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Spinpolarization in Photoionization  
 
Photoionization is a very important tool for the understanding of atomic and molecular 
structure. Photoelectrons can be distinguished not only by their kinetic energy but also by 
their directions of emission. The angle-resolved photoionization has therefore become a 
powerful tool to probe physical and chemical structures in solids and surfaces. Similarly we 
can study the electron spin polarization which is a very important quantum mechanical 
observable enabling sensitive tests of the theoretical predictions for the photoionization 
process. 
 
Auger and resonant Auger electrons and their spin polarization 
 
The Auger electron is the finally-emitted electron in the Auger process. An incident beam of 
particles or photons removes a primary electron from a core level of an atom to produce a 
vacancy. A second electron from a higher energy level fills the vacancy under release of 
energy. This excess energy is transferred to the ejected Auger electron.  
The Resonant Auger emission is defined [4] as a scattering event in which a photon promotes 
an atom into an excited final state accompanied by single-electron emission. The spectator 
Auger decay is defined as a photoexcitation of an electron into a Rydberg orbital1, where it 
remains as a spectator to a core Auger transition. This ‘two-step’, ‘independent-particle‘ 
viewpoint of spectator Auger decay leads to a terminology like ‘shake-up’, ‘shake-down’ and 
‘pure spectator’ transitions, since the intermediate orbitals need not coincide with the final 
observed orbital. This is in contrast to transitions in which the excited electron participates, 
which is usually distinguished as autoionization. 
 
 
The Auger decay after atomic core photoionization can be investigated by measuring the spin 
polarization of the emitted Auger electrons. The spin polarization of Auger electrons was 
theoretically investigated by Klar [47] and was attributed to the transfer of orientation from 
the initial inner-shell ionization process to the decay fragments. When the atoms are 
photoionized by circularly polarized light, then the so-called transferred spin polarization 
component, i.e. the component in the direction of the photon momentum, depends basically 
on the orientation of the intermediate ionic states and on certain intrinsic parameters 
determined by the Coulomb matrix elements for the particular transition [52]. The transferred 
spin polarization of the Xe M4,5N4,5N4,5 Auger electrons has been measured by Snell et al [69] 

using circularly polarized light. The hole orientation was determined from the spin 
polarization of the M4

1S0 Auger line allowing an extraction of a linear combination of 
intrinsic Auger parameters, which characterize the dynamics of the Auger decay. These 
intrinsic Auger parameters were determined in an isolated form by Schmidtke et al  [63] from 
the measured angular distribution of the spin polarization of the Xe M4,5N4,5N4,5 3P1 Auger 
line and they have discussed the feasibility of a complete experiment for the Auger decay 
which aims for an extraction of all relevant quantum mechanical information describing the 
atomic process of interest. 

 
1 Rydberg orbital: an orbital with principal quantum number greater than that of any occupied 
orbital of the ground state. 
 



Introduction 6 

 
The angular distribution of resonant Auger electrons in the rare gases was studied 
experimentally by Carlson et al [14], [15], Becker et al [9] and Kämmerling et al [40]. An 
unusually large negative value of the angular distribution parameter was found by 
Hergenhahn et al  [31] and a close relation between the angular anisotropies of the resonant 
Auger and normal Auger processes was found. 
Although the anisotropy parameter meanwhile is generally well understood, the anisotropy 
parameter of the resonant Kr 3d-15p Auger lines is highly sensitive to the complex details of 
the atomic structures. Tulkki et al [71] and Aksela et al [1]have studied the influence of the 
final ionic state-configuration interaction (FISCI) on the anisotropy of the resonant Kr 3d-15p 
Auger lines.  
Mursu et al [58] have found that the effects of FISCI between bound 4s-14p-1np and 
4s24p-3mdnp final states are essentially the same as in the corresponding normal Auger 
spectra. Kitajima et al  [46] have studied the anisotropy parameter of the resonant Auger 
transitions from Kr 3d-15p to the bound 4s-14p-15p and 4s25p levels experimentally and 
theoretically using multiconfiguration Dirac-Fock (MCDF) calculations including correlations 
of all the states involved. The MCDF calculations gave the energy position of the main 
spectral lines and their intensities satisfactorily, which is important for the analysis of the 
measured transferred spin polarization of these lines. The first step spectator transitions are 
found to be strongly anisotropic. The calculations agree very well with the experiment. In this 
thesis transferred spin polarization of the resonantly excited Kr 3d-1

5/2 5p3/2 and the two 
coherently excited levels Kr 3d-1

3/2 5p3/2 and Kr 3d-1
3/2 5p1/2 was measured. 

 
 
Breakdown of the Dipole Approximation in the Description of 
Photoionization at low Photon Energies 
 
The dipole approximation assumes the spatial distribution of the electromagnetic field of the 
photon, exp(ikr) where k is the photon wave vector and r is the position vector, to be 
expressed as a Taylor-series expansion, 1 + ikr + …, which can be approximated to unity if 
all higher-order interactions are neglected[10]. The dipole approximation in photoionization 
by low energy photons in the far UV photon energy range is based on the qualitative 
argument that the wavelengths are much larger than the atomic dimensions corresponding to 
the Bohr radius a0. 
 
Deviations from the dipole approximation in the angular distribution of photoelectrons energy 
were attributed to photon-electron momentum transfer [20] and were first observed by Krause 
[49] and Wuilleumier [74] and recently by Krässig 1995 et al [48]  who measured the 
nondipole contribution to the angular distribution of Ar 1s photoelectrons in the 3.2-5.2 keV 
photon energy range. They found experimentally that the nondipolar interaction results in a 
forward-backward asymmetry. The nondipole contribution to the angular distribution of the 
Ne 2s and 2p photoelectrons was demonstrated at low photon energies in 250-1200 eV photon 
energy range by Hemmers et al [30]. The asymmetry parameters characterizing the first order 
nondipole contribution to the angular distribution of photoelectrons have been calculated by 
Derevianko et al [23] for photoelectron energies ranging from 20 to 5000 eV for all subshells 
of the rare gas atoms He, Ne, Ar, Kr, and Xe in the relativistic independent-particle 
approximation theory IPA. An experimental and theoretical study by Derevianko et al [24] of 
the angular distributions of neon valence photoelectrons in the 100–1200 eV photon-energy 
range revealed a breakdown of the dipole approximation in the angular distribution for Ne 2p 
photoelectrons. These significant second-order nondipole effects are primarily due to electric-
octopole and pure-electric-quadrupole interactions in low energy photoionization. 
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The higher multipole corrections to the spin polarization of photoelectrons, resulting from 
polarized photons, ejected from the 2pJ subshell were investigated by Bechler et al [7] using a 
nonrelativistic approach. The contribution of the electric-dipole-electric-quadrupole 
interference terms of the spin polarization of photoelectrons from Xe 4p and 5p shells has 
been calculated by Cherepkov et al [17] using the non relativistic random phase 
approximation with exchange and they showed that this nondipole contribution to spin 
polarization near the ionization threshold can be observed in a definite measurement 
geometry. Cherepkov et al [18] have attributed this nondipole effect to a quadrupole 
resonance resembling the well-known dipole resonance of Xe 4d photoelectrons. In this thesis 
the spin polarization of Xe 4p photoelectrons was measured near ionization threshold and for 
the first time a non-vanishing nondipole contribution to spin polarization was verified. 
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2.1 Interaction of atoms with electromagnetic field 
 
The Interaction between atoms and electromagnetic radiation can be described in a semi-
classical model1, in which the interaction is treated by time-dependent perturbation theory 
[73]. This perturbation results from a classical radiation field, which is regarded as a 
superposition of plane waves periodic in time. In this situation we will have a weak external 
time-dependent field which induces the atom to emit or absorb one photon. 
The time dependent perturbation H’ in the Hamiltonian will be then: 
 
    H’ = e/m A(t).p,   (2-1 1) 
 
The time dependence of H’ is determined through the vector potential A(t) characterising the 
radiation and e, m and p are the charge, mass and momentum of the electron respectively. 
A(t) can be represented as a monochromatic plane wave. We assume our atomic system has 
two non-degenerate stationary states |i> and |j> . The transition rate for photon absorption is 
mainly characterised through the matrix element of the perturbation connecting these 
stationary states |i> and |j> : 
 
 
   |<j|(e/m) e . p exp(ik.r) |i>|2 ,  (2-1 2) 
 
 
where e is a unit vector in the direction of A(t) (polarization of the photon) and k is the wave 
vector: k = 2π/λ, λ is the wave length. The spatial dependence of interacting photon is 
expressed by the factor exp(ik.r) which can be expanded: 
 
 
   exp(ik.r) = 1 + ik.r +…,   (2-1 3) 
 
 
when the wave length λ >> r that is the amplitude of the wave is constant over the atom, then 
the factor exp(ik.r) is ≈ 1 which is called the electric dipole approximation. In this electric 
dipole approximation the transition matrix element in (2-1 2) will take the form (assuming A 
is polarized in the x-direction): 
 
 
  <j|px|i> = <j| m dx/dt |i> = 2iπ/h <j|H0x-x H0|i>, (2-1 4) 
 
 
where we have used 
 
 

 dx/dt = 2iπ/h[H0,x ] ,    (2-1 5) 
 

 
1 This discussion can be read in detail in chapter 3 of G. K. Woodgate. See References. 
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and H0 is the Hermitian unperturbed Hamiltonian (H0|i> = Ei|i>) and h is the Planck’s 
constant, then we will have  
 
 <j|(e/m)px|i> = 2iπ/mh (Ej-Ei) <j|ex|i>,     (2-1 6) 
 
 
and the atomic part of the problem is reduced to the matrix element of the electric dipole 
operator ex. 
 
The inclusion of the second term in the expansion (2-1 3) leads to the magnetic dipole and 
electric quadrupole terms. 
In the matrix element in (2-1 2) the electron momentum p is projected onto the vector 
potential A, due to the transverse nature of the electromagnetic wave we have k.A = 0, this 
means that only the component of p is important for which k.p = 0. Taking for example k = 
kxx and  p = pyy (x and y are unit vectors), the squared matrix element (2-1 2) will be in this 
higher order approximation: 
 
 
  |<j|(e/m) py (1+ikxx) |i>|2,      (2-1 7) 
 
 
The relatively small second order multiple operator is the interesting one now, thus we 
consider: 
 
 
  |<j|(ieω/mc) py x) |i>|2 ,      (2-1 8) 
 
 
where we have put kx = ω/c. 
Since [x,py] = 0, then we can write xpy as follows: 
 
 
 xpy = 1/2 (xpy-pxy) + 1/2 (xpy+ pxy) = πhlz + 1/2 m(x dy/dt + dx/dt y),  (2-1 9) 
 
 
the first term in the sum (2-1 9) above πhlz (lz is the z-component of the orbital angular 
momentum) leads to the magnetic dipole term : 
 
 
magnetic dipole term:  (ω2/c2)|<j|(eh/4πm) lz|i>|2 = (ω2/c2)|<j| µlz|i>|2 , (2-1 10)  
 
 
where (eh/4πm) lz = µlz is the z-component of the magnetic dipole moment of the atom. 
 
The second term in the sum (2-1 9) can be written as: 
 
 
 1/2 m(x dy/dt + dx/dt y) = πmi/h (xH0y - xyH0 + H0xy - xH0y) 
    = πmi/h (H0xy - xyH0).     (2-1 11) 
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As in (2-1 6) the contribution of this term to the matrix element will lead to the electric 
quadrupole term: 

 
 
(e2 ω2 π2/c2 h2) (Ej – Ei ) |<j|exy|j>|2 = ω4/4c2|<j|exy|j>|2, (2-1 12) 
 

where 2π(Ej – Ei )/h =: ω. 
 
Both magnetic dipole and electric quadrupole terms are greatly reduced relative to the electric 
dipole by the factor Z2α2, where Z is the atomic number and α is the fine structure constant. 
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2.2 Spin polarization transfer for dipole resonance 
 
 

2.2.1 Characterization of Auger electrons 
 
One major object of the spin resolved spectroscopy on Auger electrons is to characterise the 
Auger decay completely i.e. to extract all matrix elements representing all possible channels 
of the Auger decay from the experimentally accessible observables. 
 
For the case of non resonant Auger decay it was found [63] that an exclusive measurement of 
Auger electron properties is not sufficient to extract all matrix elements because the intrinsic 
parameters (the experimentally accessible observables) are intertwined. In this experiment 

[63] the intrinsic parameters β1,γ1 and α2 were determined from measurement of  the 
transferred spin polarization of the two lines  Xe N5 O2,3 O2,3 1S0 and Xe N4 O2,3 O2,3 3P1 and 
their angular distribution using circularly polarized light and then using a fitting procedure. 
The intrinsic parameters describe the dynamical properties of the decay process. The relation 
between the spin polarization of Auger electrons and the intrinsic parameters is shown in 
Appendix 1(A1 1 – A-1 4). 
 
