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Abstract 
 

MicroRNAs (miRNAs) are small noncoding RNAs whose function as modulators of 

gene expression is crucial for many aspects of plant and animal development. A 

major challenge in understanding the regulatory role of miRNAs is to accurately 

predict regulated targets. In this work, 281 novel miRNA targets in Arabidopsis 

were predicted employing the program RNAhybrid with additional assumptions 

based on already validated miRNA:target interactions. Comparing gene ontology 

(GO) annotation of both previously predicted/validated targets and novel predicted 

targets found in this work with the GO categorization for the whole genome 

revealed that, contrary to previously predicted/validated miRNA targets, there is no 

over-represented protein class among the novel predicted targets. Some GO 

annotation classes that were over-represented (e.g. transcription factors) or under-

represented, now show distributions close to their representation in the whole 

genome. Nine putative miRNA targets were subjected to experimental validation, 

five of them were validated, including MYB101, MYB125, MRG1 and ACS8, which 

are targets of miR159, and GAE1, which is a target of miR161. The validation of 

four candidate targets failed.  

Among the novel validated miRNA targets, two were further analyzed: MYB101 

and MRG1. Overexpression of MYB101 containing silent mutations in the miR159 

binding site (MYB101mutBS) resulted in accumulation of MYB101 in tissues where 

the transcript is normally absent. The overexpression of wild-type MYB101 did not 

show this effect. Adult plants overexpressing MYB101mutBS were smaller than 

wild-type, whereas MYB101 overexpressors showed no difference to wild-type 

plants. Contrasting with the MYB101 transcript levels that are highest in pollen, the 

expression pattern of MYB101 analyzed by promoter-GUS lines revealed that the 

MYB101 promoter is active in seedlings (cotyledons, leaves and roots) and 

flowers, again showing a strong signal in pollen. These findings confirm the 

regulatory role of miR159 for proper MYB101 expression. MRG1 is found only in 

Arabidopsis and contains no conserved protein motif. The expression pattern of 

MRG1 analyzed by promoter-GUS lines revealed that the MRG1 promoter is 

active in many different tissues whereas the MRG1 transcript can be detected at 
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very low levels only. The overexpression of MRG1 was only effective when silent 

mutations in the miR159 binding site had been introduced. In MRG1mutBS 

overexpressing plants several defects in leaf morphology were observed and the 

number of leaves was altered drastically. Nevertheless, plants overexpressing 

wild-type MYB101 showed similar, but weaker phenotypes. MRG1 protein, 

expressed as fusion protein with GFP, was localized in the nucleus of BY-2 

protoplasts Therefore, MRG1 may represent a novel regulator that affects leaf 

development, and miR159 controls the precise expression of MRG1. 

The expression patterns of MIR159A, MIR159B and MIR161 were analyzed by 

promoter-GUS lines. Although the promoters of both MIR159 genes show an 

overlapping expression pattern, promoter-GUS lines confirmed previous 

indications that MIR159A is the gene responsible for the majority of mature 

miR159 accumulation. Deletion analysis of the MIR159A promoter identified 

regions that have regulatory properties. The promoter activity of MIR161 confirmed 

that miR161 is a broadly expressed miRNA. This conclusion is also supported by 

the analysis of serial deletions of the MIR161 promoter. Even the smallest 

promoter fragment conferred high activity of the reporter protein. In addition, two 

regulatory regions where found within the miR161 promoter. The regulatory 

regions found within these two MIRNA promoters can now be used to identify 

proteins that drive the expression of these genes. 
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1. Introduction 

A novel class of noncoding small RNAs emerged as new player in one of the most 

important networks in eukaryotic cells, namely the regulation of gene expression. 

These so-called microRNAs (miRNAs) are between 21-24 nucleotides long small 

RNAs that post-transcriptionally regulate gene expression, share similar 

biogenesis and mechanism of action with previously known small interfering RNAs 

(siRNAs), but have distinct roles. The first miRNA gene was described in C. 

elegans. LIN-4, a gene known as an important regulator of developmental timing in 

C. elegans, did not produce a protein but instead two small RNAs, 22 and 61 

nucleotides (nt) in length, respectively. Interestingly, the 22 nt long RNA showed 

sequence complementarity to another gene involved in developmental timing in C. 

elegans, LIN-14. The level of LIN-14 protein was decreased because of the 22 nt 

LIN-4 RNA bound to the 3’UTR of LIN-14 transcripts (Lee et al., 1993). The 

binding of LIN-4 RNA to LIN-14 3’UTR revealed to be essential for proper 

development of C. elegans, and mutations in the binding site affected the 

accumulation LIN-14 protein (Wightman et al., 1993). At that time, no homologous 

gene was found in any other organism and a gene that produced an RNA that was 

able to affect the production of a protein of an unrelated gene was considered an 

exception (Lee et al., 1993). 

Seven years later, a second miRNA gene was described, again in C. elegans. 

However, homologues of this gene were found in human and fly genomes, and 

this finding highlighted the possibility that miRNAs could be a common regulatory 

mechanism (Reinhart et al., 2000). Soon thereafter, several miRNA genes were 

described in Homo sapiens, Mus musculus, Drosophila melanogaster (Pasquinelli 

et al., 2000; Lagos-Quintana et al., 2001; Lau et al., 2001; Lee and Ambros, 2001), 

Arabidopsis thaliana (Arabidopsis; Llave et al., 2002b; Reinhardt et al., 2002) and 

in virus (Pfeffer et al., 2004).  

1.1. MicroRNAs in plants 

The first miRNAs described in plants were isolated through cloning of RNA 

samples enriched with small RNAs (Llave et al., 2002b). There were four miRNAs 
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among dozens of cloned small RNAs sequences. Using a more elaborated 

protocol, designed to clone small RNAs produced by DICER-LIKE 1 (DCL1), which 

is an RNaseIII endonuclase involved in the biogenesis of small RNAs, 37 miRNA 

genes were described, including those previously isolated (Reinhart et al., 2002). 

Direct isolation and cloning of small RNAs from biological samples proved to be a 

powerful method to discover miRNAs in plants. Consequently, many miRNAs were 

described using this approach (Llave et al., 2002b; Mette et al., 2002; Park et al., 

2002; Reinhart et al., 2002; Xie et al., 2003; Sunkar and Zhu, 2004). To find novel 

expressed miRNA genes, the small RNA transcriptome of samples from plant lines 

carrying mutations in genes encoding essential enzymes for the biogenesis of 

other classes of small RNAs were analysed. Thus, miRNAs were enriched in these 

samples; therefore, miRNAs expressed at a low level could also be cloned and 

identified. However, even after isolation of 5521 small RNA clones, only one new 

miRNA family was identified. Most miRNA sequences matched to previously 

described genes (Xie et al., 2003). The cloning and sequencing strategy used in 

the beginning to identify miRNA genes resulted in a bias towards miRNA genes 

that were highly expressed or present in many tissues or both. Moreover, miRNA 

genes that are conserved in other plant species were also easily identified (Bartel, 

2004). To solve this problem, two distinct approaches were applied: bioinformatics 

and deep sequencing of small RNA transcriptomes. 

Although bioinformatic tools applied for discovery of miRNA genes resulted in 

more success in animals than in plants, many miRNA genes were isolated after 

predictions with bioinformatic pipelines (Bonnet et al., 2004; Jones-Rhoades and 

Bartel, 2004; Wang et al., 2004b; Adai et al., 2005; Xie et al., 2005). Jones-

Rhoades and Bartel (2004) were the first to apply computational methods to 

identify novel miRNA genes in plants. They used a comparative genomic approach 

to identify conserved miRNA genes in Arabidopsis and Orysa sativa (rice), 

resulting in seven experimentally confirmed new miRNA families and many novel 

miRNA genes of existing miRNA families. Wang et al. (2004) analyzed the 

attributes of previously confirmed miRNAs and used them for defining features for 

the prediction of novel miRNA genes. Intergenic regions of the Arabidopsis 

genome were used to search for sequences that could fold into a hairpin structure, 

and then filters derived from previously validated miRNAs were applied. Filters 
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were based on precursor-miRNA length (pre-miRNA; an intermediary product of 

the miRNA biogenesis; see Figure 2), GC content of the mature miRNA, and a 

minimum identity of 90% with any rice sequence. This pipeline was able to predict 

83 new miRNA candidates. A few of them were detected by northern blotting, 

resulting in eight novel miRNA families in Arabidopsis (Wang et al., 2004b). No 

attempt was made to validate any of the predicted miRNAs in rice (Wang et al., 

2004b). Even though this approach considered the identity of new miRNA genes 

with sequences from rice, there is no strong evidence that these miRNAs are also 

present in any other genome (Jones-Rhoades et al., 2006). Two other 

bioinformatic approaches resulted in prediction of many novel miRNA genes 

(Bonnet et al., 2004; Adai et al., 2005). They also predicted many previously 

validated ones. However, no experimental evidence was obtained for those newly 

predicted miRNA genes, and therefore, these miRNA genes were not  

included in the miRBASE (Griffiths-Jones, 2004). The miRBASE 

(http://microrna.sanger.ac.uk/) is a database that contains miRNA sequences from 

all species that were experimentally validated and provides specific guidelines for 

miRNA annotation and nomenclature (Ambros et al., 2003). 

With the advance of novel powerful sequencing technologies, small RNA cloning 

techniques were adapted for massive parallel signature sequencing (Lu et al., 

2005a) and, more recently, for high-throughput pyrosequencing (Rajagopalan et 

al., 2006; Fahlgren et al., 2007). This so-called deep sequencing of small RNA 

samples allowed the characterization of miRNAs that were expressed at low levels 

or showed gene expression that was limited to specific cells. Together, these 

approaches contributed 59 novel miRNAs, all of them present only in the genome 

of Arabidopsis.  

Genetic screens contributed to the discovery of only one novel miRNA family in 

Arabidopsis (Palatnik et al., 2003). In an activation tagging screen, a phenotype 

with similarity to the cincinnata mutant of snapdragon was selected for further 

analysis. The T-DNA was inserted in an intergenic region and the protein-coding 

genes surrounding the integration locus were not overexpressed. A global profile 

of gene expression revealed that the phenotype was caused by the 

downregulation of several TCP transcription factor genes. The intergenic region at 

the T-DNA insertion showed sequence similarity of 21 nucleotides to TCP genes. 
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Table 1. Conserved microRNA genes in plants. 
MicroRNA families present in Arabidopsis with homologous in other plant species that are 
listed in the miRBASE (http://microrna.sanger.ac.uk/), are presented with the number of 
genes per species for each family. Ath-Aradidopsis thaliana, Gma-Glycine max,  
Mtr-Medicago truncatula, Osa-Oryiza sativa, Ppt-Physcomitrella patens, Ptc-Populus 
trichocarpa, Sbi-Sorghum bicolor, Sof-Saccharum officinarum and Zma-Zea mays. The 
total number of miRNAs per species is shown.  
 
miRNA 
family Ath Gma Mtr Osa Ppt Ptc Sbi Sof Zma 

miR156 12 4 1 12 1 11 5 1 11 
miR159 3 1 0 6 0 6 2 5 4 

miR160 3 1 1 6 0 8 5 0 6 
miR162 2 0 1 2 0 3 0 0 1 
miR164 3 0 0 6 0 6 3 0 4 
miR166 9 2 1 14 0 17 7 0 13 
miR167 4 2 0 10 0 8 7 2 9 
miR168 2 1 0 1 0 2 1 2 2 

miR169 14 1 2 15 0 27 9 0 9 
miR171 4 0 1 9 0 10 6 0 11 
miR172 5 2 0 4 0 8 5 0 5 
miR319 3 3 1 2 4 9 1 0 3 
miR390 2 0 0 1 3 4 0 0 0 
miR393 2 0 1 2 0 4 1 0 1 

miR394 2 0 0 1 0 2 2 0 2 
miR395 6 0 16 23 0 10 6 0 3 
miR396 2 2 0 5 0 7 3 1 2 
miR397 2 0 0 2 0 2 0 0 0 
miR398 3 2 0 2 0 3 0 0 0 
miR399 6 0 5 11 0 12 9 0 6 

miR403 1 0 0 0 0 3 0 0 0 
miR408 1 0 0 1 0 1 0 5 1 
Total 
number of 
miRNA 
genes 

184 22 30 242 39 215 16 72 96 

 

Moreover, a fold-back structure was predicted, and the product of this intergenic 

region was confirmed as a miRNA, called miR319 (Palatnik et al., 2003). Three 

other genes that belong to already known miRNA families were also isolated by 

gain-of-function mutants (Aukerman and Sakai, 2003; Kim et al., 2005; Williams et 
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al., 2005). Only one loss-of-function mutant was described in Arabidopsis. The 

early extra petal1 mutation is caused by an insertional mutation (transposon) in a 

region upstream of the predicted pre-miRNA of MIR164C (Baker et al., 2005).  

Characterization of miRNAs was also carried out in other plant species, both with 

direct cloning and bioinformatic approaches (Reinhart et al., 2002; Jones-Rhoades 

and Bartel, 2004; Juarez et al., 2004; Wang et al., 2004a; Arazi et al., 2005; Bedell 

et al., 2005; Guddeti et al., 2005; Li et al., 2005b; Liu et al., 2005a; Lu et al., 

2005b; Sunkar et al., 2005; Zhang et al., 2005; Dezulian et al., 2006; Luo et al., 

2006; Talmor-Neiman et al., 2006; Tuskan et al., 2006). So far, 916 miRNA genes 

in nine plant species were catalogued in the miRBASE. In Arabidopsis, 184 

miRNA genes were described, comprising 22 families sharing homologues in other 

plant species, and 84 miRNA families that seem to be specific for Arabidopsis 

(Table 1). For most of the nonconserved miRNA families there was only one gene 

described. In four families of nonconserved miRNAs, more than one gene was 

described.  

The classification of miRNAs into gene families takes into account the sequence of 

the mature miRNA only, because the sequence and the stem-loops of members a 

family do not resemble each other. Thus, are classified in the same family miRNAs 

that differ at most at four positions (Griffiths-Jones et al., 2006; Jones-Rhoades et 

al., 2006). Although highly different in the pre-miRNA and stem-loop structure, 

most of members of a miRNA family produce identical miRNAs. For example, 

MIR166/165 and MIR156/157 families, each family consist of 8 and 12 genes, 

respectively, corresponding to distinct stem loops, however there are only three 

and five different mature miRNAs in the miR166/165 and miR156/157 families, 

respectively (Figure 1A, Band C). The stem-loop structure, rather than the 

sequence, is more important for production of mature miRNA, and this feature was 

exploited to create an artificial miRNA, by changing only the sequence of the 

mature miRNA and the miRNA* in a pre-miRNA, without changing its stem-loop 

structure. Artificial miRNAs can be applied for simultaneously knockout several 

members of a target gene family (Parizotto et al., 2004; Alvarez et al., 2006; 

Schwab et al., 2006).  
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Figure 1. Examples of miRNA stem loops and mature miRNA. 
A Stem loop structures of the Arabidopsis MIR166/165 family. Mature miRNAs are labeled 
in red. Stem-loop structures were predicted by RNAfold (Hofacker, 2003). Multiple 
alignments of mature miRNA sequences of Arabidopsis are shown. B MIR156/157 and  
C MIR166/165 families.  
 

All miRNAs described above are specific to the plant kingdom. There is no miRNA 

species that is found in both plant and animals. Recently, Arteaga-Vazquez et al. 

(2006) described the existence of a miRNA family that has homologous 

sequences in animals genomes. Combining miRNA prediction with target 

prediction, a database of experimentally confirmed 3’UTR sequences was used for 

sequence comparison search against a dataset of all Arabidopsis intergenic 

regions. Several filters were applied, including limits for the size of candidate 

miRNA sequences to 21 or 22 nucleotides and for double hits in the intergenic 

region, one hit in the sense and one in the antisense orientation. The other filters 

were based on the characteristics of miRNA interactions with theirs targets as 
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observed in animals. The 3’UTR of the target must have at least two potential 

binding sites for a candidate miRNA. Bulged nucleotides were allowed at positions 

8 to 12 from the 5’-end of the candidate miRNA sequence, and G:U base pairing 

was allowed. At the end, nine miRNA candidates were described and the 

expression of three of them was confirmed. The efficient target regulation was 

shown for two miRNAs whose binding sites were predicted to be in the 3’UTR of 

the same gene. The presence of a target 3’UTR in a transgene carrying 

35Spro:GUS reduced the expression of the transgene, compared to a 35Spro:GUS 

construct without the 3’UTR of the target. However, the most interesting finding is 

that one of these miRNA families, MIR854, is conserved beyond the plant 

kingdom, as homologous sequences were found in C. elegans, M. musculus, Pan 

troglodytes and H. sapiens. In addition, the predicted targets of miR854 found in 

C. elegans, M. musculus and H. sapiens belong to the same family as the target in 

Arabidopsis (Arteaga-Vazquez et al., 2006).  

1.2. miRNA biogenesis in plants 

The biogenesis of miRNAs is not elucidated completely. There is a great deal of 

evidence that RNA polymerase II (Pol II) is the polymerase involved in the 

transcription of miRNA genes. The primary transcript (pri-miRNA), which can be 

more than one kb in length, is longer than the sequence necessary to form the 

stem-loop structure. In addition, some pri-miRNAs are spliced, polyadenylated and 

CAP structures were also observed (Aukerman and Sakai, 2003; Xie et al., 2005). 

In many miRNA genes, a TATA box motif was found upstream to the transcription 

start site (Xie et al., 2005). 

In animals, two enzymes are responsible for cleavage of the pri-miRNAs. The first 

cleavage is done by DROSHA inside the nuclear compartment. The second 

cleavage takes place in the cytoplasm and it is done by DICER. Both, DROSHA 

and DICER are RNase III endonucleases. The intermediate of the first cleavage is 

called precursor miRNA (pre-miRNA), and can be detected with northern blots or 

amplified by PCR (Lee et al., 2003). Plants do not have a homologue of DROSHA. 

Moreover, pre-miRNA is seldom detected by northern blot and does not 

accumulate in dcl1 mutants (Jones-Rhoades et al., 2006). The pri-miRNA is 

processed by Dicer-like1 (DCL1), which cleaves the stem-loop formed by the pri-
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miRNA twice to release the miRNA:miRNA* duplex that contains two-nucleotide 

overhangs at the 3’ends (Park et al., 2002; Papp et al., 2003). The miRNA* 

species derives from the complementary arm of the hairpin and pairs imperfectly 

to the miRNA (Reinhart et al., 2002). Two other proteins are also required for 

proper cleavage of pri-miRNAs in plants: SERRATE (SE) and HYPONASTIC 

LEAVES1 (HYL). In hyl1 or se mutants, mature miRNAs are not produced, but pri-

miRNAs can be detected by northern blots instead (Han et al., 2004; Vazquez et 

al., 2004a; Grigg et al., 2005; Kurihara et al., 2006; Lobbes et al., 2006; Yang et 

al., 2006). Both proteins clearly play role in miRNA biogenesis, thought not well 

defined yet. Methylation is also a crucial step in miRNA biogenesis. HUA 

ENHANCER1 (HEN1) adds methyl groups to the ribose of the last nucleotide in 

either strand of the miRNA:miRNA* duplex. The methyl group is thought to protect 

the duplex against degradation by endonucleases (Li et al., 2005a). The transport 

of the duplex may be done by HASTY (HST; Parket al., 2005 ), a plant homolog of 

animal EXPORTIN 5. hst null mutants are viable, which indicates that miRNAs find 

their way to the cytoplasm without HST as well or that there is another export 

pathway. In the cytoplasm, the mature miRNA is incorporated into the RNA-

induced silencing complex (RISC), the most important protein of which is 

ARGONAUT1 (AGO1). However, the hst mutation does not affect the 

accumulation of all miRNAs and the evidence the mature miRNAs accumulate in 

the cytoplasm and in the nucleus suggest that the incorporation of the mature 

miRNA into the RISC may also happen inside the nucleus. Consequently, the 

transport of the RISC to the cytoplasm could be done by HST or by other 

transporters that may interact directly with the RISC (Chen, 2005; Park et al., 

2005). The miRNA serve as a guide for the RISC to downregulate gene 

expression by three mechanisms: cleavage of target mRNA, chromatin 

methylation and translational repression (Figure 2; Bartel, 2004).  
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Figure 2. Schematic view of miRNA biogenesis in plants. 
The-miRNA is produced by RNA polymerase II (pol II), capped, and has a poly A tail. After 
splicing, the pri-miRNA is cleaved by DCL1 with the help of HYL1 and SE, releasing a pre-
miRNA that is cleaved in the same way by DCL1. The cleavage product is a duplex 
consisting of miRNA/miRNA*. Methyl groups are added to the ribose of the last nucleotide 
in either strand by HEN1. Then, the duplex is transported to the cytoplasm and the mature 
miRNA is incorporated into the RISC. Alternatively, some miRNAs appear to be 
incorporated into the RISC in the nucleus and are then transported to the cytoplasm. 
Modified from Chen (2005). DICER-LIKE1 (DCL1), HYPONASTIC LEAVES1 (HYL), 
SERRATES (SE) and HUA ENHANCER1 (HEN1). 
 

The incorporation of the mature miRNA in to the RISC complex seems to follow 

the same rules as in animals. The 5’end of the miRNA* displays less stability than 

the 5’end of the mature miRNA. This asymmetry is a key feature for strand 

selection and incorporation into the RISC complex (Khvorova et al., 2003; 

Schwarz et al., 2003).  

Deep sequencing of small RNA samples also revealed that not all miRNAs are 

produced by DCL1. The accumulation of two miRNAs, which are found only in 

Arabidopsis, was not affected in dcl1 mutants, and mature miRNAs were not 

detected in dcl4 mutants instead. In addition, the accumulation of these miRNAs 
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was not affected by mutations in genes whose products participate in the 

biogenesis of siRNAs (Rajagopalan et al., 2006). 

1.3. Mechanism of action 

miRNAs regulate gene expression at the post-transcriptional level by two 

mechanisms: repression of translation (Aukerman and Sakai, 2003; Chen, 2004; 

Arteaga-Vazquez et al., 2006; Gandikota et al., 2007) or cleavage of mRNA (Llave 

et al., 2002b). In addition, specific miRNAs can silence genes at the transcriptional 

level by chromatin methylation (Bao et al., 2004; Mallory et al., 2004b). In plants, 

examples of all three mechanisms could be observed, however, because of the 

high complementarity of miRNAs to their target mRNAs, the expression of most 

plant miRNA targets is regulated by cleavage of target mRNAs by the RISC 

guided by a miRNA (Jones-Rhoades et al., 2006).  

1.3.1. Cleavage of target mRNA 

Cleavage of target mRNAs is the main mechanism of action of plant miRNAs, due 

to the high sequence complementarity of plant miRNAs with their target mRNA. In 

most cases, the binding sites are located in the ORF of their target transcripts. 

This means that the mechanism of action of most plant miRNAs does not differ 

from other classes of small RNAs found in plants: small interfering RNAs 

(siRNAs), trans-acting siRNAs (ta-siRNAs) and natural antisense transcript 

siRNAs (nat-siRNA; Hamilton and Baulcombe, 1999; Peragine et al., 2004; 

Vazquez et al., 2004b; Borsani et al., 2005). The RISC contains several proteins, 

but the most characterized so far is AGO1, which contains the slicer activity 

necessary to cleave the target mRNA (Baumberger and Baulcombe, 2005). The 

miRNA guides the RISC to bind the mRNA target at the miRNA binding site and 

AGO1 cleaves the mRNA, usually at the position that corresponds to the tenth 

nucleotide of the miRNA binding site (Figure 3A). The cleavage fragments are 

released and the RISC can target another mRNA (Bartel, 2004). mRNA cleavage 

is not limited to plants. Indeed, miR196 guides the cleavage of HoxB8 mRNA in 

mice, presumably due to the unusually high degree of complementarity between 

the miRNA and its target (Yekta et al., 2004).  
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Figure 3. Post-transcriptional silencing by miRNAs. 
A. Messenger RNA cleavage is specified by a miRNA. The RISC is guided to the miRNA 
binding site on target mRNA by the miRNA and AGO1 slices the mRNA, in most cases 
after the tenth nucleotide of the miRNA:mRNA hybrid. After cleavage, RISC releases the 
cleaved products and can target another mRNA. B. Translational repression, a 
mechanism of action that is more common in animals. However, there are a few examples 
in plants. RISC redirects the bound mRNA to P-bodies, where global translational 
repressors are recruited that may interact with RISC, resulting in a decrease of the protein 
but not of the mRNA level. 
 

1.3.2. Repression of translation 

Instead of driving the RISC to bind and cleave target mRNAs, miRNA-RISC 

complexes also regulate gene expression by a not well characterized mechanism 

that results in more or less unchanged levels of target mRNAs, but in decreased 

levels of encoded proteins. This mechanism, often called repression of translation, 

is more common in metazoa than in plants (Bartel, 2004). In animals, the 

complementarity of miRNAs and with their targets is not as high as in plants. As a 

consequence of the imperfect base pairing between a miRNA and its miRNA 

binding site, the RISC does not cleave the target mRNA. Moreover, in animals, 

miRNA binding sites are more frequent in 3’UTRs of the transcripts and often there 

is more than one miRNA binding site for the same miRNA on the 3’UTR of the 

target gene. The RISCs repress translation by an unclear mechanism, but 

localization of RISCs and target mRNA in the processing bodies (P bodies) raised 

some clues about the mechanism. In the P bodies, mRNAs are stored and 

degraded (Figure 3B). Thus, miRNA-guided binding of RISC to mRNAs leads to 

redirection of mRNAs to P bodies where translation is repressed by global 

translational repressors (Liu et al., 2005b; Sen and Blau, 2005; Chu and Rana, 

2006). In plants, four different miRNAs have been implicated in regulation of gene 
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expression by translational repression (Aukerman and Sakai, 2003; Chen, 2004; 

Arteaga-Vazquez et al., 2006; Gandikota et al., 2007).  

1.3.3. DNA methylation 

DNA methylation mediated by miRNAs is the least known mechanism of miRNA 

actions, with only one example. Dominant mutations in the PHABULOSA (PHB) 

and PHAVOLUTA (PHV) loci lead to abnormal leaf development. The observation 

that these mutations are located in the miR166/165 binding site and that the levels 

of these mRNAs are higher in phb and phv mutants than in wild-type confirmed the 

regulation of these genes by miR166. Interestingly, the observed leaf 

morphogenesis defects correlate with mutations that lead to reduced DNA 

methylation in these loci. Indeed, it was found that in these dominant mutants the 

methylation is reduced in these loci. The miRNA binding site in PHB and PHV 

mRNA span an exon junction, therefore miR166/165 interacts with spliced mRNAs 

and not with genomic DNA or unspliced mRNAs. Moreover, in heterozygous phb 

plants, the only allele that showed reduced methylation was the mutant allele. 

Thus, miR166/165 interacts with PHD and PHV mRNA leading to cleavage and 

degradation and, in addition, chromatin modification factors may be recruited and 

the locus is repressed through DNA methylation (Bao et al., 2004; Mallory et al., 

2004b). Even though this is an intriguing finding, the functional significance is still 

unclear. 

1.4. Prediction of miRNA targets 

Plant miRNAs display a high sequence complemetarity to target mRNAs, and this 

is a crucial characteristic for target prediction and validation. Indeed, many 

predicted miRNA targets in plants have been validated, whereas in animals, only a 

few targets were experimentally validated (Bartel, 2004).  

Based on the high sequence complemetarity, Rhoades et al. (2002) applied a 

pattern search algorithm to predict Arabidopsis miRNA targets. Their approach 

searched for miRNA complemetarity in the Arabidopsis genome with less than four 

mismatches, considering G:U base pairing as a mismatch. Insertions or deletions, 

which could lead to bulged nucleotides or gaps in either strand, were not allowed. 

This approach predicted 49 miRNA targets, and many of them were successfully 
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validated. The high sequence complementarity of miRNAs with their target mRNAs 

was employed to predict additional targets in Arabidopsis as well as in other plant 

species (Park et al., 2002; Reinhart et al., 2002; Sunkar and Zhu, 2004; Adai et al., 

2005). 

Initial efforts to predict miRNA targets missed possible candidates because of the 

presence of more than three mismatches or bulged nucleotides in the miRNA 

binding site. Moreover, evidence that plant miRNAs can actually target mRNA 

sequences with more than three mismatches was provided by Palatnik et al. 

(2003), whose work described that the overexpression of miR-JAW, later renamed 

miR319, resulted in the decrease of mRNA levels of five members of the TCP 

transcription factor family. Cleavage products induced by miR319 could be 

detected for all down-regulated TCP genes. The binding site for miR319 in these 

TCP mRNAs show up to five mismatches, considering G:U base pairing as a 

mismatch. 

In a more sophisticated approach that allowed more mismatches and bulged 

nucleotides, the conservation of the miRNA binding site in homologous sequences 

of two different species was considered. As consequence, the miRNA binding site 

must be present in homologous sequences of Arabidopsis and rice, in this 

approach. In addition, the miRNA binding site was scored according to the 

presence of mismatches. Each matching nucleotide in the miRNA:mRNA duplex 

was given the value zero. A mismatch was assigned the value one, bulged 

nucleotides received 1.5. Base pairing between G and U was assigned 0.5. In a 

miRNA target, the sum of all values in a given miRNA binding site should not be 

higher than 3.5 and the miRNA binding site must be found in at least one 

homologous mRNA in rice (Jones-Rhoades and Bartel, 2004).  

A similar approach was used by Wang et al. (2004) using a nucleotide alignment 

algorithm in which mismatches were given a lower penalty than a bulge. In 

addition, a penalty for gap opening and gap extension was included. The top 500 

hits in Arabidopsis and rice were compared and a hit was considered as true 

miRNA target when the miRNA binding site could be found in homologous mRNAs 

of both species. 
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A microarray analysis of plants overexpressing specific miRNAs, together with 

structure analysis of validated miRNA:binding-site hybrids resulted in a set of rules 

that could be used for evaluation of a putative miRNA target (Schwab et al., 2006). 

Generally, the pairing in the 5’ part of the miRNA is more important, and only one 

mismatch would be allowed in the regions corresponding the nucleotides 2 to 12, 

which includes the presumptive cleavage site between positions 10 and 11. In the 

3’end of the miRNA, a mismatch loop could be tolerated up to maximal two 

nucleotides, and a perfect match in this part would compensate the presence of up 

to two mismatches in the 5’end (Figure 4). The minimum free energy of the duplex 

should be at least 72% of a perfect match with the same miRNA and the value 

should be about -30 kcal/mol or below (Schwab et al., 2006). 

 

 

Figure 4. Characteristic miRNA binding site structure. 
Schematic view of the interaction (hybrid) between miRNA and mRNA in plants according 
to Schwab et al., (2005). The proposed model was based on empirically validated miRNA 
targets. In this model, no mismatch is allowed in the presumptive cleavage site (gray box). 
Mismatches are shown in the nucleotide positions 16th and 17th, G:U base pairing is 
shown in the 20th nucleotide. 
 

An approach based on minimum free energy comparison was developed by 

Rusinov et al. (2005). In this implementation, the first six nucleotides of the miRNA 

were used for an initial sliding-window search for six Watson-Crick matches or five 

Watson-Crick matches and one G:U base pairing in all Arabidopsis annotated 

genes. When a hit was found, a portion of 32 nucleotides was extracted and a 

hybridization structure of the miRNA and the putative binding site was predicted 

with a folding program for RNA. Based on known previous miRNA:binding site 

duplexes, filters were implemented, considering the size of the bulge and the size 

of the mismatch loop.  
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1.5. Validation of miRNA targets 

Many predicted miRNA targets have been validated in Arabidopsis. The validation 

of miRNAs in plants is more straightforward than in animals because most plant 

miRNAs act like siRNAs, inducing the cleavage of the mRNA target. The 

phosphodiester bond between two nucleotides is broken, resulting in a 3’ cleavage 

product that contains a phosphate group at its 5’end. This feature was intensively 

used for validation of miRNA targets. A modified version of 5’ rapid amplification of 

cDNA ends (5’RACE) could be used for mapping the precise point of the cleavage 

by the RISC. In this approach, an RNA adaptor is ligated to the 5’end of the 

cleavage product and the adaptor-ligated RNA is used as template for reverse 

transcriptase followed by PCR with gene specific nested primes. The PCR product 

is then cloned and many clones are sequenced revealing the position of the 

miRNA-guided RISC-mediated cleavage (Llave et al., 2002a). In this way, many 

miRNA targets were validated (Llave et al., 2002a; Kasschau et al., 2003; Palatnik 

et al., 2003; Allen et al., 2004; Chen et al., 2004; Jones-Rhoades and Bartel, 2004; 

Mallory et al., 2004a; Mallory et al., 2004b; Allen et al., 2005; Lu et al., 2005a; 

Mallory et al., 2005; Rajagopalan et al., 2006; Reyes and Chua, 2007).  

Transient A. tumefaciens infiltration can be also used as a means for miRNA 

target validation (Llave et al., 2002a; Kasschau et al., 2003). The cDNA of a target 

and the corresponding pre-miRNA are cloned into a binary vector and transiently 

expressed in Arabidopsis or Nicotiana benthamiama leaves, and the cleavage 

products are analyzed by northern blotting experiments (Llave et al., 2002a; 

Kasschau et al., 2003; Palatnik et al., 2003; Achard et al., 2004; Wang et al., 

2005). Alternatively, RNA extracted from infiltrated leaves can be used for 5’RACE 

as described above (Llave et al., 2002a; Kasschau et al., 2003; Palatnik et al., 

2003).  

An in vitro assay for detection of cleavage products of miRNA targets was also 

developed (Tang et al., 2003). In this experiment, a cDNA of a miRNA target was 

cloned and used for in vitro transcription. The transcript was then mixed with 

standard wheat germ extracts that contain all the components of the miRNA 

silencing pathway. After incubation, the RNA was isolated and analyzed by 

northern blotting. The result were similar to those observed in the infiltration assay 
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(Tang et al., 2003; Mallory et al., 2004a; Mallory et al., 2004b; Kim et al., 2005; 

Reyes and Chua, 2007).  

All the methods for target validation described above demonstrate miRNA-

dependent cleavage of mRNA targets, but lack evidence for the functional role of 

miRNAs in planta. To analyze the effects of miRNA regulation in planta, thereby 

also contributing to miRNA target validation, the disruption of miRNA binding site 

was successfully employed. By using site-directed mutagenesis, nucleotides in a 

miRNA binding site can be mutated by introducing silent mutations that do not 

result in changes in the amino acid sequence of the encoded protein. This cDNA 

can be expressed in planta under the control of an endogenous or constitutive 

promoter, leading to the expression of a miRNA-resistant mRNA. The effects 

observed in planta not only provide confidence for target validation, but also help 

to understand the functions of a miRNA and its target (Palatnik et al., 2003; Bartel, 

2004; Kidner and Martienssen, 2004; Mallory et al., 2004a; Mallory et al., 2004b; 

Parizotto et al., 2004).       

1.6. Expression of miRNA genes 

The expression of miRNA genes is a topic not well investigated to date. It is clear 

that miRNA genes are also subjected to regulation at the transcriptional level. In 

addition, all steps of the miRNA biogenesis may be regulated. However, there are 

a few data addressing what precisely drives miRNA gene expression. Much of the 

miRNA expression data available derives from northern blots that detect the 

mature miRNA. The tissue-specific accumulation of a many miRNAs could be 

described using this approach (Reinhart et al., 2002; Achard et al., 2004; Sunkar 

and Zhu, 2004; Wang et al., 2004b; Arteaga-Vazquez et al., 2006). Many plant 

miRNAs come in gene families and detection of specific mature miRNA species 

does not tell anything about which miRNA gene is actually expressed.  

The tissue-specific expression of miRNAs was also demonstrated by in situ 

hybridizations. For example, the expression of miR172 was observed in the floral 

whorls of stage 1 flowers and in inner whorls of stage 7 flowers (Chen, 2004). In 

another example, miR165 expression was detected at the abaxial side of leaf 

primordia. The expression of its target, PHB, was detected at the adaxial side. 
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Interestingly, in a mutant that does not accumulate miR165, PHB transcripts were 

detected on both sides of leaf primordia (Kidner and Martienssen, 2004). DNA 

microarrays were also applied for a rapid survey of miRNA expression (Axtell and 

Bartel, 2005). 

Reporter constructs were employed to determine precisely the expression pattern 

among members of miRNA gene families. The cell specific pattern of miR171 

expression was analyzed using a promoter fragment of miR171 to drive 

expression of the reporter gene that encodes the green fluorescent protein (GFP; 

Parizotto et al. 2004). In a similar way, the uidA gene encoding GUS was also 

employed for analysis of miRNA gene expression (Baker et al., 2005; Wang et al., 

2005; Aung et al., 2006; Wu et al., 2006). The differential expression of each 

member of the miR167 (Wu et al., 2006) and the miR399 (Aung et al., 2006) 

families was described using promoter-GUS lines.  

A quantitative analysis of miRNA expression was possible when deep sequencing 

techniques like MPSS or 454-pyrosequencing were adapted for cloning and 

sequencing of small RNAs, resulting in a gene expression pattern for several 

miRNA genes (Lu et al., 2005a; Rajagopalan et al., 2006).   

The expression of miRNA genes is affected by plant hormones and growth 

conditions. The level of miR164 was demonstrated to be affected by a 

phytohormone. Supplying plants with 10 mM 1-naphthalene acetic acid (NAA), a 

synthetic auxin, resulted in an increased level of miR164 accumulation (Guo et al., 

2005). In addition, the presence of miR395 in plants grown under standard growth 

conditions was hardly detected. Moreover, its amount was increased several times 

in plants growing in medium lacking sulfate (Jones-Rhoades and Bartel, 2004). 

Phosphate is a key regulator of gene expression of members of the miR399 

family. Phosphate starvation induced the expression of miR399 (Fujii et al., 2005) 

and each member of the gene family was affected to a different extent, leading to 

a gene-specific expression pattern that as a whole makes up the expression 

pattern of miR399 (Aung et al., 2006). The expression of miR398 decreased after 

three different kinds of oxidative stress: high light and high concentration of copper 

or iron (Sunkar et al., 2006).  
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1.7. Role of Arabidopsis miRNAs 

Observations that mutants with impaired biogenesis of miRNAs showed 

abnormalities during development highlighted the importance of miRNAs in plant 

biology. Many of these mutants were described prior to the discovery of miRNAs in 

plants. Consequently, these genes were classified according to the specific 

pathways they belong to, for example, shoot apical meristem (SAM) maintenance, 

leaf morphogenesis, hormone response (Jacobsen et al., 1999, Lu and Fedoroff, 

2000). Later, the observed phenotypes were explained by the fact that specific 

miRNAs were not produced and their miRNA targets were up-regulated in these 

mutants (Han et al., 2004; Vaucheret et al., 2004; Vazquez et al., 2004a; Kurihara 

et al., 2006; Lobbes et al., 2006; Yang et al., 2006).  

Defining specific functions for a miRNA includes not only to show the cleavage of 

the target by RISC, but also to show the functionality of the regulation for proper 

plant growth and development. Unfortunately, many miRNAs are present in gene 

families. This characteristic makes the use of knock-out mutants to understand the 

function of a miRNA difficult. In addition, the size of the stem-loop sequence that is 

necessary for DCL1 cleavage is very small and thus difficult to be target of an 

insertional mutant (Jones-Rhoades et al., 2006). A simple way to overcome this 

problem is to overexpress a miRNA gene. However, this may lead to the 

complication that many targets could be downregulated at the same time. 

Nonetheless, by using this approach the functions or the involvement of a few 

miRNAs in specific biological processes was described (Palatnik et al., 2003; 

Achard et al., 2004; Laufs et al., 2004; Mallory et al., 2004a; Vaucheret et al., 

2004; Guo et al., 2005; Kim et al., 2005; Mallory et al., 2005; Sunkar et al., 2006).  

