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Abstract

The aim of this work is to investigate the dynamics of collisions between ions and

Rydberg atoms by using the Classical Trajectory Monte Carlo (CTMC) method. The

study is started by collisions with oriented elliptical Rydberg atom, is then continued

to collisions involving hydrogen Rydberg target in an external magnetic field in the

l-mixing regime, and later arrives at antihydrogen formation in an external magnetic

field where Rydberg positronium is taken as target.

The CTMC method has been applied in the study. For different targets, the

CTMC method had to be adjusted and reconstructed to properly create the initial

target state for the quasi-separable one-body initial system (hydrogen target) and the

two-body initial system (positronium target). Charge exchange and ionization cross

sections are calculated under special consideration of different initial target states.

The velocity matching phenomenon and Thomas capture which appears in the

upstream-downstream asymmetry are found in ion-oriented elliptical Rydberg atom

collisions, reflecting the important roles of the initial electron spatial and momen-

tum distributions. By increasing the projectile charge, the distortion of the initial

states caused by the strong perturbation of approaching projectile induces pronounced

changes in the momentum distribution.

In the collisions involving hydrogen Rydberg atoms in a magnetic field, a cross

section reduction in case of an increasing magnetic field is found for multiply charged

projectiles. The structure effect due to the influence of the magnetic field on the initial

state distribution results in different capture cross sections for two characterized, kmax

v



vi

and kmin, states. The velocity matching phenomenon as well as the effect of multiply

charged projectile ion are observed in the collisions.

Furthermore, antihydrogen formation in a magnetic field has been studied. Ry-

dberg positroniums are assumed to be the target atoms, colliding with antiprotons.

The initial target positronium state is carefully constructed by means of a newly in-

troduced conserved operator, the pseudomomentum K. Similar properties as in the

previous hydrogen target atom case were investigated. It is found that the existence

of the magnetic field changes the spatial distribution of positronium to irregular mo-

tion. By increasing the magnetic field, it induces a decrease of the resulting capture

cross sections (i.e. the antihydrogen formation). Thomas capture which happens in

the collision plane in the field-free case is foiled. A smaller positronium binding en-

ergy and a larger geometrical extension of the target positronium atom yield a larger

capture cross section.
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Introduction

Laser excitation and field ionization have enabled preparation and detection of Ryd-

berg sublevels of definite principal quantum number n and angular momentum l

[1, 2, 3, 4]. With the development of experimental techniques, it is now possible to

prepare Rydberg atoms in aligned and oriented coherent elliptic states. The use of

coherent elliptical Rydberg states in ion-atom collision studies has been investigated

in many experiments [5, 6, 7, 8, 9, 10, 11]. The experiments that measure electron

capture by heavy singly charged ions from oriented and aligned Rydberg atom have

revealed much about the Coulomb three-body dynamics. They have demonstrated

that velocity matching and the Thomas capture mechanism [12, 13] between the pro-

jectile and the electron are the important features of these rearrangement collisions.

These investigations have so far been restricted to collisions with singly charged ions.

Recently, however, it has become possible to employ such collisions in studies involv-

ing multiply charged ions [11]. Some CTMC calculations [14, 15] of electron capture

by singly charged ions from oriented elliptical Rydberg atoms have been performed.

These results were in agreement with the experimental data of Ehrenreich et al. [8].

The classical trajectory Monte Carlo (CTMC) method is a successful model for ion-

atom collision based on classical mechanics and is briefly reviewed in chapter 1. This

1
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method is expected to be a good approximation particular for large quantum num-

bers [16] and is quite useful for the description of quantum-mechanically complex

systems. It has been successfully used in ion-atom collisions [16, 17, 18, 19, 20] and

given a good qualitative and often fairly quantitative agreement with experimental

data [11, 21, 22]. Therefore in chapter 2, an exploratory study of such three-body

systems has been performed, in which a spatially oriented Rydberg atom collides

with a multiply charged ion. The classical trajectory Monte Carlo (CTMC) method

is employed to calculate electron capture and ionization cross-section at intermediate

impact velocities for the collisions between highly charged (Q ≤ 8) Sodium(Na) ions

and hydrogen Rydberg Lithium(Li) atoms (n = 25). In order to study the velocity

matching phenomenon and show the effect of the spatial orientation of the target

electron in the multiply charged ion-Rydberg atom collisions, impact parallel to the

minor and to the major axis, respectively, of the initial Kepler electron ellipse has

been investigated.

At the same time, the behavior of interacting particle systems in a strong homoge-

neous magnetic field has become a subject of great interest. Quantum chaos and the

influence of external magnetic fields on the atoms are the main research interests. The

study of this behavior was in the beginning mainly motivated by the astrophysical

discovery of huge magnetic fields in the vicinity of white dwarf stars (B ≈ 102−105T)

and neutron stars (B ≈ 107 − 109T). The first few investigations considered only the

low-lying states of hydrogen atoms under such extreme conditions. There have been

a few calculations for ion-atom collisions at such field strengths [23, 24, 25, 26]. It

has been shown [27] that by considering equal Coulomb and Lorentz forces for an
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electron in a circular Bohr orbit with principal quantum number n,

Bn =
B0

2n3
≈

4.7 × 105T

2n3
≈ 8.3(

30

n
)3T

is obtained as a rough measure, where B0 = 2α2m2
ec

2/(e~) ≈ 4.70108 × 105T is the

reference magnetic field strength. Bn scales with the inverse cube of the principal

quantum number n. Thus for white dwarf and neutron star magnetic fields, lowing-

lying states are found to be significantly influenced by these fields, while at laboratory

field strengths studies of the strong-field regime must concentrate on Rydberg states.

With the rapid improvement of computer techniques, it was possible to calculate

the eigenvalues and eigenfunctions of the hydrogen atom up to the field-free ioniza-

tion threshold. The magnetic energies in the highly excited Rydberg states are at

typical laboratory magnetic field strengths (a few tesla) attainable and comparable

or even larger than the Coulomb binding energies. It is therefore possible to study

the intermediate and high-field regime by investigating highly excited states. Some

calculations of electron capture and ionization for singly charged ion-Rydberg atom

collisions in a magnetic field have been performed [28, 29, 30]. The target atom in

these works was the simplest physical system, the hydrogen atom. It was treated as

an effective one-body problem with the approximation of an infinitely heavy nucleus.

To investigate more details of such collisions as well as the influence of an external

magnetic field, multiply charged ions were applied to collide with Rydberg atoms

at the same strengths of magnetic fields as in the works [28, 29, 30]. In chapter

3, with the extended CTMC method which has been successfully used for collision

systems involving singly charged ion-Rydberg atom collisions in the magnetic field,

the charge exchange and ionization cross section for 1.27−183eV singly and multiply

charged Argon(Ar) ions (Q = 1, 2, 4 and 8) colliding with Rydberg Sodium(Na) atoms
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(n = 28,m = 2) in a magnetic field (B) of up to 4T have been calculated. The initial

state distribution of the target atom is generated for a quasi-separable initial-state

Hamiltonian. The existing magnetic field shows its influence on the resulting cross

sections, which is similar to those found in the previous calculations [28, 29, 30]. The

strong long-range Coulomb attraction of the increasing projectile charge dominates

over the influence of the target electron distribution in these collisions.

Another interesting system, in which the “infinitely heavy” nucleus is replaced

by a light particle, is positronium (Ps) e+e−. The study of this system is motivated

by the recent success of experiments to produce significant numbers of cold antihy-

drogen atoms, which has opened a new door to study the fundamental symmetries

in physics. Antihydrogen formation can be caused by e+ capture from positronium,

p̄ + (e+e−) → H̄ + e−, where the positronium can become stable in a magnetic

field. Theoretical calculations on positronium in magnetic fields at laboratory field

strengths have predicted the existence of long-lived states [31]. Therefore, based upon

the work on ion-Rydberg atom collision in the magnetic field [29, 32], we extended our

study to antihydrogen formation by collisions of antiprotons with Rydberg positro-

nium(Ps) in a magnetic field of up to 5 Tesla. However, unlike the hydrogen atom

in the magnetic field, the positronium in the magnetic field can not be treated as a

quasi-one-body system, since in general the center-of-mass motion and the internal

motion of the system can not be separated due to the finite e+ mass. The first rigor-

ous treatment of the two-body system in a magnetic field has been done by Avron,

Herbst, and Simon [33]. A new operator, the pseudomomentum K, has been in-

troduced to perform a so-called pseudoseparation and is taken to treat the two-body

problem. This pseudoseparation is connected with the center-of-mass motion, leading
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to a Hamiltonian which possesses a constant of motion. The results of Avon, Herbst

and Simon have been applied in many publications [34, 35, 36, 37, 38, 39, 40, 41, 42]

and successfully described the dynamical behavior of the two-body system in a mag-

netic field. In chapter 4, the dynamics of the collision between antiproton(p̄) and

Rydberg positronium(Ps) in the magnetic field B = 4T and 5T, leading to formation

of antihydrogen(H̄), p̄ + Ps → H̄ + e−, are studied. Positronium with high principal

quantum number n = 40 and 50 can exist in long-lived delocalized excited states, so

called outer well states, which have been predicted to be formed in a magnetic field

at typical laboratory field strength and certain values of the pseudomomentum. The

most important part of this problem, generating the proper initial target positronium

state at the presence of a magnetic field, is successfully constructed by means of the

pseudomomentum K and is described in detail. The charge exchange cross sections

(i.e. the antihydrogen formation) as a function of relative impact projectile veloc-

ity are calculated for the pseudomomenta K = 0.085, 0.09 and 0.12 by applying the

modified CTMC method. The relative impact projectile velocity vr is between 0.5

and 2.8 (vr = v/ve, with ve the classical electron velocity in a field-free circular Ps

Bohr orbit), corresponding collision energies between 0.62 and 19.6eV (n = 50) and

between 0.98 and 30.6eV (n = 40).

Finally, chapter 5 presents a discussion of the calculated results and some conclu-

sions. The obtained results reveal that the magnetic field as well as the increasing

projectile charge take an important role in these collisions. The application of the

CTMC method in the collisions of antihydrogen formation also provides us an al-

ternative way to study the production of the antimatter atom. Furthermore, the

suggestion of future objectives are given in the end.
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In addition, some results are published and are attached at the end of this thesis.

Atomic units (~ = e = me = 1) are used throughout unless specified.



Chapter 1

Theoretical Approaches to
Ion-Rydberg Atom Collisions

Considerable progress has been made in past decades in the theoretical description of

collisions involving Rydberg atoms. In the case that one atom is highly excited, the

most effective approaches are based on a “three-body picture”. In this picture, the

ionic projectile is treated as a point charged particle and the Rydberg target atom is

treated as a point core with the Rydberg electron orbiting around it. The size of the

electron orbital is quite large relative to the dimensions of the core and the electron

is therefore singled out. The scattering is performed by modeling the interactions

among the electron, the target nucleus and the projectile ion.

The physical picture is that the electron begins in a large, classical elliptical orbit.

As the charged ion travels through the Rydberg atom, the shape of the electron’s

orbit is then changed. The processes discussed here are

A∗(nlm) + B+ =















A∗(n
′

l
′

m
′

) + B+ Excitation

A+ + B∗(n
′

l
′

m
′

) Charge exchange

A+ + B+ + e− Ionization

where B+ is a charged ion and A∗ is a highly excited atom with main quantum

7
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number n, orbital angular momentum l, and magnetic quantum number m. This

system has been modeled successfully by considering the Coulomb forces among the

three charged particles.

Once the form of the interaction potential has been adopted, the quantum me-

chanical theory may be formulated and a variety of approximations may be applied.

However for ion-Rydberg atom collisions, in which a large number of channels are

coupled, quantum mechanical and semiclassical theories can not lead to satisfactory

results. Fully quantal and semi-classical calculations of cross sections usually require

large-scale numerical computations which are not easy when a large basis set is re-

quired, especially when highly excited states are involved. It is also intractable to

include the ionization and excitation channels in order to accurately compute the

electron capture cross sections. Therefore there has always been an interest in con-

structing models for ion-atoms collisions based on classical mechanics which can be

evaluated rapidly.

The three-body classical-trajectory Monte Carlo (CTMC) method was first pro-

posed by Abrines and Percival [17], has previously been described in detail by Olson

and Salop [18], and was optimized by Cohen [43]. It has been successfully applied to

many problems [16, 44, 45]. This method is based on the numerical integration of the

three-body system. The Coulomb interactions, which includes the projectile ion, the

target nucleus, and an electron initially bound to the target nucleus, are included.