In the case of the Xe N4 O2,3 O2,3 3P1 Auger decay there are only three allowed outgoing 
partial waves due to the conservation of the angular momentum and parity [38]  
 
 
     εs1/2  →M1, ∆1 
Xe(4d)-1 2D3/2 →Xe(5p)-2 3P1 + { εd3/2 → M2, ∆2  (2-2 1) 
     εd5/2 → M3, ∆3 
 
 
Associated with these transitions are three reduced Coulomb matrix elements with amplitude 
Mi and complex phase factor exp i∆k [52]. If the ratios of the amplitudes of the reduced 
Coulomb matrix elements are considered then we will have four independent quantum 
mechanical quantities describing this Auger decay [38] : 
 
    η1 = M1/M3,    (2-2 2) 
 
    δ1 = ∆1 - ∆3,    (2-2 3) 
 
    η2 = M2/M3,    (2-2 4) 
 
    δ2 = ∆2 − ∆3,    (2-2 5) 
 
It was found that in analogy with the photoionization case [62], there is an equation 
connecting the intrinsic parameters for the Auger decay Xe N4 O2,3 O2,3 3P1. This equation is 
valid for the particular Auger transition (4d3/2)-1 → (5p)-2 3P1 . 
 
 
 (α2 – 3/2 √5γ1)2 + (2ξ2)2 = (1+α2)(5 - 3√5β1).   (2-2 6) 
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As a consequence of equation(2-2 6) one of the parameters α2, β1,γ1, and ξ2  is redundant and 
can be evaluated knowing the others. The ξ2 parameter describing the dynamical spin 
polarization has not been measured and can be determined from this equation. 
The intrinsic parameters β1,γ1 , α2 and ξ2 can be expressed as functions of the involved 
Coulomb matrix elements. See Appendix 1(A1 5 – A-1 8) 
 
Now there are three known non-redundant experimental parameters α2, β1,γ1 and four 
unknown Coulomb matrix elements; two amplitude ratios and two phase shift differences 
η1, η2, δ1 and δ2. The extraction of these quantities from the intrinsic parameters corresponds 
to an inversion of the formulae given in Appendix 1. The problem of inversion of these 
formulae corresponds to find a solution in a one-dimensional subspace of the four 
dimensional space spanned by η1, η2, δ1 and δ2 . 
In figure(2-2  1) this one-dimensional subspace is determined by the three projections of 
η1, η2, and δ1 onto the δ2 coordinate, while the relativistic phase shift difference δ2 has been 
chosen as the independent variable. 
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Figure(2-2 1). Solution space of the Coulomb matrix element ratios and phase shift differences for the Xe 
N4O2,3O2,3 3P1Auger decay transition. The solid curve represents the solution which corresponds to the measured 
values of the experiment. The dotted/dashed curves make up the area which may be occupied if the measured 
intrinsic parameters 0.5s/1s, respectively . Source: B. Schmidtke et al J.Phys. B. At. Mol. Phys. 33 , 5225 
(2000). 
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The extracted amplitude ratios and the phase shift differences are interconnected due to the 
interdependence between the intrinsic parameters specified by equation (2-2 6) and the 
solution must be a one-dimensional space, then a mathematically unambiguous extraction of 
Coulomb matrix element ratios and phase shift differences is possible if at least one further 
approximation is made; physically meaningful constraints reduce the possible range of values 
considerably. As a consequence of the above-discussed interconnection of the intrinsic 
parameters additional information about the orientation of the intermediate states of the Auger 
decay is necessary to carry out a complete experiment. 

The extracted amplitude ratios and the phase shift differences are interconnected due to the 
interdependence between the intrinsic parameters specified by equation (2-2 6) and the 
solution must be a one-dimensional space, then a mathematically unambiguous extraction of 
Coulomb matrix element ratios and phase shift differences is possible if at least one further 
approximation is made; physically meaningful constraints reduce the possible range of values 
considerably. As a consequence of the above-discussed interconnection of the intrinsic 
parameters additional information about the orientation of the intermediate states of the Auger 
decay is necessary to carry out a complete experiment. 
  

2.2.2 The resonantly excited Kr 3d-15p Auger electrons  2.2.2 The resonantly excited Kr 3d-15p Auger electrons  
  
The resonant Auger transitions correspond to the excitation of an inner shell electron to one of 
the unoccupied outer-shell orbitals, the Rydberg orbitals [45]. The ion core of Kr is 
differentiated into two states of total angular momentum j = l ± 1/2  due to the LS coupling of 
the angular momentum l and the spin 1/2 of the hole in the inner shell. The resulting two 
states of the core 3d3/2 and 3d5/2 have then a separation of the order of 1 eV. The inspected 
resonant Auger spectrum arising from the transitions of the Kr 3d-15p to the states with 
configurations 4s-14p-1np and 4s-2np have the following features: 

The resonant Auger transitions correspond to the excitation of an inner shell electron to one of 
the unoccupied outer-shell orbitals, the Rydberg orbitals [45]. The ion core of Kr is 
differentiated into two states of total angular momentum j = l ± 1/2  due to the LS coupling of 
the angular momentum l and the spin 1/2 of the hole in the inner shell. The resulting two 
states of the core 3d3/2 and 3d5/2 have then a separation of the order of 1 eV. The inspected 
resonant Auger spectrum arising from the transitions of the Kr 3d-15p to the states with 
configurations 4s-14p-1np and 4s-2np have the following features: 
The spectrum analyzed by Mursu et al [58] is characterized by a strong final ionic state 
interaction FISCI. The correlation satellites result from the strong mixing of the final-state 
configurations 4s-14p-1np of the diagram transitions with the states 4s-24p-3 mdnp 
configurations. The shake-up satellites result when the spectator 5p electron is shaken up to an 
upper orbital in the Auger decay. 

The spectrum analyzed by Mursu et al [58] is characterized by a strong final ionic state 
interaction FISCI. The correlation satellites result from the strong mixing of the final-state 
configurations 4s-14p-1np of the diagram transitions with the states 4s-24p-3 mdnp 
configurations. The shake-up satellites result when the spectator 5p electron is shaken up to an 
upper orbital in the Auger decay. 
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Figure (2-2 2). The resonant Auger electron spectrum of Kr 3d-1
5/25/2 5p at photon energy 91.22 eV.  Figure (2-2 2). The resonant Auger electron spectrum of Kr 3d-1

 5p at photon energy 91.22 eV.  
The roman numerals correspond to Kitajima et al [46]. The spectrum is measured at BESSY II, the first part of 
the spectrum (Peak VI) is measured at constant pass energy Ep = 40 eV, the rest of the spectrum is measured at 
Ep =25eV.

The roman numerals correspond to Kitajima et al [46]. The spectrum is measured at BESSY II, the first part of 
the spectrum (Peak VI) is measured at constant pass energy Ep = 40 eV, the rest of the spectrum is measured at 
Ep =25eV.  
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Kitajima et al [46] have performed a high resolution measurement of angular distribution of 
the resonant Kr 3d-15p Auger electrons and analyzed the measured data including the 
correlation satellites theoretically. They used MCDF calculations with FISCI in the 
configuration space that includes the 4s24p-34d5p configuration. The calculations have 
considered the interference effects due to the overlapping of some contributing resonances. 
The wavefunctions are calculated using the MCDF method for  

Kitajima et al [46] have performed a high resolution measurement of angular distribution of 
the resonant Kr 3d-15p Auger electrons and analyzed the measured data including the 
correlation satellites theoretically. They used MCDF calculations with FISCI in the 
configuration space that includes the 4s24p-34d5p configuration. The calculations have 
considered the interference effects due to the overlapping of some contributing resonances. 
The wavefunctions are calculated using the MCDF method for  

a) the initial resonances, a) the initial resonances, 
b)  the intermediate levels and  b)  the intermediate levels and  
c) the final states of the two-step Auger cascade. c) the final states of the two-step Auger cascade. 

The three initial resonances with J = 1 dipole excitation; the level 3d-1
5/25/2 5p3/2 and the two 

coherent excited levels 3d-1
3/23/25p3/2, 3d-1

3/23/25p1/2 are well separated and can be, described in 
single non-relativistic configuration approximation. 

The three initial resonances with J = 1 dipole excitation; the level 3d-1  5p3/2 and the two 
coherent excited levels 3d-1 5p3/2, 3d-1 5p1/2 are well separated and can be, described in 
single non-relativistic configuration approximation. 
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Figure (2-2 3). The dipole excitation of resonantly excited Kr 3d-1 5p leads to three initial resonances with J = 1. Figure (2-2 3). The dipole excitation of resonantly excited Kr 3d-1 5p leads to three initial resonances with J = 1. 
  
The wavefunction of these initial resonances has been used for calculating the first step Auger 
amplitudes and the electric dipole excitation of the two levels 3d-1

3/23/25p3/2, and 3d-1
3/23/25p1/2 . 

The wavefunction of these initial resonances has been used for calculating the first step Auger 
amplitudes and the electric dipole excitation of the two levels 3d-1 5p3/2, and 3d-1 5p1/2 . 
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2.2.3 Transferred spin polarization of resonantly excited Kr 3d-15p electrons 
 
The transferred spin polarization component [52] of the resonantly excited Kr 3d-15p electrons 
was measured in the electron-fixed frame shown in figure (2-2 4).  
 
 
  Px = -( 1 + α2 A20P2(cosΘ) )-1 ξ1A10sinΘ,   (2-2 7) 
 
for Θ = 90°: 
 
  Px = -(1 - 1/2 α2 A20)-1 ξ1A10,     (2-2 8) 
 

 
Figure (2-2 4). The Z-axis of the laboratory coordinate frame (X, Y, Z) is oriented along the photon beam 
whereas  the electron-fixed frame (x, y, z) is oriented along the direction of the Auger electron. 
 
 
 
where A10 and A20 are the orientation and alignment of the resonance, P2(cosΘ) is the second 
Legendre polynomial, α2 is the intrinsic anisotropy parameter which determines the angular 
intensity distribution of Auger electrons, the product α2 A20 is the angular distribution 
parameter βΑuger  of the Auger electrons. The intrinsic parameter ξ1 characterizes the spin 
polarization component Px. 
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a(J, MJ ) ≠ constant and 
a(J,-MJ) ≠ a(J, +MJ)  

 
 
 
 
Figure(2-2 5) Vector model illustration of the concepts of alignment and orientation of an axially symmetric 
system JMj, J = 5/2. 
 
The orientation A10 and the alignment A20 are parameters which characterize the probability 
distribution of magnetic sublevels of the primary hole state (vacancy) induced by the 
photoionization process [55]. An ensemble of atoms having the total angular momentum J can 
have different populations a(J MJ) corresponding to the different substates MJ. 
When the substates MJ are not isotropic i.e. there is a certain polarization of theses substates, 
we have either an oriented or an aligned state [61]1. See figure (2-2 5). 
 

• a(J MJ) = constant      :isotropy, (2-2 9) 

• a(J MJ) ≠ constant and a(J, -MJ) = a(J, +MJ)  :alignment, (2-2 10) 

• a(J MJ) ≠ constant and a(J, -MJ) ≠ a(J, +MJ)  :orientation. (2-2 11) 

 
Only when circularly polarized radiation is used, the ion orientation will be different from 
zero. The intrinsic parameter ξ1 is geometrically related to β1 and γ1 by the transformation: 
 
   ξ1 =  γ1/2 -  β1.      (2-2 12) 
 
The intrinsic parameters β1 and γ1 describe, in the laboratory frame, the integral transferred 
spin polarization along the photon beam and its angular dependance [52]. 
 
The orientation and the alignment parameters for the resonant excitation from the ground state 
(1S0) by circularly polarized light are known [6] 2 or [39]; their value depends only on the 
value of J which is 1  for the three transitions we have [46]: 
 

 
1 V. Schmidt Electron Spectroscopy of Atoms using Synchrotron Radiation Cambridge University Press 1997 
page 91 
2 V. V. Balashov, A. N. Grum-Grzhimailo and N. M. Kabachnik 2000 Polarization and correlation Phenomena in 
Atomic Collisions. A Practical Theory Course ( New York: Kulwer Academic) page 59 



Theory 

 

17

  A10 = √(3/2) ,  A20 = √(1/2),     (2-2 13) 
 
to calculate the ξ1 parameter, the following expression may be used[39], [52] 
 
  ξ1 = 1/N  ∑j,j’ c1(j,j’)X1

jj’ MJf(l)j M*Jf(l')j’,    (2-2 14) 
 
where MJf(l)j is the amplitude (reduced matrix element) of the Auger decay from the well 
defined atomic state |αiJi> ; Ji is the angular momentum of the state and αi denotes all other 
quantum numbers including parity. The final state of the ion is |αfJf>  and the emitted Auger 
electron is characterized by the orbital and total angular momenta l, j 
 
  MJf(l)j ≡ < αfJf, lj : Ji || V ||αiJi>,     (2-2 15) 
 
where c1(j,j’) = 1/4 (-1)l[(-1)j-1/2( 2j + 1)+(-1)j’-1/2( 2j’ + 1) ] ,   (2-2 16) 
 
 N = ∑j, | MJf(l)j |2,         (2-2 17) 
 
and 
            Ji Ji 1 
 X1

jj’ = (-1)Ji+Jf-1/2 ( 2j + 1) (-1)j+j’ ( 2j + 1) ( 2j’ + 1) (j1/2,j’-1/2|10){ j  j  Jf }, (2-2 18) 
 
where the standard notation for the Clebsch-Gordan and 6j coefficients is used. 
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2.3 Nondipole contributions to the angular intensity distribution of 
photoelectrons 

 
 
The assumption that the dipole approximation is sufficient to describe the photoionization 
process for photon energy below 1 keV is no longer accepted as being exact . 
For example there are many studies [30], [24]and [48] which manifest nondipole 
contributions for the angular distribution of photoelectrons. B. Krässig et al [48] have 
investigated  the  nondipolar contribution to the angular distribution of Ar photoelectrons in 
the 3.2 -  5.2 keV photon energy range. In the dipole approximation the differential cross 
section for photoionization by a linearly polarized light is given by : 
 
     dσ/dΩ = (σ/4π)[1+βP2(cosθ)],  (2-3 1) 
 
where σ is the angle integrated cross section, θ is the angle between the photon polarization 
and the photoelectron momentum vectors, P2(cosθ) is the second Legendre polynomial, 
P2(cosθ) = 1/2 (3cos2(θ) – 1), β is the photoelectron asymmetry parameter. In the dipole 
approximation the photoelectron angular distribution depends only on the angle θ . 
 
