

2

On the Recognition of Objects by
Contour Parts and the Early

Development of Biological Contour
Processing

Dissertation zur Erlangung des Grades
eines Doktors der Naturwissenschaften

der Technischen Fakultät
der Universität Bielefeld

vorgelegt von

Carsten Prodöhl

aus Wuppertal

Juli 2004

Overview

The following work is split into two parts. The first part describes a technical computer vision
method for the recognition of objects by their contour characteristics even if these contours have
undergone affine transformations, are only partially visible or are partially embedded in another
larger contour. In case complete closed contours should be recognized the method can use nor-
malization procedures that reduce the computational cost substantially. The method can as well
be used to do object classification or reversely be used to define clusters of similar objects and if
at least a contour part is specific enough it is even possible to identify individual representatives
of an object class. The first part of this work leads to the conclusion that contour processing can
be an important part in solving vision problems. Little is known about how contour processing
is organized on an intermediate level in biological brains. The second part of this works aims
to contribute to our understanding of how the first steps of contour processing could develop in
biology, by showing how the Gestalt principles of collinearity and curvilinearity can be learned
from object motion without being dependent on the statistical properties of the background.

3

4

Contents

Contents 5

Acknowledgments 9

I. Object Recognition by Contour Parts 13

1. Model Concepts, Extraction, Recognition and Retrieval of Natural Shapes 15
1.1. The Concepts of Natural Shape Recognition Approaches 15
1.2. Requirements a Shape Model Should Ideally Meet 17
1.3. Implementations and Applications of Shape Models. 19

1.3.1. Shape Models . 19
1.3.2. Recognition Methods . 22

2. The Shape Model and Recognition Algorithms 25
2.1. The Contour Model: An Overview . 25
2.2. Pre-Matching Processing Stages. 27

2.2.1. Raw Shape Extraction by Background Difference Segmentation 27
2.2.2. Segmentation Based on Differences of an Image to a Learned Back-

ground. 28
2.3. Clustering of Pixels to Segments. 30
2.4. Generation of Counterclockwise Oriented Graphs Composed of Border Points

of Segments. 32
2.5. Spline Interpolation of a Chain of Contour Points. 36

2.5.1. From Discrete Contour Points to Equidistant Sampled One Dimen-
sional Parameterized Data. 36

2.6. Normalizations and Fourier Descriptors . 38
2.6.1. Application of Fourier Descriptors to Equidistant Samples of X and Y

Point Graph Coordinates. 38
2.6.2. Normalizations Applied to the Data Before the Fourier Transforma-

tions. 39
2.6.3. Normalizations Applied to the Model After the Fourier Transforma-

tions. 39
2.7. Gabor-Descriptors: Gabor-Wavelet Transformation Applied to Pairs of One Di-

mensional Data . 40
2.7.1. Computation of the Gabor Kernels . 40

CONTENTS

2.8. Matching Modi . 42
2.8.1. Problems Associated With the Matching Procedures 42
2.8.2. Similarity Computation Between Two Gabor Coefficient Vectors

(Feasts) of Different Sizes: The Discrete Scale Concept. 43
2.8.3. Computation of a Target Gallery Index Range 45
2.8.4. Efficient Multistage Matching: The Starting Point Move and Scale

Move, Rotation Move and the Corresponding Points Move. 47
2.8.5. Local versus Global: Matching of Selected Feasts, Matching of Com-

plete Closed Contours and Percent Matching. 51

3. Results of the Contour Recognition Tasks 55
3.1. The Contour Model Applied to the Recognition of Complete Closed Contours 55

3.1.1. Illustration of the Gallery Images Used 56
3.1.2. Classification of Similar Contours to Form Object Clusters 56
3.1.3. Complete Contour Matching of 3D-Postures of Different Individual

Representatives of the Same Object Class 62
3.1.4. Matching Normalized Contours . 68
3.1.5. Matching Non-Normalized Contours 68

3.2. The Contour Model Applied to the Recognition of Contour Parts 75
3.2.1. Recognition of Known Specific Object Parts 75
3.2.2. Recognition of Different Objects . 80
3.2.3. The Occlusion Task . 85
3.2.4. The Multiple Objects Task . 93
3.2.5. Matching of Open Contours . 93

4. Discussion 99
4.1. Properties of the Presented Model . 99
4.2. Relation to Other Models . 101
4.3. Choice of Parameters . 101
4.4. The Presented Shape Model and Object Segmentation. 102
4.5. Organization of the Database Architecture . 102
4.6. Combining Contour and Area Information . 103
4.7. The Ideal Meta-Matching Algorithm . 103

A. Further Examples of Matching Results 105
A.1. Further Results on the Recognition of Different 3D Object Postures. 105

B. Preprocessing of the Image Data 119
B.1. Illustration of the Color Cue and its Limitations 119
B.2. Converting RGB to L*a*b* Color Values . 121
B.3. A Psychophysical Acceptable Distance Function for Color Differences in HSI

Space . 121

C. Graph Algorithm for the Generation of a Chain of Points 125
C.1. An Algorithm for Extracting the Different Components of a Graph 125

6

CONTENTS

C.2. A Shortest Path Graph Algorithm With Different Preferences For Nodes To Be
Used . 127

C.3. An Algorithm to Transform a Graph into a Sequence of Nodes 129

II. Early Development of Biological Contour Processing 133

4. Early Development of Perception 135
4.1. Foundations of Perception . 135
4.2. The Developmental Succession of Gestalt Principles 136
4.3. The Relevance of Rough Motion Information 137
4.4. Development of the Visual Pathway . 138
4.5. Relation to Natural Image Statistics . 139

5. A Model for the Early Development of Horizontal Connections. 141
5.1. Complete Model Overview . 141
5.2. Model of Subcortical Processing . 146

5.2.1. Retina Model . 146
5.2.2. The Photoreceptors . 146
5.2.3. Bipolar and Ganglion Cells: . 147

5.3. Cortex Model . 148
5.3.1. Cortical Organization . 149
5.3.2. Learning Horizontal Connections . 150

5.4. Input data . 153

6. Development of Horizontal Connections 155
6.1. Results for Transient and Sustained Simple Cell Responses 155
6.2. Application of Sustained Responses to a Database of Natural Images. 159

7. Discussion 161
7.1. Interpretation of the Results . 161
7.2. Relation of the Results to Other Models . 162
7.3. Learning From Natural Images . 163

List of Figures 165

8. Bibliography 169

7

CONTENTS

8

Acknowledgments

My own personal intellectual development would not have been possible in the past years and
this thesis could not have developed the way it has without the help of a lot of people. For this
reason I would like to express my gratitude to the following persons. To me this is a personal
urge and pleasure as my development and my thoughts were influenced to unmeasurable extents.
Especially in the intellectually very fertile environments I had the pleasure to be in.

Hans-Joachim Prodöhl and Editha Helga Prodöhl for giving me invaluable and never ending
emotional support at all stages of my life.

Christoph von der Malsburg for giving me the possibility to work in such an intellectually
challenging environment. I always appreciate the long hours he spent discussing with
me, although we did not always agree on some subjects and I was not always able to
express my thoughts in clarity at the first time. The resulting discussions are in my eye
the foundation for the emergence of most of my successful new ideas.

Helge Ritter for accepting this thesis at the University of Bielefeld.

Rolf Würtz for the many ours he spent thinking about the results of my work and for asking
the right — sometimes unpleasant — questions that have improved it considerably.

Andrea Figge for her almost inexhaustible patience and endurance in supporting me.

Uta Schwalm for her support on the day to day problems encountered at the institute and her
continuing effort to make the institute one of the best organized ones in the world.

Prof. Daunicht for encouraging me to study the field of computer science and helping me
execute my diploma thesis.

Prof. Hoffmann for the patience and time he spent giving me some new insights into biological
neurophysiology.

Michael Neef for his tireless efforts to maintain and perfect the institute’s computer system
which is a great benefit although our interests have not always been the same. Fur-
thermore for his rapid hot fixes and unconventional help with the ubiquitous computer
problems.

Hartmut Neven for his inspiring thought on how algorithms in computer vision should be
developed.

Jan Vorbrüggen and Christian Eckes for showing me the problems associated with segmenta-
tion tasks before I got stuck in them myself.

CONTENTS

Norbert Krüger for his unconventional and passionate way of thinking about problems in
computer vision.

Jochen Triesch for giving me an idea of how a combination of prospective visions and solid
implementation enables the creation of astonishing solutions for computer vision prob-
lems.

Michael Pötsch for his clear and inspiring ideas about software development and life in gen-
eral.

Michael Rinne for his patience in teaching me the foundations of good object oriented pro-
gramming although he never wanted to do that purposely.

Stefan Zadel for his inspiring theoretical and philosophical views on the future of computer
vision.

Thomas Maurer for his hint on learning and using the perl language.

Axel Steinhage for many joyful hours spent after work.

Bram Bolder for a lot of fun during and after work and his effort on the implementation of a
family of c++ classes for different image sources as well as his invaluable linux support.

Wilfried Horn for his help in implementing some algorithms without which the completion of
this thesis would have been delayed.

Maximilian Krüger for helping me to record some image sequences.

Witali Kusnezow for his view on c++ coding which is for the normal person somewhere
between ingenious and detail enamoring.

Ingo Wundrich for his recreating views on the importance of signal processing techniques in
an environment of computer scientists.

Günter Westphal for providing some image data sources and his excellent way of organizing
programming projects.

Andreas Tewes and Jörg Lücke for their support in strategic software development questions.

Jörg Bornschein and Dennis Rieks for their help on implementing an object oriented graphical
user interface.

Mike Pagel for a lot of joyful days learning c++ together.

Peer Schmidt for always having a grin on his face which is an invaluable thing to have at your
working place.

Hartmut Loos for numerous discussions which future path to follow.

10

CONTENTS

This work would have hardly been possible without the financial support given by the Ger-
man Minister of Science and Technology (BMFT) and the Deutsche Forschungs Gesellschaft
(DFG).

This work has been typeset by the author in LATEX, so thanks are due to the creators of
TEX and LATEX, who offer this high quality text processing as public domain software. All
simulations have been carried out on a Intel workstation using the c++, scilab and the perl
language whose qualities and power are also gratefully acknowledged.

Finally, I would like to thank the readers who appreciate the unconventional nature of this
work.

11

CONTENTS

12

Part I.

Object Recognition by Contour Parts

13

1. Model Concepts, Extraction,
Recognition and Retrieval of Natural
Shapes

It is possible to store the mind with a million facts and still
be entirely uneducated.

Alec Bourne, ”A Doctor’s Creed”

1.1. The Concepts of Natural Shape Recognition Approaches

A lot of different animal species and humans show the remarkable ability to cope with the prob-
lem of segmenting objects from the background in the visual input they receive. Furthermore
they have the ability to recognize known objects sometimes only by their shape. On the other
hand shape description is a major problem in machine perception and is a basis for the recog-
nition, coding and retrieval of objects. It is a great challenge in computer vision to generate
algorithms that are able to reliably identify ’known’ objects in the visual input in a way like
humans are able to do it. Before we take a closer look at the requirements, implementations and
applications of shape recognition we have to think about the concepts that are the foundations
for contour algorithms especially the important question of what defines an object as ’known’
in the above mentioned sense. In terms of computer vision the most general definition would
be: Some data describing the shape of an object is already stored in the memory of a computer
before new visual input containing a similar or identical object is evaluated. Regardless of the
model used or the parameters constituting the model the question arises of how this knowledge
has found its way into the computer. One possibility is of course that a human has developed
the model for a specific contour (or set of contours) and has found the right set of parame-
ters and appropriate values for them either by computing, guessing or statistically evaluating
multiple algorithmic experiments using different parameters. While this approach may yield
good results for specific tasks — just think of the Hough transformation — it is often hard or
impossible for the computer algorithm to extend the knowledge base beyond what was already
put in, if for example a new contour with unknown properties will be presented in the future.
A similar problem occurs with algorithms that need a certain amount of representative input
before their statistical evaluation schemes are able to compute, extract or identify a new contour
given to them as new visual input. If the statistical properties of this new contour are different
from the ones of the already learned contours stored so far, it is at least questionable that these
algorithms can proceed and fulfill their task. Closely related to this kind of modeling is the

1. Model Concepts, Extraction, Recognition and Retrieval of Natural Shapes

idea of extracting an object contour by locally connecting simple feature detectors to form a
representation for a complete complex contour, as it implies the existence of an a priori abstract
contour description that allows the algorithm to evaluate which features should be connected
and which should not. The line of thought in this case is: If a model for natural contours could
be found it should be possible to compute the local interaction functions that link or do not
link the simple elements together and form the local contours. While it is beyond doubt that
such mechanism play an important role in low level biological contour processing (see part II)
it is questionable if such an approach can be sufficient. A philosophical question arises on the
nature of biological learning: How is it possible for biological systems to learn from very few
examples in a relatively short amount of time without the need for a lot of repetitions. Prof. von
der Malsburg used to tell his students a thought experiment illustrating this feature:

If your friend gets attacked by a wild animal, e.g. a tiger, while you both are
traveling through a jungle, you might not be able to see much of the tiger before
he vanishes again — probably with your friend — and it may have been the first
occasion you have ever encountered a tiger, but the next time you see a tiger you
will recognize the tiger immediately. You do not need to relive that experience a
large number of times before you are able to extract the relevant features from the
visual input so that the next time you see a tiger you will be able to recognize the
tiger immediately.

To learn from very few examples or even from one example seems to be an important ability
for biological organisms. In the example mentioned above the problem splits in two important
subproblems that could be solved by two more or less independent subsystems. One subsystem
does the necessary computations for the recognition task and another subsystem weights the
visual input and decides what is important and should be learned and what is not important. As
the latter is task dependent we will only deal with it in so far as the user will have the ability
to select relevant input that should be stored in a recognition data base. Coming back to the
first subsystem and the specific problem of natural shape description and recognition it should
be a great advantage to be able to recognize a contour just by one example seen so far without
knowing much about other contours. It can be argued that evolution might have developed a set
of local interactions given at birth that already contain the knowledge about natural shapes. In
part II it will be shown that there is a lot of evidence in the biological literature that this is at
most true for a very limited amount of shapes and furthermore the question arises how humans
are able to learn such shapes as cars, ships or helicopters that are very different from every
natural shape relevant during the evolution of mankind. In my opinion the real implication of
the described problem is that biological learning has to be inductive, is has to be able to cope
with a lot of ’exceptions’. Probably after learning a lot of individual shapes, the competition of
various neural cell assemblies and the accompanying reorganization of the nervous system will
result in some neuronal subsystems that will have specialized on a wide variety of similar natural
shape parts. But this should be a consequence of learning each individual shape rather than be
a precondition for shape learning, although once such a subsystem is existing it would probably
facilitate the recognition and learning of new shapes substantially. On the other hand the found
relations can probably only be of an unspecific nature — like for example the Gestalt rules of
collinearity and curvilinearity treated in part II — corresponding to shape segments that are part
of a lot of different shapes. Any attempt to guess the general laws describing the computations

16

1.2. Requirements a Shape Model Should Ideally Meet

of these general neuronal subsystems puts the really difficult task into the mind of the algorithm
designer so that it will not be a feature of the algorithm itself. It further makes the implicit
assumption that all shapes can be described by general laws which is at least questionable in
my opinion. Coming back to the problem of creating a knowledge base desirable algorithms of
contour processing should therefore be able to incorporate newly recognized contours to their
knowledge base, while the way new structures are represented in that knowledge base should
fulfill two requirements: First, the representation should be able to represent every possible
natural contour by the same form of representation so that, second, this representation should
preserve the similarity of contours ’perceived’ by humans.

1.2. Requirements a Shape Model Should Ideally Meet

In the previous section one has seen that the first requirements are conceptual ones. Additionally
there are further requirements to a shape recognition model which are summarized below. The
shape model that is later presented in this work will either fulfill all these requirements or be
extensible in future research to fulfill the remaining ones.

� The shape model and recognition algorithm should be able to deal with any contour, be
able to extend its knowledge base incrementally — ideally interactively with user input
— and make no a priori assumptions on the nature of natural object contours or depend
on a representative sample of those contours.

� It should be possible to recognize efficiently complete contours that have been subject to
affine transformations (rotations in the plane, scaling and translation) with a very high
recognition rate.

� Furthermore it should be possible to recognized contours that have been slightly distorted
or have been modified by noise.

� Ideally a continuous similarity value for all possible contour pairs should be possible to
compute and the similarities computed should correspond to the impression that humans
have on how similar these contours are.

� It should be possible to recognize objects only by parts to cope with occlusions or super-
positions of objects.

� In addition it should be possible to recognize open contours that are parts of already stored
contours. At least it should be possible to recognize those parts of the contour that are
relative far away from the end points.

� Rotations in all three dimensions of the objects can probably not be covered directly al-
though one could imagine the existence of features that are stable under three dimensional
rotations to some extent. It is unlikely because not even humans can, for example, rec-
ognize a persons profile face silhouette if they have only seen the frontal face so far. But
if contour information from enough different viewpoints has been acquired it should be
possible to recognize objects that have undergone rotations in all three dimensions.

17

1. Model Concepts, Extraction, Recognition and Retrieval of Natural Shapes

� If the shape model can be used for data compression of the contour information this would
be useful for encoding purposes like fulfilling the MPEG-7 standard (Jeannin and Bober,
1999).

� The shape model used in tracking tasks should enable the user to generate point to point
correspondences.

� If point to point correspondences can be established and stereo images are provided then it
should as well be possible to estimate depth information, ideally with sub-pixel accuracy.

18

1.3. Implementations and Applications of Shape Models.

Only a fool relies on learning from his own mistakes. I per-
sonally always tried to learn from other peoples mistakes to
prevent doing them at the outset.

Graf Otto von Bismarck, Chancellor Second German Reich

1.3. Implementations and Applications of Shape Models.

Shape representations can have a lot of possible applications. Although all of them could only
be fulfilled having a shape model in the above mentioned sense a lot of models have emerged
that are suitable for special applications and these will be presented in the following. Applica-
tions of shape models are for example to identify individual persons by profile face silhouettes,
or the detection whether or not faces are present in an image like in (De Campos et al., 2000),
or estimation of the pose of an articulated object from its silhouette (Kameda, 1993). Medical
tumors can be identified by their shape like in (Korn et al., 1998) or hand gestures can be rec-
ognized like in (Pavlovic et al., 1997). Another application is the construction of 3D-models
from several 2D-contours like in (Chien and Aggarwal, 1989). In the next sections a closer
look is taken at the mathematical foundations of the shape models presented in the literature
and furthermore on the algorithmic realization of different recognition methods.

1.3.1. Shape Models

A great challenge in itself is the development of algorithms that can first of all extract a con-
tour from visual input. An example is the work presented in (Bell and Pau, 1990) where certain
specified features are extracted that should lead to a useful curve description in a logic program-
ming environment. While the contour extraction seems to be at first glance a precondition for
contour recognition it turns out that knowledge about the possible shape of contours can help
strongly in the task of extracting the ’right’ contour from an image. So it is better to think of
contour extraction as a test evaluating contour hypotheses with the actual low level visual input
as a constraint rather than of a simple preprocessing step which may only yield good results in
simple situations. The shape representation of (Chuang and Kuo, 1996) — explained in more
detail below — can be used for example to extract known shapes by using the Campher distance
measure on the image points and an elastic matching approach. Matching is defined here as the
process of finding the points of two contours corresponding best with each other in terms of a
defined similarity function.

The next important question to answer is the development of the shape model itself. There
are two main approaches in the literature on the development of shape models: purely contour
based ones and models that incorporate region-based information as well.

A region-based shape descriptor described in (Heijmanns and Tuzikov, 1998) is robust to a
lot of invariance constraints like the class of affine transformations and reflections but is only
limited to convex objects. In contrast to that the model described in (Zhu, 1999) learns Gibbs
distributions on Markov random fields by evaluating specific properties of a collection of nat-
ural shapes. These properties include curvature on several scales and the distance between
associated points that are defined by computing the medial axis of the shapes. While the model
may be of great help in evaluating whether a new average contour hypothesis likely belongs to

19

1. Model Concepts, Extraction, Recognition and Retrieval of Natural Shapes

a learned class it is not easily possible to store highly specific shapes that may not be repeating
very often. Furthermore, a statistically representative gallery of know contours is a precondition
for the model to work. Finally the stored models are very sensitive to changes of the medial axes
of the contours that could occur due to occlusion or multiple objects forming a new combined
contour.

In (Yang and Cohen, 1999a) cross weighted affine invariant moments are used to describe
shapes of objects. The main advantage of the method is that it allows recognition to some extend
even under perspective changes of the object of interest. On the other hand as the method is
not very sensitive to small changes of the contour it loses discriminating power and it can not
deal with large occlusions. In (Yang and Cohen, 1999b) locally affine invariants are computed
by using the convex hull of scattered feature points. This approach can deal with occlusions
but depends on the choice of the feature points and has limited discriminating power as only a
convex hull of the shape is used and not the shape itself.

The problem with most methods of shape description — like Fourier descriptors or mo-
ments — is that they depend on characteristics of the whole contour and are highly sensitive to
small disturbances of that contour. Therefore those methods are not suitable for partial contour
recognition or recognition of contours with local variations.

There are three different ways models make use of Fourier descriptors. The traditional ap-
proach is to transform the contour coordinates to two real valued coordinate functions. The
functions are either parameterized by the arclength of the contour or by using the path length
which is the sum of the Euclidian distances of all contour pixels to their successor pixels. An-
other popular approach is the transformation to one real valued turning function based on the
centroid of the contour and a description in polar coordinates. Only few models use the complex
Fourier representation for recognition purposes. An interesting exception should be mentioned
that is presented in (Kindratenko and Van Espen, 1996) were the natural shapes of an algae cell
agglomerate could be classified by using the complex Fourier representation.

In (Arbter et al., 1990) a contour model based on normalized Fourier descriptors is pre-
sented. The parameterized x and y coordinates of the shape boundary points are each Fourier
transformed. Then all normalization steps are performed in the Fourier domain. The authors
claim that the results are descriptions that are invariant to affine transformations of the contours.
However it is questionable how accurate this method can deal with rotations in the plane as the
transformations are done directly on the pixel coordinates and no interpolation is done which
would allow for pixel independent equidistant sampling. This can be a problem as for example
a simple straight horizontal 8 pixel line segment transforms into a 7 pixel line segment when
it is rotated by 45 degrees which results in a very different description of that same line seg-
ment in the Fourier domain. The authors even apply their methods to objects moving in 3D
space with good results for almost rigid objects — like airplanes — as long as the movements
and the resulting perspective projections do not lead to major occlusions. It has to be noted
that the inability to deal with occlusions is an inherent feature of all models using only Fourier
descriptors.

The problem of recognition of slightly varied contours has been addressed in (Gorman et al.,
1988) where the contour is subdivided into several distinct parts and the first � Fourier descriptor
coefficients of each part are used to characterize its curve form. The result is an alphabet of
elementary curve forms that can be matched using a dynamic programming procedure. While
this procedure has it’s merits — especially speed — it is very sensitive to the decomposition of

20

1.3. Implementations and Applications of Shape Models.

the original curve into segments. Furthermore by using an alphabet of curve forms there is —
without further consideration — no natural way to specify the degree of similarity of different
elements of the curve alphabet even if their difference is not very high when viewed by humans.
Additionally, an optimal alphabet is dependent on the task to be solved and it therefore may be
too small to distinguish small differences of curve forms for some applications or too big with
the result that similar curve forms are distinguished although the should be treated as equal.

An interesting extention of the method in (Gorman et al., 1988) is an approach to the prob-
lem of occluded contour recognition found in (Petrakis et al., 2002). There a contour is decom-
posed — using it’s inflection points — in concave and convex segments which results in a code
that can be matched using a dynamic programming procedure. While the proposed method is
certainly an improvement over the use of raw Fourier descriptors, as it is possible to match
partial contours, the method depends heavily on the stability of the inflection points. The pro-
cedure is probably more stable than the method used in (Gorman et al., 1988), but the principal
problems of using a curve alphabet remain:

1. Dynamic programming is most useful if exact matches are searched for. What happens in
case of misclassified or changed parts of a contour?

2. What is the optimal degree of similarity of different elements of the curve alphabet?

In (Ueda and Suzuki, 1993) the extraction of the optimum scale convex/concave structure com-
mon to shape samples of one specific class leads to a representation of this object class by one
canonical form. No normalizations to rotation and scale are performed as it is hoped that the
relevant features of the class are already captured by the constructed prototype. This approach
is not suitable for rotational invariance and has the same disadvantages as the above mentioned
algorithms as it uses a dynamic programming procedure for the matching of two contours.

In this work a method will be shown that allows the matching of occluded or extended
contours without using contour points with special characteristics and therefore avoiding to be
dependent on them and without the need to define an alphabet of curve forms.

There are several models using only the contour information: In (Kartikeyan and Sarkar,
1989) the contour is modeled using an autoregressive model developed for time series pre-
diction. In (Sekita et al., 1992) PARCOR coefficients are computed which are extentions to
autoregressive coefficients and can be shortly described as not only ’forward looking’ but as
well backward. While these are established statistical methods it remains unclear why the con-
tinuation of a contour should be predictable by these kinds of coefficients. Furthermore the
discriminative power of the coefficients is probably not very high as their computation is more
or less an averaging process which disregards by its very nature specific details of the contour.

The approach in (Tieng and Boles, 1997) is related to the work that will be presented here.
The authors extract the border of an object from images using edge detection and tracing algo-
rithms. The curves representation is transformed into polar coordinates to make the algorithm
invariant to translation and rotation and is then sampled with a constant number of data points
— that is a power of two — to make it invariant to scaling. They use the first derivative of a
cubic spline function to build a wavelet transform zero-crossing representation of that object
contour. The resulting dyadic wavelet representation is only used at the coarse levels, as the
2D-grid of the digital image is producing to many artefacts in the other levels. The dyadic
wavelet representation is claimed to be superior to Fourier descriptor representations but can as
well only match complete contours because of the use of polar coordinates.

21

1. Model Concepts, Extraction, Recognition and Retrieval of Natural Shapes

A simple purely contour based shape representation and a metric for their comparison is
proposed in (Arkin et al., 1991). The method can be computed efficiently and is based on
the turning function which, is the parameterization of the original curve by its tangent angle
relative to a given orientation. Invariance to rotation and starting point are achieved by testing
for all possible shifts and using the minimum distance found. The method is very sensitive to
nonuniform noise and needs exhaustive search methods to be invariant to rotational shifts etc.
even in the case of closed contours where normalization to a canonical form is possible.

A purely contour based shape representation and matching procedure is proposed
in (Mokhtarian and Mackworth, 1992) which is in some aspects similar to the model that will
later be presented here. The model uses a path length representation of the curve which means
that the length of the graph of the contour in the image is used to parameterize the contour in
x and y coordinate functions. The representation is computed by convolving this path-based
parametric representation of the curve with Gaussian functions — with the standard deviation
of the Gaussian changing from a small to a large value — and extracting the curvature zero-
crossing points of the resulting curves. The representation is essentially invariant under rotation,
uniform scaling, and translation of the curve. The choice of the zero-crossing points for rep-
resentation makes the representation of the curve unstable, although the multi scale approach
can compensate that to some extend. An advantage is that the choice of the zero crossing
points can lead to a compression of the contour data although the choice of the zero-crossing
points seems to be arbitrary and possibly important contour information is disregarded. How-
ever, this is a very popular method and the authors have applied the model to the problems of
three dimensional rotations (Abbasi and Mokhtarian, 2001) of objects, occluded object recog-
nition (Mokhtarian, 1997), corner tracking and data compression in accordance with a MPEG-7
standardization (Mokhtarian and Bober, 2003).

In (Chuang and Kuo, 1996) a wavelet descriptor representation is used to encode the con-
tour of a shape on a multi scale approach. The tested wavelets are orthogonal or biorthogonal
which allows an easy reconstruction. The wavelet coefficients can be normalized to be invari-
ant to translation, rotation and scaling as only closed contours are used. However the wavelet
transforms are performed in the pixel domain and depend on the choice of the starting point.
Although the authors claim the matching results are better for deformable contours compared
to using Fourier descriptors their approach is not applied to occluded or enlarged contours.

1.3.2. Recognition Methods

There are two main approaches to solve the problem of contour recognition, one puts the em-
phasis on finding a canonical representative via normalization and the other is to develop a
sophisticated matching procedure that copes with the different transformations the object has
undergone. The idea of normalization is explained in detail in (Rothe et al., 1996). The main
idea is to perform a number of normalization steps so that each contour of the same object
subject to a specific number of transformations is normalized to the same canonical representa-
tive. Although even here a matching procedure is necessary to really find the wanted object in
a database the matching procedure can be relatively simple as the canonical forms of two con-
tours are either closely related to each other or not. If they are not closely related they should not
belong to the same equivalence class of objects defined by the normalization steps. Obviously
the main advantage is a huge reduction of the computational cost required to match objects.

22

1.3. Implementations and Applications of Shape Models.

It has even been argued that object recognition is the computation of invariants (Weiss, 1993).
Following this line of thought the proposed framework in (Alferez and Wang, 1999) is very
general and produces invariants insensitive to rigid motion, affine transform, changes of param-
eterization and scene illumination, noise, and perspective transform. One main disadvantage of
normalization is that it must be a priori clear which transformations should be normalized. For
some applications this might be inconvenient as it could turn out that some variants of a contour
that are transformed into the same representative have to be distinguished. An example would
be a hand gesture to the left or to the top of the head with only the hand being normalized.
These two gestures could not be separated unter rotational invariance but should probably mean
different things. One solution to this problem is to use only invertible normalizations and store
the used parameters, so that the user can decide after the matching what equivalence classes
to build. Another solution is that a good algorithm should allow the user to decide which nor-
malization steps should be performed instead of hiding the normalization steps as the wanted
invariances might change from application to application. Furthermore consider two different
but dependent tasks. One is to recognize silhouettes of human faces, for example, looking to
the right and the other is identifying specific persons from these profile images. The danger
of normalization is that the individual differences needed for task two are ’normalized’ away
while solving task one.

In (Cohen and Wang, 1994) a B-spline representation of the curve is chosen for the goal of
normalization under affine transformations. The problems to be solved here include estimating
the control points from the data curve, and of deciding on the best order B-spline and the best
number of control points to be used to model the contour. In (Wang and Cohen, 1994) a Fourier
descriptor is used on the B-spline control points to achieve rotated, translated, and scaled inde-
pendence for the matching process that is done via a neural network. The choice of the B-spline
control points is critical and therefore a Bayesian approach is used to decide which is the ’best’
B-spline representation. Unfortunately, the chosen representation is very sensitive to wrong
decisions of this algorithm caused by small changes in the contour data. For this reason the B-
Spline representation is used in (Avrithis et al., 2001) for the main purpose to be able to generate
an equidistant sampling of the original curve and a Fourier descriptor is afterwards applied on
the — via the path length — parameterized coordinates of that sampled curve. The number of
sample points is fixed in this case. By using coordinate moment normalization and a phase shift
in Fourier space the resulting representation can be normalized to translation, scaling, rotation
and starting point invariance for closed contours. No matching procedure is given. It is not
possible to deal with occluded or enlarged contours and the moment normalization can change
the shape of the object significantly. While this may play a minor role for two equal contours
that are rotated against each other the normalization may fail if the contours differ slightly.

23

1. Model Concepts, Extraction, Recognition and Retrieval of Natural Shapes

24

2. The Shape Model and Recognition
Algorithms

What is important is to keep learning, to enjoy challenge,
and to tolerate ambiguity. In the end there are no certain
answers.

Martina Horner, President of Radcliffe College

When you know a thing, to hold that you know it; and when
you do not know a thing, to allow that you do not know it -
this is knowledge.

Confucius (551 BC - 479 BC), The Confucian Analects

2.1. The Contour Model: An Overview

In figure 2.1 a general overview over the most important steps that are performed for the various
object contour recognition tasks is given. The first step to be able to process a contour is to
extract potential contour points of an object from the visual input. For the purpose of this
work — the recognition of objects by parts of their contour — it plays no specific role which
algorithms are used to achieve the contour point extraction. There are only two important
requirements regarding the output format any algorithm used for the first preprocessing stages
has to fulfill to be suitable for the transformations on the contour data that will be presented
below in this work:

1. For a closed complete contour the algorithms should return a counterclockwise oriented
graph of the boundary points of the potential contour. In case one node has to be used
several times the sequence of its edges should determine the sequence of points to follow
so that it is possible to store the node data — with repetitions if necessary — in sequential
form. The choice of the starting point plays no important role at this stage.

2. For open contours the counterclockwise constraint is even relaxed and the only require-
ment is that a sequential chain of neighboring contour points is returned, starting and
ending at the start and end of the open contour.

2. The Shape Model and Recognition Algorithms

x

k
X

k

Segmentation

Image

Contour

and

Wavelet

Object Classification

Aticulated Objects

Hand Gesture
Person Identification
Stereo Correspondance

Occluded Objects

Enlarged Contours

Complete Contours Partial ContoursRecognition:

2D Rotation Scale Invariance

3D Pose Invariance

Acquisition:

Extraction:

Transformation:
−0.63

1.00

0.18

−3.1

0.0

3.1

0.00

5

10

−0.89

0.89

0.00

−3.1

0.0

3.1

0.00

5

10

Figure 2.1.: Illustration of the complete contour recognition system. After the acquisition of
a new image a segmentation is done which produces image regions that correspond to objects.
The region or object boundary is extracted and transformed using one dimensional Gabor func-
tions as wavelet kernels. The resulting representation can be used for various recognition tasks.

26

2.2. Pre-Matching Processing Stages.

Of course the methods used to generate the results presented will be explained in the fol-
lowing chapter. The reader mainly interested in the contour representation and recognition may
safely skip the following sections and read further on in section 2.6 on page 37.

2.2. Pre-Matching Processing Stages.

2.2.1. Raw Shape Extraction by Background Difference Segmentation

As one does not have a suitable contour description method yet that could be used to incor-
porate high level knowledge in the process of separating a figure from the background called
segmentation one mainly has to use low level cues to segment the contour of an object from the
visual input. Basically two types of cues are of interest for the extraction of an potential object
contour from the visual data: edge based ones and region-based ones. Although they seem to
be quite different at first glance they are related to each other as the border of two large regions
forms a significant edge and in some cases a lot of edges can be grouped together and form a
whole region.