The Rydberg atom’s electron position and momentum distribution are described clas-

sically within a statistical distribution of the initial conditions. The method has the

advantage that all possible processes can be included: excitation, ionization, and

electron capture by the incident projectile. Becker and Mackellar [45] have improved
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the description of the atomic state using a microcanonical distribution corresponding

to a given state in |n, l〉. Peach et al. [46] and Reinhold and Falcon [47] have each

developed more elaborate methods to replace the Coulomb interactions by a model

potential for the ionic cores. Specifically, the CTMC method has also been used for

oriented atoms by Kohring et al. [48] and Pascale et al. [19]. This chapter will briefly

reviewed the basic principles of the CTMC method while focusing on one-electron

capture collisions involving highly excited Rydberg atoms.

1.1 Classical Trajectory Monte Carlo method

The CTMC method consists of three steps: (1)the classical generation of the initial

target electron distribution, (2)the numerical integration of Newton’s equations of

motion with Coulombic forces, and (3)the classification of the various processes after

the collision.

1.1.1 Generation of the Initial State Distribution

In CTMC method a very important consideration is the classical description of the

Rydberg atom’s electron position and momentum distributions. Abrines and Perci-

val [17] have shown that it is possible to use Kepler’s equation of planetary motion

to represent hydrogenic atoms with a randomly determined set of initial conditions.

The sampling is completed by (i)fixing the binding energy E0; (ii)choosing the ec-

centricity ε of the Coulombic ellipse; (iii)solving Kepler’s equation for the eccentric

anomaly(eccentric angle) ξ in terms of the mean anomaly α to establish the initial

position and velocity on the ellipse; (iv)applying an Euler transformation with three

random angles θ, φ and η to set up the arbitrary orientation of the ellipse.
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For a given quantal state, |n〉 is specified by the binding energy E0(E0 = −
1

2n2

for the hydrogen atom). The additional five random sampling parameters are ε, α

and θ, φ, η. ε is the eccentricity of the Kepler orbit, ε2 = 1 + 2E0l
2
c , where lc is the

classical angular momentum. The classical angular momenta lc are restrict to the

interval l 6 lc 6 l + 1, which is determined by the quantum mechanical angular

momenta l. Thus the eccentricity ε is chosen in the interval:

1 + 2E0(l + 1)2 6 ε2 6 1 + 2E0l
2. (1.1)

The angle α defines a starting point on the Kepler ellipse plane and it is a parameter

of the orbit proportional to time. A random distribution of α corresponds to an equal

probability of the atom having any phase in its periodic motion. ξ is the eccentric

angle and is determined by solving Kepler’s equation

α = ξ − εsinξ. (1.2)

The initial position and momentum of the electron on the orbit are fixed by a solution

of Kepler’s equation (1.2). The three Euler angles θ, φ, η fix the plane of the orbit in

space, where

θ = cos−1 lz
l
, (1.3)

φ = cos−1(±

�
z

ε sin θ
), (1.4)

η. (1.5)

The first rotation θ about the y axis gives the electron the proper z component of

angular momentum. The second rotation φ about the angular momentum vector l

fixes the z component of the Runge-Lenz vector
�

. The plus or minus in Eq. (1.4)

indicates that the sign of
�

z should be chosen randomly. The final rotation about
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the space fixed z axis gives the randomly chosen η angle. These five parameters are

distributed in the following ranges:

0 6 ε2 6 1, 0 6 α 6 2π, − 1 6 cosθ 6 +1, − π 6 φ 6 +π, − π 6 η 6 +π.

Fig. 1.1 shows the geometrical structure of the collision system. The initial internal

coordinates and momenta of the target electron are given by performing the rotation

specified by the Euler angles θ, φ and η [43].

PSfrag replacements

�

v

R

x

y

z

b

η

lα

θ

φ

Figure 1.1: The geometry of the collision system. R is the internuclear vector,
b is the impact parameter, and v is the ion velocity in the target frame chosen
parallel with the magnetic field(z-axis), R = b + vt. An example of a Kepler
ellipse with the angular momentum l and Runge-Lenz vector

�
is also shown.

The angle α which defines a point on the Kepler ellipse plane and the three
Euler angles θ, φ, η are indicated. The dashed lines indicate the major and
minor axes.

Another part of the initial condition that one must model is the incoming plane

wave for the projectile ion. Here we use a standard distribution [18]. The initial
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condition of the projectile in the collision frame is specified by its velocity v, its

impact parameter b and its initial distance z0 relative to the target. The z axis

is chosen as the direction of the initial relative velocity vector and the projectile is

assumed to move along a straight line, lying in the x-z plane. The impact parameter is

selected randomly from b2 varying in the interval [0, b2
max], where bmax is the maximum

impact parameter so that negligible capture or ionization processes happen beyond

this value. bmax depends on the target state and the ion velocity. It has to be chosen

with experience for a given system. Because when bmax is too large, it will result in

poor statistics and while a smaller value of bmax will distort the results. One must

repeat the calculations to obtain the best bmax value such that the statistical error

on the cross sections reduces to a reasonable level. The initial distance z0 of the

projectile is typically z0 > 104 a.u. to guarantee that the calculated cross sections are

independent of starting position. It indicates that the projectile-electron interaction

is negligible compared to the target nucleus-electron interaction at the outset.

1.1.2 Numerical Integration of Newton’s Equations

After propagating the initial conditions of electron, the motion of the interacting

system is determined via the full three-body Hamiltonian

H =
3

∑

i=1

p2
i

2ma
+

6
∑

i=4

p2
i

2mb
+

9
∑

i=7

p2
i

2mc
+ Vab + Vbc + Vac (1.6)

and the 18 coupled Newton’s classical equations of motion

dpi

dt
= −

∂H

∂ri
,

dri

dt
=

∂H

∂pi

,

(1.7)
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where pi and ri are the momenta and the Cartesian coordinates of three particles,

respectively; ma,mb,mc are the masses of the projectile ion, the target atom nu-

cleus and the electron, respectively; Vab, Vbc and Vac are the corresponding interaction

potentials between two of the particles.

For each set of distribution, the Runge-Kutta method with an adaptive step-size

control is applied to calculate the classical trajectories of all three bodies from a large

internuclear separation to the distance of the closest approach and out again to a

large internuclear separation. The initial distance z0 of the projectile has been chosen

far enough from the target that the Coulomb forces between projectile and electron

are negligible compared to that between target and electron. After the three-body

propagation, the projectile is at an asymptotic final distance zf (zf ≈ 1 × 105 a.u.).

zf is chosen such that for any position of the electron at least either the projectile-

electron interaction or the target-electron interaction is negligible.

1.1.3 Classification of Final States

After each trajectory has been integrated to the distance zf , the three-body Hamilto-

nian (1.6) is no longer necessary to be evolved in the particle trajectories. It is then

allowed to check for reaction. By evaluating the two-body total energies of the final

state, it is now possible to classify the outcome of the ion-atom collision. If, at the end

of an individual trajectory, the electron is bound to the target nucleus, it is cataloged

as excitation; if the electron is found to be bound to the projectile ion, the reaction

is cataloged as charge exchange; and if the electron is bound to neither nucleus, it is

cataloged as ionization. The cross sections for the various processes are proportional

to the ratio of successful tries for that process to the number of trajectories calculated.
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Generally, a large number of trajectories should be calculated in order to ensure the

statistical error is less than 5%. Once a significant number of trajectories have been

calculated, the cross section σq for a specific process q is obtained by

σq =
Nq

Ntot

πb2
max

[

1 ±

√

Ntot − Nq

NtotNq

]

, (1.8)

where Ntot is the total number of trajectories, Nq is the number of events leading to

capture or ionization. The second term in Eq. (1.8) is the standard deviation of the

estimated cross section.

For the electron capture process, it is possible to ‘quantize’ the states correspond-

ing to a negative binding energy Ep of the electron with respect to the projectile ionic

core. A classical number nc is defined by the hydrogenic relationship

Ep = −
Z2

p

2n2
c

, (1.9)

where Zp is the charge of the ionic core. The noninteger classical principal quantum

number nc is assumed to belong to the electronic level n if it lies between the values

[45]

[(n − 1)(n −
1

2
)n]

1

3 6 nc 6 [n(n +
1

2
)(n + 1)]

1

3 . (1.10)

Similarly, the normalized classical orbital angular momentum number lc is ‘quan-

tize’ by the orbital quantum number l of the final state if

l 6 lc 6 l + 1, (1.11)

where

lc =
n

nc
|r × p|, (1.12)

r and p are the coordinate and momentum of the electron referred to the projectile

ionic core, respectively.
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In the same manner, the classical mc = (l + 1
2
)/lzc corresponds to the quantum

number m if it belongs to the interval [m − 1
2
,m + 1

2
], where lzc is z component of

classical angular momentum..

1.1.4 The Validity of the CTMC Method

For the problems to be treated in this work, the CTMC approach is successful for

two main reasons. First, the interactions between the particles are relatively strong

and long range, and final states over a wide energy range tend to be populated. The

“graininess” due to the discrete energy levels of the states is therefore not too im-

portant. Second, the classical treatment of Coulomb scattering agrees with the exact

quantum-mechanical approach and a statistical distribution of the initial conditions

is known to be the best approach to a quantal electronic state. These considerations

suggest that the CTMC approach is well suited to Rydberg atom collisions with ions

or other Rydberg atoms.

The domain of validity of the CTMC method is difficult to assess and its definition

mainly rests on comparisons with experimental or quantum-mechanical calculations

when available. From such comparisons in H+ + H(1s) collisions, it is now generally

assumed that the CTMC method is valid in the range 1 6 v/ve 6 4, where v is the

projectile velocity in the laboratory frame and ve is the initial orbital velocity of the

valence electron. In Fourré and Courbin’s work [20], the valid range in H+ + N ∗

a (3p)

collisions is 0.57 6 v/ve 6 1.60. It was suggested in [45] that when the impact speed

is close to the orbital velocity of the Rydberg electron, referred to as the ‘matching’

speed, say 0.5 6 v/ve 6 2, the cross sections should be the most easily detectable and

the most important. So we would say that for the ion-Rydberg atom collisions, the
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CTMC method is a good model specially in the intermediate velocity regime where

the collision velocity is approximately equal to the orbital velocity of the Rydberg

atom’s outer electron (ve = n−1 a.u.).



Chapter 2

CTMC Calculation in Collisions
between Multiply Charged Ions
and Elliptical Rydberg Atoms

The use of coherent elliptical Rydberg states in ion-atom collision studies [11, 21, 22]

has not only aided the intuitive understanding of the interaction dynamics, it also

illuminates the roles of the momentum and the spatial distributions of the target

electron states. In classical terms, the momentum distribution can be widely varied

simply by changing the eccentricity ε of the Rydberg ellipse without affecting the

energy of the state. In particular, for impact perpendicular to the major axis of the

ellipse, the capture cross section displays a maximum if vep (the perihelion electron

velocity) is parallel and equal to the projectile velocity v. This is believed to be due to

the matching electron momenta in the initial target and the final projectile state. In

contrast, the role of the spatial distribution becomes most clearly visible if the impact

velocity vector is adjusted perpendicular to the minor axis of the Rydberg ellipse.

In this case, the electrons can be located either between the approaching ion and

the target nucleus (“upstream geometry”) or behind the target nucleus, as seen from

17
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the projectile (“downstream geometry”) without otherwise changing the momentum

distribution of the Rydberg state (i.e., its angular momentum l and the principal

quantum number n). The capture cross section in both cases turns out to be quite

different: it is much larger in the upstream case as compared to the downstream case.

Apparently, in the corresponding region of parameter space the spatial characteristics

of the initial state determine the outcome of the collision. An investigation of such

systems, which is not only restricted to the collisions with singly charged ions, but

is also extended to the collisions between the spatially oriented Rydberg atom and

the multiply charged ions. This investigation is performed using CTMC method in

this chapter. We may suspect that the increasing projectile ion charge, which has the

strong long-range attraction over the initial target distribution, plays an importance

role in the collisions and causes an increasing cross section.

The process here is structureless Sodium(Na) ions of charge Q between 1 and

8 colliding with Rydberg target Lithium(Li) atoms with nuclear charge q = 1 and

principal quantum number n = 25, i.e.

