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Chapter 1

General Introduction

Almost all economic activities and real life decisions take place under uncer-

tainty. The future payoff often depends on an uncertain state of the world

realized after the decision has been made. First models on decision mak-

ing in presence of uncertainty proposed by Von Neumann and Morgenstern

(1953) and Savage (1954) assume that there exists a unique probability over

possible states of the world. An act is to be preferred to an alternative one if

the expected utility of the first one exceeds the expected utility of the second

evaluated under a certain probability measure. The question arises however

on how to find the probability in question. This seems to be an easy task

while gambling in the casino, tossing a coin or in similar lab like situations.

Here, the exact probability is known and the situation bears only risk. In

more complex situations the right pick is not that easy anymore. Assigning

a probability to the event that Germany wins the next world cup includes

accounting for contingencies that are far beyond subject’s understanding and

is a task impossible to be accomplished. While a casino bet is risky, Germany

winning the World Cup is uncertain.

The distinction between risk and uncertainty was first discussed by Knight



1.1. KNIGHTIAN UNCERTAINTY

(1921) and is now referred to as ambiguity or Knightian uncertainty 1.

1.1 Knightian Uncertainty

In his seminal book Knight (1921) suggests that there exist random outcomes

which cannot be represented by numerical probabilities, i.e. he establishes a

clear distinction between measurable uncertainty he calls risk and unmeasur-

able uncertainty. Although in later version of his famous book he concludes

that modeling real world decisions with economic models is hardly possible

his ideas gave rise to a strand of literature on modeling unknown unknowns.

Ellsberg (1961) constructs an urn experiment in which agents make choices

that systematically violate the axioms of expected utility. In the experiment

in which probabilities of outcomes are not given completely, participants pre-

fer to bet on outcomes with known probability and systematically refuse to

bet on outcomes where probabilities of winning are not given. Behaving this

way they make choices that make it impossible to attach probabilities to out-

comes in the way prescribed by Savage (1954). This observation suggests that

agents not only care about relative likelihood of obtaining a payoff but also

about ambiguity attached to it. The work of Ellsberg (1961) first challenges

the prevailing subjective expected utility (SEU) paradigm by disentangling

aversion to lack of knowledge of future outcomes from the aversion to lack of

knowledge of its odds. Several attempts has been made to rationalize choices

made by Ellsberg agents. Gilboa and Schmeidler (1989) set up axioms for

preferences which lead to Maxmin Expected Utility or the Multiple Priors

Model by weakening the Sure Thing principle of Anscombe and Aumann

(1963) and add an axiom that captures Uncertainty Aversion to the model.

These axioms lead to a representation in which a single prior used in classical

models to compute the expected utility needs to be replaced by a whole set

1In the following we use terms ambiguity and uncertainty interchangeably meaning the

same.

2



1.1. KNIGHTIAN UNCERTAINTY

of possible distributions.

Epstein and Schneider (2003b) modify the Gilboa and Schmeidler (1989)

axioms to extend the model to a dynamical setting. To do so they modify

the preference relation to be time and state dependent and add the dynamic

consistency axiom to the preferences. Loosely speaking, dynamic consistency

requires that decisions made at a node are still optimal from the perspective

of later nodes. The resulting representation is the so called multiple prior

recursive utility. As in the static setting the expectation is taken with re-

spect to a set of priors. However, not every set of measures can arise in the

representation but only sets satisfying a certain regularity condition. The

restriction on the set of priors steams from the dynamic consistency axiom

imposed on the preferences and will be discussed later.

Heuristically, the use of a set of measures instead of one captures the

inability of the decision maker to assign concrete probabilities. She expresses

her aversion to this uncertainty by putting more weight on states unfavorable

to her and thus considering the minimal expected utility over all possible

probabilities. As a result the ambiguity averse preferences assign utilities

in very conservative and cautious manner by only considering the minimal

expected utility of a future payoff.

Several authors work on different approaches to rationalize ambiguity

averse behavior. Maccheroni, Marinacci, and Rustichini (2006) employ a

multiple prior approach but account for plausibility of different models by pe-

nalizing models that the agents considers as unlikely, Schmeidler (1989) uses

a non-additive measure notion to capture ambiguity, Bewley (2002) relaxes

completeness maintaining independence, Klibanoff, Marinacci, and Mukerji

(2005) choose a smooth ambiguity approach by disentangling ambiguity from

the attitude towards it.

While previous works are all preference based there also have been at-

tempts to formalize robust behavior in other economic disciplines. Hansen

3



1.2. AMBIGUITY IN REAL LIFE APPLICATIONS

and Sargent (2001) introduce the notion of robust control in macroeconomics,

another strand in the literature which is mathematically equivalent to the

multiple prior utility sketched above is the coherent risk measures approach

introduced by Artzner, Delbaen, Eber, and Heath (1999).

By providing a solid decision theoretical ground works of above mentioned

authors gave rise to a strand of literature analyzing the consequences of

these preferences for predictions of classical economic models. The second

generation of literature on ambiguity aversion discussed real world problems

under uncertainty.

1.2 Ambiguity in Real Life Applications

1.2.1 Modeling Uncertainty

Decision theoretical models discussed above take the uncertainty as given

and abstract from its source and the exact structure of the set of possible

models. In his experiment Ellsberg generically imposes ambiguity by not

disclosing the decomposition of the urn. The situation is not that clear in

real world applications since there is information available that allows to draw

conclusions about the odds. The existence and the structure of uncertainty

is the first challenge to overcome while modeling meaningful multiple prior

models.

A frequent objection of critics of multiple prior models is the argument of

learning. A rational agent learns from past observations and infer the right

model from data using common filtering methods. As the data set grows

large by the Law of Large Numbers empirical frequencies converge to the

right probability making multiple prior approach obsolete.

There are several reasons why this reasoning does not fully capture the

reality. From subjective perspective individual investor might lack knowledge

and information needed to infer the right probability model or just not own

4



1.2. AMBIGUITY IN REAL LIFE APPLICATIONS

powerful machines to deal with the data. Knowing that she is not able to

interpret the information available to her, she thus prefers to use a set of

models. She might also take into account not only her subjective forecasts

but also opinions of experts available on the market.

Even if we take the stand of a more sophisticated agent such as a large

bank there are still good reasons for ambiguity. The ongoing financial crisis

spectacularly demonstrated how excessive confidence in models used by banks

can lead to a disaster and revealed a knew source of uncertainty that had been

mainly ignored before the crisis – the model uncertainty. It arises due to the

impossibility to completely express the reality through abstract models and

is greatly amplified by the complexity of modern quantitative models used in

finance. In these situations minimax expected utility seems an appropriate

choice. Since the value of the portfolio strongly depends on the chosen model

more robust decision making procedure is desirable.

By setting up a meaningful multiple prior model one still has to be careful

when choosing the size of the set of measures since the degree of uncertainty

captured by this set strongly affects predictions of the model. A natural way

to choose the set of models is to consider sets of measures that are statistically

close and thus hard to distinguish from a series of observations as proposed

by Kogan and Wang (2002). One then chooses a confidence level and consid-

ers all models that cannot be distinguished at this confidence level. Another

way is to consider all models consistent with current market conditions such

as bid-ask spread or regulations routines imposed by authorities. The wast

majority of models we are considering stick to one of above mentioned tech-

niques while modeling ambiguity. It is noteworthy however, that the way one

sets up the multiple prior structure can drastically impact prediction of the

model.

In what follows we will give a short overview on multiple prior models of

financial markets. The main focus will lie on optimal stopping problems that

arise in the context of American options and on asset pricing and allocation

5



1.2. AMBIGUITY IN REAL LIFE APPLICATIONS

under ambiguity.

1.2.2 Ambiguity and Optimal Stopping Problems

Optimal Stopping Problems arise in economics as right timing is often crucial

for realizing a profit opportunity. This might be launching a new product

before your opponent does, selling a house at a good price or hiring the right

person for a given job. The classical solution formulated by Snell (1952) relies

heavily on the specification of the probability space and imposes a fixed prior

over future payoffs. Riedel (2009) generalizes the method of backward induc-

tion in order to account for uncertainty by using a set of measures instead of

one. The regularity condition that already appeared in Epstein and Schnei-

der (2003b) also plays a crucial role here. Formulated in a slightly different

though equivalent way it ensures that the Law of Iterated Expectations still

holds true and thus allows dynamic programming reasoning. Mathematically,

the assumption imposed on the set of priors is equivalent to the stability of

the set of measures under cutting and pasting them together. Intuitively

speaking time-consistency ensures that the decision maker can change his

mind in every period about which measure he thinks is the true one or the

worst one. Time-consistency guarantees that this measure which might be

time- and state-dependent is contained in the set of her possible measures.

This implies that as time passes she will never regret his previous decisions

since at every point in time he can decide optimally. The concept has also

been discussed by Föllmer and Schied (2004), Delbaen (2002). A brief review

of different concepts along with a proof of equivalence can be found in Riedel

(2009).

Given time-consistency assumption the ideas of Snell (1952) carry over:

the value function can be formulated in a similar way through Snell envelope,

the optimal stopping times have similar form. This allows to solve much

more complicated problems of multiple prior optimal stopping using familiar

6



1.2. AMBIGUITY IN REAL LIFE APPLICATIONS

techniques of dynamic programing. As in the classical version the backward

induction techniques provides the optimal stopping strategy and assigns value

to the problem. However, the multiple prior structure drastically increases

the computational complexity of the model since a set of expectations has to

be computed instead of a single one in every step. This complexity can be

reduced by exploiting a duality result already appeared in Karatzas and Kou

(1998): the multiple prior stopping problem can be reduced to a single prior

problem for a specific measure, the so called worst-case measure. Several

papers use this technique to tackle multiple prior stopping problems.

In an early paper Nishimura and Ozaki (2004) studied the effects of

Knightian uncertainty on job search in a discrete model and provided a closed

form solution for the optimal reservation wage. Several examples of optimal

stopping problems under uncertainty can be found in Riedel (2009). He

shows that ambiguity decreases the value of the option and leads to earlier

stopping for many classes of payoffs.

Nishimura and Ozaki (2007) and Kort and Trojanowska (2007) analyze

the firm’s entry and exit decision under uncertainty in continuous time and

show that ambiguity decreases the option value but does not lead to earlier

stopping in general. A similar point has been made by Miao and Wang (2004)

for a slightly more general class of payoffs.

Recently much work has been done on the dynamic models in continuous

time. Mathematical grounds to this go back to Peng (1997) who introduced

the notion of g-expectations. Optimal stopping problems in continuous time

then correspond to Backward Stochastic Differential Equation2.

1.2.3 Ambiguity and Asset Markets

Ambiguity about market conditions or the right market model to use affects

the valuation of investors and thus the choices they makes on a market. As a

2See Riedel (2010) for further references.
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1.2. AMBIGUITY IN REAL LIFE APPLICATIONS

result portfolio allocations in presence of uncertainty structurally differ from

allocations predicted by SEU models. This changes the resulting market

outcomes and helps explaining market anomalies and failures not predicted

by standard SEU models.

While an SEU agent solves a maximization problem when choosing opti-

mal portfolios, an ambiguity averse decision maker solves a maxmin problem

maximizing her minimal expected utility.

First analysis of the qualitative changes of investment behavior under

ambiguity is due to Dow and Werlang (1992). They show that the valuation

of the security depends on the direction of the trade. In a multiple prior

model the investor evaluates a long position according to the lowest return

of this security and short position using the highest return on it. As a result

she only buys the security if the lowest expected return exceeds its price.

Similarly, she shorts the security if the highest return is below the market

price. If the security price lies within the interval of the highest and the

lowest valuation the agent chooses not to trade the asset at all.

A growing body of literature uses this fundamental observation to explain

phenomena observed in reality and not captured by classical models. Epstein

and Miao (2003) assume that the uncertainty about returns on assets on for-

eign company is more pronounced than the uncertainty about home country

stocks and show that this can explain home-bias. Using a similar argument

Boyle and Wang (2009) and Uppal and Wang (2003) explain overinvestment

in the own company and underdiversification.

Epstein and Schneider (2003b), Illeditsch (2009) show that ambiguity

averse investor overreacts to bad news and underreact to good news again

underpinning the pessimistic attitude of the preferences. In extreme case the

optimal portfolio exhibits inertia not reacting to the changes of fundamentals

at all for a range of parameters.

Moreover, while non-participation is never optimal for an SEU investor

it arises naturally if there is ambiguity about expected returns due to the

8



1.2. AMBIGUITY IN REAL LIFE APPLICATIONS

existence of the no-trade interval. Epstein and Chen (2002) observed non-

participation in a dynamical Lucas-style model, Cao, Wang, and Zhang

(2005) and Ui (2009) studied endogenous participation in a static model with

investors differing in their degree of ambiguity. Mukerji and Tallon (2001)

show that no-trade decision can generate incompleteness of the market en-

dogenously.

A large body of literature including many studies mentioned above approaches

optimal asset allocation under ambiguity by employing a mean-variance anal-

ysis. Maenhout (2004) shows that uncertainty decreases the portfolio weight

of risky assets. In a model where ambiguity is generated by different opinions

of experts advising the investor Lutgens and Schotman (2010) point out that

the portfolio weights are more stable compared to portfolios resulting in a

single prior model.

Most of the works discussed above take the prices of securities as given.

However, portfolio decisions impact the aggregate demand and supply of the

security and thus prices. Among others Epstein and Chen (2002), Cao, Wang,

and Zhang (2005), study asset pricing and resulting equity premia on markets

with ambiguity. Epstein and Schneider (2003b) point out that ambiguity

aversion can explain a part of the premium puzzle since it acts as extra risk

aversion, Routledge and Zin (2009) shows that ambiguity generates illiquidity

increasing the bid-ask spread. Caballero and Krishnamurthy (2007) point out

that an increase in ambiguity about asset returns may induce flights to quality

causing distress in the market for the ambiguous security. The leitmotiv of

papers cited here is that ambiguity makes the asset less attractive. As a

result investors require a higher premium for holding the asset and sell it if

ambiguity becomes to severe.

9



1.3. THE AIM OF THIS WORK

1.3 The Aim of this Work

As mentioned above a common theme in the literature is that ambiguity

averse preferences enforce a more conservative and cautious behavior. Am-

biguity averse decision maker aims to reduce their exposure to uncertainty

by preferring safer payoffs to risky/uncertain ones. For example, an ambi-

guity averse seller of a house accepts a lower bid for the house instead of

waiting for uncertain (in his mind likely dark) future to come. The reason

for the lower reservation bid is the use of the worst-case model for the future

bid distribution – the model that gives him the lowest expected utility. The

worst-case measure in this example is intuitive and easy to identify: choosing

the prior that puts more weight on low bids at every node of the decision

tree minimizes the utility over the whole set of models. Although the set of

beliefs can be very complicated the decision maker here uses a rather simple

one, sticking to it once chosen. He then acts as an SEU maximizer (although

a very pessimistic one) and his optimal strategy follows by means of clas-

sical backward induction making the complex machinery of multiple prior

backward induction and cautious modeling of the set of beliefs obsolete.3

This observation lead to a long standing belief that ambiguity aversion

is just a form of risk aversion and its effects are observationally equivalent

to risk aversion patterns. However, the hypothesis that every ambiguity

averse decision maker acts as an SEU maximizer for an appropriately chosen

measure that can be identified a priori is not true in general. The ability to

reduce the above problem to a SEU problem for a fixed deterministic measure

relies heavily on the structure of the payoff processes one considers.

The first objective of this work is to take a closer look at the key factors

that ensure the simple deterministic form of the worst-case measure and to

provide examples for payoffs where the worst-case measure is non determin-

3 Riedel (2009) provides an extensive analysis of such problems which he calls monotone.
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istic. Then, the worst-case measure changes over time as the state process

is realized and the simple reduction argument used above fails to work. Ba-

sically, the simplicity of the worst-case measure in examples studied in the

literature so far grounds on three assumptions: measurability, monotonic-

ity and Markovian structure of the payoff process. We show that relaxing

those assumptions generates stochastic worst-case measures that depend on

the whole history of the process. We illustrate this fact by analyzing several

exotic American options in a discrete binomial tree model in the spirit of

Cox, Ross, and Rubinstein (1979). For example, if the effect of uncertainty

changes over time as it is the case for barrier options the worst-case measure

changes with it becoming path dependent. We observe similar effects for

non-monotone payoffs (in the case of straddle) and non-measurable payoffs

(in the case of shout options). In all these examples the worst-case measure

that the decision maker uses is not known a priori and the problem cannot be

reduced to an SEU problem. Here, we can distinguish an ambiguity averse

decision maker from an extremely pessimistic SEU maximizer by choices he

makes while exercising the option.

A second fact widely assumed in the literature is that ambiguity aver-

sion by making the future less valuable leads to earlier stopping. In the

above example of the house selling as in the job search example analyzed

by Nishimura and Ozaki (2004) an increase in ambiguity decreases the bid

/the reservation wage that is accepted by the agent. In this sense the agents

stops earlier. To test the hypothesis of earlier stopping we model and solve a

best choice problem first introduced by Gardner (1960) in the multiple prior

framework: An ambiguity averse decision maker aims to choose the best

among a fixed number of applicants that appear sequentially in a random

order. The only information available to the decision maker are the relative

ranks of applicants seen so far. The decision needs to be taken immediately

and once rejected applicants cannot be recalled. The main challenge of the

11



1.3. THE AIM OF THIS WORK

analysis is to formulate a model that accommodates ambiguity aversion in

a meaningful way. We do so by assuming ambiguity that the probability to

meet a candidate – a relatively top applicant — is not not exactly known but

comes from a specified interval. We show that our model covers the classical

secretary problem, but also other interesting classes of problems. Our main

result is that the stopping rule is simple, i.e. it is optimal to reject a constant

known number of applicants and then to take the first candidate appearing,

as in the case of classical secretary problem discussed by Gardner (1960).

However, unlike examples above an increase in ambiguity does not lead to

earlier stopping in general. The reason for this is that the payoff obtained

from stopping is ambiguous itself. Thus, stopping does not necessarily reduce

ambiguity. As a result it might be optimal to delay stopping to avoid the

ambiguity attached to payoff obtained from stopping.4 Moreover, as with

American options the worst-case measure of the problem is stochastic again

due to the non-measurability of the payoff.

While the first two chapters work along similar lines analyzing optimal de-

cisions in dynamic settings the last chapter changes the perspective. Instead

of analyzing the effects of ambiguity for the decision process of an individual

agent we consider a static partial equilibrium model of an economy where

some agents are ambiguity averse. The question is similar. Many authors

noted that an ambiguity averse investor rather chooses safer assets to avoid

uncertainty while selecting a portfolio. They require an additional premium

to be rewarded for the ambiguity if they hold the ambiguous asset. This

way, one can explain the equity premium puzzle5 or flights from market with

increased ambiguity.6 Again, the suggestion made in the literature is that

4Kort and Trojanowska (2007) made a similar point with a different example.
5See Mehra and Prescott (1985) for the puzzle and Epstein and Wang (1994) for the

model with ambiguity aversion.
6See Caballero and Krishnamurthy (2007).
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1.3. THE AIM OF THIS WORK

ambiguity aversion ”.. acts as an extra risk aversion...”7 and leads to lower

equilibrium price. Cao, Wang, and Zhang (2005) were first to notice that in-

creasing the ambiguity aversion can lower equity premium since agents that

require a high ambiguity premium leave the market. As a result the ambigu-

ity premium paid on the market in equilibrium decreases leading to higher

prices. In the last chapter of this work we make a similar point and show

that an increase in ambiguity can lead to lower ambiguity premia if market

participants are heterogeneous. In our model agents differ not only in their

attitude towards uncertainty but also in their beliefs about the return of the

market security. If the divergence of opinions and the degree of ambiguity is

large enough, optimistic investor will demand a large amount of the security.

