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Preface

As the title suggest, this thesis is divided in two distinct and (almost) unrelated parts.

The first, more practical, focuses on biological applications for de Bruijn subgraphs,

while the second, more theoretical, presents a study on Interval Group Testing in the

presence of erroneous test outcomes. Although the subjects of both parts are from

the computational viewpoint completely distinct, their motivations are closely related:

while the study of de Bruijn subgraphs was motivated by the identification of unique

sequences for a better design of DNA probes, the study of the effect of errors in Interval

Group Testing was motivated by the error produced by badly designed probes.

De Bruijn subgraphs have been used now for 10 years for the analysis of genome data,

but never experienced big popularity in the field. The main problem with these graphs

is the amount of memory needed to store them, since they have one vertex representing

each substring of a given length found in the genome. Although almost all applications

using de Bruijn graphs transform it in a more compact structure before starting any

analyses, methods for directly constructing the compact representation are not found

in the literature.

In the first part of this thesis, we present a method for constructing compact represen-

tations of de Bruijn subgraphs without passing through the memory expensive step

of constructing the graph in its traditional form. We further analyze the use of this

compact representation in three different applications: marking repeated sequences in

a set of reads, identifying new repeat families in incompletely sequenced genomes, and

creating splicing graphs for a collection of transcripts.

In Chapter 1 we give an introduction to graphs, de Bruijn graphs and sequences, and

biological applications for de Bruijn subgraphs. In Chapters 2 we present a method

for constructing a compact representation for de Bruijn graphs and comment how this

representation can be used for marking repetitive sequences in reads. Chapters 3 and
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4 are dedicated to a repeat family identification method. Finally Chapter 5 presents

a method for clustering transcripts with a common origin in splicing graphs.

The second part of this text is dedicated to Interval Group Testing. Group testing

is an approach for reducing the number of tests needed for identifying few elements

with some rare property in a large group. An overview on group testing and its

application in Genome Research is given in Chapter 6. Group testing finds a lot of

applications in many different fields, for instance, in identifying people infected with

HIV or syphilis in large populations, finding faulty unities in computer networks, or

finding points in mature RNAs where introns were spliced out. The last application

motivates a variant called Interval Group Testing, which is presented in Chapter 7.

The traditional Interval Group Testing cannot deal with experimental errors, which

cannot be ignored in a real life application. Therefore in Chapter 8 we present bounds

on the number of tests needed for identifying the elements of interest when an upper

bound on the number of errors in the tests’ outcomes is allowed.
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Chapter 1

Introduction

Maybe no academic work should start with such an imprecise information, but I once

read somewhere that the houses in Stockholm have no key. At least not this metal

piece we turn once or twice to lock our doors. Instead, the houses have a numeric

keypad. To open a door in Stockholm, we need a 4-digit number. I do not know

whether it is true, but I though about the consequences of such a system. I lived in

a relatively big city in southeast Brazil. A city with more than 1,000,000 inhabitants.

And the idea that one of the 10,000 possible codes is surely shared by more than 100

people scared me a lot.

Of course there is no reason to be too afraid of having unwanted visitors in our houses,

for the robbers still need to discover which key matches our house’s lock. And trying

all possible codes in sequence is hard work: a naive robber with bad luck would need

to press 40,000 digits to open a door. Suppose the robber first tries the combination

“1685” and then “1750”. In total, he needs to press the 8 keys “16851750”. However,

since the system has no enter key, every digit pressed after the third digit corresponds

to a new try. This means that not only the numbers “1685” and “1750” are tested, but

also all sequences of four consecutive digits in between: “6851”, “8517”, and “5175”. A

smarter robber could think about choosing a sequence of keys where every digit pressed

after third digit corresponds to a code not tried before. Since we have 10,000 different

combinations, the shortest sequence able to try every single combination could not be

shorter than 10,003 digits, which is much better than the previous 40,000. And for

the smart bandit, it would be interesting to know if such a sequence exists.

Because of a weird coincidence, a robber with a secret passion for medieval Indian
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Chapter 1 Introduction

poetry would have an advantage in finding a sequence with minimum length. His

inspiration could come from the Sanskrit word:

yamátárájabhánasalagám.

What does it mean? Absolutely nothing. But this word was used by medieval Indian

poets as a memory hook to remember all possible sequences of 3 syllables alternating

long (accented) and short (unaccented) ones (41, Chapter 8).

The principle is simple: every sequence of 3 syllables appears somewhere in the se-

quence of vowels aáááaáaaaá and can be remembered while someone speaks the word.

Computer Scientists may feel more comfortable exchanging a for 0 and á for 1. A

simple inspection shows that the resulting string, 0111010001, contains the 3-digit bi-

nary representation for all numbers from 0 to 7 exactly once, and is therefore minimal.

Notice that this is exactly how the 10,000 codes should be arranged so that we get an

optimal sequence of 10,003 digits.

The robber of Stockholm needs to solve a more complex instance of the same problem.

Instead of encoding all 3-digit strings of an alphabet with 2 symbols (a and á), he needs

to encode all 4-digit strings of an alphabet with 10 symbols in a single word. One

of the first details we notice while playing with this problem is that the minimum

possible length is only reached when every two neighbor codes share 3 digits. More

specific, in order to achieve the minimum length, the last 3 digits of the last tried code

must correspond to the first 3 digits of the next code, so that one new code is tried at

each newly pressed key.

In order to systematically solve the problem, one could think about putting all the

10,000 different codes in a diagram and connect each code to all the possible next ones.

For instance, in such a diagram, the codes to be tried after “2007” should be “0070”,

“0071”, . . ., and “0079”. The structure of this diagram has the following implication:

if a word containing all codes as substring has minimal length, then the order of the

codes in the sequence describes a trail in this diagram where every code is visited

exactly once. The opposite is also true: if a robber is able to find such a trail in this

diagram, then he is also able to find a word that minimizes the number of tries to

open a door.
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1.1 Graphs and Strings

In fact, in 1946, N. G. de Bruijn proved that such a word always exists by showing that

such a trail always exist. The diagram is thus called de Bruijn graph, and the sequence

de Bruijn Sequence. Although de Bruijn is believed to be the first who systematically

studied these graphs, no evidence has been adduced so far. Various descriptions from

many different areas can be found in the literature since the end of the 19th century.

An elaborate overview is presented in (41).

1.1 Graphs and Strings

In this section we introduce in a simple, and sometimes informal, way the basic knowl-

edge about graphs and strings needed to understanding the first part of this text.

1.1.1 Graphs

A graph is a mathematical object defined by two sets V and E, where V is an arbitrary

set and E is a set of pairs of elements in V . The elements in V are called the vertices of

the graph, whereas the pairs in E are called the edges. A graph, usually denoted by G,

is completely described by these two sets. Often the vertices and edges are graphically

represented in a diagram with dots and lines, where dots represent the vertices and

the edges are represented by lines connecting the corresponding vertices.

In many applications E is a multiset, which means that some pairs may occur more

than once in E. In this case, each edge e ∈ E has an associated multiplicity, which

corresponds to the number of times the pair e occurs in the multiset E.

Imagine that vertices are geographic places and the edges are ways connecting these

places. Any sequence of vertices visited by simply choosing a way (edge) on each place

(vertex) and going to the next one is called a walk in the graph. A walk that never

takes the same way (edge) twice is called a tour. If the tour never passes on the same

place (vertex) twice, it is called a path. Formally, let v1, v2, . . . , vη be vertices in V .

If for each vi, 1 ≤ i < η, there is an edge {vi, vi+1} ∈ E, the sequence of vertices

v1, v2, . . . , vη is called a walk in the graph. If for each vi and vj, 1 ≤ i < j < η,

{vi, vi+1} 6= {vj, vj+1}, the sequence of sets is called a tour in the graph. Finally, if
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Chapter 1 Introduction

the sequence of vertices v1, v2, . . . , vη is a walk where for each 1 ≤ i < j ≤ η, vi 6= vj,

the sequence is called a path in the graph.

Many practical applications involve finding tours and paths with special properties

in graphs. The first documented practical application of graph theory concerned the

problem of deciding whether there is a tour through the city of Königsberg starting on

a giving place, passing exactly once on each bridge in the city, and ending on the same

place. Leonhard Euler modeled the city as a graph with four places as vertices: North,

south, east, and island; and the bridges connecting these places: two connecting the

island to the south, two the island to the north, and three connecting the east to each

of the other three points, in a total of seven bridges, as shown in Figure 1.1. Euler

proved that there is no way to do such a tour in Königsberg, disappointing all people

who spent their free time trying to find them. Other graphs, like the de Bruijn graphs,

do have such tours, which are called Eulerian tours, in honor of the first mathematician

who studied them. A graph having Eulerian tours is called an Eulerian graph.

Another interesting kind of walk is actually a cycle, which is a path that ends in

the same point where it starts. The difference to Eulerian tours is that here we are

interested in passing in all vertices (not edges) exactly once. It is easy to see in

Figure 1.1 that such a cycle exists in Königsberg: for instance, starting at east, go

from east to south, than to the island, and come back passing through the north.

Cycles with this property are called Hamiltonian cycles, in honor of William Rowan

Hamilton, who solved the problem of finding such a cycle in a graph that has the shape

of a dodecahedron. Graphs with Hamiltonian cycles are called Hamiltonian graphs.

Although the definitions of Eulerian tours and Hamiltonian cycles are very similar,

since they only differ in the elements which need to be visited: edges, in Eulerian

tours, and vertices, in Hamiltonian cycles, finding Hamiltonian cycles is much more

complex than finding Eulerian tours. In fact, while Eulerian tours can be easily found

by extending a walk until it passes through all the edges, it is proved that there is no

better way of finding Hamiltonian cycles than trying any possible way to pass through

all the vertices.

Even though Hamiltonian cycles are hard to find, there are cases where Eulerian cycles

in a graph can be used to find Hamiltonian cycles in another. Consider a graph G

with vertex set V and edge multiset E, G = (V,E). We define the line graph of G,

L(G) = (VL, EL), as follows:
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1.1 Graphs and Strings

Figure 1.1: Graph representing the bridges of Königsberg. The city quarters, represented
by the set of vertices V = {North, South,East, Island}, are connected by seven bridges,
represented by the multiset of edges E = {{North, Island}, {North, Island}, {South,
Island}, {South, Island}, {North, East}, {Island, East}, {South, East}}.

VL = E,

EL = {{{u, v}, {v, w}} | u, v, w ∈ V }.

The graph L(G) is therefore the graph that has the edges of G as vertices and two

vertices are connected if and only if the edges they represent have a common vertex

in G. Notice that every walk on G that passes through at least three vertices can

be mapped in a walk on L(G), since every group of three consecutive vertices in the

walk in G correspond to an edge in L(G). Since an Eulerian cycle in G passes visits

all edges in G, the corresponding cycle in L(G) passes through all the vertices of the

line graph. Therefore there is a direct correspondence between Hamiltonian cycles in

L(G) and Eulerian cycles in G.

In graphs like the one shown in Figure 1.1 the order of the vertices in an edge is not

important: in the Königsberg example, if north and south are connected by a bridge,

one can go both from north to south and in the opposite direction through the same

bridge. We can think about modeling the case of one-way bridges and say that the

edges {North, South} and {South, North} are distinct, where the first edge models

the case when it is possible to go from north to south, and the second models the

opposite direction. These graphs are called directed graphs, and the diagram proposed

for organizing the codes to be tried by a robber in Stockholm is an example of them:
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Chapter 1 Introduction

while the pair of codes {1234, 2345} can be efficiently tried with only 5 digits, the

sequence {2345, 1234} needs 8 digits.

Edges in directed graphs are sometimes called arcs, and their multiset can be denoted

by A to reinforce the fact that the graph is directed. In an arc {u, v}, the vertex

u is called the predecessor of v and the vertex v the successor of u. The number of

arcs connecting a vertex to its predecessors is called the vertex indegree, while the

outdegree of a vertex is the number of arcs connecting it to its successors. If a vertex

has no predecessor, it is called a source, while a vertex with no successor is called a

sink. Definitions like walk, tours, and paths can be easily applied to directed graphs

with the additional restriction that consecutive pairs in walks must respect the order

of the vertices in the arcs. Also Eulerian tours and Hamiltonian cycles can be defined

on directed graphs.

1.1.2 Alphabets and Strings

An alphabet is a finite set of symbols usually denoted by Σ. Each alphabet has a length

σ = |Σ|, which corresponds to the number of symbols in the alphabet. The symbols of

an alphabet, also called characters, can be used to construct sequences called strings1.

Strings also have a length, which is the number of symbols they contain, counted with

repetitions. An empty string is a string with no characters and is usually denoted by

ε. Strings are sometimes called tuples. An l-tuple is a string of length l. The set of all

strings of a given length l over an alphabet Σ is denoted by Σl, which is also the set

of all l-tuples over Σ.

To give some examples, consider the alphabet of accented and unaccented vowels Σ =

{a, á} used in the introduction of this part. The sequence of vowels s = aáááaáaaaá is

a string of length |s| = 10 over this alphabet. Moreover, the set of all strings of length

3 on this alphabet is Σ3 = {aáá, ááá, ááa, áaá, aáa, áaa, aaa, aaá, }.

The characters in a string are numbered from 1, the leftmost character, to the length

of the string. Given a string s, we denote by s[i, j], 1 ≤ i ≤ j ≤ |s| the string formed

by the characters of s from the character i, inclusive, to the character j, inclusive.

1In this work we use the terms sequence and string as synonyms. Although some authors establish
clear differences between strings and sequences, specially in case of substrings and subsequences,
these differences are not explored in this work.
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1.2 De Bruijn Graphs and Sequences

Each string s[i, j] is called a substring of s. In the previous example, s[1, 3] = aáá is

a substring of s = aáááaáaaaá. Notice that in the previous example the set Σ3 is the

set of all substrings of s of length 3, which makes of s a de Bruijn sequence, as we will

see in Section 1.2.

The set of all substrings of a given length l of a string is called its l-dimensional

spectrum, or simply spectrum when the value of l is clear. For instance, if Σ = {a, á},
Σ3 is the 3-dimensional spectrum of aáááaáaaaá.

1.2 De Bruijn Graphs and Sequences

Formally, given an alphabet Σ of size σ = |Σ| and a length d > 0, a word on Σ is

called de Bruijn sequence if it contains all possible strings of length d on Σ exactly

once as substrings. The d-dimensional de Bruijn graph G = (V,A) on Σ is defined by

its sets of vertices and edges:

V = Σd,

A = {{u, v} | u, v ∈ V and u[i+ 1] = v[i], 1 ≤ i < d}.

In words, it is the directed graph that has all possible strings of length d over the

alphabet as vertices and an arc from vertex u to vertex v if, by deleting the first

character of u and the last character of v, we get the same string. Strings of length at

least d over the same alphabet describe walks on the d-dimensional de Bruijn graph.

In particular, a de Bruijn sequence of dimension d describes a Hamiltonian path2 in

the d-dimensional de Bruijn graph.

Take a vertex v in the d-dimensional de Bruijn graph and consider its prefix v′ and

suffix w′, both of length (d−1). Since v′ is a prefix of a string of length d and w′ is the

suffix of the same string, the suffix of length (d− 2) of v′ is equal to the prefix of w′.

Therefore the pair {v′, w′} corresponds to exactly one edge in the (d− 1)-dimensional

de Bruijn graph on the same alphabet. Moreover, an edge {u, v} in the d-dimensional

de Bruijn graph can be mapped into the pair of edges {{u′, v′}, {v′, w′}} in the (d−1)-

dimensional de Bruijn graph. As a result, the d-dimensional de Bruijn graph is always

2A Hamiltonian path is a sequence of vertices where every two consecutive vertices are connected
by an edge and every vertex in the graph is found in the sequence exactly once.
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Chapter 1 Introduction

Figure 1.2: The 4-dimensional de Bruijn graph for the alphabet Σ = {A, T} (left) and
the 4-dimensional de Bruijn subgraph associated to the set {TTTTATAAT, TATTATAAATT,
TTAAAATAT} (right). On the associated de Bruijn graph, TTAT is an example for a junction
and ATAA for a bifurcation.

the line graph of the (d− 1)-dimensional de Bruijn graph on the same alphabet. It is

easy to verify that for all vertex v′ in the (d− 1)-dimensional de Bruijn graph it holds

that indegree(v′) = outdegree(v′) = σ, where σ is the alphabet size. This condition

is necessary and sufficient to prove that the (d − 1)-dimensional de Bruijn graph is

Eulerian. In Section 1.1.1 we showed a mapping between Eulerian cycles in a graph

and Hamiltonian cycles in its line graph. Therefore, each Eulerian cycle in the (d−1)-

dimensional de Bruijn graph corresponds to an Hamiltonian cycle in the d-dimensional

de Bruijn graph, which shows that d-dimensional de Bruijn graphs are Hamiltonian,

and there is always a de Bruijn sequence of dimension d.

Given a set of strings, we define the associated d-dimensional de Bruijn subgraph as the

subgraph of the d-dimensional de Bruijn graph that contains all the walks described

by these strings and no extra vertex or arc. A vertex in an associated de Bruijn

subgraph is called a junction when it has in-degree greater than 1. A vertex with

out-degree greater than 1 is called bifurcation. Figure 1.2 shows examples of a de

Bruijn graph and a de Bruijn subgraph associated to a collection of strings. Note

that different sets may have the same associated de Bruijn subgraph. For instance,

the set {TATTATAAT, TTTTATAAAATAT, TTAAATT} also has the associated graph shown in

10



1.3 De Bruijn Graphs and Bioinformatics

Figure 1.3: The replacement, deletion, and insertion edit-operations.

Figure 1.2 (right).

1.3 De Bruijn Graphs and Bioinformatics

Thirty years after revealing the first sequence of nucleotides within a DNA molecule,

we are still not able to read an entire genome at once. Instead we read small contiguous

portions of DNA molecules called reads. This is a common limitation shared by every

sequencing technique. In order to discover a whole genome sequence, we need to solve

the genome assembly problem.

Definition 1.1. Genome Assembly Problem. Given a collection of (imperfect)

substrings of a string G, determine G.

Here the genome assembly problem is defined for genomes with only a single chromo-

some. Although we know that organisms often have more chromosomes, because we

human beings all have, this simplification is realistic, since the physical separation of

chromosomes is possible, and most genome projects focus on each chromosome indi-

vidually. Clearly, the substrings in our case are reads, and G is the genome sequence.

With “imperfect” we mean that the substrings in the collection do not necessarily

match one of G’s substrings, but may differ from them by a certain number of edit-

operations shown in Figure 1.3 and described below:

Replacement: One character in the genome has been replaced by a different character

in the read.

Deletion: One character in the genome is not found (deleted) in the read.

Insertion: In the read, one additional character occurs which does not exist in the

genome.
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Assembling the genome is the first task of the majority of genome exploring projects.

Therefore, it is not surprising that the first use of de Bruijn graphs in Bioinformat-

ics was the Eulerian path approach to sequence assembly proposed by Idury and

Waterman (25) and extended by Pevzner, Tang and Waterman (35). Despite the

success achieved by the resulting Euler assembler in assembling bacterial genomes,

de Bruijn graphs are not used further for other biological applications. We found

many extensions of the de Bruijn graph based assembly approach in recent litera-

ture (6; 8; 9; 10; 46), but they usually focus either on improvements in error cor-

rection methods or in adapting the original method to new sequencing data. Other

works present graphs that slightly remind of de Bruijn graphs, but miss their main

feature, namely, the unique representation of tuples of a given size (34; 38). In the

next sections we present biological applications based on de Bruijn graphs.

1.3.1 Variations on a de Bruijn Graph Assembler

Theme: Idury and Waterman

Probably the first biological application using an underlying de Bruijn graph was the

algorithm for DNA sequence assembly devised by Idury and Waterman (25). The

algorithm receives a read collection S and a positive integer l as input. Initially, all

substrings of size l found in the reads are used to construct an (l− 1)-dimensional de

Bruijn subgraph3. After that, an Eulerian tour is found in this graph. This tour is

supposed to spell the genome sequence. At the end, the reads in S are aligned to the

genome sequence, so that biologists may visually inspect the assembled sequence and

evaluate its quality.

Algorithm 1 Idury-Waterman DNA Sequence Assembly Algorithm
1: function Assembly(S, l)
2: Obtain the union of spectra of all fragments and their reverse complements.
3: Construct the de Bruijn graph on (l − 1)-tuples for the l-tuples generated in line 2.
4: Perform a variant of Eulerian Tour and infer the sequence
5: Align the fragments to the sequences produced in the line 4
6: end function

3Because the set of such substrings is called spectrum, the authors call this graph spectrum graph.
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1.3 De Bruijn Graphs and Bioinformatics

To deal with sequencing errors, Algorithm 1 does not find an Eulerian tour, but uses

heuristics while trying to find the path corresponding to the genome in the tangled

graph constructed with the fragments’ spectra. Notice that there is no clear optimality

criterion in this approach: the algorithm heuristically decides which nodes should be

included in the path and which should be skipped. The analogy to Eulerian tours is

limited to the ideal error-free case: the tour found by the algorithm in real data is not

even expected to be Eulerian.

Variation I: The Euler Assembler

In 2001, Pevzner et al. successfully applied Idury and Waterman’s ideas to bacterial

genomes. The main difference between their Euler assembler (36) and the previously

described de Bruijn based assembler is that in Euler the assembling is clearly divided

in four distinct steps:

Elimination of erroneous tuples. In Idury and Waterman’s assembler, this operation

is done together with the “Eulerian” tour construction. In this variant, the elim-

ination of erroneous tuples takes place before the graph construction. Pevzner

et al. analyze the tuples’ multiset found in the reads’ spectra and separate the

tuples in two groups: solid and weak, where solid means that the tuple appears

in the multiset with multiplicity greater than a given parameter and weak means

that the tuple appears with multiplicity up to the parameter. Assuming that the

solid tuples should be correct, they are used as a draft of the target genome’s

spectrum. This draft is in turn used to correct other tuples. The result is a

shrinkage of around 97% in the number of read errors, concordant with an error

rate reduction from 4.8% to 0.11%.

De Bruijn graph construction. The associated de Bruijn subgraph for the given col-

lection S of reads is constructed.

Graph simplification. Long induced paths are substituted by single nodes.

Sequence determination. The assembled sequence is output.

As shown in the next sections, most of the de Bruijn graph based assembly methods

rely on these four basic steps. In Idury and Waterman’s approach, there is an extra

fifth step where the reads in S are aligned to the genome sequence. According to
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the authors, this is an important step for the assembly validation by biologists, since

by visualizing the alignment, they can clearly see how the reads fit in the assembler

output.

The Euler assembler notably overcomes the assemblers based on the traditional overlap-

layout-consensus paradigm when assembling prokaryotic genomes, but there is no rea-

son to expect that this is also true for eukaryotes. There are many reasons to believe

that the step from prokaryotic to eukaryotic genomes may be more difficult for de

Bruijn based approaches than for traditional ones:

• The high number of repetitive elements in eukaryotic genomes makes the re-

sulting de Bruijn subgraph much more tangled than the ones found in bacterial

genomes. As a result, the number of possible Eulerian tours is bigger, which

makes the task of deciding which one corresponds to the target genome more

difficult.

• Tandem repeated sequences have similar tuples – sometimes even so similar

that a few errors may transform one tuple in another also found in the genome

spectrum. Most of the error correction procedures are based on the copy number

of the tuples, which is the number of occurrences of a certain tuple in the read

collection spectrum. If a sequencing error transforms a tuple into another one of

the genome spectrum, the copy numbers for both tuples are no longer precise.

As a result, error correction procedures based on copy numbers may fail in these

cases.

• Although the memory used to represent de Bruijn subgraphs grows nicely asymp-

totically, the amount of memory used in practice to represent bacterial genomes

is almost prohibitively large. Moreover, eukaryotic genomes are orders of magni-

tude larger and also much more complex. With a larger genome we are forced to

choose between a de Bruijn graph of larger dimension, which prevents different

regions from matching by chance, and a graph of smaller dimension, which saves

memory, but is surely much more complex and complicates the identification of

the correct path.

The authors seem to ignore these facts when they write:

Our main result is the reduction of the fragment assembly problem to a

variation of the classical Eulerian path problem (36, page 257).

14



1.3 De Bruijn Graphs and Bioinformatics

The mentioned reduction does not imply any simplification of the genome assembly

problem. Finding an Eulerian path in a graph is indeed a computationally easy task.

The problem is that biologists do not want “ONE” Eulerian path, but “THE” Eulerian

path corresponding to the genome sequence. If we consider that a graph G = (V,E)

has

C
∏
v∈V

(outdegree(v)− 1)!

alternative Eulerian circuits, where C is a value that depends on the graph struc-

ture4 (2, Section 9.4), we see that finding the walk in the underlying de Bruijn sub-

graph corresponding to the genome sequence may be a hard task. Of course the fact

that reads describe small trails of the walk may help finding the original one, but

recent results of Medvedev et al. (31) show that Eulerian path based approaches are

not simpler than approaches based on the overlap-layout-consensus paradigm.

Variations II and III: Euler-DB and Euler-SF

Three variations of the basic Euler-assembler were published at the time the original

software was presented (33), two of them being described in slightly more detail four

months later (35). They all incorporate extra information about the reads in order to

simplify the sequence determination step:

Double-barreled data. By slightly changing the sequencing technique, it is possible

to obtain pairs of reads whose relative distance in the genome may be estimated.

