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Abstract

Nowadays, many people are expecting an age of personal robots just as what happened
in the evolution of computers. With this background, the research on human-robot inter-
action receives a lot of attention in the robotics research community. In this dissertation,
we focus on the vision-based recognition of human’s manipulative gestures because the
manipulation of objects draws the attention of the communication partner on the objects
that are relevant for a performed task and furthermore the recognition of them serves the
goal of a more pro-active behavior of the robot in passive, more observational situations.

Comparing to the interpretation of communicative gestures which can be recognized purely
based on trajectory information, the understanding of manipulative gestures is more re-
lying on the object contexts. Different to others, the approach we propose is called
object-oriented w.r.t. three different aspects: it is object-centered in terms of trajectory
features that are defined relative to an object, it uses object-specific models for action
primitives, and it has an object-attention mechanism which is based on task models.

While most of the related work in gesture recognition assumes a fixed static camera view,
such kind of constraints do not apply for mobile robot companions. After an analysis of
the observational scenario, a 2-D approach was chosen by us. The manipulative primitive
recognition scheme is able to generalize a primitive model, which has been learned from
data items observed from a single camera view, to variant view points and different set-
tings. We tackle the problem of compensating the view dependence of 2-D motion models
on three different levels. Firstly, the trajectories are pre-segmented based on an object
vicinity that depends on the camera tilt and object detections. Secondly, an interactive
feature vector is designed to represent the relative movements between the human hand
and the objects. Thirdly, a particle filter realized matching method adaptively finds out
a scaling parameter which can fit the HMM-based models to different view angles.

To cope with different layers of intentions in the manipulative gestures, a unified graphical
model with a two-layered recognition structure is proposed. The object-specific manip-
ulative primitives on the lower level are coupled with task-specific Markovian models on
the upper level. The combined bottom-up top-down processing loop in this structure
realizes a dynamic attention mechanism by utilizing the task-level prediction of possible
primitives to restrict the object types possibly detected as well as the action primitives
possibly recognized. In this thesis, an online task-learning strategy based on prelearned
object-specific manipulative primitives is also proposed. The task model can be initial-
ized with few labeled data and updated incrementally when new unlabeled data becomes
avaliable. The results of experiments in an office environment show the applicability of the
approaches for vision-based manipulative gesture recognition put forward in this thesis.



Contents

1 Introduction 1

2 Background Statement 4

2.1 Comprehension of Gesture . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Taxonomy of Hand Gesture . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Interpretation of Hand Motion . . . . . . . . . . . . . . . . . . . . . 8

2.2 Manipulative Gestures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Discussion on Manipulation Recognition . . . . . . . . . . . . . . . 11

2.2.2 An Indoor Scenario for Observation . . . . . . . . . . . . . . . . . . 12

2.2.3 Corresponding Problems in Vision-Based Approach . . . . . . . . . 13

2.3 State of Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 2-D and 3-D Gesture Recognition . . . . . . . . . . . . . . . . . . . 15

2.3.2 State-Based and Trajectory-Based Approaches . . . . . . . . . . . . 16

2.3.3 Gesture Recognition with Context . . . . . . . . . . . . . . . . . . . 18

2.3.4 Task Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Feature Extraction for View-Variant Observation 22

3.1 Gesture Recognition with Different View-Angles . . . . . . . . . . . . . . 23

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.2 Our Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Low-Level Image Processing . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2.1 Hand Detection and Tracking . . . . . . . . . . . . . . . . . . . . . 25

3.2.2 Object Information Acquisition . . . . . . . . . . . . . . . . . . . . 27

3.3 Feature Vector Construction for Manipulations . . . . . . . . . . . . . . . . 29

3.3.1 Object-Oriented Approach . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.2 Object Vicinity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3.3 Feature Definition and Evaluation . . . . . . . . . . . . . . . . . . . 31

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34



Contents iv

4 Manipulative Primitive Detection 38

4.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Elementary Trajectory Recognition and Spotting . . . . . . . . . . . . . . 40

4.2.1 Dynamic Time Warping . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.2 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 Manipulative Primitive Modeling and Detection . . . . . . . . . . . . . . . 47

4.3.1 Primitive Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.2 Sequential Monte Carlo Method for Trajectory Matching . . . . . . 50

4.3.3 Particle Filter Realized Hidden Markov Model Matching . . . . . . 54

4.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5 Manipulative Task Modeling and Recognition 59

5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 Models for Symbol Sequences . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.1 N-Gram Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.2 Grammar Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Layered Representation of Manipulative Task . . . . . . . . . . . . . . . . 67

5.3.1 Two-Layer Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3.2 Task Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.4 Coupling of Top-Down and Bottom-Up Processes . . . . . . . . . . . . . . 70

5.5 Task Recognition in an Office Scenario . . . . . . . . . . . . . . . . . . . . 71

5.6 Hierarchical Representation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6 Manipulative Task Learning 78

6.1 Task Learning for Human-Robot Interaction . . . . . . . . . . . . . . . . . 79

6.2 Semi-Supervised Incremental Task Learning . . . . . . . . . . . . . . . . . 81

6.3 Extending Task Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7 Summary and Conclusion 88

Bibliography 92

Index 103



List of Figures

2.1 Kendon’s gesture continuum . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Taxonomy of gesture for HCI from [93] . . . . . . . . . . . . . . . . . . . . 7

2.3 Images demonstrate Bobick’s categorization of gestures based on the knowl-
edge necessary for recognition [33] . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Interpretation of gesture context [47] . . . . . . . . . . . . . . . . . . . . . 10

2.5 The Bielefeld Robot Companion (BIRON) and its system architecture . . . 13

2.6 Block diagram of a vision-based gesture recognition system . . . . . . . . . 13

3.1 The screen shots from hand detection and tracking . . . . . . . . . . . . . 27

3.2 Object detection using SIFT feature . . . . . . . . . . . . . . . . . . . . . 28

3.3 The projection of an object vicinity on a 2-D image . . . . . . . . . . . . . 30

3.4 The illustration of feature vector . . . . . . . . . . . . . . . . . . . . . . . 32

3.5 The effect of feature transform (a)3-D display of the trajectories (b) pro-
jected trajectories in pixel coordinates (c)distance vs. speed measured in
pixel (d) distance vs. speed in transformed feature space (e)continuous
relative angle vs. time (f)discrete relative angle vs. time . . . . . . . . . . 34

3.6 Views from 4 cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.7 The effect of feature transform shown by real data . . . . . . . . . . . . . . 37

4.1 The threshold model introduced by Lee and Kim [65] . . . . . . . . . . . . 46

4.2 The trajectories of manipulative primitives: comparison between different
persons and repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 The trajectories of manipulative primitives: comparison between different
views and repeats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 The manipulative primitive model shown as dynamic Bayesian Network . . 50

4.5 The propagation of the sample set in a particle filter (from [33]) . . . . . . 52

4.6 The effect of scaling parameter . . . . . . . . . . . . . . . . . . . . . . . . 55

4.7 The primitive detection results shown by different error types and with/without
scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.8 The primitive detection results with regard to different camera views . . . 58



List of Figures vi

5.1 The layered system architecture . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 The system processing flow combining both top-down and bottom-up pro-
cesses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3 From transition to pairwise grammar . . . . . . . . . . . . . . . . . . . . . 72

5.4 The active primitives in a “prepare tea” task . . . . . . . . . . . . . . . . . 73

5.5 The end probabilities of the manipulative primitives in a “prepare tea” task 74

5.6 The DBN representation of the hierarchy structure for recognizing manip-
ulative activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 Pseudocode of semi-supervised task learning . . . . . . . . . . . . . . . . . 82

6.2 Pseudocode of new task learning . . . . . . . . . . . . . . . . . . . . . . . . 84

6.3 The recognition error rates based on different lengths of labeled data . . . 84

6.4 The task recognition error rate based on the models learned from pure
supervised method and semi-supervised method. . . . . . . . . . . . . . . . 85

6.5 The task recognition error rate based on labeled data only from two tasks
where the third unlabeled task (light blue) is learned. . . . . . . . . . . . . 86



List of Tables

3.1 The positions and view-angles of the cameras . . . . . . . . . . . . . . . . 35

4.1 The detection of the manipulative primitives. . . . . . . . . . . . . . . . . 57

5.1 The index of the manipulative primitive in the experiment. . . . . . . . . . 72

5.2 The recognition results of the manipulative tasks with and without top-
down processing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74



1. Introduction

Recently, human-robot interaction is receiving more and more interest in the robotics as
well as in the computer vision research community. From the robotics perspective, robots
that cooperate with humans are an interesting application field that is expected to have
a high future market potential. A couple of global and also mid-sized companies have
come up with quite sophisticated robotic platforms that are designed for human-robot
interaction. The ultimate goal is to place some robotic assistant or companion in the
regular home environment of people, who would be able to communicate with the robot
in a human-like fashion. As a consequence, the “hearing” as well as the “seeing” – as the
most prominent and equally important modalities – are becoming major research issues.

The visual recognition of human actions is in the center of all these aspects and provides
a bridge for a non-verbal as well as verbal communication between a human and the
robot, which both are highly ambiguous. It enables the robot’s anticipation of human
actions leading to a pro-active robot behavior especially in passive, more observational
situations. Furthermore, it draws attention to manipulated objects or places, embeds
objects in functional as well as task contexts, and focuses on the spatio-temporal dynamics
in the scene.

From the computer vision perspective, robot perception is more than an interesting ap-
plication field. During the last decades, we can note a shift from solving isolated vision
problems to modeling visual processing as an integral connected component in a cognitive
system. This change in perspective pays tribute to important aspects of understanding
dynamic visual scenes, such as attention, domain and task knowledge, spatio-temporal
context as well as a functional view of object categorization.

A robot that is autonomously moving and acting in a human environment needs to un-
derstand and predict human behavior to a certain degree. While small automatic vacuum
cleaners will mainly deal with collision avoidance for safety issues, larger movable robots,
like the Bielefeld Robot Companion [44] need to respect human activities and situations
beyond physical predictability leading to the recognition of human intentions. This starts
by considering social spaces, detecting when a person does not want to be disturbed,
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and ends in solving cooperative tasks with a human partner. The same accounts for
human-robot communication starting with the problem to detect if and when a person
communicates with the robot [63], via the interpretation of a communicative gesture [93]
to the interpretation of the action context of an unspecific verbal statement [122; 3]. The
reason for the increasing complexity in the interpretation of human motion patterns is
the underlying factor of human intentions. The meaning of very similar human motions
heavily depends on different layers of human intention. In this regard, Fleischman and
Roy [30] argue that learning the meaning of verbs is much harder than learning nouns.
They distinguish between two different kinds of ambiguities. (1) The vertical ambiguity
refers to a possible causal chain of intentions, e.g. in order to get a cup, I need to find
a cup, open the cupboard, and grab the handle. Thus, the same action “the hand moves
to the handle of the cupboard” could be named on different levels of intention. (2) The
horizontal ambiguity resambles that the high level interpretation could be ambiguous. For
example, the same action as before could be interpreted as clean the cupboard instead of
get a cup.

The different levels of intention have a different scope of interpretation in time and space.
The physical prediction can be managed on a subsymbolic level considering the current
trajectory of the human movement. Modeling social spaces needs at least some kind
of representation of the human’s mental state, while the recognition of actions like the
opening of a cupboard needs to consider the relation of a human pose with regard to
environmental objects and the changes of the object states over time.

The concept of different interpretation scopes directly fits Bobick’s categorization of mo-
tion recognition: movement, activity, and action [8]. While movements can be charac-
terized by reoccurring trajectories with a dedicated symbolic meaning, the interpretation
of activities needs the extension of the scope in time in order to infer a higher level of
intention. It represents larger-scale events, which typically include interactions with the
environment and causal relationships. Actions involve a state change of the environment
extending the scope into space.

So far we did not focus on the kind of body movement performed by a human perceived.
A large amount of work is dedicated to whole body movements. An overview of several
approaches is given by Gavrila [40]. Spatial as well as temporal contexts are considered
by Intille and Bobick [51] in terms of multiperson actions and Fleischman et al. [29] in
terms of places in an living environment. However, these approaches are mainly based on
top-down views from surveillance cameras. In the robotics field most work is dedicated to
gestures, i.e. intentional hand/arm movements that are mainly used for human-computer
or human-robot interaction. A taxonomy of these is given by Pavlovic et al. [93]. They
distinguish between manipulative and communicative gestures, on the one hand, and un-
intentional movements, on the other hand. Manipulative gestures are used to act on
objects in the environment and, thereby, constitute actions, while communicative ges-
tures are mainly characterized by a temporally structured activity. In this work, we are
focusing on manipulative gestures. The manipulative gestures are hand actions that are
defined by a non-deterministic sequence of object manipulations. They are often consid-
ered as the interaction between humans and their environment and being irrelevant to
the communication between humans or humans and robots. From our point of view, the
manipulative gesture also serves an important communicative function in human-robot
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interaction. First, the manipulation of an object draws the attention of the communica-
tion partner on the objects that are relevant for a performed task. Secondly, it serves the
goal of a more pro-active behavior of the robot in passive, more observational situations.

Much work has been done in the area of gesture-based human-robot interaction (HRI)
because of humans’ intensive use of their hands. These approaches mostly deal with sym-
bolic, interactional, or referential gestures that have a communicative meaning on their
own [85]. In terms of Bobick’s taxonomy, they can be characterized as movements or,
in more structured cases, activities. In this regard, object manipulations are more com-
plex because the hand trajectory needs to be interpreted in relation to the manipulated
object. In Fukuda’s work [37], a cooking support robot is developed. It can recognize
human manipulations of objects by sensing the movements of the markers on the objects
and give recommendations by speech or gesture. Dropping these kinds of artificial con-
straints, the recognition problem is becoming notoriously difficult. Assuming that a hand
is manipulating a spatially near object, it becomes hard to decide if the object is just
passed by the hand or manipulated. Besides this segmentation ambiguity, there is a large
spatio-temporal variability of how hand trajectories reach different object types and the
appearance of a hand trajectory in a 2D image will also heavily vary according to the
position of the object and the view-angle. Moreover, the mutual occlusion between the
hand and the object causes even more difficulties for object detection and tracking. There-
fore, the first point in this thesis is how to recognize the manipulative gestures despite
huge variance given by the contiuous observation from a single camera. In order to have
a better understanding of the manipulative gestures which could have different levels of
intentions, more sophisticated schemes are needed that explicitly model contextual factors
both in space and time. This is the second point in this thesis. The last point is how the
robot obtains the model parameters by means of an incremental online learning process.

In the following chapters, the three points will be discussed in detail. Chapter 2 states the
background of our work. It presents an introduction to the possible categorization and
interpretation of gestures at first. Then, the system requirements according to our recog-
nition scenario are analyzed. A discussion of various approaches of gesture recognition
leads to a better understanding of our contributions in the area of manipulative gesture
recognition, which is at the end of this chapter. Starting from bottom, Chapter 3 talks
about the features used for the manipulative gesture recognition and the low-level image
processing to extract them from the image sequences. Chapter 4 presents our models for
manipulative primitives and how the object-specific manipulative primitives are spotted
under spatio-temporal variability. In Chapter 5, the process not only goes a level higher,
grouping the primitive sequences into manipulative tasks, but also has a feedback loop,
refining the low-level processing using task level prediction. The recognition system is
realized as a tightly coupled loop of bottom-up and top-down processing. Aiming for a
natural robot learning, Chapter 6 puts forward a learning mechanism for the task model.
Finally, Chapter 7 presents a summary of this thesis and gives an outlook to future work.



2. Background Statement

The great progress of modern science and technology, especially in electronics, robotics,
artificial intelligence, and cognitive science, boosts the development of robots in the last
decade. Today, when people mention robots, the impression is no longer dominated by
the huge iron machines for industrial manufacturing or some cartoon characters. We can
easily find some embodiments in our everyday life , such as the cute robot dog Aibo. Not
only for entertainment, robots play different roles with different forms, like the automatic
vacuum cleaner for housework, the robotic receptionist SAYA, etc. They observe the
environment, listen to the parter and adapt their behavior like what humans do. Therefore,
besides continuing in increasing the intelligence and capabilities of robots, the scientists
also research on how to build up more efficient and natural interaction between human and
them. Theoretically, the human-robot interaction (HRI) is a branch of human-machine
interaction (HMI). Preceding HRI, HMI has been taken into consideration when the first
automatic machine was created by human. At the very beginning, the comminication
is carried out through switches, bulbs and punchcards. After the emergence of personal
computers, the combination of mouse, keyboard and the graphic user interface (GUI)
displayed on the monitor dominates the area for a long time. Nowadays, people look
for more efficient and intuitive communications in HMI because it is expected that the
intelligent robots do not only serve human as assistants, but also behave like partners or
companions. It requires that the robot can understand the human like other humans do,
even working under complex and variant environment, and interact with the non-expert
user naturally.

With the development of intelligent machines, the human-machine interaction attracts
more and more research interest and extends itself into an interdisciplinary field. From
the view of computer scientists, the technique like speech recognition, image processing,
and pattern recognition, etc. would enable nonintrusive communication between human
and machine, which is similar to human-human interaction and less dependent on the
apparatus for command input/output like keyboard. As a consequence, a lot of new
communicative modes appeared in this direction, for example, dialog and gesture. With
the help of these new modes, the user only need to say “follow me” or wave the hand to
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him/herself to let a robot follow the user. The intelligent systems perceive the information
from users by remote sensing, interpret it using pre-learned knowledge. Furthermore, a hy-
brid mode – the multi-model communication combines several HMI modes in a framework,
which makes more complicate and smart systems possible, such as virtual environment
[95], intelligent room [12], and all kinds of interactive robots [31].

In the robotic research society, the success of techniques for speech recognition and se-
mantic understanding made the dialog a main communicative component used in many
robotic systems [66]. As a nonverbal communicative mode, gesture conveys information
in communication and in some cases it provide a simpler alternative for speech. For ex-
ample, it is easier to point to an object than verbally describe its exact location. On this
ground, some systems have been developed that the robots can receive the commands by
observing the predefined characteristic hand gesture of a human. It is a huge step in the
history of HRI. But they are not powerful enough to recognize the complex gestures in
everyday life. Neither can they infer the human state by observing the changes in the
environment caused by the hand movement.

Human Gesture has two basic functionalities: interaction and manipulation. The focus of
this dissertation lies on the recognition of the manipulations. Humans make intensive use
of their hands to interact with the environment in every life. Although the primary goal of
such a manipulative gesture is the actual manipulation of the environment, other humans
can observe the gesture to reason about the acting person“What is he/she doing”. Nehaniv
states “If the robot can recognize what humans are doing and why they are doing it, the
robot may act appropriately” [85]. The recognition of manipulative gestures provides a
good basis for the natural, pro-active, and non-intrusive interaction between humans and
robots.

In order to understand the contribution of this dissertation, this chapter starts with the
introduction to the general gestures including the taxonomy of gestures and the different
layers of the interpretation of human hand movements. Then, the definition of manip-
ulative gesture and how the recognition of it will benefit the HRI is put forward. As
the research background, an application scenario of the manipulative gesture recognition
on a robot companion platform is also proposed, which establishes the foundation of the
system design and defines the scope of functionality of the expected system. Following
the application proposal, the difficulties and keypoints to realize the vision-based manip-
ulative gesture recognition are discussed in detail. After that, the state of art in relative
areas is analyzed from different viewpoints, which leads to a better understanding of the
contributions of this thesis, which are presented at the end of this chapter.

2.1 Comprehension of Gesture

What is gesture? In order to answer the question, we used the definition articulated by
Matthew Turk [119]:

Definition 2.1 Gestures are expressive, meaningful body motions-i.e., physical move-
ments of the fingers, hands, arms, heads, face, or body with the intent to convery in-
formation or interact with the environment.
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It is said in the definition that the gesture includes the motions of different body parts.
Hand gesture is only one certain kind in it though many researchers use the term “ges-
ture” to indicate hand gesture because human use gesture for communicative purposes
much more than other means. This definition also differentiates the gesture from posture,
which is the static position or configuration of human body. More focusing on the dy-
namic motion aspect, Pavlovic gave a definition of hand gesture for the representation in
computer [93]:

Definition 2.2 Let h(t) ∈ S be a vector that describes the pose of hands and/or arms
and their spatial position within an environment at time t in the parameter space S. A
hand gesture is represented by a trajectory in the parameter space S over a suitably defined
interval I.

From this viewpoint, he divided the gesture recognition into two main questions. The
first one is the construction of the gestural model over the parameter set S. The other
one is how to define the gesture interval I. Truly, the primary goal of gesture recognition
is to create a system which can identify specific human gestures and use them to convey
information. However, the hand gestures range from simple actions of pointing at objects
to more complex ones that express our feelings or perform a task. In order to model the
hand gestures properly, it is necessary to have a close look at the different types of hand
gestures and their associated properties. Moreover, the understanding of a hand gesture
has huge variance under different interpretation scopes, which heavily depends on human
intentions. In the following of this section, the taxonomy of hand gesture and the different
interpretation level of hand motions will be discussed in detail.

2.1.1 Taxonomy of Hand Gesture

Because of the tremendous use of gesture in human-human interaction, it has been inves-
tigated by linguistists, psychologists, and sociologists for a long time. Several taxonomies
have been suggested in the literature. Cadoz uses functional roles to group gestures into
three types by their functionalities [119]:

Semiotic – to communicate meaningful information

Ergotic – to manipulate the environment

Epistemic – to discover the environment through tactile experience

From the point of view that gesture is intimately related to speech, Kendon described a
“gesture continuum” [57], shown in Figure 2.1. It defines five different kinds of gestures:
Gesticulation – spontaneous movements of the hands and arms that accompany speech;
Language-like gestures – spontaneous movements of the hands and arms that accompany
speech; Pantomimes – gesticulation that is integrated into a spoken utterance, replacing
a particular spoken word or phrase; Emblems – familiar gestures such as “V for victory”;
Sign languages – Linguistic systems, such as American Sign Language, which are well
defined. As the list progresses (from left to right in the figure), the association with
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Gesticulation Language−like Pantomimes Emblems Sign Language

Figure 2.1: Kendon’s gesture continuum

speech declines, language properties increase, spontaneity decreases and social regulation
increases.

Although the attempt to understand gestures can be traced back to the work of Bulwer
on chironomia in 1644 [16], only in the last several years has there been an increased in-
terest in trying to introduce gesture into the field of Human-computer interaction (HCI).
Pavlovic classifies all hand/arm movements into two major classes: gestures and uninten-
tional movements [93]. Gestures are further divided into two modalities: communicative
and manipulative. Manipulative gestures are the ones used to act on object in an en-
vironment. Communicative gestures have an inherent communicative purpose and are
usually accompanied by speech. Comparing the categorization by Kendon and Pavlovic,
it is found that Kendon’s understanding of gesture is corresponding to the subgroup of
“communicative” in Pavlovic’s taxonomy (Figure 2.2 shows a complete structure).

Hand/Arm Movements

Gestures Unintentional Movements

Manipulative Communicative

Mimetic Deictic Referential

Acts Symbols

Modalizing

Figure 2.2: Taxonomy of gesture for HCI from [93]

In more recent studies, Nehaniv put forward a coding scheme to identify people’s gestures
when asked to explain a home task to a robot [85]. He argued that in order to infer the
intent of a human interaction partner, it is useful to classify the gestures into major types.
The five classes in his categorization are as following.

Irrelevant and Manipulative Gestures: these gestures do not have a primary com-
municative or interactive function (in practice, this class is split). The former sub-
class is not relevant for most HRI purposes, but exclusion from consideration fol-
lowing recognition is desirable. To the contrast, manipulative gestures change the
environment or human’s relation to it.
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Side Effect of Expressive Behavior: these are gestures that occur as side-effects of
people’s communicative behavior. They can be motion with hands, arms, face, etc
but without specific interactive, communicative, symbolic or referential roles.

Symbolic Gestures: these are gestures that follow a conventionalized signal. Their
recognition is highly dependent on the context (both current task and cultural mi-
lieu).

Interactional Gestures: this category classifies gestures used to regulate interaction
with a partner. Thus they can be used to initiate, maintain, invite, synchronize,
organize, regulate, or terminate an interaction behavior between agents.

Referencing/Pointing gestures (deixis): the gestures that fall into this category are
gestures used to indicate objects or loci of interest.

Nehaniv also said there are some gestures which have aspects from more than one class,
for example, handing over an object is both manipulative and interactional gesture. Clark
expressed a similar argument in his work [22].

