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Chapter 1

Introduction

Much progress has been made over the last three decades in understanding high

energy evolution in quantum chromodynamics (QCD) in the vicinity of the unitarity

limit. The first major step towards a description of high energy evolution in QCD is

the Balitsky-Fadin-Kuraev-Lipatov (BFKL) [1] equation which was proposed in the

leading logarithmic approximation in the mid seventies. The BFKL equation is a

linear evolution equation, therefore the solution to the BFKL equation gives a power

like energy dependence for the total cross section (σtot ∼ sδ). The power like energy

dependence is a shortcoming of the BFKL equation, as it causes the total cross section

to violate the unitarity bound at very high energy [2].

A crucial progress in the description of high energy evolution in QCD is the color

dipole picture which was proposed by Al Mueller in the mid nineties [3, 4]. The dipole

model provides an elegant construction of the BFKL wave function of an energetic

hadron in the large Nc limit, where gluons are replaced by quark-antiquark pairs

and gluon radiation is replaced by dipole splitting. In the dipole model the BFKL

evolution becomes much simpler.

Based on Mueller’s dipole model, Kovchegov derived an equation to deal with

deep inelastic scattering (DIS) of a virtual photon on a large nucleus at or near

the unitarity limit, which includes all multiple Pomeron exchanges in the leading

logarithmic approximation [5]. In the conventional Feynman diagram language the

Kovchegov equation resums the so-called “fan” diagrams in the leading logarithmic

approximation. In addition to the linear BFKL term, the Kovchegov equation has a

non-linear term which comes from the resummation of multiple Pomeron exchanges,

thus making the solution to the Kovchegov equation saturate the unitarity limit.
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Moreover, the Kovchegov equation can be reduced to the linear BFKL evolution

equation in the weak scattering regime in which the non-linear effect is not important

and can be neglected.

Further progress has been made at the end of nineties and the beginning of 21st

century in small x physics. An alternative description of the evolution equation was

provided by the Jalilian-Marian, Iancu, McLerran, Werget, Leonidov and Kovner

(JIMWLK) formalism [6], in which the evolution is achieved by boosting the tar-

get, and the non-linear effects correspond to the saturation effects in the target wave

function. The JIMWLK equation describes the evolution of the probability to find a

given configuration of color fields in the wave function of the target with increasing

rapidity. It is equivalent to the Balitsky hierarchy of equations [7], where the evo-

lution is implemented by boosting the projectile. In the mean field approximation,

the Balitsky equations reduce to the Kovchegov equation, and usually we call this

mean field equation as Balitsky-Kovchegov (BK) equation [7, 5]. One of the main

results following from the BK equation is the geometric scaling behavior of T ma-

trix, T (r, x) = T (r2Q2
s(x)) , namely the scattering amplitude is a function of a single

variable, r2Q2
s(x), instead of depending on r and x separately.

Over the last five years, there has been a tremendous theoretical progress in un-

derstanding the high energy QCD evolution beyond the mean field approximation,

i.e. beyond the BK equation. Salam has shown that the particle number fluctuations

are important in the evolution of wave function of a hadron from dilute regime to

a high density regime [8]. And also the authors of Ref. [9] found that the fluctu-

ations slow down the scattering amplitude near the unitarity limit as compared to

the solution to the Balitsky-Kovchgov equation [7, 5]. The groundbreaking work be-

yond the mean field approximation, from the systematic theory point of view, has

been established in [10] by extending the Kovchegov equation by taking into account

the discreteness of gluon numbers. It has been found that the discreteness of gluon

numbers brings in a large correction for the rapidity dependence of the saturation

momentum and makes the scattering amplitude violate the geometric scaling. This

work has triggered further developments in small x physics. Later on a relation

between high energy QCD evolution and reaction diffusion processes in statistical

physics has been set up [11], which shows that the results obtained in [10] are sim-

ilar to those emerging in the reaction diffusion processes in statistical physics. The

outcomes in [11] clarify even further that the discreteness of gluon numbers and the
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gluon number fluctuations are very important in the low parton density regime and,

are the new elements in the course of the evolution.

Soon after the first breakthroughs in understanding the high energy QCD evolu-

tion beyond the mean field approximation, it was realized in Refs.[12, 13, 14] that

both the BK and the JIMWLK equations do not properly describe the evolution of a

wave function of a hadron in the low parton density regime where the fluctuations in

gluon numbers become important, as they include only the Pomeron splittings (BK)

and Pomeron mergings (JIMWLK) but not Pomeron mergings (BK) and Pomeron

splittings (JIMWLK) respectively (depending upon the perspective from which one

views the evolution), therefore they miss the Pomeron loops in the course of the evo-

lution. The Kovchegov or JIMWLK equations have been extended by Pomeron loops

and new equations have emerged, the so-called Pomeron loop equations [12, 13, 14].

One of the main hallmarks of the Pomeron loop equations is the so-called diffusive

scaling behavior of the scattering amplitude T , namely T is a function of a single

variable ln(1/r2Q2
s(x))/

√
DY , where D is the diffusion coefficient.

During the last two years, another source of large corrections to the BK equation

has been studied, the next to leading order corrections (running coupling effects).

This study was triggered by the reason that the BK equation may not give the

correct quantitative description of the data since it corresponds to a leading order

approximation. The evolution equations which include running coupling effects have

been derived by Balitsky and Kovchegov-Weigert in [15, 16]. They found that the

running coupling corrections are included in the BK kernel by replacing the fixed

coupling αs in it with a “triumvirate” of the running couplings. A numerical study of

the running coupling evolution was carried out in [17], which shows that the running

coupling effects lead to a considerable increase in the anomalous dimension and slow

down of the evolution with rapidity.

My work is motivated by the recent progress in the high energy QCD evolution

beyond the mean field approximation, i.e. beyond the BK equation. We have stud-

ied the consequences of gluon number fluctuations on different observables, like the

inclusive and diffractive cross section in DIS [18]. Further we have studied how the

Froissart bound emerges once the gluon number fluctuations are included which are

important at very high energies.

It has been shown that the description of both inclusive and diffractive DIS data

is improved once gluon number fluctuations are included. By fitting the HERA data,
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including the gluon number fluctuations, we have obtained the values of the saturation

exponent and the diffusion coefficient, which turn out to be reasonable and agree

with values obtained from numerical simulations of toy models which also take into

account fluctuations. These outcomes seem to indicate the evidence of geometric

scaling violations and a possible implication of the gluon number fluctuations in the

DIS data.

In order to make sure that the description of the HERA data is really improvement

once the gluon number fluctuations are included, we have used the already known

parameters from fitting the inclusive DIS data to compute the χ2 in the diffractive DIS

case. We have obtained the χ2 = 1.031 after including the gluon number fluctuations

and the χ2 = 1.282 before including the gluon number fluctuations, which obviously

illustrates the better description of the HERA data after including fluctuations.

The gluon number fluctuations are important at very high energies, therefore we

have calculated the Froissart bound including the gluon number fluctuations. We see

a clear effect of the fluctuations in the energy dependence of the black disk radius.

We have also calculated the value of the slope parameter B and compared it with the

experimental data to check whether the gluon number fluctuations are present in the

HERA data. The result shows a quite good agreement with the experimental data.

Another area of my research was the study of evolution equation including the

running of the coupling [19]. We have analytically solved the running coupling Bal-

itsky and Kovchegov-Weigert evolution equations in the saturation regime. We have

found that these equations are exactly the same in the saturation regime, which is an

interesting result and means that the evolution equations with running coupling cor-

rections are independent of the choice of the transverse coordinate of the subtraction

point in the saturation regime. And we also have found that the analytic form for

the S matrix at high energy including the running coupling corrections is different as

compared to the fixed coupling case: The running coupling slows down the evolution

of the scattering amplitude with rapidity. The effect of the rare fluctuations on top

of the running coupling is computed in Chapter 5, showing that rare fluctuations are

less important in the running coupling case as compared to the fixed coupling case.

This thesis is organized as follows: In Chapter 2 we introduce the evolution equa-

tions. The phenomenological consequences of gluon number fluctuations are studied

in Chapter 3. In Chapter 4, we study how the Froissart bound emerges once gluon

number fluctuations are taken into account. Finally in Chapter 5, we study the
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high energy scattering in the saturation regime including running coupling and rare

fluctuation effects.





Chapter 2

Small x physics

2.1 Mean field approximation

The evolution equation obtained in the mean field approximation is the BK equation.

The BK equation [7, 5] gives the evolution with rapidity Y = ln(1/x) of the scattering

amplitude S(x⊥, y⊥, Y ) of a qq̄ dipole with a target which may be another dipole, a

hadron or a nucleus. The BK equation is a simple equation to deal with the onset of

unitarity and to study parton saturation phenomena at high energies. The analytic

solution to the fixed coupling BK equation for the S-matrix deep in the saturation

regime has been derived by Levin and Tuchin [20]. This solution agrees with the one

derived by solving the BK equation in the small S limit [21]. In this section we will

give a simple derivation of the BK equation and its solution in the saturation regime.

2.1.1 The BK equation

In the high-energy scattering of a quark-antiquark dipole on a target, it is convenient

to view the scattering process in a frame where the dipole is moving along the negative

z-axis and the target is moving along the positive z-axis. Further we assume that

almost all of the rapidity of the scattering, Y , is taken by the target. We denote the

scattering amplitude of a dipole, consisting of a quark at transverse coordinate x⊥ and

an antiquark at transverse coordinate y⊥, scattering on a target by S(x⊥, y⊥, Y ). Now

suppose we increase Y by a small amount dY . We wish to know how S(x⊥, y⊥, Y )

changes with the small amount dY . If the rapidity of the dipole is increased while

that of the target is kept fixed, then the dipole has a probability to emit a gluon

due to the change dY . We now calculate the probability for producing this quark-

11



12 Small x physics

antiquark-gluon state. In the large Nc limit the quark-antiquark-gluon state can be

viewed as a system of two dipoles – one of the dipoles consists of the initial quark and

the antiquark part of the gluon while the other dipole is given by the quark part of the

gluon and the initial antiquark. Using the dipole model the probability for producing

the quark-antiquark-gluon state from the initial quark-antiquark state is [23, 10]

dP =
αNc

2π2
d2z⊥dY

(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2
, (1)

where z⊥ is the transverse coordinate of the emitted gluon. The change in the S-

Y∂
S∂

x

y

=

x

z

y

-

x

z

y

-

x

z

y

Figure 2.1: Diagrams corresponding to terms in the evolution equation (2).

matrix, dS, for a dipole-hadron scattering is given by multiplying the probability dP

with the S-matrix

∂

∂Y
S(x⊥ − y⊥, Y ) =

αNc

2π2

∫

d2z⊥
(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

×
[

S(2)(x⊥ − z⊥, z⊥ − y⊥, Y ) − S(x⊥ − y⊥, Y )
]

, (2)

where S(2)(x⊥ − z⊥, z⊥ − y⊥, Y ) stands for a simultaneous scattering of the two pro-

duced dipoles on the target (see the first diagram on r.h.s of Fig. 2.1). The last term

in (2) describes the scattering of a single dipole on the target because the gluon is

not in the wave function of the dipole at the time of the scattering (see the last two

diagrams in Fig. 2.1).

It is hard to directly use Eq. (2) to study problems of parton evolution and parton

saturation phenomena at high density and high energy QCD, since S(2) is not known.

Using the mean field approximation for the gluonic fields in the target

S(2)(x⊥ − z⊥, z⊥ − y⊥, Y ) = S(x⊥ − z⊥, Y )S(z⊥ − y⊥, Y ) , (3)
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one gets the Kovchegov equation [5]

∂

∂Y
S(x⊥ − y⊥, Y ) =

αNc

2π2

∫

d2z⊥
(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

× [S(x⊥ − z⊥, Y )S(z⊥ − y⊥, Y ) − S(x⊥ − y⊥, Y )] . (4)

With T (x⊥ − y⊥, Y ) = 1 − S(x⊥ − y⊥, Y ), another useful version of the Kovchegov

equation is obtained

∂

∂Y
T (x⊥ − y⊥, Y ) =

αNc

2π2

∫

d2z⊥
(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2
[T (x⊥ − z⊥, Y )

+ T (z⊥ − y⊥, Y ) − T (x⊥ − y⊥, Y )

− T (x⊥ − z⊥, Y )T (z⊥ − y⊥, Y )] . (5)

Eq. (5) has the following probabilistic interpretation: when evolved in rapidity, the

initial quark-antiquark dipole of size x⊥ − y⊥ decays into two dipoles of size x⊥ − z⊥

and z⊥ − y⊥ with the decay probability (αNc/2π
2)(x⊥ − y⊥)2/((x⊥ − z⊥)2(z⊥ − y⊥)2)

which is usually called as BFKL kernel. These two dipoles then interact with the

target. The non-linear term takes into account a simultaneous interaction of two

produced dipoles with the target. On the right-hand side of Eq. (5), the first three

terms (the third one is virtual) describe the scattering of single dipole with the target,

the non-linear term prevents the amplitude from growing boundlessly with rapidity

and ensures the unitarity of the scattering amplitude. For a small dipole, x⊥ −
y⊥ ≪ 1/QS(Y ), TY (x⊥ − y⊥) is small as well, TY (x⊥ − y⊥) ≪ 1, the non-linear term

T (x⊥−z⊥, Y )T (z⊥−y⊥, Y ) can be dropped, and the linear equation remaining is the

dipole version [23] of the BFKL equation [1].

2.1.2 Solution to the BK equation in the saturation regime

In the high-energy regime where unitarity corrections become important or S(x⊥ −
y⊥, Y ) is small, Eq. (4) is easier to use since the quadratic term S(x⊥− z⊥, Y )S(z⊥−
y⊥, Y ) can be neglected, in which case one only needs to keep the second term on the

r.h.s of (4), giving

∂

∂Y
S(x⊥ − y⊥, Y ) = −αNc

2π2

∫

d2z⊥
(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2
S(x⊥ − y⊥, Y ) . (6)

In the above equation, we have assumed that S is small which holds only when the

dipole size is large compared to 1/Qs. Therefore the lower bound of integration in
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T(r,Y)

1

Y1 Y2 Y3 Y4

ρ = ln r2
0/r

2

Figure 2.2: The “traveling wave” behavior of the solution to the BK-equation.[Figure

taken from [22].]

(6) should be restricted to the regimes (x⊥ − y⊥)2 ≫ 1/Q2
s and (x⊥ − z⊥)2 ≫ 1/Q2

s,

(z⊥ − y⊥)2 ≫ 1/Q2
s. In the logarithmic regime of integration one gets

∂

∂Y
S(x⊥ − y⊥, Y ) = −2

αNc

2π2
π

∫ (x⊥−y⊥)2

1/Q2
S

d(z⊥ − y⊥)2 1

(z⊥ − y⊥)2
S(x⊥ − y⊥, Y ) . (7)

Note that the factor 2 in the above equation comes from the symmetry of the two

regions dominating the integral, either from 1/Qs ≪ |x⊥−z⊥| ≪ |x⊥−y⊥|, |y⊥−z⊥| ∼
|x⊥ − y⊥| or 1/Qs ≪ |y⊥ − z⊥| ≪ |x⊥ − y⊥|, |x⊥ − z⊥| ∼ |x⊥ − y⊥|. Now it is easy to

get the solution to Eq. (7)

S(x⊥ − y⊥, Y ) = exp

[

−c
2

(

αNc

π

)2

(Y − Y0)
2

]

S(x⊥ − y⊥, Y0), (8)

where we have used [10, 24, 18]

Q2
s(Y ) = exp

[

c
αNc

π
(Y − Y0)

]

Q2
s(Y0) (9)

and

Q2
s(Y0)(x⊥ − y⊥)2 = 1. (10)

Eq. (8) gives the standard result given in the literature [21].

One of the hallmarks of the BK-equation is the geometric scaling behavior of the

T matrix in a large kinematical window [25, 24, 26]

T (r⊥, Y ) = T (r2
⊥Q

2
s(Y )) , (11)

with the saturation scale Qs(Y ) which is defined as T (r ≃ 1/Qs, Y ) to be a constant

of order 1. Eq. (11) shows that T is a function of a single variable r2
⊥Q

2
s(Y ) instead



2.2 Beyond the mean field approximation 15

of depending on r⊥ and Y separately. This behavior indicates a similar geometric

scaling for the DIS cross section, σγ∗p(Y,Q2) = σγ∗p(Q2/Q2
s(Y )), which is supported

by the HERA data [27].