These pairs are called mate pairs and can be viewed as larger reads of the form

“left known sequence – gap of estimated length – right known sequence”. This

information was incorporated in the Euler-DB assembler, which tries to find

a path in the underlying graph which binds a left to the corresponding right

known sequence. If a path with the estimated length is found, the mate pair is

exchanged by a mate-read, which consists of the whole sequence spelled by the

path beginning in the left read, going through the found path, and ending at the

right read. Pevzner et al. reported that 81% of the used Neisseria meningitidis

mate-pairs could be transformed into mate-reads.

4To be more precise, C is any cofactor of the Laplacian matrix of G.
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Scaffolding. Only mate-pairs which correspond to the same connected component in

the de Bruijn subgraph have a chance to be transformed into a mate-read. In

some cases, the sequences of a mate pair end up in two different components.

In these cases, although the gap in the mate-pair cannot be filled, valuable

information about the order of the components’ sequences is obtained. In Euler-

SF, the information of separated mate-pairs is used to connect sinks to sources

in the graph with artificially inserted edges, so that an Eulerian path passing

through all the components may be found. At the end, the genome sequence

is not entirely known, but the order of its fragments can be inferred by the

separated mate-pairs.

Variation IV: Playing with short reads

Nowadays there is a number of alternatives to the traditional Sanger sequencing

method – most of them producing a much larger amount of shorter reads. In 2004,

just after the appearance of the first sequences generated by one of these alternative

methods in GenBank, Chaisson, Pevzner, and Tang (9) presented a first analysis of the

impact of short reads in de Bruijn subgraph based assemblers. The main contribution

of this work is a formal algorithmic solution for the error correction problem solved in

Euler. The presented results are again limited to bacterial chromosomes, and unfortu-

nately heuristic approximations are used instead of the exact dynamic programming

solution proposed.

The even shorter reads produced by the Illumina-Solexa sequencers are studied by

Butler et al. (8). They focused on microreads to design their “ALLPATHS” assembler,

and used “30-base simulated reads modeled after real Illumina-Solexa reads” to test it.

In their simulation, the reads covering the target genome around 80 times, are paired.

The assembly procedure is never described in an algorithmic-like fashion and is very

similar to the original de Bruijn assembler procedure by Idury and Waterman, though

less precise. In fact, sections like Algorithmic ingredients for unpaired-read assembly

and Algorithmic ingredients for paired-read assembly give a strong “cookbook” feeling

to the reader. Like in Idury and Waterman’s assembler, the de Bruijn subgraph

associated to the given read set is built and processed in the hope of getting a simpler

graph able to describe the target genome. The read pair information is used to simplify

the graph in a bootstrap fashion: first the pairs with smaller distance are processed in
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the search for the path that connects them and at the same time better approximates

the target genome; once instance is solved for closer pairs, the assembler processes

more distant ones. Analyzing a pair involves finding all paths in the graph that

connect its both ends. It is not difficult to see that low complexity regions may

lead to combinatorial explosion. In such cases, the assembler gives up assembling

the corresponding region. As a result, the method fails in assembling more complex

genomes. This can be seen in the results presented by the authors (8, Table 3): in the

human genome assembly, only 0.2% of the genome is covered by contigs with more

than 10,000 bases.

The “Velvet” method for short read assembly, presented by Zerbino and Birney (46),

uses a structure which is similar to sequence graphs to assemble small genomes of

maximally 5 million nucleotides. They show that, although the direct assembly of an

entire genome based on short reads may be hard, or even impossible, the conventional

idea of physically breaking the DNA molecule into smaller pieces, obtaining a high

quality assembly of the small portions, and merging them into an overall good assembly

of the whole genome, can be feasible.

Variation V: DNA sequencing with nanopores

Bokhari and Sauer (6) addressed the other extreme of new generation sequencing

strategies. Sequencing with nanopores is still far away from being reality. On the

other hand, if and when a sequencing machine can be built based on this principle,

sequence assembling may become a trivial task.

The principle of nanopore sequencing is simple: A membrane separates two vessels

filled with a fluid, one of them containing single stranded DNA molecules. The mem-

brane has several nanopores through which the DNA molecules may pass. The pores

are so narrow that the bases are forced to pass one at a time. An electrical potential

is applied to the pores. When a base passes through one of them, it causes a change in

the electrical potential. This change can be measured, and used to identify the base.

In the ideal case, one could read a complete DNA molecule in one pass. However,

secondary structures of single stranded DNA, like hairpins, may hinder the molecule

flow through the pore, and eventually break it. Therefore, this method is expected to

produce reads of average length 10,000 base pairs.
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An amazing particularity of nanopore sequencing is that it is not limited to the tradi-

tional 5’ to 3’ end orientation: since polymerases play no role in the sequencing process,

and the pores are unable to distinguish between the DNA extremities, some molecules

may be read from the 3’ to the 5’ end. As a result, both complementarity and reverse

complementarity are possible, giving rise to 4 different versions of the same molecule.

This could be a problem if the reads were not as long as they are. Since the reads are

thousands of bases long, the underlying graph dimension may be much larger than

in usual de Bruijn graph based applications. As a result, the probability of having a

tuple appearing twice in the genome by chance is close to zero; even in two different

forms like the sequence and its complement, or the sequence and its reverse comple-

ment. The approach proposed by Bokhari and Sauer takes advantage of that: they use

an underlying graph with large dimension to force the resulting graph to be formed

by four disjoint paths: one for each variant of the target genome. In the case they

succeed in finding such a graph, they output the sequences spelled by the four paths

as the assembled genomes; otherwise their assembler assumes that the data quality is

too poor to allow the genome assembly and reports a failure. Errors are treated in a

similar way to the assembler suggested by Idury and Waterman (25): lowly covered

nodes are considered to represent sequencing errors and are hence removed from the

graph.

The biggest problem in such an approach is evident: even if the assumption that the

data produced by such a sequencing method is of very high quality is reasonable, the

graph dimension needed to avoid loops caused by exact repeats may be so large that

the probability of having a correct tuple is close to zero. In this case, even a huge

coverage cannot guarantee that the whole genome will be covered by error free tuples.

Moreover, even when the genome is covered by error-free tuples, it may be impossible

to separate them from erroneous tuples.

1.3.2 Euler-CN: Counting Copy Numbers

The assemblers Euler-DB and Euler-SF presented in the previous section only adapt

previously existing techniques to a de Bruijn graph based genome assembling approach.

However, a by-product of this family of Euler assemblers is able to do something new:

estimating the number of copies of sequences in a genome before solving the assembly

problem.
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The approach is simple, but efficient. Pevzner et al. (33) defined, for each vertex v in

a directed graph G(V,E,w), the value div(v) which is the sum of multiplicities of edges

entering v minus the sum of multiplicities of edges leaving it. The edge multiplicities

are given by the function w. A graph is called balanced if div(v) = 0 for all v ∈ V

that are neither sinks nor sources. A flow f : E → N, with f(e) ≥ w(e) for all e ∈ E,

such that the graph G(V,E, f) is balanced. The copy number of a vertex is the sum

of multiplicities of edges entering (or leaving) the node in G(V,E, f). The principle of

parsimony suggests that a flow that minimizes∑
e∈E

f(e)

should give the real copy number for each vertex, or at least a good approximation of

it.

In (33), the authors suggest a reduction to the problem of finding a minimal flow in

a network with lower capacity bounds. The reduction consists of adding an artificial

vertex to the graph and creating edges going from each sink to the new vertex, and

from the new vertex to each source. This approach was used to assign copy numbers to

edges in a de Bruijn subgraph built with artificially created reads of the genome of the

bacterium Mycoplasma genitalium. The authors report the assignment of multiplicities

to 3 edges and comment the correctness of one of them. Unfortunately no stronger

proof of the concept is provided in the original paper.
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Chapter 2

Representing Sparse de Bruijn

Subgraphs

Sequence associated de Bruijn subgraphs have a nice asymptotic behavior: their maxi-

mum number of vertices increases linearly with the size of the input, and even decreases

with the dimension of the graph. The main problem is that, although these graphs

scale very well with the sequence set size, graphs corresponding to genomes as small

as bacterial genomes are already huge. On the other hand, de Bruijn graphs are by

definition sparse (16, Chapter 7). Even in applications where smaller dimensions are

required (20), their number of edges in the DNA world is not greater than four times

the number of vertices. Their subgraphs are surely sparser. In a typical sequence

analysis application (35; 47), the probability of having a vertex with maximum in-

or outdegree is very low. Therefore the graph construction in such applications is

usually followed by a step where long branch-free paths are collapsed to single vertices

(Section 1.3.1).

To represent sparse de Bruijn subgraphs, we use an indexed structure that we call

d-dimensional sequence graph, or simply sequence graph, shown in Figure 2.1. Like a

d-dimensional de Bruijn subgraph, every d-tuple over the given alphabet is represented

by at most one vertex. As well as that, a sequence graph may contain an arc (u, v)

only if the d − 1 suffix of u is identical to the d − 1 prefix of v. The main difference

between sequence graphs and de Bruijn graphs is that vertices in a sequence graph are

not limited to the size d, but may have any size between d and |Σ|d+d−1, which is the
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maximum size of a d-dimensional de Bruijn sequence1. This allows the representation

of non-branching paths in a single vertex.

To connect the sequence graph to the concept of de Bruijn subgraphs, we use an

index (see Figure 2.1 (right)) mapping every d-tuple to the vertex in which it is found.

Remember that vertices may have size greater than d, therefore the representation of

a tuple may start anywhere in the middle of a vertex. In order to precisely identify

a tuple, not only the vertex, the offset of the d-tuple is given by another index (see

circles in Figure 2.1). We also extend the neighborhood concepts from vertices to

tuples. Consider two tuples a and b in a sequence graph. We call b the successor of

a if either a is the suffix of a vertex u, b is the prefix of a vertex v, and the graph

contains the arc (u, v); or if there is a vertex v such that a = v[i . . . i + d − 1] and

b = v[i+ 1 . . . i+ d], for a non-negative integer i. We call a the predecessor of b in this

case, and a and b are called neighbors. Note that there may exist vertices u with suffix

a and v with prefix b without a and b being neighbors. See, for example, the vertices

TGAGTA and TAAGATGCAATATTGTG in Figure 2.1.

Notice that there is no rule forcing non-branching paths to be represented by single

nodes. Depending on how the sequence graphs are built, they may be exactly like their

corresponding de Bruijn graphs. In order to compress non-branching paths during the

graph construction, some care needs to be taken. Apart from the inclusion of vertices,

there are two operations that can be applied on the set of vertices: cutting and merging.

They are described in the following sections.

2.1 The Cut Operation

When a sequence is included in a sequence graph, the tuples found only in the sequence

need to be added to the graph as new vertices. The tuples already represented by the

graph may be in the middle of a vertex. Since tuples that are neighbors in the sequence

have to be neighbors in the graph as well, and arcs only connect the last tuple of a

1For an intuition about the maximum size of a d-dimensional de Bruijn sequence, remember that de
Bruijn sequences can be obtained by superimposing the vertices of d-dimensional de Bruijn graphs
in the order they appear in a Hamiltonian path. Since each vertex overlaps with its predecessor in
all but the last symbol, after the d symbols of the first visited vertex, each of the remaining |Σ|d−1
vertices adds exactly one new symbol to the sequence, resulting in a sequence with d + |Σ|d − 1
symbols.
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2.1 The Cut Operation

Figure 2.1: Sequence graph corresponding to a 3-dimensional de Bruijn subgraph on the
alphabet Σ = {A,C,G, T}. Connectors to the vertex TAAGATGCATATTGTG are shown as
black arrows with offsets, all other connectors are shown in gray.

vertex to the first of another, in order to represent the sequence correctly, vertices

need sometimes to be cut.

The cut operation transforms a single vertex into two neighboring vertices. It is

illustrated in Figure 2.2 and presented in pseudo-code in the next page. During the

cut, a new vertex is created, and the vertex prefix is transferred to it. In addition,

every incident edge to the cut vertex is transferred to the new one. A cut does not

change the set of sequences represented by the graph, since no new tuple of size d or

greater is created, and the new edge binds two tuples that were neighbors before.

As Figure 2.2 shows, connectors to the cut part are out-of-date after the operation:

they should point to the new vertex u after the cut. Updating these connectors

would imply a computational cost of O(log |Σ|d) = O(d log |Σ|) for every tuple in the

spectrum of the cut part, since all connectors must first be found in the index. To

avoid the index search, we postpone the connector update to the next usage of the

connector. The update is done by a link to one of the incoming vertices. We call this

link the followMe link. It works like an Ariadne’s thread, marking the path to the

tuples that were once represented by the prefix of the actual vertex.
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Algorithm 2 Cut Procedure

1: procedure Cut(v, cutPoint)
2: create a new vertex u
3: label(u)← label(v)[0 . . . cutPoint− 1 + dimension]
4: delete the first cutPoint characters of label(v)
5: for each edge (u′, v) do
6: remove the edge (u′, v)
7: create the edge (u′, u)
8: end for
9: followMe(u)← followMe(v)

10: starting-point(u)← starting-point(v)
11: starting-point(v)← starting-point(v) + cutPoint
12: create the edge (u, v)
13: followMe(v)← u
14: for each s ∈ sequence-set(v) do
15: put s in sequence-set(u)
16: end for
17: end procedure

A connector knows that an update is needed thanks to a starting point associated to

each vertex. Every time a vertex is cut, its starting point increases by the size of the

prefix the vertex loses. As a result, the difference between the connector offset and the

vertex starting point is only non-negative if the tuple linked by the connector is still

represented by the vertex after the cut. In the case an update is needed, the correct

vertex is localized by following the trace left by the followMe links. The connector to

the tuple “TAA” in Figure 2.2 shows how it works: after the cut, the offset of the tail

is set to 4, and the corresponding difference is −4. This causes the connector to follow

the link in the direction to the head of the original vertex. At the head, the difference

becomes 0, which shows that the correct vertex was reached.

Many of the connectors may never be used. The ones that are used can only be

accessed via the index, and any operation that uses them must pay the computational

cost of searching for them. When we create the followMe link, we combine two searches

in one. The computational cost of finding a connector is payed by the operations that

need to access vertices via the index, and must do the search anyway. Therefore

avoiding connector updates reduces the cost of each update to O(1).

In many applications it is necessary to store a set of sequences where the vertex tuples

are found. Since vertices are cut with the intention of inserting a sequence in only
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Figure 2.2: Example of the cut operation applied to position 4 of the central vertex in the
graph of Figure 2.1. Numbers in parentheses correspond to the vertex starting points after
the cut.

one of its parts, the sequence set of each part must be independent after the cut

operation. In lines 14 to 16 of Algorithm 2, we duplicate the sequence set of v. This

can be done in Θ(|sequence-set(v)|) time. Since both the number of connectors to

update and the number of characters to transfer to the new vertex are bounded by

the size of the vertex, the time needed for a cut is O(|v| + |sequence-set(v)|). In

general, |sequence-set(v)| may be as large as |S| , the number of sequences inserted in

the graph. In later applications following, we expect to have much smaller sequence

sets, since the genome coverage is small.

2.2 The Merge Operation

If two vertices u, v ∈ V have identical sequence sets and are separated only by the arc

(u, v), they may be merged. The merge operation is the inverse of the cut operation.

As the name suggests, it removes (u, v) by merging its vertices into a single vertex.

This is done by transferring the information from v to u while updating the edges

and connectors, so that the vertex v may be removed from the graph afterwards. The

operation is presented in pseudo-code in Algorithm 3.
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Since the merge operation aims at the complete removal of a vertex, and all connectors

pointing to the removed vertex have to be updated, this operation is asymptotically

more time consuming than a cut. Since each connector pointing to the second vertex

must be found in the index, each merge operation takes O(|v| d log |Σ|) time.

Algorithm 3 Merge Procedure

1: procedure Merge(u, v)
2: label(u)← label(u) + label(v)[dimension . . . size(v)]
3: for each edge (v, v′) do
4: remove the edge (v, v′)
5: create the edge (u, v′)
6: end for
7: for each tuple t ∈ d-tuples(v) do
8: update connector(t)
9: end for

10: discard the vertex v
11: end procedure

2.3 Implementation Details

We assume that the index is implemented by a balanced tree table (13, Chapter 12).

The index maps d-tuples to simple data structures called connectors. A connector is a

pair formed by a pointer to a vertex and an integer. The integer is the key to find the

d-tuple representation in the vertex: summing up this number to the vertex’ starting

point either gives the d-tuple offset in the vertex, or indicates that the connector is

out-of-date. In the second case, the connector can be easily updated by following the

followMe links until the sum becomes non-negative.

In many applications, it is necessary to store in each vertex the sequences which are

represented by it, as well as the number of occurrences of the vertex label in each

sequence. We assume that sequences can be uniquely identified by an integer. And

each vertex has a sequence multiset, where pairs <sequence identifier,multiplicity>

are stored in balanced binary search trees (13, Chapter 12). If s is the number of

sequences inserted into the graph, these trees have at most s vertices, and insertions

and searches can be done in O(log s) time.
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Vertex adjacencies are stored in arrays of size |Σ|. Both the edges going from and

to the vertices are stored, so that any path in the graph is given by a doubly linked

list.

2.4 Finding Repetitive Sequences in DNA Molecules

The main challenge in using de Bruijn subgraphs as a starting point for sequence

assembling is that, even for high dimensions, the subgraph associated to a collection

of reads is very tangled. Fortunately, finding exact repeats is much simpler than

assembling a genome, since we do not need to untangle graphs, but only to identify

the tangled parts. Sequence graphs allow a compact representation of sparse de Bruijn

subgraphs, but the representation efficiency depends on how cuts and merges are done.

In this section, we show how to insert sequences into an initially empty sequence graph

in such a way that the number of vertices is minimized at the same time that vertices

corresponding to repeats in the inserted sequences are identified.

When identifying vertices corresponding to repetitive regions, we make use of the

following variables:

marked(v): Boolean denoting whether vertex v is marked. A vertex is marked when

it is part of a repeated region.

sequence-set(v): The set of sequences that has label(v) as substring.

After each sequence insertion, we want the following invariants to hold:

• The value of marked(v) is true if and only if label(v) is a repetitive sequence.

• If (u, v) is an edge, then either the out-degree of u or the in-degree of v is greater

than 1, or sequence-set(u) 6= sequence-set(v).

2.4.1 Special Operations

Other minor functions and procedures are used to transform sequence graphs or access

their vertices. These are:
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cutLeft(c). This procedure cuts the vertex linked to the connector c exactly at the

position the connector points to. Consequently, the resulting vertex begins with the

tuple indicated by c.

cutRight(c). Similar to cutLeft, this procedure cuts the vertex to which the

connector c points, creating a vertex where the tuple is at the end of the vertex

pointed to by the followMe(node(c)) after the cut.

getConnectors(s, path, i, j). Let s be a string, path be an array of connectors of

length |spectrum(s)|, and 0 ≤ i ≤ j < |spectrum(s)|. This procedure acts on the

content of path[i . . . j] in the following way:

• Let R = spectrum(s)[i′ . . . j′], i ≤ i′ ≤ j′ ≤ j, be a maximal region such that

there is a vertex n in the sequence graph representing all the d-tuples in R,

and in which for every pair of tuples a, b such that b is a successor of a in R,

b is a successor of a in n. After the execution of getConnectors, path[i′] =

connector(spectrum(s)[i′]), path[j′] = connector(spectrum(s)[j′]), and path[k] =

null, for i′ < k < j′.

• For every index i such that the d-tuple spectrum(s)[i] is not represented in the

sequence graph, create a new connector c = connector(spectrum(s)[i]), and let

path[i] = c.

The changes on path after calling getConnectors is schematically represented by

Figure 2.3.

getVertices(path). This function returns a list of vertices describing the same path

in the graph given by the array of connectors path. It returns a list containing the

vertices corresponding to the connectors in the array path in the same order as the

connectors. If a series of consecutive connectors correspond to consecutive tuples

in a vertex, the vertex is included only once in the list, so that the correspondence

between the path defined by the list of connectors and the path given by the vertex

order holds. This operation assumes that the operation getConnectors updated

the array of connectors path, so that it looks like the scheme in Figure 2.3.

contiguous(path, i, j). Let path be an array of connectors. This boolean function

returns true if the connectors in path[i . . . j] correspond to a substring of a vertex.
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Figure 2.3: Array path after the procedure calling getConnectors(s, path, i, j). New con-
nectors are represented by white headed arrows. The old connectors are divided in two
regions, R1 and R2.

Both cut operations clearly have the same running time as the cut operation de-

scribed in Algorithm 2. getConnectors only uses the index to localize the desired

connectors, therefore it runs in O((j − i)d log |Σ|) time. The function getVertices

simply accesses the vertices of a collection of connectors, updating the connectors.

However, the computational cost for updating a connector has already been “payed”

by the cut operation that caused this cost. Thus, we consider that the connector

update is made in constant time, and the function getVertices runs in O(|path|)
time. contiguous can clearly be calculated in O(j − i) time.

2.4.2 Sequence Insertion

The insertion of a string, shown in pseudo-code in Algorithm 4, is done in three phases,

which are described below.

Phase One: Changes in the Set of Vertices

In the first phase, the graph is prepared for the sequence insertion. In this phase,

existing vertices are cut in order to represent common substrings that the new sequence

shares with already inserted sequences. At the same time, new vertices are inserted
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into the graph, so that the unique new parts can be represented as well. This phase

is preceded by a short initialization step, where the connectors to the sequence tuples

are either found or created and inserted into the index. At the end of the initialization

step, we have an array of connectors which looks like the one shown in Figure 2.3. This

structure guides the creation of new vertices, as well as the adaptation of old vertices

to the new sequence. Vertices are created or adapted while the sequence spectrum is

analyzed from left to right, that is, from the first to the last d-tuple.

New vertices Lines 7 to 17 of Algorithm 4 detect and fill places where new vertices

are needed. The necessity of a new vertex is identified by the presence of empty con-

nectors, which are connectors that are not associated to any vertex. Empty connectors

are represented by white headed arrows in Figure 2.3. When the leftmost in a series

of empty connectors is found, a vertex is created (line 9) and labeled with the first

(d− 1) symbols of the corresponding d-tuple (line 10). Neighboring empty connectors

are iteratively found, and the necessary updates both in the new vertex and in the

connectors are done (lines 11 to 16). This step continues until the first non-empty

connector or the end of the string is reached.

Old vertices Any vertex connected to a non-empty connector is an old vertex. Even

newly created vertices can be considered old if they contain tuples which are duplicated

in the sequence to insert. The importance of distinguishing between new and old

vertices is that only old vertices may be repetitive. This fact is used in phase three to

mark repetitive vertices.

If only a part of an old vertex matches the new sequence, the vertex must be cut.

Any pair of neighboring d-tuples in the new sequence may force a vertex cut. It is

only necessary that at least one of the two tuples is already represented, and that the

tuples are not neighbors in the graph. A cut is necessary every time at least one of

the cases described below is observed. (Figure 2.4 illustrates these cases.)

Case A: Let a and b be two tuples in the string to be inserted, such that a is the

predecessor of b. Suppose b is already represented in the graph by the vertex n.

If a is not the predecessor of b in n and b is not the leftmost tuple of n, then

n has to be cut into two vertices n1 and n2, creating the arc (n1, n2), in such a

way that b is the leftmost tuple of n2.
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Figure 2.4: Snapshots of a de Bruijn subgraph in three different moments of a sequence
insertion. In I, we see the graph before the insertion. In II, the contiguous regions already
contained in the graph are identified. After the identification of contiguous regions, new
vertices are inserted and the necessary cuts are done, like shown in III. Finally, IV shows
the graph after the cration of the necessary edges, with the new repeated regions marked.
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Case B: Let a and b be two tuples in the string to be inserted, such that a is the

predecessor of b. Suppose a is already represented in the graph by the vertex n.

If b is not the successor of a in n and a is not the rightmost tuple of n, then n

has to be cut into two vertices, n1 and n2, creating the arc (n1, n2), in such a

way that a is the rightmost tuple of n1.

Case C: Let a be the leftmost tuple in the string to be inserted. Suppose a is already

represented in the graph in the vertex n. If a is not the leftmost tuple of n, then

n has be cut into two vertices, n1 and n2, creating the arc (n1, n2), in such a way

that a is the leftmost tuple of n2.

Case D: Let a be the rightmost tuple in the string to be inserted. Suppose a is already

represented in the graph in the vertex n. If a is not the rightmost tuple of n,

then n has to be cut into two vertices, n1 and n2, creating the arc (n1, n2), in

such a way that a is the rightmost tuple of n1.

In Algorithm 4, we use the boolean function contiguous to identify the longest

substring that matches an existing vertex (line 20). Once this substring is found, we

are able to analyze the extremities of the corresponding vertex region, so that the

necessary cuts may be done (lines 21 and 22).

Phase Two: Walk Connection

The set of vertices may have been modified by cuts in Phase One. Therefore Phase

Two also starts with two initialization steps: the update of the connectors in cPath

(line 26), and the conversion of cPath into the corresponding vector of vertices vPath

(line 27). Phase Two begins with the connection of the vertices in vPath (line 28) and

the insertion of the sequence identifier in each of the vertices’ sequence sets (line 29).