Cooper [21] has considered the nondipolar contribution (the interference between the electric 
dipole and electric quadrupole photoionization amplitudes) to the angular distribution of 
photoelectrons and the following equation for the differential cross section for photoionization 
with linearly polarized light was given as 
 
   dσ/dΩ = (σ/4π)[1+βP2(cosθ)+(δ+γcos2θ)sinθ cosφ], (2-3 2) 
 
where the asymmetry parameters δ and γ characterize the nondipolar contribution. 
φ is the azimuthal angle between the photon propagation vector k and the projection of 
photoelectron momentum vector p in the plane perpendicular to the photon polarization 
vector ε . 
See figure (2-3 1). 
 

 
Figure (2-3 1). Coordinates used for the description of photoelectron angular distribution: θ is the polar angle of 
the photoelectron momentum vector p with respect to the photon polarization vector ε, and φ is the azimuthal 
angle defined by the projection of p in the plane perpendicular to ε and containing the photon propagation vector 
k 
Equation (2-3 2) can be simplified when the measurement is carried out at the magic angle  
θ = 54.7 ° , where P2(cosθ) = 0, and by rotating the spectrometer in φ. Then equation (2-3 2) 
becomes: 
 
     I(φ) = 1 + (2/3)1/2(δ+γ/3)cosφ. (2-3 3) 
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For the Ar 1s photoelectrons we have, due to theory [21] , β = 2 and δ = 0. Then equation  
(2-3 3) will be : 
 
     I(φ) = 1 + (2/27)1/2 γcosφ.  (2-3 4) 
 
This φ dependence of the cross section of Ar 1s photo electrons due to the asymmetry 
parameter γ is confirmed experimentally as shown in figure (2-3 2) at a photon energy of  
2000  eV  
 

 
Figure (2-3 2) Dependence on azimuthal angle φ of 2000 eV Ar 1s photoelectrons at a fixed polar angle θ = 
54.7°. The solid line is a fitted curve used to determine γ Source: B. Krässig et al Phys. Rev. Lett. 75, 4736 
(1995) 
 
The measured γ values for Ar 1s are plotted in figure (2-3 3). The calculated asymmetry γ 
from Cooper is plotted too in the figure, the γ parameter depends on the kinetic energy of the 
photoelectrons, and this asymmetry γ parameter does not vanish for low photoelectron energy. 
 

 
Figure (2-3 3) Dependence on electron kinetic energy of measured values of the Ar 1s nondipolar asymmetry 
parameter γ compared with Cooper’s calculated values(solid circles with spline-fit line) Source: B. Krässiget al 
Phys. Rev. Lett. 75, 4736 (1995) 
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2.4 Contribution of nondipole (Quadrupole –Dipole Interference) terms 
to photoelectron spin polarization of the Xe 4p shell 

 
 
Y. S. Kim et al [44] has predicted that for photon-photoelectron polarization correlations in 
np1/2- and np3/2-subshell photoionization of uranium, deviations from dipole approximation 
may be visible for spin polarization parameters even at low photon energies. A. Bechler et al 
[7] have investigated multipole effects in the spin and polarization correlations for 2p 
photoelectrons in the nonrelativistic framework using the Independent Particle 
Approximation. They found small corrections to the dipole approximation at low energies and 
low Z, which increase with energy and atomic number. 
N. A. Cherepkov and S. K. Semenov [17] calculated non-relativistically the contribution of 
electric-dipole-electric-quadrupole interference terms to the spin polarization of Xe 4p 
photoelectrons in the photon energy range below 350 eV. They investigate the first nondipole 
corrections of photoelectrons ejected from atomic subshells with l > 0.  
In the dipole approximation the differential photoionization cross section Iλ

j(κ,s) for the 
ejection of photoelectrons in some direction κ with spin s, is given by [16] 
 
 
 Iλ

j(κ,s) = [αωp/(2j+1)]Σµ1, µ2,mj <ψnl jmj|d*
λ| ψ−

pµ1>1/2(1+σs) < ψ−
pµ2|dλ| ψ nl jmj >, 

(2-4 1) 
 
 
where the subscript λ = ±1 is the photon helicity for circularly polarized light, and λ = 0 for 
linearly polarized light, 
 
ψnljmj is the initial state wave function, the subscripts n, l, j, mj are the quantum numbers of the 
initial state, and 
ψ−

pµ is the final state electron wave function. The subscript p denotes the direction of the 
electron momentum p, the subscript µ is the spin projection on the quantization axis which is 
the direction of the photon polarization vector for linearly polarized light and the direction of 
photon beam for circularly polarized light. 
 
dλ = (4π/3)1/2rY1λ(θ,φ) is the dipole operator with r being the position operator and 
Y1λ(θ,φ) are the spherical harmonics. 
 
1/2(1+σs) is the spin projection operator with σ being the Pauli matrix vector and 
 
α characterizes the direction of s and ω is the photon energy. 
 
Summation over all projections in (2-4 1) leads to [16], [28] the following expression of the 
differential photoionization cross section Iλ

j(κ,s) for the ejection of photoelectrons in some 
direction κ with spin s in a vector form independent of the particular choice of coordinate 
frame: 
 
 
 Iλ

j(κ,s) = (σnl j(ω)/8π){1+((2-3λ2)/2)βjP2(kκ)+λAj(sk) 
  -λγj[3/2(κk) (κs)-1/2(sk)]+2(2-3λ2)ηj(sκxk)(κk) (2-4 2) 
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Figure (2-4 1). The direction of the circularly polarized photon k, the photoelectron κ and the spin poarisation s. Figure (2-4 1). The direction of the circularly polarized photon k, the photoelectron κ and the spin poarisation s. 
  
  
  
κ, s and k are unit vectors in the directions of the photoelectron, the spin polarization and the 
photon beam. See figure (2-4 1). 
κ, s and k are unit vectors in the directions of the photoelectron, the spin polarization and the 
photon beam. See figure (2-4 1). 
  
σnl j(ω) is the partial photoionization cross section of the subshell with quantum numbers n, l 
and j. 
σnl j(ω) is the partial photoionization cross section of the subshell with quantum numbers n, l 
and j. 
  
βj is the angular asymmetry parameter. βj is the angular asymmetry parameter. 
  
Aj, γj and ηj  are the polarization parameters defining the polarization of the photoelectrons. 
They are derived in [16]. 
Aj, γj and ηj  are the polarization parameters defining the polarization of the photoelectrons. 
They are derived in [16]. 
  
  
To investigate the nondipole contribution [17], the next term in the operator for photon 
electron interaction(see section 2.1) must be considered : 
To investigate the nondipole contribution [17], the next term in the operator for photon 
electron interaction(see section 2.1) must be considered : 
  
  
     Hint(r) ~ ep[1+ikr]. (2-4 3)      Hint(r) ~ ep[1+ikr]. (2-4 3) 
  
  
This leads to the correction of the dipole operator dλ in (2-4 1) : This leads to the correction of the dipole operator dλ in (2-4 1) : 
  
  
     dλ → dλ +ikqλ,  (2-4 4)      dλ → dλ +ikqλ,  (2-4 4) 
  
  
where  qλ = (4π/15)1/2 (
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r2/2) Y2λ(θ,φ). where  qλ = (4π/15)1/2 (r2/2) Y2λ(θ,φ). 

x 

y 

z 

s κ 
k 

The electric-quadrupole correction ikqλ to the electric-dipole approximation is of the order 
Zα, where α is the fine structure constant, while the first relativistic corrections are of the 
The electric-quadrupole correction ikqλ to the electric-dipole approximation is of the order 
Zα, where α is the fine structure constant, while the first relativistic corrections are of the 
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order of (Zα)2. Therefore the electric-dipole-electric-quadrupole interference terms are 
calculated using non-relativistic wavefunctions. 
 
Taking the quadrupole corrections into account, then equation (2-4 2) will be for circularly 
polarized light: 
 
 
 I±

J(κ,s)=1/2σnl j(ω)[Bj
000Y00

00

                                                          

(κ,s)+Bj
220Y20*

20(κ,s)+ Bj
110Y10*

10(κ,s) 
+ Bj

330Y30*
30(κ,s) ± Bj

101Y01*
01(κ,s) ± Bj

121Y21*
10(κ,s) + Bj

221Y21*
20(κ,s) 

+ Bj
111Y11*

10(κ,s) ± Bj
211Y11*

20(κ,s) ± Bj
231Y31*

20(κ,s) + Bj
331Y31*

30(κ,s)], 
         (2-4 5) 

 
 
where the YLx

y0 are the bipolar spherical harmonics, some of the parameters Bj
yLX are the 

polarization parameters in the electric-dipole approximation and the rest are new parameters 
defining the nondipole corrections . See Appendix 2. 
 

2.5 Separation of dipole and nondipole terms in particular geometries  
 
 
To observe the contribution of the nondipole terms in photoelectron spin polarization we can 
measure the spin polarization in a definite experimental geometry in which the electric-dipole 
approximation vanishes  at the photoelectron ejection direction κ. 
The electric-dipole approximation will be zero when both unit vectors κ and s are 
perpendicular to k [17]. 
 
In the geometry where all three unit vectors are mutually perpendicular, κ⊥k , s⊥k and κ⊥s, 
the transverse polarization P±1

perp
 is: 

 
 
   P±1

perp = (1+1/4 β)-1 (-3i/√2 (B1/2
111-√7/2√2 B1/2

331).  (2-5 1)1 
 
 
In the geometry where:  κ⊥k and s║κ, the longitudinal polarization P±1

longwill have no 
electric-dipole contribution: 
 
 
 P±1

long= ± (1+1/4 β)-1 (√6/2 (B1/2
211+√(3/2) B1/2

231) = ±(2+β/2)-1(-δ)  (2-5 2) 
 
 

 
1 In this expression the symbol i is the imaginary number √-1. The whole expression is real because B1/2

111 and 
B1/2

331 are complex numbers, see Appendix 2. 
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Figure (2-5 1). The two spin polarization components of Xe 4p1/2 Pperp (equation (2-5 1)) and Plong (equation (2-5 
2)) as a function of  photon energy calculated in RPAE. The result of the IPA calculation of Derevianko is also 
shown. Source : N. A. Cherepkov and S. K. Semenov J. Phys. B 34, L211(2001). 
 
Figure (2-5 1) shows the calculated Pperp  (equation 2-5 1) and Plong (equation 2-5 2) degrees of 
spin polarization of Xe 4p1/2 as a function of photon energy, the dipole matrix elements were 
first calculated in the Hartree-Fock approximation and then many-electron correlations in the 
Random Phase Approximation with Exchange RPAE have been included [2] . The second part 
of equation (2-5 2) is expressed in terms of the anisotropy parameter β and the non dipole 
anisotropy parameter γ calculated in the relativistic Independent Particle Approximation IPA 
calculation of Derevianko [23]. The two theories RPAE and IPA predict a resonance of ~10% 
in the degree of polarization near the ionization threshold as shown in figure (2-5 1). 
 
The dipole polarization parameters and the angular asymmetry parameter β and the spin 
polarization parameters calculated [17] in RPAE for Xe 4p1/2 are shown in  figure (2-5 2) 
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Figure (2-5 2). The angular asymmetry parameter β and the spin polarization parameters calculated in RPAE for 
Xe 4p1/2 source : source : N. A. Cherepkov and S. K. Semenov J. Phys. B 34, L211(2001). 

 
The spin polarization parameters γj and ηj go through zero near the ionization threshold. Due 
to this behaviour  the contribution of the nondipole terms can be of the same magnitude as that 
of the dipole terms. 
 
 

2.6 Nondipole spin polarization angular distribution near ionization 
threshold 

 
 
The angular distribution of the spin polarization resulting from both dipole and nondipole 
contributions for κ⊥s, s⊥k and (κ.k)=cos(θ) is : 
 
 
 P±1

┴ (cosθ)=(η1/2 sinθ cosθ-3i/√2 [B1/2
111-√7/2√2 B1/2

331(5 cosθ2-1)] sinθ) /  
(1-1/2β1/2P2(cosθ)+√3B1/2

110cosθ+√7B1/2
330P3(cosθ)).  (2-6 1) 
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Figure (2-6 1). The angular dependence, θ is the angle between photoelectron direction κ and photon direction κ, 
of the degree of polarization of Xe 4p1/2 photoelectrons for circular polarized light for several photoelectron 
energies calculated in RPAE in the pure electric-dipole approximation ( dashed lines ) and with nondipole 
corrections ( solid lines) Source : N. A. Cherepkov and S. K. Semenov J. Phys. B 34, L211(2001). 