However, ambiguity averse decision maker will refuse to supply the security

if its price happens to lie in the no-trade interval. The demand of optimistic

agents on the market then drives the premia down due to pronounced de-

mand. We point out that ambiguity not only affects the demand but also the

supply side of the economy. This way, the equity premium can decrease not

because agents stop buying the security but because the agents stop selling

it and thus slacken the supply.

The main chapters of this thesis, each of which self contained in notation,

are based on three articles. The first two consider optimal stopping behavior

of an agent facing uncertainty. Chapter 2 is coauthored with Frank Riedel and

analyzes the best choice problem under uncertainty. Chapter 3 based on a

joint work with Joerg Vorbrink studies the structure of worst-case measures

for several American options. The last chapter of this work changes the

perspective and analyzes overpricing in a static partial equilibrium model.

To this point we have given a brief outline of the general context and

developments which lead to this work. Since the questions and topics treated

in the following chapters differ a more detailed scientific placement of this

7Epstein and Wang (1994)
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1.3. THE AIM OF THIS WORK

work will be discussed in each chapter separately.
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Chapter 2

A Best Choice Problem under

Ambiguity

2.1 Introduction

The classical secretary problem is one of the most popular problems in the

area of Applied Probability, Economics, and related fields. Since its appear-

ance in 1960 a rich variety on extensions and additional features has been

discussed in the scientific1 and popular2 literature.

In the classical secretary problem introduced by Gardner (1960) an em-

ployer sequentially observes N girls3 applying for a secretary job appearing

in a random order. She can only observe the relative rank of the current girl

compared to applicants already observed and has no additional information

on their quality. The applicants can be strictly ordered. Immediately after

1Freeman (1983) gives an overview of the development until the eighties. Ferguson

(1989) contains historical anecdotes. A lot of material is covered in Berezovski and Gnedin

(1984).
2Gardner’s treatment is the first instance here. A most recent example is the treatment

in a book about ”love economics” by a German journalist Beck (2005). It plays also a role

in psychological experiments, see Todd (2009).
3In the following we will use applicant and girl interchangeably meaning applicants of

both sexes.
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the interview the employer has to accept the girl or to continue the observa-

tion. Rejected applicants do not come back. Based on this information the

agent aims to maximize the probability of finding the best girl4.

Most of the classical literature in this field assumes that the girls come

in random order where all orderings are equally likely. The solution is sur-

prisingly nice. It prescribes to reject a known fraction of girls, approximately

1
e
, and to accept afterwards the next candidate, i.e. a girl with relative rank

1. Such stopping rules are called simple. This strategy performs very well:

Indeed, the chance of success is approximately 36, 8% ≈ 1
e

for large N .

This nice and surprising result is based on the strong assumption that

the girls arrive randomly, all possible orderings being equally likely. There

are good reasons to care about the robustness of this assumption. From a

subjective point of view, the decision maker might not feel secure about the

distribution of arrivals — she might face ”ambiguity”. Even if we take a

more objective point of view, we might want to perform a sensitivity analysis

of the optimal rule. While there is certainly a degree of randomness in

such choice situations, it is not obvious that the arrival probability would

be independent of the girl’s quality, e.g. It might well be that more skilled

applicants find open jobs earlier5. In this paper, we present a way of dealing

with these questions by embedding the best choice problem into a multiple

prior framework as introduced by Gilboa and Schmeidler (1989) for the static

case, and extended to dynamic frameworks by Epstein and Schneider (2003b).

The agent works here with a class of possible prior distributions instead of a

single one, and uses the minimax principle to evaluate her payoffs. We use

then the general theory for optimal stopping under ambiguity developed in

4This is an extreme utility function, of course. On the other hand, the analysis based

on this extreme assumption serves as a benchmark for more general utility functions. The

results are usually similar, at least in the Bayesian setting, see Ferguson (2006), e.g.
5Another obvious way of introducing ambiguity concerns the number of applicants.

This question is not pursued here; see Engelage (2009) for a treatment of best choice

problems with an unknown and ambiguous number of applicants.
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Riedel (2009) to analyze the model.

Our main result is that the optimal stopping rule is still simple, or a

cutoff rule. The agent rejects a certain number of girls before picking the

next applicant that is better than all previous ones — in the literature on

best choice problems, such applicants are usually called candidates. The

optimal strategy thus consists in building up a ”database” by checking a

certain number of applicants, and to take the first candidate thereafter6.

We are able to obtain an explicit formula for the optimal threshold that

determines the size of the database.

In best choice problems, ambiguity can lead to earlier or later stopping

compared to the Bayesian case, in contrast to the analysis in Riedel (2009)

where ambiguity leads to earlier stopping. The reason for this is that the

original payoff process in best choice problems is not adapted. Indeed, when

the employer accepts a candidate, she does not know if that candidate is the

best among all applicants. She would have to observe all of them to decide

this question. She thus uses her current (most pessimistic) belief about the

candidate indeed being the best applicant. Two effects work against each

other then. On the one hand, after picking a candidate, the agent’s pessimism

leads her to believe that the probability of better candidates to come is very

high — this effect makes her cautious to stop. On the other hand, before

acceptance, she uses a very low probability for computing the chance of

seeing a candidate. This effect makes her eager to exercise her option. We

illustrate these effects with three classes of examples.

In general, the optimal threshold can be quite different from the classical

case (and in this general sense, the 37 %–rule described above is not robust).

When the highest probability of finding a candidate decays sufficiently fast,

the threshold– number of applicants–ratio can be very close to zero; indeed,

6Optimal stopping rules need not be simple. For example, in the situation with in-

complete information about the number of objects a Bayesian approach does not lead to

simple stopping rules in general, see Presman and Sonin (1975).
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it is independent of the number of applicants for large N . In such a situation,

one has rather an absolute than a relative threshold. Instead of looking at the

first 37 % of applicants, one studies a fixed number of them before choosing

the first relatively top applicant.

On the other hand, if the probability of finding a candidate at time n is in

the interval [ γ
n
, 1
γn

] for some parameter γ ∈ (0, 1), the threshold– number of

applicants–ratio can converge to any positive number between 0 and 1. For

γ → 1, we obtain again the 37 % – rule. In this sense, the classical secretary

problem is robust.

Last not least, we give an example where the ambiguity about applicants

being candidates remains constant over time. This example can be viewed as

the outcome of independent coin tosses with identical ambiguity as described

in Epstein and Schneider (2003a)7. The aim is to pick the last 1 in this series

of zeros and ones. We show that the agent optimally skips all but a finite

number of applicants. In this case, we the ratio converges to 1 for large N .

Different parametrization of this example show that ambiguity can lead to

earlier stopping (when the probability of finding a candidate are known to

be small) as well as later stopping compared to the Bayesian case.

On the modeling side, our approach succeeds in finding a model that

allows to introduce ambiguity into best choice problems. Note that one

has to be careful when introducing ambiguity into dynamic models because

one can easily destroy the dynamic consistency of the model8. To do so,

we reformulate the classical secretary problem in the following way. The

agent observes a sequence of ones and zeros, where 1 stands for ”the current

applicant is the best among the candidates seen so far”. The agent gets the

payoff of 1 if she stops at a 1 and there is no further 1 coming afterwards.

In the secretary problem, the probability of seeing a 1 at time n is 1/n as all

7See also the examples of this type discussed in Riedel (2009).
8See Epstein and Schneider (2003b) for a general discussion of time–consistency in mul-

tiple prior models, and Riedel (2009) for the discussion in an optimal stopping framework.
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orderings are equally likely. We then allow for ambiguity by introducing an

interval [an, bn] for this probability; finally, we construct a time–consistent

model by pasting all these marginal probabilities together as explained in

Epstein and Schneider (2003b).

The analysis of the stopping problem proceeds in three steps. In a first

step, we have to derive an equivalent model with adapted payoffs — note

that the payoff function is not adapted here because the agent’s payoff de-

pends on the events that occur after stopping. We pass to adapted payoffs

by taking conditional expectations prior by prior; it is not at all clear that

this leads to the same ex ante payoff, though. Time–consistency and the

corresponding law of iterated expectations for multiple priors9 ensure this

property. In the second step, we compute explicitly the relevant minimal

conditional expectations. After having stopped, the agent uses the maximal

probability for seeing a 1 afterwards. Intuitively, the agent’s pessimism in-

duces him to suppose that the best candidate is probable to come later after

having committed herself to an applicant. After this, we have arrived at an

optimal stopping problem that can be solved with the methods developed

in Riedel (2009). Indeed, the problem at hand turns out to be a monotone

problem: the worst–case measure can thus be identified as the measure under

which the probabilities of seeing a candidate are minimal (until the time of

stopping, of course). It then remains to solve a classical Bayesian stopping

problem, and we are done.

The paper is organized as follows: Section 2 introduces the model and

provides the stepwise solution as well as the main theorem. Section 3 contains

three classes of examples that allow to discuss in more detail the effects of

ambiguity in best choice problems.

9See, e.g., Riedel (2009), Lemma 11.
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2.2 Best Choice Problems under Ambiguity

Let us start with formalizing the classical best choice problem in a way that

allows a natural generalization to ambiguity10. In the classical secretary

problem, the agent observes sequentially the relative ranks of applicants, say

R1 = 1 for the first one, R2 ∈ {1, 2} for the second, R3 ∈ {1, 2, 3} for the

third and so on. The random ordering implies that the random variables

(Rn)n≤N are independent11. As we are only interested in finding the best

girl, we can discard all applicants with a relative rank higher than 1, and call

candidates those girls that are relatively top at the moment. Let us introduce

the 0 − 1–valued sequence Yn = 1 if Rn = 1 and Yn = 0 else. The random

variables (Yn) are also independent, of course, and we have

P [Yn = 1] =
1

n

because all permutations are equally likely12.

A simple stopping rule first rejects r− 1 applicants and accepts the next

candidate, if it exists, i.e.

τ(r) = inf {k ≥ r|Yn = 1}

with τ(r) = N if no further candidate appears after applicant r−1. One uses

independence of the (Yn)n≤N and monotonicity of the value function to show

that optimal stopping rules must be simple, see Section 2.2.1 below for the

argument in our context. It then remains to compare the expected success

of the different simple rules. The event that girl n is a candidate and also

the best of all girls means that no further girl has relative rank 1. In terms

of our variables (Yn)n≤N , this means that Yn = 1 and Yk = 0 for all k > n.

10A similar treatment of the classical secretary problem is due to Bruss (2000)
11See Ferguson (2006) or Chow, Robbins, and Siegmund (1971) for the technical details.
12Note that the independence of relative ranks ensures that we do not loose information

by conditioning on the σ-algebra generated by (Yn)n≤N instead of (Rn)n≤N .
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The success of a simple strategy is then

φ(r) := P [τ(r) picks the best girl] =
N∑
n=r

P [τ(r) = n, girl n is best]

=
N∑
n=r

P [Yr = 0, . . . , Yn−1 = 0, Yn = 1, Yk = 0, k > n]

=
N∑
n=r

N∏
j=r

P [Yj = 0]
P [Yn = 1]

P [Yn = 0]

=
N∏
j=r

j − 1

j

N∑
n=r

1/n

1− 1/n
=
r − 1

N

N∑
n=r

1

n− 1
.

The sum approximates the integral of 1/x, so the value is approximately

φ(r) =
r − 1

N
log

N

r − 1
.

The maximum of the function −x log x is in 1/e, so we conclude that the

optimal r is approximately [N/e] + 1.

2.2.1 Best Choice under Ambiguity

Formulation of the Problem

We generalize now the above model to ambiguity by allowing that the prob-

abilities

P [Yn = 1|Y1, . . . , Yn−1] ∈ [an, bn]

for all histories Y1, . . . , Yn−1 come from an interval instead of being a known

number. Throughout the paper, we assume that 0 < an ≤ bn < 1. Note

that the bounds on conditional probabilities an, bn are allowed to depend on

time, but not on the realized path. For example, more skilled applicants are

likely to apply sooner. If you think of the search where the hiring executive is

visiting several universities while looking for the secretary, she might adjust

her beliefs about meeting a skilled applicant depending on the university she
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is visiting. In the classical problem the probability of finding a top applicant

also varies with time, there we have

P [Yn = 1|Y1, . . . , Yn−1] = an = bn =
1

n
.

Modeling ambiguity in dynamic settings requires some care if one wants

to avoid traps and inconsistencies. We view the random variables (Yn)n≤N

as outcomes of independent, but ambiguous experiments where in the nth

experiment the distribution of Yn, i.e. the number P [Yn = 1] is only known to

come from an interval [an, bn]. From these marginal distributions, the agent

has to construct all possible joint distributions for the sequence (Yn)n≤N .

She does so by choosing any number pn ∈ [an, bn] after having observed

Y1, . . . , Yn−1. A possible prior then takes the form

P [Y1 = 1] = 1 (2.1)

because the first applicant is always a candidate, and

P [Yn = 1|Y1, . . . , Yn−1] = pn ∈ [an, bn] (2.2)

for a predictable sequence of one–step–ahead probabilities pn. Note that we

allow pn to depend on the past realizations of (Y1, . . . , Yn−1). For a time–

consistent worst–case analysis this is important because different one–step–

ahead probabilities might describe the worst case after different histories.

From now on, we work with class P of all probability measures that satisfy

(2.1) and (2.2) for a given sequence 0 < an ≤ bn < 1, n = 1, . . . , N . For

more on the foundations of dynamic decisions under ambiguity, we refer the

reader to Epstein and Schneider (2003b) and Epstein and Schneider (2003a),

see also Riedel (2009).

The astute reader might now wonder why we speak about independent

realizations if the conditional probabilities are allowed to depend on past

observations. Independence in a multiple prior setting is to be understood in

the sense that the interval [an, bn] is independent of past observations, just as
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it means that the conditional probability of the event {Yn = 1} given the past

observations is independent of these observations in classical probability. In

this sense, the agent does not learn from past observations about the degree

of ambiguity of the nth experiment.

We are now ready to formulate our optimization problem. Based on the

available information the agent chooses a stopping rule τ ≤ N that maximizes

the expected payoff which is 1 if she happens to find the best girl, and 0 else.

A way to describe this in our model is as follows: applicant n is the best if

she is a candidate (she has to be relatively best among the first n), and if she

is not topped by any subsequent applicant: in other words, we have Yn = 1

and there is no further candidate afterwards, or Yk = 0 for k > n. Let us

define

Zn =

{
1 if Yn = 1, Yk = 0, k > n
0 else

.

The agent aims to choose a stopping rule τ that maximizes

inf
P∈P

EP [Zτ ]. (2.3)

Reformulation in Adapted Payoffs

The next problem that we face is that the sequence (Zn)n≤N is not adapted

to the filtration generated by the sequence (Yn)n≤N because we do not know

at the time when we pick an applicant if she is best or not. As in the

classical case, we therefore take first conditional expectations of the rewards

(Zn)n≤N before we can apply the machinery of optimal stopping theory. In

the multiple prior framework we thus consider

Xn = ess inf
P∈P

E[Zn|Fn] .

where Fn = σ(Y1, . . . , Yn). In the Bayesian framework, it is relatively easy to

show that the expected payoffs E[Zτ ] = E[Xτ ] are the same for all stopping

times τ . In the multiple prior framework, this is less obvious. Indeed, the
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identity

inf
P∈P

EP [Zτ ] = inf
P∈P

EP [Xτ ]

does require a condition on the set of priors which has become known as

rectangularity or m–stability. In our model, this condition is satisfied13, and

we have

Lemma 1. For all stopping times τ ≤ N we have

inf
P∈P

EP [Zτ ] = inf
P∈P

EP [Xτ ].

We can thus reformulate our problem as

maximize inf
P∈P

EP [Xτ ] (2.4)

over all stopping times τ ≤ N .

Reduction to a Monotone Problem

We are now in the position to apply the general theory of optimal stop-

ping with multiple priors as developed in Riedel (2009). To this end, let

us first have a closer look at the payoffs (Xn)n≤N . It is clear that Xn = 0

if we do not have a candidate at n, i.e. Yn = 0, so we need only to focus

on the case Yn = 1. We are then interested in the minimal (conditional)

probability that all subsequent applicants are no candidates. It is quite plau-

sible (but requires a proof, of course) that the probability is minimal under

the measure P̄ where the probabilities for being a candidate are maximal,

P̄ [Yn = 1|Y1, . . . , Yn−1] = bn. Under this measure, the (Yn)n≤N are indepen-

dent (because the conditional probabilities for Yn = 1 are independent of

past observations, but see the proof of Lemma 2 for the details), and we thus

have

13Compare Epstein and Schneider (2003b) or Riedel (2009), Section 4.1.
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Lemma 2. The payoffs (Xn)n≤N satisfy

Xn =Yn ·min
P∈P

P [Yn+1 = 0, . . . , YN = 0] (2.5)

=Yn ·
N∏

k=n+1

(1− bk)

=:Yn ·Bn

The agent faces now a sequence of adapted payoffs where for each n ≤ N

the payoff Zn is monotone in Yn (indeed, linear). The random variables

(Yn)n≤N are independent under the measure Q where the conditional proba-

bilities for a candidate are

Q[Yn = 1|Y1, . . . , Yn−1] = an . (2.6)

Moreover, the probabilities of finding a candidate are smallest under this

measure in the whole class P in the sense of first–order stochastic dominance.

We are thus in a situation that is called a monotone problem in Riedel (2009).

The general theory there tells us that the optimal stopping rule with multiple

priors coincides with the optimal stopping rule under the measure Q – the

worst-case measure.

Theorem 1. The optimal stopping rule τ ∗ for 2.4 is the same as the optimal

stopping rule for the Bayesian problem

maximize EQ[Xτ ]. (2.7)

over all stopping times τ ≤ N where Q is as defined in 2.6.

Optimal Stopping under the Worst–Case Measure Q

We are now back to a classical optimal stopping problem under the measure

Q. A standard argument shows that optimal stopping rules must be simple.

It works as follows. From classical optimal stopping we know that it is
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optimal to stop when the current payoff Xn is equal to the current value of

the problem

vn := sup
τ≥n

EQ [Xτ |X1, . . . , Xn] .

The independence of the X1, . . . , XN under Q implies that the value of the

problem after having rejected n − 1 applicants is independent of the past

observations, i.e.

vn = sup
τ≥n

EQ[Xτ ]. (2.8)

The sequence (vn)n≤N is decreasing as we maximize over a smaller set of

stopping times. On the other hand, the sequence (Bn)n≤N defined as

Bn :=
N∏

k=n+1

(1− bk)

is increasing in n. Now suppose that it is optimal to take a candidate n. We

have then Bn = vn; therefore, we get

Bn+1 ≥ Bn = vn ≥ vn+1 ,

and it is also optimal to stop when a candidate appears at time n + 1. We

conclude that optimal stopping rules are simple.

Lemma 3. The optimal stopping rule τ ∗ is simple, i.e. there exists a number

1 ≤ r∗ ≤ N , s.t.

τ ∗ = τ(r∗) = inf{n ≥ r∗|Yn = 1}.

