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1. Introduction and Outline

In one of his three groundbreaking papers of 1905 Albert Einstein introduced the
concept that light has a corpuscular character in the process of the Photoeffect [1]. In
this process an electron bound to an atom is ionized into the continuum by absorption
of a single photon from a light source. Experimentally it was found that it was
the frequency and not the intensity of the light, which is the crucial parameter
that decided whether the process would be possible or not. Einstein’s theory was
complementary to the established way to describe light as an electromagnetic wave
according to Maxwell’s laws. The success of both models in different areas of physics
was the foundation of the wave-particle dualism of light as a figure of thought. In the
course of her Ph.D. thesis [2, 3], which was finally published 1931, Maria Goeppert-
Mayer theoretically predicted the possibility of the simultaneous absorption of two
photons. The cross sections for this process are considerably smaller than the ones for
single photon absorption. It was not until 1950, that the first experimental evidence
for processes of this kind could be found by means of radio-frequency spectroscopy
[4]. About ten years later, further experimental confirmation was obtained [5] in
experiments with a maser source which was realized only a couple of years earlier
[6]. With the advent of sources of laser light [7, 8] of ever increasing intensity, it
became possible to study the absorption of multiple photons in elementary electronic
transition process in atoms and molecules [9, 10].

The electric field strength that binds the electron in its ground state to the proton
inside the Hydrogen atom is

| ~E| = e

4πε0a2
0

= 5.14× 109 V

cm
, (1.1)

where e is the charge of an electron, a0 is the Bohr radius and ε0 is the dielectric
constant for vacuum. The only practicable way to achieve field strengths of this
order of magnitude in a laboratory is in form of the temporally varying electric field
of an electromagnetic wave. The corresponding magnetic field component is found to
be less important for the dynamics for intensities that are lower than the relativistic
threshold intensity of about 1019 W/cm2. At that intensity the average kinetic energy
of an electron in the field starts to exceed to the electronic rest energy:

eE0λ > 2πmec
2 , (1.2)

with the wavelength λ = c/2πω; me denotes the mass of the electron and c the
speed of light. The measure for the average kinetic energy of an elementary charge
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Introduction and Outline

in an electromagnetic wave with E-field E(t) = E0 sin(ωt+φ0) is the ponderomotive
energy

Up =
e2E2

0

4meω2
. (1.3)

At the field intensity of Ia.u. = 3.51× 1016 W/cm2 the strength of the electric field of
the laser is of the same size as the electric field in the field free hydrogen atom.

I0 =
1

2
cε0E

2
0 [in S.I.], and I0 = E2

0 [in a.u.] . (1.4)

Boosted by the development of Chirped Pulse Amplification [11–13] laser technology
evolved at a fast pace up to the point that today intensities above 1021 W/cm2 can
be focused on atomic and molecular systems [14, 15]. But already at intensities much
below Ia.u., ionization processes occur, as the bound system is distorted nonlinearly
by the field and mechanisms as tunneling and intense-field multiphoton ionization
are quantum mechanically possible.

The usage of pulsed laser beams also introduces another interesting advantage
of the laser over static fields for the study of transition processes in atoms and
molecules, that is ultrashort interaction times. Nowadays already few cycle pulses
are experimentally controllable [16, 17]. Since one cycle of the laser field of 800 nm
wavelength takes 2.67 fs, the interaction time with the Coulombic system is on the
scale of femtoseconds (1 fs = 10−15 s). Taking into account that the peak intensity of
the pulse is only achieved at the central oscillation of the pulse, effective interaction
times on the attosecond time scale (1 as = 10−18 s) can be realized with lasers of
higher frequency, e.g. in the XUV domain (a period of 14 nm radiation extends
over T0 ≈ 46 as) [18]. Series (or trains) of XUV attosecond pulses have also been
produced by emission of high-harmonic frequency radiation in electron recollision
processes [19]. Today it is a matter of active research to generate isolated XUV
attosecond pulses, for which theoretical concepts exist (see [16] for references).

Given these ultra short interaction times, that nearly reach the domain of charac-
teristic times of electronic motion (1 a.u. of time ≈ 24.2 as, see definition of atomic
units in section A), and given the tunability of the laser frequency by means such as
optical parametric amplification and high harmonic generation, today it is realistic
to think about mechanisms of controlled manipulation of atoms and molecules. One
of the most interesting applications is the probing and control of chemical reactions
on femtosecond time scales [20, 21] by pump-probe techniques [22].

For the theoretical description such processes provide at least two major challenges.
The first and most obvious is the fact that these processes involve many interacting
physical entities or bodies. The second is that the dynamics of the process is deter-
mined by two interactions, the Coulomb interaction of the electrons with the bound
system, and their interaction with the laser field, and that these two interactions
are of comparable strength. Both challenges demand for a systematic approach to
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successively account for one specific two-body interaction at each step of the theoret-
ical description. The Intense-Field Many-Body S-Matrix Theory (IMST) has been
developed to meet this demand [23–26]. Widely recognized for the successful identi-
fication of Nonsequential Double Ionization as an essential mechanism in the double
ionization of atoms [27–32] it and its precursor, the KFR theory, has become a stan-
dard approach for the identification of interaction mechanisms in bound-continuum
transitions. These approaches go beyond the traditional perturbation theory, as they
do not rely on one interaction being only of perturbative influence as compared to
the other interaction. As such it can explain processes that are occurring in a domain
where for this reason perturbation theory breaks down.

While there has been considerable progress in the last years in the general under-
standing of mechanisms of intense-field processes in atoms, molecules and clusters,
the number of questions left unconsidered increases with number of internal degrees
of freedom of these systems. In the case of clusters quasiclassical treatments of
many-body behavior have been shown to result in working models that can explain
the special features of these systems in intense laser fields [33], such as the observed
increased energy transfer from the field and the resulting high charge states of the
atomic ions, to name only two. For single molecules on the other hand a fully quan-
tum mechanical treatment is necessary due to the quantization of the energy of their
electronic, vibrational and rotational states. For small molecules this kind of analysis
is feasible due to the restricted number of internal degrees of freedom. The very first
insight into the sequence of physical processes in molecular systems is gained by con-
sidering the implications of the large difference in the masses of the electrons and the
nuclei. This results in the Born-Oppenheimer separation of the Hamilton operator
for molecular systems and in the conclusion that the electrons are the primary inter-
action partners to the field. Internuclear dynamics is taking place subsequently on a
considerably longer time scale. It is the topic of this thesis to analyze the interplay
of ionization processes in intense laser fields with molecular degrees of freedom. On
the one hand it presents a quantum mechanical analysis of the effect of multi-photon
ionization on the state of internuclear vibration of molecules and on the other hand
it considers the role of molecular alignment, i.e. the angle of the internuclear axis
to the polarization of the laser field, in Nonsequential Double Ionization. The latter
is assessed by a separation of the full process into Above Threshold Ionization (ATI)
and subsequent electron impact ionization in the laser field (e +Nω, 2e). Since the
alignment dependence of ATI rates is well understood in terms of the symmetry of
the molecular orbital of the ionized electron [34–37], this thesis undertakes the cor-
responding analysis for the final (e+Nω, 2e) step to obtain a deeper understanding
of the interplay of these two processes in diatomic molecules.

The following chapter 2 gives an overview of the mechanisms of strong field ion-
ization, highlighting the most important results of experimental and theoretical re-
search. Starting from the basic mechanisms of single ionization, i.e. photoeffect,
tunneling and intense-field multiphoton ionization an introduction is given to the
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Introduction and Outline

different subsequent effects, such as elastic and inelastic recollision in general and
double and multiple ionization in particular. The effects of the specific electronic
and vibrational structure of molecules on processes in intense laser fields are dis-
cussed.

Chapter 3 introduces to different theoretical methods of atomic and molecular and
laser physics, such as the numerical evolution of wavefunctions according to the time
dependent Schrödinger equation (TDSE) on the one hand and Floquet methods on
the other hand. The TDSE section contains a short overview over the Virtual NPSF
Lab (section 3.1.1), a project currently in process at the group Nonlinear Processes
in Strong Fields (NPSF) at the Max Planck Institute for the Physics of Complex
Systems (MPIPKS), where part of the research for this thesis was supervised. Some of
the key points of the theoretical and technical approach in this project are highlighted
with an emphasis on the quantum mechanical description of electron pair states in
intense laser fields, which represent an essential part of the final states of double
ionization processes. Special consideration is given in this chapter to an account
of the Intense-Field Many-Body S-Matrix Theory (IMST) which constitutes the
theoretical framework of this thesis.

In chapter 4 the process of Inelastic Vibronic Ionization of molecules in intense
laser fields is analyzed, applying the framework of S-matrix theory. To this end,
the Born-Oppenheimer separation of electronic and nuclear dynamics is introduced
and the difference between the Franck-Condon principle for electronic transitions in
molecules and the Franck-Condon approximation is discussed. An overview is given
over so called non-Franck-Condon effects in molecular electronic transitions, laying
emphasis on a particularly clean and at first glance irritating experimental result for
the ionization of H2 in intense laser fields. In section 4.3 the S-matrix theory for
Inelastic Vibronic Ionization is derived and the quantum mechanical boundary con-
ditions, i.e. the initial and final states, are defined. Section 4.4 discusses the results
of the numerical calculations for small diatomic molecules in comparison with the ex-
perimental data. Different levels of approximation are compared – the fully coherent
Born-Oppenheimer, the ’frozen’ MO and the Franck-Condon overlap approximation
– and the applicability of the Franck-Condon approximation to the strongly nonlin-
ear process of multiphoton ionization of molecules in an intense laser field is verified.
Effects of the variation of isotopes and of laser polarization are shown. The interpre-
tation of the photoelectron or scattering phase terms that appear in the first order
S-matrix rate expression leads to a discussion of the emergence of momentum conser-
vation in the context of IMST (section 4.4.4). Subsequently the theory is applied to
more complex diatomic molecules, homo- as well as heteronuclear ones. The exten-
sion to polyatomic molecules is exemplified by the application to a linear triatomic
molecule.

The final chapter 5 of this thesis is devoted to the analysis of the alignment depen-
dence of Nonsequential Double Ionization (NSDI) of diatomic molecules. This is done
from two perspectives. First, the electron impact ionization of diatomic molecules
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in the presence of a laser field (e + Nω, 2e) is treated, which according to present
physical understanding constitutes the mechanism of secondary ionization in NSDI.
On the other hand, to connect to current experimental research and to relate the
(e+Nω, 2e) analysis back to the context of Nonsequential Double Ionization, a model
formula for NSDI is used, which combines the two separate first order S-matrix ex-
pressions for the initial step (intense-field multiphoton ionization) and the final step
(laser assisted electron impact ionization) to obtain an approximation for the rates
of Nonsequential Double Ionization of diatomic molecules. To this end the first order
IMST expression for the (e+Nω, 2e) process is derived in section 5.1.2 considering
spin-correlation between projectile and target electron, allowing for exchange scat-
tering. An argument is brought forward, that ionization of the secondary electron
after collision of the primary/projectile electron with the nuclei is beyond the scope
of a first order S-matrix approach, resulting in vanishing first order transition ampli-
tudes for this mechanism. Following up the discussion of the momentum of electron
pair states in section 3.1.1 on the one hand and on the emergence of momentum
conservation in IMST (section 4.4.4) on the other hand, the consideration of the
recoil momentum of the molecular ion in the framework of IMST and its specific
role in the first order S-matrix expression for laser assisted electron impact ioniza-
tion are discussed in section 5.1.3. The dependence of ionization rates on the angle
of alignment between the internuclear axis and the direction of laser polarization is
analyzed in terms of the symmetry of the molecular orbital of the secondary electron.
The effect of the spin on this process is analyzed in section 5.1.5. To focus on two
salient degrees of freedom that distinguish a diatomic molecule from an atom, two
kinds of calculated spectra are presented in the final part of chapter 5: Following up
to the analysis in the first part of chapter 5, the variation of the NSDI rates with
the alignment angle between the internuclear axis of the molecule and the direction
of laser polarization is shown. Additionally, based on the verified applicability of
the Franck-Condon approximation in strongly nonlinear processes in intense laser
fields (shown in chapter 4), the distribution of the vibrational states of the molecular
dication after NSDI is predicted within the limits of the approximations applied.

Chapter 6 summarizes the conclusions and gives an outlook from the perspective
gained in the course of this thesis.

In this thesis atomic units will be used, where e = me = ~ = 1. Details of this
system of units are noted in section A. In some formulae the respective quantities are
written down explicitly for convenience, to give familiar combinations of quantities
that are less irritating for a quick check of units.
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2. Mechanisms of Strong Field Ionization

This chapter gives an overview of the mechanisms of single and multiple ionization
of atoms and molecules in intense laser fields.

2.1. Single Ionization

One of the most surprising experimental findings in the research on the interaction
of intense laser fields with atoms and molecules has been the detection of a discrete
structure in the kinetic energy spectra of ionized electrons [38–40]. The spectra
showed equally spaced peaks in the detection yields, separated by the energy of
one photon. The phenomenon was dubbed Above Threshold Ionization (ATI) [41],
as the electrons can absorb more than the threshold energy necessary to make the
transition from a specific bound state of the Coulomb potential to an energetically
low lying continuum state. The discovery was surprising, since a free electron cannot
absorb single photons, because the momentum is not conserved in that process. It
emphasized that the ionizing electron is still in the vicinity of the parent ion directly
after its first transition to a low lying continuum state. The effect was first explained
as a two step process [38]. In this picture, the electron enters the continuum at
threshold energy and then absorbs additional photons by Inverse Bremsstrahlung in
the field of the parent ion. The differential cross section for the combination of the
two steps has been found to be [42–44]

dσ
(M)
fi

dΩ
=
kf

ki

J2
M [α0 · (kf − ki)]

dσ
(N0)
fi

dΩ
(2.1)

where M is the number of excess photons absorbed on top of the N0 threshold and
the momentum of the charged particle changes from ki to kf .

α0 =
qA0

mecω
(2.2)

is the quiver radius of the electron (of charge q = −1 a.u.) in the laser field with
an amplitude vector A0 of the vector potential. The symbol JM denotes a Bessel
function of first kind of Mth order. While this derivation is consistent with the
multiphoton nature of the process, one still needs the basic differential cross section
dσ

(N0)
fi

dΩ
for multiphoton threshold ionization to predict the cross section for the N0+M

photon process.
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Mechanisms of Strong Field Ionization

When on the other hand the theoretical description for the intense-field, nonper-
turbative Multiphoton Ionization (MPI) had been found independently by Keldysh,
Faisal and Reiss (KFR) [45–47], it became clear that the ATI process can be under-
stood as a direct (single-step) mechanism of ionization by simultaneous absorption
of N = N0 + M photons in the vicinity of the binding potential. It thus proved to
be a more effective explanation than the initially proposed two-step model for ATI.

After a short note on the quantum mechanical description of the bound electrons in
ionization processes we will give an account of the two general physical mechanisms
that have been identified in intense-field ionization. The first is Tunneling Ionization
which limits into Over the Barrier Ionization for higher field strengths. It enjoys a
high popularity due to the general simplicity of its application but is limited to a
certain domain of field parameters (intensity and wavelength), related to the given
ionization potential. Specifically it cannot explain the quantized photonic structure
of the ATI effect. The second mechanism discussed is the intense-field Multiphoton
Ionization (MPI) which includes the ”tunnel-mechanism” as a special case [26]. This
section about single ionization closes with an account of the electronic recollision
process, which may occur subsequently to single ionization in the laser field.

2.1.1. Quantum Mechanical Description of the Bound System

Neglecting the possibility of spin-flips, each occupied electronic state in the initially
prepared bound Coulombic system is related to exactly one possible final state of
the system after an effective N -photon ionization, depending on which electron was
transferred into a continuum state of the ion. Correspondingly, directly after ion-
ization, i.e. without further relaxation processes, the ion is left either in the ground
state or, if an inner-shell electron was ionized, in a specific excited state. Energy con-
servation demands that N~ω−ET (i, f)−Up = Ekin(i, f,N), where ET (i, f) denotes
the energy difference between the final state of the ion and initial state of the bound
Coulombic system. Ekin(i, f,N) is the time averaged kinetic energy of the ionized
electron in the field.

If the initial and final states of the Coulombic system are described as products
of the wavefunctions of the single electrons, the final ground or unrelaxed excited
state of the ion corresponds directly to the initial spatial state of the electron that
was ionized. This assumption is usually made and is equivalent to the physical
assumption that there is no ”hidden” implicit correlation between the electrons of
the initial bound system beyond the explicit correlation by the Coulomb potential
that defines the Hamiltonian for the bound system1. In quantum chemistry the
spatial wavefunctions of the electrons are frequently referred to as spatial orbitals.

Without the consideration of the effect of magnetic fields or relativistic effects
in the initial system two electrons occupying the same spatial orbital but differing

1If the Hamiltonian is replaced by an approximative one like in Hartree-Fock calculations, this
explicit correlation is lost to an extend that depends on the type of approximation.
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2.1. Single Ionization

in their spin have the same energy, i.e. they are degenerate. Consequently, in an
effective N -photon transition, for each transition energy ET (i, f) there are up to two
electronic initial states, differing only in spin, that define possible channels to the
detection of an electron with kinetic energy Ekin(i, f,N). Thus there is a one to one
correspondence between the kinetic energy of the finally ionized electron and the
spatial orbital it initially originates from. For a given frequency of the laser field, the
ionization from the highest occupied orbitals achieves the highest values of kinetic
energy.

In the scope of this work, a process of single ionization of an atom is called elastic
for the other constituents of the residual ion, if they can be treated as passive, in
the sense that they do not gain or loose energy. In contrast a process that deposits
more energy in the ion than necessary to create it from its parent by removal of a
specific electron is called inelastic. In elastic single ionization of atoms the finally
bound electrons are occupying orbitals of the same quantum numbers as in the initial
atom, while in inelastic processes at least one of the electrons undergoes a transition
to a different, previously unoccupied spatial orbital. In this terminology elastic
atomic single ionization corresponds to a single active electron process, where all
other electrons are spectators.

In the theoretical models used in this thesis, in each step of the processes discussed,
there will be one of the bound electrons which is active in the sense that it undergoes
a transition as a result of energy exchange with the laser field or due to interaction
with an unbound scattering electron. In this sense the other electrons are inactive.
Due to electronic correlation it is possible though that their states adapt slightly
once an electron leaves the bound system. In the context of single active electron
theories the correlation with the remaining electrons can be expressed in terms of
the one-electron state

|φi(r1) 〉 = 〈Φf (r2, . . . , rN) |Φi(r1, r2, . . . , rN) 〉
= |φ′i(r1) 〉〈Φf (r2, . . . , rN) |Φ′

i(r2, . . . , rN) 〉 ,
(2.3)

where
|Φi(r1, r2, . . . , rN) 〉 = |φ′i(r1) 〉 |Φ′

i(r2, . . . , rN) 〉 (2.4)

is the initial state of the bound N -electron system and |Φf (r2, . . . , rN) 〉 is the final
state of the ionized bound N − 1 electron system. This one-electron state is known
as Dyson orbital, Feynman-Dyson amplitude or generalized overlap amplitude [48–
50]. It comprises the electronic correlation between the initial and final state of the
bound multielectron system and thus allows to represent the multielectron system
by an effective one electron state. If the single active electron ansatz is valid for
the given physical process, the overlap matrix element just contributes a constant
factor. In cases where electronic correlation is found to be of minor effect in quantum
chemical calculations, i.e. when the overlap matrix element of the passive electrons is
close to one, the active electron can be described just by the spatial orbital |φi(r1) 〉
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Mechanisms of Strong Field Ionization

it occupied at the moment of transition. This is usually a good approximation for
outer valence electrons [51]. Relaxation processes, e.g. fluorescence, are considered
as subsequent quantum mechanical transitions.

Selecting an interval of values for the measurement of the kinetic energy of the
ionized electrons determines which channels of ionization are possible for elastic single
ionization, i.e. which initially occupied spatial orbitals have to be considered as
active in a N -photon absorption to achieve a certain value for the kinetic energy of
the ionized electron. Since the kinetic energy is positively definite, the ionization
channels to final states with ET (i, f) > N~ω − Up are closed for an effective N -
photon absorption. Consequently all spatial orbitals that are energetically more
than N~ω − Up below the single ionization continuum are inactive for N -photon
absorption processes. The minimal number of photons needed to achieve single
ionization is determined as

N0 =

⌈
Ip + Up

~ω

⌉
, (2.5)

where Ip is the first ionization potential.

2.1.2. Tunneling Ionization

Tunneling Ionization makes use of a quasistatic consideration of the effect of the
electrical component of the laser field. Keldysh [45] established a criterion for atomic
systems that is widely understood as distinguishing the domain of validity for this
mechanism. Conceptually it is a criterion, that determines the temporal conditions
on the laser field that allow Tunneling Ionization to occur. Thus, actually it only
establishes the limits of applicability of the tunneling model. It can be derived from
quasiclassical considerations [52].

According to the virial theorem the mean kinetic energy of the bound electron in a
Coulomb field is half of its mean potential energy, 2〈Te〉 = Ip. In the quasistatic pic-
ture of the effect of the laser field on the bound system, the Coulombic 1/r potential
is bent down by the electric field component of the laser (see Fig. 2.1). A potential

barrier of finite width of the order of Ip/(eE0)
(
more precisely 2

√
I2
p/(eE0)2 − 1/E0

)
is formed, where Ip is the ionization potential of the atom, E0 is the electric field
strength and e is the absolute value of the electron charge (q = −e = −1 in atomic
units, see section A). The time to tunnel through the potential barrier can be esti-
mated by the time to traverse it:

τt =

√
2meIp

eE0

. (2.6)

For tunneling this time has to be much smaller than the half-period of the laser field
and thus

π

ω
� τt ⇒ γ ≡

√
Ip

2Up

� 1 . (2.7)
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Figure 2.1.: Energy diagram of Tunneling Ionization of an hydrogen atom in a laser
field of intensity I = 1014 W/cm2. For a 1064 nm Nd:YAG laser the Keldysh
parameter is γ ≈ 0.85, for a 10.64µm CO2 laser γ ≈ 0.085.

This condition on the Keldysh parameter γ defines a relation between the intensity
and the frequency of the laser field, that depends parametrically on the ionization
potential. Thus, the condition for tunneling ionization can also be read again in
terms of the virial theorem as 〈Te〉 � Up. As will be shown, in the theory of intense-
field Multiphoton Ionization the ponderomotive energy also increases the transition
energy that is necessary for the electron to go over into a continuum state. For
this reason it is also frequently referred to as the ponderomotive potential. It can
be interpreted as the effective potential of the field dressed continuum states above
field free continuum. Thus the tunneling condition can be read as stating that, for
tunneling to the field dressed continuum to occur, this additional potential must be
large on the scale of the average kinetic energy of the bound electron.

In the tunneling domain, a quasiclassical approximation for the single ionization
rate of atoms in static electric fields that are much weaker than the intra-atomic field
strength has been given by Landau and Lifshits [53]. Ionization in a monochromatic
oscillating field has first been treated by Keldysh [45], considering the field-dressed
continuum states but neglecting the Coulomb interaction of the ionized electron with
the parent ion. Perelomov, Popov and Terent’ev [54–56] considered this correlation
in the final state more accurately, averaging the static field expression over a cycle
of a laser pulse of arbitrary polarization. Their formula holds under the adiabatic-
ity condition of Keldysh. Subsequently it was extended by Ammosov, Delone and
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Mechanisms of Strong Field Ionization

Krainov ([57], see also [58]) to atoms and atomic ions of higher nuclear charge that
can be in arbitrary electronic states. It is commonly referred to as ADK-theory:

Γ = C2
n∗l∗fl,m

(
2F0

E0

)2n∗−|m|−1

A(E0, ω, ε) Ip exp

(
−2

3

F0

E0

)
, (2.8)

where E0 is the field strength of the electrical field, F0 = (
√

2Ip)
3 is the atomic field

strength and n∗ = Z/
√

2Ip is the effective principal quantum number of a Coulombic
system of charge state Z. The coefficients Cn∗l∗ are usually determined from a fit
of a wavefunction from numerical quantum chemical calculations to the asymptotic
behavior of a bound Coulomb state. The angular momentum is taken into account
by the factor

fl,m =
(2l + 1)(l + |m|)!

2|m|(|m|)!(l − |m|)!
, (2.9)

where l and m are the angular momentum and magnetic quantum numbers of the
ionizing electron respectively. The third factor in Eq. (2.8), which was improved by
Perelomov, Popov and Terent’ev as compared to the original derivation of Keldysh,
approximatively takes into account the Coulomb interaction of the atomic ion with
the ionized electron. The factor A(E0, ω, ε) enters from the averaging over one period
of the oscillating field:

A(E0, ω, ε) =

[
ε(1 + ε)

2

]− 1
2

a

(
1− ε
3ε

F0

E0

)
, (2.10)

a(x) = e−xI0(x) , (2.11)

where 0 ≤ ε ≤ 1 is the ellipticity of the laser and I0(x) is the Bessel function
of imaginary argument. Thus, for circular polarization the cycle averaged rate is
identical to the rate in a static field. For linear polarization this factor reduces to√

3
π
E0/F0.

The process can be understood as the transmission of the tail of the bound wave-
function through the potential barrier, where it is attenuated exponentially as it lacks
the classically required energy to pass it. The electron is promoted to the continuum
with zero momentum at a distance of about 2Ip/E0 (in a.u.) from the parent ion.
Based on this picture, the ”simple man’s theory” [59, 60] explains the width of the
ATI spectrum of the directly ionized electrons. This is obtained by calculating the
maximal amount of cycle averaged kinetic energy that an electron can gain from the
oscillating electric field E(t) = E0 sin(ωt+ φ0):

〈Ekin〉 = Up + (
√

2Up cos(ωt0 + φ0) +
√
me2v0)

2 . (2.12)

Assuming that the electron enters continuum with zero velocity v0, it may gain up
to 2Up from the field as drift energy additionally to the basic quiver energy Up.
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Figure 2.2.: Energy diagram of intense-field Multiphoton Ionization of an hydrogen
atom in a 800 nm field of a Ti:Sapphire laser of intensity I = 4×1013 W/cm2. The
Keldysh parameter for this setting is γ ≈ 1.8.

Please note, that the ADK rate for single ionization is independent of the wave-
length of the laser field. This is a signature of the quasistatic nature of its derivation.
While neglected, the quantized nature of energy transfer from the field is valid also
in the tunneling domain and thus signatures of a quantized multiphoton absorption
should also be detectable. Recently evidence for such signatures was found exper-
imentally [61, 62] that could partly be explained from the theory of intense-field
Multiphoton Ionization [63, 64].

If finally the peak electrical field strength of the laser field gets large enough to
suppress the Coulomb barrier for the upper bound states to or below their bind-
ing energy (barrier suppression ionization [65]), the dynamics of the system will be
dominated by the interaction with the electrical field. The ADK formula has been
modified to take into account these repeated barrier suppressions during the laser
cycle ([66], for a recent review see [67]). In a linearly polarized laser field it is possible
though, that the interaction with the parent ion becomes important again when the
electron passes by close enough in a subsequent reversal of the field direction (see
section 2.1.4).
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Mechanisms of Strong Field Ionization

2.1.3. Intense-Field Multiphoton Ionization

Historically the theory of Multiphoton Ionization (MPI) originates from perturbative
theoretical considerations [2, 3]. In this approach, the intensity is limited to be small
enough as to not significantly disturb the structure of the initially bound system.
Today this is frequently referred to as perturbative MPI in contrast to the non-
perturbative MPI-theories of the type of the Keldysh-Faisal-Reiss (KFR) [45–47]
and the Intense-Field Many-Body S-Matrix Theory (IMST) [23, 24] described below.
The theory of Multiphoton Ionization takes into account the quantized transfer of
energy from the field to the electron. From the lowest order perturbation theory
(LOPT) of nonresonant multiphoton ionization the ionization rate is found to follow
a power law dependence on the laser intensity ([68], Section 2.6):

Γ
(N)
fi = σ

(N)
fi I

N , (2.13)

where σ
(N)
fi is the generalized cross section for N -photon ionization depending on the

transition matrix element between initial and final stationary quantum states and on
the photon frequency. The intensity I is measured in atomic units (see section A),
i.e. is smaller than unity in the domain considered. In the interpretations of the ATI
experiments [69, 70] this dependence was found to hold also for above the threshold
photon number N0

Γ
(N0+M)
fi = σ

(N0+M)
fi I(N0+M) . (2.14)

Gontier and Trahin [69] argued that the limited interaction time of the atoms passing
through the focus of the laser does not allow the interpretation of the ATI peaks as a
result of a two-step process, where in the first step the electrons are ionized to contin-
uum at threshold and subsequently gain energy by the initially proposed mechanism
of Inverse Bremsstrahlung Eq. (2.1). They concluded that the ATI process must be
seen as an elementary act of simultaneous absorption of N = N0 +M photons.

In the experimental ATI spectra it was found that with increasing intensity the
lowest order ATI peaks were disappearing [39]. Theoretically this observation was
attributed to a closing of the transition channel to the low energy continuum states
corresponding to the threshold or lowest order ATI peak. It could be explained by
the AC Stark shift of the continuum states by the ponderomotive energy Up [71].
Thus also the higher-energetic electrons enter continuum with a kinetic energy that
is reduced by the amount of Up, but they gain this energy again upon leaving the
focus of the laser field on the way to the field free area of detection [72].

While the perturbative foundation of the theory of Multiphoton Ionization is lim-
ited to low intensities, the general non-perturbative quantum mechanical treatment
of the process is established in the KFR theory [45–47]. In this, the interaction be-
tween the laser and the bound system is treated as a scattering process, where the
coupling between the electron and the laser has the role of the interaction potential.
Consequently its rigorous theoretical foundations lie in the S-matrix theory of po-
tential scattering [73]. The KFR-model has successfully been extended to scattering

14



2.2. Double and Multiple Ionization

processes of second and higher order resulting in the framework of the Intense-Field
Many-Body S-Matrix Theory (IMST) [23, 24]. The theoretical foundations will be
reviewed and extended in detail in section 3.3.

In contrast to ionization processes involving only a single photon, in intense-field
Multiphoton Ionization for each initially occupied spatial orbital of the atom there
is a discrete band of possible values for the kinetic energy of the finally ionized
electron, corresponding to an increasing number of absorbed photons or a rising
photon order. This also means that ionization is possible from every initially occupied
spatial orbital. The ionization from the highest occupied orbitals is achievable with
the lowest photon order. Since the ionization rate drops with increasing photon
order, ionization of electrons from the highest occupied orbitals contributes most to
the ionization signal, if no intermediate resonances are involved.

2.1.4. Recollision

Once an electron is ionized from the bound Coulombic system it may return to the
parent ion again as a result of the reversal of the field direction. In this case, the
process of recollision [74] can occur. The electron can scatter

� elastically (i.e. without change in the internal state of the parent ion)

� inelastically (excitation or ionization of the parent ion, discussed in section 2.2)

or it can recombine (generating high harmonics of the base photon frequency). In
a semiclassical picture the electron scatters elastically with the parent ion and si-
multaneously absorbs additional photons from the laser field in a process of Inverse
Bremsstrahlung (see Eq. (2.1)). This mechanism was successfully applied to provide
an explanation for the extension of the ATI spectrum beyond the semi-classically
achievable limit of 2Up (Eq. (2.12)). By this three step mechanism the experimen-
tally determined extension [75] of the kinetic energy spectrum in a plateau up to
10Up can be obtained. Alternatively to the ”classical rescattering” model [76], this
process can also be described fully quantum mechanically in the framework of the
Intense-Field Many-Body S-Matrix Theory (IMST) [25, 26] as a second order pro-
cess, Coulomb-correlating the field dressed electron, that is multiphoton-ionized in
the first interaction, with the residual ion in the second interaction.

2.2. Double and Multiple Ionization

Processes of multiple ionization were first explained as a successive removal of the
outermost electrons during the rising edge of the laser pulse. Within this concept of
sequential ionization the occurrence of charge states of atoms and their saturation
intensities could be predicted [77]. With the collection of more experimental data over
a larger dynamical range of the ion yields, deviations of several orders of magnitude
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Mechanisms of Strong Field Ionization

Figure 2.3.: Double logarithmic plot of the ion yields of single (He+) and double
(He2+) ionization (from [79]). In the nonsequential domain (NS) the experimental
results deviate by up to six orders of magnitude from the theoretical predictions
for sequential double ionization. At intensities above the saturation intensity the
ionization signal scales as I

3/2
0 due to the scaling law of the Gaussian focal volume

[81, 82].

were found, compared to the predicted rates for sequential double ionization [78, 79].
The canonical object of research for this process is the Helium atom, but experiments
were also performed on other noble gases [79, 80], which also allow the analysis of
even higher degrees of ionization. In these experiments for multiple ionization a
strong increase of the ionization yield was found below certain intensities. Because
of its characteristic visual appearance in double logarithmic plots this change in slope
is widely referred to as the ”knee” structure (see Fig. 2.3) of Nonsequential Double
Ionization (NSDI).

The increased ionization yields can be explained by a nonsequential process, where
the emission of the second electron is facilitated by the Coulomb correlation with the
first one. This correlation can become significant at different stages of the ionization
process of the first electron and accordingly different mechanisms of nonsequential
multiple ionization have been proposed (for reviews see [83, 84]).

The first correlated mechanism of double ionization is the so called On the way out
or Two-Step-One (TS1) process which is known from single-photon double ionization
[85, 86]. In this process, the coupling of the laser field to the electrons drives a first
active electron in such a way that in leaving the binding potential of the parent
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ion it scatters with another electron and transfers enough energy to this electron to
leave the binding potential as well. This process is likely to involve two electrons
of the same spatial orbital to minimize the average distance between the scattering
partners. As a characteristic feature of this process, for increasing kinetic energy
of the first electron, the two ionized electrons are likely to leave the parent ion in
the same direction. In the case of linear polarization this direction is along the
polarization axis of the laser. Both electrons will also leave the ion in the same laser
half-cycle.

