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1 Preface

My thesis consists of two essays: The CAPM — A General Equilibrium Foun-
dation and The Foreign FExchange Rate in Financial Markets. These essays
are about two themes of financial markets: Optimal portfolio selection and
arbitrage—free pricing. Portfolio selection and arbitrage pricing theory are
the most prominent subjects in Finance and important issues in General
Equilibrium Theory as well. This is due to the steadily rising importance of
financial markets for consumers, firms, and states to invest their wealth, to
raise capital, and to hedge their risks.

At a first glance both essays are thematically independent. But their common
foundation is a General Equilibrium point of view. An important aspect of
both essays is a General Equilibrium model sustaining the investigations.
General Equilibrium models distinguish themselves in that all results are

derived from rational individuals’ interactive behaviour.

1.1 The Capital Asset Pricing Model

The Capital Asset Pricing Model (CAPM) is one of the most successful
models in financial markets with regard to portfolio selection. The CAPM
utility functions are assumed to depend positively on the mean and negatively
on the variance of returns from an investment. This assumption allows for
explicit solutions of equilibria in only one quantity, the harmonic mean of
investors’ absolute risk aversions. However, the actual value for practical
applications lies in the very simple risk measure, the variance of returns, and
the plausible and easy to handle properties of CAPM-equilibria: The Mutual
Fund Theorem, the Beta—pricing rule, and the Efficient Frontier.

Those ‘nice’ results come just into effect at the expense of an ad—hoc as-
sumption, the strict fulfillment of investors’ budget identities in the invest-
ment as well as in the consumption period. In the General Equilibrium
Theory of Incomplete Markets (GEI) this ‘assumption’ is in fact an im-
plication of the existence of positively paying assets and the monotonicity

of utility functions in state pay—offs. The CAPM is sometimes regarded
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as a special case of GEI-models in the theoretical finance literature (see
(Geanakoplos & Shubik, 1990)), although this is only true for very special
choices of mean/variance—utility functions and/or probability distributions
of returns.

However, for mean/variance—utility functions monotonicity is not necessarily
guaranteed. In standard CAPM-economies it is indeed possible that a strict
positively paying asset increases the standard deviation of an investor’s port-
folio in relation to its mean in such a way that the investor values a bit more
of this particular asset negatively. If the investor already owns this asset he
would prefer to get rid of it rather than to consume it. Thus, investors may
be satiated and would not voluntary keep their budget identity in the invest-
ment period. From the viewpoint of the General Equilibrium Theory this
phenomenon is an unacceptable inconsistency with regard to the paradigm
of individual rationality. The non—monotonicity can even lead to equilibrium
prices permitting arbitrage opportunities, which one can hardly observe in
real financial markets.

In the CAPM the riskless asset is the only investment in which consumers
are always locally non—satiated. In the CAPM without a riskless asset, in-
troduced by (Black, 1972), the problem of satiation becomes aggravated,
because then the budget identity in the investment period is not a bind-
ing constraint just by monotonicity in the riskless asset. It is often argued
that in financial markets riskless investments are obviously available, namely
state guaranteed zero bonds. A more detailed look reveals that zero bonds
are nominal riskless but bear the risk of inflation, i.e. are not riskless with
regard to the real numéraire. Thus, the CAPM without a riskless asset is of
realistic importance. The complexity of the CAPM increases furthermore if
the common assumption is disposed that traders’ endowments are marketed.
Hitherto the problem of non—monotonicity has been misinterpreted in that
authors derived conditions to ensure positive asset prices. But these condi-
tions do not exclude the possibility that positively paying investment oppor-
tunities are traded at a negative (arbitrage) price. In the two—period con-
sumption based CAPM with homogenous expectations, but without a riskless

asset and with non—-marketed endowments, the problem of non—monotonicity
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is analysed. Conditions ruling out this problem already exist but are more
restrictive and derived in a less general setup, see (Magill & Quinzii, 1996)
and (Pilgrim, 1998). In the first essay this issue is embedded in a general
overview of the theoretical literature about the CAPM. Different aspects, like
the relationship between expected and mean /variance—utility, existence and
uniqueness of equilibria, etc., are also addressed. This provides a compact
and broad overview about the CAPM.

1.2 Foreign Exchange Rates

The prognosis of foreign exchange rates is still an econometric challenge with-
out convincing results hitherto. The empirical literature has shown that
fundamental factors, for instance the change of the GNP, do not really con-
tribute to the forecast of exchange rate changes in the short and middle
run. Only the change of the money stock has a measurable impact, see e.g.
(Frankel & Rose, 1995).

Since the beginning of the 1980s many empirical investigations about the
information efficiency of foreign exchange markets came up, see for instance
(Hansen & Hodrick, 1980). The hypothesis had been formulated that ef-
ficiency implies that the forward exchange rate is an unbiased predictor
for the spot exchange rate (see (Fama, 1984)). To avoid Siegel’s paradox
the logarithms of the forward and the spot exchange rate are usually em-
ployed, see (Siegel, 1972). This is better known as the uncovered interest
rate parity. However, empirically the uncovered interest rate parity yields
not very promising results, see (Frankel & Rose, 1995), (Chiang, 1988), and
(Hansen & Hodrick, 1980). The uncovered interest rate parity is also con-
sidered to be an arbitrage connection, e.g. in (Winters, 1999).

It will be shown that the uncovered interest rate parity is generally not a no—
arbitrage condition and can be considered as an equilibrium condition only
non-generically. This result obviously implies that any empirical analysis of
the information efficiency relying on the hypothesis of the uncovered interest
rate parity bears the risk of systematic errors. The true arbitrage relation,

which the exchange rate has to satisfy, will be derived in a time continuous
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arbitrage pricing model of Black—Scholes type.

Arbitrage—free prices can only be regarded as a necessary condition for an
equilibrium. An economy having an equilibrium at these arbitrage—free prices
can always be constructed. Presuming an immediate exploitation of possible
arbitrage opportunities the no—arbitrage condition will be employed to deter-
mine a law of motion for the foreign exchange rate in the short run if markets
are complete. Such an arbitrage—free correlation between the exchange rate,
interest rates, and prices of stock indices is theoretically derived for complete
asset markets. A reduced form equation of this relation will also be estimated
with real data.

In the long run the economies’ fundamentals seem to determine their ex-
change rates. Equilibria of abstract economies are usually not solvable ex-
plicitly, so that beyond existence and uniqueness not much more qualitative
results can be obtained (see (Karatzas et al., 1990)). For this reason the equi-
librium of a quite extensive example economy is considered. In this economy
two representative agents provide labor in each country as the only factor
in production of two consumption goods. In fact, the relative price between
both consumption goods, which are interpreted as the respective numéraires,
is the real exchange rate. It will turn out that the exchange rate is equal to

the ratio of the present values of all future net imports and exports.
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2 The CAPM —

A General Equilibrium Foundation

Abstract: The Capital Asset Pricing Model (CAPM) is one of the corner-
stones in Finance. The CAPM was the first theoretically sound and intuitive
description of portfolio choice which met portfolio managers’ approval in
practice. Very early after its invention by Markowitz it has been extended
to a full equilibrium model. In this section the classical two—period CAPM
without spanned endowments and without a riskless asset is considered in

the framework of the General Equilibrium Theory.

The main issue of this chapter is the monotonicity of mean/variance utility
functions. The CAPM imposes the very restrictive assumption that agents’
preferences depend only on mean and variance of returns on investment. This
assumption may cause non—monotonicity of preferences in state pay—offs and
is, thereby, responsible for arbitrage opportunities which equilibrium prices
may permit. Explicit conditions are derived ruling out arbitrage and non-—

monotonicity in equilibrium.

Even though the CAPM had a shadowy existence apart from the General
Equilibrium Theory of Arrow and Debreu many theoretical articles appeared.
Beside monotonicity this chapter offers a broad overview about the theoret-
ical (not the empirical) CAPM-literature. However, en passant some new
proofs and results about well known aspects are also derived. For example a
geometrical proof for the correspondence between mean /variance—utility and
—preferences is given and the equivalence between absolute and relative risk

aversion is shown.

Asset /Liability—Management is at a stage where new approaches are replac-
ing p/o?—efficiency, but none of those have gained a similar prominence in
equilibrium theory yet. The last issue of this chapter is about new develop-
ments in modelling the investment decision under risk. Exemplary two newly
proposed risk measures will be considered which emerged from the criticism

of variance and Value—at-risk.
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2.1 Introduction

Although the Capital Asset Pricing Model imposes highly controversial as-
sumptions, no other model has sharpened researches’ as well as practitioners’
intuition of investors’ portfolio decision and the pricing of risks in as much.
Its popularity rose due to three major advantages; agents’ preferences de-
pend only on mean and variance of their investment, while variance is easily
understood by many people as a measure of risk; the main results agree with
our intuition; and, equilibria are explicitly solvable in only one endogenous
quantity, the harmonic average of absolute risk aversions. In comparison to
the General Equilibrium (GE) model (Merton, 1973) noted:

While more general and elegant than the capital asset pric-
ing model in many ways, the general equilibrium model of Arrow
and Debreu has not had the same impact, principally because of
its empirical intractability and rather restrictive assumptions that

there exist as many securities as states of nature.!

The idea of ordering distributions according to their means and standard
deviations is indeed much older than the CAPM. Its roots go back into the
history of famous acturiates like (Tetens, 1789).? Into portfolio selection the
mean/variance criterion was introduced by (Markowitz, 1952), (Tobin, 1958)
and (Markowitz, 1959), who also calculated the efficient set of portfolios in
terms of minimal variance for a given level of mean. But the major develop-
ment towards a full equilibrium model has been undertaken by (Sharpe, 1963),
(Sharpe, 1964), (Lintner, 1965b), (Mossin, 1966), and (Treynor, 1961)% (see
also (Lintner, 1965a), (Lintner, 1970), (Merton, 1972), and (Sharpe, 1970)).
In those contributions the well known equilibrium properties of the CAPM
were established: The Efficient Frontier, the Beta—pricing formula and the

Mutual Fund Separation. They all assumed homogeneous expectations, the

1Only complete markets require this assumption. However, empirical intractability is
still an issue of GE models.

2This hint is due to (Borch, 1969).

3The last reference is a hint from (Copeland & Weston, 1979).
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existence of a riskless asset and that investors’ endowments are given as asset
shares to them. (Black, 1972) relaxed the assumption of a marketed riskless
asset and (Oh, 1992) allowed for endowments not spanned by existing as-
sets. (Lintner, 1969), (Rabinovitch & Owen, 1978) and (Gonedes, 1976) in-
troduced heterogeneous beliefs into the CAPM, since heterogeneity of priors
can be regarded as a major incentive for trade. Critical new insights were
not derived, while the model looses its simplicity as individual expectations
enter as complex weighted averages. (Giith et al., 2000) show in a CAPM
with heterogeneous beliefs that it is not always advantageous to be an insider
having a ‘better’ prior. (Merton, 1973) made a further big step by extending

the CAPM to an intertemporal version.

2.1.1 Main Issues

This chapter’s main purpose is a deeper investigation of a certain criticism of
the CAPM: non—monotonicity of preferences. In the CAPM agents’ utility
functions depend on mean and variance of returns only. Whereas utility
is increasing in mean it is decreasing in variance. Moreover, variance is a
symmetric measure of the dispersion of returns around mean. Thus, utility
depending negatively on variance punishes the pure distance of pay—offs from
mean regardless of their sign, even positive pay—offs. Thereby, under realistic
circumstances it might be that agents’ utility functions are decreasing in pay—
offs of certain states. This clearly contradicts the natural understanding that
more of the numeéraire is desirable. Moreover, monotonicity of preferences is
a central axiom in the state—preference approach which implies the existence
of positive state prices in any equilibrium of financial markets.

A consequence of non—monotone preferences is that a trader may prefer one
of two feasible portfolios although the preferred one is first—order stochasti-
cally dominated by the other. For example, suppose an extreme variance
averse agent likes a portfolio with lower mean and variance better com-
pared to another portfolio. However, the distribution of the disliked pay—
offs may well stochastically dominate the distribution of the preferred pay—

offs. This ‘contradiction’ is better known as the ‘Mean—Variance Paradox’
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in business economics, see [(Copeland & Weston, 1979) p. 85]. Since first—
order stochastic dominance of pay—offs preserves under strictly monotonic
transformations only, the Mean—Variance Paradox corresponds one-to—one

to non—monotonicity of preferences.

Non—monotonicity can even lead to non—positive prices of positive pay—offs in
an equilibrium (implying negative state prices), which establishes arbitrage
opportunities in the conventional sense.* A price system providing arbitrage
opportunities would never be viable in real financial markets with selfish

investors. This would prove a CAPM to be completely artificial.

In the literature the question of positive asset prices has been addressed [see
(Allingham, 1991), (Nielsen, 1992) and (Hiroshi & Hiroshi, 1995)]. It will
be shown, that positive prices for assets with positive mean do not rule out
arbitrage, while the condition of positive prices for consumption streams with
positive mean is unnecessarily strong. Minimal conditions are derived, which

are sufficient to rule out arbitrage as well as satiation in state pay—offs.

A related aspect is the critique that preferences depending only on mean and
variance are insensitive to the risk of shortfall or of fat tails, measured by
skewness and kurtosis, respectively. While non—monotonicity can cause in-
consistencies, like arbitrage opportunities, this weakness is only a limitation.
It is also a strength, because just two quantities are regarded instead of three
or four factors. There are several attempts to include skewness into the Effi-
cient Frontier, see for instance (Jurczenko & Maillet, 2000). A more general
approach is to develop consistent axioms a risk measure should satisfy from
a normative point of view. The last section points into that direction as two
different axiomatics are introduced, which characterize investors’ portfolio
decision with less controversy but with similar ease. The risk measures are
applied to a typical situation an institutional investor faces in the manage-

ment of assets and liabilities.

4However, negative asset prices are well compatible with the no-arbitrage condition if
returns are negative with positive probability.
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2.1.2 Outline of the Chapter

Although it is not the main focus of this essay some space is devoted to
general issues of the CAPM. This should not only provide a thorough under-
standing of the CAPM literature. Indeed, all the calculations leading to the
equilibrium allocation are necessary for those mentioned conditions about ar-
bitrage and monotonicity. The starting point of the investigation is the static,
two—period CAPM proposed by (Black, 1972). Since non—monotonicity may
occur only with regard to pay—offs in certain events, the CAPM is analysed
within the state—preference approach. Unrestricted short selling will be per-
mitted and investors shall share a common belief about the likelihood of
future events. An agent’s decision problem is regarded as purely investment
based, i.e. consumption in the decision period is not considered. This view
is justified by the empirical observation that consumers often separate a cer-
tain share of their total wealth for investments in securities and insurances.
Moreover, it is neither assumed that investors’ endowments are marketed nor

that a riskless asset exists.

This chapter is organized as follows. In the next section the CAPM-assump-
tions are introduced. Then three issues arising with mean/variance util-
ity are briefly reviewed; (Loffler, 1996b) answered the question how pref-
erences on the consumption space and mean/variance utility functions are
related; (Chamberlain, 1983) and (Agnew, 1971) characterized the distribu-
tions which imply mean/variance utility if those were derived from expected
utility; and finally, (Lajeri & Nielsen, 1994) provided an extensive analysis
of the notion of risk aversion in the CAPM.

The next section addresses the problem of satiation. Satiation in income
may arise without a marketed riskless asset, which prevents an equilibrium
to settle down. In the fourth section the Capital Market Line and traders’
optimal demand is derived, followed by a complete characterization of equi-
librium properties in the fifth section. Thereafter, in an intermediate sec-
tion the economy is transformed into the two—goods economy proposed by
(Dana, 1999), where consumption takes place in mean and variance only. It

prepares the review of results concerning existence and uniqueness of equilib-
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ria, notably associated with (Nielsen, 1990b) and (Nielsen, 1988). The next
section focuses on the main subject, monotonicity of preferences and arbi-
trage in CAPM-equilibria. Since the risk measure variance is responsible for
the lack of monotonicity of preferences, in the concluding section an outlook
about two alternative risk measures is presented. Those have been proposed
recently by (Artzner et al., 1998) and (Aspandiiarov et al., 1998), who sug-
gest to replace in the portfolio choice problem ‘Value-at—Risk’ by ‘Expected
Shortfall” and variance by ‘Weighted Value—-at—Risk’, respectively.

2.2 The CAPM — Preliminaries

This section introduces the assumptions necessary for subsequent investi-
gations. Regarding the CAPM, those assumptions might appear too vo-
luminous to the reader. But this originates from the intention to analyse
the CAPM in the framework of the General Equilibrium Theory of Finan-
cial Markets. Nevertheless, most assumptions, definitions and notational
conveniences are standard in the finance literature (consult Section I.11 in
(Duffie, 1988) and (Nielsen, 1987)). Broad remarks are spared therefore.

In their investment decision agents face a risky environment:

Assumption (ENV): Let the risky environment be represented by a prob-
ability space (Q,F, P). Q is interpreted as the set of states w of the
world, F is the o-algebra of measurable events and P the common
subjective probability measure on (€2, ). The consumption space L
consists of all real valued random variables with finite variance, that is
L = L*(Q,F,P). F is assumed to be countably generated and P to
be F-finite.?

Notation: An event E € F is called essential if P (E) > 0. Let z,y € L.

The relations =, #, 11,4 on L are applied in their probabilistic versions,

"Those two assumptions allow to carry over the algebra of Euclidean spaces [see
(Billingsley, 1995) p. 249]. Both hold for the Borel o—algebra and distributions with
finite density for example. The latter assumption is a prerequisite for the existence of a
Radon-Nikodym derivative.
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ie. xrny: & VYAXeER: P(Ar=y) <1 and likewise for =, #,1. L is
endowed with the L*(P)-inner—product, = ep y := Ep(zy) = [, zydP,
where Fp (-) denotes the expectation operator with respect to the mea-
sure P. Orthogonality refers to this inner—product, i.e. z1py < xepy
= 0. The probability measure on operators is generally suppressed ex-
cept when P is not meant. Var (z) is the variance of = and Cov (z,y)
the covariance of x and y. Because formulas would get very lengthy by
the brackets of operators (Greek) letters abbreviate the moments with
its arguments appearing as indices: p, = E (z), M,, = E(zy), 0, =

Var (x), 0.y = Cov(z,y) and p, , = %, respectively. Let L, =
{reLllP(x>0)=1} and Ly, = {z € Ly| P(z>0)>0} be the
non—negative and the positive consumption space, respectively. car (L)
denotes the cardinality of L, which is equal to the number of orthogo-
nal, non—zero random variables in L. Let b (X) stand for an orthogonal
basis of a linear subspace X C L. This basis is defined as a possibly
infinite set of non—zero, orthogonal random variables. Whenever a ba-
sis is finite it will also be used as a line—vector, otherwise as a net. If
a constant is in X it shall be regarded as the first element of the basis

or the net.
Financial markets allow to some extend the trading of risks:

Assumption (MARKET): Security markets are described by a finite sub-
set, A C L, of traded securities {Al, A }, where each random vari-
able A’ stands for the random pay—off of asset j € {1,...,J} = J.
The span, X = (A), of A denotes the linear closed subspace of mar-
keted consumption plans. Competitive and frictionless markets are as-
sumed, which also permit unlimited short selling. Therefore it can be
assumed without loss of generality that assets are linearly independent,
i.e. dim(X) = J.° The column vector ¢ : A — R’ assigns to every se-

curity a price. Portfolios are denoted by the column vector § € R’ and

6Tn a frictionless world redundant assets are needless. However, they are not dispens-
able if intermediation costs (see (Bettziige et al., 2000)) or short selling constraints (see
(Elsinger & Summer, 1998)) are effective.
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deliver a random income of ), ; AJf;. Positive and negative entries

in 6 correspond to purchases and sales respectively.
A riskless asset is traded only if the following assumption is imposed:
Assumption (BOND): A riskless asset is marketed:

1:=1g(w) € X.

Remark 1 Since it is not critical for the analysis, the consumption space is
not specified to represent either a physical commodity or paper money. Note
that real financial markets admit at best monetary riskless securities. This
implies a riskless asset based on commodities only if the risk of inflation can

be completely hedged away.

Notation: zy stands for the orthogonal projection of z € L onto X. Thence
X+ denotes the orthogonal space of X. The set A is also used as a row
vector, i.e. A = (A',...,A7). Thus, Af denotes portfolio pay—offs.
Without loss of generality let A' = 1 if (BOND) holds. Although ‘1’
is merely a scalar the bold one 1 as well as the bold zero 0 is used
as such in expressions involving random variables.” For a finite state
space this allows for the interpretation of those expressions as vectors.
If not stated otherwise any vector is a column—vector. The upper index
“I" marks the transpose of a matrix or a vector. Moreover 1, denotes
the vector of component wise means of A, 0% and M, the covariance
matrix and the matrix of second moments of A respectively. (62) " is

the inverse of 0% as well as the Moore-Penrose®

of (BOND), which then reads:

inverse of ¢% in case

0 o”

0 (02 )1 ’
Al

"Remind that £ = 0 P — a.s. is abbreviated with = 0, etc.!
8For a definition of the Moore-Penrose inverse see the last appendix of the next chapter.
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where 0?4\1 is the covariance matrix without the first asset and 0 is a
vector filled with zeros. For any x € X the unique generating portfolio’
0, is defined by A0, = x.

An important distinction between financial market economies is how much

of the entire risks are allowed for trading.

Definition 1 ((In)complete Markets) Markets are called either complete
or incomplete if either X = L or X C L holds, respectively. A market X s
less complete than another market X if and only if X C X.

Example 2 If the number of essential events in F is finite then completeness
is equivalent to dim (X) = J = car (L) . Since the state space may be infinite,
markets can only be complete if the set of essential events is finite. Only then
any risk can be insured by a finite number of assets. If for example Q = R, F
=B (R) and P is the standard normal distribution of a real random variable
x the Arrow-security 1g (x € A) is for any essential A € F a measurable,
square integrable random wvariable, which is linearly independent of x. The

set of such Dirac—measures is infinite.

Agents are endowed with preferences defined on the entire consumption

space:

Assumpion (AGENTS): Agents'’, i € {1,...,I} =: I, have preferences

=; on L, which can be represented by a utility function U® on L :

VieI: 3 :R xR, — R, such that
(g 03) > V' (g 05) = U'(2).

9Since the relationship between x and 6, is one-to-one, the differentiation will not
be strict between assets, portfolios, pay—offs, consumption streams, consumption plans,
returns etc., which are merely expressions of the same thing. With “returns” total re-
turns and not rates of return are meant, because the latter involves prices determined
endogenously.

10 Agents, investors, consumers, traders, individuals, etc. are not distinguished.
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The p/o?—utility function v is assumed to be strictly increasing in
mean and strictly decreasing in variance!!, strictly quasi-concave in
(u,0) and twice differentiable!? in (i, 0?). The derivative for o2 at
(+,0) is taken to be the derivative from the right. To express utility in
mean and standard deviation the abbreviation 9%(u,,0,) = v*(u,,02)
is used whenever it is appropriate. Agents’ endowments are denoted
by w' € L. Their decision problem is to maximize utility by choosing

a consumption plan and a portfolio for a given price vector q :

D'(q) :=arg max U'(x), D'
(@) = oy max  Ua) ()

where the budget set reads:
B (q) = { (2,6) € L X R'| & = A0+ wi. and g6 < 470, }.

Two periods are associated with the decision problem: Today agents
choose their optimal portfolio and tomorrow pay—offs are realized and
consumption takes place. Agent i’s consumption of state pay-—offs,

mean, and standard deviation is denoted by z°, u' = p,., and o' =

2

o, respectively, and by a% = Af', py = pu, , and oy = 0% Tespec-

tively, if only the consumption in X is concerned.

Remark 2 Agents are forced to consume their second period income. So

free disposal in the future period is not permitted, although they have not

necessarily monotone preferences. This problem will be considered later on.

Notation: Sometimes an agent’s index is suppressed, if not a particular

investor is meant. For any variable ' let y' := (y'),; and § := >, 1 ¥/
(if defined).

HTnstead of variance some authors use standard deviation. Except of some mathematical
regularities, e.g. differentiability, both measures of risk can be used equivalently since they
are monotone transformations from each other.

12This assumption allows to use differential calculus and to simplify notation thereby.
Differentiability in (, o) is weaker in some pathological cases than in (u,0?).
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A consumption plan x € L is said to be ‘marketed’ or ‘spanned’ if it is also in
X. The assumption that all endowments are marketed simplifies considerably

the notation.

Assumption (SPANNING): The endowments of each agent lie in the

marketed subspace:

Viel:w' e X.

The importance of 1x and wx in the subsequent analysis, i.e. the orthogonal
projection of the riskless asset 1 and the aggregated endowments w onto the

marketed subspace X, justifies their own definition:

Definition 3 In the following 1x is called the Quasi—Bond and wyx the

market asset.

The properties of the Quasi—-Bond are developed in the next section. If the
(BOND) is not marketed the Quasi—Bond shall take up its place in the asset
vector A and the orthogonal basis b (X).

Not all assumptions are essential to a CAPM—economy:

Definition 4 (CAPM) A tuple (L, (U’ w'),y,A) is called a CAPM-
economy or simply a CAPM if it satisfies the assumptions (ENV), (MAR-
KET) and (AGENTS).

The equilibrium concept corresponds to the definition of a financial mar-
ket equilibrium in the General Equilibrium Model with Incomplete Markets
(abbreviated with GEI), see (Magill & Quinzii, 1996):

Definition 5 (EQU) For a given CAPM-economy a CAPM-equilibrium is
a tuple ((m*i)iel , (H*i)iel , q*) € LT x R71 x R’ ensuring that:

i. Markets for consumption plans clear: Y, g™ =, qw'.

it. Financial markets clear: 3 ;1 0% =3, 0,y -
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i, For all i € 1 their equilibrium consumption z** and asset demand 6*
solve D' at prices ¢*, i.e. Vi € 1: (z*,6") € D' (¢*).

Note that under the equilibrium condition #¢:. both market clearing condi-
tions are equivalent. This is not the case if free disposal is permitted in
the second period. Then an exchange equilibrium . implies the clearing of

financial markets 7. but not vice versa.

Lemma 6 Suppose Condition iii. of Definition 5 holds for a particular al-
location. Then the two market clearing conditions 1. and 1. are equivalent.
It is incompatible with q being an equilibrium asset price vector that ¢~ <

qTng( for some i € L.

Proof. The Lemma follows by some simple equivalent transformations of

the market clearing conditions:

E ¥ = E w" =
icl icl

by (:v*i,é?*i)EBi(q*) and wg(:AOwg(

¥ —w = w =
Ziel ( XL) el X
; by rg(A)=J>0
A i = A 0, A
iel e

, by qT6*'<q76, ;
*i ) X
Ziel " = icl Ouus

Viel:ql9" = ¢%0

|

In the sequel some further assumptions are imposed on the CAPM-economy.
But most of them must hold only on a certain range of feasible allocations,
especially all those which come into question for an equilibrium allocation.

The following definition specifies this range:

Definition 7 The set on which equilibrium prices, portfolios and allocations

can be restricted to without knowledge of endogenous variables of equilibria
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15 called the relevant equilibrium range, abbreviated RER.
,_ I I I I I I I IJ i . )
RER.—{(:L‘,;L,U,G) e L' xR xRy xRM[Y 6 =0,Viel:
zt = w4+ AF", U (x’) > ! (w’) g =E (a:l) Lot =+/Var (a:z)}

By writing 2t € RER or ut, o' € RER for notational simplicity the existence
of the rest of the tuple is demanded such that the entire tuple is in RER.

This is treated as a dynamic definition in the sense that the restrictions to
RFER will be tightened and the tuple will be enlarged, e.g. to cover also asset
prices. Thus, the definition should not be taken too definitely.

The notation of the differential calculus is shortened by the usual abbrevia-

tion of derivatives:

Notation: As subscripts the positions &, [ or the names z, y of the arguments

of a function f indicate partial derivatives, i.e. fr; = foy = 8283/ fB8

Generally the examples of this chapter are given in one of the two most
popular simplifications of the CAPM in the literature, the case of quadratic

utility functions and of p/o?*linear utility functions:

Definition 8 (QUADU) Agents have ‘Quadratic Utility Functions’ :<

WEI:Ui(Q?)IE(x—%x?)Zux—%[ s T Ha], ¢ >0

Definition 9 (LINU) Agents have ‘u/o?~Linear Utility Functions’ &<

‘v’iEI:Ui(x):ux—%ai, @' > 0.

Quadratic utility functions do not satisfy the assumption (AGENTS) because

utility is not increasing in mean for u, > (’% Thus, (QUADU) must be

accompanied by the additional assumption that for all agents u® > % are

13 . . . .
There should be no danger of mixing up operators and derivatives, e.g. p, and f,.
Indices are either numbers or scalars on functions or random variables on operators.
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not in RER. pu/o?-linear utility functions can be derived from expected
utility with an exponential utility function and normally distributed pay-—

offs.14

2.3 Mean—Variance Preferences

p/o?—utility functions are regarded as an alternative to the state preference
approach used in General Equilibrium Theory of financial markets. While the
later claims the agents to be in a kind extremely rational as they must foresee
all essential events, the former approach just involves two reference numbers:
mean and variances. Although it is not necessary to model the states of the
world explicitly in a CAPM, this is done here for reasons of comparison to

the GEI-model; the reader might think of arbitrage for instance.

This section focuses on CAPM-preferences. In the first subsection the ques-
tion is answered which characterization of preferences on L corresponds one—
to—one to mean/variance utility functions. In the second the requirement is
discussed which has to be imposed onto the distribution of assets such that
expected utility implies mean/variance preferences. The purpose of the last
subsection is a descriptive analysis of the indifference curves and to introduce

a measure of risk aversion for mean/variance preferences.

2.3.1 Preferences and Utility Functions

It is theoretically more profound to start with axioms about preferences on
consumption opportunities and to deduce utility functions from those axioms.
A formal definition of mean—variance preferences was proposed by Duffie [see
(Duffie, 1988) p. 95 D.J:

Definition 10 (u/0?—Preferences) A p/o*—preference relation is a com-

plete continuous pre—order = on L with two properties:

2

“Let  ~ N (1,0%). Then E [exp (—az)] = exp (a,u - %20 ), which is a monotone

transformation of a y/o?~linear utility function. This kind of u/0?~linear utility functions
has been considered by (Lintner, 1970) and intensively analysed by (Nielsen, 1990a).

26



1. > 1is ‘strictly variance averse’ :&

Vr,y € L, UZ>0 and oyy = p, =0 wmples =z +y,

2. > 1is ‘strictly monotone in the riskless asset’ :<

Duffie regarded those axioms to be weaker than the assumption of u/o?
utility functions. However, (Loffler, 1996b) proved the equivalence between

the p/o%—preference and the u/o?—utility approach:

Theorem 11 Consider an arbitrary set A € L such that X = <121>, oo >
dim (X) > 3 and (BOND) holds for X. Then a p/o®—preference relation

on X implies a continuous p/o*—utility function on X and vice versa.

Loffler proves the theorem analytically, while the following proof gives his
arguments a geometric interpretation.

Proof. Obviously a u/o?—utility function induces a pu/o?—preference
relation. The proof of the reverse direction is the difficult part:

Let b (X' ) denote an orthonormal basis of X in which the first asset is the

bond. Without loss of generality let A=0b (X ) . All portfolios inducing
mean zero and a certain variance o2 lie on a circle in R¥™(X)~1 with radius
o. This is because all risky assets in the basis have zero mean, a standard
deviation of one and in pairs zero correlation. Since there is a one-to—one
correspondence between generating portfolios and consumption streams in
X, it is sufficient to consider the indifference surfaces implied by a p/o?—

preference relation in the space of portfolios.

The first dimension of a portfolio fixes the mean. Neglect the first dimension,
i.e. suppose an arbitrary u. Consider the graph of the indifference relation
in R4™(X)-1 By variance aversion the upper—contour set contains all line—
segments between points on the indifference surface and zero because of di-

minishing variance towards zero. Thus, the upper—contour set is topological
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invariant to the ball by continuity. In R¥™X)~1 any non-zero portfolio or-
thogonal to a portfolio on a circle (thus, any tangential deviation) worsens
this portfolio, since it has zero mean and zero covariance with it (see also
the following Figure (1)). This holds because the circle is the only geometric
object, for which the tangential and the orthogonal hyperplane coincide. If
the graph of the indifference relation deviates form the circle at any point, it
is possible to draw a circle through that point and to find there a tangent—
vector, which points into the upper—contour set. This contradicts the de-
viation of the indifference curves from a circle. Thus, indifference holds for

portfolios with equal mean and equal variance.'®

This shows that any p/o?—preference relation on L is indeed a preference
relation on R x R,. Since it is assumed to be continuous, complete and
transitive the rest of the proof carries over from the usual representation
of preferences by utility functions, see [(Mas—Colell et al., 1995) Proposition
3.Clonp. 47]. &

Differentiability is an additional property of u/o?—utility functions, which
corresponds to the differentiability of the indifference surfaces of u/o%—

preference relations.

Example 12 The axes of Figure (1) measure the demand for two uncor-
related assets both of which having zero mean and unit standard deviation.
There are two indifference contours in the plot, one which belongs to possible
w/o*—npreferences, called ‘AGENTS’, and one, ‘not AGENTS’, which does
not satisfy variance aversion. The upper contour sets are enclosed by the
indifference surfaces, whereas the lower contour sets are outside, since more
of one asset is worse. At portfolio ‘A’ a deviation in the orthogonal direction
towards portfolio ‘B’ would increase variance. But this deviation points into
the upper contour set of ‘not AGENTS’, showing their relative higher vari-
ance aversion coming from Asset 1 than from Asset 2. But u/o?—preferences

demand agents to be neutral with respect to the source of variance. Only for

15 (Loffler, 1996b) proves the theorem for positive convex cones as the marketed sub-
spaces. In this case the corresponding segments of the circles have to be considered.
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a circle an orthogonal deviation is also tangential at the indifference surface,

which is mirrored in the preference surface denoted by AGENTS.

Indifference Surfaces
e T
A lover contour set
21 e
\\\\
AGENTS
1.5
Asset 2
11 not AGENTS
upper contour set \
0.59
Zero Variance
05 i 15 2
Asset 1

Figure 1: Indifference Surfaces Concerning Risky Assets

This line of reasoning does not work if there is only one risky asset, because
a circle cannot be constructed in R. Since the proof holds for arbitrary
subspaces of X with cardinality 3 the finite cardinality of X is dispensable as
long as the bond is contained (or without the bond for risky assets with zero
mean). The restriction of < on Xisa slight generalization over preferences
on L, since agents have only to be aware of the consumption plans in X.
This restriction does not mean that the subspace X on which preferences
are defined is actually the true marketed subspace X. Only X C X and
(SPANNING) with respect to X must hold. Therefore (BOND) for X is

hardly a restriction since it must not hold for X.

Example 13 Let (1,by,bs,bs) be an orthonormal basis of L. The utility
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function U : L — R, defined by
Ul(x) = p, — a2 ’096,52‘ — a3 ‘O-x,b?)’ —Qyq ’09671)4‘ - Qs ‘O-x,bz;’ 1{%7,]420}

for some ay, ..., as > 0 implies ju/o*-preferences on X only if by € Xt

2.3.2 Expected Utility and CAPM-Preferences

In contrast to an arbitrary u/o?—utility function monotonicity is assured for
a von—Neumann—Morgenstern (abbreviated by ‘vNM’) representation of a
p/o?~utility function: U (z) = FE (u(zx)). Thus, if u/o*preferences were
founded by a suitable choice of state dependent preferences, this would guar-
antee the monotonicity of 11/o?preferences in pay—offs of essential events by
the monotonicity of the Bernoulli utility function u (-). This foundation is
generally not possible. Note that for (QUADU) the mean/variance utility
function results from an expected quadratic utility function, whose Bernoulli
utility function is not strictly monotone. Expected utility and mean /variance
utility are two independent sights of how agents might evaluate risk. In the
special case in which the probability distribution of consumption plans F' is
parameterized in mean and variance only, u/o?—preferences could be derived

from expected utility. Actually, the condition

Vo € X +w': v'(u,,02) = / u(z) F (dz, py, 02)
R

must hold for a strictly increasing vINM utility function v : R — R to rep-
resent a u/o’—preference relation. Suppose, for the moment, that (SPAN-
NING) holds; then X +w® = X is valid. Moreover, (BOND) shall hold until

further notice since risky assets will be normalized to have zero mean.

Since any consumption is a linear combination of random variables in X,
namely of the assets in A, not only these particular random variables must
have the same two parameter distribution F (u,0?) in mean and variance

but also all linear combinations. Thus, the distribution of assets must satisfy
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the Identity in Law:

HyGlexl,QfgGX,)\1,>\2202371ZO,’YQERZ

d
AMT1 4 Aoa ~ Y1y + Vo1

The Identity in Law implies a symmetric distribution of consumption streams

around their mean, i.e.
d
dreX:pl—x~zx—p,l

This is necessary because short sales are permitted. Arbitrary but symmet-
ric distributions would be sufficient if there is only one risky asset (including
discrete distributions). For at least two stochastically independent risky as-
sets only the class of stable distributions is closed under variations of scale
and location. All stable distributions have a certain, four parameter char-
acteristic function in common, see for instance [ (Embrechts et al., 1997)
Ch. 2.2.]. And from those stable distributions only the normal distribu-
tion has finite variance and is not skewed, as was already pointed out by
(Cass & Stiglitz, 1970) in the context of two fund separation and expected
utility. Therefrom comes the popular but wrong belief that the CAPM is only

compatible with normally distributed returns in the vNM-utility context.

(Agnew, 1971) gave a counter—example if assets are not stochastically inde-

pendent. A slight modification of his example is the following:
Ay=1and Vj=2,...,J: A; = z;v,

where all risky assets have finite variance and a mean of zero, and the ele-
ments of all risky assets are in pairs independent. Thus, assets themselves
are uncorrelated but not independent. His specification follows in the next

example.

The way he constructed his example describes the class of characteristic
functions, such that invariance of distribution due to scale and location is

assured. Agnew points out: Since any portfolio § € R” is only valued by its
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mean and variance there has to be a symmetric distribution F' with mean

zero and variance one such that:

VO £0: (A—py) (0?4)_% Hﬁ LF (Concentric)

This allows for a parameterized F' but whose parameters apply to all portfo-
lios in the same fashion. Let ¢ : R/ — C and v : R — C be the characteristic
functions of the distribution of assets and F', respectively. Then the charac-

teristic functions must satisfy

6(0) — exp(wew((a%i@)%), where
vt = /R exp (itz) F (dz) with

F(z) = 1—=F(-x), OZ/R.TF(dQZ) and /Ra:QF(da:)zl,

for all portfolios 8 € R” (see also Appendix 2.11.1 for the calculation implying
this condition). Thus, applied to vINM-utility functions arbitrary ¢ and F

satisfying these properties admit mean/variance utility functions.

Example 14 Agnew’s example is a v which mixes Gaussian characteristic
functions, exp (#), by a variance scaling parameter X > 0, which is itself
exponentially distributed: dG (\) = exp (—A)dA. This results in the charac-

teristic function:

V() = /]RJrexp(_;tQ)exp(—)\)d)\

12 -1
= —(=+1) .
(5+1)

Then a single asset is distributed as xj\/x, where the x;, j € J are indepen-
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dently standard normal. The density function f (z) of asset pay—offs reads

e (LYo

= %exp (—\/§\z|> .

Thus, assets are two—sided exponentially distributed.

But Agnew’s condition provides a deeper insight than his example. From the

definition of characteristic functions the equation:

ve c RJfl . / 6iA9PA (dA) — 6i'uA0/ ei<9Ta?40)§yF (dy)
RJ R

follows. Note that the riskless asset has a degenerated distribution and needs
not to be considered thereby. By normalizing assets instead of portfolio

returns the equation is equivalent to
/ A=) (o%) 29PA (dA) = /ez‘HollyF (dy) .
RJ-1 R
The distribution P# of normalized asset returns is defined by
PA(B) = PA (B) VB e B(R)’ ™, with
B={ (a7 (63)* +ps) |z € B}.

This definition simplifies the equation to

/ ¢4 PA (4.4) = / 101 (dy)
RI-1 R

Integrating the left hand side over the orthogonal space (9)L and replacing
on the right hand side y by ||| A it transforms to

/ ¢HIOPN pA (9g) — / CIOEXE (19 )
R R
with F (]|0]] d\) := d\F (||0]| A) . Since the equation shall hold for arbitrary
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0 € RY, this condition is equivalent to the equality of the differentials:
V0 € R : PA(Ad)) = F (||0]| d\)

for a symmetric, univariate distribution ' : R — [0, 1] with mean zero and
unit variance. [This follows from Theorem 22.2. p. 286 in (Billingsley, 1995)].
By taking the 7 —th unit vector for 8 all normalized assets are F'—distributed.
The differential of the marginal distribution of P4 depends in any direction
only on the norm of 6. Thus, the probability mass is concentrically dis-
tributed about the origin. Since probability measures are assumed to be F—
finite, a continuous distribution P# admits the density p* and F the density

f. In this case the density p* depends only on the norm of ||f]], because

PA(0dN) = dyPA(ON) = p* (OX) dN
= F([l0][dX) = f ([[0A]]) dA.

The interpretation is as follows: The variance criterion demands that portfo-
lios of normalized asset returns have the same distribution of pay—offs, when-
ever their norms are equal, since the variance of their pay—offs are equal. That
is to say, for any portfolio # one can choose a simple portfolio consisting of
||0]| units of a single, normalized asset whose distribution is F'. If that were
not the case, one could choose a von—-Neumann—Morgenstern utility function
to uncover the distinctions in the distributions.

Therefore, the joint density of asset pay—offs is determined by the norm of

pay—offs only. Thus, one arrives at the following conclusion:

Lemma 15 Suppose (BOND) holds. Then expected utility implies mean/

variance utility if and only if normalized pay—offs:

(A—pa) (0,24) )

|

of linear independent risky assets in A admit a (J — 1) —dimensional distri-
bution I5A, which

i. is concentric about the origin, i.e. the differential dyP* (Y\) depends
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only on the norm ||Y'A|| for all Y € R7-1, X € R.

1. admits the identity as its covariance matriz.

For instance the symmetric generalized hyperbolic distribution, which has
been introduced to economics (and overall) by (Barndoff-Nielsen, 1978), sat-
isfies these conditions. It is indeed a mixture of multivariate normal distribu-
tions. Since the full density function is a lengthy expression of six parameters,

only a certain example of the standard symmetric case is provided here:

o’ —ay/6%+|e|®
a~r (L) = e

Y

for some real parameters a > 0,6 > 0, which determine variance and kurtosis,
and the modified Bessel function K j/, of third kind with index J/2. The
marginal distributions of normalized assets may be discrete as well, but only
if assets are strongly dependent, for example if the probability is uniformly

distributed on some circles about the origin.

Also (Chamberlain, 1983) used Equation (Concentric) to characterize the
distributions implying the mean/variance criterion. Since the condition must

hold for arbitrary portfolios it is equivalent to:

=

yS <y with y = (A= py) (0%) (Spherical)
for all unitary matrices S € R7 ® R’ with STS = id. A random vector y
satisfying this condition is called spherically distributed about the origin,
whereas A is called spherically generated. Thus, Lemma (15) just spells out
the restriction on the distribution imposed by spherically distributed normal-
ized assets. This implicitly assumes either a (BOND) or zero mean for A,
since A is corrected by its mean. But Chamberlain also shows that Condi-
tion (Spherical) is necessary and sufficient if ‘L’ is considered as conditional

with respect to the Quasi-Bond. Moreover, he gives a representation for all
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random pay—offs more general than Equation (Concentric):

o2 _ 1—
VeeX 2z Ha 1X—|—\/$ ,ux( HIX)Uul,
M1y

where the vector v = (uq,... ,u J,l)T is uniformly distributed on the unit
sphere in R’/~! conditionally on v and 1x, and with v and 1x having finite
variance. The first expression on the right hand side is ignored if y;, = 0
implying g, = 0 (this will be shown in the next subsection). This result
extends to an infinite dimensional X. In this case u; converges to a random
variable whose distribution is standard normal conditionally on v and 1x.

(SPANNING) has been assumed so far and is now discarded. Agents cannot
influence the part w’ , of their endowments not spanned by A. Thus, if

normalized asset returns y :

=

y= (A — L/mlx) (%) 2,
1x

are spherically distributed conditional on 1x and wé( , for all + € T port-
folios with equal variance and mean are still perceived as equally good by
consumers.