Another hallmark extracted from the BK-equation is the dependence of the satu-

ration momentum on rapidity [24, 26],

Q2
s(Y ) = Q2

0 exp

[

2αsNc

π

χ(λ0)

1 − λ0

Y

]

, (12)

with λ0 = 0.372, and χ(λ) is the BFKL kernel.

The shape of the solution to the BK-equation, T , is preserved in the transition

regime from strong (T of order 1) to weak (T of order α2
s) scattering with increasing Y ,

“traveling wave” behavior as shown in Fig.2.2. As rapidity increases, the saturation

region at r ≫ 1/Qs(Y ) widens up, more and more smaller dipoles are included, due

to the growth of the saturation scale. However, we will see in the next sections that

the gluon number fluctuations change the situation a lot.

2.2 Beyond the mean field approximation

2.2.1 Beyond the BK equation

The Balitsky-Kovchegov equation [7, 5] resums, in the leading logarithmic approxi-

mation, all diagrams which include the effects of multiple BFKL Pomeron exchanges,

with Pomeron ladders together with Pomeron splitting vertices being included in the

dipole wave function. In the traditional Feynman diagram language, the BK equa-

tion resums the so-called “fan” diagrams in the leading logarithmic approximation,

see Fig. 2.3. However, another kind of diagrams, the Pomeron loop diagrams (see

Fig. 2.4), are not included in the Kovchegov equation, since the BK equation only

takes into account the Pomeron splittings but misses the Pomeron mergings. There-

fore, the BK equation misses the Pomeron loops. It was shown that the Pomeron loop

effects play an important role in the evolution of the scattering amplitude towards

the unitarity limit [10, 11, 12, 13]. We will discuss these effects in the next pages.

When one takes into account the Pomeron loop effects in the high energy QCD
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*γ *γ

1x

0x

Nucleon Nucleon Nucleon Nucleon

Figure 2.3: Diagram which is included multiple pomeron exchanges [5].

evolution, the Pomeron loop equations can be written as [14]

∂〈T (x⊥, y⊥)〉Y
∂Y

=
ᾱs

2π

∫

d2z⊥{Mx⊥y⊥z⊥ ⊗ 〈T (x⊥, y⊥)〉Y

−M(x⊥, y⊥, z⊥) × 〈T (2)(x⊥, z⊥; z⊥, y)〉Y }
∂〈T (2)(x⊥1, y⊥1; x⊥2, y⊥2)〉Y

∂Y
=

ᾱs

2π

∫

d2z⊥ {[Mx⊥1,y⊥1,z⊥

⊗ 〈T (2)(x⊥1, y⊥1; x⊥2, y⊥2)〉Y
− M(x⊥1, y⊥1, z⊥)

× 〈T (3)(x⊥1, z⊥; z⊥, y⊥1; x⊥2, y⊥2)〉Y
]

+ [1 ↔ 2]} +
∂〈T (2)(x⊥1, y⊥1; x⊥2, y⊥2)〉Y

∂Y

∣

∣

∣

∣

fluct

...

(13)
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*γ *γ

1x

0x

Nucleus

Figure 2.4: A Pomeron loop diagram [5].

with

∂〈T (2)(x⊥1, y⊥1; x⊥2, y⊥2)〉Y
∂Y

∣

∣

∣

∣

fluct

=
(αs

2π

)2 ᾱs

2π

∫

d2u⊥d
2υ⊥d

2z⊥M(u⊥, υ⊥, z⊥)

×Add(x⊥1, y⊥1|u⊥, z⊥)Add(x⊥2, y⊥2|z⊥, υ⊥)

×∇2
u⊥
∇2

υ⊥
〈T (u⊥, υ⊥)〉Y (14)

where the dipole kernel is

M(x⊥, y⊥, z⊥) =
(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2
(15)

and

Mx⊥,y⊥,z⊥ ⊗ f(x⊥, y⊥) ≡ M(x⊥, y⊥, z⊥) [−f(x⊥, y⊥) + f(x⊥, z⊥) + f(z⊥, y⊥)] , (16)

and Add is the amplitude for dipole-dipole scattering and for large Nc

Add(x⊥, y⊥|u⊥, υ⊥) =
α2

s

8

[

ln
(x⊥ − υ⊥)2(y⊥ − u⊥)2

(x⊥ − u⊥)2(y⊥ − υ⊥)2

]2

. (17)

Here x⊥, y⊥, z⊥, u⊥ and υ⊥ are the transverse coordinates of the dipoles.
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The complete evolution equation Eq. (13) for the scattering amplitude deserves

comments:

• In the mean field approximation, 〈TT 〉 = 〈T 〉〈T 〉, the first equation in (13)

reduces to the BK equation which describes the evolution of the scattering

amplitude of a single dipole off a target, see Fig. 2.5. Note that the last diagram

in Fig. 2.5 expresses the two dipoles simultaneously scattering off the target. In

the mean field approximation, the scattering of the two dipoles on the target is

independent, namely the correlation between the two dipoles are neglected.

• Beyond the mean field approximation, the correlations between dipoles scatter-

ing off the target are taken into account. The evolution equations in Eq. (13)

include Pomeron splittings, Pomeron mergings, and therefore in the course of

the evolution, also Pomeron loops. As an example 1, the evolution equation

for 〈T (2)〉Y in Eq. (13) is represented by the linear term 〈T (2)〉 (see the corre-

sponding Feynman diagram Fig. 2.6(b)), the non-linear term which is exhibited

in Fig. 2.6(c), and the term which is proportional to α2
s〈T 〉 (see Fig. 2.7). The

first two terms are already present in the corresponding Balitsky-JIMWLK hier-

archy equations. The last one is a new term which takes into account the effect

of fluctuations and is missed in the BK equation. It is very important in the low

parton density region, since in this region (T ∼ α2
s) the Pomeron merging term

is of the same order as the BFKL terms, O(α4
s), while the Pomeron splitting

terms are suppressed by a factor O(α2
s).

• The last comment is on the validity regime of the Pomeron merging terms,

see Fig. 2.7. The Pomeron merging terms are assumed to be important only

in the low parton density region. In the region close to the unitarity limit,

T ∼ 1, we do not expect that the Pomeron mergings can properly describe the

physics in this region, since their derivation is based on the two gluon exchange

approximation in the Mueller’s color dipole model [22].

I would like to note that the Pomeron loop equations can equivalently be written

1The other evolution equations for 〈T (N)〉Y (N > 2) in Eq. (13) are similar as 〈T (2)〉Y .
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(a) (b) (c) (d)

Figure 2.5: A single dipole scattering with a target from the perspective of projectile

evolution.

(a) (b) (c)

Figure 2.6: A dipole pair scattering with a target from the perspective of projectile

evolution.

as a single stochastic equation of Langevin type [14],

∂TY (x⊥, y⊥)

∂Y
=

ᾱs

2π

∫

d2z⊥ [Mx⊥,y⊥,z⊥ ⊗ TY (x⊥, y⊥) −M(x⊥, y⊥, z⊥)TY (x⊥, z⊥)

× TY (z⊥, y⊥)] +
∂TY (x⊥, y⊥)

∂Y

∣

∣

∣

∣

fluct

(18)

with the noise term

∂TY (x⊥, y⊥)

∂Y

∣

∣

∣

∣

fluct

=
αs

2π

√

ᾱs

2π

∫

d2u⊥d
2υ⊥d

2z⊥Add(x⊥, y⊥|u⊥, z⊥)
|u⊥ − υ⊥|
(u⊥ − z⊥)2

×
√

∇2
u⊥
∇2

υ⊥
TY (u⊥, υ⊥)ν(u⊥, υ⊥, z⊥, Y ), (19)



20 Small x physics

Figure 2.7: The missing diagram of both Balitsky-JIMWLK and Kovchegov equa-

tions.

where the noise satisfies

〈ν(u⊥1, υ⊥1, z⊥1, Y )ν(u⊥2, υ⊥2, z⊥2, Y
′)〉 = δ(2)(u⊥1 − υ⊥2)δ

(2)(υ⊥1 − u⊥2)

×δ(2)(z⊥1 − z⊥2)δ(Y − Y ′). (20)

The noise term clarifies that the Pomeron loop equations take into account gluon

number fluctuations.

2.2.2 Statistical physics - high density QCD correspondence

Consider the scattering of a dipole of variable size r (the projectile) off a dipole of

size r1 (the target). We go to the rest frame of the probe so that the target carries

all the available rapidity Y . We denote T (r1, r, Y ) as the scattering amplitude of the

probe off a given partonic realization |ω〉 of the target. It is a random variable, whose

probability distribution is related to the stochastic ensemble of dipole configurations

endowed with a probability distribution which evolves with Y according to a master

equation [12]. Thus, the high energy evolution can be viewed as a process which

is inspired by dynamics of a reaction-diffusion process in statistical physics. The

physical dipole-dipole scattering amplitude T̄ (r1, r, Y ) is the statistical average over

all possible dipole realization of the target at rapidity Y ,

T̄ = 〈T ((ρ− ρs(Y ))〉 =

∫

dρs T (ρ− ρs(Y )) P (ρs(Y ) − 〈ρs(Y )〉) , (21)
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T(r,Y)

1

Y1 Y2 Y3 Y4

ρ = ln r2
0/r

2

T(r,Y)

1

Y1 Y2

ρ = ln r2
0/r

2

Figure 2.8: Left-hand side: The “traveling wave” behavior of the scattering amplitude

at four different rapidities. Right-hand side: The thin lines represent T -matrix at two

different rapidities for different realizations. The thick lines denote the average over

the realization, 〈T 〉, at the two rapidities, respectively. The shape of 〈T 〉 becomes

flatter as rapidity increases.[Figures taken from [22].]

where the distribution of ρs(Y ) is, to a very good approximation, a Gaussian [28]:

P (ρs) ≃
1√
πσ2

exp

[

−(ρs − 〈ρs〉)2

σ2

]

. (22)

and ρ = ln(r2
0Q

2), ρs = ln(r2
0Q

2
s).

An illustration is shown in Fig.2.8, the left-hand side plot is the traveling wave

behavior of the solution to the BK equation at different rapidities, and the right-hand

side plot is the averaged amplitude at two different rapidities after including gluon

number fluctuation effects.

The gluon number fluctuations in the dilute regime result in fluctuations of the

saturation scale from event to event, with the variance σ of the saturation scale

σ2 = 〈ρ2
s〉 − 〈ρs〉2 ∝

αsY

(∆ρ)3
(23)

from numerical simulations of statistical models. ρs = ln(r2
0Q

2
s(Y )) is the position of

the front. To calculate the physical amplitude, we average the event-by-event scat-

tering amplitude over all possible gluon number realizations [12, 18]. The operation

leads to a replacement of the geometric scaling resulting from the BK equation by a

new scaling, the diffusive scaling, namely, 〈T (r, Y )〉 is a function of a single variable

〈T (r, Y )〉 = f

(

ln(r2Q2
s(Y ))

√

αsY/(∆ρ)3

)

. (24)

The result in Eq.(24) changes the shape of the scattering amplitude with increasing

rapidity, which is illustrated in Fig. 2.8 (right-hand side) by the decreasing slope of
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the thick line with growing rapidity, in contrast to the solution to the BK-equation

in Eq.(11).

Let us consider the scattering amplitude of a dipole scattering off a highly evolved

hadron in the geometric and diffusive scaling region. To explain the relevant physics

in these two regions, let us look at the phase diagram of the hadron in the high

energy limit shown in Fig. 2.9, in which the coordinate Y = ln(1/x) is the rapidity of

the hadron, ρ is the logarithm of the transverse momentum of the gluons inside the

hadron, and 〈ρs〉 is the averaged saturation line. To the left of the saturation line,

ρ < 〈ρs〉, is the saturation region with large size gluons at high density, of order 1/αs,

or T ∼ 1, in which the non-linear effect becomes important. For ρ≫ 〈ρs〉, the gluon

density is low, in which neither saturation nor fluctuation effects are important, the

scattering amplitude shows color transparency. There are two different regions within

the transition region (see shadowing region in Fig. 2.9) which are separated by the

rapidity scale YDS, the geometric scaling regime and diffusive scaling regime, where

the dynamics of the QCD evolution is different. For Y ≪ YDS, the dispersion is small

σ2 ≪ 1, the effects of fluctuations can be neglected and the evolution of the hadron

is described to a good approximation by the BK equation. While for Y ≫ YDS,

where σ2 ≫ 1, the fluctuations become important and the geometric scaling regime

is replaced by the diffusive scaling.

diffusive

scaling

region

geometric

scaling

region

)2
0rQCD

2Λln( ρ

DSY

saturation

region

Y

low density region

Figure 2.9: The phase diagram of the wave function of a highly evolved hadron [22].
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2.3 Running coupling corrections

The BK equation only considers the resummation of leading logarithmic (LL) αs ln(1/xBj)

corrections with a fixed coupling constant αs. The running coupling corrections due

to fermion (quark) bubble diagrams, which would bring in a factor of αsNf , modify

the evolution equation, which is not leading logarithms anymore. Once including

αsNf corrections, the obtained contributions have to be divided into two parts, the

running coupling part and the “subtraction” part. The first part has a form as the

leading order BK kernel but with the running coupling replacing the fixed coupling

and the second part brings in new structures into the evolution equation.

A

x

y

z

B

x

y

 1
z

 2
z

α

α1-

Figure 2.10: The higher order diagrams contribution to BK evolution.

The evolution equation including higher order corrections reads [17]

∂S(x⊥ − y⊥, Y )

∂Y
= R[S] − S[S] . (25)

The first term in r.h.s of (25), R, which is referred to as the ’running coupling’

contribution resums all power of αsNf corrections to the evolution. The R has a

form as the leading order one but with modified kernel which includes all effects of

the running coupling

R [S(x⊥ − y⊥, Y )] =

∫

d2z⊥ K̃(x⊥, y⊥, z⊥) [S(x⊥ − z⊥, Y )S(z⊥ − y⊥, Y )

− S(x⊥ − y⊥, Y )] . (26)

The BK kernel is modified because the propagator of the emitted gluon in the original

parent dipole is now dressed with quark loops in contrast to leading order or fixed

coupling one. This modifies the emission probability of the gluon but doesn’t change

the leading order interaction terms (see Fig. 2.10A).
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Using T (x⊥ − y⊥, Y ) = 1 − S(x⊥ − y⊥, Y ), another useful version of (26) is:

R [T (x⊥ − y⊥, Y )] =

∫

d2z⊥ K̃(x⊥, y⊥, z⊥) [T (x⊥ − z⊥, Y ) + T (z⊥ − y⊥, Y )

− T (x⊥ − y⊥, Y ) − T (x⊥ − z⊥, Y )T (z⊥ − y⊥, Y )] (27)

with the modified kernel K̃(x⊥, y⊥, z⊥) which has two kinds of expressions since two

different separation schemes of running coupling and subtraction have been used

in [15, 16](see [17] for more discussions on separation schemes). Balitsky took the

transverse coordinate of either the quark at z⊥1 or the antiquark at z⊥2 to be the

subtraction point. He got the kernel of the running coupling contribution as [15]

K̃Bal(r, r1, r2) =
Nc αs(r

2)

2π2

[

r2

r2
1 r

2
2

+
1

r2
1

(

αs(r
2
1)

αs(r2
2)

− 1

)

+
1

r2
2

(

αs(r
2
2)

αs(r2
1)

− 1

)]

. (28)

Here we introduce the notation r = x⊥−y⊥, r1 = x⊥−z⊥ and r2 = z⊥−y⊥ for the sizes

of parent and of the new daughter dipoles produced by the evolution. On the other

hand, in the subtraction scheme proposed by Kovchegov-Weigert the subtraction

point is fixed at the transverse coordinate of the gluon at z⊥ = ηz⊥1 + (1 − η)z⊥2

in which η is the longitudinal momentum fraction of the gluon carried by the quark.