In the next step we compute the optimal threshold r∗ maximizing (2.8)

over all simple strategies. Let us denote by

φ(r) := EQ[Xτ(r)]

the payoff from starting to search at applicant r. We then have

φ(N) := EQ(Xτ(N)) = aN (2.9)

26



2.2. BEST CHOICE PROBLEMS UNDER AMBIGUITY

and

φ(r) = ar ·Br + (1− ar) · φ(r + 1) (2.10)

for r < N .

While our recursive formula for φ(r) is useful for numerical computations,

we record also the explicit solution of this linear difference equation. To

simplify the interpretation of this expression, we introduce two concepts.

Definition 1. For each n ≤ N we call

αn =
1− an
1− bn

= 1 +
bn − an
1− bn

the degree of ambiguity and

βn =
an

1− bn
the ambiguous odds of applicant n.

The first ratio αn measures the relative ambiguity persisting at the time

n. The term tends to 1 as the size of the interval [an, bn] decreases. In case

of an = bn the node n is completely unambiguous and the decision maker

faces only risk at n. Similarly, one can think of the product
∏N

k=n αk as the

cumulated ambiguity persisting between n andN . The model is unambiguous

if and only if
∏N

k=1 αk = 1. Note, that we call the ratio p/(1−p) the odds for

a zero–one bet. In a similar way, the ration βn measures the odds of seeing

a candidate at time n where we now use the (nonlinear) probability induced

by our ambiguity model.

The solution of the linear difference equation 2.10 with boundary condi-

tion 2.9 is given by

φ(r) =Br−1

(
βn + αnβn+1 + · · ·

n−1∏
k=r

αkβN

)
(2.11)

=Br−1 ·

(
N∑
n=r

βn

n−1∏
k=r

αl

)
.
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Let us check now that φ has a unique maximizer. From our recursion

2.10, we get that φ(r)− φ(r + 1) ≥ 0 is equivalent to wr ≤ 1 for

wr :=
φ(r + 1)

Br

=
N∑
n=r

βn

n−1∏
k=r

αk . (2.12)

As αk > 1 and βn > 0, the sequence (wr)r≤N is strictly decreasing. Thus,

(φ(r))r≤N is increasing as long as wr > 1 and decreasing afterwards, which

shows that it has a unique maximum.

The maximizer is determined by

r∗ = inf{r ≥ 1|wr ≤ 1} (2.13)

The optimal threshold r∗ is determined by the weighted average of ambiguous

odds weighted with the ambiguity persisting between r and N . Equation

(2.12) and Equation (2.13) completely characterize the solution.

We summarize our findings in the following theorem.

Theorem 2. 1. The optimal stopping rule for 2.3 is simple, i.e. the agent

first observes r∗ candidates and takes then the first candidate that ap-

pears;

2. The optimal threshold r∗ for the cutoff is given via (2.12) and (2.13).

2.3 Comparative Statics

In this section we use the sequence (wr)r≤N and the variables (αn)r≤N and

(βn)r≤N defined above to analyze the effects of ambiguity on stopping and

the structure of the stopping strategy τ ∗.

As it was shown in Riedel (2009), an ambiguity averse decision maker behaves

like a Bayesian decision maker under a special worst-case probability measure

constructed via backward induction. We have seen in the preceding section
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how to construct this measure, and that the optimal stopping rule is still

simple. The central question by analyzing the effect of ambiguity is now the

threshold r∗. In case of monotone problems where the payoff is known at the

time of decision such as House Selling Problem or Parking Problem discussed

in Riedel (2009) ambiguity leads to earlier stopping. The use of the worst-

case measure lowers the value of the Snell envelope and forces the agent to

stop earlier. The situation differs here because the agent faces actually two

kinds of uncertainty. On the one hand, there is payoff uncertainty in the

adapted version of the problem because the probability distribution of Yn

is not known. This effect leads to earlier stopping because it reduces the

expected value from waiting. On the other hand, ambiguity also affects the

chances that a better applicant is going to come after the current candidate.

This ambiguity induces the agent to wait longer because she believes after

stopping that candidates are going to appear with high probability. The two

effects work against each other, and we thus proceed to study more detailed

models in which we can disentangle them14. In addition, we compute the

value of the threshold r∗ and show that asymptotically, the relative fraction

of applicants that the agent lets go by can assume any value between 0 and

1.

2.3.1 Ambiguous Secretary Problem

Our first example is the multiple prior version of the classical secretary prob-

lem. The decision maker is uncertain about the real distribution of the order-

ings for reasons explained in the introduction but has no additional informa-

tion on the quality of the applicants. Doubting her strategy she aims to know

what happens if she changes the measure slightly. Instead of P [Yn = 1] = 1
n
,

the ambiguity averse decision maker assumes that the probability lies in an

14A similar point has been made in a completely different model in Nishimura and Ozaki

(2007) when there is uncertainty about the timing and uncertainty about the value from

stopping.
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N / γ 1 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1

5 3 3 3 3 3 3 5 5 5

10 4 4 5 5 5 5 6 7 10

50 19 19 19 20 20 22 24 27 34

100 38 38 38 38 39 43 46 53 65

500 185 185 186 189 193 210 227 257 316

1000 369 369 372 376 385 419 453 513 630

Table 2.1: Absolute values of the threshold r∗ for different values of N and

levels of ambiguity γ. The threshold is increasing with ambiguity. The agent

waits longer before accepting a candidate when ambiguity increases.

interval near by 1
n
, i.e.

P [Yn = 1|Fn−1] ∈
[
γ

n
,

1

γn

]
for appropriately chosen γ < 115, 2 ≤ n ≤ N . The parameter γ measures the

level of uncertainty, as it tends to 1 the uncertainty about the probability

of finding a candidates vanishes. In the limit, for γ = 1 we are back in the

classical case.

We can use the analysis of the preceding section to compute the thresholds

r∗ that depends on γ and N , of course. Typical values are tabulated in Table

2.1 and 2.2 for the absolute and relative values of the threshold, resp. It is

interesting to see that one waits longer as ambiguity increases. The effect of

missing a potentially better applicant outweighs the lower expectation from

ambiguity. We get here a potentially testable implication: the more uncertain

the agent is, the longer she should wait before taking a decisive action in a

best choice problem.

The following result gives exact boundaries for the optimal threshold de-

pending upon γ and N .

15Of course one has to choose γ in a way that ensures that P [Yn = 1|Fn−1] ∈ (0, 1) for

all 2 ≤ n ≤ N .
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N / γ 1 0.9 0.8 0.7 0.6 0.4 0.3 0.2 0.1

5 60% 60% 60% 60% 60% 60% 100% 100% 100%

10 40% 40% 50% 50% 50% 50% 60% 70% 100%

50 38% 38% 38% 40% 40% 44% 48% 54% 68%

100 38% 38% 38% 38% 39% 43% 46% 53% 65%

500 37% 37% 37% 38% 39% 42% 45% 51% 63%

1000 37% 37% 37% 38% 39% 42% 45% 51% 63%

Table 2.2: Relative values of the threshold r∗ for different values of N and

levels of ambiguity γ. Also the relative threshold is increasing with ambiguity.

Theorem 3. For given γ > 1
2

and N , the optimal threshold r∗(γ,N) satisfies

e−
1
γ ≤ r∗(γ,N)

N
≤ e−

2γ
1+γ +

3

N
. (2.14)

In particular, the secretary problem is robust in the sense that

lim
N→∞,γ↑1

r∗(γ,N)

N
= lim

N→∞

r∗(0)

N
= e−1 . (2.15)

2.3.2 Independent Coins with Identical Ambiguity

Our example corresponds to the independent indistinguishably distributed

case introduced in Epstein and Schneider (2003a). Here, the probability to

meet a candidate remains constant over time. More generally, this is the

case, where the decision maker does not know if the experiment changes over

time. At the same time she has no reason to distinguish between periods.

To express the uncertainty about the coin the agent uses a class of measures

in each period.

We consider the following bet: We observe an ambiguous coin being tossed

N times and we win if we stop at the last time {head} appears in the sequence.

With this setup we are in the situation of the ambiguous best choice problem

where the probabilities for {head} remain constant over time:

P [n-th toss is a head|Fn−1] ∈ [p− ε, p+ ε]
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for ε ≥ 0, chosen such that 0 < p − ε < p + ε < 1. To get a feeling for the

problem, let us start with the pure risk case, ε = 0. In this case, we get

wr = β(N − r) =
p

1− p
(N − r)

and the optimal threshold is the first r such that

N − r ≤ 1− p
p

.

In this problem, it is optimal to focus solely on the last
[
1−p
p

]
+ 1 applicants,

irrespective of the total number of applicants.

Let us now come to the ambiguous case. From Equation 2.12, we obtain

for the degree of ambiguity α = 1−p+ε
1−p−ε > 1 and ambiguous odds β = p−ε

1−p−ε

wr =
N∑
k=r

β
k−1∏
l=r

α = β
αN−r+1 − 1

α− 1
.

The threshold r∗ is given by the first r such that

αN−r ≤ 1 +
α− 1

β
=
p+ ε

p− ε
.

We learn from this that the agent focuses only on the last

k(p, ε) '
log p+ε

p−ε

log 1−p+ε
1−p−ε

applicants. This quantity is independent of N .

In this case we observe memoryless stopping : The decision about stopping

does not depend on the number of the options already observed. Only the

number of options left matters. Consequently, we obtain

lim
N→∞

r∗(N)

N
= 1 .

This example also allows us to demonstrate that ambiguity can lead both

to earlier as well as to later stopping. For p < 1
2
, the quantity k(p, ε) is

increasing; consequently, the agent stops earlier when ambiguity increases.

For p = 1/2, k(p, ε) is independent of ε and ambiguity does not influence the

stopping behavior. For p > 1/2, the agent stops later, in general.
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2.3.3 Finite Stopping

In our last example we consider the case where the probability to meet a

candidate falls very fast. Here, the value of waiting decreases very fast and

becomes zero at some point. In this situation the future becomes worthless

and interviewing additional candidates does not improve the expected payoff.

Even if the pool of applicants is infinite the decision will be made in finite

time. Here, we can compute the maximal amount of applicants that need to

be interviewed in order to decide optimally.

To see how it works we first consider the value of waiting for a fixed

number of candidates N and a given one-step-ahead probabilities [an, bn].

Now we add an applicant with P [YN+1 = 1|FN ] ∈ [aN+1, bN+1]. Clearly,

adding applicants does not decrease the value of the problem. As we vary

the number of applicants now, let us write wNr for the crucial sequence that

determines the threshold r∗(N). Clearly, wNr is increasing in N and the value

of the threshold r∗(N + 1) ≥ r∗(N). Now assume that w∞r := limN→∞w
N
r

exists. Then we can find R ∈ N s.t. w∞R < 1 and therefore wNR < 1 for all N

sufficiently large. Therefore, the value of the threshold r∗(N) cannot exceed

R. As r∗(N) is an increasing, but bounded sequence of integers, it has to be

constant from some point on, r∗(N) = R for N sufficiently large.

In other words, the number of applicants does not matter here for large

pools of applicants. The agent first studies a fixed number of applicants

before taking the next candidate.

Lemma 4. If

w∞ := lim
N→∞

wN1 (2.16)

exists, then

1. The value of the threshold r∗(N) is bounded by a constant R ∈ N and

for sufficiently large N ∈ N, we have r∗(N) = R,
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2. The fraction of rejected candidates converges to zero, i.e.

lim
N→∞

r∗(N)

N
= 0 .

Let us reflect a moment under what condition the series w∞ =
∑∞

k=1 βk
∏k−1

l=r αl

is finite. By d’Alembert’s ratio test, this is the case if we have

lim sup
n→∞

1− an
an

an+1

1− bn+1

< 1 .

This condition holds true, e.g., when both (an) and (bn) converge fast, say

exponentially, to zero.

In this section we analyzed the observation period for different sets of

measures. Depending on the structure of the set P the observation period

converges to a constant c ∈ (0, 1) as in the case of the ambiguous secre-

tary problem. Or it can converge to zero making the future worthless as in

the finite stopping case. In the opposite case of memoryless stopping the

observation period tends to 1, assigning zero value to the past.

2.4 Conclusion

We provide a closed form solution for the best choice problem in the multiple

prior framework. An appropriate version of backward induction leads to the

solution if the set of priors is time-consistent. Due to time-consistency most of

classical arguments remain valid, the stopping rule is simple. The closed form

solution allows to analyze the impact of ambiguity on the stopping behavior.

Additionally, we show the robustness of the classical secretary problem in

the multiple prior framework. A natural next step is to generalize the utility

function. Additionally, one might extend the model to infinite settings.
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Chapter 3

Exercise Strategies for

American Exotic Options under

Ambiguity

3.1 Introduction

The increasing trade volume of exotic options both in the plain form and

as component of more sophisticated products motivates the more precise

study of these structures. The OTC nature of these contracts allows for

almost endless variety of products which comes at the price of tractability

and evaluation complexity. The payoff of the option is often conditioned on

an event during the lifetime leading to a path dependent structure which is

challenging to evaluate.

Most of the literature on this field concentrates on hedging or replication

analyzing the hedging strategy of the seller or deriving the no arbitrage price.

This analysis is sufficient in the case of European options as it also captures

the problem of the buyer. However, in the case of American options the
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task of the buyer holding the option in her portfolio differs structurally from

the hedging problem of the seller. Unlike the bank/the market the holder

of the option is not interested in the risk neutral value of the option but

aims to exercise the claim optimally realizing highest possible utility. This

valuation in general needs not to be related to the market value of the option

as it reflects the personal utility of the holder which depends on investment

horizon and objectives and also on the risk attitude of the holder.

Given a stochastic model in discrete time, such as the Cox, Ross, and

Rubinstein (1979) (CRR) model one can easily solve the problem of the

buyer using dynamic programming. However, classical binomial tree models

impose the assumption of a unique given probability measure driving the

stock price process. This assumption might be too strong in several cases

as it requires perfect understanding of the market structure and complete

agreement on one particular model.

As an example we consider an asset manager holding an American claim in

her portfolio. Her exercise decision depends on the underlying model for the

stock price process derived from filtering using past stock price observations.

As the model cannot be determined perfectly she faces model uncertainty.

Being unable to completely specify the model the asset manager rather uses

multiple prior model instead of choosing one particular model. If the uncer-

tainty cannot be resolved and the accurate model specification is impossible

more robust strategies are to be preferred as they perform well even if the

model is specified slightly incorrect.1

Also a risk controlling unit assigning value and riskiness to the portfo-

lio chosen by the manager uses rather a multiple prior models in order to

test for model robustness and to measure model risk. Taking several mod-

els into account while performing portfolio distress tests allows to check for

1Several authors discussed the robust portfolio optimization problem in the multiple

prior context. However, most of works on this field only consider investments in plain

vanilla products.
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the sensitivity of the portfolio to model misspecification. Again in a situa-

tion of model uncertainty more robust riskiness assignment is desirable as it

minimizes model risk/uncertainty2.

Similar reasoning can be applied to accounting issues. An investment

funds manager making his annual valuation is interested in the value of op-

tions in the book that are not settled yet. In case the company applies

coherent risk measures as standard risk evaluation tool for future cash flows

on the short side, it is plausible to use a multiple prior model evaluating

long positions. Finally, a private investor holding American claims in his

account might exhibit ambiguity aversion in the sense of Ellsberg paradox

or Knightian uncertainty. Such behavior may arise from lack of expertise or

bad quality of information that is available to the decision maker.

Although for different reasons, all the market participants described above

face problems that should not be analyzed in a single prior model and can be

formulated as multiple prior problems. In this paper we analyze the problem

of the holder of an American claim facing model uncertainty that results in

a multiple prior model. We characterize optimal stopping strategies for the

buyer that assesses utility to future payoffs in terms of minimal expectation

and study how the multiple prior structure affects the stopping behavior.

Multiple prior models have gained much attention in recent studies. Hansen

and Sargent (2001) considered the multiple prior models in the context of ro-

bust control, Karatzas and Zamfirescu (2003) approached the problem from

game theoretical point of view. Delbaen (2002) introduced the notion of

coherent risk measures which mathematically corresponds to the approach

used in this paper.

The decision theoretical model of multiple priors was introduced by Gilboa

and Schmeidler (1989) and further developed to dynamical settings by Ep-

stein and Schneider (2003b). The methods we use in this paper rely heavily

2See Cont (2006) for an extensive discussion on the issue of model risk
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on these works.

Epstein and Schneider (2003a) applied the multiple prior model to financial

markets and Epstein and Schneider (2003b) addressed the question of learn-

ing under uncertainty. Riedel (2009) considered the general task to optimally

stop an adapted payoff process in a multiple prior model and showed that

backward induction fails in general. He imposed more structure on the set

of priors that ensured that the solution can be found using an appropriate

form of backward induction. The cornerstone of the method is the time-

consistency of the set of priors which allows the decision maker to change her

beliefs about the underlying model as the time evolves. If the set of priors is

time-consistent one can proceed as in the classical case3 computing the value

process of the stopping problem – the multiple prior Snell envelope. It is

then optimal to stop as soon as the payoff process reaches the value process.

Additionally, the ambiguous optimal stopping problem corresponds to a clas-

sical optimal stopping problem for a measure P̂ – the so-called worst-case

measure4.

As an application of the technique Riedel (2009) solves the exercise prob-

lem for the buyer of an American put and call in discrete time. A similar

problem was analyzed by Nishimura and Ozaki (2007) and later by Kort and

Trojanowska (2007), they considered the optimal investment decision for a

firm in continuous time with infinite time horizon under multiple priors which

can be related to the perpetual American call. In this paper we follow the

lines of Riedel (2009) and analyze several exotic options that have a second

source of uncertainty from the perspective of the buyer in a multiple prior

setting. We focus on the discrete time version of the problem and develop an

ambiguous version of the CRR model. Instead of assuming that the distribu-

tion of up- and down- movements of the underlying is known to the buyer we

allow the probability of going up on a node to lie in a appropriately modeled

3See Snell (1952),Chow, Robbins, and Siegmund (1971) for more detailed analysis.
4See Riedel (2009), Föllmer and Schied (2004), Karatzas and Kou (1998).
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set5.

This leads to a set of models that agree on the size of up- and down-

movement but disagree on the mean return. In this ambiguous binomial

tree setting which was first analyzed in Epstein and Schneider (2003a) we

aim to apply standard Snell reasoning to evaluate the options. Due to the

above mentioned duality result it is enough to calculate the worst-case mea-

sure P̂ and then to analyze the classical problem under P̂ . However, the

worst-case measure depends highly on the payoff structure of the claim and

needs to be calculated for each option separately. If the payoff satisfies cer-

tain monotonicity conditions the worst-case measure is easy to derive. The

direction/effect of uncertainty is the same for all states of the world and the

worst-case measure is then independent on the realization of the stock price

process leading to a statical structure that resembles classical models. In the

case of more sophisticated payoffs this stationarity of the worst-case measure

breaks down and the worst-case measure changes over time depending on the

realization of the stock price process. This is due to the fact that uncertainty

may affect the model in different ways changing the beliefs of decision maker

and so the worst-case measure according to the effect that is dominating.

This ability to react to information by adjusting the model and to choose the

model depending on the payoff is the main structural difference between the

classical single measure model and the multiple prior model considered here.

We identify additional sources of uncertainty that lead to the dynamical

and path-dependent structure of the worst-case measure. We also analyze

the impact of different effects of uncertainty on the overall behavior and the

resulting model highlighting differences between the single prior models used

in the literature and the multiple prior model introduced here.