If expected utility shall hold, it is often maintained that the CAPM is only
applicable to Gaussian returns, for instance in [(Copeland & Weston, 1979)
Ch. 4 G. on p. 85]. But this section clearly characterizes a wider range of

admissable distribution functions; nevertheless, this range is rather limited.

2.3.3 Indifference Curves and Risk Aversion

This subsection is structured in five parts. In the first the general shape of
p/o—indifference curves are described. The measure of absolute risk aversion
is motivated in the second part. Then decreasing absolute risk aversion is
discussed, which is generally considered as the realistic behaviour of investors.
The next issue is the limiting slope of indifference curves, since it determines
whether traders have a point of satiation. In the last part the plausible case

of constant relative risk aversion is discussed.
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Shape of Indifference Curves

Consider the indifference curves of mean/variance preferences in the famil-
iar p/o—diagram, in which o is associated with the horizontal and p with the
vertical axis. Because of monotonicity in mean, variance aversion, and quasi—
concavity the indifference curves are strictly upward sloping and strictly con-
vex graphs in the p/o—diagram. The indifference curves start off at the ver-
tical axis and form the boundary of the upper contour set, which is located
in the upper left area between the curve and the vertical axis. This allows
for a further restriction of the RER.

Indifference Contours

1 yas

-~
Mean - ot
10 1a ~" 1h
— > //
-
8 //, //
prefered alternatives -
= #'__::»- //
o /
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2 ___—-'-‘"H’
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Figure 2: u/o—Indifference Surfaces

Lemma 16 (Bounded Consumption) In the RER each trader’s con-

sumption of mean and standard deviation is bounded.

Proof. Mean is bounded from below by the intercept at which agent i’s
indifference curve through (f1,,:,0,:) starts off the vertical axis in the pu/o—
diagram. Thus, mean p' is also bounded from infinity, since individuals’

p' are bounded from below and sum up to uy; < oo in RER. Obviously,
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variance is non—negative. Moreover, variance is bounded from above, because
the highest acceptable amount for agent ¢ is determined by the indifference
curve through (p,i,0.:) at the largest possible mean p,,. W

Quasi—concavity of 0, which is equivalent to the convexity of the upper con-
tour sets (that is to say convexity of preferences), ensures uniqueness of a
trader’s optimization problem provided that a solution exists and the budget
set is weakly convex (see Lemma (46) on p. 63). (Feldstein, 1969) showed
Tobin’s claim that concavity of © follows from a concave vNM—utility func-
tion, whenever expected utility implies mean/variance utility. But quasi—
concavity in mean and standard deviation is weaker than concavity as well
as quasi—concavity in mean and variance, since variance is a convex function

of standard deviation.

Lemma 17 (Quasi—Concavity in standard deviation) Let f : R, —
R, be a monotone increasing function and v : R x R, — R be a monotone

decreasing function in the second argument. Consider the conditions:
(i) v is strictly quasi—concave in (u, f (0)).
(ii) v is strictly quasi—concave in (p, o).

Then (i) implies (i1) if f is weakly convex and (ii) implies (i) if f is weakly

concave.

Proof. If v(i, f(6)) > v(p, f (o)) holds for some distinct (u,0), (1,6) €

R x R, then strict quasi—concavity demands
Va € (0,1) s vy, f (o)) <vla+ (1 —a)p,af(0)+ (1 —a)f(0))
Weak convexity of f in conjunction with variance aversion implies
o< v(lap+ 1 —a)u, fac+ (1 —a)o)).

The second claim can be shown equivalently in the opposite direction. W
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Measuring Absolute Risk Aversion

The next aspect drawn to attention is the measure of absolute risk aversion.
In the mean/variance world a consumer is a risk averter if he/she always
prefers from two consumption plans with equal mean the portfolio with less
variance. Since utility functions are strictly decreasing in variance, agents
are risk averters in the CAPM. For vNM-utility functions the Arrow—Pratt
measure —*= is broadly accepted as a risk measure. For the CAPM the
coefficient of absolute risk aversion plays this role, which is the tangent slope
of the indifference curves in the p/o—diagram. Since the slope is the marginal
rate of substitution of standard deviation for mean, it is the natural choice
of a local measure of risk aversion. That is to say, the slope is approximately
equal to the amount of additional units in mean (i.e. the riskless asset) for
a small additional unit of standard deviation to keep an agent’s utility level

constant.

Definition 18 (Risk Aversion) Agenti’s coefficient of absolute risk aver-
sion St at (p,0) is defined as the slope of his/her indifference curve in the
w/o—diagram at point (p,0) € R x Ry, :

A g o , vy (p, 0?)

S =—-="=—— h ' =

(M? U) oy ri’ where T (M? U) 2y <M7 O_2>

Half the marginal rate of substitution of mean for variance, r, appears in
many formulas, why it is used as an abbreviation too. If agents’ utility
functions satisfy (QUADU) respectively (LINU) their marginal rate of sub-

stitution is
. 1 )
r = g —— if (QUADU) and
('DZ

, 1
r = —— if (LINU), respectively.
(p’L
Since S is regarded to be a measure of risk aversion, it should suit for
comparisons between the risk aversion of different utility functions. In terms
of preference relations agents’ risk aversion is comparable in the following

way:
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Definition 19 Investor 1 is said to be more risk avers than investor 2 if
Ve,y€ L,0,, =0:

r=1x+y tmplies © <9 x4+,
provided that their mean/variance preferences are <;,1 € {1,2}.

This definition states that whenever an agent accepts more variance by y,
which must be accompanied by more mean due to variance aversion, a less
risk avers investor must accept y as well.

Another concept of risk aversion is based on risk premia. If an investor is
indifferent between a risky and a riskless consumption plan, the mean of
the riskless portfolio is called the safety equivalent. The absolute difference
between the means of both consumption streams is the risk premium for

taking an additional risk. The generalization of risk premia is as follows.

Definition 20 Let z,e € L with E (¢|z) = 0 and Var (¢|z) > 0. Consider

a preference relation 2 on L. The ‘compensating risk premium’ ug _ is defined

by
T~ +e+ g1,
whereas the ‘equivalent risk premium’ ug  is defined by
r—pg 1~z +e.

Thus, a risk averter has always positive risk premia, which make him indif-
ferent for taking more risk. Both the risk premia as well as the coefficient of

absolute risk aversion cover the notion of higher risk aversion.

Theorem 21 Consider two agents with u/anpreferences <1, <o and the

corresponding utility functions v', v2. Then

1. Investor 1 is more risk avers than tnvestor 2.
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2. Investor 1’s compensating risk premium s . is never smaller than sec-

ond investor’s.

3. Investor 1’s equivalent risk premium (i, . is never smaller than second

investor’s.

4. First investor’s coefficient of absolute risk aversion is mever smaller

than second investor’s.

5. For equal endowments investor 1 demands never less of the riskless

asset than investor 2.
are equivalent assertions.

The theorem is borrowed from [(Lajeri & Nielsen, 1994), Proposition 2| and
[ (Loffler, 1996a), Ch. 2.4], where the reader is referred to for more detailed
results and their proofs. This theorem underpins the reasonability of S¢ as a
risk measure. (Lajeri & Nielsen, 1994) derived the relationship between de—
/non—/increasing absolute risk aversion in mean and the equivalent as well
as the compensating risk premium. Moreover, they show that risk aversion
formulated for vINM—utility carries over to mean/variance utility, if induced
preferences coincide on L. As their last issue they introduce the concept of
‘prudence’ or ‘precautionary savings’ for the CAPM if the utility function is
extended for consumption in the investment period.'6

Quadratic utility functions are criticized for having an increasing absolute
risk aversion in mean, i.e. S’L (,0) > 0. Thus, an agent with such a utility
function is the less willing to bear more risk the more mean he/she consumes.
Since mean is a desired good his/her risk aversion increases also in wealth.
This is not realistic. Generally it is considered as the natural behaviour
that agents are more willing to undertake riskier investments the richer they
are. Thus, the more relevant case is non-increasing absolute risk aversion:
S’L (u,0) <0.

16Prudence means that agents wish to insure against bad states in the future by pur-
chasing the riskless asset the more the riskier the environment is. Since consumption in
the first period is not considered here, this result is only mentioned in passing.
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[(LofHer, 1996a), p. 38| has shown that mean/variance preferences with con-
stant absolute risk aversion in mean have a utility representation which is
additive separable in mean and variance and linear in mean. Figure (2) at
the beginning of this subsection shows two indifference surfaces each for con-
stant (‘la’ and ‘1b’) as well as for decreasing absolute risk aversion (‘2a’ and
2b7).

A very interesting axiomatics of u/o?—preferences, which is based on de-
creasing absolute risk aversion, is due to (Epstein, 1985). Epstein’s defini-
tions of decreasing absolute risk aversion are stronger in comparison to the
definitions proposed by (Pratt, 1964) and (Arrow, 1974), (Ross, 1981), and
(Machina, 1982b). His definition relies on the compensating risk premium.
The distinction between both definitions of risk premia is critical for Epstein’s
results. Epstein applies a very general definition of “decreasing” absolute risk
aversion he calls R-DARA.

Definition 22 Let R be a partial pre—order on the space of probability dis-
tributions Fy () of returns x € L. A preference relation satisfies R-DARA
=

Hae = Hye if (Fu, Fy) € R.

Under some technical regularity conditions Epstein proves that R-DARA
implies u/o?—preferences.!” One of those technical assumptions is incompat-
ible with the independence axiom and thereby with expected utility theory.
Constant as well as decreasing absolute risk aversion with respect to the
equivalent risk premium are shown to imply u/o?-linear utility functions.
A particular choice for R is that (F,, F,) € R whenever F, second order
stochastically dominates F,. Actually, this choice implies S’L (,0) <0, see
Theorem 3 in (Epstein, 1985).% A particular weakening of this ordering in-

I7(Epstein, 1985) makes use of the “local Bernoulli utility function”, which was shown by
(Machina, 1982a) to be a local representation for a Fréchet differentiable utility function.

8 Even without the critical technical conditions the ‘first order stochastically
dominates’-ordering for R is only compatible with risk neutrality under the expected
utility postulate, see (Machina, 1982b).

42



duces quasi-concavity of the utility function in (i, 02) and S% (11, 0) > 0, see

Theorem 5 ibidem.

Absolute Risk Aversion in the Limit
The limiting slope of indifference curves for large mean and standard de-
viation is important to detect whether a satiating portfolio exists or not (see

Section 2.4 for the implications on the pricing functional).

Definition 23 Agent i’s limiting slope s' : R — R, U{cc} is defined by
s' (g) = lim S (g + X, 0 (X)),

where o () is the unique solution to v (ug+ X, o (X)) = 0 (g, 0) . Moreover,

let the minimal limiting slope for agent i in RER be

F = (u(w),

where p (w') is the unique solution to o (u (w'),0) = U (w').

The limiting slope describes the behaviour of the indifference curves in the far
upper right area of the y/o—diagram. Since mean/variance preferences shall
satisfy continuity the absolute risk aversion cannot become infinite for finite

9 If the limiting slope is finite, indifference

mean/variance combinations.!
curves converge from above to a ray for large mean/variance combinations.
The limiting slope is non—decreasing in mean, otherwise indifference curves
would either cross or would not be convex. This also implies that for non—
increasing absolute risk aversion the limiting slope is independent of mean.
Figure (2) at the beginning of this subsection shows two indifference surfaces,
‘2a’ and ‘2b’, having decreasing absolute risk aversion and thus a constant
limiting slope. From convex analysis the same applies to concave utility func-
tions, see (Nielsen, 1987). Nielsen has shown how the vNM-utility function

determines the minimal limiting slope for normally distributed returns.

19Tf the slope is infinite for finite mean/variance combinations there is a pole locus,
right from there preferences have to be lexicographic by completeness. That contradicts
continuity, but continuity can be relaxed for allocations outside RER.
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Relative Risk Aversion

Relative risk aversion is defined as the expenditure for the riskless asset
as a share on total wealth, that is u‘q(1)/q(w%) for a pricing functional
q : L — R and if (BOND) is assumed. A trader’s relative risk aversion
decreases in wealth if this share decreases in first period income ¢ (w).
Thus, with increasing wealth he/she is willing to bear relatively more risk.
Empirically, constant relative risk aversion was found to be very plausible.?’
In expected utility theory in—/decreasing/constant relative risk aversion is
equivalent to an in—/decreasing/constant coefficient of relative risk aversion,

/

which is defined as —xz/l((f)). Only the Bernoulli utility functions

(1—a)z"*0<a#1 and Inz

are compatible with constant relative risk aversion, monotonicity, quasi—
concavity and differentiability. Those choices are not applicable to nega-
tive returns (non—positive returns for ‘In’ and a > 1). Since expected util-
ity induces u/o—utility only if the distribution of returns is centered about
the origin, constant relative risk aversion of u/o—utility functions cannot be
founded by expected utility theory, simply because these Bernoulli utility
functions are not defined for negative values. Fortunately, p/o—utility func-
tions need not be derived from expected utility. (LofHler, 1995) shows that
non-increasing relative risk aversion in the level of wealth is only compatible
with degenerated p/o—utility functions leading always to optimal portfolios
which are riskless.?! Plausible constant relative risk aversion in conjunction
with Loffler’s result severely challenges the CAPM. To overcome this ‘para-
dox’ (Loftler, 1995) suggested to incorporate wealth — a la Patinkin — in the

20See (Friend & Blume, 1975) and the references (Dalal & Arshanapalli, 1993) and
(Levy, 1994) cited from (Loffler, 1995).

21Tn his proofs of two important lemmata (Loffler, 1995) claimed that non—increasing
relative risk aversion implies o (W) > %a (11) for wealth levels wy > Wy and with o (W)
being the optimal standard deviation for monetary wealth level « (see Appendix ibidem).
This differs from the notion of non—increasing relative risk aversion given in the text. The
latter definition requires a (w2) > « (wy) for we > w; and with a (@) being the optimal
budget share spend on the risky asset z. This implies at best o (2) = W (2) 0, >
Wi (1) o, = o (1), which is weaker than Loffler’s condition for relative risk aversion.
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p/o—utility function. Loffler’s result is in contrast to (Epstein, 1985), who
established the equivalence between absolute and relative risk aversion, if
constant absolute risk aversion is prevalent (see Theorem 6 ibidem). At the
end of Section 2.5 this result is extended with a different proof. It is indeed
the case that in the CAPM absolute is tantamount to relative risk aversion.
Nevertheless, the CAPM is inconsistent with decreasing absolute and con-
stant relative risk aversion thereby, which was empirically found to be very
plausible.

2.4 Viability of the Price Functional

In this section the possible satiation of investors in the Quasi—-Bond and
CAPM-related arbitrage are considered. Satiation is troublesome, because
it could cause the non—existence of an equilibrium and could make arbitrary

price functionals viable. (Nielsen, 1987) pointed out:

“A LITTLE-RECOGNIZED FEATURE of the mean—variance
portfolio—selection model is that induced preferences for asset
holdings are not necessarily monotone; more of an asset (or port-
folio) is not necessarily better, even if the asset (or portfolio) has

2

positive expected return. ...

Obviously, more of mean could be outweighed by an increased variance. In-
deed the last part could be replaced by: ‘even if the risky asset (or portfolio)
has just positive pay—offs.” And still more pay—off in every state of the world
could be outweighed by a higher variance.

This observation has two implications: Mean/variance preferences are not
necessarily monotone in tomorrow’s pay—offs and satiation in asset demand
is likely to occur. Both are related issues, because non-monotonicity also
causes satiation. However, whereas non-monotonicity is a serious problem of
coherentness, satiation is — beside of being not representative — ‘only’ quite
troublesome making the calculation of equilibria more difficult. An equilib-

rium might even not exist, so that one has to switch to the definition of quasi—
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1.2 This problem is not specific to the

equilibria, which are somewhat artificia,
CAPM. Also in general equilibrium models with incomplete markets satiation
can occur, even if traders have concave, monotone, expected utility functions
[see for instance (Mas—Colell, 1992) and (Polemarchakis & Siconolfi, 1993)].
But in contrast to the CAPM it suffices to assume the existence of an asset,
which has no negative pay—offs and positive pay—offs with positive probabil-
ity, since in GEI-models utility functions are monotone in state pay—offs. In
the CAPM investors are more likely to be satiated in assets whose ratio of
mean per standard deviation is low. Satiation and non—monotone preferences
interact in an unpleasant manner, since non—-monotonicity enlarges the set
of assets, in which consumers could be satiated.

To distinguish between the two related problems, the satiation in state pay—
offs is named here as ‘the problem of non-monotonic utility functions’. And
utility functions are said to be monotonic in the CAPM, if traders are not
satiated in state pay—offs for allocations in RER, even though their utility
functions might not be monotone everywhere in L. This problem is the main
issue of Section 2.9.

If the Quasi—-Bond does not satiate an investor it must be infinitely desirable.
Thereby the Quasi-Bond could be a free lunch if it has a non—positive price.
But even with a positive price for the Quasi-Bond there is a consumption
plan which maximizes the ratio between mean and standard deviation subject
to the constraint of involving no investments in period zero. Thus, it is a
sufficient condition for ruling out arbitrage if for all consumers this particular
asset is not infinitely desirable for all allocations in RER.

Both satiation and arbitrage must be ruled out for a price system to be

regarded as viable in an equilibrium.

Satiation
The natural way is to look at satiation first. Satiation appears if traders

cannot find utility enhancing opportunities in the marketed subspace. In

22Tn quasi—equilibria aggregated consumption must be not larger than aggregated endow-
ments in contrast to the equality of both demanded in the definition of CAPM-equilibria.
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case of (BOND) the riskless asset always improves utility, whereas without a
riskless asset the Quasi—Bond is traders’ first choice prior to a possible point
of satiation. But there might exist portfolios traders are never satiated in.

The following definitions distinguish between the two possibilities.

Definition 24 (Unlimited Improvement) The consumption plan y € X
is called an ‘unlimited improvement for agent i’ if there is a ' € RER such

that for all positive real numbers cg > a :
T+ Y = T+ ory.

Definition 25 (Satiation) A consumption plan y € X is said to be ‘agent
1’s satiation portfolio” if for all x € X :

y+whs Tz 4 whe

holds. Investor i is locally not satiated / satiated / over satiated in asset
ye X atxe L if

o0 .

—U'(z+ A\ = 0.

ol (@ + ) 2
Both a satiation portfolio as well as an unlimited improvement can exist
for a consumer. This happens if the utility level of an infinite consumption
of an unlimited improvement is still less than the utility obtained from the

satiation portfolio.

Lemma 26 (Unlimited Improvements) It is a sufficient condition for

y € L to be an unlimited improvement for agent i that

py, >0 and (uyzay? or ay:()).

The condition is also necessary if the limiting slope s* (i) is constant in fi.

Proof. The bond is obviously an unlimited improvement. And it is the only

one if §" = co. Thus, only the case o, > 0 and §" < oo deserves attention.
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The derivative of the utility function U (z + ay) for «a, i.e. in direction of
an unlimited improvement y € X, must be positive for a sequence of alphas

converging to infinity:

Vit + 202 (0, 4+ 04y) > 0&
~ 0405 + Ouy ﬂ

2,2 3 :
0yy/Q20% + 200, + 02 oy

The fraction on the left hand side converges to one from below with increas-
ing «, whereas St converges to s¢(u) for large p. Only if s* (1) > § the
improvement is relevant in RE R, otherwise being worse than endowments.
Thus §'o, < p, is sufficient. If s'(u) is constant the parabola implied by
adding ay to = would cross indifference curves always from below in the
u/o—diagram because of its steeper slope whenever the condition y = 0,8
holds. Thereby for large a more of y is always utility enhancing, what implies

the necessity of this condition. W

An asset may only be infinitely desirable by agent i if its ratio of mean per
standard deviation is larger than ¢’s minimal limiting slope; otherwise its
indifference curves definitely cross from below the rays with slope equal to

asset’s Z—zfratio starting at any point in RER.

The riskless asset is obviously an unlimited improvement. However, the ratio
of standard deviation per mean is minimized in X by the Quasi—Bond. Thus,
if the Quasi-Bond is not an unlimited improvement no other consumption
plan could be, which justifies the name ‘Quasi—-Bond’. The following lemma
and its corollary neatly characterize the properties of the Quasi-Bond (note

that My is the matrix of second moments of assets in A).

Lemma 27 (Projection of 1 on X) The orthogonal projection 1x of 1 on
X 1is:
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The mean of the Quasi—Bond satisfies
0 < piay = piaMytpy < 1.

The inequality on one of either side holds only with equality either if p, =0
or if X satisfies (BOND), respectively. The Quasi—Bond has variance

M1y (1 - Mlx) .

Proof. The orthogonal projection 1x of 1 on X is the solution of the fol-
lowing minimization problem: min;, cx ||1—1x]|p. Minimizing ||1—1x||p =
11— A0, ||p = 1 — 205604, + 6] M0, results in 01, = M, "1, and thus
1x = AM'u,. Note that if (BOND) the first column and the first row in
My are equal to py. This implies 1y = 1 if (BOND) and 1x =0 if uy, = 0,
respectively.

Observe that the covariance matrix 0% = My — u py is positive (semi-)
definite, which implies M4 = (=) ppk = 0so that ¢(upuiM ;") < 1 holds,
where ¢ denotes the spectral norm.?® Since rank[u,u%M;'] < 1 at best one
eigenvalue could be non-negative: 0 < ((pupuiM"') = trace(upiMy"') =
PAM g = gy <1

Since My is positive definite p,  is only zero if p, = 0. If (BOND) does
not hold ¢% is positive definite, which implies My = u,py = 0 so that
C(papaM3") = py, < 1 holds.

Finally, E (1%) — 43 . = iy, (1 — pq,) yields the variance. W

Corollary 28 (Quasi-Bond) The Quasi-Bond is the asset with the small-
est standard deviation per mean. Any other asset out of X with positive /
zero / megative mean has positive / zero / negative covariance with it. The

Quasi—Bond is the only asset with this property.

Proof. For fixed mean the minimization problem in the preceding lemma

shows the minimal variance of 1x. Now the covariance with z € X reads:

230Only in this proof the ordering < on positive semi-definite matrices is applied. See
Section 7.7 on p. 469ff and Theorem 7.7.3 on p. 471 in (Horn & Johnson, 1985) about the
definition of the ordering and for the result concerning the spectral radius, respectively.
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Ooax = E(2lx) = pop = po(1 = pig)-

For any other asset y € X : y j 1x, j1,, > 0 there are numbers 4, and a. such
that the covariance between y and the asset z := ,uZ:l—); + a, (y — /Ay;l—);)
has a different sign than p,. W

Note that assets orthogonal to 1x have zero mean. Hence, no other asset
improves the Quasi—-Bond in variance and mean. The corollary shows that a
satiation portfolio can only consist of the Quasi-Bond. Also local satiation
makes sense only with regard to the Quasi—-Bond and can be expressed in

terms of 7.

Lemma 29 Agent i is locally not satiated / satiated / over satiated in the
Quasi-Bond at x* if

(r" = tgi) pay + s, S 0.

Proof. A trader is marginally not satiated at x’ if the derivative of his/her

utility in the direction of 1x at ! is positive:
viulx +2Cov (1x, z') vh > 0.

With Cov (1x,z¢) = [gi, — [1, Hi the assertion follows. W
Since the analysis of financial markets is artificial if there is overall satiation

in the economy the following assumption is imposed.

(NonSat) For all allocations in RER consumers are not over satiated while

at least one agent is not satiated in the Quasi—Bond.

Only if the Quasi-Bond does not satiate an agent, i.e. if it is an unlimited
improvement to them due to \/fi;; > /T — 118", there probably exist also
other, less utility enhancing, but nevertheless unlimited improvements (just
by continuity). Whenever s’ (1) depends on p it is not straightforward to
characterize the set of unlimited improvements, because those depend on the

starting portfolio.?*

24 An unlimited improvement may well exist for a particular starting portfolio while it
never reaches the utility level of the satiating portfolio.
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Viability of the Price Functional

Following it is intended to define the viability of the price functional for
the CAPM. To formalize this argument the price correspondence has to be
defined first:

Definition 30 (Price Functional) ¢ : X — R is the correspondence, which

assigns to every traded consumption bundle a set of prices.

In the CAPM arbitrage shall occur whenever a consumption stream, which
is infinitely desirable, has a non—positive price. This is weaker than in the
GEI-model, because unlimited improvements can also incorporate disliked
components, namely positive variance. From the GEI point of view only the
bond is a possible arbitrage portfolio in the CAPM. Nevertheless, in terms

of utility, a free unlimited improvement is still a free lunch.?

Definition 31 (CAPM-Arbitrage) In a CAPM-economy the price sys-
tem q permits arbitrage if a trader can purchase an unlimited improvement

for a non—positive price.

Viability of a price system means that it is not a priori incompatible with
an equilibrium of an economy with (AGENTS). But for agents satiated by
endowments every price system is viable. Therefore viability is defined for a

particular choice of (AGENTS), namely not saturated consumers.

Definition 32 (CAPM-—Viability) In a CAPM-economy with (NonSat) a
price system is called viable if it does not permit arbitrage and if the Quasi—

Bond has a positive price.

25 An unlimited improvement with a non-positive price offers an unlimited arbitrage
opportunity. However contrary to unlimited arbitrage, local arbitrage is defined as a
would—be opportunity which cannot be exploited because of trading constrains. In the
General Equilibrium Theory of Incomplete Markets with trading constraints there is a
very clean characterization of the implications local and no—unlimited arbitrage have on
the price functional, see (Elsinger & Summer, 1998). However, trading constraints are not
considered here.
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The viability condition is a minimal requirement for a price system to be
regarded as a possible candidate for sustaining an equilibrium.?® The im-
plication that the no-arbitrage condition has on the price system can be
considerably tightened. This will be explored at the end of this section. Via-
bility is stronger than no—arbitrage and will mainly be considered from now

on. The definition suffices to show the linearity of the price functional.

Lemma 33 (Linear pricing functional) Suppose at least one asset has a
non—zero mean and (NonSat) holds. The pricing correspondence q is viable

only if q s a continuous linear functional on X with the representation:
Veie X:q(z)=mex

for a unique ™ € X with positive mean.
Due to its importance in the subsequent analysis 7 deserves its own definition.
Definition 34 7 is called the pricing asset.

Proof. Note that ¢ must be uniquely determined. If not, the Quasi-Bond
could be purchased at zero costs, contradicting viability. Thus, the price of

every consumption stream is the price of the replicating portfolio:
Ve e X : q(z) = qb,,

which is a continuous, linear functional on X, since X is closed with respect
to the relative topology of L.

Since P is F—finite there is — up to a set of P-measure zero — a unique m € X
by Riesz’ Representation Theorem [see for instance (Billingsley, 1995) on p.
244] such that ¢(x) = m e z for all x € X. By viability the price of the non-

zero Quasi-Bond is positive: Te1lx =, > 0. B

26In the GEI a price system is called viable if it can support an equilibrium for an
economy with rational investors. It is not intended to give a similar definition of viability
for the CAPM. The only conclusion would be a positive price for the Quasi—-Bond because
arbitrage can always be ruled out by a particular choice of (AGENTS), see the respective
result below.
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The price functional determines when agents are saturated in the Quasi—
Bond:

Lemma 35 Suppose the Quasi—-Bond satiates trader ¢ at some amount of

a™. Then he/she is able to purchase his/her satiating portfolio ' (o) =

a1y + w; Lif
(uwi ,—rtoat (ai*)) pe < q(wi)(1 = pg ), (CondSat)
X
where a** has to be the fized point of:
(1=, ) 0™ = P — r'oa’ (o).
Proof. The point of satiation is the solution to

max vi(opy  + /Lw;ﬂ\/ar(alx +wh.)) &

fui,ulx + 2aaixv§ + 2Cov (1X, waL) vh =

Vittay +20(1 = fig p Uy = 2ty i V5 = O,

which results in the solution for a**. Pricing the satiation portfolio yields the
inequality ¢ (a*1x) = o™ u, < q(wy). H

This condition of satiation is endogenous since it involves the pricing asset
7 being actually part of an equilibrium. Without further knowledge about 7
it is not obvious how to rule out satiation just by an exogenous and explicit
condition. Note that (NonSat) is an exogenous but abstract condition on
(AGENTS). With a solution for the equilibrium pricing asset the condition
for non—satiation will be refined in Section 2.6.

It is now intended to derive the unique, freely available asset with the largest
ratio of mean per standard deviation. For that the next definition in con-
junction with the following lemma simplifies the formulas to be calculated
afterwards. Both generalize the centered second (cross—)moment (or pseudo
inner product), (co—)variance, onto a marketed subspace without a riskless

asset, since the mean—correction by the bond is not feasible.
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Definition 36 The X —covariance of z,y € X 1is defined by

Cov (2,4) = pay (2 94) — prapt,

Likewise, the X —variance of z € X is Vary (z) := Covx (z,z) and the X -
correlation of z,y € X is Covx (z,y)/\/Varx (z) Varx (y).

Lemma 37 (Non—negative X—variance) The X-variance Varyx (z) is
non-negative for all z € X. It is zero only if z || 1x or py . = 0. Covx (1x, 2)
is zero for all z € X. Moreover, if j1,,, # 0 the following equation holds for
all z € X :

1 1
Var <z — /LZ—X) = —Varx (2).
M1y M1y
Proof. By Covx (1x,2) = p;, (1x®z) — py g, = 0 the last but one
assertion holds. If y; = 0 all assets have zero mean which implies zero X—

variance. Suppose, fiy 2# 0. Then

1 2 2
Var (z—uz—x) = E(2%) -2 Pz 4 'léz P

1x

Y
o

is only zeroif z || 1x. W

Even if the Quasi-Bond has a positive price, free unlimited improvements
could exist. To characterize the best of those, the asset with the highest
ratio of mean per standard deviation which has additionally a zero price is

determined by the following lemma.

Lemma 38 Given that the price of the Quasi—Bond is positive and 7 Jf 1x,

X = - gt (r )

M1y Varx (m) 1x

1s the asset with the smallest ratio of standard deviation per mean which s
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purchasable at zero costs and has a mean of one. This ratio is

q(m)

_ 1.
Varx (m)

Proof. Consumption streams in (7, 1 X>L N X have a zero mean and a zero
price. They just add additional variance and are therefore not desirable to
achieve minimal standard deviation per mean. Thus, desirable consumption

plans can only have the following representation

1x 1x
y =0y (7 )

1x M1 x
for a positive mean p,, and a real a,. The Quasi-Bond has the highest ratio
of mean per standard deviation but a positive price. The first asset on the
right hand side has zero mean and a positive price. It is used to make y

having a zero price at minimal variance:

Varx (m) o
1) = o D e g
Y /‘le ylLLlX
Y YVary (m)

This yields the asset given in the Lemma. Then y’s variance is given by

2 2 q(m)
o, = —— —1].
v {vw () ]
|
Since the asset x () is important in agents’ portfolio choice and in detecting

satiation it deserves its own definition:

Definition 39 The consumption stream x () defined in Lemma 38 is called

the ‘zero—cost efficient asset’.

If there are free lunches in the market the zero—cost efficient asset would
be the most desirable one. Thus for ruling out arbitrage opportunities it is

sufficient that x () is not an unlimited improvement. The following corollary
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provides a sharper condition for the viability of 7. The condition should hold

even if there is a riskless asset.

Corollary 40 In a CAPM-economy with (NonSat) and where m }f 1x # 0

holds a sufficient condition for the viability of the pricing asset 7 is

=

j. >0 and (% - 1) < min 5" (Viability)
Both conditions are also mecessary if the limiting slopes are independent of

mean, i.e. if s' () = & for alli € L.

Proof. p,. > 0 rules out arbitrage and free satiation in the Quasi-Bond.
The second condition rules out arbitrage in x () as well as arbitrage in other
unlimited improvements, since those are never efficient at zero costs like x (7)
is. Whereas the first condition is always necessary, the latter one is necessary
if the limiting slopes do not depend on agents’ starting portfolios. W

Viability will be reconsidered when in Section 2.6 it is solved for the equi-
librium properties. Therewith one is able to tighten the conditions for local

satiation and arbitrage moreover.

2.5 Portfolio Selection

In this section traders’ optimal portfolio choice is derived by proceeding in the
following way. First, the Capital Market Line is calculated. Then it is shown
that the first order conditions for traders’ choice problem are also sufficient
for a unique optimum. The Mutual Fund Theorem is then a straight forward
implication. The corollary establishing the equivalence between absolute and
relative risk aversion concludes this section.

Some calculations are investigated to determine the Capital Market Line in
terms of minimal standard deviation for a level of mean u to be attained and
a given budget b = ¢ (w%). Since an investor can achieve the wanted mean

without spending the whole budget the indicator of satiation is defined first:
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Definition 41 Agent i’s indicator function of satiation is denoted by

i i i Lif plp, > q(wi) py, and 7w 1x
T'=7 (,u , 4 (UJX)) = { 0 otherwise. )

Traders’ decision problem sounds like ‘picking their favorite pair out of the
efficient mean/variance combinations they can afford within their budget’.

The Capital Market line characterizes this efficient set.

Lemma 42 (Capital Market Line) If a z € X ezists satisfying

the optimization problem:

m1)1(1 Var(x +y) with respect to
e
t, =p and q(z) <b, for some y € X+
has a unique solution T (u, l_)) in (1x, 7). The standard deviation of the solu-

tion is a weakly convex, continuously differentiable function of the parameters
pandb. If T ) 1x # O the solution sounds

o -1x if T (u,b) =0,
& (p,b) = bq buy 5 () =1
Pl (B ) x(m) i T () =1,

The minimum variance is given by

_ 2
. K
(b M“lx) Hax + ,U/2 1 - H1x

&2 (11,0,9) = T (1, b) Vars (7)

— 2, + 0.

1x

Proof. See Appendix 2.11.2, also for some degenerated cases not mentioned

here and non—existence of solutions. W
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Note that o, and p, must satisfy the constraint

2> fle 2ty
L—piqy

The Capital Market Line consists only of efficient ;1/0—combinations:

Definition 43 The Capital Market Line for investor i given their budget
q (wY) and their non—spanned endowments w; . 1§ the upper branch of the

graph

(a- (Maq (U)E() awg(i-) 7M+Mw§(L)

for p > alui) - 5 i otherwise.
Standard deviation, & (u, b, y), is a weakly convex, continuously differen-
tiable ‘parabola’ in (u, l_)). It is constant in income if T (u, l_)) = 0 and de-
creasing if T (u, I_)) = 1. Its cross—derivative in (,u, B) is negative for T (,u, B)
= 1, and its derivative with respect to u is positive at the efficient, upper
part of the parabola. Second derivatives do not exist only at p = l_),ulX / Lo
As long as the budget is not fully exhausted, i.e. if T (u, l_)) =0, it is optimal
to buy only the best feasible asset ——1x. But if the investor is running out
of money the gap: b/~b1X / e — [ > O has to be ‘financed’ by purchasing
exactly this amount of the zero—cost efficient asset y (). This is the most
convenient way to finance the gap in the demand for mean, namely at the
lowest ratio of standard deviation per mean and at zero additional costs.

If 7 || 1x the zero—cost efficient asset is zero, x (w) = 0, which implies
that only the Quasi—-Bond and the non—spanned endowments are consumed.
Another degenerated case is 1x = 0, for which it is optimal to purchase the
pricing asset only to balance the budget. Both cases are not considered in
the sequel, but are mentioned in Appendix 2.11.2.

The Efficient Frontier does not involve the riskless asset. Thus, if there is
no riskless asset, the Capital Market Line and the Efficient Frontier coin-
cide. If (BOND) holds, the lemma describes only the Capital Market Line.
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To recover from Lemma 42 the Efficient Frontier with (BOND), one has to
interpret the Quasi—Bond as the projection of the Bond onto the marketed
subspace without the Bond, see Figure (4) of the following example.

Capital Market Line with Quasi-Bond

/{7/

| ¥
104 S
] s
B ,.// "
g :.'@.\Y
0 2 i B g 10

Standard Deviation

Figure 3: Capital Market Line with Quasi—Bond

Example 44 Consider the Figure (3). Curve ‘4’ is the Capital Market Line
as well as the Efficient Frontier, since a riskless asset does not exist. It starts
in ‘Y’, where no money is spent at all. At this point an agent consumes only
his/her non—spanned endowments. The dotted lower part of the curve rep-
resents just inefficient portfolios. The inefficient part ends at the minimum
variance portfolio, denoted by point ‘M’. Since non—spanned endowments with

positive mean have negative correlation with the Quasi—-Bond the investor
wi_ 0f the Quasi-Bond. At
X

X
point ‘C” the whole budget is spent for the Quasi—Bond. Between ‘M’ and
‘C"” only the Quasi—Bond is purchased but the budget is not fully exploited.

reaches point ‘M’ by buying an amount of iﬂ,u
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Thus, for a preference relation represented by curve ‘1’ an agent would be
satiated with a portfolio yielding a pu/o—combination represented by point
‘S’. By assuming Non—Sat, this situation cannot happen if at the same time
markets clear. If a trader’s budget was infinite he/she could choose mean/
variance combinations on curve ‘2°, which then has the highest p/o—ratio
of achievable portfolios, i.e. containing only the Quasi—-Bond beside non—
spanned endowments. Increasing mean at point ‘C’ demands for purchasing
the second best asset, x (m), which has the highest achievable p/o—ratio at
zero cost. Thus, from point ‘C” onwards on the Efficient Frontier the budget
is exhausted and x (w) worsens the p/o—ratio of the portfolio. This causes
the kink in the curvature of the Capital Market Line at point ‘C°. A consumer
with indifference curve ‘3’ would be best of with a portfolio yielding the p/o—
combination of point ‘U’, whereas an individual with indifference curve ‘5’
has no optimal choice at all, since his/her limiting slope is less than the j/o—

ratio of asset x ().

Capital Market Line with BOND

Mean

B 10 0 a0 40 50
Standard Deviation

Figure 4: Capital Market Line with Bond
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If a riskless asset is introduced the situation is quite different, see Figure
(4). The Efficient Frontier and the Capital Market Line do not coincide.
Moreover, the Efficient Frontier exists only separately if the first asset is
really a bond and other assets admit a non—zero mean. Then it is defined
as the set of variance—efficient u/o—combinations relative to the starting
portfolio ‘M’ without incorporating the bond and any additional costs. Since
the Capital Market Line is always more efficient than the ‘Efficient Frontier’
the latter does not play that important role. If non—spanned endowments have
positive variance, like in the case considered here, the Capital Market Line
is strictly concave. In the upper right corner of the graph it converges to a
ray whose slope is equal to the p/o—ratio of x (). At point ‘A’ the complete
budget is spent on purchasing the bond. An agent with indifference curve
‘1’ would stick at this point as an optimal choice. After that point agents
— being not as variance—averse as demonstrated by agent ‘1” — demand the
zero—cost efficient asset x (m), which simplifies to 1 — V:;Zﬂ) (m — 1) in case
of (BOND). An agent with indifference curve ‘2’ would demand the p/o—

combination represented by point ‘B’.

A slight modification of Condition (CondSat) given in Lemma 35, which rules
out satiation, has also a geometric interpretation, which is even more general.
Consider the point where the whole budget is spent on purchasing the Quasi—
Bond and the indifference curve through that point (corresponding to point
‘C’ in Figure (3) and point ‘A’ in Figure (4)). If the slope of the indifference
curve is smaller than the slope of the Capital Market Line at this point
(taking the derivative from the right in case of (BOND)) p/0—combinations
right from that point are preferable. Thus, satiation in the Quasi—-Bond as

well as satisfaction with a riskless portfolio are ruled out.

Corollary 45 Given that m }f 1x # 0 and Condition (Viability) hold the
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following condition:
(s, =) 1 > (w1 = p,) at (NonSat)

q(w) ) q(wy)
<M—M1X +:uw;(L70- ( "

™ T

leaQ(w%)vwg(i>)

ensures that investor i is neither satiated in the Quasi—Bond nor satisfied

with a riskless portfolio in X.

Proof. Non-—satiation in the Quasi-Bond and dissatisfaction with a riskless
portfolio is equivalent to a Capital Market Line having a larger slope than the
indifference curve at the point where the entire budget is spent on purchasing
the Quasi-Bond. This particular p/o—pair is given in the second row of the
Condition (NonSat). The slope of the Capital Market Line is equal to:

20 20 20
— — — " 1_# = p l—p,
Ti 2t = 2y 2q(wi) =R = 2

And the marginal rate of substitution of standard deviation for mean sounds:

209 o

o re’

Thus, the inequality between both slopes transforms to the condition stated
in the corollary. Involved derivatives are taken from the right in case of
(BOND). =
The Capital Market Line, which yields traders’ consumption of standard
deviation as a function of their desired mean, their budget and their non-
spanned endowments, encourages to re—formulate traders’ decision problem
as follows:

I;lél]é( I3k (/L‘Fuw;L?&(M?q(w%)’w;{L)) (P*)
By quasi—concavity of © and by weak convexity of the Capital Market Line

the first order condition of a trader’s decision problem (P*) is also sufficient
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for obtaining an unique optimum in most circumstances. Attention has to
be payed to unlimited improvements. Even if the Quasi-Bond has a positive
price the price system might permit arbitrage opportunities preventing the
existence of a solution. Moreover, a trader could be extremely risk averse,
that is to say their coefficient of absolute risk aversion is larger than the slope
of the Capital Market Line (Condition (NonSat) is violated). Then a riskless

portfolio is most favourable to them.

Lemma 46 (Sufficient First Order Conditions) Trader i’s decision
problem defined in Assumption (AGENTS) has a unique solution if the Con-
dition (Viability) holds. The first order condition (FOC):

o+ 0.6, =0, (FOQ)

of the simplified choice Problem (P*) is sufficient for determining the solu-
tion, if ™ }f 1x # 0 and Condition (NonSat) in case of (BOND) is satisfied.

Proof. The Capital Market Line defines the minimal standard deviation
o (u, q(w), wé( L) as a function of mean p. Thereby, the optimization prob-
lem can be simplified to the equivalent, one dimensional Problem (P*). Since
6 is convex in p (weakly if (BOND) and o, = 0 hold) and the preference
relation 3; is strictly convex, continuous and complete at most one solution
exists. Existence is guaranteed since 7 is viable by Condition (Viability)
excluding arbitrage opportunities. Then Condition (FOC) is also sufficient
for a differentiable v* [see Theorem 1 in (Mukherji, 1989)], if the solution is
not located at the boarder of the choice set. Boarder solutions are ruled out
by 7 }f 1x # 0 and Condition (NonSat) in case of (BOND), see Lemma 42
and Corollary 45. W

A consumer buys the Quasi—-Bond as long as they like its mean more than
they dislike its variance. If they like more mean than they are able to finance,
they have to purchase the zero—cost efficient asset, while their position of
variance is becoming worse. At one point the additional variance of a bit
more of the zero—cost efficient asset possibly off—sets its additional mean,

which determines the optimal choice. It could well be that they are satiated in
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the Quasi—-Bond without spending all of their budget. Their optimal demand
for the Quasi—Bond as well as the zero—cost efficient asset is determined by
the first order condition (FOC), which — spelled out — yields the so—called
Theorem of Mutual Fund Separation in the CAPM.

Corollary 47 (Mutual Fund) Let Condition (Viability) and © }f 1x #
0 as well as Condition (NonSat) in case of (BOND) be satisfied. Then a

trader’s optimal choice of mean it solves the equation

(Y e )_1 ( Mg (W) )
T __ + T s i + TiEm —pt )
a ( s i Varx (1)) \"" 7" Varg (n)

with a consumption of variance determined by the Capital Market Line. A
trader’s consumption plan lies in the span (1x,m) and is given by Lemma

42.27 Individual demand is positively homogenous of degree zero in ..

Proof. See Appendix 2.11.3. ®

The preceding Corollary 47 places one in the position to prove the one-to—one
correspondence between absolute and relative risk aversion. This claim was
made at the end of Section 2.3.3 contradicting the result of (Loffler, 1995).

Corollary 48 Suppose (BOND), q(1) = 1, Condition (NonSat) and Con-
dition (Viability) hold. Then in—/decreasing/constant absolute and in—/de-

creasing/constant relative risk aversion are equivalent notions, respectively.

Proof. Let i’s budget be denoted by b := g (w ). The first order condition
(FOC), which is applicable because the promises of Lemma 46 are satisfied,

sounds
p—>b—Var(r)r' =0,

by using Corollary 47 and (BOND). It induces a consumption of mean p and

Ifr || 1x investors only consume 1x and if 1x = 0 they consume w to balance their
budget whenever q (w’X) <0.
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of variance 62 = &2 (,u, b, wg( L) . Because of

o (-t

in—/decreasing/constant relative risk aversion means

9 >

The first order condition yields the implicit derivative of mean for budget:
0 —~1—ri,6;Var ()
o' 1- (rfﬂ&i +7i,) Var ()

1+2r8, (b—p)
1427, (b—p) — i Var (m)

The second equation follows from Lemma 42 in conjunction with (BOND).
Since the first order condition (FOC) is also sufficient by Lemma 46 the
nominator of this fraction has to be negative whenever Condition (FOC)
holds, which is actually the second order condition. Then it is equivalent to

write for in—/decreasing/constant relative risk aversion

T 0.

