled arcs indicating the involved enzymes.

Schuster et al. [Sch0Oa] provided a general definition of metabolic pathways based on
the concept of elementary flux modes. It allows one to test whether sets of enzymes form a
consistent pathway allowing mass balancing for each intermediate and complying with the
directionality of reactions (irreversibility). However, it represents modes under idealized
situations without regulation and feedback and from simulation point of view it is impossible
to analyze the whole metabolism of organisms. Moreover, in order to determine a single mode,
the large metabolic network has to be decomposed into smaller ones based on graphical
algorithm.

One is called a pathway only if they are linear and unbranched. A metabolic pathway
is an unrepeatable, irreversible sequence of a series of vertices and arcs leading from a
molecule vertex, labeled as substrate via a molecule vertex, labeled as enzyme, to a molecule
vertex, labeled as product. When the end vertex meets the previous vertex of the sequence,
they make a complete close pathway, called a (partial) cyclic metabolic pathway.

There are four linear pathways in the example of Figure 5.1Ba. In practice,
representation of enzymatic catalysization is omitted (Figure 5.1Bb). However, in many of the
biochemical reactions in living cells, enzymes act as catalysts in the conversion of certain
compounds (substrates) into other compounds (products). So enzymes are the cores of
metabolism and make the whole cellular processes connected, and the metabolic network can

be interpreted as sets of enzyme catalyzed biochemical reactions. That is, pathways are
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abstractions of sets of enzymatic reactions; they are substructures that are partitions of the
metabolism. Then the representation of metabolic pathways might be given as graph G(E,A),
Figure 5.1Bc shows the graph example, which is exploited for our Enzyme-Enzyme

relationship metabolic pathway alignment.

1 ey
(c)
o O
& &
—
< b > @l
Figure 5.1B An example of metabolic pathways; A, B, ..., | are metabolites, el, €2, ..., e10 enzymes.

As a result the traditional well-known pathways such as glycolysis or TCA will not be
considered as a well-defined pathway, because they often contain some branches or alternative
pathways. In fact there are several pathways inside them. Obviously there are always
interactions among pathways.

We consider that a metabolic pathway is a subset of these reactions that describe the
biochemical conversion of a given reactant to its desired end product. Rather to say, several
biochemical reactions act together in a pathway to transform a set of initial substrates into
products with very different structures, a new proposed definition of the metabolic pathway is

presented and discussed in the following paragraphs.

Let M = {m1 ,...,mn} be a set of metabolites in cells. Let f; : M — M be a function for

bioprocess events taking place in the cells. Bioprocess events are any kinds of biological
actions among metabolites in cells.
The fact that f; is a bioprocess function from a set of reactants R (R < M) into a set of

products P (P < M) is written as follows:

fi:R—>P
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for all my, m,, m; € M, the following property holds:
Sitm)) =my and fo(ma) = ms = fo(fi(mi)) =ms .

Let fi(my) = my, fo(mo) = ms, ..., filhy) = my,, we define fifo...fi (m1) = filfir...f1(m1)) = M.

Definition 5.1 Given f : M — M, a bioprocess pathway is defined as a subset of successive
bioprocess events P= fifs...fi

For each f; (1 <i < k), there exist a pair of metabolites (m;, m;), m; € M, myy; € M,
involved in the bioprocess event as reactant and product. ® is a composition function of the
functions f;, and we have ®m) = fifi.1...fi(m). Given an initial substrate m;,, then the ending
product my,, is predictable. If my,, = m; (1 < i < k), i.e. the product of f; is the one of the
metabolites involved in the previous steps, then the pathway is called as a cyclic pathway.
Otherwise, if my,; # m; (1 <i<k), then it is a linear (non-cyclic) pathway.

Note that the function fis a genetic term for all bioprocess events in a cell, including
biochemical reactions, membrane transportations, signal transductions, and so on. In case of
enzymatic reaction, the function “f’ can be written as “e” in order to distinguish the enzymatic
reaction function from the genetic reaction function.

Definition 5.2 A metabolic pathway is defined as a subset of successive enzymatic reaction
events P = eje,...e,.

Each enzymatic reaction ¢; (1 < i < k) is catalyzed by a certain enzyme that is denoted
as a unique EC number. The EC number is expressed with a 4-level hierarchical scheme that
has been developing by the International Union of Biochemistry and Molecular Biology
(IUBMB) [Web92]. The 4-digit EC number, d,.d,.ds;.d, represents a sub-sub-subclass
indication of biochemical reaction. For instance, arginase is numbered by EC 3.5.3.1, which
indicates that the enzyme is a hydrolase (EC 3.*.*.%*), acts on the ‘“carbon-nitrogen bonds,
other than peptide bonds” (sub-class EC 3.5.*%.%) in linear amidines (sub-sub-class EC 3.5.3.%).
The enzymes normally are separated enzymes. For those enzymes may form a multienzyme
complex (noncovalent aggregates of enzymes) or may be a membrane-bound system, we can
choose the representative one of the enzymes unless there is a unique term for it. Thus we can

adapt the EC number as a unique name for the responding enzyme catalyzed reaction.

Example 5.1 ¢;53; means the biochemical reaction that is catalyzed by the enzyme 3.5.3.1,
which catalyze arginine into urea.

e3.53.1(arginine) = urea
and

€1.133€634.5€432.1€3531(carbamoyl-P) = urea,
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indicates that a metabolic pathway e, 33€63.4.5€13.2.1€3.53.1 starts from the enzymatic reaction
2.1.3.3 with carbamoyl-P as reactant, and after a series of reactions (2.1.3.3,6.3.4.5,3.5.3.1)

results in urea as product.

5.2 Metabolic Pathway Alignment

Alignment as one of the most powerful methods to comparatively analyze the relationship
between two sequences has been widely investigated in the field of bioinformatics to further
understand the biological homology and estimate evolutionary distance. A common approach
is to align sequences to each other, and measure distances by direct usage of molecular
sequence data with, e.g. parsimony or maximum likelihood methods, or to calculate a
corresponding similarity/distance matrix in multiple sequence alignment algorithms. Recently
the emphasis of research efforts begins to turn back from gene sequences to cell functions as
the completion of a long series of genomes and the accumulation knowledge of metabolism
have made the comparison of complete metabolic pathways possible. Some approaches
emphasized on either comparisons of gene sequence of involved enzymes [Dan99] [For01] or
maximum likelihood mapping of enzyme using EC numbers [TohOOa] [TohOOb] have been
made.

Our metabolic pathway alignment is a mapping of one pathway onto another by
calculating the similarity of them at a metabolic level instead of genomic level. The basic

concept is to measure the similarity.

5.2.1 Theory Basics

In order to score the similarity (percent identity) between two metabolic pathways, we define
the similarity function. The notion of similarity function is the key to the pathway alignment.
Definition 5.3 Let E be a finite set of e functions, an edit operation is an ordered pair (¢, 5) €
(Eufghx(Eu{eh\{(g8)}.

o and S denote 4-digit EC strings of enzymatic reaction function, e.g. a=e; ;.
P=er345, €denotes the empty string for null function. However, if o€ and Sz, then the edit
operation (a,f) is identified with a pair of enzymatic reaction function.

An edit operation (a,f) is written as a—f (we can simply written @, S as EC
numbers). There are three kinds of edit operations:

a— & denotes the deletion of the enzymatic reaction function ¢,

&£ [ denotes the insertion of the enzymatic reaction function S, and

a— [} denotes the replacement of the enzymatic reaction function & by the enzymatic
reaction function f.

Notice that £-¢&never happens.
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Definition 5.4 Let E\=e¢je;...¢, and Ey=e ey ...e,” be two metabolic pathways, an alignment
of E, and E, is a pair sequence
(a—=p,....0— )

of edit operations such that E\’=a,...,0, and Ey” = fy,..., B

Note that the unique alignment of € and € is the empty alignment, that is, the empty
sequence of edit operations. Empty element &€ can be inserted at any position, i.e. also at the
beginning or end. An alignment is usually written by placing the EC numbers of the two
aligned pathways on different lines.
Example 5.2 The alignment A = (2.4.2.3—52.42.4,3.54.5—>¢ 3.1.3.553.1.3.5, £52.7.4.9) of

the pathways e, .423€3545€3.135 and ex424€3135€27.49 1S Written as follows, one over the other:

2423 3545 3.1.35 £
2424 £ 3.1.35 2749

Example 5.3 Five alignments of  E1=€7414€3135€3545€2423 and E=

€2.74.14€322.10€3.54.1€2.423€354.5

(27414 £ 3.1.3.5 3545 £ 2423 £
" l274.14 32210 £ £ 3541 2423 3545

(27414 £ 3.1.3.5 £ 3545 2423 £
' 27414 32210 £ 3.54.1 £ 2423 3545

2.7.4.14 £ £ 3.1.35 3545 2423 £
T274.14 32210 354.1 £ £ 2423 3545

27414 3.1.35 £ £ 3545 2423
Tl274.14 32210 3541 2423 3545 £

27414 3.1.35 3545 2423 £
T l274.14 32210 3541 2423 3545

Lemma 5.1 Let A=(ay—f,,...,06—f3,) be an alignment of E\=e,e,...e,, and E;=e;’e,’...e, .

Thenm+n > h > max{m,n}.

Proof. 1.) The alignment
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of E| and E, is of maximal length. Its length is m+n, hence m+n > h.

2.) Letm > n. then

3.) The case m < n is similar to case 2. Hence h > max{m,n}.

To estimate the number of pathway alignments, we define that Aligns(m,n) is the number of

alignments of one pathway E; of m EC numbers with another pathway E, of n EC numbers.

Lemma 5.2 For all myn > 0, Aligns(0,0) = 1, Aligns(m,0) =1 and Aligns(0,n) = 1, then
Aligns(m,n) = Aligns(m-1,n) + Aligns(m, n-1) + Aligns(m-1,n-1)

Proof. The idea is to focus on the end of the alignment. If ¢, is deleted, then there exist
Aligns(m-1,n) alignments of the earlier part of the pathway. If e,’ is deleted, then Aligns(m,n-

1) alignments result. If ¢, and e, are aligned, Aligns(m-1,n-1) alignments result. Therefore,
Aligns(m,n) = Aligns(m-1,n) + Aligns(m, n-1) + Aligns(m-1,n-1)

ei £ £ ei o . . . .
If not to count and as distinct, the new way of counting alignments is to
I3 ; )

€,

e
identify aligned pairs " and to ignore permutations of -++. The notation of index

e, E € e
alignment is introduced.
Definition 5.5 A index alignment of E, and E, is a set of index pairs, (i1,]1),(i2,)2),- - -»(in])
satisfying:

1<ii<ip<..<i,<m
and

1<ji<p<...<j,<n.

For 1 < h < r, the index pair (i4j) stands for the replacement e;, — €’j,. We say that ey,
is matched or aligned with e’;. All EC numbers in E; and E, not occurring in an index
alignment are considered to be deleted in E; or E,. In a graphical representation, the index

pairs of the index alignment appear as lines connecting the EC numbers (Example 3).
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Example 5.4 The following index alignment of E|= €37414€3.135€3545€¢2423 and FE,=

represents A;, A, and A;, while P, represents A4, and P; represents As.

27414 3135 3545 2423
p=| | |
274.14 32210 3.54.1 2423 3545

27414 3135 3545 2423
p=| | —_—
27414 32210 3.54.1 2423 3545

27414 3.1.35 3545 2423
P, = I I I I
27414 32210 3.54.1 2423 3545

Lemma 5.3 Let Indexaligns(m,n) be the number of index alignment of two fixed pathways of

length m and n. Then

. min(m,n) m n m+n
Indexaligns(m,n) = z . = )

>0 r r n

Proof. 1.) For each re [0,min{m,n}] we have: for the ordered selection of the indices iy,...,i,

m
there are

Jpossibilities; for the ordered selection of the indices ji,...,j, there are
r

m
(Jpossibilities. All  these possibilites have to be combined:
r

min(m,n)
Indexaligns(m,n) = Z [mj[nJ

r=0 r r

2.) The key to the last equality is to consider the binomial expansion (x+y)". For

details see Appendix C.

Obviously, Indexaligns(m,n) is a sepcial case of Aligns(m,n), and it is possible to further

reduce the number of alignments by requiring conditional matches. There are at least

m+n) )
[ J different alignments between E; and E,.
n
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5.2.2 Similarity Function

The notion of alignment requires some scoring or optimization criterion. A variety of different
similarity measures can be used to calculate the similarity. A scoring scheme must account for
replacements, insertions and deletions. Scores are measures of sequence similarity (similar
sequences have high scores); this is given by a similarity function. A characteristic of a
similarity function is that the results of the function increase as the comparing item become
more similar. The value is zero if the items are totally dissimilar. The similarity function is
measured by the following definition:
Definition 5.6 A similarity function o assigns to each edit operation (,ff) a nonnegative real
number. The similarity o (a,€) and o () of the deletion operation (a,€) and insertion
operation (&) is 0. For all replacement operations (o, o€, Pre, say, a=d,.d,.ds.dy and
P=d,’.dy’.ds’.d,’, then the similarity function o (a,p) is defined by:
(0,if(di#d));

0.25,if (dy=dy and dr # dy’);
oc(aP =1 05,if(d=d’ and dy=dy’ and ds # ds’);

0.75,if (d, =dy" and dy =dy’ and ds = d3’ and dy # d’);
\'1,if(d) =d) and dy=dy’ and dy=d3’ and dy;=d,’ i.e. a=p).