Na+Q + Li (n = 25) ⇒ Na+Q−1 + Li+. (2.1)

For simplicity, we ignore the cores of the collision partners, and approximate the

system by H+ + H(n = 25) → H + H+. The geometry is chosen such that the

direction of impact is perpendicular to the angular momentum direction of the Kepler

ellipse. Specifically, two cases are studied: (i)the impact is parallel to the minor axis,

thus allowing to study the velocity matching phenomenon, and (ii)impact parallel to

the major axis, showing the effect of the spatial orientation of the target electron

(“upstream-downstream asymmetry”).
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A useful quantity characterizing the electron orbit is the (generalized) eccentric-

ity ε = ±
√

1 − (l/n)2. For the present calculation, the desired shape and spatial

orientation of the elliptical states have been chosen by properly adjusting the Euler

angles and the eccentricity. The relative collision velocities vr are between 0.3 and

3.0 (vr = v/ve with v the projectile ion velocity and ve = 1/n(a.u.) the classical

electron velocity of a circular Rydberg state having the principal quantum number

n). Under the consideration of the relative speed of the projectile ion and the target

atom, and the lightness of the electron compared to the atomic nuclei, for the multi-

ply charged Na ion colliding with a Rydberg Li atom, the target nucleus is taken to

remain motionless. It has been tested that there is almost no effect when the target

nucleus is motional for hydrogen-like atom and at the same time it saves computation

time. The projectile is assumed to move along a straight line at a constant velocity v.

Due to the spatial extension of the electron state and the corresponding large impact

parameter, this is a good approximation. The number of trajectories was adjusted to

obtain statistical uncertainties are less than 5%. Care has been taken to assure that

the projectile starts sufficiently far from the target (approximately z0 = 3.5 × 105

atomic units a.u.) to correctly describe the initial part of the trajectory. In view of

the long range Coulomb potential and the known sensitivity of Rydberg states to l,m

changing processes, this is critical particularly for higher projectile charges Q.

2.1 Impact Parallel to the Minor Axis

In this case, the target nucleus rests at the coordinate origin. The classical electron

ellipse lies close to the x-z plane, with the major axis parallel to the x axis (perihelion

at positive x) and the minor axis parallel to the z axis. The quantum mechanical space



20

PSfrag replacements

ε = +0.47

l = 22

ε = −0.47

l = 22 v

Figure 2.1: Schematic representation of the classical electron orbit with gen-
eralized eccentricities ε = ±0.47, corresponding to l = 22, relative to the
projectile motion v.

and momentum distribution of an l,m state are simulated by randomly selecting the

classical lc, mc values between l and l + 1, m and m + 1, respectively. The projectile

moves on a nearly straight line along the z-direction. The projectile velocity v is

chosen to be parallel or antiparallel to the electron perihelion velocity vep (Fig. 2.1).

The positive ε identifies orbits with v parallel to vep and the negative ε identifies

orbits with v antiparallel to vep.

Figure 2.2 shows the eccentricity dependent charge exchange cross section σ/Q

for vr = 1.66 and Q ranging from 1 to 8. Velocity matching is obtained at ε = +0.47.

At low Q, the cross section displays the well-known velocity-matching behavior [15]

with a pronounced maximum at this eccentricity and a deep minimum for negative

eccentricities which characterize a strongly elongated Kepler ellipse with v antiparallel

to vep. At increasing Q, this structure is soon washed out; while it is still noticeable for

Q=2 and 4, almost any trace of the minimum has disappeared for Q=8. Inspection

of electron trajectories during the approach of the projectile ion reveals that: as

expected, the long range Coulomb force distorts the original Kepler ellipse already at
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Figure 2.2: Eccentricity dependent charge exchange cross section σ/Q for im-
pact velocity vr = 1.66 (in units of the circular n = 25 Rydberg electron
velocity) and different projectile charges Q. Impact is parallel to the minor
axis. For the initial state, velocity matching is obtained at ε = +0.47.

quite long distances. This distortion is quite regular, and reminds of a Stark effect.

Indeed, a simple estimate confirms that: for Q=8, an electric field strength of 5V/cm

(i.e., of the order of the fields applied to the collision region in the experiments [11])

is attained at approximately 105 a.u. This initial state effect might be reduced in the

experiment by applying a strong field in the target region. However, this result also

illuminates an inherent weakness of the CTMC-approach: the slow rise of the electric

field may “in reality” induce adiabatic transitions between the many Rydberg states

which would be populated differently in the classical calculation. This distortion of
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the initial state becomes quite severe at distances below 104 a.u., i.e., corresponding

to several revolution of the Rydberg electron about its nucleus.

Therefore, it is to be believed that the washing out of the cross section structure is

indeed a real effect. Finally, it may be added that the impact parameter dependence

of the capture probability also reflects the signature of this effect. While, for Q=1

and ε = +0.47 (the velocity matching situation), the capture probability is rather

concentrated about the perihelion position [15], it is nearly symmetric about b=0

(the position of the target nucleus) for Q=8.

PSfrag replacements

up-stream down-stream

vv

Figure 2.3: Schematic representation of the classical electron orbits of up-
stream and downstream geometries, relative to the projectile motion v.

2.2 Impact Parallel to the Major Axis

In this case, the classical electron ellipse lies close to the x-z plane, but with the major

axis parallel to the z axis and the minor axis parallel to the x axis. The electron ellipse
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is located either in the upstream geometry or downstream geometry. The positive ε

in this case characterizes the upstream geometry and the negative ε characterizes the

downstream geometry (cf. Fig. 2.3).

Figure 2.4 shows the eccentricity dependent capture cross section σ/Q for vr =

1.66. As in case of singly charged projectiles Q=1 [21], the cross section for multiply

charged ions (Q=2, 4 and 8) is much higher for the upstream geometry as compared

to the downstream geometry. The ellipses with ε = ± 0.96, corresponding to l = 7,

are chosen for a more detailed study. This creates quite elongated states which are

not too non-classical (low l). Fig. 2.5 shows for Q=8 the cross sections for upstream

(σu) and downstream (σd) geometry, respectively, including the contributions of the

various “swaps” to the capture cross sections. A swap has been defined as a passage

of the electron through the “midplane” between projectile and the target nucleus [9].

Note, however, that for asymmetric collisions (q 6= Q as studied here), this plane cuts

the connection line between target and projectile nucleus at the saddle point of the two

respective Coulomb potentials (i.e, at a distance R/(1 +
√

q/Q) from the projectile,

with R the distance of both nuclei). For q 6= Q, the so-called “midplan” is not really

in the middle. In view of the discussion above, the strong upstream-downstream

asymmetry observed in these data is at first glance somewhat surprising. Again,

inspection of the electron trajectories sheds light on this point: the slowly increasing

electric field of the approaching projectile causes a distortion and precession of the

Kepler ellipse, in general not strong enough, however, to revert the upstream into

a downstream geometry and vice versa. Therefore, upon approach of the projectile

into the actual close interaction the electron is still mainly fore or aft, respectively,

of the target nucleus. Thus the role of the initial spatial distribution of the electron
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is qualitatively preserved . Interestingly, even 3-swap and higher swap processes can

still be discerned. The qualitatively different behavior of σu and σd beyond vr = 1.5 is

associated with differently rising cross sections for ionization. In case of downstream

geometry it sets in at considerably smaller vr-values as compared to the upstream

geometry. This is further clarified by the respective impact parameter dependencies

(Fig. 2.6 a,b). In the upstream situation, charge exchange extends out to fairly large

distances and ionization is still weak. In the downstream situation, the maximum

charge exchange probability is of the same order as in the upstream case, however, it

is limited to much smaller impact parameters, and ionization is already quite strong.
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generalized eccentricity ε

Figure 2.4: Eccentricity dependent charge exchange cross section σ/Q for im-
pact velocity vr = 1.66 and different projectile charges Q. Impact is parallel to
the major axis, ε >0 (<0) correspond to the upstream (downstream) geometry.

From the above calculations and analysis, it shows that for impact of multiply
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charged ions of intermediate velocities the role of the initial electron momentum

distribution becomes weaker for increasing projectile charge. This is due to the strong

perturbation of the initial state by the approaching ion which induces pronounced

changes in the momentum distribution long before the actual close interaction occurs.

In contrast, the initial spatial orientation of the electron continues to be important

for all Q-values studied here.
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Chapter 3

Extended CTMC to Electron
Capture in Multiply Charged
Ion-Rydberg Atom Collisions in an
External Magnetic Field

The CTMC method is successfully applied for the separable initial-state problem in

chapter 2. For the particular system that the hydrogen-like target atom stays in a

magnetic field, the problem is compounded by the non-integrable initial state, which

means that all three steps in the CTMC method need to be modified. In the following

sections, a novel method for generating the starting distribution for a quasi-separable

initial-state Hamiltonian is presented. With this extended CTMC method, the charge

exchange cross sections for the collisions between multiply charged ions and Rydberg

atoms in the l-mixing magnetic field regime are carried out.

3.1 The Rydberg Atom in a Magnetic Field

First let us look at the behavior of a hydrogen-like Rydberg atom in the magnetic

field. In classical mechanics, the effect of a magnetic field on the Hamiltonian of a

28
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particle of charge −e can be obtained by replacing the linear momentum p by p+eA,

where A is the vector potential of the field. The Hamiltonian of an electron moving

in a potential V (r) and a magnetic field B is then

H =
1

2
(p + A)2 + V (r), (3.1)

where B = O × A. For our problem the Coulomb symmetric gauge (O · A = 0) is

chosen, and for a uniform field along the z axis, A = (B × r)/2.

To understand the structure in fields where the diamagnetic interaction plays the

principal role, we shall display the Hamiltonian

H = Hke + Hcoul + Hpara + Hdia, (3.2)

where Hke denotes the terms involving only the kinetic energy of the electron, Hcoul

denotes the Coulomb interaction between particles, Hpara denotes the orbital param-

agnetic interaction and Hdia denotes the diamagnetic interaction. The electron spin-

orbit, spin-spin and the nuclear spin interactions are not considered in this work. For

the different strengths of magnetic field, various regimes may be distinguished:

• Hdia << Hcoul: the ordinary Zeeman-effect, diamagnetic term is negligible.

• Hdia < Hcoul: l-mixing regime, diamagnetic term is small but not negligible. l

is not a good quantum number.

• Hdia ≈ Hcoul: intermediate field regime, diamagnetic term is comparable to the

Coulomb terms. n is not a good quantum number.

• Hdia >> Hcoul: Landau regime. The Coulomb interaction is treated as a per-

turbation. The free-electron problem is taken as the starting point.
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In this study, for a Rydberg atom state n = 28, m = 2 in a magnetic field of up

to 4T, the ratio of magnetic energy to Coulomb energy is of the order 0.1. It is the

case of l-mixing regime and therefore n is still a good quantum number. The l-mixing

regime is experimentally accessible and perturbation theory is applicable.

3.2 Multiply Charged Ion-Rydberg Atom Colli-

sions in a Magnetic Field

The process under study is the Ar ions of charge Q between 1 and 8 colliding with

Rydberg Na atoms in a magnetic field of up to 4T, i.e.

Ar+Q + Na (n = 28,m = 2) ⇒ Ar+Q−1 + Na+. (3.3)

As in the previous chapter, we ignore the cores of the collision partners. The hydrogen-

like atom Na is assumed to have an “infinitely heavy” proton nucleus, which is treated

as a one-body system and is quasi-separable in a magnetic field. The Hamiltonian

governing the electron trajectory in a magnetic field is

H =
p2

2
−

1

|r|
−

Q

|r − R|
+

1

2
γlz +

1

8
γ2ρ2, (3.4)

where R = b+vt, γ = B/(2.3505×105T), ρ2 = x2 + y2. lz is the z-component of the

electron angular momentum, B is the magnetic field strength expressed in tesla, R is

the internuclear vector, b is the impact parameter and v is the projectile ion velocity

in the target frame chosen parallel to the magnetic field.

In this study, the field strength was chosen such that the magnetic energy of the

active electron is less than but comparable to the Coulomb energy in the field of the

target nucleus. In addition, this study has been restricted to experimentally accessible
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fields of up to a few tesla. Both requirements can be met if the target atoms are in

Rydberg states with high principal quantum numbers n. In this work, the target

atom has the principal quantum number n = 28 and the magnetic quantum number

m = 2. These states can easily be prepared by laser-optical pumping. Such collision

systems are at the boundary of classical and quantum mechanics. Since they are

not yet accessible to a quantum-mechanical treatment, the classical trajectory Monte

Carlo (CTMC) method is applied. For ion-atom collisions, this method has been

made popular by the work of Olson and coworkers (cf., e.g., [49]), and is known to be

quite useful in particular for quantum mechanically complex systems (as, for example,

Rydberg atom collisions). With the ratio of magnetic energy to target atom Coulomb

energy of the order 0.1, n and m are still good quantum numbers, but the electron

angular momentum l is no longer, the diamagnetic energy is taken as a perturbation.