Another highly correlated mechanism has been proposed [87, 88] by the name of
Collective Tunneling. According to this mechanism, two electrons tunnel through the
potential barrier in the same half-cycle of the laser pulse. Though similar to the result
of On the way out mechanism with respect to the timing of the electron release and
the correlation of electron momenta, its understanding of electron-electron correlation
is very different. For this model to work, the two electrons must form a collective
tunneling mode, where they jointly move away from the nucleus, mutually screening
its attractive potential. Thus this model suffers two weaknesses, first missing an
explanation for the origin of this highly correlated motion, and second the instability
of this state. If some evidence for this mechanism can be found, it would work despite
the repulsive nature of the Coulomb correlation of the two electrons and not because
of it.

Similarly the mechanism of electron Shake-Off [78] is not explicitly taking into
account the dynamical Coulomb correlation between the two ionizing electrons, but
merely the collective correlation of the first electron with all other charged particles
of the system in its initial state. The basic idea of this mechanism is the fact that
the eigenfunctions of the bound Coulombic system change when one of the electrons
is ionized. During the act of single ionization of the first electron, the remaining
bound electrons, occupying the eigenfunctions of the neutral Coulombic system, are
projected with a certain probability onto unbound continuum eigenfunctions of the
singly ionized system. As a result another electron might suddenly be transferred
into a continuum state. For this process to occur it is essential that the first electron
leaves the system so quickly that an adiabatic transition of the remaining electrons is
not possible. It is deemed that the highest occupied spatial orbitals have the largest
overlap with the new continuum states. In this process the kinetic energy of the
two ionized electrons is distributed very asymmetrically. The active electron is fast,
while the passively ionized electron has a low kinetic energy. While this mechanism is
dominant for the single photon double ionization by synchrotron radiation for large
photon energies [86], it has been shown that this mechanism is of minor efficiency in
the strong field regime of laser ionization [32]. Recently it has been shown [26, 89]
that the same holds for the analog process of Shakeup, where the second electron is
transferred to an excited state during single ionization.

If the first electron leaves the ion in an act of single ionization, in strong fields it
can also induce the process of Ionization by Inelastic Recollision [74, 90], in which it
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transfers enough energy to another bound electron for it to leave the singly charged
ion as well. The first idea of this process was dubbed Antenna mechanism, where the
electron that is ionized first absorbs enough energy from the laser field to distribute
it among other electrons to leave the Coulombic binding potential too [91, 92], but
it failed to allow quantitative predictions for the time delay and the return energy.
In its final step this process is similar to a regular (e, 2e) scattering process (see
section 5). In contrast to the On the way out mechanism, there is a time delay of the
order of 2/3 of the laser cycle between the production of the singly charged ion and
the doubly charged state. This delay is on the time scale of molecular vibrations and
thus may result in measurable effects in molecular double ionization to distinguish
the On the way out mechanism from the process of inelastic Recollision. The unique
feature that distinguishes the Recollision mechanism from all other mechanisms of
double ionization, is the strong dependence on the linear polarization of the laser
field. This is necessary for the projectile electron to return to the parent ion again
with high enough probability. While the wavepacket of the ionized electron spreads
with time, its overlap with the parent ion at the times of return decreases rapidly
with increasing ellipticity of the polarization. This dependence of the yield for double
ionization on the polarization of the laser field is confirmed experimentally [93, 94].

The framework of the Intense-Field Many-Body S-Matrix Theory (IMST) [25, 26],
described in section 3.3, provides a complete quantum mechanical treatment of the
double ionization and comprises these four (as well as other) mechanisms in the first
two orders of the S-matrix expansion. This is in contrast to the ”classical rescat-
tering” [74, 76], that models the field propagation of the electron classically and
specifically does not take into account the On the way out mechanism. It is shown
within this theory that the Feynman diagram in Fig. 2.4, represents the leading
contributions. It represents in which order the coupling to the laser field and the
interelectron correlation is considered. At the initial time ti both electrons (repre-
sented by the two solid upward lines) in the He atom are correlated by their Coulomb
interaction, visualized by the dashed line. Then, at some later time t1, one of the two
electrons is activated by the direct interaction with the laser field, absorbing enough
photons to overcome the ionization barrier, which is increased beyond the field free
ionization potential by the ponderomotive energy that is required by the electron
to enter the laser dressed continuum. Following the time axis of the diagram the
two fermionic parts of the physical system are then evolving separately, the ionized
electron driven by the field as a wavepacket ({k}) of Gordon-Volkov states and the
bound electron continuing to be dominated by the binding potential of the cation.
At time t2 the Coulomb interaction between the two electrons becomes significant
again, represented by the connecting line labeled as VC . At the final time tf we
are interested in the case where both electrons are unbound, moving with the drift
momenta ka and kb. The energy consumption of the process is balanced by the
reduction of photons in the laser field.

Finally to complete the possible channels of inelastic Recollision, the mechanism
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Figure 2.4.: Feynman diagram of the second order process that gives the dominant
contribution to Nonsequential Double Ionization (NSDI) in infrared laser fields.

of Recollision Excitation with Subsequent field Ionization (RESI) [95] has been found
to be important in the double ionization of He and Ar [96–98]. This process can be
thought of to proceed in four steps, the first two, single ionization and field driven
propagation of the electron, being common to all ATI processes. In contrast to
Ionization by Inelastic Recollision in the third step a bound electron is not trans-
ferred directly to a continuum state but to an excited bound state, from which it
is field-ionized with increased probability in the final step. Frequently this second,
uncorrelated, sequential ionization process is modeled as a tunneling process, but
this is not mandatory. In the framework of the Intense-Field Many-Body S-Matrix
Theory (IMST), the process would be described as a third order process.

2.3. Molecular Ionization

Compared to atoms, molecules offer additional degrees of freedom. Without loss of
generality the discussion below focuses on diatomic molecules first. For these one
has as additional parameters first the internuclear distance and second the angle of
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alignment of the molecular axis with respect to the direction of polarization of the
laser. For heteronuclear molecules the term orientation is used instead, since in this
case the molecules are not symmetric with respect to inversion about the center of
mass (they represent the point group C∞,ν and not D∞,h as in the case of homonuclear
diatomics). Thus, one can attribute a directedness to a heteronuclear molecule. Since
the polarization of the laser breaks the isotropy of space, the physical situation is
distinguishably different if the direction of the heteronuclear molecule is reversed in
the presence of the laser field. Furthermore there are two additional dynamic degrees
of freedom: The first is the vibrational state of the molecule and the second is its
rotational state.

When dealing with electronic transitions in molecules, the internuclear distances
and orientations are usually treated as fixed during the process, since, according to
the Born-Oppenheimer approximation [99], the electronic transition is much faster,
evolving on an attosecond time scale (1 as = 10−18 s) [18], than the motion of the
nuclei. The vibrational motion occurs on a scale of femtoseconds (10−15 s) and periods
of rotation are typically on a scale of picoseconds (10−12 s). Accordingly in ionization
processes the molecule and its ion are usually taken to have a rigid structure of nuclei
at fixed equilibrium distances.

From this rigid molecular model one can already anticipate new effects in processes
of single ionization when comparing diatomic molecules to atoms. In the S-matrix
analysis it has been shown that the symmetry property gerade or ungerade of the
wavefunction of the ionizing electron causes constructive or destructive interference
effects in the outgoing wavefunction of the ionized electron [34, 36, 100]. This analy-
sis was able to explain the experimental observation, that, for the case of molecular
oxygen, the ionization yields are suppressed [101, 102, 35] as compared to the ioniza-
tion signal from Xe atoms, having an ionization potential of comparable magnitude
[34]. The ionization rate also shows an alignment dependence with respect to angle
of the internuclear axis to the polarization of the laser field [103, 37]. The alignment
has been shown to be controllable [104, 105] by interaction of the induced dipole
moment with an intense laser pulse of nanosecond duration [106, 107].

The variation of the internuclear distance itself brings up several interesting ef-
fects, such as vibrational suppression of ionization [108], bond softening [109–112]
and the related effect of bond hardening [113, 114] as well as enhanced ionization
[115, 116, 112] of molecules and their ions for stretched internuclear separations in
the process of ionization. Vibrational motion can partially explain the suppressed ion-
ization rates for D2 that are detected experimentally [117] despite its gerade ground
state symmetry. The latter two effects are well understood in terms of adiabatic
field dressed states ([109], see section 3) and both have slightly different mechanisms
for molecules with an even number of electrons (e.g. neutral H2) on one hand and
molecules with an odd number of electrons (e.g. the H+

2 cation) on the other hand.
For odd-electronic molecular configurations the first excited electronic state is cou-
pled to the ground state by the oscillating electrical field component of the laser field.
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For even-electronic configurations this coupling was shown to be spin-forbidden, but
Saenz [112] showed for the case of H2 that a higher lying state of ionic character is
coupled to the ground state of the neutral molecule. This coupling is interpreted in
terms of the creation of adiabatic field dressed states, that avoid to cross each other if
they have the same symmetry. Treated on the basis of the field free potential curves
of the molecule, the adiabatic field dressed potential curves are diabatic mixtures of
the field free potential curves shifted by multiples of the photon energy. Compared
to the field free case, the potential wells of the adiabatic field dressed states are less
deep and thus support less vibrational states for the nuclear motion. The dissocia-
tion barrier of the states is lowered with respect to the field free molecule and thus
the bond is softened. In dissociation experiments with intense lasers, fragments of
molecular dissociation are found at very low energies, on the order of the quanta of
vibrational motion [110]. The first evidence of the theoretically predicted effect of
bond softening was found with molecules in a static electric field [118].

This coupling of states by the photon field also effects the ionization dynamics of
molecules. The effect of enhanced ionization is complementary to the effect of bond
softening, but it is based on the same theoretical analysis. Instead of following the
adiabatic potential curves in the field, in the regions of avoided crossing the electrons
can make diabatic transitions from the adiabatic ground state to the excited state.
These diabatic transitions are favored the quicker the potentials change that act on
the electrons, i.e. as either the speed of nuclear motion increases or the rise time of
the electric field component of the laser decreases ([112] and references therein). Once
the electronic wavefunction gained a considerable admixture of the excited state, its
ionization potential is reduced and thus ionization rates can rise at the internuclear
distances that correspond to regions of avoided crossings. Based on the ideas of
Codling and Frasinski [119], that explained the production of asymmetric charge
states in multiphoton multiple ionization processes of di- and triatomic molecules, the
mechanism of charge resonant enhanced ionization (CREI) was first predicted by Zuo
and Bandrauk [116] for the H+

2 cation. The existence of critical internuclear distances,
where ionization is enhanced, were recently confirmed in a pump-probe experiment
with H2 and D2 [120]. First evidence for enhanced ionization of neutral H2 was
found in time dependent numerical calculations [121], and could be explained along
the same lines as bond softening discussed above by Saenz [122]. A similar mechanism
may be suspected to contribute to the puzzling non-suppression [34, 123, 124] of the
single ionization signal of molecular fluorine (F2, [125]) because this species is known
to exhibit strong correlation between the electrons.

Quite early it was argued [109] that in an intense laser field these diabatic effects,
that occur at certain ranges of the internuclear distance R, invalidate the ansatz of
Condon, which is based on the overlap of stationary quantum states. Additionally
in the quasistatic theoretical model of tunneling ionization, the quantum mechanical
concept of stationary states with quantized, fixed energies is not applicable.

Quantum mechanically the atomic constituents of the molecule constantly move
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around their equilibrium positions. Without loss of generality, the following discus-
sion starts with diatomic molecules. The motion of each atomic nucleus is confined
by the potential well V (R) that is build up by the superposition of the mean attrac-
tive Coulomb field of the electrons and the Coulomb field of the other nuclei which
is repelling them from each other. The possible states of vibration in this binding
potential are quantized. If an electron is removed from the molecular system, the
internuclear potential changes. The internuclear equilibrium distance relaxes to a
value that usually differs from the equilibrium distance of the parent molecule. If
this electron occupied an orbital of bonding symmetry, the position of the minimum
of the potential well is shifted to a higher internuclear distance in the ion. If on the
other hand the ionization frees a formerly occupied orbital of antibonding symmetry,
the minimum shifts to a lower internuclear distance as the bond weakening charge
distribution is removed. Thus the ionization of an electron from a molecule initiates
a change of the internuclear motion. If the molecule initially was in one specific
vibrational eigenstate, the molecular ion is put into a coherent superposition of vi-
brational eigenstates of the new bonding potential. While the expectation value for
the internuclear distance 〈R〉(t) = 〈Ψ(R, t)|R|Ψ(R, t) 〉 is a stationary quantity for a
pure eigenstate, it changes periodically with time in the molecular ion. This coherent
superposition of vibrational eigenstates forms a wavepacket that moves periodically
along the R-axis as time evolves.

In double ionization of bi-electronic molecules like H2 and isotopic variants, this
moving wavepacket can be mapped by the kinetic energy of the ionic fragments if
they dissociate after the ionization of the second electron [126–128]. This kind of
dissociation is traditionally referred to as Coulomb explosion [129]. Since the inter-
nuclear potential V (R) of the doubly ionized H2 is strictly repulsive, there is a one to
one correspondence of internuclear distance to the potential energy that is converted
into kinetic energy. This correspondence is known as reflection principle [130–134].
The ionization of the first electron can be regarded as the start of a molecular clock
[135], that can be read by measuring the kinetic energy of the molecular fragments
as a function of the time delay between single and double ionization. If on the other
hand this delay is unknown as in the usual case, information about it can be gained
from the kinetic energy spectrum of the molecular fragments. Experimental tech-
niques involving dissociation of the molecules and measurement of the kinetic energy
release (KER) are also frequently applied to other diatomic molecules to reveal the
binding energy of the highest excited electron following processes of excitation or
ionization (see section 4.2).

In double ionization the alignment of the molecule plays a role as well for the
ionization of the second electron. While the mechanism for this is nearly trivial for
sequential ionization, for a nonsequential process it can be thought of as a scatter-
ing process of the first electron on a molecular ion that is aligned to its direction
of propagation in a certain way. Analogous to the atomic case, the application of
the Intense-Field Many-Body S-Matrix Theory (IMST) [25, 26], intrinsically con-
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siders both processes, On the way out and inelastic Recollision coherently, and the
orientation of the internuclear axis enters as an adiabatic parameter to the molecular
wavefunction.
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3. Overview of Theoretical Methods

In atomic and molecular physics it has become possible to calculate and measure
certain quantities with very high precision. On the theoretical side much of this
success was possible due to the clearly defined and known interaction laws and the
limited extent of the physical system under consideration. The Coulomb interaction
is governing the dynamics of the electrons, while e.g. the influence of gravitation of
the molecular constituents is negligible. In contrast, research in nuclear structure or
solid state physics, e.g., must cope with the lack of knowledge of the precise form of
the many-body interaction of the nuclear or condensed matter constituents. Yet, the
solution of the time dependent Schrödinger equation (TDSE) to a given Hamiltonian
still is a nontrivial task. Specifically the Schrödinger equation for the single atom or
molecule is still lacking general solutions for Coulombic systems with more than one
electron. Moreover, for dynamic problems such as collisions or interactions of atoms
and molecules with strong time-varying electromagnetic fields, even for systems with
only one or a few electrons, such a high precision description of observables is not
often achievable in calculations. A wide range of theoretical approaches have been
and continue to be developed to obtain approximative solutions to given specific
conditions of the problem. All techniques have their virtue for specific domains and
often several are used independently to gather more insight into the problem at hand.

3.1. Time-dependent Methods

The techniques divide into two basic categories, which I call discrete (usually ’local’)
and continuous ones, distinguishing them by the nature of the time evolution ap-
plied [136]. Discrete techniques of approximation to the time dependent Schrödinger
equation are evolving a given initial solution at one time to the next time step ac-
cording to the differential equation. These techniques are frequently referred to as
TDSE methods or direct solution of the TDSE [137, 138]. The initial solution is ei-
ther taken from an analytical calculation or for consistency is converged on the same
discrete grid according to a variational principle or by imaginary time propagation.
Since the numerical TDSE evolution is computationally very demanding, not only
the granularity of the grid but also its extent has to be limited. Several techniques
for the compensation of artifacts originating from these truncations have been de-
veloped, such as boundary mask functions [139], complex absorbing potentials [140]
and exterior complex scaling [141]. Additionally to these confinements, researchers
frequently try to reduce the number of dimensions of the problem to the coordinates
that undergo the essential dynamics of the process. For this reason and also to check
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basic assumptions it is not uncommon to analyze one dimensional (1D) models, that
only consider the motion of the Coulombic system along the direction of the electric
field component of the laser (e.g. [142, 143]). On the other hand, due to the advance
in processor speeds and computer memory, by now it has become possible to tackle
the full dimensional TDSE equation numerically for the case of He [144, 145]. In the
next section we will briefly discuss the current advancement of a different approach
which reduces the full dimensional calculations to the degrees of freedom that are
essential for the physical system at hand [146, 147].

All approximative techniques to the solution of the time dependent Schrödinger
equation can be thought of as evolving the initial solution into an orthonormal set
of known basis functions. The ’local’ techniques choose the position or the dual
momentum eigenfunctions to evolve the initial solution and necessarily must restrict
their description also to a discrete set of the complete, continuous set of possible
basis functions. Thus these techniques are finite-difference, finite-element methods
that, apart from time, also discretize space into a grid of a certain granularity that is
chosen small enough to cover the physical scale of the quantities involved, e.g. to hold
the shortest de Broglie wavelength that occurs for the ionized electron. The approx-
imative solution obtained by these methods is a discrete one. While analytically the
description of the physical system is equivalently expressible in different bases, the
limitations of numerical calculations impose losses of information, that may prohibit
this mapping and make it important to choose physically relevant states as the basis
of the numerical description. E.g. states that are not well localized in position or
momentum space are not efficiently and accurately representable in these particular
bases. There are also approaches to perform TDSE calculations in other basis spaces,
e.g. on B-splines [148] or spherical harmonics [148].

3.1.1. Virtual NPSF Lab

While one dimensional TDSE calculations have been quite successful for situations
of single-ionization, multi-electron dynamics does not seem to be accurately describ-
able without giving the electrons the extra degree of freedom to repel each other
while being driven by the field. To this end models that go beyond one dimensional
approaches have recently been developed [146], and are now applied in the creation
of an efficient software for the numerical simulation of virtual laser experiments. The
technical concept of this approach is to create a library of software routines [149]
that allow to calculate and propagate a discretized wavefunction according to a se-
lectable Hamiltonian on a spatio-temporal grid, currently by using a Crank-Nicholson
finite-difference iterative method [150]. Applying object oriented software engineer-
ing concepts [151], the code is designed in such a way that all physical characteristics
of the system are flexibly adaptable. This allows virtual laser experiments with dif-
ferent physical systems such as the Helium atom [146] and small molecular systems
like H2 with a fixed internuclear radius [147] and H+

2 with moving nuclei. The idea
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3.1. Time-dependent Methods

was born out of the observation that several systems of current interest in atomic and
molecular laser physics are governed by Hamiltonians of similar general structure.
All systems covered so far are three- and four-body systems which can be reduced
to an effective two-body problem due to the large mass of the nuclear centers. The
dimensionality of the problem is further reduced by the observation that the laser
only couples to the center of mass coordinate of two charged particles of identical
charge-to-mass ratio. To use different pulse shapes, the carrier frequency of the laser
can be modulated by different analytical or experimentally recorded pulse shapes.
The temporal discretization of the propagation is obtained by a discretization of the
field generated by the laser pulse with a variable time step suitable for the desired
spectral resolution. To allow efficient simulation of pump-probe experiments, where
the two pulses usually have very different spectral and temporal characteristics, two
pulses can be superposed by analytic calculation of the combined laser pulse and
ensuing discretization of the generated field at the highest resolution necessary at
a given time. This concept of a separation of the laser object from the discretized
field object decouples the Hamiltonian from the specifics of field generation. The
Hamiltonian is only coupling to either the electric field E(t) or its vector potential
A(t) at each instant of the simulation time depending on the choice of gauge. For a
diatomic molecule with two electrons like H2 or HD in the laser field the Hamiltonian
can be written in the different gauges as:

H(LG) =
1

4
k2

CM + k2
rel + 2rCME(t) + Vcoul

+
1

2M
P2

CM +
1

2µ
P2

rel − (ZA + ZB)RCME(t)− ZrelRrelE(t)
(3.1)

H(V G) =
1

4

(
kCM + 2

A(t)

c

)2

+ k2
rel + Vcoul

+
1

2M

(
PCM − (ZA + ZB)

A(t)

c

)2

+
1

2µ

(
Prel − Zrel

A(t)

c

)2

,

(3.2)

where M and µ denote the total and reduced masses of the molecule and

Vcoul =
1

rrel
+
ZAZB

Rrel

−
2∑

i=1

∑
j=A,B

Zj

|ri −Rk|
. (3.3)

The center of mass and relative momenta of the nuclei A and B are denoted as PCM

and Prel respectively. The corresponding quantities for the electrons are referred to
by the letter k. Note that PCM references the nuclear center of mass while kCM

references the center of mass of the electrons. One recognizes that the field couples
to the internuclear coordinate Rrel of the nuclei directly only through what may be
referred to as the relative charge

Zrel ≡ µ

(
ZA

mA

− ZB

mB

)
(3.4)
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of the two nuclear centers with charge-to-mass ratios of ZA/mA and ZB/mB respec-
tively. The name is appropriate due to the structural similarity to the expression for
the relative momenta.

The splitting of the Hamiltonian into center of mass and relative momenta Eq. (3.2)
directly leads to a new interpretation of the wavefunction of two electrons in the laser
field [152]. Neglecting the Coulomb correlation between the two electrons one can
write:

|kGV
a (t) 〉⊗ |kGV

b (t) 〉 =|kGV
CM(t) 〉⊗ |krel(t) 〉 , (3.5)

where

|kGV
CM(t) 〉 ≡|kCM 〉 exp

−i t∫
−∞

1

4

(
kCM +

2

c
A(t)

)2
 (3.6)

is the velocity gauge Gordon-Volkov wavefunction of the center of mass of the two
electrons. The momentum ket | kCM 〉 = exp [ikCM · rCM] is a plane wave in the
center of mass coordinate corresponding to the drift momentum of the center of
mass. Physically this separation of the two-electron Gordon-Volkov wavefunction
Eq. (3.5) can be interpreted as the signature of two quasi-particles: It can be read
as the decoupled product wavefunction of the center of mass quasi-particle (of mass
2 a.u.), and the relative momentum quasi-particle (of mass 0.5 a.u.). While the former
is described by a Gordon-Volkov wavefunction as it couples to the field due to its
charge of 2 a.u., the latter behaves as a plane wave |krel 〉 in the relative coordinate,
without electric charge and thus unaffected by the field. The Coulomb interaction
of the two electrons only acts on the relative coordinate of the electrons, i.e. it only
Coulomb-dresses the plane wave solution for the relative momentum quasi-particle.
The exact wavefunction of the electron-pair state in the presence of a laser field
[152] fully includes this correlation. Thus, the relative momentum quasi-particle
captures all electron-electron interaction, including the fermionic substructure, while
the center of mass quasi-particle is unaffected by the inner correlation of the electron-
pair state.

To put this observation on a more general level, we may note, that the electron-
pair state is a special case of a general charge-pair state of charge Zrel and mass µ. If
the charge-to-mass ratios of the two charges is equal, the relative momentum substate
of the charge-pair state constitutes an uncharged quasi-particle, whose evolution is
unaffected by a laser field. An example of a relative charge-pair state with nonzero
relative or inner charge is found in the case of the nuclei of a heteronuclear diatomic
molecule. Both quasi-particles are bosons, as one of them carries the total spin of
the electron pair state, i.e. either a singlet of a triplet while the other one can be
considered to be spinless for consistency. While the relative momentum quasi-particle
captures the inter-Coulombic correlation of the Coulomb-pair state, it is reasonable to
associate the total spin with the center of mass Coulomb-pair state. Thus the relative
Coulomb-pair state is considered to be a spinless quasi-particle. It is interesting to
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Figure 3.1.: Energy diagram for the two-electron state. Shown are the axis that allow
interpretation as double ionization (DI) and single ionization (SI) respectively.
The negative part of the DI-axis corresponds to a back-to-back emission, while the
positive half-axis corresponds to emission into the same spatial hemisphere. The
diagonals correspond to the center of mass and relative energies respectively.

note that the center of mass Coulomb-pair state carries the total momentum, while
the relative Coulomb-pair state carries no momentum as is easily seen by applying
the operator of momentum for the particle-pair system:

p̂12 |krel 〉 ≡
1

i

(
d

dr1

+
d

dr2

)
exp [ikrel · rrel]

=
1

i

(
d

dr1

+
d

dr2

)
exp [ikrel · (r1 − r2)] = 0 .

(3.7)

To demonstrate that this interpretation is not devoid of use, we present in Fig. 3.1 an
energy diagram for the two-electron state that is derived from it. These observations
suggest that an analysis of experimental constellations in terms of relative energy
and center of mass energy could provide an additional tool for the interpretation
of physical processes that exhibit a dominant correlation between to charges in the
final state. Recently there is experimental indication from kinematically complete
COLTRIMS [153, 154] experiments that this figure of thought is useful for the inter-
pretation of data from Nonsequential Double Ionization (NSDI) or electron impact
ionization in a laser field [155]. We point though, that this picture is only asymp-
totically correct, as it neglects the Coulomb-correlation of the electron-pair with the
residual scattering witness, i.e. the parent ion.

The project of the group Nonlinear Processes in Strong Fields (NPSF) at the Max
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Planck Institute for the Physics of Complex Systems (MPIPKS) has been dubbed
”Virtual NPSF Lab”, as it allows the scientists to make virtual experiments based
on a solid theoretical background, that are difficult or impossible to perform in an
actual laser laboratory at this degree of parametrical flexibility. E.g. in this virtual
laboratory it is easy to obtain predictions of what effect the replacement of one
of the electrons by a muon in the system above would have in actual experiments
with intense laser fields. Like S-matrix theory it enjoys the advantage of theoretical
research, that is easily possible to switch off certain interactions at will to analyze
their influence on an experimental observable. Two-dimensional projections of the
state of the simulated wavefunction can be obtained at any desired temporal period,
stored in native Matlab® [156] format to ease evaluation and visualization of the
simulated physical experiment. Currently parallelization of the code is on the way, to
make calculations on larger simulation grids feasible at a manageable CPU time. This
is necessary to follow the extended quantum paths of the electrons driven by infrared
laser fields as well as to more easily manage the number of time steps necessary
for attosecond ionization experiments with IR streaking fields, that currently enjoy
considerable interest [157].

3.2. Floquet Methods

The other class of techniques usually considers basis functions that are more adapted
to the physical nature of the system and evolve the initial condition according to the
differential equation restricted to these basis functions. While not as generally ap-
plicable as the TDSE methods, they offer the possibility to both provide and gain
considerably more information about the physical nature of the system under con-
sideration from the interpretation of numerical calculations. Frequently solutions of
time independent Schrödinger equations of stationary configurations of the physical
system are used as basis functions. If the potentials involved are time dependent,
such as in the case of an electric charge in the laser field, the time dependent inter-
action can sometimes be transformed into the basis states of the description, as in
the interaction picture formalism of quantum mechanics.

The computational problem of a continuous set of basis functions quickly enters
also this type of approaches, if the discrete set of bound states interacts or cou-
ples considerably with the continuous part of the spectrum of eigenfunctions of the
physical system. This certainly is the case for increasing strengths of perturbation.
Thus it is of utmost importance to choose basis functions that are adapted to the
dominant interaction(s). To this end one of the approaches most suitable for laser-
atom interactions is the Floquet method [158], which transforms the time-dependent
Schrödinger equation, corresponding to a periodic Hamiltonian of a Coulombic sys-
tem interacting with a laser field, into a set of time-independent coupled equations.
Each of these equations corresponds to a certain number of photons that were ab-
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sorbed or emitted by the Coulombic system. If the laser field interacting with a
molecule is treated classically, the general Hamiltonian can be written as a sum of
terms of integer multiple frequency of the laser ([68], eq. (10.2.1.10), p. 247):

H(t) = H0 −
q

mc

Ne∑
i=1

A(ri, t) · pi +
q2

2mc2

Ne∑
i=1

A2(ri, t)

= H0 + V (1)(r)e−i(ωt+δ) + V (−1)(r)ei(ωt+δ)

+ V (0) + V (2)(r)e−i2(ωt+δ) + V (−2)(r)ei2(ωt+δ)

= H(t+ T ) ,

(3.8)

where r = (r1, . . . , rNe) and T = 2π/ω. The field is given by the vector potential

A(ri, t) = A0
1

2

∑
±

e±i(k·ri−ωt−δ) (3.9)

of a classical multipole field and

V (±1)(r) = − q

2mc

Ne∑
i=1

A0 · pie
±ik·ri

V (0) =
Neq

2A2
0

4mc2

V (±2)(r) =
q2A2

0

8mc2

Ne∑
i=1

e±i2k·ri .

(3.10)

The solutions to the time dependent Schrödinger equation have the general form

ψλ(r, t) = φλ(r, t)e
−iελt , (3.11)

where the periodicity of H is reflected in φ(r, t) = φ(r, t+ T ). Thus these functions
can be expanded as a Fourier series in overtones of ω

φλ(r, t) =
∞∑

n=−∞

φn,λ(r)e
in(ωt+δ) (3.12)

and their spatial part is expanded in the basis of the eigenstates |j〉 of the field free
Hamiltonian H0 ( H0|j〉 = Ej|j〉 ) to get a full expansion of the (unknown) state
of the full Hamiltonian (Eq. (3.8)) in terms of functions with known and physically
adapted behavior:

ψλ(r, t) = e−iελt

∞∑
n=−∞

∑
j=1

aj,n(ελ)|jn〉 , (3.13)
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with the so called field dressed or Floquet states

|jn〉 = |j〉ein(ωt+δ) . (3.14)

Inserting this expansion into the time dependent Schrödinger equation and match-
ing terms of equal frequency, an infinite number of stationary Floquet equations is
obtained that determine the expansion coefficients aj,n(ελ) ([68], eq. (10.2.1.10))

(ελ − εjn)aj,n(ελ) =
∑

l

(∑
±

V
(±1)
jl al,n±1(ελ) + V

(±2)
jl al,n±2(ελ)

)
, (3.15)

where
εjn = Ej + nω + V (0) (3.16)

denotes the quasi-energy of the field dressed state |jn〉, that is shifted from the field
free energy Ej by the absorption or emission of n photons and the time averaged

interaction energy of the field. V
(±i)
jl (r) = 〈 j|V (±i)(r)|l 〉 symbolize matrix elements.

The Floquet states
ψF

n (t) = |jn〉e−iεjnt (3.17)

satisfy the stationary Floquet-Schrödinger equation

i
∂

∂t
ψF

n (t) = HF
n ψ

F
n (t) , (3.18)

where HF
n = H − i ∂

∂t
.

The biggest disadvantage of the Floquet method is the large dimension of the
Hilbert space that needs to be covered. Usually the spectrum of the states |j〉 is
limited to the discrete bound states. Thus conventional Floquet theory is limited
to bound-bound transitions and cannot describe transitions to continuum states,
that are essential for ionization and dissociation processes. For the description of
these processes one needs to extend the method to complex quasi-energies and non-
Hermitian Hamiltonians (see [68, 158]).

3.3. Intense-Field Many-Body S-Matrix Theory

S-matrix theories analyze the transition amplitudes between known initial and final
states of a quantum system under influence of a scattering potential Vi

H(t) = H0 + Vi(t) . (3.19)

This scattering potential is acting on the system only during a limited time, either
because it is switched on and off externally, or because it is an interaction between
parts of the total physical system that can be considered as separated for asymptotic
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times. H0 is usually the time independent Hamiltonian of a bound, e.g. molecular,
system. In atomic units it is expressed as

H0 = Te + TN + Vmol

=
Ne∑
i=1

p̂2
i

2
+

NN∑
k=1

P̂2
k

2Mk

+
Ne∑

i>j=1

1

|ri − rj|
−

NN∑
k=1

Ne∑
i=1

Zk

|ri −Rk|
+

NN∑
l>k=1

ZkZl

|Rk −Rl|
,

(3.20)

where Te and TN are the kinetic energies of the electrons and the nuclei respectively.
Vmol is the potential energy of the molecular system of Ne electrons and NN nuclei
of charge Zk and mass Mk. ri and Rk denote the electronic and nuclear coordinates
respectively.

Note that the state of the laser field can be considered classically. In a full quantum
description of the process, the quantization of the field is provided by the introduction
of creation and annihilation operators. Due to the high number of photons that are
flowing through the laser focus at intensities that are strong enough for intense-field
multiphoton ionization, the classical treatment is justified as a case of the correspon-
dence principle [159]. The neglect of the change in the total energy contained in
the laser field is justified by the fact that the number of photons exchanged between
the field and the bound Coulombic system is very small compared to the number of
photons flowing through the focus per unit time. As a consequence, the energetic
state of the field is nearly constant on its own scale.