The definition does not exclude the possibility that d4, ds.dy, and d,.ds.dy can be
respectively expressed as wide card symbols *, *.* and *.*.* which means no clear
classification of the enzyme.

According to the Enzyme Nomenclature (IUBMB) [Web92], the EC number is
function-based (the substrate-product conversion) instead of structure-based (the physical
nature of the catalyst). So it is possible that two structurally dissimilar enzymes could catalyze
a single reaction. In this case, the similarity score of o (&, f) is unrelated to the physical nature
of enzymes but dependent on theire catalytic reactions. The higher similarity score, the closer
the classes of the two reactions.

Single pair of EC string comparison just means to measure how different EC strings
are. Often it is additionally of interest to analyze the total difference between two strings into a
collection of individual elementary differences. The most important mode of such analyses is
an alignment of the pathways. The function o can be extended to alignments in a
straightforward way: the similarity o (A) of an alignment A=(ay—f,...,0,—f3,) is the sum of

the similarities of the edit operations A consists of.
h
o(A) =)o@, > B)
i=1

Example 5.5 The similarity of the alignment As in the example 3 is:
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0(As)=0(2.74.14—2.74.14) + 0(3.1.3.553.2.2.10) + 0(3.5.4.553.54.1)
+0(24.23-52423)+ 0(6>3.54.5)
=14+0.25+0.75+140
=3.0

When considering the lengths of pathways, an alignment scoring scheme is given.

Definition 5.7 An alignment scoring scheme, Score(E\,E,) of two metabolic pathways is the
average degree of their similarity of the alignment

Score(E|, E,) = ; o(A)
max(m,n)

Obviously, the worst case of scoring is that there is no index pair exists in the alignment, i.e.
all edit operations are deletions and/or insertions. Hence similarity o(A) is zero. The best case
is that the similarities of all edit operation are 1, i.e. a=[, there is neither deletion nor

insertion. Hence similarity o(A) is n, and E, and E, share the same length, m=n. Therefore
n

Score(E},E,) =— =1. They are actually the same.
n

In order to achieve a maximum possible score of the alignment, the edit distance could
be adapted to measure the similarity between two pathways by calculating the minimal cost of
the edit operations [Lev66] [Wag74] [Sel80]. However, when taking the biological aspects of
metabolic pathways into account, especially when we considering that two evolutional related
pathways are diverged for some certain biological purpose, the alignment with the edit
distance is arbitrary and sometimes biological meaningless. For example, the same metabolic
pathway from two organisms may have diverged since the organisms evolved from their
common ancestor, and individual metabolites and enzymes may have been changed or added
or lost in one pathway. There are two theories exist. The “retrograde evolution” theory
[Hor45] states that sequential disappearance of key intermediary metabolites induces the
recruitment of similar available substrates via new enzymes. The “substrate ambiguity” theory
[Jen76] indicates that enzyme recruitment from a pool of ancestral enzymes with basic
functions and substrate ambiguity. So the intended function similarities of metabolic pathways
are taken into account, i.e., two pathways are supposed to be function related. They performed
some similar biological purposes from certain starting substrates to the ending products. Based
on these considerations, we define a new function to perform the removal of unmatched

elements from both ends of the pathway.

5.2.3 Strip and Index Function

Definition 5.8 Strip function 6 and index function A of E\=ee;...e,, and E)=¢e,’e;’...e, are

defined as
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O(eer...ep 1€ ...e,") = (€ir1€is2...€k 1, a1 €js2 .€1”)
MNeiey...en e’er...e)) = {(i)),(k1)}

where: 1 <i<k<mand1<j<[<n,

e, e € By,

€1,€2,...€1.1, €yl 5y & E,

e; is the first element matching from left to right such that e=¢;’,

and ¢, is the first element matching from right to left such that ¢;=¢; .
Also set

O(eiey...epe’e)...e))=(ees...eme’er...e))

whene ze;(1<i<mand 1<j<n)lee,...e,=@le’e)...e,’=@lee,...e,=e’e;’...e,’=@.
The result of d(ee...e,, e1’¢e2’...e,’) can be further performed with duntil J(E, E,) = (E1,E»)
(Figure 5.2.3A).

S (E), Ex) = 6(5"" (EEy)

L] .1l> I k ‘IIP?II L]
1 7 ! \”
1 -1 g il b m
1 J1 il 'l i+1 1
i’ \
l «

oy

:/ j,
_/ |

Figure 5.2.3A A schematic alignment with strip function.
The set of all matched points will be denoted as A'(E,, E>). Such that:

A(E), Ey) = AE), Ey) U A (E, Ey) U -~ U5 (Ey, Ey))
k

= JAS (E.E)) = (). (")) (R, 1), (k. D)}
i=0

where A(0° (Ey, )= AE, E)); 1<i<i'<..<k<k<m, 1<j<j <..<I<I<n.
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According to Definition 5.5, we know that (i, j),(i’, j),..., (K, '),(k, ]) is a index alignment of
E,and E,.

Example 5.6 Let two pathway Ei\=€;776€56.1.5€27.4.14€3.1.35€35.45€2423€13.1.1€3522€35.16 and
Ey=€3776€2.74.6€274.14€322.10€354.1€13.12€3522€35.16, then & Z(Els E)= 6 (6 (E, Ey)=
(€3.13.5€3.54.5€2.423€13.1.15 €322.10€3.5.4.1€13.1.2)-

Lemma 5.4 Let Indexaligns(d '(E,, E,)) be the number of index alignment of two fixed

pathways of length m and n with r matched points. Then

m+n
1 < Indexaligns(6' (E,,E,)) < ( J
n

Proof. See Appendix D.

Lemma 5.5 Let E, and E, be two pathways of length m and n, there exists a minimum r that

f—/r% r r
enablesd(8(---0(E,,E,))) = (E,, E,), then Score(El,E2)=—ZO'(5k (E,E,)).
max(m,n) i>

Algorithms for optimal alignment can seek either to minimize a dissimilarity measure or
maximize a scoring function. However our scheme is based on the index pair matching with
strip functions. An alignment scores is the maximum over all possible alignments
h
s=max { ZO'(O{i, f,) : all alignments}.
i=1
Definition 5.9 Given two pathway E, and E,, a mapping M(E\,E,) is defined as a set of
position correspondences (i, j) satisfying 1 < i < m and 1 < j < n such that e; :::: ¢. The
notation ““::::” denotes that e; and e;” are compared to be identical in turn according to their 4-
digit hierarchical patterns. A mapping is maximal if there does not exist another pair (I, k)
such that e :::: e’ .
Obviously, each map site has two characteristics, site position (location) i and site feature
name e¢;. The map E|=eje;...e, consists of a sequence of pairs e; = (a;, 1;), where a; = the

location of the i-th site in number of pathways and r; = the feature name at the i-th site.

Similarly, E,=e;’e;’...e,” is a map where e;” = (bj, s;). For further analysis, let the symbol E

—_

denote natural order sequence of a;, and E, denote the sequence of corresponding position b;.

—

E,

—

E,

—_—

E,

—

The number of E|, E, maps is defined as and . Clearly, =|E,| < m,n.
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Example 5.7 The maximal mapping of two pathways E|= €365€27.4.14€3.135€2.7.143 and FE,=

€36.1.863.135€27.148 €274.14 is {(191)7(294)3(392)7(493)} E = 13 23 33 4 and E;= 17 47 23 3. The

— — 1 2 3 4
mapping can be represented as line E, over line E, : 40 3
. E Ayl Qg _. . .
Suppose a mapping M = . = (Figure 5.2.3B), the following properties
bybj,---by
2 JiJ Je
hold:
1. E[‘ = |E,| =4,
2. ay< ap<-< dig.1< dig,
3. bji< bjp<-+< bjq.1< bjq is not always true.
il i B e ifddl Clid
1 i
| | - - | |
I [i] I
1 ba bn bseba b

Figure 5.2.3B An illustrative map of two pathways.

—_—

As emphasized above, locations of E, is not necessary in natural order. We define a map

—_—

alignment as a mapping where £, is a sequence in natural order.

Lemma 5.6 Given the maximal mapping M of two pathways E\=ee;...e,, and E;=e’e;’...e,’,
and let E| = ayayp. . .ai.1aiq and E, = b1by,. . .bja1bjq be two maps of M. Then we have:

A sub-sequence of E, in natural order with the longest length is the maximal map

alignment of E| and E,.

—_

A sub-sequence of E, in natural order between bj, and by is the index alignment.

—_—

Proof. 1.) Suppose buobjxi...bj is a sub-sequence of E, in natural order with the longest

length, we can obtain the responding positions of this sub-sequence: a;oaiy;. - -, SO that they
are a map alignment of E, and E,. For contradiction, let us assume that there exist another
mapping pair (ai’, bj’) excluded from the maximal map alignment, then buobjx;...bj is not
the longest subsequence, which is a contradiction.

2.) According to the definition of index alignment, the first step is to map from both

—_

ends of E;, bj; and bjq are found. Next step is to map a;, and dgiq.1, b, is one map of E, only
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when by, is greater than b;;, and bjq; 1S one map only when bjq.; is less than b;q and greater than

bj>. Repeat the mapping till no more by is satisfied.

Example 5.8 The map of two pathways in the Example 5.7 is:

A 3.6.1.5 27414 3135 2.7.148
3= | e
3.6.1.8 3.135 2.7.148 274.14

1
1

The maximal map alignment

3.6.1.5 27414 3.1.35 27.148

1 3 4:> | -
. 3.6.1.8 3.1.3.5 2.7.148 2.7.4.14
The index alignment is
4 3.6.1.5 27414 3.1.35 2.7.148
! 3:> | —
3.6.1.8 3.1.35 2.7.148 2.74.14

Lemma 5.7 Pair number of index alignment is less or equal than that of maximal map
alignment, which is less or equal than that of maximal matching.
Proof. Given two pathways E\= €3615€27.4.14€31535€27.148 and Er= €3618€3.135€27.148 €2.7.4.145
then Score(E,Ey)=Y4*0(2.7.4.14->2.7.4.14)+0(3.6.1.5->3.6.1.8)=1/4*%(1+0.75)=0.43.
While the score of the maximum alignment will be

Smaxa=1/4%(0.75+1+1)=0.609.
The score of the maximal matching is

Snaxm=1/4%(0.75+1+1+1)=0.94.

5.2.4 Algorithms

Before describing our algorithms, we introduce four different subscript notations of the Strip
function ¢ and the Index function A. From its definition we know that the Strip function J'is
able to strip two pathways if there are two pairs of elements that are matched, e.g. e=¢;” and
ei=e/ . Here, e, ¢;, e, and e, are 4-hirarchical numbers. We count all four numbers by default.
Now if we count only the first three numbers for matching, then the Strip function 6 can be
written as J 3 in order to distinct the default setting J'that can also be written as J4 in this case.
Similarly for &, and &';. Accordingly A, is defined as the default 4-number indexing, and A;,

and so on.
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5.2.4.1 Pairwise alighment
In general, we align metabolic pathways one above the other. The alignment algorithm is
based on likelihood calculations of index pairs. Given two metabolic pathways P; and P,

(Figure 5.2.4.1), the implemented algorithm is given by the following pseudo-code:

1 m
a Lelelelelelelelelelefec]elele]
1 n

Pz

Figure 5.2.4.1 Two aligned metabolic pathways.

Begin
Input P1: Ei=¢je;...¢,
P2: Ey=e;’e;)’ .. e,
Initial set Score=0.0
Strip &, (Ey, E»)
Compute A, (E,, E,)
Foreach stripped sub-pathway, do
E’=eie;...e,
Ey=ele;)’ ...ey
Strip & (E/, Ey)
Compute 15 (E,", E>’)
Foreach stripped sub-sub-pathway, do
E"=¢e,...e,;
Ey’=el’ey’...eyy
Strip & (E:", E2")
Compute A, (E,”, E;”)
Foreach stripped sub-sub-sub-pathway, do
E=¢ee,...e,
Ey7=e’er’ .. ey
Strip 6, (E”", E)”)
Compute A, (E;”, E,”)
Foreach stripped sub-pathway, do
Count score
Next

Count score
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Next
Count score
Next
Count score
Next
Output A,", 43, A, 4, and Score
End

Line 1-3: Initialize the set of unaligned EC number sequences, their lengths and score value.
Line 4-29: Starting from both ends towards the middle, align one sequence to another and
attempt to find all EC numbers with same 4-level hierarchical numbers. Score the similarities.
Recall the alignment positions, where EC number are identical, and cut the sequences into
more sub-sequences by removing the identical EC numbers.