For the l-mixing region degenerate perturbation theory reveals quantum eigenstates

of the diamagnetic Rydberg atom [50]. The manifold of eigenstates that emerge from

the diagonalization of the diamagnetic potential split into two types of states, which

are characterized by a new quantum number k. Those corresponding to the high set

of energy eigen values εk with low k values are perpendicular to the magnetic field

and the lower-energy states (high k) resemble the states being elongated along the

magnetic field z-axis. For the states with n = 28,m = 2, one finds that kmax = 24 and

kmin = 0, since k must correspond to an even parity state. The state with minimum

value kmin = 0 corresponds to a disk-shape state and is somewhat similar to the field-

free l = m = 2 state. And the state with maximum value kmax = 24, corresponds to

a cigar-shape state.

The calculations are from singly charged ion impact (Q=1) to ion charges Q = 2,
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4 and 8 at magnetic field strengths of 0, 2 and 4T, respectively. The collision energies

(between 1.27 and 183 eV) correspond to impact velocities vr between 0.2 and 2.4

(vr = v/ve, with ve the classical electron velocity in a circular n = 28 orbit).

3.2.1 Initial State Distribution

Generating the initial-state distribution is one of the main challenges of the CTMC

method. Based on the results of the quantum mechanical [50, 51] and classical [52]

perturbation theories for a Rydberg atom in a magnetic field, an extended CTMC

method [28] for generating a stationary microcanonical ensemble for a quasi-integrable

one-body initial-state Hamiltonian is briefly presented here.

At the presence of a magnetic field, a quasi-integrable initial-state Hamiltonian

for a stationary Rydberg atom is

Hinit = H0 + U (3.5)

where

H0 =
1

2
p2 −

1

|r|
+

1

2
γlz, (3.6)

and

U =
1

8
γ2ρ2 (3.7)

H0 represents the Rydberg atom under the linear Zeeman effect which is integrable

and U is the diamagnetic interaction which is treated as a small perturbation in-

troducing nonseparability into Hinit. The magnitude of U is small enough that the

classical orbits of Hinit are still regular. The diamagnetic interaction causes a slow

drift of the angular momentum vector l and Runge-Lenz vector
�

. The resulting

electron orbit is thus a combination of the fast elliptical motion, an intermediate
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cyclotron motion and a slow oscillation (magnetron motion with period τmag) of the

elliptical parameters. Unlike the pure elliptical motion, the new orbit is not closed.

As has been shown in classical perturbation theory [52], an approximate constant of

motion Λ = 4|
�
|2−5

�
2
z emerges.

�
z is the z component of the Runge-Lenz vector

�
.

Orbits corresponding to negative values of Λ are stretched along the magnetic field

as with the high k values from the quantum mechanical perturbation theory, and

positive Λ correspond to the low k values, i.e., a disklike distribution perpendicular

to the magnetic field. The magnetron period τmag for a given k state is calculated by

numerically integrating Eq. (5) in [52] with Λ = (ε − n2 − m2)/n2 [51].

In practice the electron is randomly placed on an ellipse oriented in the coordinate

x-y plane with the aphelion on the negative x axis. The size and shape of the ellipse

are determined by the angular momentum l and the eccentricity ε. The starting point

on the ellipse is chosen by selecting a mean anomaly α in [0, 2π], where α determines

the Kepler anomaly ξ through Keplers equation (Eq. (1.2)). The proper orientation is

accomplished by three rotations through the three Euler angles (cf. Eqs. (1.3), (1.4),

(1.5)).

After the procedures stated above, the electrons are distributed over the perturbed

orbit with a probability inversely proportional to the electron speed. The electron

phase-space coordinates are evolved according to equation Hinit = H0 + U for a time

randomly varying between 0 and τmag.

Due to the diamagnetic term, an unperturbed ellipse would not give the correct

total energy and the particles in the ensemble world have different energies contra-

dicting one of the basic tenets of CTMC calculations [17, 18]. Therefore, for each

starting point the angular momentum is adjusted slightly resulting in a new ellipse
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and a different diamagnetic energy (cf. Eq. (2.18) in [29]). After 10 recursions of this

correction the electron energy has a relative error 10−7 of the quantum mechanical

binding energy, and the constants of motion are preserved.

3.2.2 Integration of Hamilton’s Equations of Motion

After the generation of the initial positions, the integration of the Hamiltion equations

of motion (Eq. (1.7)) according to the three-body Hamiltonian (Eq. (3.4)) are carried

out with the projectile starting at z0(z0 > 5.0× 105) and ending at zf(zf ≈ 2× 105).

The approximation of fixed target nucleus and a straight line projectile trajectory

with constant velocity is taken similarly as in chapter 2.

3.2.3 Final-state Classification

When it is not necessary to evolve the particle trajectories under the full three-body

Hamiltonian equation (Eq. (3.4)), while propagating the electron trajectory with the

two-body Hamiltonians, the two-body interaction energies of electron-target He−T

and of electron-projectile He−p are calculated,

He−p =
1

2
(p − v)2 −

Q

|r − R|
+

1

2
γlz +

1

8
γ2ρ2 (3.8)

He−T = Hinit (3.9)

where both are expressed in the target frame. Evaluation of these energies allows the

classification of the outcome of the ion-atom collision. Since lz is a good quantum

number, for He−T , the ionization threshold is 1
2
γ(|lz|+ lz) due to the combined effect

of the centrifugal and diamagnetic potentials. If He−T is constant and less than

1
2
γ(|lz|+lz), the electron remains bound to the target nucleus. For He−p, the ionization

threshold is zero. If He−p is constant and less that zero, the electron has been captured
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by the projectile nucleus. All other situations when the two-body system breaks up

lead to ionization.

3.3 Results

The resulting velocity dependent charge exchange cross sections for kmax and kmin

states are shown in Fig. 3.1 and Fig. 3.2. Two effects can be seen: i)an external

magnetic field reduces the cross sections, and ii)an increase of the projectile charge

washes out the structures observed in the cross sections of Q = 1.

3.3.1 B-dependence

The cross section reduction in case of an increasing magnetic field has already been

found for singly charged projectiles [28]. We may recall that the influence of the field

is twofold: it alters the initial electron state distribution(‘structure effect’) as well as

the charge exchange dynamics. The structure effect can be separated by looking at

the difference between the kmax and the kmin cross sections for B=0. It contains the

influence of the initial state momentum distribution (i.e., the effect of the matching

velocities of the projectile and the captured electron) as well as their spatial extension.

Although the structure effect appears to be somewhat reduced for increasing Q (cf.

the B=0 curves in Fig. 3.3), at B=4T the kmax cross section is still significantly shifted

to higher vr compared to the kmin cross section. This shift has been interpreted as a

signature of the velocity matching effect [28]: the strong z-momentum components in

the cigar-shaped kmax-state facilitate capture at higher impact velocities. The Q = 2

and Q =4 projectiles yield a behavior between Q = 1 and Q = 8.
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Figure 3.1: Velocity dependent charge exchange cross section for collisions of
Q-fold ionized projectiles with targets in the kmax initial state. Top: field-free
condition (B = 0T ); bottom: external magnetic field (B = 4T ).
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Figure 3.3: Comparison of kmin and kmax cross sections for different projectile
charge and magnetic field.

3.3.2 Q-dependence

Following the references [53, 54], σ/Qα and vr/Q
0.25 have been chosen as semi-

empirical scaling quantities in Fig. 3.1 and Fig. 3.2. For the kmax initial state α ≈ 1,

while α ≈ 1.2 gives a somewhat better fit in case of kmin.

Particularly pronounced deviations from the simple scaling in Fig. 3.1 and Fig.

3.2 show up at vr < 1. The cross section structure at these velocities has been

attributed to the so-called “swaps” [9, 21, 28]; the effect of q 6= Q has been considered
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here similar to that in chapter 2. The order of swaps characterizes how often the

electron passes through the “midplane” before it finally stays with the projectile.

As an example, Fig. 3.4 displays the contributions of the various swaps to the kmin-

charge exchange cross section when the projectile is singly (Q = 1) or highly charged

(Q = 8); kmax behaves qualitatively similar. Compared to Q = 1 the contributions

of the various swaps to Q = 8 spread over wider velocity increments, and the swap

structure is washed out. Evidently, the reason is that for increasing Q the strong

long-range Coulomb attraction increasingly dominates over the influence of different

target electron distributions. One may expect that this is a general phenomenon

which should be observed also in other alignment and orientation studies with highly

charged ions.
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tion(a) for kmin initial target states: 1 swap(b), 3 swaps(c), 5 swaps(d), 7
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Chapter 4

Modified CTMC to
Antiproton-Positronium Collisions
in an External Magnetic Field

In the previous chapters, the behavior of a simple physical system, the hydrogen Ry-

dberg atom in a magnetic field colliding with an ion, has been studied in detail. The

initial state was treated as an effective one-body problem. Another interesting target

system is positronium, consisting of two light particles. The research on this system

is motivated by the recent success of experiments [55, 56, 57, 58, 59] to produce signif-

icant numbers of cold antihydrogen atoms. It has opened a new door to a test of the

fundamental symmetries in physics. An accurate spectrometry of photon transitions

in hydrogen and its antiparticle could resolve the question if the Rydberg constants

in both systems are identical, as required by the CPT theorem. In these experiments,

positrons from a radioactive source are moderated in a W foil, capture an electron

and form highly excited Ps. This Ps is then field-ionized, yielding cold positrons in

a trap. Cold antihydrogen is produced when slow antiprotons are repeatedly driven

into collisions with cold positrons stored in the “nested trap”. Three-particle p̄− 2e+

41
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recombination as well as radiative p̄ − e+ recombination are discussed as possible

causes for antihydrogen formation. However, as an alternative route also e+ capture

from positronium,

p̄ + (e+e−) ⇒ H̄ + e− (4.1)

has recently received considerable attention (cf. [60, 61] and references therein). For

all these processes, a major problem in the quantitative interpretation of the experi-

mental results lies in the unknown effect of the strong (≈ 5 Tesla) magnetic field in

the trap. Therefore, previously reported large charge exchange cross sections in colli-

sions between hydrogen Rydberg atoms and protons in an external magnetic field [32]

suggest to produce antihydrogen atoms by collisions of antiprotons p̄ with Rydberg

positronium in a magnetic field of up to 5 Tesla (Eq. (4.1)). We want to study the ef-

fects of the magnetic field on p̄−Ps collisions. Our study may also provide a first-step

model to estimate the influence of the external magnetic field on the p̄− 2e+ system.

Both situations deal with a three-body collision involving two weakly interacting light

particles, trapped at large distances from each other about their respective magnetic

field lines.

The presence of a magnetic field in such calculations is by no means a trivial

problem since in general the center-of-mass motion and the internal motion of the

system cannot be separated. Unlike the previous hydrogen Rydberg target atom

which was treated as an effective one-body problem, for the positronium(Ps) in a

magnetic field a one-body treatment is not available. However the theoretical efforts

on the treatment of two-body effect in external fields which arise due to the finite

nuclear mass show us a way to work more precisely on such interacting particles in

the magnetic field. The first rigorous treatment of a two-body system in a magnetic



43

field has been published by Avron, Herbst and Simon [33]. A new operator connected

with the center-of-mass motion, the so-called pseudomomentum K, was introduced

in their work. It represents a conserved quantity for the system, making it possible

for neutral systems to perform a pseudoseparation of the center-of-mass motion. The

results of Avon, Herbst and Simon fully described the dynamics of the two-body

system and have been used in many publications [34, 35, 36, 37, 38, 39, 40, 41, 42].

The target positronium in p̄−e+e− collisions is a special case of the two-body sys-

tem and is of great interest in theoretical and experimental investigations. A classical

investigation of the highly excited positronium [31, 62] atom in a magnetic field has

been performed by Schmelcher, Cederbaum and coworkers. Long-lived excited states

of positronium have been predicted to be formed in a magnetic field at laboratory field

strengths [31]. The behavior of the two-body system was fully taken into account,

and all effects due to the finite masses have been considered. It was shown [42, 63, 64]

that the kinetic energy of the center-of-mass motion can be interpreted as part of the

effective potential for the internal motion of the neutral two-particle system. This

effective potential is gauge independent and distorted by the magnetic field. Above a

critical value of the pseudomomentum Kc, an additional potential well forms on the

negative x axis and will be referred to as the outer well (OW). The outer well moves

away from the magnetically distorted Coulomb potential and becomes broader and

deeper with increasing K. Particles in this OW are trapped at large distances from

each other, leading to delocalized states. They are stable and undisturbed.