A great amount of research has been done on the latter approach: grouping individual single
edge parts by local interactions together to form a larger contour or even better a closed contour
representing a complete object. The second part of this work can be viewed as a contribution
to this line of thought as a biological explanation for simple grouping of local edge detectors
based on collinearity and curvilinearity will be presented there. However, regardless if one is
using biological edge detectors or classical technical edge detectors — like the Sobel operator
— the amount of edges detected is very huge. Especially for textured objects it seems to be
impossible — except for trivial cases — to group together the ’right’ edges of an object contour
in one processing step. The reason for this difficulty is that the grouping procedures have to
make either crude simplifications, apply very general principles of contour continuation or they
produce intermediate results that are so ambiguous — because of the large amount of possible
edge continuations — that is seems unlikely that these algorithms can be successful without
any a priori knowledge about the viewed object itself. Especially as the alternative method of
generating several hypotheses for potential contour continuations still faces the question on how
to decide — without user intervention — which of them is the ’right’ one.

The amount of edges can not be reduced significantly by using 2D multi-scale approaches
like the Mallat transformation (Mallat, 1989) as they produce a significant amount of edges
on the finest scale. Even while a reduction of the number of edges can be achieved on the
coarser scales the precise localization of these edges in the image data becomes harder and
harder on these coarser scales and there is no natural unambiguous way to connect the edge
information of the different 2D scales, as the analysis of multi-scale data representations is a
difficult challenge on its own (Lindeberg, 1994). To avoid being caught in the hen-and-egg
problem, of not knowing how to group edge information together without already knowing
how likely contours look like, region-based segmentation methods for edge extraction under
controlled circumstances are used in this work.

Of course a suitable region-based approach has to be found as most of them use some form
of averaging over a neighborhood of pixels, which blurs the precise location of a possible edge.
For this reason the color cue (illustrated in appendix B.1 figure B.1 on page 120) is the basic
cue used in this work as it is a region-based cue — similar colors can be grouped together —

27

2. The Shape Model and Recognition Algorithms

that does not reduce the accuracy as it can be evaluated on a pixel basis. However, the color cue
alone is not sufficient as it is not possible for this cue — even for a good choice of threshold
(figure B.1 C) — to know which object parts that have different colors should nevertheless be
grouped together because they belong to the same object. Especially if an object is composed
of parts with different colors. Of course, using a threshold dependent cue is a disadvantage
in itself as one does not want to have the problem of finding a good threshold every time new
visual input should be processed. These problems induce the question, answered below, of
how one can learn — at least under controlled circumstances but without adjusting a lot of
parameters, like thresholds — an object contour model by storing extracted contours that are
known to belong to an object class. At the same time avoiding the problem that multiple objects
may belong to the same extracted region or that an extracted region contains only a subset of
the parts of an object.

2.2.2. Segmentation Based on Differences of an Image to a Learned Back-
ground.

To solve the problem of generating a gallery of nearly perfectly extracted contours that can later
be used for evaluating the validity of a new contour the strategy of computing the difference
of an image containing the object of interest with an image of an already known background is
employed. As noted earlier, if the object has more or less the same color the color cue alone
may be sufficient, but this is rather an exception than the rule.

The first precondition is the fixation of the camera and the avoidance of zooming operations
while the visual input is acquired. Then an image of the background and an image of the object
of interest presented before that background are recorded. Both images are transformed to
the L*a*b* color space, see figure 2.2 for an illustration. The question arises: how important
is the choice of the color space. The answer in short is: very important. The color model
L*a*b* is based on the model proposed by the Commission Internationale (CIE) in 1931 as
an international standard for color measurement. In 1976, this model was refined and named
CIE L*a*b*. In this work the short form L*a*b* is used for the exact full nomenclature 1976
CIE L*a*b space. L*a*b* is the second of two systems adopted by CIE in 1976 as models that
better showed uniform color spacing in their values. L*a*b* is an opponent color system based
on the earlier (1942) system of Richard Hunter called L, a, b. Color opposition correlates with
discoveries first made in the mid-1960s of color-opponent cells that are present in the retina,
dorsal lateral geniculate body, striate cortex and the color processing areal of the primate brain
area V4. For a more recent study on the spectral properties of the color-opponent cells in the
various locations of the brain see (de Monasterio and Schein, 1982). Approximately retinal
color stimuli are translated into differences between light and dark, red and green, and blue and
yellow. The L*a*b* color space indicates these values with three axes: L*, a*, and b*. The
central vertical axis represents lightness (signified as L*) whose values run from 0 (black) to
100 (white). The equations for the conversion of a RGB color value to a L*a*b* color value are
given in appendix B.2. The color axes are based on the fact that a color cannot be both red and
green or both blue and yellow at the same time because these colors oppose each other. On each
axis the values run from positive to negative. On the a* axis whose values are in the interval
[-86.2,98.2], positive values indicate amounts of red while negative values indicate amounts of
green.

28

2.2. Pre-Matching Processing Stages.

Illustration of the L*a*b* color space

Figure 2.2.: Illustration of the L*a*b* color space. Shown is the transformation of the discrete
RGB cube defined on

���������	��
�
to the L*a*b* color space, which is the color space used in this

work for computing color differences. Please refer to section 2.2.2 on page 28 for an in-depth
explanation.

29

2. The Shape Model and Recognition Algorithms

On the b* axis values are assumed that fall in the interval [-107.9,94.5], yellow is positive
and blue is negative. The reason the interval boundaries for the three axes are not extended to
round figures is to keep a close correlation to the biological measurements on color-opponent
cells.

Of course the axes of the L*a*b* coordinate system do not correspond exactly with the
psychophysical impressions of the colors which one can see in figure 2.2 which shows a view
from the direction of the negative b* axis rotated by 45 degrees around the a* axis. The color
yellow for example slightly deviates from the axis b* axis. For both axes a* and b*, zero is
neutral gray: Therefore, values are only needed for two color axes and for the lightness or gray-
scale axis (L*), which is separate (unlike in RGB, CMY or XYZ where lightness depends on
relative amounts of the three color channels). L*a*b* has become very important for desktop
color.

Because of its biological origins the L*a*b* color spaces together with a Euclidian metric
induces a distance function between color values that correlates closely to human perception.
That means that the degree of color difference can be quantified even relative to luminance
differences. Note that the range of values for the color components a* and b* are each approxi-
mately twice as large as the values for luminance inducing a natural distance measure in so far
as detected color differences are weighted larger that simple luminance differences. Therefore
after recorded images are transformed into the L*a*b* color space the pixel wise difference of
those images based on an Euclidian metric can be evaluated and the result is in a color simi-
larity measure that corresponds to the psychophysical impressions humans have. Under these
controlled conditions it is relatively easy to extract the pixels belonging to the object by using a
constant threshold, that only needs to avoid the noise signals generated by the camera.

The immense gain of using the L*a*b* color space is best illustrated by showing what
would have to be done to generate a psychophysically acceptable distance function for color
differences if a different popular color space like for example HSI is used. This is illustrated in
appendix B.3 on page 121 where a special emphasis was put on suppressing wrong detections
of color changes induced by the shadow of an object.

2.3. Clustering of Pixels to Segments.

We now use an image consisting of non negative float values created by taking the absolute
values of the difference image (in the L*a*b* color space) computed by subtracting the new
image and the background image pixel wise, see figure 2.3 for an illustration.

Thanks to using the L*a*b* color space we can apply a constant threshold of greater or
equal to four to the absolute values computed and create a binary image. Only those pixels
whose absolute difference is above or equal to the threshold are marked with one. All others are
marked with zero. This non negative image is the input to an algorithm for grouping neighboring
pixels that are different in both images together to form segments. The first step of this grouping
algorithm is to create a directed graph representation of the image implemented by an array
(graph image) of the same size — as the images mentioned above — containing integer values.
All pixels of the locations of the absolute value difference image not equal to zero are considered
to be nodes of the graph and the integer value that is stored in the corresponding pixel location
of the graph image represents an directed edge in so far as it is an index pointing to a connected

30

2.3. Clustering of Pixels to Segments.

(a) Background

(b) New Image (c) Difference Image

Figure 2.3.: Illustration of the computation steps for generating a background difference image.
Shown are in A) the original background image. The new image B) recorded before the same
background as in (A) and containing an additional object of interest. C) The difference image
of the both images. Please refer to 2.3 on page 30 for an in-depth explanation.

node (pixel location). For an image of width � the index � is computed using the equation:

�������	��
�� (2.1)

This data structure allows the creation of directed chains in the graph terminating in a one-cycle
by letting the last node of a chain point to itself (to its own index in the graph image). Now a
forward pass is done on all components of the graph image starting at the top left position —
represented by index zero — and ending at the down right position — represented by an index
equal to the number of pixels in the image minus one — of the image. If a position is a node
(absolute float value was greater or equal than the threshold) we check if its right neighboring
pixel is a node as well and link the two nodes together by letting the node point to its right
neighbor node and the right neighbor node point to itself. The same procedure is done for the
neighboring pixel one line upward and one pixel to the right and again for the neighboring pixel
one line upward and for the neighboring pixel that is located one line upward and one pixel to the
left. Essentially this represents a eight pixel or — as it is sometimes called — a three times three
neighborhood search. Note that the other points of this neighborhood do not need to be checked
as we check them later or have already checked them in the forward pass. If one of the previous
line pixels should be connected to the current pixel we reassign the whole chain starting at this
neighborhood pixel to point to the current index. This enforces a monotonic ordering of the
indices which means that the index a node points to is always equal or greater to its own index.
After we have worked on all pixels we do a backward pass starting at the down right pixel of the
image which has the aim of labeling all the pixels of the connected regions with a unique label.
Pixels that were not worked on are assigned to the background by a label number of zero. If we

31

2. The Shape Model and Recognition Algorithms

find a node in the graph image that points to itself we increase the label number and assign this
increased number to the corresponding pixel. If the index points to another node we traverse
the chain until we find the final leaf (node pointing to itself) which already has a label number
assigned and assign that label number to the pixel under examination. With these two passes
we have transformed the absolute value difference image using the graph image array into an
array containing uniquely labeled regions which will further be referenced by as segments. The
algorithm used for clustering the pixels of the difference image that are above a certain user
defined threshold is based on the work of David Kastrup (Kastrup, 1997), which should be
used for a more detailed description of the implementation. See as well the work of (Born and
Völpel, 1991) for a listing of possible applications of this algorithm and see (Tarjan, 1972) for
more information on the basic data structure used.

2.4. Generation of Counterclockwise Oriented Graphs Com-
posed of Border Points of Segments.

Due to noise in the camera recordings, light flickering or occlusions of the object of interest
one can not assume that there is always only one segment detected even if only one object
was present in the image. Once the segments of interest have been extracted from the visual
input all points belonging to each segment are checked if a non-segment pixel exists in their
three times three neighborhood. Pixels belonging to other segments can not be found in such
a neighborhood, as this would have resulted in the two segments to be merged together into
one by the algorithm presented in (2.3). All pixels that belong to the group of pixels having
non segment pixels as neighbors could possibly belong to the border of that segment and hence
belong to an object contour and will be called external border pixels. Of course there may be
— for the reasons mentioned above — several very small segments and therefore a size cue is
used to select segments that have a high probability — because of their relative huge size — to
represent at least a part of an object. Another reason to use a size cue is that if the segment is very
small and hence its resulting boundary, the recognition of the object becomes too ambiguous
— due to lack of sufficient input — and it is not very useful to process it anyway. However the
small segments should not be dropped completely for the purpose of segmentation as it might
turn out later that this small segment could be a part of a larger object. A complete general
segmentation method, however, is not the main aim of this work, so the small segments are
ignored here. The size cue depends on the image size and the number of external border pixels.
Experiments with images of size 320 times 240 and 512 times 512 have shown that the quotient
of the square root of the number of image pixels and the number of external border pixels should
at least be 15. Now a graph is formed with these external border pixels as nodes. If a node has
an adjacent node in its three times three neighborhood an undirected edge between those nodes
is added to the graph. Note that this is not the best way to create initial connections between
nodes if we have a perfectly segmented object. There are several algorithms that can generate
directly an oriented chain of border pixels that represent the contour. However, these algorithms
assume a near perfect segmentation of the object from the background which is seldom the case
in situations that are not completely controlled by the user. Often holes are present within the
segmented regions and some borders of these regions are not smooth but scattered. Therefore
another approach is chosen here which will produce oriented contours under any conditions

32

2.4. Generation of Counterclockwise Oriented Graphs Composed of Border Points of Segments.

even at the price that some parts of the border may not be represented in the best way they
could be represented. For the purpose and the examples used in this work this is sufficient as all
contours are perfectly captured. An algorithm that is able to handle all possible inputs is subject
to future research. Once the check for the existence of neighbors has been done for all nodes,
the number of independent components of the graph and the number of cycles is analyzed by
the algorithm CyclesAndComponents explained in detail in appendix C.1 on page 125.

It is necessary to check for the number of components of the graph and process them sep-
arately as independent components may exist — just imagine the object of interest is a tire
with a hole in its middle — that are not caused by disturbances of the segmentation process but
properties of the object. In any case the largest component will be used further on. To decide
if additional components should be used as well a size cue similar to the one for segments de-
scribed above is employed. The effect is to suppress additional components that are to small,
and are probably only an artificial result of imperfect segmentation. Each of the selected com-
ponents is treated separately further on and a directed graph is created using the nodes of the
component with two edges connecting each pair of neighboring points (one for each direction).
Note that there can be several graphs now that all belong to the same segment.

As two dimensional images are the input one can compute the extreme points of each graph
which means one looks for the nodes corresponding to the pixels with the highest and lowest
x and y coordinate. Even in the simple case of an octagon this computation is not unique as
there may be several pixel with, for example, the highest x coordinate. Therefore four groups
of pixels are build which contain the above points and these groups are labeled according to
the points of the compass with west (W), north (N), east (E) and south (S). For each of these
groups we compute again the extreme points which means for the W and E group the nodes
with the highest and lowest y coordinate and for the N and S group the nodes with the highest
and lowest x coordinate. Using this procedure eight extreme nodes named WN, WS, NE, NW
... and so an — not necessarily distinct — are obtained. Now a new directed graph called
counterclockwise oriented graph is built where the last connection between extreme points that
is added has the largest path length of adjacent extreme points. This constraint together with
the counterclockwise sequence of the extreme points defines automatically the starting node
used for the counterclockwise graph creation. The algorithm is illustrated in figure 2.4. Let the
starting node be the NE which means the letters stand for the node farthest to the east of the
nodes that are farthest to the north. One now tries to compose the counterclockwise oriented
graph by trying to find a path from the NE node to the NW node, from the NW node to the EN
node, the EN node to the ES node and so on. Although the idea behind this procedure can be
easily described its implementation — see appendix C.2 on page 127 — is a lot more difficult
to realize.

The algorithm works very well on closed contours and can as well be used for open con-
tours, although not the full open contour may be captured as the end points of the open contour
may not coincide with two of the extreme points and in the case of closed contours hairs (see
appendix C.2) will be ignored if extreme points are not part of them. An algorithm for extract-
ing the full open contour under any circumstance and all the hairs of closed contours is subject
for future research. For the purpose of this work the presented algorithms are sufficient. Note
that a rearrangement of the graph would probably be necessary if a more advanced algorithm
is applied as now the convention is used that the first node of the graph is the starting point
which is as well one of the extreme points. Another possibility is that the information which

33

2. The Shape Model and Recognition Algorithms

WN

NW NE

(a) add NW to
WN

NW NE

(b) start with NE
to NW

WN

WS ES

EN

SW SE

NW NE

(c) add EN to NW

WN

WS

NW NE

(d) add WN to WS

WN

WS ES

EN

SW SE

NW NE

(e) Segmented Im-
age

WN

WS ES

EN

SW SE

NW NE

(f) add ES to EN

WN

WS

NW NE

SW

(g) add WS to SW

WN

WS

SW SE

NW NE

(h) add SW to SE

WN

WS ES

SW SE

NW NE

(i) add SE to ES

Figure 2.4.: Illustration of the computation steps for generating the counterclockwise oriented
graph from an artificially created image shown in (e). The other figures show the step by
step creation of the graph using the extreme points of the graph labeled after the points of the
compass. In the example NE represents the point farthest to the east of the extreme points of
the graph farthest to the north. Please refer to 2.4 on page 33 for an in-depth explanation.

34

2.4. Generation of Counterclockwise Oriented Graphs Composed of Border Points of Segments.

(a) add NW to
WN

(b) start with NE
to NW

(c) add EN to NW

(d) add WN to WS (e) Segmented Im-
age

(f) add ES to EN

(g) add WS to SW (h) add SW to SE (i) add SE to ES

Figure 2.5.: Illustration of the computation steps for generating the counterclockwise oriented
graph from the segmented image in (e). Shown is the step by step creation of the graph using
the extreme points of the graph labeled after the points of the compass. Notice that some of the
extreme points illustrated in figure 2.4 are almost identical in this example. Please refer to 2.4
on page 33 for an in-depth explanation.

35

2. The Shape Model and Recognition Algorithms

nodes should be connected comes from other sources than the above described segmentation
mechanism. For this reason the sequence of nodes created by the above algorithm is not used
directly. Instead the counterclockwise oriented graph that was composed above is transformed
to a sequence of points by the algorithm described in appendix C.3 on page 129. The main
reason for this is that the implementation is open for input coming from other sources than the
presented segmentation.

2.5. Spline Interpolation of a Chain of Contour Points.

2.5.1. From Discrete Contour Points to Equidistant Sampled One Dimen-
sional Parameterized Data.

The counterclockwise oriented graph created in the previous section has been transformed into
a chain of adjacent nodes and corresponding pixel coordinates, respectively. The first step re-
quired for the interpolation procedure is to split the chain of pixel coordinates into X and Y
coordinate functions. The path length — computed as the sum of the distances between succes-
sive pixels as described in the previous sections — is used as abscissa for this parameterization
with ������� being the maximum length from the first to the last pixel. The discrete coordinate
functions �	�
���
 and ���
���
 of the contour graph are now defined on discrete points within the
interval ����� ����� �������
 on the ��� indices corresponding to the number of pixels found. The next
step is to embed the discrete coordinate functions �	�
���� and ���
���
 into continuous ones ������
and ������ by using a spline interpolation.

The type of spline interpolation used plays no important role for the purpose of this work
and for reasons of easy availability a standard cubic B-spline algorithm (De Boor, 1972; Lyche
and Schumaker, 1973) was chosen. The algorithm is using a derivative constraint that acts as
a low pass filter which is described in detail in (Ooyama, 1987). As most readers are probably
familiar with spline algorithms but not necessarily with derivative constraints in such algorithms
their use will shortly be motivated. Consider a continuous function ��� �� defined in the interval�
��� � ���

and a filtered approximation of this function �!� �� that minimizes the following integral:

"$#&% �

')(*
',+

- �. �!� ���/0��� ��1�2 �4365 ��87:9 2�; 3=< ; �< � ; 9
21> < � (2.2)

Here ? denotes the order of the derivative that has the function of a low pass filter in the equation
causing a (

� ?)th degree taper in the spectral response and the user definable constant 5 � which is
the cutoff wavelength where the amplitude response is half. If you want more insights into the
derivation of this equation please refer to (Ooyama, 1987) on page 2503 where a full analysis
is given. Linear combinations of cubic B-spline basis functions are substituted for �@� �� in
equation 2.2 with �!� �� being a discrete function defined on the given data points and the integral
reducing to a sum. It makes only sense to use derivatives of order 1,2 or 3 as the basis functions
are only differentiable up to order two at the nodes but still integrable over the domain for order
three. In this work only derivatives constraints of order 1 are used.

The algorithm uses a heuristic to find automatically a sufficient number of equidistant knot
points used for computing the B-spline approximation of the x and y coordinate functions.

36

2.5. Spline Interpolation of a Chain of Contour Points.

(a) Segmented Image

(c) Zoom

(b) B-Spline

Figure 2.6.: Illustration of the B-spline interpolation. (a) Segmented Image. (b) The contour
of the segmented object interpolated by the B-Spline. (c) A zoom of a part of the interpolated
contour located at the upper contour of the tail of the marine animal. Please refer to 2.5.1 on
page 36 for an in-depth explanation.

37

2. The Shape Model and Recognition Algorithms

The first and the last knot point corresponds to the first and last data point. It is assumed that
the maximum difference of the parameterized discrete coordinates, e.g. "���� � � �!���1���/ �!�
�������1 �
with � � �
	�� ��� / 	

for x and y, respectively, multiplied by two is a reasonable cutoff wavelength5 � to avoid over- or under fitting of the data points. Note however, that if large gaps between the
data points are expected one should multiply with four instead. The number of knot points mi-
nus one is equal to the number of equidistant knot point intervals and the size of these intervals
is computed by the following heuristics:

� Compute the maximum number of equidistant knot point intervals so that at least one data
point is in each interval.

� As long as the cutoff wavelength divided by the knot point interval size is less than 2
increase further the number of knot point intervals per cutoff wavelength, but only as
long as one can maintain at least 2 data points per knot point interval.

� Do not increase the number of knot point intervals if there are already 15 or more knot
points per cutoff wavelength.

If a dense sampled contour curve is the input, the algorithm reaches the final number of knot
point intervals in the first step. This means as the maximum distance of two neighboring pixels
is � �

the cutoff wavelength is chosen to be
�

�� �

and the number of knot point intervals is��� / 	
. So the x and y curves, respectively, will be represented using � � knot points. The

number of interpolation points � , which are later used to perform the various transformations
on the contour data has not been chosen and their actual computation has not been done up till
now. This number is now either chosen by the user or is computed automatically by finding the
closest multiple of powers of 2,3,5,7, or 11 to the length of the path of the contour in the image
multiplied by a user given constant. The special choice of these prime factors is caused by the
properties of a special fast Fourier transformation algorithm that will be used later which is very
efficient on data sets of magnitudes that are multiples of powers of these integers. This is the
reason why, for example, the number 1536 will be often used in later sections as it is composed
of prime factors 2 and 3 and is almost always greater than the path length of the contours.
Having computed the B-spline approximations and having chosen the number of equidistant
interpolation points � one now samples the continuous coordinate functions ������ and � ���� to
obtain two vectors �� � � ��� ���� � �������1 and �� � � � � ���� � ������� representing the interpolated
contour data. A third complex vector �� � �� � �
 �� is constructed from those two.

2.6. Normalizations and Fourier Descriptors

2.6.1. Application of Fourier Descriptors to Equidistant Samples of X and
Y Point Graph Coordinates.

With each of the vectors �� � �� � �� a discrete Fourier transform is performed. For non closed
contour graphs or open contours different boundary constraints should be selectable. How-
ever currently only the wrap around or cycle boundary constraint is used where the ends of the
contour are neighbors and which is often inducing a large gap and artificial high frequency re-
sponses in the Fourier domain. It is much more preferable to use for example a mirror boundary

38

2.6. Normalizations and Fourier Descriptors

constraint by traversing the contour from one end to the other and back again and this is subject
to future research. The mirror boundary constraint avoids the large gap that occurs at the end of
the data points relative to the first data point and is therefore better than the one currently used
as less additional high frequency signals are artificially generated in the Fourier domain.

One could compute the Fourier coefficients �� of a transformed �� vector directly from the
values of the Fourier transforms of �� and �� . For the sake of a more convenient notation we
note the vector �� and its Fourier transform �� explicitly here.

�� ��� �
	� ������ ��� � � � � 	� � ��
���� � (2.3)

�
should be substituted for �� , �� or �� . Please note that � can only have discrete values.

2.6.2. Normalizations Applied to the Data Before the Fourier Transforma-
tions.

All contours are translated so that the center point of the contour becomes the origin. A special
scale normalization is not applied as the same result can be achieved for closed contours by
fixating the number of interpolation points. For open contours — especially if they should be
later compared with parts of closed contours — scale normalization seems to be not a very wise
strategy as it is not possible to know before the matching how much of a known closed contour
will be covered by the new open contour. Therefore the possibility exist — see above — to let
the number of interpolation points that should be used be dependent on the path length of the
contour. All further scale invariances are then put in the matching procedure.

2.6.3. Normalizations Applied to the Model After the Fourier Transforma-
tions.

It is not necessary to do an explicit translation invariance transformation as the Fourier compo-
nent with index zero has already vanished as the centroid of the contour was already shifted to
the origin. In the case of closed 2D contours one can achieve rotational invariance by normal-
ization. One has to compute a standard shift angle using the Fourier transformed values of ��
given by:

� � � ���� � � �� 7 ��� ��/�� �����1�� "���� �87
(2.4)

In this equation ����� �������.7 represents the phase of the i-th Fourier component starting at i
= 0. By rotating the interpolated coordinate vectors �� and �� with the angle / � using the
rotation matrix � the contour is shifted to some kind of normalized orientation, which is roughly
described by a rotation of the first principal axis of the contour to the horizontal axis.

� � 3 � �! ��/ � 1#&% � / � / 1# % � / � � �! � / � 9 (2.5)- ��#"%$'&
��(")$'& > � � - ��

�� >
(2.6)

39

2. The Shape Model and Recognition Algorithms

Afterwards the Fourier transforms �� und �� are computed again using �� ")$'& and �� "%$'& . Note that
it is not evident that equation 2.4 is suitable for achieving rotational normalization. A detailed
derivation of equation 2.4 is given in (Avrithis et al., 2001).

2.7. Gabor-Descriptors: Gabor-Wavelet Transformation Ap-
plied to Pairs of One Dimensional Data

For each new contour one has to decide how many different Gabor coefficients — defined itself
in equation 2.11 and equation 2.12 below — should be computed at each of the � interpolated
points. As the same number of coefficients is computed for each point of the contour one speaks
of Gabor levels. The different Gabor coefficient levels can be labeled using the different values
for ? � that are used in their computation in equation 2.9. Using ? ����� � 2 ������ � (

	 ��
� � �
) as the

average frequency of the Gabor kernel of level zero one can compute for each Gabor level —
labeled using the index � — a corresponding ? � .

? � � ? �����	
 3 	� 9 � (2.7)

In equation 2.7
�

is the size factor from Gabor level to Gabor level. Typical values used for�
are

�
for octave intervals, � �

or �� �
. The last value �� �

results in a very dense sampling in
frequency space which is useful for matching invariant size. How many different Gabor levels
(������� � 	

) should be used is computed using the equation:

������� �

���� ����� ���� ������ ��� � �
 ! / 	

(2.8)

������� is then rounded to the next highest integer. The user given constant "�# is normally set to
6 which means that the distance of

�

�$ left and right of the Gabor with the largest wavelength

cover approximately one third of the contour. Remember that the Gaussian function of the
Gabor has decreased to five percent at the distance of two sigma so it is save to assume that the
coefficients computed for this Gabor level are not significantly influenced by much more than
one third of the contour. It is possible to raise the importance of smaller contour details in the
similarity computation by using a larger "%# value which can be useful for specific applications.
For each application task this variable is not changed. In any case the number of levels used for
a contour increases linear with an increase of the logarithm of � .

2.7.1. Computation of the Gabor Kernels

The Gabor kernels used in Fourier space are:

�& � ��� � 3(' �*) 3 / $ 2� ��? � / � 2? 2� 9 / ' �*) 3 / $ 2� ? 2� ��� 2? 2� 9 9 (2.9)

Note that these kernels are purely real valued functions and that $ is equal to
7

for all experi-
ments that will be presented later in this work. By multiplying the Fourier transformed contour

40

2.7. Gabor-Descriptors: Gabor-Wavelet Transformation Applied to Pairs of One Dimensional Data

points and the corresponding Gabor kernels in Fourier space and transforming the results back
to the spatial domain a transformation equivalent to the Gabor wavelet transformation is done
without the disadvantage of an reduced amount of data points.

For the different combinations of �� ��� �& � — with
�

being �� or �� — inverse discrete
Fourier transforms are done: �

� � ��87 (2.10)

� � � � �
������ � � � � ����

�
 �& ��� � �
�� � �

(2.11)

and

� � � � �
� ���� � � � � �� �

�
 �& � � � �
�� ���

(2.12)

One has computed now a number of
��� ��� ����� � 	 complex valued coefficients which are

denoted as � � � �
� and � � � �

� for an arbitrary interpolated point of the contour given by
index �

� . In fact two complex values — one for x and one for y coordinates — for each
Gabor level � � ����� �������
 and each index � � ����� � / 	

of each contour have been com-
puted. A combination of coefficients referring to the same contour index � in vector form�� � � ��� � � � � � � � � � � �� � � � ���
	 � � � ���
	 �� is called a feature set or short feast vector or even only
feast.

Often one wants to denote feasts that belong to different contours , however in this work
most of the time only one index � for each contour is used at the same time so that we
can introduce the following short form of notation: ���� � ���� � � � � �� '��� � � � . The Gabor
coefficients indexed by � � belong to the -th interpolated contour and the same short form can
be used for the y Gabor coefficient values. Only if we refer to more than one index of the same
contour the long form is used.

41

2. The Shape Model and Recognition Algorithms

2.8. Matching Modi

As far as the laws of mathematics refer to reality, they are
not certain; and as far as they are certain, they do not refer
to reality.

Everything should be made simple, as simple as pos-
sible, but not simpler.

Albert Einstein

2.8.1. Problems Associated With the Matching Procedures

Consider this situation: One has computed the Gabor coefficient values called feast — see the
previous section — at all interpolated points of one new and unknown closed contour. Further-
more to a set of contours — called gallery or target gallery — the same processing has been
applied and the resulting feast vectors at all of the interpolated contour points of these gallery
contours have been stored. The question arises how one can compare the new contour with
the gallery contours so that similar contours are successfully matched. The first problem to be
solved — subject of the next section 2.8.2 — is how one individual feast vector belonging to
one specific point of the new contour can be compared to any of the feast vectors located at the
points of any of the gallery contours, so that a similarity measure between zero and one can be
assigned to each of the possible feast pair combinations. The problem to be solved becomes
even harder if the number of Gabor levels used for the new contour differs from the number of
Gabor levels in the gallery contour, as the resulting feasts will have a different number of Gabor
coefficients and therefore a different size.

However, even if this problem of comparing or matching individual feasts of different con-
tours is solved, the important question arises how to chose the interpolated points at which
comparisons should take place? To illustrate why this is a problem consider the case that we
would have computed only Fourier descriptor coefficients instead of the Gabor descriptor coef-
ficients. The Fourier descriptor coefficients are of course only defined in the frequency space
and essentially there is no local information accessible except in possible phase shifts that are
caused by different choices of the starting point. The advantage is that one would only have
to compare this more or less unique set of Fourier descriptor coefficients. The results of the
comparison would probably be very good if a procedure was found to normalize the starting
point choice for the contours. On the other hand if for example half of the contour was modified
there is no easy way to recognize the remaining unchanged part by comparing Fourier descrip-
tor coefficients. However, if Gabor descriptors are used then one could compare feasts of the
unchanged part of the contours but it is possible and it will be seen in the results section even
quite likely, that local information at one specific point of one contour has high similarities to
a lot of sites in another target gallery contour. Therefore the need arises to compare several
neighboring feasts of the new contour with the gallery contour feasts. The relative distances
of the new contour feasts measured by the difference of their corresponding indices in the con-
tour parameterization define a topological ordering. The new challenge arises to preserve this
topological ordering of the new contour feast points in the matches to be found in the gallery
contour. The brute force method of evaluating the similarities associated with all possible feast

42

2.8. Matching Modi

pairs is very expensive computationally and one still faces the question of how the topological
ordering can be preserved. The elementary part of a topology preserving matching algorithm is
to find the highest similarity between some new contour feasts — given by different indices —
and gallery contour feasts that are each part of specific but yet unknown ranges of gallery con-
tour point indices under the constraint that the relative topological ordering of the new contour
feasts is preserved. So for the computation of these ranges one has to solve two major problems:
First, the computation of these ranges is dependent on the relative sizes of the two contours and
of some other variables and this problem will be subject of section 2.8.3.

The second problem in the computation of these ranges occurs on an even larger scale: the
starting point problem. Not in all cases it is known a priori in which index interval range of
the gallery contour one should look for the best match for any given new index feast to be
matched. Therefore, one tries different index offsets around which to place the boundaries of
the corresponding index range. This starting point search procedure is necessary in general as
one can not assume that for example the starting index zero of the interpolated point indices
in the new contour and in the gallery contour correspond to the same point of these contours
even if both contours are derived from the same object. The reason is that the location of the
zero index on the object contour depends on the segmentation methods that have been used. For
special cases like for example the case of closed rotationally normalized contours, which both
represent the complete object, this procedure is not necessary.

If it is a priori not known in which interval range of the gallery contour one should look for
the right match a starting point finding procedure has to be done, before any fine scale matching
is applied. The aim is to find a rough index correspondence between the new and the gallery
contour that probably will lead to the highest similarity between those two contours when finer
matching procedures are used. This procedure for finding an appropriate starting point corre-
spondence is explained in detail in section 2.8.4.1. The matching of complete contours that
represent one object is certainly a major task in contour matching and a matching procedure
to solve this problem is given in the following sections. However, in many applications like
individual profile silhouette recognition of faces the users wants only a specific part of the new
contour to be matched against the stored gallery contours. Therefore the possibility of interac-
tively choosing a interval range for comparison is introduced called selected feasts matching.
Furthermore, for the purpose of segmentation the need arises to find good matches for contours
of occluded objects or for contours that are composed of many objects. In the last case there
are probably large parts of the contour identical to parts of contours stored in the gallery but
one does not know which ones. Therefore the possibility of matching a certain user definable
percentage amount of the new contour with the gallery contours called percentage matching is
introduced. All of these matching procedures like complete contour, selected feasts or percent-
age matching are described in section 2.8.5.

2.8.2. Similarity Computation Between Two Gabor Coefficient Vectors
(Feasts) of Different Sizes: The Discrete Scale Concept.

Before one can compute the similarities between two computed Gabor coefficient vectors the
scale concept has to be introduced. It is best illustrated by an example. Consider the Ga-
bor coefficient vectors of two contours with � � and � 2 interpolated points. To compute the
similarity of two points belonging to two contours at index �

� and � 2 , respectively, one first

43

2. The Shape Model and Recognition Algorithms

looks at the feast vectors �� � and �� 2 that have been computed at the corresponding points.