They got the modified kernel of the running coupling contribution [16]:

K̃KW(r, r1, r2) =
Nc

2π2

[

αs(r
2
1)

1

r2
1

− 2
αs(r

2
1)αs(r

2
2)

αs(R2)

r1 · r2

r2
1 r

2
2

+ αs(r
2
2)

1

r2
2

]

(29)

with

R2(r, r1, r2) = r1 r2

(

r2
r1

)

r2
1+r2

2
r2
1
−r2

2
−2

r2
1 r2

2
r1·r2

1

r2
1
−r2

2
. (30)

The second term in r.h.s of (25), S, which is referred to as the ’subtraction’

contribution, is given by

S[S] = α2
µ

∫

d2z⊥1 d
2z⊥2 K g1 (x⊥, y⊥; z⊥1, z⊥2) [S(x⊥ − w⊥, Y )S(w⊥ − y⊥, Y )

− S(x⊥ − z⊥1, Y )S(z⊥2 − y⊥, Y )] (31)

with αµ the bare coupling. The interaction structures are modified in the above

equation since the quark-antiquark pair is added to the evolved wave function (see

Fig. 2.10B). The K g1 (x⊥m, x⊥n; z⊥1, z⊥2) is a resummed JIMWLK kernel which can

be found in [17]

K g1 (x⊥, y⊥; z⊥1, z⊥2) = CF

1
∑

m,n=0

(−1)m+n K g1 (x⊥m, x⊥n; z⊥1, z⊥2). (32)
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In terms of Balitsky’s subtraction scheme, one substitutes w⊥ = z⊥1 or w⊥ = z⊥2

in Eq. (31) and gets the subtraction term

SBal[S] = α2
µ

∫

d2z⊥1 d
2z⊥2K g1 (x⊥, y⊥; z⊥1, z⊥2) [S(x⊥ − z⊥1, Y )S(z⊥1 − y⊥, Y )

− S(x⊥ − z⊥1, Y )S(z⊥2 − y⊥, Y )] . (33)

According to Kovchegov-Weigert’s subtraction scheme, one substitutes w⊥ = z⊥ =

ηz⊥1 + (1 − η)z⊥2 in Eq. (31) and gets

SKW [S] = α2
µ

∫

d2z⊥1 d
2z⊥2K g1 (x⊥, y⊥; z⊥1, z⊥2) [S(x⊥ − z⊥, Y )S(z⊥ − y⊥, Y )

− S(x⊥ − z⊥1, Y )S(z⊥2 − y⊥, Y )] . (34)





Chapter 3

Phenomenological consequences of

gluon number fluctuations

In this Chapter, we study the effect of gluon number fluctuations (Pomeron loops)

on inclusive and diffractive deep inelastic scattering (DIS) in the fixed coupling case.

3.1 Gluon number fluctuations in inclusive deep

inelastic scattering

The mean-field dynamics of the high-energy dipole-proton scattering is described by

the BK-equation [7, 5]. Phenomenological ansätze for the dipole-proton scattering

amplitude T (r, x) (where r is the transverse dipole size and x the Bjorken-variable)

inspired by the BK-equation have led to quite successful descriptions of the HERA

data. The T -matrix following from the BK-equation shows within a restricted kine-

matical window, which increases with collision energy, the geometric scaling behav-

ior [29, 25, 26], T (r, x) = T (r2Q2
s(x)), where Qs(x) is the saturation scale, which

seems well supported by the HERA data [27]. The correction to the solution out-

side the restricted window, the “BK-diffusion term”, violates the geometric scal-

ing [29, 25, 26] and depends on the variable ln(1/r2Q2
s(x))/

√
DBKY . Iancu, Itakura

and Munier (IIM) [30] have shown that the “BK-diffusion term”, giving a substantial

amount of geometric scaling violations, is needed in order to accurately describe the

experimental HERA data. The exponent λ of the saturation scale, Q2
s(x) ≃ (x0/x)

λ,

is known at NLO [31], λ ≃ 0.3, and agrees with the values extracted from fits to

HERA data.

27
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Recently, there has been a tremendous theoretical progress in understanding the

high-energy QCD evolution beyond the mean field approximation, i.e. beyond the

BK-equation. It has been understood how to include discreteness and fluctuations of

gluon numbers (Pomeron loops) in small-x evolution [10, 11, 12, 14, 13, 32]. After

including these elements, the evolution becomes stochastic and one has to distinguish

between the event-by-event amplitude T (r, x), which corresponds to an individual

gluon number realization, and the physical amplitude 〈T (r, Y )〉, which one obtains by

averaging over all individual realizations [11]. At very high energy, the discreteness

effect decreases the exponent λ as compared to BK-value and the gluon number

fluctuations, i.e., the averaging over all events to calculate the physical amplitude,

replaces the geometric scaling resulting from the BK-equation (in the “wave front”

region) by a new scaling [10, 11], the diffusive scaling, namely, 〈T (r, Y )〉 is a function

of a single variable ln(1/r2Q2
s(x))/

√
DY , where D is the diffusion coefficient. The

value of D determines the rapidity above which gluon number fluctuations become

important, Y ≥ YD = 1/D, which is the case when the fluctuation of the saturation

scales of the individual events becomes large, in formulas, when the dispersion σ2 =

2(〈ρ2
s(Y )〉 − 〈ρs(Y )〉2) = DY ≫ 1, where ρs(Y ) = ln(Q2

s(Y )/Q2
0). At high energy,

such that σ2 ≫ 1, it has been shown that fluctuations do strongly modify measurable

quantities [33, 34]. (A more detailed presentation of the recent theoretical progress

is given in Refs.[35] while the most recent studies on Pomeron loops based on toy

models can be found in Refs. [36, 37, 38, 39, 40, 41, 43, 44, 45].)

In this section we elaborate, in a quite approximative way, whether the HERA

data [46] do indicate any possible implication of gluon number fluctuations. The

coupling is kept fixed throughout this work. We proceed in the following way: We

use for the event-by-event amplitude several models, the GBW model [47], the IIM

model [30] and a model which is close to the theoretical findings for T at very

large energy (see Eq. (7)). For the averaging over all events we use the high-energy

QCD/statistical physics correspondence [11], i.e., a Gaussian for the distribution of

ρs(Y ) = ln(Q2
s(Y )/Q2

0). Moreover, assuming that the DIS cross section shows diffu-

sive scaling in the HERA energy range, we have used the “quality factor” method of

Ref. [48] to get an estimation for the value of λ, in a model-independent way. The

procedure we use in this work is always based on approximations and, therefore, can

at best give hints on a possible implication of gluon number fluctuations in the HERA

data.
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After including fluctuations in the way described above, we obtain from the anal-

ysis of the HERA data values for the exponent λ and the diffusion coefficient D

which are quite independent of the ansätze for the event-by-event amplitude. Also

the model-independent approach gives a similar value for λ. We find λ ≃ 0.2 which is

smaller than the value from the BK-inspired models (no fluctuations), λ ≃ 0.3, and

the decrease is in agreement with theoretical expectations. For the diffusion coeffi-

cient we find a sizeable value, D ≃ 0.35. Surprisingly, this value is very close to the

values found for D in numerical simulation of the (1 + 1) dimensional model [39]

and of evolution equations in QCD [49] (approximations to Pomeron loop equa-

tions [13, 12, 14, 32]) in the fixed coupling case. The sizeable value of D may indicate

a possible involvement of fluctuations in the HERA data since Y ≥ YD = 1/D for

rapidities at HERA.

We observe that after including fluctuations the description of the HERA data

is improved for all models we have used for the event-by-event amplitude. In the

case of the GBW model, which exhibits pure geometric scaling, after the inclusion of

fluctuations, which lead to a violation of geometric scaling, a much better description

is obtained, namely, χ2/d.o.f = 1.74 without and χ2/d.o.f = 1.14 with fluctuations.

The situation seems to be similar with all event-by-event amplitudes which show ge-

ometric scaling. In the case of the IIM model, which contains already the geometric

scaling violating BK-diffusion term, the inclusion of fluctuations also improves, how-

ever less than in the GBW case, the description of the HERA data; χ2/d.o.f = 0.983

before and χ2/d.o.f = 0.807 after including fluctuations.1 The outcomes seem to tell

us that violations of geometric scaling are required for an accurate description of the

HERA data. The improvement of the description of the HERA data together with

the very reasonable values for the parameters discussed above seem to indicate that

gluon number fluctuations may be the reason for geometric scaling violations in the

HERA data. However, we wish to emphasize here that the BK-diffusion term gives

similar geometric scaling violations as fluctuations and may as well be the reason for

the geometric scaling violations in the HERA data.

This work is organized as follows: In Sec. 3.1.1, we show the results for the T -

matrix for dipole-proton scattering and for the energy dependence of the saturation

scale which are obtained in the mean field approximations, i.e., from the BK-equation.

The results for the same quantities beyond the mean field approximation, or the effects

1The χ2 is defined such that the smallest χ2 gives the best description to the HERA data.
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of discreteness and fluctuations in gluon numbers on these quantities, are summarized

in Sec. 3.1.2. Finally, we give numerical results and discuss a possible implication of

the physics beyond the mean field approximation in the HERA data.

3.1.1 Event-by-event scattering amplitude

• Mean field approximation

In the mean field approximation, the Y -dependence of the T -matrix for a dipole

of transverse size r scattering off a proton is given by the BK-equation. In the

fixed coupling case, the solution to the BK-equation in the saturation region,

where T ≃ 1, is [20](see Section 2.1.2 for more discussions on the solution to

the BK-equation in the saturation region)

T (r, Y ) = 1 − C0 exp
[

−C1(ρ− ρs(Y ))2
]

for ρ− ρs(Y ) ≪ 1 , (1)

while for the front of the T -matrix, where T ≪ 1 (but not too small), one

finds [24, 26]

T (r, Y ) = C2 [ρ− ρs(Y ) + C3] exp

[

−λs(ρ− ρs(Y )) − (ρ− ρs(Y ))2

2ᾱχ′′(λs)Y

]

(2)

for 1 ≪ ρ− ρs(Y ) ≪ 2χ′′(λs)ᾱsY ,

where have used ᾱs = αsNc/π, ρ = ln(1/r2Q2
0) and ρs(Y ) = ln(Q2

s(Y )/Q2
0) with

Qs(Y ) the saturation scale. In above equations, the constants C0, C2, C3 are of

O(1), C1 = −CF (1−λ0)/Nc2χ(λs) (CF is the casimir factor in the fundamental

representation), λs = 0.6275, and χ(λ) = 2ψ(1) − ψ(λ) − ψ(1 − λ) is the

eigenvalue of the BFKl kernel. For the rapidity dependence of the saturation

scale, which separates the saturated (r ≫ 1/Qs(Y )) from the dilute (r ≪
1/Qs(Y )) regime, one obtains from the BK equation [24, 26]

Q2
s(Y ) = Q2

0

exp[ᾱχ′(λs)Y ]

[ᾱY ]
3

2(1−λ0)

. (3)

Note that within the even more restricted window, ρ−ρs(Y ) ≪
√

2χ′′(λs)ᾱsY ,

where the diffusion term in the exponent in Eq.(2) can be neglected, the T -

matrix shows the geometric scaling behavior, i.e., it depends only on the differ-

ence ρ− ρs(Y ) instead of depending on r and Y separately. At very small r, so
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that ρ− ρs(Y ) ≫ 2χ′′(λs)ᾱsY , the T -matrix exhibits color transparency, i.e., it

shows a faster decrease with ρ as compared to Eq.(2); T ∼ exp[−ρ].

Iancu, Itakura and Munier [30] have used the following ansätze for the T -matrix,

T IIM(r, Y ) =















1 − exp
[

−a ln2(b r Qs(x))
]

, r Qs(x) > 2

N0

(

r Qs(x)
2

)2(λs+
ln(2/r Qs(x))

κ λ Y )
, r Qs(x) < 2 ,

(4)

which obviously includes the features of the solution to the BK equation, to

compare the theory in the mean field approximation with the DIS data. They

have used for the saturation momentum the leading Y -dependence of Eq.(3),

Q2
s(x) = (x0/x)

λ, however, with λ and x0 being fixed by fitting the DIS data.

The constant κ = χ′′(λs)/χ
′(λs) ≈ 9.9 is a LO result coming from the BK-

equation, N0 is a constant around 0.5 and a and b are determined by matching

the two pieces in Eq.(4) at r Qs = 2.

The “BK-diffusion term” in the IIM-ansatz (4),

(

r Qs(x)

2

)2
ln(2/r Qs(x))

κ λ Y

= exp

[

− ln2(4/r2Q2
s(x))

2 κλ Y

]

, (5)

which is the quadratic term in the exponent of Eq.(2), does explicitly violate

the geometric scaling behavior. We wish to emphasize here that, as also shown

in [30], this violation seems required in order to get an accurate description of

the DIS data. Without it, even allowing λs to be an additional fitting parameter,

one can not get a better description of the DIS data. For further details on the

importance of the diffusion term see Ref. [30].

In this work, we wish to elaborate whether the violation of the geometric scaling

may come from gluon number fluctuations (Pomeron loops) and not from the

BK-equation. As we will see in the next sections, the fluctuations do indeed give

a similar violation of the geometric scaling and also lead to a better description

of the DIS data as compared to the case where the T -matrix shows a geometric

scaling behavior.

• Discreteness of gluon number

In a single scattering process, the mean field approximation breaks down when

the occupancy of gluons inside the evolved proton is low so that the discreteness
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of the gluon number needs to be taken into account; the number of gluons cannot

less than one since it has to be discrete. When including the discreteness effect,

as compared to the results from the BK-equation, the energy dependence of the

saturation momentum changes to [10, 11]

Q2
s(Y ) = Q2

0 exp

[

ᾱsχ
′(λs)Y

(

1 − π2χ′′(λs)

2(∆ρ)2χ(λs)

)]

(6)

and the piecewise, approximate, shape of the T -matrix at fixed coupling and

very high energy reads [10, 11]

T (r, Y ) =































1 for ρ− ρs(Y ) ≪ 0

N1 [ρ− ρs(Y )] eλs[ρ−ρs(Y )] for 0 < ρ− ρs(Y ) < ∆ρ

N2 e
−[ρ−ρs(Y )] for ρ− ρs(Y ) ≫ ∆ρ

(7)

whereN1 andN2 are irrelevant constants and the front width is ∆ρ ≃ (1/λs) ln(1/α2
s).

The front width cannot be larger than ∆ρ which is the distance when the am-

plitude decreases from its maximal value T ≈ 1 down to the value T = O(α2
s)

where the discreteness of gluon numbers becomes important. The width is

formed via diffusion, ρ − ρs(Y ) ∝
√
αsY , and it requires the rapidity YF ≃

(∆ρ)2/(2χ′′(λs)ᾱs) until it is completed. The event-by-event amplitude given

in Eq.(7), which is formed at Y > YF , shows, approximately, geometric scaling:

T (r, Y ) ≈ T (ρ− ρs(Y )).

The main differences as compared to the mean-field results are: The exponent

of the saturation scale in the event-by-event amplitude, cf. Eq.(6) and Eq. (3),

is decreased due to the discreteness of gluon numbers. Further the width of the

front of the event-by-event amplitude is fixed, ∆ρ, instead of increasing with

rapidity as in Eq.(3).

3.1.2 Physical scattering amplitude

To go beyond the mean field approximation one has to include the effect of discrete-

ness and fluctuations of gluon numbers [10, 11]. After including fluctuations one has

to distinguish between the even-by-event amplitude and the averaged (physical) am-

plitude. They can be explained by considering the evolution of a proton from y = 0

up to y = Y which is probed by a dipole of size r, giving the amplitude T̄ (r, Y ).
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The evolution of the proton is stochastic and leads to random gluon number real-

izations inside the proton at Y , corresponding to different events in an experiment.

The physical amplitude, T̄ (r, Y ), is then given by averaging over all possible gluon

number realizations/events, T̄ (r, Y ) = 〈T (r, Y )〉, where T (r, Y ) is the amplitude for

the dipole r scattering off a particular realization of the evolved proton at Y . In the

following we discuss the averaged amplitude T̄ (r, Y ).

Based on the relation between high-energy QCD evolution and reaction-diffusion

processes in statistical physics [11], the fluctuations in gluon numbers are taken into

account by averaging over all event-by-event amplitudes,

〈T ((ρ− ρs(Y ))〉 =

∫

dρs T (ρ− ρs(Y )) P (ρs(Y ) − 〈ρs(Y )〉) , (8)

where the distribution of ρs(Y ) is, to a very good approximation, a Gaussian [28]:

P (ρs) ≃
1√
πσ2

exp

[

−(ρs − 〈ρs〉)2

σ2

]

. (9)

The expectation value of the front position, 〈ρs(Y )〉, increases with rapidity as 〈ρs(Y )〉 =

ln(Q2
s(Y )/Q2

0) at high energy [11], with Qs(Y ) given in Eq. (6). The dispersion of the

front at high energy increases linearly with rapidity,

σ2 = 2
[

〈ρ2
s〉 − 〈ρs〉2

]

= DY (10)

where D is the diffusion coefficient, whose value is known only for α → 0 (asymptotic

energy) [10, 50]. Since the values of D and the exponent λ of the saturation scale,

Q2
s(x) = 1 GeV2 (x0/x)

λ, see Eq. (6), are not known for finite energies, e.g. at HERA

energy, in what follows we will treat them as free parameters.