VIA

i
m

By the definition of the coefficient of absolute risk aversion these three cases

are equivalent to

o . A N
Lo = 8o S0

which corresponds to in—/decreasing/constant absolute risk aversion. W

This pre—work is an important step towards the determination of CAPM-

equilibria, which is the main issue of the next subsection.
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2.6 The CAPM—-Equilibrium

The equilibrium properties are derived by solving the market clearing condi-
tion with respect to consumption plans and endowments (see i. of Definition
5 on page 23) for the pricing asset. Since (SPANNING) and (BOND) is not
assumed the marginal rate of substitution of mean for variance appears in a

slightly different shape. Therefore the following definition is introduced:

Definition 49 The ‘adjusted marginal rate of substitution’ R* is defined by
RY = pug (1" = ) + By, -

Since all aggregated quantities are abbreviated by a bar on top the identity

R=pq, (7= pg) + Ly

holds. The following proposition establishes the properties of CAPM—equi-

libria.

Proposition 50 (CAPM—(EQU)) Suppose that an asset with non-zero
mean exists and wx # 0 holds. CAPM-FEquilibria exhibit the following prop-

erties.

1. Traders are not over satiated in the Quasi—Bond nor are they satisfied
with a riskless portfolio in case of (BOND). This implies the condition

R<O0

and for all v € 1 the condition

Covx (IDX,U&) (1 — ,ulX) > —R'R.
Both inequalities hold strictly, i.e. with ‘<’ and >’ respectively, if an
tnwvestor i is not satiated in the Quasi—Bond.
This is assumed for the following properties (and ensured by Condition
(NonSat) for at least one i € I).
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2. The pricing asset separates into the Quasi—-Bond and the market asset:

™= Hon 1)(—}-“——”(’&))(—“&1)().
lu’lx R lu’lx

It has a price

2 —
iz Vary (wx)
Rl

and the price of the market asset shows to be

B U Varx (U_Jx))
qwx) = boe +——=— | .

3. If wx }f 1x the Beta—pricing formula reads:

[l +Covx(wx,x)( (@ uﬂ).

x — w - Pw
VCW'X (wX) q X) 2 XH:[X

q(r) = .

4. Investors’ demand for mean in X sounds:

RCovx (wx,wy) — RVary (x)
R? + Vary (wx) (1 = ulx)

W= i+

Their equilibrium consumption plan in X satisfies the Tobin Separation

mwx and 1x :

1x.

i BE+ Covx (wx,wh) (1= ) (wX B uﬂlx> L
X R2 + VCLTX (71_))() (1 — ,ulX)

1x 1x

5. Consuming more mean than endowed with, incorporates a higher con-
sumption of X —standard deviation than the standard deviation of en-
dowments projected onto the market asset. If wx }f 1x the ratio of both

excess demands is equal across investors:

Covx (wyx, wk)

(4 = 1) ey~ VVorw o) - e
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6. Equations involving the pricing asset are homogeneous in 7w of degree

Z€ET0.

Proof. See Appendix 2.11.4. ®
Without loss of generality the mean of the pricing asset m can be normalized
due to equilibrium Property 6 and the property of homogeneity of individual

demand established in Corollary 47 respectively. It is natural to choose:

pr =q(1x) = iy,

which simplifies almost every expression in the CAPM. Moreover, it allows to
interpret the pricing asset as the projection of a Radon—Nikodym derivative
between the true and a pricing probability measure®® on X (or a pricing
kernel, if preferences appear to violate monotonicity in an equilibrium, see
also Section 2.9).

A desirable property of equilibria is Pareto—efficiency. Since markets are not
necessarily complete, one can only expect equilibria to be constrained Pareto—
efficient, because some Pareto enhancing exchanges lie in X*. Moreover, non—
monotonicity of utility functions can destroy general Pareto—efficiency, which

calls for a narrower definition than in the GEI-world.

Definition 51 A CAPM-allocation x' is said to be constrained Pareto—

efficient if it is in RER and no allocation in RER is Pareto—superior.

Corollary 52 Under the same prerequisites of Proposition 50 every equilib-

rium allocation is constrained Pareto—efficient.

(NonSat) ensures traders’ local non-satiation in the Quasi-Bond in any
equilibrium, which induces constrained Pareto—efficiency. A proof of con-
strained Pareto—efficiency for the CAPM with (BOND) can be found in

28Some authors choose p, = 1, so that 7 itself might be interpreted as a Radon—Nikodym
derivative. Unfortunately, for this choice a strictly positive extension of m to X would not
induce a probability measure. However, if consumption in the first period is considered,

the normalization ¢ (1x) = ff{, with Y being the market yield is more appropriate.
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[(Magill & Quinzii, 1996), (iv) of Theorem 17.3 on p. 181] and with non—
homogenous expectations in [(Giith et al., 2000), Proposition 1].

Constraint Pareto—efficiency generally holds for financial market GEI-econ-
omies, i.e. with only one physical good in all states of nature. With multiple
goods this is not the case generically in endowments, utility functions and as-
set structures, because income effects in the subsequent good markets in each
state are not efficiently taken into account by the preceding asset markets,
see Ch. 4 in (Hens, 1998). But (Geanakoplos & Shubik, 1990) have shown
that for (QUADU) the equilibrium allocation is Pareto—optimal, if (SPAN-
NING) holds, a ‘special’ riskless asset exists for one trader, and agents show

to be on the monotone part of their quadratic utility function.?’

Remark 3 Note that in RER traders are forced to consume their entire port-
folio pay—offs. Thereby, free—disposal is ruled out in RER. In the CAPM
where free—disposal is allowed it is not always optimal to consume the en-
tire portfolio pay—offs since preferences are not necessarily monotone in state
pay—offs. In this case a financial market equilibrium might exist, but not
an exchange equilibrium. Thus, for mean/variance utility functions mono-
tonicity is required if the GEI-definition of constrained Pareto—efficiency is
considered, where only the trade of consumption streams is restricted to the

(incomplete) marketed subspace, but free-disposal is permitted.

(Hara, 1997) considered the question, how equilibria change when new assets
are introduced. Hara has shown for the CAPM that a sequence of Pareto—
improving asset innovations always exists. Moreover, she investigated the
price changes of the market portfolio due to asset innovations in a CAPM
with (BOND) and (SPANNING). Suppose an introduction of assets from
X+, which are also orthogonal to the market portfolio and the riskless as-
set but not to everyone’s endowments ((BOND) and (SPANNING) is not

critical for this line of reasoning). These assets have a zero price and have

29Their result holds also for other special vNM-utility functions, for which the deriva-
tive of the Walrasian demand function with respect to income is independent of income.
Thereby the income effect leading to Pareto—inefficiency is ruled out.
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no direct income effects. But they are used by agents to hedge each other’s
risks, thus the consumption of variance strictly shrinks with those assets.?”
The price changes depend on how R reacts on an overall decreasing variance,
see (Hara, 1998). However, in general the changes of equilibria due to in-
novations not orthogonal to the market portfolio and the riskless asset are
unpredictable.

It remains a problem that the equilibrium equations are just implicit solutions
in mean. This endogeneity will pass on to almost every statement, but it is
common in the CAPM literature. Nevertheless, the properties of equilibria
established in Proposition 50 further restrict the RER. For instance only
pricing assets in (wx,1lx) have to be considered in RER. This allows to
re—formulate the conditions for no—arbitrage and non-satiation in a sharper

way.
Corollary 53 Possible equilibrium pricing assets:
R (7) = o+ By - Hony).
R Hay

rule out satiation in the Quasi—Bond by:
R'R + Covy (wx,wfx) (1 — ,U1X) >0 and R <0,

as well as arbitrage opportunities by:

My

R2 Z VCL’I"X (QIJ)() Y
(min;ey 87)

- (1_N1X) )

for possible equilibrium R' € RER.

Proof. The first claim is already mentioned in Proposition 50. The sec-
ond assertion follows from Condition (Viability) on page 56 by replacing the
pricing asset with 7 (R) .

In case of 1x # 1 it may well be that both conditions contradict for some
R > 0. Then ’R’ should be small to satisfy the first, but large to guarantee

30Those assets may not be Pareto-improving because of indirect price effects.

70



the second condition. If (BOND) is assumed the first condition reduces to
ri# > 0, which is already satisfied by definition. But note that this condition
also rules out riskless portfolios in any equilibrium.

The next example exploits the fact that in case of (QUADU) the equilib-
rium is explicitly solvable. For (QUADU) it is unnecessary to check the no—
arbitrage condition since for large mean satiation always occurs, because in
this region utility is no longer monotone in mean. Neither is it necessary
to consider arbitrage in the case of (LINU) because the limiting slopes are
infinite. Moreover, the condition for satiation is trivial in the case of (LINU).

The following example considers the verification of the condition of satiation
(NonSat) if (AGENTS) satisfy (QUADU):

Example 54 (QUADU and Satiation) Suppose (AGENTS) satisfy
(QUADU). Then any equilibrium requires that R = py >y %—,uwx and R’
= pq, (u*i - % - Mm) — i, hold. Equilibrium Property (4), which yields

the consumption in mean, transfers to:

(1 ) (R Vs ) (1= 1)) =

RCovx (wx,u&) — RWary (wyx) .

By replacing p*t with the help of the definition of R® this equation solves for
R implicitly in R :

1 5 i
T R+ Vary (wy) (i FiCoux (10 w) +

luw& — fiy <% + “‘“&L)] [R* + Vary (wx) (1 — M1X)]> .

7

Now R’ and therewith i** are exogenous constants since R is. The products
R'R have to be applied to the condition of non—satiation. If the condition is

satisfied for all investors a unique equilibrium is established.

The calculations and formulas without (BOND) are very messy. For the
matter of completeness the result for a CAPM—equilibrium with (BOND) is

given next:
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Corollary 55 (Equilibrium with (BOND))  Suppose (BOND) and
Var (wx) > 0 hold and that p.. is normalized to one. Then CAPM-equilibria
exhibit the following properties:

1. The pricing asset separates into the Bond and the market asset:

L, _
7T:1+;(7~UX_M11;X1)~
It has a price of
Var (w
Q(ﬂ->_1 77(2 X)7

and the price of the market asset sounds

Var (w
0 (i) = g+ ),

2. The Beta—pricing formula reads:

Cov (wx, x)

Var (QDX> (q (wX) - ,uw) .

q(z) = py +

3. Trader i’s consumption in X satisfies the Tobin Separation:

\SN.

P = (wX — wal) + ',

while his/her consumption of mean and variance in X sounds:

’I"i

A - A )
p= i+ =Cov(wx, wy) — =0y, and
r r
i
?: .
o' = —o0g,, respectively.
T

4. Consuming more mean than endowed with, incorporates a higher con-
sumption of standard deviation than the standard deviation of endow-

ments projected onto the market asset. The ratio of both excess demands
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18 equal across investors:

(4 = 1) T _ i Cov(wx, wh)
w? - :
o

wx 0-7I)X

Proof. Agents are never satiated with a riskless portfolio since R' = r* < 0

and r'7 > 0. The properties follow immediately from Proposition 50. W

2.7 The Mean/Variance-Economy

A consumer’s demand shows to have the ‘nice’ characteristic in that it sat-
isfies the Tobin Separation. Since every trader is only interested in mean
and variance the two chosen assets, 1 and w — pg 1, can exclusively be as-
sociated with the two goods, mean and variance, respectively. This leads
to the presumption that a corresponding economy exists, in which traders
just optimize between mean and variance as if those were perceived as real
goods. Then the market clearing condition shall hold also with respect to
those goods. This idea goes back to (Dana, 1999). It considerably simplifies
investigations about the aggregated demand in mean, since investors’ port-
folio choice is reduced to a 2-dimensional problem without considering the
complexity of the original consumption space L. This bears the risk, that

problems of satiation and monotonicity are neglected.

Neither (BOND) nor (SPANNING) are necessary for the re-formulation of
the CAPM—economy Dana proposed. The mean /variance—economy is defined

as follows:

Definition 56 (Mean/Variance—Economy and its Equilibrium) A

tuple {X, (R x Ry), (0, w', p')'} is said to be a mean/variance-economy,
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if — provided that p1, . > 0 — agents i € I solve the decision problem:

max @i<ui+-uw;L,5(uﬂojﬂU§L))

(ni,0")ERXR 4

s.t. M —pot < Py —ppi\/ Varx(w) and

RV 1, w2 L=y ;

G (u' o' wis) = | = (07)" + (u)* ——* = 2l | + 02
( X ) ,L[']_X M].X XL Xl

with a negative price —p € R__ for standard deviation and an individual
weighting factor p* for standard deviation of spanned endowments.
In this economy an equilibrium {p*, (,u*,o**)l} 15 such that investors solve

their decision problem and markets for mean and standard deviation clear:

g =py and & =+/Varx (wx).

To establish a one-to—one correspondence between the two notions of an
economy, traders’ demand in mean and standard deviation must behave in

the same way.

Lemma 57 (Demand Equivalence) The demand-allocations with respect
to mean and variance of the CAPM-economy and the mean/variance—Econ-

omy correspond one—to—one if

1. the utility functions coincide®* :
5 (1,0) = v'(,0%) on R xR,
2. the weighting factors of the standard deviations of spanned endowments
are equal to the X —correlations between —m and w'; :

P =px (—mwk), and

31 Positive affine transformations would be sufficient.
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3. the pricing asset and the (relative) price of standard deviation are re-

lated by
Varx (m)
p= YT it iy = iy
M1y
Proof. If two investors receive in both economies the same standard

deviation as a function of mean they would choose the same mean, provided
their utility functions coincide in both economies. In order to show the
if-conjecture both investors’ choice sets have to be identical for the same
endowments w'.

In the mean/variance—economy agent i’s demand for standard deviation o

is determined by his/her budget constraint for an optimal level of mean p':

foi, — po°/Varx (wy) — '
_p '

ol =

By using the conditions for p and p* this equation transforms further to

- 1 % — ¢ : ‘
o= arx () Covx (—m,w) . Varx(wi) — i
p X M1 5 \/VarX (m) Varx (w')
1 ( i (=T @ W) + iy fhi, )
= /’Lw% - — K
p M1y
i i H1y
= — wh ) — >, S—
(q ( X) a ) Varx (m)

With this result the consumption of standard deviation & (u/, 0%, w' ) is
identical to the optimal standard deviation & (u', q (w%),wi..) derived in
Lemma 42 (Capital Market Line). Thus, both investors face the same choice
sets. Because utility functions are identical the optimal demand for mean
and standard deviation is identical as well in both formulations. W

It remains to show that equilibrium allocations in mean and variance coincide

in both economies.

Corollary 58 The equilibrium allocations in mean and variance coincide in
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the CAPM-economy and the mean/variance—Economy.

Proof. Under the assumptions of the previous lemma the demand for mean
and standard deviation is equivalent in both economies. That in CAPM-
equilibria markets for mean and standard deviation in X are cleared remains
to be shown. While in equilibrium markets for mean clear by the fourth
property of Proposition 50 the market clearing condition for standard devi-
ation is implied by the fifth property of this proposition in conjunction with
the market clearing for mean.’> W

Some authors [e.g. (Bottazzi et al., 1998)] use Dana’s mean/variance-Econ-
omy as a starting point for analyzing existence and uniqueness in the CAPM.
The framework of the CAPM-economy (ENYV) is not abandoned here, be-
cause monotonicity can only be considered in this setting and the market
demand has been already reduced to a one dimensional problem by Corol-
lary 47.

2.8 Existence and Multiplicity of Equilibria

In this section some important results are reviewed regarding existence and
uniqueness (or multiplicity) of CAPM-equilibria. Whenever the properties
of CAPM-equilibria are applied, existence ensures that one is not guided by
an artefact, while uniqueness is a prerequisite of comparative studies.

The set of CAPM—equilibria shall be denoted by T C RER. The main
existence result about CAPM-equilibria is due to (Nielsen, 1990b):

Theorem 59 (Existence) In a CAPM-economy with (SPANNING) and
(NonSat) Tr # 0 holds.

Nielsen’s most general contributions about existence are (Nielsen, 1989) and
(Nielsen, 1990b). In the first article he applies the ideas first introduced in
(Hart, 1974), who proved a rather general existence result for financial mar-

ket economies. But Hart’s assumptions, most notably vINM—utility functions

32This establishes Walras’ Law for mean and standard deviation.
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with priors depending on prices, bounded consumption, and non—negative as-
set pay—offs, are not valid in the CAPM. Moreover, Hart pointed out that ex-
istence may fail, if choice sets are unbounded, which is the case in the CAPM
with admissable unlimited shot selling and unbounded support of asset re-
turns. In a more general financial market model as the CAPM (Nielsen, 1989)
has shown that (NonSat)?®? is one of the sufficient conditions®! guaranteeing
existence. In (Nielsen, 1990b) he applied this result to the CAPM. Unfor-
tunately, agents are endowed with assets which implies (SPANNING). But
this assumption does not seem to be essential to his result, since the non—
spanned endowments only determine a ‘new’ mean/variance utility function
exhibiting important properties of the old one. In (Nielsen, 1990b) Nielsen

gives sufficient conditions for (NonSat) to be satisfied:

1. Existence of a riskless asset.

2. (BOND) and §" = oo for all i € I, if investors do not agree on expected

returns.
3. The Quasi-Bond is an unbounded improvement for any trader.

4. Agents are not satiated in the Quasi-Bond while consuming the en-
tire market asset, and they are better off with their endowments than

having nothing.

(Nielsen, 1990a) considered two special cases, (LINU) and 1x || wx. In both
cases a unique equilibrium exists, if everybody’s endowments do not suffice
to purchase their satiating portfolio.

35
)

(Dana, 1999) assumes concave utility functions in mean and variance®, a
riskless asset and (SPANNING). Her very useful contribution was to show

that the equilibrium correspondence can be reduced to that of a two goods

33Nielsen calls it ‘Non-satiation at Pareto attainable portfolios’.

34Positive semi-independence of directions of improvement’ is a necessary assumption,
but which is not critical for the CAPM.

35This is a much stronger requirement than quasi—concavity in mean and standard
deviation as was pointed out above in Lemma 17 on page 38.
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economy in mean and standard deviation only (see Section 2.7). Thereby,
Dana’s proof is analytically and applies the most basic version of a standard
fixed point argument. She shows that the individual, continuous net sup-
ply of standard deviation is negative for small and positive for large relative
prices of standard deviation which implies an equilibrium price in between.
In a CAPM with concave utility functions in mean and variance and with
(SPANNING) (Allingham, 1991) investigated existence of equilibria with
positive prices for assets having a positive mean. He gave two examples
of non—existence, of which one is due to satiation and the other is due
to the violation of the price boundary. His conclusion is intuitive: Ex-
istence with positive asset prices is guaranteed, if agents’ risk aversion is
sufficiently small. (Laitenberger, 1997) extended Allingham’s result within
Dana’s mean/variance-economy. In a CAPM-economy, in which free dis-
posal in first period income is prohibited, he derived sufficient conditions for
existence — more general but similar to Allingham’s — with a positive as well

as a negative price for the Quasi-Bond.3

The properties of an equilibrium are approachable to comparative investiga-
tions and are especially of practical value, if investors can be assured of a
unique equilibrium. But this is generally not the case. The possibility of mul-
tiple equilibria in the CAPM has been illustrated by (Nielsen, 1988). Nielsen
constructed two CAPM—-economies with two equally endowed investors show-
ing to have two different equilibria each. In his first example investors have
decreasing absolute risk aversion. And in the second example each investor
consumes the same amount of standard deviation in both equilibria. The
latter case may arise if one investor has a lower and the other has a higher
absolute risk aversion from one equilibrium allocation to the other. Before
turning to the more refined results on uniqueness, one should see a direct

consequence of the equilibrium properties.
Corollary 60 (Uniqueness) Suppose that Tg # ().

- Any equilibrium in Tg is sustained by a unique pricing asset.

36Existence with the Quasi-Bond having a negative price is due to over-satiation and
prohibited free disposal, which is a suspicious situation.
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- Equilibria with the same pricing asset are identical.

- Equilibria coincide if an investor’s ratio of non—zero access demands in
mean and standard deviation (due to Property 5 of Proposition (50))

stays the same.

- Equilibria coincide if all investors consume the same standard deviation
in X across equilibria and if their risk aversion is decreasing in mean
(due to (Nielsen, 1988)).

- Tk is a singleton, if the sum of the MRSs between mean and variance

27 18 equal across equilibria.

- The equilibrium is explicitly solvable, if each individual’s MRS 2r® is

linear in mean and constant in standard deviation.

Proof. The Proposition (50) states all equilibrium quantities as parameter-
ized formulas in R and R’. The formula for the pricing asset yields the first
assertion, since in a single equilibrium R is uniquely determined. The sec-
ond claim follows from the unique solution of each trader’s decision problem,
see Lemma 46. The third condition determines an equal R and therewith
an equal pricing asset across equilibria. The same argument holds for the
fiftth and the sixth assertion. The formula establishing the consumption of
mean is linear in mean and thereby explicitly solvable, if the last prereg-
uisite is assumed. For a proof of the fourth assertion see Proposition 2 in
(Nielsen, 1988). ®

(Nielsen, 1988) claimed that a pricing asset may support distinct equilib-
rium allocation. This is not possible due to Lemma 46. From a GEI point of
view multiplicity is not surprising because of Debreu’s, Mantel’s and Sonnen-
schein’s results on the structure of market excess demand [for an overview
consult (Shafer & Sonnenschein, 1982) and (Hens, 1998)]. Their results were
successfully transferred to the CAPM by (Bottazzi et al., 1998):

Theorem 61 (Structure of Market Demand) In a CAPM with a risk-

less asset for any market portfolio with positive mean and variance and any
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finite set P C X of in pairs different and normalized pricing assets m € P,
any function T (7) : P — X with nonzero variance that satisfies Walras’ Law
and the Tobin Separation Property, i.e. T (w) € (1,wx), is the aggregate
demand of two CAPM-investors.

The somewhat sobering conclusion is, that one could find economies with
any finite number of equilibria and with varying pricing assets across equi-
libria. This negative result is soothed by some contributions investigating
the uniqueness of equilibria. (Dana, 1999) proved uniqueness under the as-
sumptions (BOND) and (SPANNING), if investor have additive separable,
quasi—concave utility functions in mean and variance and the utility func-
tions satisfy —,u% < 1.37 These assumptions lead to monotone individual
excess demand functions in mean, which implies uniqueness. But these as-
sumptions are only compatible with increasing absolute risk aversion, which
is criticized to be unrealistic. Within Dana’s framework of a mean/variance—
economy (Hens et al., 2000) contribute a corresponding result which allows
also for non-increasing absolute risk aversion — generally considered as the
more realistic behaviour. The following theorem is a slight modification of

their result, which goes through with the proof of the original version.

Theorem 62 (Uniqueness) In a CAPM-economy with (BOND), (SPAN-
NING) and w }f 1, Tg is singleton if ¥ (1, 0)" € RER every consumer i € 1
has non—decreasing or non—increasing absolute risk aversion in mean when-

ever (ut,0') < (/,Lwi, M) or (ut, o) > (Mwi, M), respectively.

Ow o

However, (Hens et al., 2000) also give a counter—example showing that the
result is not robust in markets without a riskless asset. They construct
an economy with two constantly absolute risk averse investors and without a
riskless asset, which has at least two equilibria. To all appearance uniqueness
in the general setup without (SPANNING) and (BOND) is up to now not

nicely characterized.

37This condition would imply gross substitution in an exchange economy, which in turn
leads to uniqueness, but which is not easy to interpret in the CAPM. For vNM-utility
functions it would mean a relative risk aversion less than one. (Dana, 1999) pointed out
that the so called Mitjushin—Polterovitch—condition is not transferable to the CAPM.
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2.9 Monotonicity and Positive State Prices

A very unpleasant weakness of the CAPM is the possibility of negative state
prices. This is caused by mean/variance utility functions, which are not
necessarily monotone in the consumption of state pay—offs: With more con-
sumption in a particular event it might be possible to increase variance in
such a huge (and bad) manner that the increase in mean is outweighed. Con-
sequently, investors would try to avoid more consumption in those events or,
in other words, they value an asset paying positive amounts in those events
negatively. The risk measure, the variance of pay—offs, is the source of such
a ‘negative’ behaviour of the pricing functional, which counteracts any eco-
nomic intuition, especially if one has in mind the definition of arbitrage and
the Fundamental Theorem of Asset Pricing (FTP) from the General Equilib-
rium Theory of Incomplete Markets (GEI). An arbitrage opportunity exists
in a GEI-economy, if there is a traded consumption plan with a non—positive
price, which offers non—negative returns and positive returns with positive

probability?®, formally:

Definition 63 (GEI-arbitrage) A price system q permits GEI-arbitrage if
and only if there is a x € L, N X with q(x) < 0. A pricing asset w permits
GEI-arbitrage if and only if the price system q : X — R defined by q(x) =

T e x does.

The FTP states that arbitrage for the pricing asset 7 is ruled out if and only
if an extension n € X+ exists such that 7+ is a Radon—Nikodym derivative
of an equivalent probability measure () ~ P with respect to P. In this case
all positive pay—offs in essential events z € L., are valued positively by
(m+n) e z and the extended pricing functional coincides with ¢ on X since
(m+n)ex=q(zx)forx € X.

Theorem 64 (Fundamental Theorem of Asset Pricing) Markets do
not offer GEI-arbitrage opportunities for the pricing asset m € X if and

38 Consumption today is not considered in the investment based CAPM.
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only if there is a m € X+ such that Q defined by dQ = (7 +n)dP is an P-

equivalent probability measure on (2, F) .

For finite F the proof can be found in [(Magill & Quinzii, 1996) in §9]. The
infinite dimensional case is covered by the results of (Clark, 1993), which are
just combined by the following proof:

Proof. The existence of a pricing asset m has already been established
in Lemma 33, which implies a continuous, linear pricing functional on X.
Since X is a finite dimensional subspace of L ‘approximate arbitrage’ does
not apply (with regard to X*), see Clark’s Theorem 6. Moreover, the prob-
ability space, the probability measure and the consumption space satisfy the
promises of his Theorem 7. By this theorem a continuous, strictly positive,
and linear extension of the pricing functional to the entire L exists if and only
if m does not offer arbitrage opportunities in X. The decomposition of the
pricing extension into m and 7 follows from Riesz’ representation theorem.
|

The presumption of the existence of 7 is justified for the CAPM by Lemma
33, if an asset with non-zero mean exists.®® 7+ is called the pricing density,
d@ the state price functional (particularly in case of a finite state space), and
Q the equivalent pricing measure.’’ Since 7w could be negative on essential
events, it does not necessarily define a density on its own, see Footnote 42
for an example.

Surprisingly, in the CAPM-literature the problem of non—monotonicity is
known, see (Nielsen, 1987) and (Nielsen, 1992). But the question in con-
cern has been the existence of positive asset prices instead of state prices
in (Nielsen, 1992), (Hiroshi & Hiroshi, 1995), and (Allingham, 1991). The
following example demonstrates that positive asset prices do not matter for

GEI-arbitrage, however the positiveness of state prices really does:

39For the GEI-model the case is different. X might be such that XNL, , is empty. Then
every price functional is obviously arbitrage—free in the GEI-world, which also could be
non-linear and discontinuous. Provided that X N L, # () a price functional is arbitrage—
free if and only if it is strictly positive and linear by Clark’s Theorem 2 and continuous
by Theorem 3, since X is a closed vector space, see (Clark, 1993).

49Tn intertemporal arbitrage pricing models @ is known as a martingale measure.
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Example 65 (Negative State Prices) Suppose the asset structure con-
sists only of two assets: the (BOND) and the market asset w. The sum of all
endowments shall be a non-negative random variable with positive variance.
Furthermore, let (LINU) hold, so that 7 = — ), (’% Hence, the price of the

market asset reads:

q(w) = p(w) +

S

0.

==

For negative state prices it is sufficient have:

q(w) < 0 E(w?) > pi(1 —7).

To achieve this requirement w should have in some states of nature a very

high pay—off with a very low probability to overweight the second to the first

moment. The inequality is fulfilled in the following economy:

Q
P({wi}, {wa}, {ws})

S

{wy,wq, w3},
(0.01,0.95,0.04),
(100, 1,0),
(1/18,1/30),
1 1
(7 m) =
1.95,
100.95.
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The pricing asset and the price of the market asset turn out to be:

—_

o= o (@) + 1

<

1
= —45l(100,1,0) = 1.95 - (1,1,1)] + (1, 1,1)
(—1.0427,1.0198,1.0406) and

q(w) = Eq(w)= E(rw)

100 - (—1.0427) - 0.01 + 1 - 1.0198 - 0.95 + 0 - 1.0406 - 0.04

= —0.07389 < 0.

Q

Q

In this example the non—negative market asset has positive pay—offs with pos-
itive probability. Nevertheless one would get money for buying this asset. A
third asset, which would complete the market, does not change this result,
since the bond and the market asset are already spanned. Imagine an addi-
tional Arrow-security, which pays only one unit in the first state of the world.
Its price would be negative here contradicting the no—arbitrage condition in
GEI-models.

The question of positive security prices was raised, because one observes
almost everywhere in financial markets positive prices. Hence negative asset
prices in the CAPM would be an artefact suggesting a refutation of the model.
One must oppose this view, because of at last two reasons: First of all, asset
prices are a matter of normalization. Equilibria stay the same if different
asset structures are chosen while the marketed subspace remains unchanged.
For example, if there is an consumption plan with positive mean and positive
price one is able to impose this property on all assets, i.e. by adding a large
amount of this consumption plan onto all assets. Second, in real financial
markets, assets with negative pay—offs involve the risk of bankruptcy, i.e. the
buyer’s promise to pay positive amounts in the future may not be met. The
default risk implies costs of monitoring or demands for collateral, which is
not explicitly modelled either in the CAPM nor in the GEL*' These frictions

41Tn the GEI-framework research on bankruptcy has been started recently by
(Geanakoplos et al., 1996) and (Dubey et al., 2000).
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impose a direction upon the evolution of securities in favour of developing
assets with just positive pay—offs, where the short side is kept by a large
institution with enough collateral, a broad diversification of its assets and
low costs of monitoring enforced by law. Then just by arbitrage these assets
have positive prices. Much less often one observes assets with mixed, positive
and negative, pay—offs. Futures belong to that kind of securities. In these
markets one has usually restricted participation, rules to put in collateral or
margin payments, etc.

Obviously, if for every spanned consumption stream with positive mean a
positive price is demanded, GEI-arbitrage is ruled out. But this would be
an unnecessarily strong condition.

Nevertheless, sufficient conditions for asset prices to be positive are briefly
summarized, see (Nielsen, 1992), where the first two statements are cited

from:

Proposition 66 (Positive Asset Prices) Suppose one normalizes assets
to have non-negative mean. Then the following conditions are sufficient
for the price p(A;) of asset A; € A to be positive in any equilibrium with
(BOND):

1. For all z* € RER there is an investor i € I such that

O'Ajyxi

7 o gt

2. For all z¥ € RER there is an investor i € I such that

Ha;

> S’ o xi.
O'Aj
3. For all z¥ € RER it holds that
> .
cA; = —rougl

From the first to the third the assertions are becoming consecutively stronger.
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Proof. [Sketch of the proof] The first expression results from the marginal
utility in the direction of the particular asset. The second involves the upper
bound 0, , < 0,0,. And the third condition uses the fact, that Si> g, =
— 22X in equilibrium (7 =" if (SPANNING) holds), see the fifth property in
Corollary 55. For the first two conditions one needs that marginal utilities

point in the same direction in equilibrium. See also (Nielsen, 1992). H

The first condition is also necessary if the equilibrium allocation is concerned.
It involves a covariance term, which is omitted in the second, whereas the
third makes use of an aggregated level instead of individual values. Those
conditions do not rule out arbitrage opportunities as the next example points

out.

Example 67 (Arbitrage with positive asset prices) Suppose one

changes in the last example the set of risky assets to be
Ay = (470,45,—80) and Az = (—30,+4,—-80),

so that Ay — Az = w with pg/og ~ 0.198. Agents shall share the entire
endowments symmetrically, while anything else remains unchanged. Their
equilibrium demand is z*! ~ (+37.49,+0.366, —0.009) , and z** ~ (+62.51,
+0.634, +0.009), respectively. Some computations show

TAt 1466, pua, =225, pia,/oa, ~ 0125, and
_/rn’L o) 1}*7'

Thert — 558, 4, =0.30, puu /o4, ~ 0.018.

— i o ¥ ? Az ? As 3

Since St ~ 0.205 the first and not the second of above conditions ensures

positive asset prices:
p(A2) =~ 0.784 and p(A;)~ 0.858.

Although traded assets have positive prices arbitrage opportunities are still

possible, since the market asset has a megative price by the first of above
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conditions:

Toa 2,024 > 1.95 = pu.
—rtox*
Though an equivalent pricing measure has to exist to prevent arbitrage op-
portunities, one also may achieve an arbitrage—free pricing asset in the GEI-
model which is negative on essential events if markets are incomplete. Even if
the Bond is spanned the projection 7 of a positive pricing density 7w+ 1 onto
the market span might not stay positive.*> The following theorem describes
the restrictions the no—arbitrage condition of the GEI-model imposes on 7
for the CAPM.

Theorem 68 (No—Arbitrage and Monotonicity) The following asser-
tions hold for every CAPM—(EQU) in which at least one consumer is not

satiated:

(NoArb) The price system is free of GEI-arbitrage, if for all 7 € RER
there is a n € X+ such that

0> (T —pg)l+w+n P —a.s.

(PosPi) The pricing asset assigns a strictly positive value to every essential
event if Vir € RER :

0> (T — pg)1x + wyx P —a.s.

(MPref) The equilibrium allocation makes agents not satiated in tomor-

42Example: The following figures describe a market, a pricing density and individuals’
excess demand z*, which may well constitute an equilibrium for a suitable choice of utility
functions and endowments. Q = {wi,ws,ws}, P = (1/2,3/8,1/8), x = (-7/8,1,1/2),
y =(2/3,22/9,-10), A = (y,1), 1lalyll, 93 (7 +&) =2 +y+921>0,937 =y +
931 £0,i€{1,2}, 2! =1.29y — 1.721, 22 = —2', 2’ 1w,
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row’s consumption, if Vi € I, Rl € RER :

[RR' + Covy (wx,w') (1 —py )] (0x + (7 — pg) 1x) +

[RQ + Varx (wx) (1 — ,ulx)] (wﬁ(l + (Ti — ,uwi) 1xl) —
[RCOUX (U_)X,wég) — RWary (11_))()] 1. <0 P —a.s.

The three conditions are also necessary if those are only applied to the equi-

librium allocations.

Proof. See Appendix 2.11.5. ®

It will be referred to the equilibrium properties stated in the theorem also
as conditions, e.g. Condition (MPref) ensures monotonicity. (PosPi) implies
(NoArb) because n can absorb the difference. Note that RR'4+Covx (wx, w)
(1 — iy X) is positive and R is negative since in an equilibrium investors could
not be satiated in the Quasi-Bond. Thus, if (SPANNING) and (BOND) is
assumed (MPref) is equivalent to (PosPi). In that case sufficiently small ab-
solute risk aversion, i.e. large |7|, guarantees the monotonicity of preferences.
Since the theorem is rather comprehensive it needs further explanation and
will be illuminated by three examples.

The most important question is the GEI-viability of CAPM—equilibria, i.e.
whether equilibrium prices are free of GEI-arbitrage. The first condition
guarantees this property, which differs for incomplete, X C L, from complete
markets, X = L. The aggregate risk parameter is changing from 7x to 7
when markets are completed. Moreover, the orthogonal pricing asset 1 must
be zero for complete markets. In special cases where 7y < 77, holds the no—
GEI-arbitrage condition for incomplete markets can be checked via complete
markets. The next example shows that the opposite way, i.e. no-GEI-
arbitrage in complete shown by no-GEIl-arbitrage in incomplete markets, is

generally not possible.

Example 69 (Arbitrage by completing the market) Suppose one
changes the sum of initial endowments of Example 65 to be w = (100, 1,
—1). Then the pricing asset changes to m ~ (—1.0435,1.019,1.061). If the
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security structure consists of the riskless and the market asset only, arbi-
trage is mot possible though the first state price is negative. To see this, add
(.8081, —.4296,10) € X+ approzimately two times to the pricing asset to get
a positive pricing density. Thus, there is a positive pricing density ruling out
GEI-arbitrage by Condition (NoArb). With a third, non—redundant asset the
null space of the original asset matriz becomes empty, but the pricing asset
stays the same. In this case GEI-arbitrage is possible again since the Arrow

security paying one unit in state one is traded at a negative price.

No-GEl-arbitrage demands positive prices for spanned positive pay—offs.
But it does not imply monotonicity. At investors’ optimal demand Z their

utility differential with respect to consumption # (w) in states w, which is

diw)U" (2)

€ () = T,

projected on X has to be a positive multiple of the pricing asset:
£ =Am, Ae Ry,

Thus, by no—GEl-arbitrage agents’ preferences must be monotone in all
traded positive pay—offs, but not necessarily monotone in all positive pay—
offs in equilibrium. In other words, monotonicity in X+ can be destroyed
by a suitable choice of the utility functions and wé( . although monotonic-
ity in X is assured by Condition (NoArb). The third condition (MPref)
ensures general monotonicity with respect to all positive pay—offs, so that
£ > 0 P — a.s. holds, because both are equivalent inequalities. Condition
(PosP1i) is not that important itself. At best it simplifies the validation of the
first condition. A positive pricing asset does actually not imply monotonicity,
since it determines only £ and not &'

It should be emphasized that all conditions are endogenous properties, be-
cause 7 generally depends on the particular allocation. Only if r* is linear in
mean and standard deviation, 7 adds up to an exogenous constant in equi-
librium. This holds for (QUADU), for which the following example considers
the Condition (MPref) more accurately.
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Example 70 (Positive State Prices with QUADU) Let the utility
functions satisfy (QUADU), so that T = g — > iy é in equilibrium. In

the case of complete markets the Condition (NoArb) transforms to:

Ziel % > W P —a.s. (Q-NoArb)
Observe that 7 does not change between equilibria for different asset struc-
tures. Thus, this condition is also sufficient to guaranty no—GFEI-arbitrage in
any incomplete market structure. If additionally (SPANNING) and (BOND)
s assumed, this condition is also sufficient for monotonicity and a positive

pricing asset, even in incomplete markets.

In the literature two other sufficient conditions are known to ensure mono-
tonicity in a CAPM—equilibrium with (QUADU). The first one is well known
[see for instance (Magill & Quinzii, 1996) p. 180 last sentence of the last
paragraph but one or (Geanakoplos & Shubik, 1990)]:

1
Vi:—>w  P-—as. (MQ)
2
It is sufficient to guarantee monotonicity whenever consumption and endow-

ments are non—negative. The second condition is due to (Pilgrim, 1998):

1 )
Vi:— >uw' P—a.s., (P)
SOZ
which presupposes (BOND) and (SPANNING). The first condition implies
the second if individual endowments are relatively small compared with total
endowments, e.g. if w® > 0 or w > w'. If one assumes (BOND) and (SPAN-
NING) both inequalities are stronger than the one given in the example.
This is because Condition (Q-NoArb) is equal to the aggregation of the last
el é > % If positivity of consumption is
required the Condition (MQ) is indeed sufficient for monotonicity in equilib-

inequality and because one has

rium, but it is unfortunately very strong. Without positivity constraint for
the first and (SPANNING) for the second condition there are examples such
that preferences violate monotonicity although the inequality (MQ) or (P)
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is satisfied. Thus, even though Condition (MPref) is not as simple as the
conditions (Q-NoArb), (MQ) and (P), it is generally the weakest possible,
provided that the non-—negativity constraint is not binding if imposed.*? This
property of Condition (MPref) is demonstrated in the next example by three

different economies.

Example 71 (Restricted Constraints) Consider two consumers i €
{1,2} having (QUADU) with risk parameters o' = 1/11 and ¢* = 10/101.

The environment and the asset structure is shown in the following table:

ol P | 1| 4 | 4

1] 12| 1 | -7/8] 2/3
213/8| 1] 1 |22/9
30 1/8[ 1] 1/2 | —10

Only the riskless asset and the first risky asset As shall belong to the marketed
subspace. Note that all assets are in pairs orthogonal.

In the second and third table endowments, the pricing asset, trader 1°s net
supply zx, the equilibrium allocation (all rounded figures) and the sign of
the monotonicity condition (MPref) of Theorem (68), denoted by M, are
gwen for two different economies. In both cases arbitrage opportunities do
not exist, since the pricing asset is positive by Condition (PosPi), i.e. the
market portfolio, wx, is smaller than the sum of reciprocal risk parameters,
TF—pg=1/0"+1/p* =21.1.

In the first equilibrium (see the following table) both consumers have reciprocal
risk parameters larger than each entry of aggregated endowments, i.e. (MQ)

holds. Endowments are strictly positive so that Condition (P) is valid as well.

wt w? | wx | wye T Zx xt x? | MY | M?

0.893 | 1.793 | 2.8 | —0.113 | 1.17 | 1.39 228 | 040 | — —
9.442 | 0.442 | 10.3 | —0.415 | 0.81 | —2.20 | 7.24 | 2.64 | — —
0.100 | 9.900 | 83| 1.700 {091 | —1.24 | —1.14 | 11.14 | — +

43For a binding positivity constraint the following inequality ensures monotonicity: z*!
— pipeil +7*1 <0 P — a.s., see the proof of Theorem (68).
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The second agent has much endowments in the third state, much less in the
first and the second state. His/her marginal utility at w' is highest for the
first, most likely state and lowest for the third, least likely state. Agent 2
prefers more consumption in state 2 than in state 3. Since asset 3 is not
traded, agent 2 is not able to share his/her ‘disliked’ endowments in the third
state with agent 1. But agent 2 is willing to accept more of state three and
less of state one consumption to get more consumption in state two. The first
inwvestor consumes a negative amount in state three, which makes consumer
2 wviolating monotonicity in that state, i.e. M2 > 0.

In the second equilibrium (see next table) the individual risk parameters are
larger than individual endowments, so that (P) holds but not (MQ). Now
consumption is strictly positive but non—-monotonicity is detected by (MPref)
and not by (P).

wt w? Wx | Wy T Zx x! x2 | MY | M?
0.173 | 2.540 | 3.39 | —0.68 | 1.16 1.39 (156 | 1.15| — —
6.802 | 1.313 | 10.61 | —1.30 | 0.82 | —2.20 | 4.60 | 3.51 | — —
10.90 | 9.900 | 8.69 531 091 | —1.2419.66 | 11.14 | — +

If investor 2’s endowments are reduced to 8 in the third state preferences are
monotone at the equilibrium allocation, i.e. Mz becomes a minus. However,
this is not detected by Condition (MQ), since reciprocal risk parameters are

then still smaller than aggregated endowments.

Altogether it is not surprising that state prices may be negative in a CAPM-
equilibrium. Agents perceive just two aggregated goods, mean and variance,
on which their utility functions depend positively and negatively, respectively.
Thereby it is always possible to manipulate the economy in such a way that
non—monotonicity appears in all equilibria for arbitrary mean /variance utility

functions.**

#Keep p (E) = P (E) 2% (E) > 0 constant for some E €F, while 2? (E) is increased. Mean
and variance are independently effected by p (E) and 2% (E). Hence one could choose both
values in such a way that trader i dislikes to get more of 2% (). This can always be
achieved by a suitable choice of (ENV), (MARKET) and endowments.
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It is obviously not a realistic situation when agents wish to discard money
in particular states of the consumption period. But exactly this is the case
in Example 71 investor 2 wishes to do in state three. On the other hand, a
fundamental axiom of orthodox economic theory is to demand every agent to
choose the best alternative regarding his/her preferences and capabilities. To
overcome this empirical paradox within the CAPM* but without assump-
tions like proposed in Theorem 68 two modifications of the decision problem
are briefly discussed. The first allows for free disposal and the second one
changes preferences to be lexicographic. Afterwards, alternative risk mea-
sures outside the CAPM are considered, which describe the choice problem

consistent and more thoroughly.