Most of the previous gesture-based interaction systems use constrained and task-specific
gestural primitive repertoire. Nehaniv is the first one trying to identify gestural classes
for HRI [84]. This work poses the question – when a gesture is observed, in which scope
shall a robot interpret it?

2.1.2 Interpretation of Hand Motion

Human has an inherent ability to understand dynamic motions. Gergely showed that
even one-year-old infants can infer intentions before the whole activity is completed[41].
But this capability is still ambitious for the current intelligent systems. For example,
when seeing a basketball player dribbling a ball forward in a match, our first impression is
she/he is attacking. The up-to-date vision-based recognition systems could interpret the
hand movement as “is moving” or a repeat of moving up and down, but not dribbling, or
the same as the human’s without the preknowledge about basketball and the concept of
“match”. When the research question shifted from “how are things moving?” to “what is
happening?” [7], Bobick gave a hierarchy to interpret the motions of human body [8].

Movement: they are the most atomic primitives, requiring no contextual or sequence
knowledge to be recognized; movement is often addressed using either view-invariant
or view-specific geometric techniques.

Activity: refers to sequences of movements or states, where the only real knowledge
required is the statistics of the sequence.

Action: are larger-scale events, which typically include interaction with the environment
and causal relationships.

Figure 2.3 drawn by Fritsch [33] shows a symbolic sketch of a human performing three
different hand motions relating to the three categories. Only the information represented
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by solid lines is available to the algorithms for performing motion understanding, indicat-
ing the human by a dotted line is done to facilitate an intuitive example. The hand going
up in Figure 2.3(a) is a movement, it can be represented by the motion of the hand only.
Its execution is consistent and easily characterized by a definite space. The gesture in
Figure 2.3(b) is an activity, as it consists of a sequence of up and down hand movements,
with arbitrary delays inbetween. Recognition of such a motion requires knowledge about
both the appearance of each constituent movement and the statistical properties of the
temporal sequence. Like movements, activities do not refer to elements external to the
actor performing them. Finally, Figure 2.3(c) depicts the same hand motions, but now
there is an additional symbolic information “ball” present. To recognize this motion as
action “dribbling”, the trajectory data has to be linked to the object “ball” in its vicinity.
Without such a context, the interpretation of motion is ambiguous. Therefore, Bobick
describes actions as being “at the boundary of where perception meets cognition.”

(a) Movement (b) Activity

Ball

(c) Action

Figure 2.3: Images demonstrate Bobick’s categorization of gestures based on the knowledge nec-
essary for recognition [33]

Nehaniv also emphasizes the importance of the context in understanding hand motions [85].
He said it should help the gesture recognition when objects, humans and other animated
agents in the environment are identified and tracked, previous and current interaction
patterns are remembered to predict the likely current and next behavior of the particu-
lar person, and the scenario and situational context are known (e.g. knowing whether a
gesture occurs at a tea party or during a card game). Hofemann deliberated the gesture
context from three aspects [47]: symbolic, situational and social, shown in Figure 2.4.
The symbolic context represents the spatial relativity between the gesture and individual
subjects, like objects. The situational context are more focusing on the causality existing
in the gesture sequences and the scenario. The social context indicates the prejudgments
which affect the comprehend of gesture like common understandings in a society, personal
experience, etc. Thus, for a robot who wants to understand human gestures, it is necessary
to associate the motions with appropriate contexts.



2.2. Manipulative Gestures 10

− Dialog
− Action sequence

− Preknowledge
− Experience

− Object

Symbolic

Context

Context

Gesture

Situational
Context

Social

Figure 2.4: Interpretation of gesture context [47]

2.2 Manipulative Gestures

Some researchers define the gesture based on its communicative functionality. They argue
that manipulations are not gestures because they are not utilized for communication.
Billinghurst and Hulteen said“A gesture is a motion of the body that contains information.
Waving goodbye is a gesture. Pressing a key on a keyboard is not a gesture because the
motion of a finger on it’s way to hitting a key is neither observed nor significant. All the
matter is which key was pressed” [62]. We agree with this argument if and only if what
the system need to know is the key index. However, for human or a household robot
which observe the state of human, manipulation contains much more information. For
example, a pressing could be carried out lovingly or in anger. In general, manipulations
may not executed for communicative purposes. In Pavlovic’s taxonomy of gesture [93], the
manipulative and communicative gesture also stand as two parallel categories. But they
do contains the information which need interpretation in HRI. What is worth mentioning
is the overlap between the manipulative and communicative gestures. In the work of
Clark [22], a deep analysis of an communicative manipulation – “placing” is presented. A
simple example is that a purchase can be confirmed by placing the money on the counter.

According to Definition 2.1, manipulation is absolutely a kind of gesture. A concrete
definition is given by Quek [100]:

Definition 2.3 a manipulative gesture is one whose intended purpose is to control some
entity by applying a tight relationship between the actual movements of the gesturing
hand/arm with the entity being manipulated.

As mentioned before, it can be communicative or ergotic. Our work is focusing on the
latter, the manipulations not intended for communication, because we are focusing on
the case that the robots are in an passive, more observational state. By recognizing the
manipulative gestures, the robot could achieve attention to specific objects in the scene,
monitor the user state, analyze the task, and infer the intention of user, etc. For example,
developed the cooking support robot developed by Fukuda et al. [37], can recognize human
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manipulations of objects by sensing the movements of the markers on the objects and give
recommendations by speech or gesture.

The manipulative gestures have a variety of forms, from basic actions like touching, grasp-
ing to structured and more complicated cases like making a cocktail, from the real manip-
ulations in everyday life to the mouse actions on a computer desktop or the motions in a
virtual environment. They are different from each other in the temporal, spatial aspects,
the complexity, the manipulated objects, the contexts and the environments, etc. In order
to understand the work in this dissertation, the following subsections will give a close view
of the manipulative gestures in our attention, present the proposed recognition scenario,
and discuss the difficulties in a vision-based approach.

2.2.1 Discussion on Manipulation Recognition

In robotics, the word “manipulation” often denotes the movement of robot hand or arm
accomplishing a task, for example, a robot takes up a cup from a table. The main reason is
that the research on manipulation in robotics dedicates to the motion control, with which
a robot can help people finishing different kinds of tasks. Tightly related to robotics, in
HRI “manipulation” is used to indicate the motions of human hand. Robots can estimate
the status of the user by recognizing their manipulative actions. The different concepts
cause two different research questions on robots: how to perform an action and how to
recognize an action performed by human. The motion of a robot results from the control
signals sent to its motors. The control signals are either hardcoded or generated by a
learning process. The learning process could be a direct mapping of the motion between
the teacher and the student when both sides have the same embodiments and the signals
from the attached sensors on the teacher can be transferred to the motors of the student,
e.g. use cyberglove to control a robot hand [58]. Another learning mode is the so-called
“learning by observation”(LBO) [26; 117]. It is much harder than the former mode because
the signal transformation from external appearance to precise internal control is difficult.
But it is gaining more and more research interest because of the intuitive teaching style.
The learning of how to recognize human actions has similar approaches with the latter.
But the difference is that in the HRI the goal is to recognize an action with a certain
generality, not to repeat an action with high accuracy.

Manipulative gestures differ from the gestures used in communication in several ways.
Firstly, the performer has tactile sensation in the hand and force feedback from the object
being manipulated. But when manipulations are observed by remote sensing techniques
such as a camera, the force feedback to human fingers is not available to the receiver.
Therefore, in a vision-based approach for manipulative gesture recognition, the trajectories
of the human hand are more salient features than the pressure between the hand and the
object. Secondly, the hand motions during manipulations are affected by the objects
and their positions. For example, when taking a cup filled with water, the hand will
move slowly, when taking an empty cup, the hand will move faster. That means when
we interpret the hand motions, the related objects must be taken into consideration, too.
Thirdly, there is no guarantee that the performing hand is always completely visible to the
observer. The occlusion between human hands and objects make the tracking of individual
fingers infeasible and the appearance of the performing hand in images is deforming during
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manipulation. In this sense, the hand is represented by a blob in the images instead of
concrete 3-D models. The visual recognition of manipulative gesture is then to classify the
dynamic hand trajectories like “hand approaches a cup” rather than recognize the nearly
static manipulative state like “a cup is held in hand”.

Manipulative gestures are also distinguished from other gestures by the fact that their
logic and meaning are particularly clear. The sequential manipulation of “take a pencil”
and “move it to a notebook” should not only be recognized as two independent manipu-
lative actions but also as an entity with the underlying human intention “to write”. Some
researchers proposed theories of semantics and inference of action [18]. Being primarily
focused on computer vision our goal is to stay as connected to the visual signal as pos-
sible, where the particular semantic elements for example “take a cup” have direct visual
correlates.

2.2.2 An Indoor Scenario for Observation

Fukuda proposed a kitchen scenario for a cooking support robot [37]. All the objects are
attached with an IC tag. So the manipulation can be detected by sensing the movements
of those markers. In Moore’s work, a survilliant environment is set up to monitor the
indoor manipulations [80]. The cameras are mounted on the roof the rooms. Different to
those systems, our platform for the manipulative gesture recognition is a household robot.
These kind of robots are designed for serving humans as a companion in their daily life.
They are expected to act in an unstructured environment, such as an office or a private
home and communicate with nonexpert users in natural and intuitive ways.

In our work, the focus is on the object manipulations which happen in everyday life. The
recognition of such manipulations leads to a more pro-active behavior of the robot in
passive, observational situations. In order to achieve non-intrusive recognition, we choose
using the camera of the robot to avoid special markers or sensors on human or objects. In
domestic environments many actions are performed on a table top (e.g. preparing a meal,
decorating a table, performing typical office work, watering flowers). A common scenario
that well motivated is that the human sits at a table with normal height as a desk in an
office or a dinner table at home and performs daily housework or normal desk work on
it. It is assumed that a mobile robot moves to a place around the table where it is able
to observe the sequence of actions in focus and the field of view of robot camera is broad
enough that it need not to adjust its position or shift the camera to follow the movement
of human hand during the performance.

Because the robot moves around in the room and the user does not always sit at the same
position, it will not be feasible for the robot to go back to the same position and observe
the user from the same viewpoint every time. So the observation need to be view-variant
and from different distance.

The robot which our approach is intended for is the Bielefeld Robot Companion (BIRON)
(see Figure 2.5(a)), which is described in [44], [128] and [35] in detail. Its hardware plat-
form is a Pioneer PeopleBot from ActivMedia. It has three PCs for controlling the motors
and on-board sensors, image processing and speech processing and dialog separately. A
pan-tilt color camera (Sony EVID31) is mounted on top of the robot at a height of 141
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Figure 2.5: The Bielefeld Robot Companion (BIRON) and its system architecture

cm for acquiring images. It is the camera used by us for image perception. The system
architecture is shown in Figure 2.5(b) [61]. The modules which the manipulative gesture
recognition concerns are indicated by color. In the figure, it can be found that the gesture
recognition is not a isolated module which performs a pure bottom-up processing. The
scene model and object attention system provide top-down information and construct the
gesture context. The combined bottom-up and top-down mechanism will be deliberated
in Chapter 5.

2.2.3 Corresponding Problems in Vision-Based Approach

Visual interpretation of hand/arm movements has a tremendous advantage over other
techniques that require the use of mechanical transducers: it is non-intrusive. Figure 2.6
shows the block diagram of vision-based gesture recognition systems. First of all, the
subjects of interest from the input images must be detected, for example, the human
hands and the objects. Then their states, such as positions and velocities, are tracked
over time and fed into the recognition module. Recognizing gestures from these data is
a pattern recognition task which typically involves transforming the input into an ap-
propriate representation (feature space) and then classifying it based on a database of
pre-learned gesture models. This diagram is simple. Nevertheless, the implementation
carries a burden of different challenges.

detection & trackingimage recording motion representation classfication gesture description

feature space  parameter sets
 of classes

models of gestures

Figure 2.6: Block diagram of a vision-based gesture recognition system

The gesture modeling and recognition are essential to the interpretation of human gestures.
However, several imaging issues affect them from the very beginning: what kind of camera
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is appropriate for the manipulative gesture recognition purpose, mono-camera, stereo-
camera or multi-camera systems? does the camera stay at a fixed position or will it
move during recording? and from which view-angle are the performances observed? As
described above, a pan-tilt mono-camera is used on our robot platform. Compared to other
commercial products, this camera satisfies the system requirements and is economical. In
the proposed scenario, a fixed camera position is assumed throughout one observation. But
the view-angle varies over different observations. In most of previous works, the problem
of view-angle was ignored or a fixed viewpoint was assumed. It is challenging to take the
view-angles into consideration in gesture recognition when the gestures are observed by
a mono-camera because the variant projections of the same motion on 2-D images with
regard to the different view-angles result in a huge variance of the trajectories. In addition,
the distance between the camera and the human also affect image-based measurements.
Due to the pin-hole camera model, more far away the human is, more shorter the same
motion of the human will appear in the images. That means this motion will be perceived
by fewer pixels on the image. The effect of observing a motion far away is equal to
down-sampling the motion trajectory which is perceived in the near.

The next step after recording the images is to find the regions of interest from them. The
region of interest could be a moving area, an image patch with skin color, a concrete
object, a complete human body etc., which is dependent on the representation of targeted
gestures. In our case, detecting human hands and objects in the scene are the main
focus. Although many methods and algorithms have been developed for these purposes
during last decades, their applications are still limited in well-defined environment and
facing different challenges, for example, detecting human hands using color cue under a
various illumination conditions, recognizing the objects belonging to the same type but
with different appearances, etc. Moreover, human can easily recognize a known subject
even if it is partially occluded. But the occlusion is still a huge obstacle against robust
object detections in computer vision systems.

Motion representation and classification is the central module of a gesture recognition
system. It contains the predetermined models and the model parameter spaces for dif-
ferent classes. In order to classify the observed gestures into different clusters correctly,
the parameters in the gesture models should be representative in the proposed application
scenario and their space ought to be well-separated from each other. The parameters –
position and speed of the hand blob in the image coordinates are the intuitive represen-
tations of the hand motion. It can be used for a fixed camera view. If there are possible
translation and rotation of the images, the relative position and the direction of the hand
velocity are more appropriate for the recognition task. Of course, there are also a lot of
other representations developed for different scenarios. For example, Bobick and Davis
introduced the motion-energy images (MEI) and motion history images (MHI) [10], which
indicate the duration of motion at certain position in the images. Combining the MEI
templates from different view-angles, a view-invariant gesture recognition is achieved. Be-
cause of the various object positions and view-angles in our scenario, the choice of features
for manipulative gestures must take the translation, rotation and view-invariance of the
motions into consideration.

Before matching the observed feature sequence to the models, the step segmentation is
performed when the input to the classification module is a long-term observation. On one
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side, the long-term observation could contain different meaningful parts. It is no sense
to match it to individual models. On the other side, eliminating the trajectories which
are meaningless motions could decrease the system’s processing load. It is awkward to
insert or define special states indicating the start and end of a gesture into continuous
performance of human. Due to the ambiguity in the segmentation, instead of solving the
problem before matching, some researchers try to couple the segmentation to the matching
by searching the optimal start and end along the trajectory using dynamic programming
or other methods [1; 65]. This is also called gesture spotting.

Even if the difficulty in segmentation is solved, there are several well-known challenges
when matching the segmented observations to gesture models – spatial variance, temporal
variance, and subgestures. The spatial variance has two aspects. Firstly, repeated
performances of the same activity by the same human vary even when all other factors
are kept unchanged. Secondly, similar activities are performed by different individuals in
different ways. The temporal variance means that similar activities can be of different
temporal durations and also different activities may have significantly different temporal
durations. Subgestures are those gestures which are a part of another gesture, but also
carry their own meanings as individual entities. Because of their duplicated appearance in
different gestures, they bring much ambiguousness into the segmentation and classification.

From the observations to the descriptions understandable by humans, this gap is also
known as the symbol grounding problem. In a long-term observation, specially a sequential
object manipulation, human can have different interpretations of the images according
to different internal intentions. Therefore, the research question are on which level the
symbol grounding should be established when designing a system to recognize complex
hand actions and further more, if the symbols grounding is built up, how to achieve a
higher level comprehension of an observation from a sequence of symbols by modeling
their semantic, causal, or probabilistic relationships.

As mentioned in Section 2.1.2, the context plays an important role in the gesture interpre-
tation. Especially, understanding manipulative gestures only based on the hand motion
without object information is infeasible. But on the other end of the spectrum, there is
also an attention problem if there are many objects in the scene. An appropriate attention
on certain objects could lead to more precise recognition by getting rid of the noise from
unnecessary processing.

2.3 State of Art

In Section 2.2.3, the main difficulties for developing a vision-based manipulative gesture
recognition system are discussed. Before describing the contribution of this dissertation
on this topic, the current research state will be reviewed from several aspects.

2.3.1 2-D and 3-D Gesture Recognition

Based on whether modeling the motion of gestures on the image plane or in the real world
the research work is divided into two approaches: 2-D and 3-D based. The former can be
thought of as an approach which bypasses a pose recovery step and describe the gestures
in terms of simple low-level, 2-D features from a region of interest. Polana and Nelson
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refer to it as “getting your man without finding his body parts.” [98] This approach has
been used in sign language recognition [115], gesture based interface [123], where only
the hand blob were tracked over time. A priori knowledge of how the human body/hand
appears in 2-D images could benefit the detection and tracking. This approach is named
2-D approach with explicit shape models. The challenges for 2-D systems are the possible
occlusion to the region of interest and the different projections of the same motion on the
image plane due to variant view-angles of the observing camera.

An intuitive solution to the view-angle problem is to represent the motions in 3-D space.
However, the general problem of 3-D motion recovery from 2-D images is quite difficult
because there is no precise depth information in 2-D images. Therefore, the images from
stereo- or multi-cameras are used. Combining the projective functions of different view-
angles, the 3-D position of a point in 2-D images can be computed. Some researchers used
3-D information to recognize the human motions [133].

It is fair to say that the results of vision-based 3-D tracking without markers are still
limited at this point. To achieve better results, multicamera system with large size is
needed. But this requirement is too restrictive for most of the robotic platforms. One
approach is given by Schmidt et al. to track an elaborated 3-D human body model in
monocamera images by fusing multiple cues (edge, ridge color) [112]. This approach suffers
from the initialization problem, which is currently unsolved.

Attempting to recognize actions in 2-D images from different view-angles, Rao introduced
the view-invariant features – the so called dynamic instants [102]. They are the dramatic
changes of the spatio-temporal curvature of a 2-D trajectory. He argued that the same
action should have the same number of instants. But the trajectories of object manipu-
lations can have very different dynamic appearances because of the different positions of
the objects and the unpredictable movements which are far away from the objects. There-
fore, the dynamic instants proposed by Rao are not sufficient to describe the anticipated
manipulative actions.

2-D approaches are effective for the applications where human performs constrained move-
ment and single viewpoint is assumed. A 3-D approach seems more appropriate for rec-
ognizing complex human movements because it provides a more accurate, meaningful
representation of physical space which allows a better handling of occlusion and leads to
better discrimination between similar motions.

2.3.2 State-Based and Trajectory-Based Approaches

In order to narrow the gap between image perception and scene understanding, the image
contents are presented by symbols understandable by humans, such as the image of a cup
mapped to the label “cup”, the motion of a human hand approaching a cup interpreted
as “take cup”. After having labeled all items, every subsequent task is solved by manipu-
lating the labels. In some works, the mappings from real objects onto symbols were done
manually, leaving only the symbol manipulation to the machine. For example, Yamamoto
developed a system to recognize different Japanese temaes – a set of rules for serving
tea. The meanings of action segments are given by human. Then, different sequences are
classified by using Stochastic Context Free Grammar (SCFG) [132]. As it turned out, this
symbol grounding problem is not solved.
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In computer vision society, one of the tasks is to develop the algorithms which can extract
interpretable symbols from the images automatically. In the case of gesture recognition,
the motions will always be classified into a set of classes, which are indicated by symbols.
Generally, the approaches for the scene understanding are divided into two categories
according to their different symbol grounding solutions.

The first category is state-based1 approaches. The states can indicate both static scenes
like “hand stop” and dynamic processes like “approach a cup”. They are generated by
detecting one or more key states, without using explicit motion models. In the assembly
construction scenario [36], the states used are the presence of the elementary objects and
the assemblies. The assembly recognition is achieved by detecting the changes of the
states – the appearing and disappearing of the parts2 in the scene. Jo used a Finite State
Machine (FSM) for modeling possible state transitions in the manipulative gesture [55]. In
his approach, not only the states such as“hold”, “release”and “rest”but also the transition
conditions between them are predefined. Instead of searching the states from the images
directly, the system does the state transition when corresponding conditions are satisfied.

The other category is trajectory-based approaches. Different to state-based methods, the
symbols here are extracted by matching the trajectories to predetermined motion models.
The“trajectory”doesn’t mean that it is only a sequential representation of the positions of
points on a 2-D coordinate. It can be the tracking of any features. In McKenna’s visually
mediated interaction project, trajectory templates are built up for teleconferencing camera
controlling e.g. pointing left and pointing right based on the three features – the motion
area, the centroid displacement and the elongation of the motion [76]. The matching
of these templates are done in the framework of Condensation [6]. Lee used a set of
gesture commands to browse microsoft powerpoint [65]. The motion feature used is the
vector quantized direction of hand motion. The meaningful trajectories are spotted by a
threshold model based on hidden Markov model (HMM). In order to robustly recognize
the trajectories under the performance variance (see the discussion in Section 2.2.3), the
symbols in trajectory-based approaches normally denote only well-formed, short processes,
which are named primitives, or atomic actions. It is seldom that complex and long-term
actions are coded by trajectory models.

For a long-term action which consists of several primitives, the hierarchical model is a
common choice. The symbols are assigned through the low-level image processing and the
sequences of the symbols are modeled on higher level by grammar or probabilistic models.
In Chan’s work, a simple feature vector is used for modeling the interaction primitive, e.g.
approach. The transition of the semantic primitives are modeled by HMM [18]. Because of
the early symbolic abstraction of trajectory information, this method can only be applied
in a restricted scenario. Bui introduced the abstract hidden Markov model (AHMM) to
recognize the office work which happens in several rooms on a floor, e.g. “go to the service
room to take the printed document back” [15]. The trajectories in a room and the visiting
of different rooms are all modeled by HMM on different layers.

1It is also named symbolic-based approaches by some researches. Here, the concept of symbol is different
to that in symbol grounding because it represents only static states.

2the term “part” denote either an elementary object or an assembly made from elementary objects
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In sign-language recognition, hand trajectories are the dominant features. For emblem
gestures like “v” for victory, the static posture are more prominent. In some unrestricted
scenarios, like visual surveillance, video conference, neither trajectories nor some static
states are sufficient for representing the features. Therefore, there is a tendency to combine
the symbolic and trajectory-based approaches for the symbol grounding problem. In the
recent research on video-based event recognition, Hongeng et al. [49] proposed that an
activity is considered to be composed of action threads, each thread being executed by
a single actor. A single thread action is represented by a stochastic automation of event
states. The states are recognized from the characteristics of the trajectory and the shape
of moving blob of the actor using Bayesian methods. Similar to Hongeng, Robertson
used Bayes nets to fuse the samples from the the non-parametric training databases of
trajectories and local motion descriptors [105]. To recognize manipulative gesture, Moore
put forward the concept of objectspaces, which integrate sensory trajectory data and
symbolic object data together [80].

2.3.3 Gesture Recognition with Context

As described in Section 2.1.2, the context plays an important role in the interpretation
of hand motions within different scopes. For example, the extracted symbols from the
images could augment the meaning of the hand motion. In the attempts to add commen-
tary to tennis videos automatically, Robertson used the local motion descriptor and also
the location together with motion trajectory samples to infer the possible actions [105].
In Moore’s work, a camera mounted on the ceiling observes a human interacting with
different objects in a home or office scenario. He used the objectspace to combine both
types of information, sensory trajectory data and symbolic object data, in a structured
framework [80]. Certain image processing steps are carried out to obtain image-based,
object-based, and action-based evidences for objects and actions, which are integrated
using Bayesian networks. Action primitives are recognized from hand trajectories using
HMMs that are trained offline on different activities related to the known objects. While
this approach centers a context area around detected objects, hand-centered methods de-
fine context areas relative to a hand trajectory. Fritsch et al. [34] put forward such an
approach. In this case, the trajectory information is augmented in each time step by
contextual objects that are searched on-line using the context area bound to the moving
hand. This method is also implemented in a pointing recognition system [46].