 
Figure(2-6 1) shows the dependence of the degree of polarization of Xe 4p1/2 photoelectrons 
for circularly polarized light calculated by equation (2-6 1) on the angle of electron ejection 
for several photoelectron energies calculated in the RPAE in the pure electric dipole 
approximation ( dashed lines ) and with nondipole approximation ( solid line ). We note that 
at low photoelectron energies the contribution of the electric-quadrupole corrections change 
the shape of the angular dependency. With increasing photon energy the contribution of the 
electric-quadrupole corrections becomes smaller. 
 
Figure (2-6 2) shows the angular distribution of the Xe 4p photoelectrons at the expected 
resonance energy of 6.6 eV. 
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Figure (2-6 2). Angular distribution for the Xe 4p photoelectrons in RPAE for circularly polarized light at kinetic 
energy 6.8 eV in electric dipole approximation ( dashed line ) and with nondipole corrections(full curve). The 
direction of the photon momentum is at angle 0°.  

 
 

2.7 The Quadrupole resonances in the Xe 4p photoionization1 
 
 
Cherepkov  [18] accounted for the resonance in the degree of polarization near the ionization 
threshold for the quadrupole resonances in Xe 4p photoionizations in analogy with the well-
known dipole resonance in Xe 4d photoionizations. There are two alternative ways to describe 
the giant dipole resonances; one in terms of the collective motion of all electrons in the atomic 
shell and the other in terms of a single electron excitation dependent effective potential [13]. 
This double-well effective potential has two contributions, the attractive Coulomb potential of 
the nucleus and other electrons and the repulsive l centrifugal barrier. For sufficiently large 
orbital angular momentum l when the electron is at a distance of the order of a0; the Bohr 
radius, the sum of the two potential contributions can become positive. At large distances on 
the other hand the attractive Coulomb field dominates resulting in a negative effective 
potential. As a result we get this double-well potential: 
 
 

Veff = VCoul(r) + l (l+1)(h/2π)2 / 2mr2.  (2-7 1) 
 
 
In the ionization continuum, penetration of the Centrifugal barrier becomes possible and as 
the kinetic energy of the photoelectron reaches a certain resonance energy the spatial overlap 

                                                           
1 This section is discussed in detail in N. A. Cherepkov and S. K. Semenov J. Phys. B 34 (2001) L211-L217. 
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of the wave function of both bound and continuum electrons will cause the rise in the 
photoionization cross section. 
 
 

 
Figure (2-7 1). The double-well effective radial potential as seen by an emerging electron, against the radial 
distance r from the centre of the atomic core. The electron escapes from the atom with an angular momentum l 
and a kinetic energy ∆E (not to a scale). Source C. Brechignac and J. P. Connerad J. Phys. B: At. Mol. Opt. Phys. 
27, 3795(1994) 

In analogy to the giant resonances in the photoionization cross section due to the nd→ εf 
dipole transitions of Xe which can be explained by virtue of the double-well shape of the 
effective potential, the quadrupole resonances in the Xe 4p photoionization can be explained 
with  the np→εf transitions. 
The matrix elements of the dipole and the quadrupole operators, see section 2.1, calculated in 
the Hartree-Fock approximation [18] are 
 
 

 <εl1|q|nl>  ~ fq (l,l1) ∫dr  r4Rε l1 (r) Rnl (r),  (2-7 2) 
 
 
    <εl1|d|nl> ~ fd (l,l1) ∫dr  r3 Rε l1 (r) Rnl (r),   (2-7 3) 
 
 
where ε is the photoelectron energy, fq (l,l1) and fd (l,l1) are functions depending on the 
orbital angular momentum of both bound and continuum states, and R is the radial part of the 
electron wavefunction of bound and continuum states. 
 
The asymptotic behaviour of the continuous spectrum wavefunction with orbital angular 
momentum l is proportional to 
 
 
    Rεl ~ sin( pr – lπ/2 + 1/p ln2pr +σl + δl ),  (2-7 4) 
 
 
where σl is the Coulomb phase shift and δl is an additional phase shift due to a short range 
part of the HF potential.  
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The dipole and quadrupole matrix elements calculated in RPAE for all allowed transitions 
from Xe 4p and 4d shells are shown in figure (2-7 2). The figure shows that the dipole and 
quadrupole matrix elements for transitions to εf continuum states have a similar behaviour, 
viz. both are significantly larger in the extrema. 
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Figure (2-7 2). Dipole (a) and quadrupole (b) matrix elements calculated in RPAE. Source: N. A. Cherepkov and 
S. K. Semenov J. Phys. B 34, L211 (2001). 

 
 
The matrix elements and the corresponding short range phase shifts δ3 for both transitions 
4d→ εf and 4p→ εf are shown in figure (2-7 3) . The phase shifts δ3 in both transitions 
4d→ εf and 4p→ εf are increasing by approximately π within the resonance. This behaviour 
shows the similarity of both transitions. 
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Figure (2-7 3). Dipole (a) and quadrupole (b) matrix elements and the corresponding short range phase shift. 
Source: N. A. Cherepkov and S. K. Semenov J. Phys. B 34, L211 (2001). 

 
 
The penetration of the wave function of the εf photoelectron at resonance energy into the 
inner well of the effective double-well potential which explain the resonance in 
photoionization closely above threshold is shown in figure (2-7 4). 
 
In this figure (2-7 4) the calculations of the HF wave functions for the 4p→ εf quadrupole 
transition for several photoelectron energies and the wave function of the initial 4p state are 
shown. We see that at low energies the εf electrons are pushed out of the atom and there is 
very little overlapping of both bound and free electron wave functions. At the expected 
resonance energy of ε = 6.6 eV the free electron wave functions have a great overlapping with 
the 4p wave function and the largest amplitude at the maximum of the 4p wave function. 
At higher energies there is still an overlap but with a clear oscillatory behaviour and the 
amplitude goes down, which leads together with the shift of the first node to a smaller 
distance and to a decrease of the quadrupole matrix element. 
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Figure (2-7 4). The wave functions of the 4p bound state and the εf state at different energies. Source: N. A. 
Cherepkov and S. K. Semenov J. Phys. B 34, L211 (2001). 
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3 Experimental Setup 
 

3.1 Synchrotron Radiation 
 
 
The synchrotron radiation is our tool to photoionize atoms in order to study their structure. 
This radiation is the only radiation which has a spectral range from infra red to hard X-rays. 
We can select the energy freely in this range and in the modern 3rd generation synchrotron 
rings like BESSY II we can get linearly or circularly polarized radiation with almost 100% 
degree of polarization.  
 

 
Figure (3-1 1). A panoramic photo of the beamline UE56 2. 

 
Synchrotron Radiation1 is produced when a relativistically charged particle experiences a 
radial acceleration as it travels around a circle. Bending magnets figure (3-1 2 a), Wigglers 
figure (3-1 2 b) and Undulators figure (3-1 2 c) are commonly used to produce Synchrotron 
Radiation. 
 

                                                           
1 The discussion of Synchrotron Radiation here can be read in detail in David Attwood: Soft X-Rays and 
extreme Ultraviolet Radiation, Cambridge University Press 1999: Chapter 5 
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a)

b)

c)

 

Figure (3-1 2). Synchrotron Radiation from a bending magnet(a), Wigglers (b) and Undulators (c) . Source : 
David Attwood Soft X-Rays and extreme Ultraviolet Radiation Cambridge University Press 1999. 

 
The Bending magnets cause a single curved trajectory. The resulting synchrotron radiation is 
directed tangentially outward in a narrow radiation cone with a relatively wide spread of 
photon energy range. The emission angle is 1/γ , where γ is the Lorentz factor [5]. 
 
     γ ≡ (1 - v2/c2)-1/2 = Ee / m0c2, (3-1 1) 
 
v is the electron speed, Ee is the electron energy (1.7 GeV in BESSY II) and m0c2 is the rest 
energy of the electron. 
 
The Undulators are periodic magnetic structures with relatively weak magnetic fields. The 
periodicity causes the electron to experience a harmonic oscillation with a small amplitude in 
the radial direction resulting in a narrow radiation cone, which is narrowed by a factor √N, 
where N is the number of magnetic periods. The spread of photon energy range is very 
narrow. 
 
The Wigglers are a strong magnetic field version of undulators. As a result of this strong 
field, the harmonic oscillations are greater than the natural (1/γ) radiation cone and hence the 
radiated power is larger. 
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Figure (3-1 3). The electrons traverse a periodic magnet structure in an Undulator and generate a narrow cone 
undulator radiation. Source : David Attwood Soft X-Rays and extreme Ultraviolet Radiation, Cambridge 
University Press 1999. 

 
An Undulator is a periodic magnetic structure with N periods of length λu, the transverse 
magnetic field produces an oscillatory path for the electrons; undulations, see Fig (3-1 3). 
In the inertial frame moving with the relativistic electron with constant speed v ( not 
accelerated !), the electron sees a periodic magnet structure moving toward it with a Lorenz 
contracted period, λ’1 given by : 
 
     λ’ = λu / γ.    (3-1 2) 
 
In the frame moving with the electron, the electron radiates as a classical radiating dipole. The 
frequency of the radiation in the laboratory frame is further reduced by Doppler shifting. The 
observed frequency on the axis (θ = 0) will be for β =v/c ≈ 1:  
 
     f = 2γ2c / λu,   (3-1 3) 
 
and the corresponding wavelength λ on the axis ( θ = 0)will be : 
 
     λ = c / f = λu / 2γ2  (3-1 4) 
 
At small angles off axis (θ ≠ 0) the observed wavelength λ will be : 
 
    λ = c / f = λu/2γ2   (1 + γ2θ2). (3-1 5) 
 
From both equations we see, taking the wavelength λ as on axis (θ = 0), λ = λ + ∆λ as off axis 
at angle θ that: 

                                                           
1 The primed frame of reference is the frame moving with the electron at the constant speed v. 
 The unprimed frame of reference is the laboratory frame. 
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     ∆λ / λ = γ2θ2.  (3-1 6) 
 
 
The radiation pattern of the undulator, observed in the laboratory frame is relativistically 
contracted into a narrow radiation cone, its opening half-angle θ is: 
 
     θ = 1 / 2γ.    (3-1 7) 
 
For BESSY II:  γ = Εe / m0c2  =1.7 GeV / 0.511 Mev  = 3327  => the opening half-angle 
θ will be ~ 150 µrad. 
 

 

Figure (3-1 4).  The radiation pattern of an oscillating relativistic charge in the frame of refrence moving with the 
average electron speed and in the laboratory frame of reference. Source : David Attwood Soft X-Rays and 
extreme Ultraviolet Radiation, Cambridge University Press 1999. 

 
Figure (3-1 4) shows the oscillating electron and its radiation pattern in the electron inertial 
frame of reference and the oscillating electron and its radiation pattern in the laboratory 
inertial frame of reference. 
 
Undulator Bandwidth 
 
The periodic array of magnets including N periods acts as a diffraction grating. The relative 
bandwidth is then given by the well-known diffraction-grating equation. For the first 
harmonic: 
 
     ∆λ/λ = 1/N.     (3-1 8) 
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Figure (3-1 5). (left) The spectrum of radiation as seen in the electron frame with a narrow spectral width of 
order 1/N, where N is the number of oscillation periods, (right) in the laboratory frame, the wavelengths are 
shorter, but the spectrum is broader due to off-axis Doppler effects Source : David Attwood Soft X-Rays and 
extreme Ultraviolet Radiation, Cambridge University Press 1999. 
 
 
According to equation (3-1 6) and equation (3-1 8), at an angle θ with respect to the x-axis 
there is a relative shift in the radiated wavelength: 
 
     ∆λ/λ = 1/N ≈ γ2θ2.   (3-1 9) 
 
Thus, the maximum deviation ( angular spread) is given by: 
 
     θ ≈ 1 /  γ√N.   (3-1 10) 
 
From equation (3-1 7) we see that within the cone of half angle θ ≈ 1/2γ the relative spectral 
bandwidth is ∆λ/λ  = γ2(1/2γ)2 = 1/4 ; thus the cone of half-intensity and half-angle 
encloses a relative spectral bandwidth of about 25%. See figure (3-1 5). 
 
For selecting a certain wavelength from the undulator synchrotron radiation, a 
monochromator is used as a narrow bandpass filter. 
Figure (3-1 6) shows a grating monochromator used to filter undulator radiation to the 
spectral width 1/N, and then the further cone narrowing to 1 / γ√N, assuming the radiation 
from a single electron or a tightly constrained bunch of electrons. 
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Figure (3-1 6). Illustration of a grating monochromator as used to filter undulator radiation to a natural spectral 
width 1/N, and the concomitant cone narrowing to 1/γ√N  when the electron beam is tightly constrained. Source 
: David Attwood Soft X-Rays and extreme Ultraviolet Radiation, Cambridge University Press 1999.
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The UE56 double helical Undulator at BESSY II 
 
 

 
 
Figure (3-1 7). The production of linearly and circularly polarized light using undulators. Source : David 
Attwood Soft X-Rays and extreme Ultraviolet Radiation, Cambridge University Press 1999. 
 