�� � � � � � �� � � �� �� � � �������
	 � � �������
	 � � � � � � � � ���� 	�� � and �� 2 � � � � 2� � � 2� �� � � 2�
���
	 � � 2�
���
	 � � �� � � � �
���
	�� � . Contour point indices have been omitted for a more convenient notation.
If, for example, � ������ ��� and � 2����� ��� there are four different possibilities of scale shifts

— abbreviated as ”scales” in the following — to compare the two Gabor coefficient vectors with
each other. If one starts the comparison computation with the pair � � �� � � �� and � � 2� � � 2� it is a
match on scale zero. If first � � 2� � � 2� is used together with � � �� � � �� for the similarity computation
then a match on scale three is performed. For the possible scales 	���
 � the following formula
holds true:

�� 	 � � � ������ / � 2����� � . If one wants to compare single feasts in a scale invariant
way a similarity for each possible scale can be computed and the maximum of all similarities
is taken. However this procedure is not recommended as it is better to iterate on all scales and
match all chosen feasts of the new contour in a topology preserving way on one fixed scale with
the gallery contours. Afterwards one decides which scale produced the best matching result.
The alternative is a match result that has feast correspondences on different scales which is
rarely useful to the user.

The similarity computation for two feasts on scale 	 — denoted as ��� � �� � � �� 2 — is given in
the equations below. First the maximum number of levels available for comparison is computed:����
� � "$#&% ��� ������ � � 2����� . For each level we compute a non-normalized similarity of the
Gabor coefficients separately for the x and y coefficients und multiply the results, so that a high
similarity is only the result if both, the similarities of the x coefficients and of the y coefficients,
are high. Note that the similarity computation is done component by component, which means
that x and y coefficients measures belonging to their corresponding feast components are first
combined and then the other components are added. It turns out that this procedure is much
superior to the alternative way of computing first a similarity measure for all x coefficients and
then combining this similarity with a similarity for all y coefficients. Without loss of generality
one assumes that � ������ � � 2����� . If this condition is not true �� � and �� 2 are swapped. The
notation of �� � � �� 2 and of the indices is dropped in the notation of the right side of the subsequent
equations.

� �)� �� � � �� 2 � (2.13)

� ��� ��� � � �� � �� �� �� ��2� � � ��
 � �! �� ��� � ���� /���� ��2� � � ���
 �� � �� �� �� � 2� � � ��
 � �! �� ��� � ���� / ��� � 2� � � ���
The difference of the phases � ��� ��
 / � � � 2� � � � of two complex valued coefficients is most

important for the similarity computation and not their absolute distance in the complex plane.
This phase difference is mapped onto the interval

� / 	���	

by using the cosine function. The

reason why the absolute values of the coefficients are used as well in the formula for similarity
computation is that most of the times a more reliable phase estimate goes hand in hand with a
higher absolute value.

Using the above formula and an upper estimate 1 for the cosine function one obtains the

44

2.8. Matching Modi

maximum value that could be computed by the above formula:

� � � �� � � �� 2 �
� ��� ��� � � � �� � �� ��
 �� ��2� � � �� �
 � �� � �� ��
 �� � 2� � � �� � (2.14)

If
� � is equal to zero � � is set to be zero as well, else one can divide (2.13) with (2.14) and a

number in the interval
� / 	�� 	

will inevitably be the result. This number is shifted to the interval������	

by:

� � � �� � � �� 2 � 3 � �� � � �
	
� 9 � � ��� 	

(2.15)

2.8.3. Computation of a Target Gallery Index Range

For the computation of similarities between a feast associated with a point of the new contour
given by its index and a specific part of the gallery contour the method of computing a target
index range is used. For different new contour feasts these target ranges represent the part of the
target gallery contour that should be the target of each individual match. Recall that is it possible
to associate a contour part with an index range as the indices label the subsequent interpolated
points of the contour. Therefore neighboring indices are associated with neighboring points of
the interpolated contour. The alternative to match one feast against all feasts of a gallery contour
is not suitable as this prevents the possibility of more complex topology preserving matching
procedures. Furthermore it would increase the computational costs substantially. For each feast
of the new contour that should be matched it is therefore better to chose an index range � � —
given in equation 2.22 — that limits the number of feasts that may take part in the matching
procedure. The range itself is dependent on the selected scale 	 (see section 2.8.2) and the
number of interpolated points of the new (���) and the gallery contour (���). By controlling the
size of this ranges one can find the right balance between topology preserving and invariance
to slight distortions of a contour in the matching process. The index range size determines
as well the overlap of different target index ranges that will be associated with neighboring
new contour feasts indices. The procedure of computing an adequate target range of indices is
easiest illustrated if we think of the case of a complete closed contour that should be matched
using feasts at � — defined by the user — equally spaced indices. In all index computations
for closed contours a circular metric is of course assumed. That means all computed indices
are used modulo the maximum number of indices � of the corresponding contour. Ranges
that would fall even partially outside of the natural index range

����� � / 	

are ignored for

open contours. The number of indices ��� of a new closed contour is subdivided into � interval
ranges of size ��� � �	�
 and the centers of these interval ranges are computed using the following
equation:

<�� � ��� � � � ���
� 3� / 	

� 9 � #���� ��� 	���� � ��� (2.16)

In the complete contour matching mode these centers <�� � ��� � � are assumed to index the feasts
of the new contour chosen for the matching procedure. The aim is now to find the interval
range � � of gallery contour indices for every one of these chosen new contour feasts. Within
the interval � � the best match is searched for. Let the index of the current new contour feast

45

2. The Shape Model and Recognition Algorithms

be �
�� . The index for the gallery feasts � 2� is initialized with the lower boundary of the interval

� � . The search process itself evaluates the similarity of the corresponding new contour feast� � �� with the gallery contour feast
� �
� by using equation 2.15. The process is repeated with

further indices that are computed by adding an increment � � " to the last index � 2� used as long
as the upper index range boundary is not reached. By this procedure several different gallery
contour feasts

� �
� are addressed. In the actual computation not only the parameter for the index
incrementation � � " is used but as well an offset parameter � . Both are controlled by higher
level procedures and can for an easier understanding be ignored at first reading as their purpose
will be explained in later sections. The maximum similarity found for all of those feast pairs
is assigned to the maximum similarity of the new contour feasts and the gallery contour part
indexed by � � . For an increment of � � " = 1 and � = 0 the maximum similarity is denoted as:

� � � � � �� � �

�����
	 � ���� � "�����
��
 � � � �)� � � �� � � �
� 1 (2.17)

To make the whole procedure reusable for other matching modi one does not assume that one
already knows a relationship between the indices of the chosen feasts of the new contour even
so this relation is already known for the example case of complete closed contours that is used
here for illustration. To get a first starting value for the size of the wanted interval one first
computes the distances of the indices of the chosen new contour feasts � <�� � <�� � ��/ < � using
the mentioned periodic boundary constraints in case of closed contours. The case can occur
that only one feast is chosen for matching. Then the computation of the index interval is trivial
as of course the whole contour is a possible target for the matching procedure. The next step
is twofold: first map the selected new contour indices using the selected scale and the relation
of the number of points of the two contours on the indices of the gallery contour. The mapping
target is some kind of basis index (" �
 < �) around which to compute the interval � � with ")�
given by:

")� �
� � � � for ��� � ���� � for ����� ��� (2.18)

Starting at the basis index " �
 < � the second step is to compute the lower ��� $��� and upper bound������ using the factors � ��� �'" and ��� �'" and the distances of the indices � < � :� ��� �'" �
� ",��
 � � � for ��� � ���",��
 � � ��� for ����� ���

��� �'" � � ")�
 � � � � for ��� � ���")�
 � � � for ����� ��� (2.19)

"! is a safety factor that adds a tolerance to the intervals. Recall that
�

was the quotient of sigmas
used in the computation of subsequent Gabor levels. Dropping the index on the left-hand side
of the equations the wanted interval bounds are then given by:

� � $"�� � " �
 < � / � < �
 " �
 � ��� �'" (2.20)

� ���� � " �
 < � � � < �
�" �
 ��� �'" (2.21)

� � �"� �
� � � $��� �#� � � ���� �#�

(2.22)" � is a constant correction factor controlling the search interval size in the gallery contour
relative to the distance of the neighboring feasts in the new contour. Buy increasing " � more

46

2.8. Matching Modi

flexibility is given to the matching procedure and if " � is set to zero a rigid template matching
would be done. � is an offset given by the higher level routines (see 2.8.4.1) to cope with the
possibility that different points of the interpolated contours have been associated with the zero
index. Even for contours that are derived from the same object one can not be sure that the index
corresponding to the zero index of the new contour can roughly be found in the interval range
of the zero index of the gallery contour as this depends on the segmentation and graph creation
method that has been used. The procedure dealing with this problem is called the starting point
move and will be explained in detail in the next section 2.8.4.1.

Let there be � interval ranges for which similarities have been computed. In the complete
closed contour example � � � . One can now compute a similarity � � 	 �
	 � � � 	 � � � � � � � of the
new

� � and the gallery
� � contour for a specific scale 	 that was chosen. The other parameters

are a specific choice of new contour feast to match
� � �� with � � � 	�� �
 , a specific interval

range to interval range mapping given by the offset parameter � , a specific accuracy given by
the increment parameter � � " and a given percentage parameter � whose introduction will be
explained in detail in section 2.8.5.3. � � is the percentage � of � rounded to the nearest integer
but in any case it is not less than one.

� � 	 � 	 � � � 	 � � � � � � � � "����
� 	� ���

������ � � �
� �)� � � �� � �

� � �
	 � �� �
	 � # � � � � � 	���

(2.23)

For closed contours all ranges � 2� can be computed because of the use of circular boundary
conditions. In case of open contours only if all � � summands had their � intervals fall in the
legal index range then the resulting similarity was used for the " � � operator. This is necessary
to avoid matching over the borders or match results with fewer than the wanted number of
matched feast pairs. Furthermore � for open contours falls in the interval

� 	�� "���� ��� /�� � ��	
 .
2.8.4. Efficient Multistage Matching: The Starting Point Move and Scale

Move, Rotation Move and the Corresponding Points Move.

2.8.4.1. Starting Point Move or Scan Move

The different procedures to find the best matching results under different conditions are called
moves. The motivation for this designation is that the whole process can be compared to a
template matching procedure which means that a rigid template contour — one of the gallery
contours — is moved around the new contour. The aim is to find the interval range to interval
range correspondence with the highest similarity of the template and the new contour. The
foundation on which all moves fall back in the end is the algorithm presented in section 2.8.3.
The designation move is of course only a crude approximation as this algorithm is much more
complex than a template matching algorithm. Recall that the individual links — feast to feast
matches — are allowed to float freely within the limiting index interval associated with the
index of each chosen new contour feast.

The starting point move is sometimes necessary to find the parts of the gallery contour
that should be matched in detail with the chosen feasts of the new contour without having to
compare all possible feast pair combinations. As there is a sequential ordering of the points of
the contour preserved in the indices used to address them, the only thing necessary is to find
an offset that has to be added to the gallery contour indices so that the best match of the zero

47

2. The Shape Model and Recognition Algorithms

index of the new contour is found in an interval around that offset. This leads to the idea that it
should be sufficient to find the gallery index of the best match of one chosen feast and simply
compute the offset by taking the difference of the two indices. Unfortunately, this procedure
would be too inaccurate as the matching result of only one feast is too ambiguous. Even to
find the right offset � ����� it is necessary to match several feasts in a topology preserving way.
For this reason the matching procedure described in section 2.8.3 is used with different offsets� � and an increment � � " substantially greater than one — which prevents an explosion of the
computational costs — to find the best interval range to interval range mapping for the matching
process.

It is possible to use an increment greater than one because of the special nature of the Gabor
feast coefficients and the way similarities are computed in equation 2.15. The result of this
combination is a slowly decreasing similarity around the best matching position. This would
not be the case for all other possible kernels of wavelet transformations, especially not for
orthonormal ones. The reason for the decreasing similarity is that the matching success for the
high frequencies is more or less random when using large increments. As the positions matched
are so far away in terms of sigma of the high frequency kernels that the computed coefficients
are virtually not affected by the contour information at the right point making the resulting
contribution to the overall similarity more or less random. The effect is on average a decrease
of the computed similarity of the best match result found.

Furthermore as the amplitudes of the Gabor coefficients decrease strongly with an increase
of the frequency of the Gabor kernels the computation of the similarity value computed is de-
signed to decrease only by a relatively small amount if only coefficients of high frequency ker-
nels are changed. The effect of choosing large increments is therefore comparable to matching
low pass filtered versions of the contours. The similarity computation is done in equation 2.15
that computes the similarities of two feasts. To be more precise the similarity is computed by
equation 2.13 and 2.14 and the mentioned property is achieved as these equations give coef-
ficients with larger amplitudes a larger contribution to the overall similarity computation than
coefficients with smaller amplitudes.

The starting point move is not always necessary. For example if translation, scale and ro-
tation normalization can be used it is possible to resample the resulting normalized contours.
In case it is known that similar contours are examined the condition is fulfilled that an interval
around the zero index of the gallery contour is the interval range where the best match for the
feasts associated with the zero index of the new contour should be found. An example where
the starting point move is therefore not necessary is the usage of the matching algorithm for
tracking purposes when a new contour is matched with the contour extracted from a previous
frame of a continuous video stream. Given a sufficient frame rate relative to the speed of the
object the above mentioned condition should be fulfilled anyway and the computational costs
associated with the matching process can be reduced substantially by omitting the starting point
move. Lets now take a closer look on how the starting point move is implemented. As the
search interval sizes are related to — and generally larger than — the distances of the feasts
in the new contour equation 2.16 on page 45 is used again to compute the various offsets � �for open and closed contours. These offsets are tried in the starting point move together with
an increment for the gallery index computations that is equal to the square root of the interval
range size

� �
 used for the offset computation.

� � � < � � ��� � � (2.24)

48

2.8. Matching Modi

� � " � "���� 3�� ���
�

��	 9 (2.25)

2.8.4.2. Corresponding Points Move

If a starting point point move — see previous section — was already done the � different
similarities computed for the different offsets � � are compared. The offset � ����� associated
with the highest similarity is used for a final move together with an increment of � � " � 	

that
finds the best matching point to point correspondences. If no starting point move should be
done the similarity for an offset equal to zero is computed. The work itself is again done by
using the algorithm from section 2.8.3. This time the computed similarity is finally assigned to
the match of the new and the gallery contour and returned to the higher level routines.

2.8.4.3. Scale Move

The full scale move is only necessary if the same object is expected to occur in significantly
different sizes and it is pointless to do a scale normalization by using a constant number of
interpolation points. This is for example the case if an open contour is a part of a complete
closed gallery target contour as then it is obvious that it makes no sense to sample both contours
— the complete and the partial contour — with the same number of interpolation points. The
implementation of the scale move is simple and straightforward. Compute all the possible scales
	 as shown in section 2.8.2 and do the matching tasks presented in the previous sections on each
of these scale for each pair of a new (

� �) and a gallery contour (
� �). The scale 	 ����� which

produces the maximum similarity is finally associated with the similarity of this contour pair.

� � � � � � � � " � � � � � � � � � � � � � #���� � ����� �� " ������ / " 2����� ��
 (2.26)

One can speak of a best match on scale 	.����� and with this information and the factor
�

of the
Gabor transformation it is possible to estimate the scale factor between the two contours.

If a specific scale 	�� was preset by the user no matching on all scales is done but only on
this specific scale. The similarity associated with the contour pair is then simply equal to the
similarity computed for the user given scale.

� � � � � � � � � ��� � � � � � � (2.27)

2.8.4.4. Rotation Move

The aim of the rotation move — like the scale move — is to have an alternative to cope with
rotations in the plane in case it is pointless to do a rotation normalization. Especially for open
contours or closed contours that are suspected to correspond at least partially to a part of a larger
contour — for example a hand of a human that is part of an arm or the whole body contour of
a person — there is no obvious way to do a rotation normalization. Therefore a rotation move
is necessary and is given here although no simulation results for this move will be presented in
the results sections.

For significant rotations in three dimensions views from a lot of different viewing angles
or several different gallery contours of the objects are necessary for the recognition. Is this
information not provided it is generally impossible to predict the transformation of an object

49

2. The Shape Model and Recognition Algorithms

contour under three dimensional rotations without already knowing what kind of object it is, an
initial guess of the rotation parameters and a three dimensional model of this object added to
the algorithms knowledge base. This has to do with the fact that object parts can appear or dis-
sappear which no possible transformation can cope with having just one contour as knowledge
base. The alternative is to treat different poses of the contour independently in the matching by
comparing the contour to contours of different rotated versions of the object so that the object
class or identity, and the rotation parameters are both estimated after the matching is done by
using the best match found.

In contrast to all other moves the rotation move is done before the Gabor coefficients have
been computed. Theoretically it is possible to do transformations on the Gabor coefficients
directly to account for different rotations but this has not been realized and can still be subject
to future research although the rotation of the contour data itself is very simple. However, if
the starting point and rotation problem could be addressed simultaneously the development of
transformations dealing with different rotations on the Gabor coefficients themselves could lead
to a substantial reduction of the associated computational costs. But up till now the implemen-
tation is computationally expensive as the contour is transformed using different rotation angles
applied to the rotation matrix given in equation 2.5 and equation 2.6.

The different rotation angles are computed starting at zero and adding the user given constant�
�� successively until the range of
� ��� 	����

degrees has been covered. Then the algorithms of the
previous section are applied on the rotated contours in accordance with the user given choices
which normalizations and algorithms should be applied. Note that is only necessary to cover
the rotation from

������	��	�

degrees as the Gabor coefficients for a contour that is rotated by 180

degrees will give the same similarity values as the ones from the unrotated contour if the starting
point move is done. The highest similarity for all of those rotated contours is then assigned to the
new contour - gallery contour pair under examination. Usually it is sufficient to use a rotation
increment of 10 to 20 degrees but we will see later that the discriminating power of the resulting
similarity values is task dependent and even more dependent on the number of contours used in
the gallery. Therefore the value can be changed by the user to suit the specific requirements of
each matching task.

50

2.8. Matching Modi

Rule for success: Never hunt two rabbits at the same time.

Graf Otto von Bismarck, Chancellor Second German Reich

2.8.5. Local versus Global: Matching of Selected Feasts, Matching of Com-
plete Closed Contours and Percent Matching.

A lot of research focuses on finding a general matching procedure for shapes that is sufficient
for all possible tasks. However, the first question to be answered should be ”can such an algo-
rithm exist at all?” In this work this question can not be answered with mathematical precision
but from the experience gained from a lot of experiments the impression has occurred to me
that such a general algorithm is probably not existing without being configurable by the user
because of the task dependent nature of the evaluation of what is to be considered a successful
match result. Therefore at least the intention of the user would have to be an input to such
an algorithm which is reflected in the work presented by several users definable constants and
different modi that can be chosen. While the ability of invariant matching especially for the
class of affine transformations either by normalization or by matching procedures was the main
topic of the last sections the problem of the different nature of objects is the motivation for
the different matching procedures presented in this section. For example some objects are only
characterized by their crude form. Let us just think of an ellipsoid or other elementary geomet-
ric objects. There are no distinguished object contour parts that could be recognized alone that
at the same time give statistically significant evidence that the object under examination is an
ellipsoid as every part of this contour can be found in many other objects as well. One needs
to examine almost the whole contour in order to be sure what kind of object is present. Not to
mention that several objects for example an apple and an orange show only small differences in
their contours as large parts are practically identical. On the other hand, consider for example
a shark. Humans and the presented matching procedures only need to see the dorsal fin of a
shark to recognize the object as a shark. In other cases there is no single contour part that is
sufficient but if several different distinguished contour parts can be found, that are in loose but
defined geometric relations to each other, this can be sufficient for the object to be recognized.
Therefore the more important question seems to be: What are the elementary matching op-
erations that should be possible to perform so that more complex matching task requirements
can be implemented by a user or even furthermore be found unsupervised using an organic
computing (http://www.organic computing.com/, 2000) approach.

2.8.5.1. Complete Closed Contour Matching

The reader should already have understood at this point the algorithms used to implement the
modus of matching one complete closed contour with another one as all examples in the previ-
ous sections starting at section 2.8.3 have been based on this case. Under these conditions both
new and gallery contour can be normalized to reduce the computational costs. The match results
can not only be used to classify objects that belong to different classes but it is as well possible
to identify individual objects that belong to the same object class. Furthermore it is possible
to define object classes by using the matching results reversely. If the computed similarity of
two contours belonging to different objects is high enough the two objects can be labeled as be-
longing to the same object class. Naturally, the question arises, how high the similarities should

51

2. The Shape Model and Recognition Algorithms

be so that two objects should be considered to belong to the same class. As will be shown in
detail in the results section 3.1.2 for matching with 25 different interval ranges on the data set
of 1100 marine animals from the SQUID database (Mokhtarian and Kittler, 1996a; Mokhtarian
and Kittler, 1996b) similarity values of greater equal 0.93 seem to be closely related to what
humans would consider to be the same object class and object posture. On the other hand if
the similarity value is below 0.90 it is highly unlikely that the two objects belong to the same
object class or at least that they have a similar posture. Of course there cannot be an absolute
threshold describing what should be grouped together as this is task and user dependent. In
the range of 0.90 to below 0.93 another matching step would have to be done that is specific
for the task to be solved and which is therefore not part of the presented work. If another task
dependend matching step is not a valid choice then one should use 0.92 as a single threshold.
This threshold captures most of the right object matches while the number of wrongly classified
objects is still relatively low.

Quite contrary to the concept of thresholds it is especially the strength of the presented
matching algorithm to compute a continuous similarity measure between arbitrary contours.
If the classification of objects is wanted the user can find thresholds or threshold ranges for
each matching task that reflect the wanted generality of the clusters, trigger specific further
matching operations or see at least that no sharp defined clusters exist and therefore realize that
his classification approach was ill defined — at least in terms of object shapes — right from the
beginning.

2.8.5.2. Matching of Selected Feasts

In contrast to the matching of complete contours the selected feast matching approach is most
useful if one or more contour parts exist that alone have a high significance for object identifi-
cation purposes or if only the differences of a specific contour part are of interest. Examples are
individual profile face recognition or hand gesture recognition which will be given later in sec-
tion 3.2.1. An advantage of this matching mode is that what is supposed to be a high significant
contour part can either be chosen interactively by a user or be selected by supplying one or sev-
eral image points in absolute coordinates. If several image coordinates are given they are used
successively and for each of these points the shortest distance to the segmented and interpolated
contour is computed to identify a corresponding contour point. The index of this contour point
is used further on and around this index at most � with � �
 � additional indices to the left and
right are chosen. This procedure leads at most to

�

�� �

	
chosen feasts for each selected point.

The full number of points is always used for closed contours as circular boundary conditions
are assumed but for open contours indices outside of the index boundaries are ignored. The
distances of these additional indices are computed using the parameter � that is used to divide
the total number of indices to give the index distance increment. As a rule of thumb one uses a
higher value for � for example 50 instead of 25 for complete closed contour matching so that
the feasts are closer to the selected index. Then the similarity is computed using the algorithms
of the previous sections. If several points where selected the highest similarity is finally used.

2.8.5.3. Percent Matching

From a programmers point of view the percentage matching is as well an extention to the com-
plete closed contours matching as to the selected feasts matching. However, from a users point

52

2.8. Matching Modi

of view the percentage matching is an alternative to the selected feasts matching. The advantage
of selected feast matching that the user can decide which part of the new contour should be used
for matching explicitly can sometimes be a disadvantage. Imagine for example an unsupervised
recognition task were it is known that a part of the contour can be found again but it is not
known which one or where it is located in the image. Here the percentage matching comes into
play. However, you need to have a guess of how much — as a percentage — can probably be
found or to be more precise how many neighboring feasts should take part in the matching pro-
cedure. For a complete contour recognition task with equally spaced feast indices the percent
of the contour and the percentage of the feast correspond with each other. If the user has chosen
other feast indices probably not equally spaced there will be a difference as the matching pro-
cedure really focuses on the percent value of the number of feasts covered and not directly on
the percent value of the part of the contour that is covered. Once you have the percent estimate
you can call the above mentioned algorithms with this percentage value and the algorithm will
find the best part of the contour for each matching task taking only the given percent value of
chosen neighboring feasts into account in the final similarity computation. Of course even if
the estimated percentage value of how much of the contour can be found is correct one can not
expect a recognition rate of 100% if for example two superimposed objects are segmented as
one object with only one contour and the database is sufficiently large, see section 3.2.4 for an
example. This is due to the fact that the remaining contours parts are not always statistically
significant for object recognition. However in a lot of cases where the algorithm will still find
the right object even humans would fail if the had only the combined contour as input for their
decision making.

53

2. The Shape Model and Recognition Algorithms

54

3. Results of the Contour Recognition
Tasks

You can know the name of a bird in all the languages of
the world, but when you’re finished, you’ll know absolutely
nothing whatever about the bird... So let’s look at the bird
and see what it’s doing – that’s what counts. I learned very
early the difference between knowing the name of something
and knowing something.

Richard Feynman (1918 - 1988)

3.1. The Contour Model Applied to the Recognition of Com-
plete Closed Contours

3. Results of the Contour Recognition Tasks

3.1.1. Illustration of the Gallery Images Used

Two benchmark databases well known in the literature were used to compute the results pre-
sented below. The SQUID database (Mokhtarian and Kittler, 1996a; Mokhtarian and Kittler,
1996b) consists of 1100 views on marine animals and is illustrated in figure 3.2. This database
was mainly chosen because of its huge size, so that statistical evaluations of recognition rates
are meaningful. As the object contour parameterizations were already provided several affine
transformations of each contour could be computed without much effort. Notice however, that
the parameterizations were not used directly. Instead silhouette images were recomputed from
the original and transformed parameterizations so that the same preprocessing steps necessary
for newly recorded camera images could be applied. The other benchmark database used was
’ETH80’ illustrated in figure 3.1. It is provided by Professor Bernt Schiele (Leibe and Schiele,
2003) at ETH Zürich. This database contains only eight object classes like cars, cows, horses
or dogs. Each class has approximately ten different representatives. For each representative a
lot of views from different 3D viewpoints are provided.

3.1.2. Classification of Similar Contours to Form Object Clusters

For large databases — like the SQUID database — one important question arises from a com-
putational point of view. Can the contents of the database be clustered? This is an important
question because if the contents can be clustered hierarchical recognition algorithms can pos-
sibly be applied for specific tasks. The result will be either a gain in recognition speed or the
possibility to handle even more data. Of course, clusters generated by choosing example repre-
sentatives are by no means disjoint. Therefore the user has to carefully select typical examples
for the clusters he wants to generate. Examples for clusters are given in figure 3.3. Here one can
see in figure 3.3 a group of similar looking sharks. It is not possible to give a general threshold
for arbitrary clustering task, as the threshold is dependent on the aims of the user and on the
specific features of the objects in question. However, similarities below 90% do not seem to
justify an addition to a cluster of the contour in question. For a lot of experiments a reasonable
threshold seems to be 93% to be sure that the object in question belongs to the cluster. For
the range between 90% and 93% no general rules can be given and it is suggested that another
matching step is done focussing on the needs of the specific user task. If another task dependend
matching step is not a valid choice then one can use 92% as a single threshold.

56

3.1. The Contour Model Applied to the Recognition of Complete Closed Contours

(a) A car. (b) A cow. (c) A pear.

(d) A dog. (e) A horse. (f) A tomato.

Figure 3.1.: (a) -(f) are example images of the ETH80 database used for object recognition
tasks presented in later sections.

57

3. Results of the Contour Recognition Tasks

(a) A shark. (b) A fish of un-
known type.

(c) A skate. (d) A fish of un-
known type.

(e) A fish of un-
known type.

(f) A fish of un-
known type.

(g) A sea horse. (h) A fish of un-
known type.

Figure 3.2.: (a) -(h) are example images taken from the SQUID database used for object recog-
nition tasks presented in later sections.

58

3.1. The Contour Model Applied to the Recognition of Complete Closed Contours

(a) Similarity 97% (b) Similarity 95% (c) Similarity 93% (d) Similarity 90%

(e) Similarity 69% (f) Similarity 69% (g) Similarity 69% (h) Similarity 68%

Figure 3.3.: Classification of similar contours: The ’shark’ group as an example for cluster-
ing object contour data. (a) - (d) The four best matching not identical objects in the SQUID
database. The reference contour used for generating this cluster is shown at the top of the fig-
ures. Red arrows indicate similarities of 90% and above. To be more precise only a cluster
of similar looking marine animals was created that all have a similar posture. Furthermore the
cluster does not cover all marine animals that are in zoological terms classified as sharks even if
they have the right posture, as there may be sharks that have a totally different looking silhou-
ette. To create such a zoological cluster a group of examples for all ’exceptions’ would have to
be used as a gallery, rather that using only one contour for comparison. (e) - (h) Examples to
illustrate the degree of dissimilarity of bad matching objects to the chosen shark contour. The re-
sults were obtained by matching complete contours that were subdivided into 24 interval ranges
and the number of interval ranges is equal to the number of final feast to feast matches used
for the similarity computation of the contours. Each contour was interpolated by 1536 number
of points. The matching algorithm itself only used the 0 scale as defined in section 2.8.2. The
parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the factor

between two Gabor levels in the transformation.

59

3. Results of the Contour Recognition Tasks

(a) Similarity 97% (b) Similarity 96% (c) Similarity 96% (d) Similarity 96%

(e) Similarity 95% (f) Similarity 95% (g) Similarity 95% (h) Similarity 95%

Figure 3.4.: Classification of similar contours: Another example for clustering object contour
data. (a) - (h) The best matching eight not identical objects in the SQUID database. The
reference contour used for generating this cluster is shown at the top of the figures. Red arrows
indicate similarities of 90% and above. As the chosen contour is very typical for marine animals
the found cluster size increases substantially. Not even all good matches are shown. The results
were obtained by matching complete contours that were subdivided into 24 interval ranges and
the number of interval ranges is equal to the number of final feast to feast matches used for
the similarity computation of the contours. Each contour was interpolated by 1536 number
of points. The matching algorithm itself only used the 0 scale as defined in section 2.8.2. The
parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the factor

between two Gabor levels in the transformation.

60

3.1. The Contour Model Applied to the Recognition of Complete Closed Contours

(a) Similarity 95% (b) Similarity 94% (c) Similarity 94% (d) Similarity 93%

(e) Similarity 93% (f) Similarity 93% (g) Similarity 73% (h) Similarity 73%

(i) Similarity 72% (j) Similarity 72%

Figure 3.5.: Classification of similar contours: The ’skate’ group as an example for clustering
object contour data. (a) - (f) The best matching not identical objects in the SQUID database.
Red arrows indicate similarities of 90% and above. (g) - (j) Examples of bad matching results.
The results were obtained by matching complete contours that were subdivided into 24 interval
ranges and the number of interval ranges is equal to the number of final feast to feast matches
used for the similarity computation of the contours. Each contour was interpolated by 1536
number of points. The matching algorithm itself only used the 0 scale as defined in section 2.8.2.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

61

3. Results of the Contour Recognition Tasks

3.1.3. Complete Contour Matching of 3D-Postures of Different Individual
Representatives of the Same Object Class

The results shown in figure 3.6 were created by using the ETH80 database. For objects of the
class of automobiles each set of images showing one specific type was split in two parts in a way
that views showing slightly different postures were separated. One part was used for the creation
of a gallery and the other part is used to be matched against that gallery. In effect each of those
two sets never contained the same 3D posture. The matching was done to test the robustness of
the algorithm to rotations in three dimensions. For a rigid object like an automobile the results
are very good and even a reasonable solution for the problem of corresponding points is found.

The results shown in figures 3.7, 3.8, 3.9, 3.10, and in appendix A.1 were generated using
ten different representatives of each object class taken from the ETH80 database. The complete
set of images for three representatives each was used to build an object contour gallery. The
other representatives of the same class not already in the gallery were subsequently matched
against the created gallery and the results show that the corresponding points can be estimated
fairly well and even the 3D posture can be estimated with relatively high accuracy.

Notice that in figure 3.7 (d) a slightly different posture was found than the object in the
original image had. The same effect can be found in figure 3.8 (a) and figure 3.10 (e) and (f).
For articulated objects this is an inherent feature of the matching procedure if the exact posture
is not already part of the gallery. Therefore, a view from a slightly different perspective may
be more similar that the view from the exact 3D posture if for example some extremities have
a different configuration. Taking into account the effect shown in figure 3.6 that the matching
process can tolerate slight 3D rotations this is a wanted feature. If exact postures should be
estimated then they have to be part of the gallery.