Line 7-27: Each pair of sub-sequences is initialized to begin a new round of 3-level
hierarchical EC number matching. Till all pairs of sub-sequences are aligned. A similarity
score is calculated afterwards.

12-25: Apply the same rule again, find the similarities of rest unaligned sub-sub-sequences
based on 2-level hierarchical EC number matching.

17-23: Then sub-sub-sub-sequences on 1-level are matched.
5.2.4.2 Time complexity analysis

The best case to strip two pathways and obtain their index pairs is that they are identical,
which costs O(m) computing time. While the worst case is that they are un-matchable, it needs
O(mn) to cover all elements. In general, we define O(men) to show the “average” time
complexity. Therefore, to create A(E,, E), it takes O(men). A (E;’, E,)) takes

K+1 K+1 R+1
O(Zml 'nl), L(E”, E)) takes O(szz{ Onf) and A, (E;”, Ey”) takes
=1

=1 i=l

K+ Ri+1 5,41

O(ZZZ jm{ ° n.’), where K denotes numbers of index alignment of (E), E,), R; denotes

i j
=1 i=l j=I
each striped sub-pathway of (E,’,E,’), S; denotes each striped sub-sub-pathway of (E,”, E,”),

and jmil and jnil represent the length of each striped sub-sub-sub-pathway (E1”’, E2).

Therefore, the total time complexity is

K+1 K+1 Rj+1 K+1 R +1 5;+1

0(m0n+2m’ on +szi] °n; +Zzzjmi]0jni’) .
1=1 1 =l

I=1 =1 j=1
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The best-case complexity of the algorithm is the minimum number of steps taken on
any instance of size m and n. It represents the alignment of two identical pathways, which
takes O(n).

The worst-case complexity of the algorithm is the maximum number of steps taken on
any instance of size m and n. It represents the alignment of two pathways with no first 2-

number is same, which takes at least O(3mn).

5.2.4.3 Multiple alighment

Multiple alignment is useful for finding the phylogenetic analysis. Multiple sequence
alignment is important for the recognition of patterns or motifs common to a set of function-
related DNA sequences and is of assistance in structure prediction and molecular modeling.
Multiple sequence alignment algorithms use variations of the dynamic programming method.
Dynamic programming methods use an explicit measure of alignment quality, consisting of
defined costs for aligned pairs of residues or residues with gaps and use an algorithm for
finding an alignment with minimum total cost.

The multiple metabolic pathway alignment allows us to extract and represent
biologically important but faintly/ widely dispersed pathway similarities, which, for instance,
makes it possible to identify pathways preserved by evolution that play an important role in
the cellular function and can give us hints about the evolutionary history of certain pathways.

By allowing the alignment of more than two metabolic pathways, the pairwise
alignment algorithm can be extended. A multiple alignment of metabolic pathways E}, Ej, ...,
E;, can be seen as a generalization of pairwise metabolic pathway alignment - instead of
aligning two pathways, k pathways are aligned simultaneously, where k is any number greater
than two. A heuristic algorithm is used to perform the multiple metabolic pathway alignment.
The general idea of the method is to construct a succession of pairwise pathway alignments:

Step 1: Choose one pathway E; from E={E,E,,...,E;} and align with {E,,...,E;} one
after another to find the most similar pathway E; (2 <i<k).

Step 2: Choose the pathway E; and align with E\{E|,E;} to get the most similar
pathway E;.

Step 3: Iterate step 2 until all pathways are aligned.

The time complexity of  multiple alignment of k  pathways is

1 K+1 K+1R, +1 K+1R, +1S;+1

O k(k - DCme” n+ > "m0 3 e ! 37NN Pnle”*nl)) . where
=1 1 =l =1 i=1 j=1

pe (1,k-1), the lengths of pathway p and p+1 are “m and ”*'n.

The multiple alignment is a complicated problem and there are some technical

difficulties such as the choice of the pathways. The method proposed only makes sense if they
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are assumed to be dealing with a set of homologous pathways i.e., pathways sharing a
common ancestor. Given inappropriate (unrelated) pathways, the multiple alignment method
will nonetheless produce an alignment. It will be the responsibility of the biologist to realize

that this alignment is meaningless

5.3 PathAligner Implementation and Examples

5.3.1 Implementation

The algorithm has been implemented in the PathAligner system (http://bibiserv.techfak.uni-
bielefeld.de/pathaligner). It is written in Perl and runs under UNIX. The graphical
representation of alignment is done with the help of a simple graphical Perl module. Three
web-based alignment interfaces are implemented in the current version. They are “E-E
Alignment”, “M-E-M Alignment** and “Multiple Alignment”. “E-E Alignment* uses the basic
algorithm to align two linear metabolic pathways (represented as EC number sequences).
Users can also align any such a metabolic pathway against our pool database to find a list of
hits. “M-E-M Alignment* considers the differences of metabolites in two pathways, which are
presented as “Metabolite-EC number-Metabolite” patterns of sequence. It is possible to pick
up two such pathways and align them to identify whether they are alternative pathways or
partial ones. “Multiple Alignment” allows the alignment of more than two metabolic pathways.

Some examples are illustrated in the following sections.

5.3.2 E-E Pairwise Alignment

The retrieved metabolic pathway can be aligned with other functionally similar metabolic
pathways from other species. Based on the KEGG’s pathway database, two metabolic
pathways related to the urea cycle are selected and aligned. User can align the metabolic
pathway with all pathways in the pool database (Figure 5.3.2). The upper left window shows
the web-interface of pathway alignment. Users can align one pathway either with another
pathway, or with all pathways deposited in the database. The lower left screenshot is an
example of pairwise pathway alignment. All paired enzymes are highlighted in color. Blue
color indicates that two EC numbers are exactly the same. EC numbers with green color share
same d,,d, and d; of EC 4-digit hierarchy. Pink EC numbers have the same d, and d,. While
red colored EC numbers only belong to the same main class of enzyme nomenclature. The
similarity score is calculated after the comparison of two pathways. The right window is the

alignment result of aligning against the database.

111



iSery - Bielefeld University Bioinformatics Server - - Microsoft Internet Explorer

| Ele Edit Wiew Favorites Took Help

“Agdress [&] hittp: bibiser. techfak, uni- ielsfeld. defpathalignerjpathaligner L html

BiBiServ
Bielefeld University Bioinformatics Server

Education Links

" Administration ™

PathAligner - Alignment
« Pairwise alignment
e Enzyme-Enzyme pattern search

® Paste your metabalic pathway(s) as an EC number sequsnce, e.g 1.1.1.1-x22.22.»3 3.3 3. EC numbers may be
faund by using ECsearcher

o Pathway 1

6.3.5.5->2.1.3.3->6.3.4.5->2.3.2.1 =]

& Pathway 2.

6.3.5.5-»2.1.3.2->3.5.2.3->1.3.3.1->2.4.2.10->4.1.1.23 —
2 pathaligner - Results - Microsoft Internet Explorer

| Eie Edt Vew Favortes Tools Help

EiBiSet

| dress [{€] hitp: fbibisery techf ak.uni-bislefeld. defcorbinipathaligner L

PathAligner - Alignment

I bs

+ E-E Pathway Alignment
o EC number pattern based

RESULTS “our first pathway is:

6.3.6.6-»2.1.3.3-»6.3.4.5->4.3.2.1

g a The second pathway is
Ig = 6.3.5.56--2.1.3.2-»3.6.2.3-+1.3.3.1--2.4.2.10-4.1.1.23
£ bo
E amm Scoring: 0.33
: <
E =
L b
&
:w
-
[
E 2
E
=)
Q=
wn <
- 2 [C) Ming Chen
&
Ll
£
4 <
|&] Dane [ [ [BE ocalintranet |@ Boie

} pathaligner - Results - Microsoft Internet Expl
J File Edit ‘ew Favorites Tools Help

J Address I@j httpf{bibisery . techfak.uni-bielefeld. de/cgi-binfpathaligner _1

j @Gn

PathAligner - Alignment

e E-E Pathway Alignment
o EC number pattern based

Your first pathway is:

6.355-+2.1.33>6.345-+4.3.21

s

Scoring: 0.75
arginine biosynthesis 1:2.1.3.3->6.3 4.5->4.3.2.1

Scoring: 0.70
Urea cycle pathway: 6.3.4.16-2.1.3.3-6.3.4.5->4.3.2.1->3.5.3.1

Scoring: 0.60
arginine biosynthesis 4:1.4.1.3->26.1.13-»2.1.3.3-»6.3 4 5-4.3.21

Scoring: 0.50
arginine biosynthesis ll:6.35.5->2.1.3.3

|
lilili (@E Local intranet

_>l_I
y

Figure 5.3.2 Screenshots of metabolic pathway alignment.

5.3.3 M-E-M Pairwise Alignment

In addition, the current version of PathAligner can also align metabolic pathways that are

presented as (M—E—-M). It is possible to pick up two such pathways and align them to identify

whether they are alternative pathways or partial ones. This method differs from classic

alternative pathway finding, based on Dijkstra/Floyd’s algorithm [Dij59] [Flo62], that is used

by some well known metabolic pathway databases such as KEGG [Oga96].

Pathway alignment is considered as a substrate-enzyme-product unit alignment. It again can be

possibly analyzed and investigated in terms of gene sequences and evolution. The metabolic
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pathways can be different from organisms to organisms. A screenshot example of M-E-M

pairwise alignment is shown in Figure 5.3.3.
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Figure 5.3.3 Screenshot of M-E-M alignment.

The algorithm takes two pathways and determines the similarity between them. We must
define what the similarity is, in order to understand this problem. Alignment score of
alternative pathways is equal and greater than 50%, 50% is the case that only the both ends of
pathways are 100% identical. However, inconsistent naming conventions, synonymy and
open, growing vocabulary for many classes lead to task difficulties in molecular biology
ontologies. For instance, L-Arginine may have synonyms: 2-Amino-5-guanidinovaleric acid;
Arg; Arginine; L-(+)-Arginine; 2-Amino-5-guanidinopentanoic acid. So, the entry numbers for
compounds from KEGG are used as the unique IDs to the molecular elements in BioPNML,

e.g. C00062 for L-Arginine.
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5.3.4 Multiple Alighment

Multiple metabolic pathway alignment can be seen as a generalization of pairwise metabolic
pathway alignment. A heuristic algorithm is used to perform the multiple metabolic pathway
alignment. An example of multiple alignment of methionine pathways from different species

as well as alternative methionine pathways from the same specie is performed (Figure 5.3.4)

Commoniif%;ents: Metaholite EC #.%.%.% EC #.%.—-.—- EC ¥.-.-.-

M.genital ium L-Methi2.5.1.6 s-Adenos
\\

H.zapiens gk E b

H.zapiens —Methior2.5.1.6 S-Adenos

H.zapiens -1.1.537 fdberime

Mumuzculus 0 i 2 =LAl AR e,
ey

O.melanogaster Ll S-Adenos

S.cerevisiae

S.cerevisiae L-Hamas:

E.coli+MG+1655

E.col i+MG+1a35

B.Subtilis

Genetated by PathAlignes

Figure 5.3.4 Graphic representation of multiple alignment of metabolic pathways. The same
metabolites between two aligned pathways are colored in black and linked by a black line. Enzymes
with the same 4-digits are colored in blue, with the same first 3-digits are colored in green, with the

same first 2-digits are colored in purple, and with the same 1-digits are colored in red.

5.4 Summary

We have presented an algorithm to study the problem of metabolic pathway alignment. The

entire  processing for pairwise E-E alignment takes the time of order
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=1 =l
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aligned metabolic (sub)pathways. The algorithm described here has been successfully
implemented and is in current use in the context of the PathAligner system.

The identification and analysis of metabolic networks is a complex task due to the
complexity of the metabolic system. Abstract pathway defined as a linear molecule sequence,
is practical for our alignment algorithm. However, when the topology of network is concerned,
more information related to the components of the pathways, like their length, size, number of
feedback cycles, number of crosstalks between pathways and area reachable from any point in
the network, should be considered as much as possible. In this case, the pathway comparison
will be the comparison of sub-network, or as a tree, rather as a single linear path sequence. As
a result, this leads to another type of pathway computation, which can be categorized as the
comparison of biological networks. By comparing such type of networks from different
biological system, it is possible to identify similarities and variations among different species.