On the situational level, the context could come from many aspects, e.g. the actions
happened before, the parallel activities from other agents and the scenario for the ac-
tions etc. Focusing on the temporal structure of the action performance, the state-space
models such as FSM, HMM and the extensions of HMM and grammar models are often
used [48; 25; 74; 86; 99; 78]. Implicit in the models is the assumption of strictly sequen-
tial sub-actions, which are adequate for the mapping into primitives. Bobick developed a
PNF (past-now-future) constraint network to model the temporal structure of actions and
subactions with overlappings [96]. An application is presented by Yu et al. [135]. They
argue that the eyes guide the hand in almost every action or object manipulation. The
gaze could be a context of the action to eliminate the effect of meaningless observations.
In their work, the eye motion is measured by a head-mounted eye tracker and used for
the segmentation of hand trajectories and the detection of objects. HMMs are used for
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action recognition which is purely based on trajectory information. The object and action
information are integrated on a symbolic level using action scripts.

The scenario as context can also be used to classify the ambiguous actions, e.g. “take a
cup” in the office is a hint for drinking, but the same action in a bathroom could be used to
infer “teeth brushing”. Once the scenario is known for a recognition system, the possible
actions could be predicted and the attention to the key subject could also be achieved.
In the modeling, it is normally taken as top-down (or goal-directed) approaches. Oliver
proposed a system framework which combines top-down with bottom-up information for
visual surveillance [91]. But in that paper, no clear solutions for the top-down prediction
have been provided. Khadhouri used this mechanism on the robot’s attention problem [59].
It is proved by his experiment that more confidence can be achieved on the correct action
with this mechanism.

Moreover, the social context such as the personal experience, the common sense existing
in the society, and the culture affects our everyday judgment. But on the state of art, the
models on this aspect are seldom in that area of vision-based action recognition.

2.3.4 Task Learning

Learning tasks from human demonstration is crucial because it is important for human-
centered robots to adapt their behavior according to the different situations and user
personalities. In the robotic society, there is always the expectation that the ordinary
people, not professionals, teach the robot tasks. The easiest and desirable way of teach-
ing is to just demonstrate the behavior so that the robot automatically learns it from
observation and builds an abstract representation of the task. The framework is called
“learning from observation”. There are two approaches dedicated to different aspects: one
is the imitation learning in which the demonstrated trajectories are directly transformed
to robot motion, the other is background knowledge based or deductive systems which
designs a set of task-dependent primitives and tries to recognize the subject task as a
sequence of symbolic primitives. Because our focus does not lie on the precise repetition
of the user motions but the interpretation of human actions, only the latter approach will
be discussed.

In the smart homes project, the inhabitant actions of the user are predicted according to
task models, which are Markov models that have been generated from an unsupervised
clustering of the data recorded in 1250 days [103]. For a household robot, it may be feasible
to group similar activities after observing a certain amount of tasks for many times. But
more naturally, users will expect that the robot is able to learn some tasks from only a few
demonstrations. Aiming to teach a robot how to perform everyday manipulation tasks,
Ogawara proposed the task model which is a sequence of essential interactions [87]. In
his definition, an essential interaction happens between two objects which consists of the
grasped object, the target object and the relative motion between them and extracted by
the robot from multiple demonstrations of one task. The trajectories are clustered and
represented by HMM [88]. More focusing on the causality among the subtasks, Pardowitz
developed a task precedence graph (TPG) for task modeling [92]. It is a directed graph
with a set of subtasks as basic elements and the directed connection between two subtask
indicates a task execution rule which must be complied with. The TPG could be initialized
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as a most restrictive model with one instance and generalized by dropping unessential
precedence relations when new demonstrations are available.

The approaches above, expecially Ogawara and Pardowitz, depend on a robust detection
of the elementary actions in the tasks. The robustness in their systems is realized by using
different sensors simultaneously, such as dataglove, the stereo vision system with multi-
cameras. However, a mobile robot prohibits the use of attaching sensors and large-scale
camera systems.

In the visual surveillance scenario, much work in the recognition of human activities uses
stochastic models to cope with the uncertainty in the detection of primitives. HMM and its
extensions have become very popular in this area [25; 74; 28; 135; 13; 86; 130]. Other than
using probabilistic models, activities with predefined context or inherent semantics are
also represented by event-based predicate logic [27], deterministic action grammars [11],
stochastic context-free grammars [54] etc.

As state of art, a full theory and specification of all human behaviors is still beyond
the capabilities of current knowledge representation and reasoning systems. The task
modeling and learning must be done in a reasonably constrained environment.

2.4 Contributions

In this thesis, we are trying to provide a solution for a mobile robot to recognize the hu-
man’s manipulative gestures from different single camera views. One important feature of
manipulative gestures is that they are interactions between human and objects. Compar-
ing to the interpretation of communicative gestures which can be recognized purely based
on trajectory information, the understanding of manipulative gestures is more relying on
the object contexts. Different to the hand-centered approach put forward by Fritsch et
al. [34], the approach we propose is called object-oriented. This is similar to the object
represention scheme from Moore et al. [80]. What goes beyond their framework is the
consideration of different perspective views as well as the spotting of meaningful parts in
longer hand trajectories.

While most of the related work in gesture recognition assumes a fixed static camera
view, such kind of constraints do not apply for mobile robot companions. Instead of
using 3-D approaches, we chose 2-D representation for the manipulative gestures. A
manipulative primitive recognition scheme is proposed that is able to generalize a primitive
model, which has been learned from data items observed from a single camera view, to
variant view points and different settings. We tackle the problem of compensating the
view dependence of 2-D motion models on three different levels. Firstly, we pre-segment
the trajectories based on an object vicinity that depends on the camera tilt and object
detections. Secondly, an interactive feature vector is designed that represents the relative
movements between the human hand and the objects. Thirdly, we propose an adaptive
HMM-based matching process that is based on a particle filter and includes a dynamically
adjusted scaling parameter that models the systematic error of the view dependency.

To infer higher level intentions in the manipulative gestures, we propose a unified graphical
model with a two-layered recognition structure. On the lower layer, the object-specific
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manipulative primitives are represented as HMMs which are coupled with task-specific
Markovian models on the upper level. In this structure, we have a combined bottom-
up top-down processing loop. Thereby, a dynamic attention mechanism is realized that
utilizes the task-level prediction of possible primitives in order to restrict the object types
possibly detected as well as the action primitives possibly recognized.

In this thesis, we also propose an online task-learning strategy based on prelearned object-
specific manipulative primitives. The task model can be initialized with few labeled data
and updated incrementally when new unlabeled data becomes avaliable. Moreover, with
the possibility to reject, the system is able to detect the unseen tasks during learning
process and build up new task models. These two capabilities – to reject unmodeled
sequences and to learn from unlabeled data – are essential for a human-like interaction
style with a robot, which does not separate between a learning mode and a recognition
mode. Learning of new task models can take place during normal interaction. If the
robot does not understand a specific action sequence the human interaction partner can
instantly react on it by repeating the sequence, so that the robot is able to establish a
new model for it.



3. Feature Extraction for
View-Variant Observation

The images recorded in a normal indoor environment contain large amounts of information,
but most of it is not relevant for the targeted human motion. Therefore, the first step
in vision-based recognition of human actions is to extract relevant information which can
be used for further processing. As discussed in Section 2.2.3, this step is to detect and
track the subjects of interest in the images, represent their motion in an appropriate
form. It is a very important and also difficult step for an intelligent system because that
the motion representation is an abstraction of the sensory data, which should catch the
features of the motions in the real world, be compact and reliable for later processing.
Once the representation has been fixed, the following step to perform a comparison so
that classification or recognition can take place. If the representations of the different
actions have much ambiguousness, it is hard to achieve successful classification of the
observations.

In our work, the attention is focusing on the recognition of human’s object manipulations
on a table top. These actions could be“take a cup”, “put sugar into cup”or a concrete task
like“prepare coffee”. Since an action takes place in 3-D, and is projected onto a 2-D image,
the projected 2-D trajectory may vary depending on the viewpoint of the camera. This
variance poses a big problem in the representation and interpretation of hand trajectories.
In most current works on action recognition, the issue of view-invariance has been ignored
or a fixed view-angle is assumed [34]. However, the assumption does not hold in our
scenario because it is costly and unnatural to replicate the point of view of a mobile robot
to the human actions throughout all observations. Besides the problem of the multi-view-
angle, the choice of features must take the features of hand motion in object manipulations
into consideration. The manipulative gesture is different to the face-to-face interactional
gesture because the former reflects the interaction between the human’s hand and the
objects while the latter is typically characterized by a meaningful trajectory of the pure
hand movement, e.g. the American Sign Language [114].
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This chapter is dedicated to the design, analysis, and extraction of the feature vector for
our manipulative action recognition under multi-view observation and the relevant low-
level image processing. Firstly, an overview of the feature definitions in the work of multi-
view gesture recognition is presented, which leads to the statement of our approach. After
that, the computation for locating the hand and objects in the images will be explained.
The third section puts forward the construction of the interaction feature vector and the
analysis showing its properties.

3.1 Gesture Recognition with Different View-Angles

A single viewpoint of the camera is commonly assumed in gesture recognition because
in situations such as giving commands and sign-language recognition, the active user can
face the communication partner – the computer – directly. In passive, more observational
scenarios like smart rooms and visual surveillance, the human actions and gestures can
be observed from different view-angles. Therefore, the approaches to solve the problem
of view-angles are dedicated to achieve a view-invariant recognition of human actions.
Our scenario is similar to the latter but has its own character because of the platform
– a mobile robot. It indeed will observe the human from different view-angles. But the
capability of a 360◦ view-invariant recognition is also redundant because, at first, it is not
necessary to recognize the human action from the back, secondly, the robot can move to a
position where it has a good view of the partner when it wants to know something. From
this viewpoint, we will first discuss the approaches for view-invariant action recognition
and then present our approach to the problem of view-angles in the following subsections.

3.1.1 Related Work

From a computational perspective, actions are best defined as four-dimensional pat-
terns in space and time. Weinland introduce Motion History Volumes (MHV) as a free-
viewpoint representation for human actions in case of multiple calibrated, and background-
subtracted, video cameras [125]. The MHV is an extension of Bobick’s and Davis’s Motion
History Images (MHI) from 2-D to 3-D and is represented in cylindrical coordinates. The
motion descriptors are the vectors which are formed by concatenating the Fourier mag-
nitudes over Azimuth for all height and radius. The system has achieved good results on
the recognition of 11 body motions like “sit down” and “walk”. A similar action represen-
tation Volume Motion Template (VMT) is put forward by Roh [106]. In his work, the
disparity maps from a stereo camera add the depth information of the motion to the 2-D
images. The gesture classification is done by the least square distance measurement to
the templates.

In principle, many possible sets of features contain enough information to reconstruct
the original gesture and be adequate for recognition. To find the optimal feature choice,
Campbell evaluated different feature vectors in a T’ai Chi gesture recognition task given
translation and rotation of the camera relative to the performer[17]. The raw data (x, y, z)
in a 3-D world coordinate are received from a stereo vision system. The feature vectors
are derived from the raw data, such as the Cartesian velocity (dx, dy, dz), polar velocity
with angular velocity (dr, dθ, dz), etc. The elements in the feature vectors are tracked
over time and the gestures are modeled by HMMs. The work came to the conclusion that
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the feature vector (dr, dθ, dz) had the best overall recognition rate. An interesting result
is that the Cartesian velocity (dx, dy, dz) which is not designed to be rotation invariant
achieved 77% accuracy on the rotated data despite 45◦ shift of the observational angle.

The approach of 2-D recognition rather than using 3-D information is motivated by Jo-
hannson’s experiment with Moving Light Displays (MLD) [56]. In the experiment, people
were outfitted in black in a dark background with light attached to their joints. The ob-
server were unable to recognize a human in the image based on the set of static lights. But
when the people started moving, the observers were able to discern the presence of a hu-
man and recognize its actions. This experiment indicates that the observer can recognize
the action relying purely on the motion information and reconstruct a model from 2-D
data unconsciously. To recognize actions in video sequences, Rao use dynamic instants as
view-invariant features [102]. For each dynamic instant in the trajectory, frame number,
location of the hand and “sign” of the instant are stored. The matching is performed
on the trajectories with the same number of dynamic instants and same sign permuta-
tions. It is highly dependant on the segmentation process. Bashir et al. formulated
the view-invariant trajectory representation as an open-end shape representation problem
which has a wealth of recent work involving affine-invariant image shape description [5].
He derived two affine-invariant representations for motion trajectories based on Curva-
ture Scale Space (CSS) and Centroid Distance Function (CDF). The first approach using
CSS representation detects the CSS contour maxima and codes the trajectories based on
the locations of these peaks by HMMs. The limitation of this approach is that it does
not model the data between segmentation points. This shortcoming is alleviated in the
CDF+PCA based representation scheme. It is a subtrajectory-based representation. For
segmentation, the discontinuities in the trajectory are detected with the help of veloc-
ity and acceleration. Then, the centroid distance function from the subtrajectory data
is computed. The PCA coefficients of the segmented data are then stored to train the
HMMs. It outperformed the CSS representation in the experiment on the recognition of
the Australian sign language. The data set contains the systhesized trajectories according
to the observational view-anlge ranging from −60◦ to 60◦.

3.1.2 Our Approach

As described before, there are two aspects in selecting features for the perception of
the action in our work. The first is that the actions will be observed from different view-
angles. However, the qualitative perspective of a robot with regard to manipulative actions
performed on a table top (as described in Section 2.2.2) can be assumed to be roughly
stable, if the robot is able to choose an appropriate position relative to the human actor
with the help of navigation and human detection module. The second is that the actions
are not self-explanatory trajectories. The object context must be taken into consideration
in the manipulative gesture recognition. Because of these features, a 2-D approach is
chosen by us. The reason why we are not using a 3-D representation is two fold. On one
hand, the 3-D approaches suffer from the tracking problem in mono-camera images. It is
still a field of active research [112]. Better tracking results can be achieved by using stereo
cameras, which poses further constraints on the hardware setting. On the other hand, for
object manipulations, the representation of the relative motions between the hand and
the objects won’t have much variance as the projected trajectories which are represented
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by the absolute positions of the hand on 2-D images. The limited view-angle also poses a
restriction on such variance.

In experiment of Campbell on the evaluation of different feature vectors, the results on
Cartesian velocity (dx, dy, dz), that 77% accuracy is achieved on the rotated data with
45◦ rotation despite that the feature was not designed to be rotation invariant, show a
good evidence that the variance of the velocities caused by the different view-angles can
to a certain extent be handled by the HMMs. In our approach, we don’t use the velocity
of the hand but a set of features to describe the relative motion between the hand and
objects. The details of the feature vector will be described in Section 3.3.3.

When the trajectories of an action observed in 2-D images from different view-angles
are coded by one model, the variance comes not only from the different projections of
one trajectory but also the variant performance of the same action over the repetitions.
Inspired by the work of Wilson [127], we think the difference of the trajectories of the
same action from different viewpoints can also be considered as a kind of systematic
error. Wilson used parametric HMMs (PHMM) to model the gestures with the same
meaning but different scalar quantity, like the gesture accompanying “this” within the
sentence “I caught a fish. It is this big”. Instead of using a time-invariant linear model for
the observation probability, we use a dynamic scaling parameter of the observation model
in order to cope with nonlinear changes of the trajectories caused by different view-angles.
The details of the approach will be presented in Chapter 4.

3.2 Low-Level Image Processing

In order to represent the relative motion between the hand and the objects, the human
hand and objects must be detected. In the following of this section, it will be explained
how the human hand is detected and tracked over time. The approach used for detecting
the objects in the scene will also be introduced. There is no tracking process on the
objects because we focus on the hand motion rather than reconstruct the object motion
under severe occlusion during the manipulations.

3.2.1 Hand Detection and Tracking

Today, there exists a variety of different methods for extracting hands from images, each
with specific advantages and limitations. The cues commonly used can be grouped into
three categories: motion, shape, and color. Each of these cues has certain strengths and
weaknesses that make it suitable for specific applications. For example, the motion cue
does not only detect moving hands but also the motions of manipulated objects as well as
any non-static objects in the background. It is therefore only useful in domains with static
background. The shape is only a good cue if the hand that executes the motion exhibits
a stable visual structure during the motion. However, human hands usually exhibit a
wide range of shapes during interacting with the environment. Only if the hand shape
variations are limited, e.g., if most of the fingers are visible during the motion, an adaptive
hand-shape tracker could be used [4]. The color cue is suitable for feature extraction in
arbitrary domains with respect to hand shape variations and motions in the background,
as it is rotation and scale invariant as well as motion independent. However, the major
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challenges to a color-based hand extraction is the variations in lighting conditions. Even
in a room without windows, different lighting conditions are encountered at different
positions in the room. In a typical office environment with the different intensity of the
light passing through the window during the day, this becomes even worse.

An adaptive skin-color segmentation algorithm developed by Fritsch is utilized by us for
hand detection in a color image sequence [33]. The skin-color is represented in normalized
color space, that is obtained by removing the luminance from the color representation
through normalization of the individual RGB values:

r =
R

R +G+B
g =

G

R +G+B
b =

B

R +G+B
(3.1)

As the value for b can be calculated based on the values of r and g with b = 1− r − g, it
does not contain additional information and this color space is therefore also referred to
as r-g color space or chromatic color space. According to the work of Störring et al. on
the properties of skin color in faces of different ethnical subjects under changing lighting
conditions [116], it is shown that the area occupied by the skin color distribution of all
different skin types under all possible lighting conditions occupies a shell-shaped area in
the normalized color space. This area can be modeled by two quadratic functions [113]
and is referred to as the skin locus. Using a measured skin locus allows us to realize a
preprocessing step in skin color segmentation by discarding all pixel values that are not
contained in the measured skin locus.

Consequently, we use Gaussians to model skin color distributions. The skin likelihood for
a pixel with color value x = (r, g) can be calculated for a Gaussian G(i) with mean µi
and covariance Σi using:
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1√

2π det Σi
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{
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i [x− µi]
}

(3.2)

To achieve real-time performance, an unimodal Gaussian is used for each individual skin-
colored area. The overall probability of a pixel is calculated as the maximum of the skin
likelihood of the individual Gaussians from 3.2:

p(x) = max
i
pi(x) (3.3)

As a result, it provides for every pixel its skin likelihood for the input image. This
probability image is binarized using a classification threshold Sclass to obtain a label image
containing skin and non-skin pixels. The threshold is set to classify a fraction of 98.5% of
the training pixels correctly and ignore spurious outliers contained within the last 1.5%
of the training pixels, which has been determined empirically.

Pr(Y > Sclass) = 0.985 ·Ntrain, Y = p(x) (3.4)

To remove isolated pixels classified as skin and provide a more homogeneous result, a
median of size 5×5 is applied to smooth the label image. Next, a connected components
analysis is carried out in the segmentation step to obtain the region segmentation result.
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(a) (b) (c)

Figure 3.1: The screen shots from hand detection and tracking

In every frame, the skin-colored regions that exhibit motion will be segmented out. For
the objects like hand blob with unknown or flexible shape, the segmented region will be
expanded to an area two times the size as before and be used as the region for updating
the skin color model. The hand blob is tracked over time using Kalman filtering [107].
The model of the Kalman filter represents the kinematic motion equation of one point
using a constant acceleration model. The center of mass (COM) of each region is tracked
individually. Figure 3.1 shows the screen shots of the processing. Figure 3.1(a) shows
the raw image. Figure 3.1(b) is the thresholded image indicating the skin-color pixels.
Figure 3.1(c) displays the trajectories from skin colored area tracking. Currently only
single hand manipulations are assumed. Therefore, the bigger skin-color region is labeled
as face. The smaller is the hand. The hand observation ohand

t is represented by the hand
position (hx, hy) at time t.

ohand
t = (hx,t, hy,t) (3.5)

3.2.2 Object Information Acquisition

To represent manipulative gestures by relative motions between hands and objects, not
only the human hand but also the individual objects must be extracted from the images.
Therefore, a reliable detection of objects is crucial for the overall system performance.

The field of object recognition has seen tremendous progress over the past decades, both
for specific domains such as face detection [121], and for more general object domains [120].
But it is also fair to say that the general solutions to object recognition is still far from the
current state. The challenges are coming from many aspects. For the individual object
instance, its appearance in 2-D images is affected by the distance and the view-angle of
the camera. Creating invariance to scaling, translation, rotation is a big problem. The
situation gets even worse when it is partially occluded. Note that some subjects are not
invariant at all, especially w.r.t. 3-D rotations. Moreover, objects are not generally pre-
sented against a neutral background, but are embedded in clutter. When the recognition
goes to the category layer, representing the huge variance of the objects in the same class
like “lamp” is still an open question to the computer vision researchers. An overview of
the object recognition is not the focus of our work. For this purpose, the text books
[32; 23; 108] and recent papers are good references.
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Figure 3.2: Object detection using SIFT feature

In order to avoid partial occlusion problems with interacting hands and achieve the size
of the objects in the scene, we use a Scale Invariant Feature Transform (SIFT) [75] based
object recognizer in our system. The scale-invariant features are efficiently identified by
using a staged filtering approach. The first stage identifies keypoint locations in scale
space by looking for locations that are maxima or minima of a difference-of-Gaussian
function. Each point is used to generate a feature vector that describes the local image
region sampled relative to its scale-space coordinate frame. The SIFT keypoints derived
from an image are used in a nearest-neighbor approach to index candidate object models.
Collections of keypoints that agree on a potential model pose are first identified through
a Hough transform hash table, and then through a least-squares fit to a final estimate of
model parameters. When at least 3 keypoints agree on the model parameters with low
residual, there is strong evidence for the presence of the object. By grouping the scales
of the matched keypoints, the sizes of the objects in the scene also can be estimated.
But this method generates very few or no keypoints if the objects are very plain and do
not have much detail. So we simplified the scenario by using the objects with obvious
textures.

It is supposed that the detector is applied on the static scene because it will be costly to
track the object during the manipulations which cause severe occlusion of the object in
hand. Consequently, the relative motion is purely defined based on the hand trajectory
that approaches an object instead of considering the object-in-hand context in which the
object is being moved. If a moved object is applied to another object, the second object
defines the object context.

The observation vector of a detected object oobj
i contains its position (ox, oy), a unique

identifier (ID) for each different object type in the scene and its height oh and width ow.
As we can have several objects in the scene, the overall object observation vector contains
multiple objects:

oobj = {oobj
1 , . . . ,oobj

i , . . . ,oobj
L } (3.6)

with
oobj
i = (ox, oy, ID, oh, ow) (3.7)
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Figure 3.2 shows the results of object detection using SIFT feature. There are two gray
images because the SIFT feature is calculated based on gray images. It can be found
that in this scenario the objects were robustly detected with correct size and orientation.
However, no object detector is perfect. In the left image an deletion error is also presented.

3.3 Feature Vector Construction for Manipulations

Even if the hands and objects are detected from the images, their positions in images
coordinate can not be used directly for recognition. This section will firstly present the
object-oriented strategy chosen for the motion representation. Then, a concept named
object vicinity is introduced by us to avoid the unnecessary processing on the meaningless
trajectory and scale the feature vectors. After that, the definition of computation of the
individual elements of the feature vector will be explained. A comparison between our
feature vector and traditional ones will be given at the end of this section.

3.3.1 Object-Oriented Approach

There are three main approaches to couple the hand trajectories and symbolic object
context in the image: hand-centered, object-centered, and parallel processing. The hand
centered approach is put forward by Fritsch [34]. The basic idea is that a trajectory
template gains more weight if the expected object is found in the searching area which is
predefined for the template. In the work of constructing task models for manipulations,
Ogawara represent the motion in the target object’s coordinate frame, i.e., in an object-
centered way [87]. The objectspace introduced by Moore is a hierarchical framework
which integrates preknowledge and different kinds perceptions, such as object and motions,
together in a parallel way [80]. The multicues are fused by a Bayesian network to infer
the human activities. Another example of parallel processing is the work from Yu [135].
Parallel hidden Markov models (PaHMMs) are applied to integrate the object in the
direction of eye gaze and hand movements for task recognition.