62

3.1. The Contour Model Applied to the Recognition of Complete Closed Contours

(a) Similarity 97% (b) Similarity 97% (c) Similarity 98% (d) Similarity 97%

(e) Similarity 97% (f) Similarity 97% (g) Similarity 98% (h) Similarity 97%

Figure 3.6.: Example for matching different three dimensional postures. The reference con-
tour used for generating these results is shown at the top of the figures. Red arrows indicate
similarities of 90% and above. The car matching example is given to illustrate the ability of the
algorithm to tolerate rotations in three dimensions. Each individual automobile dataset from
the ETH80 database was split in two disjunct parts, so that the same posture was not present in
both datasets. It can be seen that postures with small changes of the rotation angles are found
and that The results were obtained by matching complete contours that were subdivided into
25 interval ranges and the number of interval ranges is equal to the number of final feast to
feast matches used for the similarity computation of the contours. The number of interpolation
points used for each contour was the nearest multiple of powers of 2,3,5,7 and 11 to the length
of the path of the contour in the original image where the contour was extracted from multiplied
by 1.5. The matching algorithm itself was done on all possible scales, if the sizes of the two
contours to match were different. The parameters for the Gabor transformations used were $ =
3.1414 and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

63

3. Results of the Contour Recognition Tasks

(a) Similarity 96% (b) Similarity 98% (c) Similarity 97%

(d) Similarity 96% (e) Similarity 98%

Figure 3.7.: Example for matching different three dimensional postures. The reference contour
used for generating these results is shown at the top of the figures. Red arrows indicate similar-
ities of 90% and above. Out of ten different representatives of this object class taken from the
ETH80 database the complete set of images for three representatives was used to build a gallery
for horse silhouettes. The other representatives were subsequently matched against this gallery
and the results show that the corresponding points can be estimated fairly well and even the 3D
posture can be estimated. Notice that in (d) a posture was found that is slightly different to the
posture the object in the original image had. For articulated objects this is an inherent feature
of the matching procedure if the exact posture is not part of the gallery already and therefore
a view from a slightly different perspective may be more similar that the exact 3D posture.
The results were obtained by matching complete contours that were subdivided into 25 interval
ranges and the number of interval ranges is equal to the number of final feast to feast matches
used for the similarity computation of the contours. The number of interpolation points used
for each contour was the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path
of the contour in the original image where the contour was extracted from multiplied by 1.5.
The matching algorithm itself was done on all possible scales, if the sizes of the two contours
to match were different. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

64

3.1. The Contour Model Applied to the Recognition of Complete Closed Contours

(a) Similarity 95% (b) Similarity 95% (c) Similarity 94%

(d) Similarity 96% (e) Similarity 92% (f) Similarity 93%

Figure 3.8.: Example for matching different three dimensional postures of cows. Red arrows
indicate similarities of 90% and above. Out of ten different representatives of this object class
taken from the ETH80 database the complete set of images for three representatives was used
to build an object contour gallery. The other representatives were subsequently matched against
this gallery and the results show that the corresponding points can be estimated fairly well and
even the 3D posture can be estimated with relatively high accuracy. The results were obtained
by matching complete contours that were subdivided into 25 interval ranges and the number
of interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the
original image where the contour was extracted from multiplied by 1.5. The matching algorithm
itself was done on all possible scales, if the sizes of the two contours to match were different.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

65

3. Results of the Contour Recognition Tasks

(a) Similarity 96% (b) Similarity 93% (c) Similarity 94% (d) Similarity 96%

(e) Similarity 96% (f) Similarity 94% (g) Similarity 97% (h) Similarity 94%

(i) Similarity 93% (j) Similarity 91% (k) Similarity 96%

Figure 3.9.: Example for matching different three dimensional postures of pears. Red arrows
indicate similarities of 90% and above. Out of ten different representatives of this object class
taken from the ETH80 database the complete set of images for one representative was used to
build an object contour gallery. The other representatives were subsequently matched against
this gallery and the results show that the corresponding points can be estimated fairly well. In
this case a highly unstructured contour like that of a pear was matched. The results show that
even large variations in the shape of the pear can be matched fairly well if the reference contour
is chosen well. The results were obtained by matching complete contours that were subdivided
into 25 interval ranges and the number of interval ranges is equal to the number of final feast to
feast matches used for the similarity computation of the contours. The number of interpolation
points used for each contour was the nearest multiple of powers of 2,3,5,7 and 11 to the length
of the path of the contour in the original image where the contour was extracted from multiplied
by 1.5. The matching algorithm itself was done on all possible scales, if the sizes of the two
contours to match were different. The parameters for the Gabor transformations used were $ =
3.1414 and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

66

3.1. The Contour Model Applied to the Recognition of Complete Closed Contours

(a) Similarity 92% (b) Similarity 92% (c) Similarity 92% (d) Similarity 92%

(e) Similarity 92% (f) Similarity 97% (g) Similarity 95%

Figure 3.10.: Example for matching different three dimensional postures of dogs. Red arrows
indicate similarities of 90% and above. Out of ten different representatives of this object class
taken from the ETH80 database the complete set of images for three representatives was used
to build an object contour gallery. The other representatives were subsequently matched against
this gallery and the results show that the corresponding points can be estimated fairly well and
even the 3D posture can be estimated with relatively high accuracy. The results were obtained
by matching complete contours that were subdivided into 25 interval ranges and the number
of interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the
original image where the contour was extracted from multiplied by 1.5. The matching algorithm
itself was done on all possible scales, if the sizes of the two contours to match were different.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

67

3. Results of the Contour Recognition Tasks

3.1.4. Matching Normalized Contours

3.1.4.1. Matching of Contours Rotated in the Plane

An object contour has been extracted from the input data and this contour should afterwards
be used to recognize a particular object out of a gallery database. The question arises to what
extent can this contour be normalized? For normalization to affine transformations in the image
plane the first prerequisite for the presented normalization methods is that the contour is closed.
Information about the openness of the contour can either be supplied by the user or a heuristic
can be used to check this condition automatically. In case it is possible to assume that a complete
contour of an object is present and has only undergone affine transformations the presented
normalization methods can be applied.

Three separate tasks are set up to examine the effect of the normalization methods: scaled
objects, rotated objects and objects that are scaled and rotated. The recognition rate for these
tasks using the SQUID database to be able to do large scale tests comes close to 100% and
sometimes even reaches that number.

In figure 3.11 (a) an example picture of a rotated and scaled set of images is shown that
was used in a matching task. In figure 3.11 (c) the particular matching result for this image
against a normalized version of the whole SQUID contour database is shown. Notice that the
point to point correspondences a fairly close to the optimal and the overall similarity is 97%.
This percentage value is simply the similarity measure given in earlier chapters expressed as a
percentage.

In figure 3.11 (b) statistics is done on the outcome of all matching results like in (c). Imagine
a match was done for all contours of the gallery and therefore for each gallery contour a simi-
larity has been computed. If the gallery objects are now sorted for a decrease of this computed
similarity one can compute the position at which the right match has occurred. If this is the first
position one can speak of a successful match. The amount of occurrences of this phenomenon
divided by the total number of individual contour pair matches is called the recognition rate.
It is difficult to reach a recognition rate of 100% using the SQUID database as this database
contains some objects several times in different scales or rotations.

Even more useful information is obtained analysing the number of all instances, where the
correct object occured at recognition position n or less. This accumulated sum of all right
matches is plotted against the recognition position and the resulting plot is called accumulated
right match plot which is shown, for example, in figure 3.11 (b). While the recognition rate is
very important for unsupervised recognition tasks the accumulated right match plot gives im-
portant information whether the recognition output is useful as a pre-screening tool for humans.

3.1.5. Matching Non-Normalized Contours

3.1.5.1. Matching of Non-Normalized Contours Rotated in the Plane

To test which rotations steps can be tolerated by the feature set an examination of the recognition
rate on rotated contours was done when no rotation normalization and no rotation matching
have been applied. While the recognition rate illustrated in figure 3.14 and figure 3.13 drops
off on average linearly by two percentage points per degree of rotation the reduction is less
step for small angles. For rotations of less than 10 degrees the reduction is smaller as still

68

3.1. The Contour Model Applied to the Recognition of Complete Closed Contours

(a) Rotated and Scaled Silhouette
(b) Accumulated Right Match Positions

(c) Example Matching Result

Figure 3.11.: The match result was obtained by matching the complete contour of the shown
objects. The number of interpolation points, e.g. indices of feasts, was set to the user defined
value of 1536 which has implicitly the function of a scale normalization. The total number of
indices divided by the user given constant of 25 gives the number of feasts positions to match.
A rotation normalization as described in section 2.6 was applied to the new contours and the
gallery contours used. As the number of interpolation points was fixed for all contours recall
from section 2.8.2 that only one scale is defined and this scale zero is used in the matching
algorithm. The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.414

were
�

is the factor between two Gabor levels in the transformation. This is an example of a
match cross run using 100 marine animal silhouettes that were rotated and scaled — example
in a) — against a database of 1100. b) The recognition rate is 100%. This type of diagram is
called ’Accumulated Right Match Positions’. It is explained in detail in section 3.1.4.1 and is
used often in this work to provide more information about the recognition process than only the
recognition rate would give in case 100% are not reached. c) Example matching result with the
best point to point matches found shown as links. Red indicates a similarity above 90%. The
corresponding points were found with high accuracy.

69

3. Results of the Contour Recognition Tasks

(a) rotated contours (b) rotated and scaled contours

(c) scaled contours

Figure 3.12.: Accumulated right match positions and recognition rates for the tasks of rotated
and scaled contours using the normalizations for scale and rotational invariance described in
section 2.6. Different samples of 100 transformed contours were match against the 1100 marine
animal contours from the SQUID database. The results were obtained by matching complete
contours that were subdivided into 25 interval ranges and the number of interval ranges is equal
to the number of final feast to feast matches used for the similarity computation of the contours.
The number of interpolation points used for each contour was the nearest multiple of powers of
2,3,5,7 and 11 to the length of the path of the contour in the original image where the contour
was extracted from multiplied by 1.5. The matching algorithm itself was done on all possible
scales, if the sizes of the two contours to match were different. The parameters for the Gabor
transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the factor between two Gabor

levels in the transformation.

70

3.1. The Contour Model Applied to the Recognition of Complete Closed Contours

(a) Dependency of the recognition rate (%) on the rotation degree

Figure 3.13.: Shown is the dependency of the recognition rate in case complete contours rotated
in the plane are matched but no rotation normalization has been done and no rotation move
either.

71

3. Results of the Contour Recognition Tasks

(a) Rotation angle 2 degrees. (b) Rotation angle 4 degrees. (c) Rotation angle 6 degrees.

(d) Rotation angle 8 degrees. (e) Rotation angle 20 degrees (f) Rotation angle 45 degrees

Figure 3.14.: Accumulated right match position for different rotation angles of the objects when
no rotation normalization was applied. The rate of successful matches strongly decreases if the
rotation angle is increased beyond 10 degree. The results were obtained by matching complete
contours that were subdivided into 24 interval ranges and the number of interval ranges is equal
to the number of final feast to feast matches used for the similarity computation of the contours.
The number of interpolation points used for each contour was the nearest multiple of powers of
2,3,5,7 and 11 to the length of the path of the contour in the original image where the contour
was extracted from multiplied by 1.5. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

72

3.1. The Contour Model Applied to the Recognition of Complete Closed Contours

approximately 88% recognition rate can be achieved. Even more important is the fact that
within the first fifty match positions shown in figure 3.14 the recognition rate still reaches 100%.
The accumulated right match positions plot was explained in detail in section 3.1.4.1. For
rotations of 20 degrees the recognition rate is already reduced substantially to 64% and drops
down to 9% for 45 degrees. In both cases a recognition rate near 100% is not reached within
the first 50 match position indicating that no meaningful matching result was computed.

3.1.5.2. Matching of Non-Normalized Scaled Contours

The matching of normalized scaled contours can easily be done by fixating the number of inter-
polation points used. The recognition rate is of course near 100% and therefore results for this
task are not shown explicitly. Instead the focus of attention is turned to the task of matching
non-normalized contours that differ by a scale factor. The results are shown in figure 3.15 and
show that for complete closed contours it is sufficient to use a value of �� �

for the parameter
�

which determines the relation of successive Gabor levels. The computed recognition rates have
a low of 0.93 which is a good result.

73

3. Results of the Contour Recognition Tasks

(a) scale factor 1.02 (b) scale factor 1.04 (c) scale factor 1.06 (d) scale factor 1.08

(e) scale factor 1.10 (f) scale factor 1.12 (g) scale factor 1.14 (h) scale factor 1.18

(i) scale factor 1.22 (j) scale factor 1.2

Figure 3.15.: Illustration of scale invariant matching if no scale normalization was done. Used
for matching were images showing a scaled object. The accumulated right match positions are
shown for the various scale factors. The results were obtained by matching complete contours
that were subdivided into 24 interval ranges and the number of interval ranges is equal to the
number of final feast to feast matches used for the similarity computation of the contours. The
number of interpolation points used for each contour was the nearest multiple of powers of
2,3,5,7 and 11 to the length of the path of the contour in the original image where the con-
tour was extracted from. The matching algorithm itself was done on all possible scales, if the
sizes of the two contours to match were different. The parameters for the Gabor transforma-
tions used were $ = 3.1414 and

�
= 1.18925.

�
is the factor between two Gabor levels in the

transformation.

74

3.2. The Contour Model Applied to the Recognition of Contour Parts

3.2. The Contour Model Applied to the Recognition of Con-
tour Parts

3.2.1. Recognition of Known Specific Object Parts

3.2.1.1. Solving the Problem of Multiple Occurrences of the Same Gesture

The hand gestures in figure 3.2.1.2 and figure 3.17 where recognized by giving the algorithms
once a hint supplied by the user to use a point of the contour most to the left of the contour.
At this point selected feasts matching was done. This is probably not the best method for this
application task and there were only 12 different hand gestures in the database. Nevertheless,
these experiments are a proof of concept that hand gesture recognition is possible with the
presented contour recognition algorithms. The problem of recognizing equivalent gestures done
by different people and recorded at different dates under different conditions is a hard one due to
the natural variations from time to time and from individual to individual. The results presented
show a remarkable ability of the presented algorithm to cope with variations in these hand
gestures.

3.2.1.2. Solving the Correspondence Problem for Stereo Images

Even for stereo image pairs the correspondence problem can be solve provided the object con-
tours have a high enough degree of specificity. Of course if one matches too ellipsoidal contours
on another the target points are not specific enough in all cases. Fortunately, object contours
for real life objects of interest in an application task have a high enough degree of specificity in
most of the cases. If one encounters a problem of missing specificity of the object contour the
only choice is to focus on object features within the object of interest. If these features are as
well not highly specific then the task of identifying individual objects of the same object class
is probably not solvable by humans either. Just think of a task like identifying individual eggs.

The remarkable ability of humans to increase their discriminating power by learning the
importance of smaller details can be modeled in the proposed model by changing parameters
affecting the number of Gabor levels to be computed. However general rules or automatic
procedures controlling the decisions on when to change these parameters are outside the scope
of this work as they require a complex interactive controlling process. Note that some results
for the hand gesture recognition task suggest, for example figure 3.17 (f), the need to define
individual graphs for each object or, in this case, hand gesture. These graphs should represent a
collection of the important points of the object to recognize for a given task. The development
of such a graph representation is not a major problem but is currently not implemented and is
therefore subject to future research. In figure 3.17 (f) the result is perfectly right even though
a different gesture has been found. The reason for this is that the points to use for matching
provided by the automatic matching procedure for selected feasts did not select enough points
belonging to the upper part of the hand gesture and therefore differences there were ignored.
The parts that were examined match perfectly well. If the selected points were the right ones the
results indicate a remarkable ability of the algorithm to deal with slight changes in the overall
gesture.

For the distinguishing part of the human profile face the person identifying and correspond-

75

3. Results of the Contour Recognition Tasks

The new hand gesture image Matching result for a hand gesture

Figure 3.16.: Illustration of the hand gesture recognition task. The number of interpolation
points, e.g. indices of feasts computed for this contour was the nearest multiple of powers of
2,3,5,7 and 11 to the length of the path of the contour in the original image where the contour
was extracted from. The match result was obtained by matching selected feasts. The point in
the new image for the base feast of the matching was given by the user in so far as it is the point
of the contour closest to the user given image pixel [300,140]. The index of that corresponding
point is called base index. 10 additional feasts (five to the left and five to the right) were used for
matching around the base index and distance to the base index is a multiple of the total number
of indices divided by the user given constant of 50. The matching algorithm itself was done on
all possible scales if the sizes of the two contours was different. The parameters for the Gabor
transformations used were $ = 3.1414 and

�
= 1.414 were

�
is the factor between two Gabor

levels in the transformation.

ing points problem are easily solved in figure 3.18 and figure 3.19. Even the slight 3D rotation
of the faces and the different contour sizes caused by the different zooming factors can be com-
pensated. Notice that no normalizations were done so that the whole result is an effect of the
matching algorithm. Furthermore it should be possible to solve the correspondence problem
for arbitrary images. If it is possible to find a large enough edge in both images using edge
detectors and edge continuity algorithms and these edges have somewhat more structure than a
straight line or an arc the matching procedures that were presented in the earlier chapters can
be applied.

76

3.2. The Contour Model Applied to the Recognition of Contour Parts

(a) Similarity 98% (b) Similarity 92% (c) Similarity 90%

(d) Similarity 96% (e) Similarity 94% (f) Similarity 92%

Figure 3.17.: Illustration of the hand gesture recognition problem. Red arrows indicate simi-
larities of 90% and above. The point in the new image for the base feast of the matching was
given by the user in so far as it is the point of the contour closest to the user given image pixel
[0,120]. A set of twelve different hand gestures performed by two individuals were recorded
with a stereo camera pair using different zooming factors. Notice that no normalizations were
done so that the whole result is an effect of the matching algorithm. Six typical matching results
are shown. The results can probably be improved further by defining graphs for each hand ges-
ture that capture the important points. The results were obtained by matching selected points
of the contours by using 11 feasts including and around each selected point. The number of
interpolation points used for each contour was the nearest multiple of powers of 2,3,5,7 and 11
to the length of the path of the contour in the original image where the contour was extracted
from. The matching algorithm itself only used the 0 scale as defined in section 2.8.2. The pa-
rameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.41425.

�
is the factor

between two Gabor levels in the transformation.

77

3. Results of the Contour Recognition Tasks

(a) The profile face image

(b) Matching result for the profile face

Figure 3.18.: Illustration of profile face matching. The number of interpolation points, e.g.
indices of feasts computed for this contour was the nearest multiple of powers of 2,3,5,7 and 11
to the length of the path of the contour in the original image where the contour was extracted
from. The match result was obtained by matching selected feasts. The point in the new image
for the base feast of the matching was given by the user in so far as it is the point of the
contour closest to the user given image pixel [250,110]. The index of that corresponding point
is called base index. 10 additional feasts (five to the left and five to the right) were used for
matching around the base index and distance to the base index is a multiple of the total number
of indices divided by the user given constant of 50. The matching algorithm itself was done on
all possible scales if the sizes of the two contours was different. The parameters for the Gabor
transformations used were $ = 3.1414 and

�
= 1.414 were

�
is the factor between two Gabor

levels in the transformation.

78

3.2. The Contour Model Applied to the Recognition of Contour Parts

(a) Similarity 96% (b) Similarity 96% (c) Similarity 93%

(d) Similarity 96% (e) Similarity 99% (f) Similarity 99%

Figure 3.19.: Illustration of how the stereo correspondence problem can be solved. Red arrows
indicate similarities of 90% and above. For two individuals image sequences were recorded
with a stereo camera pair using different zooming factors. For the distinguishing part of the
human profile face the corresponding points problem can be solved easily. Even the slight 3D
rotation of the faces and the different contour sizes caused by the different zooming factor can
be compensated. Notice that no normalizations were done so that the whole result is an effect of
the matching algorithm. The results were obtained by matching selected points of the contours
by using 13 feasts including and around each selected point. The number of interpolation points
used for each contour was the nearest multiple of powers of 2,3,5,7 and 11 to the length of the
path of the contour in the original image where the contour was extracted from. The matching
algorithm itself was done on all possible scales, if the sizes of the two contours to match were
different. The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.�

is the factor between two Gabor levels in the transformation.

79

3. Results of the Contour Recognition Tasks

3.2.2. Recognition of Different Objects

The results shown in figures 3.20, 3.21, 3.22 and 3.23 were generated using one representative
of each object class taken from the ETH80 and SQUID databases to create a gallery of contours
to match against. Other images of different representative of each object class contained in
the ETH80 database were then matched against this gallery. The task was to recognize the
type of object given the posture of the object so only the best matching object is relevant in
evaluating the matching success. However, for example for horses and cows the results indicate
that the posture plays an important role in the recognition process. Therefore again the need
arises to define specific object graphs that capture the important points to look for especially
for articulated objects. By this procedure it should be possible to bias the matching process in
favor of, for example, differences in the head form of the animals while similar postures of the
legs alone should not lead to high similarities. Such an approach is subject to future research.

80

3.2. The Contour Model Applied to the Recognition of Contour Parts

(a) Similarity 94% (b) Similarity 92% (c) Similarity 90%

(d) Similarity 89% (e) Similarity 84% (f) Similarity 78%

Figure 3.20.: An illustration for the object recognition task is given. A gallery of six different
object types was generated. The given contour was matched against all of these object contours.
The results show that the right object class had the highest similarity and therefore the object
class was identified. Notice that the second best match (b) had as well a relative high similarity.
An even better separation can probably be achieved if a specific object graph can be used for
matching that emphasizes the object specific details, for example the different head forms of
horses and cows. The results were obtained by matching complete contours that were subdi-
vided into 25 interval ranges. The best matching contiguous 50% of these feast , as described
in section 2.8.5.3, were used for the similarity computation of the contours. Each contour was
interpolated by 1536 number of points. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

81

3. Results of the Contour Recognition Tasks

(a) Similarity 92% (b) Similarity 88% (c) Similarity 88% (d) Similarity 86%

(e) Similarity 85% (f) Similarity 84% (g) Similarity 80%

Figure 3.21.: An illustration for the object recognition task is given. A gallery of six different
object types was generated. The given contour was matched against all of these object contours.
The results show that the right object class had the highest similarity and therefore the object
class was identified. The results were obtained by matching complete contours that were sub-
divided into 25 interval ranges. The best matching contiguous 50% of these feast , as described
in section 2.8.5.3, were used for the similarity computation of the contours. Each contour was
interpolated by 1536 number of points. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

82

3.2. The Contour Model Applied to the Recognition of Contour Parts

(a) Similarity 96% (b) Similarity 94% (c) Similarity 87%

(d) Similarity 83% (e) Similarity 81% (f) Similarity 74%

Figure 3.22.: An illustration for the object recognition task is given. A gallery of six different
object types was generated. The given contour was matched against all of these object contours.
The results show that the right object class had the highest similarity and therefore the object
class was identified. The results were obtained by matching complete contours that were sub-
divided into 25 interval ranges. The best matching contiguous 50% of these feast , as described
in section 2.8.5.3, were used for the similarity computation of the contours. Each contour was
interpolated by 1536 number of points. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

83

3. Results of the Contour Recognition Tasks

(a) Similarity 90% (b) Similarity 90% (c) Similarity 88%

(d) Similarity 84% (e) Similarity 81% (f) Similarity 73%

Figure 3.23.: An illustration for the object recognition task is given. A gallery of six different
object types was generated. The given contour was matched against all of these object contours.
The results show that the right object class had the highest similarity and therefore the object
class was identified. The results were obtained by matching complete contours that were sub-
divided into 25 interval ranges. The best matching contiguous 50% of these feast , as described
in section 2.8.5.3, were used for the similarity computation of the contours. Each contour was
interpolated by 1536 number of points. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

84

3.2. The Contour Model Applied to the Recognition of Contour Parts

3.2.3. The Occlusion Task

In typical applications for example segmentation tasks the objects to recognize are often oc-
cluded to some extent. To find robust algorithms that can identify objects under these conditions
is an important goal. One other application is the process of forming a complex segmentation
from input of low level segmentation results for example generated by a homogeneous color
cue. Most of the times different parts of an object have different colors. If one large enough
segment can be found that captures a significant part of the object contour a hypotheses can be
generated on what kind of object is present and where to look for the other parts of the object
in the image.

The results for the occlusion task presented in figure 3.24 till figure 3.29 were obtained by
matching different percentage amounts of feasts. The results indicate a negative dependency
of the recognition rate on the percentage amount of feasts used. The optimal percentage of
feasts to use in the experiments shown was 20% which was the lowest number used. However
percentages below 10% should not be used (not shown) in any case or to be more precise less
that 5 feast to feast matches make the matching results very unreliable.

Recognition rates of approximately 70% can easily be achieved by using approximately
20% of the contour for the matching process. This number is very remarkable as the maximum
reachable is unknown. Some objects are so small or have such an unstructured contour that
even humans can probably not achieve a recognition rate of 100% for this task.

The recognition rate can be made approximately constant by using selected feast matching
for the given input data shown in figure 3.30. As the occlusions are always done horizontally
matching at the point of the contour that is closest to the middle of the bottom of the image is
a useful hint. Although it is of course only applicable to this data set. In addition the results
indicate that the choice of an ellipsoid makes the the occlusion task probably more difficult. The
reason for this is probably that the smooth borders artificially introduced by the occlusion are
matched by accident to other real object contours that do not have a high degree of specificity
like arcs or straight lines. The effect gets stronger if the translation between the objects gets
smaller and therefore the occluded part of the object gets larger.

85

3. Results of the Contour Recognition Tasks

(a) Original Image (b) 46 pixels translation

(c) Similarity 100%

Figure 3.24.: Accumulated right matches for one occluded object recognition task. Used were
only a percent amount of all feast to find the best matching object. (a) A new image of the given
task occluded by an ellipsoid (not shown) whose center was moved 46 pixels away from the
center of the object. (b) Accumulated right match positions. The percentage of right matches
on rank one is given explicitly. (c) Example matching result illustrating the point to point match
positions for one specific match. The results were obtained by matching complete contours that
were subdivided into 50 interval ranges. The best matching contiguous 20% of these feast ,
as described in section 2.8.5.3, were used for the similarity computation of the contours. The
number of interpolation points used for each contour was the nearest multiple of powers of
2,3,5,7 and 11 to the length of the path of the contour in the original image where the contour
was extracted from multiplied by 1.5. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.41425.

�
is the factor between two Gabor levels in the transformation.

86

3.2. The Contour Model Applied to the Recognition of Contour Parts

(a) Original Image (b) 46 pixels translation

(c) Similarity 100%

Figure 3.25.: Accumulated right matches for one occluded object recognition task. Used were
only a percent amount of all feast to find the best matching object. (a) A new image of the given
task occluded by an ellipsoid (not shown) whose center was moved 46 pixels away from the
center of the object. (b) Accumulated right match positions. The percentage of right matches
on rank one is given explicitly. (c) Example matching result illustrating the point to point match
positions for one specific match. The results were obtained by matching complete contours that
were subdivided into 50 interval ranges. The best matching contiguous 40% of these feast ,
as described in section 2.8.5.3, were used for the similarity computation of the contours. The
number of interpolation points used for each contour was the nearest multiple of powers of
2,3,5,7 and 11 to the length of the path of the contour in the original image where the contour
was extracted from multiplied by 1.5. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.41425.

�
is the factor between two Gabor levels in the transformation.

87

3. Results of the Contour Recognition Tasks

(a) Original Image (b) 46 pixels translation

(c) Similarity 97%

Figure 3.26.: Accumulated right matches for one occluded object recognition task. Used were
only a percent amount of all feast to find the best matching object. (a) A new image of the given
task occluded by an ellipsoid (not shown) whose center was moved 46 pixels away from the
center of the object. (b) Accumulated right match positions. The percentage of right matches
on rank one is given explicitly. (c) Example matching result illustrating the point to point match
positions for one specific match. The results were obtained by matching complete contours that
were subdivided into 50 interval ranges. The best matching contiguous 60% of these feast ,
as described in section 2.8.5.3, were used for the similarity computation of the contours. The
number of interpolation points used for each contour was the nearest multiple of powers of
2,3,5,7 and 11 to the length of the path of the contour in the original image where the contour
was extracted from multiplied by 1.5. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.41425.

�
is the factor between two Gabor levels in the transformation.

88

3.2. The Contour Model Applied to the Recognition of Contour Parts

(a) Original Image (b) 16 pixels translation

(c) Similarity 100%

Figure 3.27.: Accumulated right matches for one occluded object recognition task. Used were
only a percent amount of all feast to find the best matching object. (a) A new image of the given
task occluded by an ellipsoid (not shown) whose center was moved 16 pixels away from the
center of the object. (b) Accumulated right match positions. The percentage of right matches
on rank one is given explicitly. (c) Example matching result illustrating the point to point match
positions for one specific match. The results were obtained by matching complete contours that
were subdivided into 50 interval ranges. The best matching contiguous 20% of these feast ,
as described in section 2.8.5.3, were used for the similarity computation of the contours. The
number of interpolation points used for each contour was the nearest multiple of powers of
2,3,5,7 and 11 to the length of the path of the contour in the original image where the contour
was extracted from multiplied by 1.5. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.41425.

�
is the factor between two Gabor levels in the transformation.

89

3. Results of the Contour Recognition Tasks

(a) Original Image (b) 16 pixels translation

(c) Similarity 100%

Figure 3.28.: Accumulated right matches for one occluded object recognition task. Used were
only a percent amount of all feast to find the best matching object. (a) A new image of the given
task occluded by an ellipsoid (not shown) whose center was moved 16 pixels away from the
center of the object. (b) Accumulated right match positions. The percentage of right matches
on rank one is given explicitly. (c) Example matching result illustrating the point to point match
positions for one specific match. The results were obtained by matching complete contours that
were subdivided into 50 interval ranges. The best matching contiguous 40% of these feast ,
as described in section 2.8.5.3, were used for the similarity computation of the contours. The
number of interpolation points used for each contour was the nearest multiple of powers of
2,3,5,7 and 11 to the length of the path of the contour in the original image where the contour
was extracted from multiplied by 1.5. The matching algorithm itself only used the 0 scale as
defined in section 2.8.2. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.41425.

�
is the factor between two Gabor levels in the transformation.

90

3.2. The Contour Model Applied to the Recognition of Contour Parts

(a) Original Image (b) 16 pixels translation

(c) Similarity 96%

Figure 3.29.: Accumulated right matches for one occluded object recognition task. Used was
only a small percent amount of all feast to find the best matching object. (a) A new image of
the given task occluded by an ellipsoid (not shown) whose center was moved 16 pixels away
from the center of the object. (b) Accumulated right match positions. The percentage of right
matches on rank one is given explicitly. (c) Example matching result illustrating the point to
point match positions for one specific match. The results were obtained by matching complete
contours that were subdivided into 50 interval ranges. The best matching contiguous 60% of
these feast , as described in section 2.8.5.3, were used for the similarity computation of the
contours. The number of interpolation points used for each contour was the nearest multiple of
powers of 2,3,5,7 and 11 to the length of the path of the contour in the original image where
the contour was extracted from multiplied by 1.5. The matching algorithm itself only used the
0 scale as defined in section 2.8.2. The parameters for the Gabor transformations used were $
= 3.1414 and

�
= 1.41425.

�
is the factor between two Gabor levels in the transformation.

91

3. Results of the Contour Recognition Tasks

(a) 46 pixel translation (b) 42 pixel translation (c) 40 pixel translation (d) 38 pixel translation

(e) 36 pixel translation (f) 34 pixel translation (g) 32 pixel translation (h) 30 pixel translation

(i) 26 pixel translation (j) 20 pixel translation (k) 16 pixel translation

Figure 3.30.: Selected point matching using the contour points nearest to the middle of the
bottom of the image. The matching results are nearly independent of the translation in pixels
between the object and the occluding ellipsoid. The results were obtained by matching selected
points of the contours by using 9 feasts including and around each selected point. The number
of interpolation points used for each contour was the nearest multiple of powers of 2,3,5,7 and
11 to the length of the path of the contour in the original image where the contour was extracted
from. The matching algorithm itself only used the 0 scale as defined in section 2.8.2. The
parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.41425.

�
is the

factor between two Gabor levels in the transformation.

92

3.2. The Contour Model Applied to the Recognition of Contour Parts

3.2.4. The Multiple Objects Task

Another important problem in segmentation tasks is for example the occurrence and subsequent
segregation of multiple objects in an image. Like in the occlusion task it would be very helpful
to be able to build a hypotheses based on a part of an extracted enlarged contour composed of
multiple objects.

A reduction of the percentage amount of feasts to be used for matching covering only 30%
of the contour leads to a slight reduction in the recognition rates as it is illustrated in figure 3.34.
The reason for this effect is probably that the computed path length was not multiplied with 1.5
like in the results given in figure 3.33. Taking the results of the occluded matching task into
account feast percentages of 40% used for matching seem to be a reasonable choice anyway
regardless of the specific matching task or parameters used. To have a constant percentage
number of feasts for all matching tasks is important because in real life applications it is of
course not always known if an occlusion problem or an enlarged contour problem is present
especially in segmentation tasks.

3.2.5. Matching of Open Contours

Although large parts of the work on a robust algorithm to match open contours remains a part
of future research it is even with the current approach possible to give in figure 3.35 more than
a proof of concept that the algorithm is able to deal with open contours successfully. This is
important because if the concept can deal with open contours a new realm of possible input
sources becomes available. For example the output of low level edge detectors which can be
used by line completing algorithms. The presented method can then be used to judge which
of the several possible line continuations is the most likely and should be chosen in the current
user given context. Alternatively the different possible continuations can be assigned probability
values computed from the similarities found matching in the current context. Furthermore the
length of the line segment and the relative frequency of good matches found should be taken into
account. The context given by the user can be implemented by choosing a desired composition
of the target gallery database for matching.

For open contour or edge matching some effort has still to be done on the algorithms creating
a single straight line of contour points to be interpolated by the B-spline algorithms. Further-
more different border conditions have to be implemented as a Fourier descriptor is used for
the computations. The results shown were done with the wrap around border condition which
is clearly not the best choice as to much artificial high frequency responses are induced in
the Fourier domain. Furthermore it is probably a good idea to select Gabor values computed
at different contour points to extend the matching algorithm to be able to match successfully
even at the terminating ends of the open contour were no reliable low frequency information is
available.

93

3. Results of the Contour Recognition Tasks

(a) Original Image (b) 36 pixel translation

(c) Similarity 100%

Figure 3.31.: Illustration of an enlarged contours recognition task. Used was only a small
percent amount of all feast to find the best matching object. (a) A new image of the given
task showing two objects superimposed on another with the center of the second object moved
36 pixels away from the center of the first object. (b) Accumulated right match positions.
The percentage of right matches on rank one is given explicitly. (c) Example matching result
illustrating the point to point match positions for one specific match. The results were obtained
by matching complete contours that were subdivided into 25 interval ranges. The best matching
contiguous 40% of these feast , as described in section 2.8.5.3, were used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in
the original image where the contour was extracted from multiplied by 1.5. The matching
algorithm itself only used the 0 scale as defined in section 2.8.2. The parameters for the Gabor
transformations used were $ = 3.1414 and

�
= 1.41425.

�
is the factor between two Gabor

levels in the transformation.