If vertices may be merged, this is done in lines 30 to 32. It is only possible to merge

two vertices if they have the same set of sequences and are neighbors. Vertices with

the same set of sequences are either created in the same insertion or are two parts

of a cut vertex. If they are created during the same sequence insertion, they are not

neighbors by construction. If they are parts of a cut vertex, they can only remain

with the same set of sequences if the rightmost portion of the vertex corresponds to

the beginning of the sequence, and the leftmost portion corresponds to the end of the
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2.4 Finding Repetitive Sequences in DNA Molecules

Algorithm 4 Sequence Insertion
1: procedure InsertSequence(s)
2: index← 0
3: last← |s| − d+ 1
4: cPath is an empty array of connectors of size last
5: getConnectors(s, cPath, 0, last) . Phase One
6: while index < last do
7: if node(cPath[index]) = null then . new vertex
8: start← index
9: create a new vertex n

10: label(n)← d-tuples(s)[start][0 . . . d− 1]
11: repeat
12: node(cPath[index])← n
13: offset(cPath[index])← index− start
14: append the last symbol of d-tuples(s)[index] to label(n)
15: index← index+ 1
16: until index = last or node(cPath[index]) 6= null
17: end if
18: if index < last then . old vertex
19: start← index
20: index← min(x : x ≥ start ∧ ¬contiguous(cPath, start, x))
21: if Case A or Case C then cutLeft(cPath[start])
22: if Case B or Case D then cutRight(cPath[index− 1])
23: mark node(cPath[start]) as old
24: end if
25: end while
26: getConnectors(s, cPath, 0, last) . Phase Two
27: vPath← getVertices(cPath)
28: for each pair of neighbors u, v in vPath, create the edge (u, v)
29: for each vertex n ∈ vPath, insert s in sequence-set(n)
30: if sequence-set(vPath[0]) = sequence-set(followMe(vPath[0])) then
31: merge(followMe(vPath[0]), vPath[0])
32: end if
33: for each maximal contiguous region old vertices vPath[i . . . j] do . Phase Three
34: R← ∅
35: for each v in vPath[i . . . j],
36: and its left and right neighbors, u and w, both possibly null do
37: U ←

⋃
u′∈in(v)\{u} sequence-set(u′) ∪

⋃
w′∈in(v)\{w} sequence-set(w′)

38: R← R ∪ (sequence-set(v) ∩ U)
39: end for
40: for each unmarked vertex n ∈ vPath[i . . . j] do
41: if sequence-set(n) ∩R 6= ∅ then
42: marked(n)←TRUE
43: end if
44: end for
45: end for
46: end procedure
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sequence. Any other disposition would create either a difference between the sequence

sets or a prohibitive degree greater than one. Therefore, the only vertices that may

be merged after a sequence insertion are the first vertex in the sequence walk and its

previous vertex.

Phase Three: Repeat Identification

After Phase Two, there is a walk representing the new sequence in the graph, and

this walk is stored by the array vPath. This last phase identifies vertices in this

walk which correspond to repetitive sequences. We call these repetitive vertices. Each

repetitive vertex was found in the graph during phase one and marked as old in line 23.

Algorithm 4 differentiates repetitive vertices from common old vertices by comparing

each sequence set to the set of sequences that either enter the new sequence’s walk

through a junction or leave it through a bifurcation.

In the third phase, every maximal contiguous region formed only by old vertices is

separately analyzed (lines 33 to 45). For each vertex v in such a region, we find the set

of sequences which access v through an alternative walk (line 37). These are all the

sequences belonging at the same time to the sequence set of v and the sequence set

of the neighbors of v which are not in the newly created walk. In Algorithm 4, these

sequences are cumulated in a set R (line 38). Finally, each vertex containing one of

the sequences in R is for sure a repeat and may be marked (lines 40 to 44).

Note that every time the walk of a new sequence passes through an old vertex, the

vertex may be a repetitive vertex. However, two walks sharing vertices are not always

evidence of repeat. When the end of a walk exactly corresponds to the beginning of

another one, the common part between them corresponds to a portion of the genome

which was sequenced twice. The same is true if one walk is completely contained in

another one.

2.4.3 Running Time

In this section, l is the length of the inserted sequence, s denotes the number of se-

quences inserted so far, and L refers to the maximum length among the s sequences.
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2.4 Finding Repetitive Sequences in DNA Molecules

Phase One takes O (lL+ ld) time. In the worst case, the O(l) tuples in the sequence

are individually analyzed, and all operations, but the cut, can be executed in constant

time. Notice that every l-tuple may cause at most 2 cuts, both bounded by the

maximum vertex size, which is bounded by the length of the longest sequence already

inserted. At the same time, each tuple may force a search in the index at most two

times (in lines 5 and 26). Each search in the index takes O(log |V |) = O(log |Σ|d) =

O(d log |Σ|) time. Since in our case the alphabet size is constant, each search requires

O(d) time.

In phase Two, the running time is dominated by the insertions of sequences into the

vertices’ sequence sets (iterative statement in line 29), and by the merge in line 31. The

update is done in O(l log s) time, since insertions in balanced search trees with size at

most s require O(log s) time, and at most l insertions are done. Since the only vertices

that may be merged are the first and the last vertices of the new sequence walk, merges

are done in O(l log l) time. Summing up, phase two is executed in O(l log s + l log l)

time. Notice that observing the factor l log l is unlikely, given that situations where

the merge is allowed are rare.

The third phase is executed in O(ls log s) time. The union in line 37, together with

the intersection in line 38 (in parentheses), requires traversing at most 2(|Σ| − 1) + 1

trees, with at most s vertices each. This cannot result in a set with more than s

distinct elements. The union with R is done by inserting the elements of the resulting

set in R. The whole computation is done in O(s log s) time, and at most once for

each tuple, giving the proposed running time bound. The overall running time of a

sequence insertion is therefore bounded by

O(lL+ ld+ ls log s).

Remarks on the Running Time Analysis. The reader might have noticed that

the time for duplicating the sequence set in the cut operations was not added to the

running time of phase one. Since the cuts are responsible for the lL factor in the overall

insertion running time, one could argue that the upper bound should be larger. In fact,

the time for duplicating the set is covered by the upper bound for the sequence sets

update in line 29. To understand why, consider cutting a vertex v with σ sequences

in its sequence set. Since v can be cut, it must represent τ > 1 tuples. And the σ
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sequences in its sequence set show that for σ times we computed τ−1 times an unused

cost of O(log s). We have therefore a “credit” of O(τσ log s), whereas at the time of

the cut, the sequence set duplication can be done in O(σ) = O(τσ log s). Therefore

we may ignore the duplication in the overall running time.
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Chapter 3

Repeat Family Identification in

Incompletely Sequenced Genomes

In the later 1980’s, scientists had the first contact with genome sequences of higher-

order organisms. At that time, they were amazed by the amount of “junk” in these

sequences. Examining this junk in the following decades, they discovered that these

portions of the genome were less useless than they first suspected. In fact, there

is a myriad of active elements between coding sequences, some of them being able

to replicate themselves, acting like virus DNA. In fact, they are believed to be the

vestiges of virus infections in ancestral species. In prokaryotes, these virus-like se-

quences are called insertion sequences, whereas in eukaryotes they are referred to as

mobile elements. The most frequently found mobile elements are the transposons and

retrotransposons. In the case we don’t want to distinguish between prokaryote and

eukaryote genomes, we call them repetitive elements.

Although repetitive elements do not refer to active parts of the genome, since they

encode only proteins which are related to their own replication, they are able to change

the genome in many ways. It is known that pairs of insertion sequences sometimes act

together and duplicate not only themselves, but the whole sequence between them (30).

Also when mobile elements work alone, the position where the new copy is inserted

may belong to important regions in the genome, like active genes. In fact, insertions

of mobile elements are observed in several genetic disorders, like Duchenne muscu-

lar dystrophy, type 2 retinitis pigmentosa, β-thalassemia, or chronic granulomatous

disease (37).
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Chapter 3 Repeat Family Identification

A maybe less noble, but important motivation to study repetitive elements is the

waste of time and money they cause in genomic research. Finishing a whole eukaryotic

genome sequencing project is neither cheap nor fast, and the study of specific regions

in these huge genomes still depends on specific primer design. But even when using

very specific primers, PCR experiments may be worthless if the sequence to which the

primer was designed appears thousands of times in the whole genome. In many cases,

however, there may be enough sequenced information available to give an overview

of the repetitive elements in the genome. Finding these elements in an incompletely

sequenced, unfinished genome is the aim of the work presented in this chapter.

Strategies for de novo repeat identification usually assume that two similar sequences

in a given collection cannot be different copies of the same locus of the genome. Then,

alignments with quality above a certain threshold are assumed to provide evidence of

a repeat family. We overcome this limitation and accept any kind of sequence set as

input, including sets with several copies of the same locus. Therefore, we do not align

the sequences, like the traditional approaches (4), but partially assemble them using

a de Bruijn subgraph.

The differentiation between repetitive sequences, that have two or more identical copies

in the genome, and unique sequences can be done in a sequence graph during the

graph construction (Chapter 2). In this and the next chapter we aim at separating

reads according to the repeat families they cover, without previously knowing the

appropriate families.

3.1 Repeat Families in Sequence Graphs

The length of repetitive elements may vary from the few bases of short tandem repeats

to the thousands of bases of long transposons. Exact repeats with length greater than

the underlying graph’s dimension can be easily identified, since identical parts shared

by the copies are represented by the same node both in the sequence graph and in

the de Bruijn subgraph. Repetitive elements which are shorter than the underlying

graph’s dimension can be detected in special cases. For instance, the exhaustive,

uninterrupted succession of almost perfect copies in tandem repeats is able to create

tangled patterns in the graph, although they may be much smaller than the graph

dimension. In these cases, the large number and perfection of copies is responsible for
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Figure 3.1: Entangled 21-dimensional sequence graph. This complex cyclic structure is
caused by 52.5 imperfect copies of the sequence “AGCCTCACTAC” in the genome of
the fish Fugu rubripes. The repetitive region starts on the vertex marked with the symbol
5′ and ends on the vertex marked with the symbol 3′.

the rising of larger perfect matches. Figure 3.1 shows a sequence found in the genome

of the fish Fugu rubripes where 52.51 consecutive imperfect copies of an 11 nucleotides

long sequence entangle a 21-dimensional sequence graph.

In the case of interspersed repeats, their replication mechanism allows the appear-

ance of copies which are physically far away from each other in the DNA molecule.

On the other hand, the sequence of each imperfect copy is usually unique. Apart

from the usual short reverse repeats in their extremities, the sequence inside mobile

elements often lacks long exact repeats. Therefore, the portion of a sequence graph

corresponding to a repeat family is much better organized than the tangled tandem

repeat regions. Often, the sequence graphs of repeat families are acyclic graphs, like

shown in Figure 3.2. This can be used as a starting point for repeat identification.

3.2 Repeat Family Detection Through Connected

Components

We first study prokaryotic genomes, since they are less complex and hence easier to

understand. A typical bacterial genome is not bigger than six or seven million base

1Fractional copy numbers are common in tandem repeats and mean that the last copy corresponds
to a prefix of the repeated sequence.
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Figure 3.2: Component of a sequence graph for a set of 454-reads of the plant Beta vulgaris.
The vertices in black contain sequences of a mariner transposon. Other vertices contain
sequence of unclassified reads. Repeated sequences are marked in grey. Notice that the
component is a directed acyclic graph.
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pairs, and contains roughly the same number of l-tuples, when l is relatively small. The

number of possible strings of length l for an alphabet of size 4, by contrast, is already

huge for small values of l. For typical sequence analysis applications, like approximate

string matching, the value of l is chosen large enough to allow the assumption that

very few tuples appear twice in the genome just by chance.

The typical number of insertion sequence families in a single bacterial genome is quite

small. The average number of different families in a single genome found in (30) is

2.79. The copy number of a family in a single genome is also not big. Although the

number of copies can be as big as 14, like the number of copies belonging to the family

IS1 in Mycoplasma, the average number of distinct elements of the same family is 2.27.

Therefore, assuming that copies are uniformly spread along the genome sequence, we

may expect repeats to be separated by quite long non-repetitive sequences. This

may be also true for some eukaryotes, like Arabidopsis thaliana which has 10% of its

genome composed by mobile elements (19), while other eukaryotes have a much more

complicated genome structure.

Nodes corresponding to repetitive sequences may be discovered and marked during

the sequence graph construction, as explained in Chapter 2. Nodes corresponding

to unique sequences either represent larger sequences from the unique parts of the

genome, or are the result of small dissimilarities between elements of the same repeat

family. In the second case, unique nodes should not be larger than a repeat family

element, since we expect entities of the same repeat family to be similar enough to

share perfect matches. On the other hand, unique sequences between repeat copies

can be much longer.

The sequence graph for a genome must therefore be composed of clusters of small

repetitive nodes, interconnected by longer ones representing single sequences. As a

result, the deletion of long unique nodes may decompose the graph into a few connected

components, containing one or more repeat families. Based on this simple principle,

we devised a method for separating repeat families in a genome. The procedure is

described in Algorithm 5. The input is a set S of reads of some genome and a length

threshold value l. First, we build the sequence graph for this set of sequences.

Originally, nodes with different sequence sets cannot be merged (see Chapter 2). As a

result, every read end coincides with a node end, which leads in many cases to branch

free paths in the sequence graph. Here we ignore this restriction and merge nodes in
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Figure 3.3: Some errors may transform a tuple into another tuple of the genome spectrum.
When this happens, we observe a small repetitive node surrounded by unrelated unique
sequences.

branch free paths, as long as they are either both marked as repeats, or both unmarked,

even if their sequence sets are not identical. The resulting graph may contain long

single nodes, exceeding the length threshold l. These nodes are consequently removed

from the graph. As a result, node pairs that could not be merged before may now

be merged. Notice that, after merging these nodes, no other node can be merged or

deleted.

The resulting graph is already a collection of separated connected components. How-

ever, some of them may be the result of unrelated small perfect matches. These repeats

created by chance are easy to identify. They are in components with few nodes (typ-

ically not more than 5), with a single, short repeated node in the center, like shown

in Figure 3.3. We call these components small components. The small components

are removed from the graph as well, leaving only components corresponding to larger

families.

Algorithm 5 Connected Components

1: function IsolateComponents(S, l)
2: Build the sequence graph for S
3: Merge all possible pairs of nodes
4: Remove all single nodes of length ≥ l
5: Merge all possible pairs of nodes
6: Remove all small components
7: return the resulting connected components
8: end function

3.3 Proof of Concept

We implemented this approach in the Java programming language and tested it with

artificially created chromosomes. Unfortunately, we cannot measure the quality of our
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approach by comparing it to already published de novo repeat identification methods,

since we use a collection of reads as input instead of a complete chromosome. Actually,

we do not even assume to have enough reads to cover the entire genome. Therefore we

make use of artificial data sets to verify the reasonability of this approach. For sure

artificial data have the disadvantage of not representing a real life situation, but they

also have the following advantages:

• The number of families is known.

• The number and sequence of distinct family elements is known.

• No other repetitive elements are there, so that we can focus on the simulated

insertion sequences.

For a proof of concept, we applied the connected component strategy to artificially

created chromosomes with different numbers of repeat families. Each simulated chro-

mosome has a total length of 1 million base pairs and is composed by two kinds of

sequences:

Background Sequence: The background sequence corresponds to the unique genome

sequence. In our tests, we used 19-dimensional de Bruijn subsequences as back-

ground, which means that the background sequences do not contain any dupli-

cated substring of length 19.

Repeat Families: The repeat families are collections of similar sequences, called the

family members. They originate from a 19-dimensional de Bruijn subsequence,

called the family’s base sequence. The base sequence is used to start creating

other family members in an incremental tree-like fashion: for creating a new

member, we randomly choose one family member and imperfectly duplicate it by

simulating insertions, deletions and replacements. Each newly created sequence

differs from its original in 6% of the nucleotides on average. This agrees with

real cases, like the Alu family in the human genome, where the sequences diverge

by up to 12% from other elements in the family (26). The number of members

in a family is called the family size.

The inserted repeat families were of size 2, 4, 16, and 256. In our tests, an artificial

chromosome can have either 0 or 2 families of each size. All possible combinations

of family sizes were used, giving a total of 15 chromosome configurations. For each
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configuration, we created 15 different chromosomes and read sets with coverage 0.25,

0.5, 0.75, and 1, respectively, simulating partially finished sequencing projects. The

length of the artificially created reads follow a Poisson distribution with mean 250.

3.3.1 Results

We used the sets of reads as input to the connected component based repeat family

detector. The result was a collection of connected components for each artificial data

set. The sequences of the family members were used to mark the vertices where

repeat families are found, which creates an association between families and connected

components. Based on this association we analyzed the number of components in

which a family is split, the number of different families found in each components,

and the percent of families that are represented by components in the method output.

These numbers are presented in Table 3.1.

Ideally we would be able to isolate each family in a different component, so that

each connected component contains sequences of a single family, and each family is

completely contained in a single component. Table 3.1 shows a different reality. In

the left column (“Components per Family”), we see that families are usually split into

more than three components. However, each component usually contains sequences

of a single family, which is shown by the center column (“Families per Component”).

This means that although the families are split, they are at least not so dispersed that

their separation is impossible.

In the rightmost column (“Discovered Families (%)”), we see how much of the inserted

families could be detected by the method. The fact that we were never able to identify

all families in the odd rows is expected. These are cases where the chromosomes have

some family of size two. In such cases, depending on the underlying sequence graph’s

dimension and the difference between the family members, it can happen that these

two family members do not share any tuple, or the number of shared tuples is so small

that they end up being discarded as small components. In Chapter 4 we discuss a

strategy for keeping such small components by identifying non-repetitive sequences

which are similar enough to be considered member of the same family even though

they do not share any common subsequence larger than the graph dimension.
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Analyzing the data in Table 3.1, we come to the conclusion that the worst problem of

this approach is the splitting of families into up to 5 components. In order to improve

the method’s efficiency we need to understand why the splitting happens, and if it is

a problem at all. We classify the splittings into two types:

Horizontal Splitting: Since the repetitive elements are not essential parts of the ac-

tive genome, they are usually not under evolutionary pressure. As a result, once

a new copy of a repeat family is created, it starts diverging from its original

sequence. Depending on divergence time and speed, these sequences can ac-

cumulate so many mutations that they do not share any tuple. If they keep

replicating themselves, the new copies of the first sequence may cluster in a

component, whereas new copies of the second one cluster in another one. In this

case, although all the sequences have a common history, they give rise to two

different components in the resulting graph. We call this separation of a family

into two disconnected groups Horizontal Splitting.

Vertical Splitting: In many cases there are regions in the genome that are more sus-

ceptible to change than others. If there is such a region in the sequence of

a repeat family, the component containing the prefixes of the family members

may be connected to the component containing its suffixes only by long unique

nodes. If these nodes are long enough, they are discarded in Step 4 of Algo-

rithm 5, resulting in two components for the same family: one containing its

prefixes, and one with the suffixes. We call this decomposition of a family into

its prefixes and suffixes Vertical Splitting.

Differentiating between horizontal and vertical splitting gives more information than

just a name for effects of mutation events in a graph. There is a basic difference

between these two kinds of component splitting: vertical splitting necessarily shows

a method’s weakness, whereas horizontal splitting may be just a negative effect of

having too much information about the evolutionary history of the data.

Biologists group repeat families by structure and similarity of their sequences. They

do not discard the hypothesis that two distinct families could have a common origin.

However, if family members cumulated enough dissimilarities along the time to be

classified as different families, they should not be merged into a single family. This is

not reflected in our simulations: we group all the sequences originated from the same
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Table 3.1: Summary of the experiments with artificial data. Each row corresponds to one of
the 15 types of data sets. On the left, we see the average number of different components
containing sequences of the same family. In the middle, the average numbers of different
families found in a single component are displayed. On the right, we see the percentage
of inserted families which could be found in the graph after eliminating long nodes.

Components per Family Families per Component Discovered Families (%)
0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00 0.25 0.50 0.75 1.00
6.33 5.57 4.41 5.68 1.00 1.00 1.00 1.00 20 40 70 73
4.50 3.50 4.33 4.70 1.00 1.00 1.00 1.00 63 97 97 100
5.26 4.78 4.82 4.32 1.00 1.00 1.00 1.00 43 70 85 92
4.27 4.37 4.18 4.42 1.00 1.00 1.00 1.00 100 100 100 100
3.93 4.48 4.31 4.12 1.00 1.00 1.00 1.02 58 78 87 93
4.41 4.01 4.31 4.47 1.00 1.01 1.00 1.02 83 95 100 100
4.31 4.83 4.25 4.20 1.01 1.01 1.02 1.05 64 82 91 94
4.08 3.80 3.89 4.44 1.93 1.93 1.93 1.93 100 100 100 100
4.68 4.56 3.98 4.51 1.78 1.93 1.61 1.51 65 70 80 90
4.38 4.93 4.45 4.72 1.78 1.50 1.58 1.91 85 100 100 100
4.88 4.36 4.28 4.14 1.64 1.55 1.40 1.48 60 77 89 96
4.83 4.69 5.08 4.23 2.18 2.89 2.98 3.31 100 100 100 100
4.48 4.89 4.81 4.50 2.29 2.19 2.36 2.28 72 89 90 98
4.28 4.62 4.63 4.24 1.66 1.82 2.35 2.50 89 98 99 100
4.26 4.51 4.91 4.98 1.60 1.66 1.78 1.87 68 93 97 98

base sequence into the same family, disregarding the fact that evolution may separate

them into two or more families.

Vertical splitting can be an indicator of a method’s weakness: if the sequences are so

similar that their prefix and suffix cluster in different components, the method should

avoid removing the nodes by binding these components.
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Chapter 4

Combining Vertices to Improve

Sensitivity

In the previous chapter we presented an approach for grouping sequences of the same

repeat family in a single component of a sequence graph. We finished the chapter

presenting two causes for the splitting of repeat families in independent connected

components. We also discussed that horizontal splittings are caused by the natural

accumulation of discrepancies inside a family of sequences that separately evolve from a

common ancestor, and argued that separations due to horizontal splitting do not imply

a problem of the approach. On the other hand, vertical splitting have a significant

impact on the quality of the family separation strategy. In this chapter we present an

strategy for reducing vertical splitting in a sequence graph.

Let v be a bifurcation in a d-dimensional sequence graph, and let t and u be two

successors of v. We call t and u parallel vertices. By the definition of sequence graphs,

all pairs of parallel vertices coincide in the first d− 1 characters and differ at least on

the dth. They only appear in graphs representing repetitive sequences, and are found

in two situations, according to their relative positions in repeat families:

Inside repetitive regions, where sequencing errors or point mutations in different

copies separate small portions of sequences that were originally identical. Fig-

ure 4.1 (Box 1) shows the pair of parallel vertices TGCGATC and TGCAATC. Notice

that the vertices differ only in their central base. If this base was the same, both

strings would be represented by a single vertex, and we would observe a single
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Figure 4.1: Part of a 4-dimensional sequence graph showing two examples of parallel vertices.
In box 1 we see two vertices inside a repetitive region, while box 2 shows vertices outside a
repetitive region. Under each pair of vertices we see best alignment between the vertices’
prefixes.

long repetitive vertex instead of the two shown in the figure. Therefore we say

that the central base separates these parallel vertices.

Outside repetitive regions, at the extremity of family members, on the border be-

tween the vertices representing repetitive regions and the ones representing evo-

lutionarily uncorrelated sequences. We find an example of such a parallel pair in

Figure 4.1 (Box 2), where 7 deletions in a 17 bases long alignment indicate that

the sequences in the vertices’ prefixes probably are not evolutionarily correlated.

Notice that in both pairs shown in Figure 4.1, the vertices correspond to unique

sequences. According to the approach for identifying repeat families presented in

Section 3.2, all these vertices could be deleted from the graph. The deletion of vertices

outside repetitive regions is not only desired, but the core of the approach. On the

other hand, by deleting vertices inside repetitive regions, we create undesired vertical

splits in our graph. To avoid this, we identify parallel vertices inside repetitive regions,

combine them into a single vertex, and mark the combined vertex as a repetitive

region.

As the alignments in Figure 4.1 suggest, we differentiate the two kinds of parallel

vertices based on the dissimilarity between the sequences inside them. We define a

threshold for the dissimilarity between the sequences and consider that any pair of

parallel vertices with dissimilarity under the threshold is inside a repetitive sequence.

This threshold, τ , is a scale factor of the minimum number of sequence editions neces-

sary to separate the parallel vertices. For instance, if τ = 1.0, only vertices separated

by the minimum number of operations are supposed to be inside repetitive region. If
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τ = 1.5, parallel vertices separated by up to 50% more editions than the minimum are

still considered inside a repetitive region. In an extremal case, if τ ≥ d, none of the

pairs of parallel vertices will be considered outside a repetitive region. The number of

editions allowed for a pair of vertices, ε(l, d), is given by

ε(l, d) = τ · µ(l, d),

where µ(l, d) is the minimum number of edit-operations needed to separate two initially

identical sequences of length l in a sequence graph. This number is given by

µ(l, d) =

⌈
l − d+ 1

d

⌉
.