At very high energy, such that σ2 ≫ 1, the dispersion of the fronts due to the

gluon number fluctuations from event to event has large consequences on 〈T (r, Y )〉:
the geometric scaling of the single events T (ρ − ρs(Y )), cf. Eq.(7), is replaced by

a new form of scaling, known as diffusive scaling, namely, 〈T (r, Y )〉 is a function of

(ρ− 〈ρs(Y )〉)/
√
DY ,

〈T (r, Y )〉 = T̄ (r, Y ) = T̄

(

ρ− 〈ρs(Y )〉√
DY

)

. (11)

The diffusive scaling is expected to set in at Y > YD = 1/D, which follows from the

requirement σ2 ≫ 1.

The goal of this section is to study whether the diffusive scaling behavior of the

dipole-proton scattering amplitude in Eq. (11), which is caused by gluon number
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fluctuations, may be present in the HERA data. As we will see in the next section,

the fluctuations do improve the description of the HERA data, indicating that the

violation of geometric scaling seems important for an accurate description of the data.

We will discuss whether the violation preferred by the DIS data is due to the gluon

number fluctuations, which lead to the diffusive scaling (ρ− ρs(Y ))/
√
DY , or due to

the BK diffusion term, cf. Eq.(5), which corrects the geometric scaling in a similar

way, namely, via (ρ− ρs(Y ))/
√

2 ᾱs χ′′ Y .

3.1.3 Numerical results

Our fit includes the ZEUS data for the F2 structure function,

F2(x,Q
2) =

Q2

4π2αem
(σT (x,Q2) + σL(x,Q2)),

σT,L(x,Q2) =

∫

dz d2r |ψT,L(z, r, Q2)|2 σdip(x, r) (12)

in the kinematical range x ≤ 10−2 and 0.045 GeV2 < Q2 < 50 GeV2 (see also [30] for

more discussions on the range). The upper limit on Q2 has been chosen large enough

to include a large amount of “perturbative” data points, but low enough in order to

justify the use of the BFKL dynamics, rather than DGLAP evolution. We use in our

fit the same photon wave functions ψT,L as in Ref.[47], which are computable in QED

|ψ(f)
T (r, z;Q2)|2 = e2f

αeNc

2π2
{[z2 + (1 − z)2]Q̄2

fK
2
1 (rQ̄2

f) +m2
fK

2
0 (rQ̄f)},

|ψ(f)
L (r, z;Q2)|2 = e2f

αeNc

2π2
4Q2z2(1 − z)2K2

0 (rQ̄2
f) (13)

where the ef and mf are the charge and mass of the quark with flavor f and Q̄2
f =

z(1 − z)Q2 +m2
f , and three light quarks with equal mass, mu,d,s = 140 MeV and two

heavy quarks with mass,mc = 1.5 GeV and mb = 4.5 GeV, respectively. The Bjorken

x is modified by x(1 + 4m2
f/Q

2) in the contribution of heavy quarks. Note that the

contribution of the charm and bottom quark to (13) directly give the charm and

bottom structure function. We have considered only the ZEUS data because there

is a mismatch between the H1 and ZEUS with regard to the data normalization and

since only ZEUS has data also in the low Q2 region, i.e., in the saturation region.

To fix the parameters we minimize χ2 =
∑

i(model(i, p1, ..., pn) − F2(i))
2/(error(i))2,

where the sum goes over the data points, p1, ..., pn denote the parameters to be found,

F2(i) the experimental results for the F2 structure function, and for the error of F2,

i.e., (error(i))2, we use the systematic error squared plus the statistical error squared.
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The interesting ingredient for us in Eq. (12) is the dipole-proton cross section,

σdip = 2πR2 〈T (r, x)〉, with 2πR2 being the outcome of the integration over the

impact parameter. We will use different ansätze for the event-by-event amplitude,

T (r, x), and the physical amplitude, 〈T (r, x)〉, is obtained according to the rules

outlined in section 3.1.2. (We wish to note that the ansätze for T (r, x), which are

derived/motivated based on perturbative QCD, are used to describe also the low virtu-

ality data, Q2 ≤ 1 GeV2, in the fit to the HERA data. In this region non-perturbative

physics [51] is involved which is only approximately given by our ansätze.) In σdip we

will use the event-by-event amplitude and the physical amplitude in order to study

the effects of gluon number fluctuations. In the case of T (r, x) there are three free

parameters which will be fixed by fitting the HERA data: R (“radius of the proton”)

and x0 and λ coming via the saturation momentum Q2
s(x) = 1 GeV2 (x0/x)

λ. In the

case of the averaged (physical) amplitude, 〈T (r, x)〉, there is another free parameter,

the diffusion coefficient D.

1. Fit to the HERA data with only light quarks

In this part, we fit the HERA inclusive DIS data with only the light quarks

contribution to the proton structure function. Both light quarks and heavy quarks

contribution to the proton structure function will be discussed in the next subsection.

We use for the event-by-event amplitude several models, the GBW model, the IIM

model and a model which is close to the theoretical findings for T at very large energy.

Now let us look at all the models:

• Golec-Biernat, Wüsthoff (GBW) model [47]:

The GBW model

TGBW (r, x) = 1 − exp

[

−r
2Q2

s(x)

4

]

, (14)

is one of the most simple models which shows geometric scaling, T (r, x) =

T (r2Q2
s(x)), and leads to a quite successful description of the HERA data, as

can be seen from Figs. 3.1, 3.2 and the χ2 (error) in Table 3.1 (denoted by

GBW). It is nice to see that the value of the saturation exponent, λ ≃ 0.285,

which is found by fitting the HERA data with the GBW model, comes out close

to the theoretical NLO results for λ [31].

Now, using the GBW model as an event-by-event amplitude, we include the

effect of gluon number fluctuations by averaging over all events via Eq. (8). The
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model/parameters χ2 χ2/d.o.f x0 (×10−4) λ R(fm) D

TGBW (light quarks only) 266.22 1.74 4.11 0.285 0.594 0

〈TGBW〉 (light quarks only) 173.39 1.14 0.0546 0.225 0.712 0.397

Table 3.1: GBW model: The parameters of the event-by-event (2 line) and of the

physical (3 line) amplitude.

resulting 〈TGBW (r, x)〉, which breaks the geometric scaling, leads to a relatively

much better description of the HERA data, as can be seen from the comparison

of the χ2 values and the two lines in Figs. 3.1, 3.2. The large improvement after

including fluctuations seems to indicate that violations of geometric scaling, and

probably even gluon number fluctuations, are implicated in the HERA data.

It is important to note that the values of the fitting parameters come out rea-

sonable also after including the gluon number fluctuations. The value of λ

becomes smaller after including fluctuations which is in agreement with theo-

retical expectations, as can be seen from the comparison of Eq. (3) with Eq. (6).

Furthermore, the value of the diffusion coefficient D is sizeable, and is surpris-

ingly close to the values which have been found numerically by solving the (1+1)

dimensional toy model [39] and the approximate QCD evolution equations [49]

(they represent an approximation of the Pomeron loop equations [13, 12, 14, 32])

in the fixed coupling case. Note also that the radius of the proton, R, increases

somewhat and x0 becomes smaller, meaning that Qs < 1 GeV up to x ≃ 10−6,

due to fluctuations. Also the reasonable values of the parameters, especially

the sizeable value of D yielding YD = 1/D ≃ 2.5, in addition to the better

description of the HERA data after including fluctuations, seem to be in favor

of an implication of gluon number fluctuations in the HERA data.

• Iancu, Itakura, Munier (IIM) model [30],

The IIM model, which inspires from BK-equation, given in Eq. (4) includes the

BK-diffusion term, ln(4/r2Q2
s)/

√
2 κλ Y , which explicitly violates the geometric

scaling. It has been shown in [30] that this violation does noticeably improve

the description of the HERA data in comparison with the GBW model, as can

be seen from the much smaller χ2 value in the IIM case in Table 3.2 (we always
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Figure 3.1: The F2 structure function versus x at different values of Q2. The solid

lines represent the results of the averaged GBW fit and the dashed lines represent

the results of the GBW fit to the ZEUS data. The data points at lowest Q2 values,

0.045, 0.065 and 0.085 GeV2, are not shown here although they are included in the

fits.
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Figure 3.2: The same as in Fig. 3.1, but for larger values of Q2. Note that we show in

this figure our results up the highest Q2 although our fit is performed including only

the data for Q2 < 50 GeV2.

use N0 = 0.5 in the IIM model) and two lines in Figs. 3.3, 3.4. In Ref. [30] has

been further shown that without the BK-diffusion term, although allowing for

an additional free parameter λs (one parameter more than in the GBW model),

the χ2/d.o.f value does not improve and is close to the GBW value.

Note that the GBW model only after including gluon number fluctuations gives

a χ2/d.o.f value which is comparable with the IIM one. This may mean that the

violation of the geometric scaling is favored by the HERA data. The violation

may come from the gluon number fluctuations or from the BK-diffusion term.

To demonstrate that both GBW and IIM model after including gluon number

fluctuations can be better description HERA data, Figs. 3.5, 3.6 give the F2

comparison of these two models with gluon number fluctuations. Both of them

give fairly well description to the HERA data for Q2 < 50 GeV2. However, for

higher Q2 both the averaged GBW and IIM model describes the HERA data not
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quite well, since our fit is performed including only the data for Q2 < 50 GeV2

and x ≤ 0.01, in which the use of BFKL dynamics keeps valid.

model/parameters χ2 χ2/d.o.f x0 (×10−4) λ R(fm) D

T IIM (light quarks only) 150.45 0.983 0.5379 0.252 0.709 0

〈T IIM〉 (light quarks only) 122.62 0.807 0.0095 0.198 0.812 0.325

Table 3.2: IIM model: The parameters of the event-by-event (2 line) and of the

physical (3 line) amplitude.

In the case of the IIM model, after including fluctuations, we can give an analytic

expression for the physical amplitude

〈T IIM(r, Y )〉 =
N0

2σ

[

σ Erfc

(

ln 4
r2Q2

s

σ

)

−
Exp

(− a
4σ2 ln2(b2 r2Q2

s)
1

σ2 + a
4

)

√

1
σ2 + a

4

×Erfc

( a ln(4b2)
4

+ 1
σ2 ln( 4

r2Q2
s
)

√

1
σ2 + a

4

)

+
1

√

1
2κλY

+ 1
σ2

(

1 + Erf

(−λs

2
+ 1

σ2 ln( 4
r2Q2

s
)

√

1
2κλY

+ 1
σ2

)

)

× Exp

(

−

[

ln2( 4

r2Q2
s
)

2κλY σ2 − λ2
s

4
+ λs

ln( 4

r2Q2
s
)

σ4

]

√

1
2κλY

+ 1
σ2

)]

, (15)

which can be used in phenomenological applications, where Erfc(x) is the com-

plementary error function. Also in the IIM case fluctuations do improve the

description of the HERA data, however not much, as can be seen from the

comparable χ2/d.o.f values for T IIM and 〈T IIM〉 in Table 3.2. This is so be-

cause the IIM model does already contain the geometric scaling violations via

the BK-diffusion term, ln(4/r2Q2
s)/

√
2κλY , and describes accurately the HERA

data, before including fluctuations. However, note that the diffusion coefficients

in case of fluctuations and the BK-diffusion term are quite different, namely,

D = 0.325 and 2 κλ ≃ 3.9, respectively.

• Other models and a model-independent approach:



40 Phenomenological consequences of gluon number fluctuations

2F

0

0.2

0.4 =0.112Q

-6
10

-3
10

0

0.5

=0.32Q

=0.152Q

-6
10

-3
10

=0.42Q

=0.22Q

-6
10

-3
10

=0.52Q

=0.252Q

-6
10

-3
10

=0.652Q

0

1

2

=1.52Q

0

1

2

=3.52Q

-410 -110

0

1

2

=8.52Q

=2.02Q

=4.52Q

-410 -110

=102Q

=2.52Q

=5.02Q

-410 -110

=122Q

=2.72Q

=6.52Q

X
-410 -110

=152Q

Figure 3.3: The same as in Fig. 3.1, but we use IIM model for the event-by-event

scattering amplitude.
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Figure 3.4: The same as in Fig. 3.3, but for larger values of Q2.

After including fluctuations, the parameters in the GBW and the IIM case

are close to each other. Apart from the fact that similar values for D are

found in numerical simulations of evolution equations [39, 49] and the decrease

of λ due to fluctuations is theoretically expected, at least at high energy, the

parameters λ and D also seem to be quite model-independent. Indeed, similar

values for λ and D would come out also if one uses a model as suggested by

the theoretical findings at high energy as given in Eq. (7), for reasonable values

of the proton radius, R ≃ 0.7 − 0.8 fm. Such a model would be for instance

the IIM model with the diffusion variable ln(4/r2Q2
s)/

√
2 κλ Y replaced by

ln(4/r2Q2
s)(1 − λs)/

√
∆ρ, such that the new model interpolates between the

three regions of Eq.(7) and shows the geometric scaling behavior. The constant

∆ρ is given by Eq.(7). We use in ∆ρ a small value for αs, αs = 1/15, which is the

value required such that the exponent of Q2
s in Eq.(3) agrees with experimental

or NLO results, λ ≃ 0.3. With this input, we find for R = 0.8 fm, the following

results: λ = 0.235 and D = 0.58.

Moreover, the similar value of λ coming out of the different models is also sup-
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Figure 3.5: The F2 structure function versus x at different values of Q2. The solid

lines represent the results of the averaged IIM fit and the dashed lines represent the

results of the averaged GBW fit to the ZEUS data. The data points at lowest Q2

values, 0.045, 0.065 and 0.085 GeV2, are not shown here although they are included

in the fits.
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Figure 3.6: The same as in Fig. 3.5, but for larger values of Q2. Note that we show in

this figure our results up the highest Q2 although our fit is performed including only

the data for Q2 < 50 GeV2.

ported by the following model-independent approach: In case fluctuations are

important in the range of HERA data, one finds the diffusive scaling behav-

ior [52], i.e., σγ∗p/
√
DY is a function of τ = ln(1/r2Q2

s)/
√
DY . We define a

“quality factor” O(λ, x0, D) as done in [48],

O(λ) =
∑

i

(σi − σi−1)
2

(τi − τi−1)2 + ε2
, (16)

which tests the quality of this diffusive scaling in HERA data. The definition for

the quality factor obviously achieves our aim: when the points (τi, σi) lie on a

unique curve the quality factor (QF) will take minimum and when two successive

points are close in τ and far in σ, we expect them “not to lie on the same curve”

and, indeed, they give a large contribution to the sum in (16), leading to large

χ2. Note that there are some difference as compared with Ref.[48]: in Ref.[48]

they used a Gauss fit to find the maximum of the QF which was defined as
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Q(λ) = O(λ)−1, while we employ minuit to minimize the QF. We proceed in

the following way: we reorder the data points (τi, σi) like this: Let the τ ’s order

from minimum to maximum and record the positions of the σi corresponding

to τi. And then we define χ2 =
∑

i(σi − σi−1)
2/((τi − τi−1)

2 + ε2), in which the

constant ε2 is a small number 2 which prevents the sum from becoming infinite

when two points have the same value for τ [48]. We use minuit to minimize the

χ2, and find this way that λ = 0.215, at least for the input-values 0.01 ≤ D ≤ 0.7

which we have investigated.

The seemingly model-independent values of the parameters λ and D, their

agreement with the numerical values found, and the improvement of the de-

scription of the HERA data in all models after including fluctuations, seem

to tell us that gluon number fluctuations are relevant in the range of HERA

data. However, since in the case of the IIM model the fluctuations do not

improve much the description of the HERA data, one may conclude that the

BK-equation alone should describe the HERA data and that fluctuations are

negligible in the energy range of the HERA data. The intention of this section

is to illustrate the possibility that fluctuations may be present in the HERA

data.