It is important to note that we are assuming that the two pathways are related in some
biologically meaningful way, whether from different organisms or the same. Because high
conservation of identity between two pathways is a strong indicator of their biologically
significant relationship, we model every comparison as an experiment that seeks to quantify
the related-ness of two putatively previously related pathways.

We can adopt our alignment algorithms to comparatively analyze other kinds of
biopathways, such as signaling pathways. However, there is no nomenclature system for signal
contradictions at the moment. We are going to present our classification of signal
transductions in the next chapter. We will construct a database to host the classification system
and perform signaling pathway alignment based on the classification and the algorithms we

have discussed.
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Chapter 6
Signaling Pathway Alighment’

Signal transduction has been of great interest to many academic and pharmaceutical scientists
as it is becoming increasingly clear that the regulation of signal transduction is critical for
understanding both basic biological processes, as well as how they may go awry leading to
disease. The widespread use of modern biological technique to a unit operation in various
fields of cellular technology has led to a proliferation of terminology. However, no reference
has been made to the classification and definitions of transductions involving the signal
reception, transportation and function. In this chapter, a classification and nomenclature of
signal transduction is proposed. A systematic classification scheme is given for the various
types of signal transduction and related reactions currently available.

Based on the nomenclature, each type of signal transduction processes a unique ST
number. The alignment algorithms of metabolic pathways alignment are used to compare the

similarity of signaling pathways. It makes the biopathway alignment possible.

6.1 STCDB: Signal Transduction Classification
Database

6.1.1 Introduction

Signal transduction, at the cellular level in general, is the mechanism by which a signal
encountered at a cell's surface (i.e. an extracellular signal) is transformed into an intracellular
signal, that in turn invokes cellular responses such as proliferation, differentiation, secretion

and apoptosis within the responding cells. Signal transduction refers to the movement of

" Part of Chapter 6 has been published in NAR [Che04c].
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signals from outside the cell to the inside. Schematic representation of the signal transduction

within a eukaryotic cell includes (Figure 6.1.1):
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Figure 6.1.1 Basic schematic presentation of signal transduction within a eukaryotic cell.

A systematic classification scheme is given for the various types of signal transduction and
related reactions currently available:
e Starting with the arrival of a signaling molecule, typically a hormone or a
neurotransmitter on the cell surface.
¢ The signaling molecules bind to specific membrane proteins, the receptors, which are
activated.
e These receptors activate proteins, which themselves stimulate other proteins in the
cytosol.
e The active proteins bind to the transcription factors which when activated regulates
gene expression.
¢ Finally, changes in gene expression initiate the biological answer of the cell to the
original signal.
The movement of signals can be simple, like that associated with receptor molecules of the
acetylcholine class: receptors that constitute channels which, upon ligand interaction, allow
signals to be passed in the form of small ion movement, either into or out of the cell. These ion
movements result in changes in the electrical potential of the cells that, in turn, propagates the
signal along the cell. More complex signal transduction involves a complex network of
interwoven signaling cascades (e.g. Phosphorylations by tyrosine kinases and/or
serine/threonine kinases). These cascades change enzyme activities and protein conformations

and cause a change in the level of a second messenger (for example calcium or cyclic AMP)
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and ultimately regulate such cellular responses as proliferation, differentiation, secretion and
apoptosis in the responding cells.

Extracellular signals (typically a hormone or neurotransmitter), perceived at the
surface of a cell, must be translated into an intracellular response that involves a complex
network of interwoven signaling cascades (e.g. phosphorylation). Signal transduction cascades
cause a change in the level of a second messenger (for example calcium or cyclic AMP) and
ultimately regulate such cellular responses as proliferation, differentiation, secretion and
apoptosis in the cell.

With the widespread use of modern biological techniques in various fields of cellular
technology, more and more cellular data are accumulated which has led to a proliferation of
knowledge and its terminology. The complexity created by the crosstalk among signal
transduction network makes it virtually impossible to infer by hand all the consequences that
follow after the modification of one part of the network. Fortunately, a number of databases
such as SPAD [Tat95], CSNDB [Iga98] and TRANSPATH [SchO1b] have been constructed to
bring the signal transduction knowledge into a well-organized format, providing simple and
fast access to the signal transduction system. Moreover, signal molecules and pathways are
classified and illustrated by graphs [BioO1]. At present, other major databases are known
describing different aspects of gene network organization, e.g. CSNDB contains and
information about signal transduction mechanisms in the human cells; TRANSFAC (The
Transcription Factor Database) compiles data about gene regulatory DNA sequences and
protein factors binding to and acting through them; TRANSPATH is an information system on
gene-regulatory pathways. It focuses on pathways involved in the regulation of transcription
factors in different species, mainly human, mice and rats. Elements of the relevant signal
transduction pathways like hormones, receptors, enzymes and transcription factors are stored
together with information about their interaction and references in an object-oriented database.
SPAD contains the structure-functional data on the mechanisms of signal transduction; EPD
(the Eukaryotic Promoter Database) contains general information about promoters, as they are
defined by an experimentally proven transcription start site, and their tissue-specificity. The
Transcription Regulatory Regions Database (TRRD) is designed for accumulation of
experimental data on extended regulatory regions of eukaryotic genes. However, none of these
databases provides the solving of the whole complex of tasks necessary for a gene network
effective studying, which demands analysis of the large bulk of heterogeneous experimental
data. Some integrative databases or models, e.g. Genenet, E-Cell and MARG are attempting to
fulfill this task, but there is still a long way to go. However, no reference has been made to the
classification of transductions involving the signal reception, transportation and function.

This section presents classifications concerned with signal transductions and brings

order into a nomenclature recommendation of them.
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6.1.2 Classification

An important first step toward acquiring understanding of molecular and cellular function is to
build systems for organizing and categorizing functions of bioprocesses. Biochemical
reactions that are normally catalyzed by enzymes can be easily inferred from the enzymes
involved. For example, the transformation of L-arginine to L-ornithine is normally catalyzed
by arginase, 3.5.3.1. According to the Classification and Nomenclature of Enzymes (IUBMB
Recommendation), it is clear that the reaction belongs to the hydrolyzation (EC 3.*.*.%). It acts
on “carbon-nitrogen bonds, other than peptide bonds” (EC 3.5.%.*%), and so on. A similar
strategy is employed to classify signal transductions. Below is the overview listing of
recommended classification, whereas the expanded “full” listing can be found at the web page:
http://bibiserv.techfak.uni-bielefeld.de/STCDB.
A four-digit ST number d,.d,.ds.dy denotes a particular signal transduction, with
classes defined as:
d; :=location of transduction
d, = type of interaction
d; = signal molecule’s nature
d, :=1D
The sub-class notations are briefly described as
d, = 1: Extracellular signal reception events
d, = 1: Physical stimulation of receptors
d, = 2: Binding with hormones
d, = 3: Binding with non-GF cytokines
d, = 4: Binding with Growth Factors
d, = 5: Binding with neuronal receptors
d, = 6: Binding with other ligands
d; = 2: Plasma membrane transduction events
d, = 1: Channels operation
d, = 2: Ion channel transduction
d, = 3: G-proteins transduction
d, = 4: Other Ser/Thr phosphorylation
d, = 5: Tyr phosphorylation
d, = 6: Cleavage
d, =7: Others
dy = 3: Plasma membrane to cytoplasmatic transduction events
d, = 1: Membrane receptor releasing
d, = 2: Protein-protein interaction

d, = 3: Others
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d; = 4: Intracellular signal transduction events
d, = 1: Ser/Thr phosphorylation
d, = 2: Tyr phosphorylation

d, = 3: Other phosphorylation
d, = 4: Dephosphorylation

d> = 5: Ubiquitination

d, = 6: Methylation

d, = 7: Deamination

d, = 8: Nitrosylation

d, = 9: GDT/GTP exchange

d, = 10: Dimerization
d, = 11: Protein-protein interaction
d, = 12: Others
d; = 5: Cytoplama to nucleoplasma transduction events
d, = 1: Ungrouped
d; = 6: Nucleoplasma to nucleoplasma transduction events
d, = 1: Nuclear receptor binding
d, = 2: Transcription factor binding
d> = 3: Acetylation
d, = 4: Histone deacetylation

d, = 5: Others

6.1.3 STCDB Description

6.1.3.1 Data source
The main source for the data in the STCDB database comes from the CSNDB. A minor part of
the data has been extracted from TRANSPATH and Biocarta as well as the literature.

Additionally, a web-based submission form is available for the users’ contribution.

6.1.3.2 Database structure

The STCDB database contains data for each type of characterized signal transduction for
which an ST number has been provided. The entries in the database data file (ST number.html)
are structured so as to be usable by human readers, as well as by computer programs. Each
entry in the database is composed of lines. Different types of lines, each with its own format,
are used to record the various types of data that make up the entry. The general structure of a
line is the following:

— ST number

- Recommended name
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— Alternative names (if any)
— Reference
- Pointers to the CSNDB entrie(s) that correspond to
the signal transduction (if any)
- Pointers to the BioCarta entrie(s) that correspond
to the signal transduction (if any)
A search interface for the Internet service provides two kinds of direct search: by keyword and
by ST number. Searching by keyword allows the user to input free text that might be found in
the content of each data file. A ST number can be chosen which will restrict the search to the
specific entry. A wild card (¥) search is available and more than one word in the text field will

find a match to either word. Screenshots of STCDB are shown in Figure 6.1.3.2.
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Figure 6.1.3.2 An example of ST entries.
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6.1.3.3 Latest data update

STCDB is regularly updated to reflect updates and additions to the classification. We also
update the CSNDB and BioCarta pointers, correct eventual errors, and complete the
information concerning synonyms using the literature. We welcome and encourage any type of
feedback.

The latest data release of STCDB was given out on Dec. 2003. Sequence corrections,
mainly frame shift errors, led in most cases to the modification of classification. In a few
cases, more dramatic changes, such as merging several entries or adding/removing entries,
were required. Furthermore, additional corrections of signal transduction classifications
resulted from a revised analysis of sources data. Currently STCDB contains over 486
entries/pages, 400 cited references and 700 external hyperlinks. The numbers of entries of

main class of signal transduction is shown in Table 6.1.3.3.

Table 6.1.3.3 Summary of signal transduction classification entries in the latest release (Dec. 2003).

Signal transduction classification Entries
ST 1.*.** 176
ST 2.%.** 53
ST 3.%.%* 22
ST 4.%.** 201
ST 5.%.*.* 4
ST 6.%.* * 31

We would like to encourage users to submit their request for a new classification via the web-
based submission form (http://www.techfak.uni-bielefeld.de/~mchen/STCDB/submit.html or
to contact us directly by e-mail if they have large data sets. Further analyses and database
searching would validate every record that is entered in this way. We would also reply on
assistance from a number of specialist advisors and communication with the scientific

community in general to maintain accuracy.

6.2 Signaling Pathway Alighment

Signaling pathways are not only interconnected to other pathways in the cell. One of
additional perspectives to analyze their interactions and regulations is signaling pathway
alignment. Signaling pathway alignment reveals differences in signal transduction flux,
conversion and regulation in different species. In this section, we present signaling pathways

as ST number sequences and exploit the PathAligner system to align them.

6.2.1 ST Representation of Signalling Pathways

To enhance the exploration of signal transduction in a pathway context, one requires an

application that allows the visualization of the signaling process in a pathway map. The
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current graphic representation of signaling pathway is based on a concept description and lack
of a fully understanding mechanism or a common taxonomy. However, according to our
classification of signal transduction, it is possible to commonly represent signaling pathways
by a “metabolic pathway”-like structure in which the proposed nomenclature of signal
transductions as the ST classification system.

Figure 6.2.1A shows a ST representation of signaling pathways of IFN-gamma

pathways.

IFN-GR1
IFH-Gamma IFM-G receptor
JAKIL
STATI

Figure 6.2.1A ST representation of interferon gamma signaling pathway. The ST number consists of
four distinct numbers that classify the signal transduction based on our classification. For example, the
signal transduction IFN-Gamma -> IFN-GRJ has the ST number 1.3.3.4, which designates an external
event (class 1), binding with non-GF cytokines (subclass 1.3) with IFN GR as receptor (sub subclass

1.3.3). The number 4 designates the fourth transduction in this class.

A strong advantage of ST numbers is that they provide unique identifiers for signal
transductions. For example, when comparing the signal transductions of two signaling
pathway, the ST number is used to determine if two signal transductions have the same
function without the need to understand the multiple and confusing names that can be used for
the same signal molecule. Similarly, the multiple names used for signal molecules cause
confusion when we try to determine if two signal transductions refer to the same molecule.
Extensive synonym lists for signal molecules are essential in a signaling database.

Based on the STCDB classification and nomenclature, graphic signaling pathways are

produced (Figure 6.2.1B).
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Figure 6.2.1B A part of signal transduction pathways based on the STCDB entries. The whole network graphic representation is available at STCDB web site.
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6.2.2 An Alighment Example

By applying the metabolic pathway alignment algorithm, it is possible to align signaling
pathways. We extract partial signaling pathways from STCDB and list them below.