In our analysis we decompose the claims in monotone parts as the worst-

case measure for monotone problems is well known. We then analyze each

5Alternatively one might assume that the probability of an up-movement is known

while the size of the increment is not. This approach turns out to be equivalent to ours.
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claim separately deriving the worst-case measure conditioned on monotonic-

ity. To complete the analysis we paste the measures obtained on subspaces

together using time-consistency. This idea is closely linked to the method of

pricing derivatives using digital contracts introduced by Ingersoll (2007) and

also used by Buchen (2004). However, this literature focuses on European

style options and does not cover the dynamical structure analyzed here.

In the case of barrier options the value of the option is conditioned on the

event of reaching a trigger. Unlike the plain vanilla option case, the lifetime

of an barrier option become uncertain as it depends on the occurrence of the

trigger event. This leads to an additional source of uncertainty causing a

change in the monotonicity of the value function when the stock price hits

the barrier. For example, in the case of an up-and-in put the ambiguity

averse decision maker assumes the returns to be low and chooses therefore

the measure with the lowest drift before the stock price reaches the barrier.

After hitting the barrier she obtains a plain vanilla put option monotone in

the underlying and uses therefore the measure with the highest drift. Similar

behavior can be observed for other types of barrier options.

The second group of options we focus on are the dual expiry options. Here,

the strike of the option is not known at time zero as it is being determined as

a function of the underlying’s value on a date different from the issue date of

the option – the first expiry. Therefore, additional to the uncertainty about

the final payoff the decision maker faces uncertainty about the value of the

strike before first expiry date.

In the case of shout options the first expiration date, the so-called shout

date/freeze date, is determined by the buyer. Here, the investor has to call the

bank if she aims to fix the strike. Therefore, the buyer of an shout option faces

two stopping problems: First, she has to determine the optimal shouting time

in order to set the strike optimally and then the to stop the payoff process

optimally. The holder of an shout put gets an put after shouting and thus,

anticipates high returns on the stock after shouting. Before shouting however
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he owns a claims whose value is increasing in the price of the underlying which

results in low returns anticipated before shouting.

Finally, we analyze options whose payoff function consists of two mono-

tone pieces. Typical examples are straddles and strangles. The buyer of such

options presumes a change in the underlying’s price but is not sure about

the direction of the change. Depending on the value of the underlying the

option pays off a call or a put, so as a consequence the actual payoff function

becomes uncertain. Here, one can decompose the value of the option in an

increasing and a decreasing leg. The buyer of the option changes her beliefs

about the returns every time the value switches from decreasing to increas-

ing part of the value function. So, an ambiguity averse buyer of a straddle

presumes the stock price to go down in hausse phases and up in baisse phases.

An outline of the paper is as follows. Section 2 introduces the discrete

model which is in this form due to Riedel (2009). Section 3 recalls the solution

for payoffs monotone in underlying’s price introduced in Riedel (2009) and

builds the base for the following analysis. Section 4 provides the solution

for barrier options options, and Section 5 develops the solution for multiple

expiry. Finally, Section 6 discusses U–shaped payoffs.

3.2 Financial Markets and Optimal Stopping

under Ambiguity in discrete Time

We first introduce the basic theoretical setup to evaluate options in multiple

prior model. This model has the CRR model as the starting point and was

already developed in Riedel (2009) and can be seen as a version of the IID

model introduced in Epstein and Schneider (2003a) with a different objective.

At the same time the model is the discrete time version of the κ–ambiguity

model in Epstein and Chen (2002).

Having established the model we discuss the market structure and recall
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the decision problem of the buyer and the solution method – the multiple

prior backward induction introduced by Riedel (2009).

3.2.1 Stochastic Structure

To set up the model we start with a classical binomial tree. For a fixed matu-

rity date T ∈ N we consider a probability space (Ω,F , P0) where Ω = ⊗Tt=1S
with S = {0, 1} is the the set of all sequences with values in {0, 1}, F is the

σ–field generated by all projections εt : Ω → S and P0 denotes the uniform

on (Ω,F). By construction, the projections (εt)t=1,...,T are independent and

identically distributed under P0 with P0(εt = 1) = 1
2

for all t ≤ T . Fur-

thermore, we consider the filtration (Ft)t=0,...,T generated by the projections

(εt)t=1,...,T where F0 is the trivial σ–field – {∅,Ω}. The event εt = 1 repre-

sents an up-movement on a tree while the complementary event denotes the

down-movement6.

Additionally, we define a convex set of measures Q in the following way:

We fix an interval [p, p] ⊂ (0, 1) for p ≤ p and consider all measures whose

conditional one–step–ahead probabilities, i.e. the conditional probability of

going up on a node of the tree remain within the interval [p, p] for every

t ≤ T , i.e.

Q =
{
P ∈M1(Ω)|P (εt = 1|Ft−1) ∈ [p, p], ∀t ≤ T

}
(3.1)

The set Q is generated by the conditional one-step-ahead correspondence

assigning at every node t ≤ T the probability of going up. In particular,

Q contains all product measures defined via Pp(εt+1 = 1|Ft) = p for a fixed

p ∈ [p, p] and all t < T . In the following we denote by P = Pp and by P = Pp.

Clearly, the state variables (εt)t=1,...,T are independent under all product

measures, correlated in general, however. To see this consider the measure

6We assume FT+1 := FT and inf ∅ :=∞.
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P τ defined via

P τ (εt+1 = 1|Ft) =

{
p if t ≤ τ
p else

for a stopping time τ ≤ T . As the one-step-ahead probabilities remain in the

interval [p, p] the so defined measure P τ belongs to Q for all stopping times

τ ≤ T . At the same time the probability of going up on a node depends on

the realized path through the value of τ and (εt)t=1,...,T are correlated.

The above example reveals an important structural feature of Q: The set

of measures is stable under the operation of decomposition in marginal and

conditional part. Loosely speaking, it allows the decision maker to change

the measure she uses as the time evolves in an appropriate manner. In the

example above, the decision maker first uses the measure P until an event

indicated by the stopping time τ and then changes to P . Mathematically,

this property is equivalent to an appropriate version of the Law of Iterated

Expectation and is closely linked to the idea of backward induction. The con-

cept has gained much attention in the recent literature and was also discussed

under different notions by Delbaen (2002), Epstein and Schneider (2003a),

Föllmer and Schied (2004) and Riedel (2009).

The following lemma summarizes crucial properties of the set Q.

Lemma 5. The set of measures defined as in (3.1) satisfies the following

properties

1. Q is compact and convex,

2. all P ∈ Q are equivalent to P0,

3. Q is time-consistent in the following sense: Let P,Q ∈ Q, (pt)t, (qt)t

densities of P,Q with respect to P0. For a fixed stopping time τ define

the measure R via

rt =

{
pt if t ≤ τ
pτ qt
qτ

else

then R ∈ Q.
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Due to Lemma 5 we can identify the set Q with the set of the density

processes with respect to the measure P0. In the following we denote by D

the density process of P ∈ Q with respect to P0, i.e. Dt = dP
dP0
|Ft for P ∈ Q,

t ≤ T . A more detailed analysis of the structure of D can be found in Riedel

(2009).

3.2.2 The Market Model

Within the above introduced probabilistic framework we establish the finan-

cial market in the spirit of the CRR model. We consider a market consist-

ing of two assets: a riskless bond with a fixed interest rate r > −1 and

a risky stock with multiplicative increments. For given model parameters

0 < d < 1 + r < u and S0 > 0 the stock S evolves according to

St+1 = St ·
{
u if εt+1 = 1
d if εt+1 = 0

.

Without loss of generality, we assume u · d = 17.Then, for every t ≤ T the

range of possible stock prices is finite and bounded, we denote by

Et = {S0 · ut−2k|k ∈ N,−t ≤ k ≤ t}

the set of possible stock prices at time t. Moreover, the filtration generated by

the sequence (St)t=0,...,T coincides with (Ft)t=0,1,...,T and every realized path

(s1, . . . , st) of S can be associated with a realization of (εs)s≤t.

As the state variables are not independent under every probability mea-

sure P ∈ Q in our model the increments of S are correlated in general. The

probability of an up-movement depends on the realized path but stays within

the boundaries [p, p] for every P ∈ Q.

Economically, our model describes a market where the market partici-

pants are not perfectly certain about the asset price dynamics. In order to

7This is a common assumption when dealing with exotic options in binomial models,

see Cox and Rubinstein (1985) for a detailed discussion.
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express this uncertainty investors use a class of measures constructed above.

The set Q is the set of possible models the decision maker takes into ac-

count. Different choices of P ∈ Q correspond to different models. With our

specification mean return on stock is uncertain and as one can easily see, P

corresponds to the highest mean return at every node, while P corresponds

to the lowest mean return on stock on every node. The specification of Q
is a part of the model and in practice may arise from regulation policies or

be imposed by the bank accounting standards, result from statistical con-

sideration or just reflects the degree of ambiguity aversion. The length of

the interval [p, p] determines the range of possible models. As the interval

decreases the model converges to the classical binomial tree model and we

obtain the classical CRR model as a special case of our model by choosing

p = p.

The use of a set of models especially allows for correlated returns. This

gives the decision maker the possibility to adjust the models as the path

is realized and new information arrives. Now the economical implication of

time-consistency of Q becomes clear. Due to this property the multiple prior

decision maker is allowed to use the measure P1 ∈ Q until an event indicated

by a stopping time τ and then to change his beliefs about the right model

using P2 after τ . The multiple prior decision maker is allowed to adjust the

model she uses responding to the state of the market. However, this notion

is not the same as classical Bayesian learning as the decision maker has too

little information or market knowledge to learn the real distribution. While

in the learning process the decision maker updates the model adjusting the

set of possible models, here the investor keeps the set of possible models

fixed not excluding any of the possible models as the time evolves but choses

a particular model at every point of the time reconsidering her choice when

new information arrives.

45



3.2. FINANCIAL MARKETS AND OPTIMAL STOPPING UNDER
AMBIGUITY IN DISCRETE TIME

3.2.3 The Decision Problem

In this setting we consider an investor holding an exotic option in her port-

folio. As most of the exotic options are OTC8 contracts there is usually

no functioning market for these derivatives or the trading of claims involves

high transaction costs. Therefore, in absence of a trading partner the buyer

is forced to hold the claim until maturity, so we exclude the possibility of sell-

ing the acquired contracts concentrating purely on the exercise decision of

the investor. In our analysis we mainly concentrate on institutional investors

already holding the derivatives in the portfolio. Therefore, it is plausible to

assume risk neutral agents who discount future payoff by the riskless rate.

Remark 1. When having an ambiguity averse private investor in mind it

seems natural also to introduce risk aversion and to discount by individual

discount rate δ. As these considerations do not change the structure of the

worst-case measure obtained here, we omit this possibility maintaining risk

neutrality.

We consider an American claim A : Ω → R+ written on the asset S

and maturing at T that pays off A(t, (Ss)s≤t) when exercised at time t. The

investor holding A in her portfolio aims to maximize her expected payoff

by choosing an appropriate exercise strategy, i.e. the best time to exercise

the contract. As the expectation in our multiple prior setting is not uniquely

defined the ambiguity averse decision maker maximizes her minimal expected

payoff, i.e.

maximize inf
P∈Q

EPA(τ, (Ss)s≤τ ) over all stopping times τ ≤ T. (3.2)

The choice of the exercise strategy according to the worst possible model

corresponds to conservative value assignment. It treats long book positions

8OTC deals are contracts that are traded over the counter with a counterparty and

not through a centralized liquid trade exchange.
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in the same way as the coherent risk measures treats short positions9. The

value of the multiple prior problem UQ stated in (3.2) is lower or equal than

the value of the problem UP for every possible model P ∈ Q. Therefore,

this notion minimizes the model risk as the model misspecification within Q
increases the value of the claim.

Remark 2. 1. The problem of the long investor stated in (3.2) differs

structurally from the task of the seller of the option. The seller of

the American claim needs to hedge claim against every strategy of the

buyer. To obtain the hedge she solves the optimal stopping problem

under the equivalent martingale measure P ∗. In the binomial tree the

unique equivalent martingale measure P ∗ is completely determined by

parameters r, u and d and does not depend on the mean return. See

Hull (2006) for a more detailed analysis. The situation is different for

the buyer as she solves the optimal stopping problem under the physical

measure taking the mean return into account and being interested in

personal utility maximization rather than in risk neutral valuation. Al-

though the buyer and the seller use different techniques assigning value

to the options and obtaining different values for the claim there is no

contradiction to no arbitrage condition because of the American struc-

ture of the claims considered here.

2. It is usual to evaluate claims in the book that are not settled yet using

mark-to-market approach. The value of the option is then set to be

equal to the market price. This makes sense if markets are well func-

tioning or if the investor intends to sell the option on the secondary

market rather than hold it until maturity. However, this approach may

value the claims wrongly in times of distressed markets or if there is no

market for the security at all as it was seen and still is seen at financial

markets these days. Multiple prior value assignment through UQ is an

9Mathematically, our model is equivalent to a representation of coherent risk measures.

See Delbaen (2002) or Riedel (2009) for more detailed analysis.
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alternative to the mark-to-market accounting as it provides conservative

value assignment by using the worst possible scenario but protects the

book value from too pessimistic or overoptimistic views of the market

that are due to expectations and do not reflect fundamentals. However,

UQ is not the price for the option but rather the private value for the

investor that may differ from the market view.

3.2.4 The Solution Method

If Q is a singleton the problem stated in (3.2) can be solved using classical

dynamic programing methods. One defines backwards the value process of

the problem – the Snell envelope – and stops as soon as the value process

reaches the payoff process. This technique fails to hold in the multiple prior

setting10. Riedel (2009) extended backward induction to the case of time-

consistent multiple priors stating sufficient conditions for the Snell arguments

to hold.

Theorem 4 (Riedel (2009)). Given a set of measures satisfying conditions

stated in Lemma 5 and a payoff process X = (Xt)t=0,...,T bounded by a Q-

uniformly integrable variable Z, define the multiple prior Snell envelope UQ

recursively by

UQT =XT (3.3)

UQt = max{Xt, inf
P∈Q

EP (UQt+1|Ft)} for t < T

Then,

1. UQ is the smallest multiple prior Q-supermartingale 11 dominating the

payoff process X.

10See Riedel (2009) for an example.
11Given a set of measures Q, a multiple prior supermartingale with respect to Q is an

adapted process, say S, satisfying St ≥ ess infP∈Q EP (St+1|Ft) for t ∈ N.

48



3.2. FINANCIAL MARKETS AND OPTIMAL STOPPING UNDER
AMBIGUITY IN DISCRETE TIME

2. UQ is the value process of the multiple prior stopping problem for the

payoff process X, i.e.

UQt = sup
τ≥t

inf
P∈Q

EP (Xτ |Ft)

3. An optimal stopping rule is then given by

τQ = inf{t ≥ 0|UQt = Xt}.

The above result ensures the existence of the solution of problem (3.2).

Moreover, as shown by several authors (for example Föllmer and Schied

(2004), Karatzas and Kou (1998), Riedel (2009)) problem (3.2) is equiva-

lent to a single prior problem for a measure P̂ ∈ Q, i.e. the value function

of the multiple prior problem

UQ = U P̂ P0-a.s.. (3.4)

The measure P̂ is called worst–case measure and can be constructed via

backward induction by choosing the worst one-step-ahead probability at ev-

ery node of the tree and pasting the so obtained densities together at time 0.

The worst-case measure is stochastic in general and depends on the payoff

process.

Due to equality (3.4) the optimal stopping strategies τQ of the multiple

prior problem and τ P̂ of the problem for the prior P̂ coincide. Therefore,

the problem can be solved in two steps. In the first step one identifies the

worst–case measure P̂ and solves the classical problem under P̂ in the second

step. This technique allows to make use of solutions already obtained in

the classical case. For problems where no closed form solution is available

the technique reduces numerical complexity by reducing the task to a single

model problem where methods are well developed.

Analyzing the exotic options we use this techniques emphasizing the be-

havioral interpretation of the worst–case measure and highlighting the dif-

ference between classical models and the multiple prior approach.
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3.2.5 Options with Monotone Payoffs

In this subsection we provide the solution for claims whose payoffs are mono-

tone in the underlying’s price at each time and satisfy the Markov property.

The results of this section build the foundation for the analysis of more com-

plicated payoffs in the next sections and were stated in Riedel (2009).

We consider a discounted American claim maturing at T and paying off

Xt = A(t, St) when exercised at t.

Theorem 5 (Riedel (2009)). 1. If the payoff function of the claim A(t, St)

is increasing in St for all t, then the multiple prior Snell envelope is

UQ = UP

where P is the measure defined by the density

Dt = 2t
∏
u≤t

pεu + (1− p)(1− εu)

and the holder of the claim uses the optimal stopping rule given by

τP = inf{t ≥ 0 : A(t, St) = UP
t }.

2. If A(t, St) is decreasing in St for all t, the multiple prior Snell envelope

is

UQ = UP

where P is the measure defined by the density

Dt = 2t
∏
u≤t

pεu + (1− p)(1− εu)

and an optimal stopping rule under ambiguity is given by

τ = inf{t ≥ 0 : A(t, St) = UP
t }.

The key to this result is the fact that P (or P resp.) is the worst proba-

bility measure in the sense of first–order stochastic dominance and that the
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payoff is a monotone function of the underlying stock price. These results

help us finding the worst-case measure for more complicated payoffs. Using

appropriate decompositions we represent the options as monotone claims. For

those monotone claims we can identify the worst-case measure using Theo-

rem 5. Pasting the so obtained measures together we construct the desired

worst-case measure.

3.3 Barrier Options

Barrier options are among most traded exotic options and are often used as

components of more sophisticated structured derivatives. The payoff of a

barrier claim depends on the stock price reaching the barrier prespecified in

the contract: in options are activated when the stock price hits the barrier

while out options become worthless at the barrier. Depending on the direc-

tion of the stock price change one distinguishes between up and down options

indicating whether the stock price reaches the barrier from below or above.

Combining barrier features yields four different barrier types each of which

helps expressing different views on the market. Once activated an in-barrier

option is then a plain vanilla call or put with known payoff structure12.

The knock-in/knock-out feature of the options lowers the price which has

to be paid by the buyer. In return, the buyer is exposed to the risk of the

barrier event that makes the option worthless. This singularity of the payoff

at the barrier makes the barrier option interesting from the mathematical

point of view and challenging to evaluate.

Unlike plain vanilla options discussed in the previous section barrier op-

tions are path-dependent as the payoff depends on the stock process reaching

the barrier. Thus, the Markovian reasoning that was essential for the results

cannot be applied directly. However, conditioned on the event of reaching the

12Combining put and call payoffs with the four different barrier types introduced above

gives eight different barrier options.
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barrier, the option is Markovian again. Also the second important ingredient

for the above result – the monotonicity of the payoff at every node fails to

hold here in general. To overcome this difficulty we extend the Theorem 2

to hold not for all t ≤ T but on stochastic intervals.

To formalize the ideas stated above mathematically we denote by

τuH : Ω −→ [0, T + 1], τuH(ω) := inf {t ≥ 0 : St(ω) ≥ H} ∧ T + 1.

the first upcrossing time at H for a given barrier13 H ∈ Et for some t ≤ T .

τuH is the first time the stock price reaches the barrier H from below and will

be important for up-options. Similarly we define τ dH – the first downcrossing

time at H useful for down-options. While the knock-in event activates the

option the knock-out event terminates it. Thus, the life time of the option

is determined by a stochastic event marked by above defined stopping times

and is not known from ex ante perspective. The time frame in which the

option can be exercised is then given by a stochastic interval [τ1, τ2[ defined

by:

[τ1, τ2[ :=
{

(s, ω) ∈ [0, T ]× Ω
∣∣ τ1(ω) ≤ s < τ2(ω)

}
.