The proposed approach by us is called object-oriented w.r.t. two different aspects: it is
object-centered in terms of trajectory features that are defined relative to an object, and
it uses object-specific models for action primitives. Each object has its own set of manipu-
lative primitives because we argue that different object types serve different manipulative
functions and even manipulations with the same functional meaning are performed dif-
ferently on different objects. Here we take the idea from Moore that the objects can be
organized familiar to classes in the object-oriented programming language. Object types
can be thought as classes. Then, a concrete object instance could correspond to an “ob-
ject” of one class with its own properties. The relationships between the object types and
different layers for description can be managed by the communication and inheritance
between the classes.

3.3.2 Object Vicinity

For manipulative gesture recognition, the concept of object vicinity is introduced by us.
Its functionality is two-folded. On one side, it can decrease the system load by getting rid
of the processing on the trajectories where the hand is still far from the objects because
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Figure 3.3: The projection of an object vicinity on a 2-D image

it is common sense that the relative movement between hand and object contains less
interaction features when they are far away from each other. On the other side, the
motions in the vicinities of different objects can be unified when they are scaled with
regard to the size of the vicinities.

The vicinity of an object can be defined in images or in the real world. But the correct
distance of two subjects in the real world can not be deduced from their distance in 2-
D images without depth information. The object vicinity is defined in real world. In
our scenario, the manipulations will mainly happen on a flat table surface. Therefore, a
vicinity of an object on the table is defined in the 2-D plane rather than in 3-D space. It is
centered in the middle of the object and limited by the ratio β of its radius and the object
size, which is shown in Figure 3.3. One point in this definition that we need to specify is
how we can get the projection of it in 2-D images without a complete 3-D representation.

Because the vicinity of an object is relative to the object size in the real world, the pro-
jection of the objects come to consideration first. To project a point from real world to
an image plane, the position of the point in the camera coordinates and the intrinsic cal-
ibration parameters of the camera must be known. The contour of the object projections
will vary according to three aspects: the view-angle of the camera, the object-camera dis-
tance and object poses on the table. In our system, there is no precise 3-D models of the
objects. The object poses and their distances to the camera are also infeasible. Therefore,
we assume that the size of an detected object in the image is inverse proportional to its
distance to the camera.

robj = C · 1

doc
(3.8)
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C is a constant value, robj is the object radius in the image and doc is the distance between
camera and object. This assumption is equal to the situation that the camera is always
observing a sphere which is on the optical axis of the lens.

To achieve the projection of the border of the object vicinity, further conditions are needed.
Despite the assumption on the inverse proportion between the object size in image and its
distance to the camera, the table surface can also pose differently in the camera coordinate.
On the robot platform, the tilt angle of the robot camera cp is known in realtime. Plus
that a flat table surface is assumed in our scenario, the round boundary of a vicinity will
be projected into a closed curve in 2-D images, Figure 3.3 illustrates geometry of the
projection. Note that the closed curve is not an ellipse with the object in the center. In
order to avoid a complex representation of the curve caused by the 3-D to 2-D projection,
it is approximated to by an ellipse. It is centered by the detected object. The lengths of
the axes of the ellipse for object i is calculated as

ai = ri · β · cos(arctan(
o′x
f

))

bi = ri · β · sin(cp + arctan(
o′y
f

))

(3.9)

In it, ai and bi are the horizontal and vertical semi-axes. ri is the radius of the object
i in the image. o′x and o′y are the offset of the object position to the image center. f
is the camera focus measured in pixels. This approximation is derived from the above
assumption on object size. The first assumption is equal to the situation that the object
is on the optical axis of the lens. Therefore, the optical axis of the camera is “moved”
to the center of the detected object. The direction of the object can be computed by
combining the camera tilt angle and the object position in the image. The vicinity is then
projected as if the optical axis would go through the detected object. By applying the
approximation, the pre-knowledge for achieving the vicinity of an object in 2-D images
only consists of the tilt angle and intrinsic calibration parameters of the robot camera.
There is no need to know the distance between the robot and the table, the height of the
table, the height of the robot, etc., which gives great flexibility to the system.

Based on this vicinity, a pre-segmentation step of the hand trajectory is performed that
ignores irrelevant motions for primitive recognition. Considering the possible occlusions
in manipulation and the uncertainty in moving an object, a segment is started when the
hand enters the vicinity or when an object is detected and the hand is already in the
vicinity (object put down into the scene). It ends when the hand goes out of the object’s
vicinity or when the object is lost after the hand moves away (object has been taken).
As a consequence, the trajectory is segmented differently based on the different objects
in the scene. To handle this multi-observation problem, one processing thread is started
for each detected object. In the next chapter, the processing of a single thread will be
introduced. There, the final segmentation is directly coupled with the recognition step.

3.3.3 Feature Definition and Evaluation

Because of the object-centered trajectories representation, the features of the hand motions
are different with regard to the different objects in the scene. In the light of work of
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Campbell [17], we choose the motion descriptors which reflect the relative motion between
hand and object to construct the feature vector. Furthermore, considering view-variant
problem, an approximate 3-D to 2-D projection of the object vicinity was put forward in
the previous section. The shape of the ellipse indicates the distortion of the 3-D trajectory
because of the projection. Therefore, if the distortion is considered for extracting the
motion features from 2-D trajectories, the real features of the motions in 3-D will be to a
large extent preserved.

In each object detected in the image, the interaction of the hand and the object is rep-
resented by a five-dimensional feature vector vfi that is calculated from ohand and oobj

i .
It contains: distance di between the object and the operative hand, magnitude of hand
speed vi, change of hand speed, ∆vi, change of speed direction ∆αi, as well as the angle
γi of the line connecting object and hand relative to the direction of the hand motion.

vfi = (di, vi,∆vi,∆αi, γi) (3.10)

The hand-object distance di is not the absolute distance in the images but measured with
regard to polar coordinates scaled by object size. Suppose that hand position relative to
the center of the object vicinity is (h′x,i, h

′
y,i),

di =

√
h′x,i

2

ai2
+
h′y,i

2

bi
2 , (3.11)

The magnitude of hand speed vi is the substraction of di of two successive time step.
The change of the hand speed ∆vi is then the first order derivative of vi. The change of
speed direction ∆αi is calculated based on the last three hand positions. It has the sign
“positive” when the hand turns to the side where the object is and “negative” when other
way around. The hand-object angle γi is the included angle between current hand motion
direction and the line connecting the object and the hand.

This feature vector is NOT view-invariant. But as presented in Section 3.1.2, instead of
seeking for view-invariant features, our approach pursues a representation of the gesture
which has small variance when a gesture motion is observed from different view-angles.
When we have a close look at the individual components, these components can be sorted
into two categories–distance and angle. The first category includes di, vi,∆vi which are
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calculated based on the distances between the consecutive points of the hand. By intro-
ducing the object vicinity, the values of these features of the same action perceived from
different view-angles can be transformed into a normalized and comparable feature space.
In practice, ∆vi is discretized into 2 discrete states ≥ 0 and < 0 indicating acceleration
and deceleration of the hand and keep di and vi continuous to achieve a balance between
the precision and the demanding on the large mount of training data. The second cate-
gory consists of ∆αi, γi. They are not affected by the object vicinities and have a large
variance with respect to view-angles. Therefore, the change of speed direction ∆αi is
discretized into 2 discrete states ≥ 0 and < 0 indicating whether the hand turns to the
side of the object or not. The hand-object angle γi is discretized into 2 discrete states
[0◦ . . . 90◦] and (90◦ . . . 180◦] which means the hand moves towards the object and away
from the object individually. Concluding the manipulations on all components, the effect
of the view-variant observation on the feature vector is depressed.

Figure 3.5 shows the effect using simulated data. Two trajectories are from the same
action in reality, which is 50cm long and performed horizontally on the table surface with
constant acceleration, but observed from two view-angles with 90 degree difference in
horizontal angle and the same pitch angle 20.5◦. Figure 3.5(a) display the trajectories and
objects in a 3-D space. Figure 3.5(b) shows their projected trajectories in an 2-D image
coordinate with size 320x240. Figure 3.5(c) is the original distance vs. speed display
measured in pixel and Figure 3.5(d) presents the same information in the transformed
feature space. Figure 3.5(e) shows continuous relative angles at different time step. In
Figure 3.5(f), the relative angles are discretized into 2 discrete states.

To show whether the defined feature vector is useful to decrease the variance caused by
the view-angles, the similarity of the trajectories before and after the space transformation
must be measured. The Lp norm is a popular point-to-point measure of distance, and it
is defined for two m-dimensional points a and b as

Lp(a, b) =

[
m∑
i=1

|ai − bi|p
]1/p

(3.12)

Setting p to 1 gives the Manhattan distance, and the Euclidean distance is obtained when
p = 2. In order to measure the similarity between two trajectories in different scales, we
extend the Lp norm to measure the similarity of two trajectories traj1 and traj2:

Lp(traj1, traj2) =
1

N

N∑
j=1

[
1
m

m∑
i=1

(
|traj1,ji − traj2,ji|
|traj1,ji + traj2,ji|)

p

]1/p

(3.13)

N is the length of the trajectory. When p = 2, the Lp of these two trajectories in Fig-
ure 3.5(c) and Figure 3.5(d) are 0.5862 and 0.3432 individually. Therefore, the difference
of the two trajectories are depressed after the transform.

Except using simulated data, we also test the feature vector on real data. In the exper-
iment, 4 cameras are used. They recorded the performed action simultaneously. Their
positions and view-angles are listed in Table 3.1. They have the same height as the robot
BIRON [44]. Figure 3.6 shows the pictures captured by the cameras. Figure 3.7 shows the



3.4. Summary 34

Figure 3.5: The effect of feature transform (a)3-D display of the trajectories (b) projected tra-
jectories in pixel coordinates (c)distance vs. speed measured in pixel (d) distance vs.
speed in transformed feature space (e)continuous relative angle vs. time (f)discrete
relative angle vs. time

different trajectories of a “take cup” primitive observed from these 4 cameras. On the left
column the features of the primitive are measured in pixel. The right column shows the
values we used. The Lp of the speed-distance trajectories before and after transformation
are 0.4829 and 0.3330. This means for the real trajectories the variance of them is also
decreased by using the transformed feature vector.

3.4 Summary

Different to much related work in gesture recognition which assume a fixed static camera
view, our system aims to solve a view-independent recognition problem because a mobile
robot companion could observe the actions from different view-angles in our scenario. This
chapter discussed different approaches which focused on the view-independent gesture
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recognition. These approaches can be generally sorted into two categories: 3-D and 2-
D approach. After an analysis of the real observation conditions of our robot and also
taking the hardware constrains of our robot and into consideration, a 2-D based approach
is chosen by us.

More concretely, this chapter presented three aspects towards this direction. Firstly, the
low level image processing methods on 2-D images are put forward. The human hands
are detected by color-based segmentation and tracked through Kalman filter. The static
objects in the scene are detected using SIFT feature based object detector. Secondly,
we proposed an object-oriented approach to combine the hand trajectories and object
context together. The object-oriented approach has two aspects: it is object-centered
in terms of trajectory features that are defined relative to an object and it uses object-
specific models for manipulative primitives. This approach gives a clear answer to the
question which appears in many other works dealing with object context: when and how

Table 3.1: The positions and view-angles of the cameras
cam 1 cam 2 cam 3 cam 4

dis. to table (cm) 100 100 150 100
pitch angle ( ◦) 17.3 0 0 30.4

horizontal angle ( ◦) 21.6 20.5 12.4 22.7
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to include object context in gesture recognition. In addition, it also provides an easy way
to pre-segment the hand trajectories and decrease the processing load. The last but not
least point in this chapter is the design of the feature vectors for the manipulative gesture
recognition. We used an interactive feature vector that represents the relative movements
between the human hand and the objects. According to the different appearance of the
features in view-variant observation, the feature vector are designed as semi-continuous.
Instead of measuring the features directly in pixel of the images, the features are scaled
by the object vicinity. The concept of object vicinity comes from the idea that more
far away is the hand from the object, less connectivity exists between them. The space
of object vicinity in 2-D images is calculated only based on the camera tilt and object
detection results. The distance between the robot and the table, the height of the table,
the height of the robot, etc. are not needed, which gives great flexibility to the system.
The advantage of the scaled feature vector over original measurements in pixel is proofed
by using both simulated data and real data.
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Figure 3.7: The effect of feature transform shown by real data



4. Manipulative Primitive Detection

The previous chapter presented how the feature vectors describing the manipulative ges-
tures are extracted from the images. observed motion. The next step for recognizing
the action is to interpret the trajectory. Here the symbol grounding problem arises (see
Section 2.2.3). We choose a two-layer approach – manipulative primitive and manipula-
tive task, which is motivated by neuroscientific evidence on motor primitives – a set of
movement programs that form a vocabulary for the generation of a variety of complex
movements [94; 104]. A manipulative task is made of different elementary manipulations
on individual objects. For example, “water a plant” consists of “take a cup”, “pour water
into the plant pot”, and “put down the cup”.

As an object-oriented approach (see Section 3.3.1), the manipulative primitives are typical
hand operations on objects, for example, a cup can be taken – “take cup”. But how can
we correctly detect the primitives from a continuous performance? Although an object
vicinity is defined for cutting away the hand trajectories which are less relevant to object
manipulation (see Section 3.3.2), it is a rough segmentation and mainly used for decreasing
the processing load and providing a normalized space for the features (see Section 3.3.3).
The relative movements of hands in an object vicinity or part of them could also be
meaningless. Therefore, the trajectory segmentation/spotting problem will be discussed
together with the matching methods in this chapter.

As mentioned in Section 2.2.3, there are two main aspects affecting the modeling and
recognition: the human performance and the image perception process. The former in-
cludes aspects like variations in the repeated performance of the same activity even for
the same person. Different individuals perform similar activities in significantly different
ways. In this context, defining the onset and offset of an activity is challenging as similar
activities frequently have different temporal durations. The latter contains issues like oc-
clusion during performance as well as variant viewpoints and observational distances. To
cope with the trajectory variance coming from the human performance, a lot of methods
have been put forward, such as dynamic time warping [1], artificial neural networks [60],
and hidden Markov models [101]. For the trajectory variance caused by the variant cam-
era view-angle, Section 3.1.1 gave an overview of the solutions. But to our knowledge,
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there are no framework which takes both aspects – human performance differences and the
perception differences into account. We novelly differentiate these variance into random
and systematic “errors” and integrate them in an unified graphical model [71].

In this chapter, we will present our framework to detect the primitives from the view-
variant observations, which is the implementation of the idea in Section 3.1.2. Firstly
we briefly describe the applications which are dealing with the elementary trajectory
recognition and trajectory spotting in the related work. Then, two typical trajectory
matching methods and their extensions for trajectory spotting will be introduced. Based
on an analysis of these techniques, the novel algorithm named particle filter realized
hidden Markov model matching (PF-HMM) is put forward. In this section, it is explained
in detail how it can be used for the detection of the primitives which contains the different
types of variances. At last, we evaluate the proposed algorithm in an experiment and give
a conclusion of it.

4.1 Related Work

Because of a wide range of applications of the human motion recognition in visual surveil-
lance, advanced user interfaces, etc., the trajectory matching methods have been investi-
gated for a long time. There are two main approaches: template matching and state-space
methods. In the template-based matching methods, the templates used are quite different
to each other. Bobick and Davis made use of the binary motion-energy images (MEI)
and motion history images (MHI) as two components in a temporal template. The recog-
nition is done by measuring the distance of the moment statistical description between
input MEI and MHI and the templates [10]. In order to achieve the online segmentation,
an exhausting minimum distance search goes backward through the interval between the
minimum and maximum duration of the action. Waldherr used temporal templates to
model the command gestures to the robot [124]. Gesture templates are composed of a
sequence of feature vectors, constructed from a small number (e.g., 5) of training exam-
ples. The temporal template matcher matches the gesture template to the most recent n
feature vectors. For varying numbers of n, in their implementation, n = 40, 50, . . . , 80, the
Viterbi algorithm was used for time alignment. The Viterbi alignment employs dynamic
programming to find the best temporal alignment between the feature vector sequence
and the gesture template. The advantage of using template matching technique is its in-
expensive computational cost and simplicity in implementation. However, it is relatively
sensitive to noise and the variance of the movement duration.

The approach based on the state-space models defines a set of key states and uses certain
probabilities to generate connections between the states. Nowadays it has been widely
applied to prediction, estimation and detection of temporal series. The HMM is the most
representive method used to study sequential signals. It is effectively used in speech
recognition [50], handwriting recognition [126] and human activities recognition [25; 74;
90]. An early work by Starner and Pentland concentrated on recognizing the gestures of
hands performing american sign language (ASL) [115]. Their method for recognizing ASL
with HMM reaches a recognition accuracy of over 91% on a set of 40 gestures. This rate
can be increased to above 99% by using a grammar for ASL sentences. In their work, the
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subject wears distinctly colored gloves on both hands and sit in a chair in front of the
camera to aid hand tracking.

By defining the transitions between states and the state dependend observations in a prob-
abilistic way, variations can be coped with to a certain degree. However, the standard
forward algorithm to calculate the probabilities of the HMM candidates given the observa-
tion has the assumption that the whole sequence is emitted by one HMM. In order to spot
the partition which conforms to a HMM from a long observation, some approaches, e.g.
HMM-based threshold model [65] and normalized Viterbi algorithm [81] were put forward.
Because the output score of the continuous observations of a given HMM will decrease
monotonouslly, a sliding window is used to tune the weights of the observation. Although
the state-space approach may overcome the disadvantages of the template matching ap-
proach, its learning usually involves complex iterative computation. Meanwhile, how to
select the proper number of states and the topology of the state network remains a difficult
issue.

Artificial neural networks (ANN), especially recurrent neural networks (RNN) have also
been used for gesture recognition [60]. ANN has achieved good recognition results on
static patterns like postures. However, it is not suited for the manipulative primitives
having large temporal variance. It also needs a large mount of data for training.

Recently, the sequential Monte Carlo (SMC) method also named particle filter (PF) is
getting more and more focus in the pattern recognition society, which allows an on-line
approximation of probability distributions using samples (also named particles). It has
been used for template-based trajectory matching [6].

In order to keep the spatio-temporal variability of HMMs and use the advantage of PF
on tracking the models with weighted particles, a PF realized HMM matching method is
proposed to detect object-specific manipulative primitives. This process is building the
bridge between the low-level image processing and the task knowledge in the system.

4.2 Elementary Trajectory Recognition and Spotting

Because of the continuous observation in our scenario, the segmentation of the motion tra-
jectories is a necessary step. The gestures are supposed to happen naturally in an indoor
environment. There is no clear onset and offset of an elementary trajectory. Therefore
the segmentation is coupled with the recognition process. It is also named spotting, which
first appeared in the speech recognition society to find keywords in a text. The spotting
of the trajectory is more difficult because of the arbitrary form of the signal. There are
two main approaches focusing on the trajectory spotting: dynamic programming (DP)
based methods and HMM based methods. The strategy for the presentation of these two
approaches is that for every approach, firstly the basic matching method for segmented
trajectories will be introduced, and then the derivative – the spotting method.

4.2.1 Dynamic Time Warping

One of the earliest approaches to isolated word speech recognition was to store a proto-
typical version of each word (called a template) in the vocabulary and compare incoming
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speech with each word, taking the closest match. Dynamic time warping (DTW) was intro-
duced by Sakoe [109] to match the speech waveforms, whose duration and the strength of
each spoken sound are variant. It is a technique that finds the optimal alignment between
two time series if one time series may be “warped” non-linearly by stretching or shrinking
it along its time axis. This warping between two time series can then be used to find
corresponding regions between the two time series or to determine the similarity between
the two time series. In addition to speech recognition, dynamic time warping has also
been found useful in many other disciplines, including data mining, gesture recognition[1],
and gene sequence analysis etc.

The dynamic time warping problem is stated as follows [110] : Given two time series x,
and y, of lengths n and m,

x = x1, x2, . . . xi, . . . xn

y = x1, x2, . . . xj, . . . xm
(4.1)

construct a warp path w

w = w1, w2, . . . wk, . . . wl, max(n,m) ≤ l < n+m (4.2)

where l is the length of the warp path and the kth element of the warp path is

wk = (i, j) (4.3)

where i is an index from time series x, and j is an index from time series y. The warp
path must start at the beginning of each time series at w1 = (1, 1) and finish at the end
of both time series at wl = (n,m). This ensures that every index of both time series is
used in the warp path. There is also a constraint on the warp path that forces i and j to
be monotonically increasing in the warp path. Every index of each time series must be
used. Stated more formally:

wk = (i, j), wk+1 = (i′, j′) i ≤ i′ ≤ i+ 1, j ≤ j′ ≤ j + 1 (4.4)

The optimal warp path is the minimum-distance warp path, where the distance of a warp
path w is

d(w) =
k=l∑
k=1

d(wk) with d(wk) = d(xi, yj) (4.5)

d(w) is the distance (typically Euclidean distance) of warp path w, and d(wk) is the
distance between the two data point indices (one from x and one from y) in the kth

element of the warp path.

A dynamic programming approach is used to find this minimum distance warp path.
Instead of attempting to solve the entire problem all at once, solutions to sub-problems
(portions of the time series) are found, and used to repeatedly find solutions to a slightly
larger problem until the solution is found for the entire time series. A two-dimensional n by
m cost matrix D, is constructed where the value at D(i, j) is the minimumdistance warp
path that can be constructed from the two time series x′ = x1, . . . , xi and y′ = y1, . . . , yj.
The value at D(n,m) will contain the minimum distance warp path between time series
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x and y. Both axes of D represent time. The x-axis is the time of time series x, and the
y-axis is the time of time series y.

To find the minimum-distance warp path, every cell of the cost matrix must be filled. The
rationale behind using a dynamic programming approach to this problem is the following.
The value at D(i, j) is the minimum warp distance of two time series of lengths i and
j. If the minimum warp distances are already known for all slightly smaller portions of
that time series that are a single data point away from lengths i and j, the value at
D(i, j) is the minimum distance of all possible warp paths for time series that are one
data point smaller than i and j, plus the distance between the two points xi and yj. Since
the warp past must either be incremented by one or stay the same along the i and j axes,
the distances of the optimal warp paths one data point smaller than lengths i and j are
contained in the matrix at D(i− 1, j), D(i, j − 1), and D(i− 1, j − 1). So the value of a
cell in the cost matrix is:

D(i, j) = d(i, j) + min(D(i− 1, j − 1), D(i− 1, j), D(i, j − 1)) (4.6)

The warp path to D(i, j) must pass through one of those three grid cells, and since the
minimum possible warp path distance is already known for them, all that is needed is to
simply add the distance of the current two points to the smallest one. After the entire
matrix is filled, a warp path must be found from D(1, 1) to D(n,m). The warp path is
actually calculated in reverse order starting at D(n,m). Whichever of these three adjacent
cells has the smallest value is added to the beginning of the warp path found so far, and
the search continues from that cell. The search stops when D(1, 1) is reached.

The DTW algorithm is able to find the optimal alignment between two time series. How-
ever, it is not supposed to find an optimal matching of a template in a longer trajectory.
To this end, the method known as Continuous Dynamic Warping (CDP) is put forward
by Oka [89].

Continuous Dynamic Warping (CDP): Let o and z denote variables to represent
input and reference time sequences, respectively. An input time sequence o is a function
of the discrete time t which is infinite:

o = {f(t)|t = 1, 2, 3, . . .}. (4.7)

A reference time sequence is defined by z which represents a template:

z = {z(τ)|1 ≤ τ ≤ T}. (4.8)

The parameter τ is bounded as 1 ≤ τ ≤ T , where T is the length of the reference pattern.
Another two variables are also needed here, namely, d(t, τ); a local distance between f(t)
and z(τ), and D(t, τ); a minimum accumulated value of local distances. The variable
D(t, τ) has initial conditions for the cases of t = −1 and t = 0:

D(−1, τ) = D(0, τ) =∞. (4.9)

An iteration rule to update D(t, τ) defined by:
for τ = 1,

D(t, 1) = 3 · d(t, 1), (4.10)
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for τ = 2,

D(t, 2) = min


D(t− 2, 1) + 2 · d(t− 1, 2) + d(t, 2)

D(t− 1, 1) + 3 · d(t, 2)

D(t, 1) + 3 · d(t, 2)

(4.11)

for 3 ≤ τ ≤ T ,

D(t, τ) = min


D(t− 2, τ − 1) + 2 · d(t− 1, τ) + d(t, τ)

D(t− 1, τ − 1) + 3 · d(t, τ)

D(t, τ − 2) + 3 · d(t, τ − 1) + 3 · d(t, τ)

(4.12)

The iteration is based on DP to optimally accumulate local distances along a locus on
the (t, τ)-plane from the line with t = 1 to the line with τ = T giving the minimum
accumulated value. The CDP output, A(t), is defined as follows:

A(t) =
1

3 · T D(t, T ). (4.13)

The constant value 3T becomes a coefficient parameter to normalize the value of D(t, T ) to
be compared with corresponding values of other reference patterns with different length.
A segmented part of an input sequence is obtained each time if the value A(t) gives a
local minimum below a threshold value.