In the conventional perturbative formulation of the S-matrix expansion, initial
and final state are eigenstates of the same Hamiltonian that describes the physical
system without the interaction [160][

i
∂

∂t
−H0

]
|φi/f 〉 = 0 (3.21)

in Diracs ket notation, where the spatial coordinates in Eq. (3.21) and the equations
below are dropped. The general objective is to find solutions to the Schrödinger
equation with the full Hamiltonian:[

i
∂

∂t
−H(t)

]
|Ψ(t) 〉 = 0 . (3.22)

The solutions to this partial differential equation can be written in form of the integral
equation

|Ψ(t) 〉 =|φi(t) 〉+
∫ ∞

−∞
dt′G(t, t′)Vi(t

′) |φi(t
′) 〉 (3.23)
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whereG is the Greens operator that satisfies the inhomogeneous Schrödinger equation
to the full Hamiltonian [

i
∂

∂t
−H(t)

]
G(t, t′) = δ(t− t′) . (3.24)

The equivalence is seen by inserting |Ψ(t) 〉 into the Schrödinger equation Eq. (3.22).
The connection of the solutions to the full Hamiltonian (3.22) to the solutions of

the interaction free Hamiltonian (3.21) is found in the expansion of the full Greens
operator in terms of the Greens operator G0 that satisfies[

i
∂

∂t
−H0(t)

]
G0(t, t

′) = δ(t− t′) . (3.25)

The formal solution for G0 can be written as

G±
0 (t, t′) = ∓ exp(−iH0(t− t′))Θ(±(t− t′)) (3.26)

= ±iΘ(±(t− t′))
∑

j

|φj(t) 〉〈φj(t
′) | (3.27)

where the sign in the superscript selects the direction of time propagation. The
retarded solution G+

0 evolves the initial wavefunctions φi forward in time:

|φ(t) 〉 = iG+
0 (t, t′) |φ(t′) 〉 with t > t′ (3.28)

while the advanced solution G−
0 propagates the final state wavefunction φf backwards

in time.
In terms of G0 the full Greens operator can be expressed as:

G(t, t′) = G0(t, t
′) +

∫ ∞

−∞
dt′′G0(t, t

′′)Vi(t
′′)G(t′′, t′) . (3.29)

In perturbation theory this recursion is the starting point of the Dyson expansion of
the unknown solutions of the full Hamiltonian in terms of the known eigenfunctions
of the interaction free Hamiltonian H0. For this expansion to be meaningful, it
is important that the interaction Vi is small enough for the series to converge. A
first estimation for the upper bound can be obtained by requiring the term of this
recursive expansion that is second order in Vi to be smaller than the term that is of
first order in Vi.

In applications to processes in laser fields Vi(t) is the interaction with the radiation
field. In dipole approximation and in the form of minimal coupling [161, 162] this is
given by

Vi(t) = V
(VG)
L (t) =

Ne∑
j=1

[
−qj
c
p̂j ·A(t) +

q2
j

2c2
A2(t)

]
, (3.30)
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where A(t) = A0f(t)cos(ωt) is the vector potential of the radiation field in Coulomb
gauge (∇A = 0), f(t) denoting an envelope function which is slowly varying with
respect to the period 2π/ω of the carrier. This form of the interaction potential is
closely related to the velocity gauge form, which implies Coulomb gauge of the field
(∇ ·A = 0). The expression for Vi in length gauge is obtained by application of the
gauge transformation of second kind [163, 164]:

T̂ (t) = exp

[
i

Ne∑
j=1

qj
c
χ(r̂j; t)

]
(3.31)

to the full Hamiltonian H(VG)(t) in velocity gauge. It is generated by the scalar
operator χ(r̂; t) = −r̂ ·A(t). Transforming the corresponding quantum mechanical
state |Ψ(t) 〉 into length gauge

|Ψ(LG)(t) 〉 = T̂ (t) |Ψ(VG)(t) 〉 (3.32)

and inserting it into Eq. (3.22) one finds the relation between H(t) in velocity gauge
and the length gauge H(LG)(t):

H(LG)(t) = T̂ (t)

[
H(VG)(t)− i d

dt

]
T̂ †(t) (3.33)

= T̂ (t)H(VG)(t)T̂ †(t) +

(
i
d

dt
T̂ (t)

)
T̂ †(t) . (3.34)

While the T̂ operators in the first term just transform the kinematic momenta into
canonical momentum operators

T̂ (t)
(
p̂j −

qj
c
A(t)

)
T̂ †(t) = p̂j , (3.35)

the second term directly evaluates to the interaction potential in length gauge

V
(LG)
L = −E(t) ·

Ne∑
j=1

qj r̂j , (3.36)

where E(t) = −1
c

d
dt
A(t) is the electric field.

In the interaction with strong laser fields, the criterion of convergence is not met

any longer if the intensity I0 =
(

ωA0

c

)2
of the laser field is of the order of one percent

of 4ω2 ([68], Section 2.6), or equivalently if Up = O(0.01) in atomic units (e.g.
4.55× 1012 W/cm2 for a Ti:Sapphire laser at its fundamental wavelength of 800 nm).
At these intensities the second term of the perturbation series is already comparable
in magnitude to one percent of the leading term. Thus it is expected that the lowest
order term of the perturbation series is a useful approximation only for intensities
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up to about this critical value. This serious limitation in the applicability of the
S-matrix expansion for processes in strong laser fields is overcome in the KFR theory
[45–47] in connection with the Gordon-Volkov wavefunctions [165, 166] of unbound
electrons in a laser field. In this approach, the initial and the final states can be
eigenstates of different Hamiltonians. For applications like strong field ionization of
molecules, the initial state still is a bound state of the molecular Hamiltonian. The
final state in this case is then chosen to be a solution of a Hamiltonian that treats
one electron, the ionized one, as interacting fully with the laser field, while the other
electrons are not. Neglecting the Coulomb interaction VC,1 of the electron in the laser
dressed continuum with the residual ion, the Hamiltonian for this system is

Hf (t) =
1

2

(
p̂1 +

1

c
A(t)

)2

+Hmol+ , (3.37)

where Hmol+ is the Hamiltonian of the field free molecular ion. Since the interaction
of ion and the electron in the laser field is neglected in this model, the solutions
of the corresponding Schrödinger equation are product wavefunctions of the eigen-
states of the molecular ion multiplied by the exact eigenstates of the Gordon-Volkov
Hamiltonian [166, 53] for the active electron

H
(VG)
GV (1) =

1

2

(
p̂1 −

q

c
A(t)

)2

, (3.38)

which are given by

|Φ(VG)
GV (k, t) 〉 =|k 〉 exp

−i t∫
−∞

1

2me

(
k− q

c
A(t)

)2

 . (3.39)

In length gauge, the Hamiltonian has the form

H
(LG)
GV (1) =

1

2
p̂2

1 − qr̂1 · E(t) , (3.40)

and the corresponding eigenstates are found using Eq. (3.32) to be

|Φ(LG)
GV (k, t) 〉 =|k− q

c
A(t) 〉 exp

−i t∫
−∞

1

2me

(
k− q

c
A(t)

)2

 . (3.41)

This ansatz takes into account the interaction of the ionized electron with the field
to all orders. It therefore has the potential to describe the essential features of the
transfer of a bound electron into the field dressed continuum beyond conventional
perturbation theory.
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KFR theory thus introduces two partitions of the full Hamiltonian:

H(t) = Hi + Vi(t) (3.42)

= Hf (t) + Vf (t) , (3.43)

where

Vf (t) =
Ne∑
j=2

VL,j(t) + VC,1 (3.44)

=
Ne∑
j=2

[
−1

c
pj ·A(t) +

1

2c2
A2(t)

]
+

Ne∑
j=2

1

|r1 − rj|
−

NN∑
k=1

Zk

|r1 −Rk|
. (3.45)

Since the Coulomb field potential is reducing only reciprocal with distance, this
model for the final state of the ionized physical system is not exact. Therefore it has
originally been developed for the detachment of an electron from a negative ion. The
lack of correlation between ionized electron and parent ion can be corrected though
by an approximate solution of the Hamiltonian that still considers this interaction
([167] and references therein, [63]). While the Gordon-Volkov wavefunctions are plane
waves that fully include the effect of the field in their phases, these Coulomb-Volkov
waves are approximations of the field-modified continuum states of the Coulomb
potential. If a Coulomb-Volkov wavefunction is used instead of a Gordon-Volkov one
to describe the final state, then the Coulomb interaction VC,1 of the ionized electron
with the residual ion is part of Hf (t) instead of being part of the interaction Vf (t).

There are several approximative approaches of Coulomb corrections to the Gordon-
Volkov wavefunctions, that estimate the influence of the Coulomb field on the phases
of the Gordon-Volkov functions (see [168, 169] and references there). Among these
the semi-classical Wentzel-Kramer-Brillouin (WKB) [170] approximation of Krainov
[171, 66, 172], will be used in this work, which has been applied e.g. in single
ionization of atoms [173] and molecules [34] as well as in the case of double ionization
of He atoms [28] and multiple ionization of Xe [29]. For a comparison with the
closely related approximation of Perelemov, Popov and Terent’ev [56], please see
[174]. This approximation gives an estimate of the phase factor that is an effect of
the Coulomb field of the cation [172]. Details will be given below in section 4.3.1.
This approximation corrects the total rates, but it does not influence the angular
differential behavior.

Just like for Hi the Greens operator for the final state Hamiltonian satisfying[
i
∂

∂t
−Hf (t)

]
Gf (t, t

′) = δ(t− t′) . (3.46)

is a known object. Analogous to Gi there are retarded and advanced solutions to
this equation.
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In terms of Gf the full Greens operator can be expanded as

G(t, t′) = Gf (t, t
′) +

∫ ∞

−∞
dt′′Gf (t, t

′′)Vf (t
′′)G(t′′, t′) . (3.47)

Using this expansion in the initial expansion of the wavefunction Eq. (3.23), one
obtains

|Ψ(t) 〉 = |φi(t) 〉+
∫ ∞

−∞
dt′Gf (t, t

′)Vi(t
′) |φi(t

′) 〉

+

∫ ∞

−∞
dt′
∫ ∞

−∞
dt′′Gf (t, t

′′)Vf (t
′′)G(t′′, t′)Vi(t

′) |φi(t
′) 〉 .

(3.48)

In this form the transition amplitude to the final state Φf can be conveniently eval-
uated as:

〈Φf (t) |Ψ(t) 〉 =〈Φf (t) |φi(t) 〉+
∫ t

−∞
dt′〈Φf (t

′) | Vi(t
′) |φi(t

′) 〉

+

∫ ∞

−∞
dt′
∫ t

−∞
dt′′〈Φf (t

′′) | Vf (t
′′)G(t′′, t′)Vi(t

′) |φi(t
′) 〉 ,

(3.49)

where the diagonal expansion of Gf has been used (see Eq. (3.26)), which brings
in the time ordering Heaviside Θ function. Θ(t′′ − t′) is also present in the full
Greens operator G(t′′, t′), so the integration over t′ always has t′′ as the upper bound.
Incorporating the direct overlap between initial and final state, which does not result
in a stationary contribution unless they are the same, the limit t→∞ is written as

(S − 1)fi =

∫ ∞

−∞
dt′〈Φf (t

′) | Vi(t
′) |φi(t

′) 〉

+

∫ ∞

−∞
dt′
∫ ∞

−∞
dt′′〈Φf (t

′′) | Vf (t
′′)G(t′′, t′)Vi(t

′) |φi(t
′) 〉 .

(3.50)

Recalling that Φf is the product wavefunction of the molecular ion with a Gordon-
Volkov wave, the first term of this expansion already considers the interaction of the
active electron with the field to all orders. I.e. this expansion is qualitatively different
from the Dyson perturbation series. It also differs from the usual two-potential
scattering formulae [73], since it considers one of the interactions as dominant over
the other at different times.

It is interesting to note that, regarding the first term of this expansion, it is possible
as well to construct a similar expansion where Vf appears instead of Vi. But from
the identity

i
∂

∂t
|Φf (t) 〉 = [Te,1 + VL,1 +Hmol+] |Φf (t) 〉 (3.51)

⇔ VL,1 |Φf (t) 〉 = i
∂

∂t
|Φf (t) 〉 − [Te,1 +Hmol+] |Φf (t) 〉 , (3.52)
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where Te,1 denotes the kinetic energy operator for the active electron, one finds by
partial integration that VL,1 is equivalent to VC,1 = H0 − [Te,1 + Hmol+] within the
matrix element of the first order term. Noting also that

Vi − Vf = VL,1 − VC,1 (3.53)

the same holds for the full interaction potentials that include all electrons.
The expression (3.50) for the S-matrix evolution is very elegant, as it projects out

Gf on the specific final state. It further allows to choose which approximation of the
full Greens operator G to use in the second order matrix element. In this form it
provides the basis of the Intense-Field Many-Body S-Matrix Theory (IMST) [25, 26].
In IMST a third partition of the full Hamiltonian can be introduced

H(t) = Hm(t) + Vm(t) (3.54)

that can include the effect of a physically significant intermediate stage in the tran-
sition process. The corresponding intermediate Greens operator Gm provides a time
evolution on the subspace of eigenfunctions of Hm. Choosing Gm in the second order
term of the IMST expansion, Eq. (3.50), thus takes into account that during the
process of ionization the physical system spends a significant time in a configuration
that is evolving according to the dynamics of the Hamiltonian Hm. Note that the
interactions considered in Hm can be different from those in Hi and Hf , which is
found to be particularly useful to analyze NSDI. The second order term is the earli-
est possible stage in the S-matrix expansion, where this Hamiltonian of a transient
configuration can be considered. For the specific case of NSDI, Gm will be given
explicitely in section 5.2 to derive the second order term of the IMST expansion.

This derivation is given here for the case of interaction of a bound system with a
laser field, but the S-matrix expansion Eq. (3.50) is not limited to this specific case,
but can be applied to any physical process where a stationary initial state evolves
under the strong influence of an external interaction into an asymptotic final state,
progressing through a limited number of physically significant transition stages. The
transition states are physically significant in this context, if the time evolution of the
system follows the energy surfaces of a corresponding intermediate Hamiltonian Hm

for a significant part of the total transition time. It is obvious, that the truncation of
the asymptotic S-matrix expansion after as much as one or two terms cannot result
in an exact expression for the transition amplitudes. The degree of accurateness
cannot even be estimated from the formula alone, contrary to the situation in the
perturbation series. The virtue of the IMST expansion lies in the possibility to
systematically include possible mechanisms of transition and check their relative
amount of contribution to the total transition amplitude. It represents a systematic
strategy for the identification of physical transition mechanisms in processes with
non-perturbative interactions. The validity of a mechanism is verified by comparison
of the various calculated differential transition spectra with experimental data. Once
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a mechanism has been identified as significant to a specific kind of process, one
can narrow down domains of physical parameters for its relative importance. This
way, and by analyzing the analytic properties such as symmetries of the transition
matrix elements in Eq. (3.50), a deeper understanding of the evolution of the physical
processes can be gained.
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4. S-Matrix Theory of Inelastic Vibronic

Ionization of Molecules in Intense Laser Fields

As explained in section 2.1.1 for the case of an atom, a process of single ionization
is called inelastic in the scope of this work if more energy is deposited in the ion
than necessary to create it from its parent molecule by removal of a specific electron.
This is a special case of what Child defines as open inelastic scattering channels, who
generally defines inelastic scattering as a process that changes the internal state of
the target [175]. In contrast to the atomic case, energy may also be deposited into
the vibrational and rotational states, thus allowing not only electronically excited
molecular ions but the more general case of rovibronically excited ones. The process
of photoionization of a molecule into excited vibrational states of the molecular cation
is referred to as Inelastic Vibronic Ionization (IVI).

4.1. Quantum Mechanical Description of Molecules

4.1.1. Born-Oppenheimer Approximation

While in atomic systems only the dynamics of the electrons is described by a central
field Hamiltonian, in the case of a molecular system the Hamiltonian H0 also contains
the kinetic energy of the motion of the nuclei in the combined Coulomb field of the
electrons and the other nuclei. For a diatomic molecule in its center of mass frame
the general Hamiltonian Eq. (3.20) reduces to [161]1

Hmol = Te + TN + Vmol (4.1)

=
Ne∑
i=1

1

2
p̂2

i +
1

2µ
P̂2

N −
∑

k=A,B

Ne∑
i=1

Zk

|ri −Rk|
+

Ne∑
j>i=1

1

rij

+
ZAZB

R
, (4.2)

where µ denotes the reduced mass of the two nuclei, R = |RA−RB| the internuclear
and rij = |ri−rj| the interelectronic distance. TN is the kinetic energy of the relative
nuclear motion. The extension to molecules with more nuclei is straightforward.
Treating the nuclear positions as fixed in the laboratory system of coordinates, one
can find electronic wavefunctions that depend parametrically on the internuclear
distance R:

[Es(R)− (Te + Vmol)] Φs(R; r1, r2) = 0 . (4.3)

1As usual the mass polarization terms 1
8µ

(∑Ne

i=1 p̂i

)2

[176] are dropped since the mass of the
nuclei is much larger than that of the electrons .
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Since for each R the set of solutions forms a complete orthogonal basis for the elec-
tronic part of the Hilbert space of the problem, the complete solution may be ex-
panded in this basis:

Ψ0(R; r1, r2) =
∑

q

Fq(R)Φq(R; r1, r2) . (4.4)

Reinserting this ansatz into the time independent molecular Schrödinger equation
and assuming normalization of the electronic wavefunctions one obtains the equations
for the functions Fs(R):

〈Φs(R; r1, r2)| [E −Hmol] |Ψ0(R; r1, r2) 〉 = 0 (4.5)

⇔[E − Es(R)]Fs(R)−
∑

q

〈Φs|TN |Φq 〉Fq(R) = 0 , (4.6)

where the angle brackets symbolize the integration over the electronic coordinates.
The operator of kinetic energy of the nuclei couples the electronic wavefunctions. If its
variation with R is small as compared to the R dependence of the functions Fq(R),
then this coupling can be neglected and R becomes a parameter for an adiabatic
change of the electronic parts Φq of the total wavefunction. This ansatz is known as
the Born-Oppenheimer approximation [99]. Formally, the Born-Oppenheimer ansatz
neglects the coupling terms, resulting in the decoupled equations for the nuclear
wavefunctions Fs(R) [

E − Es(R)− 1

2µ
P̂2

N

]
Fs(R) = 0 (4.7)

which describe the movement of the nuclei in the potential energy surface Es(R) of
the electronic state s. For states with zero angular momentum the potential surface
is only a function of the internuclear distance while for molecules with more than two
atoms this is an energy surface in a configuration space of correspondingly higher
dimensionality. This approximation is suitable especially for internuclear distances
close to the equilibrium distance Re, where the electronic potential curve has its
minimum.

Separating radial and angular parts of the nuclear wavefunction one finds that the
total energy of Fs is composed of three parts, the electronic, the vibrational and the
rotational energy. In a first approach, one can treat the molecule as a rigid rotor
with fixed internuclear radius, which decouples also the vibrational motion from the
centrifugal distortion.

Equation (4.7) leads to a quantization of the energy of vibrational motion of the
nuclei. The internuclear distance is no longer a well defined observable or ”good”
quantum number. In this picture, the quantum of energy needed for a vibronic, that
is an electronic and a vibrational, transition depends only on the stationary initial
and final states, that are quantized according to their energetic excitation and not
on some sort of internuclear distance.
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4.1. Quantum Mechanical Description of Molecules

4.1.2. Franck-Condon Approximation

In theoretical works vibrational excitations in processes of electronic transition have
been first discussed in the works of Franck and Condon. Using classical [177] as well as
arguments of quantum mechanics [178, 179], they showed that electronic transitions
can be assumed to be fast with respect to the time scale of nuclear motion, for which
the vibrational period of the lightest molecule, H2, defines the lower bound (T =
7.58 fs). This suggests that, upon an electronic transition, the state of vibrational
motion of the nuclei in the combined Coulombic potential surface of all electronic and
nuclear charges is transferred suddenly into the vibrational state of the molecular ion
in its respective potential surface. This is known as the Franck-Condon Principle.
As such, it still fully allows for any amount of variation of the electronic transition
amplitude with the internuclear distance.

The Franck-Condon approximation goes one step further, assuming that the elec-
tronic transition amplitude is rather slowly varying over the characteristic internu-
clear distances. Accordingly, the electronic transition is decoupled from the nuclear
motion, which fits well with the Born-Oppenheimer approximation [99] for the wave-
function of bound molecular electrons. Combining the Born-Oppenheimer ansatz
with the Franck-Condon separation of transition amplitudes, the projection of the
vibrational state of the molecule onto the set of vibrational states of the molecular
ion results in the emergence of the Franck-Condon overlap integrals, which are multi-
pliers to the amplitudes of electronic transition to give the total transition amplitude.
Fig. 4.1 shows as an example the distribution of the Franck-Condon factors for the
first ionizing transitions in H2 involving vibrational excitation. This model has been
successful in explaining experimental results ionization of molecules by synchrotron
radiation (e.g. [180, 181]) as well as by impact of fast ions (e.g. [182, 183]) and
electrons [184]. It is also used as an important tool in the analysis of pump-probe
experiments involving single-photon excitation of molecules (e.g. [185–188]).

On the other hand, there are experimental observations of non-Franck-Condon
effects in ionization (by this we mean deviations from the results obtained in the
Franck-Condon approximation), e.g. in the electron impact ionization (e, 2e) of H2

and D2 [190]. These cases suggest that the basic assumption of a weak variation of
the electronic transition matrix element with changing internuclear radius [177, 191]
can be too strong for a given bound system.

There are a couple of possible causes for this. It is known theoretically for NO ([192,
193] and references in the latter) as well as for N2 [194] for more than 25 years, that
shape resonances can cause a deviation of the fluorescence spectra from the behavior
expected from the Franck-Condon assumption of vertical electronic transitions in
single photon ionization processes caused by synchrotron radiation, as they effectively
couple nuclear and electronic dynamics. This has been verified experimentally for CO
[195, 196] as well as for O2 [197]. Additionally to shape resonances the variation of
the electronic wavefunctions with the internuclear distance can cause Cooper minima,
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Figure 4.1.: Normalized distribution of Franck-Condon factors for the transition from
the vibrational ground state of H2(X
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g ) to the vibrational state ν ′ in H+
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[189].

associated with zeros in the radial electronic transition matrix elements, to vary
in the overlap area of the vibrational wavefunctions [198]. Common to these two
effects is a localization (or in the case of Cooper minima an anti-localization) of
the electronic wavefunction in the course of ionization, that influences the transition
amplitude to the continuum and that depends on the molecular geometry [199]. In
the case of shape resonances, this localization causes the electron to spend a longer
period of time on the boundary of the molecular ion, still influencing the Coulombic
internuclear field and thus the process of vibrational transition.

4.2. Observation of Non-Franck-Condon Distributions in
Molecular Ions Generated by Intense Laser Fields

The Franck-Condon approximation has also been used to find first estimates for the
initial conditions in the theoretical modeling of laser induced processes in molecular
ions [142, 200, 117] and seemed to give reasonable results in the analysis of dissoci-
ation spectra of molecular ions in intense laser pulses [201]. While the length of the
pulses in this specific experiment (150 fs) considerably exceeds the vibrational pe-
riod of the molecules, the time window for the electronic transitions is much shorter,
centered about the points of peak field strength, because the process is a multipho-
ton one, requiring 10 photons and thus exhibiting a highly nonlinear dependence
of the transition rate on the field intensity. Thus, it is reassuring to see that the
measured spectrum of vibrational states e.g. of electronically excited N+

2 , produced
by inner-shell multiphoton ionization, matches quite well the theoretically predicted
one, obtained by multiplication of the Franck-Condon factors into the electronic
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transition rate Γ(f,i)(I0) at the given laser intensity [202]:

Γ
(f,i)
ν′,ν (I0) = O(f,i)

ν,ν′ Γ(f,i)(I0) . (4.8)

On the other hand there is theoretical doubt, whether the Franck-Condon approxi-
mation is still valid in processes of intense-field multiphoton ionization, where strong
mixing of diabatic electronic states is occurring [109]. In the context of the the-
ory of tunnel ionization an approach has been made to define and calculate in-field
Franck-Condon overlaps for the ionization of molecules in a static electric field [203].
Considering a homonuclear diatomic molecule the authors simply add an interaction
term to the Hamiltonian of internuclear motion that shall consider the effect of the
field, which couples a shielded charge of one of the nuclei to the field. First, it is to be
noted that the equation should be phrased in the center of mass coordinate system,
instead of in the body fixed frame of one of the nuclei, with the reduced mass µ as
the inertia of the motion instead of the mass of the remote nucleus. Secondly one
recognizes in the center of mass description that the field couples to the internuclear
coordinate directly only through its interaction with the relative charge of the two
nuclei (see section 3.1.1). In case of a homonuclear diatomic, this relative charge is
zero. Thus, in this case the effect of the field on the internuclear motion is only me-
diated by its influence on the electronic wavefunctions. This influence will strongly
affect the internuclear potential V (R), given by the adiabatic energy Es(R) of the
electronic wavefunction. The authors of that paper consider this to be the unper-
turbed Morse potential. Thus, their approach is a decidedly static one, neglecting
that the effect of the field on the electrons and on the nuclei occurs on different time
scales due to the difference in their respective masses.

First experimental evidence [204, 114, 205, 184] for vibrational distributions devi-
ating from the Franck-Condon distribution has been found in the dissociation spectra
of H+

2 generated via laser induced ionization of the neutral, ground state H2 molecule.
It has been argued that the dissociation spectra are not in agreement with the as-
sumption that the distribution of the vibrational states in the H+

2 cations is given by
the Franck-Condon overlap integrals [189, 206]. For example in one of these experi-
ments the distributions show a narrow peak that suggests a concentration in a single
moderately excited vibrational state [205], while in others low vibrational states are
found to be favored.

Experimentally it is challenging to get a clear picture of the dynamic state of
H+

2 produced by intense-field multiphoton ionization. Lately it has become feasi-
ble by several techniques to infer the vibrational state of the residual ion closely
after ionization. Historically the earliest signatures of vibrational states are found
in the IR and Raman spectra [207–209] of molecular ions [210]. Other methods
have been developed, which dissociate the molecular ion by neutralization into a pre-
dissociative state of the molecule and measure the kinetic energy release (KER) of
the neutral radical fragments [211]. In a recent experiment this technique has been
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The transportable experimental setup from Louvain-
la-Neuve is shown schematically in Fig. 3. The H�

2 ions
are accelerated to 4 keV and collimated before passing
through an effusive jet of K atoms, where they are neu-
tralized with an efficiency of approximately 1%. The
electron capture from the K atoms happens to be into a
small band of excited states of H2, the c 3��

u state being
one of them. Because of its Rydberg character, the vibra-
tional excitation of the molecular core is practically
conserved. However, the c 3��

u state is unstable and pre-
dissociates along the repulsive curve of the b 3��

u state.
The kinetic energy release (KER) is directly related to
the level of vibrational excitation of the c 3��

u state and
therefore also to the original vibrational level of H�

2 . The
technique was developed by de Bruijn and Los [16]. The
KER is determined from coincidence measurements of
the neutral fragments of the predissociation process with
two position-sensitive detectors.

We prove the validity of our method by ionizing
the H2 molecules with 100 eV electrons. The KER spec-
trum is presented in Fig. 4(a). A detailed analysis [17]
showed that the peak areas correspond closely to the well-
established distribution measured by von Busch and
Dunn [14]; see Fig. 2(e).

In the actual experiment on tunneling ionization,
H2 molecules were ionized with the Ti:sapphire
laser under otherwise identical experimental conditions.
Intensities range between 3� 1013 and 4� 1014 Wcm�2.
Figures 4(b)– 4(d) show three typical KER spectra mea-
sured with the Ti:sapphire laser. The dissociation frac-
tions, i.e., the amount of protons divided by the sum of
protons and H�

2 particles, were measured close to
the interaction region. They are <1%, 5%, and 25%.

Spectrum (e) was taken with a Nd:YAG laser (6 ns,
1064 nm) at an intensity of 1� 1014 Wcm�2. The disso-
ciation fraction is 50%.

To a very good approximation, the area underneath
the peak at 7.3 eV is proportional to the population of
the v0 � 0 level in the H�

2 molecules, the peak at 7.6 eV to
that of the v0 � 1 level, and so on. Since the peaks are
equally wide, the spectra may be compared directly to
the bar diagrams of Fig. 2. Starting with the spectrum of
Fig. 4(b) at 3� 1013 Wcm�2, we note the good resem-
blance with the theoretical values at 3:5� 1013 Wcm�2
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FIG. 3. A schematic top view of the experimental setup. The
potential curve diagram illustrates the physics of the neutral-
ization and subsequent predissociation processes.
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FIG. 4. (a) Kinetic energy release spectrum for the case in
which H�

2 was produced by ionizing H2 with electrons of
approximately 100 eV. The spectrum may be compared to the
bar diagram of Fig. 2(e). (b)–(e) Kinetic energy release spectra
showing the vibrational excitation of H�

2 ions produced by
tunneling ionization in intense laser fields. Spectra (b)–(d)
were taken with a 45 fs, 800 nm Ti:sapphire laser. The laser
intensities are 3� 1013 Wcm�2 (b), 4:8� 1013 Wcm�2 (c),
and 1:5� 1014 Wcm�2 (d). Spectrum (e) was taken with a
Nd:YAG (6 ns, 1064 nm) at an intensity of 1� 1014 Wcm�2.
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FIG. 3. A schematic top view of the experimental setup. The
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ization and subsequent predissociation processes.
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FIG. 4. (a) Kinetic energy release spectrum for the case in
which H�

2 was produced by ionizing H2 with electrons of
approximately 100 eV. The spectrum may be compared to the
bar diagram of Fig. 2(e). (b)–(e) Kinetic energy release spectra
showing the vibrational excitation of H�

2 ions produced by
tunneling ionization in intense laser fields. Spectra (b)–(d)
were taken with a 45 fs, 800 nm Ti:sapphire laser. The laser
intensities are 3� 1013 Wcm�2 (b), 4:8� 1013 Wcm�2 (c),
and 1:5� 1014 Wcm�2 (d). Spectrum (e) was taken with a
Nd:YAG (6 ns, 1064 nm) at an intensity of 1� 1014 Wcm�2.

P H Y S I C A L R E V I E W L E T T E R S week ending
23 APRIL 2004VOLUME 92, NUMBER 16

163004-3 163004-3

Figure 4.2.: Sketch of the principle of the experiment by Posthumus and coworkers
[184], extracted from the original publication.

used to perform a measurement on laser induced ionization of molecular hydrogen
[184, 212]. The original schematic overview of the experiment is given in the right
panel of Fig. 4.2. The experimental setup consists of an H+

2 source, an extraction
line, a neutralization stage and position sensitive detectors. In the source chamber
H2 molecules are ionized either by electron impact or by application of a laser pulse.
The ions are accelerated by an electric field of about 100 V/cm field strength to a
final kinetic energy of approximately 4 keV, guiding them towards a jet of potassium
vapor. These atoms have an ionization potential of 4.3 eV, which is low compared
to the electron affinity of H+

2 , facilitating a neutralization of the molecular ions by
charge transfer into an excited state of H2, that may be characterized as c3Πu (see
left hand side of Fig. 4.2). From this excited state the molecules predissociate due to
rotational coupling with the b3Σ+

u state within a few nanoseconds and their atomic
fragments, acquiring a drift velocity of v0 ± R̂

√
KER/M , where v0 is the velocity

obtained by the experimental acceleration field, M is the mass of a proton and R̂
is the orientation specific to each molecule. Since apparently the vibrational state
is nearly unaffected by the electron capture process, the kinetic energy release of
the molecular fragments is related to the vibrational state ν ′ of the molecular ion
according to the energy balance (see Eq. (4.53))

KER = E
[
H2c

3Πu

]
+ωeν

′−ωexeν
′(ν ′+1)−

(
E
[
H2X

1Σ+
g

]
+D0

[
H2X

1Σ+
g

])
. (4.9)

After traversal of a certain drift length their positions and arrival times are recorded
in coincidence by two position sensitive detectors. Electron impact ionization with
a projectile energy of 100 eV was used to compare the obtained KER-spectrum with
that of an earlier work [190]. This spectrum closely resembles a Franck-Condon
distribution of the vibrational states. After this step the experiment was reperformed
using laser pulses of different duration and wavelength. The resulting KER spectra
that deviate significantly from previous experiment will be analyzed in detail in
section 4.4.
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4.3. S-Matrix Formulation of the Transition Amplitude

Another recent experimental approach is to use pump-probe techniques [213] to
perform controlled Coulomb explosion imaging [126–128], where the singly ionized
molecular ion is dissociated by means of a subsequent ”probe” laser pulse that ion-
izes a second bound electron. Here the kinetic energy of the charged fragments is
measured and the variation of the signal with the time delay between the pumping
and the probing laser pulse can be used to recover the superposition of vibrational
wavepackets in the molecular ion. In this context one should mention the COLTRIMS
technique or reaction microscope [153, 154] that allows fully differential resolution of
the momenta of the charged reaction fragments, representing a very important exper-
imental tool for detection and analysis in the context of ionization and dissociation
physics.

Schumacher et al. [204] have attributed the experimentally observed shift to the
accumulated effect of dressed state resonances on one hand, the field dependent
variation of Franck-Condon integrals in the laser pulse on the other and ultimately
to bond softening in the H+

2 ion. This highlights two possible additional causes of
deviation from the Franck-Condon distribution: First, the mechanism of transition
can be a process of higher order, involving intermediate, eventually resonant states.
There seems to be experimental evidence for this e.g. in the intense-field multiphoton
ionization of H2 at 400 nm [214]. Second, the basis of field free bound states, used to
analyze the data, might be one that is inappropriate for the physical process under
consideration (either in the state of origin or in the target state). E.g. static field
calculations [203] suggest that there is considerable bond softening [112] in the H+

2

ion, causing that there is no bound states at a peak intensity I0 = 1.2× 1014 W/cm2

of the laser pulse. Interestingly these calculations of static field Franck-Condon
factors suggest [203] that the vibrational population should shift to higher excitations,
contrary to the recent experimental observations [184, 212].

In many of the previous approaches to the problem, the transition probability to
continuum for the ionizing electron was assumed to be the same for the transitions
to different vibrational states. Thinking of ionization as the breakup of a molecule
into two parts, the ion and the electron, this amounts to a neglect of the transition
amplitudes for the second, electronic fragment. But a higher excitation of the molec-
ular ion also shifts the possible shell of continuum states for the ionized electron to
a lower kinetic energy, and it is argued in this work, that this shift influences the
transition rates. This does not rule out other effects that may cause a deviation from
the Franck-Condon distribution, but it explains the effect of strong-field ionization
on the vibrational state of the molecular ion.