We will often write with slight abuse of notation 1[τ1,τ2[(ω) instead of 1[τ1,τ2[(t, ω).

With notations introduced above we are now ready to state the result

that will be the key for the analysis of payoffs with barrier feature.

Theorem 6. Let H1 < H2 be barriers defining first upscrossing times τu1 and

τu2 , respectively. Consider a bounded payoff process X = (Xt)0,...,T defined by

Xt = x(t, St, τ
u
1 , τ

u
2 ) = A(t, St)1[τu1 ,τ

u
2 [(t)

1. If A(t, ·) is decreasing in St for all t ≤ T , the multiple prior Snell

envelope is

UQ = U P̂

13Here, we assume that the barrier lies in the set of possible stock prices for some t ≤ T .

This assumption is not crucial and can be relaxed easily, see Hull (2006) for more detailed

review.
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where a worst-case measure P̂ is defined by the density

D̂t := 2t
∏

u≤ t∧τu1

(
εup+ (1− εu)

)
(1− p)

∏
u∈ ]τu1 , t]

(
εup+ (1− εu)(1− p)

)
for all t ≤ T. The holder of the claim uses the optimal stopping rule

given by

τ̂ = inf
{
t ∈ [τu1 , τ

u
2 [
∣∣Xt = U P̂

t

}
.

2. If A(t, ·) is increasing in St for all t ≤ T , the multiple prior Snell

envelope is

UQ = U P̂

and the worst-case measure P̂ is defined by the density

D̂t := 2t
∏

u≤t,τu2 ∧t or Su<H2·d

(
εup+ (1− εu)(1− p)

) ∏
u≤t,Su≥H2·d

(
εup+ (1− εu)(1− p)

)
for all t ≤ T . An optimal stopping rule under ambiguity is given by

τ̂ = inf
{
t ∈ [τu1 , T ]

∣∣Xt = U P̂
t

}
.

The proof will be given in appendix.

Remark 3. 1. Note that the worst-case measure is not unique since every

measure is optimal on events where the option has knocked out already.

In the theorem above we arbitrarily picked a measure on events, where

the payoff is constant.

2. A similar theorem that provides the worst-case measure for claims con-

ditioned on downcrossing times is stated and proven in the Appendix.

Also mixtures of both theorems including up- and downcrossing times

can be stated easily. Finally, analogous results hold for claims that con-

sist of sequences of barrier options. We will use the last result while

analyzing ladder options.
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3.3.1 Simple Barrier Options

With the above theorem the worst-case measures for barrier options follow as

simple corollaries. Here, we first analyze in-options. In-options need to reach

a barrier before they can be exercised. Thus, additional to the stock price

uncertainty there is knock-in uncertainty since there is a risk that the option

never knocks in leaving the buyer without a chance to exercise the claim. We

can see in options as claims having a fixed maturity but a stochastic start

determined by the knock-in event.

We start our discussion with the up-and-in put analyzing it in detail and

sketching the proof. However, we will omit the proofs and keep the discus-

sions short for remaining options as the reasoning is similar. An American

up-and-in put with strike K, and maturity T needs to be knocked-in from be-

low at the barrier H before it can be exercised by the buyer. When exercised

it pays

Xt = (K − St)+/(1 + r)t1[τuH ,T ]

for all t ∈ [0, T ].

Corollary 1 (Up-and-in put). For an American up-and-in put option with

data as specified above the ambiguity averse agent uses the measure P̂ defined

by the density

D̂t := 2t
∏

u≤ t∧τuH

(
εup+(1−εu)(1−p)

) ∏
u∈ ]τuH , t∧T ]

(
εup+(1−εu)(1−p)

)
for t ≤ T.

Hence, the value of the option at time t from the perspective of the ambiguity

averse buyer is given by

UQt = U P̂
t = EP̂ [Xτ̂ | Ft], (3.5)

where τ̂ is an optimal stopping time given by

τ̂ = inf
{
t ∈ [τuH , T ]

∣∣Xt = U P̂
t

}
.
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Proof. We apply Theorem 6 part 1. Set τu1 := τuH and τu2 := T + 1. The

discounted payoff process is given by Xt = (K −St)+/(1 + r)t1[τuH ,T+1[ for all

t ∈ [0, T ]. Since A(t, St) := (K − St)+/(1 + r)t is monotone decreasing in St

for each t, Theorem 6 Part 1 applies.

As a consequence the value of the claim is given by

UQt = EP̂ [Xτ̂ |Ft] = EP0

(
Xτ̂

D̂τ̂

D̂t

∣∣∣∣Ft
)

= EP0

[
EP0

(
Xτ̂

D̂τ̂

D̂τuH

∣∣∣∣FτuH
)
D̂τuH

D̂t

∣∣∣∣Ft
]

= EP
[
EP
[
Xτ̂ | FτuH

] ∣∣Ft] , (3.6)

Especially at t = 0 we get

UQ0 = EP
[
EP
[
Xτ̂ | FτuH

] ∣∣F0

]
= EP

[
EP [(K − Sτ̂ )+/(1 + r)τ̂−τ

u
H

∣∣FτH ]/(1 + r)τ
u
H
]

= EP

(
T∑
i=0

EP
{τuH=i}[(K − Sτ̂ )+1{τuH=i}/(1 + r)τ̂−τ

u
H ]/(1 + r)τ

u
H

)

=
T∑
i=0

EP
{τuH=i}[(K − Sτ̂ )+/(1 + r)τ̂−i]/(1 + r)iP (τuH = i)

=
T∑
i=0

EP
{τdH=i}[(K − Sτ̂ )

+/(1 + r)τ̂−i]/(1 + r)i
JH
i

(
i

i+JH
2

)
p
i+JH

2 (1− p)
i−JH

2 ,

(3.7)

where JH is the positive integer such that H = S0u
JH . For a derivation of

the formula used in the last line see Feller (1968). The expectation in the

last line denotes the value under ambiguity of an American plain vanilla put

starting at time i with initial price of the underlying Si = H.

The buyer of an up-and-in put uses a measure that is stochastic and has a

non-stationary structure. She changes her belief about the stock return when

the underlying hits the barrier anticipating low returns before the knock-in
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and high returns thereafter. The economic reason for this intuitively ap-

pealing behavior is the presence of an additional uncertainty caused by the

knock-in. Before that there is uncertainty about whether and when the op-

tion can be exercised. Once it is resolved there is uncertainty about the final

payoff as in the plain vanilla case. These uncertainty effects work in opposite

direction causing a change of the measure once the first effect disappears.

As a result the worst-case measure is a pasting of P and P at τuH and thus

cannot be fixed a priori.

Similar reasoning applies to a down-and-in call with barrier H < S0

paying of

Xt = (St −K)+/(1 + r)t 1[τ
d
H , T ]

for all t ≤ T :

Corollary 2 (Down-and-in call). The ambiguity averse agent uses the fol-

lowing prior P̂ given by the density

D̂t := 2t
∏

u≤t∧ τdH

(
εup+(1−εu)(1−p)

) ∏
u∈]τdH , t∧T ]

(
εup+(1−εu)(1−p)

)
for t ≤ T.

Similar to an up-and-in barrier put option a down-and-in barrier call

equals a plain vanilla call option once the underlying has hit the barrier level

H. As in (3.6) we can derive an analogous formula for the value process

(UQt )t=0,...,T of the down-and-in call option. For t ≤ τ dH we obtain

UQt = EP
[
EP
[
Xτ̂ | FτdH

] ∣∣Ft] , (3.8)

where τ̂ is an optimal stopping time for this considered problem under the

measure P̂ . Assuming pu + (1 − p)d ≥ 1 + r we get that τ̂ = T is optimal,

see Corollary 4.6 in Riedel (2009).

The situation changes if one considers out-options. Here, the option can

be exercised by the buyer immediately after it is issued. However, once the

knock-out level is reached the buyer forfeits the exercise right. Here, the

issuance date of the option is fixed while the expiration is stochastic.
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For an up-and-out call paying of Xt := (St −K)+/(1 + r)t 1[0,τuH [ for all

t ≤ T we then get

Corollary 3 (Up-and-out call). The ambiguity averse buyer of an up-and-

out call uses the measure P̂ defined by the density

D̂t := 2t
∏

u≤t,u≤τuH∧t or Su<H·d

(
εup+ (1− εu)(1− p)

) ∏
u≤t,Su≥H·d

(
εup+ (1− εu)(1− p)

)

for all t ≤ T . In particular,

τ := inf

{
t < τuH |St ≥

H · d
(1 + r)T−t

+K

(
1− 1

(1 + r)T−t

)}
is optimal.

Proof. The agent uses the stated prior density due to Theorem (6) part 2.

The early exercise payoff at each time is bounded from above by H · d−K.

Therefore, early exercise at time t is optimal if

(St −K)(1 + r)T−t ≥ H · d−K

⇐⇒ St ≥
H · d

(1 + r)T−t
+K

(
1− 1

(1 + r)T−t

)
.

See also Reimer and Sandmann (1995).

Note that the early exercise condition is always satisfied if St = H · d.

Hence, the decision maker always exercises the option when there is knock-

out danger meaning that the option’s underlying might knock-out in the next

period. As a consequence, the decision maker does not directly experience

changes of the conditional one-step-ahead probabilities after the exercise.

The measure thus changes only once at the exercise. As in previous cases the

worst-case measures can be chosen arbitrarily after the exercise. However,

given the option is not exercised yet, the worst-case measure switches on the

events {St = H · d}. Thus, the worst-case measure and its uniqueness not

only depends on the realization of the stock price process but also on the

strategy used by investor.
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Remark 4. Assuming additionally in Corollary 3 that the inequality pu +

(1−p)d > 1+r is satisfied, the American up-and-out call is exactly exercised

the first time when St = H ·d. This can be derived by the following reasoning:

The value of the American up-and-out call under ambiguity being still alive

at a fixed time t with St ≤ H · d2 is larger or equal to

Ut ≥
1

1 + r
EP̂
(
(St+1 −K)+ | St ≤ H · d2

)
=

1

1 + r
EP
(
(St+1 −K)+ | St ≤ H · d2

)
=

1

1 + r

(
(St · u−K)+p+ (St · d−K)+(1− p)

)
≥ max

{
1

1 + r

(
(St · u−K)p+ (St · d−K)(1− p)

)
, 0

}
≥ max

{(
St −

K

1 + r

)
, 0

}
≥ (St −K)+ for all St ≤ H · d2.

The first inequality follows by assumption pu + (1 − p)d > 1 + r. This

shows that the sufficient condition for early exercise is not satisfied for all

St ≤ H · d2. Thus, in this case early exercise is only optimal the first time

when the price equals H · d.

The analysis of down-and-out put is similar to the exercises we performed

above and will therefore be omitted here. There again, the worst-case mea-

sure is a pasting of P and P at the barrier. The remaining barrier options not

discussed here (there are four left) are covered by the above theorems. How-

ever, the discussion of the worst-case measure for them is even more simple

and can be reduced to the monotone case. There, the knock-in/knock-out

uncertainty and the stock price uncertainty work in the same direction for

those options making them monotone. They can be analyzed in the mono-

tone setting introduced by Riedel (2009).

3.3.2 Multiple Barrier Options

The above reasoning can also be applied to options endowed with more than

one barrier. As mentioned in Remark 3 one can use the theorems to obtain
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the worst-case measure for options with both a knock-in and a knock-out bar-

rier level, or for out-options having an additional barrier level which replaces

the original one after some time. A feature similar to this is typical for the

express certificate structure that is very common in the German structured

derivatives market.

In the following we analyze ladder options and focus on the special case of

an up-and-out ladder call option expiring at time T with two barrier levels H1

and H2. We assume S0 < H1 < H2. This claim resembles a single up-and-out

barrier call option with the additional feature that after some prespecified

date t1 ∈ (0, T ) the knock-out barrier changes from H1 to the higher level

H2. Hitting H1 after t1 does not lead to a knock-out. The stock price has to

reach H2 to become worthless after t1. The option thus pays of

Xt =


(St −K)+/(1 + r)t, if t ≤ t1 and t < τH1

(St −K)+/(1 + r)t, if t > t1, t < τH2 and t < τH1

0, else

= (St −K)+/(1 + r)t 1[0,τH1
∧t1[ + (St −K)+/(1 + r)t 1[t1,τH2

∧τH1
[

whereas τH1 := inf{t ∈ [0, t1]
∣∣St = H1} ∧ T + 1 and

τH2 := inf{t ∈ ]t1, T ]
∣∣St = H2} ∧ T + 1. Here, [t1, t1[ is defined as the empty

set.

As we will see, the additional barrier impacts the form of the worst-case

measure by influencing the optimal exercise strategy of the buyer. While the

buyer of a single barrier up-and-out call cashes the option as soon as H · d
is reached this might be not optimal here since she can get an even higher

payoff after t1. The higher return after the first barrier is dropped increases

the value option making waiting more attractive.

In order to represent the density of the worst-case measure we need the

following stopping times that indicate nodes at which a knock-out is possible

in the next period:

σi := inf{t ∈ [σi−1 + 1, τH1 ∧ t1 − 1[
∣∣St = H1 · d} ∧ T + 1
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for all 1 ≤ i < t1 with the notation σ0 := −1.

Corollary 4 (Ladder call option). Let all data be given as above, in partic-

ular, let us suppose the strict inequality of Corollary 3. Additionally, assume

that for all t ≤ t1

H1 · d/(1 + r)t < EP (Ut+1|St = H1 · d) (3.9)

Then the ambiguity averse buyer of this ladder option uses the measure P̂

specified by the density

D̂t := 2t
∏

u≤τH2
∧t: u6=σi+1

(
εup+ (1− εu)(1− p)

)
∏

u≤T : u=σi+1 or u∈ ]τH2
,t]

(
εup+ (1− εu)(1− p)

)
for all occurring 1 ≤ i < t1.

Proof. We can also apply the second part of the theorem to this special

situation since the time interval [0, T ] is divided into two disjoint intervals

and A(t, St) := (St − K)+/(1 + r)t, increases in St for all t ≤ T on both

intervals. Thus, applying the theorem on both subintervals yields the density

for the ambiguity averse agent. From t1 on same arguments as in the case

of an usual up-and-out call option (see Corollary 3) lead to the worst-case

measure along with an optimal stopping time.

In the case of the up-and-in call the measure changes only once if the

buyer exercises the option optimally. The situation differs here because it

can be optimal to hold on to the option even if it can knock-out in the next

period. The worst-case measure here is thus the one with the lowest mean

returns at nodes from which the option can be knocked out, i.e. nodes with

St = H1 · d for t < t1 and St = H2 · d afterwards. Once the stock price is

below this threshold the conditional probability switches back to the marginal

probability with the lowest returns. Of course, the so defined measure is also

a worst-case measure for the case of the up-and-in call.
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3.4 Multiple Expiry Options

While in the previous section uncertainty came from stochastic events that

couldn’t be controlled by the investor, here we consider claims where the

holder can partially control and switch off one source of uncertainty. We

analyze claims where the owner of the option has the right to modify the

contract conditions resetting the strike or the maturity in a predefined way.

New conditions of the contract depend on the underlying’s value at switching

dates and are not known to the buyer at time zero. Therefore, additional

to the uncertainty about future underlying’s value the decision maker faces

uncertainty about future contract conditions while evaluating the option a

priori. The expiry dates can be predefined points in time (forward start

options) or random dates chosen by the buyer or seller of the contract (shout

options).

Such options can be seen as a sequence of claims where every claim expires

at a predefined date and pays off a new born claim expiring at the next expiry

date. In the case of European claims the expiry dates are deterministic

corresponding to forward start options. In the case of shout options we face

American claims leading to stochastic expiry dates. In general, multiple

expiry options can be entitled with any number of expiry dates, here, we

consider dual expiry options where contract conditions change exactly once

14.

3.4.1 Shout Options

Shout options are contracts that give the buyer the right to reset the strike

at a date chosen by her. The event of resetting the contract features is

called shouting and gives the structure its name. The reset right allows the

14Kwok and Wu (2004) analyze shout options with infinite number of shout possibilities

and establishes a relation to lookback options.
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investor to benefit from market movements by choosing a favorable strike.

At the same time she can lock in already realized profits ensuring against an

unfavorable stock movement.

Shout options are often used by professional investors as a cheaper alternative

to lookback options. Whereas the buyer of the lookback option has the right

to sell the stock at the maximal price the owner of the shout option has

to call her bank and to freeze the price at which she can sell/buy at any

time σ ≤ T prior to maturity. Mathematically, the buyer faces an optimal

stopping problem, aiming to set the strike optimally.

In the following we analyze shout floors. The same analysis can be per-

formed for call options.

At time zero the buyer receives a put option with an unspecified strike.

This strike is set to be the stock price at a date chosen by the buyer. Thus,

the buyer has to call his bank and to freeze the strike when she thinks that

the strike is favorable. The buyer shouts once at σ ≤ T fixing the strike at

Sσ. At the expiry date she receives a payoff that corresponds to the payoff

profile of an European put i.e. (Sσ − ST )+. Thus, the buyer of this shout

option has to solve the following problem

Maximize min
P∈Q

EP ((Sσ − ST )+/(1 + r)T ) over all stopping times σ ≤ T

(3.10)

Note, that unlike the American put, the exercise date is fixed but the birth

date has to be determined optimally by the buyer. Determining the optimal

starting time/shouting time constitutes the optimal stopping problem for the

single shout option. The task is to optimally start the payoff process rather

then stop it which can be seen as purchasing a new issued European option

with a fixed maturity. We will maintain this parallel during our analysis.

However, we cannot apply our standard theory of backward induction to

the problem stated in (3.10) because the payoff (Sσ−ST )+/(1+r)T obtained

from stopping at any stopping time σ ≤ T depends on the value of the stock
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at maturity and is for this reason not adapted to the filtration (Ft)t=1,...,T

generated by the path. To overcome this difficulty we condition the payoff

on the available information and consider the following payoff process

Xt = min
P∈Q

EP ((St − ST )+/(1 + r)T |Ft). (3.11)

For every t ≤ T we can interpret Xt as discounted multiple prior value of

the shout floor if shouted at t. At the same time it corresponds to the value

of an at-the-money European put issued at t and maturing at T evaluated

under multiple priors.15

With the same arguments that we used to prove Lemma (1) we get

Lemma 6. For all stopping times σ ≤ T we have

min
P∈Q

EP ((Sσ − ST )+/(1 + r)T ) = min
P∈Q

EP (Xσ) (3.12)

Therefore, we can reformulate the problem stated in (3.10) equivalently

in the following way

Maximize min
P∈Q

EP ((Xσ) over all stopping times σ < T (3.13)

where the payoff process X is defined via (3.11). Thus, the optimal stopping

time found for (3.13) is also optimal for the problem (3.10) and the values of

the two problems coincide. Again, we can interpret the problem as optimal

investment in a put with a fixed investment horizon.

As in Chapter 2 we solve the problem in two steps: first we compute Xt

– the explicit value of the shout option freezed at t for all t ≤ T and derive

the worst-case measure after shouting. In the second step, we identify the

worst-case measure before shouting reducing the problem to the single prior

case.