In this chapter, the theoretical method and numerical calculation of charge ex-

change cross sections as a function of relative impact projectile velocity for the re-

action p̄ + Ps → H̄ + e− are presented. The target positronium atoms, embedded
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in magnetic fields of 4T and 5T, are in Rydberg states with binding energies corre-

sponding to field-free principal quantum number n = 40 and 50. We concentrate on

the outer well state with values of pseudomomentum K around 0.1, which are above

the critical value. Thus, long lived delocalized outer well states are formed. Collision

energies of the antiproton range from 0.62 to 19.6eV (n = 50) and from 0.98 to 30.6eV

(n = 40).

4.1 Theoretical Approach

To calculate the cross section for the reaction p̄ + Ps → H̄ + e− in a magnetic field,

the modified CTMC method which has been adjusted for the positronium target is

applied. The generation of the initial positronium state is the main challenge in this

work. In contrast to the hydrogen Rydberg atom with an “infinitely heavy” pro-

ton nucleus, the unstable center-of-mass of positronium in a magnetic field makes a

direct application of the established CTMC method more difficult to generate the

target particle distribution under study here. We follow the treatment proposed by

the Heidelberg group [31, 42, 62] to construct the initial distribution of the target

particles. This process is different from the previous method for the hydrogen atom

system. In the following sections, the construction of initial states of positronium in

a homogeneous magnetic field is given according to the center-of-mass pseudosepa-

ration introduced by Avron, Herbst and Simon [33]. For those long-lived delocalized

outer well states, which are the main basis of this study, the anisotropic harmonic

oscillator approximation (AHO) [42, 63] is used to expand the potential well around

its minimum.
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Figure 4.1: Top: V (x, 0, 0) for Ps in a magnetic field. a: B = 4T,K = 0.09,
b: B = 5T,K = 0.12, c: B = 5T,K = 0.09, d: B = 5T,K = 0.085, e:
B = 5T,K = 0.01; Solid curve: K < Kc, for all other curves K > Kc. x is the
particle distance perpendicular to the field direction. Bottom: One example
of particle trajectories of Ps in the external magnetic field B = 5T, n = 50
and K = 0.09. The magnetic field points along the z-direction.
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4.1.1 Positronium in a Homogeneous Magnetic Field

Considering the equal masses and opposite charges of positronium constituents, the

Hamiltonian of two particles in a homogeneous magnetic field is given by

HPs =
1

2
(p1 + A1)

2 +
1

2
(p2 − A2)

2 −
1

| r1 − r2 |
, (4.2)

where p1,p2 and r1, r2 are the momenta and coordinates of the electron and positron,

respectively. A1 =
1

2
B × r1 and A2 =

1

2
B × r2 are the symmetric vector potentials

of the two particles. The Hamiltonian of Eq. (4.2) is not translationally invariant and

the total momentum is not conserved. However, the pseudomomentum

K = p1 + p2 −
1

2
B × r1 +

1

2
B × r2 (4.3)

is a conserved quantity for the system [31] and is introduced to perform a pseudosep-

aration of the center-of-mass motion.

For the special case of positronium, the effective Hamiltonian associated with

internal motion and pseudomomentum is given in Cartesian coordinates by

HPs =
1

2µ
p2 +

γ2

4
(x2 + y2) +

γKx

2
+

K2

4
−

1

| r |
, (4.4)

where r = r1 − r2 and p = p1 − p2 are the interparticle distance and momentum

vectors, respectively. | r |=
√

x2 + y2 + z2, and µ is the reduced mass. The magnetic

field vector is B = (0, 0, γ), where γ =
B (Tesla)

2.35 × 105
. The pseudomomentum vector

K = (0, K, 0) is assumed to point along the y-axis. The effective potential in the HPs

is

V =
γ2

4
(x2 + y2) +

γKx

2
+

K2

4
−

1
√

x2 + y2 + z2
. (4.5)

For each fixed B, the shape of the potential well changes for increasing K (see Fig.

4.1). In addition to the Coulomb singularity V (0, 0, 0) = −∞, for sufficiently large K
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(Above a critical value K = Kc = 3
√

27B/2 [31]) the potential has a local minimum

V0 = V (x0, 0, 0) (with x0 < 0) which is the so called outer well. The outer well

is separated from the magnetically distorted Coulomb well (MDCW) by the saddle

Vs = V (xs, 0, 0). For fixed B, some general features of the potential are observed:

• The value of x0 decreases with increasing K; the outer well moves away from

MDCW along the negative x axis.

• The minimum of the outer well V0 moves upwards with increasing K but is

bounded from above by zero.

• The value of xs increases with increasing K; the barrier maximum moves to-

wards the origin.

• The height of the saddle Vs increases without limit with increasing K.

The outer well states are also called delocalized states because the average interparti-

cle separation is large. For K > Kc, the outer well becomes broader and deeper with

increasing K. For the problems we are studying, when B = 4T , Kc = 0.0612 and

B = 5T , Kc = 0.066. For a field-free Rydberg state n = 50, we have chosen B = 4T,

K = 0.12 and B = 5T, K = 0.09; For a state n = 40, we have chosen B = 5T,

K = 0.085. The three pseudomomenta are above the corresponding critical values.

Thus, outer wells are formed which we approximate by an anisotropic harmonic os-

cillator and expand around the minimum. The resulting long-lived delocalized OW

states are the required initial target states. Fig. 4.1 shows examples of the potential

well for positronium, the cases of interest in this work. The bound states in the

outer well are bounded from above by the ionization threshold and below by the well
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minimum. E.g., for B = 5T,K = 0.09, n = 50 the minimum of the outer well is at

x0 = −3947.22.

4.1.2 Initial States Construction of Target Positronium

To define the initial position and momentum of the positronium in the outer well

state, we need to specify 12 quantities in the position and momentum vectors:

r1 = (x1, y1, z1), p1 = (px1, py1, pz1),

r2 = (x2, y2, z2), p2 = (px2, py2, pz2).
(4.6)

With the definition in Eq. (4.3) and K = (0, K, 0), we obtain

px1 + px2 +
γ

2
(y1 − y2) = 0,

py1 + py2 −
γ

2
(x1 − x2) = K,

pz1 + pz2 = 0.

(4.7)

For a given initial state, r and p are known from the harmonic oscillator approxima-

tion and are derived in the next paragraph. Through r = r1 − r2 and p = p1 − p2,

where r = (x, y, z), p = (px, py, pz), another 6 equations are derived

x1 − x2 = x,

y1 − y2 = y,

z1 − z2 = z,

px1 − px2 = px,

py1 − py2 = py,

pz1 − pz2 = pz.

(4.8)

In addition, the center-of-mass is initially put at the coordinate origin, which means

r1 + r2 = 0. Therefore,

x1 + x2 = 0,

y1 + y2 = 0,

z1 + z2 = 0.

(4.9)
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In these 12 equations, K and γ are known constants. When r = (x, y, z) and p =

(px, py, pz) are defined, the position and momentum of the initial state are easily

constructed.

The initial r and p are constructed in terms of the harmonic oscillator approxi-

mation. The construction starts from the bottom of the outer well because we know

that at the potential minimum V0, the kinetic energy is maximum. We may also recall

that the effective potential is V =
1

4
γ2(x2 + y2) +

1

2
γKx +

1

4
K2 − 1/

√

x2 + y2 + z2.

By solving the equation ∂V (x, 0, 0)/∂x = 0, the potential then has the local mini-

mum V0 = V (x0, 0, 0), e.g. for B = 5T,K = 0.09 at x0 = −3947.22. The possible

maximum kinetic energy Ekmax at the bottom of the potential well is

Ekmax = E − V0, (4.10)

where E is the total energy of the positronium. Consequently, the maximum momen-

tum Pmax is

Pmax =
√

2µEkmax =
√

Ekmax . (4.11)

The initial momenta of internal motion of positronium distributed in x, y, z directions

are
px0 = Pmaxsinϑcosϕ,

py0 = Pmaxsinϑsinϕ,

pz0 = Pmaxcosϕ,

(4.12)

where ϑ is selected in [0, π] and ϕ is in [0, 2π].

Having the starting position at (x0, 0, 0) and the starting momentum (px0, py0, pz0),

the initial internal coordinates are obtained by integrating Hamiltonians Hx, Hy, Hz

in three directions, where

Hx =
1

2
µp2

x +
1

4
γ2x2 +

γKx

2
+

K2

4
−

1

|x|
(4.13)
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(xstart = x0, pxstart = px0, ystart = 0, pystart = 0, zstart = 0, pzstart = 0),

Hy =
1

2µ
(p2

xinit + p2
y) +

γ2

4
(x2

init + y2) +
γKxinit

2
+

K2

4
−

1
√

x2
init + y2

(4.14)

(xstart = xinit, pxstart = pxinit, ystart = 0, pystart = py0, zstart = 0, pzstart = 0),

Hz =
1

2µ
(p2

xinit+p2
yinit+p2

z)+
γ2

4
(x2

init+y2
init)+

γKxinit

2
+

K2

4
−

1
√

x2
init+y2

init+z2
(4.15)

(xstart = xinit, pxstart = pxinit, ystart = yinit, pystart = pyinit, zstart = 0, pzstart = pz0).

The integrations start with xstart = x0, pxstart = px0, ystart = 0, zstart = 0, pystart = 0

and pzstart = 0 for Hx. In y direction, the output of Hx, xinit, pxinit are taken as the

initial values of the x direction and ystart = 0, pystart = py0, zstart = 0, pzstart = 0. The

same procedure is applied for z direction, the output of Hx and Hy, xinit, pxinit, yinit,

pyinit are taken as initial values for x and y direction, respectively, and zstart = 0,

pzstart = pz0. The integrations evolve for a random time between 0 and periods τx,

τy, τz in x, y, z directions, respectively.

τx, τy, τz are determined by the energy distributed in x, y, z directions, respectively.

With the harmonic oscillator approximation, τx, τy, τz are calculated by

τx

4
=

∫ xt

0

1

vx

dx,

τy

4
=

∫ yt

0

1

vy

dy, (4.16)

τz

4
=

∫ zt

0

1

vz

dz,

where vx, vy, vz are the velocities in x, y, z directions and xt, yt, zt are the turning

points of the harmonic oscillators in x, y, z directions, respectively. Notice that

1

2
µv2

x = Ex − Vx,

1

2
µv2

y = Ey − Vy, (4.17)

1

2
µv2

z = Ez − Vz,
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where Ex, Ey, Ez, Vx, Vy, Vz are the total energies and potentials in x, y, z directions,

respectively. There holds

vx =

√

2

µ
(Ex − Vx),

vy =

√

2

µ
(Ey − Vy), (4.18)

vz =

√

2

µ
(Ez − Vz) .

Thus, the random initial coordinates and momenta of the positronium are defined.

Figure 4.2 shows the spatial initial positions of Ps for the state n = 50, B =

5T,K = 0.09. Some internal coordinate distribution of the positronium ensemble

are shown in Fig. 4.3, having randomly distributed starting conditions in coordi-

nate/momentum space and serving as initial state for the collision of Ps with p̄ at the

different field strength and pseudomomentum. At the same magnetic field strength

B, the internal distance r of the positronium increases with increasing K (cf. also Fig.

4.1), while a stronger field and a higher internal binding energy (i.e., smaller n) com-

press the internal distance, in agreement with Shertzer, Ackermann and Schmelcher’s

work [31]. For comparison, a field-free situation is also included.

The initial condition of the projectile ions is similar to that in chapter 3. Note

that bmax depends on the target state and the ion velocity due to the center-of-mass

motion of the positronium. Therefore, the origin of the impact parameters b = 0

is established by calculating the meeting point of the projectile and the positron-

ium, taking into account the projectile velocity and the center-of-mass motion of

the positronium. The maximum impact parameter bmax is chosen sufficiently large

to ensure a vanishingly small capture probability outside this b-value. The initial

distance z0 of the projectile (& 5 × 104 a.u.) is chosen such that at this distance
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53

2000 4000 6000 8000 10000
0.00

0.01

0.02

0.03

0.04
 K = 0.085, B = 5T, n = 40
 K = 0.09, B = 5T, n = 50
 K = 0.09, B = 4T, n = 50
 K = 0.12, B = 5T, n = 50

 r

P
ro

ba
bi

lit
y

0.00

0.01

0.02

0.03

0.04

 

B = 0 T
n = 50, l = n - 1 = m
Initial coordinate 
distribution

Figure 4.3: Initial coordinate distribution of the positronium ensemble. Top:
field-free condition (B = 0T), n = 50, l = n − 1 = m; bottom: external
magnetic fields B = 4T and 5T , n = 40, 50, K =0.085, 0.09 and 0.12.