A different approach that allows the analysis target by target, is the analysis of the 

effects of disrupting the miRNA regulation in a given target. This led not only to the 

study of target functions, but also to the elucidation of the role of the presence or 

absence of miRNA regulation. 

With combinations of different approaches, several groups have demonstrated that 

many miRNAs regulate various plant developmental processes, including leaf 

morphogenesis and polarity (Palatnik et al., 2003), floral differentiation and 

development (Aukerman and Sakai, 2003; Chen, 2004) root initiation and 
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development (Laufs et al., 2004; Mallory et al., 2004a; Guo et al., 2005), vascular 

development (Kim et al., 2005), transition of plant growth from the vegetative to 

the reproductive phase (Achard et al., 2004; Lauter et al., 2005), phosphate 

homeostasis (Fujii et al., 2005; Aung et al., 2006; Chiou et al., 2006), and even 

small RNA biogenesis and function (Xie et al., 2003; Vaucheret et al., 2004). 

Some specific examples of miRNA function are further discussed below. 

1.7.1. Leaf morphogenesis 

At least two miRNA families are involved in the regulation of leaf development, 

miR166 and miR319. The role of miR319 in leaf development is caused by the fact 

that this miRNA has a subset of TCP transcription factor genes among its target 

(Palatnik et al., 2003). Overexpression of miR319 resulted in low levels of some 

TCP mRNAs and caused jaw-D phenotypes, including uneven leaf shape and 

curvature. In contrast, overexpression of miR139-resistant TCP mutants indicated 

that miR319-guided mRNA cleavage was sufficient to restrict TCP function 

(Palatnik et al., 2003).  

The abaxial and adaxial pattern in Arabidopsis leaves is also controlled by 

miRNAs. This pattern is controlled by the polar expression of class-III 

homeodomain leucine zipper (HD-ZIP) transcription factor genes in the SAM 

(Emery et al., 2003). PHB, PHV and REV are three closely related Arabidopsis 

HD-ZIP transcription factors and mutations in any of these genes resulted in 

severe modifications of leaf development. Several experiments have 

demonstrated that all of these transcription factors are targets of miR166/165 

(Emery et al., 2003; Bao et al., 2004; Mallory et al., 2004b). 

The regulation of the HD-ZIP gene family by the miR166/165 family is a conserved 

mechanism that was also observed in all lineages of land plants, including 

mosses, ferns, gymnosperms, and angiosperms (Floyd and Bowman, 2004). 

Moreover, the same developmental abnormalities caused by disruption of miRNA 

regulation and loss of function of HD-ZIP genes in Arabidopsis were observed in 

Z. mays (Juarez et al., 2004).  
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1.7.2. Vascular development 

Another role of miR166 and HD-ZIP proteins is the regulation of vascular 

development. ATHB15, a member of the HD-ZIP family, is predominantly 

expressed in vascular tissues, suggesting that it may play some role in plant 

vascular development. ATHB15 is also one target of miR166/165 (Rhoades et al., 

2002). Overexpression of miR166a resulted in decrease of ATHB15 mRNA levels, 

which in turn caused accelerated vascular cell differentiation of 

cambial/procambial cells. Consequently, an altered vascular system with 

expanded xylem tissue and an interfascicular region was produced (Kim et al., 

2005). This regulatory mechanism may exist in all vascular plant species as well 

(Floyd and Bowman, 2004; Kim et al., 2005). 

1.7.3. Small RNA biogenesis and function 

The biogenesis and function of miRNAs and ta-siRNAs in general is affected by 

several miRNAs. The major enzyme of miRNA biosynthesis, DCL1, is itself 

regulated by miR162 (Xie et al., 2003). In addition, another very important protein, 

AGO1, the major protein of RISC, shows regulation of mRNA accumulation by 

miR168. The expression of an AGO1 mutant that is not subject to miR168 

regulation resulted in developmental defects similar to other miRNA biogenesis 

mutants (Vaucheret et al., 2004). At least three miRNAs are involved in the 

biogenesis of ta-siRNA: miR173, miR390, and miR828. Together, they mediate 

the biogenesis of four ta-siRNAs (Peragine et al., 2004; Vazquez et al., 2004b; 

Allen et al., 2005; Rajagopalan et al., 2006). 

1.7.4. Flower development 

The flower development is regulated by at least four miRNAs: miR156, miR159, 

miR164 and miR172. The APETELA 2 (AP2) and AP2-like proteins are required 

for proper floral organ identity and flowering. Overexpression of miR172 resulted in 

the complete absence of AP2 and other AP2-like proteins. As a consequence, 

plants set flowers early with disrupted specification of floral organ identity, a very 

similar phenotype as displayed by ap2 null mutants (Aukerman and Sakai, 2003; 

Chen, 2004). An early flowering phenotype was also observed in plants 

overexpressing a mutant form of SPL3 mRNA leading to a lack of regulation of 
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SPL3 by miR156. In flowers of 35Spro:SPL3-UTRΔ4 plants with developmental 

abnormalities were also observed (Gandikota et al., 2007).  

LEAFY (LFY) is an important factor in floral development. LFY itself is not a 

miRNA target, but a group of MYB transcription factors, whose members act as 

positive regulators of LFY expression, are target of miR159. Overexpression of 

miR159 resulted in downregulation of LFY, which in turn lead to a delay in 

flowering in short-day photoperiods and to defects in anther development (Achard 

et al., 2004; Schwab et al., 2005). 

The involvement of miR164 in flower development was uncovered when the 

transposon insertion in the mutant early extra petal1 was characterized. The 

position of the insertion was mapped to the promoter of MIR164C. As the mutant 

name says, it was observed an early-flowering phenotype and the presence of 

extra petal (Baker et al., 2005). 

1.7.5. Shoot and root development 

Five members of a family of genes encoding NAM/ATAF/CUC (NAC)-domain 

transcription factors are targets of miR164 (Rhoades et al., 2002; Laufs et al., 

2004; Mallory et al., 2004a; Guo et al., 2005). Cup-shaped cotyledon 1 (CUC1) 

and CUC2 regulate meristem development and separation of aerial organs (Aida 

et al., 1997), and NAC1 is involved in root development (Xie et al., 2002). Both, 

gain-of-function and loss-of-function mutants of miR164 caused several 

developmental defects, which were associated with misexpression of NAC1, 

CUC1 and CUC2 (Laufs et al., 2004; Mallory et al., 2004a; Guo et al., 2005). The 

phenotypes observed in miR164 overexpressing plants were very similar to those 

observed in cuc1 cuc2 double mutants (Laufs et al., 2004; Mallory et al., 2004a).  

1.7.6. Auxin signaling 

Several miRNAs are involved in hormone signaling pathways. At least four 

miRNAs are involved in the signal transduction of auxin. TIR1, which encodes an 

auxin receptor, is a predicted target of miR393. Auxin Response Factors (ARFs) 

are transcription factors that bind to auxin response elements in promoters of early 

auxin response genes. ARF10, ARF16 and ARF17 were validated as miR160 

targets in 5’RACE experiments (Kasschau et al., 2003; Mallory et al., 2005). 
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Moreover, the mutation of the miR160 binding site in ARF17 resulted in elevated 

levels of ARF17 mRNA and dramatic developmental defects, including embryo 

symmetry anomalies, premature inflorescence development, leaf shape defects 

and root growth defects (Mallory et al., 2005). Cleavage of ARF8 mRNA regulated 

by miR167 was demonstrated (Kasschau et al., 2003). Two ARFs are affected 

indirectly by miR390. For both ARF3 and ARF4 mRNA cleavage is mediated by 

TAS3-siRNAs. The miR390 participate in TAS3-siRNAs biogenesis (Allen et al., 

2005).   

1.7.7. Sensing nutrient stress 

miRNAs are also involved in regulating plant responses to nutrient stresses 

(Jones-Rhoades and Bartel, 2004; Allen et al., 2005; Fujii et al., 2005; Aung et al., 

2006; Chiou et al., 2006). MiR395 seems to regulate two different groups of genes 

that function coordinately in the sulfate pathway, three out of four ATP sulfurylase 

(APS) in Arabidopsis have a miR395 binding site on their mRNAs, and 5’RACE 

fragments were recovered from APS1 and APS4, but not from APS3 mRNAs 

(Jones-Rhoades and Bartel, 2004). Interestingly, APS mRNAs that contain a 

miR395 binding site encode proteins that are localized in the plastid, whereas 

APS2 encodes a protein that is a cytosolic isoform. This may reflect the role of 

miR395 in the regulation of sulfate assimilation in plastids (Chiou, 2007). In 

seedlings of Arabidopsis growing under low sulfate conditions, miR395 

accumulated to higher amounts and the level of APS1 mRNA was decreased. On 

the other hand, in media with higher sulfate concentration, miR395 was not 

detected and APS1 accumulated to higher levels (Jones-Rhoades and Bartel, 

2004).  

In addition to targeting APS genes, miR395 also targets AST68, which encodes a 

sulfate transporter that was experimentally validated as miR395 by 5′-RACE 

analysis (Jones-Rhoades and Bartel, 2004).  

MiRNA399 controls inorganic phosphate (Pi) homeostasis by regulating the 

expression of UBC24 encoding an ubiquitin-conjugating E2 enzyme in 

Arabidopsis. Transgenic plants overexpressing miR399 accumulated excessive Pi 

in the shoots and displayed phosphate toxicity symptoms (Fujii et al., 2005). 
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Moreover, miR399 was up-regulated by Pi deprivation and, consequently, UBC24 

is downregulated (Fujii et al., 2005; Aung et al., 2006; Chiou et al., 2006). 

1.7.8. Oxidative stress tolerance 

The involvement of miRNAs in oxidative stress tolerance was first taken into 

account when two Cu/Zn superoxide dismutase genes, CSD1 and CSD2 were 

predicted and subsequently validated using 5’RACE as miR398 targets (Jones-

Rhoades and Bartel, 2004). The accumulation of miR398 was shown to be down-

regulated by oxidative stresses and the down-regulation of miR398 interrupts the 

suppression over CSD1 and CSD2. Overexpression of CDS2 harboring silent 

mutations in the miR398 binding site elevated the CDS2 expression and 

consequently, plants were much more tolerant to high light, heavy metals, and 

other oxidative stresses (Sunkar et al., 2006). 

1.8. MIR159/319 family 

Six genes in Arabidopsis make up the MIR159/319 family of miRNA genes. The 

miR159/319 family is conserved in other plant genomes (Rhoades et al., 2002; 

Zhang et al., 2005; Dezulian et al., 2006; Tuskan et al., 2006). This family can be 

further classified into two subfamilies in Arabidopsis, MIR159 and MIR319. The 

difference between miR159 and miR319 species is not greater than four 

nucleotides (Figure 5B; Reinhart et al., 2002; Rhoades et al., 2002; Palatnik et al., 

2003). In fact, five different miRNA species are produced from the six members of 

the MIR159/319 family. Nonetheless, they are still classified as belonging to the 

same miRNA family (Griffiths-Jones et al., 2006; Jones-Rhoades et al., 2006). The 

overexpression of members of each subgroup led to downregulation of different 

targets. Most of the miR319 targets belong to the TCP gene family of transcription 

factors (Palatnik et al., 2003). In contrast, most of the miR159 targets belong to the 

MYB transcription factor family (Rhoades et al., 2002; Jones-Rhoades and Bartel, 

2004). Unlike in other miRNA families, in which the difference between members 

is situated at the 3’end of the mature miRNA, one of the diferences observed in 

the mature sequence of miR159 and miR319 is found at the 5’end. Experimental 

analyses of animal targets and mutational analyses of plant targets demonstrated 

that the region pairing with the 5'end of the miRNA is specifically sensitive to 
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mismatches (Lewis et al., 2003; Doench and Sharp, 2004; Laufs et al., 2004; 

Mallory et al., 2004b; Parizotto et al., 2004; Vaucheret et al., 2004; Brennecke et 

al., 2005). Althought similar, MIR159 and MIR319 could also be regarded as two 

different families, since the six MIR159/319 genes have different pre-miRNAs, but 

rather similar stem-loop structures (Figure 5A).  

 

 

Figure 5. The miR159/319 gene family in Arabidopsis.  
A. Stem loop structures of the Arabidopsis MIR159/319 family. Mature miRNAs are 
labeled in red. B. Alignment of mature sequences of miR159/319 species. 
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Expression of miR159 species, analyzed by detection of mature miRNAs in 

northern blots, accumulated predominantly in young seedlings and flowers, and 

was less abundant in rosette leaves, cauline leaves or siliques. Expression was 

undetectable in roots. In addition, the accumulation of miR159 was enhanced by 

exogenous gibberellin GA3 (Achard et al., 2004). Using promoter-GUS lines, 

Niemeier (2006), demonstrated that promoter activity of MIR159A, and not 

MIR159B, was increased by application of exogenous gibberellin in Arabidopsis 

seedlings. Analysis of the number of reads that match to members of the miR159 

subfamily sequenced by 454-pyrosequencing (Lu et al., 2006) also clearly 

demonstrated that MIR159A is the member with the highest expression, with 205 

transcripts per quarter million (TPQ). This is markedly higher than MIR159B, with a 

value of 48 TPQ. MIR159C is the least active gene under normal conditions with 

as few as four TPQ (Lu et al., 2006). 

Targets of miR159 were predicted and some of them validated. A subfamily of 

genes encoding MYB transcription factors were predicted as target of miR159, 

including MYB33, MYB65, MYB81, MYB97, MYB101, MYB104 and MYB120 

(Rhoades et al., 2002; Jones-Rhoades and Bartel, 2004). In addition, many other 

genes were predicted as miR159 targets, namely MYB125, At1g29010, 

At5g55930 (OPT1) and At4g37770 (ACS8) (Jones-Rhoades and Bartel, 2004; 

Schwab et al., 2005). Moreover, using 5’RACE, cleavage products of MYB33, 

MYB65, MYB101 and OPT1 were detected (Palatnik et al., 2003; Schwab et al., 

2005; Reyes and Chua, 2007) and constitutive expression of miR159 led to 

reduced levels of ACS8, MYB120, MYB101 and OPT1 (Schwab et al., 2005). 

The expression of MYB33 is constrained by the presence of the miR159 binding 

site on its mRNA. A fusion protein of MYB33:GUS accumulates in many plant 

tissues, like whole seedlings, roots, leaves and flower organs. In a similar 

construct containing silent mutations in the miR159 binding site, mMYB33:GUS 

accumulates only in the anthers, which were the only organ where were observed 

phenotypic abnormalities in myb33 myb65 double mutant plants (Millar and 

Gubler, 2005). In mMYB33:GUS plants the expression of the fusion protein was 

under the control of the MYB33 promoter. Expression of mMYB33:GUS caused 

up-curling in leaves, as well as shorting in the petiole length (Millar and Gubler, 

2005). In 35Spro:mMYB33 plants, also show upwardly curled leaves, but do not 
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show decreasing in petiole length. However, theses plants displayed a 

dramatically reduction in size (Palatnik et al., 2003).  

The overexpression of miR159 caused male sterility and a delay in the flowering 

time (Achard et al., 2004; Schwab et al., 2005). In miR159 overexpressing lines, 

the levels of LEAFY, an important floral meristem identity gene, and its activator 

MYB33 were reduced. The effects observed as a result of miR159 overexpression 

could be an effect of decreased levels of LEAFY, indirectly caused by reduced 

accumulation of the miR159 target, MYB33 (Achard et al., 2004). 

1.9. GAMYB transcription factors in Arabidopsis 

In Arabidopsis, the R2R3 MYB transcription factors comprise a super gene family 

with 125 members that are characterized by the presence of two MYB repeats. 

MYB transcriptions factors take part in many diverse functions in Arabidopsis. For 

example, they are involved in leaf morphogenesis, plant responses to 

environmental signals, and in the regulation of the phenylpropanoid metabolism 

(for a review, see Stracke et al., 2001). Further classification of MYBs into 

subfamilies was achieved by analysis of conserved domains apart from the MYB 

domain, resulting in the definition of functional groups. One of them is composed 

of seven proteins that share similarity to Hordeum vulgare (barley) GAMYB 

(Stracke et al., 2001). Barley GAMYB encodes a transcriptional activator that 

binds specifically to a GA-response element in the α-amylase promoter (Gubler et 

al., 1995). 

Among seven Arabidopsis GAMYB genes, only MYB33, MYB65 and MYB101, 

were experimentally verified as being able to bind and activate the transcription of 

GA-response element present in the α-amylase promoter from barley (Blazquez 

and Weigel, 2000). In Arabidopsis, the function of GAMYB is more related to 

signal transduction of the plant hormone gibberellin with respect to flowering 

control through LFY, a potent inducer of flowering in Arabidopsis. The LFY gene is 

activated by application of gibberellin (Blazquez et al., 1997; Blazquez et al., 

1998). The activation probably occurs via gibberellin activation of GAMYB genes, 

which in turn act as a transcriptional activators of LFY, whose promoter contains a 
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GA-response element. MYB33 can bind to this GA-response element (Blazquez 

and Weigel, 2000). 

1.10. miR161 

miR161 is produced by a single miRNA gene characterized only in Arabidopsis, 

and  its targets encode members of the pentatricopeptide repeat (PPR) protein 

family (Rhoades et al., 2002). An interesting observation was made by Allen et al. 

(2004), when they noticed high sequence similarity of pre-miR161 to its targets, 

and a possible explanation of the evolutionary origin of MIR161 was proposed. In 

the proposed model, MIR161 originated after recent inverted duplication events 

associated with active expansion of target gene family (Allen et al., 2004). 

miR161 is differentially expressed in Arabidopsis tissues. Northern blots detected 

a higher accumulation of miR161 in seedlings, a moderate accumulation in stem, 

and flowers. In leaves and siliques, the lowest miR161 accumulation was detected 

(Reinhart et al., 2002). According to Rajagopalan et al. (2006), miR161 is one of 

the most highly expressed miRNA gene.  

1.11.  Aims of the present study  

The present work aims to study different aspects of miRNAs and their targets in 

Arabidopsis thaliana. One of the major goals was to predict novel miRNA targets 

employing a software tool called RNAhybrid and based on assumptions derived 

from validated miRNA targets, and to experimentally validate selected miRNA 

target candidates.  

The second main objective was to study two genes that were validated as miR159 

targets in this work, MYB101 and MRG1, using promoter-GUS lines, T-DNA lines 

and overexpressor lines in order to understand to which extend miR159 regulates 

the expression of these two targets based on an analysis of the effects caused by 

disrupting miR159 regulation on these genes.  

Finally, the last objective was to investigate the expression of specific miRNA 

genes by characterizing their spatial and temporal expression pattern using 

promoter-GUS lines of MIR159A, MIR159B and MIR161. In addition, regulatory 

regions within the promoter of MIR159A and MIR161 should be identified. 
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2. Material and Methods 

2.1. Material 

2.1.1. Plant Material 

Arabidopsis thaliana ecotype Col-0 was used as wild-type in all experiments and 

transformations in this work. T-DNA lines were ordered from The European 

Arabidopsis Stock Centre (NASC) (http://arabidopsis.info/). Two T-DNA lines were 

purchased from Salk T-DNA population (Alonso et al., 2003) and one was from the 

Syngenta Arabidopsis Insertion Library (Sessions et al., 2002). 

2.1.2. Bacterial Strains  

For general cloning techniques, Escherichia coli strains XL1Blue (Stratagene) and 

TOP10 (Invitrogen) were used. Transformation of E. coli was done according to 

Sambrook and Russel (2001) . A special strain, K12 ER2925 (New England 

Biolabs), was used for plasmid DNA extraction when constructs were employed for 

promoter analysis in At7 protoplasts. K12 ER2925 has a deficiency in the 

methylation of adenine and cytosine DNA residues DNA by methyltransferases,  

For stable transformation of Arabidopsis, Agrobacterium tumefaciens strains 

GV3101 pMP90, with rifampicin and gentamicin resistance, and GV3101 

pMP90RK with rifampicin, gentamicin and kanamycin resistance (Koncz and 

Schell, 1986) were used.  

2.1.3. Vectors 

Different vectors were used according to specific purpose. For cloning cDNAs in 

translational fusion with the Green Fluorescent Protein (GFP), the pMAV5-‘3GFP 

vector (Thomas Merkle, unpublished) was used. This vector contains a multiple 

cloning site flanked by the Cauliflower Mosaic Virus 35S promoter and the GFP 

gene. The latter is followed by nopaline syntase terminator (nosT). A great 

advantage of this vector is that the cassette containing the 35Spro:GFP:nosT is 

situated between HindIII and EcoRI restriction sites, and it can be easily sub-

cloned into pGPTV-BAR (Becker et al., 1992) or into another vector, provided that 
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the insert does not have any HindIII and EcoRI restriction sites. The binary vector 

pGPTV-BAR was used for stable transformation into Arabidopsis. This vector 

confers kanamycin resistance to E.coli and A. tumefaciens. The T-DNA portion of 

pGPTV possesses the BAR gene that confers BASTA resistance to the plant. 

The vectors pANGUS (Jakoby and Weisshaar, unpublished) and pTB10 

(Sprenger-Haussels and Weisshaar, 2000) were used for promoter analysis. The 

first is a binary vector with an ampicilin resistance gene for selection in bacteria 

and kanamycin resistance gene for selection in planta. The multiple cloning site is 

just upstream to the BETA-GLUCORONIDASE (uidA) gene. Transcriptional 

fusions were created with promoters of interest and uidA for analysis of promoter 

activity in planta. The second vector was used for analysis of serial deletions on 

miRNA promoters, employing the AT7 protoplast system. In this vector, the cloning 

strategy is essentially the same as in pANGUS. However, pBT10 is not a binary 

vector, and it contains the ampicilin resistance gene for selection in bacteria.  

When it was necessary to clone DNA fragments amplified by Polymerase Chain 

Reaction (PCR), the TOPO-TA cloning kit (Invitrogen) was employed. This kit 

contains the vector pCR2.1, which allows direct cloning of PCR fragments 

amplified by Taq DNA polymerase. 

2.1.4. Chemicals and Enzymes 

The enzymes used in this study were purchased form New England Biolabs, 

Roche Diagnostics, Ambiom, Invitrogen and Fermentas. Chemicals were obtained 

from Roth, Merck, Sigma, Difco, Duchefa, Molecular Research Center and Bio-

Rad, and were of analytical grade. Radioactively labeled 32P was obtained from 

Hartmann Analytic GMBH (Braunschweig, Germany).  

2.1.5. Oligonucleotides 

DNA oligonucleotides were purchased from Invitrogen, Metabion (Martinsried, 

Germany) and Operon (Cologne, Germany). RNA oligonucleotides and adaptors 

were purchased from Invitrogen. A list with the oligonucleotides used in this work 

is presented in the Appendix I. 
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2.1.6. cDNA library 

All cDNAs cloned in this work were amplified via PCR from the MatchMaker 

Arabidopsis cDNA library (Clontech) prepared from whole plant with inflorescence 

from ecotype Col-0.  

2.1.7. Medium for bacteria culture 

Luria-Bertani (LB)-Medium     YEP-Medium (for Agrobacteria) 

10 g/L Bacto-Tryptone    10 g/L Bacto-Tryptone 
5 g/L Bacto-Yest Extract    10 g/L Bacto Yest Extract 
5 g/L NaCl      5 g/L NaCl  
deionized water up to 1 liter    deionized water up to 1 liter 
 
 LB-plates: LB medium with 1.6% of Bacto Agar 
 YEP-plates: YEP medium with 1.6% of Bacto Agar 
 

For selective medium, appropriated antibiotics were added to the medium after 

autoclavation in the following concentration:  

Ampicillin  100 µg/ml 
Carbenicillin  100 µg/ml 
Kanamycin    50 µg/ml 
Gentamicin    40 µg/ml 
Rifampicin    25 µg/ml 
 

For blue/white selection of TOP10 colonies transformed with the pCR2.1 vector, 

32 μl of X-GAL (50 μg/ml) were spread over LB-plates. 

2.1.8.  MS plates 

MS plates contained 0.5x Murashige Skoog medium (Sigma), 0.5x vitamins 

(Sigma) and 0.8% agar. When necessary, kanamycin was added in the same 

concentration as mentioned above. 

2.1.9. Bioinformatic Softwares and Databases 

•  Bioedit Sequence Alignment Editor version 4.8.10 

•  Clone Manager 6 version 6.0 

•  CLUSTAL W Multiple Sequence Alignment Program version 1.83 (Feb 2003) 
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•  EMBOSS package 

•  RNAfold, Vienna RNA Package 

•  T-DNA Primer Design tool (http://signal.salk.edu/tdnaprimers.2.html) 

•  T-DNAexpress, T-DNA insertion lines database                                                    . 

(http://signal.salk.edu/cgi-bin/tdnaexpress) 

•  miRBASE, miRNA sequence database (http://microrna.sanger.ac.uk/) 

• Arabidopsis thaliana massive parallel signature sequencing and 454 reads 

database (http://mpss.udel.edu/at/) 

•  The Arabidopsis Information Resource (TAIR) (http://www.arabidopsis.org/)    

•  Arabidopsis Small RNA Project database (http://asrp.cgrb.oregonstate.edu/db/)  

•  The European Arabidopsis Stock Centre (NASC) (http://arabidopsis.info/)  

•  AtGenexpress  (http://jsp.weigelworld.org/expviz/expviz.jsp) 

•  RNAhybrid (http://bibiserv.techfak.uni-bielefeld.de/rnahybrid/)  

•  Genevestigator (https://www.genevestigator.ethz.ch/at/)    

2.2. Predictions of novel miRNA target genes 

For predictions of miRNA targets, the program RNAhybrid (Rehmsmeier et al., 

2004) was employed. The dataset of candidate targets of Arabidopsis corresponds 

to the dataset TAIR6_cds_20060907 that include all coding sequences (CDS) 

from Arabidopsis according to the annotation release TAIR 6.0. In this dataset only 

sequences from the start-codon to the stop-codon are included. Thus, this dataset 

does not include intron sequence or untranslated regios (UTRs). Searching for 

miRNA targets included also 3’UTR and 5’UTR regions. Therefore, two additional 

datasets were used: TAIR6_3_UTR_20060907 and TAIR6_5_UTR_20060907, 

that correspond to processed 3' UTR or 5’UTR sequences from all Arabidopsis 

genes, with full-length cDNAs or EST sequence matches. All datasets were 

downloaded from ftp://ftp.arabidopsis.org/Sequences/blast_datasets.   

The miRNA dataset was downloaded from miRBASE. The version used was 

miRBASE Release 9.0 (http://microrna.sanger.ac.uk/). This release contains 131 
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Arabidopsis thaliana miRNA genes. The mature sequence of all miRNA genes 

were used in this work.   

RNAhybrid is a software that performs in silico hybridization between a miRNA 

and a possible target RNA in a way that optimizes the free energy of the 

hybridization. In the search for miRNA targets, four basic assumptions were made. 

First, concerning the hybridization pattern between the miRNA and the miRNA 

binding site, the duplex of the miRNA and the miRNA binding site must have 

perfect base pairing from nucleotide 8 to 12 (counting from the 5´end of the 

miRNA). This pattern will be referred to as “seed”. Second, internal loops 

(mismatch between nucleotides in different strands) were allowed only with a 

maximum of two nucleotides in each strand. Third, bulges with no more than one 

nucleotide were permitted (Figure 6). Lastly, an additional filter was used to 

increase the specificity of the prediction. It consists of eliminating candidates with 

the calculated MFE between putative target and miRNA  smaller that 70% of the 

MFE calculated for a hybrid between the same miRNA and its perfect counter-part 

(Schwab et al., 2005; Schwab et al., 2006), following DNA-DNA base pairing. 

 

Figure 6. Diagrammatic representation of a miRNA:target hybrid according 
to the assumptions used in this work. 
Proposed model for miRNA binding sites in plants based on the assumptions proposed in 
this work. Bulges containing only one nucleotide are permitted (3rd nucleotide). Mismatch 
loops are permitted with no more than two nucleotides (as in the 16th and 17th nucleotide). 
No mismatch in the presumptive cleavage site is allowed (between the 10th and 11th 
nucleotide), as well as in the surrounding nucleotides (gray background). G:U base 
pairings ( 6th, 12th and 20th nucleotides) are not considered as mismatch. 
 
 
In this work, the percentage of MFE of a perfect match was used as a cutoff. It 

was defined after the analysis of the signal-to-noise ratio of the prediction. To 

estimate the ratio of false positive in this prediction, for each miRNA, 10 

randomized sequences were created. Random sequences have the same di-
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nucleotide frequency of the authentic miRNAs. Then, the RNAhybrid was used to 

search for miRNA targets with all random sequences with the same dataset and 

the four assumptions described above. The set of authentic miRNA used in this 

analysis contain one member of each miRNA family. The numbers of miRNA 

targets were counted upon six MFE cutoffs: 70, 72, 75, 77, 80 and 85%. To 

calculate the signal-to-noise ratio, averages of the number of targets per miRNA 

(combining data from all miRNAs) were calculated for both authentic miRNA 

dataset and random miRNA set. The false positive ratio was calculated by dividing 

the number of miRNA targets per miRNA of the authentic dataset by the number of 

miRNA targets per miRNA of the random dataset. The sensitivity of this prediction 

was estimated by the percentage of experimentally validated miRNA targets found 

among predicted targets in each of MFE percentage cutoff.  

2.3. Plant growth 

2.3.1. Plants grown in soil 

Seeds of Arabidopsis, ecotype Columbia-0, were grown in soil. Seeds were 

maintained at 4 °C for 3 days to synchronize germination and then transferred to a 

phytochamber or greenhouse operating at 22 °C under either short-day (8 h light 

and 16 h darkness) or long-day (14 h light and 10 h darkness) photoperiod 

conditions.  

2.3.2. Plants grown on MS medium plates 

Seeds of Arabidopsis were sterilized by rinsing them in a 70% (v/v) ethanol 0.05% 

(v/v) Triton X-100 for 2 minutes followed by a rinse in 100% ethanol for 5 minutes. 

Before plating, seeds were washed 5 times with autoclaved water. MS plates with 

seeds were maintained at 4 °C for 3 days in the dark to synchronize germination. 

After this incubation, they were transferred to a growth chamber operating at 22 °C 

in short or long day cycles (2.3). 

2.4. DNA Methods 

Plasmid DNA isolations were purified with the JETSTAR Plasmid Purification Kit 

(Genomed, Bad Oeynhausen) following the instructions of the manufacturers. 
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PCR fragment purification was done with GFX PCR DNA and Gel Band 

Purification Kit (GE Biosciences) according to the manual’s instructions. DNA 

sequences were determined by the Sequence Core Facility at the Chair of 

Genome Research, Bielefeld University on the Applied Biosystems Abi Prism 3100 

and 3730 sequencers using the BigDye-terminator v3.1 chemistry. Routine 

techniques, such as DNA agarose gel, DNA precipitation, DNA ligation, DNA 

cleavage with restriction endonucleases and DNA concentration measurement 

were done according to Sambrook and Russel, (2001). 

2.4.1. Isolation of Genomic DNA 

Genomic DNA was isolated according to Edwards (1991). A piece of rosette 

leaves, about 2 mm2, harvested from 2 to 4-weeks old Arabidopsis plants, was 

transferred to a 1.5ml micro centrifuge tube containing 200 μl of DNA extraction 

buffer. The plant sample was disrupted using a Qiagen TissueLyser. Debris was 

removed by centrifugation at 16000g for 8 minutes. About 150 μl of the 

supernatant was transferred to a new 1.5 ml micro centrifuge tube containing one 

volume of isopropanol. The tubes were inverted several times and incubated at 

room temperature for 20 minutes. The pellet was collected by centrifugation at 

16000g for 5 minutes. The supernatant was discarded and the DNA was washed 

with 70% ethanol. The DNA pellet was air dried for 20 minutes and dissolved in 

100 μl of TE buffer. This DNA was used as a template for PCR with the aim of 

genotyping transgenic lines. 

DNA extraction buffer   TE buffer   

200 mM Tris/HCl pH 7,5   10 mM Tris-Cl pH 7.5 
250 mM NaCl     1 mM EDTA 
25 mM EDTA       
0,5 % SDS 
 

2.4.2. Polymerase Chain Reaction  

Polymerase Chain Reaction (PCR) was employed to amplify DNA fragments for 

cloning, for genotyping of transgenic Arabidopsis plants, and for screening of 

transformed bacterial colonies, as well as performing site-directed mutagenic by 

overlap extension and 5’ rapid amplification of cDNA ends (5’RACE) used in 

microRNA target validation (Sambrook and Russel, 2001). General cycling 
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conditions were: 94oC to 98oC for 2 minutes, 30 cycles of  94oC for 30 seconds, 

55oC to 65oC for 30 seconds and 72oC (1kb/minute), and a final extension step of 

72oC for 1 minute. In this section, three protocols employed for PCR are described 

and another PCR-protocol variant is described in 2.5.5.2.  

2.4.2.1. PCR: fragment subject to cloning 

When a fragment was going to be cloned, a proof reading DNA polymerase was 

used. A normal reaction of 50μl contained 1X enzyme buffer, 0.2mM of each 

dNTP, 10 pmol of forward primer, 10 pmol of reverse primer, 1 unit of DNA 

polymerase, DNA template (1 μg of Matchmaker cDNA library) and water. The 

enzymes used were PWO DNA polymerase (Roche) and Phusion High-Fidelity 

DNA polymerase (Finnzymes, Finland). 

2.4.2.2.  Colony PCR 

Colony PCR was applied whenever it was necessary to screen bacterial colonies 

for the presence of a desired insert. Colony PCR was done with a gene specific 

primer and a vector specific primer. A typical 25 μl reaction consisted of 1X Taq 

DNA polymerase buffer, 0.2mM of each dNTP, 10 pmol of forward primer, 10 pmol 

of reverse primer, 0.25 μl of Taq DNA polymerase and water. The PCR mix was 

distributed into reaction tubes but no template DNA was added. Instead a 

sterilized toothpick was used to touch a bacterial colony on a plate and then the 

colony was mixed with the PCR mix in each tube. Cycling conditions were almost 

the same the general cycling conditions, the only change was in the first step, that 

ws established as 95oC for 5 minutes. 

2.4.2.3. Overlapping PCR 

To obtain miRNA binding site mutants of MYB101 and MRG1, a PCR-based site 

directed mutagenesis was used (Figure 7). In the first step, two separate PCRs 

were performed for each mutant with primers that overlap at the position (s) of the 

desired mutations. One pair of primers was used to amplify the DNA that contains 

the mutation site together with its upstream sequence. The second pair of primers 

was used in a separate PCR to amplify the DNA that contains the mutation site 

together with its downstream sequence. A third PCR was performed using the 
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amplicons from the previous reactions as template and a pair of primers to amplify 

the whole cDNA. For both genes, cDNAs previously cloned into the pMAV5-3´GFP 

vector were used as template. 

 

 

Figure 7. Site-directed mutagenesis via overlapping PCR 
Primers I to II were used to introduce point mutations at miRNA binding site region (red). 
Primers A and B were based on template sequence. Recovery of functional mutated 
amplicon was achieved by combining PCR products A-I and II-B in a single reaction with 
primers A and B. 
 

2.4.2.4. Hot Stat PCR: for genotyping 

In order to achieve the best results when genotyping T-DNA or transgenic lines, 

two parameters were changed in the basic PCR setup. ExTaq DNA polymerase 

(Takara, Japan) and Hot Start PCR were employed. The first reaction mix was set 

up in a 20 μl reaction consisting of:  1X ExTaq Buffer, 0.2mM of each dNTP, 10 

pmol of forward primer, 10 pmol of reverse primer, water and 1 μl of template 

DNA. Tubes were placed in the thermocycler and the program was initiated. At the 

end of the initial denaturating step, the reaction was paused and 10 μl of the hot 

start mix was added (0.25 units of ExTaq DNA polymerase, 1x ExTaq buffer, 

water), then the cycling conditions continuined without further changes.   
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2.5. RNA Methods 

2.5.1. RNA Isolation for northern blot and RT-PCR 

Total RNA was extracted from Arabidopsis AT7 and tobacco BY-2 protoplasts, as 

well as from different tissues of Arabidopsis transgenic and wild-type plants using 

TriReagent (Molecular Research Center) according to the protocol suggested by 

the manufacturer. For 100 mg of plant tissue, 1 ml of Tri Reagent was added into a 

2.0 ml screw-cap micro centrifuge tube. The sample was disrupted using a Tissue 

Lyser (Qiagen). The homogenized sample was incubated for 10 minutes at room 

temperature and then, 200 μl of chloroform were added followed 30 seconds of 

homogenization. After 10 minutes of incubation at room temperature, the sample 

was centrifuged at 12000g at 4°C for 10 minutes. The clear upper phase 

containing total RNA was collected to a new micro centrifuge tube containing 600 

μl of isopropanol. The sample was incubated at room temperature for 5 minutes 

and centrifuged at 12000g at 4oC for 10 minutes. The supernatant was discarded 

and the pellet was washed with 70% ethanol. The RNA pellet was air dried for 10 

minutes at room temperature and dissolved in DEPC-treated water. The total RNA 

was treated with DNase I according to the manufacturer’s protocol (Ambion), 

before any reverse transcription and northern blot experiments were performed. 

The RNA quality was analyzed by gel electrophoresis. 

2.5.2. Formamide Gel 

RNA samples (5μg of total RNA per lane) were mixed with 1 volume of sample 

buffer, which was previously denatured for 5 minutes at 65°C. Prior to loading the 

gel, 1/6 volume of loading buffer was added to each sample. RNA was separated 

on 1% agarose gel in MOPS-buffer with 2.2 M formaldehyde.  

 

Sample buffer  MOPS buffer   Loading buffer 

66% formamide  0.2M MOPS (pH 7.0)  50% Glycerol 
8.6% formaldehyde  0.05M sodium acetate 1mM EDTA 
1X MOPS buffer  0.005M EDTA (pH 8.0) 0.4 g bromophenol blue 
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2.5.3. cDNA synthesis 

For reverse transcriptase reactions, Superscript reverse transcriptase II 

(Invitrogen) was used according to the manufacturer’s protocol. Reactions were 

done in 20 μl final volume with 2μg of RNA, 1mM oligo dT (dN-18T), 500μM of 

each dNTP, 1x First Strand Buffer (Invitrogen), 10μM of dithiothreitol and 20 units 

of reverse transcriptase II. For 5’RACE libraries (2.5.5), 10μg of adaptor ligated 

RNA (2.5.5.1) were used. 

2.5.4. Small RNA northern blot 

Northern blots to detect miRNAs were prepared from RNA samples of protoplasts 

transfected with a construct containing the precursor miRNA. The protocol for RNA 

polyacrylamide gel electrophoresis, transfer, probe labeling with radiochemical and 

hybridization were done following Llave et al., ( 2002). 

2.5.4.1. RNA electrophoresis- polyacrilymide gel 

RNA samples (20 μg of total RNA per lane) were mixed with one volume of urea 

loading buffer denatured for 4 minutes at 95°C and cooled down on ice for 5 

minutes. The RNA was separated on 17% denaturating polyacrylamide gels in 

TBE buffer. Before loading the samples, a pre-run was done at 150 volts for 1 

hour. After loading, the run was performed at 350 volts for 5 hours. An RNA 

oligonucleotide of 21 nt was used as a size marker. RNA was transferred to a 

nylon membrane (Hybond-N+, GE Biosciences) with Trans-blot SD Semi-dry 

Transfer Cell (Bio-Rad), at 400 mA, for one hour. The RNA was fixed in the 

membrane by UV crosslinking, with 1200μJ, followed by baking the membrane at 

80oC for 30 minutes. 