94

3.2. The Contour Model Applied to the Recognition of Contour Parts

(a) Similarity 100% (b) Similarity 100% (c) Similarity 100% (d) Similarity 100%

(e) Similarity 99% (f) Similarity 99% (g) Similarity 100% (h) Similarity 100%

Figure 3.32.: Examples for the multiple object recognition task. Shown is the best and the
second best match for an enlarged contour composed of two objects. In the presented examples
both objects could be recognized exceptionally well. Of course this is not always possible. The
recognition rates for finding at least one of the two objects to be the best match are given for
various translations between the objects in figure 3.33. The results were obtained by matching
complete contours that were subdivided into 25 interval ranges. The best matching contiguous
40% of these feast , as described in section 2.8.5.3, were used for the similarity computation of
the contours. The number of interpolation points used for each contour was the nearest multiple
of powers of 2,3,5,7 and 11 to the length of the path of the contour in the original image where
the contour was extracted from multiplied by 1.5. The matching algorithm itself only used the
0 scale as defined in section 2.8.2. The parameters for the Gabor transformations used were $
= 3.1414 and

�
= 1.41425.

�
is the factor between two Gabor levels in the transformation.

95

3. Results of the Contour Recognition Tasks

(a) 46 pixel translation (b) 36 pixel translation

(c) 26 pixel translation (d) 16 pixel translation

Figure 3.33.: Illustration of accumulated right match positions and recognition rates for the
enlarged contours recognition task. Used was only a small percent amount of all feast to find
the best matching object. Used for matching were images showing two objects superimposed
on another with the center of the second object moved away from the center of the first object
by different pixel amounts. The results indicate that there is only a marginal difference in the
recognition rates for different degrees of superposition. The results were obtained by matching
complete contours that were subdivided into 50 interval ranges. The best matching contiguous
22% of these feast , as described in section 2.8.5.3, were used for the similarity computation of
the contours. The number of interpolation points used for each contour was the nearest multiple
of powers of 2,3,5,7 and 11 to the length of the path of the contour in the original image where
the contour was extracted from multiplied by 1.5. The matching algorithm itself only used the
0 scale as defined in section 2.8.2. The parameters for the Gabor transformations used were $
= 3.1414 and

�
= 1.41425.

�
is the factor between two Gabor levels in the transformation.

96

3.2. The Contour Model Applied to the Recognition of Contour Parts

(a) 46 pixel translation (b) 44 pixel translation (c) 42 pixel translation (d) 40 pixel translation

(e) 38 pixel translation (f) 36 pixel translation (g) 34 pixel translation (h) 32 pixel translation

(i) 30 pixel translation (j) 26 pixel translation (k) 20 pixel translation (l) 16 pixel translation

Figure 3.34.: Illustration of accumulated right match positions for the enlarged contours recog-
nition task. Used was only a small percent amount of all feast to find the best matching object.
Used for matching were images showing two objects superimposed on another with the center
of the second object moved away from the center of the first object by different pixel amounts.
These computations were done to examine the dependency of the recognition rate on different
pixel translations The results were obtained by matching complete contours that were subdi-
vided into 48 interval ranges. The best matching contiguous 30% of these feast , as described
in section 2.8.5.3, were used for the similarity computation of the contours. The number of in-
terpolation points used for each contour was the nearest multiple of powers of 2,3,5,7 and 11 to
the length of the path of the contour in the original image where the contour was extracted from.
The matching algorithm itself only used the 0 scale as defined in section 2.8.2. The parameters
for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the factor between

two Gabor levels in the transformation.

97

3. Results of the Contour Recognition Tasks

(a) Similarity 99% (b) Similarity 100% (c) Similarity 100%

(d) Similarity 100% (e) Similarity 99% (f) Similarity 100%

Figure 3.35.: Illustration of a recognition task involving the matching of open object contours
or edge continuations that are used as input in the matching procedures. Shown are the point
to point matches found. The results give a proof of concept that the presented algorithms can
as well by used in recognition task involving open contours. This may be useful for example in
cases where the input to match does not come from segmentation algorithms but is generated by
edge detection algorithms. The results were obtained by matching selected points of the con-
tours by using 11 feasts including and around each selected point. The number of interpolation
points used for each contour was the nearest multiple of powers of 2,3,5,7 and 11 to the length
of the path of the contour in the original image where the contour was extracted from multiplied
by 1.5. The matching algorithm itself only used the 0 scale as defined in section 2.8.2. The pa-
rameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the factor

between two Gabor levels in the transformation.

98

4. Discussion

4.1. Properties of the Presented Model

It has been shown in the previous chapters that the presented model and algorithms for recogni-
tion of complete and only partially present contours can solve various important tasks in com-
puter vision. First of all complete contours of an object can be used to recognize a particular
object even if it has undergone affine transformation, e.g. was scaled or rotated in the plane. Not
only is the object recognized but as well a continuous similarity measure is computed for the
whole contour which can be used to cluster large databases of object data into certain groups.
Furthermore even individual point to point correspondences are computed, which each have a
similarity value, which can be used as a measure of reliability for the individual point to point
matches.

If the object of interest has undergone rotations in 3D space it was shown that the object class
and the object posture can be detected fairly well. Even if the exact posture is not present in the
gallery database used for matching it can be estimated fairly well if the changes of the rotation
angles are not too large. Furthermore it was shown that the object posture can be estimated if
a sample of already known representatives of each object class is used as a gallery. Not only
can the object class be estimated but as well a similar posture is found. In fact object class and
posture are matched simultaneously.

The recognition of complete contours that have only been scaled and rotated in the plane
can be done efficiently by normalizing the contours. The recognition rate for these tasks on
large scale tests using the SQUID database comes close to and sometimes even is 100%. In
cases when no normalization is possible matching algorithms have been proposed which can
for example compensate for changes in scale and rotation in the plane.

To test which rotations steps can be tolerated by the feature set an examination of the recog-
nition rate on rotated contours was done when no rotation normalization and no rotation match-
ing have been applied. On average a two percentage points drop per additional degree of rotation
was found for non-normalized contour matching.

To account for changes in the scale of the contour when no normalization has been applied
the discrete scale concept was introduced. It has been shown that matching across all discrete
scales produces good results regardless if the value of �� �

is chosen for the parameter
�

which
determines the relation of successive Gabor levels. In this case the recognition rate drops only
to 0.93.

The results for the hand gesture recognition task give more than a proof of concept that these
task is solvable by the proposed algorithms but the results for this task as well suggest that it
would be a great benefit to define individual graphs for each object or in this case hand gestures.
These graphs should represent a collection of the important points of the object to recognize for

4. Discussion

a given task. It is the opinion of the author that not only contour parts that have structure
corresponding to a high information content relative to other contours by some measurement
have to be considered for these graphs but it must be possible to encode especially the small
detail differences — if needed — relevant to the user for a specific. The development of such a
graph representation is not a major problem but it is currently not implemented and is therefore
subject to future research. On a two GHz-CPU personal computer the current non-optimized
implementation needs less than a second to compute the similarity value between two contours
and needs a time amount in the range of several minutes to compare a contour with one thousand
contours. If the above mentioned graph representation would be implemented the computational
costs could be reduced by one or two powers of ten as the amount of points to be checked is
reduced significantly. If the selected points were the right ones the results indicate a remarkable
ability of the algorithm to deal with slight changes in the overall gesture.

The recognition of individual persons by their profile face images is another task that can
be solved excellently. It was shown that the algorithm can deal with slight rotations in 3D that
occur for example in stereo images of the same object. It was further shown that variations of
the scale can be compensated and that very precise point to point correspondences can be found.
The latter is an important problem in stereo vision.

In typical applications for example segmentation tasks the objects to recognize are often oc-
cluded to some extent. To find robust algorithms that can identify objects under this condition is
an important goal. If the un-supervised percentage matching algorithm is used recognition rates
of approximately 70% can easily be achieved by using approximately 20% of the contour for
the matching process. This number is very remarkable as the maximum reachable is unknown.
Some objects are so small or have such an unstructured contour that even humans can probably
not achieve 100% if large parts of such objects are occluded. If user intervention was added and
therefore the selected feasts algorithm is usable the recognition rate is almost independent from
the degree of overlap of object and occluding ellipsoid as long as some parts of the contour are
unaffected by the occlusion.

A proof of concept was given that the algorithm is able to deal with open contours. However,
some effort has still to be done for open contour matching on the algorithms creating a single
straight line of contour points. Furthermore different border conditions for open contours should
be implemented as a Fourier descriptor is used in the computations. And it is probably a good
idea to select Gabor values computed at different neighboring contour points to extend the
matching algorithm to be able to match successfully even a the terminating ends of the open
contour where no reliable low frequency information is available.

It was shown that the requirements a shape model should meet given in section 1.2 on
page 17 are all fulfilled by the presented model. The only exception is the possibility to code the
object of interest effectively for data compression purposes like fulfilling the MPEG-7 standard.
This problem has to be addressed in detail in the future but the possible solution has been given
above in the hand gesture section by stressing the need to define specific object graphs. Whether
this can only be done task specific for each individual object by the user or an automatic way
can be found were the user only has to supply a gallery of objects of interest is an open question.
In any case the coding should not be dependent only on the object itself like in (Mokhtarian and
Bober, 2003) were the zero crossing of a specific transformation are used but as well on the
other contours relevant in the context of interest.

100

4.2. Relation to Other Models

4.2. Relation to Other Models

The matching algorithm presented here is on an abstract level similar in spirit to the matching
algorithm presented in (Lades et al., 1993) which originates from an early work done by Prof.
von der Malsburg (von der Malsburg, 1981). The implementation of the matching algorithm
was inspired by (Wiskott et al., 1997), (Wiskott and Malsburg, 1993) and (Wiskott, 1996).

The work presented here is related to the work of Loos (Loos, 2002). There a whole object
graph is generated by a growing neural gas algorithm that represents the thresholded pixels of
a difference image. The advantage of the method is certainly the 2D-graph matching approach
that makes it possible — at least theoretically — to incorporate different 2D features in the
matching process. However, the structure of the graph itself is totally dependent on the thresh-
olded pixels of the difference image. Therefore it is very unlikely that two graphs of the same
object generated under two different conditions will be equal or at least similar. So even if the
object could be recognized by either graph in a new situation there is no direct way to compare
the two different graphs or to merge them to a common graph. Another difference to the work
presented here is the relative crude nature of the contour approximation. A typical number of
nodes being used is 30. This is a rather low number compared to the typical number of contour
interpolation points which is in the interval of 512 to 1536. The low number of nodes used re-
duces the discriminating power when two objects are compared as large parts of the contour are
not covered at all. For example the recognition of individual profile faces is probably not at all
possible with this approach. As graphs of the same object generated under different conditions
may be quiet different it is not possible to give reliable point to point correspondences between
different graphs. Even if the same graph is used, for example, for matching two stereo images
the corresponding points found are probably crude estimates of the real corresponding points
and therefore a depth estimation is highly unreliable. An advantage of his approach is that it can
be done with little or no information about the scene and that it is computationally less costly
than the presented algorithms.

4.3. Choice of Parameters

Important questions arise on what is the best choice for some of the parameters. The reader may
have already noticed that for

�
— the factor between two Gabor levels to use (see equation 2.7

— most of the times � �
was chosen but sometimes �� �

. To use the value �� �
for

�
increases

of course the number of Gabor levels substantially and leads therefore to an overall increase of
the computational cost. However, the sampling of the Gabor kernels in frequency space is so
dense then that a change in scale of the contour can nearly fully be compensated by the scale
matching algorithm. As it was shown this is not important for matching complete contours as
the context information is very strong in this task. It plays however an important role if only
contour parts or open contours are matched. So while it is safe to use �� �

especially for partial
or open contour recognition it is much faster and usually sufficient to use � �

for the factor
�

.
Especially when normalization is possible it is sufficient to use � �

and one can even try
�

which
may work well if the objects to distinguish have strongly different contours.

If small differences of contours or probably only of certain parts of a contour should be dis-
tinguished it is useful to reduce the percentage part of a contour that influences each computed

101

4. Discussion

Gabor coefficient by increasing " # (see equation 2.8) and simultaneously to compensate for the
reduction of Gabor levels by using a lower

�
for example �� �

. The effect is a higher sensitiv-
ity to smaller contour details. However, notice that this is not always desired as the ability to
classify and probably even to recognize contours by there overall shape at all decreases and can
even vanish when adopting these parameter changes.

4.4. The Presented Shape Model and Object Segmentation.

Segmentation is usually defined as the segregation of a figure from the background of the visual
input examined. However using only this criterion it has turned out that segmentation is an
ill defined problem and therefore still unsolved in computer vision. The main reason is that
the intention of the person doing the segmentation, all the background knowledge he has and
his experience acquired so far modify the visual input that is received in a way that first of
all enables a successful segmentation. It is not finding an object in the visual input and then
identifying it but rather identifying and therefore finding it. However, this process — even if the
intention of the user is known — cannot be modeled computationally using only the low level
visual input without using a high level knowledge base. This is the reason why some part of the
segmentation community regard object segmentation and object recognition or classification to
be the same, especially if they are not interested in a segmentation result that is accurate to the
level of single pixels. On the other hand there are a lot of segmentation methods that only deal
with the low level information and probably some general rules mostly derived from physics.
The output they deliver is pixel oriented but there is no general method that succeeds for all
segmentation tasks, and there probably never will be.

Therefore it is a great challenge to create a feedback loop so that the shape model com-
bined with the low level segmentation process itself could help to extract contour information
with pixel accuracy in cases where other low level methods fail. However, the low level seg-
mentation method presented in this work is not easily extensible to incorporate the contour
information as a much more complex multi cue approach is needed. Nevertheless, to combine
the presented shape recognition method with a suitable low level segmentation method remains
a very interesting task for future research.

In the presented model the acquired gallery contour represents a high level knowledge base
and as the gallery can be created by the user even the users intention can be represented. Fur-
thermore, this high level knowledge base can be acquired without any further programming
effort by algorithm designers by just learning examples that were segmented under favorable
circumstances and adding them to a database.

4.5. Organization of the Database Architecture

As it has been shown that a reasonable human-like clustering of the object postures is possible
by their respective contour similarities it would only be consequent to reflect that in the organi-
zation of the database entries as well. However up till now only a straight forward approach has
been used to store all contours linearly and even all search operation are done in that fashion.
One could think of a model that first of all for each found cluster one representative is matched
followed by all contours that could not be clustered up till now. The results can be sorted and

102

4.6. Combining Contour and Area Information

only on the best matching results — if they represent clusters — is a subsequent search done to
find the really best matching entry. This approach is as well subject to future research.

4.6. Combining Contour and Area Information

One important result is that contour recognition works best on profile images or side views of
objects. This can be verified for the task of recognizing humans by their profile face. But even
horse, car, cow or dog silhouettes are best recognized using their side views. Frontal views do
not differ that much and therefore to have a really robust object recognition or segmentation
method the presented one dimensional approach should be combined with matching methods
using intra-object 2D data. However, here a real challenge is given as it is not clear how such
a combination should be realized at all. Maybe another approach is more promising. If it is
possible to have two camera images of the same scene from different viewpoints so that reliable
input for both approaches can be recorded then a combination of the results can be done at a later
stage. By this approach an excellent recognition rate for human frontal detection can probably
be achieved on datasets expanded by a magnitude of three or four powers of ten compared to
current sizes of datasets for frontal face identification tasks that are of an order of several ten
thousand individuals. Such an approach would make face recognition applicable to real life
large databases, although of course this assumption has to be confirmed by further large scale
tests.

4.7. The Ideal Meta-Matching Algorithm

Consider the situation that an autonomous robot system with vision capabilities enters a new
environment. First of all it has to build a representation of the outside world to be able to navi-
gate and to identify objects. It is the opinion of the author that a one step feedforward algorithm
to solve this problem is questionable or at least very unlikely to exist at all. If the environment
was encountered before, things may be different, but that is not the situation we examine right
now. The first step should probably be an holistic approach to guess a context for example by
examining the properties of 2D Fourier coefficients or other crude cues. If a context has been se-
lected the system can select certain databases for segmenting and recognizing individual image
contents. If a stereo camera pair is present various edge hypotheses generated by edge detection
and edge continuation can for example be matched to form a first hypotheses on which points
correspond with each other. Form this point on various methods could probably be used to gen-
erate a depth map. If certain edge forms or other cues are already known for the selected context
to be reliable depth cues a depth map may even be formed only by one camera image. Now the
selected databases can be used to identify objects within the scene. Depending on the context
the selected databases may only contain objects expected to be found in such an environment
and the algorithms may have an expectation on where to find them in the image. Now object
classes may be identifiable using all kinds of preprocessing results like low level segmentation,
edge color or texture cues. The effect is the generation of even more competing hypotheses
which can be examined further by using more detailed databases and parameter adaptions use-
ful for recognition of these object classes or even to identify individual representatives. If the
detection of the object classes fails the initial hypotheses have to be assigned a low value of

103

4. Discussion

reliability and in the worst case the search has to be extended on the whole knowledge base
represented in the system. In some situations the described process may even process object
candidates that are not already part of the knowledge base for example if external motion is
present. Once reliable scene and object estimates have been found the important yet unsolved
task remains on how this new knowledge may be used to adapt the internal representations and
the databases used. The intention of the design of the presented algorithms can be understood
best if this general approach of generating and evaluating hypotheses is kept in mind. It is in
strong contrast to the traditional approach in mathematics and computer science which is always
assuming some presuppositions to be given and not to be questioned in the further processing
steps. Unfortunately experience with real life applications in computer vision teaches us that
this assumption is rarely true and that one has to constantly revalue the hypotheses that have
lead to the preliminary results so far. As in the described scenario above the knowledge base
already present in the system plays an important role and very interesting questions arises:

� What should such an knowledge base look like?

� How can the knowledge base finally be built up incrementally by the system?

� What is the minimal starting knowledge that needs to be given by the computer scientist
to the autonomous system.

While these questions have to remain largely unanswered at least for the problem of object
recognition by contour parts a contribution was made on what the data model and algorithms
should look like to be usable in the various stages of hypotheses testing where it is useful to
apply them. In part II a very special problem related to the third question will be examined
taking a more neurophysiological perspective.

104

A. Further Examples of Matching Results

A.1. Further Results on the Recognition of Different 3D Ob-
ject Postures.

A. Further Examples of Matching Results

(a) Similarity 90% (b) Similarity 98% (c) Similarity 95% (d) Similarity 96%

(e) Similarity 95% (f) Similarity 97% (g) Similarity 97% (h) Similarity 96%

(i) Similarity 95% (j) Similarity 98%

Figure A.1.: Examples for matching different 3D postures for automobiles. Red arrows indicate
similarities of 90% and above. The car matching example is given to illustrate the ability of
the algorithm to tolerate rotations in 3D. Each individual automobile dataset from the ETH80
database was split in two disjunct parts, so that the same posture was not present in both datasets.
The results were obtained by matching complete contours that were subdivided into 25 interval
ranges and the number of interval ranges is equal to the number of final feast to feast matches
used for the similarity computation of the contours. The number of interpolation points used
for each contour was the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path
of the contour in the original image where the contour was extracted from multiplied by 1.5.
The matching algorithm itself was done on all possible scales, if the sizes of the two contours
to match were different. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

106

A.1. Further Results on the Recognition of Different 3D Object Postures.

(a) Similarity 98% (b) Similarity 97%

(c) Similarity 95% (d) Similarity 97%

Figure A.2.: Further examples for matching different 3D postures of cars. Red arrows indicate
similarities of 90% and above. The car matching example is given to illustrate the ability of
the algorithm to tolerate rotations in 3D. Each individual automobile dataset from the ETH80
database was split in two disjunct parts, so that the same posture was not present in both datasets.
The results were obtained by matching complete contours that were subdivided into 25 interval
ranges and the number of interval ranges is equal to the number of final feast to feast matches
used for the similarity computation of the contours. The number of interpolation points used
for each contour was the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path
of the contour in the original image where the contour was extracted from multiplied by 1.5.
The matching algorithm itself was done on all possible scales, if the sizes of the two contours
to match were different. The parameters for the Gabor transformations used were $ = 3.1414
and

�
= 1.18925.

�
is the factor between two Gabor levels in the transformation.

107

A. Further Examples of Matching Results

(a) Similarity 98% (b) Similarity 96% (c) Similarity 99% (d) Similarity 97%

(e) Similarity 97% (f) Similarity 94% (g) Similarity 98% (h) Similarity 98%

(i) Similarity 98% (j) Similarity 98% (k) Similarity 98%

Figure A.3.: Examples for matching different 3D postures of horses. Red arrows indicate
similarities of 90% and above. Out of ten different representatives of this object class taken
from the ETH80 database the complete set of images for three representatives was used to build
an object contour gallery. The other representatives were subsequently matched against this
gallery and the results show that the corresponding points can be estimated fairly well and even
the 3D posture can be estimated with relatively high accuracy. The results were obtained by
matching complete contours that were subdivided into 25 interval ranges and the number of
interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the
original image where the contour was extracted from multiplied by 1.5. The matching algorithm
itself was done on all possible scales, if the sizes of the two contours to match were different.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

108

A.1. Further Results on the Recognition of Different 3D Object Postures.

(a) Similarity 97% (b) Similarity 99% (c) Similarity 98% (d) Similarity 97%

(e) Similarity 95% (f) Similarity 95% (g) Similarity 97% (h) Similarity 96%

(i) Similarity 96% (j) Similarity 92%

Figure A.4.: Examples for matching different 3D postures of horses. Red arrows indicate
similarities of 90% and above. Out of ten different representatives of this object class taken
from the ETH80 database the complete set of images for three representatives was used to build
an object contour gallery. The other representatives were subsequently matched against this
gallery and the results show that the corresponding points can be estimated fairly well and even
the 3D posture can be estimated with relatively high accuracy. The results were obtained by
matching complete contours that were subdivided into 25 interval ranges and the number of
interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the
original image where the contour was extracted from multiplied by 1.5. The matching algorithm
itself was done on all possible scales, if the sizes of the two contours to match were different.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

109

A. Further Examples of Matching Results

(a) Similarity 96% (b) Similarity 94% (c) Similarity 94% (d) Similarity 99%

(e) Similarity 98% (f) Similarity 98% (g) Similarity 98% (h) Similarity 98%

(i) Similarity 97% (j) Similarity 98%

Figure A.5.: Examples for matching different 3D postures of horses. Red arrows indicate
similarities of 90% and above. Out of ten different representatives of this object class taken
from the ETH80 database the complete set of images for three representatives was used to build
an object contour gallery. The other representatives were subsequently matched against this
gallery and the results show that the corresponding points can be estimated fairly well and even
the 3D posture can be estimated with relatively high accuracy. The results were obtained by
matching complete contours that were subdivided into 25 interval ranges and the number of
interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the
original image where the contour was extracted from multiplied by 1.5. The matching algorithm
itself was done on all possible scales, if the sizes of the two contours to match were different.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

110

A.1. Further Results on the Recognition of Different 3D Object Postures.

(a) Similarity 98% (b) Similarity 96% (c) Similarity 95% (d) Similarity 99%

(e) Similarity 99% (f) Similarity 98% (g) Similarity 95% (h) Similarity 93%

(i) Similarity 94% (j) Similarity 94%

Figure A.6.: Examples for matching different 3D postures of horses. Red arrows indicate
similarities of 90% and above. Out of ten different representatives of this object class taken
from the ETH80 database the complete set of images for three representatives was used to build
an object contour gallery. The other representatives were subsequently matched against this
gallery and the results show that the corresponding points can be estimated fairly well and even
the 3D posture can be estimated with relatively high accuracy. The results were obtained by
matching complete contours that were subdivided into 25 interval ranges and the number of
interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the
original image where the contour was extracted from multiplied by 1.5. The matching algorithm
itself was done on all possible scales, if the sizes of the two contours to match were different.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

111

A. Further Examples of Matching Results

(a) Similarity 91% (b) Similarity 97% (c) Similarity 0% (d) Similarity 90%

(e) Similarity 90% (f) Similarity 93% (g) Similarity 94% (h) Similarity 94%

Figure A.7.: Examples for matching different 3D postures of horses. Red arrows indicate
similarities of 90% and above. Out of ten different representatives of this object class taken
from the ETH80 database the complete set of images for three representatives was used to build
an object contour gallery. The other representatives were subsequently matched against this
gallery and the results show that the corresponding points can be estimated fairly well and even
the 3D posture can be estimated with relatively high accuracy. The results were obtained by
matching complete contours that were subdivided into 25 interval ranges and the number of
interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in
the original image where the contour was extracted from multiplied by 1.5. The matching
algorithm itself only used the 0 scale as defined in section 2.8.2. The parameters for the Gabor
transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the factor between two Gabor

levels in the transformation.

112

A.1. Further Results on the Recognition of Different 3D Object Postures.

(a) Similarity 97% (b) Similarity 97% (c) Similarity 95% (d) Similarity 91%

(e) Similarity 98% (f) Similarity 96% (g) Similarity 95% (h) Similarity 96%

(i) Similarity 95%

Figure A.8.: Examples for matching different 3D postures of cows. Red arrows indicate simi-
larities of 90% and above. Out of ten different representatives of this object class taken from the
ETH80 database the complete set of images for three representatives was used to build an ob-
ject contour gallery. The other representatives were subsequently matched against this gallery
and the results show that the corresponding points can be estimated fairly well and even the 3D
posture can be estimated with relatively high accuracy. The results were obtained by match-
ing complete contours that were subdivided into 25 interval ranges and the number of interval
ranges is equal to the number of final feast to feast matches used for the similarity computa-
tion of the contours. The number of interpolation points used for each contour was the nearest
multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the original
image where the contour was extracted from multiplied by 1.5. The matching algorithm itself
was done on all possible scales, if the sizes of the two contours to match were different. The
parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the factor

between two Gabor levels in the transformation.

113

A. Further Examples of Matching Results

(a) Similarity 98% (b) Similarity 94% (c) Similarity 93% (d) Similarity 96%

(e) Similarity 98% (f) Similarity 97% (g) Similarity 91% (h) Similarity 94%

(i) Similarity 96% (j) Similarity 96%

Figure A.9.: Examples for matching different 3D postures of cows. Red arrows indicate simi-
larities of 90% and above. Out of ten different representatives of this object class taken from the
ETH80 database the complete set of images for three representatives was used to build an ob-
ject contour gallery. The other representatives were subsequently matched against this gallery
and the results show that the corresponding points can be estimated fairly well and even the 3D
posture can be estimated with relatively high accuracy. The results were obtained by match-
ing complete contours that were subdivided into 25 interval ranges and the number of interval
ranges is equal to the number of final feast to feast matches used for the similarity computa-
tion of the contours. The number of interpolation points used for each contour was the nearest
multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the original
image where the contour was extracted from multiplied by 1.5. The matching algorithm itself
was done on all possible scales, if the sizes of the two contours to match were different. The
parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the factor

between two Gabor levels in the transformation.

114

A.1. Further Results on the Recognition of Different 3D Object Postures.

(a) Similarity 95% (b) Similarity 95% (c) Similarity 92% (d) Similarity 92%

(e) Similarity 95% (f) Similarity 93% (g) Similarity 95% (h) Similarity 96%

(i) Similarity 92% (j) Similarity 96%

Figure A.10.: Examples for matching different 3D postures of cows. Red arrows indicate
similarities of 90% and above. Out of ten different representatives of this object class taken
from the ETH80 database the complete set of images for three representatives was used to build
an object contour gallery. The other representatives were subsequently matched against this
gallery and the results show that the corresponding points can be estimated fairly well and even
the 3D posture can be estimated with relatively high accuracy. The results were obtained by
matching complete contours that were subdivided into 25 interval ranges and the number of
interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the
original image where the contour was extracted from multiplied by 1.5. The matching algorithm
itself was done on all possible scales, if the sizes of the two contours to match were different.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

115

A. Further Examples of Matching Results

(a) Similarity 94% (b) Similarity 0% (c) Similarity 97% (d) Similarity 95%

(e) Similarity 98% (f) Similarity 97% (g) Similarity 96% (h) Similarity 95%

(i) Similarity 96% (j) Similarity 94%

Figure A.11.: Examples for matching different 3D postures of cows. The reference contour
used for generating these results is shown at the top of the figures. Red arrows indicate similar-
ities of 90% and above. Out of ten different representatives of this object class taken from the
ETH80 database the complete set of images for three representatives was used to build an ob-
ject contour gallery. The other representatives were subsequently matched against this gallery
and the results show that the corresponding points can be estimated fairly well and even the 3D
posture can be estimated with relatively high accuracy. The results were obtained by match-
ing complete contours that were subdivided into 25 interval ranges and the number of interval
ranges is equal to the number of final feast to feast matches used for the similarity computa-
tion of the contours. The number of interpolation points used for each contour was the nearest
multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the original
image where the contour was extracted from multiplied by 1.5. The matching algorithm itself
was done on all possible scales, if the sizes of the two contours to match were different. The
parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the factor

between two Gabor levels in the transformation.

116

A.1. Further Results on the Recognition of Different 3D Object Postures.

(a) Similarity 92% (b) Similarity 95% (c) Similarity 94% (d) Similarity 93%

(e) Similarity 98% (f) Similarity 96% (g) Similarity 96% (h) Similarity 97%

(i) Similarity 95% (j) Similarity 91%

Figure A.12.: Examples for matching different 3D postures of dogs. Red arrows indicate
similarities of 90% and above. Out of ten different representatives of this object class taken
from the ETH80 database the complete set of images for three representatives was used to build
an object contour gallery. The other representatives were subsequently matched against this
gallery and the results show that the corresponding points can be estimated fairly well and even
the 3D posture can be estimated with relatively high accuracy. The results were obtained by
matching complete contours that were subdivided into 25 interval ranges and the number of
interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the
original image where the contour was extracted from multiplied by 1.5. The matching algorithm
itself was done on all possible scales, if the sizes of the two contours to match were different.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

117

A. Further Examples of Matching Results

(a) Similarity 93% (b) Similarity 94% (c) Similarity 95% (d) Similarity 95%

(e) Similarity 96% (f) Similarity 92% (g) Similarity 96% (h) Similarity 97%

(i) Similarity 97% (j) Similarity 91%

Figure A.13.: Examples for matching different 3D postures of dogs. Red arrows indicate
similarities of 90% and above. Out of ten different representatives of this object class taken
from the ETH80 database the complete set of images for three representatives was used to build
an object contour gallery. The other representatives were subsequently matched against this
gallery and the results show that the corresponding points can be estimated fairly well and even
the 3D posture can be estimated with relatively high accuracy. The results were obtained by
matching complete contours that were subdivided into 25 interval ranges and the number of
interval ranges is equal to the number of final feast to feast matches used for the similarity
computation of the contours. The number of interpolation points used for each contour was
the nearest multiple of powers of 2,3,5,7 and 11 to the length of the path of the contour in the
original image where the contour was extracted from multiplied by 1.5. The matching algorithm
itself was done on all possible scales, if the sizes of the two contours to match were different.
The parameters for the Gabor transformations used were $ = 3.1414 and

�
= 1.18925.

�
is the

factor between two Gabor levels in the transformation.

118

B. Preprocessing of the Image Data

B.1. Illustration of the Color Cue and its Limitations

The region-based color cue approach has the advantage that for larger thresholds the number of
regions reduces strongly and the remaining edges — borders between regions — have a high
probability of containing at least a part of an object contour see figure B.1 (d). The regions con-
tain probably only a part because it is likely that the large regions generated by crude thresholds
will contain parts that belong to different objects.

B. Preprocessing of the Image Data

(a) Image (b) Grouping by High Similarity Using a Low
Threshold

(c) Grouping by Medium Similarity Using a
Medium threshold

(d) Grouping by Low Similarity Using a High
Threshold

Figure B.1.: Illustration of the threshold dependency of the color similarity cue: (a) The orig-
inal image. (b)-(d) Grouping operations are performed using a low (b), medium (c), high (d)
threshold which means only very high (b), medium (b) and even very low (d) similarities be-
tween the color of two neighboring pixels are sufficient to group the pixels together to one
region. Please refer to B.1 on page 119 for an explanation on how the color cue has been used
in this work.

120

B.2. Converting RGB to L*a*b* Color Values

B.2. Converting RGB to L*a*b* Color Values

Given a RGB color value � � ��� ��� with � ��� ��� � � ��� ������

the following equations are used

to transform the RGB color values to L*a*b* color values:

���
 �

� ���

	
	 � ��� ������ ��� 2 � �
 	 ��� for

2 � � � � � � � �

2 � � � 2 � � 2
 	 ��� for

2 � � � � � � � �

��� 	� �

� ���

	
	 � ��� ������ ��� 2 � �
 	 ��� for �2 � � � � � � � �
�2 � � � 2 � � 2
 	 ��� for �2 � � � � � � � �

��� �� �

� ���

	
	 � ��� ������ ��� 2 � �
 	 ��� for �2 � � � � � � � �
�2 � � � 2 � � 2
 	 ��� for �2 � � � � � � � �� � ���

 � � 	 � � � ��� �
 � �� ��� � � ��� ��
 � �	���� �� � ���

 � � 	 � � � ��� �
 � �� 	 ��� � ��� ��
 � �������� � ���

 � � 	 � � � ��� �
 � �	 	 � � � ��� ��
 � � �	� �

��� �� �

� ����� � �"! �# for ����� � �"! � � ��� � ��� �� � �� ���
 ����� � �"! � � 	 ��$ 	 	 � for ����� � �"! � � �	� � � � �
��� &% �

� %� ����� ����� �# for %� ����� ����� � � ��� � � � �� � �� ���
 %� ����� ����� � � 	 ��$ 	 	 � for %� ����� ����� � � �	� � � � �
��� �' �

� '� ��(�� (�(� �# for '� ��(�� (�(� � � ��� � � � �� � �� ���
 '� ��(�� (�(� � � 	 ��$ 	 	 � for '� ��(�� (�(� � � �	� � � � ��*) � � 	 	 �
 ��� &%@�/ 	 ��) �
� ���

 � ��� ��0/ ��� &%@+) �
� ���

 � ��� &% / ��� �'�
B.3. A Psychophysical Acceptable Distance Function for

Color Differences in HSI Space

In order to generate a psychophysically acceptable distance function for color differences in
HSI space one has to create a distance function , #% � which I name the ’shadow distance’ for
reasons that become apparent later in the following way: Each pixel of the image � �-�/. � and
the background image � �0��1�2

is transformed from the discrete RGB space (
� � ��������
 �

) to the
HSI space (figure B.2) first. Please note that with decreasing luminance (’I’ component) a lot
of ’color’ values are coded that simply correspond to the psychophysical impression of black.