2.9.1 CAPM with Free Disposal

Suppose agents differentiate between decision utility (ex ante) and received
utility (ex post) just because of simplification, idleness or ignorance. Since
received utility does not influence the allocation, because it is irrelevant for
the decision, it is not explicitly modelled. Due to their decision utility traders
would dispose money into the wastebasket in states of the world in which
they are satiated. But as these particular states occur traders recycle the
‘saved’ money from the bin. Thus, when Assumption (AGENTS) shall allow
free disposal agent ¢’s decision problem has to be re—defined in the following

way:

_max Ul(z) st. <y,
(yi,Ol)ElBi(q),meL

whereas agent i actually consumes y* = A¢' 4w, tomorrow. The definition

of CAPM-equilibria remains unchanged but with regard to 4 and 6.

Lemma 72 (Zero—priced Bundles) Suppose (z¢,y') € L x B¢ (q) is trader
i’s optimal choice with respect to prices q. Then q (%) = 0 with 2* = y* — x%

> ' holds if i is not satiated in the Quasi-Bond.

45That is to say without replacing variance as the risk measure.
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Proof. If the price of z* were positive (negative) i would sell (purchase) a
small amount of the ‘useless’ but also ‘harmless’ 2% to buy the Quasi-Bond.
|

Remark 4 Note that for agent i there is neither a reason to give z* away,
because it could be useful in the future, nor to get any 2’ from another trader j
for free, because j has no reason to give it away. Thereby a weakly monotone

utility function is constructed.

Since strictly positive pay—offs in the marketed subspace may still be valued
with a zero price free disposal does not solve, only mitigates the problem
of non—monotonicity. Moreover, for a rational individual the differentiation
between decision and received utility must be criticized to be not time con-

sistent in a frictionless world.

2.9.2 Lexicographic Preferences

A second suggestion to solve the problem of non—monotonicity proposed to
the author has been lexicographic preference relations within the CAPM.
Individuals shall prefer a consumption plan to another if it is larger or if —

provided that none of both is larger — it yields a higher mean /variance utility:

Ty e
(x >y P—a.s. OR
[Px <y)-P(zx>y)>0AND U(z) > U(y)]) .

Unfortunately, the lexicographic preference relation is neither continuous nor
transitived. The latter, indispensable requirement can be repaired by elim-
inating all >—dominated consumption plans from the budget set first, but

discontinuity remains and could cause non—existence of equilibria:

40Tt is possible to choose U and P such that: x = y = 2z = z with 2 = (1,2),y =
(100,1),z = (2,1000) . The idea is that variance is increasing from z over y to z. The
increase and the variance—aversion has to be strong enough.
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Example 73 Suppose agents eliminate all >—dominated consumption plans
from their budget set first and then choose out of the remaining consumption
plans due to their mean/variance utility function. Imagine a complete asset
market with Arrow-securities for a finite Q2. Let traders have in one partic-
ular state, with a low but positive probability, relatively large endowments.
Hence, when agents choose due to the mean/variance criterion all of them
shall wish to get rid of that particular Arrow—security which pays in the state
where all of them are satiated. Thus, an equilibrium settles down only if the
price of that particular Arrow-security is negative (zero, if free disposal is al-
lowed). But for a non—positive price the choice set explodes in that particular
Arrow-security, so that the satiation point in that particular Arrow—security
1s no longer contained in the choice set. This contradicts the existence of an

equiltbrium.

2.9.3 Conclusions

To all appearances non—positive equilibrium state prices are an immanent
problem of mean /variance utility functions. Only the three conditions pointed
out in Theorem (68) guaranty arbitrage—free prices, a positive pricing asset,
and the monotonicity of consumers’ preferences in an equilibrium. These en-
dogenous restrictions ensure the reasonability of CAPM-equilibria just from

a General Equilibrium point of view, which is not really satisfactory.

Nevertheless, the CAPM’s simplicity and illuminating power led to its broad
usage in practice. An important field of future research in applied finance will
be the development of a comparably simple risk measure without incurring
the problem of monotonicity. The concluding chapter throws some light onto
alternative risk measures which are currently in the discussion. Since a fur-
ther equilibrium analysis of these alternatives would be far beyond the scope
of this chapter, the discussion remains mainly on the surface. Moreover, the
following investigation concentrates more on the practical aspects of portfolio
choice for large financial institutions, where particularly mathematical choice

problems are applied.
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2.10 Coherent Measures of Risk in Portfolio Choice —
An Outlook

As it has been pointed out in Section 2.9 the non—monotonicity of CAPM-
utility functions is in fact caused by a major deficiency of the risk—-measure,
the variance of returns: Variance is a symmetric risk measure, i.e. irrespec-
tively of the sign it penalizes quadratically the pure distance of returns from
mean.*” Thus, variance displays no sensitivity with regard to a negative
skewness of returns. This allows to find for any p/o—utility function a prob-
ability space, endowments, and assets causing non—monotonicity on certain
subspaces of the market: A possible gain in mean is more than outweighed by
an increase in variance for certain consumption plans. Nevertheless variance
is still the most popular criterion for portfolio selection in applied finance.
Even if this negative property has been recognized, the biggest advantage of
variance is simplicity, which implies intuitive results and makes it thereby

easily communicable and usable for investors.

The intention of this outlook is to sketch an alternative to variance within a
broader context of asset/liability—management in banks. Since variance and
the CAPM are sometimes regarded as old—fashioned in finance the following
discussion will refer to more topical issues of risk management. The general
story of this section is summarized by the question: What is a “good” risk
measure for institutional investors in practice? Beside variance the so—called
Value—at—Risk plays a similar important role in portfolio optimization. Actu-
ally, Value-at—Risk satisfies a different purpose than variance. Whereas vari-
ance shall represent investors’ attitude towards risk, Value-at—Risk should

mainly secure stake—holders’ interests, since investors’ bankruptcy cannot be

4TTo avoid the penalization of gains one could think of replacing variance by semi-
variance: 02 := E(min[z — x,0]%), in a p/o? —utility function. At first, actually,
Markowitz preferred semi—variance as he pointed out in his speech at the Nobel Prize
awarding 1990 (see (Reichling, 1999)). While this choice repairs monotonicity it is not
capable to mirror risk aversion with respect to gains. Since o2 is only weakly convex,
mean preserving spreads of  where x > p would not affect the utility, i.e. it implies risk
neutrality for x > . This could cause multiple solutions of the portfolio problem. Thus,

semi—variance is either not ‘perfectly’ applicable to the portfolio choice problem.
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ruled out. Sometimes this important difference is not appropriately honored,
especially if Value—at—Risk is unfoundedly considered as a risk measure for in-
vestors. Thus, dealing only with one of both risk measures the picture of real
portfolio optimization would become incomplete. Variance and Value—at—
Risk have in common that both are inconsistent with monotonicity. There-
fore a further step will be made by introducing two promising alternative
risk measures, which go beyond variance and Value—at—Risk: Worst Condi-
tional Expectation (abbreviated WCE), proposed by (Artzner et al., 1998) to
replace Value-at—Risk, and Weighted Value—at—Risk (abbreviated WVaR),
suggested by (Aspandiiarov et al., 1998) instead of variance as well as (!)
Value—at—Risk. These risk measures satisfy certain consistent and convinc-
ing axioms, which classify them as coherent. Monotonicity belongs to the
axioms, which excludes variance and Value-at-Risk from the class of co-
herent risk measures. Weighted Value-at—Risk is a flexibly parameterized
risk measure even though it cannot cover all preferences towards risk. The
WVaR can easily be integrated in an utility function. The Worst Conditional

Expectation is indeed a generalization of the Lower Partial First Moment.

The grounds of General Equilibrium Theory are abandoned here in favour
of more heuristic arguments. This is because an equilibrium model with ex-
plicitly coherent risk measures and the possibility of investors’ bankruptcy

f.48 However, it will be shown that the

is a complete research project by itsel
distinct purposes of both new risk measures are sometimes misinterpreted.
Moreover, it will become clear that although a public intervention in the risk
management of banks is economically justified Value—at—Risk alone is not
the right tool for it. For that reason the more realistic situation is consid-
ered in which an investor’s bankruptcy is taken into account as a possible
event. Thus, the bond is no longer riskless, but its pay—offs are endogenously
determined by investors’ leveraged portfolio strategy. The partial equilib-
rium between the investor (the borrower) and the lender determines the risk

adjusted interest rate on foreign capital.

48 A full General Equilibrium model with bankruptcy and incomplete markets has been
developed by (Dubey et al., 2000).
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The reader should notice that WCE and WVaR — though theoretically foun-
ded — are chosen with the view of illuminating a real world portfolio problem
and not because these are regarded as final and unique recommendations.
From a decision—theoretical point of view the question for a coherent mea-
sure of risk has no definite answer. The set of axioms which are discussed
in this section are normative in that they postulate a consistent behaviour
under risk gained from introspection. In the literature different founda-
tions of choice under risk and uncertainty exist.*® The normative axiomatics
of subjective expected utility theory, see (Anscombe & Aumann, 1963), has
been generalized to Choquet Expected Utility, see (Schmeidler, 1989) and
(Chateauneuf, 1994).>° This new approach avoids Allais’ and Ellsberg’s de-
cision paradoxes and covers also decision problems under uncertainty. Be-
side those normative approaches there is a positive descriptive theory — called
Prospect Theory — which investigates by experiments agents’ real investment
behaviour under uncertainty, see (Tversky & Kahneman, 1992). Its tenor is
that people value gains by a concave and losses by a convex, but steeper util-
ity function, while attaching proportionally more weight to events with low
probability. (Wakker & Tversky, 1993) founded the empirical Prospect The-
ory by an axiomatics, which is based on Choquet Expected Utility Theory.
While from Evolutionary Finance there is strong support for the logarith-
mic utility function, since it maximizes the expected growth rate of wealth.
(Blume & Easley, 1992) have shown that investors who deviate from log—

utility die out in the long run measured by their share on total wealth.

This section is organized as follows. In the first subsection the concept of
Value—at—Risk with its intention, definition, practical implementation, and
properties is described. Non—monotonicity of variance and Value—at—Risk is

the reason for introducing the coherent risk measures WCE and WVaR in

49The modern distinction between risk and uncertainty is as follows: Under uncertainty
the decision maker is unable to form a unique probability prior about possible events, i.e.
they consider more than one possible probability—scenario. Unique objective as well as
unique subjective probability priors are subsumed to decision under risk.

50FEssentially, the axiom of independence of prospects has been weakened to co—
monotonic independence.
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the subsection thereafter. Then the portfolio choice problem is consistently
re—formulated with the help of WCE and WVaR. Finally the conclusions

summarize the results of this section.

2.10.1 Value—at—Risk

Before the coherent risk measures are considered a digression about the so
called Value-at-Risk (abbreviated VaR) is appropriate. It has similar dis-
advantages as variance, but has been introduced to applied finance for a
different purpose than variance. Knowing VaR is necessary to understand
the need for those mentioned and further new developments regarding the

measurement of risk.

Excursion about Value—at—Risk:

At a quick glance the following paragraphs explain, why Value—at—Risk
became a very popular risk measure, how it is defined analytically, how it is
used by regulators to enforce a risk management in banks, and why it should

be used carefully in portfolio selection.

Historical background: In the past decades some major crisis of banks and
corporates distressed financial markets. A recent example has been BAR-
ING’s Bank Inc. and the Bayrische Hypotheken Bank AG. In the sector
of corporates Metallgesellschaft AG was one famous example and recently
Holzmann AG got into trouble. In all cases the risk management was inap-
propriate with regard to the business undertaken by the firms. At BARING’s
the risk of criminal betray was almost ignored, Metallgesellschaft failed be-
cause of a hedging strategy which incorporated high liquidity risk and the
Bayrische Hypotheken Bank underestimated the risk of investments in real
estates in eastern Germany after the unification. Holzmann had almost no
risk management for their real estate development projects. BARING’s,
Metallgesellschaft and Holzmann caused economic costs of restructuring, the
latter two also forced creditors to renounce parts of their loans. Whereas in
case of the Bayrische Hypotheken Bank it seems to outsiders that the hid-

den losses were partially transferred onto foreign shareholders’ shoulders in
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a merger with the Bayrische Vereinsbank AG.

In perfect markets there is no need for legislative interventions in the risk
management of public firms to improve the efficiency of markets. Actually,
markets are imperfect. Asymmetric information, high transaction costs and
bounded rationality are inevitably leading to incomplete contracts between
owners respectively stake holders and a company’s management. Incomplete
contracts are mirrored in the difficulty to enforce contractors’ interest, which
are implicitly expressed in the contracts, by a first best incentive scheme
accompanied by a monitoring of agents’ actions. For example a change in
a company’s risk profile might increase the probability of bankruptcy with
the consequence that the risk premium of senior debt does not compensate
the risk of default anymore.” A single creditor is hardly in the position to
impose a risk management in the credit contract to monitor and ensure a
certain risk profile of the debtor.”?

Moreover, these market imperfections are accompanied by internal imperfec-
tions in the principal-agent relation. A company’s responsible agents, i.e.
traders and portfolio managers in this context, are generally exposed to ad-
verse incentives. Incentive payments of traders and managers have usually
option character. Their bonuses (despite non—financial incentives) depend
in an asymmetric way positively on gains or volume and less — if ever — on
losses. Since the value of an option increases in taking higher risks (adjoint
with higher chances), the incentives are possibly concurrent with owners’ and

often adverse to stake holders’ risk preferences.”

5L A defaultable bond can be duplicated by a riskless bond and a short-put on
the company’s assets with strike price equal to the amount of outstanding debt [see
(Merton, 1976)]. The price of the put—-option rises with higher risk, i.e. the price of
the outstanding debt shrinks. One should distinguish between changes of the default
probability caused by the conventional business risk or caused by a strategical change of a
firm’s risk /return strategy. The latter source of risk may counteract stakeholders’ interest
implicitly agreed on and mirrored in the contracted credit spread. Important is not only
the probability of default itself but its change in time.

2To impose a risk—constraint might be in the interest of owners as well, but it is argued
here only in favour of stakeholders, since they are external to the firm and deserve more
protection thereby.

»3Zero risk is generally not in the interest of stakeholders as well because chances —
accompanied by risk — increase expected growth and reduce thereby in the long run the
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Last but not least high financial losses are usually accompanied by high eco-
nomic costs, for instance unemployment. Those arguments justify regulators’
intention to limit financial risks by imposing capital requirements appropriate
to banks’ risk profile.*

A different approach, which is also followed by regulators, is to increase
the transparency of banks’ risk profiles and risk management. This enables
the market to take the reputation of banks’ risk management better into
consideration. The disclosure of meaningful risk characteristics enforces a
strong incentive for banks to limit the risk of shortfall, because the conditions
of re-financing worsens with higher risk. Nevertheless, the market requires
in this case at least one commonly accepted, coherent risk measure as well.
From major financial crisis of banks and corporates Value-at-Risk gained
high popularity, since it suits nicely for measuring the risk of large shortfalls.
The Value—at—Risk is the expected amount of capital, which at the worst can
be lost at a given confidence level for an assumed probability distribution of
portfolio returns. If consequently applied the VaR—-concept helps getting

aware of and reducing the risk of extreme shortfalls.

Definition: Whereas variance displayed its strength in portfolio selection, but
was unable to discriminate between positive chances and negative risks, the
Value-at-Risk covers especially the risk of shortfall. The VaR?Z is defined
as the expected magnitude of loss the portfolio returns x fall at least below
the mean with a probability of a—percent. That is to say VaRE (z) is the

solution V' of the following equation:

for a continuous probability distributions P and a confidence level a € (0, 1).
The a—quantile p, —V is called the a—Risk Limit of z. The interpretation is,

that if a portfolio has an expected return of u, then an amount V' of economic

probability of default. Moreover, zero risk implies a zero credit spread, which lenders could
achieve also by purchasing government bonds.

> Corporates are not concerned yet. In case of banks see the publications of the Basle
Committee of Banking Supervision (www.bis.ch).
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capital, which covers first losses, secures lenders’ capital with a probability
of a—percent given the probability distribution of returns P.%

For discrete distributions of x the VaRE is generally not unique. Let o~
< a < at be the nearest neighbours of o for which there is a solution to
the previous equation.’® Then the VaRZ (z) lies between the last point of
support before and the first after the probability distribution of = crosses the

a—percentile:
VaR? (z) € [VaRL, (z),VaR._ (2)].

For discrete distributions the VaR—concept lags a definition, which guarantees

uniqueness and continuity in a. The following arbitrary choice is suggested:
VaR; (z) = (1 - B) VaRg. (x) + fVaRy- (v),

where (3 solves

for a continuous (or differentiable), positive and monotone function f with
f(0) = 0. This formula defines a unique and continuous VaR—number as a

convex combination of the extreme alternatives.

Regulators’ implementation: The VaR—concept has successfully been imple-
mented by regulators to supervise the market risk of banks’ trading books."”
This is because the market risk is seen as an important source of shortfall risk

and is the most tractable kind of risks.’® The Basle Committee of Banking

55Tt should be stressed that a “lender” is not necessarily an outsider to the bank, it
could be a different unit within the bank, if the portfolio management is a separate profit
centre.

56Tf o is not in the range of P let = = a™ hold for only one nearest neighbour of a.

5TThis concept does not apply to all banks, but to the trading books of large international
banks. Market risk covers the risk of negative price movements of liquid assets. A bank
collects in its trading book all assets and liabilities bought for short term speculations on
positive price changes.

8 Generally excepted is the following classification of risks: 1) market risk of the trading
book (e.g. negative price movements), 2) market risk of the investment book (e.g. interest
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% is planning to extend VaR-similar concepts onto more fields of

Supervision
risk, see (Basle Committee of Banking Supervision, 2001). The broad idea®,
which is only partly realized yet, is to demand from financial institutions an
allocation of economic capital to all different sources of risk.! The capi-
tal allocated display the maximal amount the bank must be willing to risk
on that particular category or portfolio with respect to a predefined loss—
percentile and time—horizon. The loss—percentile mirrors the risk—profile of
a bank. For example a bank with a Standard & Poor’s rating of A proba-
bly has a different — less rigorous — loss—percentile than an AAA-bank. If
a loss in one risk category exceeds the associated economic capital, it goes
‘hypothetically bankrupt’. The bank itself should be still alive, since it is
very unlikely that the economic capital of all categories are exhausted by a
negative shock in only one category or that exhausting shocks in more than
one category occur at the same time despite the fact that a bank has often
much higher capital reserves than actually allocated. Suppose the bank cal-
culates by a certain theoretical model its VaR for a horizon of one trading
day and a 5%-percentile. Then the number of days for which the actual
day—to—day losses exceed the associated capital should be about five out of

02 If significantly more heavy losses occur, the bank

hundred trading days.
is asked by regulators to put a multiple of the model’s VaR for this source

of risk as economic capital aside.®® The bank should then refine its theo-

rate risk for illiquid loans), 3) default risk of counterparts (e.g. credit risk), 4) operational
risk (e.g. fraud), and 5) operative risks (e.g. delays in discharging settlements).

»The Basle Committee of Banking Supervision is an international forum founded by the
G10—countries in 1974 to coordinate the national acts about the regulations of banks. In
January 2001 the committee proposed a new Capital Accord, which considerably extends
the first Capital Accord from 1988.

60Not described here is any national legislative translation, but only what is considered
as a good application of the VaR—concept in an ideal world.

61Note that an allocation of economic capital does usually not imply a physical as-
sociation. In general any association between non—collateralized assets and liabilities is
hypothetical and thereby arbitrary. However, the allocation of economic capital might
be finer than the classification of risks due to organizational purposes, for instance with
regard to separate units, country wide credit portfolios etc.

62The test-procedure capturing this property of the estimated VaR is called
“backtesting”.

63Regulators check the consistency of banks’ risk models and risk management. They
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retical model to make better VaR predictions, since, if economic capital is
fully allocated, more risk is costly, marginally in an amount of the internal
shadow price of owners’ economic capital.®* Beside the capital requirements
the VaR—concept caused a fast development in banks’ risk management. A
bank must have a theoretical model describing their risk, even if it is only a
rough estimate. Thereby the risk management becomes aware of sources of

risk. For many banks this has been or is still a big challenge.

Shortcomings: The major advantage of VaR is — similar to variance — its sim-
plicity. But the VaR has some serious limitations, which exclude it from being
a meaningful criterion for measuring risk in portfolio optimization. First of
all VaR is not quasi—convez (see the second of the following tables) and it is
only weakly monotone with respect to mean preserving spreads. Moreover,
if not defined carefully as above, VaR is discontinuous for discrete distri-
butions. All this implies that a portfolio optimization problem might not
have a unique solution or solutions behave discontinuously (“instable”) with
respect to small changes in the underlying distribution of returns. Thereby
VaR is only meaningful as an additional constraint in well defined portfolio
optimization problems.

Consider two random variables x and y with probability distributions F} and

F,, respectively. Then y is a mean preserving spread of z if

Ly =ty
and
VueR:/Fx(v)dvg/Fy(v)dv.

The last condition means that F, has more weight in the tails than F,. In

other words, = second order stochastically dominates y. A meaningful risk

value the success of banks’ internal models by backtesting based on the empirical distri-
bution of returns for a certain history.

64Usually a shadow price between 15% and 30% return per annum before taxes is de-
manded for banks’ economic capital.
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measure should detect a mean preserving spread. Variance does and any
concave vNM—utility function detects it as well. The latter would attach less
utility to y than to z, for details see (Copeland & Weston, 1979).

The point is that Value-at—Risk should be sensitive to the risk of shortfall
below a certain Risk Limit. But even though the severity of a loss can increase
by a mean preserving spread the VaR does not necessarily detect it, because
the VaR is insensitive to the conditional distribution of returns on both sides
of the Risk Limit when the mean is constant. The following table shows an

example:

P 80% | 5% | 5% | 5% | 5%

u| VaRE, | WCER,,
z |37500 | —60|—10| 0| 10|0]| 10 ~7/2
y—x| 0 |-10] o of o]0 - —
y 37500 | =70 —10| 0] 20|0]| 10 —8/2

y—x and x are comonotone, which makes y riskier. The loss severity increases
in the second state from —60 to —70, but the VaR remains the same. Thus,
whenever the Risk Limit, which is in this example equal to the VaR due to
i = 0, does not alter by a mean preserving spread neither the VaR does
change. The Worst Conditional Expectation, defined in the sequel, is the
lower partial first moment below the Risk Limit (mean below the 10%—
quantile). It changes from —7/2 for = to —8/2 for y. Thus, the WCE is
superior in measuring the severity of losses, but — as will be shown below —

is not capable to measure risk below the risk limit.

P 80% | 5% | 5% | 5% | 5% | p | VaRiy,

T 3.7500 | =60 | —10| O | 10 |0 10

y 5.6250 | =10 0 | —20| =60 | O 20
L(+y) | 46875 =35| =5 | =10 | =250 25
=9z +y) | 3.9375 | =55 | —9 | —2 310 9

Table: Neither quasi—concavity nor quasi—convexity holds
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A more methodological criticism of VaR is that a capital requirement does
not really mirror stake holders’ interest as it should be the intention of the

supervisor. This issue will be clarified at the end of this section.

Remark 5 Sometimes the Value—at—Risk is defined as the Risk Limit itself,
for instance in (Aspandiiarov et al., 1998) and (Artzner et al., 1998). But
the Risk Limit 1s no longer interpretable as the capital requirement. More-
over, it 1s often not workable if used as a constraint, because a solution to the
portfolio optimization of mean given a minimal Risk Limit might not exist.
For example if the returns x are normally distributed the Risk Limit as well

as the mean increase with increasing volume whenever
py — 14+ 0,27 (a) >0,

where ® is the cumulative standard normal distribution function (the price of
the portfolio could be zero if q(x) = 1).%5 The VaR as defined in the text is
positively homogenous in volume. Thus, increasing volume implies increasing
risk, such that a portfolio optimization problem has always a solution if VaR

18 constrained.

2.10.2 Coherent Risk Measures versus Variance and VaR

It is not surprising that this dichotomy between two popular risk measures,
variance suitable for portfolio selection and VaR applied to shortfall risk,
evoke the incentive for researches to find alternatives matching both needs
with less inconsistencies and comparable simplicity. But a closer look to the
portfolio choice problem reveals that two different risk measures reflect two
conflicting interests. On the one hand stakeholders, notably creditors, are
interested in a small default probability and — in case of default — a high

recovery rate on their exposures (low severity of losses). Their claims are

65For spherically distributed returns the so—called safety-first approaches by
(Roy, 1952), (Kataoka, 1963), and (Telser, 1956) (see also (Bawa, 1978)) apply the Risk
Limit to the p/o—portfolio selection. But for spherical distributions p/o—efficient portfolios
are also u/a—efficient since any percentile « is a strictly increasing function of o.
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in general of fixed interest, so that stakeholders can ignore the distribution
of returns above the default-threshold®®. On the other hand, stockholders
are especially interested in the distribution of returns above the default—
threshold. In case of default they hardly gain something from the bankrupt’s
estate, such that the distribution of returns below the default—threshold is of
minor interest to them.%” Since the default-threshold is an endogenous quan-
tity this would not be an equilibrium point of view. Indeed, the conditional
distribution of returns below the default—threshold effects the condition of re—
financing and has therewith an influence on the overall distribution. More-
over, in a dynamical context the conditional distribution of returns above
the default—threshold determines the default—thresholds in the subsequent
periods. This mitigates the conflict of interest between creditors and own-
ers, which nevertheless endures. Therefore regulators enhance transparency
of risk management to internalize the effects of banks’ risk strategy in the
market place of re-financing and create incentives for voluntary protections
against the risk of big shortfalls thereby.

From the regulators’ point of view two risk measures seem reasonable. One
risk measure is imposed by the regulator as a constraint to protect creditors’
interest, whereas the other risk measure is used by investors in portfolio se-
lection while taking creditors’ constraint into consideration. Variance suits
better for an optimization criterion whereas VaR helps reducing the risk of
large shortfalls. Since both risk measures have their deficiencies the two men-
tioned alternatives; Weighted Value—at—Risk for portfolio optimization and
Worst Conditional Expectation as an optimization constraint, are introduced

NOowW.

66 The amount of total outstanding liabilities is called the default threshold. The distance
to default is the amount of economic capital that can be lost before a firm goes bankrupt.
It is usually measured in units of standard deviation of firms’ asset values.

6"Whether stockholders can expect any returns in case of default really depends on
the law of bankruptcy. If one assumes an economically efficient bankruptcy procedure as
proposed by (Aghion et al., 1992) the ownership of residual rights immediately passes to
creditors in case of a firm’s default on debt. Then it is very unlikely that stockholders
might regain anything. In real legal codification the situation is quite different, since some
rights remain at the stockholders, which often allows them to compel stakeholders to cede
returns.
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The most appropriate way is to develope a minimal set of desired con-
sistent axioms a coherent measure of risk should satisfy. From a heuris-
tic point of view the risk measure should be: a single number imposing
a natural and complete order on portfolio returns; easily understandable
and computable while reflecting one’s intuitive understanding of what risk
means; and, applicable to all real financial risks. Analytical desired proper-
ties are sensitivity to and continuity in changes of the distribution of returns.
(Artzner et al., 1998) see in the following axioms the best description of a

coherent measure of risk.

Definition 74 A measure of risk p : L — R is said to be coherent if it

satisfies the following five axioms for any x,y € L :

~

. Translation invariance: p(z +al) = p(z) —a fora € R.
2. Subadditivity: p(z+1y) < p(z)+p(y).

3. Positive homogeneity: p (Ax) = Ap (z) for A € R,.

4. Monotonicity: y > x implies p (y) < p(z).

5. Relevance: x <0 and x # 0 implies p (x) > 0.

A prospect x € L is said to be an acceptable risk if and only if p (z) < 0.

(Artzner et al., 1998) define zero risk as the threshold, which separates ac-
ceptable from unacceptable risks. Moreover, the authors derive a correspon-
dence between axioms on acceptance sets and axioms on risk measures.

Translation invariance stresses that more of the riskless asset reduces risk
additively. It is intuitive that more of the riskless asset makes more risk
bearable, whereas additivity is a simplification. Subadditivity points out the
importance of diversification. This axiom means that the sum of risks of
two separated portfolios is never smaller than the risk of the joined portfolio.
Subadditivity is convincing, since the returns of both portfolios might insure
each other. Positive homogeneity is a kind of normalization, which seems

to be not necessary, but it emphasizes the simplicity of the risk measure.
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Moreover positive homogeneity can be redone in a utility function depending
on mean and the risk measure. Monotonicity is the property, which variance
is criticized for not to fulfill. It says that strictly higher returns cannot
imply higher risk. Relevance demands that purely negative returns must
have positive risk, i.e. are not acceptable.

A risk measure satisfies the first four axioms if and only if it admits the

following representation (Proposition 4.1 in (Artzner et al., 1998)):

p(x) = — inf Bp(z),
for a set P of probability distributions on (€2, F), which are called “gener-
alized scenarios”. Relevance is only satisfied, if the union of supports of
probability measures in P covers all measurable events in F (Propositions
3.1 in (Artzner et al., 1998)). The authors propose a coherent risk measure
they call Worst Conditional Expectation (WCE):

WCOEE (z) = —Iijrngp (2|2 < py — VaR? (z)) .

In the WCE the conditioning event restricts the set of probability scenarios
to assign zero probability to returns above the Risk Limit. —WCE?L (z) is
never larger than the a—Risk Limit, which is p, — VaR?Y (z). That makes
t, + WCEPL (x) a more conservative risk measure than the Value-at—Risk.
Like the Risk Limit the WCE cannot sensibly serve as a capital requirement.
For this purpose the sum p, + WCEE (z) would suite better (see next sub-
section). WCE is advantageous over VaR, since it takes into account the
conditional distribution of losses exceeding the Risk Limit.%¥ Moreover, by
a non-singleton set P WCE allows also to consider model risk and uncer-
tainty. WCE is not applicable to portfolio optimization, because it neglects
the distribution of returns larger than the scenario conditional Risk Limit.
Moreover, it is not strictly quasi—convex, which could lead to non—unique
solutions in portfolio selection. Indeed, the authors only speak from an ac-

ceptance set, the set of portfolios for which p(x) < 0. They leave open the

68 Actually, WCE is the partial first moment below the Risk Limit.
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question, how to rank acceptable portfolios. Therefrom one can conclude that
the authors developed a risk measure which is more suitable for regulators’
purposes as a constraint in portfolio selection.

(Aspandiiarov et al., 1998) propose another set of axioms for a coherent risk

measure:

Definition 75 A measure of risk p : L — R is said to be coherent if it

satisfies the following four axioms for any x,y € L :
1. Risk—Free Condition: p(x + al) = p(x) —a for a € R.

2. Strict Quasi—Convexity:

p() < ply) implies p(Bx+(1—B)y) <ply) VBe(0,1),

where equality holds if and only if x =y P — a.s.
3. Strict Continuity: p(x) — p(y) as x <y

4. Strict monotonicity:
(y—z) € Lyt implies p(y) <p(z).

An important distinction between both axiomatics is that the first applies
also to uncertainty whereas the second presumes a single subjective proba-
bility measure.%

The axioms are ordered in this way, because there is a weak relationship
between both sets. Note that for p subadditivity in conjunction with homo-

geneity leads to strict convexity, whenever p is not additive:

plaz+(1-a)y) < plaz)+p((1-a)y)
= ap(x)+(1—-0a)p(y)
< ply) ifp(z) < p(y) and

p(y)
p(y)

p(y) only if p(x) = p(y).

69To cover also different scenarios strict quasi—convexity and strict monotonicity should
hold for all P € P.
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Subadditivity is on the one hand weaker than strict quasi—convexity, since
it allows for additivity. On the other hand, whenever additivity in the first
inequality does not hold, subadditivity in conjunction with homogeneity im-
plies convexity, which is stronger than quasi—convexity. But since p is applied
as an inequality constraint, i.e. p < p, where p could be the threshold im-
posed by the regulator, it preserves weak convexity of the choice set, which
is very appropriate to achieve uniqueness with regard to an quasi—concave
optimization problem. Strict quasi—convexity should hold for p to ensure
uniqueness, because it is used as a criterion and not as a constraint in port-
folio selection. For example, the efficient frontier in terms of risk p(z) and
expected return p, subject to the constraint p < p would exist and be unique.
The following example illuminates for WCE that subadditivity is indecisive

with regard to higher risk when additivity holds.

P | 80% | 5% | 5% | 5% | 5% | u|VaRl, | WCER, | WCVE,

x (37560 10| o 10[0] 0 70/3 | 688,8
y—xz| 0 -5 5] 0| ofo] - — —

y 375 65— 5| 0ol 10[0] o0 70/3 | 872,2

Again, y is a mean preserving spread of x. Since only the payoffs below the
Risk Limit change from x to y the WCE stays equal, although y — x adds
more risk to x in states two and three. The ‘Worst Conditional Variance’ in
the last column shows it.

Neither of both axiomatics imply strict risk aversion. Risk aversion would
demand p(y) > p(z) for y being a mean preserving spread of x. For the
WCE this is only the case if the Risk Limit of y is worse than that of z. The
weaker condition p (x) > p(0) — pu,, i.e. risk aversion defined by the certainty
equivalent for some non—zero z, is satisfied for WCE but not necessarily for
general p or p.

Strict continuity of p is indeed implied by homogeneity and monotonicity.
Since homogeneity does not hold for p, continuity must be assumed sepa-
rately. Continuity implies stability of risk minimizing portfolios with respect

to small changes in the distribution of asset returns. Strict monotonicity is a
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desired property for an optimization criterion since it counts for strictly larger
returns. Monotonicity over the whole domain of pay—offs is not necessarily
required if bankruptcy is concerned. P can be defined as the conditional
probability measure of returns above the Risk Limit such that investors do

only take into account returns above the default threshold.

The axioms proposed by (Aspandiiarov et al., 1998) seem to be compatible
with a wider class of possible risk measures. Accepted, minimal requirements
a utility function should satisfy are continuity, monotonicity and quasi-
concavity. The only property the risk measure p adds to these axioms is
the risk free condition.”” However, Aspandiiarov et al. did not derive ana-
lytically a class of risk measures from their axioms as it has been done for
the first set of axioms. The authors propose an erample, which they call
Weighted Value-at—Risk:

WVaR., (z) = E In [

a

Ep (exi(—ar))} 7

where a > 0 is the penalizing factor. For a normalizing constant p being
equal to one the WV aR satisfies above axioms. Convexity of exp (—azx) is
stronger than the demanded strict quasi—convexity on L. The authors show
that if p corresponds to the percentile a to which the VaR,, is chosen the
Weighted Value-at—Risk is more conservative than the a—Risk Limit for all
parameters a, i.e.:

Va € Ryt : WVaRL, () > VaR] (z) — p,.
The WVaR is indeed a simple and flexible measure of risk, although it just
shows the well known exponential utility function in a favorable light. More-

over, this special choice is also compatible with Savage’s axiomatics induc-

"0The risk free condition gives grounds for the following conjecture not proven here: A
strictly quasi—concave, continuous utility function U induces the coherent risk measure

- (ﬁ (x — p,) + ,uI> ; and a utility function ¥ applied only to mean and risk can mimic

together with a coherent risk measure p only utility functions showing to have constant
absolute risk aversion.
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ing expected utility, since it is minus a monotone transformation of a von—

Neumann—Morgenstern utility function.

2.10.3 Coherent Risk Measures in Portfolio Choice

Suppose a portfolio manager invests owners’ capital e and foreign capital
f in J assets with non—negative pay—offs Af. The return on investment is
AO—7- f, where 7 —1 is the risk—adjusted interest rate on foreign capital. The
price of the riskless bond is normalized to one; therewith time preferences are
ignored here. In case of default, which occurs if A9 < 7 - f, creditors receive
all remaining pay—offs Af. The pricing measure () applies to the valuation
of risky pay—offs. Let the probability of default be & and & under P and @),
respectively. Thus, in case of default creditors can expect a present value at
an amount of —WCEZ (Af) from the bankrupt’s estate.

Owners impose their utility function U (z) as the optimization criterion,
whereas creditors demand a credit spread in an amount of # — 1, which is
determined endogenously by the portfolio choice 6. All participants agree on
a unique scenario P, which is assumed to be a continuous probability distri-
bution of returns. The conditions for a partial equilibrium between creditors

and the portfolio manager are as follows:

1. The portfolio manager maximizes owners’ utility by choosing the port-

folio and the right amount of foreign capital:

max U (A0 —7f) st. ¢ =e+ f.

fER 0€R]

Their utility function might be linear in expected returns and risk —
measured by WVaR —, where only the returns above the default thresh-
old, i.e. Af > rf, count:

U (z) = BEp (2|2 > 0) — élnEp (exp (—az)| 2 > 0)

for some >0 and a > 0.

Furthermore, on demand of the regulator the bank’s portfolio manager
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has to comply with the risk—constraint:
e > VaR? (A0), (CondReg)

where « is chosen to be a conservative estimate of the bank’s default

probability.”

2. Creditors are indifferent between the riskless asset and the risky debt
lend to investors’ fund with respect to the pricing measure (). This
determines the fair interest rate 7 — 1 and the risk neutral probability
of default & :

>

f=Q0—-a)if —aWCE? (Af)
VaRS (A0) = 50 — i f.

>

The last equation is equivalent to & = Q (A8 > 7 - f).

In an ideal world the endogenous Condition 2. would be part of a debt agree-
ment, which is usually contracted prior to the investment decision. Regula-
tors can internalize the latter condition for & into the portfolio decision of
leveraged banks, firms or funds as an additional constraint. Thus, the port-
folio manager would be enforced to comply with a second constraint, which
— given a contracted yield 7 — sounds

_weES (g > 1214, (CondRisk)

But this condition is indeed different from the condition imposed by the
regulator. That should not be the case, if the banking regulation intends to
protect stake holders’ interest. Only Condition (CondRisk) is economically
founded but not Condition (CondReg). The following line of reasoning will

show how the two conditions are related to each other.

"IFor rated banks the rating agencies publish historical default frequencies, which are
proper estimates of the default probabilities.

114



Taking the budget constraint and the pricing rule ¢ = /ﬁ into account while

expanding Condition (CondRisk) with a zero it transforms to

e > VaRF (Af)
+430 + WCEZ (A9) — VaR[ (A9)

is go ?
(1—a)(F—1)
1-(1-a)F

v~

<0

WCE? (A6).

J/

The first row is equal to Condition (CondReg), which would be more con-
servative if the remaining expressions of the right hand side were negative
together. The Risk Limit (equal to the &—quantile) is never smaller than

the corresponding lower partial first moment. This implies:
180 + WCES (Af) > VaRY (Af).

The risk neutral default probabilities & are empirically much higher™ than
the historical default frequencies o. And the expected return under P in-
cludes usually a positive risk premium and is therefore higher than the ex-
pected return under (). Both presumptions would imply a much more con-
servative estimate by the VaR with P than with Q:

VaRE (A9) > VaR? (Af).

Thus, the sign of the sum of all effects which occur if one moves from Condi-
tion (CondRisk) to Condition (CondReg) remains unclarified. It is hard to
say which of the two conditions is more conservative than the other. This
seems to have only an empirical answer.

To rule out the intervention of regulators, the quantities &,7 and f, the
procedure how to build the risk neutral probability measure (), and the rules

of monitoring the portfolio decisions by auditors have to be specified in the

"2Those are derived from interest rate spreads and expected recovery rates.
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debt contract. Because of transaction costs it might be justified to trust in

Condition (CondReg), which to apply is much more convenient.

2.10.4 Conclusion

In this section it has been pointed out that two risk measures are necessary to
model a portfolio manager’s choice problem more realistic. Since investors’
bankruptcy is a possible event, creditors’ preferences come into play via an
additional risk—constraint. Because of high transaction costs of contracting
on a certain risk profile, regulators impose capital constraints on leveraged
investments. Currently, the most advanced approach is to demand a level of
economic capital in an amount of the Value—at—Risk for a certain confidence
level. Therefore, it is still common in portfolio management to take variance
as the optimization criterion while holding the Value-at—Risk equal to the
amount of ventured capital. However, both measures of risk, variance and
VaR, are not strictly monotonic. Recently, two alternative risk measures
have been suggested: Worst Conditional Expectation and Weighted Value—
at—Risk, which satisfy some convincing axioms of coherentness. It has been
shown that WCE suits very well for regulators’ interest to restrict the risk—
level, especially the risk of losses on debt, while WVaR might replace variance
as a consistent optimization criterion.

By formulating the partial equilibrium between leveraged investors and cred-
itors it turned out that regulators’ demand for economic capital determined
by the VaR can only be a rough estimate of the capital necessary to protect
stake holders’ interest. In a frictionless world the right amount of economic
capital would be determined by the WCE rather than by the VaR.
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2.11 Appendix with Proofs
2.11.1 Agnew’s condition

The existence of a Bond is assumed, which allows for a correction of assets’
mean. But only a set of linear independent, risky assets are considered
explicitly, which is denoted in this subsection with A and not with A\; for
the sake of simplicity. Let P4 : R/=! — [0,1] be the distribution of asset

pay—offs. Then its characteristic function ¢ : R’ — C is defined as
o' 0):= [ P ),
RJ

implying a characteristic function ¢’ : R — C for the pay—offs of certain

portfolios @ :

o™ (t) = /R P (dt) = 67 (1)

If pay—offs are normalized to a mean of zero and a variance of one, i.e.

N

(070%0) " (A — ).

the characteristic function transforms to
T _2 *% (T 2 *% _1
¢(9 0%60) "2 (A—p,)0 (t) = o~ it(67%0) a0 A (t (OTazl&) 3 9) .

Let v (t) be the characteristic function of a distribution function F' : R —
[0, 1] generating a random variable with zero mean and unit variance. Ex-
pected utility induces mean /variance utility if and only if for all ¢ € R and
0 € R7~! yielding 67 ¢%6 > 0 it holds that

_1
P (t) = e it(07040) 2“A9¢A (t (HTO'?AQ)_% 9) .
Thus portfolio pay—offs with equal mean and variance coincide in distribution.

By replacing ¢ (/" 0%6) 2 with ¢ and #0 with 6, respectively, this equation
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transforms to Agnew’s condition (while ignoring the circumflexes):
VO e RIL ¢ e {—1,1}: ¢ (0) = emaly (g (97’0349)5) .

Since the left hand side does not depend on ( the distribution F' must ensure
that this holds for 1 either. This condition implies symmetry for F, i.e.
F(t) =1 — F(—t). The economic reason for this is that altering the sign
of a portfolio, which yields a zero mean, does not effect the distribution of

portfolio returns.

2.11.2 Efficient Frontier

Proof.  of Lemma 42: Note Var(z +y) = 0} 4 20, + 0, and 0,
= M,y — pgp, = —pp, so that just o2 is minimized by x with subject to
the constraints: pu = p, and b > g(z). It follows from Corollary 28 and
Lemma 38 that whenever p; > 0 a variance efficient solution must have the

representation:

1x % 1x
oo g (),
M1 Varx (m) 1x

The coefficients a and  are determined by the constraints:

oty =

(b — ) Pr < pand
M1y
a

\Y

0.

The solution depends on different cases:
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1. Case: py, > 0,7 Jf 1x, and p-t= > b

K1y

(h—a) = = b=

My

a = pu—b—=x%

The variance is:

Var(z+y) = (a+7)Var (—) — 2pp, + 0

1—p ( p )2 p
2 1x 1x ™ 2
= pr—=+|pn—0> —2up, +o
fi1, e ) Varx (m) py, o

Dy — 2pp.b + p?q (m)

2 2
= — 1 = 2p, + oy
q(m)pa, — 12 v

This is the most relevant constellation mainly considered in the text.

2. Case: p1;, > 0,7 || 1x and pot= > b:
X

“‘i =1y is equal to zero. But then the constraints

Thus, the asset ™ —
X

cannot be fulfilled, since all assets orthogonal to 1x have a zero price.

The best investment, which is allowed to be done, is

X

b , b
r=—1x with yu, = —p4
1

™ ™

which minimizes the difference between the desired and the feasible

mearn.

3. Case: g, > 0 and p-t=— < b:

M1y =
(for in-

RS (Sl

Observe that the almost best solution is possible if #“1—’* <
X
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stance if p, < 0). Thus

My
1—
Var(z +y) = u2$—2uuy+az.
My

4. Case: g, =0=pu=0andb<0:
Then only the budget can be balanced by:

r = —q (ﬂ_)ﬂ' with
b2 )
Var(xz + = + o2,
(@ +9) q(m)

5. Case: pi; ., =0=>p=0and b>0:

i o= 0,

Var(z+y) = o

There is no solution for py = 0 and p # 0.