Ths UE56 Undulator of Sasaki type [60] emit simultaneously two angularly separated 
circularly polarized beams of opposite helicities.  The Undulator provides circularly polarized 
radiation in the energy range 89 – 1328 eV. This Undulator has four magnet rows. The 
horizontal shifting of  the magnet rows produces a helical field forcing the electrons on an 
elliptical or a circular path, which leads to the emission of elliptically polarized radiation. 
Indeed there are two Undulators, one called upstream and the other downstream. We have 
used both Undulators simultaneously using the beamline facility called Modulator to gain the 
maximum possible photon flux. This big photon flux compensates for the very low cross 
section for photoionization σ of Xe 4p photoelectrons. 
The beamline has a plane grating monochromator . The degree of circular polarization is 
almost 100%.
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3.2 Photoionization Apparatus 
 
 
The experimental setup consists mainly of a new rotatable vacuum apparatus. The apparatus 
is suitable for angle resolved spectroscopy, it can be rotated about two orthogonal axes. It has 
been constructed from Schmidtke, for more details see the dissertation of Schmidtke [66]. 
 
 
 

 
Figure(3-2 1). The whole experimental setup, connected to the UE56 beamline. 
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Figure (3-2 2). Diagram of the experimental setup shows the measurement geometry to measure two components 
of the spin polarization Plong along the direction of photoelectron momentum κ and Ptrans along the direction of 
the photon momentum k. 
 
 
The experimental setup is shown in figure (3-2 2). The synchrotron radiation crosses the rare 
gas atoms in the centre of the UHV chamber, the photoelectrons are monochromatized by a 
spherical deflection analyzer and then transported by the 90°-deflector and electron lens 
system to the Mott-Polarimeter to measure the electron spin polarization. 
 
In this measurement geometry we measure the two spin components Plong and Ptrans 
simultaneously. 
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3.2.1 Electron optics 
 
 
It is necessary to extract the photoelectrons or the Auger electrons with selected energy from 
the region of atom-photon interaction  and to transfer them to the Mott polarimeter to analyze 
their spin polarization. Figure (3-2 3) shows the electron optical system and the voltages for 
the different electrodes are listed in table (3-2 1). 
 
There are many types of electron spectrometers, the conventional type of electron 
spectrometers is the  ‘Spherical Deflection Analyzer’ [67] which we have used in this 
experiment.  
 
The Spherical Deflection Analyzer used in the experiment has a simulated spherical field i.e 
the electric field is not due to full concentric hemispheres, but two cylindrical elements and 
two correcting electrodes create spherical equipotentials in the region of the electron beam 
trajectories [34], [53]. 
For the electrons in the central ray, the ratio of the spectrometer potential energy eU to its 
pass energy Ep is constant [67] 
 
     C = eU / Ep.    (3-2 1) 
 
The radial field Er( r ) is: 
 
     Er( r ) = (U/r2)ab/(b-a),  (3-2 2) 
 
where a and b are the inner and outer radii of the spectrometer hemispheres. Then the 
spectrometer constant C is: 
 
     C = (b/a) - (a/b) ( = 0.956 in our case). 
 
The inverse resolving power of the spectrometer is: 
 
     ∆E/E ≈ d / D + 0.5(∆α)2,  (3-2 3) 
 
where d is the width of the exit slit =2.5 mm, D = a + b = 150 mm and ∆α is the acceptance 
angle. ∆α ≈ ±4°. 
 
Behind the spectrometer, the monochromatized electron beam is deflected by a 90° deflector 
to the rotation axis of the vacuum apparatus. Then the electrons are guided through the 
transport optics; lens 3, Fig (3-2 3), to the Mott polarimeter. 
To trace one electron signal we utilized two channeltron electron detectors (see section 
3.2.4)as monitors, the first is direct at the spectrometer exit, the second one at the exit of  
lens 3. 
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3.2.2 Voltage supply and control of the electron optics 
 
 
The electron optics consist of about 40 electrodes which must be supplied with different 
values of high voltage. It is not practical to use passive voltage dividers to do this task. 
The voltage supply and control of the different electron optics electrodes is a computer-based 
system. The central component of this system, which was developed by Drescher [22] and 
further developed by Schmidtke [64], [66], is an active voltage divider. This active voltage 
divider has a fixed ohmic resistance and a high voltage MOSFET BFC60 transistor as a 
variable resistance, which is able to control high voltage outputs from -1000 V to 1000 V. 
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Table (3-2 1). The electrode voltages of the electron optics system from figure (3-2 3) for Ekin = 35 eV and pass 
energy Ep = 70 eV  
 
Type                Electrode Voltage (Volt)  
   
Lens 1 L1.2 86 
 L1.3 23 
 A1.4 23 
 L1.5 23 
 L1.6 343 

 
 
 

Spectrometer Usoll 35 
 Ui 76 
 Ua  9.1 
 Uk 22.5 
   
   
Lens 2 L2.1 7 
 L2.2 288 
   
   
Deflector Usoll 288 
 Ui 477 
 Ua  168.5 
 Uk 230 

 
 

   
Transport optics L3.1 230 
 A3.2 412 
 L3.3 131 
 L3.4 375 
 L3.5 375 
 L3.6 400 
 L3.7 400 
 L3.8 400 
 L3.9 125 
 L3.10 375 
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3.2.3 Mott polarimeter   
 
 

The fact that Mott scattering is an elastic scattering depending on the spin of participating 
particles is used to measure the spin polarization of photoelectrons and Auger electrons. 
The Mott polarimeter and the underlying physics are discussed in T. J Gay et. al. [26] 
The physical principle of the Mott scattering is based on the LS coupling of high energetic 
electrons in the Coulomb field of a high-Z atomic nucleus and the resulting interaction 
energy; Vso = (Ze2/2m2c2r3) LS results in a left/right scattering asymmetry1 . Here 
L is the orbital angular momentum of the electron, S is the electron’s spin. 
 
A high energetic electron with velocity v in electric field E of a high-Z nucleus sees in its rest 
frame a magnetic field B given by : 
 
 
     B = -(1/c) v x E,    (3-2 4), 
 

E =  (Ze/r3) r,    (3-2 5) 
( r is the nucleus-electron separation ) 
 
B = (Ze/cr3) r x v = (Ze/mcr3) L. (3-2 6) 
(  L = m r x v ) 
 

The LS coupling interaction term is: 
 
     Vso = -µsB,     (3-2 7) 
 
where     µs = -(ge/2mc)S,   (3-2 8) 
 
µs is the magnetic moment of of the electron due to its spin, g is the spin g factor, the 
interaction term Vso is then given by :  
 
     Vso = (Ze2/2m2c2r3) LS.  (3-2 9) 
 
 
The interaction term Vso adds to the Coulomb potential:  
 
    Vtotal = (1/4πε0)Ze2/r + (Ze2/2m2c2r3) LS. (3-2 10) 
 
Due to the dot product in the Vso term the only measured quantity is the transverse component 
of the electron spin, i.e we measure only the component of spin which is parallel (spin up !) or 
antiparallel (spin down !) to the orbital angular momentum of the electron L . L is always 
perpendicular to the scattering plane, so depending on the spin direction up or down, the 
interaction term Vso weakens or increases the total interaction potential. This causes a 
left/right scattering asymmetry in the scattering angles. 
 

 
 

 
1 Left right asymmetry means the measured spin component is vertical due to the LS coupling term. Hence 
vertical spin component is to be understood everywhere when left/right asymmetry is mentioned.  
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In other words the scattering potential Vso introduces a spin dependence in the scattering cross 
section σ(θ) : 
 
     σ(θ) = Ι(θ) [ 1 +  Seff (θ)P.n ],  (3-2 11) 
 
S(θ) is the polarimeter efficiency known as the Sherman function [41]1, I(θ) is the spin 
averaged scattered intensity, and P is the incident electron spin polarization. 
The unit vector n is normal to the scattering plane: 
 
     n ≡ k x k’ /( k x k’ ),    (3-2 12) 
 
where k and k’ are the wave vectors of the incident and scattered electrons. The direction of 
n, which is parallel to L, determines whether scattering is to the left or to the right. 
 
The Sherman function relates the scattering asymmetry and the spin polarization through: 
 
   A(θ) = P(θ) Seff (θ)      (3-2 13) 
 
This relation is the basis of the Mott electron polarimetry. 
 
The Mott polarimeter used in this experiment is a retarding potential Mott polarimeter. In this 
polarimeter, the incident electrons are accelerated by a radial electric field established 
between an inner and outer hemisphere. The inner hemisphere is operated at a high positive 
voltage = 45 kV, the outer electrode is held close to ground potential . Inside the inner 
hemisphere there is the scattering target which consists of  238U-lamella ( around 4 x 6 mm2 ) . 
The scattered electrons leave the inner hemisphere through  ±120° slits and are decelerated in 
the high voltage spherical field as they pass to the outer hemisphere, they are detected by two 
symmetrically positioned Multichannelplates (see next section) near ground potential. 
A major advantage of the retarding potential Mott polarimeter is that the inelastically 
scattered electrons will be discriminated in the retarding potential. Additionally the spherical 
field provides a two-dimensional focusing of the incident electron beam. 
 

                                                           
1 See J. Kessler: Polarized Electrons Springer-Verlag 2nd Edition, page 218. 
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inner sphere
+ 50 kV

Uranium target

outer sphere
+ 1 kV

double 
Microchannelplates

3 kV

Figure (3-2 4). Schematic diagram of the main features of a spherical retarding potential Mott polarimeter. The 
major components are symmetrical about the vertical axis. The electrons are accelerated along this vertical axis, 
then the elastically scattered electrons at the Uranium target are decelerated in the spherical retarding field and 
detected by the double microchannelplates. 
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3.2.4 Channeltrons and microchannelplates as electron detectors 3.2.4 Channeltrons and microchannelplates as electron detectors 
  
  
To detect the electrons scattered in the Mott polarimeter we used microchannelplates while 
Channeltrons were used for monitoring the monochromatized electrons behind the 
spectrometer. 

To detect the electrons scattered in the Mott polarimeter we used microchannelplates while 
Channeltrons were used for monitoring the monochromatized electrons behind the 
spectrometer. 
Both channeltrons and microchannelplates [61]1, MCP (104 - 107  microchannels) are 
principally channels which act as continuous dynode electron multipliers. When a positive 
voltage is applied at the channel exit, a single electron at the channel entrance has a certain 
probability for starting an avalanche of electrons. The electron avalanche leads to a charging 
of the inherent collector’s capacitance CD, and this process stop when the total charge Q of the 
avalanche has been deposited. The transit time that the electrons need for their passage 
through the channel is called the collection time tcoll. It is approximately 100 ns for a 
channeltron and 1 ns for a channelplate. Subsequent processes add more and more charges to 
the collector. Hence in order to allow the counting of single events, discharging of the 
collector through a load resistor Ra is necessary. The maximum amplitude Umax of the voltage 
pulse sent to the preamplifier is given by: 

Both channeltrons and microchannelplates [61]1, MCP (104 - 107  microchannels) are 
principally channels which act as continuous dynode electron multipliers. When a positive 
voltage is applied at the channel exit, a single electron at the channel entrance has a certain 
probability for starting an avalanche of electrons. The electron avalanche leads to a charging 
of the inherent collector’s capacitance CD, and this process stop when the total charge Q of the 
avalanche has been deposited. The transit time that the electrons need for their passage 
through the channel is called the collection time tcoll. It is approximately 100 ns for a 
channeltron and 1 ns for a channelplate. Subsequent processes add more and more charges to 
the collector. Hence in order to allow the counting of single events, discharging of the 
collector through a load resistor Ra is necessary. The maximum amplitude Umax of the voltage 
pulse sent to the preamplifier is given by: 
  
  
     Umax = Q / CD.  (3-2 14)      Umax = Q / CD.  (3-2 14) 
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Figure(3-2 5). Distribution of the pulse height for one of the double microchannelplates of the Mott detector. The 
circles correspond to 700V per plate, the squares correspond to 780V per plate and the triangles correspond to 
800V per plate 

Figure(3-2 5). Distribution of the pulse height for one of the double microchannelplates of the Mott detector. The 
circles correspond to 700V per plate, the squares correspond to 780V per plate and the triangles correspond to 
800V per plate 

Figure (3-2 5) shows the distribution of the pulse height for one of the double 
microchannelplates we use in the Mott detector for three values of operating voltge per plate 
to find the optimal operation parameters of the microchannelplates. 

Figure (3-2 5) shows the distribution of the pulse height for one of the double 
microchannelplates we use in the Mott detector for three values of operating voltge per plate 
to find the optimal operation parameters of the microchannelplates. 