4.3. S-Matrix Formulation of the Transition Amplitude

For the case of multiphoton ionization of molecules in strong laser fields vibronic
transitions were first considered in the S-matrix description by the introduction of
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Franck-Condon overlap integrals into the KFR amplitudes [202]. Lately a second the-
oretical description on the basis of the Intense-Field Many-Body S-Matrix Theory
[26] was presented, that treats the transition between the vibrational states during
the process of ionization on the same quantum mechanical footing as the electronic
transition, without assuming a priori that the vibrational transitions are unaffected
by the electronic strong-field transition. In that approach, the internuclear equi-
librium distance is assumed to be fixed though during the ionization process, an
assumption that is valid in some cases, e.g. for the case of ionization of the outer
valence electrons of N2, but which in general is too limiting for other cases. Another
approximation made is that the molecular orbitals are treated as independent of the
internuclear motion.

In this work an alternative approach is presented, that explains and predicts the
shifted population rates of the unperturbed vibrational states of the H+

2 ions after
the pulse, that hydrogen molecules photoionize into.

4.3.1. Transition Rate

Equipped with the asymptotic boundary conditions of the process, one can describe
the effect of the laser field on the bound system in a non-perturbative way by means
of the KFR expansion, Eq. (3.50), of the S-matrix. The Hamiltonian (4.1) of the
diatomic molecule

H =
Ne∑
i=1

1

2

(
p̂i +

1

c
A(t)

)2

+
1

2µ
P̂2

N −
∑

k=A,B

Ne∑
i=1

Zk

|ri −Rk|
+

Ne∑
j>i=1

1

rij

+
ZAZB

R

(4.10)

is reduced to the electronic contribution by following the reasoning of the Born-
Oppenheimer approximation, treating the kinetic energy TN = 1

2µ
P̂2

N of the inter-
nuclear motion as constant on the time scale of electronic motion. This is possible
since the relative nuclear coordinate does not couple to the field. Thus, the evolu-
tion of electronic part of the many-body system in the laser field is governed by the
Hamiltonian

H =
Ne∑
i=1

1

2

(
p̂i +

1

c
A(t)

)2

−
∑

k=A,B

Ne∑
i=1

Zk

|ri −Rk|
+

Ne∑
j>i=1

1

rij

+
ZAZB

R
+ TN (4.11)

=
Ne∑
i=1

1

2

(
p̂i +

1

c
A(t)

)2

+ Vmol (4.12)

=
Ne∑
i=1

1

c
p̂iA(t) +Ne

A2(t)

2c2︸ ︷︷ ︸
VL(t)

+Hmol (4.13)
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4.3. S-Matrix Formulation of the Transition Amplitude

while the nuclear part is still approximatively described by the field free nuclear wave
equation (4.7). This is justified since already for the molecule of smallest mass, H2,
the reduced mass of the nuclei is about three orders of magnitude larger than that
of the electrons, which slows down the nuclear response to the oscillating laser field
by just this factor with respect to the electronic one.

In the initial state partition the full electronic Hamiltonian is splitted into Hi =
Hmol and Vi = VL(t). For the final state partition Vf is given in Eq. (3.44) and Hf (t)
accordingly in Eq. (3.37) with

Hf = H − Vf (t) = HGV(1) +
Ne∑
i=2

Te,i + Vion + TN (4.14)

=
1

2

(
p̂1 +

1

c
A(t)

)2

+
Ne∑
i=2

1

2
p̂2

i −
∑

k=A,B

Ne∑
i=2

Zk

|ri −Rk|
+

Ne∑
j>i=2

1

rij

+
ZAZB

R
+ TN

(4.15)

In the molecular case the initial state Ψi of the system is approximated by the
Born-Oppenheimer separated product of a nuclear and an electronic wavefunction

Ψi(R; r1, rj) = χν(R−Re)⊗ Φi(r1, rj;Rn) , (4.16)

where χν and Φi denote the quantized vibrational and electronic wavefunction respec-
tively. r1 is the spatial coordinate of the active electron, rj symbolizes the coordinates
of all other electrons and Rn ≡ {R1,R2} is the set of all nuclear coordinates. Re is
the equilibrium value of the scalar internuclear distance R = |R2 −R1|.

Several final states are possible for the system after ionization. Compared to the
atomic situation, where different states of electronic excitation of the ion are possible,
in molecular ionization also the vibrational state may be excited. The population of
these states is likely to be much broader spread as compared to the population of
the electronically excited states, as they lie energetically much closer to each other.
We therefore consider as final state

Ψf (R;k, rj) = χ′ν′(R−R′
e)⊗ ΦGV(k)⊗ Φf (rj;Rn) , (4.17)

where Φf is an eigenstate of the Hamiltonian of the molecular ion and as such is
a function of the coordinates of all electrons remaining bound to the ion. k is the
canonical momentum of the ionized (active) electron. The nuclear vibrational wave-
functions χ′ν′ of the molecular ion will have frequencies that differ from those of the
parent molecule, just as the internuclear equilibrium distance R′

e generally deviates
from Re. If the ionized electron is released from a bonding orbital, R′

e will be larger
than Re, as the bonding potential Ei(R), that is created by the electrons occupying
the space surrounding the nuclei, is weakened and its minimum thus shifted to a
larger value of R. The orientation of the molecule is assumed to stay fixed. The
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ionized electron in the laser field is approximately described by a Gordon-Volkov
wavefunction ΦGV(k) [165, 166] that is an eigenfunction to the corresponding Hamil-
tonian (Eq. (3.38)). In velocity gauge it has the form (see Eq. (3.39))

|ΦGV(k, t) 〉 =|k 〉 exp

−i t∫
−∞

1

2me

(
k +

1

c
A(t)

)2
 . (4.18)

As in the atomic case, this ansatz neglects the correlation of the electron in the
continuum with its parent ion, treating it as a separated electron of drift momentum
k, subject to the oscillations of the electric field component of the laser.

Using the general S-matrix expansion, Eq. (3.50), the first order amplitude [26] for
the transition from the initial state in the neutral molecule with vibrational quantum
number ν to the vibrational state ν ′ of the molecular ion, in the general case of an
elliptically polarized field, can be written as [215] (see also [173, 26]):

S
(1)
fi (tf , ti) =− i

∞∑
N=−∞

∫ tf

ti

dt1 exp

[
i

(
k2

2
+ Up + ET −Nω

)
t1

]
(Up −Nω)JN (a, b, η)

× 〈χ′ν′(R−R′
e) | 〈k |φi(r1;Rn) 〉〈Φf (r2;Rn)|Φ′

i(r2;Rn) 〉 |χν(R−Re) 〉

(4.19)

where ET = ET (ν ′, ν) = E
(f)
ν′ − E

(i)
ν is the IVI transition energy. The first inner

brackets of the matrix element denote integration over the spatial coordinates of the
active electron. The second inner matrix element represents the overlap between the
passive electrons for their transition from the state of the neutral molecule into the
ionic state, while the outer brackets represent an integration over the internuclear
distance R. For this separation of the matrix elements we have assumed that the
multi-electron wavefunction Φi is given in Hartree or product form (cf. discussion in
section 4.3.2), i.e.

Φi(r1, rj;Rn) = φi(r1;Rn)⊗ Φ′
i(rj;Rn) . (4.20)

JN(a, b, η) are generalized Bessel functions of three arguments (e.g. [173])

JN(a, b, η) =
∞∑

m=−∞

JN+2m(a)Jm(b) exp[i(N + 2m)η] (4.21)

where

a = α0

√(
ε1 · kN cos

ξ

2

)2

+

(
ε2 · kN sin

ξ

2

)2

(4.22)

b =
Up

2ω
cos ξ (4.23)

η = arctan

[
tan(φk,ε) tan

(
ξ

2

)]
, (4.24)
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where ξ is the ellipticity of the field. Eq. (4.21) reduces to

JN(a, b) =
∞∑

m=−∞

JN+2m(α0 · kN)Jm

(
Up

2ω

)
(4.25)

for linear polarization (ξ = 0) and

JN(a) = JN

(
α0√

2
kN sin θk,ε

)
exp[iNφk,ε] (4.26)

for circular polarization (ξ = π/2), where θk,ε and φk,ε are the polar angle and az-
imuth of kN in a coordinate system where ε1 and ε2 lie in the x-y plane. For general
and asymptotic properties of the generalized Bessel functions and their significance
in multiphoton processes see the works by Faisal (e.g. [68]), Reiss and Krainov
[47, 216], Leubner [217, 218] as well as Dattoli et al. [219–221] (using the notation
(2)
JN(a,−b) = J

(−2)
N (−b, a; 1) = J

(2)
N (b, a; 1) identical to JN(a, b) as defined here and

JN(a, b, η) =
(2)
JN(a,−b; exp[−i2η]) exp[iNη] [222]). For a recent review see Korsch

et al. [223]. Analytically the generalized Bessel functions are obtained by Fourier
transformation of the time dependent phase factors in the Gordon-Volkov wavefunc-
tions corresponding to a monochromatic field.

The asymptotic time integral turns the time-dependent phase of Eq. (4.19) into
the condition of conservation of energy:

S
(1)
fi = −2πi

∞∑
N=−∞

δ

(
k2

2
+ Up + ET −Nω

)
(Up −Nω)JN (a, b, η) (4.27)

× 〈χ′ν′(R−R′
e) | 〈k |φi 〉〈Φf |Φ′

i 〉 |χν(R−Re) 〉 ,

where the dependence of the electronic wavefunctions on electronic and nuclear
coordinates was dropped. Taking the absolute square of the amplitude by using
Eq. (43) of [26], apart from the constant factors C2 (see discussion below) and Ne,
the differential rate of transition from the vibronic state of the neutral molecule with
vibrational quantum number ν to the vibrational state labeled by ν ′ of the molecular
ion by the absorption of N photons from a elliptically polarized field of intensity I0
can be written as:

dW
(f,i)
ν′,ν

dk̂N

(I0) = 2πC2NekN(Nω − Up)
2J2

N (a, b, η) (4.28)

× |〈χ′ν′(R−R′
e) | 〈kN |φi 〉 |χν(R−Re) 〉|2 ,

where

kN = kN(ν ′, ν) =

√
2
(
Nω − Up −

(
E

(f)
ν′ − E

(i)
ν

))
. (4.29)
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Ne denotes the number of equivalent electrons (neglecting spin) in the initial molec-
ular orbital and C2 = (2kTET/F )2Z/kT is the Coulomb correction factor [66, 172, 34]
with ET ≡ k2

T/2 (see discussion at the end of section 3.3). F is the field strength
and Z is the charge of the molecular ion in the final state. The constant factor that
has been omitted in the expression for the differential rate is the overlap integral
〈Φf |Φ′

i 〉 between initial and final electronic bound state wavefunctions, which is on
the order of one.

The total IVI rate of the vibronic transition from a vibrational level ν of the
electronic state i of the molecule into the level ν ′ of the electronic state f of the
molecular ion, is given by integration of Eq. (4.28) over the ejection angles k̂N of the
photoelectron and the summation over the number of photons N absorbed from the
field at intensity I0:

Γ
(f,i)
ν′,ν (I0) =

∞∑
N=N0

∫
dk̂N

dW
(f,i)
ν′,ν

dk̂N

(I0) , (4.30)

where N0 is the minimum number of photons needed to be absorbed to allow the
transition of interest, i.e. N0 = b(ET + Up)/ωcint. + 1, which depends on the field
intensity. When N0 increases with rising intensity, one calls this the ”closing of the
N0 photon channel” for the specific transition. The above formula for the total rate,
Eq. (4.30), is valid both in the corresponding multiphoton (γ =

√
ET/2Up � 1, and

in the tunneling (γ � 1) regimes of ionization. In the tunneling limit it is also possible
to evaluate Eq. (4.30) approximately by, first, using the integral representation of
the generalized Bessel function and evaluating it by the stationary phase method
[224, 225], and next by replacing the sum over N by an integral over 1/ω d(Nω)
(see e.g. [54] or [26]). From this it follows that the present S-matrix formalism
predicts that even in the tunneling limit, it is the eigen-energy difference between
the asymptotic initial and final vibronic states, which is the transition energy ET

defined above, rather than the difference with respect to the potential energy curves,
which controls the IVI process.

In this S-matrix analysis, the R-dependence of the ionization rate enters through
the variation of the molecular orbitals due to the changing location on the potential
surface, while the transition energy ET refers to the transition between two adiabatic
vibronic states, which as such does not depend on R. The transition energy accounts
not only for the difference in potential energy but also for the kinetic energy of the
states. (This definition is also applied in [117] in combination with tunneling theory.)
The R-dependence of the molecular orbitals makes the electronic ionization rate R-
dependent too. This R-dependence of the electronic matrix element has early been
identified to be a possible source of experimentally observed deviations from the pure
Franck-Condon distribution in the case of electron-impact ionization [190].

The approaches based on ADK tunneling theory analyze the ionization process in
terms of in-field molecular behavior, taking into account the effect of the field by con-
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quasibound vibrational levels. The dissociation probabil-

ity of the quasibound levels is usually negligible.

The field-induced modifications to the potential curves

and the vibrational levels for parallel alignment are illus-

trated schematically in Fig. 1. The transition rates to the

individual field-modified vibrational levels of H�
2

are

given by

��v0� �

�
�
�
�
�
�
�

Z

�1=2�R�	v0�R�	0�R�dR

�
�
�
�
�
�
�

2

; (1)

where 	v0�R� and 	0�R� are the vibrational wave functions

of H�
2

and H2. Typical vibrational distributions, for both

parallel and perpendicular alignment, are presented in

Figs. 2(a)–2(d). At the lowest intensity, there is practi-

cally no dissociation. The distributions for the two kinds

of alignment shown in Fig. 2(a) are therefore very similar.

At the higher intensities, the ‘‘parallel’’ and ‘‘perpendicu-

lar’’ distributions are again similar for the lowest vibra-

tional levels, but there exists a certain threshold above

which the parallel aligned molecules all dissociate and

are therefore absent in the figure.

For example, for I � 5:4� 1013 Wcm�2 the highest

quasibound level for parallel alignment is v0 � 3. While

the white bars for perpendicular alignment thus all add up

to nearly 100% (the bound vibrational levels alone do not

form a complete basis), the dark bars add up to 99%, 95%,

83%, and 67% for the intensities shown in Figs. 2(a)–

2(d). For comparison, Fig. 2(e) shows the values for

v0 � 0 to 10 of the vibrational excitation of H�
2

that was

measured by von Busch and Dunn after ionization of H2

with 100 eV electrons [14].

For the experimental study of tunneling ionization

of H2, we have used the Ti:sapphire laser (45 fs, 800 nm,

and 700 mJ at 1 kHz) at the CEA Saclay Laser-

Matter Interaction Center (SLIC) European Facility. The

beam is focused in high vacuum with a spherical lens of

focal distance 250 mm. The beam profile and the M2

factor, which characterizes the difference with an ideal

Gaussian laser beam, were measured. The laser intensity

is calculated with good accuracy ( � 20%). Hydrogen gas

is introduced through a thin needle (inner diameter �
0:3 mm) a couple of mm above the focus. Ionization is

observed for intensities of 3� 1013 Wcm�2 and higher.

The Keldysh parameter [15] is approximately one. The

ionization process is therefore in the tunneling regime. A

seeded Nd-doped yttrium aluminum garnet laser

(Nd:YAG) (Continuum NY81C, 6 ns, 1064 nm, and 1 J

at 10 Hz) was also used.

FIG. 1. Field-induced modifications to the potential curves

and the vibrational levels for parallel alignment. Not drawn

to scale.
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FIG. 2. (a)–(d) Theoretically predicted vibrational excitation

of H�
2

produced by tunneling ionization of H2 in intense

laser fields. Calculations for molecules aligned parallel and

perpendicular to the laser E field are presented. The laser

intensities are 3:5� 1013 Wcm�2 (a), 5:4� 1013 Wcm�2 (b),

7:8� 1013 Wcm�2 (c), and 1:06� 1014 Wcm�2 (d). (e) The

vibrational excitation of H�
2

produced by electron impact

ionization of H2 as measured by von Busch and Dunn [14].
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Figure 4.3.: Sketch of field distorted potential curves of the H2/H+
2 system in the

ADK picture, taken from [184] .

sidering the distortion of the molecular potential surfaces (for a sketch see Fig. 4.3)
and by introducing an imaginary part to them. The imaginary part determines the
decay of the states due to (tunneling) ionization.

In the terms of tunneling theory, the ionization rate depends on the internuclear
separation R due to the R-dependence of the ionization potential (difference of elec-
tronic initial and final state potential curves) [108]. While the Franck-Condon ap-
proximation has been used also successfully for the calculation of total vibronic ion-
ization rates in connection with tunneling theory [117], its formal foundation in the
context of the tunneling picture is a matter of debate [108]. At first sight, the no-
tion of a sudden electronic transition seems to be at odds with the finite time for
the tunneling process that is assumed e.g. in the derivation of the Keldysh adia-
baticity parameter (Eq. (2.7)). On the other hand, comparing the time scales for
the processes, for 800 nm light the period of oscillation is 2.67 fs and thus, the elec-
tron is assumed to tunnel the potential barrier into a continuum state in less than
1.33 fs [45]. In the hydrogen molecule, showing the highest vibration frequency of
all molecules, the period of vibration is 7.58 fs. First, this shows that, while the
tunneling transition is surely not sudden on the typical time scale of the electron
(1 a.u. = 24.2 as), it is still happening at least three times faster than the character-
istic oscillation time of the neutral hydrogen molecule. This indicates that for the
hydrogen molecule the transition is close to the border of being Franck-Condon like.
Second, it shows that the in-field potential curves, that govern the tunneling theory
analysis, are too rapidly changing to accommodate vibrational states of stationary
nature. In fact, in tunneling theory only the contributions at times around maxi-
mum field amplitude are considered, as ionization rates peak nonlinearly with field
intensity. Thus it is very interesting that the analysis in terms of in-field vibrational
states on the field-bent potential curves produces good results [184], even though the
states are very transient and diabatic transitions between in-field vibrational states
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of like symmetry might be expected. The relative accuracy of the description on
the basis of in-field vibrational states indicates, that the details of the anharmonic
vibrational wavefunctions and their energetic shifts are not influencing the process
dominantly.

4.3.2. Electronic Wavefunctions

In the molecular orbital (MO) description of wavefunctions for molecules, the elec-
tronic state of the bound system is given on the basis of a product wavefunction
of orbital wavefunctions for individual electrons. This product wavefunction is anti-
symmetrized by forming a Slater determinant from the occupied orbital wavefunc-
tions. Each orbital wavefunction for an individual electron is a product of a spin and
a spatial part. The orbital wavefunctions are orthogonal to another, either due to
orthogonality of the spatial or of the spin component. This constraint imposes the
Pauli exclusion principle.

The determination of these orbital wavefunctions is the objective of quantum chem-
ical calculations based on the Hartree-Fock method (see e.g. [226]). In these analyt-
ical functions of a suitable type are taken as an ansatz for the radial behavior of the
orbitals, and a variational principle is used to adapt their parameters in such a way,
that the total energy of the bound multi-electron system is minimized. From the
analytical solutions for the radial wavefunctions of the Hydrogen atom, Slater-type
orbitals (or exponential type orbitals) of the form φ(r) = c exp (−ar) provide the
best fit functions to model the radial behavior of any Coulombic bound system. The
use these types of functions in the context of the Hartree-Fock method results in
integrals over a product of four functions of this type (known as two-center, three-
or four-electron integrals, [226]), that are hard to perform in a computationally effi-
cient way. While lately there is considerable progress in the mathematical evaluation
strategies for these integrals [227–232] and by now already two programs for quan-
tum chemistry based on Slater-type orbitals have been published [233–235], the lions
share of quantum chemical calculations is done on the basis of a modified ansatz for
the radial functions, where a single Slater-type orbital is approximated by a superpo-
sition of a suitable number of so called ”primitive” Gaussian functions with different
exponents [236, 226]. The advantage of this procedure is, that the four center integral
over Gaussian functions are equivalent to an integral over two Gaussians centered at
separate places.

The molecular orbitals can be expressed as linear combinations of atomic orbitals:

Φ(r;Rn) =

NN∑
n=1

∑
j

bn,j(R)φn,j(r;Rn) , (4.31)

where r is the coordinate of the electron and Rn are the coordinates of the NN nuclei.
The orbital coefficients bn,j can been obtained by a variational self consistent field
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method employed e.g. in quantum chemical program codes such as GAMESS [237].
In the calculation of the mixed Gaussian and plane wave matrix elements in the
S-matrix expression below, the recursions of Obara and Saika have been employed
[238].

If the atomic orbitals are expressed as linear combinations of Cartesian Gaussians,
the index j turns into set of indices (i,m):

Φ(r;Rn) =

NN∑
n=1

Ng∑
i=1

lmax∑
|m|=0

bn,i,m(R)G(r−Rn;m, ζi) , (4.32)

where Ng is the number of so-called ”primitive” (i.e. uncontracted), unnormalized
Cartesian Gaussian basis functions G and m is a three component multi-index run-
ning up to a length of total angular momentum lmax [226]. The parametrization of
the corresponding Cartesian Gaussians is given by

G(r−R;m, ζi) = (rx −Rx)
mx(ry −Ry)

my(rz −Rz)
mz exp

[
−ζi(r−R)2

]
. (4.33)

The Cartesian Gaussian functions are a simplification of the spherical Gaussian func-
tions, that contain Cartesian prefactors instead of spherical harmonics [239]. They
are the default basis functions of most quantum chemical programs. For brevity of
notation, we adapt the general notation of Obara and Saika [238], representing the
generic type of terms appearing in the evaluation of the Fourier integral over a single
Cartesian Gaussian by the following bracket expression:

[q|m] = (−ikx)
qx(−iky)

qy(−ikz)
qz

∫
dr exp [−ikr]G(r−R;m, ζ) , (4.34)

where q is a multi-index just like the multi-index m. The index i of the Gaussian
exponent ζi has been dropped to avoid confusion with the imaginary number. The
objective of the recursion is to successively lower the exponents of the Cartesian
factors (r − R)µ = rµ − Rµ in the integral. In each step the maximal value of
component mµ is reduced by one until all components are zero. This is achieved by
repeated evaluation of the following formula that basically represents the result of
an integration by parts with respect to the nuclear coordinate R:

[q|m] =
1

2ζ
([q + 1µ|m− 1µ] + (mµ − 1)[q|m− 21µ]) . (4.35)

Here, 1µ denotes the µth column of the 3x3 identity matrix. When the reduction
is complete, a trivial Fourier transformation over a Gaussian function is left at the
center:

[q|0] =

(
π

ζ

)3/2

(−ikx)
qx(−iky)

qy(−ikz)
qz exp

[
−ik

(
R− ik

4ζ

)]
. (4.36)
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While this recursion is fairly trivial, it allows the evaluation of transition matrix ele-
ments containing single-electron wavefunctions of arbitrary quantum chemical qual-
ity, without restriction in the maximal angular momentum lmax. Similar recursions
have also been formulated for spherical Gaussian basis functions [240, 241].

When one electron is ionized, without further processes, its state in the orbital it
originates from stays unoccupied. This orbital is called the active orbital. The orbital
wavefunctions of the other electrons are modified slightly, since the electron-electron
correlation with the formerly occupied orbital is not acting on them any longer. This
change is considered to be small, when the active orbital is the outermost one, when
comparing the radial dependence and the energetic ordering of the orbitals. This
orbital is called the highest occupied molecular orbital (HOMO).

In recent experiments, it was possible to measure the probability density of the
active orbital from the harmonic spectrum that is emitted when the ionized electron
re-occupies the active orbital [242]. From this probability density it is encouraging
to see that even in an intense laser field a strong similarity to the highest occupied
molecular orbital of the undisturbed molecule is apparent. In the context of S-matrix
theory the use of the field free molecular orbitals is justified on a completely other
and rigorous basis, since they are used to describe the asymptotic initial and final
bound electronic state.

4.3.3. Vibrational Wavefunctions

4.3.3.1. Diatomic Molecules

There are different approximations to the electronic potential that forms the one
dimensional well for the nuclear vibrational motion. For small variations of the
internuclear separation from the equilibrium distance, the potential can be approxi-
mated by a harmonic potential, corresponding to the leading quadratic term in the
Taylor expansion of the potential about its minimum at R = Re. The harmonic
wavefunctions [243]

ψν(x) =
(γ
π

) 1
4
(2νν!)−

1
2 e−γx2/2Hν(γ

1
2x) , ν ∈ N0 , (4.37)

with γ = µω/~, are solutions to the Schrödinger equation corresponding to the one
dimensional harmonic potential

V =
1

2
kx2 =

~2

2µ
γ2x2 (4.38)

where µ is the reduced mass of the two-particle system that is performing the stretch-
ing motion. ω/2π is the characteristic base-frequency of the vibration, corresponding
to the force constant k. x = R−Re denotes the displacement of the nuclei from the
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equilibrium separation Re. The Hermite Hν polynomials are defined as

Hν(z) = (−1)νez2 dν

dzν
e−z2

, ν ∈ N0 (4.39)

and thus the ground vibrational state ν = 0 is a Gaussian distribution over the
displacement x. The parity of the states under reflection x 7→ −x corresponds to the
parity of the quantum number ν.

A higher order approximation to the internuclear binding potential is obtained by
a heuristic anharmonic potential introduced by P. M. Morse [244], that takes into
account the finite dissociation energy:

Ei(R) ≈ Ei(R→∞) +De

(
e−2α(R−Re) − 2e−α(R−Re)

)
(4.40)

= Ei(Re) +Deξ
2 , (4.41)

where ξ is frequently called the Morse coordinate andDe is the dissociation or bonding
energy:

ξ = 1− e−α(R−Re) = 1− y

2a
(4.42)

De = Ei(R→∞)− Ei(Re) . (4.43)

The Morse wavefunctions, defined by this potential, are given by (e.g. [245])

χν(x) =

√
2αqνν!

Γ(2a− ν)
exp

[
−y(x)

2

]
y(x)qνL2qν

ν (y(x)) , (4.44)

where L2qν
ν are generalized Laguerre polynomials of degree ν and order 2qν . The

parameters are

y(x) = 2a e−αx and x = R−Re (4.45)

qν = a− (ν +
1

2
) (4.46)

α = ωe

√
µ

2De

(4.47)

a =
2De

ωe

=
ωe

2ωexe

(4.48)

and their energy eigenvalues follow the anharmonic law

Evib,ν = −ωexe(j − ν)2 (4.49)

= −De + ωe(ν +
1

2
)− ωexe(ν +

1

2
)2 (4.50)
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where ωexe is the so called anharmonicity constant (see e.g. [246]), and ν ∈ {0, . . . , bjc},
with j = a− 1

2
. Thus, the discrete vibronic energy levels of a diatomic, vibrationally

anharmonic molecular system can be written as

Ei,ν = Ei(R→∞) + Evib,ν (4.51)

= E0 +
De

a2
(2jν − ν2) (4.52)

= E0 + ωeν − ωexeν(ν + 1) , (4.53)

where E0 is the sum of the energy of the electronic state and the vibrational zero-point
energy. The values for the constants are determined by numerical fits to data ob-
tained by molecular spectroscopy (e.g. [247] for H2/H+

2 ). For homonuclear diatomic
molecules, the nuclei vibrate symmetrically with respect to the center of mass but
for heteronuclear diatomic molecules the ratio of masses breaks this symmetry.

4.3.3.2. Polyatomic Molecules

Vibrations of molecules with more than two atomic centers have long provided a
challenge for efficient theoretical description. The first and most obvious point is
the choice of coordinates. There are several sets of so called internal coordinates
proposed, that are defined in terms of internuclear separations and angles (for an
overview and latest developments see e.g. [248–250]). These are specifically adapted
to the molecule at hand, as well from the geometric aspect as from the aspect of
resulting in a decoupled expression for the potential energy. But they come at the
price of coupling in the kinetic energy operator.

The oscillations of the molecule, that are coupled in the internal coordinates, can
be decoupled by transformation to normal coordinates [210]. I.e. the operator of
kinetic energy has a diagonal representation in them [251]. In the harmonic approxi-
mation (see below) the potential energy operator decouples as well. These decoupled
vibrations are called normal modes and are widely used as a nomenclature for the
vibrational state of a molecule. The normal mode vibrations have two characteristic
features: first, the local bond vibrations are phase-locked with respect to each other,
i.e. either they are either in phase (symmetric modes) or out of phase by π (anti-
symmetric modes) with respect to each other. Second, for each separate mode all
local bond vibrations have the same frequency. These two constraints ensure that the
center of mass stays fixed. Apart from their general use as an analytic tool, they are
well adapted e.g. for the description of symmetric linear triatomic molecules, where
the oscillations of both bonds are in resonance [252, 253]. For higher excited states
of bonds between strongly asymmetric mass distributions on the other hand, local
mode vibrations in anharmonic potentials are found to be more suitable [254–257].

The choice of coordinates also has an effect on the general quality of the basis
functions that are introduced to describe the vibrational states. The most straight
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forward basis functions are of direct product or Hartree type

Φi1,i2,...,if = φi1(q1)φi2(q2) . . . φif (qf ) (4.54)

where qk are the displacement coordinates corresponding to the f vibrational degrees
of freedom. It can be shown [210] that the vibrational wavefunction decouples like
this in the normal coordinate representation. In the general case the vibrational
wavefunction is constructed as a superposition of these basis functions.

In first approximation the potential energy surface that determines the molecu-
lar motion is assumed to be of harmonic form about the point of equilibrium for
each coordinate. Higher terms in the expansion of the potential introduce coupling
between the normal mode vibrations, which may be treated in a perturbative way
[210]. These terms become important for higher excited vibrational states, which
cover internuclear distances that are not infinitesimal in the sense of the harmonic
approximation. For the determination of eigenstates of the nuclear vibrational Hamil-
tonian several schemes have been developed, e.g. perturbative methods and strategies
similar to those used in electronic quantum chemistry, such as the Vibrational Self
Consistent Field (VSCF) [258] or Vibrational Multi-Configuration Self-Consistent-
Field (V-MCSCF) [259] methods. Some of these systematic approaches are already
available as software packages [260] to take into account the coupling terms. Addi-
tionally to the general ab-initio calculations, approaches have been made to decouple
vibrational modes that act on different time scales by adiabatic treatment [261].

In the case of triatomic molecules the coupling between the normal modes can
be avoided by the choice of curvilinear internal coordinates (Jacobi, Radau and
hyperspherical coordinates), that are as well orthogonal in the sense that the kinetic
energy operator decouples [262]. E.g. for H2O Radau coordinates are a good choice
[263] as the momentum of inertia of the central atom is much larger than that of the
two hydrogen atoms. Lately, there is renewed interest in variable curvature [264] or
generalized internal vibrational coordinates [248] that are parametrically adaptable
and comprise the Jacobi, Radau and hyperspherical coordinates as special cases, but
are not necessarily orthogonal in the kinetic energy.

In the approximation of the potential energy surfaces beyond the harmonic model
Morse potentials have been successfully employed [265] for the stretching coordinates
[266] of linear (HCN [267, 268], CO2 [269]) as well as bent triatomic molecules (e.g.
H2O [270, 263, 271, 248] and N2O [272, 269, 273]). These result in higher (usually
up to fourth) order expansions of the potential in terms of Morse coordinates [269].
These potentials represent generalizations of the usual Morse potential (Eq. (4.40)),
as they are higher order expansions of the potential in terms of the Morse coordi-
nates (Eq. (4.42)) that have the property to asymptotically reach the value of 1 as
the linear displacement of respective valence coordinate goes to infinity in the limit
of dissociation. For the bending motion the Pöschl-Teller potential (one possible gen-
eralization of the Morse potential [274, 275]) is frequently chosen. For comparative
studies of different empirical internuclear potentials see [276, 277].
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Since Franck-Condon factors are very significant for the analysis of molecular spec-
tra, techniques for their evaluation for polyatomic molecules have been developed first
for harmonic potentials [278, 279] and later, after significant research on the alge-
braic treatment of anharmonicity in polyatomic molecules [280, 254, 281], as well for
anharmonic potentials (e.g. the vibron model [282–284]). While these techniques are
strive for efficient evaluation in the polyatomic case, the basic matrix elements for
Morse wavefunctions already have been obtained much earlier [285].

4.3.4. Rate Equations and Transition Yields

Using the LCAO description of the electronic wavefunction above, the expression
(4.28) for the ionization rate into a specific vibrational state of the molecular cation
can be written as:

dW
(f,i)
ν′,ν

dk̂N

(I0) = 2πC2NekN(Nω − Up)
2J2

N (a, b, η) (4.55)

×

∣∣∣∣∣
2∑

n=1

∑
j

〈χ′ν′(R−R′
e) |bn,j(R) exp

[
−ikN · R̂n

µR

mn

]
|χν(R−Re) 〉φ̃n,j(kN)

∣∣∣∣∣
2

in the center of mass frame of the molecule, where the vector µRe

mn
R̂n points to the

equilibrium position of the nth nucleus in the initial electronic state and µ denotes
the reduced mass of the molecular system. φ̃n,j(kN) is the Fourier transform of the
atomic orbital φn,j (see section 4.3.2). The magnitude |kN | of the electron momentum
after the absorption on N photons is given by Eq. (4.29).