2. Fit to the HERA data including both light and heavy quarks

Now let us look at the heavy quarks contribution to the proton structure function

at small x. It is straightforward to include the heavy quarks mass in the photon wave

functions ψT,L. So the main difference from the previous fit is that the contribution

to the photon wave functions ψT,L does not only come from light quarks (u, d, s),

but also from heavy quarks (c, b). After including the heavy quarks contribution to

the photon wave functions, we perform the fit as in the previous case. Note that we

only use the IIM model for the event-by-event scattering amplitude in our fit. For

the case of GBW model, similar results as for the as IIM model are found.

The outcomes from fitting the ZEUS data including light and heavy quarks deserve

more comments:

• The both fits of IIM model with and without fluctuations seem to be improved

with heavy quarks. However the improvement is not much, as can be seen from

the comparable χ2 values for T IIM and 〈T IIM〉 in Table 3.3 and Table 3.2. Note

2we have taken ε = 1/n with n being the number of data points
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that the values of χ2 of IIM model with fluctuations are quite similar before

and after including heavy quarks. It seems that in the case of gluon number

fluctuations the heavy quarks contribution does not play a role in the description

of the HERA inclusive DIS data, as can be seen from the comparison χ2/d.o.f

of the physical amplitude in Table 3.2 with χ2/d.o.f of the physical amplitude

in Table 3.3.

• The value of λ becomes smaller after including the heavy quarks and fluctuations

which is in agreement with theoretical expectations, as can be seen from the

comparison of Eq.(3) with Eq.(6).

• The value of the critical exponent λs which obtains from the fit of ZEUS data

with heavy quarks larger than LO values used in literature. However, it is

in agreement with one from the various renormalization-group-improved NLO

BFKL kernels [53].

• The value of the diffusion coefficient D is sizeable, and is surprisingly close to

the values which have been found numerically by solving the (1+1) dimensional

toy model [39] and the Pomeron loop equations [49] in the fixed coupling case.

model/parameters χ2 χ2/d.o.f x0 (×10−4) λ λs Rp(fm) D

N IIM (light+heavy quarks) 138.06 0.908 0.126 0.217 0.731 0.661 0

〈N IIM〉 (light+heavy quarks) 121.28 0.803 0.0017 0.162 0.689 0.836 0.1105

Table 3.3: IIM model: The parameters of the event-by-event (2 line) and of the

physical (3 line) amplitude after including the heavy quarks contribution.

The contribution of the charm and bottom quarks to (13) can directly use to

compute the charm and bottom structure functions. We compare the results of our

parametrization with the HERA measurements [54, 55] of the charm and bottom

structure functions. These are naturally obtained from our formalism by only taking

the charm or bottom contribution to the photon-proton cross-section in (12). The re-

sults from our model are plotted in Fig. 3.7 for charm and bottom structure functions

respectively. In both case, we observe a good agreement with the data. Similarly, by

taking the contribution only coming from the longitudinal part of the wave function

in (12), we can obtain the results for the longitudinal structure function. Our results
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Figure 3.7: The structure function versus x at different values of Q2. The up and

down plane are charm and bottom structure functions, respectively. The solid lines

represent the results of averaged IIM fitting experimental data and the dashed lines

represent the results of IIM model fitting experimental data [56].
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Figure 3.8: The results of our fit for the longitudinal structure functions. The solid

lines represent the results of averaged IIM fitting data and the dashed lines represent

the results of IIM model fitting experimental data [56].

are shown in Fig. 3.8 together with the H1 measurements [46]. Again, the present

parametrization gives a good description of the data.

3.1.4 Discussion

The gluon number fluctuations would become more clear at even higher collision

energies as compared to the HERA energy. With growing Y , according to the BK-

equation the window for the geometric scaling behavior would increase, and the scaling

violating term would become less important. On the other side, the small-x dynamics

including gluon number fluctuations leads to a more clear diffusive scaling behavior

with increasing Y . The forthcoming LHC may tell us more whether geometric or

diffusive scaling is more appropriate for the description of the observables in the LHC

energy range.

Throughout this work the coupling is kept fixed. As mentioned above, the (1+1)
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dimensional model in [39], which accommodates Pomeron loops, gives similar values

for D as our analysis for a fixed coupling. However, it has been recently shown that

if allowing the coupling to run in this toy model [40] then the effects of gluon number

fluctuations can be neglected up to energies far beyond the HERA and LHC energies.

We plan to extend our work by the running coupling in order to see whether the HERA

data can tell something about the running coupling and whether the prediction of

the toy model remains valid also in the QCD case.

3.2 Gluon number fluctuations in diffractive deep

inelastic scattering

Diffractive deep inelastic scattering (DIS) has triggered a wide interest since diffractive

events were observed at HERA [57, 58]. Generally, such events are expect to be much

more sensitive to the saturation regime [59, 60] of QCD than the inclusive ones [47, 61].

It is well known, that diffractive DIS is a process where the proton remains intact

after the virtual photon scattering off proton and that there is a rapidity gap between

the proton and the rest of final-state particles. There are two distinct processes

contributing to the diffractive final state:

1. When the photon fluctuates into a qq̄ pair which scatters elastically off the

target without any further radiation and the mass MX of the diffractive final

state is of the order of the virtuality of the photon, which corresponds to the

region of intermediate or large values of β.

2. When the qq̄ pair interacts through higher Fock state fluctuation, i.e. qq̄g,

and the mass MX of the diffractive final state is much larger than Q2, which

is related to the regime of small β. This process is often called a diffractive

photon dissociation process.

In this section, we extend the previous analysis of diffractive DIS data (see for ex-

ample [62]), which are done in the mean field approximation, to the case beyond mean

field approximation, namely by taking into account the gluon number fluctuations in

the high energy QCD evolution [10, 11, 13, 12, 14, 32, 33, 34].

For the event-by-event amplitude we use the Iancu, Itakula and Munier (IIM)

model [30] which was inspired by BK-equation and the gluon number fluctuations are

taken into account by averaging over all events. The procedure we use in this work is
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always based on approximations and, therefore, can at best give hints on a possible

implication of gluon number fluctuations in the HERA data.

One can observe that after including fluctuations the description of the diffractive

HERA data is improved as compared to the IIM model: χ2/d.o.f = 1.282 before and

χ2/d.o.f = 1.031 after including fluctuations 3. The improvement of the description of

the HERA data seems to indicate that the geometric scaling violations in the HERA

data may come from gluon number fluctuations. However, we wish to emphasize here

that the BK-diffusion term gives similar geometric scaling violations as fluctuations

and only looking on the HERA data we still can not completely discriminate that

the observed geometric scaling violations in the HERA data are the outcome of the

BK-diffusion term.

This work is organized as follows: The qq̄ and qq̄g components contribution to the

diffractive structure function are given in Section 3.2.1. In qq̄g component case, we

will show the diffractive structure function at large Q2 and small β limits in the mean

field and beyond the mean field approximation, respectively. In Section 3.2.2 we show

numerical results and discuss possible implications of gluon number fluctuations in

the diffractive HERA data. Finally, we give a conclusion in Section 3.2.3.

3.2.1 Diffractive structure function at high energy

In the diffractive DIS (γ∗p −→ Xp), the proton remains intact after the scattering,

and there is a rapidity gap between the proton and the rest of the final-state particles,

see Fig.3.9. The following variables describe the kinematics of the diffractive DIS

process,

x =
Q2

Q2 +W 2
, β =

Q2

Q2 +M2
X

xP = x/β , (17)

where W 2 is the center-of-mass energy of the virtual photon-proton scattering and the

Q2 and MX are the virtuality of the photon and the mass of the diffractive final state,

respectively. The corresponding cross section for the single diffractive production is

described by the following relation:

xPσ
D,3
r = xPF

qq̄
T + xPF

qq̄g
T +

2 − 2y

2 − 2y + y2
xPF

qq̄
L (18)

3Note that our previous work [18] used Golec-Biernat, Wüsthoff (GBW) model which shows

geometric scaling, T (r, x) = T (r2Q2
s(x)), and IIM model (which contains geometric violation) with

and without fluctuations to fit inclusive DIS data. The outcomes seem to tell us that violations of

geometric scaling are required for an accurate description of the HERA data.
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with y = Q2/(sx) where
√
s = 318 GeV is the total energy in the e − p scatter-

ing; xPF
qq̄
T , xPF

qq̄
L are the transverse and longitudinal diffractive structure function

contributing from the qq̄ final state and F qq̄g
T is the transverse diffractive structure

function resulting from the qq̄g final state. Note that in Eq. (18) we don’t include

F qq̄g
L which is the longitudinal diffractive structure function resulting from the qq̄g

final state, since its contribution to xPσ
D,3
r is negligible. Even though for small values

of β it could be sizeable, as the kinematical reason for small β is associated with y

close to 1, (2 − 2y)/(2 − 2y + y2) ∼ 0 , in which case F qq̄g
L doesn’t contribution to

xPσ
D,3
r . In what follows, we will extensively discuss the ingredients 4 of the r.h.s of

Eq. (18).

*γ 2Q

rapidity gap

XM

p p

Figure 3.9: The diagram of inclusive diffractive DIS.

1. The qq̄ components contribution to the diffractive final

state

The incoming virtual photon γ∗ (transversely or longitudinally polarized) splits

into a dipole of size r which scatters diffractively off the proton at a given impact

parameter b and dissociates into a final state of invariant mass MX . The transverse

and longitudinal qq̄ components are the dominant contribution to the diffractive final

state, because the possible final states containing gluons are suppressed by extra pow-

ers of αs. However, the qq̄g component is most important at small β or large Q2 limit,

4As one can see, within this approach, two distinct processes (qq̄ and qq̄g) contributing to the

diffractive final state.
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since the dipole will emit soft or collinear gluons which bring a large logarithm ln(1/β)

or ln(Q2) contributions to the diffractive final states and compensate the factors of

αs. In this subsection, we only take into account the qq̄ components contribution to

the diffractive structure functions, the qq̄g components will be discussed in the next

subsection. For a virtual photon diffractive scattering off the proton, the diffractive

cross-section is given by :

dσγ∗p→Xp
L,T

dβdt
(β, xP, Q

2, t) =
Q2

4β2

∑

f

∫

d2r

2π

∫

d2r′

2π

∫ 1

0

dzz(1 − z)Θ(κ2
f )e

iκf ·(r′−r)

×|Ψ(f)
L,T (z, r, r′;Q2)|2

∫

d2bd2b′ei∆·(b′−b)

×Tqq̄(r,b; xP)Tqq̄(r
′,b′; xP) (19)

with κ
2
f = z(1−z)Q2(1−β)/β−m2

f and ∆2 = −t. The impact parameter behavior

of the scattering amplitude is a long standing problem, it cannot be calculated by

perturbative QCD and it is usually modeled as:

Tqq̄(r,b; x) = S(b) T (|r|Qs(x), x), (20)

where we introduce a Gaussian profile S(b) = e−b
2/Rp which is extracted from the

experimental measurement of the impact parameter behavior in DIS [63, 64], here Rp

is the transverse radius of the proton.

*γ *γ

p p

qqT qqT

Figure 3.10: The QCD dipole picture of diffractive deep inelastic scattering. It cor-

responds to formula (19).
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The transversely and longitudinally polarized photon wave functions can be com-

puted in QED and are found to be

|Ψ(f)
T (z, r, r′;Q2)|2 =

αemNc

2π2
e2f

(

(z2 + (1−z)2)ε2
f

r.r′

|r||r′|K1(εf |r|)K1(εf |r′|)

+m2
fK0(εf |r|)K0(εf |r′|)

)

, (21)

|Ψ(f)
L (z, r, r′;Q2)|2 =

αemNc

2π2
e2f4Q

2z2(1−z)2K0(εf |r|)K0(εf |r′|) , (22)

where the ef and mf are the charge and mass of the quark with flavor f and

ε2
f =z(1−z)Q2+m2

f . (23)

As in the case of inclusive DIS, where the F2 structure function can be expressed by

inclusive cross-sections

F2(x,Q
2) =

Q2

4π2αem

(σT (x,Q2) + σL(x,Q2)), (24)

we can study the diffractive structure function. Similarly, we obtain the diffractive

structure function

xPF
D,3
λ =

Q2β

4π2αem

dσγ∗p→Xp
λ

dβ
,

dσγ∗p→Xp
λ

dβ
=

∫ 0

tmin

dt
dσγ∗p→Xp

λ

dβdt
≃ 2

R2
p

dσγ∗p→Xp
λ

dβdt

∣

∣

∣

∣

∣

t=0

,

(25)

with eR2
ptmin/2 ≪ 1. Note that we have used a trick to replace the integration of t in

(19) by using the fact that the diffractive cross-section decreases exponentially with

|t| like eR2
pt/2 [62].

After some algebraic computation, we get the transverse diffractive structure func-

tion contributed from qq̄ components

xPF
qq̄
T (β, xP, Q

2) =
R2

pNc

16π2

Q4

β

∑

f

e2f

∫ 1

0

dz Θ(κ2
f)z(1−z)

[

(z2 + (1−z)2)

×(z(1−z)Q2+m2
f)I

2
1 (κf , ǫf , Qs) +m2

fI
2
0 (κf , ǫf , Qs)

]

. (26)

By substituting the longitudinal overlap function (22) into (19), we get the qq̄ com-

ponents contribution to the longitudinal diffractive structure function:

xPF
qq̄
L (β, xP, Q

2) =
R2

pNc

16π2

Q4

β

∑

f

e2f

∫ 1

0

dzΘ(κ2
f )4Q

2z3(1−z)3I2
0 (κf , ǫf , Qs) . (27)
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In the above two equations, the functions Iλ are given by

Iλ(κ, ǫ, Qs) =

∫ ∞

0

rdrJλ(κr)Kλ(ǫr)T (rQs, xP) (28)

in terms of the Bessel functions Jλ and Kλ and the dipole scattering amplitude

T (rQs, xP). In the mean field approximation, we will use the IIM model for the

event-by-event scattering amplitude, T (rQs, xP), to do numerical simulation.

When taking into account the gluon number fluctuations (beyond mean field ap-

proximation), the scattering amplitude in Eq.(28) will be replaced by the averaged

(physical) amplitude 5, 〈T (rQs, xP)〉, which is given by averaging over all possible

gluon realizations/events, corresponding to different events in an experiment.

In the following numerical simulation, we shall only focus on using the physical

amplitude to describe the HERA data and compute the χ2. However, to compare

and demonstrate that the physical amplitude does improve the description of HERA

data, we also compute the χ2 by using the scattering amplitude derived in the mean

field approximation.

2. The qq̄g components contribution to the diffractive final

state

At large Q2 and small β limits, the emission of soft or collinear gluons become

important for getting a good description of HERA diffractive data. Because at large

Q2 and small β the dipole will emit soft or collinear gluons which bring a large

logarithm ln(Q2) or ln(1/β) contribution to the production of diffractive final state.

Relative to the suppression of diffractive structure function by an extra power of αs

in the process of γ∗p −→ Xp (where X standing for configuration qq̄g), the large

logarithm ln(Q2) or ln(1/β) will compensate the factor of αs. This subsection is

devoted to discuss the qq̄g components contribution to the diffractive final state in

the mean field approximation and beyond the mean field approximation at large Q2

and small β limits.

• The large−Q2 limit

At large Q2, there is a large ln(Q2) contribution to the transverse diffractive

structure function, which was computed in [65, 66]. In the coordinate space,

5For the more detail discussion of how to get physical amplitude, please see Section 3.1.2
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the transverse distance between the quark and gluon is much larger than the

transverse distance between the quark and antiquark(see Fig. 3.11). The gluon

and the qq̄ pair(it is equivalent to a gluon in the large Nc limit) form an effec-

tive gluonic color dipole which scatters off the proton. At leading ln(Q2), the

diffractive structure function can be written as

xPF
qq̄g
T |LL(Q2)(β, xP, Q

2) =
R2

pαsCFNcβ

16π3

∑

f

e2f

∫ Q2

0

dk2 ln

(

Q2

k2

)
∫ 1

β

dz

×
[

(

1−β

z

)2

+

(

β

z

)2
]

× I2(
√

1−z,
√
z,Qs/k) (29)

with

Ig(a, b, c) =

∫ ∞

0

rdrJ2(ar)K2(br)T̃ (cr, xP) (30)

where T̃ is equivalent to the qq̄ dipole scattering amplitude T but for a gg

dipole. In the mean field approximation case, we shall use the parametrization

like T̃ = 2T − T 2 which is in terms of large Nc limit and goes well with our

model for the qq̄ dipole scattering amplitude [62], to compute the diffractive

structure function. In this work in addition to the light quark, we also take into

account the heavy quark contribution to the diffractive structure function. To

get a better description of HERA data, we shall replace the β variable in (29)

by β(1 + 4m2
f/Q

2).