� �-��. � 3 4 � � . � � �0�51�2 3 4�� � 1�2 (B.1)

Then the shadow distance function between to pixels , #% � is defined using the difference in
luminance values �76
 8 weighted by a constant factor � . � � plus the difference in saturation

121

B. Preprocessing of the Image Data

Illustration of the HSI color space

Figure B.2.: Illustration of the HSI color space. Shown is the transformation of the discrete
RGB cube defined on

�������	����
 �
to the HSI color space. ’I’ or the Luminance component corre-

sponds to the vertical axis. ’H’ (hue) is essentially an angle representing a color code and ’S’
(saturation) represents the distance of the color to the luminance axis ’I’. The planar axes shown
can be chosen arbitrarily. Please refer to B.3 on page 121 for explanation on how the HSI color
space can be used for object segmentation.

122

B.3. A Psychophysical Acceptable Distance Function for Color Differences in HSI Space

values � 6
 8 as well weighted by a constant impact factor � . � � and a non trivial distance measure4 � $ � of the color difference explained below which itself is dependent on the luminance and
saturation values.

, #) � � � 6
 8�
 � . � � � � 6
 8�
 � . � � � 4 � $ � (B.2)� 6
 8 �
� � . � / � 1�2 � � 6
 8 � � � . � / � 1�2 � (B.3)

Assuming that neither of the hue values is equal to the no hue value (255 in most implementa-
tions) the distance measure 4 � $ � for the color component is computed by the cyclic difference4 6
 8 of the hue values.

4 � $ � � 4 6
 84�� � �� �
�4 . � � (B.4)

The cyclic difference 4 6
 8 has to be used as the hue is essentially an angle (see figure B.2 for
an illustration). 4�� ��� �	� will be defined below and 4 . � � is a constant weighting the impact of
the hue differences.

4 6
 8 � " # % � ��
� � �
�� � � � �� ��� � ��� � �� � � � �� �

	
	�� � ���
	 � � �� � � � � �� � (B.5)

Note that because the cyclic difference has to be used the maximal difference in hue values
is 128 and not 255 as for example for luminance or saturation values. 4�� ��� ��� is computed to
weight hue differences according to the current luminances ���,�� and saturations ���,�� . For very
low or very high luminance values and for low saturation values hue differences are weighted
less than if they had been measured at an average luminance value with a saturation above a
certain constant � � � ' . ���,�� is designed in a way that if both of the luminance values are in an
interval centered at the medium luminance value, ���,�� is constant one and falls off linearly from
one to zero beyond that interval at very low or very high luminance values. Important is only
the part considering low luminance values as one can see figure B.2 for high luminance values
the color saturation diminished rapidly. For low luminance values this is not the case which has
the effect that if for example a shadow of an object falls on a white wall there are suddenly huge
color differences detected although no real significant change in color has occurred. The precise
interval borders where the ���,�� starts to decrease to zero can be controlled by the constants � �����
and ����
� . ��� � � � "$#&% � ����� ��� � 2 (� � � ���
	 ��� � � � � � � �� �
! � � � ��� � 	 � #" � � ���
	 � � ��� � � � 	 � � (B.6)

��,�� is designed to decrease linearly from one to zero if both saturation values are below a
constant ������� . If both saturation values are below the constant � ��
� it even decreases to zero
which has the effect that hue differences have to be very large to have any impact.

��,�� � " # % � � " ��� � ����� � � � � 	 � � � �$� ��� � 	 � � � $ � �������:/ ����
� 1 � 	 � (B.7)

The product ���,��)����,�� can be viewed as a significance factor for the weighting of hue differ-
ences. To actually compute what impact a hue difference should have we have to evaluate what
amount of difference in hue values 4%� � �� � should transform to one unit of difference taking into
account the trustworthiness of the measured hue values. We therefore use the constants 4'&
 8�����
and 4 &
 8��
� to set limits for the amount of hue difference that is necessary to generate one unit

123

B. Preprocessing of the Image Data

difference. If the hue significance factor is high (equals one) small difference like 4'&
 8��
� in hue
equal one unit and if the factor is low 4 &
 8����� huge difference in hue values are necessary to gen-
erate one unit of difference. The interpolation between these two extremes in not linear as the
constant exponent 4 ��� � is used to ’punish’ only highly unreliable hue values.

4�� � �� � � � 	 / ��,��) ���,�� 1
 � 	 �) �
�� � ����
	 �
�� � ���� � � �
�� � ���� � (B.8)

For other color spaces like RGB, YUV etc. the formulas required would have to be even more
complex. These impressive set of formulas makes it clear why the L*a*b* color space and not
any other color space is used throughout this work as by using the L*a*b* color space one can
avoid the need to define a complex metric or distance function for color values.

124

C. Graph Algorithm for the Generation
of a Chain of Points

This part of the appendix is only presented for readers interested in implementing some of the
low level graph generation algorithms. If you are only interested in the scientific results of this
work it is better to avoid reading them.

C.1. An Algorithm for Extracting the Different Components
of a Graph

The algorithm CyclesAndComponents — based on an algorithm presented in (Brey-
mann, 1996) — is illustrated in figure C.1. We first transform the undirected graph
whose creation was described in the section 2.4 into an directed graph by inserting two
opposite edges in the new graph for each undirected edge in the old graph and pro-
vide this new graph as input for the function CyclesAndComponents. The function
CyclesAndComponents uses a container class ���%&&��& � representing the states of the nodes
and

�
�%&&��& � for the states of all edges, respectively. The states for nodes can have these values:

for NODE NOTVISITED, for NODE SEEN and for NODE DONE and the states for edges:
for EDGE NOTVISITED, for EDGE VISITED and for EDGE INVALID. At the begin-
ning the state of nodes is initialized with for NODE NOTVISITED and the edge states are
initialized with: for EDGE NOTVISITED. The number of components and the number of cy-
cles are set to zero and the container for the different components is cleared. An iteration over
all nodes is done and for the next node with a state of for NODE NOTVISITED the number of
components is increased by one and the following procedure is started: Push the current node
on a stack and work on the nodes of this stack until the stack is empty again. If the stack is
empty and there are still nodes in the state for NODE NOTVISITED found in the main loop
a part of the graph could not be reached from the nodes we started with and we push this new
node on the stack and start working on the stack again using the following procedure: For each
node coming from the stack we put it in the current component of the component container and
then check its state. If it is for NODE VISITED we can change it to for NODE DONE and
ignore it further on. If it is for NODE NOTVISITED or for NODE SEEN we change its state
to for NODE VISITED and look for the existence of edges starting at this node. The state
of these found edges is checked and if the state of an edge is not for EDGE INVALID we
continue working on it. The state of the edge is set to for EDGE VISITED and the state of
the reverse edge to for EDGE INVALID. Afterwards we check the state of the target node of
the current edge in question. If this node state is for NODE VISITED or for NODE SEEN
the number of cyles is increased by one as the algorithm has already used this node. If the state

C. Graph Algorithm for the Generation of a Chain of Points

1 Function CyclesAndComponents ()
2 Convert edges of an undirected graph into two opposite directed edges
3 � �%&&��& � := Note states for all nodes ������� initialized with � � & ��& �	� �����
��� = for NODE NOTVISITED
4 �%&&��& � := Edge states for all edges �����
� initialized with �%&&��& �	� �����
��� = for EDGE NOTVISITED
5 ���	�����	��������� =0, ������ !��� = 0, ���	�����	�������#"$�	���&%(')����*	+-,�.�/
0�1 � �
6 foreach ������� in � � & ��& �
7 if � � & ��& � � �������	� equals for NODE NOTVISITED or for NODE SEEN
8 ++ ���	�����	���������
9 push ������� on stack

10 while stack is not empty pop the last �������
11 ���	�����	�������#"$�	���&%('2����*43 ���	�����	�������&��52+-687�9:/�1
; � ���	�
���
11 if � � & ��& � � �������	� equals for NODE VISITED
12 � � & ��& ��� �������	� = for NODE DONE; continue
13 if � � & ��& � � �������	� equals for NODE NOTVISITED or for NODE SEEN
14 � � & ��& ��� �������	� = for NODE VISITED;
15 push ������� on stack
16 foreach �8�:�
� of �������
17 if �%&&��& ��� �����
��� equals for EDGE INVALID continue
18 if � � & ��& � �=<#>�?#@:A�<#BDC�EDA�� �����
����� equals for NODE VISITED or for NODE SEEN
19 ++ ������ !���
20 if � � & ��& ���=<#>�?#@:A�<#BDC�EDA�� �����
����� equals for NODE NOTVISITED or for NODE SEEN
21 push �����
� on stack
22 � � & ��& ���=<#>�?F@:A�<#BDC
E4A
� �����
����� = for NODE SEEN
23 return ���
�� !�8� , �������G���������&� , �������G����������"H�	���I%�'2����*

Figure C.1.: Algorithm for computation of the number of cycles and components of a graph.
See C.1 on page 125 for a detailed explanation.

126

C.2. A Shortest Path Graph Algorithm With Different Preferences For Nodes To Be Used

of the node is for NODE NOTVISITED or for NODE SEEN we push this node on the stack
again and set its state to for NODE SEEN and process the next subsequent edge. If there is non
we continue to pop nodes from the stack and repeat the process described above. As mentioned
above we continue with the first iteration over all edges in the graph if the stack is empty.

C.2. A Shortest Path Graph Algorithm With Different Prefer-
ences For Nodes To Be Used

For the first step of creating a counterclockwise graph as described in section 2.4 no problems
can occur. It is always possible to find a subgraph of the original graph from the WN to the
NE point. The optimal path is computed using the well known Dijkstra algorithm (Dijkstra,
1959) starting at the target node NE on the original graph with the distance between the pixels
corresponding to the nodes as edge points. The Dijkstra algorithm computes the shortest path
from a given node to all other nodes in the graph. Once it has been applied it is easy to extract the
computed shorted path from NE to WN and insert it in the new counterclockwise oriented graph.
Now a new graph has to be build each time — for the next step connecting NE with EN and all
the other combinations of extreme nodes — that is equal to the old graph but does not contain
the path already inserted in the counterclockwise oriented graph. The nodes already used are
marked with the tag for NODE VISITED and these node states are provided to a modified
Dijkstra algorithm that prefers to connect nodes that have not been used already and only uses
the others if no other way can be found. The output of the modified Dijkstra algorithm is a data
structure that codes for every specific node the preceding node of the path from the target node to
that specific node. With this information it is possible to insert the wanted connections between
a start and end node into the counterclockwise oriented graph. This complicated procedure is
necessary as we must exclude that a part of an already used path will be used again, probably
with the effect of corrupting the counterclockwise orientation. However for open contours or for
graphs containing hairs one has to use the same nodes multiple times. The idea of alternatively
marking the used edges fails for the following reasons: If one marks only the edges used so far
and not the corresponding reverse edges the danger arises that for specific contours — consider
for example the written letter ’E’ — the shortest path from one extreme point to another has
nodes that already have been used (although in a path with the opposite direction). In the
example the EN (left top) extreme point can easily be connected via the other extreme points to
the ES (left bottom) extreme point. However the shortest path from the ES to the EN extreme
point is not the inside border of the ’E’ but the outside border which already has been used. Of
course this can happen when trying to connect the first extreme point with the second. Therfore
we must compute the start of the counterclockwise orientation procedure using the heuristic
that we start with this pair of adjacent extreme nodes that has the shortest path in the full graph
and move on from their in the counterclockwise direction. If one removes the reverse edges of
already used edges as well one runs into problems if hairs are in the graph. A hair of order 1 by
definition is a node that is only connected and connects itself to the same single other node. A
hair node of second order is a node that is connected and connects itself to a hair node of order
one or two and to just one other node. A simple open contour consists therfore of two order
one nodes and N-2 hair nodes of order two. If we remove both edges — the one running to
and the one coming from a hair node of order one — with the effect of disconnecting the hair

127

C. Graph Algorithm for the Generation of a Chain of Points

1 Function DijkstraWithNodeStates(�&%(*	�
���I� ����� , � �%&&��& � �)
2 initialize two containers: � *��8���8��'2� �
� ������� with -1 and

� ')�� �:����"$�:�8� with the maximum value of double numbers
3 set � '2�� �:�
�	"$�:��� � �&%(*	�
���I� ������� = 0
4 initialize the dynamic priority queue ���
� � *�'����G��� � with the � '2�� ���
��"H�:��� container
5 while ���
� � *�'����G��� � not empty
6 pop the top ���	�
� from �(��� � *�'����G���G�
7 set notVisitedNodesFound = false
8 foreach �����
� of ���	�
�
9 if � � & ��& ���=<#>�?#@:A�<#B4C
EDA�� �����
����� equals for NODE NOTVISITED

10 � � & ��& ���=<#>�?#@:A�<#B4C
EDA�� �����
����� = for NODE SEEN
11 notVisitedNodesFound = true
12 if � '2�� �:�
�	"$�:�8� �=<#>�?#@:A�<#B4C
EDA�� �����
�����	� � '2�� �:�
�	"$�:��� � �������	� + edgeCost(�����
�)
13 �(��� � *	'
���G���G��+ �����0�;D/ �=<#>�?#@:A�<#BDC�EDA�� �8�:�
�	����� '2�� ���
��"H�:��� � ��������� + edgeCost(�8�:�
�))
14 ��*:�8������')� ��� ���
�8� �=<#>�?#@:A�<#BDC�EDA�� �8�:�
�	��� = �����
�
15 if notVisitedNodesFound equals false
16 foreach �8�:�
� of �������
17 if � �%&&��& � �=<#>�?#@:A�<#BDC�EDA�� �8�:�
�	��� not equal to for NODE VISITED
18 if � '2�� ���
��"H�:��� �=<#>�?#@:A�<#BDC�EDA
� �8�:�
�	����� � '2�� ���
��"H���8� � ���	�
��� + edgeCost(���:���)
19 ���
� � *�'����G��� �:+ ����D0�;�/ �=<#>�?#@:A�<#BDC�EDA�� �����
������� ')�� �:����"$�:�8� � �����
��� + edgeCost(�����
�))
20 � *������8��'2� ��� ������� �=<#>�?#@:A�<#B4C
EDAD� �����
����� = �������
21 return � *��8���8��'2� �
� �������

Figure C.2.: Algorithm for computation of the shortest path to a � � �� � � ��� < � from all other
nodes of a graph where not already marked nodes for NODE NOTVISITED are preferred for
the path computation.

128

C.3. An Algorithm to Transform a Graph into a Sequence of Nodes

node from the rest of the graph the algorithm of creating a counterclockwise oriented graph has
to terminate, as we can not access any other node from the hair node anymore. Therefore the
algorithm C.2 prefers to compute shortest path using nodes that have not been used up till now
and only uses other nodes if this is the only way to proceed.

C.3. An Algorithm to Transform a Graph into a Sequence of
Nodes

Given a graph of connected contour points the task remains to transform the graph into
a sequence of nodes. By convention the first node of the graph is used as the start-
ing point in the function ExportReachableNodesMultiEdge() and the sequence of
stored edges for each node is preserved in a depth search in order to be able to travel
along hairs or open contours. Of course the found nodes can occur multiple times in
the output chain as paths of the graph can run several times through them. The func-
tion first checks if the starting node is a part of the graph and we assume that to be
always true. The function ExportReachableNodesMultiEdge() uses a container
class � �%&&��& � representing the states of the nodes and

�
�%&&��& � for the states of all edges,

respectively. The states for nodes can have these values: for NODE NOTVISITED,
for NODE SEEN, for NODE VISITED and for NODE DONE and the states for edges
can be for EDGE NOTVISITED and for EDGE VISITED. At the beginning the state
of nodes is initialized with for NODE NOTVISITED and the edges states are initial-
ized with: for EDGE NOTVISITED. Create a container � � < � � � � �%� �%� + �	 and a queue

� � < ��� � � � � for nodes and put in both containers the 	 � � 8� � � < � . While the � � < ��� � � � �is not empty pop the top � � < � of the queue and check its state. If its state is
equal to for NODE DONE work on the next node of the queue. Push the � � < � at
the end of a container � � < � ��� � � � that was created for the purpose to export the re-
sult. If the state of � � < � is for NODE NOTVISITED or for NODE SEEN change
its state to for NODE VISITED. Set a boolean flag

� �8� � < � � 	 � ��� ��� � 	 � � � < � < � � to
false. Work on every � < � � originating at the current � � < � . If the edge state equals
for EDGE NOTVISITED change it to for EDGE VISITED. If the state of the target node of
the current edge ���%&&��& � � � ��� � ' �1%	��� ' � � < � �.� equals for NODE NOTVISITEDmark the node as
for NODE SEEN. We now check if we have already found an edge that was not visited before.

The motivation for this is that as the main purpose is to transform the graph of points to
a chain of points we prefer to perform a depth search on the edges, e.g. the first edge, of the
starting node. The queue is additionally used to do a breath search after the depth search has
terminated but there may have been some nodes not covered yet. So the algorithm conserve
the topological ordering of the graph if it exists. In the case of multiple edges of one node
we assume that a hair is present and that the first edge of the node goes to the hair. Therefore
we have to mark the edges of the graph if we have seen them already and we only stop if we
encounter a node that was already visited and that has no edge left to work on.

Now check if the state of the target node of the � < � �6� � & ��& � � � �	� � ' � %	��� ' � � < � �.� equals
for NODE NOTVISITED or for NODE SEEN. So if the � < � � and the target node were
not worked on before we set

� �8� � < � � 	 � ��� ��� � 	 � � � < � < � � to true to remember that one
has already found an edge and the next node for the depth search. For the same reason the

129

C. Graph Algorithm for the Generation of a Chain of Points

1 Function ExportReachableNodesMultiEdge(�8�&%(*�� � �	'2���)
2 � �%&&��& � := Note states for all nodes ������� initialized with � � & ��& �	� �����
��� = for NODE NOTVISITED
3 �%&&��& � := Edge states for all edges �����
� initialized with �%&&��& � � �����
��� = for EDGE NOTVISITED
4 push the ���&%(*�� � �	'2��� in the queue ������� ���G���G� and the container ���	�
��� ���H��� ��������*
5 prepare the output result container �������	"�� %('2�
6 while ������� ���G���G� is not empty pop the next ������� from it
7 if � � & ��& ��� �������	� equals for NODE DONE continue
8 push node at the end of �������	"��4%�'2�
9 if � � & ��& ��� �������	� equals for NODE NOTVISITED or for NODE SEEN

10 � � & ��& � � �������	� = for NODE VISITED
11 set foundFirstNotVisitedEdge = false
16 foreach ���:��� of �����
�
17 if �%&&��& ��� �����
��� equals for EDGE NOTVISITED
17 set � & ��& ��� �8�:�
�	� = for EDGE VISITED
18 if � � & ��& � �=<#>�?#@:A�<#BDC�EDA�� �����
����� equals for NODE NOTVISITED
19 set � � & ��& ���=<#>�?#@:A�<#B4C
EDA�� �����
����� = for NODE SEEN
20 if foundFirstNotVisitedEdge == false
21 if � �%&&��& �F<#>�?#@:A�<#B4C
EDA
� ���:������� equals for NODE NOTVISITED or for NODE SEEN
22 foundFirstNotVisitedEdge = true
22 push <#>�?#@:A�<#BDC�EDA�� �8�:�
�	��� on ���	�
� ���G��� �
23 elseif foundFirstNotVisitedEdge == true
24 if � �%&&��& � <#>�?#@:A�<#B4C
EDA
� ���:������� not equal to for NODE DONE
25 if � �%&&��& � <#>�?#@:A�<#BDC�EDA�� �8�:�
�	��� equals for NODE NOTVISITED
26 � �%&&��& � <#>�?#@:A�<#BDC�EDA�� �8�:�
�	��� = for NODE SEEN
27 push <#>�?#@:A�<#BDC�EDA�� �8�:�
�	��� to back of ��������� ���H��� ��������*
28 if foundFirstNotVisitedEdge == false or edge found was last edge of �������
29 � � & ��& � � �������	� =for NODE DONE
30 if ���	�
� ���G��� � empty and ���	�
��� ���H��� ��������* not empty
31 insert the nodes of ��������� ���H��� ��������* in reverse order into the ���	�
� ���G��� �
32 return ��������"	�4%�'2�

Figure C.3.: Algorithm for computation of the reachable nodes of a graph starting at a certain
node. See C.3 on page 129 for a detailed explanation.

130

C.3. An Algorithm to Transform a Graph into a Sequence of Nodes

� �	� � ' � %	��� ' � � < � �.� is pushed on the � � < ��� � � � � so that the depth search will be continued in
the next iteration. On the other hand if one had already found the first not visited edge which
means

� �.� � < � � 	 � ��� ��� � 	 � � � < � < � � is equal to true then we check if state of the target node
of the � < � � � �%&&��& � � � ��� � ' � % � � ' ��� < � �.1 does not equal for NODE DONE else we terminate. If
it equals for NODE NOTVISITED we mark it as seen (for NODE SEEN) and push it in the

� � < � � � � �%� �%� + �	 container to be able to perform a breath search after the the termination
of the current depth search. If there are additional edges of � � < � repeat the described pro-
cess above and if there were no not visited edges found or the first edge found is as well the
last edge originating from � � < � mark node with � � & ��& � � � � < �. =for NODE DONE. Work on the
next � � < � from the � � < ��� � � � � as described above and if the � � < ��� � � � � is empty check if
we have stored nodes in the � � < � � � � �%� �%� + �	 container for an additional breath search. If
some are present insert them in the reverse order of how they were found in the � � < ��� � � � � and
repeat the algorithm. The motivation of using the reverse order is that the last nodes found are
probably relative close to the termination node of the last depth search, so the distance between
nodes is kept relatively small. If � � < � � � � �%� �%� + �	 was as well empty return the sequence of
points using the � � < � ��� � � � container and terminate.

131

C. Graph Algorithm for the Generation of a Chain of Points

132

Part II.

Early Development of Biological
Contour Processing

133

4. Early Development of Perception

4.1. Foundations of Perception

It has long been realized that perception is not a passive intake of unstructured sensory signals,
but a highly selective and structured active process employing complicated and widely unknown
rules to guide behavior 1. If these rules are not hardwired at birth, and it will be argued in detail
that some of them are not, this creates a vicious circle of knowledge depending on perception to
arise and perception in turn depending on acquired knowledge to be possible. An attractive way
to break this circle is the postulate that only some basic perceptual mechanisms are present at
birth, which can be used to learn useful processing rules from the properties of the environment.
These can lead to refined perception and, consequently, to the acquisition of refined knowledge
about the environment. The evolutionary advantage gained from such a hierarchy would be
a lower burden on the coding capacity of the genome and more flexibility to cope with such
environmental changes that happen too fast for evolutionary changes.

The most prominent rules for visual perception are the Gestalt principles formulated by
Wertheimer (1923) and Koffka (1935) . Their basic postulate is that a percept is more than
the sum of the constituent parts in that these parts are linked to form a coherent whole. The
Gestalt principles are rules that govern what should be linked together to form a percept and
what should not. The most important ones are proximity, similarity, closure, good continuation,
common fate, good form, and global precedence.

Recent research in computer vision has begun to recognize Gestalt principles as important
for object selection and segmentation, and they have been applied in numerous models of visual
perception, where they are usually taken for granted. To my knowledge, there are two models
for their development during maturation of the visual system (Grossberg and Williamson, 2001;
Choe, 2001), but I know of none that relies on short sequences of a single natural scene as the
basis for learning.

I will present a detailed model of how the principles of collinearity and curvilinearity can be
learned from real visual stimuli, assuming that the principle of common fate actively organizes
perception already at birth. I will employ three assumptions, which are, to varying degree,
covered by experimental data:

� Gestalt principles are implemented by the connectivity of the visual cortex.

� There is a hierarchy of Gestalt principles in the sense that some principles are already
active at birth, others are developed later and influenced by visual experience. This hier-

1Parts of the presented work have been published in Neural Computation (Prodöhl
et al., 2003).

4. Early Development of Perception

archy is reflected in the temporal order in which the various principles become observable
during development.

� The higher principles are learned from experience, while the lower ones assist in struc-
turing the data to be learned.

Concretely, a review will be done on the literature to present evidence that the principles of
collinearity and curvilinearity correspond to structured horizontal connections between simple
cells in V1 and that the principle of common fate is more fundamental than collinearity and
curvilinearity. Then, a neuronal model is described that shows that collinearity and curvilinear-
ity can be learned from observing moving objects by structuring horizontal connections with a
Hebbian learning rule.

The work is organized as follows. In section 4.2 a review is given on the recent psychophys-
ical work on the course of development of various Gestalt principles in early infancy, in sec-
tion 4.3 the focus is put on the role of common fate. In section 4.4 a look is done in depth at
recent neurophysiological data about which biological pathways and computations are proba-
bly present at birth or shortly afterwards and which are structured by experience. The more
technically minded reader may want to skip this introduction and move to section 2.1, where
a simplified model of visual processing up to V1 and the proposed learning dynamics of the
horizontal connections are described. The technical details can be found in the later sections. In
section 6.1 the outcome of computational experiments using this model is presented. Finally, in
the discussion the basic components which are considered crucial for the success of the model
are extracted.

4.2. The Developmental Succession of Gestalt Principles

In this section psychophysical evidence that Gestalt principles are not present at birth, and
that they develop one after the other is collected. Although for adults the Gestalt principles
of good form or good continuation are dominant for perceiving an object as a unity children
younger than one year can hardly make use of them (Spelke et al., 1993). The same holds
for texture similarity and color similarity. 12-week old infants do not use these principles at
all with regard to object unity and slowly start to employ them during the development in the
first postnatal year. Detecting form at a very early stage seems to depend on continuous optical
transformations caused by object or observer motion. At 24 weeks infants are unable to grasp
3-D object form from multiple stationary binocular views. However, if 16-week old observers
are presented with a continuous geometrical transformation around a stationary 3-D object, they
are able to build up a 3-D form representation (Kellman and Short, 1987).

The disparity information from the two eyes can not be used immediately after birth. It is
only at the age of 4-8 weeks that the convergence accuracy of the eyes for distances between
25 cm and 200 cm reaches the accuracy of the adult (Hainline et al., 1992). Accommodation
of the eyes becomes accurate at 12 weeks postnatally (Braddick and Atkinson, 1979). Stereo
vision itself develops even later at the age of 16 weeks (Yonas et al., 1987). In the period
between 12 and 20 weeks postnatally strong binocular interaction arises, which at 24 weeks
culminates in a superior binocular acuity and the beginning of stereopsis (Birch and Salomão,
1998; Birch, 1985).

136

4.3. The Relevance of Rough Motion Information

The contrast sensitivity for spatial frequency gratings increases between 4 and 9 weeks for
all spatial frequencies in line with the convergence accuracy of the eyes (Norcia et al., 1990).
At 9 weeks the acuity for low spatial frequency gratings reaches adult levels but for higher
frequencies it is still three octaves worse than in the adult (Courage and Adams, 1996). From
this time on the contrast sensitivity for high spatial frequency gratings increases systematically
in line with the emergence of stereo vision. The color system develops even later: luminance
contrast above 20% is reliably detectable at the age of 5 weeks, but there is still no response
to isoluminant chromatic stimuli of any size or contrast. In the following weeks chromatic
gratings are detectable only at low spatial frequencies with an acuity 20 times lower than that for
luminance stimuli. The sensitivity to chromatic gratings increases more rapidly in the following
weeks than the one for luminance stimuli (Morrone et al., 1990). Not only physical factors such
as changing photoreceptor density may be responsible for the changes in contrast sensitivity
but the neural noise is nine times higher in neonates than in adults and decreases to adult levels
during the first eight months of development (Skoczenski and Norcia, 1998).

4.3. The Relevance of Rough Motion Information

In this section I discuss the biological relevance of motion information and collect evidence that
it is available at an early stage of development. It was argued that neither form nor color nor
disparity information can be processed at early postnatal stages, but luminance information at
low spatial frequencies can. The latter is thought to be mediated mainly by the M-path, which is
also essential for motion processing. The Gestalt principle of common fate realized by common
motion of object parts is the dominating principle for perceiving the unity of an object in 12
week old infants (Kellman et al., 1986). This is independent of the direction of motion in three
dimensional space. Common motion dominates figural quality, substance, weight, texture and
shape in 16 week old infants (Streri and Spelke, 1989). At this age the infant is able to make a
distinction between object and observer motion and uses only object motion for the generation
of an object percept (Kellman et al., 1987).

The question arises what kind of computation is carried out regarding the visual information
originating from a moving object detected by the retina. 24-week old infants can predict linear
object motion in grasping tasks but have difficulties to do the same for visual tasks involving
tracking of objects that are out of reach (Hofsten et al., 1998). The apparent inability to predict
linear object motion together with the observation that at low spatial frequencies luminance in-
formation with sufficient contrast can be processed directly after birth, makes it very unlikely
that the visual system is able to estimate accurate motion vectors at early stages of develop-
ment. Nevertheless, some motion processing is important in early development: Piaget (1936)
reported that even newborns react to high contrast stimuli moving in front of their faces. This
is consistent with the findings on luminance gratings and it is concluded that at birth a system
must be present that can detect changes in the visual world signaled by achromatic luminance
stimuli of low spatial frequency.

I interpret these findings such that learning Gestalt principles relies on changes in low fre-
quency luminance information at times when no egomotion occurs. Infants can actively create
such a situation by gazing in a constant direction, where a moving object of sufficient size and
luminance contrast is present, for a considerable amount of time. This specific behavior is in-

137

4. Early Development of Perception

deed observed regularly, as has been reported, e.g., in (Piaget, 1936; Barten et al., 1971). The
model on this particular situation, which from “within” the visual system is distinguished by
strong transient responses in retina and cortex together with the knowledge that the observer is
not moving. In order to complete the model two things remain to be specified.

1. What is the supposed neuronal substrate for the functional organization according to
Gestalt principles?

2. How can this substrate be modified on the basis of the transient responses caused by
object movement?

4.4. Development of the Visual Pathway

In order to motivate an answer to these questions now some facts are reviewed about the early
development of connectivity in the visual pathway. Although for the retina the process of matur-
ing is not complete after birth Tootle (1993) has shown that ganglion cells of cats show burst-like
spontaneous activity and that those cells fatigue very quickly after repeated stimulation with the
same stimulus in the first postnatal week. This functionally is interpreted as a kind of transient
response property that detects changes in the visual input. The same author further showed that
ON- and OFF-ganglion cells are already present at birth and that the proportion of light-driven
ganglion cells approaches 100% in the second postnatal week. Furthermore the retinogenicu-
late (Snider et al., 1999) and the thalamocortical (Isaac et al., 1997) pathways develop mainly
prenatally and are therefore present at birth. In visually inexperienced kittens 90% of all cells in
Area 17 are of simple type and 70% of all visually active neurons of this area show a rudimen-
tary orientation bias (Albus and Wolf, 1984), although only 11% are specifically tuned to one
orientation. Most of these cells respond preferentially to contrast changes caused by decreasing
light intensity as 76% of all responding neurons are activated by OFF-zones exclusively. This
means that area 17 shows a sensitivity bias in favor of dark stimuli immediately after birth. The
cells responding to visual stimuli are located in layers 4 and 6 of the striate cortex and there
is almost no activity in layers 2/3 and 5 before three weeks postnatally. In the fourth postnatal
week ON- and OFF-zones are equal in number and almost all cells in layers 4 and 6 show ori-
entation tuning. Psychophysical experiments show that in the human infant contrast differences
overrule orientation based texture differences in segmentation tasks (Atkinson and Braddick,
1992) up to the 12th week.

Now the attention is turned to the question of what the neural substrate for learning the
Gestalt principles of collinearity or curvilinearity is. There is extensive evidence in the
psychophysical (Field et al., 1993; Hess and Field, 1999; Kovacs, 2000), neurophysiological
(Malach et al., 1993; Bosking et al., 1997; Schmidt et al., 1997; Fitzpatrick, 1997) and model-
ing (Grossberg and Mingolla, 1985; Li, 1998; Ross et al., 2000; Yen and Finkel, 1998; Gross-
berg and Williamson, 2001) literature that these principles are at least partly implemented by
horizontal connections in V1. The models described in (Grossberg and Mingolla, 1985; Gross-
berg and Williamson, 2001; Ross et al., 2000), agree with perceptual data even to the point of
reproducing illusionary contours.

Most but not all vertical interlayer local circuits in V1 of macaque monkeys develop pre-
natally in precise order without visual experience (Callaway, 1998). This means that axon

138

4.5. Relation to Natural Image Statistics

terminals at least find the right layer and already form a crude retinotopic projection. However,
intralayer horizontal connections are present but only rudimentarily developed at birth, as most
axon terminals have not yet hit their target cells. Studies of postmortem human brains show that
the first horizontal connections develop 1-3 weeks before birth (37 weeks after gestation) in
layers 4b and 5. Their number increases rapidly after birth and culminates in a uniform plexus
at around 7 weeks after birth. The patchiness of these projections as it is found in the adult
emerges after at least 8 weeks postnatally (Burkhalter et al., 1993; Katz and Callaway, 1992).
The long-range connections can extend up to a maximum of four hypercolumns in each direc-
tion (Katz and Callaway, 1992). Burkhalter et al. (1993) further showed that consistent with
the results of neuronal activity in kittens, layers 2/3 and 6 develop horizontal connections later
than layers 4b and 5. In layer 2/3 they are not present until the 16th postnatal week and reach
maturity in the 60th week. It is interesting to note that the connections in layer 2/3 are patchy
from the start. This suggests that they can already benefit from the patchiness of the connec-
tions in layer 4b probably mediated by a direct vertical connection from layer 4b to layer 2/3
that develops after birth (Katz and Callaway, 1992). Furthermore, as layer 4b belongs to the M-
path and provides direct input to area MT (which is strongly involved in motion processing) it
is concluded that the processing of visual information related to motion precedes and probably
supports the processing of form, color, precise stereoscopic depth, and their integration. This
assumption is consistent with the psychophysical results mentioned earlier. The development
of horizontal connections has been shown to depend on the visual input presented (Löwel and
Singer, 1992).