By combining two vertices we mean replacing them by a single vertex whose sequence is

the consensus between them. The procedure is shown in Algorithm 6 and represented

in Figure 4.2. In the most general case, the two vertices to be combined, v1 and v2,

are of different length. We assume w.l.o.g. that v1 is longer than v2.

Algorithm 6 Combine

1: procedure Combine(v1, v2, τ)
2: Let v1 be the longer of the two vertices
3: Align the sequences of v1 and v2, creating a semi-global alignment of length l
4: if the alignment score is smaller than τ · µ(l, d) then
5: Cut the vertex v1 at the end of the aligned prefix
6: Let v1 be the left portion of the cut vertex v1

7: Create a new vertex v with the consensus of v1 and v2

8: Bind the vertices in the neighborhood of v1 and v2 to v
9: Remove v1 and v2

10: end if
11: end procedure

In the first step, the vertex prefixes are aligned. We use a semi-global alignment algo-

rithm for that (40, Section 3.2.3). The semi-global alignment gives the best alignment

between the shorter sequence and the prefix of the longer one. We assume that the

original sequence has the same length as the alignment, and use the alignment length

to calculate ε(l, d). When the prefix alignment scores less than ε(l, d), we assume

that the parallel vertices are inside a repetitive region, and proceed with the combine

operation. The longer of the two vertices, v1, is cut at the point where its aligned
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Figure 4.2: The combine operation. The two shaded vertices on the left are combined, and
result in the shaded vertex on the right. Two vertices are only combined when the edit
distance between their prefixes is below a certain threshold. The new vertex label contains
the consensus sequence.

prefix ends. The vertex corresponding to v1’s prefix and the vertex v2 are replaced by

a new vertex v, which represents the alignment consensus. The new vertex v is finally

connected to the neighborhood of the replaced vertices.

The distance matrix used in the alignment algorithm, M, is based on the IUPAC

standard one-letter code for nucleotides, which has not only symbols for nucleotides,

but also for all possible sets of them. Let s and t be two letters in the IUPAC

standard code, and S and T the corresponding sets. Then the value ofMst, the score

for matching s with t, is given by

Mst =

0 if S ⊆ T or T ⊆ S, and S 6= ∅ 6= T

max (|S \ T | , |T \ S|) otherwise

Notice that for symbols that represent a single nucleotide (A, C, G, T), the score is

simply 0 for a match and 1 for a mismatch. For matches involving at least one symbol

representing a set of nucleotides, like W = {A, T}, the score is 0 if one set contains the

other; otherwise it is the minimum number of replacements and deletions needed to

transform one set into the other. For instance, the score for aligning W with G is 2,

since we need to replace one of the elements of W by G, and delete the remaining one;

on the other hand, the score for aligning W with T is 0, since W contains T.

The consensus is created based on the alignment between v1’s prefix and v2: each

position in the alignment corresponds to the union of the IUPAC symbols in the

corresponding positions in both vertices. In the example in Figure 4.2, the symbols

in all the positions but the central one represent the same sets, and are kept in the

combined vertex. The symbol at the central position of the new vertex, W = {A, T}, is

the union of the symbols in the single discrepant position in the vertices.
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In general, combining two vertices does not reduce the graph size, since one vertex is

split and two are merged. In practice, a series of combinations may reduce tangled

subgraphs to simple paths, which may be finally merged into a single longer vertex.

Especially for more complex data-sets sequenced at low genome coverage, this proce-

dure gives a considerable advantage over the simple connected component approach,

as shown by the results in Section 4.1.

4.1 Effectiveness in Bacterial Genomes

In order to evaluate our more advanced algorithm, we created a data-set with real

bacterial genome sequences and their known insertion sequences. The bacterial chro-

mosomes were obtained from the NCBI Website1, while the corresponding insertion

sequences were obtained from the insertion sequence database IS Finder 2. We created

30 read sets covering 25, 50, 75, and 100 percent of the genome on average. Each of

the read sets was used seven times as input for the combine method, each time with

a different combine scale factor t ∈ {1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0}. Like in Section 3.3

we associated the resulting connected components to the repeat families found in each

of them. In opposite to the experiments with artificially created sequences, here we

do not know the complete set of insertion sequences in the chromosomes, which makes

it impossible to decide whether unmarked components correspond to unknown inser-

tion sequence families. Therefore we focus our analysis exclusively on the associated

components.

We base our analysis on the three values used in Section 3.3.1: the fraction of known

families found in the set of components, shown in Table 4.1, the average number of

distinct families in a single component, presented in Table 4.2, and the average number

of components in which a family is split, shown in Table 4.3. The tables in this section

summarize the data obtained using 100% genome coverage. The tables for 25%, 50%,

75%, and 100% coverage can be found in Appendix A.

In Table 4.1 we find the percentage of known families identified in the components.

The data values show an increasing percentage of discovered families with increas-

ing combine factor. This could mislead the reader to believe that the largest possible

1NCBI: http://www.ncbi.nlm.nih.gov
2IS Finder: http://www-is.biotoul.fr/is.html
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Table 4.1: Average percentage of known families which were discovered at 100% coverage.

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 49 72 71 81 81 83 82
Burkholderia xenovorans 50 84 84 88 88 90 90
Colwellia psychrerythraea 20 33 33 33 33 33 33
Desulfitobacterium hafniense 80 95 95 100 100 100 100
Desulfovibrio desulfuricans 50 93 93 97 97 100 100
Escherichia coli 43 75 73 85 85 92 92
Geobacter uraniumreducens 46 72 72 72 72 80 80
Gloeobacter violaceus 63 85 85 88 88 98 98
Granulibacter bethesdensis 7 30 27 53 50 70 73
Haloarcula marismortui 13 47 44 75 69 90 91
Halobacterium sp-plasmid pNRC100 39 57 47 56 51 61 59
Legionella pneumophila 32 30 33 33 40 30 30
Legionella pneumophila-Philadelphia 1 38 70 63 87 83 93 83
Methanosarcina acetivorans 95 99 99 100 100 100 100
Methylococcus capsulatus 44 82 83 96 96 98 98
Nitrosospira multiformis 70 97 93 100 100 100 100
Photobacterium profundum 100 100 100 100 100 100 100
Pseudomonas syringae 97 100 100 100 100 100 100
Pyrococcus furiosus 53 72 69 84 80 94 94
Ralstonia solanacearum 63 88 88 95 95 98 98
Rhodopirellula baltica 89 100 100 100 100 100 100
Roseobacter denitrificans 50 90 87 100 100 100 100
Salinibacter ruber 97 100 100 100 100 100 100
Shewanella oneidensis 27 29 29 38 41 33 35
Sulfolobus solfataricus 99 99 99 100 100 100 100

combine factor would always give the best result. However, using large factors has dis-

advantages, as we will discuss in the analysis of the next two tables. As the genomes

of Halobacterium sp-plasmid pNRC100, Legionella pneumophila-Philadelphia 1, and

Shewanella oneidensis show, the percentage of discovered families can decay if the

combine factor is too large. This happens because large thresholds allow the combi-

nation of unrelated parallel vertices. In extreme cases, the resulting graph is poorly

informative and full of vertices with symbols representing groups of nucleotides.

The side effects of using larger combine factors is better seen in Table 4.2, where

the average number of different families in a single component is presented. Ideally

this number should be as close to 1.0 as possible, since we aim at separating families

into individual components. The data shows that too large values do the opposite.

Specially in genomes like Ralstonia solanacearum and Sulfolobus solfataricus the use

of the combine operation interferes drastically with the ability of separating families.

However, larger factors affect different genomes in different ways: in Gloeobacter vio-

laceus, using a combine threshold 1.5 increases the percentage of found families from

63% to 85%.

The reader may remember that the aim of the combining operation is to avoid the
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Table 4.2: Average number of different families found in the same components at 100%
Coverage.

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 1.2 1.2 1.2 1.2 1.2 1.3 1.3
Burkholderia xenovorans 1.0 1.5 1.5 2.1 2.1 2.4 2.4
Colwellia psychrerythraea 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfitobacterium hafniense 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfovibrio desulfuricans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Escherichia coli 1.0 1.1 1.0 1.1 1.1 1.1 1.1
Geobacter uraniumreducens 1.4 1.4 1.4 1.4 1.4 1.5 1.6
Gloeobacter violaceus 1.0 1.1 1.1 1.4 1.4 1.7 1.7
Granulibacter bethesdensis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Haloarcula marismortui 1.0 1.0 1.1 1.5 1.6 2.0 1.9
Halobacterium sp-plasmid pNRC100 1.1 1.2 1.2 1.3 1.5 1.4 1.5
Legionella pneumophila 1.0 1.2 1.2 1.4 1.3 1.2 1.2
Legionella pneumophila-Philadelphia 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Methanosarcina acetivorans 1.6 1.5 1.5 2.1 2.2 3.6 3.6
Methylococcus capsulatus 1.0 1.0 1.0 1.1 1.1 1.5 1.5
Nitrosospira multiformis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Photobacterium profundum 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Pseudomonas syringae 1.4 2.0 2.0 2.2 2.2 3.6 3.6
Pyrococcus furiosus 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Ralstonia solanacearum 1.4 3.2 3.5 4.4 4.5 6.9 6.9
Rhodopirellula baltica 1.3 1.3 1.4 1.4 1.4 1.7 1.7
Roseobacter denitrificans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Salinibacter ruber 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Shewanella oneidensis 1.5 2.2 2.2 2.3 2.3 2.7 3.0
Sulfolobus solfataricus 2.1 2.9 3.2 4.5 4.7 5.4 5.4

deletion of vertices corresponding to unique sequences inside repetitive regions. With

the combine operation we target the vertical splitting and hoped for a less split

graph. In this sense, the data in Table 4.3, the average number of components in

which a family is split, brings good and bad news. For the genomes of Burkholderia

xenovorans, Gloeobacter violaceus, Haloarcula marismortui, Halobacterium sp-plasmid

pNRC100, Methanosarcina acetivorans, Rhodopirellula baltica, Salinibacter ruber, She-

wanella oneidensis, and Sulfolobus solfataricus the pattern observed in the data is

exactly the expected one: with larger factors the number of components per family

is reduced, which means that vertices inside repetitive regions are kept and avoid un-

wanted component splittings. For many other bacteria we notice that the number of

components either increases with increasing combine factor or increases up to a cer-

tain point before it starts decreasing. This shows that for some genomes the combine

operation avoids the complete deletion of some components up to a certain combine

threshold. Only after this point the desired effect of the combine operation is observed,

namely the reduction of the number of components.
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Table 4.3: Average number of components per repeat family in a sequence graph (100%
coverage).

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 2.5 3.4 3.1 3.7 3.6 3.8 3.7
Burkholderia xenovorans 2.6 2.0 2.0 1.5 1.5 1.3 1.3
Colwellia psychrerythraea 3.1 3.1 3.1 3.1 2.9 3.1 3.1
Desulfitobacterium hafniense 3.3 4.1 3.7 3.9 3.7 3.3 3.3
Desulfovibrio desulfuricans 2.3 2.8 2.5 3.6 3.3 3.3 3.1
Escherichia coli 2.2 3.0 3.0 3.1 3.1 3.1 3.1
Geobacter uraniumreducens 1.8 2.2 2.2 2.5 2.5 2.2 2.1
Gloeobacter violaceus 3.4 3.6 3.5 2.0 2.0 1.3 1.3
Granulibacter bethesdensis 2.0 2.0 2.0 2.1 2.1 2.1 2.2
Haloarcula marismortui 2.1 2.0 2.0 1.6 1.6 1.6 1.6
Halobacterium sp-plasmid pNRC100 2.4 2.8 2.5 1.7 1.5 1.6 1.5
Legionella pneumophila 2.4 2.6 2.9 2.3 2.2 1.6 1.6
Legionella pneumophila-Philadelphia 1 2.5 3.8 3.2 4.1 3.8 4.1 4.1
Methanosarcina acetivorans 2.9 2.9 2.8 1.9 1.9 1.5 1.4
Methylococcus capsulatus 2.2 3.1 2.9 3.6 3.4 2.8 2.7
Nitrosospira multiformis 3.1 4.4 4.2 5.4 5.1 3.5 3.5
Photobacterium profundum 1.7 1.9 1.8 1.8 1.8 1.9 1.8
Pseudomonas syringae 2.1 1.9 1.9 1.6 1.6 1.2 1.2
Pyrococcus furiosus 1.7 1.7 1.6 1.8 1.7 1.8 1.8
Ralstonia solanacearum 2.4 1.4 1.4 1.2 1.2 1.1 1.1
Rhodopirellula baltica 2.2 2.6 2.5 2.4 2.4 2.0 2.0
Roseobacter denitrificans 2.3 3.3 3.1 3.8 3.8 3.6 3.5
Salinibacter ruber 3.0 2.1 2.0 1.1 1.0 1.0 1.0
Shewanella oneidensis 2.0 1.3 1.3 1.4 1.4 1.3 1.3
Sulfolobus solfataricus 2.1 1.6 1.5 1.3 1.3 1.2 1.2

4.2 Tests in Eukaryotic Short Sequences

We also applied the sequence graph based approach to paired end sequences from the

genome of the plant Beta vulgaris. The aim of the analysis presented in this section

is to provide an overview of the sequence graph for this kind of read set, test the

scalability of sequence graphs when dealing with large amounts of data, and identify

known repeat families in the components isolated by the sequence graph approach.

The reads we used are short reads obtained with the 454 sequencing method. This

approach keeps paired ends by physically binding them with the help of a linker, as

shown in Figure 4.3. A linker is a small DNA molecule of known sequence which

is bound to both extremities of a read, creating a circular DNA molecule like the

one shown in Figure 4.3. The circular DNA is cleaved before sequencing, resulting

into two linear DNA molecules: one containing the central part of the read, which

is discarded, and one containing the read extremities bound by the linker, which is

sequenced. Linker sequences remain during the whole sequencing process. As a result,

reads obtained by this method contain a linker sequence in the middle, which has to
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Figure 4.3: Sequencing 454 paired ends. Both ends A and B of a read (top) are bound
together by a small sequence, the linker, which holds the pair together after the cleavage
of the central part of the read (dashed line). Once the central part is removed, both read
ends and the linker are sequenced.

be removed.

The linker is not the only artifact in 454 paired end reads. A short prefix TCAG is

also included in every read, and has to be removed before analysis. We trimmed all

reads before the analysis, removing sequences included during the sequencing process

and low quality regions. Details about the trimming procedure are given in the next

section and the results of applying the family identification approach to this data are

presented in Section 4.2.2.

4.2.1 Trimming 454 Paired End Sequences

As mentioned in the previous chapter, paired end 454-sequences have three main

artifacts: TCAG prefixes, linker sequences, and low quality regions. Since the read

region containing the prefix and the linker do not overlap, we removed these artifacts

first. After the linker removal we identified and removed low quality regions in each

of the read extremities. More details about the identification and removal of each

artifact are given below:
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TCAG Prefixes: TCAG prefixes are easy to identify: if present, they are always in

the first 4 positions in the sequence. Each read prefix was verified, and TCAG

prefixes were trimmed.

Linker sequences: Linker sequences are well known, but since they are larger than

TCAG prefixes, low quality bases and sequencing errors prohibit the trimming by

simple exact sequence comparison, as we do with the prefixes. For the removal of

linkers we first align the linker with the read sequence, without penalizing gaps

in prefixes and suffixes, and trim the read region aligned to the linker. To avoid

randomly cutting reads that don’t have the linker sequence, trimming is only

done if the number of mismatches and indel operations in the aligned region is

smaller than 10% of the alignment length.

Low quality sequences: The linker sequence is usually in the center of the read.

Therefore removing it usually divides the read in two parts. Each read part

obtained after the linker removal was checked for low quality regions. During

the low quality trimming we focus on bases with quality value of at least a given

value τ . The quality trimming is done in three phases:

1. Quality conversion. We subtract τ from each quality value, so that low qual-

ity bases get a negative value.

2. High quality region identification. After converting the quality values, we

identify the region in the read that maximizes the sum of base qualities.

In case of ties, we choose the longest region closest to the read prefix. The

identification of all maximal scoring regions in a read can be done in linear

time (39).

3. Low quality trimming. Once the best region is identified, we trim the read

prefix and suffix not belonging to it.

4.2.2 A Low Coverage Eukaryotic Sequence Graph

A total of 2,884,945 reads with average length 99.87 remained after trimming and

discarding sequences shorter than 19 bases. This amount is both for de Bruijn and

sequence graphs too big. The results presented in this section come from the analyses

of a 19-dimensional sequence graph built with 200,000 randomly chosen sequences from
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one of the eight files which form this data-set. The main problem with short read data

is not the genome size, but the amount of sequences. Notice that the beginning and

the end of sequences usually forces either the creation of a vertex or the cut of an

existing one, therefore inserting sequences in sequence graphs creates new vertices and

enlarges the sequence sets both in new and in pre-existing vertices.

We started the analysis by creating a 19-dimensional sequence graph and inserting the

200,000 sequences into it. The resulting graph was post-processed with the following

operations:

Merge. We first merged all possible pairs of neighbor vertices. For this merging we

only considered the in-degree and out-degree of the vertices and the fact that

merged vertices must be either both inside or both outside a repeated region.

The sequence set criterion1 was ignored in this merging. At the end, 65,066

vertices were merged in this post-processing phase.

Small Components. As defined in Section 3.2, small components have a few non-

repetitive vertices connected to a short repetitive vertex. We eliminated all such

components in which the repetitive vertex was shorter than 38 bases, removing

4,960 vertices.

Singletons. Singletons are non-repetitive vertices that are not connected to any other

vertex. We identified and removed 45,501 of these vertices.

Combine. We combined parallel vertices using a combine factor τ = 2. This combine

operation was applied 286,663 times.

Removal of Long Non-Repetitive Vertices. We deleted all non-repetitive vertices

with length greater than 150 bases. This phase removed 17,921 vertices from

the graph.

Final Merging. After the first post-processing phases, there may be pairs of neighbor

vertices for which merging was not allowed in the first phase, but is allowed now.

In fact, 348,018 vertices could be merged after the previous combinations and

vertex removals.

The remaining graph has 13,823 components. We ignored the 8,237 components with

less than 9 vertices and focused on components with a number of vertices between 9

1In Chapter 2, the sequence set in the merged vertices must be identical.
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and 120. Only one of the components has more than 120 vertices. This component,

with 1,348,038 vertices, is by far the biggest component in the graph. Components

like this are commonly found in sequence graphs even after the post-processing vertex

removals and usually contain sequences of different repeat families that could not

be separated by the method. In fact, we marked in the sequence graph the tuples

found in known repetitive elements of the Beta vulgaris genome2, and identified in

this component tuples from all different classes of repeat families in the database.

From the remaining 5,585 components we discarded the 167 components which were

not acyclic and 26 components where we found tuples of known Beta vulgaris repeat

families. The sequences corresponding to all possible paths in the 5,392 remaining

acyclic components were stored in individual files and compared against a database

of known plant repetitive elements. For the database search we used the BLAST3

alignment tool. We selected the alignments with e-value smaller than 0.01, focusing

only on database hits that can be really homologous to the graph sequences. Significant

hits to a repeat database entries were found in sequences of 241 components.

4.3 Conclusions

In this chapter we presented an operation called combine, which is able to simplify

sequence graphs and avoid the deletion of non repetitive vertices inside repetitive

regions. Tests in bacterial genomes show that the de Bruijn based method for repeat

family identification is able to recover more information using less genome information

when using this operation (results on Table 4.1). We also notice that the gain is limited

to small values for the combine factor, since less restrictive combinations tend to cluster

unrelated sequences and facilitate the occurrence of components containing different

families (results on Table 4.2). Finally we conclude that the optimal combine factor

value, as well as the effectiveness of this operation, is genome dependent (results on

Table 4.3).

After applying the repeat identification method to short reads of an eukaryotic genome,

we realize that sequence graphs, like de Bruijn graphs, have problems when scaling

2This database of known repeat families was provide by the Chair of Genome Research of the
Bielefeld University’s Department of Biology

3http://blast.ncbi.nlm.nih.gov/
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from prokaryotic to eukaryotic genomes. To begin with, the number of reads that

can be fitted in a sequence graph is small in comparison to the amount of data that

modern short read technologies can produce. Moreover, combining parallel vertices

and deleting long single vertices is still not enough to separate most of the repetitive

sequences, what is shown by the largest graph component in Section 4.2.2. However,

the amount of directed acyclic components found outside this component shows that

the sequence graph based repeat family identification can be used as a starting point,

helping biologist in finding the first members of a repeat family. Here the low cover-

age forced by the graph size supports the argument that most of the directed acyclic

components correspond to repeat families, since the low coverage guarantees a low

probability of having two copies of the same genome locus in the dataset. The per-

centage of components with a repeat database hit, 4.47%, though low is consistent

with the results of other approaches for finding repeats using the same dataset.
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Chapter 5

De Bruijn Subgraphs and Alternative

Splicing

In the beginning of this century, the humanity faced a quite sensitive existential ques-

tion: in terms of number of genes, we may be just a little bit more complex than a

worm or a fruit fly, and even simpler than rice. The first predicted number of genes

in the human genome, 100,000 genes, was far away from reality. The media tried to

rise a little bit the disappointing more realistic prediction of 30,000 genes, suggesting

40,000 (42), but the actual number is not supposed to be much greater than 27,000.

The idea that all the internal processes in a clearly more complex organism may be

controlled by a much smaller pool of genes seems to be a huge paradox, but the

explanation for this apparent mystery can be literally found in Einstein’s brain: like

in his small brain (15; 1), the structural complexity of our genome is much more

important than its size. At least in the case of our genome, it is easy to understand

where complexity helps: a modification of RNA molecules, called splicing, can create

different variants of a single gene.

For long time, we believed that the whole process of creating a protein from the

genomic code consisted of two steps:

Transcription, when the genomic DNA is copied in the form of an RNA molecule

called messenger RNA, or shortly mRNA.
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Figure 5.1: On the top, the schematic representation of the process of splicing: the intron
in the pre-mRNA is spliced out, and the resulting mature mRNA is composed only by the
remaining exons. On the bottom, a pre-mRNA with five exons and four of the possible
transcripts. In transcript 1, all the exons are preserved. Exons “B” and “D” are spliced
out together with their adjacent introns in transcript 2; the same happens with exon “C”
in transcript 3, and exons “A”, “C”, and “D” in transcript 4.

Translation, when the mRNA molecule is “decoded” by an RNA-protein complex

called ribosome, which is able to translate the genetic code carried by the mRNA

into a protein.

In 1977, Berget and colleagues (5) observed an mRNA that loses a piece at some

moment between transcription and translation. The process of losing parts was called

splicing, and is schematically shown in the top part of Figure 5.1. The lost parts of

the mRNA molecule are called introns, while the remaining parts are called exons.

The mRNA molecule before splicing is called pre-mRNA, while the spliced molecule

is called mature mRNA.

Later analyses showed that splicing is a frequent post-transcriptional modification.

Moreover, many mRNA molecules have two or more introns, which gives to them an

interesting combinatorial property: eventually, some exons may be discarded together

with their surrounding introns, resulting in different mature mRNA variants from the

same original copy. This process is known as alternative splicing, and the resulting

mature mRNA molecules are also called transcripts. (See bottom part of Figure 5.1)

Notice that an mRNA molecule with n exons can give rise to up to 2n − 1 different
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transcripts. Therefore, the first expected diversity of 100,000 transcripts in the hu-

man genome can be achieved with less than 1,000 genes, each of them with 7 exons.

Nevertheless, in nature, not all mRNA molecules are spliced; those who are may not

have alternative transcripts; and those who have are seldom found in every possible

variant. By any means, splicing explains how 27,000 coding regions can be enough to

produce around 100,000 different kinds of proteins.

5.1 The Splicing Graph

The usual string representation of a set of transcripts does not provide a good visu-

alization of the correlations between exons in the different transcripts. In order to

represent sets of transcripts in a more informative way, Heber and colleagues defined

the splicing graph (21). Their informal splicing graph definition does not always match

the output of their algorithm for the graph construction. In this section we give a for-

mal definition for splicing graphs and argue why the graph they construct is not the

graph they define.

Definition 5.1. Splicing Graph. Let S = {s1, . . . s|S|} be a set of transcripts of a

given gene of interest. Let p be the position in the genome where the gene of interest

begins. Each nucleotide n in each transcript of S is uniquely identified by its genome

position g(n) = p′ − p, where p′ is the nucleotide position in the genome. Each tran-

script s ∈ S may be completely described by the set Ps of its bases’ genome positions.

Let x be a genome position in Ps, the successor1 of x in s is defined as:

successor(x, s) = min (y ∈ Ps | y > x) .

We also define the set of neighbors

Ns = {(u, successor(u, s)) | u ∈ Ps ∪ {−∞}}.

The splicing graph for a collection of transcripts S, S(S) = (V,E), is the directed

graph with:

V =
⋃
s∈S

Ps, E =
⋃
s∈S

Ns.

1For the definition of successor we consider min(∅) =∞.
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Figure 5.2: Splicing graph for the four alternative transcripts in Figure 5.1.