In brief, continuous DP finds the optimal path and minimum accumulated distance
by choosing the minimum local path successively from bottom left to top right in the
reference-input plane. The D(t, T ) is the distance between the whole reference and the
input considering temporal warps from 1/2 to 2 times. It has a quadratic time and space
complexity that limits its use to only small time series data sets.

4.2.2 Hidden Markov Model

Hidden Markov model is a powerful statistical tool for modeling generative sequences that
can be characterized by an underlying process generating an observable sequence. HMM
have found application in many areas interested in signal processing, and in particular
speech processing, but have also been applied with success to the recognition of human
motion sequences in computer vision [74; 28; 135].

HMM is represented as a collection of finite states connected by transitions. Each state
is characterized by two sets of probabilities: a transition probability, and either a discrete
output probability distribution or continuous output probability density function which,
given the state, defines the condition probability of emitting each output symbol from a
finite alphabet or a continuous random vector. Even if the output symbols are observable,
we cannot say exactly what state sequence produced these observations and thus the state
sequence is “hidden”.

The formal definition of a HMM is as follows:

λ = (A,B,Π) (4.14)
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s is our state alphabet set, and v is the observation alphabet set:

s = (s1, s2, . . . , sN) (4.15)

v = (v1, v2, . . . , vM) (4.16)

We define q to be a fixed state sequence of length T , and corresponding observations o:

q = (q1, q2, . . . , qT ) (4.17)

o = (o1, o2, . . . , oT ) (4.18)

A is a transition array, storing the probability of state j following state i. Note the state
transition probabilities are independent of time:

A = [aij], aij = P (qt = sj|qt−1 = si) (4.19)

B is the observation array, storing the probability of observation k being produced from
the state j, independent of t:

B = [bi(k)], bi(k) = P (xt = vk|qt = si) (4.20)

Π is the initial probability array:

Π = [πi], πi = P (q1 = si) (4.21)

Two assumptions are made by the model. The first, called the Markov assumption, states
that the current state is dependent only on the previous state, this represents the memory
of the model:

P (qt|q1:t−1) = P (qt|qt−1) (4.22)

The independence assumption states that the output observation at time t is dependent
only on the current state, it is independent of previous observations and states:

P (ot|ot−1, qt) = P (ot|qt) (4.23)

Given a HMM λ, and a sequence of observations o, the probability of the observation
sequence given a model P (o|λ), can be evaluated. This problem could be viewed as one
of evaluating how well a model predicts a given observation sequence, and thus the most
appropriate model from a set can be chosen. In order to avoid the redundant calculations
in directly evaluating P (o|λ)(refer to [101] for details), the forward probability variable is
introduced.

αt(i) = P (o1, o2, . . . , ot, qt = si|λ) (4.24)

The algorithm for calculating P (o|λ) is called the forward algorithm and is as follows:

1. Initialization:
α1(i) = πibi(o1), 1 ≤ i ≤ N. (4.25)

2. Induction:

αt+1(j) = [
N∑
i=1

αt(i)aij]bj(ot+1), 1 ≤ t ≤ T − 1, 1 ≤ j ≤ N. (4.26)
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3. Termination:

P (o|λ) =
N∑
i=1

αT (i). (4.27)

Besides the evaluation of the observation given HMMs, there are two other key issues
related to the HMM: decoding and learning. The aim of decoding is to discover the
hidden state sequence that was most likely to have produced a given observation sequence.
One solution to this problem is to use the Viterbi algorithm to find the single best state
sequence for an observation sequence. The aim of learning is to estimate the model
parameters λ = (A,B,Π) that best describe a process given a set of examples from this
process. For this purpose, the Baum-Welch algorithm is widely used. To save the space
in the text, please refer to [101] for the details of these two algorithms.

The validity and performance of a HMM-based approach to the classification of isolated
image sequences have been demonstrated in the past. However, many applications in a
natural environment – like our gesture recognition task – require an automatic temporal
segmentation. This problem is related to the procedure of keyword spotting in speech
recognition where HMMs are successfully used for a long time. In keyword spotting, each
reference pattern is defined by a keyword model and all the other patterns are modeled
by a single HMM called a garbage model or a filler model. The garbage model in speech
recognition represents acoustic nonkeyword patterns. It is usually trained using a finite
set of nonkeyword samples. But there is a main difference: continuous speech is composed
of a defined and countable number of keywords and non-keywords, whereas in the case
of a continuous video stream a defined number of key image sequences is embedded in a
background of an indefinite number of movements and transitions.

Threshold Model: For correct gesture spotting, the likelihood of a gesture model for
a given pattern should be distinct enough. Unfortunately, although the HMM recognizer
chooses a model with the best likelihood, we cannot guarantee that the pattern is really
similar to the reference gesture unless the likelihood value is high enough.

A simple thresholding of the likelihood often does not work. Therefore, Lee [65] proposed
a new concept, called threshold model, that yields the likelihood value to be used as
a threshold. A gesture is recognized only if the likelihood of the best gesture model is
higher than that of the threshold model. It is an ergodic model with the states copied
from all gesture models in the system and then fully connect the states (see Figure 4.1).
In this model, each state can be reached by all other states in a single transition. Output
observation probabilities and self-transition probabilities in this model are kept as in the
gesture models, but all outgoing transition probabilities are equally assigned as

aij =
1− aij
N − 1

, for all j, i 6= j (4.28)

where aij is the transition probability from state si to sj and N is the number of states
(the sum of all states excluding the start and final states). The start and final states
produce no observation.

The new ergodic model can match any described gestures. However, a gesture is better
described by the dedicated model because the temporal order of subpatterns is better
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Figure 4.1: The threshold model introduced by Lee and Kim [65]

described in the model. These characteristics illustrate that the likelihood of the new
model can be used for an adaptive threshold of the likelihood of gesture models. In
this sense, the new ergodic model is termed threshold model. The threshold model differs
from the garbage model in that its likelihood provides a confidence limit for the likelihoods
calculated by other gesture models, while that of the garbage model is just a similarity
measurement.

As described by Lee and Kim [65], the likelihood of the target gesture model soars up
above the threshold when the forward pass gets close to the end of a gesture. The time
satisfying such a condition can be called a candidate end point (CEP). Once we obtain
CEP, its corresponding start point can easily be found by backtracking the Viterbi path
to the start state of left-right HMM. Several constraints are set for choosing the optimal
CEP. One limitation of the model is that the threshold model is constructed by combining
all the gesture models in the system, the number of states in the threshold model is equal
to the sum of the states of all gesture models excluding the start and final states. This
means that the number of states in the threshold model increases as the number of gesture
models increases.

Normalized Viterbi Algorithm: The normalized Viterbi Algorithm is introduced by
Morguet and Lang [81]. The basic idea is to use sliding windows and form a local evalua-
tion of the observations. Using the logarithm of the state probability density function (pdf)
f̄si,t = log(fsi

(ot)) and the transition probabilities āi,j = log(ai,j), the Viterbi algorithm
recursively accumulates and maximizes the local score Dsi,t for every HMM state:

Dsi,t = max
j

[Dsj ,t−1 + āi,j] + f̄si,t. (4.29)

The output score, which is the score DsN ,t of the last state, is crucial to the continuous
recognition process. But the standard Viterbi algorithm cannot be used since, depending
on the average state pdfs f̄si,t , the output score will permanently increase or decrease
on the average. To stabilize the average score, it has to be normalized to its respective
Viterbi path length.
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For that reason, a local path length Lsi,t , which allows recombining paths to have different
lengths, is introduced

Dsi,t = max
j

[
Dsj ,t−1 · Lsj ,t−1 + āi,j + f̄si,t

Lsj ,t−1 + 1

]
.

Lsi,t = Lsk,t−1 + 1 with k = index of best sj

(4.30)

The output scores of an HMM λi are smoothed by averaging the scores in an interval
between −τ and +τ . The end of gestures can be detected by finding the peaks which are
greater than a model dependent rejection threshold Dλi

th . The model dependent threshold
is expressed by a single relative rejection threshold Srel with the help of the model specific
maximum and minimum scores:

Dλi
th = Dλi

max − Srel · [Dλi
max −Dλi

min] (4.31)

In the experiment, this method achieved good results on detecting a set of predefined
gestures. By tuning the value of Srel, the system can achieve a balance between the
recognition rate (ratio of correctly recognized gestures to the total number of key gestures)
and false acceptance rate (ratio of the number of wrongly accepted gestures to the number
of key gestures). One point which is not clear is how the model specific maximum and
minimum scores are chosen.

4.3 Manipulative Primitive Modeling and Detection

In the previous section, the basic techniques – DTW and HMM for trajectory matching
and their extensions for elementary gesture detection in continuous observation are in-
troduced. Although both of them give a similarity between any two trajectories and the
matching decision is made by choosing an appropriate threshold, in practice, the DTW
algorithm is more assumed to match the trajectories which are experiencing speed differ-
ence or shape distortion, the HMMs are more suitable for the signals which have similar
state propagation and a Gaussian random error of observation. If the signal does not
comply with the assumptions, their classificatory capability will be inhibited. Therefore,
in this section, a detailed analysis of our observation will be presented. According to the
properties of the signals, the manipulative primitive models are constructed. To match the
observations using these models, the sequential Monto Carlo method is chosen by us. Its
basic theory will be described in the second part of this section. The concrete algorithm
dedicated to our matching purpose will be put forward in detail in the third part of the
section. It is named particle filter realized hidden Markov model matching (PFHMM).

4.3.1 Primitive Model

The recognition scenario for our system has been discussed in Section 2.2.2. The robot
observes and aims to detect the manipulative actions, which happen on a table top, from
different view-angles. The approach chosen by us was briefed in Section 3.1.2. Different
to the approaches either using 3-D gesture models or being based on 2-D view-invariant
features, our approach is focusing on modeling the variance of the trajectories in an
appropriate way.
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Figure 4.2: The trajectories of manipulative primitives: comparison between different persons
and repeats

In order to achieve a representation of the motions of manipulative actions, a semi-
continuous feature vector is constructed (see Chapter 3) which is aimed to achieve the
smaller inner-class variance and larger inter-class differences. The acquired trajectories
are shown in Section 3.3.3.

Here, it is necessary to have a look at the trajectories from different aspects. Figure 4.2
shows several repeats of primitive “putdown cup” performed by different persons (using
different colors). The actions were filmed by the same camera. Figure 4.3 shows several
repeats of primitive “putdown cup” performed by the same person but observed from
different view angles (different view-angles are indicated by different colors). The top-left
subfigures of both figures are presenting the trajectories of continuous features in speed-
distance coordinate. The discrete features are displayed in other subfigures in feature-time
coordinate. Because the discrete features are coarse discretized and are quite similar within
both figures, we pay more attention to these two top-left subfigures. These subfigures
show three kinds of variations of the trajectories: the variance of the repetition of a
primitive by one performer, the variance of the performance of a primitive from different
performers, and the variance of the observation on a primitive performed by a person but
from different view-angles. It can be found that in both subfigures, the variance of the
repeats of a primitive by one performer is smaller than the other two. The variance caused
by different performers and the variance caused by different view-angles are comparable.
If the system is proposed to achieve a person independent recognition, the variance of
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Figure 4.3: The trajectories of manipulative primitives: comparison between different views and
repeats

a primitive is the accumulation of all three kinds of variances. The problem is that the
model with such huge tolerance to the variance will cause many insertion errors during the
continuous primitive detection. But for a personal robot, a person dependent recognition
is also reasonable. Therefore, only the variance of repetition and the variance caused by
different view-angles are taken into consideration.

When we have a close look of the top-left subfigure of Figure 4.3, it can be found that
the variance of repetition keeps stable even when the repeats are observed from different
view-angles. The effect of a different view-angle on a set of trajectories is not dispersing
the set of trajectories but a little shifting and distortion of the complete set. It is like a
systematic error which causes bias in measurement which leads to measured values being
systematically too high or too low. What is worth notice is that the “bias”, which comes
from the view variant observation is not linear to the original model. It is different to the
parametric HMM proposed by Wilson [127], in which a linear scaling is supposed.

Therefore, in our system the two different variances are handled differently. For the basic
model, the HMM is used by us because it can handle both the spatial and temporal vari-
ance of the trajectories and has a complete learning strategy which is missed by template
matching techniques like DTW. Then, the repetition variance of the primitives is covered
by the observational probabilities of the HMMs. For the variance caused by different
view-angles, an extra node is added into the topology of the HMM, which is used to tune
the mean value of the HMMs. The model can be represented by a dynamic Bayesian
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Figure 4.4: The manipulative primitive model shown as dynamic Bayesian Network

Network (see Figure 4.4). It is a two-time-slice representation. The directed arrows indi-
cate the dependencies between the states in the current and between the consecutive time
slices. Because of the object-oriented approach (see Section 3.3.1), the possible HMMs p0

t

are generated according to the object detection oobjt . The HMMs p0
t have corresponding

hidden states qt. Different to the normal parameter set λ = (A,B,Π) of an HMM, a
terminal probability E is added. It reflects the terminal probability of an HMM given a
hidden state q. Therefore, based on the current HMM p0

t and hidden state qt, the state
of node et can be estimated on every time step . It is used to indicate whether the HMM
ends here and to influence the prediction of the nodes in the next time slice. ot is the
observation of the hidden state qt. The observational probability here covers the variance
of primitive repetition. The node θt is an extra parameter scaling the observation. It has
an initial value and changes slightly over times. With this property it can tune a HMM
to fit the observation from different view-angles.

However, the scaling parameter can not be estimated before the observations are available.
The traditional algorithms to evaluate the matching between the observation and HMMs
like forward algorithm can not be used here. Therefore, the particle filter widely used in
the recursive Bayesian filtering is chosen by us. It is a technique for implementing the
recursive Bayesian filter by Monte Carlo simulations. In the next section, the Sequential
Monte Carlo Method will be introduced. After that, the algorithm particle filter realized
Hidden Markov Model Matching will be described in detail.

4.3.2 Sequential Monte Carlo Method for Trajectory Matching

Let us assume that the human activity is given by a sequence ot.

ot = (o1, . . . , ot) (4.32)

For each time step t, the state of the stochastic process giving rise to the observation ot is
denoted by the random variable qt. To simplify the representation, qt and ot are written
as scalar variables, but in general they could be vectors. As a statistical model, the aim
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of our analysis is to compute the distribution P (qt|ot). According to the Bayes’s rule, it
turns to:

P (qt|ot) = P (qt|ot,ot−1) =
P (ot|qt,ot−1) P (qt|ot−1)

P (ot|ot−1)

= c P (ot|qt,ot−1) P (qt|ot−1) (4.33)

= c P (ot|qt) P (qt|ot−1)

In this equation, P (qt|ot−1) is the a priori density and P (qt|ot) is the a posteriori density
respectively. It is based on whether before or after the measurement at time t is incor-
porated. c = 1/P (ot|ot−1) is a normalization factor independent of qt. According to the
markov process assumption, the conditional observation density P (ot|qt) for a measure-
ment at time t is independent of the observation history ot−1, and depends only on the
current state pdf:

P (ot|qt) = P (ot|qt,ot−1) (4.34)

The P (qt|ot−1) is the prior from the accumulated observation history up to time t − 1.
This is equivalent to the posterior at the previous time step P (qt−1|ot−1) predicted to the
actual time step:

P (qt|ot−1) =

∫
P (qt|qt−1)P (qt−1|ot−1) dqt−1 (4.35)

Based on this model, a human activity can be tracked over time by calculating at every
time step first the a priori density P (qt|ot−1) from Eq. 4.35 and then evaluating the a
posteriori density P (qt|ot) with Eq. 4.33 based on the new measurement ot. This method
to track the state probability density function over time with integration of measurements
is known as recursive Bayesian filter.

Different to Kalman filter and HMM, which are also recursive Bayesian filters, sequential
Monte Carlo (SMC) method could model a non-linear, non-Gaussian state pdf by approx-
imating it using a large set of weighted samples, named particles. When it is used for
filtering purpose, it is also called particle filter. These particles are propagated over time
using simple importance sampling (IS) and resampling mechanisms. Asymptotically, i.e.
as the number of particles goes to infinity, the convergence of these particle approxima-
tions towards the sequence of probability distributions can be ensured under very weak
assumptions.

The complete set of particles is written as:{
(s

(1)
t , π

(1)
t ), . . . , (s

(N)
t , π

(N)
t )

}
, (4.36)

where, N is the number of particles, each sample s
(i)
t has its associated weight π

(i)
t .

For N →∞, the overall a posteriori probability P (qt|ot) at time t given the sequence of

states qt = {q1, q2, . . . , qt} and samples s
(i)
t = {s(i)

1 , s
(i)
2 , . . . , s

(i)
t } can then be represented

by

P (qt|ot) ≈
N∑
i=1

π
(i)
t δ(qt − s

(i)
t ) (4.37)
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Figure 4.5: The propagation of the sample set in a particle filter (from [33])

The sequence of observations ot = {o1, o2, . . . , ot} is implicitly contained in Eq. 4.37 as for

every time step t the observation ot is used for calculating the weights π
(i)
t . The temporal

propagation of theN weighted samples is carried out through first propagating the samples
to the new time step t+ 1 and then updating the weights. The state propagation usually
contains a deterministic drift based on the system dynamics and some diffusion resulting
from the uncertainty in the system dynamics (see Figure 4.5).

Sequential Importance Sampling The original method used for propagating a sample
distribution over time is sequential importance sampling (SIS). Assume that there is a
probability density f(y) that is difficult to sample because it is what we want to estimate
but for which a proportional pdf r(y) is available that can be evaluated:

f(y) ∝ r(y) (4.38)

If we have an importance density t(y) from which we can easily draw samples x(i), we can
calculate a weighted approximation to f(y) by:

f(y) ≈
N∑
i=1

π(i)δ(y − x(i)) with π(i) ∝ r(x(i))

t(x(i))
(4.39)

In this approximation, the weights π(i) compensate for the difference between the impor-
tance density t(y) and the probability density f(y).

Using importance sampling, the weights in Eq. 4.37 can be calculated. This requires an
importance density t(qt|ot) for drawing samples s

(i)
t giving:

π
(i)
t ∝

P (s
(i)
t |ot)

t(s
(i)
t |ot)

(4.40)
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If only a filtered estimate P (qt|ot) is needed at sequential time steps and the human
activity can be modeled by a first-order Markov process, it can be shown (see [2]) that
the weights can be calculated sequentially from:

π
(i)
t ∝ π

(i)
t−1

P (ot|s(i)
t )P (s

(i)
t |s(i)

t−1)

t(s
(i)
t |s(i)

t−1, ot)
(4.41)

After a few iterations of the weight calculation using this type of importance sampling, a
few samples will have high weights while most of the samples will have negligible weights.
This degeneracy phenomenon cannot be avoided in the standard SIS approach and results
in a waste of computational power for updating a large amount of particles having small
weights. To circumvent the degeneracy phenomenon, either the importance density must
be chosen very carefully or a resampling of the sample distribution must be introduced.
Today there exists a wide range of particle filtering approaches that follow the basic SIS
algorithm outlined above but differ in the choice of importance density and/or resampling
step.

Sampling Importance Resampling A specific particle filtering technique called sam-
pling importance resampling (SIR) is better known as Conditional Density Propagation
– Condensation introduced by Isard and Blake [52] to track objects in noisy image
sequences. In the SIR algorithm the importance density is chosen to be the prior density:

t(s
(i)
t |s(i)

t−1, ot) = P (s
(i)
t |s(i)

t−1) (4.42)

This leads to a simplification of the weight update Eq. 4.41:

π
(i)
t ∝ π

(i)
t−1P (ot|s(i)

t ) (4.43)

Resampling is performed in SIR at every time step, so that π
(i)
t−1 = 1/N and the weight

update becomes:
π

(i)
t ∝ P (ot|s(i)

t ) (4.44)

Notice that the importance density is independent of the observation ot and, consequently,
the state space is explored without any knowledge of the observation. Additionally, re-
sampling in every time step could result in a loss of diversity among the samples, as the
samples with high weights will be selected very often during resampling. If the process
noise is small, the samples selected several times during resampling will not differ very
much after the sample propagation. Therefore, the sample set will eventually contain
multiple instances of the same sample. However, in computer vision applications the ob-
servations obtained from image data are usually very noisy so that sample set degeneracy
is very unlikely.

Following the original publication, this tracking framework has been extended to automat-
ically switch between several movement models to provide a mechanism for classification
of the movements [53]. For this purpose, a multinomial label µ is added to each sample

s
(i)
t indicating the movement model the sample belongs to:

s(i) = (x, µ) with x = (x1, . . . , xm), µ ∈ {1 . . . l} (4.45)
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A model specific sample propagation from time t to time t + 1 is used to propagate the
samples depending on the model they represent. The recognition of a specific model is
realized by calculating at every time step t and for every model µ the model probability
Pt(µ = j) based on all samples belonging to this model:

Pt(j) =
∑
i ∈ Υj

π
(i)
t with Υj = {k | s(k)

t = (x, µ = j)} (4.46)

Now at every time step the highest model probability indicates which model is currently
dominant in the state space and therefore best represents the observed data.

4.3.3 Particle Filter Realized Hidden Markov Model Matching

As already discussed in the Section 4.3.1, the features of manipulative primitives vary
with different viewpoints. In contrast to the variance introduced by different persons or
by different performances of the same person, it is a kind of systematic error that we aim
to compensate for. Given that we have no apriori information on the current view angle,
we model this influence by an additional hidden variable which is adapting the mean value
of the observation probability (see Figure 4.4). As a consequence, the robot only needs
to observe the action from one point of view during learning and afterwards recognize it
from a significantly different view-angle in a certain range.

The underlying PF is using SIR. The matching of the HMM and the observation are
achieved by temporal propagation of a set of weighted particles:

{(s(1)
t , w

(1)
t ), . . . , (s

(N)
t , w

(N)
t )} (4.47)

with
s

(i)
t = {p0(i)

t , q
(i)
t , e

(i)
t ,Θ

(i)
t } (4.48)

The number of particles is N . The sample s
(i)
t contains the primitive index p

0(i)
t , the

hidden state q
(i)
t , the terminal state of this primitive e

(i)
t at time t, and the observation

scaling vector Θ
(i)
t . The weight w

(i)
t of a sample can be calculated from

w
(i)
t =

P (ot|s(i)
t )∑N

j=1 P (ot|s(j)
t )

. (4.49)

Here, P (ot|s(i)
t ) models the observation probability of the scaled ot given q

(i)
t and HMM

p
0(i)
t . Let ot,m be the mth component of the observation vector at time t, then, P{ot,m|s(i)

t }
is calculated as

P{ot,m|s(i)
t } =

1√
2πσ

s
(i)
t ,m

exp
−(ot,m − θt,m · µs

(i)
t ,m

)2

2σ2

s
(i)
t ,m

(4.50)

The µ
s
(i)
t ,m

, σ
s
(i)
t ,m

is the mean and standard deviation of the mth component given the

hidden state s
(i)
t , which is determined by q

(i)
t and p

0(i)
t . The effect of the scaling parameter

θt,m is shown in Figure 4.6. Suppose the red line is the model and the green line is the
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Figure 4.6: The effect of scaling parameter

observation, the model can be scaled to the dashed red line according to the allowed
scaling limits (the dashed rectangles), where they achieve a matching. Note that The
original model variance keeps unchanged (the two shadowed areas). With the survival of
the fittest rule, the PF will choose the best value within a limited range of the scaling
parameters through the particle propagation.

The propagation of the weighted samples over time consists of three steps:
Select: Selection of N −M samples s

(i)
t−1 according to their respective weight w

(i)
t−1 and

random initialization of M new samples. In every newly initialized sample, the value of
θ

(i)
t,j is randomly chosen from its allowed period.