PKA::PKA->2.3.3.1->phosphorylase kinase->4.3.11.13->glycogen phosphorylase
Apafl::Apaf-1->3.3.1.1->caspase-9->4.12.8.13->caspase-3->4.12.8.3->Acinus
Cam-KK2::CaM-KK->4.1.5.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.10-
>MEKK1->4.1.11.3->IKK->4.1.6.1->NF-kB
Cam-KK3::CaM-KK->4.1.5.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.10-
>MEKK1->4.1.11.3->IKK->4.1.6.2->I-kB-alpha
CDKS5_1::CDK5->4.3.3.3->PAK1->4.1.3.2->LIMK-1->4.3.11.10->cofilin
PDK2_2::PDK2->4.1.4.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.10-
>MEKK1->4.1.11.3->IKK->4.1.6.2->I-kB-alpha
Lckl::Lck->2.5.1.1->VAV->4.12.2.1->Rac->4.9.1.6->PAK3->4.1.3.4->c-Raf-1
Lck2::Lck->2.5.1.1->VAV->4.12.2.1->Rac->4.9.1.5->p35->4.3.3.3->PAK1->4.1.3.2->LIMK-
1->4.3.11.10->cofilin
cytochrom?2::cytochrome c->3.3.1.1->caspase-9->4.12.8.13->caspase-3->4.12.8.10->MEKKI1 -
>4.1.11.3->IKK->4.1.6.2->I-kB-alpha
Cam-KK1::CaM-KK->4.1.5.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.6-
>presenilinl
Lck3::Lck->2.5.1.1->VAV->4.12.2.1->Rac->4.9.1.5->p35->4.3.3.3->PAK1->4.1.3.3-
>MLCK->4.3.11.11->myosin light chain
cytochroml::cytochrome c->3.3.1.1->caspase-9->4.12.8.13->caspase-3->4.12.8.3->Acinus
CDKS5_2::CDK5->4.3.3.3->PAK1->4.1.3.3->MLCK->4.3.11.11->myosin light chain
procaspase-3::procaspase-3->4.12.8.2->caspase-3->4.12.8.3->Acinus
caspase-8_1::caspase-8->4.12.8.11->caspase-3->4.12.8.10->MEKK1->4.1.11.3->IKK-
>4.1.6.1->NF-kB
CDKS5_3::Cdr2->4.3.4.2->Weel->4.3.10.1->CDK1->4.3.10.2->cyclin B
survivin::survivin->4.12.7.1->caspase-3->4.12.8.10->MEKK1->4.1.11.3->IKK->4.1.6.2->I-
kB-alpha
caspase-8_2::caspase-8->4.12.8.11->caspase-3->4.12.8.10->MEKK1->4.1.11.3->IKK-
>4.1.6.2->1-kB-alpha
Apaf2::Apaf-1->3.3.1.1->caspase-9->4.12.8.13->caspase-3->4.12.8.10->MEKK1->4.1.11.3-
>IKK->4.1.6.2->I-kB-alpha
PDK2_1::PDK2->4.1.4.5->PKB->4.1.2.3->caspase-9->4.12.8.13->caspase-3->4.12.8.10-
>MEKKI1->4.1.11.3->IKK->4.1.6.1->NF-kB

In order to distinguish these pathways, a temporary name is labeled. That is, each pathway
begins with “name::”. When we input these pathways to the PathAligner’s interface and
perform multiple pathway alignment, the alignment result and screenshot, are shown in Figure

6.2.2.
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Figure 6.2.2 The multiple alignment result of the listed signaling pathways.



6.3 Biopathway Alighment

So far, biochemical reactions that are normally catalyzed by enzymes can be easily inferred
from the enzymes involved. For example, the transformation of L-arginine to L-ornthine is
normally catalyzed by arginase, 3.5.3.1, then it is clear that the reaction is catalyzed by a
enzyme that is a hydrolase, acting on the “carbon-nitrogen bonds, other than peptide bonds” in
“linear amidines”. Signal transductions can also be inferred from its ST numbers. The ST
4.1.1.6 signal transduction indicates that the process takes place in the intracellular
compartment, it is a kind of Ser/Thr phosphorylation, acting from the MAP/MAPK family to
the specific molecule Rsk (MAP-kinase -> Rsk).

However, this partial understanding is very artificial. Cells respond in this
interconnected fashion, involving several pathways. We need integrated information and
generalized biopathway representation and analysis. In fact, by combining the EC numbers

and ST numbers, the integrative biopathway alignment is reliable.

6.4 Summary

Signal Transduction Classification Database (STCDB) is a database of information relative to
the classification of signal transduction. It is primarily based on a proposed classification of
signal transduction and it describes each type of characterized signal transduction for which a
unique ST number has been provided. This document presents, in a first version, the
classification and nomenclature of signal transduction. Approved classifications are available
for browsing and querying at http://bibiserv.techfak.uni-bielefeld.de/STCDB.

The ST number is a 4-level hierarchical structure, which makes it possible to exploit
our metabolic pathway alignment algorithm to perform signaling pathway alignment. We have
presented a graphical representation of signaling pathways with ST numbers indicating every
signal transduction. An example of signaling pathway alignment has been presented. By
combining the EC numbers and ST numbers, alignment of biopathways is reliable.

In the next chapter, we will present a concrete example of biopathway, the urea cycle,
for the systems analysis. Some examples of urea cycle have been discussed in the prediction
and alignment parts. We will mainly focus on the modeling and simulation and further

analysis of urea cycle disorders.
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Chapter 7
A Biological Application

In this Chapter a case study is presented to describe our approaches that have been discussed
in the previous chapters, mainly in the Petri net chapter. Several applications of PathAligner
have been described in Chapter 4 and 5.

For the past century, studies of urea cycle disorders have focused research efforts to
improve clinical diagnosis and management. The availability of human genome sequences and
other metabolic data provides us with a challenging opportunity to develop computational
tools for systematically analyzing urea cycle disorders. We exploit the current data available,
and integrate these from genomics and poteomics at novel levels of understanding urea cycle
disorders. We also systematically analyze transcription factors and signaling pathways

involved in the urea cycle biopathways.

7.1 Urea Cycle and its Regulation

In human cells, excess nitrogen is removed either by excretion of NH," (of which only a little
happens) or by excretion of urea. Urea is largely produced in the liver by the urea cycle, a
series of biochemical reactions that are distributed between the mitochondrial matrix and the
cytosol (Figure 7.1A). The cycle centers around the formation of carbamoyl phosphate in
hepatocyte mitochondria to pick up NH,* incorporate it into ornithine to make citrulline that is
transported to the cytosol where aspartate is added. As urea is removed it is converted back to
ornithine that goes back into the mitochondria to start over again. Deficiencies in the urea
cycle enzymes lead to excessive NH," and its intermediates accumulation, which results in
neurological disorders. Any of the five enzymes of the urea cycle may be deficient: carbamoyl
phosphate synthetase (CPS) deficiency, ornithine transcarbamylase (OTC) deficiency,

citrullinemia, argininosuccinic aciduria and argininemia.
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Figure 7.1A Key enzymes in regulation of urea cycle in cells. CPS1: Carbamyl phosphate synthetase,
EC 6.3.4.16; OTC: Ornithine transcarbamylase, EC 2.1.3.3; ASS: Argininosuccinate synthetase, EC
6.3.4.5; ASL: Argininosuccinate lyase, EC 4.3.2.1; ARG: Arginase, EC 3.5.3.1.

Although the urea cycle was discovered by Dr. Hans A. Krebs early in 1930’s, analysis of the
urea cycle so far has never been systematically explored. This chapter therefore will also focus
on the possibility of integrative analysis of the urea cycle within the scope of systems biology.
An integrative model is built. A Petri net model is constructed in order to estimate the
regulation both on genomic and metabolic levels. Simulations can be used to test the physico-
chemical limitations and feasibility of certain proposed reactions. We are also going to analyze
the genetic variations and figure out the regulation of signaling pathways. One of the aims is to
highlight at large in the identification and treatment of urea cycle disorders, and give some
hints on the systems analysis of inborn errors of metabolism.

Figure 7.1B shows a graphical representation of the urea cycle using the objects
presented above for describing entities and interactions. It shows an intricate network that
links entities and interactions. This network includes not only the succession of chemical
reactions that lead to the transformation of CO, and NH," to urea, but also the regulation of
gene expression and enzymatic activities. It furthermore displays (e.g. asparate, fumarate) the
links to other pathways, which are, to preserve clarity, not detailed in the graph.

In some cases if the complete interrelationships of the biopathway is unclear, or only a
rudimentary pathway is provided, we can use PathAligner to retrieve metabolic information

and reconstruct the complete network, as discussed in Chapter 4.

7.2 Petri Net Model

Based on the proposed modeling strategy in Chapter 3, a hybrid Petri net model of the urea
cycle and its transcriptional regulation is presented (Figure 7.2). The model of intracellular
urea cycle is made of the composition of the gene regulatory network and the metabolic
pathways. It comprises 152 Petri net elements, 14 kinetic blocks, 39 dynamic variables, and 22

reaction constants.
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Figure 7.1B Schematic diagram of urea cycle. Data sources: Metabolic pathway (enzyme reactions) from KEGG and BRENDA; Gene regulation: TRANSFAC; Drug

information: MDDrugDB (http://edradour.cs.uni-magdeburg.de/~rkauert/MDDrugDB/Main.htm; drawing by Dr. Ralf Kauert).
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Experimental data, partially listed in Table 7.2, are used for the initial evaluation of certain
parameters of enzymatic reactions with the system. The value of model parameters lacking in

the literature are verified through numerical experiments or modifed from several references.

Table 7.2 Some kinetic parameters of enzyme reactions in human cells.

Enzyme Substrate (mean concentration, mM) Compartment K,,, mM Kea S Reference
HCO;7, 6.7

CPS1 HCO5™ (0.05), NH," (0.025), ATP Mitochondia NH,*, 0.8 17 [Pie80]
Mg ATP, 1.1

Carbamoyl phosphate (0.001), L- CP, 0.16

OTC Mitochondia 180 [Scr97]

ornithine (0.05) L-ornithine, 0.40
L-citrulline (0.02), L-aspartate (0.325), L-citrulline, 0.03
ASS ATP Cytoplasm L-aspartate, 0.03 400 [Scr97]
.. . Argininosuccinate [Pie80]
ASL Argininosuccinate (0.034) Cytoplasm 0017 3 [Scr97]
ARG L-arginine (0.06) Cytoplasm L-arginine, 10 2200  [Scr97]

The dynamic behavior of the model system, such as metabolite fluxes, NH," input and urea
output are well described with continuous elements, while control of gene expression is
modeled using discrete ones due to the insufficiency of explicit expression data. Nevertheless,
when explicate knowledge about expression levels of the enzymes are available; it is possible
to exploit our model of gene regulatory network to handle realistic gene expression data with
state equations. The initial values of variables are assigned and tuned so that the model system
behavior would comply maximally with available experimental data on the dynamic
characteristics of the system’s behavior, based on the following considerations:

The availability of ammonia or amino acids (denoted as NHj3) is ingested continuously from
plasma into mitochondria with a stable speed, i.e. the changes of ammonia concentration due
to the rate of protein metabolism are not taken into account. The concentration of nitrogen
excreted (urea) in plasma ranges from 3mmol/L to 8mmol/L and is then discharged. The
degradation of all enzymes is 0.001 times of their concentration.

In the model, inhibitor arcs are also used to present negative effects of repressors
and/or inhibitors to gene expression. In order to get a better understanding of these
relationships, several test arcs are used, e.g. the test arc between asparate and transition of
ASS. On the biochemical reaction level, negative effects of metabolites are expressed as
enzyme inhibitions that include competitive inhibition, noncompetitive inhibition, irreversible
inhibition and feedback inhibition. Sequentially, the regulation of the urea cycle enzyme
activities can be modeled in these two ways. First, gene expressions that are regulated by
activators and inhibitors control enzyme synthesis, while enzyme synthesis and degradation
determine the amount of enzymes. Second, the activities of these enzymes can be altered

during metabolic catalyzations.
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Figure 7.2 Hybrid Petri net model and simulation results of the gene regulated urea cycle metabolic network.
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7.3 Investigation of the Behaviors of the Model

The formalization of the urea cycle model allows the quantitative simulation of this metabolic
pathway. Dynamics of the main components on the model regulating the urea cycle were also
shown in Figure 7.2. Moreover, several tests on interfering the fluxes intentionally are
conducted and results are observed in Table 7.3.

Table 7.3 Interfering tests on the urea cycle Petri net model.