4.5. Relation to Natural Image Statistics

A work about learning from natural stimuli is incomplete without discussing what is known in
the literature about the statistics of such stimuli. The idea that the visual system is wired in a
way that it provides an efficient and non-redundant representation of the incoming signals goes
back to (Attneave, 1954) and (Barlow, 1961).

Based on this principle, there have been successful predictions of properties of retinal, LGN,
and simple cells in V1. Examples without attempt on completeness include (Olshausen and
Field, 1996; Bell and Sejnowski, 1997; van Hateren and Ruderman, 1998). A complete review
of this line of work is beyond the scope of this paper but is done beautifully in (Simoncelli and
Olshausen, 2001). Additional assumptions have to be employed, typically either the sparseness
(Olshausen and Field, 1996) of a cortical representation or the statistical independence of the
activities of the cells involved. The latter leads to properties of visual cells resulting from
independent component analysis (van Hateren and Ruderman, 1998; Bell and Sejnowski, 1997).
Also, translation invariance is usually assumed, because otherwise the required statistical basis
would become intractably large.

Independent component analysis has recently been applied successfully to networks of V1
cells that support contour enhancement (Hoyer and Hyvärinen, 2002). They learn a feedfor-
ward layer of contour coding cells that take input from complex cells in V1. The underlying
assumption is sparseness of coding.

With the presented work a slightly different approach is taken. I do not employ any assump-
tion about sparseness or independence of cortical signals. Rather, the spatiotemporal properties

139

4. Early Development of Perception

of the visual pathway up to V1 are modeled and a Hebbian learning to the horizontal connec-
tions between simple cells is applied. The model is more sophisticated in biological detail than
others in this area. E.g., positivity of neuronal responses is always maintained. As a conse-
quence, the stimuli are preprocessed in a nonlinear way before providing data for learning. The
importance of such nonlinearities has been pointed out in (Zetzsche and Krieger, 2001). A fea-
ture that the model shares with the others is the explicit assumption of translation invariance,
which leads to weight sharing during learning. This assumption is rather unbiological but hard
to avoid for keeping computation times acceptable.

140

5. A Model for the Early Development of
Horizontal Connections.

5.1. Complete Model Overview

Starting from the data just reviewed we assume that the specific connectivity pattern of long-
range horizontal connections provides the neural basis for the Gestalt principles of collinearity
and curvilinearity. This notion is supported by the apparent cooccurrence of the use of these
principles and the maturation of the respective connections during development. This answers
the first question raised at the end of section 4.3 about the neural substrate of Gestalt principles.
In order to answer the second one about how these connections develop depending on object
motion, we propose a quantitative model of how the transient retinal stimuli are propagated
towards the cells interconnected by the axons in question (figure 5.1) and how their connection
strengths are modified. We model the relevant parts of the visual pathway running from the
retina via the retinogeniculate and thalamocortical connections to the simple cells of layer 4b in
primary visual cortex and apply a Hebbian learning rule to shape the connectivity.

All functions we will use to describe our model are functions of two dimensional space
but we omit this dependency for convenience of notation. The full details of the retina model
are given in section 5.2.1 and we only summarize the important features here: The retinal
photoreceptors show a strong transient response to changing stimuli. Their output is passed to
bipolar cells, and finally ganglion cells perform a spatial filtering using the well known center-
surround antagonism that enhances local contrast differences. As the temporal information
detected by the photoreceptors is preserved the ganglion cells show a transient output as well.

Our retina model is based on the model for Y-ON-ganglion cells developed by Gaudiano
(1994) , which is extended in two respects: Firstly, both ON- and OFF-ganglion cells are mod-
eled and, secondly, the time course of the transient response pattern of each cell is represented
in a simplified way by just two values (see figure 5.2): a maximal transient response � &)" when
new input comes in, and the steady state activity rate �

�%& while this input is constantly present.
Here, is assumed that the time scale of the ganglion cells is faster than the change in the input,
which is recorded by a camera at 3 frames per second. This requirement results in an upper
bound for object speed relative to the time scales used for the neuronal processing.

Neither the LGN nor the cortical layer 4 "�� are explicitly modeled as it is assumed that in
early ontogenesis no processing relevant for the development of Gestalt principles is performed
there. Therefore, the activity of ON- and OFF-ganglion cells provides direct input to the simple
cells in layer 4b. It will become clear later that for the purpose of our model it is not necessary
to model all aspects of inhibitory neurons in striate cortex in detail. A detailed model of the
cortical dynamics mediated by short, middle and long-range corticocortical connections is also
not required. Let us explain why: There are a lot of inhibitory interneurons in the cortex that

5. A Model for the Early Development of Horizontal Connections.

P H O T O R E C E P T O R S

G A N G L I O N C E L L S O N

O F F

H Y P E R C O L U M N S
O F S I M P L E C E L L S

transient response
due to temporal filtering

spatial
filtering

image formation

development of
long-range
connections

W O R L D

E Y E

Figure 5.1.: Illustration of the complete model.

142

5.1. Complete Model Overview

tr

vst

v v

response

t

t

rate

p

Ganglion
cell

v

Frame n−1 n n+1

Light
Intensity

Figure 5.2.: This figure illustrates the computation of the discrete approximations � &%" and �
� & to

the continuous transient activity of an ON ganglion cell.

receive afferent input themselves and affect the excitatory pyramidal cells later at least by short-
range lateral connections. We assume that the main effect of those inhibitory connections with
regard to our model is to avoid an excitatory explosion when input arrives at the cortex, as only
afferences are coming in. This assumption is realistic because the high neural noise in neonates
(see section 4.4) requires strong global inhibition — stronger than the overall excitation — in
the cortex to keep the whole system stable. Furthermore, activity mediated along horizontal
connections alone should not be able to trigger a response in a target cell. If inhibitory neu-
rons have no other function than the ones mentioned we can avoid modeling them explicitly by
letting only those excitatory cortical cells participate in the structuring of long-range cortical
connections that receive strong primary afferent input themselves. Consequently, we do not
need to model the cortical dynamics further at this early stage of development as purely intra-
cortical influences at a postsynaptic neuron without strong primary afferent input should not
have significant impact on the activity. In the adult, however, there are substantial influences
from intracortical long-range connections, and also the neural noise is reduced by a factor of
nine.

The modeled simple cells are arranged in hypercolumns, and during the simulations a long-
range connection structure between these cells emerges. One cell of each hypercolumn can be
connected to any cell located in a 9

�
9 square surrounding its own hypercolumn. It should be

noted that each simple cell in the model in fact represents a local pool of cells that all have
similar properties. Therefore, it makes sense to model connections of a model cell to itself.

One of the crucial features of our model for the development of a specific long-range con-
nection structure is that the cortical simple cells in layer 4b show a transient response pattern.

143

5. A Model for the Early Development of Horizontal Connections.

In the results section we will see that this transient cortical response pattern enables the devel-
opment of an iso-orientation long-range connection structure as it is found in animals (Schmidt
et al. (1997)). In the following we describe how we model the transient cortical activity starting
with the transients of the ganglion cells. An interesting question, which is beyond the range of
this paper is how these responses are produced biologically. For simplicity (and computational
tractability) we omit all biological details that could be part of the theoretically possible mecha-
nisms — single cell properties, sustained local inhibition etc. — that enable transient responses.
These must be investigated in the animal and by models on a finer scope than ours.

We have found that the success of the model depends much more on the fact that the re-
sponse is transient than on its precise time course. Therefore, for each time step � between the
acquisition of successive video frames the output of an ON- or OFF-ganglion cell is discretized
to two values � &%" � � and �

� & � � . Consequently, it is natural to also discretize the primary afferent
response � that a simple cell would show if no other (intracortical) influences where present to
a transient and a stationary value � &%" and �

�%& , respectively. � is computed by a 2-dimensional
spatial convolution (denoted by)) with the kernels � � � and � � � � representing the synaptic
couplings made by ON-afferences and OFF-afferences to the cortical cells.� &%",� � � � � �&)" � �)	� � � � � � � �&)" � �) � � � ��

� &,� � � � � �
�%& � �)	� � � � � � � �

�%& � �) � � � � (5.1)

The full details of the cortex model are given in equations (5.25)-(5.27) in section 5.3. Here it is
suffices to mention that the functions � � � and � � � � are responsible for the orientation � and the
polarity (�

� /) of the simple cell receptive fields. The resulting receptive fields for the � � cells
are shown schematically in the top row and leftmost column of figures 6.1 and 6.2. Regardless
of the detailed mechanism that causes the transient nature of the cortical cell response: if a
transient response is triggered at frame � then there must be a difference in the primary afferent
input of this frame �

�%& � � and the primary afferent input the cell received during the previous
frame �

� &,� ��/ 	 . Then, it follows from our retina model that there has to be a difference in the
values of � &)" � � and �

� &,� � as well, as after the transient over- or undershoot a new steady state�
�%& � � will be reached, which cannot be equal to the old one �

�%& � � / 	 because otherwise there
would have been no transient response at all.

The real output � of the ganglion cell — the one that can be measured experimentally by
counting action potentials and linearly transforming the base rate to zero — can then be approx-
imated as:

� � � � " � � � � &)" � � �/ �
�%& � � � � (5.2)

The response in (5.2) is quantitatively a bit too strong as the relaxation of the afferent input�
�%& � � may not be completed in the time between two consecutive frames. However, the im-

portant feature for our model is that transient responses are successfully detected by this output
function. To point out how crucial the transient nature of cortical responses in layer 4b is for the
development of long-range connections we have done additional simulations with simple cells
having sustained (� �

) instead of transient responses:

� � � � � "���� � � � & � � �/ � � � � (5.3)

where
�

is a constant near the baseline primary afferent activity.

144

5.1. Complete Model Overview

Figure 5.3.: One frame of a typical camera sequence used in the simulations. There is a single
moving object in front of the observer and a structured background. The strong diagonal grey
tone border in the background is used to illustrate the difference between sustained and transient
responses in the learning rule. Such a biased background is a problem for static responses,
which tend to learn just that bias. If transient responses are used, the distribution of orientations
caused by the moving person is much broader.

145

5. A Model for the Early Development of Horizontal Connections.

A simple Hebbian learning mechanism is used for the adaption of the long-range synaptic
strengths:

��� � � � �	�.� � � (5.4)

For computational efficiency, this learning rule is not applied to single synaptic weights but to
ensembles of equivalent connections. Two connections are equivalent if their pre- and postsy-
naptic cells have the same orientation and polarity, and they span the same cortical distance.
This effectively leads to a system of connections that is translation invariant by design. Mathe-
matical details and a biological motivation can be found in section 5.3.2.

If the transient cortical responses � are inserted into equation (5.4) to evaluate the correlation
between pre- and postsynaptic cell, respectively, the connection structure shown in figure 6.1
emerges. We will argue in section 6.1 that this is suitable to form the anatomical basis for the
Gestalt principle of collinearity.

If the simulations are done with the same visual processing but with the Hebbian learning
on the basis of the sustained cortical responses (� �

) the resulting connection structure is qualita-
tively different (figure 6.2). In this case no general principles are learned but the final connection
structure reflects properties of the particular visual data used for learning.

5.2. Model of Subcortical Processing

5.2.1. Retina Model

We do not model the development of the retina itself during the postnatal weeks. Instead we
extend and modify an existing retina model (Gaudiano, 1994) to compute ON- and OFF-Y-
ganglion cell responses. Once this is done we discretize the continuous differential equations in
time by just to values for each cell type (ON and OFF). The activity rate � ��� corresponds to the
tonic or steady state part in the continuous model, and the transient rate � � � to an upper bound for
the maximum transient or phasic rate of the ganglion cell response (figure 5.2). These discrete
approximations of the retina model are essential because their output is used in the model for
the cortical layer. To understand how these equations are derived we now go into the details of
the continuous retina model. Note that the spatial dependency of the functions used is omitted
to improve readability.

5.2.2. The Photoreceptors

Given the light intensity value � � for each pixel of the camera image recorded at time � � , we
define a function � . � ���� that is equal to � � for all times t in the interval of

� � � � � � � �� . The values
of this function � . � �
�� are the interval of � � ��
�. � � � �����. � � , that is given by the camera as

�������	����

.

We compute the nonlinear photoreceptor response ���� according to:

 �
�� �
� ���� � �
�� with (5.5)� �
�� �
� � �����:/ � ��
�
 � . � ���� $$� � �����. � � � ��
� (5.6)

Here the biological fact is taken into account that at extreme light intensities a photoreceptor
can perform temporal high-pass filtering. To achieve this the photoreceptor adapts its response

146

5.2. Model of Subcortical Processing

rate under extreme constant light intensity towards its base rate activity by multiplying the
visual input � �
�� (5.6) with an internal state

� �
�� . The way this internal state is computed
makes clear that it is something like a short term memory for light intensity. By this light
adaption mechanism a sudden change to a given extreme light intensity level produces a short
term activity rate substantially different from the one produced under a constant light intensity
of the same extreme magnitude. The photoreceptor response ���� is computed by using the
transformed light intensity � ���� . The simple linear rescaling in (5.6) to the interval

� � ��
� � � �����

is necessary, because the increased minimal value allows for dynamic photoreceptor behavior.
We have chosen � ��
� � ����� � ����� � ���	�

. The chosen value of � ��
� is not particularly critical but
should be well above zero, because otherwise low light intensities in the visual world cannot
be modulated by the internal state of the photoreceptor and can therefore not trigger a dynamic
photoreceptor response distinguishable from the response to constant low light intensity.

The rate of change < � $ < � of the internal parameter depends on the relative intensity�
� ��� ���� (5.8) of the visual stimulus that the photoreceptor receives:

< � $ < � � � � � / � �
��
 / 4 � " � � ���� � �
�� with (5.7)� " � � �
�� � � � �����/ � ��
� $ � � ����� / � ��
�
(5.8)

Here
�

,
�

and 4 have the values chosen by Gaudiano (1994) .
�

is the maximal value of� �
�� and
�

is a gain parameter controlling how fast
� ���� approaches

�
in the absence of light

(� " � � ������ �
). On the other hand 4 � " � � �
�� controls the decay of

� ���� .
5.2.3. Bipolar and Ganglion Cells:

The next steps in retinal processing are the integration of photoreceptor activity by horizontal
cells and the feedforward processing by bipolar cells. We summarize horizontal influences of
horizontal and amacrine cells in a later step of the model (equations (5.11,5.12)), and concen-
trate on the straightforward modeling of bipolar cell responses

+ � 	 � : It is assumed that one
bipolar cell receives input from just one photoreceptor. The value � � ' � � ����� � is given
by (5.5) as

�
is the maximal value of the internal state

� �
�� of a photoreceptor and � ����� the
maximal light intensity. + � ���� � ���� � %	� + � ���� � ����� / ���� (5.9)

The ganglion cell activity � ���� itself is modeled using the shunting equation (5.10) first used
by Grossberg and Sperling (1970) . In our particular equation the ganglion activity rate � ���� is
limited to the interval of

������	

without passive decay:

< � ����"$ < � � � 	 / � ����
 �!�����/ � � �
��
 � ���� (5.10)

The excitatory �!���� and inhibitory � ���� inputs contribute to the ganglion cell response in a
PUSH-PULL way, which means that each bipolar cell contributes to both center and surround
mechanisms of the ganglion cell in different quantities (McGuire et al., 1986). For ON-ganglion
cells these influences have been modeled by the following equations where we use the Gaussians" (central) and 	 (surround) with the parameters of the Gaudiano model for Y-ganglion cells
extended to two dimensions: �!���� � ") + � ���� �) + � �
�� � (5.11)

� ���� �) + � ���� � ") + � �
�� (5.12)

147

5. A Model for the Early Development of Horizontal Connections.

Biologically, these influences come from lateral integration mediated by horizontal and
amacrine cells. For OFF-ganglion cells the above equations have been used with

+ � �
�� and+ � ���� interchanged. In our simulations, the center Gaussian has a value of $ equal to 3.18 pixel
and the surround Gaussian of 3.89 pixel.

The analytical solutions of (5.10) for ON- and OFF-cells then are:

� � � �
�� � � $ � ����� � ") �����/) ����
 � ����� �
(5.13)� � � � �
�� � / � $ � ����� � ") �����/) �
��
 � ��� � � �
(5.14)

where the following abbreviations have been used for convenience of notation:

� � �
	 $ � � � � � � � �1 �

(5.15)
����� � � � � ��$ � � � � � � � � �

(5.16)
��� � � � � � � �"$ � � � � � � � �

(5.17)

The numbers used in these definitions are as follows: � � and ��� are the integrals over the two
Gaussians used for modeling center and surround influences in the PUSH-PULL model.

So far, we have presented a continuous model for ON and OFF ganglion cells and one can
discuss various aspects of the model like the validity of the used simplifications, e.g., where
exactly in the retina the spatial integration takes place, how the temporal filtering is probably
done and more. We refer the reader to (Gaudiano, 1994) for these arguments.

As shown in figure 5.2 the continuous time course is now approximated by two values which
are computed as follows.

 &%" � � � � � ��� � (5.18)� � � � � $ � � � 4 � �. � (5.19)

 � & � � � � � (5.20)

With these approximations and using the continuous equations for the ganglion cell responses
(equations (5.13) and (5.14)) we can approximate the ON- and OFF-ganglion cell activity dis-
cretely in time and represent each of them by two values that describe the spatiotemporal prop-
erties of the ganglion cell responses:

� � �&%" � � $ � ����� � ") &%" /) &%"
 � �����
(5.21)� � �

� & � � $ � ����� � ") �%& /) �%&
 � �����
(5.22)� � � �&%" � / � $ � ����� � ") &)"�/) &)"
 � ��� � � (5.23)� � � �

� & � / � $ � ����� � ") �%&�/) � &
 � ��� � � (5.24)

5.3. Cortex Model

How should the cortical layer be modeled? Recall from section 4.4 that after birth 90% of all
active cells are of simple type. For that reason we will not consider complex cells here as they
probably play only a minor role directly after birth and most likely develop afterwards. Ad-
ditionally, the development of the long-range connection structure of different kinds of simple

148

5.3. Cortex Model

cells after birth probably occur at different speeds. The development of the long-range connec-
tion structure between edge detector (odd symmetry) cells of all scales is expected to be more
robust than the one of bar detector (even symmetry) cells immediately after birth. One reason
for this is the increased sensitivity to low spatial frequency gratings of the cortical cells (see
section 4.4) in the newborn. This phenomenon assigns a special role to the edge detector cells.
An edge between two large areas of high and low luminance, respectively, remains an edge
for all edge detector cells independent of their scale or spatial frequency. This is not true for
example for a bar detector cell as the strength of the response is determined by the preferred
spatial frequency and the size of the bar presented. Therefore we restrict our model to simple
cells with odd symmetry that are functionally edge detectors.

How can edge detector cells be modeled? In (5.1) we have given an equation for the primary
afferent response of a simple cell, and the terms � � � and � � � � are now defined in detail:
The most important feature of an edge detector cell is its preferred orientation � , and for each
orientation there are two edge detector cells, one with positive (� �) and one with negative (� �)
polarity. They can be modeled by using the sine part of a Gabor function (5.25) with different
signs. In our simulations we use cells with eight different orientations � and do not model other
properties of simple cells like selectivity for motion direction. The equations are as follows.

� � � � � � � � ' �*) � / ? 2 � � 2 �	� 2 � $ 2
 1# % � ? � � �! � � ? � �#&% � �
(5.25)� � � � � � � " � � � � � � � , � � � � � " ��� ��/ � � � � (5.26)� � � � � � � " � � � / � � � , � � � � � "���� � � � � � (5.27)

The parameters are $�� �
and ? � � �

. A value of $ above two leads to receptive fields with
more than two significant ON- or OFF-subfields in contrast to the data about simple cells. Note
that the resting activity of a cortical neuron in (5.1) is nonzero despite of the vanishing integral
of � in (5.25). The reason is that the resting activity of the retinal ganglion cells is nonzero and
there are only afferences to the cortex. Biologically it is not likely that the synaptic strengths of
the afferent thalamocortical connections are so finely tuned in the first postnatal weeks as the
Gabor-like receptive fields imply. With the high specific connection structure given in (5.26)
and (5.27) the effects of the short-range intracortical inhibitory and excitatory connections are
implicitly modeled which are the probable basis for sharp orientation tuning (Somers et al.,
1995). However, to use parts of a Gabor function is an easy alternative way to implement
some form of orientation tuning without the computational cost of modeling the short-range
corticocortical excitatory and inhibitory feedback connections.

5.3.1. Cortical Organization

We assume that the retinogeniculate and thalamocortical pathways already exist at birth and
that their mapping is already retinotopic (see section 4.4). Simple cells sensitive to low spatial
frequencies also exist and their theoretical primary afferent responses are modeled using equa-
tion (5.1). The receptive field center positions �� ��� 2 for the simple cells are placed in the
image at grid points with a distance of four pixels in the horizontal and vertical direction. For
each of those grid positions a hypercolumn consisting of simple cells of eight different receptive
field orientations is modeled. Within one hypercolumn each specific orientation is represented
by two cells � � and � � with receptive field properties defined by equations (5.26) or (5.27).

149

5. A Model for the Early Development of Horizontal Connections.

All cells in one hypercolumn have the same receptive field center �� � in retinal coordinates and
neighboring hypercolumns have different receptive field centers �� ; . Each cell of a hypercol-
umn establishes connections with all neurons of its own hypercolumn and with all neurons in
the neighboring four hypercolumns in each direction of the cortical plane (9

�
9 neighborhood).

Each model cell represents biologically a pool of cells with nearly the same properties and
therefore a model cell was allowed to make connections to itself. To avoid border artifacts
learning of long-range connections was disabled in the first four hypercolumns at the border of
the cortical plane.

5.3.2. Learning Horizontal Connections

We now shift our focus to the organization of the long-range cortical connections illustrated
at the bottom of figure (5.1) and in more detail in figure (5.4), in which the repeated regular
structure is representing a hypercolumn with eight orientations (only four are shown) and two
polarities. A small segment of the cortical plane is shown and the dashed arrows in it illustrate
the range of the cortical horizontal connections.

To adapt the synaptic weights the difference in primary afferent input (5.2) is used in (5.4)
to select only those cells that have a transient cortical response. Equation (5.4) is a Hebbian
learning rule. � � � � is the change of synaptic strength between neuron � and � and � is a general
learning factor that controls the impact of each learning step. The choice of � is not critical. To
illustrate the effect of transient responses we have also examined a Hebbian learning rule that
only uses the sustained (5.3) cortical responses.

��� � � � �	� �� � �� (5.28)

This corresponds to the classical interpretation of the Hebbian postulate in neural modeling
because it is a correlation learning rule that operates directly on the input. All cells that have a
primary afferent response above the baseline activity � of (5.3) may participate in the structuring
process.

After the increment of (5.4) or (5.28) is used to update the synaptic strengths (5.29) two
additional procedures are incorporated. To avoid artificially high synaptic values a connection
strength above one is reset to one by (5.30). To introduce competition between synapses the
total synaptic strength for a given ensemble � is held constant at � by normalizing the weights
after each learning step and multiplying them with � (5.31).

� � ��� � � � �#��� � � (5.29)

� � ��� "$#&% � � � � ��	 (5.30)

� � ��� � � � � $ �
� � � � (5.31)

One of the steps to make the model applicable to natural image data is the introduction
of ensembles � of equivalent connections. First we will give a technical description of such
an ensemble and then we explain the biological motivation for building those ensembles. All
established connections can be characterized by four parameters: The receptive field center
position �� � � 2 of the presynaptic cell, the spanned distance measured in hypercolumns � ��� 2 ,
orientation and polarity of the presynaptic simple cell � � " �� 	 � and the orientation and polarity of

150

5.3. Cortex Model

Figure 5.4.: Illustration of the cortical horizontal connection scheme. A small segment of
the cortical plane is shown to illustrate the range of the long-range connections (indicated by
the dashed arrows) and some connections of an ensemble of equivalent connections (indicated
by the solid arrows and explained in the text). The repeated regular structure represents a
hypercolumn with 8 orientations (just four are shown) and two polarities. Please refer to the
section 5.3.1 for a detailed explanation.

151

5. A Model for the Early Development of Horizontal Connections.

the postsynaptic simple cell � � $ � &� 	 � . Mathematically, one can build the equivalence classes from
the relation that two connections — and with them their synaptic weights — are equivalent if
they have the same � , � � " �� 	 � and � � $ �%&� 	 � but possibly different centers.

By doing this we have introduced translational invariance of the synapses that connect the
same pre- and the same postsynaptic cell types over the same distance of hypercolumns, which
is illustrated for a few connections by the solid arrows in (5.4). As we have two polarities and
eight different types of cells as pre- and postsynaptic cells and nine times nine different � we
have 1296 ensembles of connections for each presynaptic cell type of the reference hypercolumn
and a total of 20736 ensembles for this hypercolumn as a whole. As an example, the four solid
arrows in figure 5.4 are equivalent and are forced to have identical weights.

What is the biological foundation for building these ensembles? Consider a newborn with a
moving object in front of it. The newborn will gaze in one direction and the image of the objects
moves over the retina. Then on a larger time scale the newborn will shift its head trying to follow
— not very successful because of the low tracking accuracy after birth (Hofsten et al., 1998;
Piaget, 1936) — the stimulus and gaze again in the new direction. This happens several times
until the newborn has lost the object. If we now think of the visual input the newborn receives
in terms of object features projected on the retina we see that the same features are shifted on
the retina because of the object motion and because of the more or less randomly distributed
eye or head saccades of the newborn. One could argue now that this should mainly affect
horizontally neighboring cells and not vertically neighboring cells because most movements
are on the horizontal surface. But when the newborn is gazing in one direction and then moves
his head or eyes to gaze in another direction it is very unlikely that this can be done without
a vertical shift given the low accuracy of tracking movements in the newborn. The structuring
of long-range connection strengths in the cortical region that corresponds to the retinal area
covered by the object will of course average in time over all presented stimuli and this average
should be the same for equivalent connections because the object features seen have been the
same on average. The result should be connection strengths of roughly the same magnitude
for equivalent connections. Therefore, we can just model one synapse for each ensemble of
connections and reduce the amount of synapses drastically.

152

5.4. Input data

5.4. Input data

We have applied the model to two movies of a person moving and waving his arms in front of
a background from a seminar room. The backgrounds showed different biases. The sequence
“moving.mpg” consists of 199 frames, and the background contains a diagonal rectangle.

In the course of paper revision we also applied the model to the sequence “fw carsten.mpg”,
which is in color and has a larger resolution, because it has been collected for a different ex-
periment. This movie consists of 100 frames and shows no strong diagonals in the background.
Sampling has been adjusted and color ignored. The results for the transient responses are very
similar to the ones for the other sequence. The ones for the sustained responses reflect the
different background bias.

To clarify the relationship to static natural images we have applied the model to movies
made out of 60 frames from a texture database from MIT1 and one with 98 frames from a scene
database by British Telecom 2.

All four sequences as well as the respective learning processes can be retrieved from 3.

1http://www-white.media.mit.edu/vismod/imagery/VisionTexture/
2ftp://ftp.vislist.com/IMAGERY/BT scenes/
3ftp://ftp.neuroinformatik.ruhr-uni-bochum.de/pub/pictures/gestalt/

153

5. A Model for the Early Development of Horizontal Connections.

154

6. Development of Horizontal
Connections

6.1. Results for Transient and Sustained Simple Cell Re-
sponses

The simulations have been performed with sequences of camera images like the example shown
in figure 5.3. A typical sequence consisted of 100 - 200 frames and showed a person moving in
front of a camera and performing some arm movements. Note that in the whole sequence (one
frame is show in figure 5.3) the person was the only moving object and that there is a strong
diagonal grey tone border in the background.

The learned long-range connection structures for the transient (5.2) and the sustained (5.3)
cortical responses are illustrated in figures 6.1 and 6.2, respectively. The shown cells all have
the same polarity and vary only in orientation. The results are very similar for the cells of the
other polarity � � , while cross connections between different polarities have not been examined
in detail.

I now interpret the results shown in figure 6.1 that have been obtained when the transient
cortical responses (5.2) have been used. In detail the results are:

� The size of the long-range connection structure far exceeds the size of the classical recep-
tive field.

� The strongest connections are of course established from the reference hypercolumn (cen-
tral array positions) to itself. They connect a pool of the identical presynaptic cell types
with themselves (iso-orientation).

� There are additionally strong connections in the 3x3 neighborhood of the reference hy-
percolumn to iso-oriented cells.

� The connections from the (central) reference hypercolumn to other hypercolumns are
made to cells with a similar orientation of pre- and postsynaptic receptive field, respec-
tively. Looking at these connections one can see that the direction of the strongest con-
nections corresponds to the orientation in the receptive fields (collinearity). Therefore,
the receptive field is somewhat extended by these long-range connections.

� The connectivity pattern diminishes in strength with the difference in orientation of pre-
and postsynaptic receptive fields (curvilinearity).

This shows that the use of transient responses for Hebbian learning can lead in an efficient and
robust way to a connection structure which is suited to form the anatomical basis for the Gestalt

6. Development of Horizontal Connections

�����������
	��
���� ����� ������� ���
�������������� ��������� �
 !�" #

$&%
'()
*+ ,
-.0/
/1
+((
.0/
+1 %
'/
' ,
-.32
'
4 '15

6

78

9

:����;�<	;���=�>�?	��
��@�A�B�����C��	;D��FEG�?��
��	;�H�&	;DG��	=� �I������� ��	" #� !

Figure 6.1.: Learned synaptic strengths. The leftmost column shows the classical receptive field
shapes � � " �� of presynaptic simple cells, the top row those of the postsynaptic cells (� � $ �%&�). The
other squares show the spatial distribution of synaptic strengths of one presynaptic cell to a 9

�
9

patch of postsynaptic cells of constant orientation selectivity. Both types of squares use the same
scale in retinal coordinates. The weights are coded in grey scale with white corresponding to
the highest weight. The central position of each 9

�
9 array corresponds to a connection between

pre- and postsynaptic cells in the same hypercolumn. The weight distribution shown has been
learned on the basis of the transient cortical responses defined in (5.2) with a Hebbian learning
rule (5.4). The influence of cortical connections far exceeds the size of the classical receptive
fields. Furthermore, the connections that are established prominently connect simple cells with
nearly the same orientation in hypercolumns that in retinal coordinates refer to points lying in
the direction of their preferred orientation. Thus, it supports collinearity and curvilinearity.

156

6.1. Results for Transient and Sustained Simple Cell Responses

principle of collinearity and even curvilinearity (Field et al., 1993; Hess and Field, 1999; Guy
and Medioni, 1996). The importance of transient responses is elucidated by comparison with the
results from the same learning rule applied to the sustained responses shown in figure 6.2 caused
by the same stimuli. The resulting horizontal connection structure is qualitatively different
from the one in figure 6.1. The most significant long-range connections are established to the
postsynaptic cells in column 6 of figure 6.2. These show a strong response to the tilted edge
in the background of the sequence. Furthermore, almost all long-range connections are in the
direction of the that edge.

To a lesser extent the same holds for the connection strengths for the neighboring four
columns (4-8) of column 6 and just the presynaptic cells with an orientation difference of 90
degrees (shown in row 2 and the last row of figure 6.2) to the grey tone border-cells show almost
no developed connection structure. One can say that the learned connection structure is dom-
inated by the strong grey tone border that is an accidental property of the background. As the
grey tone edge is constantly present in the image, cells with an orientation similar to the grey
tone border-cells are – according to their tuning curve – active as well. Therefore, although
their presynaptic cell activation may be relatively weak their connection strength to the grey
tone border-cells increases with each learning step. One could argue that this is a problem of
the threshold

�
used in (5.3), and that an increased threshold should filter out the weak re-

sponses to borders, so that just the presynaptic border cells connect to the postsynaptic border
cells leaving the rest mainly unchanged. This procedure could work for any particular image
as probably one can find a threshold that filters out the important borders and suppresses the
weak responses for that particular image. However, given the variations in natural images, this
threshold must be changed from image to image, because a weak response to a border in one
image may be of the same magnitude as the response to the strongest border in another image.
One could think that a kind of adaptive threshold that decides about the presence of a border
taking its strength in relation to the maximum border strength found in the image could be a
solution. Related to this is the idea to normalize the maximal responses in the image. These
approaches have the additional disadvantage that even a ’noise’ image would participate in the
learning process to the same degree as an image with very strong borders.

The results show that the inclusion of transient responses in the model overcomes these con-
ceptual problems by using information from two different cues, the grey tone and the occurring
change in subsequent images. Therefore, only moving edges in the image take part in the learn-
ing process while static ones have no influence. As it was not possible to learn collinearity with
sustained cortical responses out of the same amount of biased image data that was sufficient for
transient ones, one can say that using transient responses is an efficient and robust way to do so.
One could argue now that with different kinds of backgrounds presented or with a large variety
of directions present in one background the disturbing influences will eventually average out,
and in the end the same connection structure as with transient response could emerge. With a
well balanced input or at least a very large input of different visual scenes this may be possible.
It would, however, be a considerable risk for the infants if early development depends critically
on this condition. It may also be argued that the advantage of transient over sustained responses
is only a consequence of the orientation bias in the background.

157

6. Development of Horizontal Connections

�����������
	��
���� ����� ������� ���
�������������� ��������� �
 !�" #

$&%
'()
*+ ,
-.0/
/1
+((
.0/
+1 %
'/
' ,
-.32
'
4 '15

6

78

9

:����;�<	;���=�>�?	��
��@�A�B�����C��	;D��FEG�?��
��	;�H�&	;DG��	=� �I������� ��	" #� !

Figure 6.2.: This figure shows long-range cortical synaptic strengths which develop if sustained
cortical responses (5.3) are used in the Hebbian learning rule (5.28). For an explanation of the
display arrangement refer to figure 6.1. The influence of the strong grey tone diagonal in the
background of the used images can easily be detected in most of the synaptic connection fields.
This example shows how the arbitrary background dominates the learning process of long-range
connections when sustained cortical responses are used.