 

 

Polyacrylamide gel (DEPC water)   Urea loading buffer (DEPC water)  

7 M Urea      8 M Urea 
0.5X TBE buffer     0.05 % (w/v) Bromophenol blue 
0.5 mM TEMED     0.05 % (w/v) Xylencyanol  
2 mM Ammonium Persulfate    0.5 mM EDTA 
17% (v/v) Rotiphorese® Gel 30 (Roth) 
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10x TBE buffer (DEPC water) 

0.9 M Tris  
0.9 M Boric Acid  
0.02 M EDTA 
 

2.5.4.2. Preparation of Radiolabelled DNA probe  

Hybridization probes were prepared with 20 μM oligonuclotides, whose sequences 

were complementary to investigated miRNAs. Probes were labeled with [32P] γ-

ATP (5000ci/mmol; 10 mCi/ml, from Hartmann Analytic GmBH, Germany) using 

polynucleotide kinase (New England Biolabs). The labeled probes were purified 

with Sephadex G25 spin columns (GE Biosciences). 

2.5.4.3. Hybridization  

RNA blots were pre-hybridized for 30 minutes at 42°C in PerfectHyb™Plus 

(Sigma) hybridization buffer. After adding the probe, hybridization was carried out 

overnight at 42°C. After hybridization, membranes were washed with decreasing 

concentrations of SSC solution containing SDS (2X SSC, 0.2% SDS; 1X SSC, 

0.2% SDS; 1X SSC, 0.1% SDS for 20 minutes each wash with rotation at 50°C). 

Dried membranes were exposed to Phosphoimaging plates (Kodak), which were 

read out in a Typhoon scanner (Amersham- GE Biosciences). 

2.5.5.   5’RACE 

2.5.5.1. RNA adaptor ligation 

The validation of miRNA targets takes advantage of a modified RNA ligase-

mediated Rapid Amplification of cDNAs Ends (5´RACE) approach, which can be 

used to precisely map the position of the cleavage induced by the RISC complex 

(Llave et al., 2002a). To construct a 5´RACE library for every target, total RNA was 

isolated from AT7 protoplasts co-transfected with plasmids that enables the 

protoplasts to express both the miRNA precursor and the target cDNA in 

translational fusion with GFP. An RNA adaptor (300ng) was ligated to 10 μg of 

total RNA using T4 RNA ligase (New England Biolabs) in 1x ligation buffer at 37oC 

for 1 hour. The synthesis of cDNA was described in 2.5.3. 
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2.5.5.2. Nested PCR 

The RNA adaptor provides an anchoring sequence for PCR primers. A nested 

PCR with the outer 5RACE primer and a gene specific primer 1 (GSP1) was 

performed. The nesting reaction was performed with the Inner 5RACE primer and 

a GSP2 primer. PCR products were gel analyzed and cloned with TOPO-TA 

cloning kit (Invitrogen). Alternatively, PCR fragments were gel purified with 

Qiaquick Gel Purification Kit (Qiagen) and then cloned with TOPO-TA cloning kit 

(Invitrogen). Positive clones were screened using colony PCR (2.4.2.2). In this 

case another gene specific primer (GSP3) was used with the Inner 5RACE primer. 

Between 5 and 10 were sequenced clones for each target. Cycling conditions for 

nested and nesting PCR were done in such a way to optimize the yield and 

specificity. Therefore, for these reactions, the Hot Start PCR approach was 

applied. In addition, the touchdown PCR (TD-PCR) approach was also 

implemented in these reactions. In TD-PCR, the annealing temperature is set 10 

degrees higher than in normal PCR and, after each cycle (denaturation, annealing 

and extension), the annealing temperature decreases by one degree per cycle 

(ten cycles). Then, the annealing temperature of the tenth cycle is maintained 

through the rest of 25 cycles.  The set up of these PCRs is the same as presented 

for the Hot Start PCR (2.4.2.4). However, for the nested reaction, 1μl of cDNA was 

added and in the nesting reactions, between 0.5 to 5μl of nested PCR was added. 

2.6. Cloning putative miRNA targets and miRNA 
precursor sequences 

Sequences of nine putative miRNA targets were cloned for the experimental 

validation of predicted miRNA binding sites. Precursor sequences of four miRNAs 

were also cloned for the same purpose. Putative miRNA targets were amplified 

from the Matchmaker cDNA library and cloned into pMAV5-3’GFP in translational 

fusion with GFP. PCRs were performed with a high fidelity DNA polymerase and 

the sequence of each clone was confirmed by sequencing. The primers used, as 

well as their cleavage sites appended to it, are listed in 0. The inserts were cloned 

in the vector pMAV5-3’GFP, which was cleaved with the same enzymes as the 
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insert. Positive clones were identified by colony PCR (2.4.2.2) and the sequence 

of the insert was confirmed by sequencing. 

 

Table 2. Putative miRNA targets cloned in this work. 
 All miRNA putative targets were cloned into pMAV5-3’GFP in translational fusion with 
GFP.  
 

Target  AGI 
number Primers Clone designation 

MYB94 At3g47600 L081 (XbaI) - L092 (XmaI) MYB94-GFP 

MRG1 At2g34010 At2g34010-51 (BamHI)  -  
At2g34010-32 ( SmaI) MRG1-GFP 

ACS8 At4g37770 L126 (BamHI) - L127 (XmaI) ACS8-GFP 

MYB101 At2g32460 MYB101-056 (BamHI) –  
MYB101-39 (SmaI) MYB101-GFP 

MYB125 At3g60460 L077 (XbaI) - L078 (XmaI) MYB125-GFP 
CKL6 At4g28540 L128 (BamHI) - L129 (XmaI) CKL6-GFP 
GAE1 At4g30440 L143 (BamHI) - L144 (XmaI) GAE1-GFP 

Profilin2 At4g29350 PFL-51 (BamHI) - PFL-31 (XmaI) Profilin2-GFP 
MYB58 At1g16490 L079 (XbaI) - L080 (XmaI) MYB58-GFP 

 

Precursor sequences of miR156h, miR159a, miR161, miR172, miR395b and 

miR414 were cloned into pMAV5-3’GFP replacing the GFP gene. Primers were 

designed to amplify a fragment that surrounds the miRNA precursor sequence. 

Precursor sequences were amplified from genomic DNA of Arabidopsis Col-0 

ecotype. The primers used, as well as theirs cleavage sites, are listed in the 

Appencix I. In all cases, the cloning sites were XbaI and SacI, but for miR159a, in 

which the reverse primer has no appended restriction sites, so the SacI site in the 

vector was filled in with the Klenow fragment of DNA polymerase.  

 

Table 3. Precursor sequences of miRNAs cloned in this work 
 

miRNA  Primers Clone designation 
miR156h L073 (XbaI) - L074 (SacI) 35Spro:miR156h 
miR159a 159a-01-F (XbaI) -  159a-02-R  35Spro:miR159a 
miR161 mir161-51 (XbaI) - mir161-31 (SacI) 35Spro:miR161 

miR172a miR172-51 (XbaI) - miR172-31 (SacI) 35Spro:miR172 
miR395b L075 (XbaI) - L076 (SacI) 35Spro:miR395b 
miR414 L051 (XbaI) - L032 (SacI) 35Spro:miR414 
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2.7. T-DNA insertion lines 

The Arabidopsis knockout mutant database, T-DNAexpress 

(http://signal.salk.edu/cgi-bin/tdnaexpress) was searched for lines containing a T-

DNA insertion in the genes of interest. Seeds of the chosen lines were ordered 

and plants were grown, followed by DNA analysis for the determining the presence 

of the T-DNA in the gene of interest. Two T-DNA lines were found for the MYB101 

locus. Both were generated by transformation of Arabidopsis plants with the binary 

T-DNA vector pROK2, harboring kanamycin resistance to allow the selection of 

mutants in Col-8 background (Alonso et al., 2003). One MRG1 T-DNA line was 

also found in the Syngenta T-DNA population, which was created by Arabidopsis 

transformation with the pCSA110 vector (basta resistance) in Col-3 background 

(McElver et al., 2001; Sessions et al., 2002). Information about the lines used in 

this work is summarized inTable 4. 

 

Table 4. Arabidopsis knockout mutants. 
Gene name, mutant name, original designation and plasmid used for TDNA mutant 
generation, are given. 
 
Gene Mutant name Line name Plasmid 
MYB101 myb101-1 SALK_061355 pROK2 
MYB101 myb101-2 SALK_149918 pROK2 
MRG1 mrg1-1 SAIL_299_A02 pCSA110 
 
 

2.8. Overexpression lines 

Target validation with 5´RACE is a fast method to confirm a miRNA target. 

However, this method shows only the cleavage product caused by the RISC 

complex guided by a certain miRNA, but it lacks information about the real 

functionality of this post-transcriptional regulation. One way to study the 

functionality of a miRNA regulation is to analyze, in planta, the effect of the 

disruption of the miRNA binding site in a target mRNA sequence.  

MYB101 was amplified from the clone MYB1010-GFP (2.6) using primers 

MYB101-056 and T004 (with SacI site). This PCR product was cleaved with 

BamHI and SacI and cloned into the pMAV5-3’GFP vector, cleaved with the same 
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enzymes. The clone was sequenced and the integrity of MYB101 confirmed. This 

clone was named 35Spro:MYB101. To obtain miRNA binding site mutant of 

MYB101, a PCR-based approach was used: overlap PCR (2.4.2.3). The first 

primer pair was MYB101-056 and MYB101-310 that amplified a fragment from the 

start codon of MYB101 to the miR159 binding site. The second amplicon was 

amplified with primers MYB101-57 and T004, which were used to amplify a 

fragment from the miR159 binding site to the stop codon of MYB101. The third 

PCR was done with MYB101-056 and T004 using both previous amplicons as 

template, resulting in the amplification of a full length MYB101 cDNA with eight 

mutations in the miR159 binding site that do not change the protein sequence. 

This fragment was cloned in the same way as described above and the clone was 

sequenced to confirm the introduction of only the eight desired mutations. This 

clone was named 35Spro :MYB101mutBS. 

MRG1 was amplified from the clone MRG1-GFP (2.6) using primers At2g34010-51 

and At2g34010-31 (with SacI site). The amplicon was digested with BamHI and 

SacI and cloned in the pMAV5-3’GFP vector cleaved with the same enzymes. The 

clone was sequenced and the integrity of MRG1 was confirmed. This clone was 

named 35Spro:MRG1. Overlapping PCR was also used for introduce point 

mutations in the miR159 binding site of MRG1. The first primer pair was 

At2g34010-51 and At2g34010-33, which amplified a fragment from the start codon 

of MRG1 to the miR159 binding site. The second amplicon was amplified with 

At2g34010-53 and At2g34010-31, which was used to amplify a fragment from the 

miR159 binding site to the stop codon of MRG1. The third PCR was done with 

At2g34010-51 and At2g34010-31, using both previous obtained amplicons as 

template, resulting in the amplification of a full length MRG1 cDNA with seven 

point mutations in the miR159 binding site that do not change the protein 

sequence. This fragment was cloned in the same way as above and, the clone 

was sequenced to confirm the introduction of only the seven desired mutations. 

This clone was named 35Spro:MRG1mutBS. 

In the pMAV5-3’GFP vector, the expression cassette composed of CaMV 

35Spro:GFP:nosT is surrounded by HindIII and EcoRI. Using this cleavage sites, 

the expression cassettes of 35Spro:MYB101, 35Spro:MYB101mutBS, 35Spro:MRG1 

and 35Spro:MRG1mutBS were subcloned tino a binary vector, pGPTV-BAR, for 
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transformation of Arabidopsis. Analysis of overexpression plants were done in the 

T2 generation.  

2.9. Promoter GUS lines 

Promoter GUS lines were generated to investigate the promoter activity of 

MYB101, MRG1, MIR159A, MIR159B and MIR161. All promoter sequences were 

cloned into the pANGUS vector in transcriptional fusion with the beta-

glucoronidase gene (uidA). All promoter sequences were amplified from genomic 

DNA of Arabidopsis ecotype Col-0 using a proof reading DNA polymerase. 

Primers used for MYB101 promoter were L011 (with EcoRI site) and L012 (with 

NcoI site) and for MRG1 promoter were L013 (with EcoRI site) and L014 (with 

NcoI site). For the miRNA promoters the following primers were used: for the 

MIR159A promoter, L003 (with EcoRI site) and L004 (with NcoI site); for the 

MIR159B promoter, L005 (with EcoRI site) and L006 (with NcoI site); and, for the 

MIR161 promoter, L009 (with EcoRI site) and L010 (with NcoI site). Amplicons 

were cleaved with EcoRI and NcoI and cloned into the pANGUS vector cleaved 

with the same enzymes. Isolated clones were sequenced and denominated as 

follows: MYB101pro:GUS, MRG1pro:GUS, MIR159Apro:GUS, MIR159Bpro:GUS and 

MIR161pro:GUS.       

2.9.1. Promoter GUS Analysis 

Analysis of promoter GUS lines were done in the T2 generation. Seedlings and 

different tissues of adult plants were used. Seedlings, which were either 8 or 13 

days old, were grown on MS plates in long day cycles. Adult tissues, rosette 

leaves, cauline leaves, stem sections, flower in diverse stages, as well as siliques, 

were taken from plants growing in soil. Such plants were grown under, which were 

under short day conditions for eight weeks followed by two weeks in long day.  

Plant materials were harvested and incubated in GUS fixing solution for at least 45 

minutes at room temperature. Then, fixed plant samples were washed twice with 

NaPi buffer for 45 minutes to remove the fixing solution. X-Gluc solution was 

added in such amount to cover completely the sample. After vacuum infiltration, 

samples were incubated overnight at 37oC. On the following day, X-Gluc solution 

was discarded and samples were washed twice with NaPi buffer for 45 minutes. 



Material and Methods 
___________________________________________________________________________________________________________________________________ 

         45 

Then, samples were incubated in 100% ethanol for two to five hours, until the 

chlorophyll was completely removed. Meanwhile, the ethanol was changed two or 

three times. A final step was to remove the 100% ethanol and to add 60% ethanol. 

Then, samples were kept in the dark at 4oC until the microscopy analysis. About 

two hours prior to the analysis, samples were submerged into a 30% glycerol 

solution, to facilitate the slide preparations. the samples were analyzed under 

stereomicroscope (Carl Zeiss) and optical microscope (Leica DM5500B). Images 

were captured with CCD camera and DISKUS 4.50 software.   

 

GUS fixing solution    NaPi buffer   

0.3% (v/v) formaldehyde     50 mM Na2HPO4  
10 mM MES-KOH pH 5.6   pH 7.0 adjusted with phosphoric acid 
300 mM mannitol  
 

X-Glus solution 

0,5 mg/ml X-Gluc (Roth) in NaPi buffer 

 

2.10.  Generation of transgenic plants 

2.10.1. Transformation of A. tumefaciens 

Electro competent Agrobacterium tumefaciens cells were prepared according to 

Clough et al., (1998). Therefore, 5 ml of YEP medium supplemented with 

antibiotics inoculated with A. tumefaciens were grown to early saturation stage 

(overnight) at 28°C with shaking at 200 rpm. Then, 2 ml of the culture were 

transferred into 500 ml YEP medium with antibiotics and incubated overnight as 

above. The culture was harvested by centrifugation at 3,750g for 15 minutes at 

4oC. The bacterial pellet was resuspended in 500 ml of ice-cold sterilized water. 

These steps were done twice and then after another harvesting by centrifugation, 

the bacterial pellet was resuspended in 50 ml of ice-cold 10% glycerol. After 

another centrifugation, the pellet was resuspended in 2 ml of ice-cold 10% 

glycerol. Competent A. tumefaciens were aliquoted (25 μl), frozen in liquid N2 and 

stored at – 80°C. For transformation, 500 ng of plasmid DNA was pipette on top of 
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25 μl frozen competent agrobacteria and after 5 minutes incubation on ice, the 

cells were transferred to a 1 mm gap electroporation cuvette. The transformation 

was made in a BioRAD Micro Puser electroporator with the pre-programmed 

settings for A. tumefaciens (2.20 kV, one pulse). After transformation, 1 ml of YEP 

medium was added to the cells and they were placed on an incubator for 3-4 

hours at 28°C with shaking at 200 rpm. Then, the A. tumefaciens was pelleted for 

2 minutes at 2500g, 800 μl of medium were removed, and the pellet was 

resuspended in the remaining medium. Aliquots of 20 and 100 μl were plated on 

YEP plates with antibiotics and grown at 28°C for 3 days. To verify the presence of 

the binary vector, colony PCR (2.4.2.2) was used to genotype positive 

agrobacteria colonies. Glycerol stocks from the positive clones were prepared and 

used for inoculation of cultures for transformation of Arabidopsis plants. 

2.10.2. Transformation of Arabidopsis 

The transformed A. tumefaciens cells harboring the constructs of interest were 

grown at 28°C with 180 rpm shaking in YEP media with appropriate antibiotics. A 5 

ml pre-culture was prepared by adding 50 μl of culture in glycerol stock (2.10) and 

was grown overnight. The main-culture was prepared by adding the whole amount 

of pre-culture into 500 ml of YPE media. The main-culture was incubated until an 

OD600 value of 1.2 –1.5 was reached. Then, sucrose and Silwet L-77® surfactant 

(GE Silicones, USA) were added to the culture to a final concentration of 5.0% and 

0.05%, respectively. After Arabidopsis plants were grown for four to six weeks in 

short-day cycles, they were moved to long day conditions. The emerging first bolt 

was cut to induce the growth of secondary bolts. One week after the clipping, the 

plants possessing numerous unopened floral buds were submerged into 

inoculation medium of A. tumefaciens, containing a vector with a construct of 

interest. The plants were then placed on their side and kept at high humidity under 

plastic wrap for two days then, they were uncovered and set upright. Selections of 

harvested seeds were done according to the resistant marker of the construct. For 

plants transformed with pGPTV-BAR, the selection of transformants was done in 

plants growing in soil. Plants with four to six leaves were sprayed with BASTA 

solution and seeds of resistant plants were collected. For plants transformed with 

pANGUS construct, seeds were grown on kanamycin (50 μg/ml) containing MS 
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plates to select transformants. The presence of the desired construct in selected 

transgenic plants was confirmed by PCR. 

 

BASTA solution:    

240 µg/ml BASTA (Hoechst Schering AgrEvo, Düsseldorf) 
0,005%  Silwet L-77® surfactant (GE Silicones, USA) 
 

2.11. Serial deletions on miRNA promoters 

Deletions in the promoter sequence of two miRNAs were prepared to investigate 

portions of promoters that render change in activity, measured through a GUS 

enzymatic assay. Deletion constructs were derived from the full-length promoter 

construct of MIR159A and MIR161, described in the section 2.9, via PCR-derived 

fragments. Reverse primers were the same as ones used to clone the whole 

promoter. Forward primers were positioned in order to amplify portions from the 

whole promoter with deletions in the 5’ end. All constructs were cloned into the 

pBT10 vector using EcoRI and NcoI sites. Promoter deletions in the MIR159A 

promoter were done with primers L094 to L100, and, for deletions in the MIR161 

promoter, primers L065 to L071 were used. 

Protoplast isolation, transfection and GUS enzymatic assays were performed as 

described by Hartmann et al. (1998). The effects of deletions were analyzed by co-

transfecting AT7 protoplasts with 10 μg of a promoter construct and with 5μg of a 

standardization construct pBT10-UBIpro:LUC that expresses luciferase gene under 

the control of the ubiquitin promoter, as well as, 10 μg of a promoterless luciferase 

construct pBT10-LUC. Two constructs were used as controls: pBT10-35Spro:GUS 

and promoterless pBT10 (Sprenger-Haussels and Weisshaar, 2000).  

2.12.  AT7 protoplast system 

2.12.1. Protoplasts preparations from AT7 cells 

Arabidopsis 5 days-old AT7 cells were harvested by centrifugation at 800g for 5 

minutes at room temperature. Cells were washed with 40 ml of 240 mM CaCl2 
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solution and centrifuged as described above. The supernatant was discarded and 

cells were resuspended in 60 ml cellulase solution. The cell suspension was 

divided into two Petri’s dishes and incubated for 20 hours at 26oC in the dark 

shaking at20 rpm. Before harvesting, the protoplasts were shaking 40 rpm for 20 

minutes. They were transferred to a 50ml tube and centrifuged at 800g for 6 

minutes at room temperature. The supernatant was discarded and protoplasts 

were resuspended in 25 ml of 240 mM CaCl2 solution and centrifuged at 800g for 

6 minutes at room temperature. The protoplast pellet was resuspended with B5-

sucrose solution and centrifuged at 800g for 6 minutes at room temperature. After 

this centrifugation step, the living protoplasts were floating in the solution, whereas 

dead protoplasts were positioned in the bottom of the tube. Floating protoplasts, 

which were ready for transfection, were collected to a new tube (modified from 

Dangl et al., 1987). 

 

B5-sucrose solution      Celullase solution 

3.2 g Gamborg’s B5 medium (Sigma) for 1 liter   0.7g Cellulase (1.2 U/mg)  
1 mg 2,4-Dichlorophenoxyacetic acid pH 7.50.  1625 g Mazerase (0.55 U/mg) 
0.4 M Sucrose       60 ml 240 mM CaCl2 
pH 5.7 adjusted with 0.1 M KOH     Filter sterilized  
 

2.12.2. Transfection of AT7 protoplasts 

Plasmid DNA was transfected to protoplasts mediated by polyethylene glycol 

(PEG). In a 10 ml centrifuge tube, 200 μl of protoplast were mixed with 25μg of 

plasmid DNA (10 μg of a promoter construct and 5 μg of a standardization 

construct pBT10-UBIpro:LUC and 10μ g of a promoterless luciferase construct 

pBT10-LUC). To this mixture, 200 μl of PEG solution were added and incubated 

15 minutes at room temperature. The incubation was stopped by adding 5 ml of 

275 mM Ca(NO3)2 solution (pH 6.0) and protoplasts were centrifuged at 400g for 8 

minutes at room temperature. The supernatant was discarded and protoplasts 

were resuspended in 7ml of B5-sucrose solution. The protoplasts were incubated 

at 26oC in the dark for 20 hours. For transient expression of miRNA precursors, 

protoplasts were transfected with 12.5 μg of a miRNA precursor construct and 

12.5 μg of the pBT10 empty vector. For transient expression of miRNA precursor 
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and its putative target, 12.5 μg of each construct were transfected to protoplast 

(modified from Krens et al., 1982; Hain et al., 1985; Lipphardt et al., 1988). 

 

PEG solution 

25% PEG6000 
100mM Ca(NO3)2 
450mM Manitol 
 

2.12.3. Harvesting protoplast 

On the day following the transfection, protoplasts were mixed with 20 ml of 240mM 

CaCl2 solution and centrifuged at 400rpm for 10 minutes at 4oC. The supernatant 

was removed with the help of a vacuum pump until 1 ml was left. Protoplasts were 

resuspended and transferred to a 1.5 ml tube. After a brief centrifugation, 

13000rpm for 10 seconds, the supernatant was removed and the protoplasts were 

frozen in liquid N2. Protoplasts were kept at -80oC until the protein or RNA 

extraction. 

2.12.4. Protein extraction of protoplast 

Measurement of promoter activity was done at the protein level. To this aim, 

protein extracts were prepared from transfected protoplasts. To each tube 

containing protoplast pellet, 800 μl of luciferase extraction buffer were added and 

tubes were shaken for 30 seconds. Protoplast debris was separated by 

centrifugation (10minutes at 4°C at 12000g) and the supernatant was transferred 

to a new 1.5 ml tube. The protein extract was kept on ice until the measurement of 

protein concentration, luciferase activity and GUS activity. 

 

Luciferase extraction buffer 

100 mM KH2PO4, pH 7,5 
1 mM DTT 
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2.12.5. Protein quantification with Bradford 

Protein quantification was done by Bradford assay (Bradford, 1976). For the 

standard curve, freshly prepared bovine serum albumin (BSA) dilutions of 1 μg, 2 

μg, 5 μg, 10 μg, 15 μg and 20 μg per μl in Luciferase extraction buffer were used. 

Protoplast protein extract was diluted to 1:5 in the same buffer. For measurement, 

800µl of diluted protein sample was added to 200µl of Protein Assay Dye Reagent 

(Bio-Rad) and incubated at room temperature for 20 minutes. After incubation 

time, the protein concentration was measured in a Biophotometer (Eppendorf) at 

595nm wavelength. Comparison to a standard curve provided a relative 

measurement of protein concentration.  

2.12.6. Luciferase Assay 

For luciferase assay (Wood, 1991), 10 μl of protein extract were transferred to a 

glass tube and 100 μl of luciferase solution were added. The tube was briefly 

mixed and the measurement was immediately performed in a luminometer 

(MiniLum, BioScan, Washington DC, USA). Such measurement provides the 

relative light units (RLU) of the sample. The RLU value of the sample refers to the 

luciferase activitity by protein amount (μg) by second (RLU μg-1 sec-1).  

 

Luciferase reaction buffer 

20 mM Tricine   
2.67 mM MgSO4   
0.1 mM EDTA   
33.3 mM DTT   
270 μM CoA    
470 μM D-Luciferin   
530 μM ATP  
 

2.12.7. GUS activity 

Beta-glucoronidase fluorimetrical assay (Jefferson et al., 1986) is based upon the 

conversion of 4-methylumbelliferyl-beta-D-glucuronide (4MUG) into the fluorescent 

product 4-methylumbelliferyl (4MU) by beta-glucoronidase. To measure the GUS 

activity in protein extracts, 100 μl of protein extract were mixed with 100 μl of GUS-
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solution in a MicroWell BlackTM plate. Measurement was made in a fluorimeter 

(Fluoristar Optima, BMG LABTECH, Offenburg, Germany). The micro plate was 

incubated at 37oC and fluorescence was measured with excitation at 365 nm and 

emmision at 460 nm at three time points: 20, 40 and 60 minutes. The fluorimeter 

was calibrated with freshly prepared 4MU standard at different concentrations, 

ranging from zero to 4000 pMol of 4MU. The difference in fluorescence between 

time points (60’-40 and 40’-20’) was calculated (ΔE460/20minutes). The protein 

amount in the extract was calculated as described in 2.12.5 and the obtained 

values were used for the calculation of specific GUS activity [Ea(GUS)] according 

to this formula: 

 

                             

 

 

where: 

m is the slope according to 4MU standard curve 

 

The normalization of the GUS activity was done dividing the Ea(GUS) of a given 

sample by the Luciferase normalization factor, which was calculated by dividing 

the Luciferase activity of the sample by the average of the luciferase activity of all 

samples. With the normalized GUS values, the average and standard deviation 

were calculated for each construct and controls.  

2.13.  BY-2 protoplast system 

Tobacco BY-2 protoplasts were prepared and mainteined according to Merkle et 

al., (1996). 

2.13.1. Protoplasts preparations from Tobacco BY-2 cells 

Tobacco BY-2 protoplast was a second culture system utilized to evaluate the 

overexpression of miRNAs from introduced constructs containing a miRNA 

precursor. This system was also used for cellular localization of MRG1-GFP fused 

20min * m/pMol * µg Protein 
      ΔE460 * 1000µg /mg *  

(1)       Ea(GUS)= 
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proteins. For preparation of BY-2 protoplasts, 20ml of three-days old cultures were 

centrifuged at 400g for 5 minutes at room temperature. Cells were resuspended in 

wash solution and centrifuged as above. Wash solution was discarded and cells 

were resuspended in 13 ml of digestion solution. Cells were then transferred to a 

Petri dish, sealed and incubated overnight at 26oC in the dark. 

On the following day, protoplasts were transferred to a 50 ml tube and collected by 

centrifugation at 100g for five minutes at room temperature. Protoplasts were 

washed with 10 ml of W5 solution and centrifuged at 100g for 5 minutes at room 

temperature. Supernatant was discarded and protoplasts were resuspended in 10 

ml of W5 solution. Then, the protoplasts were incubated for 30 minutes at 4oC in 

dark. After incubation, W5 solution was discarded, protoplasts were washed twice 

with 10 ml of MMM solution and centrifuged as above. Protoplast pellet was 

resuspended in 4ml of MMM solution. At this step, protoplasts were ready for DNA 

transfection. 

 

Wash Solution    Digestion solution  

0.5 % (w/v) BSA    same as wash solution with 
0.01 % (w/v) 2-Mercaptoethanol  1 % (w/v) Cellulase Onuzuka RS 
50 mM CaCl2      0.5 % (w/v) Macerozyme Onuzuka RS 
10 mM Sodium Acetate   0.1 % (w/v) Pectinase 
0.25 M Mannitol       Sterilized by filtration 
Sterilized by filtration 
 

W5 Solution     MMM solution  

154 mM NaCl      0.1 % (w/v) MES-KOH pH 5.8 
125 mM CaCl2     15 mM MgCl2 
5 mM KCl      0.5 mM Mannitol 
5 mM Glucose     Sterilized by filtration 
pH 5.8-6.0 adjusted with KOH   
Sterilized by filtration 
 

2.13.2. Transfection of BY-2 protoplasts 

Plasmids DNA were transfected to protoplasts mediated by PEG.  In a 10 ml 

centrifuge tube, 300 μl of protoplast were mixed with 30 μg of plasmid DNA (when 

two constructs were co-transfected, 20 μg of each plasmid were used). To this 
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mixture, 300 μl of PEG solution were added and incubated for 10 minutes at room 

temperature. This incubation was stopped by adding 10 ml of W5 solution and 

protoplasts were centrifuged at 100g for five minutes at room temperature. The 

supernatant was discarded and protoplasts resuspended in 0.7ml of MS-sucrose 

solution. The protoplasts were incubated at 26oC in the dark for 20 hours. Prior to 

the RNA extraction, protoplasts were harvested as described in 2.12.3. For 

microscopy, protoplasts were gently resuspended and 20μl were transferred to a 

glass slide for visualization in a confocal laser-scanner microscopy DM RBE 

TCS4D Microscope (Leica, Bensheim).  

 

PEG solution    MS+Sucrose  solution     
25 % (w/v) PEG4000   0.4 M Saccharose 
100 mM Ca(NO3)2   in MS cell culture medium (Merkle et al., 1996) 
400 mM Mannitol    Sterilized by filtration 
pH 8-9 adjusted with KOH   
Sterilized by autoclavation  
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3. Results 

3.1. Prediction and validation of miRNA targets 

3.1.1. Prediction of novel miRNA targets 

Prediction of miRNA targets is an important method to find valuable information 

about miRNA functions. In plants, miRNAs show nearly perfect sequence 

complementarity to their targets. Due to this fact, the prediction of miRNA targets 

in plants is easier than in animals (Jones-Rhoades et al., 2006). In an attempt to 

identify novel miRNA targets, the RNAhybrid program (Rehmsmeier et al., 2004) 

was applied to search for miRNA targets in the whole Arabidopsis transcriptome, 

e.g. sequences from all predicted and validated CDS, 3’UTR and 5’UTR. The 

program was set up in a way that considers four basic assumptions concerning the 

hybridization pattern between the miRNA and the respective miRNA binding site. 

First, counting from the 5´end of the miRNA, the duplex must show perfect base 

pairing from nucleotides 8 to 12, a pattern that will be referred to as “seed”. 

Second, internal loops were allowed only with a maximum of two nucleotides in 

each strand. Third, bulges with no more than one nucleotide were permitted and 

fourth, the MFE (minimum free energy) between putative target and miRNA must 

be at least 75% of the MFE calculated for a hybrid between the same miRNA and 

its perfect counterpart (following DNA-DNA base pairing).  

The percentage of the MFE of a perfect match was used as a cutoff in this 

prediction. It was defined after analysis of the signal-to-noise ratio. To estimate the 

signal-to-noise ratio in this prediction, the total number of predicted miRNA targets 

per miRNA for the set authentic miRNAs was divided by the number of predicted 

targets per miRNA for the set of random miRNAs (10 cohorts for each miRNA). 

The set of authentic miRNA used in this analysis contain of 55 mature miRNA 

sequences, that is, one member of each miRNA family. The sequence of miRNA 

cohorts were randomly generated maintaining the di-nucleotide frequency 

observed in each of the 55 authentic miRNAs.  
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Table 5. Analysis of false-positive ratio and sensitivity.  
Ratios of false positives and sensitivity are listed for four different MFE cutoffs based on 
the MFE of the perfect match (see text above). The ratio of false positives was inferred by  
dividing the number of predicted targets per miRNA of a set of authentic miRNA by the 
number of miRNA per target for a set of random miRNAs (10 cohorts for each authentic 
miRNA). Sensitivity represents the percentage of experimentally validated miRNA targets 
found in the prediction.   
 

cutoff signal-to-noise sensitivity 

70% 1.7 100% 
72% 2 95.9% 
75% 2.6 93.1% 
77% 3.1 82.2% 
80% 5.4 72.6% 
85% 14.6 61.6% 

 
 
In Table 5, the result of the estimation of false positives (signal-to-noise ratio) and 

sensibility of this prediction is summarized. The cutoff value of 75% percent of the 

MFE of a perfect match was chosen due to sensitivity (93.1%) and an estimated 

signal-to-noise ratio of 2.6:1 (Table 5). Using this approach, the number of putative 

miRNA targets was increased by over 2-fold, with 281 predicted novel miRNA 

targets. A list including miRNA:target structures of all novel miRNA targets is 

presented in Appendix 2. Examples of four structures are shown in Figure 8. 

Several miRNAs are involved in the regulation of plant development, signal 

transduction, protein degradation, response to environmental stress, pathogen 

invasion, and regulation of their own biogenesis. miRNAs regulate the expression 

of many important genes, and the majority of these genes are transcription factors 

(Jones-Rhoades et al., 2006). In order to gain more information about predicted 

novel miRNA targets, the annotated biological functions using gene ontology (GO) 

were taken into account. GO terms for 254 targets were found in the molecular 

function class. A comparative analysis of GO annotations from predicted novel 

targets and targets against GO annotations from the whole genome categorization 

showed that some classes are underrepresented or overrepresented in both novel 

predicted and  previously predicted/validated group of targets. Three classes are 

overrepresented in previously predicted/validated targets: transferases, 

transcription factors and DNA/RNA binding proteins. Several classes are 

underrepresented: transporters, proteins with structural functions, protein-binding 

proteins, nucleic acid binding proteins, kinases and hydrolases (Figure 9). 



Results 
___________________________________________________________________________________________________________________________________ 

         56 

 

Figure 8. Predicted structures of novel miRNA targets. 
Examples of four predicted structures of miRNA:target hybrids are shown. In this example, 
all targets were taken from the CDS dataset.  For each target, the AGI code, a small 
description, the calculated MFE of the hybrid and the start position of the hybrid in the 
target sequence are given.  
 
 
From the set of novel putative targets, there are no major differences from the 

whole genome categorization, but some classes are underrepresented. These 

include structural proteins, proteins with receptor binding or receptor activity. 

Again, some are also overrepresented: nucleotide binding proteins and 

hydrolases. Comparing classes from newly predicted with previously 

predicted/validated targets also show several differences in these two groups of 

genes. Transcription factors are 4-fold increased in previous predicted/validated 

targets, whereas they are not increased in the new prediction. The same can be 

pointed out for transferases, receptor binding/activity and DNA/RNA binding 

classes. Hydrolases, kinases, nucleic acid binding, protein binding and 

transporters are classes with proportionally more targets in the new prediction than 

in the previously predicted/validated group (Figure 9).  

 

target: AT4G27330  sporocyteless  
 
 
miRNA: miR159   mfe: -33.1 kcal/mol  
position  459  
 
target 5'  U               U    U 3' 
            GAGCUCUCUUCAAUC CAAA     
            CUCGAGGGAAGUUAG GUUU     
miRNA  3' AU                      5' 
  
------------------------------------ 
 
target: AT5G52060  BCL-2-ASSOCIATED  
ATHANOGENE 1 
 
miRNA: miR160   mfe: -41.7 kcal/mol  
position  42  
 
target 5' C                    G 3'  
           GGCG GCAGGGAGUCAGGCG      
           CCGU UGUCCCUCGGUCCGU      
miRNA  3' A    A                 5'  

target: AT3G62240   zinc finger  
(C2H2 type) family protein 
 
miRNA: miR172   mfe: -34.0 kcal/mol 
position  1807  
 
target 5'  G A                  A 3' 
           G CAGUAUCGUCAAGGUUCC     
           C GUCGUAGUAGUUCUAAGG     

miRNA  3' UA                      5'
  
------------------------------------
 
target: AT1G20570   tubulin family  
protein  
 
miRNA: miR396   mfe: -33.5 kcal/mol 
position  2618  
 
target 5'          A           C 3' 
          UGGUUCAAG AAAGCUGUGGG     
          GUCAAGUUC UUUCGACACCU     
miRNA  3'                       U 5'  
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Figure 9. Analysis of GO annotation terms for molecular function category.  
The percentage of GO annotation terms for each category was divided by the percentage 
of GO annotations of the whole Arabidopsis genome.  
 
 
A set of 58 miRNA families was used for prediction of miRNA targets using 

RNAhybrid with the parameters described above. Novel putative miRNA targets 

for 48 miRNA families were found, and for nine families, no novel miRNA target 

was predicted. For one miRNA family, miR414, 383 novel miRNA targets were 

predicted, However, these candidates are not included in the results because 

miR414 may not be a miRNA but an endogenous siRNA (Xie et al., 2005). Over 

47% of the predicted targets belong to from five miRNA families, miR396 (23), 

miR413 (34), miR773 (36), miR779 (16) and miR783 (23). 
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3.1.2. Novel putative miRNA targets for conserved miRNA families 

There are 22 miRNA families in the Arabidopsis genome that are conserved in 

others plant genomes. For these miRNA families, miRNA targets had already been 

predicted and many of them had also been validated (Rhoades et al., 2002; 

Jones-Rhoades and Bartel, 2004; Wang et al., 2004b; Adai et al., 2005; Xie et al., 

2005). Some miRNA families target a group of similar genes, for example, 

miR156/157, whose targets comprise transcription factors of the group Squamosa 

promoter-binding protein-like (SPL) or miR159, whose predicted and validated 

targets are genes that encode MYB transcription factors (Rhoades et al., 2002; 

Jones-Rhoades and Bartel, 2004). Among novel targets for this group of miRNAs, 

only a few are related to previously predicted targets. Only two out of five novel 

miR156 targets and none out of six novel miR157 targets are SPL genes. One of 

the novel targets is a tyrosine-specific phosphatase (AtEYA) predicted to be target 

of miR157. AtEYA is only the second protein of tyrosine-specific phosphatases to 

be described in plants (Rayapureddi et al., 2005). 

miR159 is known to regulate a group of genes that encodes MYB transcription 

factors. We found ten novel targets for miR159. Among these is 

SPOROCYTELESS, which encodes a putative transcription factor that is required 

for the initiation of both micro- and megagametogenesis (Yang et al., 1999). The 

only predicted novel target of miR160 is BAG1, which belongs to a family of 

proteins that function in cell protection under stress and inhibit a programmed cell 

death that shares features associated with apoptosis (Doukhanina et al., 2006). 

Two auxin-responsive factors are regulated by miR167; six novel genes were 

predicted as targets, including a topoisomerase II (AtTOPII), which accumulates at 

a higher level in young seedlings in correlation with the proliferative state of this 

particular tissue (Xie and Lam, 1994). 

BREVIS RADIX (BRX) is a novel nuclear-localized regulatory factor of plant 

development that controls the extent of cell proliferation and elongation in the 

growth zone of the root tip (Mouchel et al., 2004). The observed phenotype in 

plants that do not express BRX results from a decreased level of brassinosteroid 

in root tissues due to a down-regulation of a rate-limiting enzyme of the 

brassinosteroid pathway. The low level of brassinosteroids affects auxin-
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responsive gene expression. The expression of BRX is affected by auxin, which 

induces BRX expression and is slightly repressed by brassinolide. Therefore, BRX 

acts in a feedback loop that maintains brassinosteroid levels leading to an optimal 

auxin action (Mouchel et al., 2006). BRX is a novel putative target of miR319. 