In the first, most relevant case when I_)ulx < pp, the derivatives of the

variance for b and b, ;1 sound:

biiy, — fups
2 1x T
o2 = o—tix PTm g and
b Mﬂ'lu’lx - /’Lgr
2 luﬂ
) S . — ]
o Mpiq, — pi2

In the lemma the cases one and three are combined yielding the variance

_ 2
(b — P ) 1 1—

R - I x K
Var(z+y) =T (u,b) Var;:(w) + Ix _ 2pup,, + 05,

1x
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where the indicator function T (u, 1_7) is equal to one if and only if

/’1‘71' Z 5

1x

T4 1x and p

For 7 }f 1x the indicator function becomes zero exactly at the point where

B 2
(b-0f)
M1

reaches its minimum at zero. At this point the derivative of this expression

the parabola

with respect to b or j is zero either. Thus, standard deviation is continuously
differentiable with a kink in its curvature only at b = uu"l—".

X
The standard deviation defines a norm in R/ (in R/=! if 1y = 1) of the

portfolios, because 0% (0%4\1) is strictly positive definite and symmetric.

Thus, 044y = (01040, — 2up, +a§)% is a (if 1x = 1 and o) = 0 then
weakly) convex function. Along the Capital Market Line 0,4, is minimized
with respect to two constraints, which are linear in the two parameters p
and b. Then the minimal standard deviation is itself a (if1ly =1 and Ug =

0 then weakly) convex function of those parameters. W

2.11.3 Mutual Fund

Proof. of Corollary 47: A trader’s optimization problem reads:

7 i 2 7 i
max v (u + s 50 (u,q(wx),uw;))-

Variance, o (,ui, q (W), i L) , is a differentiable parabola in mean:
X

. - 2
et — i) iy
Vary ()

. 21—,[,L1 . 9
(MZ) fx—2ﬂzuw;L—|—O—w;L,
X

121



with a derivative for u equal to:

(a (wie) = wi=) .

) 1 —
My H
—27" X + 20" X 20 .
Vary () a [y s |
Therewith the first order condition:
1
—rt = 50'12”

transforms to:

(b i >1< e (W) )
i +riHa YA A B
: ( Hiy pa Varx (m) Hoses Varx (r)

If the consumer is not satiated, i.e. if T¢ = 1, the optimal mean sounds:

. q(m) = Varx () < y +M_ri).

= Varx (m) XL Vary ()

The resulting mean p® is applied to the Capital Market Line, see Lemma 42.
This yields the optimal demand in X. The cases not mentioned in the main

text are:

1. flxy=0#7:

2. If1x=0=m:

& =0 and pu' = 0.

3. If 1x # 0 = 7 consumers demand is either infinite or they are satiated

in 1)(.

If the pricing asset 7 is replaced by its positive multiple Aw, the number

A > 0 cancels down in every equation where 7 is involved. W
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2.11.4 CAPM-Equilibrium

Proof. of Proposition 50: Let R < 0 and consumers not being satiated.
The conditions for non—satiation are shown afterwards with the equilibrium

properties, which have to be established first.

Since wx || 1x leads to a degenerated equilibrium this case will not explicitly
be considered to save notation. However wy || 1x is covered by the following
calculations if one allows for zeros in the denominator to cancel down for
zeros in the numerator, which is indeed harmless, because all expressions are

. _ Mg
continuous and converge for wy — u“’—Xl x.
1x

Thus, assume wx }f 1x. The equilibrium condition to solve for is Y, ;2% =
wx implying ) . pt = Py - With the aggregated quantities w1 and 7 those

equations transform in the following way. The market clearing condition for

mean:
1 _ g (Wx)
[ Pr4AWX)
Hax am) ( (0x2) + Vary (m) ")
Varx (m)
transforms equivalently to
(F = pg) Varx (7) = prq (0x) — 1, q (7). (1)

Whereas the market clearing condition for consumption plans in X :

Wx ) — Wi _

wx =
Varx (7T> My 1x

yields the pricing asset

e Varx (m) _ Moy,
= 1 - —1 . 2
R G (7 ?

M1y
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Remind that for the pricing of any x € X
E [(wx—uﬂlx) ZE] = E(wxl‘)—uﬂ,ux
/’L]_X ILL].X
1

= —Covx(wx,x)
H1y

holds. Now it is appropriate to simplify ¢ (wx), q(7) and g (w%), and to

substitute the resulting expressions in 7 and ‘. The Equation (1) solves for

q(m):
<0 (0x) + (F — pg) p2
q(ﬂ)ZMQ( x) R< Pon) Hr
Pricing wx with Equation (2) reads:
q(U_JX> = E(U_Jxﬂ')
1
S U Varx (m) Varx (wx),

1 X Coux (x, ) piy

which is equivalent to
Vary (7) - Vary (wx) = [Covx(wx, )] .
Inserting the price of 7 from Equation (3) into Varx (7) yields

Varx (n) = q(m)pa, — 42
f1, 4 (Wx) = o Por

- R /’L7r
CO’UX(U_J)(, 7T>

R

Combining the two previous equations

., Covx (wx, )
Varx (wy)

p2Vary (wx)
Varx (m)

R = and

RQ
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follow. These two equations determine any two of the three unknown terms

q(wx),q(m) and 7. With this the pricing asset from Equation (2) sounds

m= L 1x+ﬂ——”<ﬂ)x—uﬂlx>7
My R

M1y

and the price of the market asset given by Equation (4) is

g (wy) = += <MwX + —VW’};@X)) ,

which itself simplifies the price of the pricing asset from Equation (3):

2 —
g Varx (wx)
1 Vo]

Now the pricing of any x € X by 7 reveals the famous f—pricing formula:

C Ux,
q(z) = = {MNL—OUX (ox x)]
Hq R
Hr COUX (,LDXVT) ( - o )
= —— — Wx) — Wy .
i T Var (o) q(wx) — p i

Since individual consumption plans are determined by the Mutual Fund The-
orem 47, it remains to simplify the demand for mean derived in Appendix
2.11.3:

o= e\ Ty P
s -1 Varx (m) =%
ma(wy)  Varg (r) (- s )
o(m) — Varx () q(r) — Varx (m) Huse )

With

p2 R?+ Vary (EDX) (1— 1)

q(m) —Varx (7)) = ,
(7) ~ Var (x) = /= =
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and

Varx () _ Varx (Wx) py
q(m) = Varx (1)  R*+ Varx (wx) (1 —pq,)’

as well as

q (wi) B R2,uw§( + RCovyx (wx,wt)
q(m) = Varx (m) . (R2 + Varx (wx) (1 — ulx))

the demand for mean in X is

R2Mw§( —+ RCOUX (’LT))(, wg() + VCLTX (’U_Jx) ,ulX (,u,wi(L — Ti>
RQ + VCZTX (wx) (1 — :U’lx)

7

N:

Expanding the right hand side by Hwi results in

RCovx (wx,w) — R*Vary (x)
R2 4+ Vary (wx) (1 — ,ulX)

(- )
1% _/’Lw%—’_

If wx || 1x the fraction is zero by zero X—(co)variance. From the Mutual
Fund Theorem 47 trader i’s consumption plan follows, in which the results

derived so far are inserted:

X Vary () 11y .
. Covx (ﬁ)x,wi ) i
™ {uw; + —R—X] 1y — M pn (

piVary (wx)

%

= R ’U_Jx——'uwxlx>+ o 1x

Hq

Ky

R (uwi — ,ui) + Covy (wx, w) . i
= = (IDX - Mﬂlx) + £

1x.
Varx (wy) . X

M1

The first fraction in the previous line simplifies by the solution for i as
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follows:

Covx (wx,w) B R?Covx (wx,wy) — RRWVary (Wx)
Varx (wx) Varx (wx) [}_22 + Vary (wx) (1 — leﬂ

RR + Covx (wx, wi) (1= g,
R? 4+ Vary (wx) (1 — pq,)

A %1

Now re-arrange the equation for 2% while taking the L?-norm:

Varx (%) _ R <Mw§( - Mi) + Covx (wx, wy) -
H1y VVarx (wx) py

R (,ui — Yy ) 8. _—_—
- 2o (0x, wx) \/Varx (&%).
v/ Varx (wx> \/ Varx (U_JX>
Obviously, an equilibrium is incompatible with over satiated consumers. The

condition for traders to be not over satiated in the Quasi-Bond sounds by

Lemma 35:

Py (1= ) = fin gt < 0.

With the solution for ;¢ and the definition of R’ this inequality transforms

to

RCovx (wx,wy) — R'Vary (wx) <0

R' + (1—M1X) R2 + Vary (wx) (1—/11)() B

’

which is equivalent to
R'R*> + (1 — ulx) RCovx (wx,wgf) <0.
If this equation is aggregated over ¢ € I it reads
R[R*+ (1 —py, ) Varx (wx)] <0.

Thus, it holds that R < (<) 0 if traders are not over satiated in 1x (and at
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least one trader is not satiated in 1x). Therewith the individual constraint

shows to be
—RlR S (1 — 'U’IX) COUX (U_)Xawf){) 5

where equality holds if and only if consumer ¢ is satiated.

Positive homogeneity of degree zero in 7 obviously holds, because this prop-
erty holds already for traders’ optimal demand, see Corollary 47. W

2.11.5 Positive State Prices and Monotonicity

Proof. of Theorem 68: Remind the pricing asset from Proposition 50:

T = 1x+%<’w}(—ﬂﬂ1x) with

My

R = piy (F— pg) + tgy-

The suitably chosen asset in {-} —brackets from the orthogonal subspace X+

is added to the pricing asset as follows:

T+ {1)@ + Fix <wXL _Hoxq +77)}
R It

1x
R Hay
R Iu]_X ILL].X
= 2 [(r — ) 1+ 0+ 1)

Applying the FTP yields that this pricing density should be positive P-a.s.
for some € X*. This rules out arbitrage, which is the first result, since
e/ R is negative if at least one agent is not satiated in any equilibrium (if

1, = 0 agents are always weakly satiated).
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For the second assertion one needs to have m > 0 :

0 < 1x+%(wx—’;ﬂ1x) P—as.
1x
= Bl o ) 1 4wy o
R
0 > (f—,uu—))].x—i-wx P —a.s.

Monotonicity of preferences in an equilibrium holds, if an increase in the pay—
offs in an essential event E € F by a small amount of 1 (w) also enhances
utility at the equilibrium allocation. Thus, for all essential events & € F the

derivative:

0

aa a=0

V' (s + P (B) 02 + 2aCov (2, 1) + o*P (E) (1 — P (E)))

x*i
should be positive. This inequality transforms to

(v} 0 2™) P(E) + 2P (E) (E (z*

E) — pgei) (V0 2™) >0 &
E) — plgei < — (T‘i o x*’) .

Since this inequality shall hold for all essential events it is equivalent to say
T — 1+ 771 <0 P —a.s. (*)

Inserting the equilibrium allocation from Proposition 50 the right hand side

is equal to:
. RR +Covx (wx,w) (L—pay) [ Hay
Wy = — wx — —1x
R? + Vary (x) (1 — 1y, ) f1,
i 4 RCO’UX (U_JX, w}() — RiVCLTX (wx) ]-X
_ng{ R? + Vary (wx) (1 — ulx) e

N [ ; RCovx (wx,w) — R'Vary (wx) 1
r = i i = .
/LwXJ_ Hawi R2+ Vary (wX) (1 _ /le)

If the last row is split up into two consumption streams [...] (1x + 1x.) and
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the part belonging to the Quasi-Bond is added in form of [...] p, XMII—X to
X

the second row the latter transforms to

RZ—I— (1_ ) RCO’UX (wx,wgg) —RiVarX (wx) ]-X .
MlX RQ + VCLTX (71_))(> (1 — ,ulx) le B
R'R+ (1—py,) Covx (wx,wéf)}_% 1x

R2 + Vary (wx) (l—ulx) fe,

Then this expression is added to the second term of the first row by taking R
= (T — lg) H1, + Mg, into account. Now by multiplying the whole inequality
with R? + Vary (wx) (1 — p11, ) it has equivalently been transferred to

[RR' + Covy (wx,w) (1 — py )] (Wx + (F — pg) 1x)
+ [R2 + Varx (wx) (1 — M1X)] (w_"XL + (ri — uwi) ]_Xj_)
— [RC’OUX (wx,wg() — R'Vary (’lf]x)} 1x. <0 P —a.s.

Aggregating Equation (*) over ¢ € I yields in equilibrium:

0<(pg—7)1—w P—a.s.
This is a strictly positive random variable if monotonicity holds individually.
Hence, it must have a positive second cross—moment with the Quasi—Bond,

if the latter is not zero:

E (g —7)1=w) 1x] = (pg — T) M1y — Hgy = —R > 0.

Thus, it is a necessary condition for monotonicity that R is negative in an

equilibrium. W
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3 The Foreign Exchange Rate

in Financial Markets

Abstract: The main topic of this chapter is the law of motion of foreign
exchange rates in financial markets implied by no—arbitrage arguments. In
contrast to an important part of the empirical literature, which has tested in-
formation efficiency of foreign exchange markets due to the validity of the un-
covered interest parity, it is shown that this hypothesis is generically wrong in
arbitrage—free markets. The exchange rate should be understood as a change
between two numéraires. Thereby the no—arbitrage condition implies that the
fx—rate must be equal to the ratio of the state price deflators corresponding
to the involved currencies. The complete security markets jointly determine
the state price densities of both numéraires. Using this result it turns out
that the exchange rate returns move along the short rate differential and its
linear projection onto the adjusted excess returns of risky assets — ‘adjusted’
by their prices of risk and volatilities. This projection is a premium over the
short rate differential, which — in the nominal context — contains the real
risk premium, a risk premium due to uncertain inflation and an expression
evoked by the change to nominal numéraires. Introducing into the arbitrage
pricing model the real entities of an example economy illuminates how prices
of risk are formed in an equilibrium. In this equilibrium model prices of risk
are convex combinations of each country’s specific risk factors. Thereafter
the theoretically derived representation is transformed into an econometric
equation and applied to the daily DEM/US-$ exchange rate. The data show
some significant evidence for a linear relationship between the returns from
the foreign exchange market and the excess returns of assets. There is even
more empirical support of an AR(1) process for the premium, which implies

an ARIMAX(1,1,1) process for the exchange rate dynamics itself.

3.1 Introduction

In the past decades foreign exchange (fx) markets have become more and

more liberalized. This was not only ‘lubricating oil’ for the growing interna-
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tional trade, but — even more — caused an enormously increasing international
risk—sharing in financial markets. Nowadays the largest amount of all foreign
exchange transactions are not (directly) linked to international trade affairs,
but to investments in foreign capital or stock markets. The total value of
world’s exports (goods and services) was $6.3 trillion in 1995 [(IMF, 1997)
p.176]. In contrast the “total net daily currency trading has jumped to about
$1.3 trillion”.” Furthermore just 7% (17%) of London’s (New York’s) fx—
transactions involve non—financial companies (The Economist, 1995).

Obviously from this perspective, the interest of financial institutions in un-
derstanding the behaviour of fx—markets has remarkably increased. Often
exposures in foreign currencies are undertaken not only because of specula-
tion on de—/revaluations but also to invest in ‘more’ profitable projects. This
causes the needs to adequately understand the risk incorporated in foreign

exchange rates.

3.1.1 The Uncovered Interest Parity

Although the economic literature on fx—markets had an enormous upswing
from the beginning of the 90s there is no convincing econometric model in
sight which satisfies the demand of financial institutions for unbiased fore-
casts of the exchange rate and its risk. (Frankel & Rose, 1995) surveyed™
a variety of articles concerning the empirical behaviour of exchange rates.
They emphasize as a stylized fact that fundamentals cannot explain the fx—
rate changes in the short run [Ch. 1.4, p. 1705]. Even a random walk outper-
forms many models [Ch. 1.1, p. 1691 and Ch. 1.3.2, p. 1704]. However, one
can observe a very close co-movement between exchange rates and forward
rates. This raises the question whether these findings imply the unbiasedness

of the forward expectation hypothesis (FEH™). In the pure, non-logarithmic

31t should be noted that the connection between fx—transactions and exports is usually
not one-to—one in volume. For example a role over fx—forward could cause the multiple
volume than the real hedged exposure. Nevertheless the fx—volume is remarkably about
75 times higher than the volume of trade on annual basis.

™ Also the survey of (Taylor, 1995) underpins their results.

">‘FEH’ denotes the hypothesis that the expected value of the exchange rate conditional
on the information available today is equal to the (default free) forward rate. While
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form the FEH would lead to the so called Siegel-Paradox: If the expected fx—
rate were equal to the corresponding forward rate in both countries, Jensen’s
inequality would be violated for any probability measure regarded, provided
the fx-rate is uncertain, see (Siegel, 1972). This negative result let econo-
metricians take the logarithmic form of the FEH into consideration. But the
UIP gives negative forecasts [Ch. 5(1) p. 1718].7® (Hansen & Hodrick, 1980)
tested the information efficiency of fx—markets by regressing the forecast er-
ror made by the UIP on the past realizations of this forecast error. If the UIP
were true, no more information could be gained from the price-history than
already contained in the present expectation error. But in some of the time
series they found — using a linear regression — significant information in past
realizations and the constant term. This is indeed a clue against the UIP
and — as will be shown in the sequel — not against the information efficiency

of fx—markets.

Although theoretical critique was raised against the UIP”" (and the FEH
respectively), its seeming validity is commonly held by practitioners
[e.g. (Winters, 1999)], in some amount by macro—economists [p. 16 in
(Lexton et al., 1998) among others| and econometricians [(Chiang, 1988) p.
214: “The notion of rational expectations with no risk premium can be ex-
pressed formally by the UIP” (where “the UIP” appears as a formula)]. To
the author’s knowledge the literature lacks a thorough explanation, whether

the FEH respectively the UIP might hold or not;® exemplary is the educa-

the UIP denotes the logarithmic form, which means that the expected value of the log—
exchange rate equals the log—forward rate.

"6See also (Lewis, 1995) for puzzles in fx—markets and (Hansen & Hodrick, 1980) as well
as (Chiang, 1988) for empirical tests of the UIP. (Hodrick, 1987) and (Meese, 1989) survey
the empirical literature about the FEH and the UIP.

""For example in (Siebert, 1989), who analysed the risk premium in an OLG—economy.
(Schmidt, 1993) showed the biasedness of the FEH for risk neutral investors. And
(McCallum, 1994) proposed a sound macro—economic model where neither the FEH nor
the UIP hold.

8Only recently the author learned about the Ph.D.~thesis by (Trojani, 1999). Trojani
analyses the FEH and the UIP in the context of arbitrage pricing, which is a topic in this
chapter as well. It will be mentioned if his and the author’s results coincide or diverge.
Trojani gives some hints to unpublished working papers about the FEH and the UIP which
are also cited here for reasons of completeness.
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tional article (Breuer, 1996). But it should be emphasized that in not a few
articles on continuous time finance the exchange rate is modelled in such a
way that conclusions about the UIP or FEH could easily be drawn, see e.g.
Ch. 7 of (Musiela & Rutkowski, 1997) and (Flesaker & Hughston, 1996).
These authors seemed to be not aware of the forecasting—difficulty, since
this issue is more related to macro—economics or econometrics than to their

concern of pricing derivatives.

3.1.2 Outline of this Chapter

This essay provides a more complete picture in that: it is shown in an in-
tuitively manner that the UIP— and FEH-hypothesis are non—generic; these
assertions are proved via arbitrage—pricing theory; arbitrage—pricing is em-
bedded in an equilibrium model; and, econometric results are provided sus-
taining the findings. The remainder of this section describes more accurately
the procedure to the sequel.

Economic reasons: In the following section it is shown by very intuitive
arguments that the UIP is generally a wrong hypothesis. In case of the FEH
one has to distinguish between real and nominal economies. It turns out just
by economic arguments that the FEH holds only between two economies
with real numéraires if investors were risk neutral. In this case the foreign
exchange rate as well as the interest rates are deterministic. In the nominal
context the FEH is non—generic.

FX and Arbitrage Pricing: In the next section but one the previous line
of argument is more precisely explained in an extended version of the Black—
Scholes model of continuous time financial markets. As mentioned above the
foreign exchange rate seems to be mainly determined by financial markets, i.e.
by the agents’ motivation to share risks, their speculation on different expec-
tations, etc. Fundamental factors should play an important role, but those
may affect the fx—markets more indirectly through the stocks of exporters
and interest rates than directly by foreign trade. Foreign trade is burdened
with high transaction costs. Even if domestic and foreign consumption or

investment goods or services were more or less substitutes, an arbitrage ar-
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gument by trade would hardly be applicable, because transaction costs leave
too much freedom for prices to vary in arbitrage—free bounds. Moreover,
short—sales are feasible only for very few goods and with high transaction
costs in comparison to financial assets, where short—sales can easily be real-
ized by professional traders. But transaction costs as well as the opportunity
of short—sales are evident to arbitrage pricing. Thus the determination of
the exchange rate ought to be tighter in financial markets than in export—
markets. Therefore the approach seems to be reasonable to hedge the foreign
exchange rate in the Black—Scholes framework.

Arbitrage—free pricing is based on given, observed price processes. Those
could be explained in an equilibrium model, in which the prices of risk (the
pricing—measure, respectively) are determined. To apply this idea of dupli-
cating the fx-rate one should form a complete asset market in one country
consisting of its own and of the foreign country’s financial assets. For this
purpose assets denominated in foreign currency have to be exchanged into
the domestic currency. Since the exchange rate is not an asset by itself, the
foreign locally riskless bank account, exchanged to the domestic currency,
will be priced by duplication instead. Knowing the foreign bank account
process this results indirectly in the pricing of the foreign exchange rate.
This works if the risk—factors incorporated by the fx-rate can already be
traded by other securities in financial markets. One arrives at a representa-
tion of the stochastic differential equation of the exchange rate. From this
representation it is not a big step to prove that the UIP can only be valid for
non-generic economies. This summarizes the main idea of the third section
(3.3.2).

Equilibrium foundation: The arbitrage pricing model leaves open the
determination of the prices of risk. Those prices of risk play an important
role in the law of motion of the exchange rate. Since prices of risk are
linked to the underlying risks of the economy, for instance the risk inherent
in production and endowments, they could be learned only in a framework
of a real economy. An example economy is introduced in the forth section
(3.4), which is an extension of the model developed by (Zapatero, 1995). It

turns out that the prices of risk are convex combinations of the country’s
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specific risk—factors. A reasonable conjecture from this section is that higher
profitability of investment strategies, measured as excess return over the risk
free short rate (which equals the price of their risk), could be inter-linked to
a devaluation of the currency, if the project contains mainly country specific
risks. Country fonds are examples of such investments. Therefore the fx—risk
could reduce systematically, not only by chance, the overall profitability of
investments in foreign countries. This hypothesis will be tested empirically

in Section 3.5 introduced next.

Econometric validation: After this theoretical examination the represen-
tation of the fx-rate is transformed into an econometric equation, which is
then applied to the real DEM /US-$ exchange rates. The estimation is accom-
panied with some difficulties, because the econometric equation involves un-
observable expressions like the variance of assets. Those have to be estimated
separately. The empirical results partly sustain the theoretical findings, but
are far from being exciting. In the last subsection before this chapter is con-
cluded, the idea for testing information efficiency of fx—markets is taken up
from the literature. The fx—returns are estimated via an ‘error’—correction
model, in which the unobservable premium plays the role of the forecasting
‘error’. This equation is similar to that applied by (Hansen & Hodrick, 1980)
and works reasonably well. It implicitly presumes a relatively slower fluctu-
ation of prices of risk in comparison to financial prices. It is found that
the premium of fx—returns over the short rate differential is well described
by an auto regressive process of order one, in short notation AR(1). This
implies for the fx-rate an integrated auto regressive process with moving av-
erage, in which the short rate differential is the only exogenous factor, i.e.
an ARIMAX(1,1,1)—process.

The final Section 3.6 summarizes the results of this chapter and draws the
conclusions. The appendices contain most of the mathematical proofs and

some mathematical issues to which has been referred in the main text.
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3.2 The Change of numéraire

In quite a few journal articles, as for instance in (Winters, 1999) and
(Lexton et al., 1998), the uncovered interest parity is taken as a no—arbitrage
condition or a condition of financial market equilibrium. Especially, there is
a huge literature in applied econometrics testing the informational efficiency
of fx—markets via the UIP or the FEH, for instance (Geweke & Feige, 1979),
(Chiang, 1988), and (Hansen & Hodrick, 1980) among others. This can be
justified only by means of no—arbitrage or equilibrium arguments. It will be
shown — in this section more intuitively — why both underlying hypotheses
imply a conceptual problem. In the next section a more technical arbitrage
pricing model is provided to prove some of the claims made here and to deve-
lope an econometric equation. Throughout the chapter, markets are assumed

to operate frictionless and competitive.

3.2.1 The real economy

Consider two economies each having a real numéraire to which all prices
are normalized. These numéraires are associated with a pre—defined basket
of commodities, which could also consist of only a single commodity each.
Variables which are specific to a country are indexed with ¢ € I := {d, f},
where d stands for the domestic and f for the foreign economy. Furthermore
the index ¢ means that any one of both countries is concerned even though
the set I is not always mentioned. Many equations turn out to be valid for
the domestic as well as for the foreign country. To stress it but to circumvent
double notations, by 'd it is meant f, which reads f is non d, and vice versa.
Thus, in all expressions one can substitute % = f and ¢ = d or 7 = d and
i = f, respectively. The real exchange rate X; at date t is consequently the
price of the foreign numéraire in terms of the domestic numéraire, say X;
is measured in EURO-basket per US-basket. ‘Currency’ will stand synony-
mously for the real numéraire as well as for the money. Denote with F} 7 the
forward contract singed in ¢ with settlement in 7', which involves no start—up
payments. The forward contract is the obligation to deliver one unit of the
US-basket in exchange for F; r units of the EURO-basket at time 7T'. Since
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forward and spot exchange rate can be seen from either country let X} be
defined such that X; = X = Xitf holds. The same rule shall also apply to F
but not to any other expression. The real instantaneous compound interest
rates are named ri. Then the discount factor in ¢ of future payments in T
reads b} , = exp(— ftT ri du). Consequently, the corresponding up—count fac-
tor is b’it =1/ biT, which is also called country ¢’s locally riskless savings or
bank account. Bj ;. denotes the price in currency i and period ¢ of a real zero
coupon bond delivering one unit of the corresponding basket at maturity 7'.
Throughout the chapter it is assumed that at every point in time zero bonds
are traded for all times to maturity.” The expectation operator with respect
to a probability measure P and the information available in ¢ is denoted by
E%L (+) and the conditional measure by P;.

Assume that financial markets do not offer arbitrage opportunities. The no—

arbitrage condition implies the covered interest parity®® (abbreviated CIP):

B!
t,T
For=X, B (CIP)
T
Whereas the FEH, which is defined by:
EY (X’T) = t";T, (FEH)

might be justified at most as an equilibrium condition of a very special econ-
omy. Only the stronger requirement of an equilibrium may ensure the FEH,
which is not implied by the no—arbitrage condition as it is argued in the next
paragraph. In contrast to the (CIP), which is a relation between today’s
prices, the FEH relates future prices to today’s prices. Thus, a prognosis of
future prices is only meaningful with the FEH — provided that it holds —,

which makes it very attractive in practice.

1t is sufficient if zero bonds can be replicated by existing assets. This assumption is
implied by but weaker than complete asset markets.

80The duplication of the forward exchange rate works in the following way: Lend in
period ¢ the present value, Btf 7 of one unit of the US-basket from period T’; change this
amount into the EURO-basket by the fx—rate X;; and, purchase with the resulting amount
the EURO-zero-coupon-bond By ..
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The argument for the FEH to hold in an equilibrium is based on risk neutral-
ity. Consider a risk neutral investor, who has the opportunity to sell/buy for-
ward contracts in any amount. As long as EL (Xr) /Fyr > 1 they would buy
and in the case of E% (1/X7) Fyr > 1 they would sell the forward contract,
respectively, with the intention to undo the currency exchange on the spot
market in 7'. Thus, the inequalities seem to be incompatible with an equilib-
rium. But the transactions Xr/F, 7 and F; r/X7 are not necessarily riskless,
i.e. it may well be that both E% (Xr) /F,r > 1 and P (Xr/Fyr > 1) < 1
are valid. Therefore, the inequalities are not a violation of the no—arbitrage
condition a priori. But the no—arbitrage condition has to hold in an equilib-
rium of an economy, in which agents have strictly monotone preferences. It
seems to be reasonable that the FEH applies if investors were risk neutral.

In any case Siegel (Siegel, 1972) showed the following ‘contradiction’:

Lemma 76 (Siegel’s Paradox) If the future exchange rate has positive
variance, the FEH is a contradiction to Jensen’s inequality regardless of the

probability measure entering into the expectation operator.

Proof. Suppose that E} (X7) = F/p is an equilibrium condition for risk
neutral investors ¢ € I. This implies that E% (1/X7) = 1/E%L (Xr). However
this is a contradiction to the positive variance of the exchange rate by Jensen’s

inequality since 1/z is a strictly concave function. B

Of course this ‘paradox’ would not appear if the exchange rate is determin-
istic. And this is claimed to be the only solution to the ‘problem’ of risk
neutral investors. Before a compelling argument can be given, one must ana-
lyze the equilibrium condition more deeply. Three critiques can be objected
against the FEH:

1. The cash flow caused by the transactions X7./F{; takes place in the
future at date T'. But the individual valuation of this transaction hap-
pens in t, at the same time as the decision to buy or sell the forward
contract is undertaken. Accurately the cash flow must be discounted
by b; ;. Furthermore this transaction needs an investment of one do-

mestic or foreign currency unit in period 7', so that the cash flow is
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actually X7./F{; — 1 without starting costs (or X7/ F}, with an initial

investment of Bj ).

. In the — somewhat more realistic — case of risk avers investors the mar-
ket valuation of portfolio returns takes their risk aversion into account
via risk premiums. More elegantly the prices of risky assets can be writ-
ten as the expected value of their discounted cash flows with respect
to the so called risk neutral probability measure, say (), the measure

which ‘adjusts’ P to the risk aversion of market participants.

. The valuation must be understood as relative to the numéraire, which
is here the locally riskless bank account in one of either currencies. The
real interest rates generally differ in both countries. Moreover the atti-
tude towards risk might depend on the numéraire regarded. Therefore
it is reasonable to change the measure according to the currency in
which the cash flow happens to be, i.e. either Q¢ or Qf. Note that
the different measures do not exclusively belong to either the domestic
or the foreign investors, but to the different numéraires!®! For exam-
ple, the portfolio X7/F;7 — 1 is the obligation to receive or deliver
the EURO-basket, whereas F; 7/ X7 —1 is the reciprocal transaction in
terms of the US—basket. To the first transaction the domestic measure

applies and for the latter the foreign measure is appropriate.

In an equilibrium there is at least one ‘pricing’ probability measure Q° for

each numéraire ¢ = d, f on which the investors can agree. Putting the critique

together, for any marketed contingent claim H® with a price process H;

measured in the respective currency and paying H% units in 7' one arrives at

the following no—arbitrage condition:

EY: [V, pHy] = Hf P —a.s. (NA)

81Gince the foreign investor has monotone preferences in the EURO-basket as well it is
misleading to speak from the viewpoint of a domestic investor only because the cash flow
happens to be in the EURO-basket.

150



To postulate equilibrium prices is a rather demanding description of the
price mechanism in financial markets. A much weaker and more realistic
requirement is that prices do not offer arbitrage. An arbitrage opportunity
is a non—negative marketed contingent claim which involves no investments
while guaranteeing positive pay—offs with positive probability. In more tech-
nical terms this means there is a contingent claim with a price process H* and
there are two periods of time s < ¢ for which H! < 0 and P, (H; > 0) = 1 and
at least one of both prices is P—essentially different from zero. It is a well-
known result, that arbitrage is ruled out whenever a risk neutral probabil-
ity measure exists (apart from mild restrictions on the trading strategies®?).
The risk neutral probability measure implies the valuation by (NA) for all
marketed contingent claims. The reverse conclusion is also true under an
additional fairly mild technical assumption.®® Therefore one speaks of (NA)

as the no—arbitrage valuation.

The existence of arbitrage prevents price processes from belonging to an
equilibrium. However if arbitrage opportunities do not occur there could exist
an economy sustaining these prices in an equilibrium. The simplest economy
which could be constructed to sustain an arbitrage—free price system is a one—
consumer economy, which has a no—trade equilibrium at the prices regarded.
More sophisticated examples exist due to the theorems of Sonnenschein—
Mantel-Debreu and their extensions to financial markets, see the classical
survey (Shafer & Sonnenschein, 1982) and the more recent, less technical
contribution (Hens, 1998).

In the special case of the forward contract the initial investments H; and

final pay—offs H% are

Hj = Eji [bip] = Bjp and Hp= Xi/F/p.

82Ponzi games are meant here, see next Section 3.3.2.
83The additional requirement is the non-existence of approzimate arbitrage, see next
section 3.3.2.
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This implies by (NA)
Ef: [birXy] = X{ B

The FEH must be shown from this perspective! The next lemma considers
the case of risk neutrality. Investors are regarded here as risk neutral in
one of the numéraires, if their von-Neumann-Morgenstern utility function
is additive separable and affine with only time—dependent coefficients in this

particular numéraire.

Lemma 77 If investors are risk neutral with respect to one of the numéraires,
the FEH holds for this particular numéraire in any equilibrium®. In this case

the corresponding interest rate is a deterministic process.

Proof. Suppose investors were in one numéraire risk neutral and consider
only the consumption in this particular numéraire. Their marginal rate of
substitution (MRS) between the consumption of two periods of time would
be independent of the level of consumption and therefore independent of the
realized state of the world. Then in any equilibrium the continuously com-
pound real interest rate must be equal to the investors instantaneous MRS of
the corresponding good between two periods. Otherwise investors demand in
this numéraire would be suboptimal. This leads to a non—stochastic interest
rate, which might only be time-depended. Risk-—neutrality in one currency
means that either Q¢ = P or P = Qf. The one-sided FEH follows then from

the no—arbitrage valuation (NA), because the discount factor cancels down:
Bf,T = Eé)z [ iTX’fF/FtZT]
= BZ,TEégi [X7] /F;SZT =

Fti,T = E}; [X:ZF} :

84 Implicitly it is assumed here, that if there exist multiple equilibria, each is stable over
the equilibrium path. Once an equilibrium settled the investors have the rational expectation
to stay in this particular equilibrium.
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Corollary 78 If investors are risk neutral in both currencies, the real ex-

change rate is a deterministic process in any equilibrium, which trivially im-
plies the FEH.%

Proof. By the previous lemma, the FEH would hold in any equilibrium
with risk neutral investors. The exchange rate must be non-stochastic in
this case as Siegel’s Paradox shows.

This proof by contradiction is economically not insightful. Here is the direct
argument:

The MRS between the numéraires in a given period would be also indepen-
dent of the level of consumption and therefore independent of the realized
state of the world. This is because investors have then linear utility func-
tions in both numéraires with non—stochastic, but possibly time—-dependent
coefficients. The MRS between the numéraires in a particular period, which
is the ratio of two non—stochastic coefficients, has to be equal to the spot
price in equilibrium at that time. But this is the exchange rate of the two

currencies. &

However if investors are risk avers one can hardly object the three refutations
to the FEH stated above. The no-arbitrage valuation (NA) does also not
give any support for the logarithmic form of the FEH, which is the UIP®:

E% (In X7) = In F . (UIP)

The UIP is much more popular than the FEH, because it is usually argued,
that the UIP avoids Siegel’s Paradox. With the definition of continuously

compound zero rates:

) 1 .
:,T = _T _ t ln BZ,T?

and in conjunction with the CIP the UIP transforms to the following, well

85 This result does not stand in contrast to (Schmidt, 1993), who showed the biasedness
of the forward as a predictor of the spot exchange rate for risk neutral agents, because he
considered inflation risk. The corresponding result follows below.

86Note that the basis of the logarithm is irrelevant by log, x = Inz/Inb.
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known equation:
EL (In Xr — InXo) = (T — #) (RZT - R{T) .

Actually, the naming “Uncovered Interest Parity” is due to the expression
R{; — Rl in this equation.’”

Indeed it has been shown that the premises of Siegel’s Paradox contradict,
namely positive variance of the exchange rate and risk neutrality. Therefore
the ad-hoc argument of avoiding Siegel’s paradox in favour of the UIP is

meaningless.

It has not been shown yet that there cannot exist exceptional economies in
which accidentally the FEH or the UIP could hold in equilibrium (e.g. FEH
and UIP obviously hold in any economy without risk). The claim here is

that both hypothesis are not generic:

Conjecture 79 If investors are not risk neutral with respect to both numér-
aires, the FEH and the UIP do not hold in general.

The proof of this conjecture with regard to the UIP is one of the main results
in the next section (see Proposition 93).

Observe that any pay—off can be valued by no-arbitrage in either of both
currencies. Therefrom one is able to calculate the change of measure, which
has to be taken into account, if in the valuation of random returns the numér-

aire changes:

V marketed H' : Hy = Ep: [bj pHp |
= X/Ey [bpHy/X;] . (VAL)

870ften the UIP is re formulated with discrete compound zero rates R, which are
. L\ (T
defined by Bj, = (1 + R;T> . Then usually the approximation: R{, — R}, =
(14 ffp) ~In (14 R p) = Ry — Rl is applied.
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This is implied by the change of measure:*®
dQ’| _ X, b,
de t XO bg,t .

Since the right hand side starts in one and is strictly positive the following

lemma remains to be shown for establishing the change of measure .

Lemma 80 Given that all quantities admit integrability, the no—arbitrage

-~
X} byt

valuation (NA) implies that T2t is a Q' ~martingale.>
0 Y0,t

Proof. This is an immediate implication of (NA) by taking the locally

riskless bank account 1/ baft as the asset H," to be valued in currency i:

ﬁbé’t — Et. &O_T
Xibe, ¢\ X by'y

This means that under the risk neutral measure @ the instantaneous return
Bo’s
b,

hand is the interest rate differential ri —r,". Thﬁs, the UIP holds with respect

to the risk-neutral measures ()¢ only instantaneously.

of the exchange rate X/ is equal to that of whose return on the other

Suppose that for each numéraire a so—called likelihood ratio process z* exists
which changes the physical probability measure P into the risk neutral mea-
sure @', i.e. Ep, (vr) = Ep (21 27/ 2{) . Since the price in t of any contingent
claim paying in T is given by Hj = E}, (Hyb, ; 2%/ 2}), b ,2i is called the

state—price deflator. From the previous lemma follows:

Y28 V) X, bt
E}( TzT):E@( tzT) P—as. withY, = =t

YTZZ

88The change of measure is not necessarily unique. All those changes of measure come
into question, for which the right hand side is multiplied by a positive local martingale w,
which starts in one and satisfies: V marketed H"LQi (ul — 1) .

89 This result resembles Lemma 88 proved in Section 3.3.2.
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Although it would not be unique by that argument, a reasonable choice for
the exchange rate solving this equation is

foof
X, = Xo%z—;.
This equation stresses best the role of the exchange rate as the vehicle which
consistently transfers different numeéraires into each other. Since the bank
account 1/ bgft is not the only asset H," valued this way, the proposed is indeed
a unique solution if domestic and foreign markets were complete. Thus, in
case of complete markets the UIP imposes the following restriction onto the

exchange rate dynamics:

Ep(nXr)—InX, = Ep (ln b, ) — Ep (Indd,2)
= InB/; —InB};, by UIP
= InEp (b(];tztf) —InEp (bfitzf) .

Neither rational expectations nor absence of arbitrage can provide a justifi-
cation to pull up ‘In’ in front of the expectation operator from the right hand
side of the first to the last equation. Risk neutrality can, but just because it
implies deterministic processes. In the sequel it is shown, that this restriction

turns the UIP into a non-generic property, even in incomplete markets.””

3.2.2 The nominal economy

Prices are observable only in nominal quantities. Money introduces further
risk into the economy, namely the risk of inflation. In other words, nominal
riskless assets are risky in real terms. The equilibrium conditions must pay

attention to this fact. However the neutrality of money is assumed in the

99The conditions implying the UIP under the measures P and (), respectively, are quite
different in (Trojani, 1999). Trojani’s Proposition 4.7 demands that bj ,z{ and bf ;, re-
spectively, are conditionally uncorrelated with the exchange rate X} for the UIP to hold
under P and @), respectively. This is questionable, because the logarithm in the UIP
makes correlation irrelevant, and the exchange rate is generally not uncorrelated with
those expressions.
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following. This means that the real allocation is independent (not in the
probabilistic sense!) of inflation.”! It is abstracted from modelling an explicit
money stock. Instead, let the price indices of the numéraires being labelled
as q'. Nominal terms are indexed by a hat on top. The nominal exchange

rate is by arbitrage—free valuation

d
Xt — th—i}
4y
A nominal bond pays at maturity the reciprocal of the price index in real
terms, which is a random variable. The no-arbitrage pricing formula of
nominal bonds and the nominal instantaneously compound interest rate’?

read:

A

ir = @Eq (Yir/dr),

i . i
7 = —lim—InB!,.
t T4 aT t,T

The price of the nominal forward rate is again given by the no—arbitrage
condition:
Ft,T = XthjT/BzT
= Ft,T [EQf <b{,T/q§“> BEfT/ <EQd (bZT/Q%) BtJfT>i| )

which is different from the nominal price of the real forward: Fjrqf/ qtf .

Hence, in the nominal context the no—arbitrage valuation for contingent claim

91Herewith it is also assumed that the risk of inflation does not change the space of
marketed contingent claims, i.e. the risk of inflation is already spanned by some real
securities. But this assumption is harmless in the complete market context assumed here.
In incomplete markets nominal risk might change the real equilibrium allocation, see e.g.
(Geanakoplos & Mas—Colell, 1989).

92The valuation of bonds shows, that in the case of risk avers investors the nominal
interest rate is in general not the sum of the real interest rate and the expected rate
of inflation, which is another popular, but (generally) wrong ‘no-arbitrage’ hypothesis.
Indeed it is shown in Lemma 94 below, that the nominal interest rate also contains a risk
premium.
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H' denominated in currency ¢ is:
i} = Bl |bi AT g |
= Eéy [ZA);TI:I’T} for Q' — Q'

= XiEY, [bin /%] for @ — Q. (NomVal

The difference here is that there is a hat on the measures behind the sec-
ond equality sign, which refers to the nominal point of view. Indeed the
numéraires change now from the locally riskless real currency account, the
baskets, to the risky nominal money account, the moneys US-$ and €. With
this change, also the risk neutral measures must change from the real valua-
tion (first equal sign) to the nominal valuation (second equal sign). Whereas
the third equality sign corresponds to the change of measure between the

moneys.

Lemma 81 Suppose the nominal no—arbitrage valuation by (NomVal) holds.
bé,tqé X

le’L qi
e and Z
bO,tqt Xobo,tqt

Then, provided integrability, the likelihood ratio processes

. A A . Xibi
change the measure Q' to Q" and Q) *, respectively, and = B?f

2L changes Q' to
XO 0,t

A

Q.

Proof. All likelihood ratio processes start in one and — integrability pre-
sumed — are strictly positive martingales by the no—arbitrage valuation (Nom-

Val) with respect to Q or QF, respectively. W

The valuation of the ‘back—changed’ forward, Hi = Xi/ ﬁ;i’T, with invest-
ment costs of one unit of currency ¢ in period T gives the corresponding

nominal no—arbitrage valuation:
t X3 i | i 1
E@. [ t,TXT] = BirFirp.

Since the neutrality of money is assumed it is expected that the FEH holds

for the real exchange rate if investors are assumed to behave risk neutral.
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The nominal risk neutral measure Q’ gives the necessary degree of freedom

to transform the nominal no—arbitrage valuation into the real FEH:

b, rq; qT

N b q! N :
Eé?z(iTX%) = Eti(At b X QT> by @ — Q'

brqi ‘
- m(lt)  we-
q

T
= Ep (1/q4) b, 7¢; X} by Lemma 77 and Corollary 78,

fooas i
A Xi t,T

= X;%q;iE} (1/q;“l) ;ZT by the same steps <
t

i i
XT — t,T - \/

For the nominal exchange rate the FEH is indeed not an equilibrium condition
for risk neutral investors, because goods count in investors’ preferences and
not money.”® By arbitrage pricing the nominal exchange rate incorporates
only the risk of inflation, because the real exchange rate is riskless. Assuming
stochastic inflation, Siegel’s Paradox applies to the FEH for the nominal
exchange rate as well — even for risk neutral investors, whereas the UIP

holds in a very exceptional case.