15Strictly speaking, the value of the European put issued at t and maturing at T differs

from the expression 3.11 by a discount term
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Lemma 7. The adapted payoff process corresponding to the optimal shouting

problem (3.13) satisfies

Xt =x(St, t, P ) (3.14)

and is homogeneous of degree 1 in St for every t ≤ T . Moreover, the optimal

shouting rule σ∗ for the problem is the same as the optimal stopping rule for

the Bayesian problem

Maximize EP (Xσ)

under the measure P over all shouting times σ < T .

Proof. To compute Xt for a fixed t ≤ T we note that the uncertainty about

the strike is resolved at the time of shouting. The strike becomes a constant

and as a consequence the claim becomes a plain vanilla European put. As the

payoff of the put is decreasing in St for all t ≤ T by Theorem 5 we conclude

that the worst-case measure is given by P and we have

Xt = min
P∈Q

EP
(
(St − ST )+/(1 + r)T |Ft

)
=EP ((St − ST ))+/(1 + r)T |Ft).

Additionally, under P the increments of the underlying between t and T –

∆(St, ST ) are independent for all t ≤ T which leads to

Xt =St · EP ((1−∆(St, ST ))+/(1 + r)T |Ft) (3.15)

=:St · g(τ)

where τ = T − t and

g(τ) = (1 + r)−T · (1− p)τ
k∗(τ)∑
k=0

(
τ

k

)(
p

1− p

)k (
1− dτ−2k

)
with k∗(t) =: max

{
k : k < τ

2

}
.

The above equation provides the value of the embedded option contained

in the shout contract maturing at T at the time of shouting. At the same
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time it corresponds to the value of the at-the-money European put issued at

t ≤ T and maturing at T .

The buyer of a shout option uses P to evaluate the option after shouting.

Moreover, the value of a freezed shout floor is homogeneous of degree one in

the current stock price St.

As g(τ) > 0 for all τ > 0 for every t ≤ T x(·, t) is increasing in St. Again

using Theorem (5) we conclude that the worst-case measure of problem (3.13)

is given by P .

Remark 5. It might be surprising at the first sight that the value of the option

is monotone increasing in the strike since the opposite is true for put options.

The reason for this is the fact that the strike is not a constant at the moment

of issuance of the option. The value of the claim at the time of shouting is

increasing with respect to the difference between strike and the current stock

price. Economically, a higher St at the time of shouting increases the strike

of the new born option enlarging the in-the-money region of the option.

From the discussion above we can already derive the worst-case measure

for shout claims:

Corollary 5 (Shout put). A risk-neutral buyer of an single shout floor option

uses the optimal stopping rule for the prior P̂ given by the density

D̂t = 2t
σ∗∧t∏
v=1

(
p · εv + (1− p) · (1− εv)

) t∏
v=σ∗+1

(
p · εv + (1− p) · (1− εv)

)
where σ∗ denotes the stopping time solving (3.13).

Summing up, we conclude that the value of the shout floor is given by

UQt =

{
EP
(
EP
(
(S∗σ − ST )+/(1 + r)T |F∗σ

)
|Ft
)
, if t < σ

EP
(
(S∗σ − ST )+/(1 + r)T |Ft

)
else

The decision maker changes her beliefs about mean returns at the first expiry

date. Before shouting and freezing the strike she presumes low returns of the

stock that keeps the in-the-money region of the option small and decreases

65



3.4. MULTIPLE EXPIRY OPTIONS

the value of the embedded put; after shouting she receives a put option and

therefore changes her belief — being pessimistic, she now presumes that the

risky asset will have high returns. This change of beliefs causes the difference

in the values of the classical result and the multiple prior result.

To complete the analysis it remains to solve the optimal stopping problem

for X under the worst-case measure. The classical solution for the continu-

ous time setting was provided by Kwok and Wu (2004). To our knowledge

binomial tree analysis has not been conducted for shout options yet.

Lemma 8. Denote by µ the mean return under P i.e. µ = p · u+ (1− p) · d
and by x∗ the maximum of the function g(τ) · µT−τ where g(τ) is defined as

above. Then an optimal stopping time is given by

σ∗ = inf{t ≥ 0|g(τ) · µT−τ = x∗}

If the maximum x∗ is unique, then all σ∗ ≤ t ≤ T − 1 are optimal.

Proof. To prove the lemma we use the generalized parking technique intro-

duced by Lerche, Keener, and Woodroofe (1994). For all t ≤ T , τ = T − t
we have

EP (St · g(τ)) = EP
(
St
µt
· g(τ)µt

)
≤ EP

(
St
µt
· x∗
)

and equality holds for the maximizer t∗. Now since St
µt

is a P -martingale we

get for all stopping times σ < T

EP
(
Sσ
µσ
· x∗
)

= S0 · x∗

and therefore

V0 = sup
σ<T

EP (Sσ · g(τ)) = EP (S∗t · g(T − t∗))

where t∗ satisfies g(T − t∗) · µt∗ = x∗.
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The optimal stopping rule is deterministic and does not depend on the

level of the stock price S. This follows from the homogeneity of the payoff in

S. However, the time of stopping depends highly on the model parameters

u, p, p. We suspect that function g(τ) · µT−τ is quasiconcave and thus have

a unique maximum but we are not able to prove it. However, can state a

sufficient condition for immediate stopping.

Corollary 6. In the above situation we have σ∗ = 0 if 1− p ≥ µ.

While in the classical CRR market the stopping time depends only on

the one step mean return, in the multiple prior model the relation of p and

p plays a crucial role.

3.5 Quasi-convex Payoffs

In the last section we consider options whose payoffs consist of two mono-

tone parts. Typical examples are options having U–shaped payoff including

straddles, strangles or short option strategies. Investors buying such options

are speculating on change in the underlying’s value without specifying the

direction of the change. Depending on the actual price of the underlying

falling or rising stock increases the profit of the investor. To illustrate this

idea consider a straddle: by exercising the straddle at St > K the buyer gets

a payment of (St −K) which corresponds to a call. Otherwise, if S − t < K

she gets the payoff of a put – (K − St). The first part of the payoff is often

called the call leg, the second the put leg. As the monotonicity on both legs

of the payoff is different, the worst-case measure is also different depending

on the actual stock price at the moment of the valuation.

Remark 6. Mathematically, payoffs described above correspond to quasi-

convex/quasi-concave payoff functions. Note, that we still deal with functions

discretely defined and have to be careful when using the term quasi-convex.

Strictly speaking, the notion we use corresponds to discrete convexity studied
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intensively in the context of indivisible goods (see for example Murota (1998)

for a general introduction). In one dimensional setting discrete convexity

reduces to the following: A set E ⊂ N is convex if all points in E are con-

tained in the convex hull of E. The definition of quasi-convex is then straight

forward.

We show that the Snell envelope UQt at time t ≤ T is a quasi-convex

function in St if the claim is Markovian.

Lemma 9. If the discounted payoff function A(t, St) is quasi-convex in its

second variable for every t ≤ T , then the Snell envelope UQt is given by a

quasi-convex function v(t, x), i.e. given St = xt

UQt = v(t, xt) = sup
τ≥t

min
P∈Q

EP (A(τ, Sτ )|St = xt)

Proof. We have to show that for every t ≤ T the value function v(t, ·) depends

only on the value of the stock at time t and that the quasi-convexity of the

payoff function carries over to the value function. We do it via backward

induction.

Before applying backward induction we note that in our case a function

g : E → N is quasi-convex if and only if there exists a x̂ ∈ E such that

g(x) ≥ g(x̂) holds for all x ∈ E.

Now to the backward induction. For t = T we clearly have for all possible

values of ST = xT

UQT = A(T, xT )

where A(T, ·) is a quasi-convex function.

For t+1 < T we assume that for any value of St+1 = xt+1 ∈ Et+1 the value

function v(t + 1, ·) is quasi-convex function depending only on the current

value of the stock. Because of quasi-convexity there exists a unique minimum

mt+1 and a unique

x̂t+1 = inf{xt+1 ∈ Et+1|v(t+ 1, xt+1) = mt+1}.

The function v(t+ 1, ·) is decreasing on the set {xt+1 ≤ x̂t+1} and increasing

on the set {xt+1 ≥ x̂t+1}.
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In t < T we then have for any value St = xt

UQt = max{A(t, St),min
P∈Q

EP
(
UQt+1|Ft

)
}

= max{A(t, xt),min
P∈Q

EP
(
UQt+1|St = xt

)
}

= max {A(t, xt), p̂t+1v(t+ 1, xt · u) + (1− p̂t+1)v(t+ 1, xt · d)}

= v(t, xt)

(3.16)

where p̂t+1 ∈ [p, p] is the marginal of the worst-case measure P̂ at time

t. Since v(t + 1, ·) is independent of the realized past by assumption, the

minimizer p̂t+1 depends only on the value of xt. This proves that the value

function at time t v(t, ·) depends only on current value of the underlying.

To prove quasi-convexity we analyze the structure of the continuation

value in equation (3.16)

u(t, xt) := p̂t+1v(t+ 1, xt · u) + (1− p̂t+1)v(t+ 1, xt · d)

for different values of St = xt.

On the set

Ed
t = {xt ∈ Et|xt ≤ x̂t+1 · d} (3.17)

we have

xt · d < xt · u < x̂t+1

and therefore using the induction hypothesis we can conclude that the func-

tion u(t+ 1, ·) is decreasing as a convex combination of two increasing func-

tions. Similarly, for all

Ei
t = {xt ∈ Et|xt ≥ x̂t+1 · u} (3.18)

we have x̂t+1 < xt ·d < xt ·u and the function increases on the above set with

the same argument.

Because of the binomial tree structure of the state space and the fact that

Et+1 = {Et · uk|k ∈ {−1; 1}}
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equations (3.17) and (3.18) partition the set of possible values of St and Et

can be written as

Et = {xt ∈ Et|xt ≤ x̂t+1 · d} ∪ {xt ∈ Et|xt ≥ x̂t+1 · u}

Because of monotonicity of u(t, ·) on Ed
t and Ei

t the minimum of u(t, ·) is

unique. This shows that the function u(t, ·) is quasi-convex.

To complete the proof we recall that A(t, xt) is quasi-convex by assump-

tion. Thus, the function defined by equation (3.16) is a quasi-convex function

as maximum of two quasi-convex functions. Clearly, the value function at

time t depends only on the current stock price and given St = xt we can

write UQ as a function v(t, xt).

The quasi-convexity of the value function implies that for every t ≤ T

we can separate the space Et on which the value of the claim is monotone

allowing to determine the worst-case measure. The decomposition point is

the minimizer of the value function x̂t which is constructed in the proof of

Lemma 9.

Having analyzed the shape of the value function we now can compute

the worst-case measure with the following argument. If asset prices are low,

the value function is decreasing. Therefore, with the same argument as for

simple American options, one can show that P is the worst-case measure

here. In the other region on the contrary, P is the worst-case measure. At

a predefined level x̂t the investor changes his beliefs and so the mean return

on stock under the measure. We then have the following

Lemma 10 (Straddle). The buyer of a straddle uses the optimal stopping

rule for the measure P̂ with density

D̂t = 2t
∏

v≤t,Sv∈Eiv

(
p · εv + (1− p) · (1− εv)

) ∏
v≤t,Sv∈Edv

(
p · εv + (1− p) · (1− εv)

)
.

Proof. We consider the value function on the continuation region where for

a given St = xt we have UQt = v(t, xt)

v(t, xt) = min
pt+1∈[p,p]

(pt+1v(t+ 1, xt · u) + (1− pt+1)v(t+ 1, St · d)
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As v(t, ·) is decreasing on Ed
t , the worst-case measure on this set is given by

P . With the same argument the worst-case measure P̂ is P on Ei
t , i.e.

P̂ [εt+1 = 1|Ft] =

{
p on {xt ≥ x̂t+1 · u}
p on {xt ≤ x̂t+1 · d}

. (3.19)

where x̂t+1 is the minimizer of v(t+ 1, ·). Using the definition of p and p and

pasting the densities together one obtains the result.

Under P̂ the process (St) becomes mean-reverting in an appropriate sense

pushing St down if it is high and up if it is low. This corresponds to the

intuition: the ambiguity averse decision maker anticipates low mean returns

in bull market phases and high mean returns when the stock value is low.

Unlike previous cases the uncertainty about the payoff function here cannot

be resolved before T in general. The change of the measure occurs every

time the stock price crosses the critical value x̂t forcing the decision maker

to change her beliefs about mean returns.

3.6 Conclusion

This paper studies the worst-case measures that arise if one considers var-

ious American options in a framework that allows for model uncertainty in

discrete time. The imprecise information about the correct probability mea-

sure driving the stock price process in the market generates different models

with varying conditional one-step-ahead probabilities used by the buyer. The

buyer is then allowed to change the measure, and so the model she uses and

to assign the value to the claim according to the worst possible model. While

the solution for plain vanilla options is straightforward in the model the sit-

uation differs if the payoff of the option becomes more sophisticated. The

effect of uncertainty differs over time leading to a dynamical structure of

the worst-case measure. This paper analyzes different effects of uncertainty

highlighting the structural difference between the standard models used in
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Finance and the multiple prior models: the buyer of the option adapts her

beliefs to the state of the world and the overall effect of model uncertainty.

A natural next step is to extend the theory to continuous market models and

to analyze exotic options in that framework.
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Chapter 4

Ambiguity Aversion and

Overpricing

4.1 Introduction

The main goal of the Chapter is to highlight the impact of ambiguity on

market prices in a static market model with heterogeneous agents. We show

that the presence of ambiguity averse agents can lead to higher prices of the

asset.

Classical asset pricing literature relies heavily on the assumption that

agents have homogeneous correct expectations about future returns. Lintner

(1969) first analyzes a partial equilibrium model where agents have hetero-

geneous beliefs about the profitability of the asset. It turns out that the

equilibrium price corresponds to the weighted average of opinions of market

participants. While bullish (optimistic) investors demand security, bearish

(pessimistic) investors supply it by shortselling. In equilibrium the price re-

flects the average opinion on the market. In this setting, Miller (1977) and

Jarrow (1980) analyze the effect of short selling constraints on the equilibrium

price and show that short selling constraint together with heterogeneous ex-

pectations may lead to overpricing. Since pessimistic agents cannot express
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their beliefs by selling the asset short, the price is biased upward and reflects

the opinion of more optimistic agents. If this trend is not corrected over

several periods a bubble can arise.

This idea gave rise to a series of papers analyzing bubbles and speculative

overpricing caused by heterogeneous beliefs. Harrison and Kreps (1978) con-

structed a speculative bubble model in discrete time, Scheinkman and Xiong

(2003) modeled overpricing as a consequence of overconfidence in continuous

time. However, all papers explaining bubbles by heterogeneity of agents rely

on the impossibility of short selling. This restriction is set exogenously and

is justified by the market structure, high costs of short selling or regulation.

The assumption which seems reasonable in some situations is hard to support

in general. Most of developed financial markets explicitly allow short selling,

a vast majority of stocks traded on exchanges is shortable at low cost1. At

the same time short supply, i.e. the supply generated through short selling

constitutes only a small fraction of the market. Based on an empirical anal-

ysis Lamont and Stein (2004) come to the conclusion that ”..the problem is

not too much short selling in falling markets ... but rather, too little in rising

markets”. To explain this phenomena authors refer to internal restrictions

set by companies’ chartas or reluctance to sell short. However, there is no

model rationalizing this reluctance to sell short.

In this Chapter we relax the assumption of impossibility of short selling

and establish the reluctance to sell the asset short through preferences. The

reluctance to short sell is not an exogenously given attitude as before but

comes as optimal behavior of agents that have certain preferences. To model

this we use ambiguity averse preference in the sense of Knight, axiomatized

by Gilboa and Schmeidler (1989).

Already Miller (1977) in his paper referred to Knightian uncertainty and

pointed out that ”[i]n practice, uncertainty, divergence of opinion about a

1A review of short selling constraints over the world can be found in Saffi and Sigurdsson

(2008).
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security’s return, and risk go together”. Thus, in markets where agents have

different views on the asset at least some market participants are likely to

experience uncertainty and behave like ambiguity averse agents. We formalize

this idea and analyze a market where heterogeneous agents face risk and

uncertainty.

We assume that some market participants are subjective utility maximizer

(SEU) that differ in their expectation on the security’s return while others

have minimax preferences axiomatized by Gilboa and Schmeidler (1989). An

ambiguity averse decision maker (AA) uses a class of models instead of one to

assess utilities to future payoff streams and commits to a position only if the

expected utility of this position is positive for all models she considers. In this

setting both types of agents determine their demand for the risky/uncertain

security by solving their utility maximization problem. Subjective utility

maximizers then demand the security if the price is below their subjective

expected return and supply it otherwise. In any case they hold a position

of the security except for the knife edge case. The picture is different for

ambiguity averse investors: there exists an interval of prices within which it

is optimal for them to hold zero position in the security. This so called no

trade interval first studied by Dow and Werlang (1992) arises because the

expected utility of a short and long position is positive for some but not

for all models the investors takes into account. As a result the ambiguity

averse investor refuses to participate in the market at all. This has two

implications: First, the agents do not demand the asset and the risk has to

be taken by fewer investors. This leads to higher risk premia required by

investors to hold the asset. This effect has been studied extensively in the

non-participation literature. On the other hand, the ambiguity averse agents

also refuse to short the asset and fail to generate short supply. Thus the

supply is lower compared to a market with SEU agents only. This can lead

to higher equilibrium prices. Even though short selling is not forbidden, an

upward biased price (compared to the average risk adjusted valuation) can
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arise if subjective utility maximizers are overly optimistic and bid the price

up. As a result an increase in ambiguity may force ambiguity averse decision

maker to stop short selling and thus increase the equilibrium price. This effect

does not arise in the previous equilibrium models with ambiguity where an

increase in ambiguity decreases demand and leads to lower equilibrium prices.

The result is an extension of the series of papers following the ideas of

Miller (1977). Unlike previous papers on overpricing we do not impose the

short selling assumption exogenously. Here, it is a result of a rational utility

maximization of agents having minimax preferences.

Several papers investigate the impact of ambiguity on the portfolio and in-

vestment choice and its consequences for markets. Epstein and Wang (1994)

use ambiguity aversion and no trade interval to explain non participation in

the markets and portfolio inertia. It is showed to be a reason for underdiver-

sification in Uppal and Wang (2003) and market incompleteness in Mukerji

and Tallon (2001). Caballero and Krishnamurthy (2007) highlights the role

of ambiguity in flights to quality. In the latter model an increase in ambiguity

that is unrelated to fundamental value causes a sell out in the security press-

ing the price down and resulting in a flight to quality. Ui (2009) studies a

model of non-participation in a financial market with finitely many different

potential investors who exhibit heterogeneous levels of ambiguity and obtain

private signals. As Cao, Wang, and Zhang (2005) and Easley and O’Hara

(2009) they also note that equity premium can decrease if non-participation

arises. This happens because investors that exhibit higher levels of ambigu-

ity aversion and therefore demand a higher premium for holding the asset

leave the market. This decreases the average premium required to hold the

security. The heterogeneity in this models refers to different degrees of uncer-

tainty aversion of the investors and not to their point estimate of the returns

of the asset.

Our approach differs from this literature in two aspects. First, non-

participation literature concentrates on the interaction of ambiguity averse
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and perfectly rational agents having correct beliefs for the asset return. In

contrast, we study the interaction of ambiguity averse decision makers with

heterogeneous risk averse agents. As a result we do not assume anyone being

rational and having correct beliefs. The prices on the market reflect solely

average beliefs and not necessarily fundamental values. All our predictions

about the changes of the equilibrium price are made with respect to the

average opinion and not with respect to the fundamental value.