In words, S(S) is the graph where each position in S is a vertex, and two vertices are

connected if they represent neighboring positions in at least one of the transcripts. Like

de Bruijn subgraphs, splicing graphs usually have several induced paths, which can

be collapsed into single nodes, resulting in a more compact representation. Figure 5.2

shows the compact representation for the transcripts in Figure 5.1.

An essential difference between de Bruijn subgraphs and splicing graphs is that, in

opposite to de Bruijn subgraphs, splicing graphs are by definition acyclic: by ordering

the vertices in increasing order of genome position we get a topological sorting of the

vertices. The algorithm for constructing splicing graphs presented by Heber and col-

leagues actually builds a de Bruijn subgraph for the collection of transcripts. Although

both graphs may be isomorphic in many cases, for genes which have exactly duplicated

regions, the associated de Buijn subgraph is cyclic. Since these cases are rare, we use

the term splicing graph as a synonym for the associated de Bruijn subgraph for a set

of transcripts.

5.2 Clustering Transcripts

The set of all transcripts in a population of cells is called its transcriptome. Tran-

scriptomes change over an organism’s lifetime according to many different factors, like

developmental state, or changes in the environment. Genomes, in contrast, usually

remain intact during their whole lifetime. Until recently, transcriptomes were stud-

ied through EST sequencing projects. ESTs, or expressed sequence tags, are usually

incomplete copies of transcripts, which are obtained by replicating the mRNA into a

DNA form called complementary DNA (cDNA), binding the cDNA to small artificial

bacterial chromosomes called vectors, inserting the vectors into bacteria, and finally

amplifying and sequencing them. There are many problems in studying transcriptomes

through ESTs. We name a few:
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• The preparation of clone libraries for EST projects is a hard and time con-

suming work. The resulting libraries represent a limited number of mRNA

molecules, and even in normalized libraries, highly abundant transcripts are

over-represented, whereas rare transcripts may be missing.

• The sequencing reactions can only start in positions where the cDNA molecule

was inserted into the vector. As a result, only the extremities of cDNA molecules

can be sequenced, and the whole cDNA sequence is only discovered if the se-

quences of both extremities are so long that they overlap. Therefore, it is unlikely

that the sequence of long transcripts will be entirely obtained without extra ef-

fort.

• Since the sequencing procedure is bacteria-dependent, transcripts that eventually

cause bacteria death cannot be sampled.

With the advance of high throughput sequencing methods and the consequent abandon

of bacterial amplification, there is hope for a better sampling of transcriptomes. A

question that arises with these data is if the de Bruijn subgraph for transcripts may be

used for more than displaying alternative splicing in a user friendly manner. Heber and

colleagues (21) limit their studies to the construction of splicing graphs for a known

set of splicing variants. They observed that the known variants are represented by

paths in the splicing graph, and that the long induced paths in the graph correspond

to exons. However, discovering new sets of splicing variants from sets of reads is a

more interesting and useful task. In fact, Lacroix and colleagues (28), who developed a

method for counting the abundance of transcripts based on splicing graphs, mentioned2

that one of the problems they face is exactly the splicing graph construction without

previous knowledge of the different transcript groups.

In Chapter 3 we showed that using a de Bruijn subgraph for separating repeat families

is possible, but difficult even in simple genomes. In this section we investigate the

possibility of using de Bruijn subgraphs for separating transcripts by gene. In a more

formal formulation, we are interested in solving the following problem:

Definition 5.2. Transcript Clustering Problem. Given a set of transcripts S =

{s1, . . . , s|S|}, find a function

ϕ : S 7→ N
2Personal communication, F. Lacroix, 8th Workshop on Algorithms in Bioinformatics (WABI),

Karlsruhe, Germany, 2008.
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such that for every s, t ∈ S, ϕ(s) = ϕ(t) if and only if s and t are transcripts of the

same gene.

We devised an approach for solving the Transcript Clustering Problem which is similar

to the one for finding repeat families presented in Chapter 3. For the Transcript Clus-

tering Problem we can take advantage of several transcriptome data peculiarities:

• Unlike members of a repeat families, which are connected by non-repetitive se-

quences, transcripts are small individual molecules.

• If the same exon is found in many transcripts, all the variants have exactly the

same copy of the exon (apart from sequencing errors).

• Exons are usually a few tens of bases long. This allows the use of underlying

sequence graphs of higher dimension. As a result, clustering sequences by chance

is unlikely.

Notice that combining or deleting nodes is not necessary. We simply build the sequence

graph for the set of transcripts, identify the connected components, arbitrarily enu-

merate them, and define the function ϕ by mapping each sequence to the number given

to the component that represents it. The procedure is summarized in Algorithm 7.

Algorithm 7 Transcript Clustering Problem

1: function TranscriptClustering(S)
2: Build the sequence graph S(S)
3: Find the connected components in S(S)
4: Arbitrarily enumerate the connected components in S(S)
5: for all s ∈ S do
6: Let κ be the number of the component representing s in S(S)
7: Let ϕ(s) = κ
8: end for
9: return ϕ

10: end function
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5.2.1 Proof of Concept

We applied Algorithm 7 to the set of human transcripts provided by the EBI’s Alterna-

tive Splicing and Transcript Diversity database3. We used a 39-dimensional underlying

sequence graph, which was formed by 21,190 connected components4. From these com-

ponents, 9,820 contain only one transcript. Around 98.6% of the 11,370 components

containing more than one transcript (11,215) are directed acyclic graphs, while less

than 1.4% of them contain directed cycles.

An automatic analysis of these components is not possible due to the absence of a

good annotation of the transcripts. However, some facts indicate that the resulting

graph is a good approximation to the solution of the Transcript Clustering Problem

for the given dataset:

Predominance of acyclic components. De Bruijn subgraphs associated to sets of

splicing variants are not necessarily acyclic. On the other hand, in order to produce

an associated graph with directed cycles in this case, the gene must have an exactly

duplicated region of size at least 39, which is not common. Although the fact that

less than 1% of the components contain directed cycles is not a proof that the graph

yields the correct solution, the absence of cyclic components supports the hypothesis

that the graph is a good approximation to the solution for the transcript clustering

problem.

Clear separation between the input sequences and their reverse comple-

ments. The transcripts in the input file are all in the same orientation. Therefore,

a component containing some input sequences in the given orientation and others in

form of the reverse complement would indicate that sequences from different genes

were clustered together. No such component was found in the graph.

Number of transcripts × number of components. In the solution for the Tran-

script Clustering Problem, the number of components must be exactly the number of

genes in the genomic sequence, since every gene produced at least one transcript, and

3ASTD: ftp://ftp.ebi.ac.uk/pub/databases/astd/current_release/human,
Release 1.1, build 5, file: 9606 transcripts.fa.gz, version from September 9, 2008.

4These numbers do not include components containing only reverse complements of sequences in
the dataset. Although the graph was built with both transcript sequences and their reverse
complements, all the graph components are composed either entirely by transcript sequences, or
entirely by reverse complements
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each splicing variant is correctly represented by the component of its corresponding

coding sequence. In the sequence graph, the number of components, 21,190, is not far

from the estimated number of genes in the human genome, around 27,000. The differ-

ence of nearly 6,000 components may be explained by an incomplete set of transcripts

or by the presence of duplicated genes in the genome.

Identification of known splice variants by inspection. By manually comparing

sequences of seven genes in the human chromosome number 1 to the nodes in the

sequence graph, we could determine the content of seven of the components. The

sequences in these components were used later for simulating transcriptomes, as de-

scribed in Section 5.3.

5.3 Constructing Splicing Graphs from Short Reads

The results in Section 5.2.1 show that de Bruijn graphs are able to separate transcripts

with common origin in different groups. However, the data used for constructing the

graph in Section 5.2.1, namely a collection of transcripts of an organism, is not always

available. And the method of choice for transcriptome sampling nowadays, namely

EST sequencing, produces low quality samplings, as we discussed in the beginning of

Section 5.2, and in most cases with incomplete gene sequences.

Of course one is only able to completely construct a graph with enough information

about its vertices and edges. In the case of splicing graphs, the vertices are far easier

to discover than the edges, since they represent the exons, which are long sequences,

sometimes found in different transcripts with exactly the same sequence. Discovering

the complete set of edges is more difficult, since some rare variants are poorly sampled,

and only reads covering their splicing sites bring information about the edges.

New bacteria independent sequencing methods provide a more evenly distributed tran-

scriptome sample. On the other hand, these methods produce reads which are much

shorter than traditional Sanger reads. As a result, it is easier to obtain exon sequences

than information about the exon order in different transcripts. This happens because

many of the shorter reads are entirely contained in one exon, and do not provide any

information about the exon neighborhood. The question we address in this section
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Table 5.1: Genes with alternative transcripts used in the tests in Section 5.3. The column
Transc. shows the number of transcripts.

Protein Description Gene Symbols Transc.
Alcohol Dehydrogenase AKR1A1, ALR, AKR1A1, ALDR1 15
Aminopeptidase B RNPEP, APB, RNPEP 13
Calcipressin-3 DSCR1L2, DSCR1L2 8
Cystein protease APG4C 8
Dual specificity protein phosphatase 23 DUSP23, VHZ, DUSP23, LDP3 3
Potassium channel subfamily K KCNK1, TWIK1, HOHO1, KCNO1, KCNK1 7
Serine/threonine-protein kinase PLK3 PLK3, CNK, FNK, PRK, PLK3 4

is to quantify the amount of reads necessary to (1) represent each gene by a unique

component and (2) be able to identify the greatest number of alternative transcripts.

5.3.1 Datasets

In Section 5.2.1 we showed that a de Bruijn graph can separate large amounts of tran-

script sequences in components containing alternative transcripts of the same gene.

We were able to identify seven of these components as known splicing variants. This

section aims at investigating the amount of short reads needed for a trustful recon-

struction of splicing graphs for a transcriptome. Notice, since we focus on coverage,

that the size of the used datasets plays only a small role on the results. Therefore

we opted for repeating the tests in many small artificial transcriptomes, instead of

working with a smaller number of bigger datasets.

We used seven different sets of transcripts from the human genome obtained from the

EBI’s Alternative Splicing and Transcript Diversity database. The genes correspond-

ing to the components in the sequence graph described in Section 5.2.1 were identified,

and are presented in Table 5.1. We considered this set of 7 genes as a genome, and

used the 58 different transcripts for the simulation of transcriptomes. To simulate

the transcriptomes, we assigned to each transcript a multiplicity, corresponding to its

abundance in the transcriptome. The abundances follow a Poisson distribution with

mean 8. For each artificial transcriptome we created a set of reads with coverage 0.5,

2, 4, 8, and 16 times.

The coverage is always measured by means of the number of tuples of a given size in

the transcriptome, counting with duplications. It means that, if the size of a collection
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of sequences S with tuple size d is given by

size(S, d) =
∑
s∈S

max (0, length(s)− d+ 1) ,

a set of reads R covers the collection S with coverage at least c if

size(R, d) ≥ c · size(S, d).

Algorithm 8 Creation of Artificial Transcriptomes

1: function SimulateReads(S, d, c, λ)
2: R← ∅
3: repeat
4: Generate l ∼ Poisson(λ)
5: Uniformly choose s ∈ S
6: Uniformly choose i ∈ {1, . . . , length(s)− d+ 1}
7: R← R ∪ {s[i, . . . , i+ l]}
8: until size(R, d) ≥ c · size(S, d)
9: return R

10: end function

We created in total 50 different transcriptomes, and the corresponding sets of reads

with the previously given coverage values. The reads are perfect copies of transcript

sequences, and have Poisson distributed lengths with average 50. The tuple size used

was 29. The creation of artificial read-sets is described by Algorithm 8. We built a

sequence graph for each set of reads, and measured both the number of components for

each group of transcripts, and the number of transcripts represented in the resulting

sequence graph.

5.3.2 Results and Discussion

The graphs presented in Figures 5.3 and 5.4 summarize the results for the 50 dif-

ferent simulated transcriptomes. Figure 5.3 shows the average number of connected

components representing variants of the same genes in the sequence graph. For small

coverage values, the information obtained from short reads is not enough to cluster

the transcript variants in single connected components. In these cases, alternative
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Figure 5.3: Average number of connected components per gene.

transcripts of some genes are sometimes represented in more than one component. On

the other hand, the average number of components by gene decays fast as we increase

the read set coverage. For coverage values greater than 4 times, most of the genes

with alternative transcripts are clustered in exactly one component.

Having the gene represented by a single component is necessary, but not sufficient for

finding all possible splicing variants in a transcriptome. For representing all variants,

the graph must represent the exons in the sets of transcripts as vertices. Moreover, the

read set must be big enough to cover all the splicing sites, otherwise the corresponding

graph will miss edges, and some variants will not be discovered.

The data in Figure 5.3 shows that 4 times coverage is enough to get the majority of the

exons represented by the sequence graphs. Notice that exon sequences can be shared

by many different variants, which increase the chances of cover them. On the other

hand, some exon neighborhoods may be found only in a few variants. As a result, even

if the information in a read set is enough to find the splicing graph vertices, the edges

found only in rare variants may be only observed in huge read sets. This is shown in

Figure 5.4, where we see the percentage of sequences in the simulated transcriptome

that are also represented by the sequence graph in different read sets. Although we

may expect to observe more than 90% of the transcripts with coverage values as small

as 6 times, we were never able to observe 100% of the transcripts even with 16 times

coverage.
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Figure 5.4: Percent of transcripts represented in the de Bruijn subgraphs for different cov-
erage values of the transcriptome.
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Fault Tolerant Interval Group Testing
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Chapter 6

Group Testing

Group testing was born in the last years of the second world war to be used in a

biomedical application. The exact place of birth was the Price Administration of the

US Government, Research Division, Price Statistics Branch. The approach has both

an official father, Robert Dorfman, who published the first report on the subject;

and a putative father, David Rosenblatt, who worked in the same research group,

and claims to have suggested the method’s basic principle. A brief history of Group

Testing, including briefs of Dorfman and Rosenblatt explaining their viewpoints about

the origin of the approach, can be found in (17). By any means, what called the

attention of the research group to the subject was the number of identical clinical

tests performed in order to identify a few cases of syphilis in the US troops. The Price

Administration Office observed that great amounts of money were invested in testing

soldiers who were not infected, what was for sure good news to the majority of the

soldiers, but a waste of public funds, since the aim of testing the troops was to find

the infected individuals. The Research Division came with the idea of performing the

analysis not in individual samples, but in mixtures of them.

The principle of group testing relies on the assumption that the number of infected

individuals to be discovered, called from now on the positives, is much smaller than the

total number of individuals. When this is true, the probability of picking an infected

sample by chance is small. In fact, it is so small that the probability of having at

least one positive in a reasonably large group of samples is also small. In this case,

samples may be grouped, and tests can be performed not on individual samples, but

on a mixture of them. This may sometimes reduce the resolution of the results: since

we test groups instead of single samples, it may be the case that we are not able to
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distinguish infected (positive) from clean (negative) samples in groups whose mixture

gives a positive result. On the other hand, each negative result for a mixture means

that no sample used to produce the mixture is contaminated. In this case, we save

many individual tests by testing the samples together.

The resolution of the tests’ outcomes depends on the way the groups are designed. We

can think about creating groups in such a way that a single round of tests always gives

enough information to exactly identifying the positives. This strategy, where only a

single round of tests is enough to pinpoint all positives, is called non-adaptive group

testing. The alternative to non-adaptive group testing are approaches where tests are

organized in batches and done in rounds called stages. In these cases, the tests to be

performed in a stage depend on the output of the tests in the previous stage. This is

called adaptive group testing.

Following the original motivation for group testing strategies, when optimizing group

testing approaches, the main aim is the minimization of the number of tests needed

for identifying the positives. Of course more important than knowing this number

is to know how to group the samples in order to always identify the positives in the

minimum number of tests. A set of rules for creating the groups in each stage is called

an algorithm.

Although the main focus of group testing studies is the reduction of the amount of

tests, in practice a series of other limitations appear. These limitations motivated

the study of variants of the original problem of designing the groups. For instance,

although the adaptive approach usually needs a smaller number of tests, the number

of stages used is sometimes restricted by the time and cost of performing the tests in

a stage. Since we are mostly speaking about physical or chemical tests, a new stage

means postponing the final results in hours or even days. Moreover, tests sometimes

cannot be automatically performed, and their parallelization is limited by the resources

of the laboratory performing them. Therefore there is a preference for non-adaptive

approaches (7), and even when adaptive group testing is used, the number of stages

is seldom greater than two.

Another important practical obstacle for the approach is the amount of material in a

sample. Particularly in applications for disease diagnoses, there is a maximum number

of groups in which a sample may be contained simply because the samples are of finite

size.

78



6.1 Formal Definition for the Group Testing Problem

Finally, groups may not be arbitrarily big. There are cases where the group size is

limited by physicochemical properties. In the original application for discovering pa-

tients infected with syphilis, in groups with more than 8 samples a single positive

sample may be so diluted that the test output is not anymore accurate. This was the

main reason why the group test approach for identifying syphilis infected soldiers was

not used during the second war. However, the approach found recently its original

purpose again, and is being successfully applied in tests for HIV identification. Actu-

ally, with respect to HIV tests, group testing found even more applications: Zenios and

Wein (45) used the fact that the output of HIV tests is not binary, but continuous, and

devised a method for estimating the virus prevalence, or the amount of contaminated

people, in a population without the necessity of exactly identifying the positives. This

does not only save tests, but also provides an important information while keeping the

identity of infected people in secret.

6.1 Formal Definition for the Group Testing Problem

A typical group testing problem consists of three elements: a set O of exactly n known

objects, which are the individuals to be tested; a set P ⊆ O of positives, which are the

elements we want to identify; and a family Q of tests or queries, which are subsets of

O. Each set Q ∈ Q provides information about the P through an oracle that correctly

answers the question

P ∩Q = ∅ ?

An algorithm for finding the set of positives is a series of rules for grouping the objects

in each stage, in one of the possible ways according toQ. The efficiency of an algorithm

is measured by the number of tests needed to identify the positives. Assuming the

number of possible stages unlimited, we denote with N (n, p) the minimum number of

tests necessary to identify p positives among n elements. The efficiency of group test

algorithms is measured in terms of N (n, p).

A lower bound for the efficiency of group testing algorithms can be obtained with a

simple information theoretical argument: if there are exactly p positives in our set

of n samples, then a group testing algorithm needs to differentiate between the
(
n
p

)
possible sets of positives. The outcome of each test is binary: each of them is either
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positive or negative. Therefore we can define, for each algorithm outcome, a binary

vector where each position corresponds to a test in the algorithm. If the algorithm

uses less than log
(
n
p

)
= Ω(p log n

p
) tests, the number of different outcomes is less than

2log (n
p) =

(
n
p

)
, which is the number of possible sets of positives. As a result, there is

at least one outcome for which the algorithm cannot correctly decide between two or

more sets of positives. This lower bound of Ω(p log n
p
) is attained by fully adaptive

strategies.

A larger lower bound for non adaptive algorithms is obtained through the equivalency

between superimposed codes and non-adaptive algorithms. Superimposed codes are

sets of binary vectors with special properties, which are presented in Section 6.2.1. If

the vectors in a superimposed code have length n, they can be interpreted as tests,

where a sample is in a group if and only if the value of its corresponding position

in the binary vector is equals to 1. From the correspondence between superimposed

codes and group testing, we know that the minimum number of tests in a non-adaptive

algorithm is equal to the minimum number of vectors in such a code, which is bound

by Ω( p2

log p
log n). The best known non-adaptive strategy needs O(p2 log n) tests.

If the number of stages is at most s, we denote the minimum number of tests necessary

to identify the positives in the worst case with N (n, p, s). A variant of the classical

group testing approach considers the case when the oracle is not perfect, but may

erroneously answer at most e questions in the whole process. In this case, the minimum

number of tests necessary to identify the positives is denoted by N (n, p, s, e).

6.2 Group Testing and Genome Research

The huge amount of data a genome researcher needs to face in his everyday tasks does

not need to be mentioned anymore. Even simple tasks in a genome research project,

like comparing two genomes, involve thousands of individuals tests. Therefore it is not

surprising that group testing approaches are being used for improving the efficiency of

tasks like DNA library screening, physical mapping, gene detection, assembly finishing,

and many others (29). Group testing approaches in biology are non-adaptive in most

cases. The groups are in most cases called pools, therefore the approach is commonly

called pooling design.
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6.2.1 Library Screening

Libraries are sets of clones, which are copied parts of a DNA molecule. Very small

chemically modified DNA molecules called probes may bind to clones, helping biologists

to identify them. Wu and colleagues (43) studied the problem of verifying if all clones

in a library hybridize at least one probe in a given set. For this purpose, they were

interested in pooling clones so that it is possible to identify up to p positives using

the minimum number of tests in a non-adaptive approach. A positive in this case is a

clone (or pool) which hybridizes with a probe. Probes are chemically labeled, so that

biologists can easily test for their presence.

For designing the pools, Wu and colleagues suggest the use of a binary matrix where

columns represent the clones, and rows represent pools. The position (i, j) in this

matrix has the value 1 if the pool i contains the clone j. When a clone is positive, all

pools containing a 1 in its corresponding column are also positive. We call this set of

pools covering a clone its roof. The roof for a clone j is therefore defined as

roof(j) = {i | Mij = 1}.

The roof of a set of clones is the union of all individual roofs.

In order to uniquely identify each possible outcome containing up to p positives, we

need to design our pool in such a way that each possible combination of up to p

positives has a unique roof. A matrix with such a property is called p-separable. The

minimum number of pools in a pool design is obtained when the p-separable binary

matrix representing the pool has n columns and the minimum possible number of

lines.

The problem of identifying the positive clones given a set of positive pools is called

decoding, and is NP-Complete (43). The following theorem by Wu et al. (43) gives a

hint on how to design pools that can be easily decoded:

Theorem 6.1 (Theorem 2 in Wu et. al (43)). For a p-separable matrix, the union of

negative pools always contains at least n− p− k + 1 clones if and only if no p-union

contains a k-union.

A p-union is the union of the roofs of exactly p columns. When k = 1, no column

contains a p-union, the union of negative sets contains at least n − p objects, and
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decoding can be solved in polynomial time O(n). The matrix is called p-disjunct in

this case.

6.2.2 Protein-Protein Interaction

Because many functions in organisms are controlled through complex networks of

interactions between different kinds of proteins, an efficient way of identifying pairs of

interacting proteins is of great interest to biologists. Li and colleagues (29) formulated

a group testing approach using complete bipartite graphs for testing protein-protein

interaction.

Let KA,B be a complete bipartite graph where each vertex represents a protein, and

each edge an interaction. The proteins on partition A are called baits, and the ones on

partition B are called prays. An edge is called positive if the two proteins it connects

interact; otherwise it is called negative. Let C ⊆ A and D ⊆ B. We say that the test

(C,D) is positive if there is a positive edge (c, d), with c ∈ C, and d ∈ D.

Here, the same pooling matrix described in Section 6.2.1 is used. However the def-

inition of disjunction is modified, so that it reflects the fact that edges are tested,

instead of vertices. Let H be a bipartite graph, we say that a pool design matrix M

is p(H)-disjunct if for any p+ 1 edges e0, e1, . . . , ep of H, there exists a row indicating

that a pool contains e0, but not e1, . . . , ep. In (29), two constructions that provide

p(H)-disjunct matrices are presented.

6.2.3 Finding the Borders of Assembly Gaps

A genome can be seen as a set of chromosomes, which are very long strings on the

small alphabet Σ = {A,C,G, T}. Due to technological limitations, biologists have

only access to small substrings of the chromosomes, and need to put these small pieces

together in order to obtain the whole genome. Usually, the amount of sequence data

obtained in a genome sequencing project is not sufficient to uncover the whole genome

sequence, which results in a set of large strings corresponding to the uncovered parts of

the chromosomes. Therefore after a series of sequencing experiments, the chromosomes

may be divided into two kinds of substrings: the parts uncovered by the sequencing

data, called contigs, and the parts for which no sequence information is available,
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called gaps. By definition, contigs and gaps alternate in the chromosomes: contigs are

flanked by at most two gaps, which are flanked by at most two contigs.

If a gap is small enough, the extremities of its flanking contigs can be used as starting

point for a reaction called polymerase chain reaction, or simply PCR, which uses the

original DNA molecule of the chromosomes to create many copies of the gap. These

copies can be used to obtain the missing gap sequence, which is called closing the

gap.

The problem is that, since we do not know the strings corresponding to the chromo-

somes, we cannot tell which pair of contigs flanks a gap. If we try to perform a PCR

using the extremities of a wrong pair of contigs, we will never get a gap sequence. A

partially known genome with c contigs has 2c extremities. Doing a PCR for each of

the
(
2c
2

)
− c possible pairs of contig extremities is infeasible. Fortunately when doing

a PCR using many contig extremities, we get some result only if at least two of the

extremities flank a gap. This variant where many extremities are used together in a

single PCR is called multiplex PCR, and this is everything we need for a group testing

approach.

Let G be a complete graph where the vertices are contig extremities. The edges

corresponding to the pairs of gap flanking sequences form a hidden matching in G.