MiR396 is one of the miRNA families with the highest number of novel targets. It is 

known that miR396 regulates the expression of Growth Regulating Factors (GRF). 

Among the novel targets, there are genes that encode of members of the tubulin 

family (At1g20570 and At1g80260), a WRKY21 transcription factor and a 

mitochondrial transcription terminator factor (At5g55580). This miRNA family may 

also be involved in the regulation of ASA1, which encodes the alpha subunit of 

anthranilate synthase. This enzyme participates in the first steps in the tryptophan 

biosynthetic pathway (Niyogi and Fink, 1992). 

A predicted novel target of miR397 is DPA, a dimerization partner of E2F 

transcription factor, which is involved in stimulating the transcription of genes 

needed for G1-to-S and S phase progression in cell cycles (Vandepoele et al., 

2002; Magyar et al., 2005). 

MiR408 seems to be a new regulator of the flavonol and anthocyanin biosinthesis. 

One of the novel targets is F3H, which encodes flavone 3-hydroxylase, an enzyme 

that catalyzes an early step in flavonoid metabolism, the formation of 

dihydrokaempferol from naringenin, and therefore provides precursors for many 

classes of flavonoids and anthocyanins compounds (Pelletier and Shirley, 1996). 

Another predicted target of miR408 is PAA2, which encodes a P-Type ATPase 

that mediates copper transport to the chloroplast thylakoid lumen. PAA2 is 

required for the accumulation of copper-containing plastocyanin in the thylakoid 

lumen and for effective photosynthetic electron transport (Abdel-Ghany et al., 

2005). 

3.1.3. Novel putative miRNA targets for nonconserved miRNA 

families 

Many miRNA families are found exclusively in Arabidopsis; they are referred as 

nonconserved miRNA families. In Arabidopsis there are 35 nonconserved miRNA 

families (Sunkar and Zhu, 2004; Wang et al., 2004b; Xie et al., 2005; Lu et al., 
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2006). This count dos not include 49 additional nonconserved miRNAs have that 

been recently described (Arteaga-Vazquez et al., 2006; Rajagopalan et al., 2006; 

Fahlgren et al., 2007) but did not appear in the release 9.0 of MIRBASE 

(http://microrna.sanger.ac.uk/). Here, only data of 35 nonconserved miRNA 

families that are present in the last release of MIRBASE are described.  

There are several members of Pentatricopeptide repeat-containing (PPR) protein 

targets of miR161 (Allen et al., 2004). An additional PPR is the only predicted 

novel target of miR161. Another miRNA, miR400, is predicted to have eleven 

PPRs as targets. Four more PPRs were predicted as targets for this miRNA 

(Figure 10). In addition, five PPRs were predicted yet as target of yet four more 

miRNA families: miR167, miR394, miR396 and miR413 (two targets). Another 

target of miR400 is gene encoding an auxin-responsive factor (ARF1), ARFs are 

transcription factors that mediate responses to the plant hormone auxin. ARFs 

encoding genes are targets of miR160 (ARF17 and ARF10) and miR168 (ARF8). 

ARF1 is a transcriptional repressor (Ulmasov et al., 1999; Tiwari et al., 2003) and 

arf1 mutations enhance the phenotypes observed in arf2 mutant plants. They are 

delayed in several processes related to plant aging, including initiation of 

flowering, rosette leaf senescence, floral organ abscission and silique ripening 

(Ellis et al., 2005). 

 

 

Figure 10. Pentatricopeptide (PPR) genes predicted as targets of miR400. 
Four PPRs genes are putative novel targets of miR400. Other 11 PPR genes were 
previously predicted as miR400 targets (Sunkar and Zhu, 2004). Nucleotides with green 
background are those that show Watson-Crick complementarity to the miRNA. Yellow 
background indicates nucleotides that show G:U pairing. Mismatches have no background 
color.   
 

MiR413 also constitutes a miRNA family with a high number of predicted targets 

(34). Among these there are four GTPases genes, two from the Rab family and 
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two from the Rho family. Other targets are two genes involved in flowering time 

control. Early Flowering 8 (ELF8) is required (together with ELF7) for the 

enhancement of histone 3 trimethylation at Lys 4 in Flowering Locus C (FLC) 

chromatin (He et al., 2004). Another novel target of miR413 also affects FLC 

expression. Mutation in the AtMBD9 leads to a markedly decrease in the 

expression of FLC. Such reduction was associated with a significant decrease in 

the acetylation level of histones H3 and H4 in the FLC chromatin of atmbd9 

mutants (Peng et al., 2006). 

Mir415 could be involved in the siRNA silencing pathway, since its predicted target 

is a gene encoding the largest subunit of RNA polymerase IV (Pol IV). Pol lV is 

involved in the production of small RNAs of 24 nt that are required for de novo 

cytosine methylation (Herr et al., 2005; Kanno et al., 2005). 

MiR773 is the miRNA family with the highest number of predicted targets (36 

putative targets). This includes genes encoding: a member of the WAVE complex, 

ITB1-SCAR2; an acyl-activating enzyme (AAE7); a Catalase 2 (CAT2); HMA1, a 

metal-transporting P1B-type ATPase that was recently characterized as an 

additional way of importing copper in the chloroplast (Seigneurin-Berny et al., 

2006); Arabidopsis H+-ATPase 3 (AHA3); two B3 transcription factors; a defensin-

like protein (DEFL) and tubulin alpha-3/alpha-5 chain (TUA5). MiR774 is known to 

target two members of the F-box gene family (Lu et al., 2006). No other F-box 

genes were found among seven putative novel targets. Interestingly, five putative 

targets are members of the S-locus protein kinase gene family (Figure 11A). 

Another family with several members predicted to be target of one miRNA is the 

Ulp1 protease gene family. Seven genes were predicted to be targets of miR781 

(Figure 11B). 
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Figure 11. Alignment of miRNAs and predicted binding site. 
A, members of the S-locus protein kinase gene family predicted to be targets of miR774. 
B. predicted targets of miR781, members of the Ulp1 protease gene family. Nucleotides 
marked with green background are those that show Watson-Crick complementary to the 
miRNA, yellow indicates G:U pairing. Mismatches have no background color.   
 

3.1.4. Validation of miRNA targets 

Some miRNA targets were chosen for validation experiments. The targets were 

selected based on the gene family they belong to, namely the MYB gene family. 

Other targets were selected because they were predicted to be targets of miRNAs 

that were already being subject of validation experiments. In order to validate 

miRNA targets, both target DNAs and miRNA precursors were cloned. Then, both 

constructs were co-transfected to Arabidopsis AT7 protoplasts. RNA from 

protoplasts was extracted and the mapping of the cleavage site was done with the 

method RNA ligation mediated – rapid amplification of cDNA 5’ ends (5’RACE). 

Before the validation experiments, northern blots were prepared to detect the 

miRNAs that were going to be used in the validation experiments. 
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3.1.4.1. Detection of mature miRNAs 

Northern blots were employed to detect whether the mature miRNA was produced 

after transfection of AT7 protoplasts with the precursor of this miRNA. For 

experiments involving miR161 and miR414, tobacco BY-2 protoplasts were also 

used. Precursors of miRNAs miR156h, miR159a, miR161, miR172a, miR395d and 

miR414 were cloned into pMAV5-3’GFG vector. In these constructs, the GFP was 

replaced by the miRNA precursor and CaMV 35S promoter drives its expression. 

Arabidopsis AT7 protoplasts were transfected with a construct harboring either the 

miRNA precursor or the empty vector. RNA was extracted, separated in 

polyacrylamide gels and blots to detect small RNA were prepared (Figure 12). 

Four of the miRNAs tested could be detected in the northern blot: miR161 in both 

protoplast systems (Figure 12A), miR159, miR156 and miR395 in the AT7 

protoplast system (Figure 12B, D and F, respectively). For miR161 and miR395 a 

markedly difference was observed in the expression level between protoplasts 

transfected with the miRNA precursor or protoplasts transfected with the empty 

vector. In fact, miR395 was not detected in protoplasts transfected only with the 

empty vector. The expression levels of miR156 and miR159 did not show 

differences between different transfections. Two miRNAs were not detected with 

northern blots, miR414 and miR172 (Figure 12C and E, respectively). In all blots, 

there was a positive control for the hybridization, which is a DNA oligonucleotide 

with the same sequence of the mature miRNA, shown only for blots of miR161, 

miR414 and miR172. Those miRNAs that could be detected by northern blots, 

were further used for miRNA target validation experiments.  
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Figure 12. Detection of mature miRNAs expressed in protoplasts. 
Northern blots to detect mature miRNAs were prepared from denaturating polyacrylamide 
gels. In each lane, 20 μg of total RNA was loaded. A positive control, consisting of a DNA 
oligonucleotide with the same sequence as the corresponding mature miRNA was also 
included on all blots, but is shown for miR161 (A), miR414 (C) and miRNA172 (E). 
U6snRNA was used as loading control. An RNA oligonucleotide of 21 nucleotides in 
length was used as size marker. The position corresponding to 21 nucleotides is 
indicated.  
 

3.1.4.2. Validation of miRNA targets 

Validation of miRNA targets takes advantage of a modified RNA ligase-mediated 

rapid amplification of cDNAs 5’ends (5´RACE) approach, which is used to 

precisely map the position of the cleavage induced by the RISC complex (Llave et 

al., 2002a). Normally, the source RNA for 5´RACE is total RNA from any plant 
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organ (Palatnik et al., 2003; Xie et al., 2003; Allen et al., 2004; Jones-Rhoades 

and Bartel, 2004; Mallory et al., 2004a; Mallory et al., 2004b). Transient co-

expression of pre-miRNA and the miRNA target in tobacco leaves was also used 

for miRNA target validation. In these experiments, RNA was extracted and used 

for 5´RACE (Llave et al., 2002b; Palatnik et al., 2003) or for northern blot 

experiments to show the presence of cleavage products (Achard et al., 2004). In 

this work, 5´RACE was used to validate miRNA targets. RNA samples used in 

these experiments were extracted from AT7 (Arabidopsis) protoplasts that were 

transfected to overexpress both a precursor miRNA and a putative miRNA target. 

All putative targets were cloned in fusion with 3´GFP, in order to avoid short 

5´RACE products, originated when the position of the miRNA binding site is close 

to the stop codon of the cDNA, therefore primers annealing to the GFP sequence 

could be used in the PCR (Table 6).  

 

Table 6. Validations experiments of predicted miRNA targets. 
All putative miRNA targets were cloned into pMAV5-3’GFP in translational fusion with 
GFP. Targets that were predicted previously, the reference is given. (*) denotes targets 
that were also predicted using the strategy showed in this work. (**) denotes targets found 
with RNAhybrid program, that do not comply with the perfect match percentage rule.  
 

miRNA Target name AGI code Prediction reference 
miR156 MYB94 At3g47600 This work** 
miR159 MRG1 At2g34010 This work 
miR159 ACS8 At4g37770 Schwab et al., (2005)* 
miR159 MYB101 At2g32460 Rhoades et al., (2002)* 
miR159 MYB125 At3g60460 Rhoades et al., (2002) 
miR159 CKL6 At4g28540 This work** 
miR161 GAE1 At4g30440 This work** 
miR161 PRF2 At4g29350 This work** 
miR395 MYB58 At1g16490 This work** 

 
 
Two MYB transcription factor genes were validated as miR159 targets. 

Phylogenetic analysis grouped MYB101 in the clade of MYB genes called 

GAMYB. GAMYBs have been suggested to be involved in the gibberellin (GA)-

mediated promotion of flowering by activation of the floral meristem identity gene 

LEAFY (Gocal et al., 2001) and in the regulation of anther development (Achard et 

al., 2004). All AtGAMYB genes were predicted as mir159 targets (Rhoades et al., 

2002; Jones-Rhoades and Bartel, 2004). Moreover, for MYB33, MYB65 (Palatnik 
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et al., 2003) and MYB101 (Reyes and Chua, 2007) the cleavage products 

recovered by 5’RACE precisely mapped the cleavage of these two transcripts in 

the miRNA binding site motif. Using the 5’RACE strategy, the cleavage of MYB101 

by miR159 could also be confirmed (Figure 13).  

 

 

Figure 13. Experimental validation of predicted miRNA targets. 
Each top strand depicts a target mRNA sequence and each bottom strand depicts the 
miRNA. Matches (Watson-Crick pairing) are indicated with vertical dashes, mismatches 
are unmarked and G-U wobbles are indicated with a colon. Arrows indicate cleavage sites 
verified by 5’ RACE, with the number of cloned RACE products shown above. 
 

A second validated miR159 target is MYB125, also known as DUO1 (Figure 13). 

MYB125/DUO1 control male gamete formation in Arabidopsis. The expression of 

MYB125/DUO1 occurs specifically in the male germ line. Mutations in 

MYB125/DUO1 produce a single larger diploid sperm cell unable to perform 

fertilization (Durbarry et al., 2005; Rotman et al., 2005). A third miR159 target 

gene is MRG1, which stands for MICRORNA-REGULATED GENE1 (MRG1). 

MRG1 is annotated as an expressed protein (The Arabidopsis Genome Initiative, 

2000). MRG1 and MYB101 were chosen for additional experiments in order to 

understand the function of these genes.  ACS8 is another target that was 

successfully validated. ACS8 is a member of a gene family and codes for 1-
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aminocyclopropane-1-carboxylic acid synthase, a key regulatory enzyme in the 

biosynthetic pathway of the plant hormone ethylene (Vandenbussche et al., 2003). 

Only one target of miR161 could be validated. This gene encodes an enzyme that 

acts as a nucleotide sugar UDP-4-epimerase interconverting UDP-D-glucuronate 

and UDP-D-galacturonate (Molhoj et al., 2004).  

No other targets could be validated as miRNA targets using the approach 

described here. For MYB94 and PRF2, no PCR fragments in any 5’RACE library 

were recovered. A second class of putative targets, which were also not validated, 

comprises MYB58, MYB97 and CKL6. PCR fragments were cloned and 

sequenced. However, it was not possible to detect a specific cleavage site 

because no single clone matches to the same nucleotide position (Figure 14). 

 

 

Figure 14. miRNA/targets duplexes of non validated targets. 
Hybrid structure between and miRNA and putative targets are shown. These genes were 
not confirmed as miRNA targets using 5’RACE. A, miR156:MYB94; B, miR159:CKL6; 
 C, miR161-PRF2; D, miR395-MYB58. miRNA sequence are shown in green.  
 

3.2. Functional analysis of miR159 targets - MYB101 

3.2.1. Isolation of transgenic plants to overexpress MYB101 and 

MYB101mutBS 

Besides the mapping of the mRNA cleavage by RISC, another approach to study 

the regulation of a miRNA target is to express (or overexpress) a miRNA target 

with point mutations at the miRNA binding site. These point mutations change the 

nucleotide sequence but the amino acid sequence of the protein remains 
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unaltered (Palatnik et al., 2003; Mallory et al., 2004a; Fujii et al., 2005; Mallory et 

al., 2005). The MYB101 cDNA was cloned into pMAV5-3’GFP, replacing the GFP 

gene. A mutant variant of this cDNA was then generated using a PCR-based site-

directed mutagenesis to introduce point mutations in the MYB101 cDNA. These 

point mutations do not alter the deduced amino acid sequence of the MYB101 

protein (Figure 15). For each of these constructs, the cassette consisting of CaMV 

35S promoter, MYB101 and Tnos terminator was sub-cloned into a binary vector, 

pGPTV-BAR. Using Agrobacterium tumefaciens, Arabidopsis thaliana Col-0 plants 

were transformed and transgenic plants were selected using BASTA. After 

selection in the T1 generation, BASTA resistant plants were genotyped using 

primers P35S and L018. A total of five 35Spro:MYB101mutBS and seven 

35Spro:MYB101 T1 lines were isolated. 

 

 

Figure 15. MYB101 overexpressor constructs. 
A, wild-type MYB101 cDNA was cloned between the 35S promoter and the Tnos 
terminator in the pMAV5-3’GFP vector, replacing the GFP cDNA. The sequence of the 
miR159 binding site is shown. B, MYB101mutBS was generated by site-directed 
mutagenesis and cloned as described above. The alteration to the nucleotide sequence in 
the miRNA target motif is shown, and the nucleotides underlined are those differing from 
the wild-type sequence. The deduced amino acid sequence is shown in the middle.  
 

3.2.2. Effects of ectopic expression of MYB101 and MYB101mutBS 

All overexpressing lines were further analyzed in the T2 generation, concerning 

expression level of the MYB101 and phenotypic abnormalities due to MYB101 

ectopic expression. The expression level of MYB101 transcript in T2 lines was 

investigated using RT-PCR. Were used five lines, two plants from each line, 
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transformed with 35Spro:MYB101mutBS and seven lines with 35Spro:MYB101 

constructs. Plants were first genotyped for the presence of the corresponding 

construct. Most of 35Spro:MYB101mutBS lines show a constitutive expression of 

MYB101. The RNA samples for this experiment were isolated from adult leaves, a 

tissue where MYB101 normally is expressed in very low levels. In contrast, most 

lines carrying a normal version of MYB101 do not show a detectable expression of 

this gene (Figure 16).  

 

 

Figure 16. Gene expression analyses in MYB101 overexpressing plants. 
RT-PCR from RNA of leaves of positive T2 plants transformed with either 35Spro:MYB101 
or 35Spro:MYB101mutBS. Each line was analyzed in duplicate. 
 

Plants show phenotypes that differ from Col-0 wild-type. Transgenic plants 

growing under long-day conditions show smaller leaves as compared to the Col-0 

plants (Figure 17B-G).  This phenotype is evident in plants that carry both types of 

constructs. In 35Spro:MYB101mutBS plants, however, the effect is much more 

evident (Figure 17D). Plants grown under short-day conditions also show 

differences in phenotype (Figure 17E-G). After 10 weeks, 35Spro:MYB101 plants 

(Figure 17F) did not differ from Col-0 wild-type (Figure 17E). On the contrary, 

35Spro:MYB101mutBS plants (Figure 17G) were smaller as compared to the wild-

type plants. 
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Figure 17. Effects of ectopic expression of MYB101. 
Effects of the overexpression of MYB101 were observed in seedlings and in adult plants. 
A-C, two-week-old seedlings under long-day conditions (16h light-8h dark). From left to 
right: Col-0, 35Spro:MYB101 and 35Spro:MYB101mutBS. E-G, thirteen-week-old plants 
growing under short-day conditions (8h light-16h dark). From left to right: Col-0, 
35Spro:MYB101 and 35Spro:MYB101mutBS.  
 

3.2.3. Gene expression pattern of MYB101 

The gene expression pattern of MYB101 was investigated using promoter GUS 

lines and data from microarray experiments from the AtGenExpress project 

(Schmid et al., 2005). 

3.2.3.1. MYB101 expression analysis from AtGenExpress 

The AtGenExpress project was designed in order to create an atlas of gene 

expression of Arabidopsis (Schmid et al., 2005). MYB101 expression pattern data 

was retrieved from the home-page (http://jsp.weigelworld.org/expviz/expviz.jsp) 

using the AtGenExpress Visualiation Tool. The data presented here were taken 

from the developmental data set, which includes RNA samples from different 

tissues. The experiments that were used to create Figure 18 are listed in  
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Appendix 3. According to these data, the expression of MYB101 is observed in 

stamen and, to a greater extent, in pollen.   

 

 

Figure 18. MYB101 expression pattern in wild-type Col-0 
Expression estimates by gcRMA were taken from the AtGenExpress Arabidopsis 
expression atlas, based on Affymetrix ATH1 analyses. Normalized values were obtained 
by normalizing absolute values to median, for each gene, across all samples (Schmid et 
al., 2005).  
 

3.2.3.2. Promoter-GUS analysis of MYB101 

The expression pattern and functional role of the MYB101 promoter was 

examined. For this purpose, a promoter fragment of 1748 bp, from the start codon 

upstream to the next gene, was fused to the beta-glucuronidase (GUS) reporter 

gene uidA in the pANGUS vector. Plasmid DNA was then transferred to 

Arabidopsis plants via floral dip infiltration, mediated by Agrobacterium 

tumefaciens to allow expression of the GUS gene under the control of the MYB101 

promoter. 

Histochemical staining of five independent transgenic Arabidopsis lines of the T2 

progeny harboring the MYB101pro:GUS construct showed blue staining in different 

organs of the plant at different developmental stages (Figure 19). Seedlings 

stained 13 days after germination grown on MS plates long-days showed GUS 

expression in cotyledons, in young leaves (Figure 19A-B) and in the primary root, 
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specifically in the root tip (Figure 19D). In flowers, GUS expression was detected 

in the sepals and petals, moreover, marked expression could be observed only in 

pollens grains and stamen (Figure 19C). No GUS expression was observed in 

secondary roots, adult and cauline leaves, stem and siliques. 

 

 

 

 

Figure 19. GUS staining of Arabidopsis harboring MYB101pro:GUS 
constructs.  
Seedlings were grown on MS plates and plants were cultivated in short days for 8 weeks 
and then two more weeks in long-day conditions. A, 13-days-old seedlings. B, detail of 
developing leaf in seedlings. C, detail of staining in flower. D, detail of root tip of 13-days-
old seedling. 
 

3.2.4. T-DNA insertion lines in MYB101 

Five T-DNA insertion lines were found in the MYB101 gene using a tool from the 

T-DNA Express database (http://signal.salk.edu/cgi-bin/tdnaexpress). Two of them 

were ordered and named myb101-1 and myb101-2, both were from the SALK T-

DNA population. Primers for genotyping of these T-DNA lines were designed using 

the T-DNA Primer Design tool (http://signal.salk.edu/tdnaprimers.2.html). This tool 

specifically designs primers to be used with T-DNA left border or right border of 

almost any available T-DNA population. Plants from both lines were grown in soil, 

and then, DNA was extracted and genotyped for the presence of the T-DNA using 

PCR with gene-specific primers, L048 and L050 (Figure 20), and the SALK T-DNA 

left border primer. PCR fragments were sequenced to confirm the presence of the 

T-DNA in each allele. Then, PCR with gene specific primers was done to identify 
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homozygous plants homozygous for each allele. In order to confirm the right 

border of the T-DNA insertion, PCR was used to amplify fragments from each 

allele using other gene specific primers, L047 and L049 (Figure 20), and SALK T-

DNA right border primer. In case of myb101-1, it was possible to amplify a 

fragment. Sequencing of this fragment revealed that the T-DNA insertion event 

resulted in a deletion of three nucleotides in MYB101 (Figure 20). For myb101-2, a 

fragment could be amplified using L050 and the SALK T-DNA left border primer. 

Sequencing of this fragment confirmed that there are at least two T-DNA insertions 

in the allele myb101-2. In addition, a deletion of ten nucleotides was also observed 

(Figure 20).  

 

 

Figure 20. Schematic diagram of MYB101 T-DNA insertion lines. 
The genomic structure of MYB101 is shown. Exons are represented as solid boxes and 
introns as open boxes. For each T-DNA insertion line the mutant allele in the upper 
sequence and the wild-type allele in the lower sequence are shown. The gray box 
indicates the nucleotides deleted in the mutant alleles; L047, L048, L049 and L050 are 
primers used for genotyping of these T-DNA lines.  
 
 
Flowers of wild-type and of homozygous plants from two T-DNA insertion lines 

were collected and their RNA was extracted, in order to verify if these lines are 

true knockouts. RT-PCR as performed with primers to amplify the whole MYB101 

transcript. ACTIN2 was used as reference. A fragment corresponding to the size of 

the full length transcript of MYB101 was recovered only in the wild-type sample. 

However, no detectable expression was observed in any of the T-DNA lines 

(Figure 21). Homozygous plants of myb101-1 and myb101-2 grown in soil did not 

show any morphological difference from control plants (Col-0 ecotype). 
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Figure 21. Detection of MYB101 transcript in T-DNA insertion lines. 
RT-PCR analysis to detect the whole transcript of MYB101 was done with total RNA 
extracted from flowers of Col-0, myb101-1 and myb101-2 plants. For MYB101, 35 PCR 
cycles and for ACTIN2, 30 PCR cycles were performed.   
 
 

3.3. Functional analysis of miR159 targets - MRG1 

MRG1 is a gene for which no information is available in any database. The 

nucleotide and peptide sequences do not match to any other sequence found in 

any database, apart from another putative gene present in the genome of 

Arabidopsis, At1g29010. In contrast to MRG1, the expression of At1g29010 could 

not be detected by RT-PCR (data not shown). However, this similarity is very low. 

As MRG1, At1g20910 is also annotated as an expressed protein. What these two 

genes share is a miR159 binding site. MRG1 does not have any know motif and 

information about MRG1 expression was not available. 

3.3.1. Gene expression pattern of MRG1 

The gene expression pattern of MRG1 was investigated using promoter GUS lines 

and analysis of MRG1 transcript levels in different tissues of Arabidopsis Col-0. 

3.3.1.1. Expression pattern of MRG1 

The expression pattern of MRG1 was investigated by RT-PCR with RNA samples 

from different tissues of Arabidopsis Col-0. RNA was extracted from seedlings 

grown on MS plates for 13 days under long-day conditions. Roots were used from 

seedlings grown for 18 days on MS plates. A mix of flower and flower buds in 

different stages (referred as flower), cauline leaves, adult leaves stem and siliques 

were harvested from adult plants that were grown in soil in short days for six 

weeks and then three more weeks in long days. With the MRG1 primers used in 
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this experiment anneal to sites that surround the miR159 binding site. For ACTIN2, 

the PCR was done with 30 cycles. For MRG1, each sample was split into two 

halves after 30 cycles, and one half of each sample was submitted to 10 more 

cycles. MRG1 was detected in seedlings, flowers and leaves after 30 cycles. After 

40 cycles, expression was detected also in roots and stems. No expression was 

detected in cauline leaves and siliques (Figure 22). 

 

 

Figure 22. Expression pattern of MRG1 in Arabidopsis Col-0 wild-type. 
Total RNA was extracted from different tissues of Arabidopsis ecotype Col-0. The set of 
primers for the MRG1 transcript was designed to amplify a fragment that contains in the 
miR159a binding. The negative control corresponds to RNA not subjected to reverse 
transcription reaction. For MRG1, aliquots of the reactions were taken after 30 cycles, the 
remaining samples were submitted to 10 more cycles. ACTIN2 is the RNA loading control.  
 

3.3.1.2. Promoter-GUS analysis of MRG1 

To characterize the temporal and spatial activity of the promoter MRG1, an 

MRG1pro:GUS reporter gene construct was generated. A fragment of 1800 

nucleotides, from the start codon of MRG1 upstream to the next gene, was cloned 

into pANGUS. This binary vector was transferred into Agrobacterium tumefaciens. 

Transgenic lines were generated via floral dip infiltration. After selection of 

transformants, five independent lines from T2 generation were used for 

hystochemical staining. Seedlings grown on MS plates in long-days and plants 

grown in soil maintained for six weeks under short day conditions followed by 3 

weeks in long days were analyzed. Promoter activity was detected in almost all 

Arabidopsis tissues. In 8 and 13-days old GUS staining was observed in 
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cotyledons, young leaves, primary and secondary roots (Figure 23A-D). In adult 

plants, GUS staining was detected in rosette leaves, in flower organs (sepals, 

petals, filaments, stamen and pollen; Figure 23E-F). Siliques were not stained. 

However, seeds showed a positive stain (Figure 23G). 

 

 

Figure 23. GUS staining of Arabidopsis harboring MRG1pro:GUS constructs. 
Seedlings were grown on MS plates and plants cultivated in short-days for 8 weeks and 
two more weeks in long-days. A and B, overview of Arabidopsis seedlings that were 8 and 
13 days old, respectively. C-D, details of primary root and secondary root from 13-days-
old seedligs. E-G, different tissues from adult plant. Rosette leaf, flower and seeds, 
respectively. A wild-type Col-0 seed is indicated by an arrow. 
 
 

3.3.2. Cellular localization of MRG1:GFP fusion protein 

In order to gain more information about MRG1, a translational fusion of MRG1 and 

GFP was constrcuted. The cDNA of MRG1 was cloned into the pMAV5-3’GFP 

vector. This construct was used for transient transfection of BY-2 tobacco 

protoplasts. Using confocal laser-scanning microscopy, the MRG1:GFP fusion 



Results 
___________________________________________________________________________________________________________________________________ 

         77 

protein was observed in the nucleus of BY-2 protoplasts (Figure 24A). GFP alone 

is distributed between the nucleus and the cytoplasm (Figure 24B).   

 

  

Figure 24. In vivo localization of MRG1:GFP fusion protein.  
BY-2 protoplasts were transfected with plasmids in order to express MRG1:GFP (A) or 
GFP alone (B). Protoplasts were anlyzed by confocal laser-scanning microscopy. 
 

3.3.3.  Isolation of transgenic plants overexpressing MRG1 and 

MRG1mutBS 

Similar to the analysis of MYB101, the effect of overexpressing MRG1 in 

Arabidopsis was investigated. The cDNA sequence of MRG1 was cloned into the 

pMAV5-3’GFP vector, replacing GFP ORF, to create the construct 

35Spro:MRG1:Tnos. A mutated form of this gene was also created, 

35Spro:MRG1mutBS:Tnos. In this construct, the sequence of MRG1 has seven 

silencing point mutations in the miR159 binding site, leaving the protein sequence 

unchanged (Figure 25). Both cassettes, 35Spro:MRG1:Tnos or 

35Spro:MBRG1mutBS:Tnos, were sub-cloned into a binary vector, pGPTV-BAR. 

Using A. tumefaciens, Arabidopsis Col-0 plants were transformed and, positive 

transgenic plants were selected using BASTA. 

After selection in the T1 generation, BASTA resistant plants were genotyped using 

primers P35S and L015. For each construct, five lines independent were isolated. 
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Figure 25. MRG1 overexpressor constructs. 
A, wild-type MRG1 cDNA was cloned between the 35S promoter and the Tnos terminator 
in the pMAV5-3’GFP vector replacing the GFP cDNA. The sequence of the miR159 
binding site is shown. B, MRG1mutBS was generated by site directed mutagenesis and 
cloned as described above. The altered nucleotides in the miR159 binding site are 
underlined. The deduced amino acid sequence is shown in the middle.  
 

3.3.4.    Effects of ectopic expression of MRG1 and MRG1mutBS 

Plants carrying 35Spro:MRG1 and 35Spro:MRG1mutBS were analyzed in the T2 

generation. The expression level of MRG1 and the phenotypical abnormalities 

were investigated. The expression level of MRG1 was investigated by RT-PCR. All 

T2 lines were used and, samples were collected from two plants per line. The 

genotype of each plant was confirmed by PCR and RNA was isolated from rosette 

leaves. In most 35Spro:MRG1 plants, the MRG1 transcript was not observed. 

MRG1 transcript was detected only in two samples from two different lines (Figure 

26A). In 35Spro:MRG1mutBS plants, the MRG1 transcript accumulated at 

detectable levels (in all investigated lines and in all samples). The MRG1 transcript 

was not observed in Col-0 leaves (Figure 26B).  
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Figure 26. MRG1 expression in transgenic lines 
RT-PCR was done to analyze the MRG1 expression level in plants transformed in with 
either 35Spro:MRG1 or 35Spro:MRG1mutBS.  Leaves of T2 plants genotyped for the 
presence of constructs were used and lines were analyzed in duplicates. A, RNA sample 
from plants harboring 35Spro:MRG1 construct. B, RNA samples from 35Spro:MRG1mutBS 
plants. Reactions without cDNA served as negative controls. The number of cycles is 35 
for MRG1 and 30 for ACTIN2.  
 

Phenotypical differences were observed in plants harboring both constructs to 

overexpress MRG1. In plants growing under short day conditions in a 

phytochamber (e.g. under artificial light), an up-curling of leaf blades and 

elongated petioles were observed in three-week-old plants (Figure 27A-E). At this 

stage, no differences were observed between 35Spro:MRG1 and 

35Spro:MRG1mutBS plants. In ten-week-old plants there were more differences 

among different lines and constructs. Plants expressing 35Spro:MRG1mutBS 

exhibited a more severe phenotype. They were darker green and smaller than 

their wild-type counterparts (Figure 27F-J). In addition, they displayed an 

undulated pattern of the leaf border. In four 35Spro:MRG1 lines, the plants display 

darker pigmentation and leaves that differ slightly from the wild-type (Figure 27I). 

In one 35Spro:MRG1 line, plants show up-curling and serrated leaves (Figure 27J). 

Plants that were kept in short days for six weeks and then transferred to long-day 

conditions for two more weeks showed additional phenotypes that differ from the 

wild-type (Figure 27K). Compared to the wild-type, overexpression of MRG1 
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seems to diminish apical dominance, which was more evident in lines carrying the 

mutated version of the gene.  

 

Figure 27. Effects of ectopic expression of MRG1 
Overexpression of MRG1 caused an up-curling leaf phenotype and elongated petioles in 
three-week-old seedlings maintained in short-day. Adult plants (before bolting) were ten 
weeks old, maintained in short-day. Plants from pictures A and F are Col-0; from pictures 
B, C, G and H are 35Spro:MRG1mutBS plants; from pictures D,E,I, and J were 
35Spro:MRG1 plants. Plants overexpressing 35Spro:MRG1mutBS exhibited a more severe 
phenotype. They were darker and smaller than the wild-type plants (G and H) and showed 
serrated leaves (G) or an undulated leaf border (H). 35Spro:MRG plants were darker and 
showed leaves that differ slightly from wild-type (I and J). Besides, in one line up-curling 
and serrated leaves were observed (J). Adult plants with inflorescence (K) were nine 
weeks old. They were kept in short days for six weeks and then, transferred to long-day 
conditions. In these plants, more secondary bolts were observed in plants that harbor both 
overexpressor constructs. In K, from the left to right: 35Spro:MRG1mutBS (same line as C 
and H), 35:MRG1mutBS (same line as B and G), Col-0 and 35Spro:MRG1 (same line as E 
and J). Plants from D and I were also from the same line. These plants were grown in a 
phytochamber.  
 

Plants that were maintained at the greenhouse under short day conditions showed 

additional phenotypes. 35Spro:MRG1mutBS plants showed a bush appearance 
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due to a higher number of leaves (Figure 28A-B). In these plants, the rosette leaf 

morphology was also altered, the petiole was elongated and, the leaf blade size 

was reduced and up-curled. In addition, leaf blades were slightly serrated in the 

region proximal to the petiole (Figure 28C-E). The cauline leaves showed up-

curling and undulated leaf margins (Figure 28F). At this stage and conditions, 

35Spro:MRG1 plants did not differ from the wild-type. 

 

 

Figure 28. Additional phenotypes in 35Spro:MRG1mutBS plants 
Plants kept in a greenhouse in short days showed an increased number of leaves (A, from 
left to right, Col-0 and two 35Spro:MRG1mutBS plants). A detailed view of the plant in the 
middle of picture A is shown in B.  Leal morphology was also altered in 
35Spro:MRG1mutBS plants (C, D, E and F). Rosette leaves had elongated petioles, small 
leaf blade areas and were often up-curled (C, D and E). Cauline leaves also show altered 
morphology, with up-curled and undulated leaf blade border (F). In C, D and F, leaves on 
the left are from Col-0 and those from on the right are 35Spro:MRG1mutBS. 
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3.4. Promoter analysis of miRNA genes 

Promoters of three miRNA genes were investigated for spatial and temporal 

expression patterns. In addition, in two of them, the effect of serial deletions of the 

promoter sequence was also analyzed. 

3.4.1. Promoter GUS lines 

Promoter GUS lines were generated for MIR159A, MIR159B and MIR161. A 

fragment of MIR159A consisting of 1735 bp, from the beginning of the predicted 

stem loop sequence up to the next gene, was cloned in to the pCR2 vector 

(Invitrogen). In the same manner, a fragment of 2017 bp upstream of the predicted 

MIR159B precursor sequence was also isolated. Both promoter sequences were 

sub-cloned into pANGUS binary vector. The promoter of MIR161, starting at the 

precursor of MIR161 and ending 2004 bp upstream, was cloned directly into the 

pANGUS vector. Promoter clones were transferred to Agrobacteria and transgenic 

plants were generated. After selection in the T1 generation, several lines for each 

construct were recovered and promoter activities were investigated in five lines of 

the T2 generation. By the time that these promoters were cloned, Xie et al., (2005) 

described the transcription start site for several miRNA promoters, including 

MIR159A, MIR159B and MIR161. The schematic representations of cloned 

miRNA promoters are presented in Figure 29. Transcription start sites are denoted 

as position +1. Positions +325, +481 and +138 represent the end of the cloned 

sequences, corresponding to the beginning of each miRNA precursor.  

 

 

Figure 29. Schematic diagram of miRNA promoter GUS constructs. 
Promoter of MIR159A (A), MIR159B (B) and MIR161 (C) were cloned in front of the beta-
glucuronidase (GUS) reporter gene uidA in the pANGUS vector. 
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The expression pattern of MIR159A using promoter GUS lines revealed that 

MIR159A is a gene active in many Arabidopsis tissues and, at different 

developmental stages (Figure 30). In seedlings grown on MS plates, GUS staining 

was observed in all parts, e.g. cotyledons, young leaves, primary root, secondary 

roots and roots hairs  (Figure 30A-C). In adult plants, staining was detected in 

rosette leaves, in all flower organs and in the developing seedling (Figure 30A-C). 

No staining was observed in stems and cauline leaves.  

 

    

 

Figure 30. GUS staining of Arabidopsis harboring MIR159Apro:GUS 
construct.  
Seedlings were grown on MS plates. Plants were cultivated in short days for 8 weeks, and 
then three more weeks in long days. A and B, overview of Arabidopsis seedlings with 8 
and 13-days-old, respectively. C, from above to bottom, Details of root hairs, primary root 
and secondary root. D-F, different tissues from adult plants. Rosette leaf, flower and 
silique in an early developmental stage, respectively. 
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The activity of promoter MIR159B showed a pattern overlapping with that of 

MIR159A. However, GUS staining of MIR159Bpro:GUS plants was generally 

much weaker. In seedlings, GUS staining was detected in cotyledons, in young 

leaves and in roots (Figure 31A-C). In roots, the GUS staining concentrated near 

to the root tip (Figure 31C).  

 

 

Figure 31. GUS staining of Arabidopsis harboring MIR159bpro:GUS construct. 
Seedlings were grown on MS plates. Plants cultivated in short days for 8 weeks and three 
more weeks in long days. A and B, overview of Arabidopsis seedlings with 8 and 13-days-
old, respectively. C, details of staining in roots. D-F, different tissues from adult plant. 
Rosette leaf, flower and silique in early developmental stage, respectively. 
 
 
A fragment of 2004 nucleotides from the stem-loop of MIR161 upstream to the 

next gene was used to analyze the promoter activity of MIR161. This gene seems 

to be expressed in a broad range of tissues (Figure 32). This promoter showed a 

strong activity in seedlings where GUS staining was detected in cotyledons, 

hypocotyls, roots, root hairs, secondary roots and emerging leaves (Figure 32A-



Results 
___________________________________________________________________________________________________________________________________ 

         85 

D). Activity of this promoter was also observed in adult leaves, restricted to leaf 

veins, and in cauline leaves (Figure 32F and G). In flowers, promoter activity was 

observed in sepals, petals, pistils and pollen (Figure 32H-I). No staining was 

observed in stem and seeds inside siliques, but the siliques themselves showed 

GUS staining as well as the petioles (Figure 32E). 