Second, previous models on ambiguity aversion in equilibrium models sug-

gest that the presence of ambiguity averse decision makers results in lower

prices since ambiguity aversion increases the premium required by the in-

vestor to hold the asset. In our model ambiguity can cause a price increase.

As more agents become ambiguity averse or ambiguity about the return of

investment increases, more investors become reluctant to short the asset,

thus lowering the supply of the asset. If SEU agents are optimistic enough

the effect of lower supply is stronger than the effect of lower demand. In

equilibrium we get higher prices.

Our approach can also be seen in the spirit of limits of arbitrage studied

by Shleifer and Vishny (1997). There, rational arbitrageurs refuse to correct

a bubble and to take advantage of an arbitrage because this arbitrage is

risky. They only step in if the mispricing is high enough to be rewarded for

the risk they take. Our story is similar: the arbitrage here is not only risky

but also ambiguous. Moreover, given the price is in the no trade interval,

a short position in the security is arbitrage for some models an ambiguity

averse decision maker takes into account but not in all. Similar to Shleifer

and Vishny (1997) overpricing can persist due to its ambiguous nature.
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4.2 The Model

4.2.1 Setup

We consider a two period exchange economy with two assets: one ambiguous

and one riskfree. The risky asset is traded at t = 0 and pays a liquidating2

dividend x at time t = 1. The supply of the asset is fixed at Q while demand

is determined by the maximization problem of investors. The riskfree asset

is traded in infinite supply at a given riskfree rate 3.

There is a continuum of risk averse agents in the economy that share the

same v NM index defining the CARA utility with risk aversion coefficient γ:

u(x) = −e−γx. (4.1)

Investors that take prices as given differ in their beliefs about returns on

stock and their attitude towards uncertainty. There are two types of in-

vestors: subjective utility maximizer (SEU agents) that maximize their ex-

pected utility under their subjective belief and ambiguity averse decision

maker (AA agents) that take a class of models into account since they do not

trust the validity of one particular model.

While all market participants agree that the dividend in the next period

is normally distributed with volatility σ they disagree about the expected

return µ of the asset. This disagreement might be a result of overconfidence

in own ability to evaluate signals as the model of Scheinkman and Xiong

(2003) suggests or be the result of the use of different models.

The range of possible drifts is given by [µ, µ], investors are distributed

across this interval according to a distribution M having a density m.

2To set up a meaningful static model we assume that the risky asset is withdrawn from

the market and has zero value after paying the dividend at time t = 1.
3We consider a partial equilibrium model and set the riskfree rate as exogenous.
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4.2.2 Maximization Problem

Subjective expected utility investors

Heterogeneous risk averse agents agree to disagree about the asset’s return.

Each risk averse investor has a point estimate µi for the expected return which

he uses for his evaluations. For expositional simplicity we assume that risk

averse investors are optimists, having a belief above some threshold µ̂ ∈ [µ, µ].

From the modeling point of view this assumption seems reasonable since

agents that are optimistic about the returns on a new security are also likely

to be confident about the choice of their model. An example for this type

of behavior was the overoptimism combined with a high level of confidence

during the Internet bubble. The assumption made here is not crucial for the

validity of the result but simplifies greatly the analysis. We will discuss how

to relax it later on.

Given the belief µi the agent maximizes her expected utility. Due to the

shape of the utility function endowments of agents do not affect their demand

for the risky asset. The problem of the SEU investor with belief µi then reads

Maximize Ei(− exp(−γdsi (x− p))) over di ∈ R (4.2)

where p denotes the equilibrium price of the asset and dsi the number of risky

asset in the portfolio. The expectation is taken with respect to her personal

belief µi. Note that unlike the seminal paper of Miller (1977) we do allow for

short selling, i.e. negative values of di. Thus, depending on the equilibrium

price, the agent can be either supplier or demander of the risky asset.

Standard techniques show that the demand of the investor i is given by

dsi =
µi − p
γσ2

(4.3)

An SEU agents is a net demander of the asset if the price is below the mean

return and a net supplier if the price is above. In any case the optimal position

in the asset is nonzero except for the knife edge case µi = p. Thus, SEU
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agents are always active on the market trading in one or other direction and

generating both demand and short sell supply depending on the individual

belief µi.

Using the mean value theorem the aggregate demand of SEU investors

can be calculated as

Ds =

∫ µ

µ̂

dim(dµi) (4.4)

=

∫ µ

µ̂

µi − p
γσ2

m(dµi) (4.5)

=
µ+ k∗ − p

γσ2
(1−M(µ̂)) (4.6)

where k∗ ∈ [µ̂− µ, µ− µ̂]. The demand of SEU agents is determined by the

weighted average of opinions of SEU agents µ+ k∗ and the mass of the SEU

agents in the economy (1−M(µ̂)).

Ambiguity averse investors

An ambiguity averse decision maker is uncertain about the right model and

takes a set of models into account. Instead of using their own model ambigu-

ity averse decision maker use all models that they see on the market. More

precisely, they build a belief about the return and if the belief is below the

ambiguity threshold µ̂ they use all estimates they see on the market to assess

the profitability. Thus, the set of priors used by ambiguity averse agents is

given by

Q = {P : xP ∼ N (µ, σ2), µ ∈ [µ, µ]} (4.7)

Being ambiguity averse she maximizes her minimal expected payoff, i.e.

Maximize inf
P∈Q

EP (− exp(−γdi(x− p))) over di ∈ R (4.8)

where Q is defined by (4.7). It is known from Dow and Werlang (1992)

that the demand function of the ambiguity averse investor is continuous and
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has kinks at p = µ and p = µ. The ambiguity generates a so called no

trade interval, in which the agents refuse to trade the risky asset. The exact

expression for the demand function of an ambiguity averse agent in our setting

is given by

da =


µ−p
γσ2 if p < µ

0 if µ < p < µ
µ−p
γσ2 if p > µ

. (4.9)

The ambiguity averse investor demands the asset if the equilibrium price is

low enough. However, if the price is sufficiently high, i.e. p > µ the ambiguity

averse agents refuses to invest in risky asset. Unlike the SEU agent who

starts short selling as soon as she stops buying, ambiguity averse agent is

also reluctant to short sell the asset at a price p ∈ [µ, µ]. Thus, ambiguity

has two effects: first, if the price is above µ ambiguity averse agents stop

investing in the asset, decreasing aggregate demand, on the other hand, they

do not start short selling thus decreasing supply of the asset.

Clearly, the aggregate demand of ambiguity averse agents is then given

by

Da =

∫ µ̂

µ

dam(dµi) (4.10)

4.2.3 Equilibrium Analysis

Before we perform equilibrium analysis we note that the demand is only

positive if p < µ since all agent aim to sell the asset if p > µ. Thus, in equi-

librium ambiguity averse agents will never short the asset since the price for

the risky asset will never exceed the most optimistic valuation µ in equilib-

rium. Therefore, the demand of an ambiguity averse investor in equilibrium

is

da = max

{
µ− p
γσ2

, 0

}
(4.11)
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Then, the aggregate demand of ambiguity averse decision makers amounts

to

Da =

∫ µ̂

µ

max

{
µ− p
γσ2

, 0

}
m(dµi) (4.12)

=M(µ̂) max

{
µ− p
γσ2

, 0

}
(4.13)

Ambiguity aversion has the equilibrium effect of preventing short selling by

ambiguity averse agents. Aggregate demand of ambiguity averse agents cor-

responds to the demand in Miller (1977) where short selling restrictions

where imposed exogenously. While ambiguity averse agents are internally

constrained and only act as demander of the asset, SEU agents sell short if

the price is high enough. The aggregate demand for the risky asset in the

economy is given by the demand of the two groups of investors

D = Ds +Da (4.14)

In equilibrium,

D = Q (4.15)

and we have the following lemma:

Lemma 11. Under above conditions there exists a unique equilibrium in the

market for the risky/uncertain asset with equilibrium price given by

p =

{
µ+ k∗(1−M(µ̂))−Qγσ2 if k∗(1−M(µ̂)) < Qγσ2

µ+ k∗ − Qγσ2

1−M(µ̂)
else

. (4.16)

The first value in the above equation corresponds to the price when the

ambiguity averse agents demand positive amounts of the asset, i.e. p < µ

and no short selling takes place. This price would arise in an unconstrained

economy with unconstrained SEU maximizers M(µ̂) of them having belief µ

and the price equals the average opinion of all market participants .
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The second value is the constrained equilibrium price when ambiguity

averse agents do not demand the risky asset. Since the risk adjusted return

of a long position in the worst case scenario is negative ambiguity averse

agents do not demand the security and stay away from the market leaving

it to the overly optimistic investors. However, they are reluctant to short

sell the asset since the worst case return of the short position is negative as

well. The price reflects the valuation of SEU agents only leading to a higher

equilibrium price than in the pure heterogeneous expectation case. The effect

of the reluctance to short sell is twofold. On the one hand, ambiguity averse

agents stop demanding the asset, decreasing the scarcity of the asset by

shifting the demand downwards. This potentially decreases the price. On

the other hand, the agents with optimistic beliefs demand higher amounts of

the asset causing higher prices.

4.3 Comparison with Miller (1977)

In this section we compare our results to the findings of Miller (1977). Re-

call that Miller (1977) assumed that heterogeneous investors are uniformly

distributed across

[µ, µ] = [µ̂− k, µ̂+ k] (4.17)

The riskfree rate is zero and short selling is not allowed in this market. The

maximization problem of the investor with belief µi then becomes

Maximize Ei(− exp(−γdi(x− p))) over di ∈ R+ (4.18)

and the individual demand amounts to

ds = max

{
µi − p
γσ2

, 0

}
(4.19)
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Aggregating over all investors and solving for equilibrium yields

p =

{
µ̂−Qγσ2 if k < γσ2Q

µ̂+ k − 2
√
kQγσ2 else

. (4.20)

The first value in the above equation denotes the equilibrium price that arises

if the short selling constraint does not bind. The second value is the price

resulting in the constrained equilibrium. Here, some of investors aim to hold

negative amounts of the security but are prevented from it by the short selling

constraint. It can be easily checked that the constrained price is higher than

the unconstrained.

To compare our results we assume that the set of all possible beliefs

is given by (4.17), where µ̂ denotes the ambiguity threshold and M is the

uniform. Using Lemma 4.2.3 we can compute the equilibrium price as

p =

{
4µ−k

4
−Qγσ2 if k < 4

3
Qγσ2

2µ+k
2
− 2Qγσ2 else

.

Note that the price in our setting is always below the price in the setting

of Miller (1977). This happens for two reasons. First, the average expected

return in our model is lower due to the presence of ambiguity averse investors.

This leads to a lower price in the unconstrained equilibrium. Second, while

the model of Miller completely excludes short selling, some short selling takes

place in our model in the restricted equilibrium. The opinion of moderate

investors that aim to go short is contained in the restricted price of our model.

Since some short selling is executed by moderate investors with belief µi such

that p > µi > µ̂, the overpricing is not as severe as in the model of Miller.

4.4 Comparative Statics and Sensitivity Anal-

ysis

In the next section we analyze how a change of parameters changes the

equilibrium price. Our main goal is to study the impact of ambiguity on the
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equilibrium price in the meaningful way.

4.4.1 Sensitivity with respect to ambiguity increase

While classical equilibrium models4 with ambiguity predict that an increase

in ambiguity lowers the equilibrium prices the situation differs here. The

two main factors for the sensitivity analysis is the distribution of opinions

and the ambiguity threshold. First we analyze the sensitivity of the price

with respect to changes in ambiguity and distribution of opinions. We study

how the change in ambiguity threshold affects the equilibrium price, assuming

that the distribution remains the same. This can happen due to an exogenous

shock on the market such as an unexpected market outcome causing more

agents to doubt their models.

Lemma 12. Denote by pu = µ + k∗(1 − M(µ̂)) − Qγσ2 the unrestricted

equilibrium price and by pc = µ+k∗− Qγσ2

1−M(µ̂)
the restricted equilibrium price.

Then pu and pc satisfy

1. dpu

dµ̂
< 0 and

2. dpc

dµ̂
> 0

An increase in ambiguity caused by an increase of the ambiguity threshold

lowers the prices in the unconstrained equilibrium. This result is intuitive,

since all investor participate in the market and demand the asset. The de-

crease in µ̂ decreases the average expected return and thus the aggregate

demand. This result is in line with the literature. In the constrained equilib-

rium however, the picture is different. Here, an increase in ambiguity leads

to higher prices on the market. This happens for the following reason. On

the one hand the increase of the ambiguity threshold forces some market par-

ticipants into the no trade interval and the market becomes smaller. At the

same time moderate agents who where willing to short sell before are now

4 See Epstein and Wang (1994) and references therein.
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in the no trade interval and fail to generate short sale supply. If the concen-

tration of optimists in the market is high enough they again can absorb the

security available at the market and bid the price up. In extreme case where

µ̂ is high enough there is no short selling at all and only the most optimistic

investors determine the price.

Not only the ambiguity threshold is important for the equilibrium price

but also the distribution of agents within intervals. In the following we

analyze the impact of the change of the distribution of the agents along

[µ, µ]. For example, due to a unfavorable outcome caused by a shock some

agents that previously had the belief µi > µ̂ may start to doubt their model

and become ambiguity averse while others keep the belief µi and remain

insensitive to ambiguity. More ambiguity on the market thus means in this

case, that although the ambiguity threshold remains constant, the mass of

ambiguity averse investors changes.

In this case the direction of the price change depends heavily on the shape

of the distribution of beliefs before and after the shock.

Lemma 13. Let P and Q be distributions on [µ, µ] with absolutely continuous

densities f , g. Assume that P and Q satisfy the hazard rate condition, i.e.

f(x)

1− F (x)
≤ g(x)

1−G(x)
for all µ ≤ x ≤ µ (4.21)

i.e. P �hr Q. Denote by pP resp. pQ the price on the market where the

agents are distributed according to P , Q resp. Then

1. pcP ≥ pcQ and

2. puP ≥ puQ

One could also think of an increase in ambiguity by means of an increase

of µ or decrease of µ. However this analysis is not meaningful without specific

assumptions on the underlying distribution m. For this reason we omit this

analysis here.
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4.4.2 Sensitivity to changes of Q, γ, σ2

The standard market factors work in the usual direction decreasing the equi-

librium price.

Lemma 14. Denote by pu = µ + k∗(1 − M(µ̂)) − Qγσ2 the unrestricted

equilibrium price and by pc = µ+k∗− Qγσ2

1−M(µ̂)
the restricted equilibrium price.

Then pu and pr satisfy

1. dpu

dQ
< 0 and dpc

dQ
< 0

2. dpu

dγ
< 0 and dpc

dγ
< 0

3. dpu

dσ2 < 0 and dpc

dσ2 < 0

These sensitivity results are in line with the standard theory and the

economics intuition carries over as well. Investors decrease their demands if

risk aversion resp. volatility increase, thus, as a result prices decrease as well.

Since this effects are well understood we keep the discussion short and omit

the proof.

4.5 Extensions and Robustness Checks

4.5.1 Uncertainty about volatility

In the generic model we assumed that all agents agree on the volatility of

the underlying asset. We can extend the model easily to the case with het-

erogeneous beliefs about volatility. The essence of result does not change

much.

Again agents in the economy differ in their beliefs about the return of

the asset. Assume that the asset is normally distributed according to (µ, σ)

where beliefs about the actual value of (µ, σ) are given by

P := {P : xP ∼ N (µ, σ2), s.t. (µ, σ2) ∈ [µ, µ]× [σ2, σ2]}
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Every agent is endowed with a belief (µ, σ) from the above interval. The

set of all possible beliefs can be partitioned into two regions: an ambiguity

averse region A ⊂ [µ, µ]× [σ2, σ2] and a subjective region S satisfying

A+ S = [µ, µ]× [σ2, σ2].

All agents that have a belief in S maximize their subjective utility given

their belief while all agents in A maximize the minimal expected utility. The

distribution M of agents across the interval is now two dimensional and we

maintain the assumption that M has a density.

The analysis for the individual demand of an subjective utility investors

carries over from the single dimensional case and we get

dsi =
µi − p
γσ2

i

(4.22)

resulting in aggregate demand

Ds =

∫
S
dsidm (4.23)

=

∫
S

µi − p
γσ2

i

dm (4.24)

Using an appropriate version of the Mean Value Theorem we can show that

Ds = M(S) ·
(
µ∗ − p
γ(σ∗)2

)
The effect of heterogeneity in the volatility may either decrease or increase

the demand of SEU agents depending on the resulting average volatility σ∗.

For the demand of ambiguity averse investors we only need to note that

the highest variance minimizes their expected return. As in the standard

literature on ambiguity averse portfolio choice we then get

da =


µ−p
γσ2 if p < µ

0 if µ < p < µ
p−µ
γσ2 if p > µ

. (4.25)
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Similarly for the aggregate demand:

Da =

∫
A

max

{
µ− p
γσ2 , 0

}
m(dµi) (4.26)

=M(A) max

{
µ− p
γσ2 , 0

}
(4.27)

Here, the uncertainty about the volatility reduces the demand of the ambigu-

ity averse agents. However, only the mean return is essential for the decision

to short sell or buy the asset. From this point on the model essentially re-

duces to the single dimensional case. In the same manner as above we can

perform the equilibrium analysis.

4.5.2 N ambiguous independent assets

Already Jarrow (1980) in his paper investigated the effect of adding securities

to Miller’s model. It turns out that the answer depends on the distribution

of assets. If the assets are correlated substitution effects influence demand

and prices of securities and the effect of short selling constraint may go in

both directions. However, if market participants agree on volatility of the

assets, the results of Miller (1977) carry over to the multiple asset case.

We can easily extend our model to the multiple asset case. In case of

independent assets the analysis does not change much. Due to independence

of assets and the form of the utility function the demand for each asset is

determined separately for SEU agents. The same holds true for ambiguity

averse agents. Thus, the price for each asset is set independently and the

equilibria can be analyzed one by one with the same technique as above.

However, we cannot distinguish anymore between unconstrained and con-

strained equilibria since some assets might be in the constrained equilibrium

while other in the unconstrained.
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4.5.3 Different distribution of preferences

In our model we assumed that all agents with belief more pessimistic than

the ambiguity threshold µ̂ are not only pessimistic about returns of the stock

but also about the model they use. This assumption simplifies the analysis

considerably but is not essential for the result. The main result still holds

true if we relax the assumption that there are no SEU maximizer with a

belief more pessimistic than µ̂. In this case although ambiguity averse agents

still refuse to go short for prices within [µ, µ] SEU agents with pessimistic

belief can reflect their opinion by going short. However, the overpricing still

can occur if the short sell supply of pessimistic agents is not big enough to

offset the overoptimistic demand.

4.5.4 Market Crashes and Panics

The model we derived can also be used to explain panics and crashes. Those

can happen if heterogeneous agents become pessimistic and want to sell the

security causing a sell out of security. As in the optimistic case, ambiguity

averse refuse to correct this overreaction of the price due to their ambiguity.

In this way pessimistic agents can bring the prices to crash.