To go beyond the mean field approximation one has to include the effect of

discreteness and fluctuations of gluon numbers. We use the relation between

high-energy QCD evolution and reaction-diffusion process in statistical physics

to perform gluon number fluctuations in scattering amplitude. The fluctuations

in gluon numbers are taken into account by averaging over all the event-by-event

amplitude, 〈T̃ 〉 = 2〈T 〉 − 〈T 2〉, see Eq.(8) in Section 3.1.2.

• The small−β limit

At small β, we use a similar approach as in Ref. [62] to compute the diffractive

structure function (for the details see for example Ref. [62]). At the leading

ln(1/β), the transverse diffractive structure function, which contributes from

the qq̄g final state, is given by

xP F
qq̄g
T |LL(1/β)(xP, Q

2) =
CFαsQ

2R2
p

4π2αem

∫ ∞

0

rdr

∫ 1

0

dz |ΨT (z, r;Q2)|2A(r, xP)

(31)
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*γ

p p

ggT

Figure 3.11: Large Q2 limit, the qq̄g components contribution to the diffractive final

state. The transverse distance of qq̄-g is much larger than transverse distance of q-q̄,

an effective gg dipole scatters off the proton.

with

A(|r|, xP) =

∫

d2r′
r2

r′2(r−r′)2

[

T (2)(|r′|Qs, |r−r′|Qs, xP) − T (|r|Qs, xP)
]2

.

(32)

The T (2) (resp.T ) term represents the case where the interaction with the target

takes place after (resp. before) the emission of the gluon (see Fig. 3.12). Since

emitting a soft gluon is equivalent to a dipole splitting into two dipoles, the

scattering of the qq̄g triple off the proton is equivalent to the scattering of two

dipoles with size r′ and r− r′ off the proton, and one has

T (2)(|r′|Qs, |r−r′|Qs, xP) = T (|r′|Qs, xP) + T (|r−r′|Qs, xP)

−T (|r′|Qs, xP)T (|r−r′|Qs, xP) . (33)

In the context of the BK evolution, substituting (33) into (32) the various

terms in (32) can be interpreted as: The two linear terms with positive sign,

T (|r′|Qs, xP) and T (|r−r′|Qs, xP), describe the independent scattering of the

daughter dipoles with the target, the quadratic term with a negative sign cor-

rects for an overcounting of their simultaneous scattering, and the linear term

with a negative sign is the “virtual term” which expresses the possibility that

the parent dipole r survives without splitting.
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To go beyond the mean field approximation, one has to include the gluon

number fluctuations by carrying out the average of the event-by-event scat-

tering amplitude over all events in Eqs. (33) and (32). Note that for the last

term in r.h.s of Eq.(33) we cannot get an analytic expression for averaging

of T (|r′|Qs, xP)T (|r−r′|Qs, xP), because this term refers to two dipoles with

different size r′ and r − r′ scattering off the proton and the integration over

the saturation momentum is complicated. Fortunately, a numerical calculation

provides the solution to this problem. The integration over ρs in Eq.(8) in

Section 3.1.2 can be replaced by integration over the saturation momentum Qs

using the relation ρs(Y ) = ln(Q2
s(Y )/Q2

0). After transforming the integration

over ρs into Qs in Eq.(8) in Section 3.1.2, one has

〈T (|r′|Qs, xP)T (|r−r′|Qs, xP)〉 =

∫

T (|r′|Qs, xP)T (|r−r′|Qs, xP)

× 1√
πσ2

1

Q2
s

exp



−
ln2
(

Q̄2
s

Q2
s

)

σ2



 dQ2
s,

(34)

where Q̄2
s denotes the averaged saturation momentum.

*γ *γ

p p

gqqT qqT

p p

Figure 3.12: Small β limit, the qq̄g components contribution to diffractive final state.

The qq̄g triplet scatters off the proton after the gluon emission, and the qq̄ pair

scatters off the proton before the gluon emission.

• The model for xPF
qq̄g
T

In order to obtain a correct qq̄g contribution to diffractive structure function

at both large Q2 and small β limits, we use the following way to reconstruct
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xPF
qq̄g
T [62]

xPF
qq̄g
T (β, xP, Q

2) = xPF
qq̄g
T |LL(Q2)(β, xP, Q

2)
xPF

qq̄g
T |LL(1/β)(xP, Q

2)

xPF
qq̄g
T |LL(Q2)(β=0, xP, Q2)

, (35)

where xPF
qq̄g
T |LL(Q2)(β=0, xP, Q

2) is the diffractive structure function of the qq̄g

contribution at the small β limit in the leading ln(Q2) approximation. Using

the approximation K2(x) ∼ 2/x2 for x → 0, at β = 0 the Eq.(29) is reduced to

xPF
qq̄g
T |LL(Q2)(β=0, xP, Q

2) =
CFNcαsR

2
p

6π3

∑

f

e2f

∫ Q2

0

dk2

[

ln

(

Q2

k2

)]

×
∣

∣

∣

∣

∫ ∞

0

dr

r
J2(kr)

(

2T (rQs, xP) − T 2(rQs, xP)
)

∣

∣

∣

∣

2

.

(36)

For Q2 ≫ Q2
s, Eqs.(36) and (31) are reduced to the same quantity, which has

the form as

xP F
qq̄g
T (β=0, xP, Q

2≫Q2
s) =

CFNcαsQ
2
sR

2
p

3π3

∑

f

e2f ln

(

Q2

Q2
s

)
∫ ∞

0

dr̄

r̄3

×
[

2T (r̄, xP) − T 2(r̄, xP)
]2

. (37)

One can see that Eq.(35) is a reasonable expression for the qq̄g components con-

tribution to diffractive structure function at large Q2 and small β limits. This is

because at the largeQ2 limit the ratio of xPF
qq̄g
T |LL(1/β)(xP, Q

2)/xPF
qq̄g
T |LL(Q2)(β=

0, xP, Q
2) ∼ 1, the dominant contribution of the qq̄g components to the diffrac-

tive structure function comes from xPF
qq̄g
T |LL(Q2)(β, xP, Q

2), and at the small β

limit the ratio of xPF
qq̄g
T (β, xP, Q

2)/xPF
qq̄g
T |LL(Q2)(β = 0, xP, Q

2) ∼ 1, the dom-

inant contribution of the qq̄g components to the diffractive structure function

comes from xPF
qq̄g
T |LL(1/β)(β, xP, Q

2). The advantage of Eq.(35) is that it bridges

the two limits.

To go beyond the mean field approximation, one has to perform the average of

the event-by-event scattering amplitude over all events in Eqs. (36) and (37)

which will be used to compute the diffractive structure function xPF
qq̄g
T (β, xP, Q

2)

beyond the mean field approximation. We wish to note that for the average of

〈T 2〉 we use the same way as in Eq. (34) to perform the integration over the

saturation momentum. Note that the qq̄g contribution is only important at

large Q2 and small β regime. For the small Q2 and large β regime, the qq̄g
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contribution cannot be correctly described, because in these regions the qq̄g

contribution is overwhelmed by the qq̄ components and is not relevant.

3.2.2 Numerical results

1. Fixing the model parameters by the HERA F2 data

We will use the averaged IIM model to compute the χ2 which reflects the quality of

our description of diffractive HERA data. The parameters have already been obtained

in Sec. 3.1.3 (for details see Table. 3.3), in which both heavy quarks and gluon number

fluctuations are included in the fit of the proton structure function. We will use the

value of parameters in the third line at Table. 3.3 to estimate the χ2.

2. Unified description of HERA diffractive data (beyond the

mean field approximation)

The model which was proposed by Iancu, Itakura and Munier (IIM) was formu-

lated in the color dipole picture. In this formalism both the inclusive and diffractive

cross sections can be calculated. The inclusive cross section of IIM model in ep col-

lision was extended to include gluon number fluctuations in our previous study [18].

In this work, we use the IIM model to further study the gluon number fluctuations in

the diffractive ep scattering. In this case, the diffractive cross section and structure

function can be expressed as:

d3σγ∗p→Xp

dxP dβ dQ2
=

4πα2
em

βQ4

(

1 − y +
y2

2

)

σD,3
r (β, xP, Q

2) , σD,3
r = FD,3

T +
2 − 2y

2 − 2y + y2
FD,3

L

(38)

with y = Q2/(s · x), where
√
s = 318 GeV is the center-of-mass energy in the e−p

collision.

To compare our model with HERA data, we use following formula to implement

the computation of χ2

xPσ
D,3
r = xPF

qq̄
T + xPF

qq̄g
T +

2 − 2y

2 − 2y + y2
xPF

qq̄
L (39)

which is given in terms of the diffractive structure function. The xPF
qq̄
T and xPF

qq̄
L

components dominate in the regime of large or intermediate values of β respectively,

while the term xPF
qq̄g
T plays a important role at small β. The longitudinal component

xPF
qq̄g
L does not contribute to longitudinal structure function, since for kinematical

reasons small β is associated with y close to 1, (2 − 2y)/(2− 2y + y2) −→ 0.
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Using formulae(26), (27), (35), and the dipole scattering amplitude (4), we com-

pute the χ2 with free parameters which we have extracted by fitting the ZEUS data

with heavy quarks and gluon number fluctuations in the previous section. We compare

our result of χ2/d.o.f with the outcome in [62], in which the gluon number fluctuations

are not taken into account. In this section, we only considered the xP < 10−2 exper-

imental data and used only the H1 [57] data to compute the χ2, because there is a

mismatch between the H1 and ZEUS [58] data with regard to the data normalization.

To estimate the quality of our description, we perform the following χ2 computa-

tions. We use 343 H1 data points, with xP < 10−2, to compute χ2 and multiply the

factor 1.23 to our results in order to account for the mismatch between the H1 and

ZEUS data [57]. We obtain:

• In the mean field approximation

χ2/d.o.f = 1.282 (see Table 3.4) which is consistent with the result in [62].

• Beyond the mean field approximation

χ2/d.o.f = 1.031 (see Table 3.4). Comparing the χ2/d.o.f in the mean field

approximation with χ2/d.o.f beyond the mean field approximation, one can see

that the description of the diffractive DIS data is improved once gluon number

fluctuations are included. This improvement after including fluctuations seems

to support our previous results, namely the violations of geometric scaling or

probably effects of gluon number fluctuations in the HERA data.

However, since in the case of the IIM model the fluctuations do not improve much

the description of the HERA data, this is due to the fact that the IIM model does

already contain some kind of the geometric scaling violations via the BK-diffusion

term, ln(4/r2Q2
s)/

√
2κλY , and describes well the HERA data, even before including

fluctuations. One may think that the BK-equation alone can describe the HERA

data and that fluctuations may be negligible in the energy range of the HERA data.

The intention of this work is to illustrate that even taking such a successful model as

basis one can get improvement in description of the HERA data once gluon number

fluctuations are taken into account.

3.2.3 Conclusions

Let us summarize the main results of this work. We have shown that the description

of the diffractive DIS is improved once gluon number fluctuations are included. This
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model/parameters χ2 χ2/d.o.f x0 (×10−4) λ γc Rp(fm) D

T IIM 433.92 1.282 0.126 0.217 0.731 0.661 0

〈T IIM〉 348.51 1.031 0.0017 0.162 0.689 0.836 0.1105

Table 3.4: IIM model: The parameters of diffractive structure function with (3 line)

and without (2 line) gluon number fluctuations.

improvement after including the fluctuations supports our previous study [18], namely

the violations of geometrical scaling or probably the effect of even gluon number

fluctuations in the HERA data. However, the improvement is not much, this can be

seen from the comparable χ2/d.o.f values in Table 3.4, because the IIM model does

already contain the geometrical scaling violations via the BK-diffusion term. The aim

of this work is to illustrate the possibility that the gluon number fluctuations may be

also present in the diffractive DIS data at HERA and to give further support to our

previous results [18].
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Figure 3.13: The diffractive structure function versus XIP at different values of Q2

and β. The experimental data comes from the latest H1 collaboration. The solid lines

represent the results of averaged IIM model including gluon number fluctuations.





Chapter 4

Froissart bound and gluon number

fluctuations

The consistent description of the impact parameter behavior of the scattering ampli-

tude is a long standing problem. In this work we are going to discuss the influence

of gluon number fluctuation on this behavior.

In fact, some activities toward understanding how fluctuations change the im-

pact parameter dependence of the scattering amplitude have already started (see for

example Refs. [67, 68, 69]). Nevertheless, it is necessary to admit that we are still

far away from the complete and consistent theory related to this subject. The most

crucial difficulty related to the impact parameter dependence is the non-perturbative

(soft) contribution, which should be taken into account at large values of the impact

parameter (for reviews see [21, 70, 71] and references therein). In our approach we

use a quite different technique with comparison to Refs. [67, 68, 69]. Namely, we

calculate the rapidity dependence of the radius of the black disk in the fluctuation-

dominated (diffusive scaling) region at high energy and using the result we make our

main conclusions.

The gluon number fluctuations become important at very high energy. Therefore,

when considering the way how the Froissart bound may emerge based on the knowl-

edge gathered in the small-x physics, the effects of the most recent elements in the

evolution, the effects of Pomeron loop, have to be taken into account.

In this work we focus on the consequences of fluctuations on the impact parameter

dependence of the scattering amplitude. In Section 4.1 and 4.2, we will briefly review

the Froissart bound and the non-perturbative input of the scattering amplitude. The

63
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Froissart bound including gluon saturation effects will be studied in Section 4.3. It

turns out that the total cross section saturates the Froissart bound in the case of

gluon saturation. In Section 4.4, we will compute the impact parameter dependence

of the physical amplitude including gluon number fluctuations. We find that the

physical amplitude has a Gaussian dependence on the impact parameter, which is

in agreement with experimental measurements. We also calculate the radius of the

black disk including gluon number fluctuations and find a unique rapidity dependence

coming from fluctuations. Further, in Section 4.5 we calculate the slope parameter B

and find that it agrees with experimental results. The discussion and conclusion are

given in Section 4.6.

4.1 Unitarity and Froissart bound

In high energy scattering processes, the total cross section for the reaction 12 −→ n

particles is

σ12−→n =
1

4|p1|
√

s

∑

(2π)4δ4(P f − P i)|〈fn|T |i〉|2. (1)

Here |p1| is the magnitude of the initial center-of-mass frame three momentum. It is

well known that the probability conservation in the scattering processes requires the

scattering S matrix to be a unitary matrix SS† = 1. Unitarity of S matrix provides

a simple way to derive total cross sections from the forward(θs = 0) elastic scattering

amplitude, which is known as the optical theorem. For any orthonormal states |i〉
and 〈j|, one has

δji = 〈j|SS†|i〉 =
∑

f

〈j|S|f〉〈f |S†|i〉 (2)

where we have used the completeness relation

∑

f

|f〉〈f | = 1. (3)

We define the T matrix as S = 1 − iT , then the unitarity condition requires that

〈j|T |i〉 − 〈j|T †|i〉 = (2π)4i
∑

f

δ4(P f − P i)〈j|T †|f〉〈f |T |i〉. (4)

In the case of j = i, where the final state is the same as the initial state, we obtain

the optical theorem

σtot
12 =

1

2|p1|
√

s
Im〈i|T |i〉 (5)
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with

2Im〈i|T |i〉 = ImA(s, t = 0) =
∑

f

(2π)4iδ4(P f − P i)|〈f |T |i〉|2, (6)

where A(s, t) is the elastic scattering amplitude, s and t are the center-of-mass energy

squared and a momentum transfer squared, respectively.