                                                                                                                     
1 V. Schmidt Electron Spectroscopy of Atoms using Synchrotron Radiation, Cambridge University Press 1997, 
page  117. 
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3.2.5 Earth’s magnetic field compensation 
 
 
The earth’s magnetic field is a disturbing factor in the electron spectroscopy especially due to 
the relatively long way from the photoionization region to the Mott polarimeter. The first 
effective procedure to shield the magnetic field is the use of a µ-metal shielding around the 
whole electron optical system. We use in addition Helmholtz coils to compensate actively the 
earth’s magnetic field. Especially when the sensitive nondipole contributions to the electron 
spin polarization was measured, the residual magnetic fields was compensated with 
Helmholtz coils by referring to the Xe 4d3/2 photoelectron. The theory [18]  expects these Xe 
4d3/2 photoeletrons to have no nondipole contribution to the electron spin polarization. 
For each investigated kinetic energy of the Xe 4p photoelectrons, the Xe 4d photoelectrons of 
the same kinetic energy were observed by tuning the photon energy. Then the current through 
the Helmholtz coils was adjusted such that the component of the spin polarization Plong 
vanished, see figure (3-2 6). 
The time required to transport the electrons from the photon-atom interaction region to the 
Mott polarimeter is about 200 ns. During this time the residual magnetic fields affects the 
electron spin polarization vector and rotates the dipole sensitive component Ptrans. The angle ζ 
of rotation of the dipole sensitive component Ptrans was estimated for our apparatus [66] to be 
about 6° (ζ = arctan Plong/Ptrans). 
The residual magnetic field B causes the precession of the spin polarization vector with the 
Larmor frequency : 
 
    vL = (µB/h) B,    (3-2 15) 
 
where µB is the Bohr magneton. A residual magnetic field of ca. 6 µT causes the spin 
polarization vector to (rotate!) about B with the estimated angle of 6°. The residual magnetic 
field is compensated by the Helmholtz coils to suppress the rotation of the spin polarization 
vector. 
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Figure(3-2 6). The spin polarization component Plong of Xe 4d3/2 solid squares and Xe 4d5/2 solid circles for 
different values of the electric current in the Helmholtz coils determine the right B field at which Plong = 0. 
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Measurement of the Electron Spin Polarization 

4 Measurement of the Electron Spin Polarization 
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The measurement of the electron spin polarization goes back to a measurement of a left/right 
asymmetry resulting from the scattering of the high energetic electrons from a high Z target. 
In many cases the spectral line of interest (Signal) is not isolated, but has neighbouring lines 
(Spectral Background)which would be detected too. Then we will have to subtract the spectral 
background from the signal to get the net counts of the line of interest. We must subtract the 
additional electronic background, which is the intensity the detector measures independently 
of the real signal + spectral background. This can be due to apparative asymmetry and due to 
the so called dark counts i.e. the counts not resulting from photoionization or the subsequent 
Auger process. To measure the asymmetry resulting from the signal and from the background 
(spectral and electronic) we perform the following routine: 
 

1) The spectrometer is adjusted to the kinetic energy of the line of interest for a certain 
time interval of 10 seconds and the intensities in both left and right counters SL and SR 
are measured. 

 
2) Then the spectrometer is adjusted to an arbitrary kinetic energy which is very far from 

the kinetic energy of our interest and we know with certainty that there are no 
electrons at that kinetic energy and measure both left and right intensities to determine 
the electronic background of the Signal for the same time interval of 10 seconds 
Belectronic L (S) and Belectronic R (S). 

 
3) The measuring program then calculates the net counts: NL(S) = SL - Belectronic L (S),  
       NR(S) = SR - Belectronic R (S). 
 
4) Then the spectrometer is adjusted to the kinetic energy of the spectral background and 

both left and right detectors measure intensities for the same time interval of 10 
seconds and determine the intensities Bspectral L and Bspectral R . 

 
5) We repeat step (2) in order to determine the electronic background of the spectral 

back-ground for the same time interval of 10 seconds BelectronicL (BspectralL) and  
Belectronic R (Bspectral R). 

 
6) As in steps (3) the measuring program then calculates the net counts: 
 
 

   NL(Bspectral) = Bspectral L - Belectronic L (Bspectral L) (4-1 1), 
 
 

NR(Bspectral) = Bspectral R - Belectronic L (Bspectral R) (4-1 2). 
 

7) The total measuring time until now is 40 seconds: 10 seconds for signal, 10 seconds 
for its electronic background, 10 seconds for the spectral background and 10 seconds 
for its electronic background. This 40 second sequence is then repeated 5 times (5 x 40 
= 200 seconds) to acquire more counts. The relative statistical error of the count N is ~ 
(1/N)-1/2 . 
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From this 200 second measuring time we get the four counts N+
L(S), N+

R(S), N+
L(Bspectral) and 

N+
R(Bspectral) for the positive light helicity. We then change the light helicity and do the same 

200 second measuring sequence to obtain N-
L(S), N-

R(S), N-
L(Bspectral) and N-

R(Bspectral). 
 
Now we can calculate the asymmetry of the signal AS and the Asymmetry of the spectral 
background AB from the 8 counts : N+

L(S), N-
L(S), … which we have gained. Then the left 

and right scattered asymmetries are measured for both light helicities to get rid of the 
apparative asymmetry to the first order as will be discussed in chapter 5. 
 
The Sherman function Seff, is then measured as discussed below, to calculate the spin 
polarisation of both signal and spectral background. When the relative intensity of spectral 
background to signal is determined then the spin polarization of the net signal can be 
determined as will be discussed in chapter 5. 
 

4.1 Determination of the Sherman function 
 
To determine the Sherman function the asymmetry of well-known polarized electrons, the Xe 
4d3/2 and Xe 4d5/2 [68], were measured. 
 
line polarization statistical 

 error 
measured  
asymmetry 

statistical  
error 

Sherman 
function 

statistical  
error 

Xe 4d3/2 -0.83 0.09 -0.184 0.002 0.22 0.02 
Xe 4d5/2 0.57 0.07 0.121 0.001 0.21 0.03 
 
The weighted average of both values of the Sherman function is 0.22 ± 0.02.  
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5.1 Errors resulting from instrumental asymmetries and external fields 
 
As shown in sec. 3.2.3 an electron beam with spin polarization P normal to the scattering 
plane of a high Z target will result in a left-right asymmetry of the scattered intensities N1 and 
N2 through the same angle θ to the left and right. 
 
    A = ( N1 – N2 ) / ( N1 + N2 ) ,   (5-1 1) 
 
where   
 

  P = A / Seff      (5-1 2) 
 
This left-right asymmetry can arise from a non spin polarized electron beam due to some 
apparative asymmetry Af like an oblique incidence of the electron beam ( the beam is not 
exactly normal to the target), which will cause one of the two detectors to see more electrons 
than the other detector. 
 
If we can reverse the spin polarization of the incident beam without shifting the beam then, as 
is shown[27], the instrumental asymmetry can be eliminated to the first order . 
The special helical undulator UE56 in the third generation storage ring ( BESSY II ) allows  
easy reverse of the transferred spin polarization of the incident beam without shifting the 
beam by reversing the light helicity. 
 
 
If we denote the efficiencies of the left and the right detectors by L and R and we assume that 
one detector will see more electrons than the other due to oblique incidence of the electron 
beam, then we will have a resulting apparative asymmetry Af : 
 
     N+

1 = L(1+P Seff)(1+Af),  (5-1 3) 
 
     N-

1 = L(1-P Seff)(1+Af) ,  (5-1 4) 
 

N+
2 = R(1-P Seff)(1-Af) ,  (5-1 5) 

and 
     N-

2 = R(1+P Seff)(1-Af).   (5-1 6) 
 
The superscripts + and – in N+

1 , N-
1 denote the counts in left detector for positive and 

negative light helicities respectively. 
The symmetry of the last four equations arises from the geometrical symmetry of the 
arrangement; when one detector sees more electrons due to oblique incidence, the other 
detector will see less electrons, the same arises when we reverse the spin polarization of 
incident electrons through change of light helicity. 
 
Now when we substitute    
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 N1
new = (N+

1 N-
2)1/2,   (5-1 7) 

 
and  
 

     N2
new = (N+

2 N-
1) 1/2,   (5-1 8) 

 
in the equation (5-1 1) 
 
we get 
 
   A = ( N1

new – N2
new) / ( N1

new + N2
new ) = P Seff (5-1 9) 

 
The apparative asymmetry and the different counter efficiencies are then eliminated to the 
first order through the substitutions (5-1 7) and (5-1 8). 
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5.2 Calculation of the Error in the Asymmetry 
 
To calculate the error in the asymmetry A (Ni

λ ) equation (5-1 1) resulting from the statistical 
uncertainties in measuring the different scattered intensities in the left and the right detectors 
for both light helecities  Ni

λ,      i= 1, 2     and     λ  = +,- . The error in the asymmetry δA(Ni
λ) 

then is: 
 
    δA(Ni

λ) = [ ∑i,λ (∂A/∂Ni
λ)2(δNi

λ)2 ]1/2 (5-2- 1) 
 
where we have used the known formula for the combination of errors for the function A(Ni

λ) 
[70]1. 
To simplify the calculation of δA we write equation (5-1 9) in the form: 
 
    A = ( q - 1 ) / ( q + 1 ) ,   (5-2- 2) 
 
where   
 

   q = (N+
1 N-

2 / N+
2 N-

1 )1/2,   (5-2- 3) 
 
and the error in A is 
 
     δA = [(∂A/∂q)2(δq)2 ]1/2,   (5-2 4) 
 

    δA = q/(q+1)2 [∑i,λ 1/ Ni
λ]1/2  ,  (5-2 5) 

 
where we have used:  
 
  δq = [∑i,λ  (∂q/∂Ni

λ)2(δNi
λ)2]1/2 = [(q/2)2∑i,λ 1/ Ni

λ]1/2, (5-2 6) 
 

and the fact that   
 

  (δNi
λ)2 = [(Ni

λ)1/2]2 =  Ni
λ.   (5-2 7) 

 
That is the Poisson distribution applied to the numbers  Ni

λ 's [70]2. 
 
At BESSY II we have usually 12 hours a day to measure spin polarization, this period is 
mostly divided into two intervals separated by an elerctron injection in the storage ring.  
 
As we have shown in section 4, we need approx. 2 x 200 sec + (ca. 120 sec for light helicity 
change through the UE56 Undulator) i.e. ca. 8 minutes to measure one asymmetry point. 
When we have low counts Ni

λ as usually the case due to: 
 
• the low density of the gas phase target and 
 
• the loss of ca. a factor 1000 of the signal intensity on account of the scattering and the 

retarding in the high voltage field in the Mott detector. 
 
                                                           
1 G. L. Squires: Practical Physics - revised edition 1976 McGraw-Hill page 36 
2 .G. L. Squires: Practical Physics - revised edition 1976 McGraw-Hill pages 200 – 204 
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• the storage ring current i.e. the number of emitting electrons decreases exponentially 
with time. 

 
On account of equation (5-2 5) the uncertainty in the asymmetry  δA is ~ 1/√Ni

λ. Αs a result 
the greater the Ni

λ, the more precise is the asymmetry measurement. 
 
Accordingly we repeat the above described 8 minute routine as often as possible to improve 
the statistical significance. Then there will be n independent asymmetry measurements. These 
independent Asymmetry measurements are summed together by weighting every individual 
asymmetry measurement Ai with the square of (1/δAi) to get their weighted average Aw

 [70]1 

 
 
     Aw = ∑k wk Ak / ∑k wk ,  (5-2 8) 
 
 
where      wk = 1 / δA2,    (5-2 9) 
 
 
and      δAw = 1/ ∑k (1/δA k

 2).  (5-2 10) 
 
 
The individual Ai values with a great error δA will have, through the value of the weight wi = 
1/δA2 , a lower contribution to the weighted average Aw while the Ai values with a small error 
δA will have a greater contribution to Aw.  
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Figure(5-2 1). An example of an asymmetry measurement, the 18 open circles denoting individual measurements 
are summed up according to equation (5-2 8) to get the weighted average; the solid square. 

                                                           
1 G. L. Squires: Practical Physics - revised edition 1976 McGraw-Hill page 41 
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5.3 Subtraction of spectral background in Xe 4p 
 
 
The Xe 4p photoelectron line near ionization threshold is experimentally not easy to measure 
not only due to the low cross section for photoionization, but also the NOO Auger lines, 
multiple ionization, and cascade processes create an unavoidable spectral background. For the 
spectral background subtraction two different approaches were used. In May 2001 the spin 
polarization was measured at the Xe 4p peak and at 1-2 eV higher kinetic energies; and in 
October 2001 the photon energy was instead lowered by 2 eV to access the spectral 
background at constant kinetic energy; figure(5-3 1) (a) and (b). As discussed in section 3.2.5 
the Helmholtz magnetic field has always been tuned such that the component of spin 
polarization of Xe 4d3/2 vanishes to minimize the effect of the external B-fields on the 
sensitive Plong spin component. The spin polarization of the spectral background has a 
vanishing component Plong according to the theoretical expectation, and the Auger and higher 
process have extremely small nondipole effects. 
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Figure(5-3 1). Subtraction of spectral background is accomplished by shifting the Xe 4p”3/2” photoline (b) to 
lower kinetic energies (a) while keeping the spectrometer bandpass fixed. (c) The Xe-4d3/2 photoline is shifted to 
the same energetic position for control of the residual magnetic field.(see section 3.2.5) 
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5.3.1 Determination of the spin polarization of the net Signal 
 
To get the spin polarization of the net signal N = S – B from the measured spin polarization of 
both signal S and spectral background B; 
 
The net signal Ni is denoted by:  
 

Ni  = Si - Bi ,    i=1,2   (5-3 1) 
 
S := S1+S2,  B:=B1+B2.  (5-3 2) 

 
The asymmetry of the net signal AN is: 
 
 AN = (N1-N2)/( N1+N2) = [(S1-S2)-( B1-B2)]/ [(S1+S2)-( B1+B2)] (5-3 3) 
 
Dividing both numerator and denominator by S, we get: 
 
    AN = (1 - B/S)-1 [AS – (B/S)AB ],   (5-3 4) 
 
where AS and AB are the Asymmetries of the signal and the spectral background which we 
have measured as explained above. 
 