4.6 Discussion and Conclusion

In this Chapter we analyzed the impact of ambiguity on the equilibrium

price on markets with heterogeneous agents. Agents’ sensitivity to both risk

and uncertainty may impose short selling constraint on their portfolio. This

short selling constraint in turn affects the equilibrium price in an economy

with heterogeneous agents by increasing the equilibrium price. While the

effect of short selling constraint itself was already known, the Chapter ratio-

nalize the short selling constraint on markets through preferences. The model

considered here has also interesting implications for the regulation. After the
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beginning of the financial crisis a lively discussion has started on how to reg-

ulate the markets better in order to prevent investors to take huge risks and

to avoid bubbles. One of suggestions made by the theorists was to impose

a minimax regulation. Within this kind of regulations agents on the market

have to consider several models instead one when assessing riskiness to a

future payoff. The claim is then acceptable if its return is nonnegative un-

der all models the agents consider. This imposes a more conservative value

assignment preventing investors from excessive risk taking. However, this

kind of regulation can have side-effects highlighted in this Chapter. Agents

regulated in the above sketched way behave as ambiguity averse investors in

our model. If the regulation is imposed only locally they might be investors

on the global market who behave like SEU agents in our model. As we have

seen in the model such kind of interaction may lead to overpricing if beliefs

are heterogeneous. Thus, a minimax regulation although conservative form

of regulation may help to generate bubbles if it is not established in a careful

way.
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Chapter 5

Concluding Remarks

Within the three chapters of this thesis we have studied several problems

arising in the context of decision problems under Knightian uncertainty. Each

chapter discusses its respective topic in detail and ends with a conclusion

summarizing its results. Nevertheless for completeness we will briefly restate

our achievements at this point:

First, we modeled and analyzed the best choice problem under ambiguity.

We presented it in a way that allows to introduce ambiguity in the model

in an intuitive way and also covers a broader class of problems. The main

insight is that the optimal strategy of the problem under ambiguity has the

same structure as the problem under risk. The stopping rule is simple again.

However, the stopping here can occur later or earlier compared to the risky

problem. The reason for this is the non-measurability of the payoff obtained

from stopping.

In the third chapter of this work we analyze several exotic American

options in a discrete financial market under ambiguity. Here, the holder of

the option has to solve a multiple prior stopping problem in order to assign

value to the payoff and to determine her optimal strategy. Unlike many

examples analyzed in literature the payoffs we are considering cannot be

reduced to a single measure. The worst-case measures arising here are path-



dependent and change over time as the state process is realized. The reason

for this involved structure is path-dependency, the non-monotonicity or the

non-measurability of the considered payoff.

In the last chapter we change the perspective and consider a static finan-

cial market with heterogeneous investors. We show that when investors differ

in their beliefs and their attitude towards ambiguity an increase in ambiguity

can lead to a price increase. The reason for the lower premium paid in equi-

librium is that ambiguity averse agents leave the market and fail to generate

the short sale supply that is provided in the market by pessimistic agents.

The result suggests that the coherent risk regulation that is supported by

the scientific community as one of the lessons from the crisis can have side

effects on markets with heterogeneous agents.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Lemma 1

Proof. Fix a stopping time τ with values in {1, . . . , N}. Our set of priors is

compact, hence we can choose Qk ∈ Q that minimize EPXk1{τ=k}. Time–

consistency of the set of priors implies that there exists a measure Q ∈ Q
such that

N∑
k=1

EQkXk1{τ=k} = EQ

N∑
k=1

Xk1{τ=k} = EQXτ ,

see, e.g., Lemma 8 in Riedel (2009). It follows that we have

inf
P∈P

EPXτ = inf
P∈P

EP

N∑
k=1

Xk1{τ=k} =
N∑
k=1

inf
P∈Q

EPXk1{τ=k} .

By applying the law of iterated expectations for time–consistent multiple

priors, this quantity is

=
N∑
k=1

inf
P∈P

EPZk1{τ=k}

and by applying time–consistency again, we get

= inf
P∈P

EPZτ .



A.2 Proof of Lemma 2

Proof. To show the independence we have to show that

ess inf
P∈P

P (Y1 = y1, . . . , YN = yN) =
N∏
i=1

P̂ (Yi = yi)

for a P̂ ∈ P , yi ∈ {0, 1} for 1 ≤ i ≤ N

Because of definition of P all events of above kind have positive probability

under every P ∈ P , i.e. P (Y1 = y1, . . . , YN = yN) > 0 for all sequences (yi)

with yi ∈ {0, 1} and all P ∈ P . Therefore, using Bayes’ rule and the fact

that one-step-ahead probabilities [an, bn] depend only on time we get

min
P∈P

P [Y1 = y1, . . . , YN = yN ] = min
P∈P

P [YN = yN |FN−1]P [Yi = yi, i < N ]

= min
P∈P

N∏
n=1

P [Yn = yn|Fn−1]

=
N∏
n=1

min
xn∈[αn,βn]

Pxn [Yn = yn|Fn−1]

=
N∏
n=1

min
xn∈[αn,βn]

Pxn [Yn = yn]

where Pxn denotes the measure defined via Pxn [Yn = yn|Fn−1] = xn.

In the last part of the equation we used the fact that the worst one-step-ahead

probabilities depends only on time and not on the realization ω ∈ Ω.

A.2.1 Proof of Lemma 3

Proof. The value process of the stopping problem for the payoff process (Xn)

is given via

Ut = ess sup
τ≥t

EQ[Xτ |Ft] (A.1)

= sup
τ≥t

EQ[Yτ ·Bτ |Y1, ·, Yt] (A.2)

= sup
τ≥t

EQ[Yτ ·Bτ ] (A.3)
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=vt (A.4)

Having established the independence we can conclude that the sequence vt

is nonincreasing as the set of the arguments decreases. On the other hand,

the sequence (Bn) is increasing and we get using the principle of backward

induction Using this monotonicity observation we can conclude that if it is

optimal to stop at Now suppose that it is optimal to take a candidate r. We

have then Br = vr; therefore, we get

Br+1 ≥ Br = vr ≥ vr+1 ,

and it is also optimal to stop when a candidate appears at time r + 1. We

conclude that optimal stopping rules are simple.

A.3 Proof of Theorem 3

Proof. We denote by wγn the sequence corresponding to the problem with the

level of ambiguity γ. Straightforward calculations show that

wγn =
N∑
k=n

γ2

kγ − 1

N∏
l=n

(
1 +

1− γ2

lγ − 1

)
(A.5)

To prove robustness we first show

e−
1
γ ≤

r∗γ
N
≤ e−

2γ
1+γ +

3

N
(A.6)

For the left-hand side of A.6:

wγn =
N∑
k=n

γ2

kγ − 1

N∏
l=n

(
1 +

1− γ2

lγ − 1

)
≥

N∑
k=n

γ2

kγ − 1
(A.7)

≥
N∑
k=n

γ

k
(A.8)

≥
∫ N

n

γ

k
dk (A.9)

= γ log

(
N

n

)
(A.10)
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For the threshold rγ we obtain

1 = wγn ≥ γ log

(
N

n

)
(A.11)

⇔ (A.12)

r∗γ
N
≤ e−

1
γ (A.13)

For the second inequality:

wγn =
N∑
k=n

γ2

kγ − 1

N∏
l=n

(
1 +

1− γ2

lγ − 1

)

=
N∑
k=n

γ2

kγ − 1
exp

(
k−1∑
l=n

ln

(
1 +

1− γ2

lγ − 1

))

≤
N∑
k=n

γ2

kγ − 1
exp

(
k−1∑
l=n

1− γ2

lγ − 1

)

≤
N∑
k=n

γ2

kγ − 1
exp

(∫ k

l=n−1

1− γ2

lγ − 1
dl

)

≤
N∑
k=n

γ2

kγ − 1

(
kγ − 1

(n− 1)γ − 1

) 1−γ2
γ

Using α := 1−γ2
γ
− 1 we obtain for γ ≥ 0.5

wγn ≤
∫ N

n−1

γ2

((n− 1)γ − 1)α+1
(kγ − 1)α dk

≤ γ2

1− γ2

[(
N

n− 3

)α+1

− 1

]

By setting wγn = 1 we get

1 ≤ γ2

1− γ2

[(
N

n− 3

)α+1

− 1

]
⇔
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n− 3

N
≤ γ

2γ

1−γ2

≤ exp

(
ln(γ)

2γ

1− γ2

)
≤ exp

(
(γ − 1)2γ

1− γ2

)
≤ e−

2γ
1+γ

A.3.1 Proof of Lemma 4

Proof. Because of boundedness of w∞ there exists a R ∈ N, s.t.

∞∑
k=n

βk

k−1∏
l=1

αl ≤ 1 for all n ≥ R

and it follows that

r∗(N) ≤ R for all N

and

r∗(N)

N
≤ R

N
→ 0 for N →∞
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Appendix B

Proofs for Chapter 3

B.1 Proof of Theorem 6

Proof. We give proof for decreasing A in St for all t ≤ T . The second case

works similarly. For notational simplicity we write ω(t) for an element in⊗t
i=1{0, 1} ⊆ Ω. Furthermore, for a stopping time τ we introduce for each

t ≤ T the restriction τ t of τ to paths in Ω running up to time t:

τ t :
t⊗
i=1

{0, 1} −→ [0, t] ∪ {T + 1}

ω(t) 7−→ τ t(ω(t)) =

τ(ω(t)), if τ(ω(t)) ≤ t

T + 1, if else
.

The restricted stopping are being used in order to be mathematically more

exact.

We start the proof with

Lemma 15. Let (UQt )t≤T be the multiple prior Snell envelope of X as defined

in Theorem 6. Assume that UQt is given by the function u(t, St, τ
t
1, τ

t
2) for all

t ≤ T . Then for all t ∈ [0, T − 1] and all k ∈ [1, T − t]

u(t, S, t, T + 1) ≥ u(t+ k, S, t+ k, T + 1).



Proof. The inequality follows directly by the inequality

u(t, S, t, T + 1) ≥ u(t+ k, S, t, T + 1) = u(t+ k, S, t+ k, T + 1).

The inequality always holds for claims of American style whose payoff does

only depend on the underlying’s price S at each time. For the special choice

of τ t1 and τ t2 it therefore also holds for the considered claims of the theorem.

The equality holds since the claim is already knocked-in.

Using theory of multiple prior Snell envelope, see Riedel (2009), we show

by backwards induction that UQt = u(t, St, τ
t
1, τ

t
2) for all t such that u has the

following properties:

(i) for t < τ t1 : u (t, ·, τ t1(·), τ t2(·))↗ in S ≤ S̄1,

where S̄1
t is determined by τ t1(S̄

1) = t

(ii) for t ∈ [τ t1, τ
t
2[ : u (t, ·, τ t1(·), τ t2(·))↘ in S

(iii) for t ≥ τ t2 : u (t, ·, τ t1(·), τ t2(·)) = 0 for all S.

First, note that u is well-defined due to the definition of the payoff process

X. (u complies with the definition of a function since Xt which only depends

on St, τ
t
1, and τ t2, does for each t ≤ T .) For t = T we have

UQT (·) = XT (·) = 1[τT1 ,τ
T
2 [(T, ·) A(T, ST (·))

=

0, if τT1 = T + 1 or τT2 ≤ T

A(T, ST ), if τT2 = T + 1 and T ≥ τT1

=

0 = u(T, ST , τ
T
1 , τ

T
2 ) ∀ST , if τT1 = T + 1 or τT2 = T

A(T, ST ) = u(T, ST , τ
T
1 , T + 1) ∀ST , if τT1 ≤ T < τT2

.

So, UQT satisfies the representation and the properties by the assumptions on

XT , A(T, ·), respectively.

In the induction step for t < T we handle the different cases separately. First,
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assume t ∈ [τ t1, τ
t
2[ , say τ t1(ω(t)) =: k ≤ t: Then

UQt (ω(t)) = max

{
Xt(ω(t)),min

P∈Q
[Ut+1|Ft(ω(t))]

}
(IH)
= max

{
Xt(ω(t)), min

pt+1∈[p,p]{
pt+1u(t+ 1, Stu, k, τ

t+1
2 (ω(t), 1)) + (1− pt+1)u(t+ 1, Std, k, τ

t+1
2 (ω(t), 0))

}}
.

By induction hypothesis and due to τ t+1
2 (ω(t), 0) ≥ τ t+1

2 (ω(t), 1), properties

(ii) and (iii) for t+ 1 imply

u(t+ 1, Std, k, τ
t+1
2 (ω(t), 0)) ≥ u(t+ 1, Stu, k, τ

t+1
2 (ω(t), 1)). Therefore,

UQt (ω(t)) = max
{
Xt(ω(t)), pu(t+ 1, Stu, k, τ

t+1
2 (Stu)) + (1− p)u(t+ 1, Std, k, T + 1)

}
= Ût(ω(t)).

Hence, in this case UQt is a function u(t, St, τ
t
1, τ

t
2) which is decreasing in

S since A(t, ·) is decreasing in S by assumption, and u(t + 1, ·, k, τ t2(·)) is

monotone decreasing in S by induction hypothesis (property (ii), (iii), re-

spectively).

Second, if t ≥ τ t2(ω(t)) =: l < T, and τ t1(ω(t)) =: k < l:

UQt (ω(t)) = max

{
Xt(ω(t)), min

pt+1∈[p,p]

(pt+1u(t+ 1, Stu, k, l) + (1− pt+1)u(t+ 1, Std, k, l))}

= 0,

since Xt(ω(t)) = 0 by assumption and u(t + 1, ·, k, l) = 0 by induction hy-

pothesis (property (iii)).

Third, assume the case t < τ t1(ω(t)) = T + 1:

Then Xt = 0 and therefore we get in the first case when τ t+1
1 (ω(t), 1) = T + 1

UQt (ω(t)) = min
pt+1∈[p,p]

{
pt+1u(t+ 1, Stu, τ

t+1
1 (ω(t), 1), T + 1)

+(1− pt+1)u(t+ 1, Std, τ
t+1
1 (ω(t), 0), T + 1)

}
= pu(t+ 1, Stu, T + 1, T + 1) + (1− p)u(t+ 1, Std, T + 1, T + 1)
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by induction hypothesis (property (i)). Hence, pt+1 = p and u(t, ·, T+1, T+1)

is increasing in S.

In the second case when τ t+1
1 (ω(t), 1) = t+ 1:

UQt (ω(t)) = min
pt+1∈[p,p]

{pt+1u(t+ 1, Stu, t+ 1, T + 1)

+ (1− pt+1)u(t+ 1, Std, T + 1, T + 1)}

= pu(t+ 1, Stu, t+ 1, T + 1) + (1− p)u(t+ 1, Std, T + 1, T + 1)

= u(t, St, T + 1, T + 1)

again by induction hypothesis (property (i) since St · u = S̄1) and we obtain

pt+1 = pτ t+1
1

= p. In order to show the monotonicity note that by induction

hypothesis (property (i)) the last expression is greater or equal to

pu(t+ 1, St, T + 1, T + 1) + (1− p)u(t+ 1, Stdd, T + 1, T + 1) which again is

equal to u(t, Std, T + 1, T + 1) (see the first case).

Thus, for showing property (i) we just have to prove that u(t, S̄1, t, T + 1) ≥
u(t, S̄1d, T + 1, T + 1). Using property (i) of induction hypothesis we obtain

u(t, S̄1d, T + 1, T + 1) = pu(t+ 1, S̄1, t+ 1, T + 1)

+ (1− p)u(t+ 1, S̄1 · d2, T + 1, T + 1)

≤ pu(t+ 1, S̄1, t+ 1, T + 1)

+ (1− p)u(t+ 1, S̄1, t+ 1, T + 1)

= u(t+ 1, S̄1, t+ 1, T + 1)

≤ u(t, S̄1, t, T + 1).

The last inequality is due to Lemma 15. This completes the proof and (UQt )

satisfies the same recursion as (Ût). Thus, (UQt ) = (Ût) follows and the

worst-case measure P̂ is specified by the density D̂T as claimed.

An optimal stopping time is given by τ̂ . This follows by general theory,

see Riedel (2009). The time boundary σ of the optimal stopping rule is due

to the claim’s knock-out feature.
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B.2 Downcrossing Times Theorem

A result similar to Theorem 6 also holds for downcrossing times. The only

difference is the monotonic behavior of X and U which changes for down-

crossing times. As a consequence, the densities of the worst-case measures

change. So, we will state the theorem without giving the proof since it would

be almost a copy of of the above proof.

Theorem 7. Take the same assumptions as in Theorem 6 except the one

for τ1 and τ2 being now either down-crossing times or constant again. Thus,

assume S0 > H1 > H2.

1. If A(t, ·) is decreasing in S for all t, the multiple prior Snell envelope

is U = U P̂ and the worst-case measure P̂ is given by the density

D̂t := 2t
∏

u≤ t∧τ2: u6=σi+1

(
εup+ (1− εu)(1− p)

) ∏
u≤t: u=σi+1

(
εup+ (1− εu)(1− p)

)
∏

u∈ ]τ2, t∧T ]

(
εup+ (1− εu)(1− p)

)
for all t ≤ T and all occurring 1 ≤ i ≤ T . An optimal stopping rule

under ambiguity is given by

τ̂ = inf
{
t ∈ [τ1, σ1]

∣∣Xt = U P̂
t

}
∧ T .

2. If A(t, ·) is increasing in S for all t, the multiple prior Snell envelope

is U = U P̂ and the worst-case measure P̂ is given by the density

D̂t := 2t
∏

u≤ t∧τ1

(
εup+ (1− εu)(1− p)

) ∏
u∈ ]τ1, t∧T ]

(
εup+ (1− εu)(1− p)

)
for all t ≤ T. An optimal stopping rule under ambiguity is given by

τ̂ = inf
{
t ∈ [τ1, σ1]

∣∣Xt = U P̂
t

}
∧ T .
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Appendix C

Proofs for Chapter 4

C.1 Proof of Lemma 12

The proof is simple calculations. For the first part we get

pu =

[∫ µ

µ̂

µi ·m(µi)dµi

]
· (1−M(µ̂)) + µ ·M(µ̂)−Qγσ2

and thus

dpu

dµ̂
= −m(µ̂)µ̂+m(µ̂)µ < 0

For the second part we get

pc =

[∫ µ

µ̂

µi ·m(µi)dµi

]
−Qγσ2/(1−M(µ̂))

and thus for the derivative

dpc

dµ̂
= −µ̂ ·m(µ̂)(1−M(µ̂)) +m(µ̂)

(
(µ+ k∗)(1−M(µ̂))−Qγσ2

)
/(1−M(µ̂))2

Now since µ̂ < µ+ k∗ we get the desired inequality.



C.2 Proof of Lemma 13

Proof. We first consider the restricted equilibrium price defined in (4.16)

pc =

∫ µ

µ̂

µ · f(µ)dµ−Qγσ2/(1− F (µ̂))

=EP (µ|µ > µ̂)− Qγσ2

1− F (µ̂)

Since P �hr Q we know that

EP (µ|µ > µ̂) ≥ EQ(µ|µ > µ̂)

and

(1− F (µ̂)) ≥ (1−G(µ̂))

which implies the result.

Now to the second part: From (4.16) we know that the price in the

unrestricted equilibrium is given by

pu =M(µ̂) · µ+

∫ µ

µ̂

µ ·m(µ)dµ−Qγσ2 (C.1)

=

∫ µ

µ̂

(µ− µ) ·m(µ)dµ− (Qγσ2 + µ) (C.2)

where M denotes the distribution of agents and m its density. Now consider

the prices on the market with distributions P and Q. Since (4.21) implies

the first order stochastic dominance we get∫ µ

µ̂

(µ− µ) · f(µ)dµ ≤
∫ µ

µ̂

(µ− µ) · g(µ)dµ
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