Each unsuccessful PCR using many extremities reveals a set of vertices that contain no

edges from the matching, whereas successful PCRs give hints about the location of the

matching edges. By grouping the primers carefully it is possible to identify the correct

pairs with less testing. Surprisingly in this case a not so careful choice is able to reach

the best possible result. Alon and colleagues (3) proved that a completely randomized

non-adaptive algorithm is able to identify the correct pairs of contig extremities using

O(n log n) tests.

6.3 Testing with Inhibitors

Samples can be damaged or contaminated, and force the tests including them to

always produce a negative result, even in the presence of positives. Samples that

influence tests outcomes are called here inhibitors. In 1997, Farach and colleagues (18)

introduced a variant of the group testing model where the search space contains three
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kinds of objects: positives, negatives, and inhibitors. They introduced a parameter r

into the traditional model, which is an upper bound for the number of inhibitors in

the search space, and devised a randomized algorithm able to identify the positives

with O((r+ p) log n) queries on average, assuming that r+ p� n. One year later, de

Bonis and Vaccaro (14) were able to devise an adaptive deterministic algorithm using

O((r2 + p) log n) queries. This algorithm could be extended to a 3-stage algorithm

that uses O((r2 + p2) log n) tests.

In 2008, de Bonis (7) worked both with the model variant where p is the exact number

of positives in O, and the variant where this parameter is an upper bound for the

amount of positives. She showed that any algorithm with any number of stages that

finds up to p positives in the presence of at most r inhibitors is lower bounded by the

length of a superimposed code of size n, which is Ω( r2

p log r
log n).
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Interval Group Testing

In the previous chapter we presented applications of traditional group testing to bio-

logical problems, with the typical set of objects and positives, and queries being any

subset of the set of objects. In this chapter we present a variant of the group testing

approach called Interval Group Testing, where the objects in the search space are lin-

early sorted, and only queries containing all elements inside an interval are allowed.

Interval Group Testing is the variant of the traditional group testing approach where

the search space can be linearly sorted, and the only tests allowed are the tests contain-

ing all the objects in an interval. In this case, the search space, O, can be represented

by the set of the first n positive integers [n] = {1, 2, . . . , n}, the set of positives P

is an arbitrary subset of O, and each query can be represented by an interval [i, j].

The queries are as usual binary tests asking “Is P ∩ {i, i + 1, . . . , j} 6= ∅?”, for some

1 ≤ i ≤ j ≤ n. The aim is to identify P with the minimum number of queries.

Group testing with interval tests also arises in a variety of domains, e.g., detecting

holes in a gas pipe (17; 27), finding faulty links in an electrical or communication

network, data gathering in sensor networks (23; 22; 24), just to mention a few. Our

main motivation for the study of interval group testing comes from its application

to the problem of determining exon-intron boundaries within a gene (32; 44). In a

very simplified model, a gene is a collection of disjoint substrings within a long string

representing the DNA molecule. These substrings, called exons, are separated by

substrings called introns. The boundary point between an exon and an intron is called

a splice site, because introns are spliced out between transcription and translation.
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Determining the splice sites is an important task, e.g., when searching for mutations

associated with a gene responsible for a disease.

In (44), a new experimental protocol is proposed that searches for the exons bound-

aries using group testing. This consists of selecting two positions in the cDNA, a copy

of the original genomic DNA from which introns have been spliced out, and deter-

mining whether they are at the same distance as they were in the original genomic

DNA string. If these distances do not coincide then at least one intron (and hence a

splice site) must be present in the genomic DNA between the two selected positions.

The advantages of splice site detection by distance measurements over sequence-based

methods using, e.g., Hidden Markov Models are that this method works without ex-

pensive sequencing of genomic DNA and it gives the results directly from experiments,

without relying on inference rules. The work (44) and the book (32) report about the

experimental evaluation, on real data, of the algorithm ExonPCR that finds exon-

intron boundaries within a gene. The authors of (44) only give a simple asymptotic

analysis of their Θ(log n)-stage algorithm. In particular, they leave open the question

whether there exist less obvious but more efficient query strategies for Interval Group

Testing and, more importantly, algorithms able to cope with the technical limitation of

the experiments, and particularly with errors. We remark that non-adaptive strategies

are desirable in this context, in order to avoid long waiting periods necessary to pre-

pare each experiment. However a totally non-adaptive algorithm (with s = 1) needs

unreasonably many queries. Thus, the necessity arises to trade more stages for fewer

queries, but without exceeding with stages. In (12) the first rigorous algorithmic study

of the problem was presented, and for the case s ≤ 2 a precise evaluation of N (n, p, s)

was given. In (11) a sharper asymptotic estimation of N(n, p, s) is found, which is

optimal up to the constant of the main term in the case of large s. The necessity of

dealing with errors in the tests had been already stated in the seminal papers (32; 44)

and reaffirmed in the subsequent ones. However, to the best of our knowledge, ours

are the first non-trivial results on this interesting variant of the problem.

7.1 Definitions and Notation

An instance of the problem is given by three non-negative integers n, p, s and a subset

P ⊆ O = {1, 2, . . . , n}, such that |P | ≤ p. The set O is the search space and P is the
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set of positive objects that have to be identified. We assume that tests are arranged

in stages: in each stage a certain number of tests is performed non-adaptively, while

tests of a given stage can be determined depending on the outcomes of the tests in all

previous stages.

For each value of the parameters n, p, s we want to determine the value of N (n, p, s),

the worst-case number of tests that are necessary (and sufficient) to successfully iden-

tify all positives in a search space of cardinality n, under the hypothesis that the

number of positives is at most p, and s-stage algorithms are used.

We use square brackets to denote intervals of integers in [n]. Then, for each 1 ≤ i ≤
j ≤ n, we denote by [i, j] the set {i, i+1, . . . , j}. Given an interval π = [i, j], we denote

its size by |π|, i.e., |π| = j− i+ 1. By definition each query asks about the intersection

of a given interval with the set of positive elements. Therefore, we identify a query

with the interval it specifies. We say that a query Q ≡ [i, j] covers an element k ∈ [n]

if and only if k ∈ [i, j].

A query Q ≡ [i, j] has two boundaries: the left, (i − 1, i), and the right, (j, j + 1).

For the sake of definiteness, we assume that, for any a ∈ [n], the query [1, a] has

left boundary (0, 1), and the query [a, n] has right boundary (n, n + 1). A multiset

of queries Q defines a set of boundaries B(Q) = {(i1, i1 + 1), (i2, i2 + 1), . . .}, where

0 ≤ ik < ik+1 ≤ n + 1. Every interval [ik + 1, ik+1] is called a piece. Because every

query has two distinct boundaries, but two queries may share some boundaries, we

have |B(Q)| ≤ 2 |Q|. A boundary B of a piece P is said to be turned to the piece

if there is a query Q such that P ⊂ Q and B is also a boundary of Q. A piece is

called a 2-piece if both its boundaries are turned to it. A piece that has only one of

its boundaries turned to it is called a 1-piece. If none of the boundaries is turned to

the piece, it is called a 0-piece. Figure 7.1 illustrate the definitions given so far.

Let π be a piece defined by the set Q of queries. We call roof of π, and denote it by

R(π), the subset

R(π) = {Q ∈ Q : π ⊆ Q} .

The definition of roof can be extended to a set of pieces P as

R(P) =
⋃
π∈P

R(π).
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Figure 7.1: A set of two interval queries, which partition the set of objects into 5 pieces.
The thicker line represents the set of objects.

Consider two pieces πi and πj. If R(πi) ⊂ R(πj) then the piece πi is called a satellite

of piece πj. There are 3 simple facts about satellite pieces:

• Every 1-piece is a satellite of some 2-piece.

• Every 0-piece contained in some query interval is a satellite of two 2-pieces,

namely the next ones to both sides of b.

• If a 0-piece outside all query intervals exists, then it is a satellite of every 2-piece.

Moreover, if q is the number of queries in a stage and ci is the number of i-pieces, we

have we have c1 + 2c2 ≤ 2q. Furthermore, c1 ≤ q and c2 ≥ 1.

7.1.1 YES-sets

Let Q be an arbitrary set of interval queries. As soon as we start playing with possible

answers to the queries in Q, it becomes clear that not all combinations of positive and

negative answers correspond to real situations. For instance, in Figure 7.2, answering

Yes to all queries is not possible when looking for at most one positive: since the

queries a, d, and e are disjoint, the positive would be at the same time in one of the

pieces π1 and π2; and in one of the pieces π4 and π5; and in one of the pieces π6 and

π7. Since a positive cannot be at the same time in three different intervals, this set of

answers will never be observed when p = 1. The same happens for the case of at most

2 positives. If more than two positives are allowed, this pattern could be observed if

the pieces π2, π4, and π7 contain at least one positive. Another forbidden combination

is the one where only the query b has a positive answer: since all pieces covered by
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Figure 7.2: A query scheme with 5 queries dividing the search space in 7 pieces.

this query are also covered by the queries a, c, or d, a positive in the interval b would

automatically force another positive answer.

A set Y ⊆ Q of queries such that answering Yes to the queries in Y and No to all

others corresponds to valid scenarios is called a Yes-set for Q. Formally speaking, a

Yes-set can be defined as follows:

Definition 7.1. Let Q be a multiset of queries, and let Y ⊆ Q. If there is a set of

pieces P such that |P| ≤ p and
⋃
π∈P R(π) = Y, then Y is a Yes-set for Q in the

case for p positives.

A Yes-set is called specific if the intersection of all its queries corresponds to a single

piece, and the piece has at most one positive, otherwise it is called unspecific. More

formally, a Yes-set Y ⊂ Q is specific if and only if there is a piece π of Q, with

|π ∩ P | ≤ 1, such that
⋂
Q∈Y Q = π.

7.1.2 A Simple Average Argument for 2-Stage Lower Bounds

Suppose we want to find at most p positives in a search space O = [n] in two stages.

Let Q be the multiset of interval queries used in the first stage, and suppose that

Q divides the search space in l pieces. There can be many different Yes-sets for Q,

and positives are differently spread over the pieces in each Yes-set. The analysis of

the number of queries needed to uniquely identify the positives in a second stage for

each Yes-set gives us the opportunity to look for the Yes-sets that force the greatest

number of queries in total. These Yes-sets correspond to the worst scenario faced

when using the query scheme Q, and the minimum (over all Q) of the number of

queries forced by such Yes-sets corresponds exactly to N (n, p, 2).

Let Y be a Yes-set for a query scheme. We call the weight of Y the number of queries

needed to uncover the positives in the search space after observing Y . It is difficult to
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characterize the heaviest Yes-sets for a general query scheme. And actually we do not

need to know how this Yes-set looks like. All we need is the weight of this Yes-set,

or at least bounds for this number of queries. Consider a multiset of Yes-sets, and let

η be the average weight of the Yes-sets in this multiset. Because η is smaller than or

equal to the maximum weight in the multiset, it is also a lower bound for the weight

of the heaviest Yes-set in the multiset. Notice that the heavier the Yes-sets in this

multiset are, the closer the lower bound is to the real weight of the heaviest Yes-set.

Of course the lower bound for a single query scheme is a quite poor information.

Cicalese et al. proved bounds for the number of tests needed in many variants of the

interval group testing approach (12; 11). In (12), they used an averaging argument to

provide lower bounds for two-stage interval group testing strategies based on bounds

for the non-adaptive case. Their bound for the 2-stage approach is based on averaging

the weight of a multiset of Yes-sets. And the beauty of this approach lies on the fact

that no knowledge is needed about the weight of individual Yes-sets. Cicalese et al.

do not analyze Yes-sets, but instead they concentrate on individual pieces, and the

number of queries needed in each Yes-set to look for positives inside the pieces in the

second stage.

Suppose that the number of queries needed to reveal the positives inside a piece πj

when observing the Yes-set Yi is given by w(Yi, πj) |πj|, where w(Yi, πj), the piece

weight, is a function of the Yes-set and the piece, and |πj| is the size of the piece. If

the total number of pieces in the query scheme is l, we may express the weight of the

Yes-set Yi as:

w(Yi) =
l∑

j=1

w(Yi, πj) |πj| .

This means that the average weight in a multiset of m Yes-sets is given by:

η =

∑m
i=1

∑l
j=1w(Yi, πj) |πj|

m

=

∑l
j=1 (|πj|

∑m
i=1w(Yi, πj))
m

Suppose now that we know neither the piece sizes nor their individual weights, but we

know that the sum of weights for every piece in all Yes-sets is never smaller than a
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Figure 7.3: Pattern of four queries analysed in Section 7.1.2.

number r, that is:
m∑
i=1

w(Yi, πj) ≥ r.

Moreover, we know that the total number of Yes-sets is not larger than a number

k ≥ m. We have:

η =

∑l
j=1 (|πj|

∑m
i=1w(Yi, πj))
m

≥
∑l

j=1 (|πj| r)
m

≥
l∑

j=1

|πj|
r

k

= n
r

k

This reasoning proves the following lemma, which was used in (12; 11) for proving

lower bounds in 2-stage strategies, and can be used without modifications for finding

lower bounds in fault tolerant interval group testing, as shown in the next chapter.

Lemma 7.2. Consider a multiset of k (not necessarily distinct!) Yes-sets, and for

each i = 1, 2, . . . , k and j = 1, 2, . . . , `, let w(Yi, πj) be the weight of the jth piece in

the Yes vector associated to the ith Yes-sets. If there exists an r > 0 such that for all

j = 1, 2, . . . , `, it holds that
∑k

i=1w(Yi, πj) ≥ r, then an adversary can force at least
r
k
n queries in the second stage.

Using the Average Argument

We exemplify the use of the average argument by giving a lower bound for the number

of queries used by an algorithm able to find up to 2 positives using the queries shown
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in Figure 7.3 in the first stage. We analyze 2 Yes-sets: Y1 = {a, b} and Y2 = {c, d}.
In traditional interval group testing, the number of queries necessary to identify p

positives in a search space of size n is given by N (n, 1, 1) = d1
2
ne, if p = 1, or

N (n, p, 1) = n, if p ≥ 2 (12).

We start analyzing Y1. Notice that when this Yes-set is observed we can have three

situations: either both positives are in the piece π2, or the two positives are separated

in two of the pieces π1, π2, and π3, or one positive is in piece π2 and the other is in the

uncovered piece π4. Since each piece that may contain a positive has to be analyzed

in the second stage with a strategy able to find the positives in any possible case, the

piece π2 has to be analyzed with a strategy able to find up to two positives, the pieces

π1, π3, and π4 with a strategy able to find up to one positive, and all other pieces may

be ignored in the second stage. This means that this Yes-set forces at least 1
2
|π1|

queries in piece π1, |π2| queries in piece π2,
1
2
|π3| queries in piece π3, and 1

2
|π4| queries

in piece π4 in the second stage. Moreover, the weight given from Y1 to each piece is

given by:

w(Y1, π1) =
1

2
w(Y1, π2) = 1

w(Y1, π3) =
1

2

w(Y1, π4) =
1

2
w(Y1, π5) = 0

w(Y1, π6) = 0

w(Y1, π7) = 0

Notice that a similar analysis gives also the weights:
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w(Y2, π1) = 0

w(Y2, π2) = 0

w(Y2, π3) = 0

w(Y2, π4) =
1

2

w(Y2, π5) =
1

2
w(Y2, π6) = 1

w(Y2, π7) =
1

2

As a result, for each piece πi, it holds that w(Y1, πi) + w(Y2, πi) ≥ 1
2
. Using the

notation of Lemma 7.2, we have k = 2 and r = 0.5 therefore there is at least one

Yes-set that can force at least r
k
n = n

4
queries in the second stage, given a lower

bound of 4 + n
4

queries for algorithms using this pattern of queries.

In this example we analyzed only one set of queries. In the next chapter we will use

similar arguments applied to general query multisets.
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Chapter 8

Fault-Tolerant Interval Group Testing

In Chapter 7, we presented the interval group testing problem, and some properties

of each search space and queries. In this chapter we introduce a new parameter in the

problem, which is the maximum number e of errors that one may find in the tests.

An error is a wrong answer to a single test. In this chapter we provide bounds for

the number N (n, p, s, e), where n is the search space size, p is the maximum number

of positives, s is the maximum number of stages we have to identify them, and e is

the maximum number of errors. We focus on the case when the maximum number of

stages is 2, which is the most common case in practical uses of this approach. For the

case when non-adaptive search is used we are able to precisely defining this number.

For the 2 stage case we provide tight bounds in the case where only one error is

allowed.

For the worst case analysis, we substitute the oracle by an adversary. The main

difference between the oracle and the adversary is that, while the oracle answers the

questions according to the static set of positives, the adversary can postpone the

definition of the positive set as long as the answers in different stages are consistent1.

For lower bounds, we look at the problem from the adversary viewpoint and analyze

the maximum number of queries he can force in every case. For upper bounds we

see the problem from the opposite viewpoint, the questioner’s perspective, and design

algorithms to reduce the maximum number of queries needed in the worst case. The

best adversary is always able to force the questioner to the worst case, therefore he

is able to force at least N (n, p, s, e) queries, and the best questioner is always able to

1With consistent here we mean that there is always at least one set of positives for which all the
answers given so far are valid
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reveal the positives using the minimum number of queries, therefore he is always able

to solve the problem using at most N (n, p, s, e) queries. When the best questioner

meets the best adversary, we observe exactly N (n, p, s, e) queries.

8.1 Non-Adaptive Fault-Tolerant Interval Group

Testing

In adaptive group testing, there is a basic difference between the last stage and all

the others stages: while the first stages may focus on reducing the search space, the

last stage must point out which are the positives. In other words: the last stage is

non-adaptive per se. As a result, studying non-adaptive group testing is a prerequisite

to the study of any adaptive strategy. Therefore the results in this section will be the

basis for the analysis of the more practical two batch case.

The following two theorems completely characterize 1-stage e-fault tolerant interval

group testing.

Theorem 8.1. For all n ≥ 1 and e ≥ 0, it holds that N (n, 1, 1, e) =
⌈

(2e+1)(n+1)
2

⌉
.

Proof. The lower bound directly follows from the following claim.

Claim. Every strategy that correctly identifies the (only) positive or reports P = ∅,
uses a set of questions such that there are at least 2e+1 questions’ boundaries (i, i+1)

for each i = 0, 1, . . . , n.

By contradiction, let us consider a strategy such that for some i ∈ [n] there are b ≤ 2e

questions with a boundary (i, i + 1). Let Q be the set of such questions and Q1 the

set of all questions in Q which contain i. Assume, without loss of generality, that

|Q1| ≥ |Q \ Q1|.

Let the adversary answer

• NO to all the questions having empty intersection with {i, i+ 1},

• YES to all questions including both i and i+ 1,

• YES to exactly d|Q
2
|e questions in Q1 and NO to the remaining ones in Q1,

96



8.1 Non-Adaptive Fault-Tolerant Interval Group Testing

Figure 8.1: Pattern found in an optimal algorithm for a search space with an odd number
of elements. The numbers represent the search space, whereas the horizontal bars indicate
the interval queries.

Figure 8.2: Patterns found in an optimal algorithm for a search space with an even number
of elements. The numbers represent the search space, whereas the horizontal bars indicate
the interval queries.

• YES to all the questions in Q \ Q1.

A moment reflection shows that, due to the possibility of having up to e erroneous

answers, the above set of answers is consistent with both cases when P = {i} and

P = {i + 1}2. Hence, the given strategy cannot correctly discriminate among the

above possibilities. The claim is proved.

Therefore, any strategy that is able to correctly identify P must use in total at least

(2e + 1)(n + 1) boundaries. Then, the desired result follows by observing that each

question can cover at most 2 boundaries.

We now turn to the upper bound. Direct inspection shows that for n ≤ 3 there exists

an easy strategy with the desired number of questions.

For each k ≥ 2, let A2k+1 = {[1, 2], [2, 4], [4, 6], . . . , [2k− 2, 2k], [2k, 2k+ 1]} and A1
2k =

{[2, 2k − 1], [3, 2k − 2], . . . , [k, k + 1]}, A2
2k = {[1, k], [k + 1, 2k]}, and A3

2k = {[1, k]}.

Then, for n ≥ 4, the following strategy attains the desired bound.

2In particular, for the cases, i = 0 (respectively i = n) the ambiguity is whether P contains no
elements or the element is 1 (resp. n).
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If n is odd, the strategy consists of asking 2e+ 1 times the questions in An. Figure 8.1

shows the groups of questions found in this algorithm. These amount to (2e+ 1)d(n+

1)/2e = d(2e+ 1)(n+ 1)/2e questions which clearly cover 2e+ 1 times each boundary

(i, i+ 1), for each i = 0, 1, . . . , n.

If n is even, let k = n/2. Now, the strategy consists of asking 2e + 1 times the

questions in A1
n, plus e + 1 times the questions in A2

n, plus e times the questions in

A3
n. Figure 8.2 shows the groups of questions found in this algorithm. In total, in

this case, the strategy uses (2e + 1)(k − 1) + 2(e + 1) + e = (2e + 1)k + e + 1 =

d(2e+ 1)(2k + 1)/2e = d(2e+ 1)(n+ 1)/2e, as desired.

For the case of more positives we have the following generalization.

Theorem 8.2. For all integers n ≥ 1, p ≥ 2, e ≥ 0, it holds that

N (n, p, 1, e) = (2e+ 1)n.

Proof. The upper bound is trivially obtained by a strategy made of (2e+ 1) copies of

the singleton questions {1}, {2}, . . . , {n}.

The lower bound is obtained proceeding in a way analogous to the argument used

in the previous theorem. Here, we argue that every strategy that correctly identifies

P must ask, for each i = 1, 2, . . . , n − 1, at least 2e + 1 questions with boundary

(i, i + 1) and including i, and at least 2e + 1 questions with boundary (i, i + 1) and

including i + 1. Moreover, it must ask at least 2e + 1 questions with boundary (0, 1)

and 2e+ 1 questions with boundary (n, n+ 1). For otherwise, assume that there exists

i ∈ {1, 2, . . . , n− 1}, such that one of the above 4e+ 2 boundaries (i, i+ 1) is missing.

Proceeding as in the proof of the previous theorem, it is possible to define an answering

strategy for the adversary that balances the answers on the two sides of the boundary

so that only with the information provided by the answers and given the possible

number of lies, it is not possible to discriminate between the case P = {i} and the

case P = {i, i+ 1}, or between the case P = {i+ 1} and the case P = {i, i+ 1}.

Alternatively, if some of the above boundaries (0, 1) (resp. (n, n+ 1)) are missing, the

adversary can answer in such a way that it is not possible to discriminate between the

case P = ∅ and P = {1} (resp. P = {n}).
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8.2 Two Stage Fault-Tolerant Interval Group Testing

We proved in the previous section that the number of queries necessary and sufficient

to detect more than one positive in a set of n elements in the presence of at most e

lies is (2e+ 1)n. The reader may be pondering at this point about the utility of group

testing, since the optimal strategy implies exhaustively testing each single element in

order to be sure it is a positive. In fact, this result shows that non-adaptive interval

group testing does not bring any advantage. The study of non-adaptive group testing

is anyway important because, as explained above, the last stage in an adaptive strategy

is always a non-adaptive strategy.

8.2.1 Possible Scenarios

When errors are allowed, Yes-sets may represent different scenarios. As an example,

consider the Yes-set in Figure 8.3. In an error-free case, the only piece containing

the positive is clearly π4. If one error is allowed, then either the answer to b or the

answer to c can be wrong3. If the answer to b is wrong, the answer to d is for sure

correct, since at most one answer can be wrong; the only positive query is c; and the

positive must be in π5. Analogously, if the answer to c is wrong, the positive is in π3.

Because the hypothesis that no error occurred cannot be discarded, the pieces π3, π4,

and π5 must be further investigated. Fortunately, since the positive can be found in

the pieces π3 and π5 only in case an error occurred, the questioner may use the less

expensive error-free strategies to investigate these pieces. At the end, if the Yes-set

in Figure 8.3 is observed in the case when at most one error is allowed, according to

the bounds from the last section, the questioner will need at least

3

2
|π4|+

1

2
(|π3|+ |π5|)

queries. Remembering the averaging argument presented in Section 7.1.2, in this Yes-

set the pieces π3 and π5 have weight 1
2
, the piece π4 has weight 3

2
, and all the other

pieces have weight 0.

Of course the scenario gets even more complicated and the pieces get even more weight

when more errors are allowed. When two errors are allowed, some new scenarios are

3Notice that these are the only answers that may be wrong in case of at most 1 positive.
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Figure 8.3: A multiset of queries with 2 positive answers (to the queries b and c) and three
negative answers (to the queries a, d, and e). The stronger horizontal line represents the
search space, while the thinner lines represent the interval queries. Queries in black have
positive answers, whereas the ones in grey have negative answer. The projection of the
borders in the search space are indicated by dashed lines and the consequent pieces are
labeled π1, . . . , π9.

possible, and other pieces enter the game. For instance, now both the answer for

b and the answer for d can be wrong, which allows the positive to be in piece π6.

The same happens with queries a and c, and the piece π2. The hypothesis that only

one error occurred cannot be discarded, so that pieces π3 and π5 must be searched

with at least a 1-error tolerant algorithm. Also the hypothesis that no error occurred

cannot be ignored, and piece π4 must be analyzed with an even heavier 2-error tolerant

algorithm. Using Theorem 8.1, we get a total of

5

2
|π4|+

3

2
(|π3|+ |π5|) +

1

2
(|π2|+ |π6|)

queries in the second stage.