Predict: The current state of each sample s
(i)
t is predicted from the samples from the

select step according to the graphical model given in Fig. 4.4. The terminal state e
(i)
t−1 is

a bi-valued variable, 0 means the primitive is continuing and 1 means the primitive ends
here. So if e

(i)
t−1 is 0, the next hidden state q

(i)
t is sampled according to the transition prob-

ability of the HMM of primitive q
(i)
t−1 and the primitive index p

0(i)
t keeps the same as p

0(i)
t−1.

The θ
(i)
t,j is updated by θ

(i)
t−1,j + N (σθj

). N (σθj
) is a normal distribution and represents

the uncertainty in the prediction of θj, which spans a much smaller area than the allowed

period. If the terminal state e
(i)
t−1 is 1, the primitive index p

0(i)
t will be sampled according

to the current possible primitives of this object. Then the hidden state q
(i)
t is sampled

according to the initial probability of the HMM of the new primitive p
0(i)
t . The Θ(i) is

reinitialized. At the end of this step, the terminal state of this particle e
(i)
t is sampled

based on the terminal probability of the current primitive state q
(i)
t .

Update: Determination of the weights w
(i)
t of the predicted samples s

(i)
t using Eq. 4.49.

The recognition of a manipulative primitive is achieved by calculating the end-probability
Pend that a certain HMM model pi is completed at time t:

Pend,t(pi) =
∑
n

w
(n)
t , if pi ∈ s

(n)
t . (4.51)
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A primitive model is considered recognized if the probability Pend,t(pk) of the primitive
model pk exceeds a threshold p0

th which has been determined empirically.

The resampling step in the particle propagation is able to adapt the starting point of the
model matching process if the beginning of the primitive does not match the beginning of
the segment. The end-probability gives an estimation of the primitive’s ending point. This
combination to a certain extent solves the problem of the forward-backward algorithm
which needs a clear segmentation of the pattern.

4.4 Evaluation

In our experiment, a scenario in an office environment is set up as shown in the images
in Figure 3.6 on page 35. A person is sitting behind a table and manipulates the objects
that are located on it. She or he is assumed to perform one of three different manipulation
tasks: (1) water plant : take cup, water plant, put cup; (2) prepare tea: consists of take/put
cup, take tea can/sugar, pour tea/take sugar into cup, put tea can; (3) prepare coffee:
consists of take/put cup, take milk/sugar, pour milk/take sugar into cup, put milk. The
images are recorded by 4 cameras at the same time with a resolution of 320x240 pixels and
with a frame-rate of 15 images per second. The positions and view angles of the cameras
have been shown in Table 3.1 in the previous chapter. The distance to table and the pitch
angle of the camera are illustrated in Figure 3.3. The horizontal angles of the cameras are
indicated in Figure 3.6. They have the same height of 160cm as the robot BIRON [44].
In the experiment, each task is performed 15 times with different object layouts by 2
different persons. The object recognition results have been labeled because the evaluation
experiment should concentrate on the performance of the trajectory matching.

To test the performance of the scaling parameter in the primitive detection, the training
data for each primitive are taken from the same single camera (camera 2). Furthermore,
each training sample of a specific action was performed with regard to an object at same
place on the table. In this study, the primitive training is person-specific. Then, the
learned models are applied to the data taken from all 4 cameras. Table 4.1 compares
the detection results of the primitives related to the objects between the methods with
and without scaling. The results are calculated based on the primitives from all camera
views with parameter set N = 1000, M = 50, p0

th = 0.2, β = 3, the scaling range
[0.8 1.2] with predict variance σ = 0.1. The primitives are modeled by semi-continuous
HMMs with left-right topology. The parameters are learned from manually segmented
trajectories with the Baum-Welch algorithm, E is calculated similar to Π, except using
the last states. To present the quality of the detection because the primitives are detected
from long trajectories, the primitive error rate (PER) is defined as

PER =
#Substitution + #Insertion + #Deletion

#Truth
(4.52)

The ground truth of every primitive has a time stamp and an allowed time variance for
matching. No detection in the allowed time variance of a primitive causes a deletion error.
A false detection in it is counted as a substitution. An insertion error is a detection out
of that range or an additional detection in the range. Table 4.1 shows the results. It
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Table 4.1: The detection of the manipulative primitives.
Object Primitive Num. of Truth PER(%) PER(%, no scale)

tea take 15 41.6 39.5
put 15 8.3 19.8

milk take 12 14.4 14.4
put 12 42.1 52.6

sugar take 15 6.3 16.9
cup take 45 17.8 27.1

put 45 11.6 22.2
pour 42 32.7 36.9

plant water 15 20.8 19.8

can be found that generally the PER of the method with scaling parameter is lower than
that without it for most primitives. But there are also few cases where it increased. In
the experiment, the big milk carton is placed near the tea can (see Figure 3.6 Cam3),
which caused much insertion error in the PERs of “take tea” and “put milk”. In oder to
investigate the results in detail, we split the PER into different error types. Figure 4.7
shows the error rates of different types by using both methods. The numbers summarized
all the results of all primitives and from all cameras. According to this figure, the scaling
caused a significant drop of the error rates caused by deletion, as we expected. It also
bring a slight increase of the insertion errors because it generalized the HMMs.

Figure 4.7: The primitive detection results shown by different error types and with/without
scaling

Figure 4.8 presents the effect of the scaling parameter on the results for different cameras.
Note that the observation from one camera could contain the manipulations on different
object layouts, the results for camera 2 is also listed here. The PERs for all cameras are
decreased by using it. Especially, the result with regard to the camera 4, which has the
largest PER because of the largest view-angle difference, achieved bigger improvement
than the others.
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Figure 4.8: The primitive detection results with regard to different camera views

4.5 Summary

In the last chapter, we constructed a feature vector for the manipulative gestures. It is
a 2-D representation but less affected by the change of view-angles. The object vicinity
was also put forward to pre-segment the hand trajectory. In this chapter, we are focusing
on how to detect the manipulative primitives from the pre-segmented trajectories. The
difficulty lies on two points. Firstly, the pre-segmented trajectories could also contain
meaningless parts. This requires that the primitive can be spotted out of longer obser-
vations. Secondly, the primitives observed from different view-angles have much more
variance. After a close look of different kinds of variances, a person-specific manipulative
gesture recognition is chosen by us. HMMs are used by us to model the primitives. In ad-
dition, we added end probabilities to have an estimate of the end points of the primitives.
Then, a particle filter realized HMM matching method is introduced. It used weighted
particles to track the primitive models which have better matching to the observations.
With an online evaluation of the end probability of a primitive, the end points of the
primitives also can be found during a continuous observation. In this process, a dynamic
scaling parameter in the observation model is used to cope with the nonlinear changes of
the trajectories caused by different view-angles. The experiments showed that the manip-
ulative primitives can be robustly detected from the trajectories and the scaling parameter
promoted these results.



5. Manipulative Task Modeling and
Recognition

In the previous chapter, the model for the manipulative primitive was presented. How-
ever, it is a flat recognition model which can not handle the hierarchical structure within
a sequence of manipulations that have a more complex overall meaning. This is a limita-
tion which severely constrains the robot’s understanding competence. For example, the
sequential manipulation of “take a pencil” and “move it to a notebook” should not only be
recognized as two independent manipulative actions but also as an entity with the under-
lying human intention “to write”. For a personal robot, it is necessary to recognize human
manipulative activities and the associated intentions that are often inferred by human
observers. It has been shown by the cognitive developmentalists that even one-year-old
infants can infer intentions before the whole activity is completed [41].

Although the concept of the motion primitive has been widely accepted as a basic unit to
generate a smooth performance of an action, it is fair to say that there is no persuasive
research results showing the general structuring of the complex human motions, which
have higher level intentions like “prepare a cup of coffee”. Many researchers doing action,
or namely intention recognition decompose the target actions into a set of elementary
motions shared by the actions according to the domain-specific knowledge. For example,
the high level maneuvers of a driver on a highway can be predicted by observing the basic
driving behaviors, like “turn left”, “pass drive” etc. [99]. Our approach also follows this
idea. What is worth mentioning is that different to the pure symbolic approaches which
start the recognition when the meaningful symbols have been labeled on the basic actions
by a human, our approach tries to stay as connected to the visual signal as possible, where
the particular action elements for example “take a cup” have direct visual correlates.

The bridging between the visual signal and interpretation leads to the symbol grounding
problem during the modeling. One distinctive property of the gestures we want to recog-
nize is that they are always performed on some objects. With respect to the function of
an object, persons performs different actions on it (see Section 3.3.1). The object-specific
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manipulative primitive are adopted by us as the basic granule for the higher level intention
recognition.

As an object-centered approach, the processing is carried out in a parallel manner on
the objects in the scene. Robot companions are intended for operation in private homes
or offices. They are facing a cluttered environment with all kinds of objects. A lot of
objects could appear in the view of a robot at the same time. This situation does not only
pose much unnecessary processing load on the system but also increases the ambiguity
for the intention interpretation. To avoid this problem, the use of a task-level prediction
is considered by us. Based on the assumption of the possible manipulative tasks and the
recognized primitives, our system restrict the relevant object types as well as the action
primitives possibly recognized in the future [67].

In the following, some related work will be presented. Then, several basic models for
sequential symbols are introduced. Following the technique background, the two-layer
system architecture of our system and mathematic modeling of the manipulative tasks will
be put forward. After that, the combined top-down and bottom-up process, which forms
an attention system of the robot, is described. To prove the efficiency of the system, task
recognition experiments in an office scenario are conducted. At the end, the extensibility
of the structure will also be discussed.

5.1 Related Work

To help the people in everyday life, the understanding of human behaviors at different
levels is very important for many potential applications. For example, monitoring and
recognizing the actions of the elderly can help them in an appropriate time and extend
their functional capability [39]. If the humans action is well understood, the intelligent
systems like smart room [103] or service robot [66; 69] can interact with its human users
in ways that are both natural and intuitive. If the movement of human doesn’t happen
only in a room but in a larger scale, e.g. on a floor with many rooms [90] or in a city [72],
the hierarchical human activity can also be learned and used for inference or prediction
purposes.

Most of the previous work on recognizing human activities was targeted at single, simple
events, e.g., “waving the hand” or “pointing”. The basic techniques to match sequen-
tial data were introduced in Section 4.2. A significant part of work used the exten-
sions of HMM, e.g., parameterized HMMs [127], variable-length HMMs [38], and coupled
HMMs [135] to recognized more complex activities such as the interaction between two
people. They were in principal also identifying“primitives”because there is no hierarchical
modeling of the event. In recent years, attempts have been made to integrate high-level
behavior models with low-level sensor models. A formulation for hierarchical HMMs
(HHMM) was first proposed by Fine et al. [28]. In his work, the standard Baum-Welch
procedure is extended to estimate the model parameters. Because of the computational
complexity of the original algorithm, Murphy and Paskin introduce a linear-time inference
algorithm for HHMMs [82]. Nguyen et al. applied the HHMM with shared structures to
the problem of activity recognition in a real environment and showed its superiority over
tree HHMMs [86]. Rao-Blackwellised particle filter (RBPF) was adopted as the inference
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algorithm. The model parameters are estimated in an integrated way, as compared with
other approaches which employ level-by-level parameter estimation, e.g. the layered HMM
(LHMM) proposed by Oliver et al. [90].

The LHMM approach is closely related to the concept of stacked generalization [90],
where the main idea is to learn classifiers on the top of classifiers. Stack generalization
is a technique proposed to use learning at multiple levels. A learning algorithm is used
to determine how the outputs of the base classifiers should be combined. For example,
in a two-layer stacked classifier, the original data set constitutes the level zero. The base
classifiers are trained on the data. Another learning process occurs using the output of
base classifiers as the inputs. This is a more sophisticated technique than cross-validation
and has been shown to reduce the classification error due to the bias in the classifiers.
HMMs are generative probabilistic models, they can be treated as classifiers at every
level. Zhang et al. also used layered HMM to classify group actions in meetings based on
multi-modal data [136].

Besides HMM, there are other models which can be used at higher levels, e.g., N-gram
model and grammatical models. A two-level architecture is proposed by Yin, Chai and
Yang to infer a user’s goals in a complex indoor environment using an radio frequency
based wireless network [134]. The model relies on a dynamic Bayesian network to infer a
user’s actions from raw signals – the trajectories, and an N-gram model to infer the users’
goals from actions. Grammatical models are another technique which are often used
to describe the underlying structure of a sequence of symbols. In speech recognition, the
word spotting might be performed by a statistical acoustic recognizer. A subsequent stage
based on a formal grammar would then provide constraints on the sequences of words.
It prevents the system from generating meaningless sentences. Similar to the speech,
the human activities are also performed according to certain “rules”. Moore and Essa
used stochastic context free grammar (SCFG) to recognize multi-tasked activities in card
games [79]. Yamamoto et al. used it to recognize Japanese tea service [132]. Because the
SCFG is sensitive to the symbol detection errors in the bottom layer, including insertion,
substitution, and deletion, these two papers above approached the problem from different
direction: on the tolerance of the grammatical structure and the precise segmentation of
the actions.

In the layered approaches, the recognition of higher level intentions is dependent on the
lower level signal processing. In our case, it is the detection of manipulative primitives.
Because of the object-oriented approach, the relative trajectories between the hand and
every detected object will be matched to the models. When there are many objects in
the scene, the system is confronted with an attention problem. This problem also appears
in many other researchers’ work. For example, Oliver et al. proposed a combination of
top-down and bottom-up information processing for outdoor visual surveillance of human
interactions [91]. But in their paper, the top-down strategy have not been cleared stated.
Khadhouri and Demiris used the saliency of the bottom-up part to initialize the top-down.
The top-down process selects only the relevant behaviors to the demonstrated action
and consequently influences the bottom-up saliency map [59]. This system is dedicated
to differentiate simple actions like “pick coke can” or “pick orange”. Therefore there is
no primitive detection, possible behaviors are chosen based on the features like motion,
color, and the size of the object. According to the predefined forward model, an action
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was rewarded by one confidence point if the prediction of next state is proved by the
observation. With this mechanism, the robot’s attention will be guilded to an action,
which gains more and more confidence over the performance. The action recognition is
made by the rule “highest confidence level always wins”.

5.2 Models for Symbol Sequences

Enlightened by the concept of stacked generalization, it is good to decouple the higher
level activity recognition problem into several layers. A layered structure provides sev-
eral valuable properties. A layered formulation makes it feasible to carry out analysis for
training and inference on different levels. Once the system is trained, inference can be
carried out at any level of the hierarchy. Of course, the choice and organization of the
recognizers in this structure are different to each other according to the concrete prob-
lems and the form of the outputs on different layers. For example, Robertson and Reid
learned distributions on low level features, e.g., trajectories and local motion, from the
non-parametric training databases. Then the lower level recognizer gave the probabilities
of the observations based on the learned distributions. HMMs were used on the higher
level to fuse the outputs [105]. In our case, the bottom layer will output the detection
results of the manipulative primitives, which are sequences of symbols. The analysis of
the sequences of symbols (words) have been well investigated in the speech recognition
and understanding society. The most popular models used are n-gram model and gram-
matical models. Recently, these models are also widely used for activity recognition. In
the following, we will present these two kinds of models and present both their advantages
and disadvantages.

5.2.1 N-Gram Model

The goal of statistical language modeling is to define a probability distribution over a
set of symbol or word sequences. This means to calculate P (w) for a word sequence
w = w1, w2, . . . , wk. Factorizing P (w) using the chain rule, we get:

P (w) = P (w1)P (w2|w1) . . . P (wT |w1, . . . , wT−1)

=
T∏
t=1

P (wt|w1, . . . , wt−1)
(5.1)

The idea of the n-gram model can be traced back to an experiment by Claude Shan-
non in information theory. His question was, given a sequence of letters what is the
likelihood of the next letter? More concisely, an n-gram model predicts wi based on
wi−1, wi−2, . . . , wi−n. In probability terms, this is nothing but P (wi|wi−1, wi−2, . . . , wi−n+1).
To restrict the length of the “history”, an n-tuple is chosen instead of the entire sequence.
It can be expressed as:

P (wt|wt−1, . . . , wt−n+1) = P (wt|wt−1, . . . , w1) (5.2)

It is equal to a Markov chain model of order (n − 1). The Markov chain is used as
an approximation of the true underlying language model. This assumption is important
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because it massively simplifies the problem of learning the language model from data. An
n-tuple of size 1 is a “uni-gram”; size 2 is a “bi-gram”; size 3 is a “tri-gram”; and size 4 or
more is simply called an “n-gram”. According to n-gram model, Eq. 5.1 can be simplified
into:

P (w) =
T∏
t=1

P (wt|wt−n+1, . . . , wt−1) (5.3)

A simple approach to estimating n-gram probabilities is to use the method of maximum
likelihood within each context, which results in calculating the strict relative frequencies.
Specifically, given a training corpus, we can estimate the n-gram probabilities as follows:

P (wt|wt−1, . . . , wt−n+1) =
c(wt, . . . , wt−n+1)

c(wt−1, . . . , wt−n+1)
(5.4)

where the c(wt, . . . , wt−n+1) is the occurrences of strings wt, . . . , wt−n+1 in the training
corpus. A problem however arises if the value of the probabilities in Eq. 5.4 is zero, i.e. if
an n-gram appears in the text to be recognized but is not contained in the training corpus.
Such n-grams are referred as missing or non-occurring n-grams. Assigning the maximum-
likelihood probability of zero to such n-grams would lead to an error when computing the
log probability. Therefore, techniques named smoothing are developed for adjusting the
maximum likelihood estimation to produce more accurate probabilities.

When we have good confidence on the training corpus, that means underlying models of
the training corpus and test text have only slight difference, one solution to avoid the
missing n-grams is to assign them a small probability. The simplest way is to update the
n-gram probability by assuming the missing n-grams occurred exactly once in the training
corpus, i.e. by assigning it the probability:

P (wt|wt−1, . . . , wt−n+1) =
1

c(wt−1, . . . , wt−n+1)
(5.5)

At the same time, the probabilities of all other n-grams with the same n-1 preceding words
should be updated due to the addition of the new n-grams. Because of the one occurrence
assumption, it is also called “add one” method. In practice this change is very small and
the updated probabilities are very close to the original ones.

There are also other smoothing methods: discounting and model combination. The idea
of discounting is to reduce maximum likelihood probabilities estimated from the observed
frequency counts and then re-distribute “freed” probability mass to previously unseen
events. If we use P ∗() and c∗() to represent the modified probability and the occurrence
counting, the discounting of the probabilities of seen n-grams is:

P ∗(z|y) =
c∗(zy)

c(y)
=
c(zy)− β(zy)

c(y)
(5.6)

To simplify the equations, the n-grams are represented by yz, y is the history, z is the
predicted word. The non-occurrence n-gram with the history y has the probability λ(y):

λ(y) =

∑
c(zy)>0 β(zy)

c(y)
(5.7)
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If the discounting factor β() is proportional to n-gram count: β(yz) = αc(yz), this is a
linear discounting. If the discounting factor β() is a constant, this is an absolute discount-
ing. The “add one” method also can be thought as an instance of absolute discounting.
The idea of model combination is just the naming: combine models (uni-gram, bi-gram,
tri-gram, . . . ) in such a way that the most precise model available is used. The discount
of probabilities of non-missing n-grams can be distributed to lower order n-gram models.
If y = wt−1, . . . , wt−n+1, let ŷ = wt−1, . . . , wt−n+2 to be shortened history. The P ∗(z|y)
can be achieved by “interpolation” between P (z|y) and P (z|ŷ):

P ∗(z|y) = (1− α)P (z|y) + αP (z|ŷ) 0 ≤ α ≤ 1 (5.8)

α is the interpolation coefficient. There are also other smoothing methods, e.g., Good-
Turing, back-off. Good overviews can be found in the work of Chen and Goodman [19]
and Xiao et al. [131].

N-gram models are widely used in statistical natural language processing. In speech
recognition, phonemes and sequences of phonemes are sometimes modeled using an n-
gram distribution. N-grams can also be used for sequences of words or, in fact, for almost
any type of data. They have also been very successful as in genetic sequence search.

The reasons why n-gram models achieve wide usage are, firstly, the parameters can be
easily estimated automatically from a training sample, secondly, they can be combined
with other statistical recognition systems, thirdly, the models capture the word frequency
in the syntactic, semantic, and pragmatic restrictions of the language. N-grams are crit-
icized because they lack an explicit representation of long range dependencies. While it
is true that the only explicit dependency range is (n − 1) tokens for an n-gram model,
in practice, only small values of n are used. Long range dependencies can be achieved
by incorporating some kind of local state. This is often done using hand-crafted state
variables that represent, for instance, the position in a sentence, the general topic of dis-
course or a grammatical state variable. Another criticism that has been put forward is
that Markov models of language, including n-gram models, do not explicitly capture the
syntactic-semantic distinction in languages. N-grams and related language models opt for
a fairly pragmatic approach to language modeling that emphasizes empirical results over
theoretical purity. There are other models focusing on the modeling of the syntactic rules.
In the next subsection, the grammatical models will be introduced.

5.2.2 Grammar Models

In the previous subsection, a pure statistical model for representing the sequence of strings
was presented. But it is not concerned with the “rules” underlying the generation of the
sequence of the strings – the grammar.

In computer science and linguistics, a formal grammar, or sometimes simply grammar, is
a precise description of a formal language — that is, of a set of strings. The two main
categories of formal grammar are generative grammars, which are sets of rules for how
strings in a language can be generated, and analytic grammars, which are sets of rules for
how a string can be analyzed and to determine whether it is a member of the language. Our
interests lie on how to write those strings in the set. Therefore, the generative grammar
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is our focus. The classic formalization of generative grammars is first proposed by Noam
Chomsky in the 1950s [21; 20]. Formally, a grammar G consists of four components:

Symbols: Every sentence consists of a string of characters, which are also called primitive
symbols, terminal symbols or letters, taken from an alphabet A.

Variables: These are also called nonterminal symbols, intermediate symbols, or occa-
sionally internal symbols, and are taken from a set I.

Root Symbol: The root symbol or starting symbol is a special internal symbol, the
source from which all sentences are derived. The root symbol is taken from S.

Productions: The set of production rules, rewrite rules, or simply rules, denote P , speci-
fies how to transform a set of variables and symbols into other variables and symbols.
These rules determine the core structures that can be produced by the grammar.
For instance if A is an internal symbol and c a terminal symbol, the rewrite rule
cA→ cc means that any time the segment cA appears in a string, it can be replaced
by cc.

Thus, a general grammar can be represented as:

G = (A, I, S, P ) (5.9)

The language generated by grammar G, denoted by L(G), is defined as all those strings
over G that can be generated by starting with the start symbol S and then applying the
production rules in P until no more nonterminal symbols are present.

Consider the grammar G where I = {S,B}, A = {a, b, c}, S is the start symbol, and P
consists of the following production rules:

1, S → aBSc

2. S → abc

3. Ba→ aB

4. BB → bb

Some examples of the derivation of strings in L(G) are:

S ⇒2 abc

S ⇒1 aBSc⇒2 aBabcc⇒3 aaBbcc⇒4 aabbcc

S ⇒1 aBSc⇒1 aBaBScc⇒2 aBaBabccc⇒3 aaBBabccc⇒3 aaBaBbccc

⇒3 aaaBBbccc⇒4 aaaBbbccc⇒4 aaabbbccc

In above, L⇒i R means “L generates R by means of production i” and the generated part
is each time indicated in bold. This grammar defines the language L = {anbncn|n ≥ 1}
where an denotes a string of n consecutive a’s. Thus, the language is the set of strings
that consist of 1 or more a’s, followed by the same number of b’s, followed by the same
number of c’s.

When Noam Chomsky first formalized generative grammars, he classified them into types
now known as the Chomsky hierarchy [20].
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Type 0: Free or Unrestricted : Free Grammars have no restrictions on the rewrite
rules and thus they provide no constraints on structure of the strings they can
produce. Because of their complexity in learning, this type of grammar has found
little use in pattern recognition.

Type 1: Context-Sensitive A grammar is called context-sensitive if every rewrite rule
is of the form: αY β → αxβ. α, β and x are any strings made up of intermediate
and terminal symbols, Y is an intermediate symbol. It can be said as “Y can be
rewritten as x in the context of α on the left and β on the right”.

Type 2: Context-Free A grammar is called context-free if every rewrite rule is of the
form: Y → x. Y is an intermediate symbol, and x is an string of intermediate or
terminal symbols. The left-hand side of each production rule consists of only a single
nonterminal symbol. Clearly, unlike Type 1 grammar, there is no need for “context”
for the rewriting of Y by x.