In high energy physics, the two particles scattering amplitude A(s, cos θs) can be

expanded in the partial-wave series,

A(s, cos θs) = 16π
∞
∑

l=0

(2l + 1)Al(s)Pl(cos θs), (7)

where Pl(cos θs) is the Legendre polynomial of the first kind, and θs is the s channel

scattering angle in the center-of-mass frame. The partial-wave amplitude Al(s) can

be written in terms of a real phase shift δs and an inelastic threshold ηl

Al(s) =
ηl(s)e

2iδl(s) − 1

2iρ(s)
, (8)

where ρ(s) = 2|p1|/
√

s with our choice of normalization, and unitarity requires that

0 < ηl < 1. Al(s) will be exponentially small for

l ≥ αM−1
√
s ln(s) (9)

and the scattering amplitude (7) may be truncated at this value [72]. With the

unitarity constrain 0 < ηl < 1 and (8), we can get

|Al(s)| =

∣

∣

∣

∣

ηl(s)e
2iδl(s) − 1

2iρ(s)

∣

∣

∣

∣

≤ 1

ρ(s)
, (10)

where ρ(s) −→ 1 as s −→ ∞. We know that the Legendre polynomial of the first

kind |Pl(cos θs = 1)| ≤ 1. So, for large s

|A(s, cos θs = 1)| ≤
lm
∑

l=0

(2l + 1) (11)

with [73]

lm = αM−1
√
s ln(s). (12)

Performing the summation over l in (11), it gives

|A(s, cos θs = 1)| ≤ constat × s ln2(s). (13)
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Substituting it in (5), the Froissart bound is [2]

σtot ≤ constant × ln2(s) (14)

where we have used

|p1|2s = (P1 · P2)
2 −m2

1m
2
2 =

1

4
[s− (m1 +m2)

2][s− (m1 −m2)
2]. (15)

Here, P1 and P2 are the magnitude of the initial center-of-mass frame four momentum

in the two-body scattering process 1 + 2 −→ 3 + 4, the m1 and m2 are the mass of

particle 1 and particle 2. The Froissart bound is one of the outstanding results of

the analytic S matrix theory. This bound has been derived 1961 by Froissart[2]

assuming that the two particles scattering amplitude has uniformly bounded partial

wave amplitudes and satisfies the Mandelstam representation with a finite number of

subtractions. The Froissart bound expresses that the hadronic total cross section can

not rise faster than constant × ln2 s.

4.2 The non-perturbative input

In many practical applications, it is too complicated to perform calculations of the

scattering amplitude keeping precisely the information about the impact parameter

dependence, since it is related to the non-perturbative physics. In order to simplify the

situation, one considers the scattering at fixed impact parameter and then introduces

the knowledge about the impact parameter dependence through some profile function,

which we will denote by S(b). Usually, the following two ansätze are used as a non-

perturbative input:

1. The scattering amplitude expressed as the product of the scattering amplitude

at fixed impact parameter times the profile function S(b)

T (Y, r, b) = T (Y, r) · S(b). (16)

Such factorization form is usually used in the region of large values of the impact

parameter b.

2. The second one is mostly inspired by the numerical study of BK equation with a

modified BK kernel in which the kernel of the BK integral equation is regulated
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to cut off infrared singularities [74]. The impact parameter dependence is intro-

duced through the saturation scale, Qs(Y, b) = Qs(Y ) · S(b), and consequently

for the scattering amplitude we have:

T (Y, Q, b) = T (Q, Qs(Y, b)) = T (Q, Qs(Y, b = 0) · S(b)) . (17)

In both cases, the impact parameter profile function typically has the exponential

behavior S(b) = e−2mπb at large distances b ≫ R0, where R0 is the typical radial

size of the hadron under consideration and R0 increases as A1/3 for a nucleus with

atomic number A. We use such an exponential fall-off at large impact parameter as

a non-perturbative initial condition at low energy.

4.3 Single event amplitude

In the geometric scaling region and in the fixed coupling case, the scattering amplitude

reads

T (Y, r, b) ≃
(

r2Q2
s(Y )

)γs · S(b), (18)

where the saturation momentum is

Q2
s(Y ) = Q2

0e
ωᾱsY (19)

with the arbitrary reference scale Q0 (Q0 ∼ O(ΛQCD)) and the S(b) gives the impact

parameter dependence. Note that here factorization is assumed, which is the case as

in Refs.[75, 74]. Eq. (18) shows geometric scaling with the anomalous dimension

γ = 1 − γs ≃ 0.37. (20)

Now, with the non-perturbative input

S(b) ≃ e−2mπb (21)

at large b, one obtains from the condition

T (Y, r, R) = κ ≃ O(1) (22)

the “black disc radius”

R ≃ γs

2mπ

(

ωᾱsY − ln

(

Q2

Q2
0

))

. (23)
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Eq. (23) gives the standard result given in the literature [75]. We have gone through

such a detailed derivation of (23) since one of the main purposes of the present work is

to show how Eq. (23) is modified once gluon number fluctuation effects are included.

The resulting cross section saturates the Froissart bound

σtot = 2

∫

d2bT (Y, r, b)

= 2πR2

≃ 2πγ2
s

4m2
π

(

ωᾱsY − ln

(

Q2

Q2
0

))2

∼ πγs

2

(

ωᾱs

mπ

)2

ln2 s (24)

with Y = ln(s/Q2).

It is easy to check that both ansätze in Eq. (16) and Eq. (17) for the single event

amplitude lead to the result in Eq. (23).

4.4 Including gluon number fluctuations

Based on the high energy QCD/statistical physics correspondence, we can write

〈T (ρ, ρs(Y, b))〉 =

∫

dρs(Y, b)T (ρ− ρs(Y, b))P (ρ− 〈ρs(Y, b)〉) (25)

where we have used ρ = ln(Q2/Q2
0) and ρs(Y, b) = ln(Q2

s(Y, b)/Q
2
0). The probability

distribution of ρs(Y, b) is argued to have Gaussian form,

P (ρs(Y, b)) ≃
1√
πDY

exp

[

−(ρs(Y, b) − 〈ρs(Y, b)〉)2

DY

]

(26)

and the single scattering amplitude T (ρ− ρs(Y, b)) is

T (ρ, ρs(Y, b)) =







1 for ρ ≤ ρs(Y, b)

exp [−γs(ρ− ρs(Y, b))] for ρ ≥ ρs(Y, b).
(27)

It is easy to show that in the diffusive scaling region, σ ≪ ρ− 〈ρs(Y, b)〉 ≪ γsσ
2,

〈T (Y, r, b)〉 ≃ e−(ρ−〈ρs(Y,b)〉)2/DY ·
√
DY

ρ− 〈ρs(Y, b)〉
(28)

where we have used σ2 = DY with D the diffusion coefficient. Now, with the non-

perturbative input

〈ρs(Y, b)〉 ≃ ρs(Y, b) ≃ ωᾱsY − 2mπb, (29)
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one can easy see that the exponential decrease with b in the single event case is turned

into a Gaussian b dependence

〈T (Y, r, b)〉 ≃
√
DY

ρ− 〈ρs(Y, b)〉
· e−(ρ−ωᾱsY +2mπb)2/DY

∝ 1

2
√
π
e−

4m2
πb2

DY . (30)

This consequence of fluctuations seems to be supported by the experimental obser-

vations since, say for pp collision,

dσel

dt
∼ e−B|t| (31)

which after a Fourier transform gives

S(b) ∼ e−
b2

2B . (32)

Second consequence of fluctuations is that the factorization is broken, see Eq. (28),

〈T (Y, r, b)〉 6= f(Y, r) · S(b) (33)

as compared to the single event amplitude in Eq. (18) where

〈T (Y, r, b)〉 = f(Y, r) · S(b). (34)

Third consequence of fluctuations is that also the averaged amplitude in Eq. (30)

satisfies the Froissart bound. Namely, from the condition 〈T 〉 = κ ≃ O(1) (but

κ ≤ 1),

κ ≃
√
DY

ρ− 〈ρs(Y,R)〉 · e
−(ρ−ωᾱsY +2mπR)2/DY (35)

which after taking the logarithm on both sides reads (κ′ close to one)

−κ′ = −(ρ− 〈ρs(Y,R)〉)
DY

+ ln

( √
DY

ρ− 〈ρs(Y,R)〉

)

(36)

and is fullfilled if

ρ− 〈ρs(Y,R)〉 ≃
√
DY . (37)

Now, with 〈ρs(Y,R)〉 ≃ ωᾱsY − 2mπR, one obtains

ρ− ωᾱsY + 2mπR =
√
DY

=⇒ R =
1

2mπ

(

ωᾱsY +
√
DY − ln

(

Q2

Q2
0

))

. (38)
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As compared to Eq. (23), this equation taking fluctuations into account contains a

new term
√
DY .

So, including fluctuations and the impact parameter dependence in the way pre-

sented here seems to lead to reasonable results. However, the whole discussion is valid

only in the fixed coupling case.

4.5 Phenomenological applications and estimation

of the slope parameter B

It is well known from numerous hadronic scattering experiments

dσexp

dt
∝ e−B|t|. (39)

where t is the squared four momentum transfer between the projectile and target.

The t−slope B tends to a universal value determined by the proton shape alone [76].

From the experimental measurement of the t−distribution of the vector mesons, the

effective slope B is found to be B = 4GeV −2 [64, 77, 78].

In order to study the t−slope B, we take the Fourier transform of Eq.(39):

Sexp(b) ∝ 1

2 π B
e−

b2

2B . (40)

Now from comparison of factors in the exponent of Eq.(30) with Eq.(40), we can

immediately see that

B =
σ2

8m2
π

=
DᾱsY

8m2
π

=
D

8m2
π

αsNc

π
ln

(

s

Q2

)

(41)

where D is the diffusion coefficient. The value of D = 0.325 is determined by fitting

the HERA data with color glass condensate model plus gluon number fluctuations [18].

Note that the B increases logarithmically with the center of mass energy s, which is in

agreement with the Regge theory. This is the phenomenon known as the shrinkage

of the diffraction peek in Regge theory, which can be interpreted as an increase of the

interaction radius Rint ∼
√

ln s. With the reasonable values αs = 0.3, Nc = 3.0,mπ =
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0.14GeV ,
√
s = 90GeV and Q2 = 10GeV 2, one obtains roughly the experimental

values [64, 77, 78]

B =
D

8m2
π

αsNc

π
ln

(

s

Q2

)

≃ 4.0GeV −2. (42)

4.6 Discussion and conclusion

The main results of this chapter can be summarized as follows: We have argued

that the impact parameter behavior of the scattering amplitude in the presence of

fluctuations has Gaussian-like behavior. Such behavior is in agreement with various

phenomenological models. This indicated that fluctuations may be the microscopic

origin for the Gaussian behavior.

Further we have shown that the factorization of the impact parameter and the

energy dependence of the scattering amplitude are lost once the gluon number fluc-

tuations are included.

We calculated the rapidity dependence of radius of black disk in the fluctuation-

dominated (diffusive scaling) region at high energy. We found that, due to fluctua-

tions, the growth of the radius of black disk is enhanced by an additional (proportional

to square root of rapidity) term.





Chapter 5

High-energy scattering in the

saturation regime including

running coupling and rare

fluctuation effects

The Balitsky-Kovchegov (BK) equation [7, 5] is a non-linear evolution equation which

describes the high energy scattering of a qq̄ dipole on a target in the case of fixed

coupling. An analytic solution to the BK equation in the saturation region has been

found by Levin and Tuchin [20]. The BK equation can be viewed as a mean field

version of more complete equation [7] where the higher correlations are neglected:

The S-matrix of the scattering of two QCD dipoles on a target is replaced in the

BK equation by the product of the S-matrices of the individual dipoles. Such a

replacement is legitimate only in the absence of fluctuations in the light cone wave

function of the target [13]. However, in Ref. [9] was shown that rare fluctuations do

change the result for the S-matrix in the saturation region.

Recently, the evolution equations which include running coupling effects have been

derived by Balitsky and Kovchegov-Weigert [15, 16]. They found that the running

coupling corrections are included in the BK kernel by replacing the fixed coupling

αs in it with a “triumvirate” of the running couplings. A more complete evolution

equation has been studied by Albacete and Kovchegov [17], they have calculated in

addition to the Balitsky and Kovchegov-Weigert equations also the so-called subtrac-

tion contributions. A numerical solution of the more complete evolution equations

73
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were given in [17].

In this work, we will analytically solve these equations in the saturation region

and obtain an analytic result for the S-matrix. We find that the running coupling

corrections modify the S-matrix a lot as compared to the fixed coupling case. More-

over, we study the effect of the rare fluctuations on top of the running coupling in

the way as it was done in Ref. [9] for the fixed coupling case. We find that the rare

fluctuations are less important in the running coupling case as compared to the fixed

coupling case.

5.1 Fixed coupling case

The detailed study of the non-linear BK evolution equation in the fixed coupling case

is introduced in 2.1. Here we only introduce the parts which will be used in this

chapter. The BK equation is

∂

∂Y
S(x⊥ − y⊥, Y ) =

αNc

2π2

∫

d2z⊥
(x⊥ − y⊥)2

(x⊥ − z⊥)2(z⊥ − y⊥)2

× [S(x⊥ − z⊥, Y )S(z⊥ − y⊥, Y ) − S(x⊥ − y⊥, Y )] . (1)

which gives the evolution with rapidity Y = ln(1/x) of the scattering amplitude

S(x⊥, y⊥, Y ) of a qq̄ dipole with a target that may be another dipole, a hadron or a

nucleus. The BK equation is a simple equation to deal with the onset of unitarity and

to study parton saturation phenomena at high energies. At high energies an analytic

solution to the fixed coupling BK equation for the S-matrix deep in the saturation

regime has been derived by Levin and Tuchin[20]. This solution agrees with the one

derived by solving the BK equation in the small S limit [21].

The solution to the Eq. (1) is

S(x⊥ − y⊥, Y ) = exp

[

−c
2

(

αNc

π

)2

(Y − Y0)
2

]

S(x⊥ − y⊥, Y0), (2)

where we have used [10, 24, 18]

Q2
S(Y ) = exp

[

c
αNc

π
(Y − Y0)

]

Q2
S(Y0) (3)

and

Q2
S(Y0)(x⊥ − y⊥)2 = 1. (4)

Eq. (2) gives the standard result given in the literature [21].
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5.2 Running coupling case

The detailed study of the non-linear BK evolution equation in the running coupling

case is introduced in 2.3. Here we only introduce the parts that will be used in the

following study.

5.2.1 Balitsky and Kovchegov-Weigert equations

The evolution equation including higher order corrections reads [17]

∂S(x⊥ − y⊥, Y )

∂Y
= R[S] − S[S] . (5)

The first term in r.h.s of (5), R, which is referred to as the ’running coupling’

contribution and resums all power of αsNf corrections to the evolution. The R has

a form as the leading order one but with modified kernel which includes all effects of

the running coupling

R [S(x⊥ − y⊥, Y )] =

∫

d2z⊥ K̃(x⊥, y⊥, z⊥) [S(x⊥ − z⊥, Y )S(z⊥ − y⊥, Y )

− S(x⊥ − y⊥, Y )] . (6)

The second term in r.h.s of (5), S, which is referred to as ’subtraction’ contribution,

is given by

S[S] = α2
µ

∫

d2z⊥1 d
2z⊥2 K g1 (x⊥, y⊥; z⊥1, z⊥2) [S(x⊥ − w⊥, Y )S(w⊥ − y⊥, Y )

− S(x⊥ − z⊥1, Y )S(z⊥2 − y⊥, Y )] (7)

with αµ the bare coupling.

Eq. (7) shows that the S[S] is of order α2
µ while R[S] is of order αs and all terms of

S[S] are quadratic in S, S(x⊥−w⊥, Y )S(w⊥−y⊥, Y ), S(x⊥−z⊥1, Y )S(z⊥2−y⊥, Y ).