54

the projectile-positronium interaction is negligible compared to the electron-positron

interaction.

4.1.3 Integration of Hamilton’s Equations

During the collisions, the projectile evolves with the approximation of a straight line

projectile trajectory under the full three-body Hamiltonian,

H =
1

2
(p1 + A1)

2 +
1

2
(p2 − A2)

2 −
1

| r1 − r2 |
+

1

| r1 − r3 |
−

1

| r2 − r3 |
, (4.19)

where r3 is the coordinate of the projectile. For a given set of initial positions, the

integration of Hamilton’s equations of motion (1.7) is performed according to the

three-body Hamiltonian equation (4.19) by a standard Runge-Kutta method.

4.1.4 Final-state Classification

After the collision, the final asymptotic distance of the projectile zf (zf = 2×105a.u.)

is sufficiently large to allow a clear energetic separation of the three particles into two-

particle pairs. The required two-body Hamiltonians of the final states for the electron-

positron pair and the positron-antiproton pair, He+
−e− and He+

−p̄, are respectively

defined by

He+
−e− =

1

2
(p1 + A1)

2 +
1

2
(p2 − A2)

2 −
1

| r1 − r2 |
, (4.20)

He+
−p̄ =

1

2
(p2 − v)2 −

1

|r2 − r3|
+

1

2
γlz +

1

8
γ2(x2

2 + y2
2), (4.21)

where v is the projectile ion velocity and lz is the z-component of the angular mo-

mentum of the e+ angular momentum. The two-body interaction energies He+
−e−

and He+
−p̄ are calculated based on equations (4.20) and (4.21). At zf , by evaluating
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the standard deviation of both two-body energies, we may find that at least one of

energies is constant in time. This evaluation of energy allows the classification of

the outcome of the collision: excitation or ionization of the target positronium, or

capture by the projectile ion. The ionization threshold of positronium as well as of

H̄ in the presence of the magnetic field are zero. If He+
−e− is constant and less than

zero, the positron remains bound to the e−. If He+
−p̄ is constant and less than zero,

the positron is captured by the projectile. All other situations lead to ionization.

4.2 Results

With the method outlined above, the charge exchange cross-section for the collision

Ps+ p̄ → H̄+e− in a magnetic field as a function of relative impact projectile velocity

are calculated in terms of Eq. (1.8), by averaging over a great number of randomly

chosen trajectories.

The initial target positronium are in n = 40 and 50 Rydberg states embedded in

magnetic field strengths of 4T and 5 T. The impact projectile velocities vr are between

0.5 and 2.8 (vr = v/ve, with ve the classical electron velocity in a field-free circular Ps

Bohr orbit), corresponding to collision energies between 0.62 and 19.6eV(n=50) and

between 0.98 and 30.6eV(n=40). The results of the charge exchange cross section

are displayed in Fig. 4.4. To illuminate the influence of the magnetic field, the cross

sections for the field-free case have also been calculated. In Fig. 4.4 we include

the results for two cases l = n − 1 = m and l = n − 1,m = 0, i.e., for circular

Rydberg motion in planes perpendicular and parallel to the magnetic field direction,

respectively. To prove the vanishingly small charge exchange cross section outside

bmax, Fig. 4.5 shows as an example the impact-parameter dependence for a selected
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Figure 4.4: Velocity-dependent charge exchange cross section for collisions of p̄
projectiles with Ps targets in the external magnetic fields B = 4T, 5T and n =
40, 50 and K = 0.085, 0.09, 0.12 initial states, respectively. For comparison,
the field-free n = 50, l = n− 1 = m and l = n− 1,m = 0 initial states are also
included.

velocity vr = 1.7. The charge exchange probability becomes zero long before the

impact-parameter extends out to bmax. The influence of the magnetic field is quite

substantial: it reduces the cross section. The magnitude of this reduction is similar

to the one observed in p − H collisions [29]. A smaller positronium binding energy

(increasing n) and a larger geometrical extension of the target positronium atom

(increasing K) yield a larger capture cross section. This is true for B = 0 as well

as for non-vanishing magnetic field (i.e. increasing K). In addition, an increase of B

results in a decreasing cross section, again as in p−H collisions. Due to the irregular

motion of the positronium(cf. Fig. 4.1), the velocity matching effect is not expected
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Figure 4.5: Impact-parameter dependent charge exchange probability. Impact
velocity vr = 1.7, external magnetic field B = 5T , n = 50, K = 0.09.

to play an important role. Thomas capture [12, 13], that happens in the collision

plane in the field-free case [15], is foiled due to the magnetic field.

The observed behavior will be of interest for future experiments of the type p̄ −

e+e− or p̄−2e+ collisions. Evidently, the magnetic field reduces the cross section, but

this reduction remains within reasonable limits. Further explorations in the parameter

space of cross section changes with K and binding energy would be worthwhile.



Chapter 5

Conclusions

In this thesis, the CTMC method is first applied to study the collisions between

multiply charged ions and oriented elliptical Rydberg atoms at intermediate veloci-

ties. An extended CTMC equipped with a new method for generating a stationary

microcanonical ensemble for a quasi-integrable one-body initial-state Hamiltonian is

then used for multiply charged ion-Rydberg atom collisions in an external magnetic

field. Finally, a modified CTMC method, which treats a two-body initial state sys-

tem in a magnetic field, is constructed to investigate the behavior of antiproton and

positronium collisions in an external magnetic field.

In the collisions between multiply charged ions and oriented elliptical Rydberg

atoms, the roles of the spatial and the momentum distributions of the target elec-

tron states are illuminated in classical terms. The velocity matching phenomenon

and Thomas effect in the upstream-downstream asymmetry are observed in the col-

lisions, resulting in relatively larger charge exchange cross-section. Obviously, these

effects are due to the involvement of the different spatial distributions. At the same

time, the increasing projectile charge weakens the influence of the initial electron

momentum distribution in the collisions. The important role of the initial electron
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momentum distribution found for singly charged ion impact is strongly diminished

for higher projectile charge. The reason is that, for increasing projectile charge, the

distortion of the initial states caused by the strong perturbation of approaching ion

induces pronounced changes in the momentum distribution. However, the initial spa-

tial orientation of the electron remains an important role for all charge values under

consideration. We must indicate that the results of increasing projectile charge illu-

minates an inherent weakness of the CTMC-approach: the slow rise of the electric

field may “in reality” induce adiabatic transitions between the many Rydberg states

which would be populated differently in the classical calculation.

In the collisions between singly and multiply charged ions and the hydrogen Ry-

dberg atoms in a magnetic field of up to 4T, the magnetic field as well as projectile

charge show us their influences on the charge exchange cross sections. For the target

atoms with n = 28 and the magnetic quantum number m = 2, the ratio of magnetic

energy to target atom Coulomb energy is of the order 0.1, therefore n and m are still

good quantum numbers, but the electron angular momentum l is not. The target atom

is in the l-mixing regime. The electronic states are characterized by a new quantum

number k. The state with minimum k value (kmin state) corresponds to the higher set

of energy and the state with maximum k value (kmax state) corresponds to the lower

set of energy. First of all, a cross section reduction in case of an increasing magnetic

field is found for multiply charged projectiles, which coincides with the results for

singly charged ion impact. The structure effect due to the change of the initial state

distribution by the magnetic field is effective in the collisions, resulting in different

capture cross sections in kmax and kmin states. The strong z-momentum components

in the cigar-shaped kmax-state facilitate capture at higher impact velocities, causing a
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significant shift of kmax cross section. Secondly, for increasing projectile charge, em-

pirical scaling quantities (σ/Qα and vr/Q
1/4) are found for the charge exchange cross

sections, with α = 1 for kmax and α = 1.2 for kmin states. Higher projectile charges

strongly enhance the charge exchange cross sections. However compared to singly

charge projectile Q = 1, the contributions of various swaps spread over wider velocity

increments and for increasing projectile charge the swap structure found in singly

charge impact is washed out. This may be interpreted by the general phenomenon

which also appears in our orientation studies with highly charged ions. That is: the

strong long-range Coulomb attraction increasingly dominates over the influence of

different target electron distributions.

The further exploration of collisions between antiprotons and Rydberg positro-

niums in a magnetic field gives us a deeper understanding of the influence of an

external magnetic field on such collisions and also provides an alternative route for

the antihydrogen formation. The initial state of a special case of a two-body system,

positronium in a magnetic field, has been constructed by means of a newly introduced

operator, the pseudomomentum K. This value is the key to this problem for solving

the non-separation which arises due to the finite nuclear masses of the system. It

represents a conserved quantity, making it possible for a neutral system to perform a

pseudoseparation of the center-of-mass motion. The initial Rydberg positronium in

the states n = 40 and 50 for the magnetic field strengths of 4T and 5T have been

investigated and compared to two field-free cases, namely, with angular momenta

l = n − 1 = m and l = n − 1,m = 0 (i.e., for circular Rydberg motion in planes

perpendicular and parallel to the z direction, respectively). In the presence of the



61

magnetic field, the positronium is stable and delocalized. However the spatial distri-

bution of positronium has changed to an irregular motion, leading to the probability

for positron-electron overlap remaining near zero. It results in a cross section reduc-

tion of a magnitude similar to the one observed in p−H collisions [29]. In addition, a

smaller positronium binding energy (increasing n) and a larger geometrical extension

of the target positronium atom (increasing K) yield a larger capture cross section.

An increase of the magnetic field strength results in a decreasing cross section, again

as in p − H collisions. Due to the irregular motion of the positronium the velocity

matching effect does not play an important role. Thomas capture which happens in

the collision plane in the field-free case is foiled. The observed behavior may be of

interest for future experiments of the type p̄ − e+e− or p̄ − 2e+ collisions.

In this work, the CTMC method has been successfully carried out to solve the

problem of multiply charged ion-Rydberg atom collisions with and without the pres-

ence of the magnetic field. The resulting CTMC cross sections are worthwhile to

guide the analysis of the experimental data. Furthermore, using the extended CTMC

method, it should be possible to study ion-Rydberg atom collision in very high mag-

netic fields, up to the Landau regime. Further explorations in the parameter space of

cross section changing with pseudomomentum K, magnetic field B and the binding

energy will be interesting subjects.
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Classical trajectory Monte Carlo calculations of electron capture and ionization in collisions
of multiply charged ions with elliptical Rydberg atoms

J. Lu,1 Z. Roller-Lutz,2 and H. O. Lutz1

1Fakultät für Physik, Universität Bielefeld, 33501 Bielefeld, Germany
2Institute of Physics, Faculty of Medicine, Rijeka University, HR-5100 Rijeka, Croatia

~Received 11 April 2000; published 11 October 2000!

We have performed classical trajectory Monte Carlo studies of electron capture and ionization in multiply
charged (Q<8) ion–Rydberg-atom collisions at intermediate impact velocities. Impact parallel to the minor
and to the major axis, respectively, of the initial Kepler electron ellipse has been investigated. The important
role of the initial electron momentum distribution found for singly charged ion impact is strongly diminished
for higher projectile charge, while the initial spatial distribution remains important for all values of Q studied.

PACS number~s!: 34.60.1z, 34.70.1e

The use of coherent elliptical Rydberg states in ion-atom
collision studies ~for recent papers on the subject cf. @1–3#

and references therein! has not only aided the intuitive un-
derstanding of the interaction dynamics, it also illuminates
the roles of the momentum and the spatial distributions of
the target electron states. In classical terms, the momentum
distribution can be widely varied simply by changing the
eccentricity « of the Rydberg ellipse without affecting the
energy of the state. In particular, for impact perpendicular to
the major axis of the ellipse, the capture cross section dis-
plays a maximum if vp ~the perihelion electron velocity! is
parallel and equal to the projectile velocity v; this is believed
to be due to the matching electron momenta in the initial
target and the final projectile state. In contrast, the role of the
spatial distribution becomes most clearly visible if the im-
pact velocity vector is adjusted perpendicular to the minor
axis of the Rydberg ellipse; in this case, the electrons can be
located either between the approaching ion and the target
nucleus ~‘‘upstream geometry’’! or behind the target
nucleus, as seen from the projectile ~‘‘downstream geom-
etry’’! without otherwise changing the momentum distribu-
tion of the Rydberg state ~i.e., its angular momentum l and
the principal quantum number n). The capture cross section
in both cases turns out to be quite different: it is much larger
in the upstream case as compared to the downstream case;
apparently, in the corresponding region of parameter space
the spatial characteristics of the initial state determine the
outcome of the collision. These investigations have so far
been restricted to collisions with singly charged ions. Re-
cently, however, it has become possible to employ such tar-
gets in studies involving multiply charged ions @1,4#. In an-
other context ~electron capture by multiply charged ions in
the presence of an external magnetic field! we have found
indications @5# that for increasing projectile charge Q the
distortion of the initial state increasingly dominates the in-
fluence of different target electron distributions. We have
therefore performed an exploratory study of such systems in
which a spatially oriented Rydberg atom collides with a mul-
tiply charged ion. This is the topic of this paper.