 

Figure 32. GUS staining of Arabidopsis harboring MIR161pro:GUS construct. 
Seedlings were grown on MS plates. Plants were cultivated in short days for 8 weeks and 
three more weeks in long days. A and B, overview of Arabidopsis seedlings with 8 and 
13days-old, respectively. C-D, details of secondary roots and primary roots, respectively.  
E-I, different tissues from adult plants. Silique,  cauline leaf, flower, rosette leaf and 
stamen, respectively.  
 

3.4.2.  Analysis of effect of serial deletions of miRNA promoters 

Having analyzed the expression pattern of miRNA genes and miRNA target 

genes, it would also be important to investigate regulatory units of miRNA 

promoters. To elucidate this question, a series of promoter deletions fused with the 

GUS reporter were generated for analyzing the presence of regulatory units in 

MIR159A and MIR161 promoters. Fragments with different lengths of MIR159A 

and MIR161 promoters cloned into the pBT10 vector were transfected into AT7 

protoplasts. After 24 hours, proteins were extracted and GUS activity was 
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measured. A promoterless pBT10 vector was used as a negative control and 

35Spro:GUS was used as positive control. 

The MIR159A promoter fragment that comprehends the portion from -802 to +1 

showed the highest GUS activity, comparing with either the promoterless construct 

or the construct +1 to +325. The deletion of portions from -1136 to -802 and -552 

to -244  increased the GUS activity, whereas deletion of the portions -802 to -552 

and -416 to -244 caused a decrease in the GUS activity (Figure 33A). 

The GUS activity from protoplasts transfected with promoter constructs whose 

sequence covering -1866 to +138, -1387 to +138, -1050 to +138, -810 to +138, -

406 to +138 and -206 to +138 were approximately 120 to 150-fold higher 

compared to the promoterless construct or with the construct containing the 

portion from +1 to +138. A specific region, ranging from -618 to +138, showed 

higher gene expression than others MIR161 promoter constructs and the core 

promoter of MIR161 may consist of a region from -618 to +1. (Figure 33B).  
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Figure 33. Analysis of deletions in miRNA promoters. 
GUS activity in protein extracts of AT7 protoplasts transfected with constructs bearing 
different deletion constructs of MIR159A (A) and MIR161 (B) of promoters.  
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4. Discussion 

4.1. Prediction and validation of miRNA targets 

After the discovery of miRNAs in plants, the next question to be answered was 

which genes are actually regulated by miRNAs. Bioinformatics predictions of 

miRNA targets were successfully applied for identification of many miRNA targets 

(Park et al., 2002; Reinhart et al., 2002; Rhoades et al., 2002; Jones-Rhoades and 

Bartel, 2004; Sunkar and Zhu, 2004; Wang et al., 2004b; Adai et al., 2005; 

Rusinov et al., 2005; Schwab et al., 2005). Rhoades et al. (2002) applied a pattern 

search technique in order to identify only putative miRNA targets that show 

complementarity to the miRNA higher than 85%. However, one of the filters they 

applied in their prediction prevented the prediction of miR163 targets, simply 

because of the fact that there is a bulge in the hybrid between miR163 and its 

targets, for a better alignment. In other words, a small change in the algorithm 

would allow confident prediction of more novel targets. However, when such 

assumptions are integrated into a bioinformatic prediction pipeline, a drawback is 

also introduced. The number of wrongly predicted targets is most probably 

increased. To cope with this problem of high numbers of false-positives, an 

approach based on comparative genomics was employed (Jones-Rhoades and 

Bartel, 2004).  

The comparative genomic approach consists in the search for a miRNA target in 

more than one species. The predicted targets are compared to find those that are 

homologous and predicted as targets for the same miRNA. Thus, miRNA targets 

with a slightly lower complemetarity than 85% were predicted if any of its homolog 

also possesses a miRNA binding site for the same miRNA. A miRNA target that is 

found in only one of the analyzed species would not be considered as a target 

candidate then, unless the complementarity between the miRNA and its target was 

high enough. The use of comparative genomics contributed to the prediction of 

many novel miRNA targets (Jones-Rhoades and Bartel, 2004; Sunkar and Zhu, 

2004; Wang et al., 2004b; Adai et al., 2005).  

On the basis of the analysis of genes that were downregulated in transgenic 

Arabidopsis lines overexpressing miRNA genes, Schwab et al. (2005) proposed 
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some rules to define a miRNA binding site in plants that can be applied as an 

alternative to avoid the comparative genomics approach (see Figure 4). In the 

proposed model, there would be no mismatch in the presumptive cleavage site, no 

more than one mismatch in the positions 2 to 12, and no more than two 

consecutive mismatches downstream of position 12 (counting from the 5’end of 

the miRNA). Finally, the MFE of the miRNA:target duplex should be equal or 

smaller than -30 kcal/mol and at least 72% as compared to a perfectly 

complementary miRNA:target duplex (Schwab et al., 2005). 

The approach described in this work to predict miRNA targets in Arabidopsis 

exploited the program RNAhybrid. RNAhybrid searches for the energetically most 

favorable hybridization between two sequences based on RNA:RNA hybridization 

rules (Rehmsmeier et al., 2004). The assumptions used in this work are very 

similar to those proposed by Schwab et al. (2005), with slight differences. Even 

though there are examples that a miRNA binding site can have a mismatch close 

to the possible cleavage site (Figure 13;Vazquez et al., 2004), a mismatch near or 

in the presumptive cleavage site would decrease the efficiency of the RISC 

cleavage (Laufs et al., 2004; Mallory et al., 2004b; Parizotto et al., 2004; 

Vaucheret et al., 2004). This characteristic is also true for animal miRNAs (Lewis 

et al., 2003; Doench and Sharp, 2004; Brennecke et al., 2005), although most of 

the animal miRNAs do not lead to cleavage of mRNAs. Therefore, no mismatches 

were allowed at the nucleotides 8 to 12 of the miRNA. The second and third rules 

are base on miRNA:mRNA hybrids of validated targets. In these interactions, a 

mismatch loop should not contain more than two nucleotides in each strand and 

bulge loops (nucleotide(s) unpaired in either of the strands) were not allowed with 

more than one nucleotide. The main difference of this approach is that G:U base 

pairings are not always considered as a mismatch in the RNA:RNA hybridization 

(see Figure 6).  

In RNA:RNA hybridization, base pairing can occur not only according to canonical 

Watson-Crick rules (A:U and G:C), but also by wobble pairing (G:U), although a 

G:U base pair cannot be considered as a full substitute for a canonical base pair. 

Structural studies of RNA have shown that the G:U base pair causes some 

distortions in the helical regions of dsRNA (Wohnert et al., 1999). In the prediction 

of miRNA targets with RNA hybrid, the G:U base pairing was not considered as a 
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mismatch. However, when the MFE of a miRNA:target duplex was calculated, a 

duplex with a perfect match results in a smaller MFE than a duplex that contains 

one or more G:U base pairing. This is because G:U base pairings lead to a less 

stable duplex, and, therefore, to a greater MFE value during the RNA structure 

assessment with RNAhybrid (Rehmsmeier et al., 2004). 

RNAhybrid was used to predict Arabidopsis miRNA targets, and to sort them 

according to the calculated MFE of the hybrid duplexes. According to those 

assumptions described in this work, hybrid structures with four mismatch loops, 

each loop having two nucleotides, could be predicted as putative targets. To 

eliminate such kind of output, an interesting solution would be the use of 

comparative genomics to find the miRNA binding site in homologous sequences 

from other species (Jones-Rhoades and Bartel, 2004; Sunkar and Zhu, 2004; 

Wang et al., 2004b). In this work, a different approach was employed. The MFE of 

the hybrids was used as a cutoff in order to shorten the list of possible candidates, 

to maximize the number of true positives and to eliminate most of the true 

negatives. Therefore, the number of predicted targets of a set of 55 authentic 

miRNAs was compared with the number of predicted targets of a set of randomly 

generated miRNA sequences. For each miRNA sequence, ten cohorts were 

created and used to predict miRNA targets with RNAhybrid, applying the same 

Arabidopsis dataset and the same assumptions. The number of targets per miRNA 

was calculated for each set of miRNA, authentic and cohort, and the false-positive 

ratio was calculated by dividing the number of predicted targets per miRNA of the 

authentic set by the number of predicted targets per miRNA of the set of 

randomized miRNAs. In the data presented in Table 5, the signal-to-noise ratio 

refers to the number of targets per miRNA in the authentic dataset compared to 

the number of targets per miRNA predicted with the random dataset. For example, 

using an MEF cutoff of 70%, there are 1.7 targets per miRNA in the authentic 

dataset compared to 1.0 target per miRNA in the random dataset.  

As expected, the higher the MFE cutoff the better is the signal-to-noise ratio. 

However, the sensibility, e.g. the number of experimentally validated targets, 

decreases with a higher MFE cutoff. In other words, more positives may be lost. 

The best situation would be to have a sensibility of 100%, which is reached when 

the 70% cutoff is applied, but the number of false positives would then be too high. 
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An MFE cutoff of 75% provides an acceptable ratio of signal-to-noise that does not 

result in a sensibility that is too low. 93.1% of the validated targets were recovered 

using this setting, leading to 2.6 times more authentic targets as expected by 

chance. A similar result was found by Rajagopalan et al. (2006) when predicting 

targets of newly identified Arabidopsis miRNAs that were not found in other plant 

species, achieving a sensibility of 86% and a signal-to-noise ratio of 3:1, which 

was calculated in the same way as in the present work. 

Most of the predicted and validated miRNA targets are genes that encode 

transcription factors (Dugas and Bartel, 2004; Jones-Rhoades et al., 2006). 

However, the high number of transcriptions factors may reflect just the occurrence 

of many transcription factors in the Arabidopsis genome. To evaluate this 

hypothesis, the GO annotation of the whole genome of Arabidopsis was assessed. 

The percentage of each category was used to normalize the GO annotation results 

from previously predicted/validated and novel putative targets predicted in this 

work (Figure 9). The percentage of transcription factors in the previous 

predicted/validated group was 4 times the percentage of transcription factors in the 

whole genome categorization. The high number of transcription factors among 

miRNA targets reflects the key role of miRNAs in gene regulatory networks 

(Jones-Rhoades et al., 2006). For the putative targets presented here, no major 

GO category was overrepresented. In addition, this work contributed to identify 

novel putative targets among GO categories that were underrepresented in the 

previously predicted/validated group. Putative targets within GO categories like 

protein binding, transporter, nucleic acid binding, kinases, hydrolases and 

DNA/RNA binding had similar hit frequency as compared their occurrence in the 

whole genome categorization (Figure 9). Thus, the spectrum of miRNA regulation 

may be broader than considered before.  

For four miRNA families miR396, miR413, miR774, and miR783 more than 20 

miRNA targets were predicted, along with some already predicted targets. This 

may constitute a group of miRNAs with many distinctive functions. In plants, the 

number of targets per miRNA family is much smaller than in metazoan (Mallory 

and Vaucheret, 2006; Zhang et al., 2007). In humans, for example, miR1 and 

miR124 seem to downregulate a far greater number of targets than previously 

predicted, by reducing the levels of many of their target transcripts, not just the 
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amount of protein that derive from these transcripts (Lim et al., 2005). In plants, 

miR159 is an example of a miRNA with diverse functions. Among its eleven 

predicted targets there are genes that encode seven MYB transcription factors of 

the group 7 (GAMYBs), as well as MYB125, OPT1, ACS8 and At1g29010 

(Rhoades et al., 2002; Jones-Rhoades and Bartel, 2004; Schwab et al., 2005). 

This work contributed six candidate targets. Seven miR159 targets were 

experimentally validated: MYB33, MYB65 (Palatnik et al., 2003; Jones-Rhoades 

and Bartel, 2004), OPT1 (Schwab et al., 2005), MYB101 (this work and Reyes and 

Chua, 2007), MYB125, ACS8 and MRG1 (this work). Therefore, miR159 is 

involved in many different biological processes, ranging from GA signaling and 

flowering transition to oligonucleotide transport, control of the male gamete 

formation, regulation of the biosynthetic pathway of the plant hormone ethylene, 

ABA signaling, and leaf morphogenesis (Rhoades et al., 2002; Jones-Rhoades 

and Bartel, 2004; Schwab et al., 2005; Reyes and Chua, 2007).  

Among novel predicted miRNA targets of conserved miRNA genes are AtEYA 

(miR157), which encodes a tyrosine-specific phosphatase that participates in 

regulating cellular tyrosine phosphorylation levels (Rayapureddi et al., 2005). One 

predicted target of miR160, BAG1, along with other members of the BAG gene 

family, has functional roles in cell protection under stress and inhibition of 

programmed cell death (Doukhanina et al., 2006). One of the predicted targets of 

miR167 is a gene that encodes the topoisomerase AtTOPII, which is involved in 

DNA replication and chromatin condensation. In Arabidopsis, the levels of AtTPOII 

are higher in seedlings than in mature plants, correlating with high cell proliferation 

observed in developing seedlings (Xie and Lam, 1994). Thus, miR167 may also 

control cell cycle by reducing the levels of AtTOPII. 

SPOROCYTELESS encodes a putative transcription factor that is involved in both 

micro- and megagametogenesis. In sporocyteless plants, a perturbed sporocyte 

formation was observed leading to complete sterility plants (Yang et al., 1999). 

Along with MYB33 and MYB65, SPOROCYTELESS is another target of miR159 

that is involved in male fertility. In double mutant plants myb33 myb65, the male 

gametogenesis is arrested, resulting in no pollen production owing to an 

overwhelming growth of tapetum cells and consequently degradation of 

microsporocytes (Millar and Gubler, 2005). The sporocyteless mutation blocks the 
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differentiation of primary sporogenous cells into microsporocytes and anther wall 

formation resulting in anthers that are composed of highly vacuolated parenchyma 

cells (Yang et al., 1999). miR159 overexpressing plants were male sterile, showed 

increased size and darkening of anthers. Siliques were smaller that wild-type and 

contained no seeds. The downregulation of MYB33 by miR159 was the 

explanation for these phenotypes (Achard et al., 2004). Thus, miR159 seems to be 

an important regulator of the male gametogenesis.  

miR397, for which three genes encoding laccases were validated as targets 

(Jones-Rhoades and Bartel, 2004), may participate in the regulatory network that 

controls cell cycle. E2F is a transcription factor that stimulates the transcription of 

genes necessary for G1-to-S and S phase progression during cell cycle. For E2F 

function, the presence of the dimerization partner A (DPA) is necessary 

(Vandepoele et al., 2002; Magyar et al., 2005). DPA is encoded by a gene 

predicted to be a target of miR397.  

miR319 regulates the expression of a few TCP transcription factor genes, whose 

downregulation cause abnormalities in leaf development (Palatnik et al., 2003). 

Leaves of miR319 overexpressing plants can not be flattened without cutting leaf 

margins, because of a crinkled phenotype. This phenotype is caused by a delay in 

cell division and differentiation arrest, leading to accumulation of excess cells in 

the leaf periphery margin. miR319 may also regulate a gene involved in cell 

division and elongation in the growth zone of the root tip, BREVIS RADIX (BRX). 

The lack of BRX expression causes reduction in root size, due to a decrease in 

cell number and cell length. The reporter protein GFP was not detected in plants 

carrying a reporter construct containing the BRX promoter and GPF, yet a 

construct with PROBRX:BRX:GFP could rescue the BRX phenotype, although the 

level of BRX protein detected by western blot with GFP antibody was very low 

(Mouchel et al., 2004; Mouchel et al., 2006). Interestingly, the predicted binding 

site of miR319 is located in the BRX promoter, and miR319 may act to keep BRX 

transcript at a low level, but high enough for the function of the BRX protein. 

Recently, the involvement of miRNAs, as well ta-siRNAs, in the flavonol and 

anthocyanin biosynthesis was described. Two MYB transcription factor genes, 

MYB75/PAP1 and MYB90/PAP2, are targets of TAS4-siR81. The production of 
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TAS4 siRNAs is mediated by the recently described mi828 (Rajagopalan et al., 

2006). miR408 may also regulate other step of the flavonol and anthocyanin 

biosynthesis. A predicted target of miR408 is a gene that encodes flavone-3-

hydroxilase (F3H), which catalyzes the conversion of naringenin in 

dihydrokaempferol. Another interesting example of a miRNA possibly regulating 

the level of an enzyme that acts in a biosynthetic pathway is miR396, whose 

predicted target, ASA1, encodes an alpha subunit of anthranilate synthase, the 

enzyme in the first step of the biosynthetic pathway of the amino acid tryptophan 

(Niyogi and Fink, 1992).  

Copper is transported into chloroplasts by two mechanisms in Arabidopsis (Abdel-

Ghany et al., 2005; Seigneurin-Berny et al., 2006). PAA1 and PAA2 sequentially 

mediate copper transport to the chloroplast envelope and tylakoids, respectively 

(Abdel-Ghany et al., 2005). An additional mechanism for copper uptake into 

chloroplasts was recently discovered, involving HMA1, a P1B-type ATPase. Like 

PAA1, HMA1 is localized in the chloroplast envelope (Seigneurin-Berny et al., 

2006). Two miRNAs possibly regulate the copper level in the chloroplast; PAA2 

and HMA1 are predicted targets of miR408 and miR773, respectively. These two 

miRNAs would participate together with miR398 in the regulation of copper 

homeostasis. In plants growing in MS medium with the standard amount of 

copper, miR398 was detected in northern blots. On the contrary, miR398 targets, 

CSD1 and CSD2 are detected at very low levels. In plants growing on MS medium 

supplemented with copper, decreased levels of miR398 and increased levels of 

CDS1 and CDS2 were detected (Yamasaki et al., 2007). 

The Pentatricopeptide repeat (PPR) family of proteins represents one of the 

biggest protein families in Arabidopsis with over 450 members, most of which are 

predicted to localize in the plastids or the mitochondria. The biological functions of 

PPRs are not known. Only a few members of the PPR family have been 

characterized. They have been implicated in RNA metabolism, acting in a 

sequence-specific manner in both mitochondria and plastids (see Shikanai, 2006). 

PPRs are among predicted and validated targets of miR161 and miR400 

(Rhoades et al., 2002; Sunkar and Zhu, 2004; Allen et al., 2005). In this work we 

found another PPR gene as putative target of miR161 and four PPR genes as 

novel candidate targets of miR400 (Figure 10). In addition, four other miRNAs may 
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be implicated in the regulation of PPRs; miR167, miR394, miR396 with one 

putative target each, and miR773 with two target candidates. The PPR proteins 

are encoded by genes that were either predicted or validated as miRNA targets, 

but have not been functionally characterized, as it is the case for most PPR 

proteins. However, in Arabidopsis, the functionally characterized PPRs act in RNA 

editing, RNA cleavage, RNA stabilization during translation and RNA cleavage 

during splicing (Hashimoto et al., 2003; Meierhoff et al., 2003; Yamazaki et al., 

2004; Kotera et al., 2005). Therefore, miRNAs may have specific functions 

regulating RNA maturation, editing and stabilization.  

The involvement of miRNAs in flower development was described for miR156, 

miR159, mir164 and miR172. They influence flower development because they 

control the expression of genes involved in floral organ identity, flowering time 

control, LFY expression and the number of petals. miR413 is possibly another 

miRNA involved in flower development. Two of its predicted targets affect the 

expression of Flowering Locus C (FLC) by means of chromatin modifications. FLC 

is a repressor protein that acts inhibiting the floral transition (Michaels and 

Amasino, 1999). Mutants in genes that participate in the activation of FLC have in 

common an early-flowering phenotype. One of the predicted miR413 targets, Early 

Flowering 8 (ELF8) is a gene encoding a protein that is required for histone 3 

trimethylation at Lys 4 in the FLC chromatin. The reduced level of FLC chromatin 

methylation observed on elf8 plants resulted in low expression of FLC and early 

flowering in both short and long-day conditions (He et al., 2004). The second 

putative target of miR413 that affects the FLC expression is AtMBD9, one among 

13 Arabidopsis proteins that contain a methyl-CpG-binding domain. In atmbd9 

plants, the early flowering phenotype was explained by the reduced, yet still 

detectable, level of FLC as a consequence of a decreased level of acetylation in 

histones 3 and 4 of FLC chromatin (Peng et al., 2006). Thus, miR413 may 

regulate the level of FLC by two distinct mechanisms, although both mechanisms 

modify the state of FLC chromatin.  

The influence of miRNAs on their own biogenesis and functional mechanism of 

action were described by the role of miR162 and miR168 in the regulation of DCL1 

and AGO1, respectively (Xie et al., 2003; Vaucheret et al., 2004). Moreover, 

miRNAs are involved in the biogenesis of ta-siRNAs by initiating the phasing 
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process that results in the production of ta-siRNAs (Peragine et al., 2004; Vazquez 

et al., 2004b; Allen et al., 2005; Chen et al., 2007). The gene silencing induced by 

DNA methylation mediated by siRNAs may also be subject to regulation by 

miRNAs. The gene that encodes the largest subunit of RNA polymerase IV 

(RNPD1A) was predicted as a miR415 target. In rdr2, dcl3 and rnpd1a mutant 

plants, siRNAs of 24 nucleotides were not detected. Therefore the proposed 

model for origin of these siRNAs was summarized as follows: transcription by 

RNPD1A, synthesis of RNA double strand by RDR2 and the double-stranded RNA 

would be processed into siRNA by DCL3 (Hamilton et al., 2002; Herr et al., 2005).      

Many of the previously predicted and validated targets of a given miRNA belong to 

a gene family (Jones-Rhoades et al., 2006).  The novel putative targets found in 

this work, in general, do not fall in the same miRNA family of previously predicted 

or validated targets. However, for two miRNA families, most of the novel predicted 

targets belong to the same gene family. Five predicted targets of miR774 are 

members of the S-locus protein kinase gene family (Figure 11A), whereas Ulp1 

protease gene family has seven members predicted as miR781 target (Figure 

11B).  

The simplest way to experimentally validate a miRNA target is by use of a 

modified version of 5’RACE. This approach was widely applied to experimentally 

validate plant miRNAs because of the main mode of action of miRNAs in this 

kingdom (Chen, 2005; Jover-Gil et al., 2005). Plant miRNAs show a high degree of 

complementarity to theirs targets and they act like endogenous siRNAs that cleave 

the mRNA molecule that is complementary to them. The recovery of cleavage 

products using 5’RACE allows the identification of the precise point where the 

cleavage happened (Llave et al., 2002a). This experimental validation proves 

whether the mRNA of the target can be cleaved in vivo. However, it does not 

reveal the functionality of this cleavage event and the effects on target mRNA 

accumulation. In addition, 5’RACE can be used only for targets that are regulated 

by miRNAs that act like siRNAs, therefore targets that are regulated by a 

mechanism that inhibits the mRNA translation without changing in the mRNA level 

cannot be validated with such an approach.  
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For 5’RACE target validation, co-expression of the miRNA and its target must 

exist. In this work, the 5’RACE experiments were performed with RNA samples 

extracted from Arabidopsis AT7 protoplasts co-transfected with constructs that 

overexpress both miRNA and its putative target. Before 5’RACE experiments, the 

capability of the cloned pre-miRNA, corresponding to the smaller sequence that 

can be folded into a stem-loop, in expresses a mature miRNA was tested. 

Constructs harboring a pre-miRNA sequence were transfected in AT7 protoplasts, 

RNA was extracted and analyzed by northern blots. The presence of mature 

miRNAs was observed in constructs that lead to the overexpression of pre-miRNA 

of miR156, miR159, miR161 and miR395. However, only miR161 and miR395 

showed higher expression of the mature miRNA in protoplasts transfected with the 

pre-miRNA construct compared to the control, for which protoplasts were 

transfected with the empty vector only. The overexpression of several miRNAs 

was not changed when genomic fragments that contained the pre-miRNAs were 

as large as 1.5 kb or was limited to the size of the predicted pre-miRNA (Schwab 

et al., 2005). The 35Spro:pre-miR172 construct is made up with the sequence of 

the pre-miR172a. It may be possible that to overexpress miR172 a sequence that 

contains not only the pre-miRNA (the stem-loop) but the complete transcript is 

needed. Two different cDNAs of the MIR172 were found in the Genbank database 

(BX820161 and AK118705), both cDNAs are bigger than the pre-miR172a.  

The same explanation may be valid to explain the failure of miR414 

overexpression. A cDNA (DR368538) corresponding to the MIR414 is much bigger 

than the predicted pre-miR414. However, different groups (Xie et al., 2005 174; 

Rajagopalan et al., 2006 351) questioned the classification of miR414 as authentic 

miRNA, based on expression level and the repetitive nature of its sequence. It is 

worth to mention that miR414 was first predicted as a miRNA, but was not cloned. 

The only evidence of expression is its detection in a northern blot experiment 

(Wang et al., 2004b). The presence of miR414 was not detected in northern blots 

with samples from different tissues of Arabidopsis (data not show). In addition, 

deep sequencing of small RNA samples, performed by three different groups, did 

not find any evidence of miR414 expression (Lu et al., 2005a; Rajagopalan et al., 

2006; Fahlgren et al., 2007). Therefore, either miR414 is expressed under very 

specific conditions, or it may a represent non-miRNA locus (Xie et al., 2005; 
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Rajagopalan et al., 2006). The miRNA target prediction presented here could find 

more than 300 putative targets of miR414, many of them having miRNA binding 

sites with perfect complementarity to miR414. Thus, it is conceivable to assume 

that a high expression of miR414 would lead to a collapse because of many 

potential targets that would be downregulated at the same time. The miR414 

putative targets are, therefore, not included in this work. The other computationally 

predicted miRNAs that were also not cloned or found in the deep sequencing 

studies, may also not be authentic miRNA genes. They are miR413, and miR415 

to miR420 and miR426 (all described in the same study as miR414; Wang et al., 

2004). However, unlike miR414, the overexpression was not assayed in this work 

and the predicted targets are listed in the Appendix 2.  

In the 5’RACE experiments described in this work to validate miRNA targets, the 

source for total RNA were Arabidopsis AT7 protoplasts co-transfected with both 

the pre-miRNA and the target cDNA constructs. Five miRNA targets were 

validated, four targets of miR159 (MYB101, MRG1, MYB125, ACS8); and GAE1, 

which is a target of miR161 (Figure 13).      

Along with MYB33 and MYB65, MYB101 was the third GAMYB encoding gene 

validated as miR159 target. The cleavage of MYB101 mediated by miR159 was 

demonstrated by 5’RACE, as it was recently showed by Reyes and Chua (2007). 

The expression of MYB101 was reduced in plants overexpressing miR159 

indicating the regulatory role of miR159 over MYB101, although the expression 

level of MYB33 and MYB65, which were already validated by 5’RACE as miR159 

targets, were not reduced in the same plants,  (Schwab et al., 2005). Another gene 

encoding a MYB transcription factor was validated as miR159 target, 

MYB125/DUO1. Interestingly, MYB125/DUO1 is another example of a miR159 

target involved with pollen development. myb125/duo1 plants are male sterile 

owing to a formation of a large diploid sperm cell that is unable to fertilize an ovule 

(Durbarry et al., 2005; Rotman et al., 2005). So far, three validated targets of 

miR159 are involved in proper pollen formation, null mutants of MYB33 MYB65, 

MYB125 displayed male sterility. Plants lacking SPOROCYTELESS are also male 

sterile, and the expression pattern of MYB101 also indicated a possible role of this 

gene in gametogenesis (Figure 18 and Figure 19).   
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Two other targets of miR159 validated in this work are not involved in 

gametogenesis. ASC8 encodes 1-aminocyclopropane-1-carboxylic acid synthase, 

which is a key enzyme in the biosynthesis of the plant hormone ethylene 

(Vandenbussche et al., 2003). In Arabidopsis, the ACS family contains 11 genes 

and one pseudogene. The functional genes form eight functional (ACS2, ACS4-9, 

and ACS11) homodimers, and 17 functional heterodimers. It has been postulated 

that the presence of ACS isozymes may reflect tissue-specific expression that is 

required by the biochemical environment of the cells or tissues in which each 

isozyme is expressed (Yamagami et al., 2003; Tsuchisaka and Theologis, 2004a, 

b). ACS8 transcript level was greatly reduced in miR159 overexpressing plants 

(Schwab et al., 2005). This was the first evidence that miRNA may regulate the 

production of the hormone ethylene, and here the functional cleavage of ACS8 

mediated by miR159 was demonstrated. However, it is not clear if miR159 really 

influences ethylene biosynthesis because of the high redundancy of ACS 

isozymes that can perform the same catalytic step in the ethylene biosynthesis. 

The cleavage point mapped in the ACS8 sequence did not match to the middle of 

the miRNA binding site, as normally is the case for RISC mediated-cleavage. 

However, examples of miRNA-mediated cleavage mapped downstream to the 

miRNA binding site have also been shown for several miRNAs and ta-siRNAs 

targets (Jones-Rhoades and Bartel, 2004; Allen et al., 2005; Lauter et al., 2005; 

Chen et al., 2007). The last validated target of miR159 is MRG1, which encodes a 

small protein of 301 amino-acid residues. The miR159 binding site is the only 

known motive found in both nucleotide and amino-acid sequences.  

The cleavage characteristic of miRNA-mediated cleavage was demonstrated for 

GAE1, which encodes a UDP-4-epimerase. GAE1 convert UDP-D-glucoronate 

into UDP-D-galacturonate, which is responsible for the negative charge in pectic 

cell wall (Molhoj et al., 2004). 

Four putative targets were not validated experimentally as miRNA target: MYB94 

(miR156), CKL6 (miR159), PRF2 (miR161) and MYB58 (miR395). These putative 

targets are not present in the list in the Appendix 2 because the MFE of the duplex 

is smaller than 75% of the hybrid with perfect match. However, one of the 

validated targets, GAE1, also does not satisfy this assumption. In addition, the 

miR161:PRF2 hybrid has a mismatch in the position 12. Nonetheless they were 
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chosen for validation experiments because their hybrids structure showed less 

than five mismatches (Figure 14). The failure in the validation of most of the 

targets with less than 75% of the MFE of the perfect match hybrid indicates that 

this cutoff is a good value to differentiate between most of the true miRNA targets. 

However, using this cutoff, the achieved sensibility was 93.1%, and the validation 

of GAE1 confirms that some true miRNA targets are among the candidates 

eliminated by the 75% rule.  

4.2. MYB101 

The MYB101 is a transcription factor that is classified into the group of GAMYBs 

because MYB101 activate transcription by binding to a gibberellin-responsive 

element (GARE) in the alfa-amylase promoter in barley (Blazquez and Weigel, 

2000). Together with all others Arabidopsis GAMYBs genes, MYB101 was 

predicted as a miR159 target (Rhoades et al., 2002; Jones-Rhoades and Bartel, 

2004). Evidence that miR159 would affect MYB101 expression was found by 

Schwab et al. (2005). Analyzing miR159 overexpressing plants, they observed that 

the expression level of MYB101 was greatly reduced, and the miR159-mediated 

cleavage of MYB101 was demonstrated (this work and Reyes and Chua, 2007). 

The temporal and spatial expression pattern of MYB101 was analyzed in the 

present work by means of promoter-GUS lines. In Arabidopsis, the promoter of the 

MYB101 was active in seedlings, flowers and in root tips (Figure 19). The activity 

of the MYB101 promoter in flowers was markedly intense in pollens grains, but 

was also observed in sepals, petals and stamen. The observed promoter 

expression pattern does not match to the expression pattern of MYB101 analyzed 

with microarray data (Figure 18). The MYB101 expression pattern according to 

AtGenExpress data, clearly show a specific expression in pollen. Northern blot 

analysis detected MYB101 in flowers. In addition, in situ hybridization experiments 

localized MYB101 transcripts in the hypocotyl hooks in germinating seeds (Gocal 

et al., 2001). The MYB101 promoter is active in tissues where MYB101 transcript 

is not found. The different expression pattern observed between microarray data 

and promoter-GUS lines suggest the importance of the regulatory role of miR159 

over MYB101. The expression pattern of MYB33 analyzed with promoter-GUS 

lines also showed evidence of constrained expression of this gene by miR159. In 
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proMYB33:GUS lines promoter activity in flowers (sepals, style, receptacle, and 

anther filaments), shoot apices, and root tips were observed. By contrast, analysis 

of proMYB33MYB33:GUS lines revealed that the reporter protein was detected 

solely in young anthers, and no staining was seen in shoot meristems or root tips 

(Millar and Gubler, 2005). The analysis of promoter activity defines the spatial and 

temporal expression pattern of MYB101 based only in the promoter sequence. 

However, since MYB101 is post-transcriptionaly regulated by miR159, this 

expression pattern does not reflect where the MYB101 protein accumulates. 

Experiments to characterize the MYB101 accumulation pattern are under way. 

The functionality of the miR159 binding site found in the MYB101 gene was tested 

clarified by the use of transgenic plants that express both MYB101 and 

MYB101mutBS under the control of the strong 35S promoter (Figure 15). The 

observation that in several lines of 35Spro:MYB101 plants the MYB101 transcript 

was not detected in leaves by RT-PCR, whereas it was detected in 

35Spro:MYB101mutBS plants, supports the functional role of miR159-based 

regulation of MYB101 (Figure 16). This confirms that MYB101 expression in many 

tissues is constrained by miR159. However, according to promoter-GUS lines 

MIR159A is also expressed in pollens (Figure 30). Thus, it could be feasible that, 

in pollens, either MYB101 expression is too high for a complete downregulation by 

miR159/RISC or the mature miR159 is not present in pollen. The two explanations 

are equally possible, however, control of the maturation of the miRNA was shown 

only in mammals to date. As an example, the pre-miR138 can be detected by 

northern blot in several cell lines, but the mature miRNA ca be detected only in 

specific cell lines (Obernosterer et al., 2006). Support for the second possible 

explanation comes from the observation that some validated miRNA targets did 

not show a strong decrease in mRNA levels in miRNA overexpressing lines 

(Schwab et al., 2005). Thus, the miRNA would not only act completely in 

downregulating a gene, but also providing a fine-tuning in the level of an mRNA. 

According to this model, called micromanager model, targets could be 

downregulated to levels that cannot be detected anymore, which is the case for 

most of plant miRNA:targets interactions. Other miRNA targets would suffer only 

slight downregulation, and the miRNA would act to keep the optimal level of the 

target mRNA transcript (Bartel and Chen, 2004; Mello and Czech, 2004).  
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Effects of ectopic expression of MYB101 were observed in seedlings and in adult 

leaves (Figure 17). Seedlings that carry a construct to express both MYB101 and 

MYB101mutBS, are smaller than wild-type. However, MYB101mutBS seedlings 

were much smaller than MYB101 seedlings. Adult plants overexpressing MYB101 

did not differ from wild-type, whereas MYB101mutBS plants developed a 

phenotype similar to dwarfism, as adult plants were smaller than wild-type. Trying 

to understand the effect of the overexpression of MYB101, knockout lines were 

analyzed. Two T-DNA insertion lines for MYB101 were found and in both lines the 

insertion event resulted in deletions of a few nucleotides (Figure 20). The deletions 

alone would result in a truncated MYB101 protein. In addition, the full-length 

MYB101 transcript was not detected by RT-PCR in both lines, confirming the 

efficient knockout of MYB101 (Figure 21). However, no phenotypical changes 

were observed in any of these lines growing under short-day conditions. 

Overexpression of MYB33 caused a very similar phenotype as overexpression of 

MYB101 in seedlings (Palatnik et al., 2003), suggesting that these genes may 

share some overlapping functions. Recently, ABA hyposensibility was described 

for myb33 and myb101 single mutants (Reyes and Chua, 2007), but myb33, 

myb65 or myb101 plants do not differ in any other characteristic to wild-type plants 

(Millar and Gubler, 2005; Reyes and Chua, 2007), but a double mutant myb33 

myb65 displayed male sterility (Millar and Gubler, 2005).  

Although data from this work extended the knowledge about MYB101, still many 

things have to be done for a deep understanding of MYB101 function. Some 

experiments are currently being done, for example, analysis of double mutants 

(myb33 myb101 and myb65 myb101) and the triple mutant myb33 myb65 

myb101. The MYB101 protein contains a nuclear localization signal (NLS) and 

three nuclear export signal (NES), thus the cellular localization of MYB101 is not 

restricted to the nucleus. The MYB101 protein localized more to the nucleus but 

can also be found in the cytoplasm (Julia Starmann, personal communication). 

Another interesting analysis is the overexpression of MYB101 with mutations in 

both miR159 binding site and NES. It may be possible that the uncoupling of 

MYB101 from these two different regulatory mechanisms, post-transcriptional 

regulation by miR159 and nucleo-cytoplasmatic partitioning (Merkle, 2003), may 

lead to a better understanding of the role of MYB101. 
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4.3. MRG1 

The prediction and validation of MRG1 as miR159 target was the initial step of the 

study of this gene. Because not much information about MRG1 was available, the 

investigation of this gene started with the analysis of MRG1 expression. The 

expression pattern of MRG1 analyzed by RT-PCR revealed that MRG1 transcripts 

can be detected, although to different levels, in most of the analyzed tissues 

(Figure 22). The expression pattern of MRG1 in promoter-GUS lines also showed 

that MRG1 could be found in many Arabidopsis organs, including seedlings 

(cotyledons, young leaves and root), flowers, adult leaves, roots and developing 

seeds (Figure 23). Evidence for MRG1 expression in tissues where miR159 can 

be found may lead to the conclusion that MRG1 may not be regulated by miR159. 

However, it was found that the level of MRG1 transcript is very low in most of the 

tissues, as PCR products after 30 cycles were very faint. In additions, for many 

tissues, PCR products where observed only after 40 cycles. Thus, miR159 might 

be responsible for the low expression level of MRG1.  

The functional regulation of MRG1 by miR159 was also shown in transgenic lines 

that harbor the constructs 35Spro:MRG1 or 35Spro:MRG1mutBS (Figure 25). The 

overexpression of MRG1 was observed in all 35Spro:MRG1mutBS lines, whereas 

in most of 35Spro:MRG1 lines the transcript was not detected (Figure 26). In 

addition, the main effect of the overexpression of MRG1, an altered leaf form 

observed during seedling stage and in adult rosette leaves, is much more severe 

in 35Spro:MRG1mutBS plants (Figure 27). The regulation of MRG1 by miR159 

could be an example that a miRNA does not necessarily need to completely 

eliminate an mRNA, but only keep it to a certain level for proper plant 

development. The relationship between miR159 and MRG1 could be an example 

of the micromanager model of gene expression proposed for miRNA function 

(Bartel and Chen, 2004). Overexpression of MRG1 also altered the plant 

appearance. In plants carrying both constructs there were more secondary bolts 

than in the wild type, thus showing a reduced apical dominance. These 

phenotypes were observed in plants growing in a phytochamber under controlled 

environmental conditions. 
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They were even more characteristic in 35Spro:MRG1mutBS plants grown in the 

green house, which is supplemented with artificial light but also receives natural 

light. Under these conditions, 35Spro:MRG1mutBS plants in short-days developed 

with a highly altered leaf appearance, as evident by the high number of adult 

rosette leaves observed, conferring a bushy phenotype due to the high number of 

leaves probably growing form axillary meristems (Figure 27). Leaves of these 

plants have longer petioles and smaller leaf-blade areas than wild-type plants 

(Figure 28). Overexpression of several transcription factor genes that are miRNA 

targets also caused many pleiotropic effects (Jones-Rhoades et al., 2006). There 

is no evidence that MRG1 encodes a transcription factor. However, like many 

transcription factors, an MRG1:GPF fusion protein was localized in the nucleus 

compartment (Figure 24), although no conserved domain was found in the MRG1 

sequence. To better understand the observed gain-of-function in 

35Spro:MRG1mutBS, one MRG1 T-DNA line was identified (data not show), but 

was not phenotypically analyzed yet.  