When there is more than one spectral background, then equation (5-3 4) can be generalised as 
follows : 
 
     N = S -  ∑i   Bi,    (5-3 5) 
 
     Nَ = Sَ - ∑i   Bَi.   (5-3 6) 
 
Where N and Nَ are the left and right scattered net intensities, Bi is the individual spectral 
background and 
 
     St := S+Sَ,  Bt

i:=Bi+Bَi ,  (5-3 7) 
 
then the asymmetry of the net signal AN is: 
 
   AN = (1 - ∑i Bt

i /St)-1 [AS – ∑i Bt
i /St ABi ],   (5-3 8) 

 
ABi is the individual asymmetry of the individual spectral background. 
 
When the relative intensity ratio of background/signal B/S or Bt

i /St is known, then the 
asymmetry of the net signal AN. can be calculated. 
 
To determine the relative intensity ratio of background/signal B/S we fit the spectrum using a 
Voigt function. The Voigt function is a convolution of the natural Lorentz line profile with the 
Gauss profile of the detector [33]  . The intensity of the spectral background electrons which 
the spectrometer sees when its kinetic energy is at the signal position, is the area of the 
product of the Voigt profile of the spectral background line and the spectrometer function 
which is a gauss function at the kinetic energy of the signal.  
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5.4 Subtraction of Background due to neighbouring resonant Kr 3d-1
3/2  

transitions 
 
 
The lower part of figure (5-4 1) shows the ‘hν’- electron spectra of resonantly excited Kr 3d, 
where the electron spectrometer was set at a constant kinetic energy [ at 43.2 eV in (a) and at 
44.3 eV in (b) as shown in the upper part ] and the photon energy was scanned to find the 
exact resonance energy. The hν-spectra were taken at different slit widths of the beam-line 
exit to determine the appropriate resolution; the narrower the slit the better is the resolution. 
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Figure (5-4 1). The hν spectra of the resonantly excited Kr 3d-1
5/25p and Kr 3d-1

3/25p spectra 

 
When the spin polarization of the Kr 3d3/2 –15p→  4s-14p-15,6p resonant Auger electrons is 
measured where the resonance takes place at photon energy 92.245 eV the electrons of the Kr 
3d5/2 6p-1→  4s-14p-16p resonant Auger electrons have to be measured because their resonance 
takes place at the very near photon energy 92.560 eV [45]. .  
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Figure (5-4 2) left :(a): the Kr 3d3/2 –15p→  4s-14p-1mp resonant Auger spectrum taken  
at hν=92.425 eV; right (b): the Kr 3d5/2 –16p→  4s-14p-1mp resonant Auger spectrum taken at hν=92.560 eV. The 
roman numerrals correspond to Kitajima et al [45] . Source:  J. Mursu , J Jauhiainen, H Aksela and S Aksela  J. 
Phys. B: At. Mol. Opt. Phys. 31 1973 (1998). 
 
 
Figure (5-4 2);left (a) and right(a) shows that the Kr 3d5/2 –16p→  4s-14p-16p resonant Auger 
transition takes place almost at the same excitation energy as the Kr 3d3/2 –15p→  4s-14p-15p 
resonant Auger transition. This situation is confirmed by our measurement, see figure(5-4 3). 
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Figure ( 5-4 3 ). The upper panel shows two electron spectra, the open circle spectrum is taken at hν = 92.425 eV 
and the solid circle spectrum is taken at hν = 92.56 eV. The lower panel shows three hν spectra measured at 
three different kinetic energies denoted by the three vertical lines a), b) and c). Interesting is the measurement (b) 
where both neighboring resonances overlap. 
 
The upper panel of figure (5-4 3) shows two electron spectra of the resonant Auger for both 
transitions : 3d3/2 –15p→  4s-14p-15p and 3d5/2 –16p→  4s-14p-16p. 
In the lower panel there are three hν scans . The kinetic energy in each of the 3 hν scans a, b 
and c are shown in the electron spectrum above by the vertical lines a, b and c. This shows 
that the Kr 3d5/2 –16p→  4s-14p-16p resonant Auger transition and the 
Kr 3d3/2 –15p → 4s-14p-15p resonant Auger transition are very close to each other. 
 
 
In figure (5-4 4) the transferred spin polarization Ptransf for both resonant Auger transition and 
the neighboring lines are shown. The electrons of the Kr 3d3/2 –15p→  4s-14p-15p resonant 
Auger transition which is the transition of interest have spin polarization of -46% and the 
electrons of the Kr 3d5/2 –15p→  4s-14p-16p resonant Auger transition which represent the 
spectral background have a spin polarization  of 52% . Hence this background has a great 
influence and must be subtracted, as we have shown above.  
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Figure ( 5-4 4 ). The upper panel shows two electron spectra, the open circle spectrum is taken at hν = 92.425 eV 
and the solid circles spectrum is taken at hν = 92.56 eV. The lower panel shows the transferred spin polarization 
of both resonant Auger transitions. The open circles represent the transferred spin polarization of 3d3/2 –15p→  
4s-14p-15p and the solid circles represent the transferred spin polarization of 3d5/2 –16p→  4s-14p-16p. 

5.4.1 The line fitting of the hν scan of the neighboring resonant Auger transitions Kr 
3d3/2 –15p→  4s-14p-15p and Kr 3d5/2 –15p→  4s-14p-16p 

 
Figure (5-4 5) shows a hν scan for the beamline exit slit of 400 µ and  figure (5-4 6) shows 
the hν scan for a beamline exit slit of 50 µ . In both figures the solid line-point  curve is the 
actual measured spectrum, the pointed curves are the Voigt fit of both resonant Kr lines, and 
the solid line is the sum. The first Kr 3d5/2

-1 → 4s-14p-16p Voigt fit line at 92.560 eV has a 
Lorentz width of 86 meV, the Kr 3d3/2

-1 → 4s-14p-16p Voigt fit line at 92.425 eV has a Lorentz 
width of 84 meV [45]. For a beam line exit slit of 50 µ the Voigt fit corresponds almost 
exactly to the measured hν spectrum, the line width of both lines and their separation of 135 
meV agree very well with the measurement. 
For a beam line exit slit of 400 µ , however the Voigt fit does not correspond to the measured 
hν spectrum, the line width of both lines and their 135 meV separation do not match the 
measurement very well. Because we have measured the spin polarization of the Kr 3d3/2

-1 →  
4s-14p-16p resonant transition with a slit width = 500 µ ,  there is some uncertainty in 
determining whether the electron background comes from the Kr 3d5/2

-1 →  4s-14p-16p 
resonant transition. 
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Figure(5-4 5). hν spectrum with slit = 400µ of resonant Kr 3d-1

3/2 . The spectrometer was set to 38.35 eV. 
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Figure(5-4 6). hν spectrum with slit = 50µ of resonant Kr 3d-1

3/2 . The spectrometer was set to 41 eV. 
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6.1 Spin polarization transfer for dipole resonances 
 
 
The calculations performed by N. M.  Kabachnik and S. Fritzsche 1of the intrinsic parameters 
and the transferred spin polarization for both resonant Auger transitions in addition to the 
measured transferred spin polarization are presented. The experimental uncertainty includes 
the statistical error and the uncertainty due to the analyzing power Seff of the Mott 
polarimeter. 
The calculations have not considered the shake up satellite in line IV . The transferred spin 
polarization of line V’ was not measured ( see tables (6-1) and (6-2) ) and figures (6-1 1) and 
(6-1 2). The large value of the transferred spin polarization is partially due to the large value 
of the orientation A10 = √(3/2) [6] 2 or [39]. 
 
 

6.1.1 Resonantly excited 3d-1
5/2 5p state of Krypton 

 
Table (6-1). The measured transferred spin polarization of resonantly excited 3d-1

5/2 5p state of Krypton and the 
calculated values 
Group Final State α2 ξ1 Calculation(Px) Px δPx

 

II 4s-14p-1(1P)5p2S,2P,2D -0.357 -0.678 0.737 0.780 0.064 
IV 4s-14p-1(1P)6p    0.733 0.062 
V 4p-3 (2D)4d(1P)5p -0.361 -0.699 0.759 0.755 0.066 
VI 4s-2(1S)5p2P -0.555 -0.744 0.762 0.795 0.065 
 
 
 

                                                           
1 private communication. 
2 V. V. Balashov, A. N. Grum-Grzhimailo and N. M. Kabachnik 2000 Polarization and correlation Phenomena in 
Atomic Collisions. A Practical Theory Course ( New York: Kulwer Academic) page 59 



Results and Discussion  

 

66

1

2

3

4 hν = 91,22 eV

Resonantly excited 3d-1
5/25p state of krypton

4p
-3
4d

(1 P)
5p

4s
-2
(1 S)

5p

4s
-1
4p

-1
(1 P)

6p

4s
-1
4p

-1
(1 P)

5p

 

VI V

IV

II

 

 
In

te
ns

ity
 (a

rb
. u

ni
ts

)

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
-0,2

0,0

0,2

0,4

0,6

0,8

 

Po
la

riz
at

io
n

 

 Electron kinetic energy (eV)

 
Figure (6-1 1). The measured transferred spin polarization of the resonantly excited 3d-1

5/2 5p state of Krypton 
and the calculated values. The black circles are the measured values and the gray squares are the calculations. 
 

6.1.2 Resonantly excited 3d-1
3/2 5p state of Krypton 

 
 
Table (6-2). The measured transferred spin polarization of the resonantly excited 3d-1

3/2 5p state of Krypton and 
the calculated values 
Group Final State α2 ξ1 Calculation(Px) Px δPx 
II 4s-14p-1(1P)5p2S,2P,2D -0.312 0.591 -0.652 -0.660 0.057 
IV 4s-14p-1(1P)6p    -0.54 0.064 
V 4p-3 (2D)4d(1P)5p -0.313 0.586 -0.646 -0.638 0.055 
VI 4s-2(1S)5p2P -0.457 -0.761 -0.731 0.060 0.722 
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Figure (6-1 1). The measured transferred spin polarization of the resonantly excited 3d-1

3/2 5p state of Krypton 
and the calculated values. The black circles are the measured values and the gray squares are the calculations. 
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6.2 Quadrupole–Dipole Interference in Spin Polarization of 
Photoelectrons from the Xe 4p shell 

 
To measure the contribution of nondipole terms in photoelectron spin polarization of Xe 4p 
photoelectrons, it is necessary to select a special measurement geometry in which the electric 
dipole approximation gives a vanishing value at certain selected angles of electron ejection. 
 
In the selected geometry two orthogonal components were measured: 
 

1) Plong , the component of the spin polarization of Xe 4p photoelectrons which contains 
the non dipole contribution to the electron spin polarization,  

 
2) the component Ptrans of the spin polarization of Xe 4p photoelectrons which contains 

the dipole contribution. 
 
 
 

Plong

Ptrans

K

κ
circularly polarized
synchrotron radiation

photon momentum

Photoelectron
momentum

 
Figure (6-2 1). The two measured spin polarization components: Plong is along κ and Ptrans is along k. 

 
 
The Plong spin component, see equation (2-5 2), is defined through the geometry where; 
the unit vector κ in the direction of photoelectron and the unit vector k in the direction of the 
circularly polarized light are perpendicular   and the spin unit vector: s is parallel to κ. 
 
 
  Plong  ⇔ κ ⊥ k  ,  s ⊥ k,  s║κ  
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P±1

long= ± (1+1/4 β)-1 (√6/2 (B1/2
211+√(3/2) B1/2

231) = ±(2+β/2)-1(-δ) (2-5 2) 
 
 
In this geometry where both unit vectors κ and s are perpendicular to k the electric dipole 
approximation gives a zero result to the spin polarization component Plong. 
 
As discussed in the theory (section 2.5) the spin polarization component Pperp, where all the 
three unit vectors are perpendicular, contain the non dipole contribution to the electron spin 
polarization. The component Plong was preferred however due to its sign change according to 
the light helicity. This effect is used to eliminate the apparative asymmetry to the first order as 
discussed in section 5.1. 
 
 
The Ptrans component is the component measured in the geometry, where κ ⊥ k , s║k,  s⊥κ 
 
 
  Ptrans  ⇔ κ ⊥ k  ,  s║k,  s⊥κ 
 
  P±1

trans = ± (1+1/4 β)-1 ( A + γ/2 )      (6-2 1) 
   

see figure (2-5 2). 
 
 
In this geometry the electric dipole approximation gives a maximal contribution to the spin 
polarization component Ptrans 
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6.2.1 Asymmetry parameter β close to ionization 
 
The predicted quadrupole resonance in the photoionization cross section  of Xe 4p near the 
ionization threshold is not easy to detect due to the smallness of the cross section at low 
photon energies [18]. This quadrupole resonance in Xe 4p photoelectrons can be observed 
indirectly by measuring the angular distribution of the Xe 4p photoelectrons.[23], [51], [21], 
[24] and [59] which have shown the breakdown of the dipole approximation as a description 
of angular distribution of photoelectrons at low photon energies. 
 