We employ the classical trajectory Monte Carlo ~CTMC!
method, which is quite useful in particular for the description

of quantum-mechanically complex systems, giving a good
qualitative and often fairly quantitative agreement with ex-
perimental data ~for more recent applications to the study of
Rydberg atom collisions cf., e.g., @1–3#!. Structureless ions
of charge Q between 1 and 8 collide with Rydberg target
atoms with nuclear charge q51 and principal quantum num-
ber n525. The geometry is chosen such that the direction of
impact is perpendicular to the angular-momentum direction
of the Kepler ellipse. Specifically, two cases are studied: ~i!
impact is parallel to the minor axis, thus allowing one to
study the velocity matching phenomenon, and ~ii! impact
parallel to the major axis, showing the effect of the spatial
orientation of the target electron ~‘‘upstream-downstream
asymmetry’’!. A useful quantity characterizing the electron
orbit is the ~generalized! eccentricity «56A12(l/n)2. In
case ~i!, the 1 ~2! sign identifies orbits with the perihelion
velocity vp parallel ~antiparallel! to v; in case ~ii! it charac-
terizes the upstream ~downstream! geometry. The impact ve-
locity v is scaled by 1/n , the velocity of a circular Rydberg
state, i.e., V5vn51 in this case; the number of MC cycles
was adjusted to obtain statistical uncertainties of less than
5%. Care has been taken to assure that the projectile starts

FIG. 1. Eccentricity-dependent capture cross section s/Q for
impact velocity V51.66 ~in units of the circular n525 Rydberg
electron velocity! and different projectile charges Q. Impact is par-
allel to the minor axis. For the initial state, velocity matching is
obtained at «510.47.
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sufficiently far from the target @approximately 3.53105

atomic units ~a.u.!# to correctly describe the initial part of the
trajectory; in view of the long-range Coulomb potential and
the known sensitivity of Rydberg states to l ,m changing pro-
cesses, this is critical particularly for higher projectile
charges Q ~see also below!.

(i) Impact parallel to the minor axis. Figure 1 shows the
eccentricity-dependent charge-capture cross section s/Q for
V51.66 and Q ranging from 1 to 8. Velocity matching is
obtained at «510.47; at low Q, the cross section displays
the well-known behavior with a pronounced maximum at

this eccentricity and a deep minimum for negative eccentrici-
ties that characterize a strongly elongated Kepler ellipse with
v antiparallel to vp. For increasing Q, this structure is soon
washed out; while it is still noticeable for Q52 and 4, al-
most any trace of the minimum has disappeared for Q58.
Inspection of electron trajectories during the approach of the
projectile ion reveals the reason: as expected, the long-range
Coulomb force distorts the original Kepler ellipse already at
quite long distances. This distortion is quite regular, and re-
minds one of a Stark effect. Indeed, a simple estimate con-
firms this: for Q58, an electric-field strength of 5 V/cm
~i.e., of the order of the fields applied to the collision region
in the experiments @1#! is attained at approximately 105 a.u.
This initial-state effect might be reduced in the experiment
by applying a strong field in the target region; however, this
result also illuminates an inherent weakness of the CTMC
approach: the slow rise of the electric field may ‘‘in reality’’
induce adiabatic transitions between the many Rydberg
states that would be populated differently in the classical
calculation. This distortion of the initial state becomes quite
severe at distances below 104 a.u., i.e., corresponding to sev-
eral revolutions of the Rydberg electron about its nucleus;
therefore, it is to be believed that the washing out of the
cross-section structure is indeed a real effect. Finally, we
may add that also the impact-parameter dependence of the
capture probability reflects the signature of this effect. While
for Q51 and «510.47 ~the velocity-matching situation!
the capture probability is rather concentrated about the peri-

FIG. 2. Eccentricity-dependent capture cross section s/Q for
impact velocity V51.66 and different projectile charges Q. Impact
is parallel to the major axis; «.0 (,0) corresponds to the up-
stream ~downstream! geometry.

FIG. 3. Charge-capture cross sections (Q58) for ~a! upstream
su and ~b! downstream sd geometry; the eccentricity «560.96.
The respective ionization cross sections are also given.

FIG. 4. Impact-parameter-dependent probabilities of capture and
ionization: ~a! upstream geometry, ~b! downstream geometry. Im-
pact parameter b in atomic units; impact velocity V51.5; projectile
charge Q58.
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helion position @6#, it is nearly symmetric about b50 ~the
position of the target nucleus! for Q58.

(ii) Impact parallel to the major axis. Figure 2 shows the
eccentricity-dependent charge-capture cross section s/Q for
V51.66. As in the case of singly charged projectiles Q51
@2#, the cross section for multiply charged ions (Q52, 4,
and 8! is much higher for the upstream geometry as com-
pared to the downstream geometry. For a more detailed
study we choose «560.96, corresponding to l57. This
creates quite elongated states that are not too nonclassical
~low l). Figure 3 shows for Q58 the cross sections for
upstream (su) and downstream (sd) geometry, respectively,
including the contributions of the various ‘‘swaps’’ to the
capture cross sections. A swap has been defined as a passage
of the electron through the midplane between projectile and
the target nucleus @7#; note, however, that for asymmetric
collisions (qÞQ as studied here!, this plane has to cut the
connection line between target and projectile nucleus at the
saddle point of the two respective Coulomb potentials @i.e, at
a distance R/(11Aq/Q) from the projectile, with R the dis-
tance of both nuclei#. In view of the discussion in case ~i!
above, the strong upstream-downstream asymmetry seen in
these data is at first glance somewhat surprising. Again, in-
spection of the electron trajectories sheds light on this point:
the slowly increasing electric field of the approaching pro-
jectile causes a distortion and precession of the Kepler el-
lipse, in general not strong enough, however, to revert the
upstream into a downstream geometry and vice versa. There-

fore, upon the approach of the projectile into the actual close
interaction the electron is still mainly fore or aft, respec-
tively, of the target nucleus, thus qualitatively preserving the
role of the initial spatial distribution of the electron; interest-
ingly, even three-swap and higher-swap processes can still
be discerned. The qualitatively different behavior of su and
sd beyond V51.5 is associated with differently rising cross
sections for ionization; in case of the downstream geometry
it sets in at considerably smaller V values as compared to the
upstream geometry. This is further clarified by the respective
impact-parameter dependencies @Figs. 4~a! and ~b!#: In the
upstream situation, charge-exchange extends out to fairly
large distances and ionization is still weak; in the down-
stream situation, the maximum charge exchange probability
is of the same order as in the upstream case; however, it is
limited to much smaller impact parameters, and ionization is
already quite strong.

To conclude, our analysis shows that for impact of mul-
tiply charged ions of intermediate velocities the role of the
initial electron momentum distribution becomes weaker for
increasing projectile charge. This is due to the strong pertur-
bation of the initial state by the approaching ion that induces
pronounced changes in the momentum distribution long be-
fore the actual close interaction occurs. In contrast, the initial
spatial orientation of the electron continues to be important
for all Q values studied here.
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A.2 Electron capture in multiply charged ion-Ryd-

berg atom collisions in an external magnetic

field
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Abstract. Using the classical trajectory Monte Carlo method, we calculated charge transfer cross

sections for 1.27–183 eV amu−1 singly and multiply charged ions (Q = 1, 2, 4 and 8) colliding

with Rydberg atoms in a magnetic field of up to 4 T. The results show a significant influence of

the magnetic field, and the velocity-dependent cross sections become increasingly featureless for

increasing projectile charge.

In recent papers [1–3] we have studied ionization and charge capture for singly charged

ion–Rydberg atom collisions in external magnetic fields; such systems are of interest for

astrophysics as well as plasma physics. In these studies, the field strength was chosen such

that the magnetic energy of the active electron is comparable to the Coulomb energy in the field

of the target nucleus; in addition, we have restricted ourselves to experimentally accessible

fields of up to a few tesla. Both requirements can be met if the target atoms are in Rydberg

states with high principal quantum numbers n. In our work, we chose n = 28 and the magnetic

quantum number m = 2; these states can easily be prepared by laser-optical pumping. Such

collision systems are at the boundary of classical and quantum mechanics. Since they are not

yet accessible to a quantum mechanical treatment, we apply the classical trajectory Monte

Carlo (CTMC) method. For ion–atom collisions, this method has been made popular by the

work of Olson and co-workers (cf, e.g., [4]), and is known to be quite useful, in particular, for

quantum mechanically complex systems (such as, for example, Rydberg atom collisions). With

the ratio of magnetic energy to target atom Coulomb energy of the order 0.1, n and m are still

good quantum numbers, but the electron angular momentum l is not. Under these conditions,

the electronic states are characterized by a new quantum number k, with its minimum value

kmin = 0 corresponding to a disc-shaped state (somewhat similar to the field-free l = m = 2

state), and the kmax = 24 state is elongated along the magnetic field (z-)axis (‘cigar shape’).

We assume that the projectile ion moves at a constant velocity parallel to the magnetic field,

and the target nucleus remains motionless; due to the spatial extension of the electron state and

the corresponding large impact parameters, this is a good approximation. The Hamiltonian

governing the electron trajectory is

H = p2/2 − 1/Er − 1/|Er − ER| + γ lz/2 + γ 2ρ2/8

† Present address: Institute of Physics, Faculty of Medicine, Rijeka University, Rijeka, Croatia.

0953-4075/99/240681+06$30.00 © 1999 IOP Publishing Ltd L681



74

L682 Letter to the Editor

Figure 1. Velocity-dependent charge exchange cross section for collisions of Q-fold ionized

projectiles with targets in the kmin initial state. Top, field-free condition (B = 0); bottom, external

magnetic field B = 4 T.

where ER = Eb+Evt ; γ = B/(2.3505×105 T); ρ2 = x2 +y2. lz is the z-component of the electron

angular momentum; B is the magnetic field strength expressed in tesla; ER is the internuclear

vector, Eb the impact parameter and Ev the ion velocity in the target frame chosen parallel to the

magnetic field.

In this letter, we extend our calculations from singly charged ion impact (Q = 1) to ion

charges Q = 2, 4 and 8 at magnetic field strengths of 0, 2 and 4 T. The collision energies

(between 1.27 and 183 eV amu−1) correspond to impact velocities vr between 0.2 and 2.4

(vr = v/ve, with ve the classical electron velocity in a circular n = 28 orbit).

The resulting velocity-dependent charge exchange cross sections for kmax and kmin states

are shown in figures 1 and 2. Two effects can be seen: (a) an external magnetic field reduces the
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Figure 2. As in figure 1, but the target is in the kmax initial state.

cross sections and (b) an increase of the projectile charge washes out the structures observed

in the Q = 1 cross sections.

B dependence

The cross section reduction in the case of an increasing magnetic field has already been

found for singly charged projectiles [2]. We may recall that the influence of the field is

twofold; it alters the initial electron state distribution (‘structure effect’) as well as the charge

exchange dynamics. The structure effect can be separated by looking at the difference

between the kmax and the kmin cross sections for B = 0. It contains the influence of the

initial state momentum distribution (i.e. the effect of the matching velocities of the projectile

and the captured electron) as well as their spatial extension. Although the structure effect
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Figure 3. Comparison of kmin and kmax cross sections for different projectile charge and magnetic

field.

appears to be somewhat reduced for increasing Q (cf the B = 0 curves in figure 3), at

B = 4 T the kmax cross section is still significantly shifted to higher vr compared to the kmin

cross section; this shift has been interpreted as a signature of the velocity matching effect

[2]. The strong z-momentum components in the cigar-shaped kmax-state facilitate capture at

higher impact velocities. The Q = 2 and 4 projectiles yield a behaviour between Q = 1

and 8.

Q dependence

Following [5], we have chosen in figures 1 and 2 σ/Qα and vr/Q
1/4 as scaling quantities; for

the kmax initial state α ≈ 1, while α ≈ 1.2 gives a somewhat better fit in the case of kmin.