Important aspects of leaf morphogenesis are conserved among distantly related 

plant species, for example the expression of class III HD-zip genes REVOLUTA 

(REV), PHV and PHB. They are responsible for the adaxialization of leaves and 

are controlled by miR166/165, which is conserved among all land plants including 

angiosperms, gymnosperms, ferns, lycopods and mosses (Floyd and Bowman, 

2004). This is contradicting to the general model of leaf evolution that suggested 

that this organ may have evolved independently in these groups (Tsukaya, 2005). 

The leaf phenotypes observed in MRG1 overexpressing plants are a mixture of 

several characteristics found in loss- or gain-of-function mutations of different 

genes involved in leaf morphogenesis. The high number of leaves growing from 

axiliary meristems resembled loss-of-function mutants of BRANCHED1 (Aguilar-

Martinez et al., 2007). Defects in leaf blade observed in 35Spro:KNAT6 (Dean et 

al., 2004), serrate, assymetric1 (Ori et al., 2000) and angustifolia (Folkers et al., 

2002; Kim et al., 2002) mutant plants are not the same as observed in 

35Spro:MRG1mutBS plants, but they are pretty much similar. However, 

overexpression of MRG1 affected only the leaf development, where as most of 

these mutations have pleiotropic effects in the whole plant development (Tsukaya, 

2003). All these mutant genes also have conserved homologs in different species. 
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MRG1, however, does not have any homolog in any other species, thus it may 

constitute a novel important gene involved leaf development and axillary bud 

development. Nonetheless, the control mechanism via miR159 is conserved in 

many plant species (Lu et al., 2005b; Zhang et al., 2005; Dezulian et al., 2006; 

Talmor-Neiman et al., 2006; Tuskan et al., 2006; Xie et al., 2007). In order to 

address the question of which are the genes whose expression levels are changed 

in 35Spro:MRG1mutBS plants, a microarray experiment for analysis of the global 

expression profile is currently being carried out.     

4.4. Expression of miRNA genes 

The evidence that miRNA genes are transcribed by RNA polymerase II (Aukerman 

and Sakai, 2003; Lee et al., 2004) and the analysis of primary transcripts from 

several miRNA genes (Xie et al., 2005) indicated that sequences upstream of the 

transcription start site could function as promoter, regulating miRNA expression. 

Furthermore, an insertional mutation in the promoter of MIR164C caused an 

aberrant phenotype due to the reduced level of miR164 (Baker et al., 2005). In 

addition to transcriptional regulation of the miRNA gene, the accumulation of a 

mature miRNA may be subject to regulation through any step of the miRNA 

biogenesis (Vaucheret, 2006). 

The expression of miRNA genes was analyzed by the use of promoter-GUS lines 

of three miRNA genes: MIR159A, MIR159B and MIR161. Although this approach 

does not confirm the presence of the mature miRNA, it can be used to analyze the 

expression pattern of individual genes. Expression analysis of miR159 by northern 

blot detected a strong signal in seedlings and flowers and a less intense signal in 

rosette leaves, cauline leaves and siliques. No signal was detected in roots 

(Achard et al., 2004). The promoters of MIR159A and MIR159B were shown to be 

active in seedlings, roots, rosette leaves, flowers and siliques. Differential results 

were observed in roots and cauline leaves (Figure 30 and 29). It may be possible 

that both promoters are active in cauline leaves but not at a level to be analyzed 

by promoter-GUS lines. Because the three MIR159 genes do not produce the 

same mature miRNA (Figure 5A), deep sequencing of small RNA samples can 

also discriminate MIR159 transcripts, resulting in a quantitative profile of small 

RNA expression. Analysis of small RNA samples with a the new 454 sequencing 
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technology produced evidence for the expression of both MIR159A and MIR159B 

in flowers, roots, rosette leaves, seedlings and siliques (Lu et al., 2006; 

Rajagopalan et al., 2006; Fahlgren et al., 2007). Comparing the expression pattern 

of MIR159A and MIR159B, it is clear that MIR159A is the most important gene that 

produces the mature miR159, although, the expression pattern of both genes are 

very similar (Figure 30 and 29). This observation was also confirmed by data from 

small RNA expression profiles. The number of reads of MIR159A was always 

much greater that for the other two MIR159 genes in all analyzed libraries. The 

expression of MIR159C is extremely small, as little as 4 transcripts per quarter 

million (TPQ), for MIR159B and MIR159A, 48 and 205 TPQ were found, 

respectively (Lu et al., 2006). Taking all miR159 transcripts into account, MIR159A 

counts for 82.7 to 87.6% of the total MIR159 transcripts observed in different 

libraries, whereas MIR159B transcripts correspond to 9.9-16% and MIR159C for 

0.1 to 2.4% of the total MIR159 transcripts (Lu et al., 2006; Rajagopalan et al., 

2006; Fahlgren et al., 2007). 

The promoter of MIR159A was further analyzed in detail for the characterization of 

elements that may be important for the regulation of MIR159A expression. The 

sequence used for miR159 promoter-GUS lines was serially shortened from -1410 

upstream down to the transcription start site. The expression of cloned promoters 

fragments was measured in the AT7 protoplast system. The core promoter of 

MIR159A seems to consist of the portion from -802 to +1, as the highest GUS 

activity was observed with this promoter fragment. Two regions in the MIR159A 

promoter seem to contain repressor properties. The difference observed in the 

GUS activity of the fragment -1136 to +1 to the fragment -802 to +1, and the 

fragment -416 to +1 compared to the fragment -552 to +1, revealed that 

transcription factors may recognize elements within the regions -1136 to -802 and 

-552 to -416 to affect MIR159A gene expression. In the same way, positive 

elements may be present in the regions -802 to -552 and -416 to -244 (Figure 

30A). In the regions that were identified to be important for promoter activity, many 

putative transcription factor binding sites were predicted, a for example LEAFY 

consensus binding motive, a MYB binding site, a bZIP binding site, a RAV1-b 

binding site motive (Megraw et al., 2006), TATAbox motif (Xie et al., 2005), ABA 

responsive elements (Reyes and Chua, 2007) and potential GA responsive 
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elements (Achard et al., 2004). Using this information experiments are going to be 

done to identify which proteins bind to these specific regions of the MIR159A 

promoter. The presence of ABA and GA responsive elements on MIR159A 

promoter are in agreement with the role of these two hormones in over-

accumulation of miR159 (Achard et al., 2004; Reyes and Chua, 2007). In addition, 

the observation that MIR159A and not MIR159B is induced by GA in seedlings 

(Niemeier, 2006) defined which member of the gene family is responsible to GA. 

Interestingly, the signal transduction of both hormones may be mediated by the 

product of two miR159 targets. MYB101 and MYB33 may mediate the effects of 

ABA in seedlings (Reyes and Chua, 2007) and MYB33 may act in the GA 

activation of LFY for promoting flowering (Gocal et al., 2001) and specifically in the 

anther development (Achard et al., 2004).  

The expression of MIR161 was initially analyzed by northern blots. The mature 

miR161 was detected in seedlings, leaves, stems, flowers and siliques (Reinhart 

et al., 2002). Reads of miR161 were also sequenced in samples of small RNA 

from flowers, roots, seedlings siliques, inflorescences and leaves (Lu et al., 2006; 

Rajagopalan et al., 2006; Fahlgren et al., 2007). In these studies, which are able to 

quantify the expression of miRNAs, MIR161 was appointed to one of the most 

highly expressed miRNA genes. In this work, the expression of MIR161 was 

analyzed using promoter-GUS lines (Figure 32). The signals of the reporter protein 

were very strong in all positive tissues. Interestingly, promoter activity was not 

found in stems. In pumpkin (Cucurbita maxima), several miRNAs were isolated 

from the phloem sap, but it is still unkown where they are produced (Yoo et al., 

2004).  

The serial deletions of the promoter of MIR161 also demonstrated the high 

expression level of MIR161 (Figure 33). For the 35S promoter, which is a known 

strong promoter, the GUS activity was 300-fold the GUS activity of the promoter-

less construct (data not shown). Even the smallest promoter fragment,-226 to +1, 

was enough to set a high expression of the reporter gene, this portion may consist 

of the core MIR161 promoter. In the MIR161 promoter there are also two regions, 

to which transcription factors may bind and either suppress (-810 to -618) or 

activate (-618 to -406) the expression. Promoter motifs, such as T-Box, 

SORLREP3, DPBF1, DPBF2, MYB, SORLIP2, CATAbox (Megraw et al., 2006) 
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and TATAbox (Xie et al., 2005; Megraw et al., 2006), were found the MIR161 

promoter by in silico analysis. 

4.5. Conclusions and outlook 

In this work, different points concerning miRNA biology were addressed. Novel 

putative miRNA genes were predicted with RNAhybrid using additional 

assumptions to better discriminate between true and false miRNA targets. A total 

of 281 novel miRNA targets candidates were predicted, and many of them have 

predicted functions in biological processes to which only a few of the previously 

predicted or validated miRNA targets were assigned. This implies that possibly 

most of the miRNA targets are still transcriptions factors genes. However, the 

spectrum of miRNA regulation was broadened by many more processes. Some 

miRNA targets were experimentally validated using modified 5’RACE. 

Interestingly, many of the targets that were not experimentally validated also failed 

in pass the MFE cutoff proposed in this work, confirming that this cutoff can be 

used confidently for a miRNA target prediction. 

Two miR159 targets were studied in more detail: MYB101 and MRG1. Although 

both genes were investigated by means of overexpression lines, promoter-GUS 

lines, miRNA-resistant overexpressing lines, T-DNA insertion lines (MYB101 only), 

expression pattern and cellular localization (MRG1 only), the biological functions of 

these two genes are still unknown. According to the expression pattern, MYB101 

may participate, together with MYB33 and MYB65, in pollen development. These 

three genes may act together because single null mutants did not show any 

defects in pollen nor were they infertile. Only the double mutant myb33 myb65 

showed a certain degree of male infertility. 

For the future, genetic analyses with triple mutants of these genes are planned. In 

addition, overexpression lines of MYB101 with mutations in the miRNA binding site 

and in the nuclear export signal are ready for analysis (Julia Starmann, personal 

communication). Depending on the results of these experiments, a further search 

for genes that are regulated by MYB101 can be performed, for example, a 

microarray experiment using any of above mentioned lines.  
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In the case of MRG1, this work contributed with novel information about the 

pattern of expression, the effects of overexpression, the prediction and validation 

as miR159 target and the cellular localization. Still, no conclusion can be drawn, 

but it is clear that MRG1 and miR159 (because its regulatory role over MRG1), 

influence leaf development and auxillary meristems. Whether these effects are 

caused directly by MRG1 or whether they are indirect via unknown genes whose 

expression levels were altered by MRG1 is still not known. However, experiments 

are actually underway to analyze the expression profile in MRG1mutBS 

overexpression lines.  

The expression patterns of three miRNA genes were examined using promoter-

GUS lines. This approach was particularly interesting for MIR159A and MIR159B 

because previous indications that MIR159A counts for the majority of the 

accumulation of mature miR159 was confirmed, although the promoter activity of 

one gene of the miR159 family was not analyzed yet. Furthermore, by a reporter 

assay, regulatory units within the MIR159A promoter were identified, two regions 

seem to be the place where proteins bind and repress MIR159A expression, 

whereas two other specific regions of the MIR159A promoter seem to be the place 

for binding of proteins that activate MIR159A expression. Similar serial deletions of 

the promoter of MIR159B will be performed. The expression pattern of MIR161 

was also analyzed using promoter-GUS lines and revealed that this is a broadly 

expressed miRNA. This was supported by the analysis of serial deletions in the 

MIR161 promoter, given that even the smallest tested part of the promoter 

conferred high signal of the reporter gene. Within the MIR161 promoter, regulatory 

units were also found, one that may act by suppression (thought not completely) 

and one that clearly acts by activation, conferring the highest MIR161 expression. 

These regulatory units found in these two promoters can be used to identify 

proteins that bind and regulate the expression levels of these two miRNA genes. 
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6. Appendices 

Appendix I List of oligonucleotides used in this work. 

 
Oligonucleotide SEQUENCE 5’    3’ 

Amplification of miRNA targets 

At2g34010-31 CTCGAGCTCCTATAACTTAAGGTTGAGATCAATTCCATGATCAGC 

At2g34010-32 ACTCCCGGGTAACTTAAGGTTGAGATCAATTCCATGATCAGC 

At2g34010-51 CTAGGATCCAACAATGTGTAGTAACAACAACACAAGTAGTGGA 

L077-MYB125-51 GGAATCTAGATGGAAGCGAAGAAGGAAGAGATAAAGAAAGG 

L078-MYB125-31 GCTACCCGGGAGGACTTGGGATTGGATCAACCTGATCAAAC 

L079-MYB58-51 GGAATCTAGATGGGCAAAGGAAGAGCACCATGTTGTGAC 

L080-MYB58-31 GCTACCCGGGATGTATGAGGAGCTCGTAACTCTCCAAGAG 

L081-MYB94-51 GGAATCTAGATGGGAAGACCACCATGCTGTGACAAGATTG 

L091-MYB94-31 GCTACCCGGGGAACAACACTTCCTGACCCTCTAGTGACATG 

L126-ACS8-51 GGAAGGATCCAACAATGGGTCTCTTGTCAAAGAAAGCTAGTTGC 

L127-ACS8-31 GCTACCCGGGTCGTTCCTCGGGTTCACGGTCGTG 

L128-CKL6-51 GGAAGGATCCAACAATGGACTTGAAAATGGATAATGTTATTGGG 

L129-CKL6-31 GCTACCCGGGTTTGCGGATCGAAAGAAGCTCGAAGCT 

L143-GAE1-51 GGAAGGATCCAACAATGCCTTCAATAGAAGATGAGCTGTTTCCG 

L144-GAE1-31 GCTACCCGGGGGCTAAATCGACCCGGTTTTTGCC 

MYB101-39 GCTACCCGGGACAGATGCTAGGCATGTTGCTCCA 

MYB101-56 ATCGGATCCAACAATGGATGGTGGTGGAGAGACGA 

T004-MYB101-311 CTCGAGCTCCTAACAGATGCTAGGCATGTTGCTC 

PFL-31 ACTCCCGGGGAGACCAGACTCGATAAGGATATCGCCGA 

PFL-51 AGAGGATCCAACAATGTCGTGGCAATCATACGTCGATGACC 

Amplification of pre-miRNA 

L031-miR414-51 GGAATCTAGAGATGGTGGTGAGGATGAGACTAGGAAAG 

L032-miR414-31 CTCGAGCTCCTTGAAGTGGGAGAGTCAGCAATTTGAAGGG 

L073-miR156h-51 GGAATCTAGAGTCACAGAGCCACCGTCACTGCTTACTTAC 

L074-miR156h-31 CTCGAGCTCATACGCTCATGACACGATCACACAACATGG 

L075-miR395c-51 GGAATCTAGAATATATAAATAGGCATGCAGTGTTAGTGTT 

L076-miR395c-31 CTCGAGCTCGATTTAAAAGATAATAGAAAACCGCAGCAA 

miR172-31 CTCGAGCTCACCCGGGGCTTGTGGATCTATTAATGTCTTGATAAAG 

miR172-51 GGTTTCTAGATGGTTAGGTTCCAACTAAGTATACGAG 
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Oligonucleotide SEQUENCE 5’    3’ 

mir161-31 CTCGAGCTCACAATCGGATCATATCCATCTCCTTACAC 

mir161-51 GACTCTAGACTGCCGAAGCTTTGATCAGTACTTCTC 

159a-01-F ATATTCTAGACAAGATACTTTGTTTTTCGATAGATC 

159a-02-R CCAAGGATCTTCTCATCTACCCGAGGCAGTTGC 

Amplification of miRNA binding site mutant   

MYB101-57 CCTAGAATTGCCAAGCAATCAAAGACCGACCCATTCGTTCAG 

MYB101-310 GGTCTTTGATTGCTTGGCAATTCTAGGACGCTATTGTCTAGTCCT 

At2g34010-33 CTCTGATTGCTTGGTGGCTCTATGAATTGATAAAATCTTCCTGCTCC
T 

At2g34010-53 CATAGAGCCACCAAGCAATCAGAGATCTTGCGTCGATTCTGTGTC 

Amplification miRNAs and targets  promoter sequence 

L003-pro-
miR159a-01F 

AGAGAATTCTCTCCGGAACTCTCTAATCGGATCACAAGC 

L004-pro-
miR159a-02R 

CTCCCATGGCCCTGCTCAACTCATGTTTGAACTTTAAGGAGC 

L094-pro159a03F AGAGAATTCCTCAACATTGACTCGTCAATTATTCTTCGG 

L095-pro159a04F AGAGAATTCAATGGGCTCATAAGAAAGAGATGCAGCCCA 

L096-pro159a05F AGAGAATTCGCCATTGAATTGTGAAAGAGACGAGACTCG 

L097-pro159a06F AGAGAATTCGACCGTACATCAACCTATTTCACTATTTCG 

L098-pro159a07F AGAGAATTCACTAGTAGTTGGCAGGAACGATAATAATTG 

L099-pro159a08F AGAGAATTCCATGTCTTTTCAGATGCACCCACCTGTTCC 

L100-pro159a09F AGAGAATTCAAAACATGACGTGGCCTCTTCTCTCTCTC 

L005-pro-
miR159b-01F 

AGAGAATTCTAACGTCCTGCCAAACCCGTCCCGCCAAC 

L006-pro-
miR159b-02R 

CTCCCATGGGGCTTATGGGATCCATAGCTTAGCAGC 

L009-pro-miR161-
01F 

AGAGAATTCGTGTCGTGAATGTGAGCACCGCCGTCAATG 

L010-pro-miR161-
02R 

CTCCCATGGCGGAACCCCGATGTAGTCACTTTCAATGCA 

L065-pro161-1387 AGAGAATTCGGCAACATCATGGGGGCTTATAACCTAGTG 

L066-pro161-1050 AGAGAATTCGCTTGAAGTTAGCGTAACGATCAGATAGGG 

L067-pro161-810 AGAGAATTCGCATGTGGGTATTCGGGTCGGGTTTTTCG 

L068-pro161-618 AGAGAATTCACCCGAAAAATCCACAATTATAACAAGT 

L069-pro161-406 AGAGAATTCTCGGTTCGGGTAATACCCGATACCCACAGT 

L070-pro161-226 AGAGAATTCTACGAGGACGAGCCTTGTTGTAGTTGCAAC 

L071-pro161- AGAGAATTCAACTCATCCTTCTCTTCTATGAAAATTCCA 



Appendices 
___________________________________________________________________________________________________________________________________ 

         124 

Oligonucleotide SEQUENCE 5’    3’ 

start 

L011-pro-MYB101-
01F 

AGAGAATTCGGTGGGACTTAGATCAATCTCTCTATCATAATC 

L012-pro-MYB101-
02R 

CTCCCATGGTTTTCAACACGGCGACCCTCCGATCAAGGAGA 

L013-
proAT2g34010-1F 

GTAGAATTCAACCTCATGACTGTTCCTTGTTTTCTC 

L014-
proAT2g34010-2R 

GTGTTGTTGTTACTACCCATGGTTCTCAAGTGCAGAG 

Used as probe or positive control in northern blot 

L072-U6snRNA TCATCCTTGCGCAGGGGCCA 

L055-miR159a TTTGGATTGAAGGGAGCTCTA 

L056-miR159a-
star 

TAGAGCTCCCTTCAATCCAAA 

L057-miR161 TTGAAAGTGACTACATCGGGG 

L058-miR161-star CCCCGATGTAGTCACTTTCAA 

L059-miR414 TCATCTTCATCATCATCGTCA 

L060-miR414-star TGACGATGATGATGAAGATGA 

L180-ath-miR172a AGAATCTTGATGATGCTGCAT 

L181-miR172a-
star 

ATGCAGCATCATCAAGATTCT 

L178-ath-miR395b CTGAAGTGTTTGGGGGGACTC 

L179-miR395b-
star 

GAGTCCCCCCAAACACTTCAG 

L176-ath-miR156h TTGACAGAAGAAAGAGAGCAC 

L177-miR156h-
star 

GTGCTCTCTTTCTTCTGTCAA 

RNA marker TGGCCCCTGCGCAAGGATGA 

Used for T-DNA genotyping 

J504-Salk_LB GCGTGGACCGCTTGCTGCAACTCTCTCAGG 

L046-LB2r-Salk AATCAGCTGTTGCCCGTCTCA 

J507-SALK-RB CTCCGCTCATGATCAGATTGTCGTTTCCCG 

L064-LB1-SAIL GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC 

L157-SAIL-RB1 CAAACTAGGATAAATTATCGCGCGCGGTGTCA 

L047-
LPSalk061355 

CATCTCCGGCCAAATCTAAAG 

L048-RP-
Salk061355 

TTGAAGGAAGCTCTAGGACGC 

L049-LP-
Salk149918 

GGATCTACACTGGACGAAGGC 
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Oligonucleotide SEQUENCE 5’    3’ 

L050-RP-
Salk149918 

CCGATTCTTCGATGGATTTTC 

L062-LP- 
SAIL_299_A02 

TTTTCATAAAGGCCCCTACTC 

L063-RP-
SAIL_299_A02 

CCATTAGAGAATGTTGGCTCC 

Sequencing primers 

35S-PromoterPr ACAATCCCACTATCCTTC 

BTtG GAGTCAGTGAGCGAGGAAGCG 

GFPseq5 CAAGAATTGGGACAACTCCAGTG 

GUSu CGCGATCCAGACTGAATGCCCA 

nosTerm-Primer GCAAGACCGGCAACAGGATT 

To2f AACAGCTATGACCATGATTACGCC 

To2r GACGTTGTAAAACGACGGCCAGTG 

Used for 5’RACE target validation 

RNA adaptor GCUGAUGGCGAUGAAUGAACACUGCGUUUGCUGGCUUUGAUGAAA 

L001-5RACE-OUTER GCTGATGGCGATGAATGAACACTG 

L002-5RACE-Inner GAACACTGCGTTTGCTGGCTTTGATG 

L051-GFP-GSP1 ACTTGTGGCCGAGGATGTTTC 

L052-GFP-GSP2 TCTCCTGCACGTATCCCTCAG 

L015-
At2g340105RaceI 

CAATGGCGATGGGGTTGCTAG 

L016-
At2g340105RaceO 

GGTCACATGGTCGTTGTTCTTGG 

L023-At2g34010-
GSP3 

CTTGCGTCGATTCTGTGTCTCAG 

L017-MYB101-
5RACE-in 

GGGAAGTTGTTGAGAAGGCTCGTC 

L018-MYB101-
5RACE-ou 

ATCTACACTGGACGAAGGCGGCAC 

L030-MYB101-GSP3 GGTGTCCATCTTGAGCCACCTTC 

L029-PFL-GSP3 GACTACTCAAGCTCTAGTCTTTGG 

L083-GSP1-MYB58 TGAGGAGCTCGTAACTCTCCAAGA 

L084-GSP2-MYB58 CTAACCCGAGTTCGCTTTCCAGGT 

L085-GSP3-MYB58 TGCTGGTTCCAACATTTCAAGCAA 

L086-GSP1-MYB125 CTTAACACCCAAATCCGGCAACCT 

L087-GSP2-MYB125 CGTTTTTGCCCTTGAGTCGATGAG 

L088-GSP3-MYB125 CAACGCACCGGCAAATCCTGT 

L089-GSP3-MYB94 GAGCAAAGCCACGATATGATC 
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Oligonucleotide SEQUENCE 5’    3’ 

L145-ACS8-GSP1 GTTTTCGAGCTTTCTGTCTTTGAG 

L146-ACS8-GSP2 GAGATGAAGTCCAAGAGATGGTTT 

L147-ACS8-GSP3 GCTAACGAGACTCTCATGTTTTGT 

L148-GAE1-GSP1 TCCAGAGATCCTAAACATCCTTTC 

L149-GAE-GSP2 GGTAATGGCAAGACCGTAAATATG 

L150-GAE-GSP3 GGTGTTAGATACGCTTTGGAGAAT 
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Appendix II Hybrid structure of novel predicted miRNA 
targets. 

 
Hybrid structures of novel predicted miRNA targets. When the position of the miRNA 
binding site is not in the coding sequence, the reference “3’UTR” or “5’UTR” after the AGI 
number is given. When a target was predicted for several members of a miRNA gene 
family, only the structure from the smallest MFE is shown. Structures are listed 
numerically according to miRNA families. 
 
 
target: AT3G15270.1 3'UTR  squamosa 
promoter-binding protein-like 5 (SPL5) 
miRNA : ath-miR156a    mfe: -35.4 kcal/mol  
target 5'  C    U             U 3'  
            GCUC CUCUCUUCUGUCA      
            CGAG GAGAGAAGACAGU      
miRNA  3' CA    U               5'  
 
target: AT2G42200.1  squamosa promoter-
binding protein-like 9 (SPL9) 
miRNA : ath-miR156g    mfe: -39.2 kcal/mol  
position  741  
target 5' C       U            A 3'  
           UGUGCUC CUCUCUUCUGUC      
           ACACGAG GAGAGAAGACAG      
miRNA  3'         U            C 5'  
 
target: AT3G25540.1 5'UTR  LAG1 family 
protein 
miRNA : ath-miR156h    mfe: -31.6 kcal/mol  
position  84  
target 5' U      G         G     C 3'  
           UGCUCU CUUUCUUCU GUCAA      
           ACGAGA GAAAGAAGA CAGUU      
miRNA  3' C                        5'  
 
target: AT3G11960.1  cleavage and 
polyadenylation specificity factor (CPSF) 
A subunit C-terminal domain-containing 
protein 
miRNA : ath-miR156h    mfe: -32.4 kcal/mol  
position  496  
target 5' A   G          G       U 3'  
           GUG UCUCUUUCUU CUGUCAG      
           CAC AGAGAAAGAA GACAGUU      
miRNA  3'     G                    5'  
 

target: AT5G38610.1  invertase/pectin 
methylesterase inhibitor family protein 
miRNA : ath-miR156h    mfe: -33.9 kcal/mol  
position  565  
target 5' A                   C 3'  
           UGCUCUC UUCUUCUGUCA      
           ACGAGAG AAGAAGACAGU      
miRNA  3' C       A           U 5'  
 
target: AT2G35320.1 5'UTR  tyrosine-
specific phosphatase (atEYA) 
miRNA : ath-miR157a    mfe: -31.9 kcal/mol  
position  52  
target 5'  A             G    U 3'  
            GCUCUCUAUCUUU GUCA      
            CGAGAGAUAGAAG CAGU      
miRNA  3' CA             A    U 5'  
 
target: AT1G30450.1  cation-chloride 
cotransporter(CCC1) Family Member 
miRNA : ath-miR157a    mfe: -34.2 kcal/mol  
position  916  
target 5' U                   U 3'  
           UGCUCUCUAUCUUCUG CA      
           ACGAGAGAUAGAAGAC GU      
miRNA  3' C                A  U 5'  
 
target: AT2G34960.1  cationic amino acid 
transportr 5 (CAT5) 
miRNA : ath-miR157a    mfe: -32.6 kcal/mol  
position  340  
target 5' A                  U  3'  
           UGCUCUCUGUCUUCUG C       
           ACGAGAGAUAGAAGAC G       
miRNA  3' C                A UU 5'  
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target: AT5G53540.1  MSP1 protein putative 
miRNA : ath-miR157a    mfe: -32.1 kcal/mol  
position  1054  
target 5'  A      A          U  3'  
            GCUCUC AUCUUCUGUC       
            CGAGAG UAGAAGACAG       
miRNA  3' CA      A          UU 5'  
 
target: AT3G19553.1 5'UTR  amino acid 
permease family protein 
miRNA : ath-miR157d    mfe: -33.8 kcal/mol  
position  95  
target 5'  A           C       G 3'  
            GCUCUCUGUCU UCUGUCG      
            CGAGAGAUAGA AGACAGU      
miRNA  3' CA                     5'  
 
target: AT2G45990.1  expressed protein 
miRNA : ath-miR157d    mfe: -31.7 kcal/mol  
position  58  
target 5'  A           G      A 3'  
            GCUCUCUAUCU CUGUUA      
            CGAGAGAUAGA GACAGU      
miRNA  3' CA           A        5'  
 
target: AT3G07400.1 3'UTR  lipase class 3 
family protein 
miRNA : ath-miR158b    mfe: -31.9 kcal/mol  
position  406  
target 5' G                U  C 3'  
           GCUUUGUCUACAUUUG GG      
           CGAAACAGAUGUAAAC CC      
miRNA  3' A                   C 5'  
 
target: AT2G34010.1  expressed protein 
miRNA : ath-miR159a    mfe: -33.1 kcal/mol  
position  424  
target 5' A      C        A     G 3'  
           UAGAGC CCCUUCAA CCAAA      
           AUCUCG GGGAAGUU GGUUU      
miRNA  3'        A        A       5'  
 
target: AT2G41440.1  expressed protein 
miRNA : ath-miR159a    mfe: -32.4 kcal/mol  
position  999  
target 5'  U                  U 3'  
            GGGUUUCCUUCGAUCCGA      
            CUCGAGGGAAGUUAGGUU      
miRNA  3' AU                  U 5'  
 
target: AT4G27330.1  sporocyteless (SPL) 
miRNA : ath-miR159a    mfe: -33.1 kcal/mol  
position  459  
target 5'  U               U    U 3'  
            GAGCUCUCUUCAAUC CAAA      
            CUCGAGGGAAGUUAG GUUU      
miRNA  3' AU                      5'  
 
target: AT2G16750.1  protein kinase family 
protein 
miRNA : ath-miR159b    mfe: -32.3 kcal/mol  
position  373  
target 5' A                   C  3'  
           AAGAGCUUCCUUCAA CCA       
           UUCUCGAGGGAAGUU GGU       
miRNA  3'                 A   UU 5'  
 
target: AT4G15530.2  pyruvate 
orthophosphate dikinase 
miRNA : ath-miR159b    mfe: -33.1 kcal/mol  
position  586  
target 5' C              G       G 3'  
           AAGAGUUUCCUUCA AUCCAAA      
           UUCUCGAGGGAAGU UAGGUUU      
miRNA  3'                          5'  

target: AT5G67090.1  subtilase family 
protein 
miRNA : ath-miR159b    mfe: -35.4 kcal/mol  
position  1084  
target 5' G                    U 3'  
           GAGAGUUCCCUUCGGUUCAG      
           UUCUCGAGGGAAGUUAGGUU      
miRNA  3'                      U 5'  
 
target: AT5G52060.1  BCL-2-ASSOCIATED 
ATHANOGENE 1 (BAG1) 
miRNA : ath-miR160a    mfe: -41.7 kcal/mol  
position  42  
target 5' C                    G 3'  
           GGCG GCAGGGAGUCAGGCG      
           CCGU UGUCCCUCGGUCCGU      
miRNA  3' A    A                 5'  
 
target: AT2G16880.1   pentatricopeptide 
(PPR) repeat-containing protein 
miRNA : ath-miR161    mfe: -33.6 kcal/mol  
position  1026  
target 5' G                A   U 3'  
           CCCGAUGUGGUUACUU CAA      
           GGGCUACAUCAGUGAA GUU      
miRNA  3' G                A     5'  
 
 
 
target: AT5G17930.1   similar to MIF4G 
domain-containing protein  
miRNA : ath-miR162a    mfe: -35.1 kcal/mol  
position  1687  
target 5' A                    G 3'  
           UGGAUGCAGAGGUU GUUGA      
           ACCUACGUCUCCAA UAGCU      
miRNA  3' G              A       5'  
 
target: AT4G24160.1 3'UTR  hydrolase, 
alpha/beta fold family protein 
miRNA : ath-miR163    mfe: -36.9 kcal/mol  
position  113  
target 5' U                      C  3'  
           AUUGGAGUUUCAAGUCCUCUUU       
           UAGCUUCAAGGUUCAGGAGAAG       
miRNA  3'                        UU 5'  
 
target: AT3G23890.1   DNA topoisomerase 
II(TOP2) 
miRNA : ath-miR167a    mfe: -33.9 kcal/mol  
position  2893  
target 5' G   A                G 3'  
           AGA CAUGCUGGCGGCU CG      
           UCU GUACGACCGUCGA GU      
miRNA  3' A   A             A    5'  
 
target: AT3G21810.1   zinc finger (CCCH-
type) family protein 
miRNA : ath-miR167c    mfe: -32.5 kcal/mol  
position  354  
target 5'  U                   A 3'  
            GAUUAUGCUGGUGGUUUGA      
            CUAGUACGACCGUCGAAUU      
miRNA  3' UU                     5'  
 
target: AT4G08340.1   Ulp1 protease family 
protein 
miRNA : ath-miR167c    mfe: -35.1 kcal/mol  
position  1282  
target 5'  C                   G 3'  
            GAUC UGCUGGCGGCUUGA      
            CUAG ACGACCGUCGAAUU      
miRNA  3' UU    U                5'  
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target: AT5G16860.1   pentatricopeptide 
(PPR) repeat-containing protein 
miRNA : ath-miR167c    mfe: -31.4 kcal/mol  
position  1874  
target 5' U             C G    A 3'  
           AGGUCGUGCUGGC G UUGA      
           UCUAGUACGACCG C AAUU      
miRNA  3' U             U G      5'  
 
target: AT3G07810.1   heterogeneous 
nuclear ribonucleoprotein putative / hnRNP 
miRNA : ath-miR167d    mfe: -37.0 kcal/mol  
position  1422  
target 5' U                   A  G 3'  
           CCAGGUUAUGUUGGCAGUU CA      
           GGUCUAGUACGACCGUCGA GU      
miRNA  3'                     A    5'  
 
target: AT5G42120.1   lectin protein 
kinase family protein 
miRNA : ath-miR169b    mfe: -37.1 kcal/mol  
position  1051  
target 5' C    A                A 3'  
           CUGG AGGUUAUCCUUGGCUG      
           GGCC UUCAGUAGGAACCGAC      
 
miRNA  3'      G                  5'  
 
target: AT3G47170.1   transferase family 
protein 
miRNA : ath-miR170    mfe: -34.1 kcal/mol  
position  531  
target 5' U                    U 3'  
           GGUAUUGGCAUGGCUCAGUU      
           CUAUAACUGUGCCGAGUUAG      
miRNA  3'                      U 5'  
 
target: AT4G01910.1   DC1 domain-
containing protein 
miRNA : ath-miR171a    mfe: -34.9 kcal/mol  
position  1410  
target 5' C      G              U 3'  
           GAUGUU GGUGCGGUUCAAUC      
           CUAUAA CCGCGCCGAGUUAG      
miRNA  3'                       U 5'  
 
target: AT1G01420.1   UDP-
glucoronosyl/UDP-glucosyl transferase 
family protein 
miRNA : ath-miR171b    mfe: -34.7 kcal/mol  
position  1187  
target 5' U    G               U  3'  
           CGUG AUGUUGGUGCGGCUC       
           GCAC UAUAACCGUGCCGAG       
miRNA  3'                      UU 5'  
 
target: AT3G47170.1   transferase family 
protein 
miRNA : ath-miR171b    mfe: -37.3 kcal/mol  
position  530  
target 5'  A                   U 3'  
            UGGUAUUGGCAUGGCUCAG      
            ACUAUAACCGUGCCGAGUU      
miRNA  3' GC                     5'  
 
target: AT4G29430.1 5'UTR  RPS15aE 
ribosomal protein S15aE 
miRNA : ath-miR172a    mfe: -31.9 kcal/mol  
position  5  
target 5' U                     U 3'  
           GUGUAGUAUCGUCGGGAUUUU      
           UACGUCGUAGUAGUUCUAAGA      
miRNA  3'                         5'  
 

target: AT3G07770.1   heat shock protein-
related 
miRNA : ath-miR172a    mfe: -30.8 kcal/mol  
position  238  
target 5' A        G            U 3'  
           GUGCAGCA CAUCA GAUUCU      
           UACGUCGU GUAGU CUAAGA      
miRNA  3'          A     U        5'  
 
target: AT4G24630.1   zinc finger (DHHC 
type) family protein 
miRNA : ath-miR172a    mfe: -32.1 kcal/mol  
position  597  
target 5'  G       A            G 3'  
            GCGGUAU CAUCAAGAUUCU      
            CGUCGUA GUAGUUCUAAGA      
miRNA  3' UA                      5'  
 
target: AT5G27840.1 3'UTR   
serine/threonine protein phosphatase PP1 
isozyme 8 (TOPP8) 
miRNA : ath-miR172e    mfe: -32.6 kcal/mol  
position  357  
target 5' U                    A 3'  
           UGCA UAUCGUCAAGAUUCC      
           ACGU GUAGUAGUUCUAAGG      
miRNA  3' U    C                 5'  
 
target: AT2G37670.1   WD-40 repeat family 
protein 
miRNA : ath-miR172e    mfe: -31.3 kcal/mol  
position  2495  
target 5'  A      U            G 3'  
            GCAGCA UCAUCGAGGUUU      
            CGUCGU AGUAGUUCUAAG      
miRNA  3' UA                   G 5'  
 
target: AT2G47410.1   WD-40 repeat family  
miRNA : ath-miR172e    mfe: -32.5 kcal/mol  
position  3731  
target 5'  A    G          G    U 3'  
            GCAG GUCAUCAAGA UUCC      
            CGUC UAGUAGUUCU AAGG      
miRNA  3' UA    G                 5'  
 
target: AT3G54350.1   forkhead-associated 
domain-containing protein  
miRNA : ath-miR172e    mfe: -32.1 kcal/mol  
position  604  
target 5' G                     G 3'  
           AUGUGGU UCAUCAAGAUUCC      
           UACGUCG AGUAGUUCUAAGG      
miRNA  3'         U               5'  
 
target: AT3G62240.1   zinc finger (C2H2 
type) family protein 
miRNA : ath-miR172e    mfe: -34.0 kcal/mol  
position  1807  
target 5'  G A                  A 3'  
            G CAGUAUCGUCAAGGUUCC      
            C GUCGUAGUAGUUCUAAGG      
miRNA  3' UA                      5'  
 
target: AT5G42060.1 5'UTR  expressed 
protein 
miRNA : ath-miR173    mfe: -35.6 kcal/mol  
position  3  
target 5' U              C      A 3'  
           UGGUUUCUCUCUGU GGCGAG      
           ACUAAAGAGAGACG UCGCUU      
miRNA  3' C              U        5'  
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target: AT5G67090.1   subtilase family 
protein 
miRNA : ath-miR319a    mfe: -36.6 kcal/mol  
position  1083  
target 5' U  A                  U 3'  
           GG GAGUUCCCUUCGGUUCAG      
           CC CUCGAGGGAAGUCAGGUU      
miRNA  3'                         5'  
 
target: AT1G31880.1 5'UTR  BREVIS RADIX 
(BRX) 
miRNA : ath-miR319c    mfe: -36.9 kcal/mol  
position  17  
target 5' C                 U  3'  
           GGAGCUCCUUUCAGUUC       
           CCUCGAGGGAAGUCAGG       
miRNA  3' U                 UU 5'  
 
target: AT3G66658.2   betaine-aldehyde 
dehydrogenase putative 
miRNA : ath-miR319c    mfe: -35.9 kcal/mol  
position  963  
target 5' A      A             C 3'  
           AGGGGC CUCUUCAGUCCAG      
           UCCUCG GGGAAGUCAGGUU      
miRNA  3'        A               5'  
 
target: AT1G06440.1   expressed protein  
miRNA : ath-miR391    mfe: -37.9 kcal/mol  
position  260  
target 5' G        C U            A 3'  
           UGGCGCUG U CUUUCCUGCGAA      
           ACCGCGAU A GAGAGGACGCUU      
miRNA  3'                           5'  
 
target: AT1G10700.1   ribose-phosphate 
pyrophosphokinase 3 (PRS3) 
miRNA : ath-miR391    mfe: -37.5 kcal/mol  
position  1  
target 5' A    G           G     U 3'  
           UGGC GCUAUUUCUCC GCGAA      
           ACCG CGAUAGAGAGG CGCUU      
miRNA  3'                  A       5'  
 
target: AT1G50990.1   protein kinase-
related 
miRNA : ath-miR391    mfe: -37.5 kcal/mol  
position  1337  
target 5'  U                  C 3'  
            GUGCUAUCUCUUCUGCGA      
            CGCGAUAGAGAGGACGCU      
miRNA  3' AC                  U 5'  
 
target: AT3G55950.1   protein kinase 
family protein 
miRNA : ath-miR391    mfe: -37.1 kcal/mol  
position  492  
target 5' C       G            C 3'  
           GGCGUUG UUUCUCCUGCGG      
           CCGCGAU AGAGAGGACGCU      
miRNA  3' A                    U 5'  
 
target: AT3G59220.1   pirin putative 
miRNA : ath-miR393a    mfe: -33.7 kcal/mol  
position  764  
target 5'  U                 U  U 3'  
            UCAGUGUGGUCCCUUUG GA      
            AGUUACGCUAGGGAAAC CU      
miRNA  3' CU                      5'  
 

target: AT1G10920.1   disease resistance 
protein (CC-NBS-LRR class) 
miRNA : ath-miR394a    mfe: -34.1 kcal/mol  
position  122  
target 5' U        A            A 3'  
           GGGGGUGG ACAGAGUGUUGA      
           CCUCCACC UGUCUUACGGUU      
miRNA  3'                         5'  
 
target: AT3G04980.1   DNAJ heat shock N-
terminal domain-containing protein 
miRNA : ath-miR394a    mfe: -34.0 kcal/mol  
position  548  
target 5' U      U            C 3'  
           GAGGUG GAUGGAGUGCCA      
           CUCCAC CUGUCUUACGGU      
miRNA  3' C                   U 5'  
 
target: AT4G14850.1   similar to 
pentatricopeptide (PPR) repeat-containing)  
miRNA : ath-miR394a    mfe: -38.0 kcal/mol  
position  1585  
target 5' G                    C 3'  
           GGAGGUGGGCGGAA GCCAA      
           CCUCCACCUGUCUU CGGUU      
miRNA  3'                A       5'  
 
target: AT5G09670.2   loricrin-related 
miRNA : ath-miR394a    mfe: -35.6 kcal/mol  
position  525  
target 5' U     A       G       A 3'  
           GGAGG GGACAGA AUGCCAA      
           CCUCC CCUGUCU UACGGUU      
miRNA  3'       A                 5'  
 
 
target: AT5G13630.1   magnesium-chelatase 
subunit chlH 
miRNA : ath-miR395a    mfe: -35.6 kcal/mol  
position  3421  
target 5' A                     G 3'  
           GAGUUUUCUCAAACGCUUCAG      
           CUCAAGGGGGUUUGUGAAGUC      
miRNA  3'                         5'  
 
target: AT1G20570.1   tubulin family 
protein  
miRNA : ath-miR396a    mfe: -33.5 kcal/mol  
position  2618  
target 5'          A           C 3'  
          UGGUUCAAG AAAGCUGUGGG      
          GUCAAGUUC UUUCGACACCU      
miRNA  3'                      U 5'  
 
target: AT1G80260.1   similar to tubulin 
family protein  
miRNA : ath-miR396a    mfe: -33.5 kcal/mol  
position  2531  
target 5' U        A           C 3'  
 