Lemma 82 In an economy with risk neutral investors the UIP holds for the

nominal exchange rate if and only if

Ep (Ing}) + InEp (1/¢7) = Ep (hl q;ﬁ) +InEp (1/CI:J;) :

93 This is true for the ‘homo oeconomicus’, although one might have a different impres-
sion from real live. For instance, experiments undertaken by (Fehr & Tyran, 2000) show
some degree of money illusion of participants: ...seemingly innocuous differences in pay-
off representation cause pronounced differences in nominal prices inertia indicating the
behavioural importance of money illusion.
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Proof. Suppose investors were risk neutral, i.e. Q° = P. Then by arbitrage—

free pricing of the exchange rate and Corollary 78 it holds that

In FEH!

EY (ln XT) = InXr+ E}p (In q%) — E%, (ln q%)

nFir = Wn|FrBp (br/ah) Blo/ (Ee (ir/ds) Blr)|
by Q' = P and Lemma 77 this is

= InFir +InEL (1/q§> —InE} (1/4}) .

Since the FEH holds for risk—neutral investors in the real economy, this

equation transforms to the equation stated in the lemma. B

If investors behave risk averse, nothing could explain why the FEH or the
UIP shall hold. The reasoning against the UIP given for the real economy
(right before this subsection) still holds in the nominal economy. Therefore

one can claim:

Conjecture 83 The FEH and the UIP hold for the nominal exchange rate

only in exceptional cases.

The proof of this conjecture with regard to the UIP is one of the main results
in the next section (see Proposition 93 and Lemma 94). For the FEH the
conjecture has already been answered by this subsection.

So far it has been shown that the FEH and UIP are at best equilibrium
conditions and not no—arbitrage conditions indeed. Moreover FEH and UIP
might be valid only in exceptional economies. Herewith the mathematical

finance model of the next section is intuitively prepared .

3.3 FX and Arbitrage Pricing

The notation of the previous section will be retained but extended here.
In this section the valuation of the exchange rate is examined by the no—
arbitrage condition in the Black—Scholes framework. For this reason it is
not necessary to distinguish between the real and the nominal economy, be-

cause the no-arbitrage conditions are in either numéraires, i.e. baskets and
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moneys, the same. Thus, the exchange rate X; can be seen with both mean-
ings, whereas one should be careful with the interpretation of the results. If

appropriate the exchange rate is explicitly interpreted as nominal or real.

This section is divided into two parts. In the first subsection a version of
the Black—Scholes model is introduced and — very briefly — the concepts of
arbitrage—pricing theory are outlined to make this essay self-contained. The
main results follow in the last part, where the exchange rate will be analysed

in the model introduced first.

3.3.1 Arbitrage Pricing Model

Stochastic Environment

Uncertainty: The two economies have continuous trading financial mar-
kets at any time ¢ in a time interval T := [0,7],0 < 7 < oco. Uncer-
tainty is characterized by a m—dimensional standard Brownian motion
(We FY) e

), the o—algebra F containing all measurable events, and the mea-

defined on a probability space (2, F, P) with state space

sure P. The filtration (F}");cr is generated by the Brownian motions
(W4),ep, where F = F¥ and F is augmented by all P-null subsets
of Q. Moreover, events in F}" are known from the beginning to be true
or not. Thus, there is no uncertainty ‘today’ about today’s realizations.

All this is common knowledge.

Stochastic Processes: All equations involving stochastic terms shall hold
P—almost surely. It will become clear from the context what variables
will be random. Therefore the state w € () is suppressed as an argu-
ment. Stochastic differential equations (SDEs) should be understood
as the short hand notation of the integral equations. Summations of
integrals are written as vector—multiplications of a row—vector of inte-

grands with the column—vector of differentials.
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Only Markovian Ito-processes of diffusion type®* are considered:
da’ (t) = p™ (z (t) ,t) dt + o (x (t),t) dW,,

whose dimension is n’,i = d, f, and which start in a constant vector .
. ; dypf i o ; dypf i
Drift p® : T x R* ™ — R™ and diffusion 0% : T x R* *" — R™ x
R™ of the country specific vector—process z* are Borel-measurable func-

tions of ¢ and x, where x; denotes the joint column—vector <(a:§l)T,

T
<:1:{ ) ) . The index time and the vector—process = as an indez are

also meant to be an argument, i.e. let: z; = z (t) and pf = p¥ (z;) =
p® (t,z (t)) hold further on. Especially in SDEs one can suppress the
time index, i.e. make use of the short hand notation u® = u® (¢, ;).
The superscript -* shall specify the process in concern and 7 € [ the
country the process belongs to. Without a superscript -* they belong
to the financial assets defined afterwards. Indices are not separated by
comma if they appear in the superscript.

Note that the conditional expectation Ep (- |F;) is still indicated by
EL (+), but the filtration is now limited to the generated filtration of
observed quantities x, i.e. (F;) := (FF). Let P, denote the conditional
probability measure P|, and A the Lebesgue-measure on (T,B(T)).
Let the set of square integrable, (F}")—adapted and F ® B(T) —
measurable processes be denoted by £? (P x \) and that of bounded
processes by L (P x ) C L? (P x \). Likewise is L? (P) and L¢° (P)
defined for F,—measurable random variables. A measurable event
E € F is called P—essential if it occurs with positive probability,
P(E) > 0.

For all given stochastic differential equations the existence of
a unique strong solution is assumed, which is then continuous,

(ftW) —adapted”, and Markovian. For this it suffices to assume that

94Tt6-processes: trend and diffusion are (FtW)fadapted, jointly F'® B (T) measurable
random processes; diffusion type: u,o are adapted to the filtration (F}*) generated by z;
Markovian: p,o are independent of the past (“anticipative”).

95 This implies F®B (T) —measurability of x, u and o as well as progressive measurability
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1 and o satisfy the linear growth conditions uniformly in T and are
locally Lipschitz. Let ||A]| denote the Euclidean norm of a matrix or
a vector A : [|A]| = [tr (ATA)F/ ? where the upper index T denotes
the transpose of a matrix or a vector. Those conditions are defined as
follows [see (Chung & Williams, 1990) on p. 229

Definition 84 A function f : T x RYN— RM is said to satisfy the lin-
ear growth condition in x uniformly in t if there is a k > 0 such that
forallt € T and v € RV :

If (8 2)))? < & (1+ ||=]f)

A function f : T x RVN— RM s said to be locally Lipschitz if for all
K > 0 there is a constant kx > 0 such that for all s,t € T and
z,y € RV :

(s, )| + &yl < K implies
Hf(S,ZE) - f(tvy)“ < kg H(S,Qf) — (t,y)H .

Assumption Trend p and diffusion o satisfy the linear growth condi-

tions and are locally Lipschitz.

For the purpose of a strong solution the growth condition for the trend
11 can be replaced by the weaker requirement 27y (¢, z) < k (1 + HxHQ),
but the stronger assumption is needed below to establish the existence

of a martingale measure.

Critical Remarks

The next four remarks shall take a critical view on the mathematical as-

sumptions made so far.

Modelling: Why analyze foreign exchange rates in an environment with

continuous trading, a continuous state space and with continuous sample

of © and o as functions of the Brownian motions.
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path? The answer to this question has two parts, because it could be done
more general or simpler. More complicated processes, like semi-martingales
in infinite time, are not included because some of the results needed in the
following (like the existence of an equivalent martingale measure) are so
far unproven, and it unnecessarily complicates the calculations.”® Simpler
approaches are two or multiperiod discrete time, discrete state space models.
The notation of the latter is too fussy, but it is also appropriate. A two
period model is too limited for an econometric specification, since it does not
reflect the flow of information appropriate for time series analysis.
Observability: It is important to stress which quantities are observable, be-
cause realizations are information revealing. The only observable quantities
in this context are the country specific processes and not the Brownian mo-
tions themselves. An important consequence is that expectations cannot con-
dition on the Wiener filtration (F}") but only on the filtration generated by
the observable processes, (F), which is not finer: vVt € T : F& C FV. Only
if the diffusion ((a”‘d)T , (o077 )T>T is of full rank m the information structure
will be not coarser, which implies F¥ = FV, see (Liptser & Shiryaev, 1977).
This corresponds to complete markets if x were defined as asset prices, an
assumption which is made in the sequel, see (Harrison & Kreps, 1979).
Moreover the functional form of drift and diffusion is common knowledge.
This is actually not a realistic assumption, but if drift and diffusion were
not known, any strategies resting upon this information would be unavail-
able. For instance, imagine an option on a stock, whose expected average
volatility until maturity is unobservable, because the functional form of the
diffusion is unknown. The option could be priced only by an estimated or
implicit volatility. Arbitrage strategies which could exploit any deviation
from the true average volatility are unavailable. The error caused by any
approximative ‘arbitrage’ strategy prevents it from being a true arbitrage

strategy. In this case only ‘simple’ arbitrage strategies are possible, e.g. if

9 A generalization to It6—processes or semi-martingales might be possible with more
technical effort. (Huang & Pages, 1992) have shown that under some other mild technical
conditions the model can be extended to an infinite horizon setup. However, to show the
qualitative results the choice made in the text is absolutely sufficient.
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the put/call-parity is violated. Finance models therefore idealize the world
presuming too much knowledge. In real trading investors have to learn the
law of motion — usually from historical data by econometric methods for a
presumed model.

Markovity: The interpretation of the Markov property is generally seen as
evident in financial markets, since it stresses that prices in ¢ reflect all in-
formation available up to time ¢. (Fama, 1984) distinguishes between three
levels of market efficiency. He calls prices weakly efficient if they reflect
all information of their past realizations, semi—strongly efficient if they con-
tain additionally all publicly known information and strongly efficient if also
private information is mirrored in prices. Markovity is a convincing view
if realizations along a path before period ¢ do not affect fundamentals any
more when the realization in ¢ is learned since they are ‘sunk’. Then only
the current state is the starting point for the future development. E.g. in
a Markovian sense it is unimportant how a firm gets into a position, for its
future development only the position it is currently into counts, which is fully
reflected in the current price. This is for example not valid for GARCH(I, k)—
volatilities, i.e. volatilities which depend on past volatilities and shocks. This
property, often viewed as describing a stylized fact of asset prices very well,
is obviously not Markovian if (I,k) > (1,1) and preserves under arbitrary
changes of measure. Even if Markovity is not essential to this analysis, this
chapter is limited to Markovian SDEs for simplicity.

Strong Solution of SDEs: The distinction between strong and weak solu-
tions of a stochastic differential equation is that the former requires a solution
x for a given filtered probability space, an adapted Brownian motion and a
specified (possibly random) starting value z, whereas the latter concept
counts also the filtered probability space and the Brownian motion (not the
distribution of the starting value) as a part of the solution. The concept
of a weak solution could make sense for instance in modelling self-fulfilling
prophecies: If agents believe in a particular law of motion and act in a way
as if it were valid, then it might endogenously settle down in a weak solution.
However, a predetermined probability space is taken here as an exogenous

fundamental characteristic of the economy, e.g. determined by the risks of
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some production technologies. This restriction requires the existence of a
strong solution. The existence and uniqueness result is for example proven
in [(Chung & Williams, 1990), Theorem 10.6 on p. 229 with the Extensions
on p. 234]. In the one-dimensional case these conditions can considerably be
weakened, see [(Yamada & Watanabe, 1971) in (Karatzas & Shreve, 1988),
Proposition 2.13, p. 291]. This is important for some processes involving
square root diffusions which are not locally Lipschitz. The strong Markov

property of the solution with respect to its generated filtration is established
in [(Chung & Williams, 1990) Theorem 10.12 on p. 242].

Financial Markets Beside the locally riskless savings accounts, 1/b%, mar-
kets consist of n¢ domestic and 7/ foreign risky assets, which could be
bonds or stocks for example. Asset prices in local currency are denoted
by Hi, k=1,...,n'. Without a numbering index the column-vector of the
corresponding variables is meant, e.g. the vector—process of asset prices is
H'. With (nd, n! ) < (ﬁd, nf ), where n? +n/ < m, any selection of domestic
and foreign assets is denoted. The assets in the selection shall not span the
locally riskless bank account in their currency and should have a diffusion
matrix with maximal rank n¢ 4 n/, so that there are no redundancies in this
set. The short-rates r* are assumed to be bounded processes. The connec-
tion between the two financial markets is possible through a strictly positive
exchange rate X, X; > 0 P x A —a.s. The aim is to derive an explicit formula
for the trend and the volatility of the exchange rate depending on the price
processes of foreign and domestic assets and the short rates. For this reason,
an [to—process of diffusion type is assumed for the exchange rate. This choice
is verified in the next subsection. Also assume It6—processes of diffusion—type
for H* and 7% as well. Thus, with

o = (7 ot ()t x,)
Pty = (1 Ew) " ()
(F ) (7 ) ()]
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for f = o, u, which satisfy the linear growth conditions and are locally Lips-

chitz (in the range of y), the equation
dy, = pidt + ofdW,

holds P x A\ — a.s. Note that trend and diffusion are column-vectors and
matrices of desired size. Hence, a unique strong solution is guaranteed.

It turns out that a re—definition of exchange rate’s SDE simplifies the notion
considerably. From now on let its trend be X,uX and its diffusion be X;0%.
Since the situation should be regarded as symmetric between domestic and
foreign financial markets, above linear growth conditions and local Lipschitz
continuity are also assumed to hold if the SDE of X is replaced by that for
X 1. The SDE of the latter process has trend X% (Haf H2 — u ) and diffusion
X%U%X , for which those conditions shall hold too. A zero or infinite exchange
rate would offer arbitrage. Therefore it is assumed that the exchange rate is
bounded away from zero and infinity.

Whenever in the sequel an assumption holds for all y € Range (H), this range
describes the subset of R**+"'+3 in which the dimensions corresponding to
the interest rates and the exchange rate are closed intervals, i.e. the space
these processes actually live in P x A\ —a.s. This reflects the variables’ smaller
range particularly used in conditions. Any function, e.g. ‘In’, in front of a
vector Y = (Y}),., is applied to all its entries, i.e. InY = (InYj;),.;. A bold
0 respectively 1 stands for a column—vector or a matrix filled with zeros
respectively ones of appropriate length.

Let the vector process H' denote the prices of the assets in currency i, that
is H' = (1/bi, (H)", X /b, X (Hji)T>T, whose trend and diffusion are
denoted by fi* and &, respectively. Provided that the martingale measures
exist with respect to both numéraires they are named @Q°. In this case the

discounted € respectively $-valued securities, Hgbat, are (Q*-martingales.

Remark 6 (Bonds) If both markets consist only of bonds, the underlying
model could be of the Heath—Jarrow—Morton type, see (Heath et al., 1992),

i.e. one could assume a family of stochastic processes representing forward
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rate movements. These processes uniquely specify the spot rate process and
any bond price process, see for example (9) in (Heath et al., 1992). One
can enlarge the economy and include assets into the model by adding SDFEs
of diffusion type. The main observation is the fact that the conditions on
existence and uniqueness of a martingale measure (see C4 and C5 in
(Heath et al., 1992)) are still satisfied for this enlarged economy. Therefore,

from now on the phrase ‘asset’ is used to denote a traded bond as well.””

Technical Issues of Arbitrage Pricing

To make this article self-contained some well known definitions and results
are introduced from continuous time Finance. This is done in a brief manner
since it is treated in more detail in some good text books. In the next
paragraph, ‘Preliminaries’, the ‘proofs’ provide only some selected arguments,
whenever a reference is also cited, which ought to convince the reader. For
the mathematical details refer to [(Musiela & Rutkowski, 1997) Ch. 10 and
(Duffie, 1996) Ch. 6] as well as the references cited there.

Preliminaries A trading strategy 0 is a R2M* valued, progressively
measurable process with an accompanying value process v = 0T H.
A trading strategy is admissable if its discounted value process 7 H'l'
is P x A—almost surely bounded from below by a constant credit con-
straint®® and if each of its components 6, H; is in £2(P x A). A con-
sumption plan is a pair (¢, C') which consists of a meantime per period,
progressively measurable consumption process ¢ € £2 (P x \) and a fi-
nal consumption C' € LZ (P). A consumption plan is said to be feasible

if an admissable trading strategy 6 exists which finances the consump-

97 This hint is due to Andreas Loffler.
98The credit constraint is allowed to depend on the trading strategy only.
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tion plan®, i.e.:

¢ t
vif = véa—k/o HZdHfL—/O cydu  and

v = C P x\—a.s.

A self-financing trading strategy re-invests all trading gains made be-
tween 0 and 7, i.e. ¢ =0 P X A — a.s.; a financing 6 is called here
meantime self-financing between s and ¢ if (cu),c[,4 = 0. Asset mar-
kets are named complete if all consumption plans (¢, C) € L>® (P x \)X
L> (P) are feasible. Note that the set L (P x A) x L™ (P) is dense in
L2 (P x \)x L? (P) but smaller.!®® The two following results show how
to ensure complete financial markets in the connected asset markets of

the two economies.

Lemma 85 Financial markets are complete if and only if Px\—almost
surely there is a set of assets such that the rank of their diffusion matriz
15 equal to the dimension of the Brownian processes and in their span

lies a locally riskless bank account.

Corollary 86 Assuming the existence of a locally riskless bank ac-

count, financial markets are complete if and only if the diffusion matrix

g

has rank m P X A\ — a.s.

Sy ok Q,

g

X
Oy

99 Depending on agents’ utility functions the consumption plan is sometimes restricted
to be non—negative P X A — a.s.

100Completeness holds at most for L' (QY) x L' (Q") N L*(P) x L*(P), sce
(Dothan, 1990), but this involves the martingale measure, which is an endogenous quan-
tity. Nevertheless, £> (P) x L* (P) is also dense in £! (Qz) x L1 (Q’), because P ~ Q.
For £ (Q") x L' (Q) C £*(P) x L*(P) it is sufficient that the likelihood ratio process of
Q* with respect to P is in £? (P) . This is guaranteed by the Assumption (ApprArb) at the
end of this section so that completeness holds indeed for £2 (P) x L? (P). An assumption
ensuring this property is introduced in this subsection.
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Remark 7 The requirement ‘P — a.s.” can always be replaced in the
sequel by the stronger, sufficient condition Yy € Range (H)’, since
outside this range the processes stay with probability zero. Nevertheless,
the latter might be easier to verify for the exogenous functionals, because
it does not require a picture of P, i.e. in which region the processes

actually live with probability one.

Proof. of Lemma 85: If the rank of the diffusion matrix were
smaller than m not all the risk of the Brownian motions could be
spanned by the assets. Without a spanned bank account riskless in-
come streams are unavailable. For details refer to Theorem 6.6 in
(Karatzas & Shreve, 1998), p. 24. H

Proof. Proof of Corollary 86: The diffusion matrix of fff is

OT
o
Xi/biok
Xt (o7 4 Hy'o)

The matrix in the two bottom rows is the diffusion of country ’s assets
exchanged to currency ¢, which comes from the stochastic differential
equation of the product X* (1 /b (H ”)T> T. Without the first row this
matrix transforms by simple matrix operations into the matrix given
in the corollary. Since the locally riskless bank account of currency i is

in ﬁ[g (first row), complete markets are assured by Lemma 85. W

An arbitrage opportunity is a trading strategy € such that it is mean-
time self-financing between some s,t € T,s < t, and there is an P—

essential event A € F, such that:

v¥ <0on A and v >0, P|, —a.s.

as well as Py[, (v}’ >0) >0 holds.

Markets are free of arbitrage if there is no arbitrage generated by an
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101

admissable portfolio strategy.'” For an arbitrary but admissable and

self-financing portfolio strategy 6 let 1 and o be the trend and the

% in currency i. The prices of risk

diffusion of the value process v°
in currency 4, denoted by —¢°, are the processes which solve for all
admissable 6 the equation

plf = rivi® — o P x X —a.s.

k!%? determine by Girsanov’s Theorem [see for instance

The prices of ris
Ch. 3.5. in (Karatzas & Shreve, 1988)] the Radon—Nikodym derivative
2 of the martingale measure Q* with respect to the physical measure

P, provided that the martingale measure exists:

dQ'
dpP

= 2}, where z; = & (£ e W),
Fi

where &; stands for the stochastic exponential defined by
i ' i\T 1 i|2
E (e W) :exp{/o (&) dw, — 5/0 €5 ]] du}.

(2}),e7 is also called the likelihood ratio process or — if in £ (P x \) —
the pricing asset. Established in the next paragraph is the connection
between arbitrage and the existence of prices of risk, the martingale
measure and a pricing asset. For this reason an assumption is developed
at the beginning of that paragraph which guarantees that the likelihood
ratio process is indeed a pricing asset. This simplifies the subsequent
analysis.

Let for all ¢+ € T the three matrix-processes Vi (t,y,) € R/ +2 g

101 Attainability of portfolio processes rules out some pathological arbitrage strategies
known as Ponzi schemes. These doubling strategies could also be ruled out by Q—square
integrable value processes [(Duffie, 1996), Ch. 6D.], but this involves the martingale mea-
sure before its existence is proven.

Since the riskless bank account is traded, the definition of arbitrage covers also the case
of a strictly negative investment with non-negative payoffs.

102The minus sign of the prices of risk is usually suppressed in the text.
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R 42 50 (¢ ) € R 42 @ R™ and Y (t,3) € R™ ® R™ build
a singular value decomposition of & (1) = Vi (Y/)", where X
contains the singular values (b;, j=1...m (see Appendix (3.9) for the
definition of a singular value decomposition). Since V; spans the entire

R+ 42 there is a unique ¢ (¢, ;) € R* 2 which solves

[Li (tv yt) - T;I:[tl =V (t7 yt) CZ (t7 yt)

for the excess return ji’ (t,1,) — riH! of assets H' denominated in cur-

rency 4.

Assumption (ApprArb): Say that ‘approzimate arbitrage is ruled
out’if IK > OsuchthatVi € I,t € T,j=1...m,y € Range (H) :

I (ty)| < K |¢ (t,y)|

The following lemma summarizes some important results the subse-

quent analysis relies on.

Lemma 87 (a) In complete markets at most one price of risk and one
martingale measure exist.

(b) Markets are free of arbitrage if and only if there is a price of risk.
(c) Suppose that ‘approrimate arbitrage is ruled out’. Then markets
are free of arbitrage opportunities if and only if a martingale measure
exists with a pricing asset in L2 (P x \).

(d) Domestic markets are free of arbitrage if and only if foreign markets

are.

The proof of parts (a) and (b) just spells out the argumentation given
in (Duffie, 1996), Ch. 6, whereas the proof for (c) only applies a math-
ematical lemma to Assumption (ApprArb). In this proof the Moore—
Penrose inverse appears for the first time, see Appendix 3.9 for the

definition. The Moore-Penrose inverse of a matrix A will be denoted
by AT.

172



Proof. (a) Consider the trading/consumption strategies which con-
sist in buying a single asset in 0 and consuming its pay—offs in 7.
Then the vector equation i = riH® — 6°¢’ has the solutions & =
— (&) (= rii) +uwith w e A ((5)7). Then M ((5)") = {0}
holds if 6* has full column-rank m, yielding a unique solution. Provided
that a martingale measure exist there is a one to one correspondence
between the martingale measure and the price of risk by Girsanov’s
theorem.

(b) Suppose a solution for a price of risk does not exist on an essential
set in F @B (T). Thus ' —r'H’ ¢ R (') and because of rank (6°) <
m < 1+n%+nf there is an admissable, self financing trading strategy
§ for which 67 (u - TH) > 0 = 676" on this particular set. The
value process increases more than the locally riskless bank account and
is itself locally riskless, which constitutes an arbitrage opportunity.
To the converse, if there is a price of risk any portfolio with positive ex-
cess return 7 ([ﬂ —riH Z) > 0 cannot be locally riskless 876" # 0. But
any portfolio strategy which is not locally riskless on an essential set in
F @B (T) cannot offer free lunch, since the local martingale part in the
value process v* allows for negative pay—offs with positive probability.
Because an arbitrage strategy starts with a non—positive investment, a
zero excess return accompanied by zero risk cannot result in positive
pay—offs, if the strategy is selffinancing. Thus, arbitrage opportunities
are ruled out.

(c) Part (b) establishes the equivalence between the no—arbitrage con-
dition and the existence of a price of risk. A price of risk induces a
martingale measure, if the premises of Girsanov’s Theorem are satis-
fied. Those are (i) square-integrability of the price of risk and (ii) the
martingale property of the likelihood ratio process. Both are implied by
Novikov’s condition, which is square—integrability of the likelihood ra-
tio process itself. Thus, the existence of a pricing asset is equivalent to
Novikov’s condition, which has to be verified now. Because markets are
free of arbitrage ¥ (Y;)" € = ¢ holds P x A—a.s. Thus £ = YS( +u
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and ||¢]]> = Z;‘ﬁk(&) 3/ ¢+ u"u, where u =Y (I — X7%) 0 for some
arbitrary 8 € R™. For showing existence u can be assumed to be zero
to minimize the norm. Then the norm of ¢ is bounded by Assumption
(ApprArb). For bounded processes £ (Chung & Williams, 1990) have
shown, that the stochastic exponential & (£ @ W) satisfies Novikov’s
condition [see their example following Theorem 6.5. on p. 126 ibidem)].
(d) Since the exchange rate is a strictly positive scalar it does neither

generate nor eliminate arbitrage opportunities. W

Remark 8 The relevant cases for applying Assumption (ApprArb) oc-

cur, when & changes its rank. Note, the norm of the excess returns is

ﬂi . riHi

The Assumption (ApprArb) states, whenever the diffusion matriz & is
about to change its rank, i.e. if ¢; is zero on a set A in F @ B (T) and
small in the neighbourhood of this set, the length !C j| of the orthogo-
nal projection of excess returns onto the corresponding eigenvector in
V; must be zero on A (by arbitrage, if A is essential) and small in its
neighbourhood (by no approximate arbitrage). If the latter condition
does not hold, the portfolio V;/ ‘Cj‘ yields a constant return although
its volatility (d)j)z / (C j)2 converges to zero in the neighbourhood of A
the tighter (w,t) ¢ A is to A.

This is not an rigorous argument for establishing an approximate ar-
bitrage strateqy, because this concept has not been defined yet and it is
intended to do so only verbally: An approximate arbitrage opportunity
s a sequence of admissible, self-financing portfolio strategies whose in-
vestment costs are never larger and whose final pay—off is never smaller
than a corresponding pay—off sequence which itself converges to an un-
feasible free lunch ‘opportunity’. Clark shows [in (Clark, 1993)] the
equivalence between the existence of a pricing asset and non—existence

of approximate arbitrage. It concerns approxrimate arbitrage opportuni-
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ties inside the marketed subspace [Assumption A.2 in conjunction with
Theorem 2, ibidem/, which yields a continuous linear functional and
thus allows for applying a variant of Riesz’ representation, as well as ap-
proximate arbitrage considering the entire consumption space [Assump-
tion A.5 in conjunction with Theorem 7, ibidem/, which then allows for
a continuous extension of the pricing functional to a positive pricing
asset on the whole L2 (P x \). Note that Assumption (ApprArb) might
be violated even in complete markets, i.e. violated in a neighbourhood
of a P x A—zero set on which markets are incomplete. From this point of
view here only a proof is given that Assumption (ApprArb) is sufficient
to the existence of a pricing asset and therefore to rule out approximate
arbitrage inside the marketed subspace. However, the example at the
beginning of this remark gives rise to the supposition that a similar con-
dition would also be necessary. Nevertheless, Assumption (ApprArb) is
a sufficient condition on the exogenous drift and diffusion functionals,

and therefore more useful than Novikov’s indirect condition.

The last issue of attention is square—integrability of involved processes.
If trend and diffusion of an It6—process of diffusion type satisfy the lin-
ear growth conditions this process is not only square—integrable but all
higher moments do exist either [see (Karatzas & Shreve, 1988) Prob-
lem 3.15 on p. 306 and its solution on p. 389]. The reason for assuming
the exchange rate to be bounded from infinity and away from zero was
that square—integrability is preserved if domestic assets are exchanged

to the foreign currency and vice versa.

Since in the next subsection replacements are found for x4~ and o* by func-

tions of u’,0’ the constraints imposed on pX and o* go over to further

restrictions on u?, o*. It is not analysed whether those restrictions are super-

fluous or are even stronger than those already assumed for u, o?. It suffices

to know that there exist processes satisfying those conditions jointly.

103

103For instance geometric Brownian motions with constant coefficients for all assets and
bounded interest rates.
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3.3.2 Pricing the FX-rate

This section is subdivided into five parts. The first part establishes the fx—
rate as a change between two numeéraires. In the second subsection the trend
and the diffusion of the fx-rate are determined by hedging the foreign bank
account and other foreign assets respectively. After that the UIP is shown
to be non—generic in the set of possible prices of risk. Then the influence of
price inflation on the fx-rate is analysed. In the last part the reduced form
equations, which are applied in the empirical Section 3.5, are derived from

previous results.

Change of Numéraires

With a minimum of m + 1 assets complete markets could be achieved. In
this case prices of risk are uniquely specified in both currencies if arbitrage
opportunities are ruled out. By changing the numéraires via the fx-rate also
the martingale measures change from @Q° to Q . This implies that the short
rates and the prices of risk completely determine the returns of the fx-rate
under the martingale measures. The exchange rate inter—links both prices of

risk in the way the following lemma states.

Lemma 88 (SDE of the exchange rate) If in both countries a locally
riskless savings account (b"')_1 1s spanned by existing assets, the SDE of the

exchange rate under the martingale measure Q% is:
d ~
din X < (rd — rf) dt + oXdWwe.

Suppose that the economy shows to have arbitrary (possibly equilibrium) prices
of risk € and &. Complete markets are free of arbitrage if and only if
oX =& — ¢, je. the exchange rate solves the SDE

aX =X (r' =l — (¢ = &) "¢ dt+ X (¢ — &) aw,

Proof. The trend p, of any asset HY is determined by its price of risk o%¢*

and the short rate . Exchanging an asset to currency Y involves the trend
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and the diffusion of the exchange rate. This constitutes an equation with an
unique solution for (;LX 0% ) given 7 and ¢°. For details see Appendix 3.7.1.
|

This result was introduced in the literature mainly with the purpose of pric-
ing fx—derivatives and can be found for instance in (Amin & Jarrow, 1991),
(Flesaker & Hughston, 1996), and in [(Musiela & Rutkowski, 1997), Chap-
ters 7 and 17]. With regard to the foreign exchange rate premium, which is
(¢ - Ed)de, this result was derived in (Sad-Requejo, 1994), see also Theo-
rem 4.11 and Corollary 4.17 in (Trojani, 1999).

If risk neutrality predominates with respect to both numéraires the real ex-
change rate is locally deterministic since both prices of risk have to be zero.
This is not the case for the nominal exchange rate (see below). To be globally
deterministic, the interest rate differential must be non—stochastic, which is
an equilibrium condition for risk neutral investors and cannot be shown in

an arbitrage pricing model. %4

Hedging the FX-rate

Trend and diffusion of the exchange rate are to be determined. The idea is
straight forward. Trend and diffusion of the exchange rate offer m+1 degrees
of freedom. With any asset over the m+1 assets needed to complete markets
one could solve for one variable out of (u*,0%) depending on the remaining
unknowns. It is shown that with at least 2m 4+ 2 asset price processes the
exchange rate is uniquely determined by existing assets. To follow this idea

it is necessary to assume complete asset markets.

Assumption (Complete Markets) A locally riskless bank account is
spanned for the domestic currency. Moreover, n® domestic and nf

foreign assets exist such that their diffusion matrices and the diffusion

104 However (Heath et al., 1992) model stochastic forward rates unter the risk neutral
probability measure.
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vector of the exchange rate guarantee that the matrix:

d
lop .
is regular P X A\ — a.s.
< U,{—i-Htfaf( ) &

Because the prices of foreign assets have to be exchanged to the domestic
currency first, the volatility of the foreign assets is adjusted by adding up
the diffusion of the exchange rate times the foreign asset prices, which comes
from Itd’s rule.

In complete markets one is now in the position to price any asset via the linear
pricing rule. But the exchange rate is not an asset by itself. To solve for the
unknowns (,uX 0% ) one has to price an asset which involves the exchange
rate, thus, a foreign asset. A natural choice is the foreign locally riskless
bank account, which has in the domestic currency the same diffusion vector
as the exchange rate. For this idea to go through one further assumption is

needed.

Assumption (FX—-Spanning) The diffusion of the exchange rate is

spanned by the assets which define a complete domestic asset market:

of

T
(J;X)TER ( oi ) holds P x X\ — a.s.
Intuitively speaking, the exchange of the foreign assets into the domestic
currency introduce the risk incorporated by the exchange rate, i.e. by adding
up the volatility sub-matrix HfoX. But if the risk of the exchange rate is
not already spanned prior to the transformation of the foreign assets into the
domestic currency this would lead to a degeneration in the valuation of the
foreign bond. Because then the foreign bond can only be spanned by itself,

which would not help in solving for the unknown components of (™, ™).

Proposition 89 (FX—Flow) Suppose that domestic financial markets are
complete and that FX-spanning holds. Then asset prices are free of arbitrage

if and only if the following relation between the trend and the diffusion vector

178



(/LX,O'X) of the exchange rate is satisfied P X A\ — a.s.:

d dryd
X d ut —r*H
=l -y
H T r /8</,Lf—Tfo+Uf (O_X)T>

a\ —1
with B = o <Uf) .
o

Proof. The mathematics of the proof is given in the appendix. Its general
idea is already explained by the introduction of the previous two assump-
tions in an intuitive way: The n? domestic and n/ foreign risky assets plus
the domestic bond form a complete asset structure. Then the foreign bond
measured in domestic currency is a redundant asset and can be valued by the
linear pricing rule. It is then possible to derive two expressions for the price
of the foreign bond. Setting those equal, the equation involves the unknown
components (4, 0%), which can be solved for u*. By arbitrage the result
follows. See Appendix 3.7.2 for details. W

Remark 9 (Spanning) In the literature sometimes non—redundant deriva-
tives are priced in incomplete markets. Then the martingale measure will
not be unique. With more Brownian motions than assets the inverse in (3
could be any right—inverse. One has to assume a certain measure to get
a concrete result, which corresponds in this model to a concrete inverse,
e.g. the Moore—Penrose inverse in case of the minimal risk approach. In
many finance articles this is the minimal martingale measure introduced by
(Follmer € Schweizer, 1991), but also extreme measures are suggested, e.g.
in (El-Karoui & Quenez, 1995). It is preferred here to avoid this approach,
because of its indeterminacy, which could just be solved in a much more elab-
orated equilibrium model. In the next chapter such an equilibrium model is
introduced, but with complete financial markets. Nevertheless emphasized is
that the above result is in line with the orthogonal projection approach, be-
cause one can choose a basis of spanning Brownian motions such that X uses
just additionally some Brownian motions orthogonal to those used in H® and
H’X. These additional Brownian motions are not affected by the change of

measure via the minimal risk approach.
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The diffusion of the exchange rate is necessary to compute the prices of
risk belonging to one numéraire as long as assets denominated in the other
numéraire are needed to complete asset markets. In other words, the less
assets have to be exchanged to achieve complete asset markets, the ‘lower’
is the influence of oX on ¢ and the more are the degrees of freedom in o
restricted by Lemma 88. The next proposition exploits the idea of intro-
ducing more redundant securities, which are not redundant considering only
securities denominated in the same numéraire, for instance a new domestic
investment fond containing foreign assets. This leads to a more accurate
determination of the diffusion of the exchange rate, which can be seen as a

generalization of the well known purchasing power parity (PPP).

Proposition 90 (Generalized PPP) Suppose there are two ways to
achieve complete domestic asset markets. FEither by n + i domestic and
n'! foreign assets or by n? domestic and n +n foreign assets. The two possi-
bilities differ only in the substitution of n foreign assets by the same number
of domestic assets, whereas all other assets remain the same. The changing
assets are denoted by a bar on top. For both completions FX-spanning shall
hold.

Under these assumptions markets are free of arbitrage opportunities if and
only if the diffusion of the exchange rate satisfies the following equation up

to m — n degrees of freedom:
— + — 3
(UX)T _ 5d ad — Hpd by
ol pud — Hpd
+ _
of ol — Hir!
— +y/ Px\—a.s.
( of uf —mipt | Y
for some arbitrary y' € N ( UZ. > :
o

where the superscript + stands for the Moore—Penrose inverse.

Proof. See Appendix 3.7.3. W
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One can call this result a generalization of the purchasing power parity be-
cause there are some consumption processes independently priced in both
currencies which are actually the same if exchanged to a particular currency.
This restricts the arbitrage-free choice for o%. Note that if both markets

d

are independently complete, i.e. n¢ = nf = 0 and 7 = m, the diffusion is

uniquely determined by the difference of the prices of risk:

(@) = (o) (@ B - (o) (@ B
= -

This result concurs with Lemma 88, where unique prices of risk have been
assumed in advance. Here those are derived from asset prices. This again
emphasizes that the exchange rate is not an asset by itself, since the diffusion
of a redundant asset is arbitrary if its return is appropriately determined by

arbitrage pricing.

The Forward Rate as a Biased Predictor
The UIP is based on the differences of the log—exchange rate. The following
corollary establishes the SDE of the log-fx-rate.

Corollary 91 (Log—Exchange Rate) Suppose the economy admits two ar-
bitrary (possibly equilibrium) prices of risk ¢ and &. Complete markets are

free of arbitrage if and only if the logarithmic exchange rate follows the SDE

mnX::Qﬂ_rﬂ+%Qgﬂf-ugﬂﬁ)dp+@f—gﬁdw< (LogFx)

Proof. The first part follows by Itd’s rule

dX  d(X,X)
X =" Toxe

The trend of dX/X, r¢—rf — £ (¢/ — ¢%) as derived in Lemma 88, is adjusted
by —1/2 Hff — dez. This results in the trend given in the corollary. H
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Now the question is considered whether the uncovered interest parity could
be satisfied. The next definition calls the UIP in mind. Let A, InX :=
InX, —InX,.

Definition 92 The exchange rate satisfies the UIP if Vt, 7 € T,t < 1
Eb[N;nX]=WnB/ —InB.

The claim here is that any economy is specified by some prices of risk £? and
¢/. These prices could be arbitrary processes in £2 (P x A) while satisfying
Novikov’s condition. Then the UIP should hold for arbitrary prices of risk.
Otherwise it could not be valid for all economies. This kind of arbitrariness
of the UIP would not be a very demanding property, because one cannot be
assured whether the UIP holds for the economy in concern. ‘Unfortunately’
this is the result the next proposition states, which proves Conjectures 79

and 83 made in Section 3.2.

Proposition 93 (Non—Viability of the UIP) Suppose the short rates
have continuous, bounded sample paths. Assume moreover that the two econ-
omies are specified by arbitrary prices of risk —€' : TxQ — R™ in L2 (P x \)™
implying the existence of suitable pricing assets z* and martingale measures
Q". Then the UIP holds only for economies of Lebesque—measure zero in the

range of €. By assuming the UIP the dimension of the range shrinks by one.
Proof. This result is rather intuitive, since the UIP states the equality of
Eb[A,nX] = Eb[mbl] - Eb [111 bf ] +
1 t T 412 f 2
380 | [ el = ] aw
t
= In B b, By [b,| = Fir = x,,

by Corollary 91. From the first to the bottom line E% (In(-)) changes to
In Eg,, (+) with respect to the discount factors b; ;. In other words, the UIP in
the bottom line suggests to take the logarithms of the expected values with
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respect to the martingale measures, whereas the arbitrage pricing in the
first line favours the expected values with respect to the physical measure of
logarithms plus a correction term. This difference can only hold by a suitable
correction via the prices of risk, which is restrictive. In Appendix 3.7.4 it is
shown that this equation is typically not satisfied, and it is in fact an one

dimensional restriction imposed on the prices of risk. W

(Trojani, 1999) derived the stochastic differential equations for the interest
rates and the exchange rate such that the UIP holds exactly at every point
in time. Thus, even though prices of risk satisfying the UIP are non—generic

they can exist.

The forward price is in general a biased predictor of the underlying, not only
in fx—markets. From experience this is a popular misinterpretation of forward
prices in practice. The intention is not to rigorously prove this here, but to

provide an intuitive argument.

aQ
ar | .,

forward price F/ in ¢ of a traded underlying y with settlement in 7 is:

Let the state price density be defined by 2! = The arbitrage—free

Yt
FY. = .
t, T Bt,T

The hypothesis Ep (yr) = F{'p is equivalent to

BirEp(yr) = BirFlp =y &
Ep (byrzr) Ep (yr) = Ep (yrberer).

This implies that the forward expectation hypothesis is only true if the un-
derlying asset is uncorrolated with the state price functional byrzr (see
the last equation). Moreover, y; has to be a submartingale, which instan-
taneously grows at an expected rate equal to the instantaneous forward rate
Jorr = —%Bt,T. Summarizing, the FEH may apply only to very special
assets.

There are forward agreements on underlyings, which are not traded on the
spot market, e.g. forward interest rate contracts. For those the forward ex-

pectation hypothesis sounds fy 1,1, = E% (r1, 1), where on the right hand
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side stands the forward rate in ¢ for the future period T; to 15 and on the
left hand side is the expected value of the compound yield for this period.
Those are defined by

1 Bt
— 1 22 d =———InB .
ft7T17T2 T2 _ T]_ n BtyTl an 7/‘TMTQ T2 _ T]_ n T17T2
The hypothesis implies:
Eb (bery)
In—2—20 = L (In EY (b ,
Eé) (bt,Tl) P( Q ( T17T2>>

which is generally true only if the short rate is deterministic.

Risk of Price Inflation

The no—arbitrage conditions are in real and nominal terms the same. Nev-
ertheless the short rate process and the prices of risk definitely change form
the real to the nominal point of view. Moreover in real financial markets
prices are observed in nominal quantities. To make this step money is intro-
duced in a fairly abstract sense. Assumed is the neutrality of money even in
the short run, i.e. money just normalizes prices. This will be done by the

following two stochastic processes of price indices:
dg; = pf'qidt + o'q;dWy, g > 0.

Lemma 94 The instantaneous nominal interest rates 7, nominal prices of

risk éz and the nominal exchange rate X are given by:

. AN A
N i qi qi g
Ty = T+ My 0y <§t> )

~i . .
gt = Si - 0-55117
I r if sf
5o qgl _ q,fl bo,tzt . bO,tzt
Xt = Xt_f = XO—W = OAd -
4y q; Y0,t%t bO,tZt

Proof. See Appendix 3.7.5. W
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Note that the nominal short rate is not only the sum of the real short rate
and expected inflation, but incorporates also an additional risk bonus or
premium depending on whether the diffusion of the price index points into
the direction or the opposite direction of the real price of risk, respectively.
The nominal price of risk is the real price of risk minus the diffusion of the
price index. The nominal risk premium is sensitive to insurance against the
risk of inflation. As mentioned in the previous section, risk neutrality must
be considered in real terms. In this case the real price of risk is zero in the
corresponding numéraire in which investors are risk neutral. But the nominal

price of risk is still equal to the diffusion of the price index.

Reduced Form Equations

The last claim in this section is a preparation of the empirical analysis
made in the next section but one. An estimation turns out to be much more
cumbersome and less efficient if the equation could not be solved for the
endogenous variable on the one hand and for the exogenous variables on the
other hand. For this reason stated in the next corollary is an orthogonal
projection of the differential of the log—exchange rate onto the differentials of
assets. The empirical section is limited to geometric Brownian assets. This
considerably simplifies the reduced form equation in discrete time and also
the estimation thereby. This simplification is undertaken in the following

corollary.

Corollary 95 (Reduced Form Equation) Suppose that domestic finan-

d

-1
cial markets are complete and that FX-spanning holds. Let 3 = 0% ( ’ 5 ) .
o

(1) Asset prices are free of arbitrage if and only if the log—exchange rate is
the solution to the SDE

d drgd 1 _d (-x\T
pwt—r*H* — 5o (cr )
dn (T ' +ﬁ<uf—erf+§af(aX)T)>dHU w
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which tmplies the orthogonal projection on asset prices

; Jai - rde_%O.d(O.X)T u
HS rfH + 1of (O'X)T '

(2) Suppose additionally that assets are geometric Brownian:

din X = (r* —rf) dt + 8

dH} (t) = pi (t) Hy (t)dt + o (t) H), (t)dWy, k=1,... 7", i € L.

Then by arbitrage the log—exchange rate can be projected in the following way:

H¢ ri1
() (7 )
e 1 2\ 7
( 7 )axdt+§(}}a§l||2,...,‘ ) i

Proof. The results follow from a suitable transformation and Itd’s rule.

dnX = (r'—rl)dt+p

f

See Appendix 3.7.6 for more details. W

The second SDE has an intuitive interpretation. First, one observes a kind

of the uncovered interest parity, r? — rf. Note that

=] ()

= (nX,(H", H))((H* H"),(H" H))™!