The orientation of the molecule in space is determined in Eq. (4.55) by the unit
vectors R̂n = ±R̂. For diatomic molecules, the orientations of the body-fixed frames
(with the molecular axis chosen along the polar axis) of an ensemble of molecules
can be taken into account by averaging over their distribution in the space-fixed
laboratory frame. In the theoretical results presented below, a random distribution
of the molecular axes is generally assumed and the orientation averaging is carried
out, unless stated explicitly otherwise. Finally to obtain total ionization rates for a
given vibronic transition, the differential rate (4.55) was integrated over all emission
directions and summed over all contributing photon orders according to Eq. (4.30).
The order of integration was chosen this way to obtain physically meaningful results
in each step as well as to minimize evaluation of the k dependent orbitals:

Γ
(f,i)
ν′,ν (I0) ≡

∞∑
N=N0

∫
dΩkN

1

4π

∫
dΩR

dW
(f,i)
ν′,ν

dk̂N

(I0, R̂) (4.56)

=
∞∑

N=N0

∫ 1

0

d cosϑk

∫ 2π

0

c(ϕk)dϕk

1

4π

∫ 1

0

d cosϑR

∫ ϕk+π

ϕk

dϕR

dW
(f,i)
ν′,ν

dk̂N

(I0, R̂) ,
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where c(φk) is a characteristic function that chooses the interval of integration ac-
cording to the symmetry of the ionized orbital e.g. c(ϕk) = 2πδ(ϕk) for a σ orbital
and c(ϕk) = 2Θ(π − ϕk) for an orbital of π symmetry.

In order to compare the predictions of the theory with experimental data one needs
to consider the fact that the experimental data for IVI are obtained as production
rates or yields of ions generated in the focus of a pulsed laser beam. The gas jet
transversing the focus provides an initial ensemble of neutral target molecules that
interact with the laser field during a time interval of the order of the pulse duration,
and within a spatial volume of the order of the focal volume. The IVI yield distribu-
tions, therefore, are constructed by substituting the basic theoretical rates of the IVI
transitions (single molecule response) into the rate equations that govern the relative
populations of interest. The normalized yield distributions are then obtained, at a
given point in the laser focus, by integrating the rate equations over the time-profile
of the laser pulse and adding the contributions from all the points within the focus
(see e.g. [37]).

The rate equations for the normalized populations in the final vibrational channels
are given by [202]:

dN
(f)
ν′ (t)

dt
= Γ

(f,X)
ν′,0 (I0(r, t))

(
1−

∑
ν′

N
(f)
ν′ (t)

)
, (4.57)

where it is assumed that the target molecule is initially prepared in the lowest vibra-
tional level (ν = 0) of its electronic ground state (i = X). Furthermore the analysis
is restricted to one specific final electronic state; contributions from ionization to any
higher charge states and/or possible fragments are not considered. In actual compu-
tations, the rate equations were solved assuming a typical Gaussian temporal laser
pulse profile with an (experimentally given) pulse length τ centered around t = 0
[82]. The results are integrated over the spatial intensity distribution of a Gaussian
TEM00 mode [286], characterized by the (experimentally given) peak pulse intensity,
I0, the beam waist, and the Rayleigh length of the beam.

4.4. S-Matrix analysis of Non-Franck-Condon Distributions
in Small Diatomics

4.4.1. Comparison with Experimental Data

The results of the calculations are discussed on a relative scale, as usual for pro-
cesses induced by strong laser fields. This is done for the sake of comparison with
experimental data, which is given on relative scales due to a minimal uncertainty of
about 10% in the determination of peak laser intensities at the precision achievable
with current experimental techniques [287]. Additionally the initial total number of
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Figure 4.4.: Comparison of the calculations of the IVI yield distribution (normalized
to the total ion yield of all vibrational channels) of the different vibrational levels of
H+

2 (solid bars) and the corresponding Franck-Condon distribution (hatched bars)
[215]. Laser parameters: λ = 800nm, I0 = 3×1013 W/cm2 and τ = 45 fs.

molecules in the focus of the laser pulse can usually only be estimated on a statistical
basis from the experimental conditions.

In Fig. 4.4 the result of a calculation (solid bars) for the IVI distribution of popu-
lation in different vibrational levels of the H+

2 ion [215] is presented. The orientation
of the internuclear axis for the ensemble of molecules has been assumed to be random
and an averaging over the orientations was carried out. For reference the Franck-
Condon overlap distribution for the present transition [189] are included in the figure
(hatched bars). The figure reveals a strong difference between the calculated IVI dis-
tribution and the Franck-Condon overlap integrals. While the present result shows a
maximum at ν ′ = 0 followed by a continuous decrease toward the higher levels, the
Franck-Condon distribution is peaked at ν ′ = 2 and decreases only slowly. As a con-
sequence, the Franck-Condon distribution strongly underestimates the laser induced
populations in the two lowest vibrational levels, and systematically overestimates
those from the third level onwards. This is similar to a strong shift toward the lower
excitation levels as predicted theoretically earlier [108, 202, 288, 184] and observed
in the experiment [184] subsequently.

Fig. 4.5 compares the results of the present theory (solid bars) to the experimental
data of Urbain et al. (hatched bars, [184]) at two different wavelengths (a-c: 800 nm,
d: 1064 nm) and four different peak laser intensities: (a) I0 = 3×1013 W/cm2, (b)
I0 = 4.8×1013 W/cm2, (c) I0 = 1.5×1014 W/cm2, and (d) I0 = 1014 W/cm2. A shift
toward the lowest vibrational states is clearly present in all the cases shown in the
figure. Although the calculated individual heights are not quite the same, the major
characteristics of the theoretical results, including the monotonic decrease of the
heights with increasing vibrational excitation in case (a), and the occurrence of a
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Figure 4.5.: Comparison of the normalized populations (branching ratios) of the
vibrational levels in H+

2 (solid bars) [215] with the normalized experimental yields
taken from [184] (hatched bars). Laser parameters are: a) – c) λ = 800nm, τ = 45
fs at I0 =3×1013 W/cm2 (panel a), I0 =4.8×1013 W/cm2 (panel b) and I0 =1.5×1014

W/cm2 (panel c); d) λ = 1064 nm, τ = 6ns at I0 =1014 W/cm2.

peak-reversal in the cases (b), (c) and (d) are fully consistent with the experimental
data. More specifically, the theory correctly reproduces the position of the maximum
in every distribution (a) to (d), namely in 800 nm radiation at the lowest intensity
(Fig. 4.5 a), it occurs at ν ′ = 0, while in all the other cases the maximum is located
at ν ′ = 1, both in the experimental data as well as in the theoretical results.

The dominant population of the vibronic ground state in the calculation occurs in
the interval of intensity between 2.5×1013W/cm2 and 4.1×1013W/cm2 for 800nm (see
right panel of Fig. 4.6). This peak reversal is due to channel closing effects in the
transition rates [289] that can be seen in the left panel of Fig. 4.6. As the intensity of
the laser is increased, the increasing ponderomotive energy of the continuum states
is rising the necessary energy for a transition. At some point the minimal number
of photons N0(I0, Ip, ν, ν

′) that used to be sufficient does not cover the increased
transition energy any longer and the N0-photon channel for the ionization process
closes. This first affects the higher excited states, as also visible in the calculated
rates. In a laser pulse, there is a spatio-temporal distribution of intensities is the focal
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Figure 4.6.: Predicted intensity dependence of the IVI process for the transitions to
the ground and first few excited vibrational states of H+

2 due to ionization of H2

in vibronic ground state by a linearly polarized laser with a carrier frequency of
800 nm.
Left: Calculated transition rates to different final states. Right: Normalized cal-
culated transition yields obtained in a Gaussian laser pulse of 45 fs duration (log-
arithmic intensity scale) .

volume, which is integrated over to obtain ionization yields that are comparable with
experimental results. Nevertheless, as can be seen from Fig. 4.6 as well as from the
experimental results [212, 184], there is an accumulated signature of this detectable
in the yields, leading to the peak reversal in an intensity interval slightly above the
intensity of the first channel closing for the ν ′ = 0 state in the presented intensity
window. The next channel closing only brings the population of the ν ′ = 1 state
close to the one of the ν ′ = 0 state, without surpassing it.

Fig. 4.7 shows the variation of the transition rates to the first few vibrational
states as a function of the laser wavelength at a given intensity, clearly showing the
importance of channel closing effects for the final vibrational state. It is interesting
to note that for increasing wavelength the second excited state, which is dominant
in the Franck-Condon distribution, is predicted to be predominantly less populated
than the zeroth and first excited state. The decrease of the photon energy has the
tendency to separate the contributions of the different vibronic ionization channels.
Even though for longer wavelengths the Keldysh parameter is reaching the tunneling
regime already at this moderate intensity, this wavelength dependent picture is be-
yond the predictive scope of tunneling theory (section 2.1.2) and can currently only
be obtained by the S-matrix theory discussed in sections 3.3 and 4.3.

The remaining difference between the experimental and the calculated yields ap-
parent in Fig. 4.5 might be due to two reasons: First, there is an estimated un-
certainty of about 20% in the measurement of the peak intensity in the current
experimental data [184]. In the calculations we have noted that the actual heights
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Figure 4.7.: Calculated wavelength dependence of the IVI transition rate to the
ground and first few excited vibrational states of H+

2 due to ionization of H2

in vibronic ground state by a linearly polarized laser at an intensity of I0 =
3× 1013 W/cm2.

are sensitive to the peak intensity of the laser (cf. Fig. 4.6, right hand panel). Sec-
ond, a possible effect of fragmentation or dissociation of the hydrogen molecular ion
is not taken into account in the computations. In fact, Urbain et al. [184] have
pointed out that depending on the orientation of the molecular ion and the laser
intensity, a possible dissociation of the ion into a proton and a hydrogen atom may
occur from the higher vibrational states of the ion. This could lead to a depletion
of the higher vibrational levels in the experiment and might also be responsible for
the overestimations by the present calculations (cf. Fig. 4.5c and d) which neglect a
possible fragmentation or dissociation induced effect.

The calculated distributions depend on the choice of the vibrational wavefunctions.
The influence can be seen from Fig. 4.8, where a comparison is shown between the IVI
distributions obtained with the Morse wavefunctions (solid bars) and with the simple
harmonic oscillator wavefunctions (hatched bars). The results from the calculations
with the harmonic oscillator wavefunctions show a considerably weaker shift toward
lower vibrational states than those obtained from the Morse wavefunctions. This
is not only a quantitative difference but also can lead to a qualitative change. For
example, the shift of the position of the distribution maximum from ν ′ = 1 to
ν ′ = 0 at the lowest field intensity (cf. Fig. 4.8a) is not reproduced by the simple
harmonic oscillator wavefunctions. This is due to the delicate dependence of the
channel closings on the total transition energies, which are different for the equally
spaced harmonic states and the energy shifted anharmonic ones.

4.4.2. Alignment and Polarization Effects

It has been shown recently (e.g. [290, 37]) that for diatomic molecules both the
total ionization rates and the photoelectron angular distributions depend on the ori-
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Figure 4.8.: Effect of the choice of vibrational wavefunctions on the predicted pop-
ulations in the molecular H+

2 ion. Shown is a comparison between the results
obtained with Morse (solid bars) wavefunctions and harmonic oscillator wavefunc-
tions (hatched bars) [215]. Laser parameters are the same as in Fig. 4.5.

entation of the internuclear axis. In contrast, in the present calculations (and in
agreement with results from the static field theory [184]) it is found that the effect
of the alignment of the molecule is rather small or negligible for the IVI populations
in the vibrational levels of the hydrogen molecular ion (at least as long as the frag-
mentation channels can be considered to be rather improbable). This is exemplified
in Fig. 4.9, where the results for the alignment of the internuclear axis, parallel and
perpendicular to the direction of (linear) polarization of the laser, are compared. It
can be seen that the distributions hardly differ in the two cases.

Please note again that relative populations are compared, which does not reflect
that the absolute ionization yields vary with the degree of alignment of the inter-
nuclear axis with respect to the polarization of the field [37]. While the coupling
to the field strongly determines the direction of emission of the ionized electron, the
probability of which depends on the symmetry of the molecular orbital, the field does
not directly couple to the internuclear relative coordinate in the leading order of the
S-matrix expansion for this process. This term corresponds to a physical process
where only the active electron interacts with the field and shares the above threshold
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Figure 4.9.: Comparison of the IVI populations for the alignment of the internuclear
axis parallel (solid bars) and perpendicular (hatched bars) to the laser polarization
direction [215]. Laser parameters are the same as in Fig. 4.5.

part of the absorbed energy with the parent molecular ion. This energy transfer is
isotropic, while the directed momentum transfer between electron and the molecular
ion is of minor importance (see discussion in section 4.4.4) in intense-field multipho-
ton ionization. Thus, the mutual alignment of field and molecular axis has no direct
effect on the vibrational dynamics.

To check the possible effect of the laser polarization on the IVI distributions calcu-
lations with circular polarization of the laser field have been performed. In Fig. 4.10
the calculated IVI yields are shown at the same intensities and frequencies of the
laser as in the case of linear polarization (Fig. 4.5). Interestingly, for circular polar-
ization the dominant population is found to be in the vibronic ground state ν ′ = 0,
not only for a limited interval of intensities, but increasingly also for all intensities
below a certain threshold intensity, I0 = 8.2×1013 W/cm2 for 800nm (see Fig. 4.11),
or I0 = 1.04×1014 W/cm2 for 1064nm. As a result, while a channel closing effect ap-
parently accounts for the peak reversals in the case of linear polarization (see Fig. 4.6
[289]), in the circular polarization case the vibronic ground state of the molecular
ion is favored for all intensities below the above mentioned thresholds.
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Figure 4.10.: Comparison of the IVI populations for linear (solid bars) vs. circular
polarization (hatched bars) of the laser light [215]. Laser parameters are the same
as in Fig. 4.5.
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Figure 4.11.: Intensity dependence of the normalized yields for the IVI transitions to
the ground and first two excited vibrational states of H+

2 due to ionization of H2

in a circularly polarized Gaussian laser pulse of 45 fs duration and 800 nm carrier
frequency.
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4.4.3. Origin of the Shift to Lower Vibrational States

In order to analyze the origin of the stronger population of lower vibrational levels
than in the Franck-Condon distribution, first it has been investigated whether the
overlap approximation is violated in this process. In the expression for the differential
IVI rate (Eq. (4.55)), the electronic and the vibrational matrix elements are coupled
by two factors that depend on the internuclear distance R, namely the molecular
orbital coefficients, bn,j(R), and the dynamical phase of the atomic orbitals appearing
in the exponential function. In order to analyze the influence of both these factors, the
MO coefficients were treated as constants in a first step, evaluated at the molecular
equilibrium separation, while the dynamical phase was allowed to vary with R. In
this approximation the IVI rate is given by the formula

dW
(f,i)
ν′,ν

dk̂N

(I0) ≈ 2πC2NekN(Nω − Up)
2J2

N (a, b, η) (4.58)

×

∣∣∣∣∣ 2∑
n=1

∑
j

bn,j(Re)φ̃n,j(kN)〈χ′ν′(R−R′
e) |exp

[
−ikN · R̂n

µR
mn

]
|χν(R−Re) 〉

∣∣∣∣∣
2

This approximation for a transition from the vibrational ground state is the special
case of the general Franck-Condon approximation to locate transitions at the points
of maximal wavefunction amplitude. A theoretically more accurate option for excited
vibrational initial states is to take the r-centroids [291, 292] as the radii of transition,
which are the expectation values for the internuclear distance for a specific vibrational
transition (instead of for a single vibrational state). These have been shown for
harmonic as well as for Morse potentials to be the distances, where it is consistent
to assume vertical (Franck-Condon) transitions to occur [293, 294].

Fig. 4.12 compares results obtained within this assumption from the above equa-
tion to those from the full calculations, Eq. (4.55). As can be seen, in all cases
considered, the shift toward the lowest vibrational levels is somewhat smaller in the
calculations with the ’frozen’ MO coefficients, however, the distinct differences to
the Franck-Condon distribution, the shift toward lower vibrational states and the
reversal of the peak position, are still present.

To analyze the effect of the variation of the dynamic phase factor of the atomic
orbitals, with the internuclear distance R, for the specific case of ionization of a
homonuclear diatomic molecule from its ground state Eq. (4.58) can be rewritten as
[295, 37, 100]:

dW
(f,i)
ν′,ν (I0)

dk̂N

= 2πC2NekN(Nω − Up)
2J2

N (a, b, η)
∣∣∣φ̃(kN)

∣∣∣2 (4.59)

× 4〈χ′ν′(R−R′
e) |cos[arg(φ̃(kN)) + kN ·R/2] |χν(R−Re) 〉2︸ ︷︷ ︸

|tν′,ν(kN )|2
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Figure 4.12.: Comparison of the vibrational populations in the molecular H+
2 ion

as obtained from S-matrix calculations with fully R-dependent molecular orbitals
(solid bars) and with fixed molecular orbital coefficients (hatched bars) [215]. Laser
parameters are the same as in Fig. 4.5.

where
φ̃(kN) =

∑
j

bj(Re)〈kN |φj(r;−Re/2) 〉 (4.60)

is the Fourier transform of the part of the molecular wavefunction localized at the
nucleus at R1 = −Re/2 and R̂e points along the molecular axis away from that
nucleus.

In the overlap approximation it is assumed that the electronic k dependence de-
couples in the matrix element between the vibrational wavefunctions, and reduces
the latter to:

|t(FC)
ν′,ν (k)|2 = 4 cos2[arg(φ̃(kN)) + kN ·Re/2]〈χ′ν′(R−R′

e) |χν(R−Re) 〉2 (4.61)

In Fig. 4.13 we present the ratio of the partial matrix element |tν′,0(k)|2 to |t(FC)
ν′,0 (k)|2,

averaged over all angles of electron ejection, k̂, as a function of k and for different
vibrational numbers ν ′. As can be seen from the figure, the ratio is close to 1 for
small values of k. This may be simply understood from the leading constant term of
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Figure 4.13.: Variation of the ratio |tν′,0(k)|2 to |t(FC)
ν′,0 (k)|2 as a function of k for

different ν ′ (see legend) [215].

the Taylor expansion of the phase factor. Thus, since the rate of laser induced ion-
ization is dominated by the emission of slow electrons, the conditions for the overlap
approximation should be well fulfilled in the present case (cf. Fig. 4.13). To check
the expectation, test calculations were performed where the term |t0,ν′(k)|2 was re-

placed by |t(FC)
0,ν′ (k)|2 in Eq. (4.58). Fig. 4.14 shows the results of these calculations.

As can be seen from the figure the results (hatched bars) are nearly identical. Devia-
tions can occur however in case higher kinetic energies are observed. This is e.g. the
case for X-ray Raman scattering from core excited CO, where typical photoelectron
energies are above 300 eV and thus kR ≥ 1. A generalized Franck-Condon (GFC
[296]) approximation has been proposed for this case, which includes the dynamic
variation of the photoelectron phase terms.

Combined with Fig. 4.12 this shows, that the overlap approximation, which has
been assumed before in S-matrix calculations in an ad hoc way [202, 289], is a qualita-
tively good approximation at the present field parameters. Therefore, the main cause
for the shift in the distribution of the IVI transition probabilities to lower vibrational
quantum numbers, deviating from the Franck-Condon distribution, lies in the nonlin-
ear dependence of the ionization rate on the transition energy ET = E

(f)
ν′ − E

(i)
ν . As

has been noted before [202, 289] and as can be seen from Fig. 4.15, the increase of the
transition energy results in a strong decrease of the electronic transition rate itself. A
Franck-Condon like distribution of IVI would have resulted only if ionization rates for
different inelastic vibrational channels would have been approximately a constant.
This is clearly not the case. Rather, due to the strong decrease of the ionization
rates with increasing inelasticity, the population of the higher vibrational states in
IVI is suppressed below the Franck-Condon distribution. Thus, in the process of
IVI less energy is deposited in the molecule than expected from the unsuppressed
Franck-Condon distribution.
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Figure 4.14.: Comparison of the results (solid bars) of calculations in which the
molecular orbital coefficients are fixed at R = Re (keeping the R dependence of
the phase) to those in which the overlap approximation has been assumed (hatched
bars) [215]. Laser parameters are the same as in Fig. 4.5.

Some insight into the scaling of the effect can be obtained by looking at the effect
of the vibrational excitation in the energy balance:

Nω = ET (ν ′, ν) + Up + Ekin,N(ν ′, ν)

= ET (0, 0) + Up + Ekin,N(ν ′, ν) + ∆Evib(ν
′, ν)

= ET (0, 0) + Up + Ekin,N(0, 0)

(4.62)

Here Ekin,N(0, 0) is the kinetic energy, that an electron would gain from the ionizing
absorption of N electrons, starting from the molecule and leaving the ion in their
respective vibrational ground states:

Ekin,N(0, 0) = Nω − Up − (E
(f)
ν′=0 − E

(i)
ν=0) (4.63)

∆Evib(ν
′, ν) = E

(f)
vib(ν ′)− E(i)

vib(ν) (4.64)

E
(f)
vib(ν ′) = E

(f)
ν′ − E

(f)
ν′=0 = ω(f)

e ν ′ − (ωexe)
(f)(ν ′ + 1)ν ′ , (4.65)

where the last identity is specific for a Morse potential (see Eq. (4.53)), and holds
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Figure 4.15.: Variation of the electronic part of the transition rate to H+
2 (ν ′) at a

peak intensity of I0 = 4.8×1013 W/cm2 for the linear polarized 800 nm case [215].
Note that there are two channel closings at ν ′ = 2 and ν ′ = 9 at this particular
intensity.

mutatis mutandis for the initial state. Thus

|kN(ν ′, ν)| =
√

2 (Ekin,N(0, 0)−∆Evib(ν ′, ν))

=
√

2Ekin,N(0, 0)
√

1− xN(ν ′, ν)

= |kN(0, 0)|
√

1− xN(ν ′, ν) , (4.66)

where xN(ν ′, ν) = ∆Evib(ν
′, ν)/Ekin,N(0, 0).

At a given constant photon number ∆Evib must be smaller than Ekin,N(0, 0), thus
xN < 1. Then the first cylindrical Bessel function in the product pairs that add up
to the generalized Bessel function (Eq. (4.25)) can be written as

JN+2m(α0 · kN(ν ′, ν)) = JN+2m(
√

1− xN(ν ′, ν)α0 · kN(0, 0)) . (4.67)

Since α0 = q
√
I0/(meω

2), an increase of xN corresponds to a linear down-scaling of
the laser intensity with respect to the quiver radius, while the ponderomotive energy
Up in the second cylindrical Bessel function stays unaffected:

JN(α0 · kN(ν ′, ν),
Up

2ω
) =

∞∑
m=−∞

JN+2m(
√

1− xN(ν ′, ν)α0 · kN(0, 0))Jm

(
Up

2ω

)
.

(4.68)

It is interesting to see how the strong non-linearity in the intense-field multiphoton
IVI spectra changes when the ionization occurs in a single photon process instead,
e.g. under synchrotron conditions. In the low intensity limit, the generalized Bessel
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function can be approximated by the contributions of the lowest order cylindrical
Bessel functions. To find these, it is useful to expand Eq. (4.25) for odd N as

JN(a, b) = −
∞∑

m=1

J2m−1(a)
[
J(N+1)/2−m(b)− J(N−1)/2+m(b)

]
. (4.69)

Thus, for a single-photon process J1(a, b) ≈ −J1(a)J0(b). Applying the Taylor-
expansion of the Bessel functions

Jm(a) =
∞∑
l=0

(−1)l

l!(m+ l)!

(a
2

)2l+m

(4.70)

and considering again only the lowest order term

J1

(
α0 · k1,

Up

2ω

)
≈ −1

2
α0 · k1 = −1

2

√
1− x1α0 · k1(0, 0) . (4.71)

A single photon process is only possible if the photon energy is large enough to cover
the transition energy to continuum and the change in vibrational energy. If the pho-
ton energy is so high that the kinetic energy of the ionized electron is large on the
scale of the dissociation energy of the molecular ion, the dimensionless ratio x1 will
be small and

√
1− x1 ≈ 1 − x1/2 − x2

1/8. I.e. in the case of a high energy photo-
effect process, the nonlinear variation of the electronic transition amplitude, which
is characteristic for the intense-field multiphoton IVI process, will become smaller.
This smaller variation is known e.g. from Helium-resonance-line photoelectron spec-
troscopy on molecular targets [297].

4.4.4. Momentum Conservation

From a more general perspective, it is interesting to note the physical meaning of the
dynamic photoelectron phase terms. As part of the matrix elements over the nuclear
coordinate, they are the interaction potential that couples electronic momentum
to the nuclear coordinates. In the diatomic case the central matrix elements are
expressed in Dirac notation as:

〈χ′ν′ [R′
e]|e−ikeRn|χν [Re] 〉 (4.72)

= 〈χ′ν′|
∫
dK′ |K′ 〉〈K′ | e−ikeRn

∫
dK |K 〉〈K |χν 〉 (4.73)

=

∫
dK′

∫
dK 〈χ′ν′ |K′ 〉 〈K′ | e−ike·Rn |K 〉︸ ︷︷ ︸〈K |χν 〉 , (4.74)

where the nuclear state kets |χν [Re] 〉 are written independent of coordinates (R =
RR̂ is the internuclear coordinate while the equilibrium distance Re just a parameter,
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which is dropped for brevity of notation). The coordinates of the nuclei in the center
of mass frame are connected to the internuclear distance as Rn = ±Rµ/mn. The
symbol |K〉 denotes an eigenstate of the relative nuclear momentum conjugate to the
internuclear coordinate R. The closure relation

∫
dK |K 〉〈K |= 1 has been inserted

twice, to express the vibrational state kets as a linear combination of eigenstates of
the internuclear momentum operator. The projections χ̃ν(K) ≡ 〈K | χν 〉 are the
expansion coefficients that are identical to the Fourier-transformed wavefunction of
the internuclear coordinate 〈R |χν [Re] 〉 ≡ χν(R−Re). The integrals in this context
extend over the full Hilbert space of the respective state. The underbraced term can
be seen to be equivalent to a delta distribution:

〈K′ | e−ikeRn| |K 〉 =

∫
dR 〈K′ |R 〉e∓ike

µ
mn

R〈R |K 〉

=

∫
dR exp

[
i

(
K∓ µ

mn

ke −K′
)

R

]
= δ

(
K ∓ µ

mn

ke · R̂−K ′
)
. (4.75)

This matrix element establishes the condition of momentum conservation in the
center of mass frame of the molecule, where a share of the electronic drift momentum
is transferred to the momenta of the molecular nuclei, distributed according to the
ratio of their masses. The sign is selected according to which nucleus the partial wave
of the ionizing electron originates from. E.g. in the homonuclear case, if we denote
the projection of the electron momentum on the internuclear axis by k′

e ≡ (ke · R̂)R̂,
the relative nuclear momentum K will be increased by k′e/2 in the contribution
originating from the nucleus at −R/2, while it will be decreased by the same amount
due to the contribution from the nucleus at +R/2. Equation (4.75) establishes the
selection rule for the change in relative internuclear momentum in process of IVI
in the basis of eigenstates of relative internuclear momentum. Inserted back into
expression (4.72), the central matrix element over the nuclear coordinates becomes:

∫∫
dK′ dK 〈χ′ν′ |K′ 〉δ

(
K∓ µ

mn

k′
e −K′

)
〈K |χν 〉 (4.76)

=

∫
dK 〈χ′ν′ |K∓

µ

mn

k′
e 〉〈K |χν 〉 ,

which describes the effect of the conservation of total momentum on the transition
amplitude between vibrational states occurring in strong field ionization of molecules.
We may transform back into the position representation, to extract the expression for
the molecular vibrational wavefunction after ionization, i.e. before it gets projected
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onto the set of specific possible wavefunctions of the molecular ion:

∫
dR 〈χ′ν′ |R 〉

∫
dK 〈R |K∓ µ

mn

k′
e 〉〈K |χν 〉︸ ︷︷ ︸ (4.77)

=

∫
dRχν′(R−R′

e)

∫
dK F [χν(R−Re)] (K) exp

[
i

(
K ∓ µ

mn

k′e

)
R

]
︸ ︷︷ ︸ .

The underbraced term represents the essential term of the nuclear vibrational wave-
function of the molecule after the emission of the active electron. It has the form
of a wavepacket, made up by a superposition of plane waves of internuclear motion
that are shifted by the mass-ratio scaled electron momentum into the opposite di-
rection of electron emission (all projected onto the internuclear axis) with respect to
the initial distribution of internuclear momentum, that is given by the Fourier trans-
formed initial vibrational wavefunction χ̃ν(K) ≡ F [χν(R−Re)] (K). Note that in
the homonuclear case the opposite signs of the momentum shift do not result in a
cancellation of the effect (this would only be true, in case the positions Re and R′

e of
the troughs in the vibrational potentials coincide and the potentials are symmetric).
The component of the electron momentum that is perpendicular to the molecular
axis has two effects: It results in a shift of the momentum of the center of mass of the
molecule and for heteronuclear molecules it also induces a change of the rotational
state, which is not explicitly considered here.

This analysis of momentum conservation highlights an additional aspect in the
interpretation of the matrix elements given in the IMST and KFR theories, where
the conservation of energy appears naturally. While the conservation of energy is a
result of temporal phase matching in S-matrix theory the conservation of momentum
results from spatial phase matching. Since atomic systems are commonly described
in a body fixed frame, the conservation of total momentum usually does not appear
explicitly in the formula describing their single ionization. In molecular systems
this condition has an effect on the internal, relative dynamics of the system and
thus emerges explicitly from the matrix elements. This derivation also clarifies why
the dynamic photoelectron phase terms have only minimal effect on the internuclear
dynamics, as a change of internuclear momentum translates to a much smaller change
in the velocity of internuclear motion, due to the high mass of the nuclei (in terms
of electron mass, i.e. atomic units). The discussion of further issues concerning the
consideration of momentum conservation in S-matrix theory and specifically the role
of the ionic momentum is continued in section 5.1.3 in the context of the second part
of the thesis, which analyzes electron impact ionization of diatomic molecules in the
presence of an intense laser field.
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Figure 4.16.: Normalized populations of the vibrational states in H+
2 (solid bars),

HD+ (cross hatched bars) and D+
2 (hatched bars) for IVI of H2, HD and D2, from

their respective ground states [215]. Laser parameters are the same as in Fig. 4.5.

4.4.5. Application to HD and D2

Next, the present theory is applied to investigate possible isotopic effects in the IVI
processes. To this end, the IVI distributions from two isotopes of the hydrogen
molecule, HD and D2, were calculated. While for the neutral species the molecular
constants needed for the Morse wavefunctions are available in literature [298], for the
molecular ions the anharmonicity parameter ωexe = ω2

e/(4De), which determines the
eigen-energies of the vibrational states, was calculated from the experimental values
[299] of the energy D0 = De−ωe/2. The vibrational constants are given in table 4.1.

Fig. 4.16 presents the results for the calculated IVI distributions from the ground
vibronic states of the isotopes. The computations have been carried out at the same
laser parameters as for the hydrogen molecule (cf. Fig. 4.5). A small but clear
isotopic shift of the IVI distributions of the heavier isotopes of H2 toward the higher
vibrational levels is predicted. As the decrease of the electronic part of the transition
rate as a function of the inelastic vibrational excitations is rather similar for the
three molecules, the differences in the distributions are mainly due to the different
behavior of the vibrational part. This is also seen from the Franck-Condon factors for
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Figure 4.17.: Calculated Franck-Condon distributions for H+
2 , HD+ and D+

2 after
direct transition out of the ground state of the respective molecule [215].

Re [Å] D0 [eV] ωe[cm
−1] ωexe[cm

−1] µA [a.m.u.]a Ip [eV]
H2 (X1Σ+

g ) 0.741 4.478 4401.21 121.33 0.5076 15.42593
H+

2 (X2Σ+
g ) 1.052 2.65 2322.0 66.2b 0.5076 -

HD (X1Σ+
g ) 0.74142 4.513789 3813.1 91.65 0.672 15.44465

HD+ (X2Σ+
g ) 1.057 2.667682 1913.1 40.72b 0.672 -

D2 (X1Σ+
g ) 0.74152 4.556256 3115.5 61.82 1.007 15.46658

D+
2 (X2Σ+

g ) 1.0559 2.691919 1577.3 27.64b 1.007 -

a me = 5.4858×10−4 a.m.u. [300]
b calculated values

Table 4.1.: Molecular constants [299, 298, 300].

the molecules, as presented in Fig. 4.17, that are obtained from the overlap integrals
of the Morse wavefunctions, as used for the calculations shown in Fig. 4.16.

4.5. Inelastic Vibronic Ionization of Other Molecules

4.5.1. Other Diatomics: O2 and CO

The present theory can also be applied to more complex molecules if their behavior in
strong fields is well representable in a single active electron ansatz. The discussed ad
hoc approach to IVI, multiplying the Franck-Condon overlaps into the KFR ionization
rates to vibrationally resolved final states, has been applied to the ionization of N2

before [202]. In the course of this work full IVI calculations were performed on the
ionization of O2 into the electronic ground (X2Πg) and first excited (A2Πu) states
of O+

2 as well as on the ionization of CO into the first (A2Π) and second (B2Σ+)
electronically excited states of CO+. In figure 4.18 the Franck-Condon overlaps
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Figure 4.18.: Franck-Condon factors for the transition O2X
3Σ−

g → O+
2 X

2Πg (solid
bars) and O2X

3Σ−
g → O+

2 A
2Πu (hatched bars) [301].

for the transitions in O2 are given. The O+
2 X

2Πg is created by the ionization of
an electron from the antibonding highest occupied molecular orbital 1πg (HOMO),
thus the internuclear distance relaxes to a smaller value in the ion (R′

e = 1.1164 Å)
as compared to the neutral molecule (Re = 1.20752 Å). For the formation of the
O+

2 A
2Πu state an electron is removed from a bonding molecular orbital (1πu), which

weakens the bond to a stretched internuclear distance of (R′
e = 1.409 Å) . This change

in internuclear distance is caused by a shift of the minimum of the potential curve
of the ionic state with respect to the minimum of the potential curve of the neutral
molecule. The vertical electronic transition from the neutral to the ionic potential
curve takes place in the vicinity of Re. In the case of the O+

2 A
2Πu, the increase

of the internuclear distance causes the steeper slope of the anharmonic potential
curve to be shifted into the target region, while the shift of the O+

2 X
2Πg potential

curve causes transitions to happen into its shallower side. Thus, transitions from
the ground vibrational state of the neutral O2 cover a much broader spectrum of
vibrational states in the O+

2 A
2Πu state than transitions to the O+

2 X
2Πg state, and

the vibrational state of the electronically excited O2 is more probable to be a much
higher excited one than in the electronic ground state.