Particularly pronounced deviations from the simple scaling in figures 1 and 2 show up

at vr < 1. The cross section structure at these velocities has been attributed to the so-called

‘swaps’ [2, 6, 7], i.e. the repeated passage of the electron through the projectile–target midplane.

The order of swaps characterizes how often the electron passes through the midplane before it

finally stays with the projectile. As an example, figure 4 displays the contributions of the various

swaps to the kmin-charge exchange cross section when the projectile is singly (Q = 1) or highly

charged (Q = 8); kmax behaves qualitatively similar. Compared to Q = 1 the contributions of

the various swaps spread over wider velocity increments, and the swap structure is washed out.

Evidently, for increasing Q, the strong long-range Coulomb attraction increasingly dominates
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Figure 4. Contributions of ‘swaps’ to the total charge exchange cross section (a) for kmin initial

target states: (b) one swap, (c) three swaps, (d) five swaps and (e) seven swaps.

over the influence of different target electron distributions. One may expect that this is a

general phenomenon which should also be seen in other alignment/orientation studies with

highly charged ions.
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Anti-hydrogen formation by collisions of anti-protons with positronium in a magnetic

field
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Using the classical trajectory Monte Carlo (CTMC) method, we calculated the charge transfer
cross section for antiprotons (p̄) colliding with Rydberg positronium (Ps), leading to antihydrogen
formation. The results show a significant influence of an externally applied magnetic field which
causes a reduction of the cross-section.

PACS numbers: 34.60.+z, 34.70.+e

The recent success of experiments to produce signifi-
cant numbers of cold antihydrogen atoms has opened a
new door to a test of fundamental symmetries in physics
(cf. [1–3] and references therein). An accurate spectrome-
try of photon transitions in hydrogen and its antiparticle
could resolve the question if the Rydberg constants in
both systems are identical, as required by the CPT theo-
rem. In these experiments slow antiprotons interact with
positrons stored in a “nested trap” and capture processes
yield cold antihydrogen atoms; three-particle p̄− 2e+ re-
combination as well as radiative p̄−e+ recombination are
discussed as possible causes for antihydrogen formation.
However, as an alternative route also e+ capture from
positronium,

p̄ + (e+e−) → H̄ + e− (1)

has recently received considerable attention (cf. [4, 5] and
references therein). For all these processes, a major prob-
lem in the quantitative interpretation lies in the unknown
effect of the strong (≈ 5 Tesla) magnetic field present
in the trap. Therefore, in an extension of our previous
CTMC calculations [6, 7] on p − H collisional charge
transfer and ionization in a magnetic field, we present
some preliminary results for the latter problem(Eq. 1),
namely, the effect of a strong magnetic field on p̄ − Ps

collisions. As suggested earlier [8], the positronium (Ps)
target is assumed to be in a high Rydberg state. Thus,
our study may also provide a first-step model to estimate
the influence of the external magnetic field on the p̄−2e+

system. Both situations deal with a three-body collision
involving two weakly interacting light particles, trapped
at large distances from each other about their respective
magnetic field lines.

The presence of a magnetic field in such calculations
is by no means a trivial problem since in general the
center-of-mass motion and the internal motion of the sys-
tem cannot be separated. The first rigorous treatment of
a two-body system in a magnetic field has been pub-
lished by Avron, Herbst, and Simon [9]. A new operator

∗Electronic address: lutz@physik.uni-bielefeld.de

connected with the center-of-mass motion, the so-called
pseudomomentum K, was introduced in their work. It
represents a conserved quantity for the system, making
it possible for neutral systems to perform a pseudosep-
aration of the center-of-mass motion. Later, a classi-
cal investigation of the highly excited hydrogen [10, 11]
and positronium [12, 13] atoms in a magnetic field has
been performed by P. Schmelcher, L.S. Cederbaum and
coworkers. The Coulomb potential is distorted by the
magnetic field, and above a critical value Kc of the pseu-
dopotential an additional well forms on the negative x

axis; it will be referred to as the outer well (OW). The
outer well moves away from the magnetically distorted
Coulomb potential and becomes broader and deeper with
increasing K. Particles in this OW are trapped at large
distances from each other, leading to delocalized states.
Fig. 1 shows examples of this potential for Ps, the case
of interest in this work.

As in our previous work on p − H collisions in a mag-
netic field [6, 7] we applied the classical trajectory Monte
Carlo (CTMC) method to calculate cross sections for the
reaction (1). The target Ps atoms, embedded in magnetic
fields of 4T and 5T, are in Rydberg states with bind-
ing energies corresponding to field-free principal quan-
tum numbers n = 40 and 50. Unfortunately, in contrast
to a Rydberg hydrogen atom with an “infinitely heavy”
proton nucleus, the center-of-mass of Ps in a magnetic
field is unstable. This makes a direct application of our
CTMC method to the system under study here more dif-
ficult.

First we have to create the proper initial e+e− target
states. To this end, we follow the treatment proposed by
the Heidelberg group [12–14]. The nonrelativistic Hamil-
tonian of two particles with equal masses and opposite
charges in a homogeneous static magnetic field is given
by

H =
1

2
(p1 + A1)2 +

1

2
(p2 − A2)2 −

1

| r1 − r2 |
(2)

where p1,p2 and r1, r2 are the momenta and coordinates
of the electron and positron, respectively. A1 = 1

2
B×r1,

A2 = 1

2
B×r2 are the symmetric gauge vector potentials
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FIG. 1: Top: V (x, 0, 0) for Ps in a magnetic field. a: B =
4T,K = 0.09, b: B = 5T, K = 0.12, c: B = 5T,K = 0.09,
d: B = 5T, K = 0.085, e: B = 5T,K = 0.01; Solid curve:
K < Kc, for all other curves K > Kc. x is the particle
distance perpendicular to the field direction. Bottom: One
example of particle trajectories of Ps in the external magnetic
field B = 5T, n = 50 and K = 0.09. The magnetic field points
along the z-direction.

of the two particles. All quantities are given in atomic
units. As has been discussed in [12], the Hamiltonian
of Eq. (2) is not translationally invariant and the total
momentum is not conserved. However, the pseudomo-
mentum

K = p1 + p2 −
1

2
B × r1 +

1

2
B× r2 (3)

is a conserved quantity. For the special case of Ps, an ef-
fective Hamiltonian is given in Cartesian coordinates(cf.
Eq. 6 in [13]) by

HPs =
1

2µ
p2 +

γ

4
(x2 + y2) +

γKx

2
+

K2

4
−

1

| r |
(4)

where r = r1 − r2 and p = p1 − p2 are the interparticle
distance and momentum vectors. µ is the reduced mass.
The magnetic field vector is B = (0, 0, γ), the pseudomo-
mentum vector K = (0, K, 0) is assumed to point along
the y axis, and γ = B(Tesla)/(2.35 × 105). For the field
strengths B = 4T and 5T of interest here the critical
values of the pseudomomentum can be calculated to be
0.061 and 0.066, respectively. In this work, we concen-
trate on K values around 0.1, which are above the critical

values. Thus, an outer well is formed which we approx-
imate by an anisotropic harmonic oscillator [14] and ex-
pand around the minimum. The resulting long-lived de-
localized OW states are the required initial target states.
Fig. 2 shows some internal coordinate distributions of
the Ps ensemble, having randomly distributed starting
conditions in coordinate/momentum space for different
values of field strength and pseudomomentum. At the
same magnetic field strength B, the internal distance r

of Ps increases with increasing K (cf. also Fig. 1), while
a stronger field and a higher internal binding energy (i.e.,
smaller n) compress the internal distance, in agreement
with Shertzer, Ackermann and Schmelcher’s work [13].
For comparison, a field-free situation is also shown.

For the incoming ensemble of projectile ions, we use a
standard distribution [15]. The projectile velocity v, its
impact parameter b and the initial distance z0 from the
target determine the initial condition of the projectile.
The initial distance z0 of the projectile(>∼ 5 × 104a.u.)
is such that at this distance the projectile-Ps interaction
is negligibly small compared to the electron-positron in-
teraction. We assume that the projectile moves with a
constant velocity along the z-axis, parallel to the mag-
netic field direction. The impact parameter of the pro-
jectile is chosen randomly by selecting b2 in the interval
[0, b2

max]. Note that the center-of-mass motion of the Ps
in the magnetic field depends on the target state. There-
fore, the origin of the impact parameter b = 0 is esti-
mated by calculating the meeting point of the Ps and
the projectile, taking into account the projectile velocity
and the center-of-mass motion of the Ps. The maximum
impact parameter bmax is chosen sufficiently large to en-
sure a vanishingly small capture probability outside this
b-value.

During the collision, the p̄ projectile evolves with the
approximation of a straight line trajectory under the full
three-body Hamiltonian,

H =
1

2
(p1 + A1)

2 +
1

2
(p2 − A2)

2 −
1

| r1 − r2 |

+
1

| r1 − r3 |
−

1

| r2 − r3 |
, (5)

where r3 is the coordinate of the projectile. For a given
set of initial positions, the integration of Hamilton’s
equations of motion is performed according to Eq. (5)
by a standard Runge-Kutta method.

After the collision, the projectile proceeds to an asymp-
totic distance (zf = 2 × 105a.u.), sufficiently large to al-
low a clear energetic separation of the three particles into
two-particle pairs. The resulting two-body e+ − e− and
e+ − p̄ energies classify the outcome of the collision: ex-
citation or ionization of the target Ps, or capture by the
projectile ion. The required two-body Hamiltonians for
the electron-positron and the positron-antiproton pair,
He+

−e− and He+
−p̄, are respectively defined by:

He+
−e− =

1

2
(p1 +A1)2 +

1

2
(p2−A2)2−

1

| r1 − r2 |
(6)
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He+
−p̄ =

1

2
(p2−v)2−

1

|r2 − r3|
+

1

2
γlz+

1

8
γ2(x2

2+y2
2) (7)

where lz is the z-component of the e+ angular momen-
tum [6]. With Eqs. (6,7), the ionization thresholds of
Ps as well as of H̄ in the presence of a magnetic field
are zero. Therefore, if He+

−e− is constant and less than
zero, the positron remains bound to the e−. If He+

−p̄ is
constant and less than zero, the positron is captured by
the projectile. All other situations lead to ionization.

We now calculate the charge exchange cross-section
for initial Ry states n = 40 and 50 of the target Ps
for magnetic field strengths of 4T and 5T. The relative
impact projectile velocities vr are between 0.5 and 2.8
(vr = v/ve, with ve the classical electron velocity in a
circular Ps Bohr orbit). They correspond to collision en-
ergies between 0.62 and 19.6eV (n = 50) and between
0.98 and 30.6eV (n = 40).

The results of the charge exchange cross section are
displayed in Fig. 3. To further illuminate the influence of

the magnetic field, two free-field cases are also included,
namely, having angular momenta l = n − 1 = m and
l = n−1, m = 0 (i.e., for circular Ry motion in planes per-
pendicular and parallel to the z direction, respectively)
[16]. The influence of the magnetic field is quite substan-
tial: it results in a cross section reduction of a magnitude
similar to the one found for p−H collisions [6], the reduc-
tion being larger for increasing B. In addition, a smaller
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FIG. 3: Velocity-dependent charge exchange cross section
for collisions of p̄ projectiles with Ps targets in the exter-
nal magnetic fields B = 4T, 5T for n = 40, 50 and K =
0.085, 0.09, 0.12 initial states, respectively. For comparison,
the field-free n = 50, l = n − 1 = m and l = n − 1, m = 0
initial states are also included. The curves are drawn to guide
the eye. Statistical uncertainty 5%.

Ps binding energy (increasing n) and a larger geometrical
extension of the target Ps atom (increasing K) yields a
larger capture cross section. Due to the irregular motion
of the Ps (cf. Fig. 1, bottom) the velocity matching ef-
fect is not expected to play an important role. Thomas
capture [17, 18], that happens in the collision plane in
the field-free case [19], is foiled due to the magnetic field.

The observed behavior may be of interest for future
experiments of the type p̄− e+e− or p̄− 2e+. Evidently,
the magnetic field reduces the cross section, but this re-
duction remains within reasonable limits. Further explo-
rations in the parameter space of cross section changes
with K and binding energy would be worthwhile.
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and E. A. Hessels, Phys.Rev. Lett 89 21, 213401 (2002);

[2] G. Gabrielse, N. S. Bowden, P. Oxley, A. Speck, C. H.
Storry, J. N. Tan, M. Wessels, D. Grzonka, W. Oelert, G.
Schepers, T. Sefzick, J. Walz, H. Pittner, T. W. Hänsch,
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