-1

is the vector of coefficients which results from a linear orthogonal projection
from In X on (H d Hqf ) Hence the projection on asset returns above the lo-
cally riskless return corrected by a diffusion term, i.e. dH'—r'H'F10" (o) T
explain the second part in dln X. Here the excess returns dH* — r* H* are ad-
justed by an expression which looks like a risk premium. The ‘risk premium’
is equal to the covariance of assets with the fx-rate, o* (UX )T. The projec-
tion suggests some rough estimation about the influence of asset returns on
the exchange rate differential. The influence of domestic/foreign assets is the

most in the negative/positive direction, if they have low/high covariance, low
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variance and high excess return.

Consider now the question how fundamental values of an economy determine
the interest rates and prices of risk, which themselves specify the exchange
rate. This will help to formulate an empirical hypothesis about the projection

given in the last corollary.

3.4 Equilibrium Foundation of FX—-Rates

At the beginning the question stands which functionality the exchange rate
serves in or between economies. Imagine an economy which is split up into
two parts. In one part a new currency is introduced. In this sub—economy
prices are normalized now with regard to this new numéraire. The exchange
rate serves as the price ratio between the old and the new numeéraire. Since
the real economy stays the same, it is not expected that any real quantity

105 Tnternational markets

changes, provided that markets operate frictionless.
became more integrated, so that this perfectionist view in this section might
be justified as a simplifying assumption. The methodological shortcoming
of this view is that it can neither explain the existence of two particular
numéraires nor the selection of a particular basket nor the choice of money
as the numéraire. '

This section has three matters of concern. First, the arbitrage pricing model
is enriched with real entities of the economy. It will help to understand which
fundamentals influence the exchange rate in which direction. This cannot be

derived from the pure arbitrage pricing view as dealt with above. In the

105Tf there are frictions in the market the change of numéraire could have indeed real
impacts. A highly stylized example is a monopolist, who is maximizing his profits by
choosing the optimal amount of a single output. Suppose he considers the influence of his
production decision on the price of the produced good, but neglects it on the factor prices.
This is a typical bounded rational behaviour. Then making his output good the numéraire
would eliminate his influence on the price, which leads to a competitive outcome. For a
more rigorous analysis of numéraire changes and their impact on the exchange rate as well
as on the real allocation see (Hens et al., 1999).

106 Certain numéraires seem to be chosen for reducing transaction costs (beside of histor-
ical reasons). It is questionable that money generates utility directly, like it was assumed
in (Basak & Gallmeyer, 1999). It is ‘just’ a technology which helps to allocate goods more
efficiently.
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next section the projection of the foreign exchange rate changes is estimated,
which was derived in Corollary 95 at the end of the last section. For this
reason one has to identify a set of assets which best reflect the uncertainty
of the economy. Having done this, formulated is a hypothesis of how the
coefficients of the representation, 3, might look like.

This section focuses on an example economy which is both special but also
extensive. In this sense the results should be seriously interpreted in a qual-
itative and not in a quantitative way. The advantage of this example will
be an ‘almost’ closed form solution. More general economies can be treated
with a gradient approach, if they offer the property of differentiability. In
(Karatzas et al., 1990) a one good economy is analyzed in this way.

The example given here is a generalization of the economy presented by
(Zapatero, 1995). Zapatero does not take into account some features in-
cluded here, e.g. population growth and production. This leads in his model
to non—stochastic interest rates and prices of risk. While the following ex-
ample economy widens the intuition where the randomness in these variables
could come from. Although Zapatero made a very good starting point, he
surprisingly left open the determination of the exchange rate at period zero.
This is quite important because it shows which paying streams are responsi-

ble for the settlement of the exchange rate.

3.4.1 Equilibrium Model

Introduced now are all the ingredients of a real economy into the finance
model. An example economy is chosen, where an equilibrium is explicitly
computable. The assumptions will be made for this reason only while not

being too unrealistic.

Consider an economy with two representative agents ¢ € I, two consumption
goods understood as the countries’ numéraires and two firms, which use only
the labor supply of the local population as an input factor. Each country’s
representative agent offers his labor to the home industry. The agents are
scaled by the population size of each country. Good markets and financial

markets are frictionless integrated, whereas labor markets are fully separated.
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All markets operate competitive.

Firms: There are two firms 7 € I each with a linear production technology
in their labor demand L‘. Real dividends D? per unit of time measured in

the corresponding domestic or foreign numéraire are defined by:
Di =~LLi + 6.

~* is the productivity of labor and &°should be interpreted as capital gains
or simply real endowments. Note that the term ‘dividends’ is used here
not in the usual sense as the payment to stockholders already net of factor
costs. The dividends split up in a wage and a capital interest share. The two
produced goods are offered in both countries for consumption. This happens
without transaction costs. The involved coefficients follow the technological

change:

dyi /e = pldt+ o) AW,
déi)st = pbidt 4 otldw;,
with 0 <+, 60,

where not both ~ and &, are equal to zero. The production is said to be
restricted if the labor demand is not allowed to take negative values. This
is quite reasonable for the factor labor, but one could re-interpret L as the
use of environmental resources and a negative value as an improvement of
the environment. In the following both cases are allowed simultaneously.
Unfortunately the restriction prevents the equilibrium from having a closed
from solution. That the firm contains production capabilities as well as
resources is not a limitation because profits from a linear technology in a
competitive market are zero. Furthermore, complete markets are assumed.

This ensures that all risks are traded also separately.

Markets: The real locally riskless good—account, 1/, is available for both
consumption goods. The stocks of productive technologies are traded with

prices S* measured in the corresponding consumption good. Furthermore,
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there exist at least m — 3 financial assets, such that markets are complete.
Financial assets are in zero net supply. Because the productive assets pay
a dividend steam, the gain processes have to be defined. The gains up to
period t are the accumulated dividends minus the labor costs plus the price

int:
B . t B . . .
G, =5 +/ (D; — w;lz) /bgtds.
0

The wage per unit of labor, w’, is measured in the corresponding currency.
Populations: Agents’ preferences of both countries can be aggregated to
a social utility function, U’ : £2(P x A)®> — R, of time separable, von-

Neumann—Morgenstern type.'%” Consumption takes place in the domestic as

well as in the foreign good, ¢? and ¢/, and in leisure time, I:
U' (¢, ¢!,1) = Ep [/ Kintu' (¢, ¢l 1) ds] :
0
Time—preferences, K, are strictly decreasing at a rate ¢ and not vanishing:
Vvt € T:kl>0, with

K! = exp (—/ Hidu).
0

Moreover, the population has a starting size of n{ > 0 and grows at a deter-

ministic rate

dnl/nt = pMdt.

107The aggregated utility function is in the kind of Bentham-utilitarian. This choice is
made for simplicity only. And it is ethical acceptable only if all agents under control of the
planner are identical and the population growth is ‘optimal’. Since this issue is not the ob-
jective of the chapter the reader is referred to (Roemer, 1996). A dynamic stochastic con-
sumption model with heterogenous agents is exemplary studied in (Karatzas et al., 1990).
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The utility per unit of time is assumed to be logarithmic!'%®:
u (el ) = a®Indd+al'Ind + (1—a® —a’)In (' — 1),
ot a® a® +aft € (0,1),

with total individual free-time in an amount of ®* > 0.
Budget sets: Each country has an initial endowment §° = (Gdi, 67 Z) e R
of productive assets, which are in positive net supply, 8% + 67 Ri 4 Let

the income in local currency of country ¢ in period zero be defined as
by = b* (58, 57, Xo) := 07} + 075,73,
Then the budget set of each country sounds
B (X, 58,580, Q) = { (¢ ¢f.1) € £2 (P x )
. T . . .. Vs . .
by > Eop: l/ 05705 (¢ + ¢, XL — wily) ds] } .
0
This completes the description of the economy.

3.4.2 The Equilibrium Concept

It is now intended to define an equilibrium for this economy. The equilibrium
in this example will not be a financial market equilibrium but a no—arbitrage
equilibrium, which is also called the martingale approach. This means that
at equilibrium state prices, which correspond in a continuous state space
to the pricing density times the deflator z{ éyt, all future markets are open.
The future consumption and labor supply is determined in period zero for
all measurable future events. This allows one to abstract from modelling
portfolio strategies which actually generate the optimal decisions. But it is

possible to support the consumption and labor plans by a suitable portfolio

108 A logarithmic utility function is justified by that it maximizes the expected growth
rate of investors’ wealth. This fact implies the long—run survival of such investors
with logarithmic utility as it has been shown in evolutionary finance models, see
(Blume & Easley, 1992).
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strategy since they are square integrable and markets are complete (see for
instance (Karatzas & Shreve, 1998) Ch. 3).

Definition 96 (No-arbitrage-Equilibrium) A no-arbitrage—equilibrium
s a tuple of processes:

(e, 0t 807 E) LX) € 22 (P T,

iel
such that fori € I :

1. Agents maximize utility

(66”, & l~i> € arg max Ut (e, 1)
(Cdiycfiyli)e%i (vaivggvg({ii’Qi)

2. Firms mazximize share holder value

L' e St (LY,
arg  mex 5p (L)

§i = g (L) .

3. The discounted gain processes of productive assets as well as discounted
financial asset prices are martingales in the domestic and the foreign
currency with respect to the respective martingale measure Q¢ or @7,

which are defined in the following way:

dQ’
dP |,

¢
=2, where zi =& /S;qu P x X —a.s.
0

4. Good markets clear, that is:
ndéid 4 n{éif =D} (i;) P x\—a.s.
5. Labor markets clear, i.e.:
nil&zii Px\—a.s.
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According to the case considered the employment of labor is either re-

stricted to be non—negative, i.e. l~,§ > 0, or not.

Before the equilibrium is solved, three abbreviations are introduced to shorten

the notation thereafter:

Definition 97 1. The ‘discounted’ population growth is defined as:

T
K' = exp //L;" — Kk'ds
0

2. Furthermore, the present value of free time in local currency is denoted
by:
T
Wi =W (a7, &) = 9'E, / @i ds
0

Moreover, ruled out are any technical complications by assuming bounded

coefficients:

Assumption: The coefficients p7%, 07, 1, 0%, K, ™ are non-stochastic and
bounded functions of time on the domain T, whereas the coefficients

a’t are constant.

Obviously, this assumption can be relaxed considerably, but this is by means

not the intention of this example.

3.4.3 Equilibrium Prices and Allocation

The whole solution is placed in a single proposition. An explanation goes
through each part of the equilibrium afterwards. The proof is given in the
Appendix 3.8. Between the two cases — restricted and unrestricted labor
supply and demand, respectively — is differentiated by an indicator function

to consider both economies in a single proposition.
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Proposition 98 An unique equilibrium ezists. Let un—/restricted labor sup-
ply be indicated by c = —00/0, and by the simple functions 1;; = lyisey, and
Jio= 17k

1. The martingale measures are determined by the two prices of risk:

. . . . T
. ALY . 6% .
g;:_[ M i G iafz] |
nyy P + 6, nyy P + 6,

2. The instantaneous compound interest rates are:

—\i ~Z—IZ

= (et (10 ) (- )

niyidpt + 5; niyidi 4

—\Z‘ ~i—\i

)

vt L) I Ep— t ' ot ‘
(Mt M ) iy + 61%

~ill2

§

nizid
M S,

3. The exchange rate follows the following stochastic process:

s o bo,tzt . .
Xy = Xo—F+—, with the starting value

odt (0788 + b We) Jat + (1 - a¥ fal) 0S¢

ot (075] + W) Jaf + (1~ afdfat) 675]

4. Labor markets clear at wages w: = ..

5. Prices of productive assets in local currency follow the process:

T s . s
Si= 6K {/ exp (/ pdt — 4 Jffﬁ,:du) & (/ afdeu) ds] .
t ¢ t

6. Utility marginally increases in expenditure by

bl + DWW
1 n — M
/77 n»[L)K,LaZ )
with (1 —a¥ — ajii) <a' < 1,0 <V < 1. The constants a* and b are
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endogenous and are equal to one if labor is not restricted. The total
expenditure of country i is bf + BZW(’] The share spent on per capita

per period per state consumption and leisure time measured in terms

. ; K . . .
of the local good is €’ = TR Therewith the consumption and leisure
s70,s

time reads:

~ii ii

C _ Q@

=i s iy |

Cq o "X,

7i _ i i ii EANRA

IR = max [®' —¢€, (1—a" —a™) /o, ;c].

Proof. See Appendix 3.8. H

Following is an interpretation of the results. For this reason suppose that
labor is not restricted in equilibrium, i.e. let @ = b =1 and ¢ = —oc0 with
positive labor supply. That does not change the qualitative results but makes

them better understandable.

The prices of risk are stochastic convex combinations of the diffusions of
technology and resources. The convex combination weights the diffusions
according to the share on the dividends, which either the production or the
resources have. The risk premia of financial assets in currency i increase if
their diffusion points ‘more’ in the direction of the price of risk, which is
the convex combination of o]* and ¢?". If the diffusion of a security were
pointing in the opposite direction, it would offer an insurance to the risk
of production and resources, which would imply a relative high price and a
low return. The converse is probably true for the productive assets (see 5.),
namely if the share of production is not dominating that of dividends, while
its diffusion is pointing in ‘some completely different direction’ than the dif-
fusion of the resources. In this case o2’ is acute-angled to —Si, which implies
a positive risk premium for the gain process. That means high returns at a
lower starting price S} since the risk premium —afigi increases the discount

e ~i
factor of resources under P, which is 7 — o%¢,.

The short rates are the sum of five expressions. The first two as well as

the second two expressions belong together. The first pair is a convex com-
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bination of the discount factors minus the growth rates of the countries’
population. Consider the short rate of the domestic country, i.e. i = d.
The weight of the domestic country is one minus the export share, which
is then consequently the weight of the foreign country. The export share is
the share of the foreign consumption in terms of the total expenditure in the
domestic good, which is the value of domestic free time plus resources. The
interest rate compensates for forgone consumption mirrored in the discount
rate. Moreover, a higher population growth increases scarcity, i.e. future
consumption gets relatively more valuable. This implies a decreasing inter-
est rate or, in other words, an increasing price of future consumption. Note
that one has only a closed form solution if discounted population growth,
— (Kt — u), is the same for both countries. Otherwise the consumption of
the foreign population does not cancel down. But the solution for the opti-
mal consumption (see 6.) contains the discount factor, which itself depends
on the short rate process.

The next two expressions are a stochastic convex combination of two ex-
pected growth rates. On the one hand this is the growth rate of production,
which is itself the sum of the growth rates of technology and labor force,
and, on the other hand, the growth rate of resources. If dividends grow fast
the relative abundance between consumption in future periods and today is
high, which makes it less attractive to save at low interest rates. Therefore
in equilibrium the short rate is increasing in the growth of production. The
weights of the convex combination are the same like in the prices of risk, i.e.
the respective shares on the dividends.

The last expression is the price of the price of risk. Higher risk in produc-
tion, which means an increasing probability of scarcity and abundance in the
future, is reflected in lower interest rates. For risk averse agents savings are
the more desirable to insure against scarcity the riskier the environment is.
To balance out agents’ risk aversion leading to a higher demand for savings
the short rate has to decrease in the risk of production.

It should be remarked that real interest rates might even be negative if the
populations grow fast and productivity of labor is small. Then the increase

in production by the growing labor supply does not outweigh the scarcity
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caused by the fast increase of the population. For the planner it is then
better to postpone consumption into the future for increasing the happiness

of more people.!??

The law of motion of the exchange rate is of course the same as in the arbi-
trage pricing model. But now the level of the exchange rate in period zero
can be determined. It is the ratio of the expenditure received in domestic
but spent in foreign currency and the expenditure received in foreign but
spent in domestic currency. The nominator is the sum of the income (asset
shares and present value of free time) of the domestic population in the do-
mestic good, which is spent on foreign consumption, and the income of the
foreign population in the domestic good (only asset shares), which is spent
on consumption in the foreign good and foreign free time. The denominator
is the reversed expression measured in the foreign good. This corresponds to
an equilibrium on the currency market, since this is the ratio of the present
values of exports and imports over the whole lifetime settled in period zero.
The proof reveals that Walras’ law enforces this — so called — central bank

equilibrium.

Obviously, competitive labor markets clear at a wage level equal to the pro-
ductivity. Then profits from the linear technology are zero. This implies that

the prices of productive assets coincide with the valuation of resources.

Consumers’ optimal decisions are typical for log—utilities. Expenditure for
consumption and free time share the budget provided for the particular pe-
riod and state corresponding to their weights in the utility function. The
total expenditure is the sum of the present values of productive assets and
free time the population is endowed with. It is split up for per capita, per
period, and per state expenditure, which decreases with countries’ individual
discount factor, but increases with the short rate and the submartingale 1/2;.
This submartingale is responsible for the insurance of scarce states, since it

moves in the opposite direction than dividends. Altogether, e is a contin-

109 Actually, there seems to be empirically a correlation between high population growth,
poorness and high time preferences, which prevents real interest rates from becoming
negative.
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uous submartingale. The marginal increase of utility in total expenditure
decreases with the discounted population size, because dividends must feed

more people.

3.4.4 Further Conclusions

Now the remaining two questions asked at the beginning of this section are
answered: Which assets play an important role in the projection of Corollary
95 and how could the coefficients 3 look like? As long as assets form a
complete market the choice is irrelevant. But if one were taking an arbitrary
financial asset, it would either not exist as such in real financial markets or
a hypothesis about 3 might be very difficult. Two kinds of securities usually
exist, productive assets and bonds. Stocks represent the risk of production
and resources, while bonds reflect scarcity. [ is the unique solution of the

following linear equation:

o = (d-4)

— [vfazd + (1= vy afd] - [’U{sz + (1 - ’U{) Uff]

od ‘
= [, ; , where vy € (0,1).

O3

To learn (3, the diffusions of the assets 0% have to be determined. Unfortu-
nately this is not possible in a closed form solution for the productive assets
and the bonds, because it incorporates expected values about future volatil-

ities. With the lack of a proof the next assumption needs to be justified:

Assumption The sign of the coefficients in 3 are positive for domestic and
negative for foreign securities, if these incorporate the country specific
risks and do not insure these risks. Bonds and productive assets are of
this kind.

This assertion is quite reasonable if the diffusion of assets reflect only the

countries’ specific risks and do not insure these. This holds for instance if

198



both countries’ risk factors are separated, which is the case when the diffusion

(2)-(52)

and countries’ specific risks lie in the positive cone of ¢°, i.e.

matrix is a block matrix:

36 € R, - o7 = (09)" 5, j =1,6.
.. . ) AT (A T\ ) .
This implies the assertion for g = ((ﬁ ) ) (ﬁ ) ) stated in the conjecture:

[~ (vdmd + (1 — Ud) 96d)T and
go= — (0 + (1-0f) )"
= A%>0 and 3/ <o0.

Bonds and productive assets are usually not insurances against market risks;
quite the reverse is true, since those assets mirror the country specific risks.
Arguing with the 3—determining equation this means that o¢ points more
into the direction of ¢! than of ¢,°. This is even more the case if nominal
prices are considered. Then the diffusion vector of the price index adds to

that of the prices of risk as well as to the diffusions of assets:
. of T
UtX = (ft - £t>
— |:’Uf0'2[d + (1 —vf)op?+ Ugd} — [U{sz + (1 — v{) ol + a;?f}

d
o < o
= Dy

, where v! € (0,1).
U{Hnmgf) ie(0,1)

In nominal quantities the diffusion of assets are even more pointing into the
direction of the home countries’ nominal prices of risk, so that the conjecture

should hold in the nominal economy as well.

199



3.5 Empirical Evidence

The following two subsections show an estimation of the projection of the
exchange rate changes from Corollary 95. The third subsection focuses on an
error correction model implied by Corollary 91. The first estimation is done
in two steps. First, an econometric equation is derived suitable for testing
the hypothesis of a linear projection. And in the next subsection it is applied
to the data set.

Before turning to the question of the empirical validity of the linear projec-
tion, one should stress the compromises made in this estimation, in which
the practical problems come into play. One cannot seriously maintain to
find a manageable set of assets which span the whole uncertainty of finan-
cial markets despite the fact that markets might be incomplete. Though the
analysis is restricted to a relatively small set of assets complete markets are
still assumed. But probably a large set of assets is left out, which could be
very valuable in explaining the exchange rate changes. Unfortunately the
coefficients almost surely change by altering the set of assets taken into the
estimation. But even if markets were incomplete, it would be interesting to
analyze whether some kind of orthogonal projection is significant.

An even worse problem is that of a stochastic or time dependent vector of
coefficients, 3. In the equilibrium model it has been shown that the prices of
risk are stochastic. The diffusions of the securities are generally also stochas-
tic or at least in some complex manner time dependent. Also assets’ diffusion
and prices of risk determine the vector of coefficients. This makes a regres-
sion of the exact relationship almost impossible. This difficulty is not taken
into account. A justification for doing so is that the parameters might be
stable on a relatively short time horizon considered here. This is of course
not theoretically founded and turns out to be not validated on the entire

data set.

One might ask the question why the relations stated in the equilibrium model
are not estimated directly. There are at least two reasons at hand. First, the
equilibrium model is fairly special, so that one can hardly expect to regain

it in the data. Indeed there are many unsuccessful empirical investigations
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of the influence of fundamental values on the exchange rate changes. But
the most convincing reason is that an arbitrage relation should also hold in
disequilibrium. It is a much weaker presumption.

The estimation will stand on its own, which means that it is less a test of
the model but more that of a linear relationship between logarithmic asset
and exchange rate changes. To understand the estimation as a validation
of the arbitrage pricing model would be very demanding, since it implies a
joint test of all assumptions and simplifications made so far (especially that
of time invariant coefficients). It should be seen the other way around. The
model has helped to derive an econometric equation, which is not a priori
inconsistent with the theory, like the UIP.

3.5.1 Econometric Specification

The investigation concentrates on a selection of n securities, n = n’, for
each country which are supposed to have a significant effect on the foreign
exchange rate: The stock—market indices, S?, and a collection, j € {2,...,n},
of zero bonds, B;, with different durations, 6 € {6;|j = 2,...,n}, where
6; = T; —t > 0 is increasing in j. The bonds represent the term structure
of interest rates, probably the most important determinant, and the stock

10

market indices show in contrast the returns on production.!'’ Geometric

Brownian motions are assumed for the stock market indices:'!!

dsSt/S" = pSidt 4+ o'W,

The arbitrage pricing model allowed also for bond prices. In the case of
zero bonds it is easier to observe the movement of interest rates instead that
of bond prices themselves. But obviously, there is a functional relationship

between the annual effective interest rate and the bond price of the corre-

0Tt might appear more meaningful to take especially the export and import industry
into consideration, but the necessary data was not available.

1 This is a working hypothesis generally made in applied finance since it simplifies many
technicalities in pricing as well as in the estimation. This assumption is criticized to be
wrong by (Lo & MacKinlay, 1988). Non—Brownian processes would alter the F-statistics
of coefficients and the efficiency of the least squares estimation.
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sponding duration. Therefore some arbitrary It6—processes are specified for
the interest rates to show how bond prices emerge. Let the annual effective
interest rate rj- for the duration 6; = T; — ¢ > 0 be specified by the following

It6—process:
dr§ = ,u;fidt + agidVVt.

Only zero rates are considered, so that the zero bond price is defined by:

Bi(t)= (1+7ri (1)

Applying It6’s rule to In B; (t) shows that the bonds are not geometric Brow-

nian motions as well:'!2

dIn B (t) = In (147! (t)) dt — §;dIn (147} (t))

oy () ellop @l |

L+ 21+ (1)
L+7% ()
N — e’

::o_Bji

= |In (147 (t) —

dW;. (DLogBond)

Interest rates for certain times to maturity are considered. This means
that instantaneously at every moment another set of bonds as the hedge—
instruments is employed. These bonds have exactly the preselected set of
durations as their times to maturity. The reason for this detour is the better
availability over a long time horizon of interest rates for conventional times
to maturity, say for example 3 month, 1 year, 5 and 10 years. This is indeed
not the case for bond prices, whose times to maturity are instantaneously

decreasing.''® Moreover, the S—factor, which has to be estimated in the se-

12 A continuous semi-martingale is a general geometric Brownian motion, if the trend
and the diffusion of its log—SDE are non—stochastic. This is not the case here because the
interest rates are assumed to be stochastic.

'3 The interest rates of arbitrary durations could be gained from an interpolation of the
discrete yield curve.
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quel, is supposed to be more stable over time if the durations are kept fixed.
It depends on the diffusion of the assets, which in the case of bonds depends
on the duration (see o%i® above). A diminishing duration would imply from
the beginning a changing f—factor. With fixed durations the diffusions still
depend on the changing interest rates and their diffusions, which is not per-
fect but a problem of minor size. The estimation presumes time independent

coefficients of the Brownian motion for the bonds as well.

The estimation of general Ito—processes is a rather difficult task with not
always a satisfying convergence of estimators. This is due to a possibly non—
linear form of the stochastic differential equation, which has to be suitably
approximated in discrete time, see (Lo, 1988) for this problem. The ad-
vantage of the geometric Brownian motions assumed here is that the log—
differences of the variables are linear in the coefficients in discrete as well as
in continuous time.

For the estimation one has to discretize the no—arbitrage representation of
the exchange rate to fit in the daily observations. ‘Daily’ means that there
is no more than one working day between two observations. The time differ-
ence T'—t is measured in days and is for the weekdays equal to one and over
the weekends and off-days up to 3, seldom 4 days. In the arbitrage pricing
model time was measured on an annual basis. This adjustment is obtained
by dividing through 365 days per year.''* The exchange rate of one day is
taken into account only if the other variables are also observable. The repre-
sentation in Corollary 95 suggests the following linear econometric equation

in discrete time:

T
a1 ) d f T
A;rIn X = — (T —t—1 — E — Y,
t7TIl a0+§65( )/—1-365 - (7“8 T’S)—i-ﬁ t,T—I-’U,t’T,
::alD‘l,)ayst,T A :ZOCQBIRLT d

H4The actual/actual-valuation is convenient in calculations of yields up to one year.
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with E% (ug7) = 0 and in which the explaining factors Y; 1 are

Sd
B! 1| 41
Yir=Arl - — s
t,T ¢, 7 11 gf 365;[( 7“2:'1” +
B

( —Covy 1y (Aln (S% BY) | Aln X) ) L] ( Var, ., (Aln (S, BY)) )] |

Covg 14 (A In (Sf, Bf) ,AlnX) 2 Varg 1y (Aln (Sf, Bf))

The log—differences of the stock market indices are observed directly, whereas

those for bonds are calculated due to Formula (DLogBond) by:

T—t

At,T In B; = 365

In (147} (t)) — 6;AurIn (147 (Bond)

The durations ¢; have been chosen such that the interest rates 7";- (t) are
provided by the financial institutions. Whereas the continuously compound
interest rates, r¢, are only measurable by their corresponding annual effective
rates, 7°. For this reason the relationship r* = In (1 + ) covers the short rate

differential. For short time intervals [¢, 7] this implies the approximation:

1 [T .
365/, r'(s)ds = —Inb;
~ m]] (147 (s)"*
- s=t
(T —1)

12

e 1+ 7 (1))

There is, for example, no approximation error if the short rate is constant on

short time intervals.

The vectors in the second row of the explaining variables are the covari-
ances of assets with the exchange rate (Covs 1,,) and the variances of assets
(Vars 1,,). Incorporating unobservable moments in the estimation leads to
the serious problem of how to measure those time series. The co—/variances
are estimated by the usual non—parametric estimator with an arbitrary win-

dow, w, of 20 observations around the current date s. This generates the
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time series of co—/variances finally used in the regression. There are other
ways to achieve a variance—estimator: filtering rules, variance—models like
GARCH, and implicit volatilities. The first alternative is not appropriate in
continuous time because the filtering rule involves moments of higher order
also unknown. The second one is an extended model with further problems
of misspecification. The third method incorporates the problems with an
option pricing model. For example, often implicit volatilities do not coin-
cide for different strikes although they should. Since forecasting is not the
primary interest future data can be used to generate the time series for the
moments. Otherwise one would be restricted to historical volatilities, which
perform not so well. The moving window pays tribute to the fact of time—
varying co—/variances. The window size has been found by improving the
regression via trial and error.

In many preliminary regressions it turned out that the adjustment of log—
changes of assets by the co—/variances essentially worsens the regression. This
might be due to a possibly bad quality of the unobservable co—/variances,
for which a time series had to be generated first. For this reason the co—/
variances are separated from the log—changes of assets by taking those as an
extra explaining variable. This is done by the following definition of two new

time series:

-1

554
AssetVar : = —-o% : (HJSd||2,... ,| JB"f||2)T,
oBnt
551 - _g5d
AssetCov : = o : : (O'X)T )
oBnt oBnt
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In discrete time the unknown series is generated by:

-1

oX : ~ Covg iy (AlnX, Aln (Sd, B? ST, Bf))T
Covg 1y (AIn (8%, B, 57 BH)) 7

()" ~ Covsrw (AInX,Aln (—5% —B% 5 BY)),

(oS B )?) = Varga, (A (8%, 8%, 57, BY)).

Covs 1., stands for the empirical covariance vector or matrix respectively
and Vars 1, for the empirical variances both having a moving window of w

observations around date s.

The last problem addressed here is collinearity between the bonds. Obvi-
ously, if the five years interest rate is rising, the price of the correspond-
ing bond is decreasing and very likely the ten years bond prices are also
decreasing (if there is not an adverse movement in the 5 to 10 years for-
ward interest rate). For sure the bond prices admit some collinearity. But
collinearity of regressors makes it hard to interpret the estimated coefficients
(see (Judge et al., 1985) Ch. 22 for a discussion). To exclude this kind of
collinearity (there might be other reasons) the influence of interest rates is
separated with respect to different durations. This is done by subtracting
from the row (in Y') belonging to a bond with the longer the row belonging to
the bond with the next shorter time to maturity, i.e. Ay rIn B} —A;7pIn Bi |
Vi = 3,...,n.!'® This corresponds to the changes of forward prices for the
period between the maturity of the shorter bond up to the maturity of the
longer bond. There might still be collinearities, but with lower evidence as

the tests point out in the next subsection.

115 Analytically speaking, the rows corresponding to bonds of the vector Y; r are multi-
plied with —J,, 4, (—1)T, where J denotes a Jordan-block.
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Finally the econometric equation reads:

AvrIn X = ag + a1DDays;r + as DIR; 7 + as (T — t) AssetVar; 14,
+ ay (T —t) AssetCovy 14 + ﬁT}AftﬁT +urr, (EcEqu)

where
. T—t T—t
AyrIn (BS/BY),..., Ayrln (BE/BE_)) ,
Tt T—t
T
Airin (Bg /BY ) AV (Bif/B,f_l))

3.5.2 Estimation

What can be expected from the data? Indeed, two ambitious hypothesis are
imaginable although one ought not to be convinced of their validity because

of the many compromises that have been made:

Unbiased Expectation Hypothesis: The foreign exchange market is in-
formationally efficient with respect to the arbitrage pricing model if the

coefficients satisfy the following theoretical restrictions:

ay = a3 =0,

ay = az3=aq4 =1,

B; > Oforj=1,... ,nand
< Oforj=n+1,...,2n,

provided that the generated time series, AssetVar and AssetCov, coin-

cide with investors’ expectations.

Complete Market Hypothesis: The chosen assets form complete finan-

cial markets if ur; = 0.
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The two hypotheses seem to be too demanding. One could be satisfied to
find in the data some evidence of the linear representation, i.e. [ significantly
different from zero with the supposed signs, and a significant influence of the
short rate differential, i.e. as =~ 1.

The data set consists of about 2000 daily observations from January 1990 to
November 1997 of the Deutsche Mark/US-Dollar exchange rate''%, interest
rates for fixed durations as well as the over night short rates and two stock
price indices, DAX and DOW.!!" Figure (5) shows the time series of the daily
Deutsche Mark/US-Dollar exchange rate as well as its log—changes.

Daily DEM per US-$ and its log-differences
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Figure 5: Deutsche Mark per US Dollar

Synthetic bond prices are calculated with the average interest rates on gov-

ernment debt. The conventional durations 10, 5, 1, and 1/4 years have been

6The German currency has been chosen instead of the €, because the time series is
much longer. The EMU hurdles are avoided by considering the exchange rate only before
1998.

17The data sets have been provided unofficially by a London investment bank.
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employed. The forwards used in the regression are denoted — for example —
by ‘D DEM 1Y 3M’, which means: log—differences of a German government
bond with a duration of 1 year minus its 3 months equivalent, i.e. the 3
months up to 1 year forward rate movement. Or ‘DUS$10Y5Y’ stands for
the log—differences of the 5 to 10 years US—$ forward. In case of the 3 months
government bond (DDEMBond3M) only the excess return over the one—day
interest rate is considered.

To find out how the coefficients of Equation (EcEqu) behave over the entire
time horizon, a rolling linear regression with a moving data—window of 500
observations has been carried out. The graphs of the coefficients indicate
that they are more or less not constant over time, what has been expected
due to the non—constant (co)variances. Figure (6) shows the coefficient of

the DAX in this rolling regression.
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Figure 6: Recursive Regression, Coefficient of the DAX

The true value is most probably not constant because there is no constant

laying in the +1.96 standard error bands of the estimator. Moreover, the
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coefficient is probably negative until the mid of 1993 violating the conjecture
of positive coefficients for domestic assets. In 1993 the estimator jumps to
(mostly) positive values.

As this graph indicates, the linear regression is not very robust over the
entire horizon. Therefore the more stable sub—period from the 1.1.1993 to
the 27.11.1997 is considered with 1085 observations. The next table contains
the results of the linear regression of Equation (EcEqu), i.e. the estimated
coefficient of the named variable, its standard error and the significancy
of having explanatory power for the variance of the log—differences of the

exchange rate.'!®

Variable Coeflicient Std Error Significancy
Constant 0.000892 0.000399 2.6%
DDays —0.138880 0.085225 1.1%
DIR —3.135795 2.885749 27.8%
AssetVar —0.919794 0.412230 2.6%
AssetCov —0.492522 0.594426 40.8%
DDEMBond 3M 0.113980 1.192965 92.4%
DDEM 1Y3M —1.281451 0.550582 2.1%
DDEM 5Y1Y 0.182546 0.079947 2.3%
DDem 10Y5Y 0.309300 0.062536 0.0%
DDAX 0.133817 0.020296 0.0%
DUS$Bond 3M —1.917974 1.021684 6.1%
DUSS$ 1Y3M —0.641852 0.399051 10.9%
DUSS 5Y1Y —0.273538 0.113226 1.6%
DUSS$ 10Y5Y 0.243020 0.119502 4.3%
DDOW —0.038089 0.026701 15.5%

U8 The significancy indicates the (two sided) probability sig that the true coefficient ~,
has at least a distance of the absolute size of 4, from the estimator: Pr (|9; — v;| > |%;]) <
stg. This event implies that the true coefficient could have the opposite sign only with
probability less than sig. The t-test presumes normally distributed residuals, which is
not exactly the case for the residuals of the following regression. An upper bound for

2
the significancy is determined by Chebyshev’s inequality: sig < (Scfggf) , which is e.g.
about 2% for the DAX.
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The variables DIR, AssetCov, DDemBond3M, DUS$ 1Y3M, DDOW are not
significant to the 10%-level.''? The centered R? ~ 11% is low, but this is
common to many empirical results concerning fx—markets. Moreover, the
estimation becomes worse by aggregating the data up to one week. This
might be a hint that fx—markets realize very fast new information and that

high—frequency data could improve the estimation.
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Figure 7: Recursive Regression, Coefficient of the Short Rate Differential

The coefficient of the interest rate differential is negative in contrast to the

hypothesis. The rolling linear regression over the entire horizon shows, that

9This regression applied the “LINREG”-procedure from the statistical software
“RATS”. More results: Since just differences of logs are involved, one can be secure of
cointegration. Further statistics exclude autocorrelation of the residuals (DW = 2.03,
Q(36 —0) =30 (75%)) as well as correlation between residuals and regressors. The resid-
uals are slight positively skewed and fat tailed relatively to a normal distribution. The
variance-decomposition shows possible collinearity between the pairs: Constant/DDay,
DUS$ 5Y1Y/DUS$ 10Y5Y, and weaker: DDAX/DDOW, AssetVar/AssetCov, Asset-
Var/DIntr. The regression without one variable of each pair does not change the remaining
coefficients a lot, but reduces the R2.
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the coefficient of DIR takes negative values in some time intervals, is of
relatively small absolute size, and seldom significantly different from zero,

see Figure (7) above.

Moreover, Constant and DDays have coefficients significantly different from
zero and the coefficient of DDEM 1Y3M and DUS$ 10Y5Y do not have the

supposed sign, both in contrast to the conjecture.

The next estimation takes some freedom in the variables. The explanatory
power is improved by using lagged and squared variables. The lagged vari-
ables are indicated by (7), in which case the variable is 7 days behind the
exchange rate. Squared variables could cover some degrees of non-linearity
in the regression, which is denoted by an attached ‘Q’. The lagged dependent
variable is denoted by DFX DEMUSS. In the next regression those time se-
ries are additionally taken into account, which improve the R? and whose
contribution is significantly different from zero. The following table on the

next page shows the results.

The R? increased to 15.5%.!%" An astonishing result is that the US-$/DEM

121 Thig effect is decom-

exchange rate shows to overshoot systematically.
posable into five factors corresponding to the variables with a significant lag
structure. The coefficient of the more lagged variable has always the oppo-
site sign of the more recent variable. This is also valid for the dependent
variable itself, since the 3-day lag, DFX DEMUSS$(3), has a negative con-
tribution. The dependence on the short rate differential, DIR(1) + DIR(3),

stayed negative.

Summarizing, the empirical results are not exciting, neither to sustain the
conjectures made above nor to reject those. A linear projection of the log—fx—
changes onto the excess returns appears successful, especially for the domestic

assets, but the short rate differential has the opposite effect than expected.

120The results of the accompanied statistics remain qualitatively almost the same. Ex-
cept, some more and some stronger collinearities appear, e.g. between DIR(1) and DIR(3),
which is due to a non—zero trend in DIR.

121 This empirically supports the macro—economic fx-model by (Dornbusch, 1976).
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Variable Coefficient Std Error  Significancy
Constant 0.00025 0.00051 63.0%
DDays —0.12170 0.09284 19.0%
DIR(1) 56.29542 30.62790 6.6%
DIR(3) —64.48941 30.29015 3.6%
AssetVar —0.39110 0.42087 35.3%
DFX DEMUS$(3) —0.05105 0.03079 9.8%
DDEMBond 3M(1) —2.86279 1.29723 2.8%
DDEMBond 3M(4) 1.45515 1.15009 20.6%
DDEM 1Y3M —0.80551 0.61301 18.9%
DDEM 1Y3M(2) 2.02343 0.55839 0%
DDEM 5Y1Y 0.35408 0.08860 0%
DDEM 10Y5Y 0.26394 0.06896 0%
DAX 0.11891 0.02105 0%
DUS$Bond 3M —1.83435 1.12394 10.3%
DUS$ 1Y3M —0.20784 0.51815 68.8%
DUS$ 5Y1Y —0.09853 0.07034 16.2%
DUS$ 10Y5Y(1) —0.17189 0.08926 5.4%
DUS$ 10Y5Y(4) 0.11333 0.07014 10.7%
DDOW —0.01966 0.02808 48.4%
DDOWQ —2.26843 0.90193 1.2%
DIRQ 0.76284 0.42145 7.1%
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3.5.3 Error Correction by Risk Premia

As mentioned in the introduction an important part of the econometric lit-
erature on fx markets has analyzed the information efficiency. The semi—
strong and strong information efficiency, i.e. the reflection in prices of public
and public as well as private information beside the history of prices, is dif-
ficult to verify — if not even impossible. A simpler expectation hypothesis is
usually supposed, mainly the UIP. Therewith weak information efficiency is
tested, e.g. whether the expectation error could have been partly explained
by lagged prices and lagged expectation errors. If this were successful, so the
conjecture, historic information (lagged prices) had been used inefficiently
in the formation of expectations about future spot prices. For example
(Hansen & Hodrick, 1980) proposed the following econometric equation to

test information efficiency:

nX;—InF 1, = a+F(InX; 1 —InF_5; 1)+ u,
with E51 (u;) = 0.

If the UIP had to hold, i.e. if E5 ! (In X; —In F;_; ;) = 0, the estimated co-
efficients should be significantly close to zero. Some empirical studies found
this in the data, some others claimed evidence for the contrary as well. How-
ever in other contributions neither the hypothesis nor the contrary appeared
to be significantly sustained. The interpretation of coefficients «, § being
different from zero has been twofold, either due to market inefficiency or due
to a risk premium in In X;. It has been shown in Proposition 93 why the
presumed hypotheses might have been failed. Therefrom to conclude that
markets operate inefficiently is not justified. Since even for risk neutral in-
vestors the UIP holds in a nominal economy only in special cases (see Lemma
82), it is wrong to identify E5 ' (In X;) — In F;_;; with a risk premium.'?? Tt

is a premium caused by random inflation if agents were risk neutral.'*® For

122By definition the ‘risk premium’ measures the difference between the expected equi-
librium returns with risk neutral and risk averse agents, respectively.

123The term ‘risk premium’ is correct either in a real economy or if agents perceive money
as if it were a consumption good.
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this ‘risk premium’ Hansen and Hodrick assumed an AR(1) process. This
procedure is similar to an error correction model, in which the expectation
error depends linear on past expectation errors, just that the term ‘error’
has another meaning. In an economy with money and risk averse investors
this ‘error’ is a mixture of the real risk premium, the inflation risk premium,
and a factor due to the change of numéraires from the real to the nominal

currency. From Corollary 91 and Lemma 94 it follows

A 1
ES? (lnXt) InX, ;, — (rf e 1)

365
N 1
~ 3652

Y

Let the last line define this collection of risk premia:
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P . . inflation rlsk primia
numeéraire change to nominal prices

In the two previous sections the premia in Y;_;, has been explicitly spelled
out. It is called the fx—premium in the sequel. Although it contains unob-
servable quantities suitable substitutions were found. This subsection applies
the fx—premium as an ‘error’ correction, i.e. the coefficients o and 3 of an
equation are estimated, which is similar to the one formulated by Hansen
and Hodrick:

lnXt —h’lthl = a0+ a_

3625 (7”? 1= T 1) BY_o1 + uy.

From the theory one is able to formulate a conjecture about §. The equilib-
rium model has shown that prices of risk depend on real quantities. And the

neutrality of money implies that inflation is caused by the excess growth of
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money stocks over the GNP growth. Relatively to financial quantities those
variables are inert. Therefore the conjecture is that parts of the fx—premium
do not change too frequently compared to the exchange rate, because the fx—
premium is determined by prices of risk and inflation. This would lead to a
positive [ significantly different from zero.

This equation cannot be interpreted in a way of information efficiency. This
estimation is interesting ‘only’ for reasons of comparison to previous empir-
ical results and to see whether the fx—premium Y could have explanatory
power in this moving average process.

The constant cg was nearly zero, not at all significant, and therefore excluded
from further regressions. The first table displays the result of the regression

based on daily observations over the entire horizon.'?!

Variable Coefficient Std Error Significancy
Y 041 0.0757 0.0221 ~ 0.0%
pd o — 0.3183 0.15 3.4%
g — 7l —0.3084 0.15 4.0%

The explaining variables are the one day and eight days lagged over night
interest rate differentials and the one day lagged daily fx—premium. The
coefficients of the interest rate differentials are significant to the 5% level,
that of the moving average is in fact highly significant. The centered R? is at
a low of 0.86%. The regression is more successful on an aggregated level. The
next estimate is based on weekly log—differences of the exchange rate. The
over night interest rates have been substituted by the three months rates'?

and the daily by the weekly fx—premium.!'2¢

124The estimation has been carried out by the “AR!” procedure in RATS with the “HILU”
option, which results in a minimal least square estimate by a grid search.

125Perhaps the three months rates perform better, because the over night interest rates
capture more a narrow liquidity in the money market. This market could be very volatile
and is not so relevant for the longer horizon of a week.