Figure 4.19 shows the relative IVI population yields of O+
2 X

2Πg created by a
Gaussian 45 fs pulse of an 800 nm Ti:Sapphire laser for two different intensities. The
experimental vibrational constants are taken from [298]. While the vibrational spec-
trum generated by the more intense field is qualitatively the same at other intensities
too, the spectrum at I0 = 3 × 1012 W/cm2 is shown as a special case in which the
ground vibrational level is predominantly populated. This peak reversal only hap-
pens in a small interval of intensities around the one picked here. In any case, the
distributions show the characteristic trend for IVI-generated molecular ions to lower
vibrational excitation.
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Figure 4.19.: Relative IVI populations in O+
2 X

2Πg created by a Gaussian 45 fs pulse at
800 nm and intensities of I0 = 3×1012 W/cm2 (solid bars) and I0 = 6×1012 W/cm2

(hatched bars) respectively. The grey bars show the Franck-Condon overlaps for
the sake of comparison.
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Figure 4.20.: Left: Same as in Fig. 4.19 but for the O+
2 A

2Πu state.
Right: Calculated relative fluorescence signals from the vibrationally excited states
of O+

2 A
2Πu, created by IVI in a Gaussian 45 fs pulse at 800 nm and I0 = 3 ×

1012 W/cm2 (solid bars) and I0 = 6 × 1012 W/cm2 (hatched bars) respectively.
Transitions are chosen to occur into the ground state of O+

2 X
2Πg. The grey bars

show for comparison the relative fluorescence strengths as expected from a Franck-
Condon distribution of the vibrational states of O+

2 A
2Πu.

The relative populations for the excited O+
2 A

2Πu state are given in the left panel
of figure 4.20. The comparison to the Franck-Condon distribution confirms the IVI
shift of the vibrational population. In this case the maximum of the Franck-Condon
distribution is at ν = 8, while the representative IVI distribution, obtained after
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Figure 4.21.: Experimental He I spectrum of CO by Wannberg et al. from [305]

ionization in a laser pulse at a maximum intensity of I0 = 6 × 1012 W/cm2, peaks
at ν ′ = 5. A slight peak reversal between the ν ′ = 4 and the ν ′ = 5 state is also
visible in the comparison of the two spectra taken at I0 = 3 × 1012 W/cm2 and
I0 = 6× 1012 W/cm2 respectively.

The creation of an electronically excited molecular state opens a possible way to
detect the IVI shift of the vibrational spectrum by means of fluorescence. To this
end, the vibrational distribution was multiplied with the corresponding Einstein co-
efficients [302] for the transition O+

2 A
2Πu (ν ′) → O+

2 X
2Πg (ν ′′ = 0) [303]. As shown

in the right hand panel of Fig. 4.20 the small effect of the peak reversal in the vibra-
tional population of O+

2 A
2Πu is canceled by the strong suppression of the electronic

transitions at low vibrational quantum numbers, apparent from the Einstein coeffi-
cients. The IVI shift of the fluorescence spectrum from ν ′ = 12 to ν ′ = 8 is still visible
in the direct comparison of the calculated relative fluorescence strengths and might
be detectable in experiment by direct comparison of the fluorescence spectrum from
IVI generated O+

2 A
2Πu to that of ions prepared in this state by other means, e.g.

electron impact or single photon ionization by radiation from synchrotron sources.

As a representative case for a heteronuclear diatomic molecule the ionization of
carbon monoxide is treated in the IVI formalism. It is isoelectronic to N2 with
a molecular orbital description of (1σg)

2(1σu)
2(2σg)

2(2σu)
2(1πu)

4(3σg)
2 and a 1Σ+

symmetry term. The transformation to the center of mass coordinate system, needed
for the treatment of heteronuclear diatomic molecules is already included in the
general derivation of the IVI transition rates (Eq. (4.55)). Ionizing transitions into
the vibrational states of first (A2Π) and second (B2Σ+) electronically excited states
of CO+ have been calculated. The transition to the ionic electronic ground state was
not considered, as the experimental Franck-Condon factors for this transition [304]
already predict a 96% population of the ground vibrational state, followed by 3.8%
in the first excited vibration (see Fig. 4.21). Only a small quantitative shift would
be obtained by the additional IVI suppression of the excited states.

The CO+A2Π state is reached from the ground state of CO by removal of a 1π
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Figure 4.22.: Left: Relative IVI populations of CO+A2Π created by a Gaussian 45 fs
pulse at 800 nm and peak intensities of I0 = 6 × 1012 W/cm2 (solid bars) and
I0 = 1.5× 1014 W/cm2 (hatched bars). For comparison the thinner grey bars show
the Franck-Condon overlaps.
Right: Calculated relative fluorescence signals from the vibrationally excited states
of CO+A2Π to its ground state. Laser parameters as in the left panel. For com-
parison the thinner grey bars show the relative fluorescence strengths as expected
from a Franck-Condon distribution of the vibrational states of CO+A2Π.

electron. The ionization potential for this transition (EB = 16.544 eV) has been ob-
tained from the experimental He I spectrum [305]. Alternatively it can be estimated
as the sum of the ionization potential (Ip = 14.014 eV) into the ground state X2Σ of
the ion and the excitation energy of the A2Π state (Te = 2.57 eV). For the molecular
orbital calculations a simple Gaussian set of basis functions was used, denoted as
4-31G+ in Pople notation [226]. The experimental parameters for the vibrational
wavefunctions were taken from [306].

The left hand panel of figure 4.22 shows the relative IVI population yields of
CO+A2Π as obtained from the ionization by a Gaussian 45 fs pulse at 800 nm for
two peak intensities. The vibrational spectrum obtained at I0 = 1.5× 1014 W/cm2 is
typical for a wide range of intensities and compared to the Franck-Condon overlaps
its maximum is shifted down by one to ν ′ = 1. As in the case of the electronic ground
state of O+

2 , there is a small window of intensities, around I0 = 6 × 1012 W/cm2 in
this case, where the ground state is dominantly populated.

The shift of the vibrational IVI spectrum will cause the maximum of the fluo-
rescence spectrum to shift as well with respect to the one expected from a Franck-
Condon distribution in the excited CO+A2Π state as can be seen from the right hand
panel of Fig. 4.22. These spectra were obtained by multiplying the corresponding
Einstein A coefficients for the so-called comet-tail system A2Π (ν ′)→ X2Σ+ (ν ′′ = 0)
[307] into the vibrational IVI spectrum. The peak-reversal effect in the vibrational
population caused by the ionization at a peak intensity of I0 = 6 × 1012 W/cm2 is
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Figure 4.23.: Calculated relative fluorescence signals from the vibrationally excited
states of CO+B2Σ+ created by IVI in a Gaussian 45 fs pulse at 800 nm and peak
intensities of I0 = 3×1013 W/cm2 (solid bars) and I0 = 1.5×1014 W/cm2 (hatched
bars) to the ground state of CO+ (Einstein A coefficients from [306]). For com-
parison the thinner grey bars show the relative fluorescence strengths as expected
from a plain Franck-Condon distribution in the vibrational states of CO+B2Σ+.

not strong enough to manifest in the fluorescence spectrum.
Finally, the CO+B2Σ+ state is obtained by ionization of an inner-shell 2σu electron

from ground state CO at a transition energy of EB = 19.672 eV [305]. Like in the
ionic ground state the internuclear distance (R′

e = 1.1687 Å) in this excited electronic
state is quite close to that in the ground state (Re = 1.1283 Å) of neutral CO, and
thus the vibrational spectrum peaks strongly at ν ′ = 0. Thus the shift of the IVI
spectrum is only of quantitative nature, as depicted in the theoretical predictions of
the fluorescence spectrum in Fig. 4.23.

4.5.2. Extension to Polyatomic Molecules

On a systematic way to an analysis of polyatomic molecules, linear triatomic systems,
as e.g. HCN, constitute the first class of objects to be studied [199]. For these, it
is convenient to start the kinematic description in Jacobi coordinates [308]. These
transform to one dimensional Cartesian coordinates of the atoms as

R′
3 =

µ23

m3

r

R′
2 = −µ23

m2

r

R′
1 = −R ,

(4.78)

where µ23 = m2m3

m2+m3
is the reduced mass of the bi-atomic system of atom 2 and 3, that

are separated by r. R denotes the scattering coordinate of atom 1 with respect to the
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center of masses of the bi-atomic system of atom 2 and 3. From these coordinates
one transforms to the center of mass coordinates as follows:

SP ′ = −m1

M
R

R3 = R′
3 − SP ′ =

m1

M
R +

µ23

m3

r

R2 = R′
2 − SP ′ =

m1

M
R− µ23

m2

r

R1 = −m2 +m3

M
R ,

(4.79)

where SP ′ is the center of mass in the system of Jacobi coordinates andM is the total
mass of the molecule. If the vibrational potentials to be used are not given in Jacobi
coordinates, they can be expressed in terms of the bond coordinates r1 = R − r/2
and r2 = r:

R3 =
m1

M
r1 +

(
m1

2M
+
µ23

m3

)
r2

R2 =
m1

M
r1 +

(
m1

2M
− µ23

m2

)
r2

R1 = −m2 +m3

M
r1 −

m2 +m3

2M
r2 .

(4.80)

Using these equations the vibrational dynamics of the internuclear distances is cou-
pled to the coordinates of the electronic wavefunctions.

Next the question of the representation of the vibrations has to be addressed. Note
that HCN is restricted here to be in a single configuration of its isotopomeres [309].
For linear triatomic systems with strongly asymmetric mass distribution like HCN
the harmonic oscillator description is found to be an inefficient basis for the calcula-
tion of energy levels [310]. Much better results were obtained modeling the strongly
mass-asymmetric bond by a Morse potential, thus describing the total vibration in
a product basis combined of one harmonic and one Morse wavefunction [310–312].
If this ansatz is extended to molecules with several equivalent bonds, e.g. to ben-
zene [254], Fermi-resonances between the equivalent oscillators have to be considered
[313]. For linear triatomic molecules with more symmetric mass distributions like
S2O calculations with a product of harmonic wavefunctions proved to be sufficiently
accurate for the calculation of excitations up to 3rd to 4th excited local mode state
[310], i.e. a description in terms of normal modes is appropriate in this case (see
discussion in section 4.3.3.2).

On this basis the IVI model can be used to calculate transition rates to the fun-
damental (νi = 1) and the overtones (νi > 1) of the local vibration modes as well
as to the combination modes. To be applicable to the ionization of molecules in
experimentally determined geometries, for the majority of cases it is important to
allow for bend configurations the excitation of angular vibrational modes. These
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Figure 4.24.: Relative IVI populations in HCN+X2Π created from ground state HCN

by a linearly polarized Gaussian 15 fs laser pulse at 800 nm with a peak intensity of
I0 = 1×1014 W/cm2 (solid bars). The grey bars show the Franck-Condon overlaps
for comparison.
Left: Selective excitation of the HC bond. Right: Same for the CN bond.

can be included in the local mode framework by the extension of the geometric de-
scription of the molecular structure to two dimensions, using the bond angle as an
additional internal coordinate, and extending the product basis by a set of bending
wavefunctions [310, 314, 275]. The present theory does not consider the subsequent
intramolecular vibrational redistribution (IVR), that will start after the initial prepa-
ration of the vibrational wavepacket in the molecular ion, mediated by the hitherto
neglected coupling between the oscillators, that may be modeled as a harmonic cou-
pling [315, 256, 316] of the internal vibrational displacement coordinates. More
accurate descriptions of the inter-mode coupling are obtained by coupling the Morse
coordinates of anharmonic local mode vibrations [317, 318].

It is interesting to note, that in HCN the highest occupied molecular orbital has π
symmetry and stretches only between carbon and nitrogen. Nevertheless on removal
of one of the bonding valence electrons both bond lengths increase. The change is
small (0.025 Å for the HC and 0.06 Å for the CN bond2), which allows that this tri-
atomic system maintains its linear geometry upon ionization. As a consequence, the
overlap of the ground state vibrational wavefunction of the neutral molecule with the
vibrational wavefunctions of the molecular ion favors the ground state of the molec-
ular ion. Thus one only expects a quantitative change in the occupation probability
of the ionic vibrational ground state comparing the Franck-Condon distribution with
the vibrational spectrum of strong field IVI. The calculations were performed using

2Molecular data for HCN are taken from experimental results reviewed in [319] and data for
HCN+X2Π are from ”corrected CI-SD” results in [320]
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Figure 4.25.: Relative change of IVI populations in HCN+X2Π with respect to the

Franck-Condon overlaps for the HC (left: hatched bars, right: triangles) and CN
bond (left: solid bars, right: circles) as a function of vibrational quantum numbers
(left panel) and as a function of excitation energy (right panel; lines are drawn to
guide the eye). Laser parameters as in Fig. 4.24.

the approximation of ’frozen’ MO-coefficients corresponding to Eq. (4.58), as the ef-
fect of the variation of the molecular orbital coefficients was found to be small in the
case of H2, which strongly speeds up the calculations. As shown in figure 4.24, the
vibration of the HC bond is strongly localized in the ground state, while the vibration
of the CN bond has a broader spectrum. (As a consequence in the overlap for transi-
tions from an excited CN vibration one finds local minima of interference due to the
difference in the vibrational frequencies.) To better point out the differences, figure
4.25 shows the percentage of change in the occupation of the vibrational overtones
of the two bonds relative to the respective Franck-Condon overlaps. The stronger
suppression of the HC vibration apparent in the left panel is due to its larger char-
acteristic energy quanta as compared to the CN vibration. In the right hand panel,
where the population is plotted against the excitation energy of the states, the effect
of IVI on the vibrational excitation is seen to be very similar for both bonds.
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5. Nonsequential Double Ionization of Diatomic

Molecules

The recollision mechanism of Nonsequential Double Ionization (NSDI, section 2.2)
can be thought of as a three-step process [23, 26], first, a single electron is ionized,
which is then propagated in the laser-dressed continuum. In the third step it rec-
ollides with the parent ion and by electron-electron interaction provides the energy
and momentum for the ionization of a second electron. The combined process is well
described in an IMST formulation of second order, which treats the propagation of
the electron in the second step as a coherent quantum process (see section 2.2). To
set the context of this chapter let us briefly recall the significant interactions in NSDI.
In figure 5.1 the Feynman diagram for the dominant term of the IMST expansion
is given, which has been discussed in section 2.2. Here we include a schematic visu-
alization of the exchange of photons (represented by the dotted lines) between the
photon field (dashed upward line) and the fermions (solid upward lines). Addition-
ally to the direct interaction of the primary electron with the field at t1, the photon
exchange of the two-electron system with the field is considered at time t2 when the
second interaction takes place. This is due to the inherent coupling of the phases of
the Gordon-Volkov states with the vector potential of the field.

Experimental observations show that dication yields from NSDI of diatomic mole-
cules vary with the alignment angle between the internuclear axis and the polarization
of the laser field. For N2 preferential emission is found for parallel alignment [321, 322]
while for O2 the ionization yield is found to show a maximum at about 45◦ and
135◦ [322]. The two experiments differ in the way that molecular alignment was
resolved. In [322] it was detected after double ionization from the fragments of
dissociated molecules. Thus, this experiment considers only transitions to excited,
antibonding states of the molecular dication. In cases where ionization initiates
dissociation, the angular dependence of dissociation is connected to the symmetry
of the ionizing molecular orbital. If the ionization rate is enhanced for a specific
alignment of the molecular axis with respect to the fixed polarization axis of the laser
field, the dissociation rate will be found to exhibit a maximum at that angle. The
experiment reported in [321] on the other hand actively controls molecular alignment
by application of weak ’pump’ laser pulse that creates a rotational wave packet
[323, 324], which results in preferential alignment parallel or perpendicular to the
polarization of the ’pump’ pulse at certain rephasing or ’revival’ times after the
pulse. Thus this experiment also detects molecular dications that are not transfered
to an excited electronic state during NSDI.
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Figure 5.1.: Feynman diagram of the second order process that gives the dominant
contribution to Nonsequential Double Ionization (NSDI) in infrared laser fields.
The laser field is represented by the dashed line and the dotted lines symbolize the
exchange of photons. The photon balance can be seen from the Fock-states.

This chapter gives a theoretical account of the alignment dependence of the Nonse-
quential Double Ionization of diatomic molecules. This is done from two perspectives.
The first part of this chapter analyzes the effect of alignment on the ionization be-
havior in laser assisted electron impact on diatomic molecules, i.e. on the final step
of NSDI. To this end, the recollision process is analyzed in section 5.1 within a first
order KFR ansatz (see section 3.3) considering the effect of spin correlation between
projectile and target electron on the rate for exchange scattering. On the other
hand, to assess the alignment dependence of the full NSDI process a model formula
for the Nonsequential Double Ionization of atoms is adapted to the molecular case in
section 5.2. This formula combines the two separate first order S-matrix expressions
for the initial step (intense-field multiphoton ionization) and the final step (laser as-
sisted electron impact ionization) to obtain an approximation for the rates of NSDI
of diatomic molecules. It is extended to allow the consideration of vibronic excitation
of the molecule and its mono- and dications in the process. Additionally to the align-
ment dependence of the NSDI rates the distribution of the vibrational states of the
molecular dication after NSDI is predicted within the limits of the approximations
applied. Since there is no bound state of doubly ionized H2 the analysis as well as
the model formula is applied to the molecules N2 and O2, which experimentally are
the most readily accessible diatomic molecular species.
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5.1. Electron impact ionization in a laser field

The first two steps of the total NSDI process, above threshold ionization of a single
electron (see section 2.1) and its quasi-classical propagation in the field, are quite well
understood. Specifically the dependence of the rate for intense-field multiphoton
ionization on the alignment of the internuclear axis of a diatomic molecule with
respect to the polarization of the laser field has been shown theoretically [325, 37].
Thus, it is interesting to analyze the third step separately, which resembles an (e, 2e)
electron impact ionization in the laser field. Recently this ansatz has been used to
give a heuristic interpretation of angular resolved differential kinetic energy release
(KER) spectra, obtained from dissociative double ionization of N2 and O2, in terms
of the electronic orbital occupied by the two active electrons in their initial state
[322].

5.1.1. Characteristic spin correlated states

In the application to multi-electron systems it is essential to note that the contribu-
tions from interactions with inner-shell electrons, which are part of the interaction
potential Vi(t), can usually be neglected. For the intense-field multiphoton ionization
of the primary electron in the NSDI process this approximation is justified because of
the higher energy barrier the inner-shell electrons have to overcome to reach contin-
uum. In the KFR formula the factors responsible for the reduction of the transition
amplitude are the generalized Bessel functions that depend nonlinearly on the number
of photons absorbed or emitted. An analysis of their asymptotic behavior [47] shows

that the transition amplitude for linear polarization scales like exp
[
−2

3

√
(2Eb)3/I0

]
with the binding energy Eb. This coincides with the dependence obtained from tun-
neling theory (Eq. (2.8)). The secondary electron in NSDI is ionized by a coherent
combination of inelastic electron impact and intense-field multiphoton absorption.
For the laser intensities considered (around 2 × 1014 W/cm2) the impact energy of
the rescattering primary electron can be high enough for direct impact ionization of
a HOMO electron. The ionization of inner-shell electrons either needs the assistance
of a higher order multiphoton absorption or higher field intensities acceleration the
primary electron. In the first case the ionization of the outer-shell electron(s) gives
higher ionization rates. The case of N2 is particularly interesting. While the primary
electron in the double ionization of N2 preferentially originates from the 3σg HOMO,
the singlet-spin companion electron in the singly occupied 3σg HOMO of N+

2 is only
slightly weaker bound (on the scale of energies involved in the process) than the
electrons in the 1πu orbital, opening two channels for secondary ionization that are
energetically close enough to contribute.

The spins of the two emitted electrons are correlated in the same way as in the
initial state of the neutral molecule. Therefore the situation is different to the con-
ventional (e, 2e) ionization of singly charged molecular ions in an electron beam,
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where the incoming electrons are in general uncorrelated to the spins of the molecu-
lar electrons. In the case of O2, if one only considers the outer valence electrons, this
means that the system stays in a specific spin triplet state throughout the process.
In this model the higher order transition channels that involve interaction with the
inner-shell electrons are neglected. In the case of N2 the two outer valence electrons
form a singlet spin system in the molecular ground state. Considering only these
two electrons, N2 can be treated like Para-H2. There has been a debate about the
assignment of the electronic ground state of N2+

2 . Since too few experimental data is
available, it is established solely by quantum chemical MR-CI calculations that the
ground state is the singlet state X1Σ+

g , which lies 43.0 eV above the ground state of
N2, while the lowest triplet state a3Πu has additional 0.57 eV of energy [139, 326].
This has been attributed partially to a correlated relaxation effect in the dication,
since the minimum of the ab-initio potential curve of the singlet state A1Πu shown in
[327] lies about 1.4 eV above the minimum of the triplet curve. Also the A2Πu state
in the singly ionized N+

2 lies 1.14 eV above the ground state X2Σ+
g [298]. Since the

3σg and 1πu orbitals in N+
2 are very close in energy and to our knowledge the final

total spin of N2+
2 has not been selected in measurements up to now, it is interesting to

calculate the triplet channel as well, where the primary 3σg electron impact-ionizes
an electron from the 1πu orbital of N+

2 .

5.1.1.1. O2

The anti-symmetrized wavefunctions of the two electron system, occupying the high-
est occupied molecular orbital (HOMO) of the O2 molecule can be described as

|Φ(T=+1)
i 〉= |π(g,x) �, π(g,y) � 〉〉 (5.1)

=
1√
2

(
|π(g,x), π(g,y) 〉− |π(g,y), π(g,x) 〉

)
⊗ |��〉︸︷︷︸

|T+〉

(5.2)

|Φ(T=−1)
i 〉= |π(g,x) �, π(g,y) � 〉〉 (5.3)

=
1√
2

(
|π(g,x), π(g,y) 〉− |π(g,y), π(g,x) 〉

)
⊗ |��〉︸︷︷︸

|T−〉

(5.4)

|Φ(T=0)
i 〉 =

1√
2

(
|π(g,x) �, π(g,y) � 〉〉− |π(g,y) �, π(g,x) � 〉〉

)
(5.5)

=
1√
2

(
|π(g,x), π(g,y) 〉− |π(g,y), π(g,x) 〉

)
⊗ 1√

2

(
|��〉+ |��〉

)
︸ ︷︷ ︸

|T 0〉

. (5.6)
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Here T denotes the total spin of the two electrons in the triplet state and |φaφb 〉〉 is
an abbreviating notation for the Slater determinant of the spin orbitals

|φaφb · · ·φn 〉〉 ≡
1√
n!

∣∣∣∣∣∣∣∣∣
φa(1) φb(1) · · · φn(1)
φa(2) φb(2) · · · φn(2)

...
φa(n) φb(n) · · · φn(n)

∣∣∣∣∣∣∣∣∣ , (5.7)

in contrast to the unsymmetrized Hartree product wavefunction

|φaφb · · ·φn 〉 ≡ φa(1)φb(2) · · ·φn(n) . (5.8)

From these possible initial states one of the two electrons is eventually driven to a
continuum state, while the other one stays bound. This situation corresponds to the
second stage of the three-step process and the states of the system are called interme-
diate to distinguish them from the final state, where both electrons are found in the
continuum. The intermediate states are eigenstates to the intermediate Hamiltonian
Hm (see Eq. (3.54)). The possible spin correlated intermediate states after single
ionization of the electron from the π(g,y) orbital are:

|Φ(T=0,±)
+,x 〉 =

1√
2
(|kGV

0 , π(g,x) 〉− |π(g,x),k
GV
0 〉)⊗


|T+ 〉
|T 0 〉
|T− 〉

(5.9)

and the intermediate state for ionization from the π(g,x) orbital is formed analogously

|Φ(T=0,±)
+,y 〉 =

1√
2
(|kGV

0 , π(g,y) 〉− |π(g,y),k
GV
0 〉)⊗


|T+ 〉
|T 0 〉
|T− 〉

. (5.10)

Upon recollision of the continuum electron, there is a certain probability for the
second electron to be also transferred into the continuum of the doubly ionized O2

molecule. The possible spin correlated final double continuum states can be assumed
to be constructed like the initially bound electron wavefunctions:

|Φ(T=0,±)
f 〉 =

1√
2
(|kGV

a ,kGV
b 〉− |kGV

b ,kGV
a 〉)⊗


|T+ 〉
|T 0 〉
|T− 〉

. (5.11)

The continuum states |kGV
0 〉, |kGV

a 〉 and |kGV
b 〉 are Gordon-Volkov states (Eq. (4.18)),

i.e. they are solutions of the Hamiltonian that governs the evolution of the unbound
electron in the laser field.

Before proceeding, we may discuss whether the two triplet sets in the intermediate
state could be replaced by one using the coherent superposition (πx+πy)/

√
2. In this

91



Nonsequential Double Ionization of Diatomic Molecules

respect, one has to note that the real valued atomic orbital functions px and py that
construct the molecular πx and πy orbitals are not eigenfunctions of Lz, they are a
merely convenient linear combination of the complex valued Y1,1 and Y1,−1 spherical
harmonics (multiplied with the radial part that corresponds to the nuclear charge
and the main quantum number). The angular parts are

px(θ, ϕ) =
1√
2

(
Y1,−1(θ, ϕ)− Y1,1(θ, ϕ)

)
(5.12)

py(θ, ϕ) =
i√
2

(
Y1,−1(θ, ϕ) + Y1,1(θ, ϕ)

)
. (5.13)

This corresponds to a change of basis for the description of the angular part of the
electronic wave function. Likewise, one could use (πx +πy)/

√
2 as one basis function,

but then, to span the same functional space, one would also have to consider the
linear combination (πx − πy)/

√
2. Together these two states would provide just a

rotated version of the πx, πy basis and the description would be equivalent.

5.1.1.2. N2

As explained above, for N+
2 there are two channels of electron impact ionization, that

are energetically quite close. The first one is the ionization of the unpaired electron
in the 3σg orbital which forms a singlet spin state with the projectile electron. In this
case, the two active electrons both originate from the 3σg HOMO of N2 and there is
only one anti-symmetrized singlet wavefunction:

|Φ(S)
i 〉= |σg �, σg � 〉〉 (5.14)

= |σg, σg 〉 ⊗
1√
2

(
|��〉− |��〉

)
︸ ︷︷ ︸

|S〉

. (5.15)

If one of the two active electrons is ionized into the continuum of the molecular ion,
the system is transferred into the corresponding singlet spin correlated intermediate
state

|Φ(S)
+ 〉=

1√
2

(
|kGV

0 �, σ′g � 〉〉+ |σ′g �,kGV
0 � 〉〉

)
(5.16)

=
1√
2

(
|kGV

0 , σ′g 〉+ |σ′g,kGV
0 〉

)
⊗ |S 〉 (5.17)

where the 3σ′g of N+
2 slightly differs from the 3σg in N2. Finally, after ionization of

the second active electron by recollision, the system is left in the double continuum
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state

|Φ(S)
f 〉=

1√
2

(
|kGV

a �,kGV
b � 〉〉+ |kGV

b �,kGV
a � 〉〉

)
(5.18)

=
1√
2

(
|kGV

a ,kGV
b 〉+ |kGV

b ,kGV
a 〉

)
⊗ |S 〉 . (5.19)

If on the other hand the primary electron impact ionizes one of the two 1π(u,x/y)

electrons of opposite spin, their combined spin forms a triplet, and the N2+
2 dication

is left as well in a triplet state. In this case the anti-symmetrized wavefunction of
the active electrons of this process in N2 can be described as

|Φ(T )
i,x/y 〉 =

1√
2

(
|σg, π(u,x/y) 〉− |π(u,x/y), σg 〉

)
⊗


|T+ 〉
|T 0 〉
|T− 〉

. (5.20)

The intermediate state is given as

|Φ(T=0,±)
+,x/y 〉 =

1√
2
(|kGV

0 , π(u,x/y) 〉− |π(u,x/y),k
GV
0 〉)⊗


|T+ 〉
|T 0 〉
|T− 〉

, (5.21)

and the final state is given by Eq. (5.11).

5.1.2. Collision dynamics in the laser field

Now, with the spin correlated essential states of the three-step process identified,
we focus on the third stage, the (e, 2e)-collision in the presence of the laser field.
In the proposed recollision mechanism of Nonsequential Double Ionization (NSDI)
the primary ionized electron is driven by the laser field and still interacts with its
parent ion via the Coulomb interaction. This intermediate state of NSDI is now the
initial state of the (e, 2e)-collisional process. Thus, the Hamiltonian of the system
can be split up into two parts, the reference Hamiltonian describes the dynamics of
the bound system and the primary continuum electron in the laser field, and the
second considering the interaction between these two. In velocity gauge this is

H =
1

2

(
p1 +

1

c
A(t)

)2

+Hmol+︸ ︷︷ ︸
Hi

+V
(1,mol(2+))
C + V

(1,2)
C + V

(2)
L (t)︸ ︷︷ ︸

Vi

(5.22)

where V
(1,2)
C = 1/|r1 − r2| is the Coulomb interaction between the bound and the

continuum electron and V
(1,mol(2+))
C denotes the interaction between the continuum

electron and the remaining charged constituents of the nascent dication:

V
(1,mol(2+))
C =

Ne∑
i=3

1

|r1 − ri|
−

Nn∑
j=1

1

|r1 −Rj|
. (5.23)
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The summations extend over all Nn nuclei at their respective positions Rj and up

to the number of electrons Ne. The third interaction term V
(2)
L (t) in Eq. (5.22)

considers the interaction of the secondary electron with the laser field:

V
(2)
L (t) =

1

c
p2 ·A(t) +

1

2c2
A2(t) . (5.24)

The first order contribution of this last term corresponds to an intense-field mul-
tiphoton ionization of the secondary electron, uncorrelated to the primary one. In
the following this term will not be considered, as in the double ionization process it
would constitute the second step of sequential ionization, which is known to be of
minor importance at the intensities where rescattering is effective.

Applying the general framework of S-matrix theory (section 3.3) we may start with
Eq. (3.49) where in this case Vf denotes the interaction of the correlated electrons
in the double continuum state among each other and with the residual molecular
dication:

Vf =
1

|r1 − r2|
+

2∑
m=1

(
Ne∑
i=3

1

|rm − ri|
−

Nn∑
j=1

Zj

|rm −Rj|

)
. (5.25)

This final state interaction corresponds to a splitting of the full Hamiltonian into
H = Hf − Vf where Hf is the Hamiltonian of the three separate, non-interacting
parts of this system:

Hf =
1

2

(
p1 +

1

c
A(t)

)2

+
1

2

(
p2 +

1

c
A(t)

)2

+Hmol(2+) , (5.26)

where Hmol(2+) represents the molecular Hamiltonian of the dication.
The initial states are assumed to be of the form of the spin correlated singly ionized

states Φ
(S/T )
+ discussed above (Eqns. (5.9), (5.10), (5.16), (5.21)). The final states

are taken to be the spin correlated double continuum states Φ
(S/T )
f described above

(Eqns. (5.11), (5.18)). The asymptotic first order transition amplitude between two
states of either total spin then is

A
(1)
fi = 〈Φ(S/T )

f |Φ(S/T )
+ 〉 − i

∞∫
ti

dt1〈Φ(S/T )
f (t1) | Vi |Φ(S/T )

+ (t1) 〉 . (5.27)

Figure 5.2 shows the Feynman diagrams corresponding to the two interactions
considered, direct electron-electron scattering and scattering of the primary electron
with the residual molecular dication. Since in the latter process there is no directed
momentum transfer between the primary and the secondary electron, it can be in-
terpreted as a variation of the Shake-Off process in NSDI in second order. The spin
correlation of the two electrons is symbolized by the chained lines connecting them
at ti and tf , baring in mind that it is present during the whole process.
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spin

spin

spin

spin
kb

tf

ti
m

e

ti

t1

ka kakb|Ni −N ′〉

(2) (1) |Ni〉 (2) (1)

V(1,2)
C V

(1,mol(2+))
C

Figure 5.2.: Feynman diagrams of the (e + Nω, 2e) process. Left: Direct collision
of the active electrons, Right: Collision with the residual molecular dication. The
laser field is represented by the dashed line and the exchange of photons with it
is symbolized by the dotted lines. The photon balance can be seen from the Fock
state kets. The diagrams are added coherently.

For singlet states the first order amplitude evaluates to

S
(1,S)
fi = A

(1)
fi − 〈Φ

(S)
f |Φ

(S)
+ 〉 (5.28)

= −i
∞∫

ti

dt1〈kGV
a ,kGV

b (t1) | Vi [1 + P12] |kGV
0 , σg(t1) 〉 (5.29)

where the zeroth order vanishing overlap 〈Φ(S)
f |Φ

(S)
+ 〉 has been subtracted. The spin

wavefunctions project out in the expression and the permutation operator P12 takes
account of the exchange of the electrons. Thus, the amplitude is the coherent sum of
the so-called direct and exchange terms. Note that both outgoing electrons enter the
continuum at the same instant of time with their phases correlated by the scattering
interaction.