Thus, for high rapidity and small S, the subtraction term is small as compared

to the running coupling term, which also showed numerically in [17]. Since this

is the kinematic region in which we are interested in this work, we will neglect the

subtraction term hereafter. In this work we study the evolution equation in the

saturation regime where the evolution equation including running coupling corrections

can be solved analytically.
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5.2.2 Solution to Balitsky and Kovchegov-Weigert equations

in the saturation regime

In the saturation regime in which the interaction between partons is very strong,

S(x⊥− y⊥, Y ) → 0, and unitarity corrections become important, the quadratic terms

in (5) can be neglected in which case one only needs to keep the second term on the

r.h.s of (6). The evolution equation including running coupling is given by

∂S(x⊥ − y⊥, Y )

∂Y
= −

∫

d2z⊥ K̃(r, r1, r2)S(x⊥ − y⊥, Y ) (8)

with modified kernel K̃(r, r1, r2). In the saturation region, rQS(Y ) ≫ 1, the main

contribution to the integration on the r.h.s of (8) comes from either

1/QS ≪ r1 ≪ r; r2 ∼ r (9)

or

1/QS ≪ r2 ≪ r; r1 ∼ r. (10)

Let us look at one of them, i.e., when 1/QS ≪ r1 ≪ r, the r2 is approximately equal

to r, r2 ∼ r, the K̃Bal(r, r1, r2) becomes

K̃Bal(r, r1, r2) =
Ncαs(r

2)

2π2

[

1

r2
1

+
1

r2
1

(

αs(r
2
1)

αs(r2
2)

− 1

)]

≈ Nc

2π2

αs(r
2
1)

r2
1

(11)

and the K̃KW(r, r1, r2) has the form as

K̃KW(r, r1, r2) =
Nc

2π2

[

αs(r
2
1)

1

r2
1

− 2
αs(r

2
1)αs(r

2
2)

αs(r
2
1)

r1 · r2

r2
1 r

2
2

+ αs(r
2
2)

1

r2
2

]

, (12)

here we use R2(r, r1, r2) ≈ r2
1 which can be obtained via simple calculation in (30) in

Section 2.3 with condition of 1/QS ≪ r1 ≪ r and r2 ∼ r. In the r1 ≪ r2 limit, it is

the first term which dominates Eq. (12) and has the running coupling scale given by

the size of the smaller dipole

K̃KW(r, r1, r2) ≈
Nc

2π2
αs(r

2
1)

1

r2
1

. (13)

We wish to note that the modified Balitsky and Kovchegov-Weigert kernels including

running coupling have the same form in the saturation regime. It is an interesting

outcome which means that the evolution equation with running coupling corrections
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is independent of the choice of transverse coordinate of subtraction point in the sat-

uration regime. And the modified Balitsky and Kovchegov-Weigert equations with

running coupling corrections are equivalent to each other in the saturation region.

That means the S-matrix of the Balitsky and Kovchegov-Weigert equations are ex-

actly the same in the saturation region.

Now let us put the modified kernel (11) or (13) into (8), we can get a simplified

evolution equation as:

∂S(r, Y )

∂Y
= − Nc

2π2

∫ r2

1/Q2
S

d2r1 αs(r
2
1)

1

r2
1

S(r, Y ), (14)

with the running coupling at one loop accuracy

αs(r
2
1) =

µ

1 + µ1 ln
(

1
r2
1Λ2

) , (15)

the Λ is an energy scale where the interactions become strong, µ = αs(Λ
2) and

µ1 = (33 − 2Nf)αs(Λ
2)/12π [79]. Eq.(14) gives

∂S(r, Y )

∂Y
= −Ncµ

πµ1

[

ln

(

1 + µ1 ln

(

Q2
S(Y )

Λ2

))

− ln

(

1 + µ1 ln

(

1

r2Λ2

))]

S(r, Y )

(16)

whose solution (see also [80]) is

S(r, Y ) = e

− Ncµ
cπµ1

2

6

6

4

ln2

„

Q2
S(Y )

Λ2

«

ln

0

B

@

1+µ1 ln
Q2

S
Λ2

1+µ1 ln 1
r2Λ2

− 1
2

1

C

A
+

ln

 

Q2
S (Y )

Λ2

!

µ1
− 1

µ2
1

ln

„

1+µ1 ln
Q2

S
Λ2

«

3

7

7

5

S(r, Y0)

(17)

with the saturation momentum [24, 31]

ln

(

Q2
S(Y )

Λ2

)

=
√

c(Y − Y0) + O(Y 1/6). (18)

We wish to note that the analytic form for the S-matrix at high energies including

the running coupling corrections is different as compared to the fixed coupling case.

The exponent in Eq. (17) is decreasing linearly with rapidity while the exponent in

Eq. (2) is decreasing quadratically with rapidity, which indicates that the running

coupling slows down the evolution of the scattering amplitude with rapidity.
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5.3 Effects of rare fluctuations

5.3.1 Fixed coupling case

At very high energy the typical configuration of a dipole’s light-cone wave function is

a Color Glass Condensate which is a state having high occupancy for all gluonic levels

of momentum less than or equal to saturation momentum QS. In the fixed coupling

case, the authors of Ref. [9] computed the S-matrix of two typical configurations (of

condensate type) and of dipole-typical configuration scattering, they found that the

typical configurations lead to too small results for the S-matrix, being proportional to

exp{−c1Q2
Sr

2/α2
s} and exp{− 1

2c
ln2(Q2

Sr
2)}, respectively. c1 and c are constant which

are not important for our purpose. Thus they tried to search for configurations which

are more rare in the wave function but which dominate very high energy dipole-

dipole scattering and lead to a larger S-matrix. They found the reason why the

typical configurations have given a small S-matrix is that the typical configurations

contain too many gluons at the time of collision, therefore leading to the S-matrix is

extremely small. This suggests that the strategy for finding the rare configuration is

to minimize the number of gluons by suppressing the evolution (see next section for

the details of how to obtain the rare configuration). The rare configuration is a state

which has no more than one dipole of size κr or larger (with κ a constant of order 1

and r a size of parent dipole) when the system undertakes BK evolution. In the center

of mass frame, the S-matrix is then given by the probability of the rare configurations

for each of the parent dipoles partaking in the collision, times the S-matrix for the

scattering of two dipoles separated by a rapidity gap Y0,

SY (r) ≈ e−
1
4c

ln2(Q2
Sr2)SY0(r) (19)

which is significantly larger than the results coming from the condensate-condensate

and dipole-condensate scattering.

5.3.2 Running coupling case

• Rare fluctuations in center of mass frame

Following the framework of Ref. [9], consider the high-energy scattering of

dipoles at zero impact parameter in the center of mass frame where one of

dipoles is left-moving and the other is right-moving. In order to obtain rare con-

figuration, we suppose that the wave function of the right-moving dipole only
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Figure 5.1: The configuration in center of mass frame.

consists of the parent dipole with size r in the rapidity interval Y0/2 < y < Y/2,

where Y0 is the critical value of rapidity for the onset of unitarity corrections,

with the similar requirement on the left-moving dipole in the rapidity interval

−Y/2 < y < −Y0/2. In the rapidity interval 0 < y < Y0/2 and −Y0/2 < y < 0

the right-moving and left-moving dipoles have normal BFKL evolution, respec-

tively.

However, we can not require that all evolution of right-moving dipoles are absent

in the rapidity interval Y0/2 < y < Y . The only thing that we can do is to allow

the evolution which produces very small dipoles, in order to guarantee that the

system has no more than one dipole of size κr or larger, with κ a constant of

order one. And we setup constraints to suppress the creation of dipoles much

smaller than r at rapidities y > Y0/2 to avoid dipoles emitted at intermediate

rapidities evolving into dipoles of size r or larger at rapidity Y/2. We require

that the gluon emission from the parent dipoles is forbidden if the gluon has k⊥
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and y in the shaded triangles of Fig.5.1. The line

ln(k2
⊥r

2) =

√

c(y − Y0

2
) (20)

and a similar line for the lower triangle, is determined by the requirement that

gluons in the right hand side of that line can not evolve by normal BFKL

evolution into shaded triangles.

Now we compute the probability of rare configurations S(x⊥−y⊥, Y −Y0) which

has the same meaning as the survival probability of the parent dipoles after a

BFKL evolution over a rapidities interval Y −Y0 [9]. This probability decreases

with increasing Y due to gluon emission and the corresponding rate is the same

as the virtual term in eq. (27) in Section 2.3:

∂

∂Y
S(x⊥ − y⊥, Y − Y0) = −

∫

d2z⊥ K̃(x⊥, y⊥, z⊥)S(x⊥ − y⊥, Y − Y0) (21)

where K̃(x⊥, y⊥, z⊥) is the modified kernel with the form as (11) or (13). Sub-

stituting (11) into Eq. (21), one gets

∂

∂Y
S(x⊥ − y⊥, Y − Y0) = −Ncπ

2π2

∫ (x⊥−y⊥)2

1/Q2
S

d(x⊥ − z⊥)2 αs((x⊥ − z⊥)2)

(x⊥ − z⊥)2

×S(x⊥ − y⊥, Y − Y0) (22)

whose solution is:

S(r, Y − Y0) = exp







− Ncµ

cπµ1



ln2

(

Q2
S(Y )

Λ2

)

ln





1 + µ1 ln
(

Q2
S(Y )

Λ2

)

1 + µ1 ln
(

1
r2Λ2

) − 1

2





+
ln
(

Q2
S(Y )

Λ2

)

µ1
− 1

µ2
1

ln

(

1 + µ1 ln

(

Q2
S(Y )

Λ2

))











, (23)

here r = |x⊥ − y⊥| is the size of parent dipole.

Let S(r, (Y−Y0)/2) denote the probability of a parent dipole not given rise to any

emission of gluon in the upper triangle of Fig.5.1. The S-matrix can be obtained

by the product of S(r, (Y − Y0)/2) for each of the parent dipoles participating

in the scattering, times S(r, Y0) which is a S-matrix for the scattering of two
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elementary dipoles. By using (23), one gets:

S(r, Y ) = S(r, (Y − Y0)/2)S(r, (Y − Y0)/2)S(r, Y0)

= exp







− Ncµ

cπµ1



ln2

(

Q2
S(Y )

Λ2

)

ln





1 + µ1√
2
ln
(

Q2
S(Y )

Λ2

)

1 + µ1 ln
(

1
r2Λ2

) − 1

2





+

√
2 ln

(

Q2
S(Y )

Λ2

)

µ1
− 2

µ2
1

ln

(

1 +
µ1√

2
ln

(

Q2
S(Y )

Λ2

))











×S(r, Y0) (24)

which only brings in very small corrections to (17) and indicates that the rare

fluctuations are less important in the running coupling case as compared to

the fixed coupling case [9], where the rare fluctuations are important and the

exponential factor of S-matrix in the saturation regime has twice as large as

the result which emerges when fluctuations are taken into account. We also

consider the rare fluctuations on top of the running coupling effects in a general

frame, we find the same result as (24).

• Rare fluctuations in a general frame

Consider a high energy scattering of a right-moving dipole of size r0 and rapidity

Y −Y2 on a left-moving dipole of size r1 and rapidity −Y2 in an arbitrary frame.

The frame and scattering picture are illustrated in Fig. 5.2, where Y0 is a rapidity

gap between two dipoles. For later convenience, we require that Y2 ≤ 1
2
(Y −Y0).

We require that no additional dipoles can be created from the gluon emission

of left-moving dipole r1 which would have a strong interaction with the right-

moving dipoles. The dipoles which would have such strong interactions would

be of size r ≥ 1/QS at the scattering time. So we should suppress the emission of

those dipoles which could become of size 1/QS or larger after a normal evolution

over the rapidity interval −Y2 < y < 0. For the right-moving dipole r0, we

suppress evolution over its Y − Y2 − (Y1 + Y0) with the region of suppression

given by the upper shaded triangle of Fig. 5.2. The line

ln(k2r2
0) =

√

c(y − Y1 − Y0) (25)

and a similar line for the lower triangle, is determined by the requirement that

gluons locating in the right hand side of that line can not evolve by normal

BFKL evolution into shaded triangles. We will determine Y1 by maximizing
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the S-matrix later. The unshaded triangle, whose rapidity values go from 0 to

Y1, is a saturation region where the dipole r0 has evolved into a Color Glass

Condensate.

After we have a clear scattering picture of dipoles, the S-matrix can be evaluated

at hand

S(r0, r1, Y ) = SR(r0, Y − Y0 − Y1 − Y2)S(r0, r1, Y0 + Y1)SL(r1, Y2) (26)

with S(r0, r1, Y0+Y1) is the S-matrix for scattering of a elementary dipole r1 on

a Color Glass Condensate state which is evolved from dipole r0 and SR(r0, Y −
Y0 − Y1 − Y2) and SL(r1, Y2) are the suppression factor from the no emission

requirement for two dipoles, which are given in terms of the area of the upper

and lower shaded regions of Fig. 5.2. After using (23), one obtains

SR(r0, Y − Y0 − Y1 − Y2) = exp

{

− Ncµ

cπµ1

[

c ln

(

1 + µ1

√

c(Y − Y2 − Y1 − Y0)

1 + µ1 ln
(

1
r2Λ2

)

− 1

2

)

(Y − Y2 − Y1 − Y0) +

√

c(Y − Y2 − Y1 − Y0)

µ1

− 1

µ2
1

ln
(

1 + µ1

√

c(Y − Y2 − Y1 − Y0)
)

]}

(27)

and

SL(r1, Y2) = exp

{

− Ncµ

cπµ1

[

c ln

(

1 + µ1

√

c(Y1 + Y2)

1 + µ1 ln
(

1
r2Λ2

) − 1

2

)

(Y1 + Y2)

+

√

c(Y1 + Y2)

µ1
− 1

µ2
1

ln
(

1 + µ1

√

c(Y1 + Y2)
)

− c ln

(

1 + µ1

√
cY1

1 + µ1 ln
(

1
r2Λ2

) − 1

2

)

Y1 −
√
cY1

µ1

+
1

µ2
1

ln
(

1 + µ1

√

cY1

)

]}

. (28)

The S can be computed by using the BK equation with running coupling cor-

rections since the BK equation with running coupling corrections describes cor-

rectly the scattering of an elementary dipole on a Color Glass Condensate. By

using (17), one gets

S(r0, r1, Y0 + Y1) = e
− Ncµ

cπµ1

"

c ln

 

1+µ1
√

cY1

1+µ1 ln( 1
r2Λ2 )

− 1
2

!

Y1+

√
cY1
µ1

− 1

µ2
1

ln(1+µ1
√

cY1)
#

S(r0, Y0).

(29)
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Figure 5.2: The configuration in a general frame.

Substituting (27), (28) and (29) into (26), one obtains:

S(r0, r1, Y ) = exp

{

− Ncµ

cπµ1

[

c ln

(

1 + µ1

√

c(Y − Y2 − Y1 − Y0)

1 + µ1 ln
(

1
r2Λ2

) − 1

2

)

× (Y − Y2 − Y1 − Y0) +

√

c(Y − Y2 − Y1 − Y0)

µ1

− 1

µ2
1

ln
(

1 + µ1

√

c(Y − Y2 − Y1 − Y0)
)

+ c ln

(

1 + µ1

√

c(Y1 + Y2)

1 + µ1 ln
(

1
r2Λ2

) − 1

2

)

(Y1 + Y2) +

√

c(Y1 + Y2)

µ1

− 1

µ2
1

ln
(

1 + µ1

√

c(Y1 + Y2)
)

]}

S(r0, Y0). (30)

which connects to a set of configurations of the wave function described by

rapidity Y1. The S-matrix is determined by the values of Y1 which maximizes

the r.h.s of Eq. (30) or equivalently minimizes the exponent of the r.h.s of

Eq. (30). We obtain

Y1 =
1

2
(Y − Y0) − Y2. (31)
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Taking this Y1 into (30), finally the S-matrix is

S(r, Y ) = exp







− Ncµ

cπµ1



ln2

(

Q2
S(Y )

Λ2

)

ln





1 + µ1√
2
ln
(

Q2
S(Y )

Λ2

)

1 + µ1 ln
(

1
r2Λ2

) − 1

2





+

√
2 ln

(

Q2
S(Y )

Λ2

)

µ1
− 2

µ2
1

ln

(

1 +
µ1√

2
ln

(

Q2
S(Y )

Λ2

))











(32)

which is exactly the same as the corresponding result (24) in the center of mass

frame.

5.4 The shape of dipole cross section including

running coupling

The authors of Ref. [24] computed the scattering amplitude for rQS ≪ 1 using BFKL

evolution and running coupling. Combining the outcome of Ref. [24] and our result

(17) which is valid for rQS ≫ 1, the shape of dipole cross section with running

coupling reads:

T (r, Y ) =











































(

Q2

Q2
S

)−(1−λ0) [

ln
(

Q2

Q2
S

)

+ 1
1+λ0

]

T0 rQS ≤ 1 ,

1 − exp







− Ncµ
cπµ1



ln2
(

Q2
S(Y )

Λ2

)

ln





1+µ1 ln

„

Q2
S(Y )

Λ2

«

1+µ1 ln( 1
r2Λ2 )

− 1
2





+
ln

„

Q2
S (Y )

Λ2

«

µ1
− 1

µ2
1
ln
(

1 + µ1 ln
(

Q2
S(Y )

Λ2

))











S0 rQS > 1 ,

where λ0 is the solution to χ
′

(λ0)(1−λ0) = −χ(λ0) with χ the usual BFKL eigenvalue

function, T0 is a constant but with no control at this moment and QS is the saturation

momentum including running coupling corrections.
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