158

6.2. Application of Sustained Responses to a Database of Natural Images.

6.2. Application of Sustained Responses to a Database of Nat-
ural Images.

In order to clarify the two previous points the model has been applied to standard image col-
lections, which are concatenated into sequences. In this case, transient responses are pointless,
because there is no real movement. Learning from the sustained responses also yields a biased
connection structure, which supports collinearity in the horizontal and vertical orientations but
hardly in the oblique ones. See figure 6.3 for the results on the database available from British
Telecom. More stimulus sets together with the learning results are available from the web site
and described in section 5.4.

159

6. Development of Horizontal Connections

�����������
	��
���� ����� ������� ���
�������������� ��������� �
 !�" #

$&%
'()
*+ ,
-.0/
/1
+((
.0/
+1 %
'/
' ,
-.32
'
4 '15

6

78

9

:����;�<	;���=�>�?	��
��@�A�B�����C��	;D��FEG�?��
��	;�H�&	;DG��	=� �I������� ��	" #� !

Figure 6.3.: This figure shows long-range cortical synaptic strengths learned from a sequence
of static natural images. Transient responses make no sense in this case, so the sustained cortical
responses (5.3) are used in the Hebbian learning rule (5.28). For an explanation of the display
arrangement refer to figure 6.1.

160

7. Discussion

7.1. Interpretation of the Results

The start was the assumption that there is a hierarchy of Gestalt principles and that the principle
of common fate is more fundamental than the one of good continuation. Technically speaking
this can be reformulated as saying that motion is a primary cue for the task of segmenting ob-
jects from the background. Closed boundaries (as supported by collinearity and curvilinearity)
provide a secondary cue that can be learned using the primary one. In this situation, an impor-
tant strategy is the distinction between observer motion and object motion. This information
is probably detectable by a newborn but it is very unlikely that it can already be used accu-
rately on a cellular level, although there is evidence that this is possible even for four months
old neonates (Kellman et al., 1987) and in the adult (Leopold and Logothetis, 1998). How can
object motion be detected by newborns? A very easy way for the organism to achieve this
distinction is to gaze in one direction for a considerable amount of time (Piaget, 1936). While
the direction of gaze is fixed changes of illumination on the retina cannot be caused by eye
movements or observer motion. Consequently, the structuring process in the cortical model is
strongly dependent on the feature constellations resulting from moving objects. Using the latter
it was shown (figure 5.3) that it is possible to learn, e.g., the Gestalt principle of collinearity,
or more precisely the anatomical structure of long-range connections in primary visual cortex
which probably implements this Gestalt principle and was found experimentally by Schmidt
et al. (1997). They showed that cells with an orientation preference in area 17 of the cat are
linked preferentially to iso-oriented cells, a result which was reproduced by the model. Further-
more, the coupling strength diminishes with the difference in preferred orientation of pre- and
postsynaptic cell.

From a technical point of view the system has learned by experience something similar
to an association field (Field et al., 1993; Hess and Field, 1999), projection field (Grossberg
and Williamson, 2001) or extension field (Guy and Medioni, 1996). These are well known to
aid the concept of collinearity and curvilinearity in technical computer vision algorithms and
biological models. Actually, the learned arrangement of synaptic strengths may provide means
of improving the extension field (Guy and Medioni, 1996) algorithm, as strong connections
between cells with similar orientation are established in all directly neighboring hypercolumns,
even if the hypercolumn lies in a spatial direction different from the pre- and postsynaptic
orientation. Another lesson learned is that one presynaptic cell type should not only connect to
one specific postsynaptic cell type in the target hypercolumn, but with a smaller synaptic weight
to a range of types with similar orientation in the same target column.

7. Discussion

7.2. Relation of the Results to Other Models

Recently, two models have been presented that address the ontogenesis of Gestalt principles.
In (Grossberg and Williamson, 2001) a very detailed perceptual model emerges from learning.
It is very remarkable how well the performance of this model matches to neurophysiologi-
cal measurements. In (Choe, 2001) PGLISSOM, a variant of the self-organizing map, leads
to lateral connectivities similar to the ones shown in figure 6.1 after learning from patches of
elongated Gaussians. The model differs from those in the respect that here only horizontal
connections are considered and it is shown that these can be learned from real camera images.
Using real sensor data complicates things considerably, and consequently other details regard-
ing, e.g., stability against contrast changes, have not been addressed. However, one could show
that the complexity of data required for learning can be taken from actual motion. It is clear that
these connections are only one aspect of a complete system, but it is believed to be worthwhile
to study this isolated subsystem.

There are several possible reasons for the result that the desired learning effect could be
achieved by using the transient rather than the sustained responses. The first is the biased
background. The moving object is much more likely to provide the rich variety of oriented
edges required for learning. The transient responses do not react to the static background and
therefore that bias cannot influence the connection structure. This also suggests that object
motion is preferable to observer motion. Pure observer motion against a static background
would learn exactly the background biases, and the same holds for saccadic eye movements.
Furthermore, the common motion of object edges gives strong hints that these edges belong
together — this could not be achieved if the whole background would move consistently. In
order to learn from sustained responses, the background would have to vary a lot in order for
the biases of individual backgrounds to average out.

Using only one sequence may be regarded as a weakness of the system, and of course it
would be much too little data to cover the environmental properties. This problem is greatly
alleviated by assuming translation invariance and therefore employing massive weight sharing.
Keeping this in mind, the results indicate that concentrating on the moving parts of a scene
provides excellent preprocessing for learning of collinearity. Actually, the fact that one sequence
is sufficient clearly demonstrates the power of the preprocessing to select the data relevant for
learning. Also, the number of images in the collections is clearly rather small, but I tried to keep
about as many as I had movie frames for a fair comparison.

It may be argued that a biased background is an unrealistic assumption in the visual world
of ambulatory system. However, there is considerable orientation bias in collections of natural
images, at least in the environment given by the campus of Duke University (Coppola et al.,
1998). The results indicate that moving objects yield a more even distribution of orientations,
although we have not studied that systematically. The assumption that persons moving around
can provide a major source of data for visual learning of young infants seems safe. It may also
be argued that 100 static images are too few to learn. However, even large image sets would
show the bias described in (Coppola et al., 1998). Learning from static images imprints this
bias into the connection structure, as can be seen in figure 6.3. At least the experiments show
that learning is faster when based on the transient responses to image sequences showing real
motion.

Regarding the biological relevance of the model, many details have been omitted and many

162

7.3. Learning From Natural Images

simplifications been made in order to achieve a computationally tractable size. However, good
results have been reached with a combination of basic mechanisms, namely spatiotemporal
retinal filtering, topology preservation in the cortical map, the transient nature of cortical cell
responses, and Hebbian learning. It is a well established fact that all those single building
blocks of the model exist in the brain, so the complete model should be regarded as a valid
approximation to one of the processes that organize perception during early development.

7.3. Learning From Natural Images

The problem to learn relevant feature constellations from natural images is known at least since
the models of Marr (1982) were introduced. I think that the main reason for the difficulties
faced by the approach is the concentration on feature constellations that are present in the whole
image. Due to the nature of Hebbian learning (or other second order correlation rules) the useful
second order feature constellations are much harder to detect in the whole image than in the part
of the image representing a single object. Of course, usefulness is not a physical entity, but arises
from the natural desire of living creatures to be able to distinguish objects for various purposes
like grabbing an object, escape, ingestion etc., which in turn yields considerable evolutionary
advantage.

The problem probably gets harder the more complex the features become, because of their
diminishing statistical significance in whole images of natural scenes. If one considers features
like collinearity, vertices, or closed boundaries, which define a geometric object, or combina-
tions of closed boundaries, which are listed here in order of their assumed complexity, then the
statistical significance to find those features in whole images probably not only diminishes with
rising complexity but the more complex features are probably not encountered often enough
to make a difference statistically. And even if there is a small significance for those complex
features it would take a long time and a lot of different scenes to learn them using a statistical
algorithm. For the case of collinearity Krüger (1998) was able to show that collinearity and
short-range parallelism are statistically significant features of natural images if the set of im-
ages examined is large and varied enough. Geisler et al. (2001) link this to the psychophysical
performance of contour grouping and conclude that this must be due to an underlying neuronal
structure. The system shows that the necessary variation can be derived from a single scene
with one object moving across it for long enough that the movement covers all image locations.
Both studies are opposite extremes, the reality for a newborn neither consists of snapshots of
many possible scenes nor a single moving object. Both together show that the neural circuits
underlying the collinearity Gestalt principle can be learned from natural input.

An important aspect pointed out by Geisler et al. (2001) and Simoncelli and Olshausen
(2001) is that simple linear correlations are not sufficient to extract interesting statistics from
natural data. Hebbian learning, however, relies on linear correlations. In the case, it has been
applied to nonlinearly preprocessed data, so there is no contradiction here. Geisler et al. (2001)
also find that curvilinearity cannot be learned from simple cooccurrence but require Bayesian
co-occurrence statistics. Again, this is not a contradiction due to the nonlinearities in the model,
which are motivated biologically rather than statistically.

Comparison of the results to the ones from Hoyer and Hyvärinen (2002) is made difficult
by the fact that the assumptions about the underlying network are different. Their model relies

163

7. Discussion

on a feedforward structure for contour coding, while the emphasis is on horizontal connections.
It seems that horizontal connections would hurt the statistical independence of the cells they
connect, so the model does not map naturally onto the ICA concept. The biological evidence is
certainly too sparse to make a decision in favor of one of these assumptions. This is clearly a
point which requires further analysis on the modeling as well as on the biological side.

Further technical studies (Pötzsch, 1999) indicate that feature constellations of higher com-
plexity, e.g., vertices that seem to play an important part in object recognition cannot be learned
by simple correlation learning rules that operate on the features of the whole image. As in-
dicated above these useful features are probably not statistically significant features of natural
images. If this is the case complex features can only be learned from natural images if there is
purposeful behavior that carefully selects the data worthwhile to be learned. Concentrating on
moving objects seems to be a good strategy even in the absence of a tracking mechanism. It can
be conjectured that more sophisticated mechanisms like head and eye saccades can boost learn-
ing further. Reinagel and Zador (1999) show that effect on learning image statistics, therefore a
positive effect on learning Gestalt rules may be expected.

164

List of Figures

2.1. Illustration of the complete contour recognition system 26
2.2. Illustration of the L*a*b* color space. 29
2.3. Illustration of the computation steps for generating a background difference

image. 31
2.4. Illustration of the computation steps for generating the counterclockwise ori-

ented graph from an artificially created image. 34
2.5. Illustration of the computation steps for generating the counterclockwise ori-

ented graph from a segmented image. 35
2.6. Illustration of the B-spline interpolation. 37

3.1. Illustration of the ETH80 image database. 57
3.2. Illustration of the SQUID database. 58
3.3. Object Clustering: The ’shark’ group. 59
3.4. Object Clustering: A group of similar looking fish. 60
3.5. Object Clustering: The ’skate’ group. 61
3.6. Matching of different three dimensional postures of automobiles. 63
3.7. Matching of different 3D horse postures. 64
3.8. Matching different three dimensional postures of cows 65
3.9. Matching different three dimensional postures of pears. 66
3.10. Matching of different three dimensional postures of dogs. 67
3.11. Match cross run using 100 marine animal silhouettes that were rotated and

scaled. 69
3.12. Accumulated right match positions and recognition rates for 100 rotated and

scaled contours using normalizations. 70
3.13. Recognition rate versus rotation angle in the plane without normalizations. . . . 71
3.14. Accumulated right match position for different rotation angles. 72
3.15. Scale invariant matching without scale normalization with f = 1.18925. 74
3.16. Illustration of the hand gesture recognition task. 76
3.17. Matching examples for the hand gesture recognition task. 77
3.18. Illustration of profile face matching. 78
3.19. Illustration of how the stereo correspondence problem can be solved. 79
3.20. The object recognition task applied to a horse contour. 81
3.21. The object recognition task applied to a pear contour. 82
3.22. The object recognition task applied to a cow contour. 83
3.23. The object recognition task applied to a car contour. 84
3.24. Accumulated right matches for a recognition task with a small occlusion of the

object and 20% of all feasts used . 86

LIST OF FIGURES

3.25. Accumulated right matches for a recognition task with a small occlusion of the
object and 40% of all feasts used . 87

3.26. Accumulated right matches for a recognition task with a small occlusion of the
object and 60% of all feasts used. 88

3.27. Accumulated right matches for a recognition task with a large occlusion of the
object and 20% of all feasts used. 89

3.28. Accumulated right matches for a recognition task with a large occlusion of the
object and 40% of all feasts used. 90

3.29. Accumulated right matches for a recognition task with a large occlusion of the
object and 60% of all feasts used. 91

3.30. Recognition rate versus degree of occlusion. 92
3.31. Recognition of multiple objects whose centers are translated by 36 pixels. . . . 94
3.32. Examples for the multiple object recognition task. 95
3.33. Illustration of accumulated right match positions and recognition rates for the

enlarged contours recognition task using 22% of the feast for matching. 96
3.34. Illustration of accumulated right match positions and recognition rates for the

enlarged contours recognition task using 30% of the feast for matching. 97
3.35. Illustration of a recognition task involving the matching of open object contours

or edge continuations. 98

A.1. Examples for matching different 3D postures for automobiles. 106
A.2. Further examples for matching different 3D postures of cars. 107
A.3. Examples for matching different 3D postures of horses. 108
A.4. Examples for matching different 3D postures of horses. 109
A.5. Examples for matching different 3D postures of horses. 110
A.6. Examples for matching different 3D postures of horses. 111
A.7. Examples for matching different 3D postures of horses. 112
A.8. Examples for matching different 3D postures of cows. 113
A.9. Examples for matching different 3D postures of cows. 114
A.10.Examples for matching different 3D postures of cows. 115
A.11.Examples for matching different 3D postures of cows. 116
A.12.Examples for matching different 3D postures of dogs. 117
A.13.Examples for matching different 3D postures of dogs. 118

B.1. Illustration of the threshold dependency of the color similarity cue. 120
B.2. Illustration of the HSI color space. 122

C.1. Algorithm for computation of the number of cycles and components of a graph. 126
C.2. Algorithm for computation of the shortest path to a � � �� � � � � < � 128
C.3. Algorithm for computation of the reachable nodes of a graph. 130

5.1. Illustration of the complete model. 142
5.2. This figure illustrates the computation of the discrete approximations � &)" and �

�%&
to the continuous transient activity of an ON ganglion cell. 143

5.3. One frame of a typical camera sequence used in the simulations. 145
5.4. Illustration of the cortical horizontal connection scheme. 151

166

LIST OF FIGURES

6.1. Learned synaptic strengths.The leftmost column shows the classical receptive
field shapes � � " �� of presynaptic simple cells, the top row those of the postsy-
naptic cells (� � $ �%&�). 156

6.2. This figure shows long-range cortical synaptic strengths which develop if sus-
tained cortical responses (5.3) are used in the Hebbian learning rule (5.28). . . 158

6.3. This figure shows long-range cortical synaptic strengths learned from a se-
quence of static natural images. 160

167

LIST OF FIGURES

168

8. Bibliography

Abbasi, S. and Mokhtarian, F. (2001). Affine-similar shape retrieval: Application to multi-view
3-d object recognition. IEEE TPAMI, 10(1):131–139.

Albus, K. and Wolf, W. (1984). Early post-natal development of neuronal function in the kitten’s
visual cortex: a laminar analysis. Journal of Physiology, 348:153–85.

Alferez, R. and Wang, Y.-F. (1999). Geometric and illumination invariants for object recogni-
tion. IEEE TPAMI, 21(6):505–536.

Arbter, K., Snyder, W., Burkhardt, H., and Hirzinger, G. (1990). Application of affine-invariant
fourier descriptors to recognition of 3-d objects. IEEE TPAMI, 12(7):640–647.

Arkin, E. M., Chew, L. P., Huttenlocher, D. P., Kedem, K., and Mitchell, J. S. B. (1991). An
efficiently computable metric for comparing polygonal shapes. IEEE TPAMI, 13(3):209–
216.

Atkinson, J. and Braddick, O. (1992). Visual segmentation of oriented textures by infants.
Behav Brain Res, 49(1):123–131.

Attneave, F. (1954). Some informational aspects of visual perception. Psychological Review,
61:183–193.

Avrithis, Y., Xirouhakis, Y., and Kollias, S. (2001). Affine-invariant curve normalization for
object shape representation, classification, and retrieval. Machine Vision and Applications,
13:80–94.

Barlow, H. (1961). Possible principles underlying the transformation of sensory messages. In
Rosenblith, W., editor, Sensory Communication, pages 217–234. MIT Press.

Barten, S. et al. (1971). Individual differences in visual pursuit behavior of neonates. Child
Development, 42:313–319.

Bell, A. J. and Sejnowski, T. J. (1997). The “independent component” of natural scenes are
edge filters. Vision Research, 37(23):3327–3338.

Bell, B. and Pau, L. F. (1990). Contour tracking and corner detection in a logic programming
environment. IEEE TPAMI, 12(9):913–917.

Birch, E. (1985). Infant interocular acuity differences and binocular vision. Vision Research,
25(4):571–576.

8. Bibliography

Birch, E. and Salomão, S. (1998). Infant random dot stereoacuity cards. J Pediatr Ophthalmol
Strabismus, 35(2):86–90.

Born, C. and Völpel, B. (1991). Grouping bits to objects. Technical report, Institut für Neu-
roinformatik, Ruhruniversität Bochum.

Bosking, W., Zhang, Y., Schofield, B., and Fitzpatrick, D. (1997). Orientation selectivity and
the arrangement of horizontal connections in tree shrew striate cortex. Journal of Neuro-
science, 17(6):2112–2127.

Braddick, O. and Atkinson, J. (1979). A photorefractive study of infant accommodation. Vision
Research, 19:1319–1330.

Breymann, U. (1996). Die C++ Standard Template Library. Addison Wesley.

Burkhalter, A., Bernardo, K. L., and Chrles, V. (1993). Development of local circuits in human
visual cortex. The Journal of Neuroscience, 13(5):1916–1931.

Callaway, E. M. (1998). Prenatal development of layer-specific local circuits in primary visual
cortex of the macaque monkey. The Journal of Neuroscience, 18(4):1505–1527.

Chien, C.-H. and Aggarwal, J. K. (1989). Model construction and shape recognition from
occluding contours. IEEE-TPAMI, 11(4):372–389.

Choe, Y. (2001). Perceptual Grouping in a Self-Organizing Map of Spiking Neurons. PhD the-
sis, University of Texas at Austin. http://www.cs.tamu.edu/faculty/choe/ftp/choe.diss.pdf.

Chuang, G. C.-H. and Kuo, J. C.-C. (1996). Wavelet descriptor of planar curves: Theory and
applications. IEEE Trans Image Proc., 5(1):56–70.

Cohen, F. and Wang, J.-Y. (1994). Part i: Modeling image curves using invariant 3-d object
curve models — a path to 3-d recognition and shape estimation from image contours.
IEEE TPAMI, 16(1):1–12.

Coppola, D. M., Purves, H. R., McCoy, A. N., and Purves, D. (1998). The distribution of
oriented contours in the real world. PNAS, 95:4002–4006.

Courage, M. and Adams, R. (1996). Infant peripheral vision: the development of monocular
visual acuity in the first 3 months of postnatal life. Vision Research, 36(8):1207–15.

De Boor, C. (1972). On calculating with b-splines. J. Approximation Theory, 6:50–62.

De Campos, T. E., Feris, R., and Cesar, R. (2000). Improved face vs. non-face discrimination
using fourier descriptors through feature selection. In Proceedings of the XIII Brazilan
Symposium on Computer Graphics and Image Processing (SIBGRAP00).

de Monasterio, F. M. and Schein, S. J. (1982). Spectral bandwidths of color-opponent cells of
geniculocortical pathway of macaque monkeys. J Neurophysiol, 47:214–224.

Dijkstra, E. W. (1959). A note on two problems in connection with graphs. Numerische Math.,
1:269–271.

170

Field, D. J., Hayes, A., and Hess, R. F. (1993). Contour integration by the human visual system:
Evidence for local “association field”. Vision Res., 33(2):173–193.

Fitzpatrick, D. (1997). The functional organization of local circuits in visual cortex: Insights
from the study of tree shrew striate cortex. Cerbral Cortex, 385(6):535–538.

Gaudiano, P. (1994). Simulations of x and y retinal ganglion cell behavior with a nonlinear
push-pull model of spatiotemporal retinal processing. Vision Research, 34:1767–1784.

Geisler, W., Perry, J., Super, B., and Gallogly, D. (2001). Edge co-occurrence in natural images
predicts contour grouping performance. Vision Research, 41(6):711–724.

Gorman, J. W., Mitchell, R. O., and Kuhl, F. P. (1988). Partial shape recognition using dynamic
programming. IEEE TPAMI, 10(2):257 – 266.

Grossberg, S. (1970). Neural pattern discrimination. Journal of Theoretical Biology, 27:291–
337.

Grossberg, S. and Mingolla, E. (1985). Neural dynamics for perceptual grouping: textures,
boundaries, and emergent segmentation. Perception and Psychophysics, 38:141–171.

Grossberg, S. and Williamson, J. (2001). A neural model of how horizontal and interlaminar
connections of visual cortex develop into adult circuits that carry out perceptual grouping
and learning. Cerebral Cortex, 11(1):37–58.

Guy, M. and Medioni, G. (1996). Inferring global perceptual contours from local features.
International Journal of Computer Vision, 20:113–133.

Hainline, L. et al. (1992). Development of accomodation and convergence in infancy. Be-
havioural Brain Research, 49:33–50. Special Issue: Normal and Abnormal Visual Devel-
opment in Infants and Children.

Heijmanns, H. and Tuzikov, A. (1998). Similarity and symmetry measures for convex shapes
using minkowski addition. IEEE TPAMI, 20(9):980–993.

Hess, R. and Field, D. (1999). Integration of contours: new insights. Trends in Cognitive
Sciences, 3(12):480–486.

Hofsten, C., Vishton, P., Spelke, E., Feng, Q., and Rosander, K. (1998). Predictive action in
infancy: tracking and reaching for moving objects. Cognition, 67(3):255–285.

Hoyer, P. O. and Hyvärinen, A. (2002). A multilayer sparse coding network learns contour
coding from natural images. Vision Research, 42(12):1593–1605.

http://www.organic computing.com/ (2000).

Isaac, J., Crair, M., Nicoll, R., and Malenka, R. (1997). Silent synapses during development of
thalamocortical inputs. Neuron, 18(2):269–80.

171

8. Bibliography

Jeannin, S. and Bober, M. (Mar. 1999). Description of core experiments for mpeg-
7 motion/shape. Technical report, Technical Report ISO/IEC JTC 1/SC 29/WG 11
MPEG99/N2690, MPEG-7,Seoul.

Kameda, Y. (1993). Three dimentional pose estimation of an articulated object from its silhou-
ette image. In Proc. of Asian Conference on Computer Vision, pages 612–615.

Kartikeyan, B. and Sarkar, A. (1989). Shape description by time series. IEEE TPAMI,
11(9):977–984.

Kastrup, D. (1997). Grouping bits to objects revisted. Technical report, Institut für Neuroinfor-
matik, Ruhruniversität Bochum.

Katz, L. C. and Callaway, E. M. (1992). Development of local circuits in mammalian visual
cortex. Annual Review of Neuroscience, 15:31–56.

Kellman, P. J., Gleitmann, H., and Spelke, E. (1987). Object and observer motion in the per-
ception of objects by infants. J Exp Psychol Hum Percept Perform, 13(4):586–593.

Kellman, P. J. and Short, K. (1987). Development of three-dimensional form perception. J Exp
Psychol Hum Percept Perform, 13(4):545–557.

Kellman, P. J., Spelke, E., and Short, K. (1986). Infant perception of object unity from transla-
tory motion in depth and vertical translation. Child Development, 57(1):72–86.

Kindratenko, V. and Van Espen, P. J. M. (1996). Classification of irregularly shaped micro-
objects using complex fourier descriptors. In Proceedings of the 1996 Conference on
Pattern Recognition (ICPR ’96), pages 285–289.

Koffka, K. (1935). Principles of Gestalt Psychology. , London.

Korn, P., Sidiropoulos, N., Faloutsos, C., Siegel, E., and Protopapas, Z. (1998). Fast and effec-
tive retrieval of medical tumor shapes. IEEE Trans. On Knowledge and Data Engeneering,
10(6):889–904.

Kovacs, I. (2000). Human development of perceptual organization. Vision Research,
40(12):1301–1310.

Krüger, N. (1998). Collinearity and parallelism are statistically significant second-order rela-
tions of complex cell responses. Neural Processing Letters, 8:117–129.

Lades, M., Vorbrüggen, J. C., Buhmann, J., Lange, J., von der Malsburg, C., Würtz, R. P., and
Konen, W. (1993). Distortion Invariant Object Recognition in the Dynamic Link Architec-
ture. IEEE Transactions on Computers, 42(3):300 – 311.

Leibe, B. and Schiele, B. (2003). Analyzing appearance and contour based methods for object
categorization. In International Conference on Computer Vision and Pattern Recognition
(CVPR’03), Madison, Wisconsin,.

Leopold, D. and Logothetis, N. (1998). Microsaccades differentially modulate neural activity
in the striate and extrastriate visual cortex. Experimental Brain Research, 123(3):341–345.

172

Li, Z. (1998). A neural model of contour integration in the primary visual cortex. Neural
Computation, 10:903–940.

Lindeberg, T. (1994). Scale-Space Theory in Computer Vision. Kluwer Academic Publishers.

Loos, H. S. (2002). User-Assisted Learning of Visual Object Recognition. PhD thesis, Technical
Faculty, University of Bielefeld, Germany.

Löwel, S. and Singer, W. (1992). Selection of intrinsic horizontal connections in the visual
cortex by correlated neuronal activity. Science, 255:209–212.

Lyche, T. and Schumaker, L. (1973). Computation of smoothing and interpolating natural
splines via local bases. SIAM J. Numer. Anal., 10:1027–1038.

Malach, R., Amir, Y., Harel, M., and Grinvald, A. (1993). Relationship between intrinsic
connections and functional architecture revealed by optical imaging and in-vivo targeted
biocytin injections in primate striate cortex. PNAS, 90(22):10469–10473.

Mallat, S. (1989). A theory for multiresolution signal decomposition: The wavelet representa-
tion. IEEE Transactions on Pattern Recognition and Machine Intelligence, 11(7):674–693.

Marr, D. (1982). Vision: A computational investigation into the human representation and
processing of visual information. San Fransisco: Freeman.

McGuire, B. A., Stevens, J., and Sterling, P. (1986). Microcircuitry of beta ganglion cells in cat
retina. Journal of Neuroscience, 6(4):907–918.

Mokhtarian, F. (1997). Silhouette-based occluded object recognition through curvature scale
space. Machine Vision and Applications, 10(3):87–97.

Mokhtarian, F. and Bober, M. (2003). Curvature Scale Space Representation: Theory, Appli-
cations and MPEG-7 Standardization. Kluwer Academic.

Mokhtarian, F. and Mackworth, A. K. (1992). A theory of multiscale, curvature-based shape
representation for planar curves. IEEE TPAMI, 14(8):789–805.

Mokhtarian, F.and Abbasi, S. and Kittler, J. (1996a). Efficient and robust retrieval by shape con-
tent through curvature scale space. In Proc. International Workshop on Image DataBases
and MultiMedia Search, pages 35–42, Amsterdam, The Netherlands.

Mokhtarian, F.and Abbasi, S. and Kittler, J. (1996b). Robust and efficient shape indexing
through curvature scale space. In Proc. British Machine Vision Conference, pages 53–62,
Edinburgh, UK.

Morrone, M., Burr, D., and Fiorentini, A. (1990). Development of contrast sensitivity and acuity
of the infant colour system. Proc R Soc Lond B Biol Sci, 242(1304):134–139.

Norcia, A., Tyler, C., and Hamer, R. (1990). Development of contrast sensitivity in the human
infant. Vision Research, 30(10):1475–1486.

173

8. Bibliography

Olshausen, B. A. and Field, D. J. (1996). Wavelet-like receptive fields emerge from a network
that learns sparse codes for natural images. Nature, 381:607–609.

Ooyama, K. (1987). Scale-controlled objective analysis. Montly Weather Review, 115:2479–
2506.

Pavlovic, V. I., Sharma, R., and Huang, T. S. (1997). Visual interpretation of hand gestures for
human-computer interaction: A review. IEEE TPAMI, 19(7):677–695.

Petrakis, E. G., Diplaros, A., and Milios, E. (2002). Matching and retrieval of distorted and
occluded shapes using dynamic programming. IEEE TPAMI, 24(11):1501–1516.

Piaget, J. (1936). La naissance de l’intelligence chez l’enfant. reprinted by International Uni-
versities Press.

Pötzsch, M. (1999). Object-Contour Statistics Extracted from Natural Image Sequences. PhD
thesis, Ruhr-Universiät-Bochum.

Prodöhl, C., Würtz, R., and von der Malsburg, C. (2003). Learning the gestalt rule of collinearity
from object motion. Neural Computation, 15:1865–96.

Reinagel, P. and Zador, A. M. (1999). Natural scene statistics at the center of gaze. Network:
Computation in Neural Systems, 10:341–350.

Ross, W., Grossberg, S., and Mingolla, E. (2000). Visual cortical mechanisms of perceptual
grouping: interacting layers, networks, columns, and maps. Neural Networks, 13(6):571–
588.

Rothe, I., Süsse, H., and Voss, K. (1996). The method of normalization to determine invariants.
IEEE TPAMI, 18(4):366–376.

Schmidt, K., Goebel, R., Löwel, S., and Singer, W. (1997). The perceptual grouping crite-
rion of colinearity is reflected by anisotropies of connections in the primary visual cortex.
European Journal of Neuroscience, 5(9):1083–9.

Sekita, I., Kurita, T., and Otsu, N. (1992). Complex autoregressive model for shape recognition.
IEEE TPAMI, 14(4):489–496.

Simoncelli, E. and Olshausen, B. (2001). Natural image statistics and neural representation.
Annual Review of Neuroscience, 24:1193–1216.

Skoczenski, A. and Norcia, A. (1998). Neural noise limitations on infant visual sensitivity.
Nature, 391(6668):697–700.

Snider, C., Dehay, C., Berland, M., Kennedy, H., and Chalupa, L. (1999). Prenatal development
of retinogeniculate axons in the macaque monkey during segregation of binocular inputs.
Journal of Neuroscience, 19(1):220–8.

Somers, D. C., Nelson, S. B., and Sur, M. (1995). An emergent model of orientation selectivity
in cat visual cortical simple cells. The Journal of Neuroscience, 15(8):5448–5465.

174

Spelke, E., Breinlinger, K., Jacobson, K., and Phillips, A. (1993). Gestalt relations and object
perception: A developmental study. Perception, 22:1483–1501.

Sperling, G. (1970). Models of visual perception and contrast detection. Perception & Psy-
chophysics, 8:143–157.

Streri, A. and Spelke, E. (1989). Effects of motion and figural goodness on haptic object per-
ception in infancy. Child Development, 60(5):1111–1125.

Tarjan, R. E. (1972). Depth-first search and linear graph algorithms. SIAM J. Comput., 1:146–
160.

Tieng, Q. M. and Boles, W. (1997). Recognition of 2d object contours using the wavelet trans-
form zero-crossing representation. IEEE TPAMI, 19(8):911–916.

Tootle, J. (1993). Early postnatal development of visual function in ganglion cells of the cat
retina. Journal of Neurophysiology, 69(5):1645–1660.

Ueda, N. and Suzuki, S. (1993). Learning visual models from shape contours using multiscale
convex/concave structure matching. IEEE PAMI, 15(4):337–352.

van Hateren, J. and Ruderman, D. (1998). Independent component analysis of natural image
sequences yields spatiotemporal filters similar to simple cells in primary visual cortex.
Proceedings of the Royal Society London B, 265:2315–2320.

von der Malsburg, C. (1981). The correlation theory of brain function. Internal report, Max-
Planck-Institut für Biophysikalische Chemie, Postfach 2841, D3400 Göttingen, Germany.

Wang, J.-Y. and Cohen, F. (1994). Part ii: 3-d object recognition and shape estimation from im-
age contours using b-splines, shape invariant matching, and neural network. IEEE TPAMI,
16(1):13–23.

Weiss, I. (1993). Geometric invariants and object recognition. Int J. Computer Vision,
10(3):207–231.

Wertheimer, M. (1923). Untersuchungen zur Lehre von der Gestalt II. Psychologische
Forschung, 4:301–350.

Wiskott, L. (1996). Segmentation from motion: Combining gabor- and mallat-wavelets to
overcome aperture and correspondence problem. Internal Report IRINI 96-10, Institut für
Neuroinformatik, Ruhr-Universität D-44780 Bochum, Germany. 12 pages.

Wiskott, L., Fellous, J.-M., Krüger, N., and von der Malsburg, C. (1997). Face recognition
by elastic bunch graph matching (ps, pdf). IEEE Transactions on Pattern Analysis and
Machine, Intelligence, 19(7):775–779.

Wiskott, L. and Malsburg, C. (1993). A neural system for the recognition of partially occluded
objects in cluttered scenes (ps, pdf). Int. J. of Pattern Recognition and Artificial Intelli-
gence, 7(4):935–948.

175

8. Bibliography

Yang, Z. and Cohen, F. S. (1999a). Cross-weighted moments and affine invariants for image
registration and matching. IEEE TPAMI, 21(8):804–814.

Yang, Z. and Cohen, F. S. (1999b). Image registration and object recognition using affine
invariants and convex hulls. IEEE-Trans. on Image Proc., 8(7):934 – 946.

Yen, S. and Finkel, L. (1998). Extraction of perceptually salient contours by striate cortical
networks. Vision Research, 38(5):719–741.

Yonas, A. et al. (1987). Four-month-old infants’ sensitivity to binocular and kinetic infomation
for three-dimensional-object shape. Child Development, 84(4):910–917.

Zetzsche, C. and Krieger, G. (2001). Nonlinear mechanisms and higher-order statistics in bio-
logical vision and electronic image processing: review and perspectives. Journal of Elec-
tronic Imaging, 10(1):56–99.

Zhu, S.-C. (1999). Embedding gestalt laws in markov random fields. IEEE TPAMI,
21(11):1170–1187.

176