For triplet states one has three amplitudes corresponding to the different total spins
of the two electrons during the process and for molecular orbitals of π symmetry one
has two contributions depending on which of the two (x/y) orbitals is considered in
the initial state. So e.g. for O2 one has:

S
(1,T=0,±)
fi,x = −i

∞∫
ti

dt1〈kGV
a ,kGV

b (t1) | Vi [1− P12] |kGV
0 , π(g,x)(t1) 〉 (5.30)

S
(1,T=0,±)
fi,y = −i

∞∫
ti

dt1〈kGV
a ,kGV

b (t1) | Vi [1− P12] |kGV
0 , π(g,y)(t1) 〉 (5.31)
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The antisymmetric spatial wavefunction of the triplet states causes the sign flip on
permutation of the electrons. These two contributions are added coherently, as they
are part of the possible quantum paths of the ionization process:

S
(1,T=0,±)
fi = −i

∞∫
ti

dt1〈kGV
a ,kGV

b (t1) | Vi [1− P12] |kGV
0 , (π(g,x) + π(g,y))(t1) 〉 (5.32)

To evaluate the amplitude, the time integral has been performed first [26]. Letting
ti → −∞, the time integral imposes the condition of energy conservation on the
terms:

S
(1,S/T )
fi =− 2πi

∞∑
N=N0

δ

(
k2

a

2
+
k2

b

2
+ Up + ET −Nω −

k2
0

2

)
× JN

(
α0 · (ka + kb − k0),

Up

2ω

)
× 〈ka,kb(t1) | Vi [1± P12] |k0,Φi(t1) 〉

(5.33)

where N0 = d(Up +ET − k2
0

2
)/ωe is large enough to allow energy conservation. Here,

a linear polarization of the laser is assumed, consistent with the relevant situation in
the rescattering process.

From the direct scattering term VC(1, 2) in the remaining matrix element one
obtains two coupled Fourier transformations

〈ka,kb | VC(1, 2) |k0,Φi 〉 =
4π

|k0 − ka|2
〈ka + kb − k0|Φi 〉 . (5.34)

For a homonuclear diatomic, where the nuclear charge Zj = Ne/2, the indirect

scattering term VC(1,mol(2+)) is approximated as

VC(1,mol(2+)) =
Ne∑
i=3

1

|rm − ri|
−

2∑
j=1

Zj

|rm −Rj|
(5.35)

≈ −Z̃
2∑

j=1

1

|rm −Rj|
, (5.36)

with a screened charge Z̃ ≈ 1, and thus

〈ka,kb | VC(1,mol(2+)) |k0,Φi 〉 = − 8π

|k0 − ka|2
〈kb|Φi 〉Z̃ cos[(k0−ka)Re/2] , (5.37)

if Rj = ±Re/2.
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The ionization rate is obtained as the absolute square of the first order ampli-
tude S

(1)
fi , using the identity δ2(x) = limτ→∞

τ
2π
δ(x) for the square of Dirac’s delta-

distribution [26]. The differential cross section is found by dividing by the incident
flux.

d9σ(1,S/T )

dk0dEadΩadEbdΩb

=
4|ka||kb|
(2π)3|k0|

C2

∞∑
N=−∞

J2
N

(
α0 · (ka + kb − k0),

Up

2ω

)
×
[(

1

|k0 − ka|2
± 1

|k0 − kb|2

)
Φ̃i(ka + kb − k0)

− 2

|k0 − ka|2
cos[(k0 − ka)Re/2]Φ̃i(kb)

∓ 2

|k0 − kb|2
cos[(k0 − kb)Re/2]Φ̃i(ka)

]2

× δ
(
k2

a

2
+
k2

b

2
+ Up + ET −Nω −

k2
0

2

)
=|f ± g|2

(5.38)

where C is the Coulomb correction factor for the dication discussed in section 3.3.
As noted in the last line of this equation, the cross section for exchange scattering
can be written as a sum of a direct term f and an exchange term g.

The limits of this first order Born approximation (FBA) [161] to the process and
the description of the continuum electrons in terms of Gordon-Volkov waves deserve
some attention. This model is an extension of the Plane Wave Born Approximation
(PWBA) to laser dressed continuum states [42]. It is known, that the Plane Wave
Born Approximation only gives reasonable results for high energetic processes, as
it neglects the Coulomb correlation (or ”distortion” from the perspective of plane
waves) of the ionized electrons with the parent ion and between each other (see
e.g. [328]). There are several aspects to this. First it has been noted that at
lower energies the effect of electron exchange becomes more important [161, 329],
which is the reason why spin correlation is considered in the present ansatz. On
the other hand there are several specialized Distorted Wave Born Approximations
(DWBA [73], molecular DWBA [330]) such as the Coulomb/Continuum Distorted
Wave (CDW, see references and discussion in [331]), BBK [332, 333] and Molecular
BBK (Brauner-Briggs-Klar [334]), that incorporate Coulomb correlation between
some or all particles in the final state description (see [335] for a discussion). For the
high energy (e, 2e) processes the Impulse Approximation [336] in its plane wave form
(PWIA [337]) has been widely used as a tool of analysis to map the momentum space
wavefunction of the scattering target (see [338] for a discussion of the limits). The
approximation of Coulomb continuum wavefunctions forms a whole area of research
of its own and the calculation of integrals containing these wavefunctions still is an
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analytically and numerically challenging task. Thus, if the experimental situation is
such, that it selectively measures electrons with a strongly asymmetric distribution
of kinetic energy, only the slow electron is modeled as a Coulomb wave, while the fast
electron (usually identical to the projectile) may be treated as a plane wave. In most
theoretical treatments, the incoming electron is described by a plane wave or in the
eikonal approximation (CDW-EIS [339]). It is to be noted, that the descriptions differ
mostly in the relative angular differential dependencies, while they give rather good
predictions for the total ionization rate. Since in the current state of the analysis
of the (e + Nω, 2e) rescattering process in the laser field the focus lies on cross
sections that are differential in the initial but total in the final state, the Gordon-
Volkov description is chosen, which has the benefit to include the interaction with
the intense laser field to all orders.

Quite early the success of Orthogonalized Plane Waves (OPW) in solid state
physics [340] has found adaption in the approximative description of electron scatter-
ing of atomic systems, usually in the form of Orthogonalized Coulomb Waves (OCW
[341–343] and references in the latter). Already the OPW approximation consider-
ably improves the threshold behavior of the predicted ionization cross sections [344],
while retaining the simplicity of the plane wave description (see e.g. [345]). Thus, a
Gordon-Volkov wave orthogonalized to the bound electron wavefunction represents
a candidate for the next order of approximation for the correlation between the elec-
trons and the parent ion. For a discussion of the importance of the choice of gauge
and the limitations in this approach see [346]. The correlation between the two elec-
trons in the field can be considered exactly [152], again at the expense of simple
integrability.

Using a simple ansatz of orthogonalization for ionization of the secondary elec-
tron, one can estimate that the contribution of the indirect scattering term due to
VC(1,mol(2+)) will not contribute. As this indirect scattering term does not couple
the two active electrons, it separates into a product:

〈ka,kb | VC(1,mol(2+)) |k0,Φi 〉 = 〈ka | VC(1,mol(2+)) |k0 〉〈kb |Φi 〉 . (5.39)

If the |kb 〉 is now replaced by a |k′
b 〉 that is orthogonal to the initial orbital |Φi 〉,

e.g.

|k′
b 〉 ≡ (|kb 〉− |Φi 〉〈Φi |kb 〉)

1

1− |〈kb |Φi 〉|2
, (5.40)
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the matrix element of indirect scattering vanishes. Thus Eq. (5.38) simplifies to

d9σ(1,S/T )

dk0dEadΩadEbdΩb

=
4|ka||kb|
(2π)3|k0|

C2

∞∑
N=−∞

J2
N

(
α0 ·∆k,

Up

2ω

)

×
(

1

|k0 − ka|2
± 1

|k0 − kb|2

)2

Φ̃2
i (∆k)

=|f ± g|2 ,

(5.41)

where again f and g denote the terms of direct and exchange scattering respectively
and ∆k ≡ ka + kb − k0. Eq. (5.41) is evaluated on the energy shell defined by

k2
a

2
+
k2

b

2
+ Up + ET = Nω +

k2
0

2
. (5.42)

5.1.3. Ionic Recoil Momentum in Laser Assisted Electron Impact
Ionization

As ∆k corresponds to a change of the momentum of molecular ion, it is necessary to
discuss its missing consideration in the first order S-matrix model. In a first order
process, i.e. a process where each constituent of the physical system is involved at
most in a single interaction, the secondary electron can only be ionized by direct
interaction with the primary electron. As a consequence, to first order the impinging
electron does not directly affect the momentum of the molecule. Also, the coupling
of the laser field on the molecular ion can be considered to be negligible due to the
large inertia of the molecular mass and the high frequency of the laser field. This is
evident from the quiver radius of 5.1 × 10−4 a.u. for the hydrogen molecular cation
in an 800 nm laser of 1× 1014 W/cm2 intensity.

One may compare the situation considered here to the collision of two unbound
electrons in the presence of a laser field. The first order S-matrix element for this
process corresponding to equations (5.28) and (5.32) is given by

S
(1)
fi = −i

∞∫
ti

dt1〈kGV
a ,kGV

b (t1) | Vi [1± P12] |kGV
0 ,kGV

1 (t1) 〉

= −2πi
∞∑

N=N0

δ

(
k2

a

2
+
k2

b

2
− k2

0

2
− k2

1

2
−Nω

)
× JN (α0 · (ka + kb − k0 − k1)) 〈ka,kb | Vi [1± P12] |k0,k1 〉 ,

(5.43)

where k1 is the momentum of the secondary electron, which for the length of this
paragraph is assumed to be a freely drifting particle in a Gordon-Volkov eigenstate.
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By the orthonormality of momentum eigenstates one obtains

S
(1)
fi = −2πi

∞∑
N=N0

δ

(
k2

a

2
+
k2

b

2
− k2

0

2
− k2

1

2
−Nω

)
×
(

4π

|k0 − ka|2
± 4π

|k0 − kb|2

)
δ (ka + kb − k0 − k1) ,

(5.44)

where δ(r) ≡ δ(x)δ(y)δ(z). Thus, if k1=0 initially, one also has ∆k=0, as demanded
by momentum conservation.

Due to the Coulomb correlation of the secondary electron with the molecular sys-
tem, which it is bound to in the initial state, the residual ion may compensate a
nonzero electronic momentum balance. This effect can be discovered in the leading
order of the S-matrix expansion Eq. (5.33), if additionally to the electronic state one
considers the state of motion of molecular ion. Describing the physical system in a
frame of reference where the molecular ion is at rest initially, its final momentum can
be included as a plane wave in the final state1. This way the first order electronic
S-matrix transition amplitude turns into an effective scattering potential acting on
the molecular coordinates due to their appearance in the molecular wavefunction
Φi. Without going into details which are beyond the scope of current interest, the
derivation may be understood from the following qualitative argument. In a frame
of reference where the ion was at rest before the collision, the ion momentum will
change due to matrix elements of the form

〈Kion| exp [−i∆k ·RCM] |0 〉 , (5.45)

where RCM is the center of mass coordinate and | 0 〉 and |Kion 〉 denote the initial
and final state momentum states respectively of the center of mass of the molecular
ion. These matrix elements appear due to the effective potential

Veff ≡
∞∑

N=−∞

δ

(
k2

a

2
+
k2

b

2
+ Up + ET −Nω −

k2
0

2

)
× JN

(
α0 ·∆k,

Up

2ω

)
×
(

1

|k0 − ka|2
± 1

|k0 − kb|2

)
Φ̃i(∆k) ,

(5.46)

1Actually, this is only an approximation for a Gordon-Volkov wavefunction, but this approximation
is justified due to the large mass of the nuclei relative to the electronic mass. With a Gordon-
Volkov wavefunction for the molecular ion, the arguments of the generalized Bessel function e.g.
in Eq. (5.46) change to JN

(
α0 ·∆k + α

(2)
M ·Kion,

(
Up + U

(2)
p,M − Up,M

)
/(2ω)

)
, where α

(2)
M and

U
(2)
p,M denote the quiver radius and ponderomotive energy respectively of the molecular dication

(charge q = +2 and mass M ≡Mion), while Up,M denotes the ponderomotive energy of the
molecular ion (nearly same mass but a charge of q = +1). Likewise, the energy balance would
be changed by the term U

(2)
p,M − Up,M . Since both, α

(q)
M and U

(q)
p,M , scale with the mass as 1/M

(see definitions (2.2) and (1.3)), they are negligible compared to their electronic counterparts.
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and are weighted according to the electronic transition matrix elements contained.
Here, the kinetic energy of the ion is neglected in the energy conservation, as it can
be considered to be small in comparison to the electronic energies. As discussed
in section 4.4.4 the matrix element (5.45) corresponds to a shift in the space of
internuclear momentum by Kion = −∆k.

In terms of the separated kinetic energy of the center of mass and of the relative
motion of the outgoing electrons respectively (see section 3.1.1) ∆k amounts to the
difference between center of mass momentum kCM of the outgoing electrons and the
momentum k0 of the incoming electron:

∆k = kCM − k0 ⇒ k0 = kCM + Kion , (5.47)

where the last equation establishes the momentum conservation under the approxi-
mation that the total momentum transfer from the field due to multiphoton absorp-
tion is negligible. Note that the total momentum transfer affects the drift momentum
of the electron in the laser field, not the ponderomotive motion. The momentum
transfer from the field can be considered to be small as one photon carries a momen-
tum of ω/c, which amounts to 4 × 10−4 a.u. for 800 nm photons. I.e. the field is a
source (or drain) of energy, but its momentum exchange with the scattering system
is negligible. The contrary holds for the molecular ion: It exchanges momentum with
the scattering electrons, but due to its large inertial mass its energy exchange with
the electrons can be neglected.

Since under these kinematic conditions, to the first order in the S-matrix expan-
sion, the center of mass momentum kCM is determined by Eq. (5.47), once the impact
momentum and the recoil momentum of the molecular ion are given, all additional en-
ergy transfer by the intense-field multiphoton process affects only the relative kinetic
energy of the electron pair. In other words, using the interpretation of section 3.1.1,
it then changes the energy of the relative electron-pair state. It is interesting to note
the similarity to the situation in the IVI process considered in chapter 4, where the
active electron couples to the field and shares the absorbed energy with the vibra-
tional substate of the molecule, which does not directly couple to the field. Here
as well, the relative electron-pair state does not couple to the field, but its energy
consumption is provided by the active center of mass electron-pair state that couples
to the laser field due to its charge of 2 a.u..

The momentum transfer will lie predominantly along the direction of the acting
forces, i.e. the coinciding polarization axis of the field and the impact direction
of the primary electron. If photons are absorbed from the field, i.e. N0 > 0 in
expression (5.41), the generalized Bessel functions promote a momentum transfer
to the center of mass of the electron pair along the field polarization. As in first
order S-matrix approximation kCM is not affected by any Coulomb interaction with
the nuclei, the only coulomb interaction considered is the binary collision of the two
electrons. The terms 1/q2

i = 1/|k0 − ki|2 that arise from this interaction correspond
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to the Rutherford amplitude [73] and favor an emission of one of the electrons at
a momentum ki close to k0. Together with energy conservation these terms create
an anisotropy in the preferred directions of emission, since, without absorption of
photons from the field,

k2
0

2
− k2

a

2
− Up − ET =

k2
b

2
> 0 , (5.48)

i.e. without a high transfer of energy from the field ka will be smaller than k0. The
anisotropy is stronger for the electron with the larger final momentum and it favors
a change of momentum qi in the direction of −k0. In the following discussion we
assume that ka is larger than kb if not stated otherwise. In this case a relevant
quantity is the momentum difference q ≡ k0 − ka.

Thus, under the conditions considered here, the momentum transfer ∆k = kb− q
to the center of mass will also be parallel to the incoming momentum k0 and to
the laser polarization. To calculate a spectrum of the center of mass momentum,
one would integrate Eq. (5.41) over all configurations of relative motion of the two
electrons, that constitute the possible internal or relative electron-pair states, taking
into account the relation of energy conservation in terms of kinetic energy of center
of mass and relative motion (see section 3.1.1):

1

4
k2

CM = Nω − Up − ET −
1

2
k2

0 − k2
rel . (5.49)

Finally it is interesting to understand, why ∆k appears as the argument of the
Fourier-transformed molecular orbital instead of the momentum of the ionized elec-
tron, which appears in the corresponding term of the first order S-Matrix amplitude
for single ionization. Since kb = ∆k + k0 − ka, the quantity ∆k is the initial mo-
mentum that the secondary electron contributes to the collision. The possible initial
momenta for the secondary electron are determined by its Fourier transformed wave-
function, just as in the case of single ionization. The appearance of the Fourier
transformed molecular orbital can be interpreted as a probing of the molecular or-
bital that constitutes part of the initial conditions for the many-body (e + Nω, 2e)
process.

5.1.4. Alignment Dependence for Different Orbital Symmetries

The molecular orbitals were approximated by the natural orbitals [347, 348, 48] ob-
tained by a Multi-Configuration SCF calculation with Fully Optimized Reaction
Space (FORS) on the basis of a 6-311(2d,1f) set of Gaussian type orbitals. The ion-
ization potentials of N+

2 were taken from [349] (with the lower ionization potential
for the 1Σ+

g state, consistent with [350, 102]) and the one for O+
2 was estimated as

the difference between the double and single ionization potentials of O2 [351–356] to
be 24 eV, which agrees with experimental estimates [102, 357]. The initial energy of
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Figure 5.3.: Energy diagrams of the (e+Nω, 2e) process in an infrared laser field.
Left (A): E0 five photons below dressed continuum threshold.
Right (B): E0 at threshold.

the primary electron was fixed to a set of possible values, below, at and above the
(e+Nω, 2e) ionization threshold for the specific molecular ion. For the sub-threshold
energies the absorption of photons from the laser field allows energy conservation (see
Fig. 5.3).

The laser wavelength was fixed to 800 nm and the intensity was adapted such that
the chosen impact energy of the primary electron matches the maximal kinetic energy
of about 3.17Up at the moment of rescattering. This value is expected from a classical
estimate for the field propagation, where it is assumed that its initial energy after
ionization is negligible [74]. The ionization threshold of the secondary electron can be
reached by the kinetic energy of the recolliding primary electron without additional
photon absorption if I

(+)
p + Up ≤ E0 = 3.17Up, i.e. if the intensity is higher than

Ithresh = 4ω2I
(+)
p /2.17, where I

(+)
p is the ionization potential of the molecular cation.

The alignment angle of the molecule with respect to the linearly polarized laser
was varied from parallel to perpendicular alignment and for each angle the total cross
section for the (e + Nω, 2e) process was calculated. To this end, the contributions
for the emission of the two electrons were integrated over their two full solid angles
(4π) and the possible ways to share the energy – given at a certain order of photon
absorption – between the two electrons. This 5-dimensional integral was evaluated
numerically by Monte-Carlo integration ([358] using Sobol quasi-random numbers
[359]). Finally the result of this integration was summed over the possible number
of absorbed photons. If the kinetic energy of the incoming electron is already high
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Figure 5.4.: Total singlet ionization rates for the 3σg orbital of N+
2 X

2Σg by the direct
(e+Nω, 2e) process in a laser field of 800 nm wavelength (ω = 1.55 eV).
(Ibelow= 1.5×1014 W/cm2, Ithresh= 2.096×1014 W/cm2 and Iabove= 2.7×1014 W/cm2).
Left: Impact energies 5 photons below threshold.
(E0 = 28.41 eV, E0 = 32.0 eV, and E0 = 35.64 eV)
Right: Impact energies matching threshold (E0 = 39.7 eV and E0 = 43.39 eV).

enough to achieve ionization of the target electron, the photon number is also al-
lowed to be negative, corresponding to the emission of photons during the scattering
process.

Fig. 5.4 shows the results for the electron impact ionization of the 3σg orbital of
N+

2 X
2Σg in a laser field at 800 nm wavelength. In this calculation only the direct (e+

Nω, 2e) scattering term of Vi was considered. Three intensities are chosen to result
in maximal rescattering energies of the primary electron that lie 5 photons below
(chained line), at (solid line) or 5 photons above ionization threshold (dashed line).
Note that the threshold is intensity dependent due to the ponderomotive potential.
The figure shows the dependence of the total ionization rate on the alignment angle of
the molecule with respect to the polarization axis, which in a process of Nonsequential
Double Ionization by a linearly polarized laser field coincides with the momentum of
the returning electron. Since the molecule is homonuclear the rates are symmetric
with respect to the orientation of the molecular axis.

In the context of rescattering the two active electrons are treated as a singlet
system. This target shows a significantly enhanced ionization rate for the aligned
molecule as compared to the anti-aligned configuration. The behavior can be in-
terpreted in terms of the S-matrix expression (5.41) for the differential ionization
rate. The alignment dependence enters through the Fourier transformed molecular
orbital. Just focusing on the angular dependence of the Fourier transformed molec-
ular orbitals Φ̃i(∆k) in Eq. (5.41), by expanding the plane wave exp[−ir∆k] in the
Fourier integral in terms of spherical harmonics (e.g. [161], eq. (A4.27)), one obtains
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Figure 5.5.: Separate contributions of s and p atomic orbitals in the molecular 3σg

orbital to the total singlet ionization rates of N+
2 X

2Σg (E0 = 28.41 eV in a laser
field of intensity Ibelow and frequency ω = 1.55 eV).

[34, 37, 100]:

Φ̃3σg(∆k) =2csφ̃s-AO(∆k) cos (∆k ·Re/2)

+i2cpφ̃pz-AO(∆k) sin (∆k ·Re/2) ,
(5.50)

where φ̃s-AO(∆k) is the Fourier transformed atomic s-orbital located at one of the
nuclei (see Eq. (4.60)) and φ̃p-AO is the corresponding Fourier transformed atomic
p-orbital. Note that the momentum balance ∆k = ka + kb− k0 can be nonzero due
to the recoil momentum of the ion (see discussion in section 5.1.3).

Fig. 5.5 shows the separate contributions of the s and p atomic orbitals in the
molecular 3σg orbital. The p component clearly dominates the behavior. From
Eq. (5.51) and Eq. (5.52) one sees that the atomic p-orbitals of the 3σg orbital induce

a cos(ϑ∆k) = ∆̂k · R̂e characteristic, while the 1πu exposes a sin(ϑ∆k) = |∆̂k× R̂e|
dependence. I.e. while the former favors a momentum transfer of ∆k to the center
of mass of the dication along the molecular axis, the latter promotes a momentum
transfer perpendicular to this axis.

More generally we find the following alignment dependencies for molecular orbitals
of different symmetries:

Φ̃3σg(∆k) = 2csR̃s-AO(|∆k|) cos (∆k ·Re/2)

+ i2cpR̃pz-AO(|∆k|)∆̂k · R̂e sin (∆k ·Re/2)
(5.51)

Φ̃1πu(∆k) = 2cpR̃px/y-AO(|∆k|)
∣∣∣∆̂k × R̂e

∣∣∣ cos (∆k ·Re/2) (5.52)

Φ̃1πg(∆k) = 2cpR̃px/y-AO(|∆k|)
∣∣∣∆̂k × R̂e

∣∣∣ sin (∆k ·Re/2) (5.53)

Φ̃3σu(∆k) = 2csR̃s-AO(|∆k|) sin (∆k ·Re/2)

+ i2cpR̃pz-AO(|∆k|)∆̂k · R̂e cos (∆k ·Re/2) ,
(5.54)
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where R̃s-AO, R̃pz-AO and R̃px/y-AO are the radial parts of the Fourier transformed s
and p atomic orbitals respectively.

Assuming that the momentum transfer is small compared to the inverse internu-
clear distance, the interference terms in Eqns. (5.51-5.54) can be expanded up to
second order in |∆k ·Re| as:

Φ̃3σg(∆k) ≈ 2csR̃s-AO(|∆k|)
(

1− 1

2
(∆k ·Re/2)2

)
+ icpR̃pz-AO(|∆k|) cos(ϑ∆k)∆k ·Re

= csR̃s-AO(|∆k|)1
4

(
8− |∆k|2|Re|2 + |∆k|2|Re|2 sin2(ϑ∆k)

)
+ icpR̃pz-AO(|∆k|)|∆k||Re| cos2(ϑ∆k)

(5.55)

Φ̃1πu(∆k) ≈ cpR̃px/y-AO(|∆k|) sin(ϑ∆k)

(
1− 1

2
(∆k ·Re/2)2

)
= cpR̃px/y-AO(|∆k|) sin(ϑ∆k)

1

4

(
8− |∆k|2|Re|2 + |∆k|2|Re|2 sin2(ϑ∆k)

)
(5.56)

Φ̃1πg(∆k) ≈ 2cpR̃px/y-AO(|∆k|) sin(ϑ∆k)∆k ·Re/2

= cpR̃px/y-AO(|∆k|)|∆k||Re|
1

2
sin(2ϑ∆k)

(5.57)

Φ̃3σu(∆k) ≈ csR̃s-AO(|∆k|)∆k ·Re

+ i2cpR̃pz-AO(|∆k|) cos(ϑ∆k)

(
1− 1

2
(∆k ·Re/2)2

)
= csR̃s-AO(|∆k|)|∆k||Re| cos(ϑ∆k)

+ icpR̃pz-AO(|∆k|) cos(ϑ∆k)
1

4

(
8− |∆k|2|Re|2 + |∆k|2|Re|2 sin2(ϑ∆k)

)
.

(5.58)

Thus the alignment dependence of the 3σg orbital of N+
2 X

2Σg (Fig. 5.4) is different
to the behavior found in the ionization of an electron from the 1πu orbital of N+

2 X
2Σg.

In this case there are two possible spin orientations of the secondary electron. Here
we consider the case where the primary and secondary electrons form a triplet, finally
leaving the dication in the triplet state a3Πu. The corresponding data are presented
in Fig. 5.6. The main difference between the 3σg and the 1πu orbitals in N2 is
the orientation of the contributing atomic orbitals with respect to the internuclear
axis (the effect of spin will be discussed in the next section). While the atomic
pz orbitals in a molecular 3σg orbital are directed along the internuclear axis, the
atomic px/y (or rather m = ±1) orbitals that form the molecular 1πu orbital are
aligned perpendicular to it. This is the origin of the sin(ϑ∆k) term in the alignment
dependence of the transition matrix element (see Eq. (5.52)).
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Figure 5.6.: Total triplet ionization rates for the 1πu orbital of N+
2 X

2Σg by the direct
(e+Nω, 2e) process in a laser field of 800 nm wavelength (ω = 1.55 eV).
(Ibelow=1.6×1014 W/cm2, Ithresh=2.14×1014 W/cm2 and Iabove=2.75×1014 W/cm2).
Left: Impact energies 5 photons below threshold.
(E0 = 30.3 eV, E0 = 32.8 eV, and E0 = 36.6 eV)
Right: Impact energies matching threshold (E0 = 40.5 eV and E0 = 44.4 eV).

It is interesting to compare this to the alignment dependence of (e + Nω, 2e)
ionization from the HOMO of O+

2 X
2Πg presented in Fig. 5.7. It shows maxima at

45◦, which corresponds to the characteristic found in multiphoton single ionization
by an intense laser field [37]. Equations (5.57) and (5.57) contain a sine term for
px and py, which has been interpreted as destructive interference of the outgoing
partial waves of the ionizing electron from the two nuclear centers [34]. The local
maxima result from the product of two competing terms, the angular characteristic
of the 1πg orbital favoring momentum transfer at right angles to the molecular axis,
counteracted by the destructive interference in that direction due to the opposite
phases of the partial waves emitted from both sides of the molecular Coulombic
double-well. As the interference term changes its phase depending on the electronic
momentum balance (and internuclear distance), it suppresses momentum transfer
completely at right angles to the molecular axis. The expansion (5.57) shows that
the product of both effects results in the maximum at 45◦.

The difference to the behavior of the 1πu orbital of N+
2 X

2Σg can again be in-
terpreted in terms of the symmetry of the molecular orbital that is probed by the
ionization. The highest occupied orbital in O+

2 X
2Πg is antibonding, exhibiting a node

along the plane perpendicular to the intramolecular axis, cutting it at the molecular
center of mass. Note that the contributing atomic orbitals have px or py character.
The 1πu orbital in the nitrogen case in contrast does not show this nodal plane, thus
allowing more electron density to form in the space between the nuclei, around the
internuclear axis. (Note that the spherical harmonics Y1,1 and Y1,−1, from which the
Cartesian orbitals px or py are constructed, show no preferential directedness along
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Figure 5.7.: Total ionization rates for O+
2 X

2Πg by the direct (e+Nω, 2e) process in
a laser field of 800 nm wavelength (ω = 1.55 eV). Variation with alignment angle
of the molecular axis with respect to the polarization/impact direction. Intensities
of the laser are chosen such that the maximal impact energy of the electron lies
either above, at or below ionization threshold (Ip + Up(I0)).
(Ibelow= 1.30×1014 W/cm2, Ithresh= 1.85×1014 W/cm2 and Iabove= 2.5×1014 W/cm2).
Left: Impact energies 5 photons (7.75 eV) below threshold
(E0 = 24.6 eV, E0 = 27.4 eV, and E0 = 31.9 eV).
Right: Impact energies matching threshold (E0 = 35.1 eV and E0 = 39.6 eV).

the x- or y-axis). More importantly, both atomic p orbitals of the molecular 1πu

orbital of N+
2 X

2Σg are in phase, causing a constructive interference of the outgoing
partial waves of the ionizing electron from the two nuclear centers. I.e. the suppres-
sion that is characteristic for the HOMO of molecular oxygen is not present in this
case.

5.1.5. Spin Effects

Fig. 5.8 shows the effect of the exchange scattering due to the Pauli principle for
identical fermions (see Eq. (5.41)). The figure compares the cross sections obtained
by consideration of the antisymmetry of the total electronic wavefunction with differ-
ent approximations. The complete neglect of the fermionic character of the electrons
results in the incoherent sum |f |2 + |g|2 of the direct and exchange scattering ampli-
tudes. It is interesting to note that this ’classical’ result is closer to 2|f |2 than to the
value of |f |2 that is usually expected in nearly elastic scattering (|ka|2 ≈ |k0|2), where
the straight-line approximation |q|2 ≈ 4|k0|2 sin (ϑkak0/2) ≈ 0 can be made, turning
f into a singular integral kernel which causes the contribution of g to be negligible.
Here, in the strongly inelastic scattering process, this singularity can only occur if
the secondary electron can overcome the ionization threshold to the field dressed con-
tinuum just by absorption of photons from the laser-field. It is more likely that the
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Figure 5.8.: Effect of antisymmetry of the total electronic wavefunction on the total
singlet ionization rates.
Left: Singlet scattering |f + g|2 on 3σg orbital of N+

2 X
2Σg (E0 = 28.41 eV at

Ithresh)
Right: Triplet scattering |f − g|2 on 1πg orbital of O+

2 X
2Πg (E0 = 35.1 eV at

Ithresh).

primary electron shares its energy, which makes the size of the exchange scattering
term comparable to that of the direct scattering term and thus |f |2 + |g|2 ≈ 2|f |2
(consequently the dotted line is nearly indistinguishable from the dashed line). As
expected from the formula the result for singlet exchange scattering lies above the
’classical’ value, while the result for triplet exchange scattering lies below this value
and actually quite close to the |f |2 approximation. It is disputable to interpret the
latter as a signature of the Pauli hole in the triplet momentum wavefunction, which
disallows both outgoing electrons to acquire the same momentum state, as this rule
only suppresses cases where both electron momenta go in the same direction with
exactly equal momenta. Generally, the effect of the wavefunction antisymmetry is
found to affect the total cross sections but to have only little influence on their
alignment dependence. It should be noted that the fermionic character of the elec-
trons also shows signatures in differential cross sections that resolve electron-electron
correlation in Nonsequential Double Ionization [360–362].

5.1.6. Relation to Experiment

Field-free transient alignment of molecules can be generated using techniques of
strong-field induction of rotational wave packets (see [323, 324] and references therein).
This allows the controlled preparation of the initial conditions for subsequent physical
processes that are sensitive to alignment. For N2 specifically an experiment of NSDI
was performed using this technique [321], that confirms the preferential emission for
parallel alignment that was shown here to be characteristic for the 3σg HOMO of
molecular nitrogen in the (e+Nω, 2e) process. It did not resolve ionization at inter-
mediate alignment angles though, which does not rule out an admixture of ionization
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Figure 5.9.: Total singlet ionization rates for the 3σg orbital of N+
2 X

2Σg at a constant
laser intensity of Iabove = 2.7 × 1014 W/cm2 and varying energy of the primary
(projectile) electron.
(E0 = 35.6 eV, E0 = 43.4 eV and E0 = 51.1 eV).

from the molecular 1πu orbital, causing a superposition of the respective alignment
dependencies which can result in a small local maximum for the Nonsequential Dou-
ble Ionization at perpendicular alignment of the N2 molecule with respect to the laser
polarization.

In the experiment reported in [322] on the other hand a different technique is
applied: The orientation of the molecules is detected after the double ionization
process by observing the direction of emission of the fragments of the dissociating
molecules in kinetic energy release spectra. This technique is selective to ionization
channels that leave the dication in an excited state. The authors interpret the ob-
served results in a three step model. In the first step an electron from the HOMO is
ionized in an intense-field multiphoton process. After propagation in the laser field
(which, contrary to the usual counting, is not considered as a separate step in [322]),
it rescatters in the second step with a secondary bound electron. In contrast to the
process considered in this chapter the authors assume that the secondary electron
is transfered to an excited bound state in this rescattering event. In the final step
this secondary, excited electron would then ionize in a subsequent maximum of the
oscillating laser field. To leave the dication itself in an excited, dissociating state
without interactions of higher order, the secondary electron must originate from a
molecular orbital that lies energetically below the HOMO.