When errors are allowed, the number of Yes-sets increases, and the simple definition

given in Definition 7.1 does not cover all valid sets of answers to a multiset of queries.

As a result, the definition of Yes-sets becomes slightly more complex, as well as their

analysis.

Definition 8.3. Let Q be a multiset of queries, and let Y ⊆ Q. If there is a set of

pieces P such that |P| ≤ p and |(R(P) ∪ Y) \ (R(P) ∩ Y)| ≤ e, then Y is a Yes-set

for Q in the case for p positives and e lies.

In other words, for error-tolerant interval group testing algorithms, a Yes-set is the

set of positively answered questions in a valid scenario, which may differ from the roof

of a set of pieces by at most e answers.

Definition 8.3 suggests a simple way to construct Yes-sets for instances (n, p, s, e):

we choose a set of pieces P , with |P| ≤ p, and let Y = R(P). Sets built in this

100



8.2 Two Stage Fault-Tolerant Interval Group Testing

way are called consistent. We may also use the allowed lies when creating Yes-sets

by adding (or removing) up to e elements to (from) Y . Sets created on this way are

called inconsistent. Notice that the consistency is not a property of the set, but of

the way the set was constructed. If two consistent Yes-sets A and B differ in at

most e elements, then B can be constructed by consistently creating A, and further

transforming A into B.

8.2.2 Bounds for Two-Stage Algorithms with One Positive

The aim of this section is to prove asymptotically tight upper and lower bounds on

the query number of 2-stage interval group testing algorithms when up to one of the

answers is a lie. We shall first analyze the case when P contains at most one positive.

We start with some notations and facts which will be used for the proof of the lower

bound.

Let Q be a set of interval questions. For any piece π, cut by Q, we denote by R(π),

the roof of π, the set of query intervals in Q containing π.

Let π1, . . . , π` be the pieces determined by the intervals of Q. Given the Yes-set Y ,

we define the weight it assigns to the piece πi according to the following scheme:

• A piece gets weight 1/2 if it can contain a positive and there will not be a lie in

the next stage.

• A piece gets weight 3/2 if it can contain a positive and there might be still a lie

in the next stage.

Here, “can” means that this possibility is consistent with the Yes-set.

We denote with wQ(Y) the weighted sum of the lengths of the pieces cut byQ weighted

according to the weights associated to Y . In formulas, if wQ(Y , πj) is the weight given

to the piece πj, we have

wQ(Y) =
l∑

j=1

wQ(Y , πj) |πj| .

Assume now that Q is the set of interval questions asked in the first stage of a two

stage group testing algorithm which finds more than one positive. Using Theorems 8.1
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and 8.2 it follows that if Y is the set of intervals in Q that answer Yes, the number

of queries to be asked in the second stage in order to find all the positives is at least

wQ(Y). Since each piece πj that may have a positive must be solved as an independent

interval group testing problem with universe of size |πj| at the second stage, and wj

associates the correct lower bound factor given by Theorems 8.1 and 8.2 in the case

of one error.

In order to prove the promised bound we will show that for each possible set of interval

questions A1 there exists a Yes-set Y such that wA1(Y) ≥ n/|A1|.

The following proposition allows us to limit the analysis for the lower bound to a

subset of all possible first stages.

Proposition 8.4. (12) Let Q be a set of interval questions producing a partition of the

search space in which there are pieces a and b such that RQ(a) = RQ(b). Then, there

exists a set of interval question Q′ of the same cardinality of Q such that the following

two conditions hold: (i) for each two pieces a′ and b′ in the partition produced by Q′ it

holds RQ′(a′) 6= RQ′(b′); (ii) for each Yes-set Y ′ for Q′ there exists a Yes-set Y for

Q such that wQ′(Y ′) = wQ(Y).

After these preliminaries we can start the proof of the lower bound. Let Q be the set

of questions asked in the first stage by a two stage interval group testing algorithm.

Let q = |Q|. By virtue of Proposition 8.4 we can assume that for each two pieces π1

and π2 determined by Q it holds that R(π1) 6= R(π2). We also have that the total

number ` of pieces is at most 2q, since the number of pieces covered by query intervals

is at most 2q−1 (by induction) and by Proposition 8.4, at most one piece πo is outside

all query intervals (R(πo) = ∅).

We adapt the bounds for the 2-stage strategy for 2 positives, given by Cicalese et

al. (12), to the case where a 2-stage strategy for at most one positive may contain at

most one error.

Lemma 8.5.

N (n, 1, 2, 1) ≥
√

5n−O(1).

Proof. We use the notation of Lemma 7.2 and show that we may achieve r ≥ 2.5 using

at most 2t1 +2 Yes-sets, where t1 is the number of queries in the first stage. Then, by

Lemma 7.2, the number of queries we need is at least min
(
t1 + 5n

4t1+4

)
=
√

5n−O(1).
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To achieve r ≥ 2.5, we create a specific Yes-set for each piece defined by the t1 queries

in the first stage. Recall that there are at most 2t1 distinct (according to question

containment) pieces. This already guarantees r ≥ 1.5. Moreover, each pair of adjacent

pieces fall in one of the following cases, depending on how many queries separate them:

Case 1. Consider the case where two pieces are separated by the boundary of exactly

one query. Let (i, i+1) be such boundary. The Yes-set created for the piece containing

i assigns weight 1/2 to the piece containing i+1, since there is the chance that exactly

the query having the boundary (i, i+ 1) was an error.

Therefore, by symmetry, each piece in a pair of neighbors separated by a single bound-

ary automatically gets an extra weight 1
2
.

Case 2. When the pieces are separated by the boundary (i, i + 1) of exactly two

queries, the Yes-set created for one of them indicates precisely that piece as the one

containing a positive. In these cases, we do not get the extra weight of 1
2

for the

neighbor. However, we can use the fact that, since there is no piece between these two

boundaries, the number of pieces is at most 2t1− 1, and so is the number of Yes-sets

used so far. Therefore we may create an unspecific Yes-set involving both pieces.

This is a Yes-set that answers yes to all queries including both pieces and answers the

two questions with boundaries (i, i + 1) inconsistently, i.e., one indicating the piece

containing i and one indicating the piece containing i + 1. This gives us the desired

extra weight 1
2

to each piece.

Case 3. Using the same argument as in the previous case, if a pair of pieces is

separated by more than 2 boundaries, the number of pieces is at most 2t1− 2, and we

may use two new specific Yes-sets, one for each piece in the pair. At the end, each of

the pieces gets an extra weight of 3
2

without exceeding the 2t1 − 1 Yes-sets.

Therefore, we are able to extend the previously suggested multiset of Yes-sets in such

a way that each piece gets extra weight 1
2

from each of its neighbors. As a result, all

the pieces, but the ones on the extremities, surely have sum of weights at least 2.5. For

pieces on the extremities, creating two extra consistent YES sets, one for each, gives

desired total weight. At the end, we have a multiset with the desired properties.

Lemma 8.6.

N (n, 1, 2, 1) ≤
√

5.5n.
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Figure 8.4: Query multiset used in the first stage of a 2-stage strategy. The thicker line
represents the set of objects, whereas all the others represent the a- and b-queries. In the
figure we may see the two patterns that compete for the worst case. Darker lines indicate
queries that answer YES.

Proof. We show a 2-stage algorithm which is able to find a positive in a set of n

elements using at most
√

5.5n. The first stage consist in queries divided in two groups,

as shown in Fig. 8.4:

Group A: Consists of tA overlapping queries that divide the set of objects in 2tA pieces

of the same size. Queries in this group are called a-queries.

Group B: Consists of rtA overlapping queries, for 0 < r < 1. Queries in this group

are called b-queries.

An inspection of the possible Yes-sets gives two situations as candidates for the worst

case:

I. When a single b-query answers YES correctly, one of the a-queries surely lies. In

any case, since at most one error is allowed, the positive must be in one of

the single-covered pieces. As a consequence, all such pieces covered by the non

overlapping part of the b-query need to be checked in the second stage. Since

the non-overlapping part of the b-query has size n
2rtA

, half of this piece is covered

by single a-queries, and an error-free strategy may be used in the second stage,

the number of queries needed in the following stage is n
8rtA

.

II. When two overlapping a-queries answer YES, together with the corresponding b-

queries, we must look for a positive in the piece corresponding to the overlapping

part as if there was no error. We also need to consider the hypothesis that one

of the a-queries gave the wrong answer. Therefore the two pieces corresponding
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Figure 8.5: Queries in the first stage of the algorithm used in the proof of Theorem 8.7.

to the non-overlapping parts must also be investigated. In the last case, we may

take advantage of the fact that they are only possible in the presence of one

error, and use the error-free strategy on the two pieces of size n
2tA

. This gives us

a total of 5n
4tA

questions in the second stage.

The total number of queries used by this strategy is given by

min

(
tA(1 + r) + max

(
5n

4 tA
,
n

8 rtA

))
.

By choosing r = 0.1, we equalize both worst case candidates and get

min
tA

(
1.1 tA +

5n

4 tA

)
=
√

5.5n.

8.2.3 Bounds for Two-Stage Algorithms and p Positives

The following lemmas summarize our finding on two stage interval group testing with

at most one error in the tests.

Lemma 8.7.

N (n, 2, 2, 1) ≤ 4
√
n+ 1.

Proof. Consider an algorithm where the first stage consists of q queries dividing the

search space in q − 1 pieces of the same size n
q−1

. The multiset of queries in the first

stage is:

Q = {π1, π1 ∪ π2, π2 ∪ π3, . . . , πq−2 ∪ πq−1, πq−1}.
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Notice that each piece in this stage is covered by two queries (Figure 8.5).

The worst Yes-sets for this algorithm are the ones containing only two overlapping

queries. Consider the Yes-sets Yi = {πi−1 ∪ πi, πi ∪ πi+1}, for 1 < i < q − 1. If

no error occurred, both positives must be in πi; by Theorem 8.2, 3n
q−1

queries are

needed to find the positives in the second stage. Since there is the possibility that

the other query covering the piece πi−1 got an incorrect answer, this piece must also

be investigated in the second stage. Notice that this piece can contain at most one

positive, otherwise there would be two errors. By Theorem 8.1, n
2(q−1)

queries are

needed to find the positive in the second stage. Because the piece πi+1 fall in the same

case, the minimum number of queries needed by this algorithm is given by

min
q

(
q +

3n

q − 1

)
= 4
√
n+ 1.

Before giving a lower bound for the number of queries needed to successfully find at

most 2 positives while tolerating at most one error, we define three types of Yes-sets:

Type 0: Choose p pieces π1, . . . , πp and define the Yes-set as ∪pi=1R(πi). In this case,

because each piece contains one positive, each piece gets weight 3
2
.

Type 1: Choose p−1 pieces π1, . . . , πp−1 and define the Yes-set as ∪p−1
i=1R(πi). Notice

that in this case, since we have p − 1 base pieces, each can contain two posi-

tives, and get therefore weight 3. Moreover, for each 2-piece each corresponding

satellite piece gets also a weight of 3
2
.

Type 2: Choose p−2 pieces π1, . . . , πp−2 and define the Yes-set as ∪p−2
i=1R(πi). Notice

that in this case both the case pieces and the satellites get a weight of 3.

Lemma 8.8.

N (n, 2, 2, 1) ≥ 2
√

3n.

Proof. To prove the lower bound, we show that it is always possible to get weight at

least 3 in each piece using at most q Yes-sets. We start with a simple case where

there is only one single 2-piece. In this case we build two Yes-sets of type 1, both
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having the single 2-piece as base piece. Notice that this already gives weight 3 to this

2-piece. Since all other pieces are satellites of this single 2-piece, all of them also gets

automatically a weight of 3, and we are done.

When there is more than one 2-piece, we create for each 2-piece a Yes-set of type 1.

As each 0-piece is a satellite of at least two pieces, 2-pieces also get a weight of at least

3. The 1-pieces get at least weight 3
2
, since each of them is a satellite of a 2-piece.

The extra 3
2

weight to each 1-piece is reached through the creation of extra type 0

Yes-sets: we organize the 1-pieces in pairs, and create one Yes-set of type 0 for each

pair, using the 1-pieces as base pieces.

Remembering that c1 + 2c2 = 2q, where ci is the number of i pieces, we have that
c1
2

+ c2 ≤ q if c1 is even, and (c1−1)
2

+ c2 ≤ q − 1 if c1 is odd. In any case, the number

of Yes-sets is not greater than q. After Theorem 7.2, we need at least 3n
q

queries in

the second stage, which gives a lower bound of

min
q

(
q +

3n

q

)
= 2
√

3n.

For cases when p ≥ 3, the best bounds found so far, to the best of our knowledge, are

given by the following theorem.

Theorem 8.9. For p ≥ 3,

N (n, p, 2, 1) ≤ 2
√

6(p− 2)n+ 1.

Proof. For proving this upper bound we apply the same algorithm used in the proof

of Theorem 8.7. Let q be the number of queries used in the first stage and consider

the same worst case Yes-sets analyzed in the previous theorem: let Yi = {πi−1 ∪
πi, πi ∪ πi+1}, for 1 < i < q − 1. Since we may have more than 2 positives, the

patterns observed in the proof of the previous theorem become heavier: now the two

not entirely covered pieces πi−1 and πi+1 may contain 2 positives as well, and require,

by Theorem 8.2, at least 3n
2(q−1)

queries in the second stage. Each pair of positive

answers Yi requires a total of 6n
q−1

queries in the second stage.
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A smart adversary notices that such a Yes-set only needs 3 positives to be built,

leaving p− 3 positives to be used to create an even worse situation for the questioner.

With each extra positive it is possible to create an extra pair of positive answers, which

looks exactly like Yi. The adversary can create the Yes-set Y by combining p− 2 of

such Yes-sets that do not overlap: for each two Yes-set Yj and Yk, j < k, it holds

that j < k − 1.

The problem for the questioner when facing a Yes-set like Y is that, although it is

clear that not all pairs of positive answers can contain 3 positives, and that most of

them must have exactly one, he cannot differentiate them, and need to use the more

powerful, and expensive, algorithms in each of them. This forces the use of 6n(p−2)
q−1

queries in the second stage. Optimizing with respect to q, the total number of queries

in the two stages is

min
q

(
q +

6n(p− 2)

q − 1

)
= 2
√

6n(p− 2) + 1.

For the lower bound we need the following lemma proved by Cicalese et. al (12).

Lemma 8.10 (Lemma 4 in (12)). Let x, y be positive integers with x ≥ 2y and x even.

In x cells arranged in a cycle, we can place pebbles from x sets, each with y pebbles,

so that every cell gets y pebbles, and every pair of neighbored cells get pebbles from 2y

distinct sets. If x > 2y is odd, at most x+ 1 sets are needed to achieve the same.

Theorem 8.11. For p ≥ 3,

N (n, p, 2, 1) ≥ 2
√

3n(p− 1) +O(p),

provided that the number of queries in the first stage is at least 2 (p−1)2

p−2
.

Proof. Let q be the number of queries asked in the first stage. We show that it is

possible to achieve weight at least 3(p− 1) with no more than q+ p
2

+ 1 Yes-sets. For

doing that, we analyze three different cases:
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Case 1. c2 ≤ p− 2. We create q Yes-sets of type 2, with all the c2 2-pieces as base

pieces. Since all 1-pieces are satellites of some 2-piece, the Yes-sets give a weight at

least 3q to all the pieces. Using q = ω(p), we have reached the desired weight.

Case 2. c2 ≥ p − 1 and q(p − 2) ≥ c2(p − 1). We create q Yes-sets of type 2,

using (p− 2) 2-pieces as base pieces for them. This is done in such a way that every

2-piece appears at least p−1 times. Due to the assumptions for this case, the previous

condition is always fulfilled. As a result, the desired weight is reached.

Case 3. c2 ≥ p− 1 and q(p− 2) < c2(p− 1). We create c2 type 1 Yes-sets with p− 1

2-pieces as base pieces in such a way that each 2-piece appears exactly p − 1 times.

This guarantees a weight p− 1 to every 2-piece.

Consider now the 0-pieces in such an algorithm. Because c2 ≥ p − 1 and q(p − 2) <

c2(p− 1), we have c2 > 2(p− 1). Consider now a cyclic ordering of the 2-pieces, which

consists of their natural ordering closed to a cycle. Remember also that each 0-piece

inside an interval is between two 2-pieces and is a satellite of them. We assume that

the only 0-piece outside all query intervals, if existing, is between the first and the last

2-piece in the cyclic order, and is a satellite of them. By Lemma 8.10, if c2 is even,

there is a way to create the Yes-sets so that each of the neighboring 2-pieces of each

of the 0-pieces appear in 2(p − 1) distinct Yes-sets. As a result, they get a weight

of 3
2

from each of them, assuring the weight of at least 3(p − 1). If c2 is odd, c2 + 1

Yes-sets of type 1 are needed.

With the at most c2 + 1 Yes-sets used so far, we achieve a weight of at least 3(p− 1)

in every 0-piece and 2-piece. Moreover, the 1-pieces already have a weight at least
3
2
(p− 1), since they are all satellite of 2-pieces. The question now is how to guarantee

the weight at least 3(p− 1) in the 1-pieces too.

We consider now the case when c1 ≥ p − 1. In this case we create d c1
2
e Yes-sets of

type 1, each of them with p− 1 1-pieces as base pieces. Notice that this can be done

in such a way that every piece appears at least p−1
2

times, giving to each 1-piece the

desired lower bounded weight with c1
2

+ c2 ≤ q Yes-sets.

We are left with the case when c1 < p − 1. In this case we build dp−1
2
e Yes-sets of

type 2, each with all 1-pieces as base pieces. Because c1
2

+ c2 ≤ q, and in special that

c2 ≤ q, we can say that the number of Yes-sets is upper bounded by q + p
2
.
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Since in each case we reached the lower bound of 3(p − 1) for the weight of every

piece, and in the worst case we needed no more than q+ p
2

+ 1 Yes-sets, the minimum

number of queries needed in the worst case is

min
q

(
q +

3(p− 1)

q + p
2

+ 1
n

)
= 2
√

3n(p− 1) +O(p).

8.2.4 More Errors

The bounds presented so far only deal with the case where at most one error may

be expected. This may be useful for experiments where the probability of an error

occurrence is very small. But in such experiments it may also be the case that the

probability of error is so small that fault-tolerance is not really necessary. Here we

generalize some previously given bounds to the case where the number of errors is

bounded by a parameter e.

Theorem 8.12.

N (n, 2, 2, e) ≥ 2
√

(2e+ 1)n.

Proof. Observe that the analysis of Yes-sets made in Theorem 8.8 can be repeated

here, only taking care of using the right weight for each piece: here pieces containing

a single positive get weight at least 2e+1
2

in the corresponding Yes-set, while pieces

containing more than one positive get weight at least 2e+1. As a result, we get weight

at least 2e+ 1 in each piece with at most q Yes-sets, giving a lower bound of

min
q

(
q +

(2e+ 1)

q
n

)
= 2
√

(2e+ 1)n.

Theorem 8.13. For p ≥ 3,

N (n, p, 2, e) ≥ 2
√

(2e+ 1)(p− 1)n+O(p),

provided that the number of queries in the first stage is at least 2 (p−1)2

p−2
.
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Proof. Also here we use the same reasoning as in the corresponding 1-error version

(Theorem 8.9). Let q be the number of queries in the first stage of the algorithm.

The new piece weights allow us to get at least weight (2e+ 1)(p− 1) for the weight of

each piece using no more than q+ p
2

+ 1 Yes-sets. Therefore the minimum number of

queries needed in the worst case is

min
q

(
q +

(2e+ 1)(p− 1)

q + p
2

+ 1
n

)
= 2
√

(2e+ 1)(p− 1)n+O(p).

Theorem 8.14. For p ≥ 2,

N (n, p, 2, e) ≤ 2
√

(2e+ 1)(e+ 1)(p− 1)n.

Proof. We divide the search space in q pieces and create for each of them (e + 1)

queries covering only the corresponding piece. This gives q(e + 1) queries in the first

stage. Notice that in this case every error can be easily identified in the first stage and

would allow to the use of less queries in the second stage. Therefore the worst case

occurs when all queries covering (p−1) pieces answer Yes. In this case, all the positive

pieces have to be analyzed in the second stage with an e-error tolerant strategy. Since

each piece has size n
q
, the total of queries is given by:

min
q

(
q(e+ 1) + (p− 1)(2e+ 1)

n

q

)
= 2
√

(e+ 1)(2e+ 1)(p− 1)n.

8.3 Conclusion

In this chapter we presented bounds for the number of queries needed for solving

different instances of the Interval Group Testing problem. The non-adaptive case

is fully characterized and optimal algorithms for all studied instances are given in

Section 8.1. For 2-stage algorithms tolerating one error we give good approximations

to the number of queries needed. The ratio between the upper and the lower bounds
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Table 8.1: Upper and lower bounds for instances of the Interval Group Testing problem. The
instances are presented on the leftmost column, while the ratio upper/lower bound for each
instance is presented in the rightmost columns. On the leftmost column, parameters in
bold highlight the differences between the instance shown in the corresponding row and
the instance in the instance directly above.

Parameters Lower Bound Upper Bound Upper Bound

Lower Bound

p = 1, s = 1, e ≥ 1
⌈

(2e+1)(n+1)
2

⌉ ⌈
(2e+1)(n+1)

2

⌉
1

p ≥ 2, s = 1 , e ≥ 1 (2e+ 1)n (2e+ 1)n 1
p = 1, s = 2, e = 1

√
5n

√
5.5n

√
1.1

p = 2, s = 2 , e = 1 2
√

3n 4
√
n

√
4
3

p ≥ 3, s = 2 , e = 1 2
√

3(p− 1)n 2
√

6(p− 2)n+ 1
√

2p−2
p−1

p = 2, s = 2 , e ≥ 1 2
√

(2e+ 1)n 2
√

(e+ 1)(2e+ 1)n
√
e+ 1

p ≥ 3, s = 2 , e ≥ 1 2
√

(2e+ 1)(p− 1)n 2
√

(e+ 1)(2e+ 1)(p− 1)n
√
e+ 1

in these cases are
√

1.1 ≈ 1.005 for up to one positive,
√

4
3
≈ 1.155 for up to two

positives, and
√

2p−2
p−1

<
√

2 ≈ 1.414 for up to p ≥ 3 positives.

The bounds for one error could be generalized for any upper bound on the number of

errors. However, the ratio between upper and lower bound in these cases is
√
e+ 1.

The lower and upper bounds are summarized in the Table 8.1 and the ratio between

them is shown in the rightmost column of the same table.
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Chapter 9

Conclusions and Outlook

In the first part of this thesis, we presented and analyzed a method for constructing a

compacted form of de Bruijn subgraphs that we called sequence graph. Although the

contraction of induced paths into single nodes is a common practice in de Bruijn graph

based applications, the direct construction of de Bruijn subgraphs in their contracted

form does not seem to be explored or at least documented. In the three last chapters

of the first part we discussed two applications for sequence graphs: repeat family

identification in partially sequenced genomes and splicing graph construction.

Our first experiments with the identification of repeat families, presented in Chapter 3,

showed that the repeat family identification is possible, but a simple approach based on

elimination of long nodes may split parts of the repeat sequences into separated groups.

Therefore in Chapter 4 we proposed a method for combining similar vertices inside

repetitive regions and applied this variant of the repeat family identification method

in artificially created reads from several bacterial genomes, as well as to short reads of

a plant genome. Despite some problems with low genome coverage and families with

few members, the method was able to identify repeat families in bacterial genomes.

Like many other de Bruijn subgraph based applications, the method for identification

of repeat families does not scale well from prokaryotic to eukaryotic genomes. The

higher complexity, variation inside repeat families, and repeat content in eukaryotic

genomes complicate the isolation of repeat families by simply deleting vertices without

accidentally spliting families in different groups. The precise separation of repeat fam-

ilies in eukaryotic genomes relies on a better understanding of the distinct repetitive
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elements and their patterns in de Bruijn subgraphs. On the other hand, the identi-

fication of repeat families by visual inspection is often a simple task. While it is not

clear whether a de Bruijn subgraph based approach will ever be able to identify the

majority of the repeat families in a genome or not, we believe that these subgraphs

could be used as base for data visualizations in softwares for the support of manual

repeat analysis.

A good surprise was the results of the use of de Bruijn subgraphs in the construction

of splicing graphs. Although splicing almost only occurs in the complicated eukaryotic

genomes, the fact that mature RNA molecules are not embedded in large chromosomes

and that common subsequences of splicing variants are copies of the same locus in the

genome allow the use of graphs of higher dimension and a better separation of mRNAs

in components corresponding to sets of splicing variants of the same gene. Of course

this approach only deal with the construction of splicing graphs. Problems related to

the identification (and quantification) of the variants were not studied here and are a

natural and important continuation to this work.