           GGUUCAAG AAAGCUGUGGG      
           UCAAGUUC UUUCGACACCU      
miRNA  3' G                    U 5'  
 
target: AT2G15630.1   pentatricopeptide 
(PPR) repeat-containing protein 
miRNA : ath-miR396a    mfe: -31.4 kcal/mol  
position  1361  
target 5'  U                   A 3'  
            GUUUGAGAAAGUUGUGGGA      
            CAAGUUCUUUCGACACCUU      
miRNA  3' GU                     5'  
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target: AT2G30590.1   WRKY family 
transcription factor  
miRNA : ath-miR396a    mfe: -31.7 kcal/mol  
position  139  
target 5' A                    U 3'  
           GGUUCAAGAGAGUUG GGAG      
           UCAAGUUCUUUCGAC CCUU      
miRNA  3' G               A      5'  
 
target: AT3G14880.1   DNA-binding protein-
related 
miRNA : ath-miR396a    mfe: -31.9 kcal/mol  
position  132  
target 5' A     A              C 3'  
           CGGUU AGGGAGGCUGUGGA      
           GUCAA UUCUUUCGACACCU      
miRNA  3'       G              U 5'  
 
target: AT3G44830.1   LACT family protein 
miRNA : ath-miR396a    mfe: -31.4 kcal/mol  
position  679  
target 5' G                  U  3'  
           GGUUUAAGAAAGUUGUGG       
           UCAAGUUCUUUCGACACC       
miRNA  3' G                  UU 5'  
 
target: AT4G12050.1   DNA-binding protein-
related 
miRNA : ath-miR396a    mfe: -35.5 kcal/mol  
position  826  
target 5' C              G      G 3'  
           CAGUUCAAGGAGGC GUGGAG      
           GUCAAGUUCUUUCG CACCUU      
miRNA  3'                A        5'  
 
target: AT5G01370.1   expressed protein  
miRNA : ath-miR396a    mfe: -36.3 kcal/mol  
position  580  
target 5' A                    G 3'  
           GGUUCGAGAAGGUUGUGGAA      
           UCAAGUUCUUUCGACACCUU      
miRNA  3' G                      5'  
 
target: AT5G30510.1   30S ribosomal 
protein S1 putative 
miRNA : ath-miR396a    mfe: -31.4 kcal/mol  
position  1043  
target 5'  U              A    A 3'  
            GUUCGAGAAGGCUG GGAG      
            CAAGUUCUUUCGAC CCUU      
miRNA  3' GU              A      5'  
 
target: AT5G53440.1   expressed protein  
miRNA : ath-miR396a    mfe: -31.1 kcal/mol  
position  3153  
target 5' A     U             C  3'  
           GGUUC GAGGAAGCUGUGG       
           UCAAG UUCUUUCGACACC       
miRNA  3' G                   UU 5'  
 
target: AT5G58980.1   ceramidase family 
protein 
miRNA : ath-miR396a    mfe: -34.7 kcal/mol  
position  1068  
target 5' G                C   U 3'  
           CAGUUCAAGAAGGCUG GGA      
           GUCAAGUUCUUUCGAC CCU      
miRNA  3'                  A   U 5'  
 

target: AT1G46696.1   expressed protein 
miRNA : ath-miR396b    mfe: -31.9 kcal/mol  
position  870  
target 5' G     G               G 3'  
           AAGUU AAGGGAGUUGUGGAG      
           UUCAA UUCUUUCGACACCUU      
miRNA  3'       G                 5'  
 
target: AT2G34530.1   expressed protein  
miRNA : ath-miR396b    mfe: -31.2 kcal/mol  
position  744  
target 5' U               A     U 3'  
           GAGUUCAAGAAAGUU UGGAA      
           UUCAAGUUCUUUCGA ACCUU      
miRNA  3'                 C       5'  
 
target: AT2G44770.1   phagocytosis and 
cell motility protein ELMO1-related 
miRNA : ath-miR396b    mfe: -30.7 kcal/mol  
position  265  
target 5' G   C  U               A 3'  
           AAG UC AAGGGAGCUGUGGAA      
           UUC AG UUCUUUCGACACCUU      
miRNA  3'     A                    5'  
 
target: AT5G05730.1   anthranilate 
synthase alpha subunit component I-1 
(ASA1) 
miRNA : ath-miR396b    mfe: -31.3 kcal/mol  
position  921  
target 5' A    A              U  3'  
           GAGU CAAGGAGGCUGUGG       
           UUCA GUUCUUUCGACACC       
miRNA  3'      A              UU 5'  
 
 
 
target: AT5G13655.1   hypothetical protein  
miRNA : ath-miR396b    mfe: -31.4 kcal/mol  
position  272  
target 5' C              C     U 3'  
           AAGUUCGAGAGGGU GUGGA      
           UUCAAGUUCUUUCG CACCU      
miRNA  3'                A     U 5'  
 
target: AT5G24660.1   expressed protein  
miRNA : ath-miR396b    mfe: -31.7 kcal/mol  
position  69  
target 5' A   A G               G 3'  
           GAG U GAGAAAGCUGUGGAG      
           UUC A UUCUUUCGACACCUU      
miRNA  3'     A G                 5'  
 
target: AT5G43060.1   cysteine proteinase 
putative 
miRNA : ath-miR396b    mfe: -34.3 kcal/mol  
position  460  
target 5' A   A                 G 3'  
           AAG UCAAGGAAGCUGUGGGA      
           UUC AGUUCUUUCGACACCUU      
miRNA  3'     A                   5'  
 
target: AT5G51310.1   gibberellin 20-
oxidase-related 
miRNA : ath-miR396b    mfe: -31.0 kcal/mol  
position  942  
 
target 5' G                     C 3'  
           AAGUUCGAGAAGGUUG GGGA      
           UUCAAGUUCUUUCGAC CCUU      
miRNA  3'                  A      5'  
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target: AT5G55580.1   mitochondrial 
transcription termination factor (mTERF) 
family protein 
miRNA : ath-miR396b    mfe: -32.5 kcal/mol  
position  482  
target 5' U              A       A 3'  
           GAGUUCGAGGAAGU UGUGGAG      
           UUCAAGUUCUUUCG ACACCUU      
miRNA  3'                          5'  
 
target: AT5G57590.1   aminotransferase 
class III family protein 
miRNA : ath-miR396b    mfe: -30.6 kcal/mol  
position  1271  
target 5' A  C                  C 3'  
           AA UUUAAGAGAGCUGUGGGA      
           UU AAGUUCUUUCGACACCUU      
miRNA  3'    C                    5'  
 
target: AT5G60360.1   cysteine proteinase 
putative 
miRNA : ath-miR396b    mfe: -30.9 kcal/mol  
position  469  
target 5' A   A                U 3'  
           AAG UCAGGGAGGUUGUGGA      
           UUC AGUUCUUUCGACACCU      
miRNA  3'     A                U 5'  
 
target: AT5G66420.1   expressed protein  
miRNA : ath-miR396b    mfe: -31.4 kcal/mol  
position  1233  
target 5' A               G      U 3'  
           AAGUUUGAGGAAGCU GUGGGA      
           UUCAAGUUCUUUCGA CACCUU      
miRNA  3'                          5'  
 
target: AT3G06470.1   GNS1/SUR4 membrane 
family protein 
miRNA : ath-miR397a    mfe: -32.8 kcal/mol  
position  733  
target 5'  U                  C 3'  
            UCAACGCUGCAUUUAAUG      
            AGUUGCGACGUGAGUUAC      
miRNA  3' GU                  U 5'  
 
target: AT3G17880.1   tetratricoredoxin 
(TDX) 
miRNA : ath-miR397a    mfe: -33.0 kcal/mol  
position  788  
target 5'  C                   C 3'  
            UCAG GCUGCACUCAAUGA      
            AGUU CGACGUGAGUUACU      
miRNA  3' GU    G                5'  
 
target: AT3G59100.1   glycosyl transferase 
family 48 protein 
miRNA : ath-miR397a    mfe: -33.1 kcal/mol  
position  624  
target 5' G     G             C 3'  
           GUCAA GCUGCAUUCAGUG      
           UAGUU CGACGUGAGUUAC      
miRNA  3' G     G             U 5'  
 
target: AT4G33230.1   pectinesterase 
family protein 
miRNA : ath-miR397a    mfe: -33.5 kcal/mol  
position  926  
target 5' C                  A C 3'  
           CAUCAACGCUGCACUUAA G      
           GUAGUUGCGACGUGAGUU C      
miRNA  3'                    A U 5'  
 

target: AT1G19500.1   expressed protein  
miRNA : ath-miR397b    mfe: -33.0 kcal/mol  
position  123  
target 5' U    C               A 3'  
           GUCA CGAUGCAUUCAAUGA      
           UAGU GCUACGUGAGUUACU      
miRNA  3' G    U                 5'  
 
target: AT1G21160.1   eukaryotic 
translation initiation factor 2 (eIF-2) 
family protein  
miRNA : ath-miR397b    mfe: -33.3 kcal/mol  
position  2211  
target 5' G               C    A 3'  
           GUCAACGGUGUACUC GUGA      
           UAGUUGCUACGUGAG UACU      
miRNA  3' G               U      5'  
 
target: AT1G49530.1   geranylgeranyl 
pyrophosphate synthase (GGPS6) 
miRNA : ath-miR397b    mfe: -31.6 kcal/mol  
position  780  
target 5' G  G                 G 3'  
           AU GAUGAUGUACUCGAUGA      
           UA UUGCUACGUGAGUUACU      
miRNA  3' G  G                   5'  
 
target: AT3G57870.1   ubiquitin-
conjugating enzyme putative 
miRNA : ath-miR397b    mfe: -34.7 kcal/mol  
position  178  
target 5' C              U       G 3'  
           CAUUAACGAUGCAC UCAGUGA      
           GUAGUUGCUACGUG AGUUACU      
miRNA  3'                          5'  
 
target: AT4G01050.1   hydroxyproline-rich 
glycoprotein family protein 
miRNA : ath-miR397b    mfe: -32.1 kcal/mol  
position  794  
target 5' G                     G 3'  
           CAUCAGCGGUGUAUUUGGUGA      
           GUAGUUGCUACGUGAGUUACU      
miRNA  3'                         5'  
 
target: AT5G02470.1   DP-2 transcription 
factor putative (DPA) 
miRNA : ath-miR397b    mfe: -32.6 kcal/mol  
position  324  
target 5' A   U               U 3'  
           GUC ACGAUGCGCUCAAUG      
           UAG UGCUACGUGAGUUAC      
miRNA  3' G   U               U 5'  
 
target: AT5G58870.1   FtsH  
miRNA : ath-miR397b    mfe: -31.9 kcal/mol  
position  2008  
target 5' A       A              U 3'  
           UAUCAAC GGUGCACUUGAUGA      
           GUAGUUG CUACGUGAGUUACU      
miRNA  3'                          5'  
 
target: AT3G06370.1 3'UTR   member of 
Sodium proton exchanger family (NHX4) 
miRNA : ath-miR398b    mfe: -37.8 kcal/mol  
position  315  
target 5' A               U    C 3'  
           UAGGGGUGACUUGAG ACAC      
           GUCCCCACUGGACUC UGUG      
miRNA  3'                 U    U 5'  
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target: AT1G08050.1   zinc finger (C3HC4-
type RING finger) family protein 
miRNA : ath-miR398b    mfe: -37.8 kcal/mol  
position  1569  
target 5' U              C  G   G 3'  
           GGGGGUGACCUGAG GG GCA      
           UCCCCACUGGACUC UU UGU      
miRNA  3' G                 G     5'  
 
target: AT2G37790.1   aldo/keto reductase 
family protein 
miRNA : ath-miR399b    mfe: -35.9 kcal/mol  
position  610  
target 5' U                   G  3'  
           CAGGGU ACUCUCCUUUGG       
           GUCCCG UGAGAGGAAACC       
miRNA  3'        U            GU 5'  
 
target: AT3G43790.3   transporter-related 
protein 
miRNA : ath-miR399b    mfe: -36.5 kcal/mol  
position  1113  
target 5' U             A      G 3'  
           GGGGUGACUCUCC UUUGGU      
           UCCCGUUGAGAGG AAACCG      
miRNA  3' G                    U 5'  
 
target: AT2G23840.1   HNH endonuclease 
domain-containing protein 
miRNA : ath-miR399d    mfe: -36.2 kcal/mol  
position  101  
target 5' C   U                 U 3'  
           CGG GGUGGAUCUCCUUUGGU      
           GCC CCGUUUAGAGGAAACCG      
miRNA  3'                       U 5'  
 
target: AT4G09730.1   DEAD/DEAH box 
helicase putative 
miRNA : ath-miR399d    mfe: -39.8 kcal/mol  
position  1833  
target 5' C                C    A 3'  
           CGGGGCAAGUCUUCUU GGCA      
           GCCCCGUUUAGAGGAA CCGU      
miRNA  3'                  A      5'  
 
target: AT5G43280.1   Encodes the 
peroxisomal delta-3-5-delta2-4-dienoyl-CoA 
isomerase 
miRNA : ath-miR399e    mfe: -35.5 kcal/mol  
position  652  
target 5' G                A  U 3'  
           GAGGCAAGUCUCCUUU GC      
           CUCCGUUUAGAGGAAA CG      
miRNA  3' G                C  U 5'  
 
target: AT1G59750.1   auxin-responsive 
factor (ARF1) 
miRNA : ath-miR400    mfe: -28.7 kcal/mol  
position  606  
target 5' A      G              U 3'  
           GUGGCU GUGAUGCUUUCAUA      
           CACUGA UAUUAUGAGAGUAU      
miRNA  3'        A                5'  
 
target: AT1G62910.1   pentatricopeptide 
(PPR) repeat-containing protein 
miRNA : ath-miR400    mfe: -29.3 kcal/mol  
position  1194  
target 5' A        C            A 3'  
           GUGACUUA AGUACUCUUAUA      
           CACUGAAU UUAUGAGAGUAU      
miRNA  3'          A              5'  
 

target: AT1G63130.1   pentatricopeptide 
(PPR) repeat-containing protein 
miRNA : ath-miR400    mfe: -29.3 kcal/mol  
position  1188  
target 5' A        C            A 3'  
           GUGACUUA AAUACUCUUAUA      
           CACUGAAU UUAUGAGAGUAU      
miRNA  3'          A              5'  
 
target: AT1G63400.1   pentatricopeptide 
(PPR) repeat-containing protein 
miRNA : ath-miR400    mfe: -27.5 kcal/mol  
position  1200  
target 5' A        C           U 3'  
           GUGACUUA AAUACUCUUAU      
           CACUGAAU UUAUGAGAGUA      
miRNA  3'          A           U 5'  
 
target: AT3G22470.1   pentatricopeptide 
(PPR) repeat-containing protein 
miRNA : ath-miR400    mfe: -33.4 kcal/mol  
position  1155  
target 5' C                     A 3'  
           GUGACUUAUAGUAUUCUCAUA      
           CACUGAAUAUUAUGAGAGUAU      
miRNA  3'                         5'  
 
target: AT3G49990.1   expressed protein  
miRNA : ath-miR400    mfe: -27.8 kcal/mol  
position  410  
target 5'  A            G       U 3'  
            GGCUUAUGAUGC UCUCGUG      
            CUGAAUAUUAUG AGAGUAU      
miRNA  3' CA                      5'  
 
target: AT5G36905.1   RNase H domain-
containing protein 
miRNA : ath-miR402    mfe: -34.6 kcal/mol  
position  1183  
target 5' A   U              G   A 3'  
           UAG GGUUUGGUGGGCCU GAA      
           GUC CCAAAUUAUCCGGA CUU      
miRNA  3'     U              G     5'  
 
target: AT4G21510.1   F-box family protein 
miRNA : ath-miR403    mfe: -32.9 kcal/mol  
position  229  
target 5' U      G             C  3'  
           CGAGUU UGUGCGUGAAUCU       
           GCUCAA ACACGCACUUAGA       
miRNA  3'                      UU 5'  
 
target: AT2G01480.1 5'UTR   expressed 
protein 
miRNA : ath-miR404    mfe: -42.1 kcal/mol  
position  177  
target 5' C       C          A   G 3'  
           CUGCCGC ACCGCCGGCG UAG      
           GACGGCG UGGCGGUCGC AUU      
miRNA  3' C       U          A   A 5'  
 
target: AT1G03660.1   expressed protein 
miRNA : ath-miR406    mfe: -29.3 kcal/mol  
position  90  
target 5' U    U              C  3'  
           CUGG UUGCAAUAGCAUUC       
           GACC AAUGUUAUCGUAAG       
miRNA  3'      U              AU 5'  
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target: AT1G06410.1   trehalose-
phosphatase family protein 
miRNA : ath-miR406    mfe: -28.8 kcal/mol  
position  1768  
target 5' U               C    A 3'  
           UGGAUUAUGAUGGCA UCUG      
           ACCUAAUGUUAUCGU AGAU      
miRNA  3' G               A      5'  
 
target: AT3G06710.1   expressed protein 
miRNA : ath-miR406    mfe: -29.3 kcal/mol  
position  500  
target 5' G               A   G  G 3'  
           CUGGAUUGCAAUAGC AUU UA      
           GACCUAAUGUUAUCG UAA AU      
miRNA  3'                     G    5'  
 
target: AT4G23510.1   disease resistance 
protein (TIR class) 
miRNA : ath-miR406    mfe: -29.1 kcal/mol  
position  1159  
target 5'  G                  U 3'  
            GGGUUGCAGUAGUGUUCU      
            CCUAAUGUUAUCGUAAGA      
miRNA  3' GA                  U 5'  
 
target: AT5G40340.1   PWWP domain-
containing protein 
miRNA : ath-miR406    mfe: -30.3 kcal/mol  
position  1004  
target 5' A                G   A 3'  
           UGGGUUACAAUGGCGU CUA      
           ACCUAAUGUUAUCGUA GAU      
miRNA  3' G                A     5'  
 
target: AT3G10070.1 3'UTR  TBP-associated 
58 kDa subunit protein (TAFII58) 
miRNA : ath-miR407    mfe: -27.3 kcal/mol  
position  206  
target 5' G               A     U 3'  
           GCCAAAAGUGUAUGA UUGAG      
           UGGUUUUCAUAUACU AAUUU      
miRNA  3'                 A       5'  
 
target: AT1G77760.1   nitrate reductase 1 
(NR1) 
miRNA : ath-miR407    mfe: -24.5 kcal/mol  
position  2445  
target 5' A       U            C  3'  
           ACCGAGA GUAUGUGGUUUA       
           UGGUUUU CAUAUACUAAAU       
miRNA  3'                      UU 5'  
 
target: AT2G42180.1  expressed protein 
miRNA : ath-miR408    mfe: -37.7 kcal/mol  
position  43  
target 5' A                U   A 3'  
           UUAGGGAGGGGGCAGU GCA      
           GGUCCCUUCUCCGUCA CGU      
miRNA  3' C                    A 5'  
 
target: AT1G15830.1   expressed protein  
miRNA : ath-miR408    mfe: -42.6 kcal/mol  
position  1147  
target 5' G                   U  3'  
           GCUGGGGAGGAGGCGGUGC       
           CGGUCCCUUCUCCGUCACG       
miRNA  3'                     UA 5'  
 
target: AT1G15830.1   expressed protein  
miRNA : ath-miR408    mfe: -35.6 kcal/mol  
position  1057  
target 5' G                 U C  3'  
           GCUGGGGAGGAGGCGGU C       
           CGGUCCCUUCUCCGUCA G       
miRNA  3'                   C UA 5' 

target: AT3G02200.1   proteasome family 
protein 
miRNA : ath-miR408    mfe: -39.0 kcal/mol  
position  654  
target 5' A    A         U      G 3'  
           GCCA GGAGGAGGC GUGCGU      
           CGGU CCUUCUCCG CACGUA      
miRNA  3'      C         U        5'  
 
target: AT3G51240.1   flavanone 3-
hydroxylase (F3H) 
miRNA : ath-miR408    mfe: -37.7 kcal/mol  
position  356  
target 5' U             U     A 3'  
           CCAGGG AGAGGC GUGCA      
           GGUCCC UCUCCG CACGU      
miRNA  3' C      U      U     A 5'  
 
target: AT5G21930.1   ATPase E1-E2 type 
family protein /  
miRNA : ath-miR408    mfe: -39.6 kcal/mol  
position  2144  
target 5'  A               G   A 3'  
            CAGGGAAGGGGCAGU GCA      
            GUCCCUUCUCCGUCA CGU      
miRNA  3' CG                   A 5'  
 
target: AT1G10320.1   U2 snRNP auxiliary 
factor-related 
miRNA : ath-miR413    mfe: -31.8 kcal/mol  
position  207  
target 5'  G                  A 3'  
            GCGGAACAGGAGAGAUUG      
            CGUCUUGUUCUCUUUGAU      
miRNA  3' CA                  A 5'  
 
target: AT1G10910.1   pentatricopeptide 
(PPR) repeat-containing protein 
miRNA : ath-miR413    mfe: -30.3 kcal/mol  
position  1266  
target 5' U                 G A 3'  
           UGCAGAGCAGGAGAGAU G      
           ACGUCUUGUUCUCUUUG U      
miRNA  3' C                 A A 5'  
 
target: AT1G77030.1   glycine-rich protein  
miRNA : ath-miR413    mfe: -31.4 kcal/mol  
position  598  
target 5' C                 G A 3'  
           UGCAGAGCAAGAGAGGC G      
           ACGUCUUGUUCUCUUUG U      
miRNA  3' C                 A A 5'  
 
target: AT1G79540.1   pentatricopeptide 
(PPR) repeat-containing protein 
miRNA : ath-miR413    mfe: -29.9 kcal/mol  
position  1581  
target 5' C              C    A 3'  
           UGCAGAGCAGGAGA AUUG      
           ACGUCUUGUUCUCU UGAU      
miRNA  3' C              U    A 5'  
 
target: AT2G05160.1   zinc finger (CCCH-
type) family protein  
miRNA : ath-miR413    mfe: -30.8 kcal/mol  
position  1409  
target 5' A                 A G 3'  
           UGCGGAGCAAGAGGAAC A      
           ACGUCUUGUUCUCUUUG U      
miRNA  3' C                 A A 5'  
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target: AT2G06210.1   phosphoprotein-
related 
miRNA : ath-miR413    mfe: -31.0 kcal/mol  
position  2510  
target 5' C   U               C 3'  
           UGC GAGCAGGAGGAGCUG      
           ACG CUUGUUCUCUUUGAU      
miRNA  3' C   U               A 5'  
 
target: AT2G12875.1   hypothetical protein  
miRNA : ath-miR413    mfe: -30.9 kcal/mol  
position  751  
target 5'  A  C               G 3'  
            GC GAGCAAGAGAGACUA      
            CG CUUGUUCUCUUUGAU      
miRNA  3' CA  U               A 5'  
 
target: AT2G19090.1   expressed protein 
miRNA : ath-miR413    mfe: -31.1 kcal/mol  
position  1025  
target 5' U        G           C 3'  
           GUGUAGAG AGGAGAAGCUA      
           CACGUCUU UUCUCUUUGAU      
miRNA  3'          G           A 5'  
 
target: AT2G30960.1   expressed protein  
miRNA : ath-miR413    mfe: -30.2 kcal/mol  
position  725  
target 5'  A                  G 3'  
            GCAGAACGAGAG AGCUG      
            CGUCUUGUUCUC UUGAU      
miRNA  3' CA            U     A 5'  
 
target: AT2G30960.1   expressed protein  
miRNA : ath-miR413    mfe: -27.2 kcal/mol  
position  198  
target 5'  A      G         G   G 3'  
            GCGGAG AGGAGAAGC UAU      
            CGUCUU UUCUCUUUG AUA      
miRNA  3' CA      G               5'  
 
target: AT2G32780.1   ubiquitin-specific 
protease 1 putative (UBP1) 
miRNA : ath-miR413    mfe: -29.8 kcal/mol  
position  214  
target 5' G    U  U              G 3'  
           GUGC AG AACAGGAGAGACUG      
           CACG UC UUGUUCUCUUUGAU      
miRNA  3'                        A 5'  
 
target: AT2G42760.1   expressed protein  
miRNA : ath-miR413    mfe: -29.9 kcal/mol  
position  347  
target 5' U       A           C 3'  
           UGCGGAA GAGAGAGACUA      
           ACGUCUU UUCUCUUUGAU      
miRNA  3' C       G           A 5'  
 
target: AT3G01460.1   PHD finger family 
protein  
miRNA : ath-miR413    mfe: -34.5 kcal/mol  
position  5351  
target 5' U                    G 3'  
           UGCAGAGCGAGAGAAAUUGU      
           ACGUCUUGUUCUCUUUGAUA      
miRNA  3' C                      5'  
 
target: AT3G10030.1   
aspartate/glutamate/uridylate kinase 
family protein 
miRNA : ath-miR413    mfe: -30.7 kcal/mol  
position  353  
target 5'  G      U            A 3'  
            GCAGAG CAGGAGGAGCUA      
            CGUCUU GUUCUCUUUGAU      
miRNA  3' CA                   A 5' 

target: AT3G18010.1   homeobox-leucine 
zipper transcription factor family protein  
miRNA : ath-miR413    mfe: -30.9 kcal/mol  
position  26  
target 5'  A            G      A 3'  
            GCAGAACAAGAG GAGCUG      
            CGUCUUGUUCUC UUUGAU      
miRNA  3' CA                   A 5'  
 
target: AT3G19650.1   cyclin-related 
miRNA : ath-miR413    mfe: -30.6 kcal/mol  
position  616  
target 5'  A A                 G 3'  
            G CAGAACGAGAGGAACUG      
            C GUCUUGUUCUCUUUGAU      
miRNA  3' CA                   A 5'  
target: AT3G50200.1   expressed protein 
miRNA : ath-miR413    mfe: -29.8 kcal/mol  
position  555  
target 5' C   A      U           G 3'  
           GUG CAGAGC AAGAGGAGCUG      
           CAC GUCUUG UUCUCUUUGAU      
miRNA  3'                        A 5'  
 
target: AT3G60590.2   expressed protein  
miRNA : ath-miR413    mfe: -30.0 kcal/mol  
position  256  
target 5' A        G        G  G 3'  
 
           GUGCAGAG AAGAGAAA UA      
           CACGUCUU UUCUCUUU AU      
miRNA  3'          G        G  A 5'  
 
target: AT4G00440.1   expressed protein  
miRNA : ath-miR413    mfe: -32.0 kcal/mol  
position  970  
target 5' U                 A  U 3'  
           UGCAGAACGAGAGAAAC GU      
           ACGUCUUGUUCUCUUUG UA      
miRNA  3' C                 A    5'  
 
target: AT4G00450.1   expressed protein 
miRNA : ath-miR413    mfe: -29.9 kcal/mol  
position  6192  
 
target 5'  A    C             A 3'  
            GCAG ACAAGGGAAGCUG      
            CGUC UGUUCUCUUUGAU      
miRNA  3' CA    U             A 5'  
 
target: AT4G08580.1   microfibrillar-
associated protein-related 
miRNA : ath-miR413    mfe: -33.6 kcal/mol  
position  581  
target 5' U                  U  3'  
           UGCAGAGCGAGAGAGGCU       
           ACGUCUUGUUCUCUUUGA       
miRNA  3' C                  UA 5'  
 
target: AT4G08580.1   microfibrillar-
associated protein-related 
miRNA : ath-miR413    mfe: -28.3 kcal/mol  
position  893  
target 5'  A      G           G 3'  
            GCAGGA AGGAGAGAUUG      
            CGUCUU UUCUCUUUGAU      
miRNA  3' CA      G           A 5'  
 
target: AT4G14410.1   basic helix-loop-
helix (bHLH) family protein  
miRNA : ath-miR413    mfe: -30.5 kcal/mol  
position  385  
target 5'  A      G           A 3'  
            GCAGAG AGGAGGAACUA      
            CGUCUU UUCUCUUUGAU      
miRNA  3' CA      G           A 5' 
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target: AT4G16970.1   protein kinase 
family protein 
miRNA : ath-miR413    mfe: -35.3 kcal/mol  
position  401  
target 5' A                   G 3'  
           UGCGGAACAAGAGGAGCUA      
           ACGUCUUGUUCUCUUUGAU      
miRNA  3' C                   A 5'  
 
target: AT4G20450.1   leucine-rich repeat 
protein kinase 
miRNA : ath-miR413    mfe: -30.4 kcal/mol  
position  1725  
target 5'  G                   A 3'  
            GC GAACAAGAGAAGCUAU      
            CG CUUGUUCUCUUUGAUA      
miRNA  3' CA  U                  5'  
 
target: AT4G26750.1   hydroxyproline-rich 
glycoprotein family protein  
miRNA : ath-miR413    mfe: -30.6 kcal/mol  
position  131  
target 5'  C                  A 3'  
            GCAGAGCGAGAG AACUA      
            CGUCUUGUUCUC UUGAU      
miRNA  3' CA            U     A 5'  
 
target: AT4G29000.1   tesmin/TSO1-like CXC 
domain-containing protein 
miRNA : ath-miR413    mfe: -35.1 kcal/mol  
position  1488  
target 5'  C                  G 3'  
            GCAGAGCAGGAGAGACUG      
            CGUCUUGUUCUCUUUGAU      
miRNA  3' CA                  A 5'  
 
target: AT4G35020.1   Rho-like GTP binding 
protein.  
miRNA : ath-miR413    mfe: -29.8 kcal/mol  
position  182  
target 5' C                   C 3'  
           UGCAGGGCAAGAG GACUA      
           ACGUCUUGUUCUC UUGAU      
miRNA  3' C             U     A 5'  
 
target: AT4G35950.1   rac-like GTP binding 
protein Arac6  
miRNA : ath-miR413    mfe: -30.8 kcal/mol  
position  182  
target 5' C                    A 3'  
           UGCAGGGCAAGAG GACUAU      
           ACGUCUUGUUCUC UUGAUA      
miRNA  3' C             U        5'  
 
target: AT4G36060.1   basic helix-loop-
helix (bHLH) family protein 
miRNA : ath-miR413    mfe: -33.1 kcal/mol  
position  147  
target 5'  A                 U  3'  
            GCAGAGCGAGAGAAGCU       
            CGUCUUGUUCUCUUUGA       
miRNA  3' CA                 UA 5'  
 
target: AT4G37100.1   expressed protein  
miRNA : ath-miR413    mfe: -30.1 kcal/mol  
position  1742  
target 5'  C                 C  3'  
            GCGGAAUAGGAGGAGCU       
            CGUCUUGUUCUCUUUGA       
miRNA  3' CA                 UA 5'  
 

target: AT5G08440.1   expressed protein  
miRNA : ath-miR413    mfe: -30.0 kcal/mol  
position  896  
target 5' C                U  C  3'  
           UGCAGAGCAAGAGAGG CU       
           ACGUCUUGUUCUCUUU GA       
miRNA  3' C                   UA 5'  
 
target: AT5G10260.1   Ras-related GTP-
binding protein 
miRNA : ath-miR413    mfe: -31.2 kcal/mol  
position  107  
target 5' C                  U  3'  
           UGCAGGACAGGAGAGAUU       
           ACGUCUUGUUCUCUUUGA       
miRNA  3' C                  UA 5'  
 
target: AT5G17900.1   expressed protein  
miRNA : ath-miR413    mfe: -33.6 kcal/mol  
position  581  
target 5' U                  U  3'  
           UGCAGAGCGAGAGAGGCU       
           ACGUCUUGUUCUCUUUGA       
miRNA  3' C                  UA 5'  
 
target: AT5G17900.1   expressed protein  
miRNA : ath-miR413    mfe: -28.3 kcal/mol  
position  893  
target 5'  A      G           G 3'  
            GCAGGA AGGAGAGAUUG      
            CGUCUU UUCUCUUUGAU      
miRNA  3' CA      G           A 5'  
 
target: AT5G64990.1   Ras-related GTP-
binding protein 
miRNA : ath-miR413    mfe: -31.5 kcal/mol  
position  188  
target 5' C                  U  3'  
           UGCAGGACAAGAGAGAUU       
           ACGUCUUGUUCUCUUUGA       
miRNA  3' C                  UA 5'  
 
target: AT5G65495.1   expressed protein  
miRNA : ath-miR413    mfe: -30.1 kcal/mol  
position  132  
target 5'  A  A                A 3'  
            GC AGGGCGAGAGAAGCUG      
            CG UCUUGUUCUCUUUGAU      
miRNA  3' CA                   A 5'  
 
target: AT1G17180.1 3'UTR   glutathione S-
transferase ATGSTU25     
miRNA : ath-miR415    mfe: -35.5 kcal/mol  
position  33  
target 5' U     G                U 3'  
           GUGUU CUGUUUCUGCUCUGUU      
           UACAA GACAAAGACGAGACAA      
miRNA  3'                          5'  
 
target: AT1G63020.1 3'UTR   putative 
plant-specific RNA polymerase IV (NRPD1A) 
miRNA : ath-miR415    mfe: -32.2 kcal/mol  
position  242  
target 5' C             U      A 3'  
           UGUUCUGUUUCUG UUCUGU      
           ACAAGACAAAGAC GAGACA      
miRNA  3' U                    A 5'  
 
target: AT3G29075.1 3'UTR  glycine-rich 
protein 
miRNA : ath-miR415    mfe: -30.7 kcal/mol  
position  92  
target 5' U                   G 3'  
           UGUUUUGUUUUUGCUUUGU      
           ACAAGACAAAGACGAGACA      
miRNA  3' U                   A 5' 
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target: AT4G09670.1 3'UTR  oxidoreductase 
family protein 
miRNA : ath-miR415    mfe: -30.5 kcal/mol  
position  104  
target 5' U         C       G   C 3'  
           AUGUUCUGU UUCUGCU UGU      
           UACAAGACA AAGACGA ACA      
miRNA  3'                   G   A 5'  
 
target: AT4G10390.1 5'UTR  protein kinase 
family protein 
miRNA : ath-miR415    mfe: -31.6 kcal/mol  
position  202  
target 5' C  C                 U 3'  
           UG UCUGUUUUUGCUCUGUU      
           AC AGACAAAGACGAGACAA      
miRNA  3' U  A                   5'  
 
target: AT1G53530.1 5'UTR  signal 
peptidase I family protein 
miRNA : ath-miR417    mfe: -31.4 kcal/mol  
position  3  
target 5' C    C                G 3'  
           UGGA CGAGUUCGCUACCUUC      
           GCUU GUUUAAGUGAUGGAAG      
miRNA  3' A                       5'  
 
target: AT2G22570.2   isochorismatase 
hydrolase family protein 
miRNA : ath-miR417    mfe: -30.0 kcal/mol  
position  505  
target 5' G                     A 3'  
           UUGAACAAGUUUACUGCUUUU      
           AGCUUGUUUAAGUGAUGGAAG      
miRNA  3'                         5'  
 
target: AT5G49680.1   cell expansion 
protein putative 
miRNA : ath-miR417    mfe: -32.5 kcal/mol  
position  1109  
target 5' G                   G  3'  
           UCGAACAAGUUCACUAUCU       
           AGCUUGUUUAAGUGAUGGA       
miRNA  3'                     AG 5'  
 
target: AT1G75910.1   family II 
extracellular lipase 4 (EXL4) 
miRNA : ath-miR418    mfe: -32.4 kcal/mol  
position  690  
target 5' U   G               G  3'  
           GGU GGUUCGUCAUCACGU       
           CCA UCAAGUAGUAGUGUA       
miRNA  3'     G               AU 5'  
 
target: AT2G36290.1 3'UTR   hydrolase, 
alpha/beta fold family protein 
miRNA : ath-miR419    mfe: -32.2 kcal/mol  
position  162  
target 5' A                  C  3'  
           AACAUUCUCAGCAUUCAU       
           UUGUAGGAGUCGUAAGUA       
miRNA  3' G                  UU 5'  
 
target: AT3G46240.1   protein kinase-
related 
miRNA : ath-miR419    mfe: -31.0 kcal/mol  
position  316  
target 5' U                  A C 3'  
           CGAUAUCCUCAGCAUUCG A      
           GUUGUAGGAGUCGUAAGU U      
miRNA  3'                    A U 5'  
 