Value of metabolites

Interfering - - — - —
test NH4+ Citrulline  Argininosuccinate  Ornithine Arginine Urea cycle defect
(plasma) (plasma) (plasma)
CPS1 Carbamylphosphate
blockade T 5 v v v synthase deficiency
Ornithine
otTc T l 2 T T transcarbamylase
blockade -
deficiency
ASS blockade 2 1 1 2 2 Argmmosuc.m.nate
synthase deficiency
ASL blockade 1 1 1 1 1 Arg1n190§uc01nase
deficiency
ARG . -
blockade T T N N ™ Arginase deficiency
Membrane
transportation T T - ™ T HHH syndrome
blockade

Note: the symbol “T indicates an increment of the concentration, “T1 indicates a quick increment,

@ 9

while “J” indicates a decrement. indicates no dramatic changes of the concentration.

The urea cycle eliminates excess nitrogen. A high concentration level of ammonia in the cell
results in hyperammonemia that leads to coma and even death. Laboratory studies can reveal
elevated arginine levels, mild hyperammonemia, and a mild increases in urine orotic acid. The
diagnosis now can be confirmed by enzymatic analysis in the model. On high-protein diets or
under starvation, proteins are degraded and amino acid carbon skeletons are used to provide
energy. Thus the quantity of nitrogen that must be excreted is increased, but the amino
nitrogen must be excreted. To facilitate this process, enzymes of the urea cycle are controlled
by regulating the expansion of their genes to enhance the concentration of enzymes. As the
urea cycle takes place both in mitochondria and cytoplasma, these effects can also be caused
by membrane transportation deficiencies. Some mitochondial membrane diseases, e.g.
ornithine transporter deficiency, surely effect the transportation of ornithine into matrix and
result in high concentration of ornithine accumulation in plasma, which creates a feedback
regulation to the transition of arginine into urea and finally hyperammonnemia. From the
model we know the treatment for defects in urea cycle enzymes could be either to limit input
of ammonia (limit protein intake) or to replace missing intermediates from cycle (supplement
with arginine or citrulline). Patients with OTC deficiency benefit from citrulline

supplementation, because citrulline can accept ammonia to form arginine.
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7.4 Treatment of Urea Cycle Disorders

It is important to understand the mechanism of urea cycle disorders in order to properly treat
the disorder. Once the disease is diagnosed and the model is presented, several treatments are
proposed. Limit the toxic ammonia by placing the patient on a diet with limited amount of
food protein, is generally the first course of treatment which is considered. Another treatment
is to remove the toxic ammonia through alternative pathways. Scientists developed methods to
exploit other vehicles of waste nitrogen synthesis and excretion to substitute for the defective
urea pathway. Batshaw and Brusilow et al. [Bat82] devise several ways of allowing people to
remove ammonia without having to make urea. One way was to give the patient large doses of
the preservative sodium benzoate. An enzyme in our livers couples the benzoate molecule
with a molecule of the amino acid glycine. The resulting compound, hippurate, is rapidly
removed by the kidney and is excreted in the urine. The liver can produce glycine from
ammonia, carbon dioxide, and a folic acid compound. Each glycine produced in this way
removes one ammonia from the body. Other compounds such as arginine, sodium
phenylacetate, and sodium phenylbutyrate can remove ammonia by similar mechanisms.
Buphenyl® (sodium phenylbutyrate, Ucyclyd Pharma, Hunt Valley, MD, 1996) has been
developed and approved by the FDA. A prospective treatment trial of this drug for neonatal
onset urea cycle disorders showed that cognitive function is improved. Phenylbutyrate also has
a dramatic effect on the survival of patients with arginosuccinate synthetase deficiency,
another urea cycle disorder. Despite treatment and dietary manipulation, it is not possible to
restore patients with neonatal urea cycle disorders to a state of normal or near normal health.
The greatest impact of phenylbutyrate is its efficacy in treating late onset disease.

Considering the insufficiency of five enzymes involved, we might also be able to
activate enzymes with cofactors, as some enzymes require non-protein cofactors for their
activity. Another interest involves two enzymes of the urea cycle, argininosuccinate synthetase
(AS) and argininosuccinate lyase (AL), and their role in the arginine-citrulline cycle. The
primary physiological role of AS and AL is in the urea cycle, but along with nitric oxide
synthase (NOS), these enzymes form the arginine-citrulline cycle which is found in all
mammalian tissues. The significance of the arginine-citrulline cycle was only recently realized
with the discovery that arginine-derived nitric oxide (NO). The key cell signaling molecule,
was responsible for the hypotension in septic and cytokine-induced circulatory shock. The
rate-limiting step in the production of NO is the availability of arginine. Since AS is the rate-
limiting step in the de novo production of arginine, AS, but also AL, are attractive drug
targets. Inhibitors of these enzymes have the potential not only to be useful in the treatment of
septic shock, but could also increase the usefulness of a number of anticancer agents (e.g. IL-

2), as co-administration of an inhibitor would suppress the dose-limiting hypotension caused
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by these drugs. Catalytic mechanisms for the proteins have been proposed and are currently
being tested. The design of novel inhibitors for AS has been initiated (Quote as reported by
The Hospital for Sick Children at the University of Toronto).

After 20 years of experience, it must be acknowledged that alternative pathway
therapy has limited effectiveness in preventing hyperammonemia and must be combined with
effective dietary management. Therefore in children with neonatal-onset disease or in those
with very poor metabolic control, liver transplantation should be considered. There should also
be the continued search for innovative therapies that may offer a more permanent and

complete correction, such as gene therapy [BatO1].

7.5 Gene Therapy and Expression

Because the basis of the disorders is a defect in a gene, researches have been working on ways
of getting a working gene into cells. Scientists have established that in the animal model,
sparse fur (spf/Y) mouse, partial correction with gene therapy may be sufficient to normalize
urea synthesis. Because the hepatotropic properties of human adenoviruses make them suitable
vectors if injected parenterally, and because the hepatocyte is so easily accessible via the
circulation, in-vivo approaches to gene therapy have been developed [Ye96] [Ye97] [Ye0O0].
However, the current therapy is unsatisfactory for humans. Optionally, we would like to target
the working gene to the right cells and have it regulated and expressed just as well as the
normal gene would be. Single nucleotide polymorphism (SNP) and transcription factor
binding sites are two aspects that have to be considered.

In the progress of Human Genome Project, scientists recognized that the existence of
SNP in genome is helpful to explain the rich diversity of individuals, and the difference of
susceptibility to diseases. A single base variation may cause gene function abnormities.
Therefore, searching and studying SNPs has become an important objective of biomedical
informatics. Appendix E shows the computationally annotated mutations of genes in the urea
cycle.  Further information can be obtained by browsing the related web-pages at
http://mutdb.org/cgi-bin/Search.py?GOCODE=0000050. However, these mutations are meant
to be used for basic research and not to make clinical decisions. In this section, we focus on
the discovery of transcription factor binding sites by computational searching the 1kb
upstream promoter region sequences.

A TRANSFAC database search for the transcription factor binding sites, using the
human promoter sequences that are provided by UCSC [http://genome.ucsc.edu/], are shown
in Figure 7.5 and in Appendix F. All potential binding sites of the urea cycle genes are
summarized in Table 7.5. The search found 23 functional binding sites. ARG and OTC share 4
binding sites, which means that the expression of ARG and OTC might be simultaneously
regulated by Cdx-2, Cdc5, Nkx2-5 and POU1F1. Nkx2-5 also affects ASL regulation.
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ARG promoter/upstream 1kb

>hgl6_refGene_NM_000045 range=chr6:131873935-131874934 5'pad=0 3'pad=0
revComp=FALSE strand=+ repeatMasking=none
ataattttaaagtcggaaggatctttaaggtgcctttattttaaattcat
acttttgtatggtgacaaatggtagetcaggggcatagaggttgacacct
tcccagcatttagactataagctcgacggttaagtggattcagaatggea
gagactaaatcccgacttttcttctacagectatgttggcaacgggtetg
agcttcagtttattcatcagtataatggcaccaatgatgagacttcacat
aaaattggtataaatataaatatggtattttgaaacagaactgcatcgga
cacatggtaaaaactcaatgttagctatttttatttctatactttgatta
tgatatgattctacaattattttcctgtacaccatacttcaaaaatggta
acctctctgggttaccaatcaagtaactaattttttaaagtaatcatcaa
aaaaggaagttatatactctttaftatattatacectaaaagtitatgaa
atgtgtctcatggattaaccatttaccctcatgtgtgaaatctcaactca
ggattttagggctggaagggatgtgacagacgatcttgecaageccggec
cttettctacaaggacgtcttcagagatctggaggaggaaagggccttge
cctgagttcgctgageccagaacaataggacttettctgtagttgtgaaac
ttgtcagttgttga aatgtcatctggctggctttttaaaag
ggtgtgaagtgagaac ot BHBHEE ta gagacctagact
cagagttaggttactccatgtatgaagtaaccccatatagttacttcata
catggagtaaccatatagttactccatgtatgaaaaattgcaagactgtt
gactgtcattctttggtitagtgg gt g SOCABEIgtcctcattagata
aaggttgtttattcaacccaagtataaatggaaaaaaaagatgcgcccte

Figure 7.5 Computational prediction of transcription factor binding sites of the human ARG genes.

Table 7.5 List of potential transcript factor binding site of the urea cycle genes.

ARG ASL ASS CAD OTC

AML1 + +

| Cdx2 + +
| Cdes + +
B2 :

-A-4 + +
“HEB v

HNF-3alpha +
HNF-dalpha :
Leniviral Poly A :
MAZ +
NET "
NEkappaB :
--5 + + +
= :
Pax. + +
' BOliF1 + +
POU2FI :
REXI :
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SREBP-1 +
| TCF-1(P) +

TFIIA +
USF +

Xvent-1 +

7.6 Signaling Pathway and Assoiated Diseases

Further analysis on the gene and their transcript factors are conducted. We obtain a list of
signaling events that effect the gene expression of urea cycle by browsing the BIOBASE
database. A graphical layout of the signaling pathways is constructed by using the Biolayout
tool [EnrO1] (Figure 7.6A).
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Figure 7.6A A graphical layout of the signaling pathways involved in the urea cycle. Colored nodes are
those molecules with intensive divergence interconnection with others. They are NF-1 (57), NF-kappaB

(38), POU2F1 (38) and HNF-3alpha (29).

Molecules with high degree of convergences are calculated. They are Cdx2 (5), SREBP-1 (4),
NF-1 (2) and POU1F1 (2). Obviously, the degree of divergence is large, greater than that of
convergence, which seems to be a common phenomenon in cellular signaling pathways. A

possible explanation could be that cells have to reserve much more regulation mechanisms. On
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one hand, activation/inactivation of important molecules are regulated by many other
molecules. On the other hand, most molecules regulate only a small amount of specific
molecules. This mechanism can enable cellular functions to be of robustness, sustain cells in
face of various environment changes.

We also investigate the associated diseases of these signaling pathways. By querying
against biological databases, such as Swiss-Prot and KEGG, all related enzymes can be
retrieved. Then, searching the BRENDA database helps to determine the involved diseases.
All diseases that are regulated by these signaling pathways are listed in Appendix G. On the
left column, we do not consider the redundancy of enzymes that encoded by different genes.
For example, there are 10 hits of the enzyme protein kinase (EC 2.7.1.37) that is involved in

99 ER I3

various diseases, such as “acromegaly”, “adhesions”, “amyotrophic lateral sclerosis”, “anemia,
sickle cell”, and so on. While on the right column, these 10 hits are regarded as 1 hit. Under
this treatment, some diseases with high hits on the left column may show low hit score on the
right column. On both lists, there are some already known diseases related to the urea cycle
diseases, including ‘“‘chronic liver disease”, “ornithine carbamoyltransferase deficiency”,
“citrullinemia”, etc. We are more interested in those with high hit scores. Common diseases

with association degree (hits = 3) are shown in Figure 7.6B.
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Figure 7.6B Diseases related to the list of signaling pathways.

We surprisingly find that Rheumatoid arthritis is highly related. This is consistent with a
recent research by Nissinen R, et al. [NisO3]. They studied whether the enzyme
peptidylarginine deiminase (PAD; EC 3.5.3.15), responsible for the post-translational
modification of peptide-bound arginine residues to citrulline, constitutes an antigen for

patients with rheumatoid arthritis (RA). The study shows that the arginine-citrulline
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converting enzyme PAD was recognized as a new antigen against which patients with
inflammatory rheumatic diseases frequently show IgG class antibodies. From Figure 7.6B, we
can see that systemic lupus erythematosus (SLE) also shows a significant involvement. Both
RA and SLE are due to disorders of the musculoskeletal system and connective tissue, which
is intensively related to immune systems. It is interesting that three decades ago researches
have observed the altered immunoglobulin metabolism between SLE and RA [Lev70]. Later,
the prevalence clinical and laboratory associations of SLE and RA were determined by many
researches [New93] [Wit00] [Car03]. Other latest observations of the association between RA
and urea cycle relevance were achieved by Yonekura Y. et al. [Yon03] and Iwashige K. et al.