For the dissociation of N2+
2 from the A1Πu state the spectra in [322] show a strong

predominance for parallel alignment. This is at odds with the expectations from
the analysis of the (e+Nω, 2e) process, as the major electronic configuration of the
A1Πu state is considered to be the π−1

u 3σ−1
g configuration (with respect to the neutral

molecule); i.e. the primary electron from the 3σg HOMO of N2 must have excited an
electron from a πu orbital in the rescattering event. It would be expected that the
different characteristic of the rescattering ionization would have a stronger influence
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on the dissociation pattern, resulting in additional maxima perpendicular to the di-
rection of laser polarization. This can be an indication that rescattering ionization
is not the dominant process in this particular case. Without further analysis the
authors propose rescattering excitation as the dominant mechanism. On the other
hand it is known that multi-electron correlation is important for inner-valence elec-
trons [363], which suggests that the description of the single electron wavefunction
for the secondary electron used in the theoretical calculation and analysis should be
improved, e.g. by the use of Dyson orbitals [48–50, 364]. Other observed states of
N2+

2 correspond to higher order processes and will not be considered here.

In the case of O2+
2 it is interesting to see that the measured dissociation spectra

show relatively stable maxima at about 40◦ for different excited states of the dica-
tion (W 3∆u, B

3Σ−
u and 11∆u). In these states the electronic configuration π−1

u π−1
g

(relative to the neutral molecule) is dominant. This is in contrast to the spec-
trum measured for the B3Πg state of the dication with an electronic configuration of
3σ−1

g π−1
g . It shows that the scattering of the primary πg (HOMO) electron with a

lower lying 3σg ’fills up’ the minimum at zero degrees that is present for the π−1
u π−1

g

configuration. This can be interpreted as the interplay of the alignment character-
istic of the intense-field multiphoton ionization of the primary electron, which has a
maximum at 45◦ [37] and a minimum at both zero and 90◦, with the corresponding
dependence of the secondary (e + Nω, 2e) ionization step of a 3σg electron, which
has its maximum at zero degrees. This observation suggests that the characteristics
of the two individual steps of the process will generally interplay in the full NSDI
process. In the following section a model formula for the combined process will be
derived that involves two active electrons. It will be applied to the HOMO electrons
of N2 and O2.

5.2. Model Formula for Nonsequential Double Ionization of
Molecules

The electron impact ionization of different states of a molecular ion, considered in
the previous sections of this chapter, is the second step in the coherent process of
Nonsequential Double Ionization of molecules. To establish the connection of the sec-
ond step with the full NSDI process, its initial conditions must be matched with the
boundary conditions of the first step, the above threshold ionization of the primary
electron. According to chapter 4, the molecular ion can be transferred to differ-
ent vibronically excited states due to the first ionization step. These intermediate
states are coupled to corresponding continuum states of the primary electron that
rescatters in the second step. The coherent evolution of the primary ionized electron
and the molecular ion in its possible transition states is defined by the intermediate
separation of the full Hamiltonian as described by Eq. (3.54). Thus, the quantum
mechanical representation of the time evolution connecting the initial and final step

111



Nonsequential Double Ionization of Diatomic Molecules

of the three-step process is given by the Greens operator of the separated two-particle
(Volkov electron-ion) system, which can be expressed as

Gm(t, t′) =
1

i~
Θ(t− t′) exp

[
− i

~

∫ t

t′
dτHm(τ)

]
. (5.59)

It is a formal solution to the Schrödinger equation to the intermediate Hamilton
operator Hm [

i~
∂

∂t
−Hm(t)

]
Gm(t, t′) = δ(t− t′) , (5.60)

where the intermediate Hm is identical to the ’final’ Hamiltonian Eq. (4.14) of the
IVI process discussed in chapter 4 and the ’initial’ Hamiltonian Eq. (5.22) of the
recollision process:

Hm = HGV(1) +Hmol+(2) . (5.61)

In the product-basis of the eigenstates |Ψ(j)
m 〉 ≡| kGV 〉⊗ | Φ(j)

m 〉 of Hm the Greens
operator Gm is represented by the following expansion (see e.g. [68]):

Gm(t, t′) =
1

i~
Θ(t− t′)

∫
dk |k 〉〈k | ⊗

∑
j

|Φ(j)
m 〉〈Φ(j)

m |

×
∞∑

N=−∞

exp [−i(Ek + Up + Ej −Nω)t] JN

(
k ·α0,

Up

2ω

)

×
∞∑

N ′=−∞

exp [i(Ek + Up + Ej −N ′ω)t′] JN ′

(
k ·α0,

Up

2ω

)
,

(5.62)

where Ek = k2/2 is the intermediate kinetic drift energy of the primary electron and

Ej is the energy of the transition state |Φ(j)
m 〉 of the molecular ion after the primary

ionization.
The Greens operator Gm of the intermediate partition of the Hamiltonian is essen-

tial in the general framework of the IMST (section 3.3) to obtain a physically well
defined expression for the second order term of the IMST expansion Eq. (3.50). To
this end the Greens operator to the full Hamiltonian is now expanded in terms of
Gm as:

G(t, t′) = Gm(t, t′) +

∞∫
−∞

dt′′G(t, t′′)VmGm(t′′, t′) . (5.63)

Inserting this recursive expansion into the general S-matrix equation Eq. (3.50), the
second order term is found to be

(S − 1)
(2)
fi =

∫ ∞

−∞
dt

∫ ∞

−∞
dt′〈Ψf (t) | Vf (t)Gm(t, t′)Vi(t

′) |Ψi(t
′) 〉 , (5.64)
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where
|Ψf (t) 〉 ≡|kGV

a (t) 〉⊗ |kGV
b (t) 〉⊗ |Φ(2+)

f (t) 〉 (5.65)

is approximated as a product state of two Gordon-Volkov states with the state of
the molecular dication. As already discussed earlier, the correlation between the two
outgoing electrons can be considered by using a exact fully correlated two-electron
Gordon-Volkov wavefunction [152] or approximations of it, while the correlation be-
tween the outgoing electrons and the dication can only be treated approximately,
e.g. by the inclusion of a Coulomb correction factor. Vi(t

′) denotes the interaction
of the primary electron with the laser field (see chapter 4). Neglecting ionization
of the secondary electron by interaction with the field alone, corresponding to the
sequential channel of double ionization, the interaction Vf is identical to the ’initial’
interaction Vi of Eq. (5.22), corresponding to a Coulombic collision process. Thus,
in this specific case Vf is an entirely internal interaction of parts of the molecular
system which does not depend on the external time parameter [365]. As already
explained before, the simultaneous interaction with the environment, in this case
represented by the state of the laser field, is taken into account to all orders by the
Gordon-Volkov waves.

Performing the integrations over t′ and t in Eq. (5.64) and exploiting the addition
theorem for generalized Bessel functions (see e.g. [223]), the second order S-matrix
term takes the well known form [32]:

(S − 1)
(2)
fi =

∞∑
N=−∞

2πδ (Ea + Eb + 2Up + Ef − Ei −Nω)

×
∫
dk
∑

j

〈Φf | Vf [1± P12] |Φ(j)
m 〉JN

(
(ka + kb − k) ·α0,

Up

2ω

)

×
∞∑

N ′=−∞

(Up −N ′ω)

Ek + Up + ET [j, i]−N ′ω + i0
JN ′

(
k ·α0,

Up

2ω

)
〈Φ(j)

m |Φi 〉 ,

(5.66)

where ET [j, i] = E
(j)
m − Ei is the transition energy between the initial state of the

neutral molecule and the state |Φ(j)
m 〉 of the molecular ion. Ea and Eb are the kinetic

energies of the outgoing electrons. According to the discussion of the orthogonality
of bound and continuum states in the collision process the final interaction Vf in this
specific mechanism of double-ionization reduces to the Coulomb interaction between
the bound and the continuum electron V

(1,2)
C = 1/|r1− r2| (see end of section 5.1.2).

Additional scattering with the nuclei (before or after the electron-electron interac-
tion) constitutes a higher order process which cannot be considered consistently in
the second order description of Nonsequential Double Ionization.

In the context of IVI (see chapter 4) the intermediate states j are vibrational
substates ν ′ of specific electronic states s′ of the singly ionized molecule, i.e. i ≡ (s, ν),
j ≡ (s′, ν ′) and f ≡ (s′′, ν ′′). The molecular initial, transition and final states |Φi 〉,
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|Φ(j)
m 〉 and |Φf 〉 are approximated by the Born-Oppenheimer separated product of a

nuclear and an electronic part (see section 4.3.1). Focusing on the two active electrons
while the passive electrons are considered in their combined effect as the creators of
the internuclear binding potential that determines the molecular vibrational states,
the molecular state in the three stages is represented by

Φi(R; r1, r2) = χν(R−Re)⊗ φs,1(r1;Rn)φs,2(r2;Rn) (5.67)

Φ(j)
m (R; r2) = χ′ν′(R−R′

e)⊗ φ′s′,2(r2;R
′
n) (5.68)

Φf (R; ) = χ′′ν′′(R−R′′
e) , (5.69)

where the orientation of the molecule is assumed to stay fixed during the process.
This holds for diatomic molecules and can be extended to polyatomic molecules based
on the criterion of invariance of symmetry elements.

The approximative treatment of the vibrational degree of freedom by the Franck-
Condon approximation (Eq. (4.8)) reduces the computational resources such that
the treatment of a higher order process as the Nonsequential Double Ionization of
molecules can be considered. Applying this approximation and restricting the con-
sidered transition channels of the molecular ion to the vibrational substates ν ′ of
a specific electronic state s′ as well as neglecting the overlaps between the inactive
electrons one can transform Eq. (5.66) to:

(S − 1)
(2)
fi (ν ′′, ν)|s′ = 2π

∞∑
N=−∞

δ (Ea + Eb + 2Up + Ef − Ei +Nω)

×
∫
dk〈ka,kb | Vf [1± P12] |k, φ′s′,2 〉〈k |φs,1 〉

× JN

(
(ka + kb − k) ·α0,

Up

2ω

) ∞∑
N ′=−∞

JN ′

(
k ·α0,

Up

2ω

)
×
∑
ν′

〈χ′′ν′′ |χ′ν′ 〉(Up −N ′ω)〈χ′ν′ |χν 〉
Ek + Up + ET [(s′, ν ′), (s, ν)]−N ′ω + i0

,

(5.70)

where
ET [(s′, ν ′), (s, ν)] ≡ E(s′,ν′) − E(s,ν) (5.71)

and Ef −Ei = E(s′′,ν′′)−E(s,ν) is the total energy difference of initial and final state.
Note that just as in the case of IVI (chapter 4), the molecular dication can be left
in an excited vibrational (or generally vibronic) state. The Franck-Condon approxi-
mation applied here throughout the process is justified by the analysis of chapter 4
strictly only for the first ionization step. This analysis of vibrational excitation in
the first step can however be considered to be representative for nonlinear processes
in intense laser fields. We may point out that the application of the Franck-Condon
approximation in both steps is independent on the one hand and just a matter of
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reduction of computational cost on the other hand. In general, the expressions de-
rived by the Franck-Condon overlap approximation can be replaced by the ’frozen’
MO or fully coherent calculations (in Born-Oppenheimer approximation). For the
first ionization step this is accomplished by the formulae derived in chapter 4, while
for the (e+Nω, 2e) step the corresponding expression can be derived starting from
Eq. (5.28) by the additional consideration of the vibrational transition along the same
lines as for the IVI process, finally arriving at an expression similar to Eq. (5.33),
with a modified energy balance and a matrix element that includes integration of the
vibrational transition amplitude over the internuclear relative coordinate. Since the
energies involved in the laser induced recollision in NSDI are relatively high compared
to the photon energy and even more so compared to the energies of vibrational excita-
tion, the deviation from the Franck-Condon distribution for the vibrational transition
rates in this process is generally expected to be smaller than in the IVI process.

Computationally it is still a very time consuming task to perform the full integra-
tions in Eq. (5.66). This encourages to seek for an approximative solution based on
reasonable physical assumptions. The integration over intermediate momenta of the
primary electron can be evaluated using the approximations of [27, 28], where the
electron is assumed to be predominantly emitted along the direction of laser polar-
ization and the radial integral over its intermediate kinetic drift energy is performed
by using the definition of the Dirac-Heitler ζ function (see e.g. [68], Eq. (3.9.1.1),
[366, 367]), also known as Sokhotsky-Plemelj identity [368]

lim
ε→0

1

E −H ± iε
= P.V.

(
1

E −H

)
∓ iπδ(E −H) , (5.72)

and neglecting off-shell contributions from the Cauchy Principal Value (P.V.) term
(pole approximation). The modulus squared result is a generalization of the model
formula given in [28] to processes of Nonsequential Double Ionization in molecules
where not only a single but several vibronic states are allowed as transition states
for the singly ionized molecular ion:

dW (2)(ka,kb)

dkadkb

≈
∞∑

N ′=N ′
0

∑
j

Γ(e+Nω,2e)

(
ka,kb; E (N ′)

j,i

) πk(N ′)
j,i

2
Γ

(N ′)
ATI

(
k

(N ′)
j,i ‖ Â,Φ(j)

m

)
.

(5.73)

Γ
(N ′)
ATI

(
k

(N ′)
j,i ‖ Â,Φ

(j)
m

)
is the ATI rate for the ionization of the neutral molecule into

a specific vibronic state |Φ(j)
m 〉 of the molecular ion due to absorption of N ′ photons

from the laser field (with a minimal N ′
0 due to energy conservation). Only electron

momenta parallel to the polarization axis of the laser, along Â, are considered. In
chapter 4, where ATI transitions to vibrational substates of specific electronic states
were considered, the expression for this rate is obtained in Eq. (4.28). In this case

the magnitude of the drift momenta k
(N ′)
j,i after ATI is given analogously to Eq. (4.29)
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by

k
(N ′)
j,i =

√
2E

(N ′)
k ≡

√
2
(
N ′ω − Up − (E

(j)
m − Ei)

)
. (5.74)

The rate for the second step of the process is given by the absolute square of the
amplitude given in Eq. (5.33):

Γ(e+Nω,2e)

(
ka,kb; E (N ′)

j,i

)
≈C2

∞∑
N=−∞

dW
(1)
(e+Nω,2e)(ka,kb)

dkadkb

(
E (N ′)

j,i

)
=

∞∑
N=N0

2πδ
(
Ea + Eb + Up + Ef − E(j)

m −Nω − E
(N ′)
j,i

)
×
∣∣〈ka,kb | Vf [1± P12] |krescat,Φ

(j)
m 〉
∣∣2

× J2
N

(
(ka + kb − krescat) ·α0,

Up

2ω

)
,

(5.75)

where also the Coulomb correction C2 =
(
k

3/2
T /F

)2Z/kT

for the ionized secondary

electron is applied with kT =

√
2
(
Ef − E(j)

m

)
(see section 4.3.1). Consistently with

the previous discussion the primary electron is considered to rescatter with the max-

imal classically allowed energy of E (N ′)
j,i ≈ 3.17Up (see also footnote 18 of [28]), i.e.

its initial kinetic energy after ionization is set to zero, independent of the number N ′

of photons absorbed.
If the transition occurs between the two electronic ground states of the molecule

and the dication and one considers only vibrationally excited transition states (0, ν ′)
of the singly ionized molecular ion in its electronic ground state, the transition en-
ergy for the primary ionization in Eq. (5.70) is given by ET [(0, ν ′), (0, ν)] = Ip +
∆Evib(ν

′, ν). In this case, the momentum of the electron after Inelastic Vibronic
Ionization (Eq. (4.29)) is given by:

k
(N ′)
j,i ≡ k

(N ′)
(0,ν′),(0,ν) =

√
2 (N ′ω − Up − Ip −∆Evib(ν ′, ν)) , (5.76)

and accordingly the transition energy in Eq. (5.75) for the secondary ionization can
be written as:

Ef − E(j)
m = I(+)

p + ∆Evib(ν
′′, ν)−∆Evib(ν

′, ν) , (5.77)

where I
(+)
p represents the ionization potential of the singly ionized molecule and

∆Evib(ν
′′, ν) is the difference of the vibrational energy in the initial and the final

state.
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Figure 5.10.: Alignment dependence of IV-NSDI rates for the (ν ′′ = 0, ν = 0) tran-
sition compared to the corresponding rates of the (e + Nω, 2e) process alone.
Intensities are chosen such that classical impact energies are matching ionization
threshold (I

(+)
p + Up) for the (e+Nω, 2e) process.

Left: N2+
2 X1Σ+

g ← N2X
1Σ+

g (Ithresh= 2.096×1014 W/cm2)

Right: O2+
2 X1Σ+

g ← O2X
3Π−

g (Ithresh= 1.85×1014 W/cm2).

5.2.1. Results for N2 and O2

In Fig. 5.10 the alignment dependence of total NSDI rates is presented as obtained
from calculations of the model formula derived above. For comparison the rates for
the (e + Nω, 2e) process are shown, which constitutes the second step of the total
process. As it becomes evident from the figure, the alignment dependence is stronger
for the combined NSDI process than for the (e + Nω, 2e) process alone. For O2

the ratio lies between the minima and maxima between 1.6 and 1.8 for the separate
(e + Nω, 2e) step, while it lies between 4.4 to 5.2 for the full NSDI process at the
threshold intensity of O+

2 X
2Πg. For N2 the ratio increases from 2.8 for the separate

(e + Nω, 2e) process to about 4.5 for the full NSDI process, both calculated at the
threshold intensity of N+

2 X
2Σ+

g . This amplification of the alignment dependence
is anticipated as a result of the constructive interplay of the separate primary and
secondary steps of ionization. Both processes independently show qualitatively a
similar alignment dependence in their analytical first order S-matrix expressions
[37, 100]. As a consequence the signature of the symmetry of the ionized molecular
orbital is amplified in NSDI compared to the individual processes.

Fig. 5.11 shows the relative populations of the vibrational states of the dications
after Nonsequential Double Ionization in parallel alignment. These are obtained
from the normalized, i.e. relative IV-NSDI rates for the (ν ′′, ν = 0) transitions
as calculated by the IV-NSDI model formula in Franck-Condon approximation (IV-
NSDI(FC)) derived in section 5.2. Experimental values have been used for the vibra-
tional constants of the electronic ground states of N2+

2 [369, 370] and O2+
2 [371, 372].
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Figure 5.11.: Relative populations of the vibrational states in the dication of a di-
atomic molecule after Nonsequential Double Ionization in parallel alignment as
calculated from the model formula described in section 5.2. For comparison the
figure shows the products of the Franck-Condon factors for the IVI and the subse-
quent (e+Nω, 2e) process, summed over the possible vibrational transition states.
For O2 the Franck-Condon factors for the first (IVI) transition are shown as well,
for N2 these coincide with the IV-NSDI(FC) population. Intensities are chosen as
in Fig. 5.10.
Left: N2+

2 X1Σ+
g (ν ′′) ← N2X

1Σ+
g (ν = 0)

Right: O2+
2 X1Σ+

g (ν ′′) ← O2X
3Π−

g (ν = 0).
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Figure 5.12.: Franck-Condon overlaps for transitions between the vibrational states of
the electronic ground states of O2 and its mono- and dications. FC(ν′=ν′′,0) denotes
the transition of the neutral O2X

3Π−
g (ν = 0) to the vibrationally excited states

O+
2 X

2Πg(ν
′) of the cation in its electronic ground state while FC ′′

(ν′′,0) refers to the

direct transition of the neutral O2X
3Π−

g (ν = 0) to the vibrationally excited states

O2+
2 X1Σ+

g (ν ′′) of the dication in its electronic ground state. The Σν′FC
′
(ν′′,ν′) ·

FC(ν′,0) denotes the products of the Franck-Condon factors for the IVI and the
subsequent (e+Nω, 2e) process, summed over the possible vibrational transition
states.
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As in the context of IVI, the relative populations are shifted towards lower vibra-
tional states, an effect that was shown in chapter 4 to be a relative one, resulting from
a suppression of the ionizing transitions into higher excited vibronic states. Note that
the IV-NSDI(FC) distributions are compared to the products of the Franck-Condon
factors for the IVI and the subsequent (e+Nω, 2e) process, summed over the possible
vibrational transition states.

For N2 one finds that the final distribution is nearly indistinguishable from the
Franck-Condon distribution for the first (IVI) step alone. This in an incidental coin-
cidence, as can be seen from the right hand panel of Fig. 5.11 which shows a strong
deviation of the IV-NSDI(FC) population from the Franck-Condon distribution of
the first transition in the case of O2. For further reference Fig. 5.12 shows the nor-
malized Franck-Condon distributions for different transitions: the one for the first
(IVI) transition and the before-mentioned product-sum over possible two-step tran-
sitions are compared to the direct Franck-Condon overlaps between the electronic
ground state of the neutral molecule and the dication respectively. The latter two
were calculated from the overlap integrals of the respective Morse wavefunctions and
good agreement with experimental data is found for the neutral to dication tran-
sition [373]. This comparison is necessary to confirm the numerical validity of the
product-sum distribution. Comparing the relative IV-NSDI(FC) population with the
Franck-Condon distribution for the direct neutral to dication transition, it is evident
that the IV-NSDI process is not a direct transition between the neutral molecule
and the dication, but that the IVI transitions to the vibrational states of the singly
charged O+

2 X
2Πg ion in the first step of the process are significant.
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6. Conclusions and Outlook

This thesis presents an analysis of the interplay of molecular degrees of freedom with
ionization processes in intense laser fields. The two most salient features of molecules
in comparison to atoms are the anisotropy of their electronic state and their internal
state of vibration. Thus, the analysis focusses on two aspects of the ionization of
molecules in intense laser fields, the influence of intense-field multiphoton ionization
on the concomitant transitions between vibrational states on the one hand and the
dependence of certain ionization processes on the alignment of diatomic molecules
with respect to the acting forces on the other hand.

In chapter 4 the vibrational state of a molecule after ionization in an intense laser
field has been analyzed in the framework of S-Matrix theory. As a formal result a
first order expression for the transition amplitude in the general process of Inelastic
Vibronic Ionization (IVI) has been derived. It has been shown that the overlap
approximation, which has been assumed before in S-Matrix calculations in an ad
hoc way [202, 289], is a qualitatively good approximation in the domain of field
parameters considered here (see section 4.4.3).

The shift in the distribution of the IVI transition probabilities to lower vibrational
quantum numbers, deviating from the Franck-Condon distribution, has been shown
to have its origin in the nonlinear dependence of the ionization rate on the transition
energy ET = E

(f)
ν′ − E

(i)
ν . It is pointed out that the Franck-Condon Principle is a

general principle of quantum mechanics, while the validity of results obtained by
the Franck-Condon approximation has to be checked for each particular transition
(see section 4.1.2). Two different levels of approximation have been identified, the
’frozen’ MO approximation on the one hand – a special case of the generalized Franck-
Condon (GFC [296]) approximation which includes the dynamic variation of the
photoelectron phase terms – and the overlap approximation on the other hand, which
corresponds to the original approximation of Franck and Condon. While the first
one neglects the variation of the electronic wavefunctions within the range of the
internuclear distances covered by the overlap of the vibrational wavefunctions, the
latter also neglects the effect of the recoil momentum of the ionized electron on the
internuclear motion. In the specific case of multiphoton ionization of H2 in an intense
laser field, the latter is found to be negligible compared to the former one. Both
levels of approximation agree qualitatively well with the fully coherent calculations
in this case, which confirms the usefulness of the Franck-Condon approximation for
ionization processes in intense laser fields. This validation of the Franck-Condon
approximation for the experimentally accessible case of intense-field multiphoton
ionization of H2 provides a better understanding on how this approximation has to
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be applied to give valid results in strongly nonlinear processes.
It has been derived how momentum conservation emerges from the S-Matrix for-

malism (see section 4.4.4) as a result of spatial phase matching, which complements
the emergence of energy conservation from temporal phase matching inherent to the
theory. For the specific case of the IVI process the photoelectron phase terms appear-
ing in the transition amplitudes have been shown to induce small momentum shifts
in the eigenspace of the operator of internuclear momentum. The theory has been
applied to isotopic variations of the H2 molecule (HD and D2) to analyze isotope ef-
fects. These effects are found to be very well described in terms of the Franck-Condon
overlaps of the different vibrational wavefunctions.

As examples of more complex molecules the theory was applied to the homonu-
clear molecule O2 and to the heteronuclear molecule CO. To obtain experimentally
accessible observables, transition rates to vibronically (i.e. vibrationally as well as
electronically) excited states have been calculated which define the initial conditions
for the subsequent process of spontaneous emission. The resulting fluorescence spec-
tra were presented. Using the example of the HCN molecule in one of its linear
isotopomeric configurations it was shown how to apply the theory to polyatomic
molecules.

In chapter 5 electron impact ionization of a molecule in the presence of an intense
laser field was studied (abbreviated as (e + Nω, 2e)). This process is the final step
of Nonsequential Double Ionization of a molecule. To this end a first order S-matrix
expression was derived from the principles of the Intense-Field Many-Body S-Matrix
Theory (IMST). Beyond the standard approach the possibility of exchange scattering
was taken into account to assess the influence of the two different spin correlations in
the highest occupied molecular orbitals (HOMOs) of N2 and O2 (see section 5.1.5).

The influence of the different orbital symmetries on the alignment dependence of
total ionization rates has been analyzed for electron impact ionization in the presence
of an intense laser field (section 5.1.4), extending a previous analysis for intense-field
multiphoton ionization by other authors [34, 36, 35]. To complete the interpretation
of the resulting formulae, the role of momentum conservation in the established
framework of IMST was considered based on the following two key results obtained
in the previous chapters: On the one hand it builds on the analysis of an electron-
pair state in the presence of a laser field (section 3.1.1), to understand the different
roles of center of mass momentum and relative motion of the two outgoing electrons
in an intense laser field. On the other hand the analysis of momentum conservation
in the context of Inelastic Vibronic Ionization (IVI) (section 4.4.4) was extended to
consider the center of mass momentum of the molecular ion.

To relate the results back to the specific context of Nonsequential Double Ionization
an approximative model formula was used to calculate estimates for the influence of
orbital symmetry on the alignment dependence of transition rates for Nonsequen-
tial Double Ionization. An amplification of the alignment dependence is found, as
anticipated, as a result of the constructive interplay of the separate primary and
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secondary steps of ionization. Both processes separately show a qualitatively simi-
lar alignment dependence in their analytical expressions derived from the first order
IMST [37, 100]. As a consequence the signature of the symmetry of the ionized
molecular orbital is amplified in NSDI compared to the individual processes. The
theoretical results agree with the experimental data of a preferential emission for
parallel alignment in the Nonsequential Double Ionization of N2 [321]. This behavior
was shown in the analysis of section 5.1.4 as well as in the numerical results obtained
from the model formula in section 5.2 to be characteristic for the 3σg HOMO of
molecular nitrogen.

Based on the analysis of Inelastic Vibronic Ionization (IVI) in chapter 4, the vi-
brational excitation of the molecular dication after Nonsequential Double Ionization
was assessed using an approximative Franck-Condon treatment. Similar to the re-
sults obtained for IVI, the population of the vibrational states in the dication was
found to be slightly suppressed below the product of the Franck-Condon factors of
the individual ionization steps (summed over the vibrational transition states).

From this perspective different lines of future research arise. Using the techniques
described in this thesis, the vibrational state of a molecule can be tracked coher-
ently throughout processes comprising several steps of ionization, rescattering and
recombination (e.g. [374]). As the basic approach developed in chapter 4 (within the
Born-Oppenheimer approximation) operates without the Franck-Condon approxi-
mation, it allows an analysis on non-Franck-Condon effects (see sections (4.1.2) and
(4.2)). In future applications of the formalism it will be interesting to apply it as well
to overtone spectra of local mode vibrations [256] as well as to combine its general
principle with other descriptions of vibrational states. The application to more com-
plex molecules involves the quantum mechanical description of coupled anharmonic
molecular vibrations in more than one dimension. Additionally the change of the
rotational state of the molecule, which is neglected in the present analysis, can be
considered along lines similar to the ones presented here for the vibrational state.

Combined with the electronic molecular orbitals, the coherent integration over all
molecular degrees of freedom will however quickly exceed the current practical limits
of numerical simulation. This underlines the importance to assess the validity of
the different levels of approximation. If certain degrees of freedom can effectively be
decoupled, the complexity of the problem reduces considerably, which frees up com-
putational resources and allows their investment into the treatment of more complex
physical processes instead.

The application to the dissociative double ionization of N2 and O2 [322] is consid-
ered to demand the inclusion of multi-electronic correlation beyond the two active
electron model, as electrons from inner-valence orbitals are ionized and adiabatic re-
laxation of the multi-electron state becomes important [363]. An elegant way would
be the use of Dyson orbitals [48–50] (see section 2.1.1) instead of their approximation
by Hartree-Fock or natural orbitals. These consider the full electronic correlation in
the initial and final bound state as well as the relaxation occurring in the transi-
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tion. These orbitals are considered to be the physical quantities probed in electron
momentum or (e,2e) spectroscopy (see [51] and references therein) as well as in the
recently demonstrated molecular orbital tomography using High Harmonic Gener-
ation [242, 364]. The challenge lies in the calculation of these orbitals. Currently
there are two approaches of approximation for them: The first family of methods
originates from electron propagator theory [375, 376]. The second approach is to cal-
culate the overlap between high quality wavefunctions for initial and (excited) final
bound states, e.g. from Multi-Reference Configuration Interaction calculations with
single and double excitations (MRCI(SD) or MRSD-CI) [51].

Since the fully coherent simulation of the three step process of Nonsequential Dou-
ble Ionization still is a computationally demanding task, the propagation of the
electronic wavepacket though the laser driven continuum is taken into account only
very roughly in this work, based on a classical calculation of an upper bound for
the energy transfer from the field. To push the quantum mechanical analysis a step
further it might be worth to pursue an approach that is based on the stationary
phase approximation of quantum trajectories [377] for the propagation of the field
driven electronic wave packet, which on the one hand would reduce the integration
space over the intermediate electronic continuum states, but on the other hand would
consider the fact that the electron enters the continuum with nonzero velocity and
that there is a weighted distribution of recollision energies to sum over.

It will also be interesting to treat the related phenomenon of High Harmonic
Generation upon recombination for the case of diatomic molecules using a second
order IMST approach. For this process experimental results for N2 and O2 show an
alignment dependence of the intensity of the harmonic radiation that is related to
the one found for NSDI [378].

Generally, the main strength of the IMST approach lies in its potential to analyze
mechanisms of processes in intense laser fields. Once a mechanism has been iden-
tified the analytical form of the corresponding matrix elements allows the analysis
of functional dependencies between physical degrees of freedom and parameters as
well as the deliberate neglect of selected terms to assess their role in the process
under consideration. The usefulness of each separate approximation provides a piece
of information about the relevant physical interactions. These possibilities by far
compensate for the limitations due to the restriction to individual terms of the S-
matrix expansion as well as those imposed by the approximations used to describe
the initial, transition and final states, since they can be addressed in a systematic
way. This approach is therefore of high value to guide the physical intuition and to
assist the interpretation of data obtained from experiments as well as from numerical
ab-initio calculations.
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A. Atomic Units

In atomic units, four fundamental physical constants are set to unity:

~ = e = a0 = me = 1 . (A.1)

Since the Bohr radius is defined as

a0 =
4πε0~2

mee2
(A.2)

this system of units is of the Gaussian type, where ε0 = 1
4π

. The atomic unit of
energy is the Hartree, with

1 Hartree =
e2

4πε0a0

= 27.2116 eV (A.3)

The atomic unit of time is derived from the atomic unit of energy as

~ = a.u.energy × a.u.time ⇒ a.u.time =
~a0

e2
= 24.2× 10−18 s (A.4)

The atomic field strength in ground state of the hydrogen atom is obtained from the
Coulomb law

|E0| =
e

4πε0a2
0

= 5.14× 109 V

cm
(A.5)

and from this one derives the atomic unit of intensity as

1 a.u. of Intensity =
1

2
cε0E

2
0 = 3.51× 1016 W/cm2 . (A.6)
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[36] J. Muth-Böhm, A. Becker, S. L. Chin, and F. H. M. Faisal, Chem. Phys. Lett. 337,

313 (2001).
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Böcking, Adv. At. Mol. Opt. Phys. 48, 1 (2002).

133



Bibliography

[84] A. Becker, R. Dörner, and R. Moshammer, J. Phys. B 38, S753 (2005).
[85] A. Kheifets, J. Phys. B 34, L247 (2001).
[86] J. H. McGuire, N. Berrah, R. J. Bartlett, J. A. R. Samson, J. A. Tanis, C. L. Cocke,

and A. S. Schlachter, J. Phys. B 28, 913 (1995).
[87] B. A. Zon, Sov. Phys. JETP 89, 219 (1999), [Zh. Éksp. Teor. Fiz. 116, 410 (1999)].
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[89] I. V. Litvinyuk, F. Légaré, P. W. Dooley, D. M. Villeneuve, P. B. Corkum, J.

Zanghellini, A. Pegarkov, C. Fabian, and T. Brabec, Phys. Rev. Lett. 94, 033003
(2005).

[90] K. C. Kulander, J. Cooper, and K. J. Schafer, Phys. Rev. A 51, 561 (1995).
[91] M. Y. Kuchiev, Sov. Phys. JETP Lett. 45, 404 (1987), [Zh. Éksp. Teor. Fiz. Pis’ma

Red. 45, 319 (1987)].
[92] M. Y. Kuchiev, J. Phys. B 28, 5093 (1995).
[93] P. Dietrich, N. H. Burnett, M. Ivanov, and P. B. Corkum, Phys. Rev. A 50, 3585

(1994).
[94] D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, Phys. Rev. A 49,

2174 (1994).
[95] B. Feuerstein, R. Moshammer, D. Fischer, A. Dorn, C. D. Schröter, J. Deipenwisch,
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R. Camilloni, Chem. Phys. Lett. 306, 209 (1999).
[182] N. G. Johnson, R. N. Mello, M. E. Lundy, J. Kapplinger, E. Parke, K. D. Carnes, I.

Ben-Itzhak, and E. Wells, Phys. Rev. A. 72, 052711 (2005).
[183] G. Laurent, J. Fernández, S. Legendre, M. Tarisien, L. Adoui, A. Cassimi, X.
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