target: AT4G31200.2   SWAP (Suppressor-of-
White-APricot)/surp domain-containing 
protein 
miRNA : ath-miR419    mfe: -30.0 kcal/mol  
position  117  
target 5' G               C   C  3'  
           CAACAUCCUCAGUAU CAU       
           GUUGUAGGAGUCGUA GUA       
miRNA  3'                 A   UU 5'  
 
target: AT5G61580.1   phosphofructokinase 
family protein 
miRNA : ath-miR419    mfe: -30.0 kcal/mol  
position  524  
target 5' A                  G  A 3'  
           UAACAUUCUCGGCAUUCA GG      
           GUUGUAGGAGUCGUAAGU UU      
miRNA  3'                    A    5'  
 
target: AT1G03030.1   
phosphoribulokinase/uridine kinase family 
protein 
miRNA : ath-miR447a    mfe: -35.2 kcal/mol  
position  233  
target 5' U                    C 3'  
           GGCGGAACGUCUUGUCCCUA      
           UUGUUUUGUAGAGCAGGGGU      
miRNA  3' G                    U 5'  
 
target: AT1G68140.1   expressed protein  
miRNA : ath-miR447c    mfe: -35.4 kcal/mol  
position  219  
target 5' U                    C 3'  
           GACAAGGGAUGUCGUCCUUA      
           UUGUUUUCUACAGCAGGGGU      
miRNA  3' G                    U 5'  
 
target: AT2G02820.1   MYB88  
miRNA : ath-miR447c    mfe: -34.5 kcal/mol  
position  446  
target 5' A          C            A 3'  
           CAACAAGAGA UGUUGUUCCCAG      
           GUUGUUUUCU ACAGCAGGGGUU      
miRNA  3'                           5'  
 
target: AT2G30280.1   expressed protein  
miRNA : ath-miR772    mfe: -33.0 kcal/mol  
position  436  
target 5' A                    A 3'  
           UAUGG CGGAGUAGGAAGGG      
           AUACC GCCUCAUCCUUUUU      
miRNA  3' C     C                5'  
 
target: AT3G26820.1   
esterase/lipase/thioesterase family 
protein 
miRNA : ath-miR772    mfe: -35.1 kcal/mol  
position  711  
target 5'  A              U    G 3'  
            AUGGGCGGAGUGGG GGAG      
            UACCCGCCUCAUCC UUUU      
miRNA  3' CA              U      5'  
 
target: AT3G26840.1   
esterase/lipase/thioesterase family 
protein 
miRNA : ath-miR772    mfe: -35.4 kcal/mol  
position  816  
target 5'  A              U    G 3'  
            AUGGGCGGAGUAGG GGAG      
            UACCCGCCUCAUCC UUUU      
miRNA  3' CA              U      5'  
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target: AT1G03720.1   cathepsin-related 
miRNA : ath-miR773    mfe: -31.8 kcal/mol  
position  436  
target 5' A  U                U 3'  
           AG CGAAGGCUGGGAGCGA      
           UC GUUUUCGACCUUCGUU      
miRNA  3' C  U                U 5'  
 
 
target: AT1G15340.1   methyl-CpG-binding 
domain-containing protein 
miRNA : ath-miR773    mfe: -30.7 kcal/mol  
position  666  
target 5' G    A                G 3'  
           GAGA GAAGGCUGGGAGUGGA      
           CUCU UUUUCGACCUUCGUUU      
miRNA  3'      G                  5'  
 
target: AT1G35660.1   expressed protein  
miRNA : ath-miR773    mfe: -30.7 kcal/mol  
position  1354  
target 5'  C   C               U 3'  
            GAC AAAGUUGGAAGCAAA      
            CUG UUUCGACCUUCGUUU      
miRNA  3' CU   U                 5'  
 
target: AT1G50770.1   hypothetical protein  
miRNA : ath-miR773    mfe: -31.3 kcal/mol  
position  1316  
target 5' A                    G 3'  
           AGA AGAAGCUGGAAGCAAA      
           UCU UUUUCGACCUUCGUUU      
miRNA  3' C   G                  5'  
 
target: AT1G59980.1   DNAJ heat shock N-
terminal domain-containing protein 
miRNA : ath-miR773    mfe: -30.7 kcal/mol  
position  1103  
target 5' A                     A 3'  
           GAG CAGAAGCUGGA GCAAG      
           CUC GUUUUCGACCU CGUUU      
miRNA  3'     U           U       5'  
 
target: AT1G74260.1   AIR synthase-related 
family protein 
miRNA : ath-miR773    mfe: -31.0 kcal/mol  
position  1164  
target 5' U        U        U    U 3'  
           GAGACAGG GCUGGAGG CGAA      
           CUCUGUUU CGACCUUC GUUU      
miRNA  3'          U               5'  
 
target: AT1G79830.1   expressed protein 
miRNA : ath-miR773    mfe: -31.3 kcal/mol  
position  2629  
target 5' A                  C  3'  
           AGGC AGAGCUGGAAGCA       
           UCUG UUUCGACCUUCGU       
miRNA  3' C    U             UU 5'  
 
target: AT2G01340.1   expressed protein  
miRNA : ath-miR773    mfe: -31.6 kcal/mol  
position  176  
target 5' C  A                  G 3'  
           GA GCAGAGGUUGGAGGCGAA      
           CU UGUUUUCGACCUUCGUUU      
miRNA  3'    C                    5'  
 
target: AT2G24650.1   transcriptional 
factor B3 family protein 
 

miRNA : ath-miR773    mfe: -30.8 kcal/mol  
position  3768  
target 5' U    U              U  3'  
           GGAC AAGAGCUGGAAGUA       
           UCUG UUUUCGACCUUCGU       
miRNA  3' C                   UU 5'  
 
target: AT2G38440.1   Encodes a subunit of 
the WAVE complex.  
miRNA : ath-miR773    mfe: -31.7 kcal/mol  
position  4145  
target 5'  U     U            C 3'  
            GGCAA GGCUGGAAGCGA      
            CUGUU UCGACCUUCGUU      
miRNA  3' CU     U            U 5'  
 
target: AT2G38440.1   Encodes a subunit of 
the WAVE complex.  
miRNA : ath-miR773    mfe: -26.9 kcal/mol  
position  234  
target 5'  U U    C             G 3'  
            G GCAA AGUUGGAAGCAGA      
            C UGUU UCGACCUUCGUUU      
miRNA  3' CU      U               5'  
 
target: AT2G43520.1   Encodes a defensin-
like (DEFL) family protein.  
miRNA : ath-miR773    mfe: -30.7 kcal/mol  
position  216  
target 5' A              U    U  3'  
           GGGGCAGGAGCUGG AGUA       
           CUCUGUUUUCGACC UCGU       
miRNA  3'                U    UU 5'  
 
target: AT3G04420.1   no apical meristem 
(NAM) family protein 
miRNA : ath-miR773    mfe: -30.7 kcal/mol  
position  900  
target 5' A     U         G      A 3'  
           GGGAC GGGGCUGGA GGCAAA      
           CUCUG UUUCGACCU UCGUUU      
miRNA  3'       U                  5'  
 
target: AT3G15680.1   zinc finger (Ran-
binding) family protein 
miRNA : ath-miR773    mfe: -31.1 kcal/mol  
position  273  
target 5' C     C  C            G 3'  
           GAGAC GG GCUGGAGGCGGA      
           CUCUG UU CGACCUUCGUUU      
miRNA  3'       U  U              5'  
 
target: AT3G16910.1   Encodes a 
peroxisomal protein with acetyl-CoA 
synthetase activity  
miRNA : ath-miR773    mfe: -30.6 kcal/mol  
position  420  
target 5' G    A               C 3'  
           GAGG GAAAGCUGGAAGUAG      
           CUCU UUUUCGACCUUCGUU      
miRNA  3'      G               U 5'  
 
target: AT3G18750.1   protein kinase 
family protein 
miRNA : ath-miR773    mfe: -31.2 kcal/mol  
position  1584  
target 5' A                    U 3'  
           AGACAAGAGCUGGAGG AGA      
           UCUGUUUUCGACCUUC UUU      
miRNA  3' C                G     5'  
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target: AT3G19420.1   expressed protein  
miRNA : ath-miR773    mfe: -31.0 kcal/mol  
position  84  
target 5'  U                  U 3'  
            G CAGAAGCUGGAAGCGA      
            C GUUUUCGACCUUCGUU      
miRNA  3' CU U                U 5'  
 
target: AT3G43300.1   guanine nucleotide 
exchange family protein 
miRNA : ath-miR773    mfe: -31.4 kcal/mol  
position  4873  
target 5'  C               G  C 3'  
            GGCAAGAGCUGGAAG AA      
            CUGUUUUCGACCUUC UU      
miRNA  3' CU               G  U 5'  
 
target: AT4G00260.1   transcriptional 
factor B3 family protein 
miRNA : ath-miR773    mfe: -30.8 kcal/mol  
position  1047  
target 5' U    U              U  3'  
           GGAC AAGAGCUGGAAGUA       
           UCUG UUUUCGACCUUCGU       
miRNA  3' C                   UU 5'  
 
target: AT4G03070.1   2-oxoglutarate-
dependent dioxygenase (AOP1.2) 
miRNA : ath-miR773    mfe: -30.6 kcal/mol  
position  913  
target 5' C              C   U  3'  
           AGACAGAAGCUGGA GUA       
           UCUGUUUUCGACCU CGU       
miRNA  3' C              U   UU 5'  
 
target: AT4G11730.1   ATPase 
miRNA : ath-miR773    mfe: -31.9 kcal/mol  
position  1164  
target 5' A                U    G 3'  
           GAGGCAAGAGCUGGAA UAGA      
           CUCUGUUUUCGACCUU GUUU      
miRNA  3'                  C      5'  
 
target: AT4G14920.1   PHD finger 
transcription factor 
miRNA : ath-miR773    mfe: -30.8 kcal/mol  
position  1794  
target 5' U      C U            U 3'  
           GAGAUA A GCUGGAAGCAAA      
           CUCUGU U CGACCUUCGUUU      
miRNA  3'        U U              5'  
 
target: AT4G26180.1   mitochondrial 
substrate carrier family protein 
miRNA : ath-miR773    mfe: -31.3 kcal/mol  
position  799  
target 5' A    A               C 3'  
           GAGA GAAGGUUGGAAGCAA      
           CUCU UUUUCGACCUUCGUU      
miRNA  3'      G               U 5'  
 
target: AT4G33330.1   similar to 
glycogenin glucosyltransferase 
(glycogenin)-related  
miRNA : ath-miR773    mfe: -30.8 kcal/mol  
position  265  
target 5' C                  C  3'  
           AGACA AAGCUGGAGGCG       
           UCUGU UUCGACCUUCGU       
miRNA  3' C     U            UU 5'  
 

target: AT4G35090.1   catalase 2 
miRNA : ath-miR773    mfe: -30.8 kcal/mol  
position  1433  
target 5' U              C    C U 3'  
           GGGACAGAAGCUGG AAGC G      
           CUCUGUUUUCGACC UUCG U      
miRNA  3'                     U U 5'  
 
target: AT4G37270.1   cadmium/zinc-
transporting ATPase putative (HMA1) 
miRNA : ath-miR773    mfe: -31.3 kcal/mol  
position  918  
target 5' G                A    G 3'  
           GAGGCAAAAGCUGGAG UAGA      
           CUCUGUUUUCGACCUU GUUU      
miRNA  3'                  C      5'  
 
target: AT5G06680.1   tubulin family 
protein 
miRNA : ath-miR773    mfe: -32.1 kcal/mol  
position  1717  
target 5' G                U   U  3'  
           GAGACAGAGGCUGGGA GUA       
           CUCUGUUUUCGACCUU CGU       
miRNA  3'                      UU 5'  
 
target: AT5G09660.1   microbody NAD-
dependent malate dehydrogenase  
miRNA : ath-miR773    mfe: -30.4 kcal/mol  
position  768  
target 5' G                  U  U 3'  
           GAGGCAAAAGCUGG AGC GG      
           CUCUGUUUUCGACC UCG UU      
miRNA  3'                U   U    5'  
 
target: AT5G14270.1   DNA-binding 
bromodomain-containing protein 
miRNA : ath-miR773    mfe: -31.2 kcal/mol  
position  207  
target 5' A                    U 3'  
           AGACAAGAGCUGGAA CAAA      
           UCUGUUUUCGACCUU GUUU      
miRNA  3' C               C      5'  
 
target: AT5G16960.1   NADP-dependent 
oxidoreductase 
miRNA : ath-miR773    mfe: -30.9 kcal/mol  
position  703  
target 5' G         U      U    U 3'  
           GAGGCAAGA GCUGGA GCAG      
           CUCUGUUUU CGACCU CGUU      
miRNA  3'                  U    U 5'  
 
target: AT5G19780.1   tubulin alpha-
3/alpha-5 chain (TUA5) 
miRNA : ath-miR773    mfe: -31.0 kcal/mol  
position  162  
target 5' C     U        G     U  3'  
           GAGAC GGAGCUGG AAGCA       
           CUCUG UUUCGACC UUCGU       
miRNA  3'       U              UU 5'  
 
target: AT5G42860.1   expressed protein  
miRNA : ath-miR773    mfe: -30.5 kcal/mol  
position  459  
target 5' U        U          U  3'  
           GGACAAGA GCUGGAGGUA       
           UCUGUUUU CGACCUUCGU       
miRNA  3' C                   UU 5'  
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target: AT5G51210.1   glycine-rich protein 
/ oleosin  
miRNA : ath-miR773    mfe: -33.0 kcal/mol  
position  346  
target 5' C                    G 3'  
           GGAUGAAGGUUGGAAGCAGA      
           UCUGUUUUCGACCUUCGUUU      
miRNA  3' C                      5'  
 
target: AT5G57010.1   calmodulin-binding 
family protein 
miRNA : ath-miR773    mfe: -30.7 kcal/mol  
position  559  
target 5' U                    A 3'  
           GGGCAAGAGCUGGAA CAAA      
           UCUGUUUUCGACCUU GUUU      
miRNA  3' C               C      5'  
 
target: AT5G57350.1   ATPase 3 
miRNA : ath-miR773    mfe: -33.6 kcal/mol  
position  1161  
target 5' A                U    G 3'  
           GAGGCAAGAGCUGGAA CAGA      
           CUCUGUUUUCGACCUU GUUU      
miRNA  3'                  C      5'  
 
target: AT5G58000.1   phosphatase-related 
miRNA : ath-miR773    mfe: -31.7 kcal/mol  
position  1865  
target 5' A                   U  3'  
           GAGACAAAAGUUGGA GCA       
           CUCUGUUUUCGACCU CGU       
miRNA  3'                 U   UU 5'  
 
target: AT5G64550.1   loricrin-related 
miRNA : ath-miR773    mfe: -31.5 kcal/mol  
position  1490  
target 5' A                    G 3'  
           AGAUA AAGCUGGAAGCAAG      
           UCUGU UUCGACCUUCGUUU      
miRNA  3' C     U                5'  
 
target: AT1G61460.1 5'UTR   S-locus 
protein kinase family protein 
miRNA : ath-miR774    mfe: -36.6 kcal/mol  
position  477  
target 5' G                     U 3'  
           GGUGGUUGUGUGGGUGGCCAA      
           CUACCGGUAUACCCAUUGGUU      
miRNA  3'                         5'  
 
target: AT1G11280.1   S-locus protein 
kinase family protein 
miRNA : ath-miR774    mfe: -34.2 kcal/mol  
position  251  
target 5' G                     C 3'  
           GGUGGUUGUGUGGGUGGCUAA      
           CUACCGGUAUACCCAUUGGUU      
miRNA  3'                         5'  
 
target: AT1G61420.1   S-locus protein 
kinase family protein 
miRNA : ath-miR774    mfe: -36.6 kcal/mol  
position  209  
target 5' G                     U 3'  
           GGUGGUUGUGUGGGUGGCCAA      
           CUACCGGUAUACCCAUUGGUU      
miRNA  3'                         5'  
 

target: AT1G61430.1   S-locus protein 
kinase family protein 
miRNA : ath-miR774    mfe: -34.5 kcal/mol  
position  209  
target 5' A                     U 3'  
           GGUGGUUGUGUGGGUGGCUAA      
           CUACCGGUAUACCCAUUGGUU      
miRNA  3'                         5'  
 
 
target: AT1G61480.1   S-locus protein 
kinase family protein 
miRNA : ath-miR774    mfe: -36.6 kcal/mol  
position  209  
target 5' G                     U 3'  
           GGUGGUUGUGUGGGUGGCCAA      
           CUACCGGUAUACCCAUUGGUU      
miRNA  3'                         5'  
 
target: AT4G29690.1   type I 
phosphodiesterase/nucleotide 
pyrophosphatase family protein 
miRNA : ath-miR774    mfe: -33.6 kcal/mol  
position  426  
target 5' A    A    U            C 3'  
           GGUG GCCG UGUGGGUGACCG      
           CUAC CGGU AUACCCAUUGGU      
miRNA  3'                        U 5'  
 
target: AT4G29700.1   type I 
phosphodiesterase/nucleotide 
pyrophosphatase family protein 
miRNA : ath-miR774    mfe: -33.5 kcal/mol  
position  435  
target 5' A    A    C            C 3'  
           GGUG GCCG UGUGGGUAACCG      
           CUAC CGGU AUACCCAUUGGU      
miRNA  3'                        U 5'  
 
target: AT1G20780.1   armadillo/beta-
catenin repeat protein-related / U-box 
domain-containing protein 
miRNA : ath-miR775    mfe: -35.5 kcal/mol  
position  1457  
target 5' G              A C     A 3'  
           UGGCACUGCUGGAC A UCGGA      
           ACCGUGACGAUCUG U AGCUU      
miRNA  3' A                        5'  
 
target: AT2G23980.1   cyclic nucleotide-
regulated ion channel / cyclic nucleotide-
gated channel (CNGC6) 
miRNA : ath-miR776    mfe: -28.6 kcal/mol  
position  1937  
target 5' C   G                C 3'  
           ACA CAAUGGAGGACUUGGG      
           UGU GUUAUCUUCUGAAUCU      
miRNA  3' U   A                  5'  
 
target: AT2G28260.1   cyclic nucleotide-
regulated ion channel putative (CNGC15) 
miRNA : ath-miR776    mfe: -33.5 kcal/mol  
position  1808  
target 5' C                    C 3'  
           GCAUCAAUGGAGGACUUGGG      
           UGUAGUUAUCUUCUGAAUCU      
miRNA  3' U                      5'  
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target: AT2G29800.1   F-box family protein 
miRNA : ath-miR776    mfe: -28.3 kcal/mol  
position  835  
target 5' C     A               G 3'  
           GACGU GAUGGGAGACUUGGG      
           UUGUA UUAUCUUCUGAAUCU      
miRNA  3'       G                 5'  
 
target: AT2G37710.1   lectin protein 
kinase 
miRNA : ath-miR776    mfe: -29.3 kcal/mol  
position  1447  
target 5' G                     G 3'  
           AGC UCAAUGGGAGACUUGGG      
           UUG AGUUAUCUUCUGAAUCU      
miRNA  3'     U                   5'  
 
target: AT3G44240.1   CCR4-NOT 
transcription complex protein 
miRNA : ath-miR776    mfe: -28.0 kcal/mol  
position  171  
target 5' C               A     G 3'  
           GAUAUCAAUGGAAGA UUGGA      
           UUGUAGUUAUCUUCU AAUCU      
miRNA  3'                 G       5'  
 
target: AT3G55620.1   eukaryotic 
translation initiation factor 6 putative / 
eIF-6 
miRNA : ath-miR776    mfe: -30.4 kcal/mol  
position  492  
target 5' C  C                 A 3'  
           AC UCAGUGGAAGACUUGGA      
           UG AGUUAUCUUCUGAAUCU      
miRNA  3' U  U                   5'  
 
target: AT4G32717.1   S-locus cysteine-
rich protein related 
miRNA : ath-miR776    mfe: -29.2 kcal/mol  
position  90  
target 5' U   A                C 3'  
           ACA CGAUAGGAGACUUGGA      
           UGU GUUAUCUUCUGAAUCU      
miRNA  3' U   A                  5'  
 
target: AT5G24820.1   aspartyl protease 
family protein 
miRNA : ath-miR776    mfe: -28.1 kcal/mol  
position  558  
target 5' U        C           U 3'  
           GGCGUCGA GGGAGACUUAG      
           UUGUAGUU UCUUCUGAAUC      
miRNA  3'          A           U 5'  
 
target: AT5G53130.1   cyclic nucleotide-
gated channel (CNGC1) 
miRNA : ath-miR776    mfe: -28.9 kcal/mol  
position  1853  
target 5' C   A                C 3'  
           ACA CAAUGGAAGACUUGGG      
           UGU GUUAUCUUCUGAAUCU      
miRNA  3' U   A                  5'  
 
target: AT2G24710.1   plant glutamate 
receptor family protein (GLR2.3) 
miRNA : ath-miR777    mfe: -32.5 kcal/mol  
position  2375  
target 5' A                     C 3'  
           GGCAAUGGAGCUCGA GCGUG      
           UCGUUGCUUUGAGUU CGCAU      
miRNA  3'                 A       5'  
 

target: AT2G39500.1   expressed protein  
miRNA : ath-miR777    mfe: -33.1 kcal/mol  
position  2  
target 5' U                   A  3'  
           GGCGACGAGAUUCGAUGUG       
           UCGUUGCUUUGAGUUACGC       
miRNA  3'                     AU 5'  
 
target: AT1G73840.1   hydroxyproline-rich 
glycoprotein family protein 
miRNA : ath-miR778    mfe: -32.9 kcal/mol  
position  322  
target 5'  A                   A 3'  
            GUGUACAUGAGCC AGCCA      
            CACAUGUAUUUGG UCGGU      
miRNA  3' GC             U       5'  
 
target: AT1G22060.1   expressed protein  
miRNA : ath-miR779    mfe: -32.2 kcal/mol  
position  806  
target 5' U                U   G 3'  
           UGGGUGGCAACAUGGC GGG      
           ACUCGUCGUUGUAUCG CUU      
miRNA  3' U                U     5'  
 
target: AT1G50830.1   expressed protein  
miRNA : ath-miR779    mfe: -32.1 kcal/mol  
position  2017  
target 5' G               A    U 3'  
           AUGAGCAGCAACAUA UGGA      
           UACUCGUCGUUGUAU GUCU      
miRNA  3'                 C    U 5'  
 
target: AT1G76260.1   WD-40 repeat family 
protein 
miRNA : ath-miR779    mfe: -37.6 kcal/mol  
position  274  
target 5'  G                  U 3'  
            GAGCAGCAAUAUGGCAGA      
            CUCGUCGUUGUAUCGUCU      
miRNA  3' UA                  U 5'  
 
target: AT2G30080.1   metal transporter 
putative (ZIP6) 
miRNA : ath-miR779    mfe: -32.7 kcal/mol  
position  37  
target 5'  A                   A 3'  
            GAGCAGCGGCAU GUAGAG      
            CUCGUCGUUGUA CGUCUU      
miRNA  3' UA            U        5'  
 
target: AT2G36660.1   polyadenylate-
binding protein putative / PABP 
miRNA : ath-miR779    mfe: -36.9 kcal/mol  
position  1487  
target 5'  C A                  C 3'  
            G AGCAGCAGCAUAGCAGAA      
            C UCGUCGUUGUAUCGUCUU      
miRNA  3' UA                      5'  
 
target: AT2G41050.1   PQ-loop repeat 
family protein / transmembrane family 
protein 
miRNA : ath-miR779    mfe: -34.1 kcal/mol  
position  761  
target 5' C                    C 3'  
           U AGCAGCAACGUAGCAGAA      
           A UCGUCGUUGUAUCGUCUU      
miRNA  3' U C                    5'  
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target: AT2G43140.1   basic helix-loop-
helix (bHLH) family protein 
miRNA : ath-miR779    mfe: -32.9 kcal/mol  
position  143  
target 5'  G C           C       U 3'  
            G AGCAGCAGCAU AGCAGAA      
            C UCGUCGUUGUA UCGUCUU      
miRNA  3' UA                       5'  
 
target: AT3G20310.1   Ethylene Response 
Factor, subfamily B-1 of ERF/AP2 
transcription factor family (ATERF-7).  
miRNA : ath-miR779    mfe: -31.6 kcal/mol  
position  419  
target 5'  C            G     C  3'  
            GAGUAGCAGCAU AGCAG       
            CUCGUCGUUGUA UCGUC       
miRNA  3' UA                  UU 5'  
 
target: AT3G28770.1   expressed protein  
miRNA : ath-miR779    mfe: -34.2 kcal/mol  
position  617  
target 5'  C                   A 3'  
            GGGCAGUAACAUGGUGGAG      
            CUCGUCGUUGUAUCGUCUU      
miRNA  3' UA                     5'  
 
target: AT3G58560.1   
endonuclease/exonuclease/phosphatase 
family protein 
miRNA : ath-miR779    mfe: -33.8 kcal/mol  
position  1550  
target 5' C               A   C 3'  
           UGAGCAGCAACGUAG AGA      
           ACUCGUCGUUGUAUC UCU      
miRNA  3' U               G   U 5'  
 
target: AT3G58560.1   
endonuclease/exonuclease/phosphatase 
family protein 
miRNA : ath-miR779    mfe: -28.6 kcal/mol  
position  210  
target 5'  C   A         U    U  3'  
            GAG CGGCAACAU GCAG       
            CUC GUCGUUGUA CGUC       
miRNA  3' UA             U    UU 5'  
 
target: AT3G62900.1   expressed protein 
miRNA : ath-miR779    mfe: -31.6 kcal/mol  
position  3269  
target 5'  A   G              U 3' 
            GAG AGUAAUAUAGCAGA      
            CUC UCGUUGUAUCGUCU      
miRNA  3' UA   G              U 5'  
 
target: AT4G08730.1   expressed protein  
miRNA : ath-miR779    mfe: -31.8 kcal/mol  
position  382  
target 5' A                     A 3'  
           AUG GUAGUGACAUGGCAGGA      
           UAC CGUCGUUGUAUCGUCUU      
miRNA  3'     U                   5'  
 
target: AT4G14010.1   rapid alkalinization 
factor (RALF) family protein 
miRNA : ath-miR779    mfe: -33.2 kcal/mol  
position  119  
target 5'  A U                 A 3'  
            G GCAGCAGCAUGGUGGAG      
            C CGUCGUUGUAUCGUCUU      
miRNA  3' UA U                   5'  
 

target: AT4G38190.1   cellulose synthase 
family protein 
miRNA : ath-miR779    mfe: -31.6 kcal/mol  
position  723  
target 5' G     A               A 3'  
           AUGAG GGCGGCAUGGUGGAA      
           UACUC UCGUUGUAUCGUCUU      
miRNA  3'       G                 5'  
 
target: AT5G06220.1   expressed protein  
miRNA : ath-miR779    mfe: -34.5 kcal/mol  
position  946  
target 5'  C                   U 3'  
            GGGCAGCAGCAU GCAGAG      
            CUCGUCGUUGUA CGUCUU      
miRNA  3' UA            U        5'  
 
target: AT5G50350.1   expressed protein  
miRNA : ath-miR779    mfe: -33.2 kcal/mol  
position  1101  
target 5'  G   G               A 3'  
            GAG AGCAGCGUGGUAGAG      
            CUC UCGUUGUAUCGUCUU      
miRNA  3' UA   G                 5'  
 
target: AT5G64240.1 3'UTR   latex-abundant 
family protein (AMC3) 
miRNA : ath-miR780    mfe: -30.5 kcal/mol  
position  20  
target 5'  U                   A 3'  
            UCAGGUGUUCACGGGGAAG      
            GGUCUAUAAGUGCUUCUUU      
miRNA  3' AC                     5'  
 
target: AT2G37810.1   CHP-rich zinc finger 
protein 
miRNA : ath-miR780    mfe: -30.7 kcal/mol  
position  463  
target 5' A               U    U 3'  
           UGCUGGAUGUUCACG GGAA      
           ACGGUCUAUAAGUGC UCUU      
miRNA  3'                 U    U 5'  
 
target: AT2G46100.1   expressed protein  
miRNA : ath-miR780    mfe: -30.5 kcal/mol  
position  371  
target 5' C      G             A 3'  
           GCCGGA GUUUAUGAGGAGA      
           CGGUCU UAAGUGCUUCUUU      
miRNA  3' A      A               5'  
 
target: AT4G02330.1   pectinesterase 
family protein 
miRNA : ath-miR780    mfe: -31.6 kcal/mol  
position  884  
target 5' C                    A 3'  
           GUCAGGUGUUUAUGAGGAAA      
           CGGUCUAUAAGUGCUUCUUU      
miRNA  3' A                      5'  
 
target: AT4G14810.1   expressed protein  
miRNA : ath-miR780    mfe: -39.3 kcal/mol  
position  1  
target 5' A                     C 3'  
           UGCCAGAUAUUCACGAAGAAA      
           ACGGUCUAUAAGUGCUUCUUU      
miRNA  3'                         5'  
 
target: AT5G23480.1 5'UTR   expressed 
protein 
miRNA : ath-miR781    mfe: -33.5 kcal/mol  
position  154  
target 5'  U                   A 3'  
            AGUAUCCAGAAAACUCUAG      
            UCAUAGGUCUUUUGAGAUU      
miRNA  3' AU                     5'  
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target: AT5G57050.1 5'UTR  abscisic acid-
insensitive 2 (ABI2)  
miRNA : ath-miR781    mfe: -28.7 kcal/mol  
position  83  
target 5'  C  A                U 3'  
            AG AUCCAGGAAACUCUGA      
            UC UAGGUCUUUUGAGAUU      
miRNA  3' AU  A                  5'  
 
target: AT1G34740.1   Ulp1 protease family 
protein 
miRNA : ath-miR781    mfe: -28.4 kcal/mol  
position  542  
 
target 5' A                   U 3'  
           GAGUGUUUGGAAGACUCUG      
           UUCAUAGGUCUUUUGAGAU      
miRNA  3' A                   U 5'  
 
target: AT1G44900.1   DNA replication 
licensing factor putative 
miRNA : ath-miR781    mfe: -33.9 kcal/mol  
position  2475  
target 5'  U                   G 3'  
            GGUGUCCAGAGAACUCUAA      
            UCAUAGGUCUUUUGAGAUU      
miRNA  3' AU                     5'  
 
target: AT1G52820.1   2-oxoglutarate-
dependent dioxygenase putative 
miRNA : ath-miR781    mfe: -27.9 kcal/mol  
position  101  
target 5' C                    C 3'  
           UGA UGUCCAGAAAGCUCUA      
           AUU AUAGGUCUUUUGAGAU      
miRNA  3'     C                U 5'  
 
target: AT1G69490.1   no apical meristem 
(NAM) family protein 
miRNA : ath-miR781    mfe: -28.6 kcal/mol  
position  316  
target 5' G        A            U 3'  
           UAGGUGUC AGAAAGCUCUAG      
           AUUCAUAG UCUUUUGAGAUU      
miRNA  3'          G              5'  
 
target: AT1G72300.1   leucine-rich repeat 
transmembrane protein kinase 
miRNA : ath-miR781    mfe: -27.9 kcal/mol  
position  2233  
target 5' A    A A               G 3'  
           GAGU A UCCAGGAGACUCUGA      
           UUCA U AGGUCUUUUGAGAUU      
miRNA  3' A                        5'  
 
target: AT1G76490.1   HMG-CoA reductase 2 
(HMGR2)  
miRNA : ath-miR781    mfe: -28.7 kcal/mol  
position  1095  
target 5' G   A                U 3'  
           GAG AUCCAGAGAACUUUGA      
           UUC UAGGUCUUUUGAGAUU      
miRNA  3' A   A                  5'  
 
target: AT2G14770.1   Ulp1 protease family 
protein 
miRNA : ath-miR781    mfe: -28.4 kcal/mol  
position  542  
target 5' A                   U 3'  
           GAGUGUUUGGAAGACUCUG      
           UUCAUAGGUCUUUUGAGAU      
miRNA  3' A                   U 5'  
 

target: AT2G40085.1   expressed protein  
miRNA : ath-miR781    mfe: -30.2 kcal/mol  
position  256  
target 5' G                    U 3'  
           AAG AUCCAGAGGACUCUGA      
           UUC UAGGUCUUUUGAGAUU      
miRNA  3' A   A                  5'  
 
target: AT3G09780.1   protein kinase 
family protein 
miRNA : ath-miR781    mfe: -29.2 kcal/mol  
position  854  
target 5' U        G            U 3'  
           UGAGUGUU GGGAAACUCUAA      
           AUUCAUAG UCUUUUGAGAUU      
miRNA  3'          G              5'  
 
target: AT3G24390.1   Ulp1 protease family 
protein 
miRNA : ath-miR781    mfe: -28.4 kcal/mol  
position  542  
target 5' A                   U 3'  
           GAGUGUUUGGAAGACUCUG      
           UUCAUAGGUCUUUUGAGAU      
miRNA  3' A                   U 5'  
 
target: AT3G28380.1   P-glycoprotein 
putative 
miRNA : ath-miR781    mfe: -32.5 kcal/mol  
position  3698  
target 5' C                  C  3'  
           AGGUAUCCAGAGAACUCU       
           UUCAUAGGUCUUUUGAGA       
miRNA  3' A                  UU 5'  
 
target: AT3G42730.1   Ulp1 protease family 
protein 
miRNA : ath-miR781    mfe: -28.4 kcal/mol  
position  542  
target 5' A                   U 3'  
           GAGUGUUUGGAAGACUCUG      
           UUCAUAGGUCUUUUGAGAU      
miRNA  3' A                   U 5'  
 
target: AT3G43390.1   expressed protein 
miRNA : ath-miR781    mfe: -28.4 kcal/mol  
position  542  
target 5' A                   U 3'  
           GAGUGUUUGGAAGACUCUG      
           UUCAUAGGUCUUUUGAGAU      
miRNA  3' A                   U 5'  
 
target: AT4G00020.1   BRCA2 repeat-
containing protein 
miRNA : ath-miR781    mfe: -28.5 kcal/mol  
position  1488  
target 5' A              G   C  3'  
           AGGUAUCCAGAAAA UCU       
           UUCAUAGGUCUUUU AGA       
miRNA  3' A              G   UU 5'  
 
target: AT4G03300.1   Ulp1 protease family 
protein 
miRNA : ath-miR781    mfe: -28.4 kcal/mol  
position  998  
target 5' A                   U 3'  
           GAGUGUUUGGAAGACUCUG      
 
           UUCAUAGGUCUUUUGAGAU      
miRNA  3' A                   U 5'  
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target: AT4G05280.1   Ulp1 protease family 
protein 
miRNA : ath-miR781    mfe: -28.4 kcal/mol  
position  542  
target 5' A                   U 3'  
           GAGUGUUUGGAAGACUCUG      
           UUCAUAGGUCUUUUGAGAU      
miRNA  3' A                   U 5'  
 
target: AT4G08880.1   Ulp1 protease family 
protein 
miRNA : ath-miR781    mfe: -28.4 kcal/mol  
position  134  
target 5' A                   U 3'  
           GAGUGUUUGGAAGACUCUG      
           UUCAUAGGUCUUUUGAGAU      
miRNA  3' A                   U 5'  
 
target: AT4G28890.1   zinc finger (C3HC4-
type RING finger) family protein 
miRNA : ath-miR781    mfe: -28.8 kcal/mol  
position  536  
target 5' A    U               A 3'  
           GAGU UCCGGAAGAUUCUGA      
           UUCA AGGUCUUUUGAGAUU      
miRNA  3' A    U                 5'  
 
target: AT5G17920.1   ATCIMS cytosolic 
methionine synthase  
miRNA : ath-miR781    mfe: -29.5 kcal/mol  
position  1187  
target 5' A                G   C 3'  
           GGGUGUCCAGAAGGCU CUG      
           UUCAUAGGUCUUUUGA GAU      
miRNA  3' A                    U 5'  
 
target: AT5G27030.1   WD-40 repeat family 
protein 
miRNA : ath-miR781    mfe: -28.5 kcal/mol  
position  2322  
target 5'  U                   A 3'  
            GGUAUCCAGAGA CUCUGG      
            UCAUAGGUCUUU GAGAUU      
miRNA  3' AU            U        5'  
 
target: AT5G41570.1   WRKY family 
transcription factor 
miRNA : ath-miR781    mfe: -28.5 kcal/mol  
position  145  
target 5'  U                 C  3'  
            GGUAUCCAGAAAGCUUU       
            UCAUAGGUCUUUUGAGA       
miRNA  3' AU                 UU 5'  
 

target: AT1G64890.1   integral membrane 
transporter family protein 
miRNA : ath-miR782    mfe: -31.7 kcal/mol  
position  818  
target 5' U      C             G 3'  
           AGGGAU UCCAAGGUGUUUG      
           UUCUUG AGGUUCCACAAAC      
miRNA  3'        U             A 5'  
 
target: AT2G26960.1   MYB81 
miRNA : ath-miR783    mfe: -30.7 kcal/mol  
position  723  
target 5' U C                C  3'  
           A CAUGAACGAGCAAAGC       
           U GUACUUGCUCGUUUCG       
miRNA  3' C U                AA 5'  
 
target: AT3G03830.1   auxin-responsive 
protein 
miRNA : ath-miR783    mfe: -31.5 kcal/mol  
position  53  
target 5' U    A             A  3'  
           AGCA GAACGAGCAAAGC       
           UUGU CUUGCUCGUUUCG       
miRNA  3' C    A             AA 5'  
 
target: AT3G09070.1   glycine-rich protein 
miRNA : ath-miR783    mfe: -32.7 kcal/mol  
position  1436  
target 5' C              C       U 3'  
           GGAUAUGGACGAGC AAAGCUU      
           CUUGUACUUGCUCG UUUCGAA      
miRNA  3'                          5'  
 
target: AT4G01090.1   extra-large G-
protein-related 
miRNA : ath-miR783    mfe: -35.6 kcal/mol  
position  216  
target 5' A              U      U 3'  
           GAGCAUGAACGAGC GAGCUU      
           CUUGUACUUGCUCG UUCGAA      
miRNA  3'                U        5'  
 
target: AT4G38530.1   similar to 
phosphoinositide-specific phospholipase C 
(PLC1)  
miRNA : ath-miR783    mfe: -32.1 kcal/mol  
position  972  
target 5' C               U    A 3'  
           AGCAUGGACGAGCAG GGCU      
           UUGUACUUGCUCGUU UCGA      
miRNA  3' C                    A 5'  
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Appendix III AtGenExpress experiments. 

The AtGenExpress data was retrieved from the internet site 
(http://jsp.weigelworld.org/expviz/expviz.jsp). Flowers and floral organs are form stage 15 
flowers. 
 

AtGenExpress 
Experiment 

code 
Tissue Genotype Growth conditions 

ATGE_7 seedling Col-0 7 days continuous light on 
soil 

ATGE_9 roots Col-0 17 days continuous light on 
soil 

ATGE_16 rosette Col-0 17 days continuous light on 
soil 

ATGE_27 stem Col-0 21 days continuous light on 
soil 

ATGE_39 flower Col-0 21 days continuous light on 
soil 

ATGE_40 pedicel Col-0 21 days continuous light on 
soil 

ATGE_42 petal Col-0 21 days continuous light on 
soil 

ATGE_45 carpel Col-0 21 days continuous light on 
soil 

ATGE_41 sepals Col-0 21 days continuous light on 
soil 

ATGE_43 stamen Col-0 21 days continuous light on 
soil 

ATGE_73 pollen Col-0 6 weeks continuous light on 
soil 

ATGE_78 silique Col-0 8 weeks continuous light on 
soil 

ATGE_81 seeds Col-0 8 weeks continuous light on 
soil 
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