[Twa04].

7.7 Summary

We have presented an analysis of urea cycle in a systematical way. Regarding the
development of methods and concepts of bioinformatics to analyze metabolic disorders, the
integrative aspect stands in the center. By exploiting the existing large amounts of data
available in the various databases, we described metabolic mechanisms and pathways,
structural genomic organization, patterns of regulatory regions, proteomics, transcriptomics,
and metabolomics data of urea cycle.

We also presented a Petri net model to reveal the mechanism of urea cycle disorders.
Petri net allows easy incorporation of qualitative insights into a pure mathematical model and
adaptive identification and optimization of key parameters to fit system behaviors observed in
gene regulated metabolic networks. The study of modeling and simulation plays an important
role in detecting genetic/metabolic defects, as well as drug research.

Currently the main urea cycle disorders’ management is dietary manipulation by
reducing the protein intake. It is possible to increase residual enzyme activity by supplying
cofactors. The alternative pathway therapy [Bat82], by intake of chemicals to remove NH3 via
other pathways, are practiced, but have limited effectiveness in preventing hyperammonemia,
and must be combined with effective dietary management [BatO1]. The future therapy will
focus on gene repair, or genetic counseling. This needs more knowledge about cellular
functions. The systems analysis approach will also represent the backbone of the concept of
disorders management in the post-genomic era. We hope our approach can give a highlight in

this direction.
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Chapter 8
Conclusions

The rapid development of molecular biology and achievements of modern technology have
raised many questions of great bioinformatics interest. Analysis of biopathways is one of the
key topics in the post-genomic era. In order to understand the cellular mechanisms, to
automatically retrieve metabolic information and predict metabolic pathways, and also to
perform comparison of biopathways, we have to develop and implement useful
methodologies, algorithms and tools for the analysis of complex biopathways. In this thesis we
have investigated several problems of biopathway analysis based on the above considerations.

1) Modeling and simulation of biopathways

The hybrid Petri net has been exploited for modeling and simulation of gene regulated
metabolic networks. A global Petri net modeling and simulation strategy and technique is
described to systematically investigate metabolic networks. The methodology of this model
can be used to all other metabolic networks or the virtual cell metabolism. Moreover we
discussed the perspective of Petri nets on modeling and simulation metabolic networks.

A Biology Petri Net Markup Language (BioPNML) for biological data interchange
among diverse biological simulators and Petri net tools has been proposed. The BioPNML is
designed to provide a starting point for the development of a standard interchange format for
Bioinformatics and Petri nets. The language makes it possible to present biology Petri net
diagrams between all supported hardware platforms and versions. It is also designed to
associate Petri net models and other known metabolic simulators.

2) Prediction of metabolic pathways

A web-based system for prediction of metabolic pathways has been developed. The
system, PathAligner, allows to reconstruct metabolic pathways from rudimentary elements

such as genes, sequences, enzymes, metabolites, etc., and to extract metabolic information
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from biological databases via the Internet. PathAligner also provides a navigation platform to
investigate more related metabolic information, and transforms the output data into XML-files
for further modeling and simulation. Using the PathAligner system, it is possible to construct a
complete Petri net model of biopathway from a rudimentary dataset.

3) Alignment of biopathways

A global definition of bioprocess pathways has been presented. A new method to align
metabolic pathway has been described and implemented into the PathAligner system. The
algorithm is based on strip scoring the similarity of 4-heirachical EC numbers involved in the
pathways.

We have set up the STCDB database. STCDB is an information system on cellular
signal transductions. It recommends a classification of cellular signal transduction, and
attempts to standardize the representation of signaling pathways. Every characterized signal
transduction is assigned a unique 4-heirachical ST number. Our alignment algorithm can be
applied to both metabolic pathways and signaling pathways. The general representation of
alignment of biopathways is possible by using the recommended signal transduction
classification system and the introduced alignment algorithm.

In addition, a concrete biological example has been studied. A detailed model of the
urea cycle has been modeled and systematically analyzed. The discoveries of transcription
factors and their associated diseases are useful for the treatment of the urea cycle disorders.

The process of “from sequence to structure to function to application” will dominate
bioinformatics in the next decades. Biopathways presents many questions and problems
worthy to focus on. Some are well studied while others are entirely open problems. We hope
that our work has brought us a small step forward in applying computational methods to
handle the complexity of metabolic data and that it may some day bring us closer to

understand life itself.
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Appendix A.

Predefined functions of biochemical reaction kinetic types (irreversible).

Michaelis-Menten V max- S
 Km+S
Hill Kinetics V.S"
V= S h h
0s S
Substrate Inhibition Kinetics V-S/Km

y =
1+S/Km+S*/Ki

Substrate Activation

b V -(S/Ksa)®
14+S/Ksc+(S/Ksa)> +S/Ksa

Competitive Inhibition V-S/Km
V=
1+S/Km+1/Ki
Noncompetitive Inhibition V-S/Km

V=
1+1/Ki+S/Km-(1+1/Ki)

Uncompetitive Inhibition

b= V-S/Km
1+S/Km-(Q+1/Ki)

Allosteric inhibition

. V-(1+S/Ks)""
L-(1+1/Ki)"+(1+S/Ks)"

Ordered BiBi kinetics b Vf - (AB— PQ/Keq)
AB-(1+ P/ Kip)+ Kmb - (A + Kia) + KmaB + K1
where
Kl= Vf IVrKeq
KmgP-(1+ A/ Kia)+ QK?2
K2 = Kmp(1+ KmaB/ KiaKmb + P(1+ B/ Kib))
Ping Pong BiBi kinetics b Vf -(AB — PQ/ Keq)
AB+ KmbA + KmaB - (1+ Q/ Kig) + K1
where
_ Vf IVrKeq
KmgP-(1+ A/ Kia)+ Q- (Kmp + P)
Si: substrate
P;: Product

Vinax: forward maximm velocity

K..: forward Miachaelis-Menten Constant

K;: Inhibition constant for the substrate
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Appendix B.
A XSLT source code for Petri net XML transformation.

<?xml version="1.0"?>
<xsl:stylesheet version="1.0" xmlIns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmins:fo="http://www.w3.0rg/1999/XSL/Format">
<xsl:output method="xml" doctype-system="http://apogonidae.techfak.uni-
bielefeld.de/BioPNML/xrn1.dtd"/>
<xsl:template match="*|/">
<xsl:apply-templates/>
</xsl:template>
<xsl:itemplate match="text()|@*">
<xsl:value-of select="."/>
</xsl:template>
<xsl:template match="/">
<xsl:comment>xml for metabolic reaction petri nets - mchen@techfak.uni-
bielefeld.de</xsl:comment>
<net id="N" type="hInet">
<xsl:variable name="enur">
<xsl:value-of select="0"/>
</xsl:variable>
<xsl:variable name="snur">
<xsl:value-of select="0"/>
</xsl:variable>
<xsl:variable name="pnur">
<xsl:value-of select="0"/>
</xsl:variable>
<xsl:for-each select="//record0">
<xsl:for-each select="EC">
<xsl:if test="not(.=preceding::*)">
<xsl:variable name="enur">
<xsl:value-of select="($enur)+1"/>
</xsl:variable>
<EC_order>
<xsl:value-of select="position()"/>
</EC_order>
<place>
<xsl:attribute name="id"><xsl:value-of select="."/></xsl:attribute>
<graphics>
<size>
<xsl:attribute name="w"><xsl:value-of
select="$round"/></xsl:attribute>
<xsl:attribute name="h"><xsl:value-of
select="$round"/></xsl:attribute>
</size>
<offset>
<xsl:attribute name="x"><xsl:value-of select="ceiling(($enur)div
10)*300-100"/></xsl:attribute>
<xsl:attribute name="y"><xsl:value-of select="80*(($enur)-
floor(($enur)div 10)*10)+40"/></xsl:attribute>
</offset>
<xsl:call-template name="ECgraph"/>
</graphics>
<annotation>
<xsl:attribute name="id">EC<xsl:value-of
select="."/></xsl:attribute>
<xsl:attribute name="type">name</xsl:attribute>
<text>
<xsl:value-of select="."/>
</text>
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<xsl:call-template name="Namegraph"/>
</annotation>
<annotation>
<xsl:attribute name="id">initialmarking<xsl:value-of
select="."/></xsl:attribute>
<xsl:attribute name="type">initialmarking</xsl:attribute>

<text>
<xsl:value-of select="1"/>
</text>
<xsl:call-template name="Textgraph"/>
</annotation>
</place>

<transition>
<xsl:attribute name="id">T<xsl:value-of select="."/></xsl:attribute>
<graphics>
<size>
<xsl:attribute name="w"><xsl:value-of
select="$Twidth"/></xsl:attribute>
<xsl:attribute name="h"><xsl:value-of
select="$Theight"/></xsl:attribute>
</size>
<offset>
<xsl:attribute name="x"><xsl:value-of select="ceiling(($enur) div
10)*300-100"/></xsl:attribute>
<xsl:attribute name="y"><xsl:value-of select="80*(($enur)-
floor(($enur) div 10)*10)+80"/></xsl:attribute>
</offset>
<xsl:call-template name="Tgraph"/>
</graphics>
<annotation>
<xsl:attribute name="id">TT<xsl:value-of
select="."/></xsl:attribute>
<xsl:attribute name="type">expression</xsl:attribute>
<text>T<xsl:value-of select="."/>
</text>
<xsl:call-template name="Namegraph"/>
</annotation>
</transition>
</xsliif>
</xsl:for-each>
<xsl:for-each select="SUBSTRATE">
<SUB_nm>
<xsl:value-of select="."/>
</SUB_nm>
<xsl:if test="not(.=preceding::*)">
<xsl:variable name="snur">
<xsl:value-of select="($snur)+1"/>
</xsl:variable>

</xsl:stylesheet>

The complete source code is available at:
http://www.techfak.uni-bielefeld.de/~mchen/BioPNML/XML2PN.html
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Appendix C.

Proof of Lemma 5.3 2.) The key to the last equality is to consider the binomial expansion

(x+y)". We have

m+n
m+n—r _ 1
X y

(x+y)"™" = the r+lth term, T, :[
;

m+n
= the n+lth term, T, 2[ jxmy", i.e. the binomial coefficient
n

. [mEn
of X"y"is .
n

m
(x+y)" = the r+1th term, T, :[ Jxm—ryr’
r

n n
(X + y)” = the r+1th term, Tr+1 = ( an—(n—r)yn—r - ( jxry”_r
n

—r r
For 0 < r < min(mn), then the term of x™y" in
min(m,n) m\ n
x+y)"(x+y)is z x"y".
r=0 r r

Since (x+ y)"™ =(x+y)"(x+y)", we compare their binomial coefficients of

m_n

x"y", and obtain

L)
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Appendix D.

Proof of Lemma 5.4 With no loss of generality assume that the r matched point (i, j),(7,

F s (K, D)k, D) (Figure 5.2.2) then Indexaligns(6 '"(E;, E,) =
i+jYi—i+j—j k—k'+l-I'\\m—-k+n—1
j j=j I-r n—1 '

m+n k+l—k'-1' m+n—k—I

Since (x+ )" =(x+y)™ (x+y)" T (x+y) , and

(x+y)

(x+y)" = ( j ¥y"* we have

Z[,MJ, Z[ J - z(w ~i- ]] y'*f'*"*f*'i[“”""’] Z["“" k- ljy

r=0 r= r r=0 r

R AT S Rt A A R - k+l-k=I'"Y ., _(m+n—=k=1\ .
U0 S Wl S
i+jYi+j—i—=j\ (k+l-k-I1m+n—k-1)
= ... x
i i k—k m-k 7

Compare the coefficient of x™y", obtain

m+n S i+j\i+j—i-J' k+l—-k-I'\m+n—k-I
m )\ i i'—i k—k' m—k

The least number is the case there is no more subpath to align, so that

Indexaligns(0'(E,, E,)) = Y0 00 =1
ndexaligns 1,2—00 00_.
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Appendix E.

Computationally annotated mutations of genes in the uear cycle.
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Appendix F.

Computer research for transcription factor binding sites of the human
ASL, ASS, CAD and OTC genes.