Type 3: Finite State or Regular A grammar is called regular if every rewrite rule is
of the form: Y → y OR Y → yZ. It restricts its rules to a single nonterminal Y on
the left-hand side and a right-hand side consisting of a single terminal y, possibly
followed by a single nonterminal yZ. Such grammars are called finite state because
they can be accepted by a finite-state automaton.

In the above, we know how to form a derivation from a root node to a final sentence.
For recognition, the inverse process is employed: that is, given a particular X, find a
derivation in G that leads to X. This process is called parsing. The Type 2: context-free
grammars and Type 3: regular grammars are most often used because parsers for them
can be efficiently implemented. For concrete parsing algorithms, please refer to [43].

When a system is supposed to recognize activities with some predefined context or in-
herent semantics, pure probabilistic methods are limited with regard to representing the
underlying structure. Because of the modeling of the production rules between the sym-
bols, grammar models are good at recognizing rule-based activities. For the probabilistic
finite state machine representations, it is difficult to add new states if the training has been
done. Grammar allows us to use a single, compact representation for longer dependencies
between the symbols, which is the point for criticizing HMMs. However, a grammar also
has disadvantages. It is very domain dependent. It is very difficult to learn by machines
without human supervision. It is also sensitive to the errors in the strings. Normally, a
parser only gives the result whether a string can be successfully parsed by a grammar.
But spurious symbols in the input can generate ungrammatical strings, which cause the
parsing algorithm to fail.

In order to avoid the {1, 0} parser decision, which is sensitive to the errors in the symbol
sequence, an important extension of context-free grammar has been made: the stochastic
context-free grammar (SCFG), which is also named probabilistic context-free grammar,
PCFG). It is a context-free grammar in which each production is augmented with a
probability just like hidden Markov models extend finite state machines. By attaching a
probability to a particular sequence of events, it provides a quantitative basis for ranking
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parses. With this augmentation, SCFGs have found widespread applications in the recog-
nition of rule-based activities. Bobick and Ivanov used it for the tasks, like recognizing a
simple gesture – drawing a square in the air, which needs significant effort to solve using
only the statistical pattern recognition techniques [9]. It has also been used for segment-
ing the musical conducting gestures based on different beat patterns [9], recognizing the
multitasked activities in poker games [79], and classify the tea ceremonies [132]. Because
the grammar models are relatively sensitive to the errors in the symbol sequences, the
intuitive solution is to minimize the errors appearing in the symbol generation process,
which is always the low level processing for basic event detection in vision-based systems.
For example, Yamamoto et al. [132] segmented the actions based on acceleration, which
could produce actions corresponding to a symbol with little error. But the errors in sym-
bol sequences are inevitable. Bobick and Ivanov handle the insertion and substitution
error by modifying the grammar that the parser accepts input that could generate a fatal
syntax error [9]. Rather than allowing errors by extending grammar, Moore and Essa tried
to recover the errors by multiple hypotheses which are derived from the type of errors [79].

5.3 Layered Representation of Manipulative Task

As mentioned in Section 2.2.2, the manipulative task recognizer is designed for a mobile
household robot. As far as we know, there are no mobile robots which have such a
system integrated. But the recognition of complex human activities is not new. This
topic has been investigated for a long time in areas like visual surveillance, and ubiquitous
computing. By recognizing the tasks the people want to fulfill or the abnormal behaviors,
appropriate suggestions can be given by the intelligent systems. For example, a vision
system is developed by Gao et al. [39] to measure feeding difficulties in nursing home
residents with severe dementia. In the work of Fukuda et al. [37], a robot companion
worked as a cook assistant by sensing the manipulations on different objects. A common
point in these systems is that the layered structure is chosen to model the activities.
The reason is two fold. On one side, the complex activities themselves are intuitively
understood by humans as final goals which are achieved by completing several subgoals.
On the other side, the variance and dependency in the longer observation of complex
activities are hard to model by a single, flat mathematical model. The main differences
among these models are where the symbol grounding happens and how the symbols are
connected together. In this section, the structure and the mathematical representation of
our manipulative task model will be presented.

5.3.1 Two-Layer Structure

Understanding the modular organization of biological movement are outstanding chal-
lenges both in biology and robotics. In the 90s, several experiments done by biologists
have proved the existing of motion primitives [94; 104], which are elementary movements
constituting a motor vocabulary composable into a broad movement repertoire. The the-
ory of motor primitive has inspired the behavior-based motion control of robots. Following
this idea, the concept of primitive is also widely used in vision-based human activity recog-
nition. However in most cases, the “primitives”, which the vision systems recognize, are
no longer the motor primitives but a set of basic elements which construct the target ac-
tivities. For example, to recognize the activities in an indoor environment, the movement
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of human between two landmarks in the environment are chosen as primitives by Nguyen
et al. [86] and Yin, Chai and Yang [134]. Hongeng and Nevatia used the state of relative
movement like “approach”, “stop”, and “leave” as primitives to recognize more complex
interactions between several agencies like “theft at phone booth” [49].

Because people extensively use their hands to interact with the environment, the manip-
ulative gestures are also targeted by many vision-based recognition systems. In the work
of Jo, Kuno, and Shirai [55], the manipulative hand gesture is modeled as a sequence of
transitions between manipulative states, such as “grasp”, “move”, and “release”. The tran-
sitions are triggered when predefined conditions are satisfied. Because the conditions are
defined according to known situational knowledge, this recognition system worked well in
a restricted human-computer interaction scenario [55]. In order to teach everyday manip-
ulative tasks to a robot under the “learning from observation” framework, Ogawara et al.
[87] proposed a technique to estimate essential interactions to complete a manipulative
task from several demonstrations of it. The essential interactions, also named primitive
actions in their paper, are made up of three properties: the grasped object, the target
object and the set of relative trajectories. However, manipulations need not to have two
objects involved. For example, “type on the keyboard” is a kind of manipulation. It in-
volves no object in hand. Moreover, the objects in hand are hard to detect in vision-based
systems because of the occlusion.

In our modeling, the interpretation of manipulative gestures has two layers. The structure
of the model is shown in Figure 5.1. At the bottom, the low level image processing
extracts the hand trajectory and objects from image sequences. For each object detected,
a processing thread is created. The hand trajectory is represented differently as relative
movement to the object in different threads. Then, the object-oriented manipulative
primitives can be detected in the threads (see also Section 3.3.1 and 3.3.2). Besides the
argument that the manipulative primitive are object-specific, the other reason to use the
object-oriented primitive is that this definition also benefits the lower level processing
and higher level interpretation. In lower level processing, the object-centered trajectory
representation supposes a static object in focus. It avoids the detection of an object in
hand and the tracking of moving objects. Without the parallel processing assumed for
object-specific primitive, the trajectory interpretation has much ambiguity. For example,
a movement from a cup to a sugar box can be “leaving cup” or “approach sugar”. If these
two objects are near to each other, it is hard to find a point to separate this trajectory
into two meaningful segments. Assuming parallel threads for each single object, the hand
trajectory has no such problem. The manipulative primitives detected in different threads
are sent upward to the task level. In the task level, the manipulative primitives detected
from all threads are put together and processed in temporal order. In next subsection,
the mathematical model which matches a manipulative task to a primitive sequence will
be put forward.

5.3.2 Task Model

As described in the previous section, the task layer takes the manipulative primitives
detected from all threads. When a sequence of manipulative primitives is available, the
next problem is which manipulative task was performed. A sequence of manipulative
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Figure 5.1: The layered system architecture

primitives can be thought of as a sequence of symbols. The models for coding symbol
sequences have been described in Section 5.2. Before choosing an appropriate model, the
properties of the task recognition layer must be analyzed. First of all, the inputs are the
output from primitive layer. The errors of the detection are inevitable. The task model
has to take the recovering of the errors into consideration. Secondly, the performance of
the manipulative task is relatively free. This means that the ordering of the primitives
in the sequences is not fixed. For example, when a person wants to prepare a cup of
coffee, she/he could either add sugar firstly or add some milk at first. Third, a task can
be performed differently or performed with certain personality. For a personal robot, it
should have the capability to adapt its behavior or learn different manipulative tasks by
its own observation.

Therefore, the manipulative tasks are modeled as a first-order Markovian process (bigram
model) by us, which is the same as Moore’s definition [80]. Compared with a grammar
model, n-gram models are easy to learn. It is less sensitive to the errors in the symbol
sequence. Although this assumption violates certain long-term domain dependencies, it
is an efficient and practical way to deal with task knowledge.

The task models share a set of possible manipulative primitives. The model Λi for a ma-
nipulative task i contains the transition matrix Ai, the initial probability Πi, the terminal
probability Ei, and a threshold thi. Suppose the result from the manipulative primitive
recognition is the sequence Po. The acceptance of a task Λi = (Πi, Ai, Ei, thi), is de-
fined relative to a random model Λr = (Πr, Ar, Er), which is similarly defined as a task
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model but includes no associated threshold and is learned from all the training data from
different tasks. The similarity of the sequence and a task model s(i, Po) is calculated as:

s(i, Po) = log(
p{Po|Λi}
p{Po|Λr})

= log(
p{Po|Πi, Ai, Ei}
p{Po|Πr, Ar, Er})

(5.10)

The task decision d(Po)for recognition is

d(Po) =

arg max
i
{s(i, Po)|s(i, Po) > thi}

Null
(5.11)

In everyday life, there are also many manipulations which the robot doesn’t understand
or just have no clear purpose. In order to avoid classifying these manipulations into
known tasks, Eq. 5.11 also takes the possible rejection into consideration. Only if the
similarity measurement between a manipulative sequence and a task model is higher than
the associated threshold of that task model, this task model can be selected as a candidate.

5.4 Coupling of Top-Down and Bottom-Up Processes

Figure 5.1 shows the layered structure of the manipulative task model. In it, the process-
ing goes from bottom to top, for each detected object a thread is created that consists of
a trajectory segmentation, a feature computation, and an HMM-based recognition step.
All three steps are performed differently for each object in parallel and the hand tra-
jectory information is passed to each object-centered processing thread. Because of the
object-specific primitive definition and its parallel processing for each affected object, the
system confronts an attention problem when there are many objects appearing in the
scene simultaneously.

This problem also appears in many other recognition tasks. In the review paper of Tsotsos
[118], he gave a definition of attention in visual perception:

Definition 5.1 Attention is a set of strategies that attempts to reduce the computational
cost of the search processes inherent in visual perception.

The attention mechanism can be divided into two categories: stimulus-driven and goal-
directed. In the work of Michalke et al. [77], both of the mechanisms are used for a
driver assistance system. In the stimulus-driven channel, a saliency map of the scene is
calculated based on different low-level visual features including orientation, intensity, and
motion. In the goal-directed channel, a saliency map is also generated according to the
current context. For example, while driving at high speed, the central field of the visual
scene becomes more important than the surrounding.

In the manipulative task recognition, a top-down process is introduced in the system ar-
chitecture (see Figure 5.2). It is a goal-directed attention mechanism. The difference is it
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Figure 5.2: The system processing flow combining both top-down and bottom-up processes

is initialized by the current state of robot but it is continued based on the recognition his-
tory. It means that the possible primitives coming next are predicted on the ground of the
active task models and the previous results from the manipulative primitive recognition.
The mechanism combines the bottom-up and top-down processes in a loop.

This prediction is similar to the computation of a lookahead symbol in parsing strategies.
The possible word pair transitions of a task model are extracted from the primitive transi-
tion matrix by a frequency threshold. For the prediction step different parsing alternatives
are considered during the HMM matching process. For all primitives that achieve an end
probability Pend,t(pi) > 0 a lookahead symbol is generated. If a primitive has been rec-
ognized this primitive is eliminated as a lookahead symbol. Because the predicted action
primitives are specific for certain object types, the set of the next possibly manipulated
object types can be calculated and be passed to the object detection component. This
realizes a task driven attentional cue for early processing steps of the system. Addition-
ally, the expectations from the predicted action primitives are used to restrict the HMMs
applied in the PF based matching process.

5.5 Task Recognition in an Office Scenario

The evaluation assesses the overall system performance. In our experiment, a scenario in
an office environment is set up as shown in the images in Figure 5.4. A person is sitting
behind a table and manipulates the objects that are located on it. She or he is assumed
to perform one of three different manipulation tasks:



5.5. Task Recognition in an Office Scenario 72

• water plant : consists of take cup, water plant, put cup

• prepare tea: consists of take/put cup, take tea can, pour tea into cup, put tea can;

• prepare coffee: consists of take/put cup, take milk/sugar, pour milk/take sugar into
cup, put milk.

A manipulative task consists of the manipulative primitive sequence. However, the order-
ing of the sequence is neither pre-determined nor completely fixed. For example, some
people may take sugar before taking milk, some will do it the other way around. But
there probably will be an ordering between taking the cup and the watering action which
needs to be learned from the data.

Table 5.1: The index of the manipulative primitive in the experiment.
Objects tea milk sugar cup plant

Primitives take put take put take take put pour water
Index 1 2 3 4 5 6 7 8 9

For learning the possible transition pairs of each task model, the data set is divided into
the set of 20 observation sequences, and a set of 16 sequences that are used for a one-
leave-out experiment. Thus, each task model is learned from 35 task sequences in each
experiment. Table 5.1 shows the coding of manipulative primitives in a transition matrix
in our experiment. The matrix on the left side of Figure 5.3 is a primitive transition
matrix of “prepare tea” task which is learned from training data. The cooresponding word
pair transitions for task level prediction shown on the right side of Figure 5.3 are extracted
by the threshold 0.2, which is set empirically.

Figure 5.4 shows the evolution of the active manipulative primitives throughout the recog-
nition of this “prepare tea” task. Here, The X-axis represents the numbering of image
frames. On the Y-axis, each primitive has a corresponding horizontal line. The shadowed
bars on the horizontal lines mark the active period of each primitive in this recognition
process. It can be found that the two primitives “put cup” and “water plant” are ready

Figure 5.3: From transition to pairwise grammar
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to be recognized from the beginning though none of them will be performed as the first
primitive of these three tasks. This is because that the task models are learned with the
primitive sequences which may contain the deletion errors of the primitive “take cup”. It
is also means that a task could be correctly recognized even if the first primitive “take
cup” has been missed by the primitive detection. Furthermore, Figure 5.5 shows the end
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Figure 5.4: The active primitives in a “prepare tea” task

probabilities of different manipulative primitives in a prepare tea task. The X-axis has the
same meaning as in Figure 5.4. The horizontal line above zero is the recognition threshold
and the temporal periods which are colored indicate that the hand is in the object vicinity
at that moment.

The task recognition results are shown in Table 5.2. It compares the results between
the processes with (TD) and without (no TD) the top-down attention processing. The
error rates clearly show significant drops between 16% and 28%. The error rates of tasks
“prepare tea” and “prepare coffee” are relatively high. But most of them are caused
by the rejection of these tasks rather than substitution errors (Sub.). The reason why
the task “prepare tea” has relatively high substitute error has several aspects. Firstly,
the primitives from other tasks are allowed in the task models because of the errors in
the primitive detection, even they have only small probabilities. Secondly, the primitive
sequence in the “prepare tea” task is fixed, relatively short and shares several primitives
with “prepare coffee” task. If some primitives from “prepare coffee” task are detected in
this task, these insertion errors could cause the task “prepare tea” to be recognized as
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Figure 5.5: The end probabilities of the manipulative primitives in a “prepare tea” task

“prepare coffee”. The top-down processing does not only improve the recognition rate
but also decreased the computational load. The processing time for a 180-frame “prepare
coffee” sequence with top-down is 54s running on MATLAB, which is much lower than
the 86s needed by the pure bottom-up processing.

Table 5.2: The recognition results of the manipulative tasks with and without top-down pro-
cessing.

Name Num. FN(%, TD) FN(%, no TD) Sub.(%, TD)

water plant 16 5.8 ± 2.1 8.1 ± 3.4 1.0 ± 1.2
prepare tea 16 17.6 ± 6.4 22.3 ± 2.2 6.5 ± 3.8

prepare coffee 16 11.6 ± 5.2 13.9 ± 3.1 0.7 ± 1.0

5.6 Hierarchical Representation

Although a two-layer structure is used in the manipulative task model, it has the po-
tential to be extended to a hierarchical structure. The hierarchical modeling of human
activities has appeared in the work of other researchers. A hierarchical hidden Markov
model (HHMM) originally proposed by Fine et al. [28] is used to solve the problem of
representing dynamic, multi-level processes. Aiming at modeling the hierarchical struc-
ture of human intentions and activities, Bui [13] introduced the abstract hidden Markov
model (AHMM) to represent hierarchical indoor activities. For example, “go to print-
ing” includes a sequence of actions such as “go to computer”, “go to printer” and “go to
paper store” if the printer is out of paper. An online task recognition is realized by a
Rao-Blackwellised particle filter. Liao [72] gives an example of learning the structure and
parameters of an AHMM model by expectation maximization (EM). His system infers a
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person’s transportation mode and target in city traffic from GPS signals. The AHMM
can be thought of as a kind of HHMM which is an extension of the hidden Markov model
to include a hierarchy of the hidden states. In order to achieve the efficient sharing of the
substructures, a lattice structure is put forward in [14].
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Figure 5.6: The DBN representation of the hierarchy structure for recognizing manipulative
activities

Figure 5.6 shows the DBN representation of the hierarchical model for manipulative task
recognition. The model has three layers: manipulative primitive, low level task and higher
level task. The names of the layers – low level and higher level task – give only the idea
of hierarchy. They need to have concrete definition in applications. The variables q0

t , q
1
t ,

and q2
t are used to represent the state of these layers at time t. They are called state

nodes. For each level d ∈ {0, 1, 2}, the collection of possible states of level d is denoted
as Qd. For each state qd ∈ Qd, d > 0, the children of qd are represented as ch(qd) with
ch(qd) ∈ Qd−1. In the same way, the parents of qd, d < 2 are represented as pa(qd) with
pa(qd) ∈ Qd+1. On each level d, there is a terminal node edt linking to the state node
qdt . It is a binary node representing whether the current state ends at time t. If edt = 0,
that means the state qdt will continue. Otherwise when edt = 1, the state qdt ends here and
a new state will be initialized in the next time step. A terminal node equals one only
when the value of the terminal node of the lower level is one because a state will not end
when its sub-state is still in execution. So the states of the end nodes are inferred with a
bottom-up sequence.

There are three kinds of probabilities for parameterizing the discrete part of the model.
Suppose p is a state of level d (d ∈ {0, 1, 2}), and the states i, j are two lower level states
i, j ∈ ch(p) , we define:

• πd,pi as the initial probability of the child i given the parent is p,
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• Ad,p
i,j as the transition probability from child i to j given the parent p,

• Ad,p
i,end as the terminal probability that state p terminates given the current child is

i.

The conditional probabilities P (v|parent(v)) in the model are defined from the parameters
of the HHMM and effected by the different states of the terminal nodes. Here, parent(v)
denotes the parent nodes of v in the directed Bayesian network. The probability for the
termination of state p is inferred as follows:

P{edt = 1|qd−1
t = i, qdt = p, ed−1

t } =

{
Ad,p
i,end if ed−1

t = 1

0 if ed−1
t = 0.

(5.12)

The transition probability between the states of two consecutive time steps in the same
level is calculated as follows:

P{qdt = j|qdt−1 = i, qd+1
t = p, ed:d+1

t−1 } =


δ(i, j) if ed:d+1

t−1 = 00 (both continue)

Ad−1,p
i,end if ed:d+1

t−1 = 10 (child continues)

πd−1,p
j if ed:d+1

t−1 = 11 (both end)

(5.13)

With Eq. 5.12 and Eq. 5.13, the probability of a node state in the discrete part of
the HHMM can be calculated based on the states of its parent nodes. The probability
Pr{q2

t |o1:t} of the top node state given the observation sequence represents the likelihood of
the current manipulative task in execution. The online state estimation of this probability
can be realized by a particle filter [83; 14].

This hierarchical model has been applied to recognize office actions [68] using a simpler
primitive modeling. Before a performance evaluation of this model based on the current
primitive definition can be performed, a correct hierarchy of the manipulative tasks must
be built up firstly. However, as far as we know, there is no literature on the theoretical
analysis of the structuring of human manipulative tasks providing an easy solution.

5.7 Summary

In this chapter the two-layer system architecture used for the recognition of manipulative
tasks is introduced. In this two-layer task model, the task layer receives a sequence of
manipulative primitives as input. For such a symbol sequence modeling and recognition
problem, the n-gram model is chosen by us other than grammar model because it provides
an easy way to recover the primitive detection errors and learn the model from training
data. However the decision of recognition is not only based on the probability of the
primitive sequence given the N-gram task model. The tasks which have a longer sequence
of primitives have smaller probabilities because the transition probabilities in N-gram
models are smaller than 1. Therefore a random model is introduced by us. The probability
of a primitive sequence given the random model is used to scale the probability calculated
based on the task model.
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Because of the object-oriented approach, our system is confronted with the attention
problem when there are lots of object candidates in the image. We combined a top-
down process with the bottom-up process. This processing loop utilizes the task-level
prediction of possible primitives in order to restrict the object types possibly detected
as well as the action primitives possibly recognized. It forms an attention system of the
robot. From the results of a task recognition experiment in an office scenario, it is shown
that the compound top-down, bottom-up processing not only improved the recognition
rate but also decreased the computational load. In the last section, a hierarchical model
is presented to show the extensibility of the system structure.



6. Manipulative Task Learning

For a social robot, the ability of learning tasks via human demonstration is very crucial.
Nowadays, a lot of research endeavor is focusing on the development of a robot whose task
is to serve humans as a companion in their daily life. In this case, the robot is not only
considered as a ready-made device but as an artificial creature, which improves its capa-
bilities in a continuous process of acquiring new knowledge and learning skills. However,
robot learning also has different focuses in different fields of research. In robotics, learning
has been always considered in frameworks of Learning by Imitation or Programming by
Demonstration (PbD) [111; 26], which is a technique for teaching a computer or a robot
new behaviors by demonstrating the motions instead of programming it through machine
commands. The demonstrated motions are mapped to a sensory based representation
according to the embodiment of the robot which enable it to reperform these motions. In
the AI community, much of the work has concentrated on the high-level planning and con-
ceptual representation of skills and state changes using propositional or first-order logic.
When the task learning is concerned, the two domains in robot learning can be put in a
framework and build up a learning hierarchy. A set of motion primitives are obtained by
the robot through the learning of motion control. The conceptual representation of higher
level tasks codes the correct sequence for the primitive execution in a task.

For the work presented here, we consider a scenario in which we want to enable a robot
to learn and then understand complex domestic manipulative tasks. Therefore, firstly, it
is not our purpose in this chapter that the robot learns motion primitives from demon-
strations. Secondly, our focus also does not lie on the learning for motion planning but
learning for recognition. Both of them are kinds of higher level modeling. The difference
is the former tries to extract essential primitives from the task demonstrations but the
latter finds the variance in the demonstrations.

Following the idea of stack generalization (see Section 5.1), the task learning can be
separated to different layers, e.g., primitive layer and symbol sequence layer. Our work
in this chapter is a high-level learning with background knowledge because it is supposed
that the robot has some basic recognition capabilities of manipulative primitives. That
means the models of object-specific manipulative primitives are trained already and they
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are relatively stable throughout different tasks. The primitive detector in the lower layer
turns the observation of a manipulative task into a sequences of primitives and feeds
them into the learning process as input. What’s worth mentioning is that the primitive
detection is not perfect. Consequently, both data for task learning and recognition could
have possible deletion, insertion, and substitution errors in them.

For a household robot, it is natural and convenient for users that they only have to
demonstrate the robot the manipulation once or very few times intentionally, and the robot
could recognize it afterwards or even update the task knowledge by its observation. Most
current approaches suffer from either the demanding of the huge amount of labeled training
data, or the limited recognition cabability caused by very domain-specific modeling. In
this chapter, a semi-supervised incremental task learning method will be presented [70].

To present our approach, several task models and learning frameworks will be discussed
in the next section. Then, it will be introduced how the robot starts the learning by a
few labeled training samples and optimizes the models afterwards without the need of a
human pre-labeling. With respect to unseen tasks, a solution is presented in Section 6.3
that the system collects and filters the rejected tasks in a buffer which is used to learn
new models in an unsupervised way. After that, the results of evaluation will be shown
in Section 6.4.