The asymmetry parameter β was measured close to the ionization threshold using linearly 
polarized light. The plane of polarization of light was switched between horizontal and 
vertical relative to the direction of photoelectron κ to gain photoelectron intensities for the 
two angles 0° and 90° between the plane of light and the direction of photoelectron κ to 
determine the asymmetry parameter β. The result is shown in figure (6-2 2) together with the 
experimental data of U Becker et al [8], the RRPA calculation by M. Kutzner et al [50], the 
RPAE ab initio calculation by Cherepkov [17]. Both RRPA and RPAE are shifted to the 
experimental ionization threshold. The error bars are due to the uncertainties arising from the 
background subtraction. Especially at the photon energies hν = 152.5 eV and hν = 158 eV the 
value of the β parameter turns out to be very sensitive to the neighbouring peaks, leading to a 
large uncertainty for these points. The measurements between hν = 180 eV and hν = 200 eV 
are in good agreement with the data by Becker et al [8] as well as with the RRPA calculation 
of Kutzner et al.[50]. We note that the measured asymmetry parameter β follows the sign 
change at hν = 175 eV which is also predicted by the theory. Comparing these data to the 
RPAE calculation it turns out that the β parameter is far from the theory close to the 
ionization threshold. Also the sign change at ca. hν = 175 eV favours the unshifted result of 
the calculation opposite to the nondipole sensitive component Plong discussed below. 
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Figure (6-2 2). The measured β parameter for Xe 4p photoelectrons. The circles are our measurements, the 
squares are the measurement of U. Becker [8]. The gray dash-point curve is the ab initio calculation by 
Cherepkov [17]. The black solid curve is the shifted gray curve. The black dashed curve is the theory of M 
Kutzner [49]. 
 

6.2.2 Electron Correlations in Xe 4p photoelectrons  
 
The Xe 4p spectrum is dominated by a strong peak which carries about 25% of the total 
spectral strength [see Figure (5-3 1)], while the rest of the total spectral strength resides above 
the 4d8 threshold. The main peak of Xe 4p seems to arise from a doubly excited level below 
the 4d8 ionization threshold in the form of a compact 4d84f configuration which is very 
strongly perturbed by a 4p5

3/2 configuration. Neither a Xe 4p1/2 nor a Xe 4p3/2 hole can exist as 
an elementary excitation but becomes smeared over a large energy range. If a Xe 4p hole is 
created, it will be destroyed by dipolar fluctuations in a short time compared to the period of 
oscillation and the concept of a 4p hole is therefore meaningless. The most stable and 
probable state was found to belong to the Xe+(4d84f)3/2 configuration at 145.5 eV[72]. 
 
According to this reasoning the measured photoelectron spin polarization of Xe 4p is mainly 
of Xe 4p 3/2 . The theory for the nondipole contribution for spin  polarization of Xe 4p is based 
on calculations for Xe 4p1/2, and the Xe 4p electron correlations mentioned above were not 
taken into account. 
Within a nonrelativistic approximation and according to the fact that both Xe 4p1/2 and  
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Xe 4p3/2 are fine structure components of the final state due to the l s coupling, the spin 
polarization should vanish if one integrates over both fine structure components in the final 
state. Consequently the spin polarization of the Xe 4p3/2 can be deduced from the calculated 
values for Xe 4p1/2 when we know the branching ratio that is the relative intensity of both Xe 
4p1/2 and Xe 4p3/2 which can not be done experimentally as mentioned above. 
The  statistical weight of the magnetic substates I3/2 / I1/2 = 2 is considered instead and 
correspondingly the theoretical spin polarization curves for Xe 4p1/2 shown in figures (2-5 1) 
and (2-5 2) were multiplied by the factor –1/2 to obtain the corresponding spin polarization 
curves for Xe 4p3/2. 
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6.2.3 Transferred spin component Ptrans 
 
 
The measured transferred spin component Ptrans , that is the component resulting mainly from 
the electric dipole contribution, agrees in sign and magnitude with the theoretical data which 
are calculated according to equation (6-2 1) for Xe 4p1/2 when these data are multiplied with a 
factor –1/2 as shown in figure (6-2 3). 
This justifies our selection of the factor –1/2 as discussed in section 6.2.2 and confirms that 
the measured Xe 4p photoelectrons have a Xe 4p3/2 character. 
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Figure (6-2 3). The measured transferred spin polarization Ptrans of Xe 4p. The dashed curve is the calculation by 
Cherepkov for Xe 4p1/2 multiplied by a factor –1/2. The solid curve is the dashed one shifted to the ionization 
threshold. 
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6.2.4 Nondipole sensitive component Plong 
 
 
Figure (6-2 4) shows the measured nondipole sensitive component Plong for photon energies 
close to the ionization threshold of about 150 eV up to 185 eV. 
The figure shows the RPAE calculation by Cherepkov adapted for Xe 4p3/2 as discussed in 
section 6.2.2 and  the adapted IPA calculation by Derevianko [23] for Xe 4p3/2(the β and δ 
parameters are obtained from the relativistic independent particle approximation (IPA) of 
Derevianko et al and substituted in the second part of equation (2-5 2) ). Both IPA and RPAE 
curves are shifted to the ionization threshold. The measured nondipole sensitive component 
Plong favours the shifted result of the calculation opposite to the asymmetry parameter 
β discussed above. 
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Figure (6-2 4). The measured nondipole sensitive spin polarization component and the theory curves; the solid 
grey curve is the ab initio RPAE theory of the nondipole sensitive spin polarization component [17]and the 
dashed gray curve is the from ab initio IPA theory[23] adapted curve; both theory curves are shifted to the 
experimental threshold; the solid black curve is the shifted RPAE theory; and the dashed black curve is the 
shifted IPA theory. 
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In the first part of this thesis, the transferred spin polarization of resonantly excited Auger 
electrons of Kr 3d-1 5p photoionized by circularly polarized light was measured. The 
transferred spin polarization is related to the orientation A10 ( and alignment A20 ) of core 
holes  induced by the primary photoionization process,  and to the intrinsic parameters ξ1 
which characterizes the  transferred spin polarization of Auger electrons and α2 ,the 
anisotropy parameter which characterizes  the angular intensity distribution of Auger 
electrons. Due to the selection rules of dipole excitation of kr 3d-1 5p atoms i.e. Ji =1, A10 and 
A20 are known [6], α2 was calculated and measured by Kitajima [46] et al. The calculation of 
ξ1 was performed by N. M.  Kabachnik and S. Fritzsche1. 

 
 

In the second part of this thesis, the spin polarization of Xe 4p near the ionization threshold 
was measured to examine the calculations of Cherepkov [17] of contribution of the lowest 
order nondipole term; the electric-dipole-electric-quadrupole interference terms to the spin 
polarization of Xe np photoelectrons. The quadrupol matrix elements of the np→εf transitions 
in Xe calculated in RPAE [18] have strong maxima near the ionization threshold. This 
behaviour is similar to the well-known maxima in the dipole nd→ εf transitions. These dipole 
nd→ εf transitions are responsible for the so-called giant resonances in the total 
photoionization cross section. They are attributed to the double-well shape of the effective 
potential for the dipole εf partial waves. Both the RPAE non-relativistic calculation from 
Cherepkov and the relativistic IPA adapted calculation from Derevianko agree qualitatively 
with the measured nondipole component of electron spin polarization.  

 
 

 
1 Private communication. 
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8.1 Appendix 1: Intrinsic parameters and Coulomb matrix elements of 
the Xe N4O2,3O2,3

3P1 Auger decay 
 
Spin polarization and intrinsic parameters: 
 
 
Figure(2-2.5) shows the laboratory coordinate frame of the experiment for measuring the 
transferred spin polarization of Xe N4 O2,3 O2,3 3P1 Auger electrons with circularly polarized 
light. The relations for angular distribution and spin polarization are given by the following 
expressions [63]. 
 
 
 dσ/dΩ α 1 + A20 α2 P2(cosθ)  (A-1 1) 
 
 
 Ptransf(θ) = Pz= (1 + A20 α2 P2(cosθ))-1 (A10 (β1 + γ P2(cosθ)))  (A-1 2) 
 
 
 Pdyn(θ)= Py = (1 + A20 α2 P2(cosθ))-1 (A20 ξ sin2θ)  (A-1 3) 
 
 
 P||(θ) = Px = (1 + A20 α2 P2(cosθ))-1 (3/4A10 γ1 sin2θ)  (A-1 4) 
 
 
dσ/dΩ is the differential cross section for photoionization, Ptransf and P|| are the components of 
spin polarization in the reaction plane spanned by the photon momentum k and photoelectron 
momentum κ, Pdyn is the component of spin polarization perpendicular to the reaction plane. 
A10, A20 are the orientation and alignment discussed briefly in chapter 2, P2(cosθ) is the 
second Legendre polynomial. The parameters α2, β1,γ1 and ξ2 are the intrinsic parameters 
describing the dynamical properties of the Auger decay. 
 
Connection between intrinsic parameters and Coulomb matrix elements: 
 
The intrinsic parameters α2, β1,γ1, and ξ2 are related to the amplitude ratios and phase shift 
differences of Coulomb matrix elements η1, η2, δ1 and δ2 [(2-2 2)-(2-2 5)] in the special 
Auger decay Xe N4 O2,3 O2,3 3P1 [36], [52]. 
 
 
 α2 = (-5(1+η2

1+η2
2))-1(η2

2+4+4√5η1η2cos(δ1-δ2)-2√5η1cos(δ1)+ 4η2cos(δ2))  
           (A-1 5) 
 
 
 β1 = (-75(1+η2

1+η2
2))-1(√5-25η2

1+11η2
2 –21+24η2cos(δ2))   (A-1 6) 

 
 
 γ1 = (-75(1+η2

1+η2
2))-1(2√5-11η2

2+6+10√5η1η2cos(δ1-δ2)+ 6η2cos(δ2))  (A-1 7) 
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 ξ1 = (-√5(1+η2

1+η2
2))-1(3η1η2sin(δ1-δ2)+η1sin(δ1)- √5η2sin(δ2))   (A-1 8) 

 



Appendices  

 

79

8.2 Appendix 2: The parameters defining the nondipole corrections to 
the angular distribution and spin polarization of Xe np 
photoelectrons [18] 

 
Some terms in equation (2-4 5) are related to the dipole polarization parameters introduced in 
(2-4 2) by the equations 
 
  Bj

220 = -1/2√5 βj 
 
 
  Bj

101 = 1/√3 Αj 
 
 
  Bj

121 = 1/√6 γj 
 
 

Bj
221 = √2i/3√6ηj 

 
 
The new parameters defining the nondipole corrections in equation (2-4 5) are given by the 
resscs 
 
 
 B1/2

110 = k/B√(6/5)[ d0q1cos(δ0-δ1) + 1/5√2 d2q1 cos(δ1-δ2) + 3√3/5 d2q3 cos(δ2-δ3)], 
 
 
 B1/2

330 = k/B√(3/35)[ d0q3cos(δ0-δ3) + 3√3/5 d2q1 cos(δ1-δ2) + 2√2/5 d2q3 cos(δ2-δ3)], 
 
 
 B1/2

111 = ik/B√5[ d0q1sin(δ0-δ1) + 2√2/5 d2q1 sin(δ1-δ2) - 3√3/5 d2q3 sin(δ2-δ3)], 
 
 
 B1/2

211 = k/B√(3/5)[ d0q1cos(δ0-δ1) - √2/5 d2q1 cos(δ1-δ2) - √3/5 d2q3 cos(δ2-δ3)], 
 
 
 B1/2

231 = k/B√(2/15)[ d0q3cos(δ0-δ3) + 3√3/10 d2q1 cos(δ1-δ2) - 4√2/5 d2q3 cos(δ2-δ3)], 
 
 
 B1/2

331 = ik/B 4√105[ d0q3sin(δ0-δ3) + 3√3/5 d2q1 sin(δ1-δ2) + √2/10 d2q3 sin(δ2-δ3)], 
 
 
where B = (d0)2 + (d2)2 , dλ is the dipole operator defined in (2-4 1), 
 
δl are the phase shifts of partial waves with orbital angular momentum l and 
 
 
 q1 = -1/√10∫dr  r4 Rεp(r) R1/2

nl(r). 
 
 



Appendices  

 

80

 q3 = √3/2√5∫dr  r4 Rεf(r) R1/2
nl(r). 

 
 
The nondipole parameters contain four new theoretical values, two quadrupole matrix 
elements q1 and q3 and two corresponding phase shift differences for example (δ2-δ3) with l = 
2,3. 
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BESSY Berliner Elektronenspeicherring-Gesellschaft für Synchrotronstrahlung m. b. 

H. 

 
CSF  Configuration state function. 

 
FISCI  Final ionic state interaction. 
 
HF  Hartee-Fock Method.  
 
IPA  relativistic Independent Particle Approximation. 

 
 
ISCI  Initial state configuration Interaction. 
 
IISCI   Initial ionic state-configuration Interaction.  
 
 
MCDF  Multiconfiguration Dirack-Fock calculations. 
 
 
RPAE  Random Phase Approximation with Exchange. 

 
RRPA  Relativistic Random Phase Approximation. 
 
 
UHV  Ultra high Vacuum. 
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