ASL promoter/upstream 1kb

>hg16_knownGene_BC008195 range=chr7:64951430-64952429 5'pad=0 3'pad=0
revComp=FALSE strand=+ repeatMasking=none
gggttcaagagattetcctgectcageetccggagtegetgggattgcag
gcacccgeeaccgtgeecggetaatttttgtattcttagtagagacgggg

tttcaccaccttggeccaggetggtetcaaactcctgacctegtgatcecac Pax-4a
ccgecteggecttccaaagtgctgggattacaggegtgagecacegegee Nkx2-5
cggectceggecgegtttcttttettttttagaggagtcaggetggagtg AML1
ccgtggcacaatagcetcactgcagettcgaactcetgggetcaagtgcte

ctccegectcagecteetgagtagetaggactgecaggegtgcaccaccac
gcecggctttttttttattattattaatttttttgtagagacgggatctt
gttgtattgccecaggetggtetccaactcgtagectcaagegatcetece
acctcggcecteccaaagtgetgggattacagetgtgagecacecgegeetg
gcacaggcttcatttctgatggtecttectttttecttgatgectttete
tgtacctggcacatagaggtgectggtacgtgtttgttgaatgaatgaat
gaatgagtgaatgagcgaacatgccatttcaccttatatatcttgtgaac
ctgccaggeccgggectgatgtcatagectctaccectggeecgagtete
cagtccectgegtgtctgetgaccacageacgaacgecagegeactacce
tcctcaaccececageccaggeccctteeccgtcggggtecceeccaaccett
tcceegeceegetteccegeeceecggggecgettagectccagetcageggg
aggtatcccegeecacggecaggattggaggatggaggcaacgeccacce

cgeecgggeggectectattggegeggeegtcgecaggggtggggacagga
ccggeggetgetgacgecatcecggecagaaaagecctggecagtggegg

ASS promoter/upstream 1kb

>hg16_knownGene_BC009243 range=chr9:128595361-128596360 5'pad=0 3'pad=0
revComp=FALSE strand=+ repeatMasking=none

taaaaggagcactgactccagggtagecggetgggcaaggcettggggetee
cacctccecccaggttcagageeggetgaggacegggagtecteecttetg

gggtcagtgctcactatggagcaactgecttggatggggtcccaggactt
gctettttactggggctgtggttgcagtgatcagggcetitggagecggca il
gaccaagetgggaaactectgaggtagagaagetgtigaaggcgggectg NE-kappaB
gggtcacaactcccagetgctttttacaagcaagagacttctctctgaac ol
ctcaacctteectectgtetagtgggttcgcagecagacagtettttact l
Cactgcttactgggt—tctgag
aagacaggccagcaatcagccctggcctaagggatgaaagcegggectic aiee
ccgegecgectcaccteggttttctca cagaggct '
atggttggggagggaggggactctgggggctgeagaaggeecaggctgee

ggcaccggatagaagtgageacgaagcetcectgegecagtggaactttta
tcceggetcccaccgegaagegtttaaattgettccccagggecaggagg
caagtctctcgaaggacggctgeggecaccectcegeeectgagttacatg
ggtcgeagecactgecgeccte ctccagcccgegggecaggg
ccaggaaccgcgagecgectgegececeecgeeggegegeccetgggagggt
gageeggegeegggeecaggeccggacclggtgggagecggegggagelg
gggacgaggectggggaggegggccccgeccatctgeaggtggetgtgaa

cgetgageggeleecagecggagaccggacceggeeacgggglctatgecy
cgegtecccHBBNBBIBIE Cccggteaccggecctgeceeegggecctgt
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CAD promoter/upstream 1kb

>hg16_knownGene_D78586 range=chr2:27413929-27414928 5'pad=0 3'pad=0

revComp=FALSE strand=+ repeatMasking=none
tgtgtectgagaatggatettgtgtacctgatggtecaggtcttttgeag
tgtgtttgtgctgatggtttccatggatacaagtgtatgcgccaggtgag
gaattaggccegtctaactagggatacaaggaatgcatagageaagtctte
tcagaaaggagagccacaagaccaggagctgatacaaatttcctataggt
ggaaaactatagaattgccctagacaaagtgataggtatattaggaaaga
actaggtgttaggatgtggccctecgtgtaacgttgtatgggggtgtttt
ttggtetgttgttcacagggctegttcteactgcttatgttcttcgggat
tctgggagecaccactctatcegtetccattetgetttgggcgacecage
gccgaaaagccaagacttcatgaactacataggtcttaccattgacctaa
gatcaatctgaactatcttagcccagtcagggagcetctgcttectagaaa
ggeatctttcgecagtggattcgectcaaggttgaggecgecattggaag
atgaaaaattgcactcccttggtgtagacaaataccagttcecattggtg
ttgttgcctataataaacacttttttctetttttttcctctetttctttt
taaggaaaggcgccctgectttacgtgtttettgetiggggtgggaggga
ctgctttagggcagecggttttttcaggtttcceceggttttgcagtgeg
gagaccacgggggcccactcecegtggetcegeggacceegecccttacg
tgccecggececgeecectcacgecgectgtgteegegecgeegeagtetct
gctgctgecgecaagegegeecgaggcteetacgetgeegegeccggctt
ctetccagegeccegegecgttagecacgtggaccgactecggegegeeg
tccteacgtggttccagtggagtttgcagtecttcecgettetecgtact

OTC promoter/upstream 1kb

>hg16_knownGene_K02100 range=chrX:37241716-37242715 5'pad=0 3'pad=0

revComp=FALSE strand=+ repeatMasking=none
ctcggtatctgatacagaattgactttgaatcacctgatttctaactgag
gataaatgaataaatgtgaagttgcagatggccecttagtgatctgaata
ggctgctaggggaagagcatatggtatccecacttcecacttgtactgac
tgtcaggtgctgttagaatcaataggcaactatttcttttctttttettt
ctttctttcttttttttgagacagtgtctetctetgtcacccaggetgga
gtacagtggtgcaatctgggctcactgcaacctetgtctccegggticaa
gcgacitctecatgcctcagectcccaaatagetgggattacaggtgtgcac
caccacgtctagctaatttttgtatttttagtggagacggggattcacca
tgttggecaggcetggtetcgaactectgggetcaagtgatcegeecgect
cagcctcccaaagtgctgggattacaggegtgagecaccegtgececeggeca
gcaattattt-aagacttatgtgcaaggcacaa
.gactgagatatttttactatacc tgcacccccaaa
atagcttccagggcacttctttctatttgtttttgtggaaagactggcaa
ttagaggtagaaaagtgaaataaatggaaatagtactactcaggactgtc
acatctacatctgtgtttttgcagtg] tgagtgagt
tacttctactcaccttcacagcagecggtaccgeagtgccttge
-ctcaatgagtacttgtcaattgattttgtacatgcgtgtgacag
tataaatatattatgaaaaatgaggaggcc cagga
tttcttccaaaaaaaatacacageggtgga
gctectacacectgecectgeagtatctctaaccaggggactttgataagg

Xvent-1
SREBP-1

POUI1F1
Pax-4a
Nkx2-5

HNF-3alpha
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Appendix G.

Assoiated Diseases involved in the urea cycle disorders
(Numbers show the degree of association, right column consider the redundancy, listed
only those hits greater than 2).

2 Acanthosis Nigricans

2 Acidemia

2 Aortic Aneurysm, Abdominal

2 Bronchopulmonary Dysplasia

2 Cerebral atrophy

2 Chronic heart failure

2 Coma

2 Coronary Arteriosclerosis

2 Deep vein thrombosis of lower limb
2 Developmental delay

2 Epilepsy

2 Epstein-Barr Virus Infections

2 Gastritis

2 Hamman-Rich Syndrome

2 Heart Diseases

2 Helicobacter Infections

2 Hematologic Diseases

2 Hepatitis, Chronic Active

2 Hepatitis, Toxic

2 Hyperinsulinemia

2 Hyperthyroidism

2 Hypochondroplasia

2 Immunologic Deficiency Syndromes
2 Infections of musculoskeletal system
2 Inflammatory Bowel Diseases

2 Ischemic stroke NOS

2 Kidney Failure, Chronic

2 Labor, Premature

2 Lens Diseases

2 Liver Cirrhosis, Alcoholic

2 Liver Diseases, Alcoholic

2 Liver Failure, Fulminant

2 Mastocytosis

2 Mastocytosis, Systemic

2 Motor Neuron Disease

2 Nervous System Diseases

2 Osteopetrosis

2 Peripheral Vascular Diseases

2 Piebaldism

2 Proliferative diabetic retinopathy
2 Prostatic Hypertrophy, Benign

2 Psoriasis

2 Salivary Gland Diseases

2 Streptococcal lymphadenitis of swine
2 Thrombocytopenia

2 X-linked agammaglobulinemia
2 alcohol flush reaction

3 Acquired Immunodeficiency Syndrome
3 Acute pancreatitis

3 Arthritis

3 Cerebrovascular accident

3 Chronic liver disease

3 Duodenal Ulcer

3 Glomerulonephritis

3 Gonorrhea

3 Heart Failure, Congestive

3 Hepatitis

3 Hepatitis, Chronic

3 Kidney Diseases

3 Kidney Failure

2 Aortic Aneurysm, Abdominal

2 Arthritis

2 Bronchopulmonary Dysplasia

2 Chronic heart failure

2 Coma

2 Coronary Arteriosclerosis

2 Deep vein thrombosis of lower limb
2 Diabetes Mellitus, Insulin-Dependent
2 Duodenal Ulcer

2 Epilepsy

2 Essential hypertension, NOS

2 HELLP Syndrome

2 Hamman-Rich Syndrome

2 Heart Diseases

2 Heart failure, NOS

2 Hepatitis, Chronic

2 Hepatitis, Chronic Active

2 Hereditary Diseases

2 Hyperglycemia

2 Hyperthyroidism

2 Hypothyroidism

2 Infections of musculoskeletal system
2 Inflammatory Bowel Diseases

2 Ischemic stroke NOS

2 Kidney Failure, Chronic

2 Lens Diseases

2 Liver Failure, Fulminant

2 Motor Neuron Disease

2 Nervous System Diseases

2 Peripheral Vascular Diseases

2 Proliferative diabetic retinopathy

2 Prostatic Hypertrophy, Benign

2 Psoriasis

2 Salivary Gland Diseases

2 Thrombocytopenia

2 Thyroid Diseases

2 Viral hepatitis

3 Acquired Immunodeficiency Syndrome
3 Adenovirus Infections

3 Adhesions

3 Cerebrovascular accident

3 Chronic liver disease

3 Fetal Alcohol Syndrome

3 Glomerulonephritis

3 Gonorrhea

3 Heart Failure, Congestive

3 Hepatitis

3 Huntington Disease

3 Kidney Diseases

3 Kidney Failure

3 Muscular Dystrophy, Duchenne

3 Parkinson Disease

3 Prostatic Diseases

3 Retinal Diseases

3 Septicemia

4 Acute myocardial infarction

4 Consumption-archaic term for TB

4 Diabetes Mellitus, Non-Insulin-Dependent
4 HIV Infections

4 Hypertension induced by pregnancy
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3 Muscular Dystrophy, Duchenne

3 Parkinson Disease

3 Retinal Diseases

3 Septicemia

3 Thyroid Diseases

3 Viral hepatitis

4 Acute myocardial infarction

4 Adenovirus Infections

4 Multiple Sclerosis

4 Prostatic Diseases

5 Consumption-archaic term for TB

6 Asthma

6 Cirrhosis

10 Bacterial Infections

10 Cerebral Vasospasm

10 Common Variable Immunodeficiency
10 Diabetic complication, NOS

10 Endothelial dysfunction

10 Glomerulosclerosis, Diabetic

10 Hypos

10 Keratoconjunctivitis Sicca

10 Mixed Connective Tissue Disease
10 Myelofibrosis

10 Myopathy

10 Myotonic Dystrophy

10 Pneumonia

10 Severe Combined Immunodeficiency
10 Subarachnoid Hemorrhage

11 Acromegaly

11 Amyotrophic Lateral Sclerosis

11 Anemia, Sickle Cell

11 Cardiomyopathy, Congestive

11 Disseminated Intravascular Coagulation
11 Epilepsy, Temporal Lobe

11 Mole NOS

11 Muscular Dystrophies

11 Myocardial Ischemia

11 Neurodegenerative Diseases

11 Systemic vasculitis

11 Uterine Diseases

12 Diabetes Mellitus, Insulin-Dependent
12 Erythema gyratum repens

12 Essential hypertension, NOS

12 HELLP Syndrome

12 Heart failure, NOS

12 Hereditary Diseases

12 Hypothyroidism

13 Huntington Disease

13 Hyperglycemia

14 Adhesions

14 Hypertension induced by pregnancy
14 Pre-Eclampsia

14 Virus Diseases

15 Diabetes Mellitus, Non-Insulin-Dependent
15 Fetal Alcohol Syndrome

15 HIV Infections

15 Lupus Erythematosus, Systemic

16 Lung diseases

18 Colonic Diseases

19 Rheumatoid Arthritis

4 Multiple Sclerosis

4 Pre-Eclampsia

4 Virus Diseases

5 Asthma

5 Cirrhosis

5 Colonic Diseases

5 Lung diseases

5 Lupus Erythematosus, Systemic
8 Rheumatoid Arthritis
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