126The Box-Jenkins procedure in RATS has been applied to this regression, which esti-
mates the coefficients by quasi-maximum-likelihood in conjunction with a Gauss—Newton
algorithm.
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Variable Coefficient Std Error Significancy

Y, s 1 0.6781 0.0164 ~ 0%
P —0.5634 0.171 ~ 0%
e ) 0.5568 0.171 ~ 0%

The centered R? is remarkably 52.5% high. In both regressions one observes
an overshooting in the interest rate differential. The influence of the interest
rate differentials is now in the sum negative, presumed to be positive like
in the last regression. Moreover their common contribution to the explained
part of the variance of the endogenous variable is very low. The interest rate
differentials are only significant if at least two consecutive differentials are
taken into account. Since the interest rate differentials show to have a trend
and are therefore collinear, it makes sense to have a look at differences of

second order:

Variable Coeflicient Std Error Significancy
Y g1 0.6781 0.0164 ~ 0%
(f3M,d7f3M,f)7

(it —0.5601 0.171 ~ 0%

The centered R? stayed almost the same. In the three regressions the lagged
fx—premium explains most of the exchange rate changes. Since the fx—
premium follows an AR(1) process, the log—exchange rate follows then an
ARIMAX(1,1,1) process. The forecasting equation with figures taken from

the last regression then sounds:

X, = InX, ;- 05601 [(rfﬁd _ p3MS ) _ (ff’i‘g’d M )}

4+0.678 ui_1 + uy.

The empirical findings sustain the theoretical results that a fx—premium ex-
ists which is relatively sluggish. It is possible to improve the explanatory
power of regressions remarkably by considering an AR(1) process for the fx—

premium.
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3.6 Conclusions

The purpose of this chapter was to provide a consistent analysis of the ex-
change rate from four angles; an educational perspective; from the viewpoint
of arbitrage pricing; within an equilibrium framework; and, empirically. The
Uncovered Interest Parity (UIP), which has been a very popular hypothesis

so far, was the peg to hang on those issues.

In the first part it has been shown by intuitive and mostly verbal arguments
that the real exchange rate satisfies the Forward Expectation Hypothesis
(FEH) if agents were risk neutral. In this case the exchange rate as well as
interest rates follow deterministic processes which trivially implies the FEH.
But if this artificial assumption does not hold or nominal numéraires are
considered the FEH is satisfied only for purely deterministic economies. In
any way, there are no reasons for the UIP to hold in a stochastic environment.

In fact, the UIP was proved to be a non—generic property.

The next section embedded the exchange rate into an extended version of the
Black—Scholes model. In continuous time finance it is a well known result that
the exchange rate is equal to the ratio between the foreign and the domestic
price deflators. Each of the deflators is the product of the pricing asset and
the savings account belonging to the respective numéraire. That mirrors the
function the exchange rate serves: to switch between two different valuation
regimes consistently. But even in complete markets not both pricing assets
are uniquely determined. Provided the domestic pricing asset is uniquely
characterized in complete markets, the exchange rate determines the foreign
pricing asset or vice versa. Within the triple of exchange rate and either prices
of risk there are degrees of freedom equal to the number of exogenous risks
plus one (for the drift and the diffusion of the exchange rate). Thus, only with
redundancies independently priced in the two economies, which have without
those redundancies already jointly complete asset markets, information can
be gained for the trend and the diffusion of the exchange rate (or the missing
pricing asset). For only one redundancy a correlation between the trend
and the diffusion of the exchange rate has been established. Beside the

interest rate differential the correlation involves also the excess returns of
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assets and their co—variation processes with the exchange rate. Exchange
rate’s growth rate shows to be linear in the excess returns of assets and the
short rate differential, where the latter goes in one-to—one. If more than one
redundancy occurs, also the diffusion of the fx-rate will be determined up
to a certain number of degrees of freedom, which is equal to the dimension
of exogenous risks minus the number of redundancies predominant in the
market.

To show the non—viability of the UIP an arbitrary price of risk was presumed
for each numéraire. It has been proved that the UIP imposes a non—generic
restriction onto the prices of risk in their domain. Thus only special, non—
generic economies satisfy the UIP.

The arbitrage pricing model was followed by an equilibrium model with a
stochastic environment in continuous time. The arbitrage pricing left open
the determination of prices of risk, the interest rates and the starting value
of the exchange rate. These four processes and today’s exchange rate com-
pletely characterize the law of motion of the exchange rate by arbitrage,
while they themselves can only be learned in an equilibrium framework. The
model is in its nature macro—economic but micro—founded. The investigation
was limited to an extensive example economy with two numéraires, two rep-
resentative agents with logarithmic von-Neumann-Morgenstern utility func-
tions, two linear production technologies, and complete asset markets. In
this example it turned out that the prices of risk were a stochastic convex
combination of the two diffusions specific for each country, namely the dif-
fusion of production technology and resources. The interest rates have four
determining factors. They increase in the foreign and in the domestic devia-
tion of individual discount factors from population growth rates, the growth
rates of production, which is itself the sum of the growth rates belonging to
the technology and the labour force, the growth rates of resources and the
price of the price of risk. The coefficients of the growth rates are stochastic
convex combinations, where the weights are either the export share, if foreign
variables influence domestic quantities, or the share in supply, which either
the production or the resources have. Today’s exchange rate is equal to the

ratio between total domestic expenditure spent on foreign consumption and
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total foreign expenditure spent on domestic consumption. Total expenditure
contains today’s price of future resources as well as the value of populations’
total leisure time (priced by risk neutral expected discounted future prices
and cash flows). This can be interpreted as an equilibrium on the currency
market, in which all future exports and imports are completely hedged today.
The results of that example lead also to the conjecture that the growth rate
of the exchange rate reacts positively /negatively on domestic/foreign excess
returns of assets. This is one of the key hypothesis of the empirical exami-
nation.

In the empirical section two reduced form equations were derived to test the
conjectures drawn from the two preceding, theoretical models. The sample
consists of 1087 daily observations of the DEM per US-$ exchange rate of the
years 1993 to 1997, the corresponding interest rates, and stock index prices.
The estimation of the first equation mirrored the linearity between the growth
rate of the exchange rate on the one hand and the excess returns of assets and
the short rate differential on the other hand. The results are only partly mir-
roring the arbitrage pricing model. Although some linearities were detected
between the returns of the exchange rate and the assets, the dependency on
the short rate differential is of opposite sign than supposed. Moreover, not
all foreign assets and covariance terms between assets and the exchange rate
play a significant role. The explanatory power increases but remains low if
additional non-linearities were tested. For instance the returns of the Dow
Jones Index are only in quadratic form significant. Moreover, some variables,
e.g. the short rate differential, cause an overshooting of the exchange rate in
that the influence of lagged variables is reversed by more recent variables.
The second equation had been more successful. The expected growth rate of
the exchange rate can be split—up into the short rate differential and an un-
observable fx—premium (which is not only a risk—premium). If one assumes
a persistent fx—premium the equation can be re—written into an error correc-
tion model. This approach worked reasonable well for weakly data. The best
result reaches an R? of about 50%, which is high for financial data. Therein
only two factors explain the log—differences, namely the weekly differences

of the three-month interest rate differential and the lagged forecasting error,
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which is the fx—premium. Thus, there is some evidence for an integrated
ARIMAX(1,1,1)—process for the exchange rate.

In the arbitrage pricing model there is not much room left for explaining the
fx—rate. Of course the assumptions imposed onto the stochastic processes
could be relaxed. For example, a simple assumption has been made to put
Novikov’s condition down to the exogenous drift and diffusion functionals.
This assumption, which is not specific to fx—markets, should be weakened.
In the area of equilibrium models the dynamic optimization approach of
(Karatzas et al., 1990) in continuous time waits for an extension to several
goods. But those general models are often not solvable in closed form. This
implies the difficulty of a quantitative interpretation and should be accom-
panied by developing more refined examples like the one proposed in the
text.

In applied econometrics there are two competing methodologies predominant.
Either the reduced form equations are derived from theoretical models or one
tries best to fit the data by ad—hoc econometric models and — if ever — builds
the explaining theoretical model afterwards. Although both ways are justified
this essay followed the first approach. The latter bears the risk that one looks
for seeming laws in the data which can actually not be valid in any model, for
instance the UIP. Especially for fx-markets the ad—hoc econometric method
had been very unsuccessful [see (Frankel & Rose, 1995)]. Moreover, a model
helps to identify factors, even though in the estimation one does not follow
the functional form of the model.

To be more precise, the example economy suggests for the prices of risk a
convex combination of the diffusions of resources and of technological change.
The fx—premium is equal to one half of the difference between the Euclidean
norms of prices of risk. This observation results in the difference of instan-
taneous volatilities of country specific processes. Therefore, volatilities of
fundamentals, for example the variance of production, may have an impor-
tant influence on the fx—premium. Volatilities of fundamentals were not yet

regarded in econometric models for fx—markets.
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3.7 Appendix, Proofs of Section 3.3.2

3.7.1 SDE of the exchange rate

X0 starts in 1 and is a positive martingale with respect to the

Lemma 99 X5

measure Q°.

Proof. X;/b," is the locally riskless bank account of currency i measured
in currency i. Thence it is a risky asset, which has to be a martingale under
Q' after discounting it by the locally riskless bank account of country i.

By arbitrage the exchange rate must be positive, where X{ is the Fy-measur-
able and normalizing constant. W

A random process with these properties induce a change of measure, here
from Q' to Q.

In the appendices the formal computations make use of the following sym-
bolic re—definitions: d stands for 1 and f for —1 only if either X or F' are
concerned. This is because X/ = + and X¢ = X. These abbreviations imply,
for example, that In X¢ = iIn X. Note, that this applies to X and F only!

Lemma 100 (SDE of the exchange rate) In complete markets the flow

of the exchange rate is given by
dX/X = (r* =l — ¢ (¢f —¢h)) dt + (¢ — &) aw.

Xi bt . . . .
Proof. % is a Martingale with respect to the measure ()°. Moreover
0"t

the exchange rate is strictly positive by a simple arbitrage argument. If the
diffusion of X is 0¥ X, then it is 0 for In X. The diffusion is not affected

by a change of measure. This implies two representation for X :

) t
X! < Xiexp (/ — T;idu) & ((iaX) . WZ> ,
0
where W' are the Brownian motions due to the change from P to Q' :
AW £ dw, — &idt
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and & denotes the exponential up to time ¢:

t 1 t
E(zoy) =exp (/ Zudyy, — —/ ||zu||2du> )
0 2 Jo

Now undoing the change of measure by the prices of risk £ yields:
‘ 1 . .
dln X' = (rl —rt— 3 ||UX||2 — iaxfl) dt + ioXdW.

Say H are m risky assets with diffusion 6 in the foreign currency, which
together with the locally riskless bank account complete the foreign financial
market. By the definition of the foreign price of risk the assets solve the
SDE:

dH = (rfﬁf _ &5f) dt + 5dW.

Whereas in the domestic currency the assets HX have to solve by Itd’s rule
the SDE:

d (HX) — HdX + XdH +d <H X>
= X (ApX 07 =€ +6 (o)) dt+ X (Ho™ +6) dW.

By the definition of the domestic price of risk these SDEs must coincide.
Then

d (HX) _ (ﬁer e (If.raX + &) gd) dt + X (ﬁaX + a—) AW
implies the equation
Hré — (ﬁax + &) & = HpX + 1P H — ¢ + 6 (0%)"

Inserting the result for 4% in this equation and solving for the diffusion of
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the exchange rate reads:
Hrd — (I:[O'X +&) Sd = H (rd . Uxfd) +rfH - &ff +0 (UX)T Mg
5 (0X)" = 6(¢f—¢?).

And because markets are complete, i.e. rank (6) = m, the solution for the
diffusion of the exchange rate is (UX )T = ¢/ — ¢ This implies the following

stochastic differential equation for the log—exchange rate:

dnX = <7~d —rf - % 167 — &||” — (&7 — %) gd) dt + (¢ — &%) aw

= (o S - SN ) (€ - ey aw

Applying Itd’s rule to In X, which reads dIn X = dX/X — d (X, X) /2, one

arrives at the stochastic differential equation stated in the lemma. W

3.7.2 Proposition (FX—Flow)

The proof is divided in three steps.

1. Tt is checked that the diffusion matrix of assets is regular.

2. Here some preparation results for step four are given concerning the

inverse of a small matrix adjustment.
3. The prices of risk £ for both currencies are derived.

4. The change of measure in the SDE of the foreign exchange rate is

reversed and the equation: pX = % —rf +0%X¢? is solved for the trend

.

Regularity of the Vola—Matrix

Lemma 101 (Regular Diffusion-Matrix) If domestic financial markets

are complete and (FX-Spanning) is assumed, then the diffusion matriz of
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assets which span the risks of domestic financial markets is reqular, i.e.

d
mnk( Uf > =1m.
o

Moreover

Proof. Since the scalar X is strictly positive it does not effect the rank
of the diffusion matrix of assets constituting complete domestic financial

markets, i.e.

o o
rank = rank .
Xol + XHfoX of + Hf X
By complete domestic asset markets the former matrix has rank m. Then

d
o 0
rank ( ; ) > m — 1 because ( g ) oX is a rank adjustment at most by
o

one degree. Suppose that the rank is m — 1. Then a portfolio #° # 0 exists
d

such that 6° ? ;= 0. This portfolio divided by a constant would also
o

generate the volatility of the foreign bond in domestic currency:

d
0 o 0 0 X
9<0f—l—HfUX>/9(Hf>_U'

Note that a zero nominator would be a contradiction to complete domestic

asset markets. By (FX-Spanning) there also is a portfolio #* such that:

9X<0§>:UX.
o
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But this means that there is a portfolio 9, defined by

ole(3) (o0 (3)

in the null-space of the diffusion matrix

~ o'd
0 =0.
of + Hf 6X

And since 8% # 6° they cannot sum up to zero, i.e. 6 # 0. This is a contra-
diction to complete domestic asset markets.
The second claim still needs to be proven. Domestic asset markets are com-

plete if and only if for any vector 0 # 0 it is not true that

o b =0
= =
of + HloX

|
N
Q 9
-~
N~
\
N
T o
k'!
N~
Q
=
>
I
>

ot - 0 5 5 5
—o~ ; Hi 0% = 0% and 0¥0#£0=
o

() () -

However domestic financial markets are complete and thereby the equation

in the last row can never hold. H

Some preliminary Linear Algebra
The next step of the proof needs a transformation of a certain vector. This

minor problem of linear algebra is considered now.

Lemma 102 (Inverse of small rank adjustment) Consider a regular
matric A € R™ @ R™ and two vectors x,y € R™ such that —xT A1y # 1.

Then the inverse of a ‘small rank adjustment’ A + yxT can be transformed
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in the following way:

1

™1 _ 4-1
(A—i_yx) _A 1+xTA—1y

Aty AL

The formula can be found in [(Horn & Johnson, 1985) p. 19]." A corollary

of this lemma is the following:

Corollary 103 Let A, z,y satisfy the requirements of the last lemma. Then
_ -1 _
(1 — T (A + yxT) 1y) zT (A + ymT) o aTA L

Proof. The following vector of this expression transforms into

T A~y >

T ™1 _ T 4-

Inserting this result into the denominator yields
T A-1 T A-1
1—azTA™Yy 1—u = 1—u )
1+2TA 1y 1+2TA 1y
which proves the simplification stated in the corollary. W
Corollary 104 Let A, x,y satisfy the requirements of the last lemma. Then
(A+ wa)_l (I+ys"AT)y =A""
Proof. By multiplying both sides with A +yz7. R

Change of Measure

Lemma 105 (Prices of Risk) The prices of risk —¢', which are minus the

127The proof is simply done by multiplying each side with (A + y:vT). The more general
case, in which yz” might be a ‘true’ rank adjustment for an arbitrary square matrix A
and two arbitrary vectors z, y of matching length is treated in [(Campbell & Meyer, 1979),
Theorem 3.1.3 p. 47].
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diffusions of the pricing density processes, are

—1
£d _ o’ pl _ H?
HfoX +of HipX + pf 4 ofoX HI

o = _(O'd - H‘lax)_1 .

of

pd — HipX — gdgX _'_HdHO.XHQ ; VoL
W, —r o .

Proof. By the no-arbitrage condition H'b', H "X’ and Xibb% are Q-
martingales. As H? and H/X generate a complete asset structure in the
domestic financial market they induce the change of measure form P to Q.

First, one computes H/ X by It&’s rule:

d(H'X) = H'dX +XdH' +d(H' X)
= X (H'p* +pf +0l0)dt
+X (H'o* + o) dw.

With the use of Girsanov’s Theorem the Brownian motion under () has to
be:

d

-1
~ o
awd = d .
W W+<XHfO'X+XO'f>

XHIX + Xpf + XotoX ) "\ mix '

Hence the drifts of H¢ and Hf X are replaced by r?H¢ and r*H’ X as required
by the no-arbitrage implication with respect to the risk neutral measure Q.
In the proof of Section 3.7.1 it was shown that the expression preceding dt
is minus the domestic price of risk. The exchange rate cancels down in the
bottom row.

The same calculation can be done for the foreign financial market. The do-

mestic assets in foreign currency follow by It6’s rule the stochastic differential

228



equation:

d(H'X™) = —H'X?dX + X 'dH’— X *d(H", X) + H'X *d (X)
= X! (/fl — HYX — 09X + H? HO’XH2> dt
+X7' (o = H%X) aW.

Again this implies the change of measure:

X-lgd _ fdx -1 (O.X)T -1
of

awf = dW+(

[<X—1ud ~HIX X X lgg X HAX ! ||0.X||2)

,uf
Hix!
Hf

X! cancels down now in the upper row, which results then in the foreign

price of risk. W

FX—Trend

Lemma 106 (1~ /0% —Arbitrage Relation) If there are equivalent mar-
tingale measures Q' the following relation between trend and diffusion of the

exchange rate must hold:

1
MX = (rd—rf) + 0% o ut —rH
of wt —rfHf +ofoX )"

Proof. In the previous Lemma 100 of Section 3.7.1 it has been shown that

the trend of the exchange rate satisfies
,uX — (,rd . ,’,,f) . ng'X.
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In this equation the substitution u* = g% + (Td —rf ) is employed and the

result for £ from Lemma 105 is inserted. Then it reads:

X x o -1 ud _ pdpyd
Bo=9 \Hrox 1 05) \uf —rfHI + HIGX 4 00X )

Solving this equation for X results in

ot ! 0 -
o= [1-0%
HfoX + of HfpX

x ol -1 Md_Tde
HfoX + of pt +ofoX —rfHF )"

= ()= = ()

the Corollary 103 can be applied to the scalar and the first vector of the left

By identifying

hand side of the previous equation. In Lemma 101 all the prerequisites of the
corollary have been showed . Undoing the change of variable in the equation
yields the relation between trend and diffusion of the exchange rate stated

in the lemma. W

Remark 10 One might think that only n' — 1 risky foreign assets plus the
foreign bond are enough securities to change the measure in the domestic
currency, because the exchange rate makes the bond also risky. Then one
would arrive at nf +n? +1 = m + 1 ‘spanning’ securities. Indeed this is
enough to change the measure but it does not suffice to derive the arbitrage
relation for the trend. In this case one risky asset is missing to apply the

linear pricing rule. The determining equation for u* would read:

-1

ol ud — e
o= X U,J:f_l + Hf 0¥ H o 4yl + o o —rfHY
BfgX B'pX +rfBf —rfB/S
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Therefore at least n' risky foreign assets are necessary to calculate . All

assets together, foreign and domestic, must span the entire L2 (P x \).

3.7.3 Proof of Proposition Generalized PPP

Proposition 107 (Generalized PPP) Suppose there are two ways to
achieve complete domestic asset markets. Either by n® + n domestic and
n' foreign assets or by n? domestic and n’ +n foreign assets. The two possi-
bilities differ only in the substitution of n foreign assets by the same number
of domestic assets, whereas all other assets remain the same. The changing
assets are denoted by a bar on top. For both completions FX—spanning shall
hold.

Under these assumptions markets are free of arbitrage opportunities if and
only if the diffusion of the exchange rate satisfies the following equation up

to m — n degrees of freedom:
_ + /s -
(gX)T _ 54 ad — Fpd iy
ot pud — Hpd
+ _
of ol — Hir!
_ f _
<0’f I +vy PX\—a.s.
. : '
for some arbitrary y* € N ( : ) ;
O.Z

where the superscript 4+ stands for the Moore—Penrose inverse.

This proof extensively uses the Moore-Penrose inverse and orthogonal pro-

jections, see Section 3.9.

Proof. The replaced and the replacing assets respectively are denoted by

a bar on top. Then the change of measure in the domestic currency can be
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done in two ways:

o 1l He

& = — | o/ +HoX il +ofeX +yXH | - | HY
ol + Hf 0¥ | ' +ofoX + pXH! HY ]
! L 1 He\ ]

- 54 it | g
ol + HioX |\ wf +oloX + yXHI HT ]|

By multiplying with the volatility matrix of the second row this equation is

equivalent to:

ol s I*e.
| of + H 0¥ W +ofoX +H X | -t | HY
ol + HioX pw' +oloX + HI X H
-

To shorten the notation the excess return is abbreviated:

.’Ed Md _ T‘de
:fd ﬂd _ Tde
7 -l
o W —rlHI

Inserting the solution for p* derived in Lemma 106 of the last Section 3.7.2

the expression in [|-brackets simplifies by factoring out a vector to:

-1

0 ot x?
I+ | B || &/ ¢+ 570X
H' of xf +ofoX
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By the last Corollary 104 in Section 3.7.2 the multiplication of the inverse to
the right of the matrix in [|-brackets reads:

~1 ~1 -1
o 0 0 o o
ol |+ | B |o* I+ | H || &/ =1 o/
of HY H' of ol
By those two steps one arrives at the equation
~1
od x4 0
5| of |+ et | ()| =24
ol z! ol
Now the equation transforms for some y; € N () into:
0 od x¢
T
g | () = & |[o"z?+wn] | 7/
af of z!
The first rows restrict the choice for y; :
0 = o[e" 2+ 4] -2’ =
T ([ _ 5_d+5_d) (—5d+j:d+gd+xd +y2) ’

for a y, € N (¢) , which implies
g = (I — %57 0% + yy

where y3 = (I — 3%"a%) (I — 0% 0?) 05 for a 63 € R™.

One has to argue now that a solution for y; exists. This claim is proven
by contradiction: Supposing a solution does not exist would violate the no—
arbitrage requirement. The derived solution for y; guarantees that the new
domestic assets do not introduce arbitrage opportunities relatively to the

existing domestic assets. Inserting the solution back into the restriction for
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y1 results in:

N [(I _ 5d+5d) ad+md_{_y3} _
olgdtadgdtpd —  gdzdtzd

It states that the excess returns of old and new domestic assets, ¢ and z¢
respectively, must coincide in the space which both assets span: R ((ad) T)
and R ((6d)T> , respectively. Multiplying the matrices in the last row onto
the right hand side of assets’ diffusions ¢ and ¢, which results in o%c%*a¢
o4t aldW and o?c*+5?dW , this point gets clear: The terms 0%t ¢? and 5%+ 5¢
are the orthogonal projections of risks onto the space which old and new as-
sets span respectively. The spanned risks of the old assets are again projected
on the space the new assets span. By the last pre-multiplication with ¢¢ both
projected risks are compared on the same space while eliminating orthogonal
parts of R ((crd) T). In this space the remaining risks coincide and so by
arbitrage the returns have to be equal if transformed in the same way. Al-
though this is only a orthogonal projection and not a complete spanning of
the new domestic assets (complete spanning would lead to incomplete mar-
kets), this is indeed a no—arbitrage condition because the projection residuals
can be hedged away by the other assets in complete markets. This proves
the existence of a solution for y; by the no—arbitrage condition.

Finally the equation solves for the diffusion of the exchange rate:

+
(7 =) .
o i Ya

2l
for some y, € N )

ol
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It needs to be shown the existence of some vectors 3,05 € R™ such that

(while ignoring the domestic country’s index):

"2+ (I —-66)octa+(I—cto)(I—0t0)bs =

(2) () (-() (2

By arbitrage there is a price of risk ¢? which solves:

(2)=2)

o

This implies

+ +

oo z=xaswell asocox = 1.

T
Multiplying the considered equation by the diffusion matrix ((6)T (0)T>

from the right yields the following equation for the bottom row:

0672 —ootooTx — o5t (I — O'+O') 03 =0,

whereas in the upper row all terms cancel down. Now the definition of the

price of risk implies:

ooto (I — 0+0) §—o05t5 (I — 0+0) 63 = 0.
. . o _1 , r\T
Thence 03 = £ is a solution. Shown the equality in the space of ((0) (o) )

it must be shown now in the null-space. But this obviously holds for

0s=ctz+(I—c"0)o"a+ (I-ac"a) (I —0t0)bs.
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The last step of the proof shows that arbitrary 63, y4 span the same space as

arbitrary 65, y,. This holds if the following condition is satisfied

V05 303, 64 and ‘v’93 3(94, 95 in R™:
(I — 5d+6d) ([ — ad+ad) 05 =

Ya=

A\

(- () (2D (- () ()

The condition holds in R (67). It remains to prove it in A (7). Note that

o\
—d
N (( Ud >> C N (5%) and that R af = R™ implies NV (o) +
o
f
o

~f

N(( Uf )) — R™. Thus, Vs, 05 30, in R™ :
ag

+
o o
+
af af
(I_Ud+0‘d)93+([_<o_f> (O-f)>94

Bringing all equations together yields the assertion of the proposition:

~da\ T /[ -
x\T g x d
o = +
[ T &t o
of z/ Y
for some 7’ EN( ai ) )
o
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3.7.4 Proof of Non—Viability of the UIP

Proposition 108 (Non—Viability of the UIP) Suppose the short rates
have continuous, bounded sample paths. Assume moreover that the two econ-
omies are specified by arbitrary prices of risk —€' : TxQ — R™ in L2 (P x \)™
implying the existence of suitable pricing assets 2* and martingale measures
Q'. Then the UIP, which is

Vi, 7 €Tt <71:FELA ,InX := E;/ dn X, =In B/ —In B!

t, 1)
t

holds only for economies of Lebesque—measure zero in the range of £. By

assuming the UIP the dimension of the range shrinks by one.

Proof. With respect to the risk-neutral measures Q* and the corresponding
prices of risk & the price of a zero coupon bond Bz’T in ¢, which matures in

7 with a secure final payment of one currency unit, sounds:

BZJ = Eég eXp{— / ridu}
t
= Eéiexp{—(T—t)ri—/ / drf}du}@
t Jt

B;T exp {(7’ — 1) ri}
= E, exp{— / / prt ot dvdu — / / JZidW,Udu}
t t t t
= Kb exp{—/ / /in+azi§idvdu—/ / affdvqu}
t t t u

= FELexp {—/ (1 — ) (ply + 0¥l du — / (T —u) U?Iqu} .

t t

The last but one equation follows from Fubini’s Theorem for stochastic in-
tegrals [see (Heath et al., 1992), Corollary 2 p. 99]. The expected change in
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the log—exchange rate is:

BpbnX = B[ [ ot ol g (Il - 1€) a]
= (rd;rf)(T—t)+

B [ = =) + 5 (I = el )

Without loss of generality & can orthogonally be decomposed in oo™ + 3 p'
for p' Lo™, ||p?|| = 1 and some scalars of, 3. After the substitution of &' by
its decomposition for all ¢, 7 € T with 7 > ¢ the following equation must hold
for the UIP to be viable:

(=) =)+ 85| [ (= Gt )
+% (@) [l2” + (32 111" = (@) ]2 I” = (B2)* 1ol }:

(r—t)r—(r—t)r]
+lnE}exp{—/T (1 —u) <M2f+a£ngfH2> du—/
¢ ¢
_mE;exp{_/ (r =) (pi + o |2 >du—/ <T_u>oz;ddwu}.
¢ ¢

By re-arranging the terms of one country to one side of the equation it is
equivalent to: Vi, 7 € T,7 >t

T

(T —u) szqu}

g ([ (007 au)s2m b [ - (B () - ot |t
+%E}, (( D2 07| )du_/tT (T_u)aﬁdqu} _
g ([ 6t au)am sy { [ = (85 () i =l )

—l—%Efp ((aﬁ)QHJZfHQ) du—/ (T—u)azdeu}.
t
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Since this equation holds for all starting periods ¢ and maturities 7 it is still
satisfied after differentiating for t at 7 =t :

0+ g () = (1)« g () )

Taking this into account the equation imposes a one to one correspondence

O';f

onto the square—values of the scalars 3¢ and 57 (and possibly some lower
bound on one of both expressions). The projections (ﬁdpd, G p! ) of (Sd, ¢t )
are in a subset of £2 (P x A\)*™. The second moment of these parts are con-
trolled by the scalars (ﬁd, 87 ) € L2(P x )\)2 alone. The last equation es-
tablishes a one-to—one correspondence between the square—values, which is a
cross in R? and thereby of one dimension less than the original space. There-
fore this relation reduces the dimension of the range of (fd, ¢ ) by one. The

restricted range is a subset of Lebesgue-measure zero in R?*™. W

3.7.5 Introducing Money

Lemma 109 The instantaneous nominal interest rates ©*, nominal prices of

risk EZ, and the nominal exchange rate X are given by:

. ) . T

io= el ol (&)

~i . .

gt = 5; - 0-317

) d a0 2 z}f 2l
Qt bOt 2 bOtZt
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Proof. The nominal bonds BzT with maturity 7" are in their respective

currency nominal risk free, but in real terms risky:

By = @By [bur/a]

t g ;1 il|2 g i
= Ep [exp—{/t pl —EHag H +7“3ds+/t ol dWSH

t 1 a2 L2 i T i i
— B |exp / o~ 5 Ll —M‘S’—rsds+/ £ — oW,

t t
T . 2 . T . . .
= exp{/ ||| —ugzds}E% lexp{—/ Ug’§§+r;dsH , Where
t t

T
dP £ ( / & — agidWS) dP.
t

Then the nominal short rates are:

Fo= _lTiinwa_TlnB’f’T
= i +ole—||of]

The nominal prices of risk é’z are determined by considering the nominal
prices of a set of real assets, which do not abolish the diffusion of the price

inflator:

d(Hiq}) = (riH}—oi& + pi'H] +‘0'i0?i) gidt + (o} + Hiol') qudW;
= (f;HZ — (Ui + Htiagi) é’z) qidt + (af; + Htiagi) qrdW.

This implies

((ri+ut +ofics = |loF|) H - (oi + Hio) &) ai =

(rtH; — 0y&t + ui Hi + oto?') ai,
which is equivalent to

G—¢&= (o™
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The identity

d

o q
Xt — Xt—tf
4y

rules out arbitrage opportunities via good and currency markets. Applying

the result to the nominal exchange rate its SDE follows immediately:

dnX, = dlnX,+dlng —dlng/

- [rf—rh%Hé?HQ—% ¢l ] at+ (6 — &) aw,
<[l =) =3 (T = ot o= o=t

R . 1 9 2 2 2

= [pt=at g (1P + o = e~ v )
T

—oflel + ol dt + [(s{ -¢) +azd—aff} aw,

. . 1 2 ~f  ad\T
= lrf—r{%—ﬁ( )]dt+(§t—gt) dW,.

2

~d

of
3

&

3.7.6 Corollary Reduced Form Equation
Corollary 110 (Reduced Form Equation) Suppose that domestic finan-

-1
d
cial markets are complete and that FX-spanning holds. Let 3 = 0% ’ ; ) .
o

(1) Asset prices are free of arbitrage if and only if the log—exchange rate is
the solution to the SDE

d_ pdpgd _ lod (X T
_d_f g 504 (0%) X
dIn X (T r +5<qu—7”fo—}-%0‘f(0X)T dt + o~ dW,

which tmplies the orthogonal projection on asset prices

. Joc - Tde_%o.d(aX)T Y
H' rfH + 107 (O'X)T .
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(2) Suppose additionally that assets are geometric Brownian:
dH; (t) = g, (¢) Hy, (t) dt + o}, (t) Hy (¢) dWy, k=1,... 7" i € L.

Then by arbitrage the log—exchange rate can be projected in the following way:

am [ LY et
n R

H' r/1

- 1 2\ T
( 7 >axdt+§(”a;l||2,...,( ) dt

Proof. ByIto’sruledln X = dX/X —1/2d (X, X) /X? holds for continuous

SDEs. Thereby the expression involving the diffusion matrices in the trend

dnX = (r*—rf)dt+p

f
Unf

of the log—exchange rate from Proposition 89 transforms to

o (Zj) B ( :f) ()7~ Lo (o0 = g (Zj) - (—Uafj/;) )

The implication follows then by the proper substitution:

-1
o = o) (e (o]

For the Brownian motion processes asset prices cancel down between the

inverse of the diffusion matrix and the trends. W
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3.8 Appendix, Proofs of the Example Economy

Proof. The proof is divided into three steps. In the first step consumers’
optimal decision is derived, then the labor markets and the valuation of
productive assets will be analyzed, and, in a last step, the market clearing
conditions are used to calculate the prices of risk, the short rates and the

exchange rate.

Consumers: The social utility maximization is considered first. Because
of complete markets the stochastic program reduces to a deterministic pro-
gram, in which the optimal consumption and labor decisions are chosen path—
wise optimally already in period zero. The ‘stochastic’ program of country ¢

sounds:

T
£ (ci,ni) =FEp [/ nt K (c?,c;“,li) ds .7:0} -
0

o

T
. [Ep [ / (¢ 4+ X 1 i (@ — 1)) Zinit ds
0

with

K! = exp (—/ ﬁidu) .
0

Because of the quasi—concavity of the von—-Neuman—-Morgenstern utility func-
tion and the linearity of the budget constraint the first order conditions
(FOC) of the Lagrangian function are necessary and sufficient for an unique

maximum. The FOCs are:

1
n.K;Vu (cs,cS ,ls) =nngzbys | X! and

s

T
o= B | [ (e Xl i) sinith s
0

f[)]a
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where the budget reads b} = §".S§ +6 “Si Xi. The first FOC is equivalent to:

i
cs ) nizi 6 1
i _ AR A A s90,s ’
Cq = (Vu (cs,cS ,ls)) o i X
I i —wt
S S

Logarithmic utility functions have been assumed. Then the utility gradient
simplifies in the following way:

u’ (cS e s) = oInc’ +aInc” + (1 i of”) In (CIDZ' — l;)

for o o " + o € (0,1),d" > 0,
which implies the gradient

o /i
S
i (g i giy i /i
Vu' (e 1) = a /e,
1—afit—g i

T

By solving the FOCs the optimal consumption demand and labor supply are:

11

i 0 A a
Via K; —l,L,L —li
c | = 0 + — a "X,
y 2t 6 n' ii_ G
li (I)z s-U,s f(lfa -« )
s wt
S

These are the unrestricted solutions. Whereas the consumption is always
strictly positive the unrestricted labor supply could be negative. This is,
for example, the case if the wage is very low and resources are not scarce.

Therefore one has to restrict the labor supply at zero:

i (1 i G +
i (Di_Ks(l o' —« );O ’

Zg 0,877 Wy
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where [a;b]" is the abbreviation for max (a,b) . By substituting the solution

in the budget constraint one can solve for the Lagrangian multiplier:
. T . .. . Vs . . . .
by = Ep [/ nl (¢ + Xle," —will) z;bgysds]
0
- . .
: K . KD
= Ep l/ ni <+C¥“ —FXZZ— “X ¢
0 22y o1 ®2ibp 1"
o Ki(1—aof — o) N
—w, | P — — ;0 2.by sds|
Zs 0,577 Wy ,
which is further simplified to
T :
. K L
56 = EP [/ n; <_s (a” + Qa zz)
0 n'

) [@iwizibi K(zatmad) 0] +> ds]
s~s”0,s T]Z J

T ; i i Wiy 1T
o K¢ . K (l—ao"—«
= Fp / nt | = — | Qwlzlby ; — ( . ) ds| .
0 U ’ n
The term Ep[-;-]" on the right hand side of this equation represents a call

option, in which the Lagrangian multiplier is in the denominator of the strike
price. Since the right hand side is strictly decreasing and continuous in 7’
(negative for large and plus infinity for a zero n') this equation has a unique
positive solution for n°. Nevertheless the equation has no closed form solution.

At least 1/n° is linear in b}, that is

_npK'a'
bl + bWE’
0 < a,b"<1,a" > (1—0(“—@7“).

i

n where

Therefore the solution for an unrestricted labor supply corresponds to a =
b = 1. For this reason let 7 with the corresponding a@’,b* represent the

solution according to both restricted and unrestricted labor supply.

Firms: Now the proof turns to the valuation of productive assets. The linear
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technology forces the equilibrium wages to be:
wp = ;.

In the case where marginal productivity is at any level of employment equal
to the wage, the firms are indifferent to any level of employment. Since
the gains from a linear production technology are zero in equilibrium only
the resources are left for the firms: D! (L) — wiLi = 6. The gain process

accumulates these resources:
. . t . . . . .
Gl = i+ [ b, (DL(L) - wit) ds
0
. t . .
= S/ + / b; (0.ds.

0 b
The discounted gain processes of productive assets Gbf, , must be martingales
with respect to the measure °. This implies that the value of the firm is equal

to the expected value with respect to the martingale measure of discounted

resources:

T
Gi =l [tr (St [ thtias)]
0
AR [ / bi,sé’sds} + / bi bids =
t 0
. . . T . .
t

T
— él {/ b, (5ids] , because S = 0.
t

T—T t,s7s
With the definitions of ¢ and 2! this results in

T s s
Si = §'EL [/ exp (/ plt — ot 4 O'Zifidu> & (/ aziqu> ds} =
t t t

dS; = Si=gh = 6idt = S; (' =i+ 07'E;)
t

= [Si(r; - Ufifi) — 61’5] dt + Sio dW;.
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Note that in finite time a price bubble cannot exist for a productive asset in
an equilibrium even if it is in positive net supply, since it bursts in 7 so that
St =0 must hold.

Markets: The next step is to exploit the market clearing conditions to derive
the prices of risk and the interest rates. Labor markets clear at the level of
consumers’ labor supply. In the following the case of zero labor supply, i.e.
1, =1 (>0} is handled by the definition 4% = ~'1;;. This implies that the

dividends are the sum of production and resources:

D} = 5in (cbi— L G >>+5;.

7

7 1m
b(),tZt77Z Vi

In equilibrium the supply of consumption goods has to be equal to the de-

mand, i.e. forallt € Tand i,57 €1 :
nic' +n,'d " = DI,

which implies the following equation V¢ € T :

i . Kji ‘ K (1—af—q'® ‘
Kt azz_l_nz t szz ,y;z(cpz_ i t. ( O{‘ @ )>+(5;

t t z z— 7 171 )
bo 240 b 0,671 Vi

By substituting X; = Xoz,"by",/ (2ib},) and by multiplying with z{bj ,/ni K}

this equation transforms into the here called ‘Good M arkets’—equation:
o/t +n K oTXE ) (iKY =
AR — 1 (1— 0 — ™) fif + 28,5/ (W) (GM)

Considering only the stochastic differentials the diffusion part of the GM-

equation reads:

0 = zby, [né%@ (é’t +0)) + 6, (& +01)] / (niK])
gi _ nﬂt 6Z
! ”t%qﬂ + 535
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Since & is a convex combination of bounded processes it induces a martingale
measure and a pricing asset. Now the locally deterministic trend parts are

left over to solve for the interest rates:

[(lulnjz o Iﬁl—li) o (Ium . Kz)] n;zK—'zaz—'zX(z)/ (7—7 ZTL; z)
(/ii 4 quyi - z O_'yz) lb(l) t,yt(bz/Kz

+ (/ﬁ—r“r (&) 0% = 4 ) 2ith 81/ (MiET)

Finally, one solves for the interest rates while replacing again Xo/ (zib},) =
X,/ z; ib;)ft:

N o 8 ) g2
ry = K+ iyt 51 HgtH
n Kl 1

X (5 ™) (s~ ).

Tl n 6

This solution is only closed if (k} — pf")— (k" — pi* *) = 0 because the denom-
inator of the factor proceeding this expression contains the locally riskless
bank account, which itself depends on the short rate process. As the short
rates and the prices of risk have been determined for both currencies the

SDE of the exchange rate follows by arbitrage:

bg;tzf
A= b&tzf -
tnx = [t e - g )] s (€ - ey aw
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The substitution of the short rates and the prices of risk by their solutions

leads to a SDE in terms of mostly exogenous factors:

_ i _ 6
nfAEFY (0! + ) + 6t AL (0 4 pnd) + 6!

dln X, =
' ndyiFd 4 ¢ ni3 Ff 4 6]
d_ ,d
+ (" = u) = (& = 1)) -
n,{thadet ndKlall

1+ - — -
0 2{b), (nfyiFe + 67) &m4@4@¢W+g)

2
1| 1
-9 _ 2 By 2
2 (nfyiFd + 87 2 (ﬁﬁﬁ+ﬁ>

2
n{yiFeol" + 6lof Al Fio) + olal!|

dt +

n{ Flol +8lay  niy{Fiol" + sio
iy Fr 4 67 ndydFd + 6

] dW;.

The last unknown is the exchange rate in period zero. The price of each
country’s domestic good has been normalized to one. This normalization
is possible because the budged constrained is homogenous of degree zero in
prices. This implies that the market clearing conditions have one degree
of freedom. Since a market clearing condition at any point in time has
Lebesgue—measure zero, Walras’ law applies only to an integrated market
clearing condition. The following transformations show Walras’ law for the

present value of the excess demand:

T T
Ep < / b 28 (c¥nd + Inf) ds) = Ep ( / by 28 (indld + 67) ds>
0 0

N J/ J/

Vo o
valued consumption valued production

(DCM)
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This equation is equivalent to

T
bl — Ep ( / b 2 (clnt X, — 1) ds) i
0

1) ds>) =

T
By ( / bg’szfﬁgnglfds) st
0

T
Xo (bgj — FEp ( / b.2L (clinl —7ind
0

This equation is again equivalent to the corresponding Walras’ identity on

foreign good markets:

T T
Ep ( / by 2L (clnd + cffnf) ds) = Ep ( / b2 (FIndlf +67) ds> .
0 0
By Walras’ law X is determined by one of these two equivalent integrated
market clearing conditions. Here the market for the domestic consumption

good (DCM) is chosen. By the substitution of the equilibrium consumption
demand and labor supply Equation (DCM) transforms to:

T d f
K K
E b 24 S__oq¥ind 4 5 ¥ X.nf |ds| =
P (/0 0,s%s <bg,52§?77d b{;’szﬁﬁf

T d _ pdd _ fd
K (1 « a )
d _d=d. d d s d
Ep </0 b0 s Vs <F — T v ) ds) +55.

While this equation is equivalent to:

K Kf K
addng_—d + ozdfngXo_—f = ng_—d (add + afd) — bg + Sg &
n n n
Kf K
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With the solution for 7" = E;L—‘jr[;—fvo and the definition b) = "5} + 0 “Si X}

this equation sounds
X (effsg 054X, + bW ) o /at
- (eddsg +0r48I X, + Bdwg) afd /gl = 53— gldgd _ grigdx,.
Finally the solution for the exchange rate follows:

¥ ofd (eddsg + Bdw(c)l) /ad + (1 _ adf/df) Qdeg
0= _ .
adf <9ff55‘ +OWS ) Jaf + (1 — afd/ad) fes]

This finishes the explicit calculation of all equilibrium values, which shows

existence and uniqueness at once. W

3.9 Moore—Penrose Inverse and related Issues
3.9.1 Singular Value Decomposition

Any matrix A € R” ® R™ admits a singular value decomposition
A=VEWT".

Y € R" ® R™ contains on its main diagonal all non—negative square-roots
of the eigenvalues of AT A whereas all off-diagonal elements are zero. V &
R" @ R* and W € R™ ® R™ consist of the orthonormal eigenvectors of AA”
and AT A, thus WTW = I, aswell as VVT = I,,. Due to possible singularities
in AAT and AT A, i.e. if rank (AAT) <n—1 or rank (ATA) < m — 1, their
eigenvectors are not uniquely determined. The eigenvectors are ordered in

the same way as the corresponding singular values.

3.9.2 Moore—Penrose Inverse

The Moore-Penrose inverse A" is uniquely defined by the following four

properties:
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1. AAT and AT A are symmetric,

2. AATA= A and ATAAT = A.
AT has the following two representations:

AT = wxtvT
= lim AT (AAT +¢eL,) ",
e—0
where X7 is the transpose of ¥ with the non—zero elements of ¥ replaced by

their reciprocals.

3.9.3 Orthogonal Projections

AAT ATA T — AAT and I — AT A are the orthogonal projectors on R (A),
R (AT) N (AT) and N (A) respectively. R (A) denotes the span of A and
N (A) the null-space, thus R (AT)L = N (A). Projectors are idempotent
and have only eigenvalues equal to zero or one.

For more results related to generalized inverses and projections the reader is
referred to (Campbell & Meyer, 1979).
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