6.1 Task Learning for Human-Robot Interaction

Robots will inevitably become a part of our daily lives. Serving as helpful assistants
to untrained users in the home or office, robots should be able to understand what the
user is doing and help the user by performing some tasks. However, that a task can be
recognized by robots doesn’t mean that it can be performed by robots. In our opinion,
the task learning of robots can be sorted into two categories: learning for recognition and
learning for motion control. Although the hierarchical structure of the task model is used
in both types of learning, the concrete modeling and learning strategy on the layers in the
hierarchy have much difference between these two types.

Aiming to teach a robot how to perform everyday manipulation tasks, Ogawara proposed
a task model which is a sequence of essential interactions [87]. In his definition, an interac-
tion consists of two objects: the grasped object, the target object and the relative motion
between them. The relative motions are clustered and represented by an HMM [88].
They argue that an interaction sequence of an observation can have both essential and
non-essential interactions. By aligning the interactions of multiple observations of a task
using dynamic programming, they could extract the essential interactions for this task.
More focusing on the causality among the subtasks, Zoellner firstly has the idea to repre-
sent a task by precedence graph [138], which is later on further developed by Pardowitz
and named task precedence graph (TPG) [92]. A task called macro-operators (MO) is a
directed graph with a set of subtasks as basic elements, which are elementary operators
(EO). The directed connection between two subtasks indicates a task execution rule which
must be complied with.

It can be found from the work above that the essential primitives and their sequences
are important for the correct re-performing of the tasks done by a human. The robust
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extraction of these primitives are assured by having particular sensoring equipment, such
as dataglove or a stereo vision system with multiple cameras. However, we are in a recog-
nition scenario, where the tasks are only to be re-recognized but not repeated. Therefore,
we are trying to seek a good decision boundary between two tasks other than finding their
core primitive. In this scenario, the observational conditions are normally worse, e.g.,
using a low-cost mono-camera for sensing. The errors of primitive detection appear more
often than in the learning for motion control. To achieve a good classifier, the variance of
the task models must be learned from training data.

The learning in pattern recognition has several general forms: supervised, unsupervised,
and reinforcement learning. In supervised learning, a category label is given for every
entry of the training set. This form is straightforward and popularly used in the learning
of human actions. For example, Liao used Markov-chain Monte-Carlo (MCMC) algorithm
to learn the routines of a person’s everyday life, like go to shopping and go to work from
GPS data [72]. Expectation-Maximization (EM) is an iterative parameter optimization
algorithm which is often used in supervised learning [23]. In unsupervised learning, there
is no explicit labeling. The system forms “natural” clusters of the input patterns. In
the smart homes project, the inhabitant actions of the user are predicted according to
task models, which are Markov models that have been generated from an unsupervised
clustering [103]. In reinforcement learning, no desired category signal is given; instead, the
only teaching feedback is that the tentative category is correct or incorrect. This learning
mechanism is mainly used in the learning for motion control in robotics [73].

In practice, the learning needs always a lot of training data. In Rao’s work, the training
data is equal to the recording which needs 1250 days [103]. However, in some cases,
the labeled instances are difficult, expensive, or time consuming to obtain. Meanwhile
unlabeled data may be relatively easy to collect, but there has been few ways to use
them. Therefore, a learning method named semi-supervised learning has also received
much attention recently. It tries to use unlabeled data, together with the labeled data, to
build better classifiers [137]. It has found good applications in fields like text classification,
object recognition, image retrieval, and interactive image segmentation

Semi-supervised learning is also used in the action learning and recognition. Grossman
et al. presented a semi-supervised method for clustering robot experiences [42]. In their
work, the robot experiences were represented as a multivariate time series containing
several measurements from a set of sensors. The similarities between them were calculated
using DTW. The labelled sequences were used to assess the clustering quality. According
to the clustering quality, the decision to stop clustering will be made. In order to help the
older adults which have cognitive disabilities (such as dementia) and can not complete
their activities of daily living, Hoey et al. use a partially observable Markov decision
process to monitor a user and to assist the user during each activity [45]. The state of
every time slice in their model is factored into three sets of variables, task, attitude, and
behavior. However, the labeling of behavior is a labor-intensive task requiring expert
knowledge. Therefore, the learning method clusters video sequences in training data in
which only the task states are labeled. Thereby, they learn a set of behaviors, and the
relationship of the learned behaviors to the task states.
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6.2 Semi-Supervised Incremental Task Learning

For a household robot, it may be feasible to group similar activities after observing a
certain amount of tasks for many times. But more naturally, users will expect that the
robot is able to learn some tasks just from a few demonstrations. However, the variance
of errors in the primitive recognition is hard to be discovered from several demonstrations.
Chan et al. proposed an activity model which can be learned from one demonstration [18].
In their work, a simple feature vector is used for modeling the interaction primitives, e.g.
“approach”. The state transitions inside the semantic primitives are modeled by HMMs.
The semantics between the primitives can only be learned with prior structural knowledge
given by a human.

Semi-supervised learning provides a solution to use limited labelled data together with a
large amount of unlabeled data in a learning framework. It has mainly two forms: self-
training and co-training. Self-training is a commonly used technique for semi-supervised
learning. In self-training a classifier is first trained with the small amount of labeled data.
The classifier is then used to classify the unlabeled data. Typically the most confident
unlabeled points, together with their predicted labels, are added to the training set. The
classifier is re-trained and the procedure is repeated. Note that the classifier uses its own
predictions to teach itself. Co-training assumes that features can be split into two sets;
each sub-feature set is sufficient to train a good classifier; and the two sets are conditionally
independent given the class. Initially, two separate classifiers are trained with the labeled
data, on the two sub-feature sets, respectively. Each classifier then classifies the unlabeled
data, and“teaches” the other classifier with the few unlabeled examples (and the predicted
labels) they feel most confident. Each classifier is retrained with the additional training
examples given by the other classifier, and the process repeats.

Because the inputs of the classifiers are manipulative primitive sequences, a semi-supervised
training framework with self-training form is chosen by us. The task model is presented
in Section 5.3.2. Principally it is a N-gram model. The difference is that not only the
parameters for different task models but also for the random model must be learned for
the sake of achieving a normalized similarity measurement between models and primitive
sequences with various lengths. The semi-supervised learning process is shown as pseu-
docode in Figure 6.1. It starts from a small set of labeled sequences. Suppose there are
n different labels, n manipulative task models will be constructed. The model for task
i that is learned from u labeled data is represented as Λi,u. Ãi,u is the matrix recording
the counts of all transitions between the primitives which occurred in the labeled data.
As we discussed before, non-occurring n-grams could cause zero probabilities during the
matching. Several smoothing methods for n-gram model have been briefly presented in
Section 5.2.1. Here, we use a simple “adding one” method. Consequently, the matrix Ai,u
is the resulting matrix 1 + Ãi,u normalized in column. Πi,u, Ei,u and the parameters in
Λr are computed in the same way. But the random model Λr is learned using all the se-
quences from different tasks. Given Λr and Λi, the similarity measurements of the labeled
sequences from one task can be calculated according to Eq. 5.10. Then, thi,u is set as
the minimum of them and the corresponding sequence is saved in memory as the instance
with minimal matching P th

i .
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/∗ Supervised Learning ∗/
1. construct Λ1...n and Λr from labeled data
2. find P th

i for each task model Λi (i = 1 . . . n)

/∗ Unsupervised Learning ∗/
for each new unlabeled sequence Pm do

1. update random model Λr

2. compute d(Pm) (see Eq. 5.11)
if d(Pm) = j then

update task model j
else {d(Pm) = null}
i∗ = arg max

i
(s(i, Pm))

if s(i∗, Pm) ≥ Tho then
1. update task model Λi∗

2. choose new P th
i∗

else {s(j∗, Pm) < Tho}
/∗ reject Pm as unseen task ∗/
insert Pm into buffer

Figure 6.1: Pseudocode of semi-supervised task learning

When an unlabeled sequence Pm is perceived, the random model is updated first. As a
consequence, the thi,u is renewed to t̂hi,u. Afterwards, the decision of Pm is made based
on Eq. 5.11. There are two possibilities.

• Case 1: The sequence Pm is sorted into task j. The task model Λj will be updated.

• Case 2: The decision is Null which means no s(i, Pm) greater than t̂hi,u.

Because this decision is only made according to the current task models, in order to group
similar sequences and update a task model during the learning process, a general lowest
matching threshold Tho is introduced, which defines the allowed loosest match between
the sequence and its task model. So when the process entered case 2, the best matching
task model i∗ = arg max

i
(s(i)) is computed. Dependent on the comparison of s(i∗, Pm)

and Tho, the case 2 is divided into two subcases.

• Case 2.1: If s(i∗, Pm) is greater than Tho, the sequence is labeled as i∗. The task
model Λi∗ will be updated and the worst matching sequence of this model will be
evaluated again.

• Case 2.2: All s(i, Pm) are less than Tho. This means it is far away from known
models and just rejected as an unseen task.

A new sequence is labeled when the process goes into case 1 or case 2.1. The corresponding
task model will be updated. Suppose Ãi,one represents the transition of the primitives in
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the new sequence, Ai,u+1 is the normalized 1 + Ãi,u + Ãi,one. The update of Πi, Ei is in
the same vein.

When the process has entered the case 2.1, the task threshold will also be updated. The
similarity measurements of the sequence in memory and the new observation given the
updated model are calculated again, the task threshold thi,u+1 and the sequence in memory
will be set to the smaller matching result and the corresponding sequence.

The method presented above takes an incremental way. It need not that all training data
are recorded before the training starts. Whenever a demonstration is available, the task
models will be updated. It is suitable for the robot learning scenario. Pardowitz et al. [92]
also chose an incremental way to learn the Markov model of the task. The difference is that
the task models used by us update the weights of the transitions between the primitives
during the incremental learning. The TPG proposed by Pardowitz et al., which can be
initialized as a general model with one instance, is restricted by dropping unessential
precedence relations step by step when a robot sees new demonstrations.

6.3 Extending Task Knowledge

In the section above, a semi-supervised task learning strategy was introduced. Several
task models are initialized according to the labeled data and optimized afterwards using
unlabeled data, where the number of task models is constant from the beginning. If an
unseen task appears, it would be simply rejected by the learning process. However, we
aim for a robot which can discover a new task when it has seen it several times, even
if this task has not been seen by the robot, before. This requirement is called novelty
detection in pattern recognition. Detecting novel events is an important ability of many
signal classification schemes given the fact that we never can train a machine learning
system on all possible object classes with instances the system is likely to encounter. For
example, the novelty detection has appeared in fields like visual surveillance [24], topic
detection and tracking in news [64], and musical material analysis [97]. Xiang and Gong
argue that the online and incremental model construction is not only desirable but also
necessary for processing large volumes of unlabeled surveillance video data [129]. They
used a bootstrapping dataset to initialize a normal model and an approximated abnormal
model with several classes. When a new observation is available, a Likelihood Ratio Test
(LRT), which is based on both normal and abnormal models, is used to decide whether it
can be accepted by an existing class. If it is accepted, the EM algorithm is used to update
the corresponding model. Otherwise, a new abnormal class is generated and the weight
renormalization is performed.

In our scenario, there is no abnormal model. Actually, if such a model exists, it is taken as
a normal model by us. Therefore, our learning strategy is based on current task models.
Because of the rejection mechanism in the semi-supervised learning process, the rejected
data is buffered and built into new tasks in an unsupervised way. The process is shown
in Figure 6.2. Considering also the possible false negative task rejection, a buffer with
a pre-defined length lb is used to save the rejected sequences. Once the buffer is full, a
temporary model is built up based on the sequences in it. If all similarity measurements
between the sequences and the new model are above the loosest match threshold Tho,
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/∗ Learning new tasks ∗/
insert rejected sequence Pm into buffer
if buffer is full then

1. build a task model Λn+1

2. k∗ = arg min
k=1...lb

(s(n+ 1, P buffer
k ))

if s(n+ 1, P buffer
k∗ ) ≥ Tho then

1. take Λn+1 as a valid task model
2. n← n+ 1

else {s(n+ 1, P buffer
k∗ ) < Tho}

delete the sequence P buffer
k∗

Figure 6.2: Pseudocode of new task learning

this model is taken as a valid learned new task model and the buffer is emptied for a
next new model. Otherwise, the sequence with lowest similarity will be deleted from the
buffer. Then, the next task rejection refills it and triggers the process again. In fact, this
strategy assumes that a new task is demonstrated to the system at least lb times in order
to extend the task knowledge.

6.4 Experiment

To assess the semi-supervised learning of the manipulative tasks, three manipulative tasks
are used. They are the same as the tasks used for task recognition in Section 5.5. For
every task, the whole training set contains the primitive sequences detected from 20 ob-
servations, 16 sequences are testing data. In the first evaluation, we used different lengths
of labeled data to start the learning process. The lowest matching threshold Th0 is 0.
The labeled and unlabeled data are randomly chosen from the training set. Figure 6.3
shows recognition rates of the different tasks given different lengths of labeled data in the
training set. In the figure, the error rates of the task recognition, especially the error rates

Figure 6.3: The recognition error rates based on different lengths of labeled data
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caused by rejection, decrease quickly when the length of labeled data increase from 1 to 4,
and become stable when the length gets larger. That indicates the acceptance threshold of
the task models can not be correctly set without enough labeled data. The reason for that
is that too few labeled sequences of a task could eventually contain primitive detection
errors and lead to biased models. In this situation, the threshold of learned models stays
quite high and the similarity measurements for the unlabeled sequences are small. Thus,
the system rejects them as unseen tasks. In fact, it is the model correctness problem in
semi-supervised learning. In the survey of Zhu [137], it says that “If a mixture model
assumption is correct, unlabeled data is guaranteed to improve accuracy. However if the
model is wrong, unlabeled data may actually hurt accuracy.” Although we are not using a
mixture of gaussian model, the model correctness is also a key issue here. As shown in the
results, too few labeled data caused a false initialization of the task models and the semi-
supervised learning did not work after that. The substitution error of task “prepare tea”
is higher than the other two because of the insertion error of the manipulative primitives
which belong to the task “prepare coffee”, which has been explained in Section 5.5.

An often asked question in semisupervised learning is “does unlabeled data always help?”
The answer is “no”. This phenomenon is already observed by many researchers. To
test whether the learned task models are improved by unlabeled data in our learning
mechanism, we compare the recognition results between using task models learned from
pure supervised learning and semisupervised learning with the same length of labeled data.
Figure 6.4 shows the results. The x-axis represents the length of labeled data used in the
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Figure 6.4: The task recognition error rate based on the models learned from pure supervised
method and semi-supervised method.

learning process. Because the semi-supervised learning only works when the models are
correctly initialized, we started from length of 5. The recognition results from the tasks
“water plant” and “prepare tea” have not been heavily effected by the unlabeled data. But
the error rate from “prepare coffee” did decrease a lot. Our analysis is that this is because
of the complexity of task “prepare coffee”. Compared to the other two tasks, it has more
flexibility and more possible manipulative primitive sequences. This variance is hard to
be learned from a few labeled data. Therefore, we think the semi-supervised learning can
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improve the results only when the task is relatively complex and its model can not be well
constructed by a small labeled training set.

In the next experiment, only labeled data from two tasks are given in order to test the
new task learning strategy. From the results in Figure 6.3 it is found that a valid task
model cannot be constructed with less than 5 labeled data items. So the length of labeled
observations and the buffer of rejected observations lb are both set to 5. Figure 6.5 shows
the task recognition error rates on the testing set when choosing different initial tasks. The

Figure 6.5: The task recognition error rate based on labeled data only from two tasks where the
third unlabeled task (light blue) is learned.

results indicate that the unlabeled task was detected and correctly built up. However, a
degeneration of recognition performance is also observed, especially when one of the tasks
“prepare tea” and “prepare coffee” is not labeled at the beginning. This is because of the
false rejections in the learning process. The initial sequences of unlabeled task could also
contain errors.

6.5 Summary

Social robots that act in domestic environments need to be able to extend their knowl-
edge both on the learned tasks and unknown tasks during the interaction with their
environment. Here we focus on the learning for the recognition of manipulative tasks. A
semi-supervised incremental task learning strategy is put forward in this chapter. It aims
for the situation that the robot can start the learning by a few labeled training samples
and optimize the models afterwards without the need of a human pre-labeling. The task
models are based on a Markov process that is coupled to a HMM-based recognition of
primitive actions. It has a probabilistic similarity measure of an unlabeled sequence given
a learned model, where a random model is taken into consideration to adjust the score
of a primitive sequence. Thereby, the system is able to reject unseen tasks. A solution
is also presented that collects and filters the rejected tasks in a buffer which is used to
learn new models in an unsupervised way. This scheme provides the robot the ability to
pre-structure its observation. In future work this could be the basis for an active learning
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strategy of the robot that could ask questions about previously unknown task sequences
observed.

The experiments show the applicability of this approach. Pre-learned tasks were stably
recognized from an initially labeled set of only five samples. Additional tasks that were
previously unknown were newly instantiated and successfully recognized on a test set.



7. Summary and Conclusion

With the development of modern robots, they don’t only stay in the factories but also join
our daily life. They could work in normal indoor environments and communicate with
non-expert users. To maintain a natural human-robot interaction, the robot needs to
understand the human via different observational modalities. In this dissertation we focus
on the vision-based recognition of manipulative gestures. The manipulative gestures are
hand actions that are defined by a non-deterministic sequence of object manipulations.
They are often considered as the interaction between humans and their environment and
being irrelevant to the communication between humans or humans and robots. We argue
that the manipulative gestures serve an important communicative function in human-robot
interaction. First, the manipulation of an object draws the attention of the communication
partner on the objects that are relevant for a performed task. Secondly, it serves the goal
of a more pro-active behavior of the robot in passive, more observational situations.

However, most techniques for the recognition of symbolic, interactional or referential ges-
tures cannot be transferred because they ignore the object context and assume an object
independent characteristic of the hand trajectory. Other approaches that focus on action
recognition either use a pure semantic approach without considering motion models or
simplify the trajectory segmentation problem in a pure bottom-up process.

The presented work overcomes several of these deficiencies. Being primarily focused on
computer vision our goal is to stay as connected to the visual signal as possible, where
predefined actions and particular semantic labels have direct visual correlates. In order
to differentiate between similar trajectories, the objects manipulated are taken as context
by us. Comparing to the methods which couple the object context in a hand-centered
or parallel way, our approach is called object-oriented. It has two different aspects: it is
object-centered in terms of trajectory features that are defined relative to an object and
it uses object-specific models for manipulative primitives.

There are two commen difficulties in the recognition of action primitives: (i) the segmen-
tation ambiguity and (ii) spatio-temporal variability of the hand trajectory. In addition
to these two, we have to cope with an even harder situation, (iii) the recognition can
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not be view-dependent. It is because that a mobile robot at home won’t always observe
the user’s object manipulations from the same view point. Human actions happen in
a 3-D space, intuitively most research work for the view-invariant recognition of human
actions chose 3-D approaches. In our work, we put forward a novel 2-D approach. The
reason for this choice has two folds. Firstly, there are still problems in the 3-D tracking
in mono-camera images. Better tracking results can be achieved by using stereo cameras.
But it poses further constraints on the hardware setting. Secondly, the limited view-angle
variance in our scenario and the represention of the actions by the relative movements
restricts the variance of the trajectories. For the segmentation ambiguity, we used the
vicinities of the contextual objects for a pre-segmentation of the hand trajectory. The
vicinities in 2D images are approximated as ellipses and only dependend on the tilt angle
of the robot camera and the size of detected objects in the images. For a better modeling
of primitives, three kinds of variations of the trajectories are analyzed: the variance of the
repetition of a primitive by one performer, the variance of the performance of a primitive
from different performers, and the variance of the observation on a primitive performed
by a person but from different view-angles. It is found that the latter two variations are
hard to be identified when both of them are taken into consideration at the same time.
If we simply put them together and model them as random models, it will cause a too
general model and brings much insertion errors. Therefore, our system does only a per-
son dependent recognition. The repetition variance of the primitives is taken as random
variance and covered by the observational probabilities of HMMs. The variance caused
by different view-angles is thought as systematic errors. It is modeled by adding an extra
node into the topology of HMM, which nonlinearly scales the mean values of the HMMs
in the matching process. Furthermore, a semi-continuous feature vector, which represents
the relative movement between hand and objects, was proposed by us. The feature which
is less affected by the view-angles are represented continuously. Otherwise it is coded by
coarse discrete values. This representation also to certain extent limits the variance of the
trajectories from different view-angles in 2D images. In the recognition phase, the ma-
nipulative primitives are spotted by a particle filter approach. It matches object specific
HMMs in a more flexible way than the traditional forward-backward algorithm due to
an explicit modeling of an action abortion and resampling step. It has also more flexible
transitions between model states than condensation-based trajectory matching.

Not only focusing on the recognition of manipulative primitives, we also try to achieve
higher level understanding of the manipulative gestures, e.g., the manipulative tasks.
A two-layered recognition structure was proposed by us. It can be represented by an
unified graphical model. The lower layer has HMM for the object-specific manipulative
primitives. It is coupled with the task-specific Markovian models on the upper level.
Whether a primitive sequence provided by the lower level is accepted as a valid task
depends on the similarity measurements between the sequence and the task models. To
obtain a comparable similarity measurement between the sequences with different lengths,
a random model is used to adjust the score of a primitive sequence given the Markov
model of a task. Aiming to have a intuitive task learning of robots, we put forward a
semi-supervised incremental learning strategy. Taking a set of pre-learned object-specific
manipulative primitives as basic states, the task models can be initialized with a few
labeled data, and updated continuously when new unlabeled data is available. With a
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threshold for task acceptance, the system is able to reject unseen tasks. Then, a solution
is presented by us that collects and filters the rejected tasks in a buffer which is used to
learn new models in an unsupervised way. This scheme provides the robot the ability to
pre-structure its observation. In future work this could be the basis for an active learning
strategy of the robot that could ask questions about previously unknown task sequences
observed.

Another problem we need to consider in manipulative gesture recognition is the attention
problem. Because of the object-specific primitive definition and the parallel processing
for each detected object, the system has to start a lot of processing threads and searches
correct primitives in a much bigger data space when there are many objects appearing
in the scene simultaneously. It is inefficient and error-prone. Therefore, we proposed an
architecture realizing a combined bottom-up and top-down processing loop. The top-
down processing utilizes the task-level prediction of possible primitives to restrict the
object types possibly detected as well as the action primitives possibly recognized. In the
bottom-up path, a processing thread is created for each detected object according to the
currently recognized tasks. Afterwards, the primitive detected in the threads are fed back
into the task level in order to update the prediction closing the bottom-up and top-down
cycle. Thereby, a dynamic attention mechanism is realized that reduces the number of
considered objects and simplifies the segmentation task of the hand trajectory.

We were able to show first experiments that underline the potential of the presented
approach. A scenario in an office environment was set up. In the first experiments, we
evaluated the view-variant manipulative gesture primitive recognition. The images were
recorded from different view-angles and different distances. The action primitives were
recognized quite robustly. The proposed primitive model showed better performance than
HMM. In the task recognition and learning, the top-down attention filter significantly
improves the computation time as well as the recognition performance. The results also
presented the limitation of the semi-supervised learning that it need a certain length of
labeled data to correctly initialize the task model. If this condition is satisfied, the task
models can be built up. Furthermore, unseen tasks can also be learned.

Further work needs to concentrate on several issues. In terms of feature description neither
pure symbolic nor trajectory-based characterizations will be general enough to describe
the huge variety of manipulative actions. Trajectory-based features allow to distinguish
actions that do not result in observable state changes of the objects, but suffer from
large trajectory variations. The proposed object specific motion-models account for these
variations to a certain degree. How to deal with multiple representations on both symbolic
and subsymbolic levels is still an open research question. The coupling of motion models
and object types also leads to another important aspect of actions: the concept of object
affordances. The observed shape and function of an object activates an expected set of
hand trajectories and vice versa. We expect that this kind of coupling will be a key issue
both in categorization of objects and learning new action verbs. Another aspect is the
development of more sophisticated task models that need to include human intentions on
multiple scopes of time and space. Finally, more sophisticated experiments are needed
to evaluate current action recognition approaches. Appropriate benchmark datasets for
manipulative action recognition are currently not available and most approaches focus on
their specific application domain. Despite of the open issues, the presented dissertation
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has shown the first step to the vision-based manipulative gesture recognition in a human-
robot interaction scenario, and is therefore a first attempt to bring robots closer to our
daily life.
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