The second part of this thesis was dedicated to the study of interval group testing

strategies in the presence of errors. We were able to fully characterize the non-adaptive

case, where all questions are asked at once. For 2-stage strategies we gave good

approximation algorithms for the case where at most one error is allowed and the

number of positives is at most 2. For other upper bounds on the number of positives

we provided a 1.414 approximation algorithm. Apart from the case of one positive,

the 2-stage algorithms can be adapted to the case where the number of errors is upper

bounded by a parameter e. Unfortunately the corresponding approximation rate is
√
e+ 1. These results leave place for improvements both in cases where more errors

are allowed and where the number of stages is bigger than 2. Since strategies with

few stages are usually preferred, improvements in the direction of allowing more errors

should have a higher priority.
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Appendix A

Complete Set of Tables for

Section 4.1

The following tables present the complete data used in the sequence graph analysis in

Section 4.1.

The Tables A.1, A.2, A.3, and A.4 present the percent of known families that could

be identified in the final graph for genome coverage values 25%, 50%, 75%, and 100%

respectively. The Tables A.5, A.6, A.7, and A.8 present the average number of distinct

families in the same component for for genome coverage values 25%, 50%, 75%, and

100% respectively. Finally, the Tables A.9, A.10, A.11, and A.12 present the average

number of components in which the same repeat family is found for genome coverage

values 25%, 50%, 75%, and 100% respectively.
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Appendix A Complete Set of Tables for Section 4.1

Table A.1: Average percentage of known families which were discovered at 25% coverage.

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 51 49 72 71 81 81 82
Burkholderia xenovorans 50 50 84 84 88 88 90
Colwellia psychrerythraea 20 20 33 33 33 33 33
Desulfitobacterium hafniense 87 80 95 95 100 100 100
Desulfovibrio desulfuricans 50 43 93 93 97 97 100
Escherichia coli 45 42 75 73 85 85 92
Geobacter uraniumreducens 46 46 72 72 72 72 80
Gloeobacter violaceus 63 63 85 85 88 88 98
Granulibacter bethesdensis 10 7 30 27 53 50 70
Haloarcula marismortui 14 13 47 44 76 70 90
Halobacterium sp-plasmid pNRC100 45 37 54 47 51 51 59
Legionella pneumophila 35 32 30 33 40 40 30
Legionella pneumophila-Philadelphia 1 43 38 70 63 85 80 87
Methanosarcina acetivorans 96 95 99 99 100 100 100
Methylococcus capsulatus 44 44 82 83 96 96 98
Nitrosospira multiformis 87 70 97 93 100 100 100
Photobacterium profundum 100 100 100 100 100 100 100
Pseudomonas syringae 97 97 100 100 100 100 100
Pyrococcus furiosus 57 51 72 69 80 80 94
Ralstonia solanacearum 63 63 88 88 95 95 98
Rhodopirellula baltica 89 89 100 100 100 100 100
Roseobacter denitrificans 70 50 90 87 100 100 100
Salinibacter ruber 97 97 100 100 100 100 100
Shewanella oneidensis 27 27 29 29 41 34 33
Sulfolobus solfataricus 99 99 99 99 100 100 100

Table A.2: Average percentage of known families which were discovered at 50% coverage.

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 51 48 72 71 81 83 82
Burkholderia xenovorans 50 50 84 84 88 90 90
Colwellia psychrerythraea 20 20 33 33 33 33 33
Desulfitobacterium hafniense 87 80 95 97 100 100 100
Desulfovibrio desulfuricans 50 43 93 93 97 100 100
Escherichia coli 44 42 74 73 85 92 92
Geobacter uraniumreducens 46 45 72 72 72 80 80
Gloeobacter violaceus 63 63 85 85 88 98 98
Granulibacter bethesdensis 10 7 30 27 50 70 73
Haloarcula marismortui 14 14 47 44 72 90 91
Halobacterium sp-plasmid pNRC100 41 37 48 47 51 65 59
Legionella pneumophila 37 32 30 33 40 27 30
Legionella pneumophila-Philadelphia 1 43 38 67 62 83 95 87
Methanosarcina acetivorans 95 95 99 99 100 100 100
Methylococcus capsulatus 44 44 83 83 96 98 98
Nitrosospira multiformis 87 70 97 93 100 100 100
Photobacterium profundum 100 100 100 100 100 100 100
Pseudomonas syringae 97 97 100 100 100 100 100
Pyrococcus furiosus 57 51 71 69 80 96 94
Ralstonia solanacearum 63 63 88 88 95 98 98
Rhodopirellula baltica 89 89 100 100 100 100 100
Roseobacter denitrificans 67 50 90 87 100 100 100
Salinibacter ruber 97 97 100 100 100 100 100
Shewanella oneidensis 27 27 29 31 41 33 33
Sulfolobus solfataricus 99 99 99 99 100 100 100
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Table A.3: Average percentage of known families which were discovered at 75% coverage.

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 51 48 71 81 81 83 82
Burkholderia xenovorans 50 50 84 88 88 90 90
Colwellia psychrerythraea 20 20 33 33 33 33 33
Desulfitobacterium hafniense 80 80 95 100 100 100 100
Desulfovibrio desulfuricans 50 43 93 97 97 100 100
Escherichia coli 44 42 74 85 85 92 92
Geobacter uraniumreducens 46 45 72 72 72 80 80
Gloeobacter violaceus 63 63 85 88 88 98 98
Granulibacter bethesdensis 10 7 23 53 50 70 73
Haloarcula marismortui 14 14 44 75 69 90 91
Halobacterium sp-plasmid pNRC100 41 37 47 59 51 65 59
Legionella pneumophila 33 32 30 33 40 27 30
Legionella pneumophila-Philadelphia 1 43 37 62 87 83 95 87
Methanosarcina acetivorans 95 95 99 100 100 100 100
Methylococcus capsulatus 44 44 83 96 96 98 98
Nitrosospira multiformis 87 70 97 100 100 100 100
Photobacterium profundum 100 100 100 100 100 100 100
Pseudomonas syringae 97 97 100 100 100 100 100
Pyrococcus furiosus 57 51 69 84 80 96 94
Ralstonia solanacearum 63 63 88 95 95 98 98
Rhodopirellula baltica 89 89 100 100 100 100 100
Roseobacter denitrificans 60 50 87 100 100 100 100
Salinibacter ruber 100 97 100 100 100 100 100
Shewanella oneidensis 27 26 29 38 41 33 33
Sulfolobus solfataricus 99 99 99 100 100 100 100

Table A.4: Average percentage of known families which were discovered at 100% coverage.

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 49 72 71 81 81 83 82
Burkholderia xenovorans 50 84 84 88 88 90 90
Colwellia psychrerythraea 20 33 33 33 33 33 33
Desulfitobacterium hafniense 80 95 95 100 100 100 100
Desulfovibrio desulfuricans 50 93 93 97 97 100 100
Escherichia coli 43 75 73 85 85 92 92
Geobacter uraniumreducens 46 72 72 72 72 80 80
Gloeobacter violaceus 63 85 85 88 88 98 98
Granulibacter bethesdensis 7 30 27 53 50 70 73
Haloarcula marismortui 13 47 44 75 69 90 91
Halobacterium sp-plasmid pNRC100 39 57 47 56 51 61 59
Legionella pneumophila 32 30 33 33 40 30 30
Legionella pneumophila-Philadelphia 1 38 70 63 87 83 93 83
Methanosarcina acetivorans 95 99 99 100 100 100 100
Methylococcus capsulatus 44 82 83 96 96 98 98
Nitrosospira multiformis 70 97 93 100 100 100 100
Photobacterium profundum 100 100 100 100 100 100 100
Pseudomonas syringae 97 100 100 100 100 100 100
Pyrococcus furiosus 53 72 69 84 80 94 94
Ralstonia solanacearum 63 88 88 95 95 98 98
Rhodopirellula baltica 89 100 100 100 100 100 100
Roseobacter denitrificans 50 90 87 100 100 100 100
Salinibacter ruber 97 100 100 100 100 100 100
Shewanella oneidensis 27 29 29 38 41 33 35
Sulfolobus solfataricus 99 99 99 100 100 100 100
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Appendix A Complete Set of Tables for Section 4.1

Table A.5: Average number of families in each component in a sequence graph (25%
coverage).

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 1.2 1.2 1.2 1.2 1.2 1.2 1.3
Burkholderia xenovorans 1.0 1.0 1.5 1.5 2.1 2.1 2.4
Colwellia psychrerythraea 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfitobacterium hafniense 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfovibrio desulfuricans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Escherichia coli 1.0 1.0 1.1 1.0 1.1 1.1 1.1
Geobacter uraniumreducens 1.4 1.4 1.4 1.4 1.4 1.4 1.5
Gloeobacter violaceus 1.0 1.0 1.1 1.1 1.4 1.4 1.7
Granulibacter bethesdensis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Haloarcula marismortui 1.0 1.0 1.0 1.1 1.5 1.6 2.0
Halobacterium sp-plasmid pNRC100 1.1 1.1 1.2 1.2 1.4 1.5 1.5
Legionella pneumophila 1.0 1.0 1.2 1.2 1.3 1.3 1.2
Legionella pneumophila-Philadelphia 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Methanosarcina acetivorans 1.6 1.6 1.5 1.5 2.2 2.2 3.6
Methylococcus capsulatus 1.0 1.0 1.0 1.0 1.1 1.1 1.5
Nitrosospira multiformis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Photobacterium profundum 1.4 1.5 1.5 1.5 1.5 1.6 1.5
Pseudomonas syringae 1.5 1.5 2.0 2.0 2.2 2.2 3.6
Pyrococcus furiosus 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Ralstonia solanacearum 1.4 1.4 3.4 3.5 4.4 4.4 6.9
Rhodopirellula baltica 1.3 1.3 1.3 1.4 1.4 1.4 1.7
Roseobacter denitrificans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Salinibacter ruber 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Shewanella oneidensis 1.5 1.5 2.2 2.2 2.3 2.5 2.7
Sulfolobus solfataricus 2.0 2.1 3.1 3.6 4.6 4.7 5.4

Table A.6: Average number of families in each component in a sequence graph (50%
coverage).

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 1.2 1.2 1.2 1.2 1.2 1.3 1.3
Burkholderia xenovorans 1.0 1.0 1.5 1.5 2.1 2.4 2.3
Colwellia psychrerythraea 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfitobacterium hafniense 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfovibrio desulfuricans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Escherichia coli 1.0 1.0 1.1 1.0 1.1 1.1 1.1
Geobacter uraniumreducens 1.4 1.4 1.4 1.4 1.4 1.5 1.5
Gloeobacter violaceus 1.0 1.0 1.1 1.1 1.4 1.7 1.7
Granulibacter bethesdensis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Haloarcula marismortui 1.0 1.0 1.0 1.1 1.6 2.0 2.0
Halobacterium sp-plasmid pNRC100 1.1 1.1 1.2 1.2 1.5 1.3 1.5
Legionella pneumophila 1.0 1.0 1.2 1.2 1.3 1.2 1.2
Legionella pneumophila-Philadelphia 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Methanosarcina acetivorans 1.6 1.6 1.5 1.6 2.2 3.3 3.7
Methylococcus capsulatus 1.0 1.0 1.0 1.0 1.1 1.4 1.5
Nitrosospira multiformis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Photobacterium profundum 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Pseudomonas syringae 1.5 1.5 2.0 2.0 2.2 3.6 3.6
Pyrococcus furiosus 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Ralstonia solanacearum 1.4 1.4 3.5 3.5 4.4 6.9 6.9
Rhodopirellula baltica 1.3 1.3 1.4 1.4 1.4 1.7 1.7
Roseobacter denitrificans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Salinibacter ruber 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Shewanella oneidensis 1.5 1.5 2.2 2.2 2.3 2.7 2.7
Sulfolobus solfataricus 2.0 2.2 3.2 3.6 4.6 5.2 5.4

120



Table A.7: Average number of families in each component in a sequence graph (75%
coverage).

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 1.2 1.2 1.2 1.2 1.2 1.3 1.3
Burkholderia xenovorans 1.0 1.0 1.5 2.1 2.1 2.4 2.3
Colwellia psychrerythraea 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfitobacterium hafniense 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfovibrio desulfuricans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Escherichia coli 1.0 1.0 1.1 1.1 1.1 1.1 1.1
Geobacter uraniumreducens 1.4 1.4 1.4 1.4 1.4 1.5 1.5
Gloeobacter violaceus 1.0 1.0 1.1 1.4 1.4 1.7 1.7
Granulibacter bethesdensis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Haloarcula marismortui 1.0 1.0 1.0 1.5 1.6 2.0 2.0
Halobacterium sp-plasmid pNRC100 1.1 1.1 1.2 1.3 1.5 1.3 1.5
Legionella pneumophila 1.0 1.0 1.2 1.4 1.3 1.2 1.2
Legionella pneumophila-Philadelphia 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Methanosarcina acetivorans 1.6 1.6 1.5 2.1 2.2 3.5 3.7
Methylococcus capsulatus 1.0 1.0 1.0 1.1 1.1 1.4 1.5
Nitrosospira multiformis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Photobacterium profundum 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Pseudomonas syringae 1.4 1.5 2.0 2.2 2.2 3.6 3.6
Pyrococcus furiosus 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Ralstonia solanacearum 1.4 1.4 3.5 4.4 4.5 6.9 6.9
Rhodopirellula baltica 1.3 1.3 1.4 1.4 1.4 1.7 1.7
Roseobacter denitrificans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Salinibacter ruber 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Shewanella oneidensis 1.5 1.4 2.2 2.3 2.3 2.7 2.7
Sulfolobus solfataricus 2.0 2.3 3.2 4.5 4.7 5.2 5.4

Table A.8: Average number of families in each component in a sequence graph (100%
coverage).

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 1.2 1.2 1.2 1.2 1.2 1.3 1.3
Burkholderia xenovorans 1.0 1.5 1.5 2.1 2.1 2.4 2.4
Colwellia psychrerythraea 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfitobacterium hafniense 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Desulfovibrio desulfuricans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Escherichia coli 1.0 1.1 1.0 1.1 1.1 1.1 1.1
Geobacter uraniumreducens 1.4 1.4 1.4 1.4 1.4 1.5 1.6
Gloeobacter violaceus 1.0 1.1 1.1 1.4 1.4 1.7 1.7
Granulibacter bethesdensis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Haloarcula marismortui 1.0 1.0 1.1 1.5 1.6 2.0 1.9
Halobacterium sp-plasmid pNRC100 1.1 1.2 1.2 1.3 1.5 1.4 1.5
Legionella pneumophila 1.0 1.2 1.2 1.4 1.3 1.2 1.2
Legionella pneumophila-Philadelphia 1 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Methanosarcina acetivorans 1.6 1.5 1.5 2.1 2.2 3.6 3.6
Methylococcus capsulatus 1.0 1.0 1.0 1.1 1.1 1.5 1.5
Nitrosospira multiformis 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Photobacterium profundum 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Pseudomonas syringae 1.4 2.0 2.0 2.2 2.2 3.6 3.6
Pyrococcus furiosus 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Ralstonia solanacearum 1.4 3.2 3.5 4.4 4.5 6.9 6.9
Rhodopirellula baltica 1.3 1.3 1.4 1.4 1.4 1.7 1.7
Roseobacter denitrificans 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Salinibacter ruber 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Shewanella oneidensis 1.5 2.2 2.2 2.3 2.3 2.7 3.0
Sulfolobus solfataricus 2.1 2.9 3.2 4.5 4.7 5.4 5.4
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Appendix A Complete Set of Tables for Section 4.1

Table A.9: Average number of components per repeat family in a sequence graph (25%
coverage).

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 2.7 2.5 3.3 3.1 3.7 3.5 3.8
Burkholderia xenovorans 2.6 2.6 2.0 2.0 1.5 1.5 1.3
Colwellia psychrerythraea 3.6 2.9 3.1 3.1 3.1 2.9 3.1
Desulfitobacterium hafniense 3.7 3.3 3.8 3.6 3.7 3.7 3.3
Desulfovibrio desulfuricans 2.3 2.2 2.8 2.5 3.6 3.3 3.3
Escherichia coli 2.3 2.2 3.0 3.0 3.0 3.1 3.1
Geobacter uraniumreducens 1.8 1.8 2.2 2.2 2.5 2.5 2.2
Gloeobacter violaceus 3.5 3.4 3.6 3.4 2.0 2.0 1.3
Granulibacter bethesdensis 2.0 2.0 2.0 2.0 2.1 2.1 2.1
Haloarcula marismortui 2.2 2.1 2.0 2.0 1.7 1.6 1.6
Halobacterium sp-plasmid pNRC100 2.6 2.4 2.6 2.5 1.6 1.5 1.5
Legionella pneumophila 2.6 2.5 2.6 2.9 2.0 2.2 1.6
Legionella pneumophila-Philadelphia 1 2.7 2.1 3.7 3.2 4.1 3.9 4.2
Methanosarcina acetivorans 3.1 2.9 2.9 2.8 1.9 1.9 1.5
Methylococcus capsulatus 2.2 2.2 3.1 2.9 3.5 3.5 2.7
Nitrosospira multiformis 3.4 3.1 4.5 4.2 5.4 5.1 3.4
Photobacterium profundum 1.9 1.7 1.8 1.8 1.8 1.7 1.9
Pseudomonas syringae 2.2 2.1 1.9 1.9 1.6 1.6 1.2
Pyrococcus furiosus 1.8 1.7 1.7 1.6 1.6 1.7 1.8
Ralstonia solanacearum 2.4 2.4 1.4 1.4 1.2 1.2 1.1
Rhodopirellula baltica 2.3 2.2 2.6 2.5 2.4 2.4 2.0
Roseobacter denitrificans 2.5 2.3 3.3 3.0 3.8 3.8 3.5
Salinibacter ruber 3.1 2.8 2.1 1.9 1.0 1.0 1.0
Shewanella oneidensis 2.0 2.0 1.3 1.3 1.4 1.3 1.3
Sulfolobus solfataricus 2.2 2.1 1.5 1.5 1.3 1.3 1.2

Table A.10: Average number of components per repeat family in a sequence graph (50%
coverage).

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 2.7 2.4 3.3 3.1 3.6 3.8 3.8
Burkholderia xenovorans 2.6 2.6 2.0 2.0 1.5 1.3 1.3
Colwellia psychrerythraea 3.6 2.9 3.1 3.1 3.0 3.1 3.1
Desulfitobacterium hafniense 3.6 3.3 3.7 3.5 3.7 3.5 3.3
Desulfovibrio desulfuricans 2.3 2.2 2.8 2.5 3.4 3.3 3.1
Escherichia coli 2.3 2.2 3.0 3.0 3.0 3.1 3.1
Geobacter uraniumreducens 1.8 1.8 2.2 2.2 2.5 2.2 2.1
Gloeobacter violaceus 3.5 3.4 3.6 3.4 2.0 1.4 1.3
Granulibacter bethesdensis 2.0 2.0 2.0 2.0 2.1 2.1 2.1
Haloarcula marismortui 2.2 2.0 2.0 2.1 1.6 1.6 1.6
Halobacterium sp-plasmid pNRC100 2.6 2.3 2.6 2.4 1.5 2.0 1.5
Legionella pneumophila 2.6 2.5 2.8 2.9 2.1 1.6 1.6
Legionella pneumophila-Philadelphia 1 2.6 2.1 3.5 3.2 4.0 4.1 4.1
Methanosarcina acetivorans 3.0 2.9 2.8 2.8 1.9 1.5 1.4
Methylococcus capsulatus 2.2 2.2 3.1 3.0 3.5 2.9 2.7
Nitrosospira multiformis 3.2 3.1 4.4 4.1 5.3 3.5 3.4
Photobacterium profundum 1.7 1.7 1.8 1.8 1.8 1.8 1.9
Pseudomonas syringae 2.1 2.1 1.9 1.9 1.6 1.2 1.2
Pyrococcus furiosus 1.8 1.7 1.7 1.6 1.6 1.8 1.8
Ralstonia solanacearum 2.4 2.4 1.4 1.4 1.2 1.1 1.1
Rhodopirellula baltica 2.3 2.2 2.5 2.5 2.4 2.0 2.0
Roseobacter denitrificans 2.5 2.3 3.3 3.0 3.8 3.5 3.5
Salinibacter ruber 3.1 2.7 2.1 1.9 1.0 1.0 1.0
Shewanella oneidensis 2.0 2.0 1.3 1.3 1.4 1.3 1.3
Sulfolobus solfataricus 2.2 2.0 1.5 1.4 1.3 1.2 1.2
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Table A.11: Average number of components per repeat family in a sequence graph (75%
coverage).

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 2.6 2.4 3.2 3.7 3.6 3.8 3.7
Burkholderia xenovorans 2.6 2.6 2.0 1.5 1.5 1.3 1.3
Colwellia psychrerythraea 3.2 2.9 3.1 3.1 2.9 3.1 3.1
Desulfitobacterium hafniense 3.3 3.3 3.7 4.1 3.7 3.5 3.3
Desulfovibrio desulfuricans 2.3 2.2 2.9 3.6 3.3 3.3 3.1
Escherichia coli 2.2 2.2 3.0 3.1 3.1 3.1 3.1
Geobacter uraniumreducens 1.8 1.8 2.2 2.5 2.5 2.2 2.1
Gloeobacter violaceus 3.4 3.4 3.5 2.0 2.0 1.4 1.3
Granulibacter bethesdensis 2.0 2.0 2.0 2.1 2.1 2.1 2.1
Haloarcula marismortui 2.2 2.0 2.0 1.6 1.6 1.6 1.6
Halobacterium sp-plasmid pNRC100 2.5 2.2 2.5 2.0 1.5 1.8 1.5
Legionella pneumophila 2.4 2.5 2.8 2.3 2.2 1.6 1.6
Legionella pneumophila-Philadelphia 1 2.6 2.2 3.6 4.1 3.8 4.1 4.1
Methanosarcina acetivorans 3.0 2.9 2.8 1.9 1.9 1.5 1.4
Methylococcus capsulatus 2.2 2.2 3.0 3.6 3.4 2.9 2.7
Nitrosospira multiformis 3.2 3.0 4.1 5.5 5.1 3.5 3.4
Photobacterium profundum 1.7 1.7 1.8 1.9 1.8 1.8 1.9
Pseudomonas syringae 2.2 2.1 1.9 1.6 1.6 1.2 1.2
Pyrococcus furiosus 1.8 1.6 1.6 1.8 1.6 1.8 1.8
Ralstonia solanacearum 2.4 2.4 1.4 1.2 1.2 1.1 1.1
Rhodopirellula baltica 2.2 2.2 2.5 2.4 2.4 2.0 2.0
Roseobacter denitrificans 2.3 2.3 3.1 3.8 3.8 3.5 3.5
Salinibacter ruber 3.0 2.7 2.1 1.1 1.0 1.0 1.0
Shewanella oneidensis 2.0 2.0 1.3 1.4 1.4 1.3 1.3
Sulfolobus solfataricus 2.1 2.0 1.5 1.3 1.3 1.2 1.2

Table A.12: Average number of components per repeat family in a sequence graph (100%
coverage).

Combine Factor (τ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bifidobacterium longum 2.5 3.4 3.1 3.7 3.6 3.8 3.7
Burkholderia xenovorans 2.6 2.0 2.0 1.5 1.5 1.3 1.3
Colwellia psychrerythraea 3.1 3.1 3.1 3.1 2.9 3.1 3.1
Desulfitobacterium hafniense 3.3 4.1 3.7 3.9 3.7 3.3 3.3
Desulfovibrio desulfuricans 2.3 2.8 2.5 3.6 3.3 3.3 3.1
Escherichia coli 2.2 3.0 3.0 3.1 3.1 3.1 3.1
Geobacter uraniumreducens 1.8 2.2 2.2 2.5 2.5 2.2 2.1
Gloeobacter violaceus 3.4 3.6 3.5 2.0 2.0 1.3 1.3
Granulibacter bethesdensis 2.0 2.0 2.0 2.1 2.1 2.1 2.2
Haloarcula marismortui 2.1 2.0 2.0 1.6 1.6 1.6 1.6
Halobacterium sp-plasmid pNRC100 2.4 2.8 2.5 1.7 1.5 1.6 1.5
Legionella pneumophila 2.4 2.6 2.9 2.3 2.2 1.6 1.6
Legionella pneumophila-Philadelphia 1 2.5 3.8 3.2 4.1 3.8 4.1 4.1
Methanosarcina acetivorans 2.9 2.9 2.8 1.9 1.9 1.5 1.4
Methylococcus capsulatus 2.2 3.1 2.9 3.6 3.4 2.8 2.7
Nitrosospira multiformis 3.1 4.4 4.2 5.4 5.1 3.5 3.5
Photobacterium profundum 1.7 1.9 1.8 1.8 1.8 1.9 1.8
Pseudomonas syringae 2.1 1.9 1.9 1.6 1.6 1.2 1.2
Pyrococcus furiosus 1.7 1.7 1.6 1.8 1.7 1.8 1.8
Ralstonia solanacearum 2.4 1.4 1.4 1.2 1.2 1.1 1.1
Rhodopirellula baltica 2.2 2.6 2.5 2.4 2.4 2.0 2.0
Roseobacter denitrificans 2.3 3.3 3.1 3.8 3.8 3.6 3.5
Salinibacter ruber 3.0 2.1 2.0 1.1 1.0 1.0 1.0
Shewanella oneidensis 2.0 1.3 1.3 1.4 1.4 1.3 1.3
Sulfolobus solfataricus 2.1 1.6 1.5 1.3 1.3 1.2 1.2
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