
Probabilistic Arithmetic Automata

Applications of a Stochastic Computational Framework in

Biological Sequence Analysis

Inke Herms

PhD thesis submitted to the

Faculty of Technology, Bielefeld University, Germany

for the degree of Dr. rer. nat.

Referees:

Prof. Dr. Jens Stoye, Bielefeld University

Prof. Dr. Sven Rahmann, Dortmund University

August 2009

Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706
Printed on non-aging paper according to DIN-ISO 9706

Vinum bonum deorum donum.

i

ii

ABSTRACT

The immense amount of biological sequence data available these days requires
efficient and sensitive analysis in order to provide e.g. the identification of un-
known proteins, or information about the similarity between DNA sequences. Fur-
thermore, new challenges to computational sequence analysis are posed by short
sequence reads resulting from modern high throughput sequencing technologies
such as 454 or Solexa/Illumina.

Viewing biological sequences, such as DNA and proteins, as strings allows their
investigation under a generative random string model. That is to say, one can de-
fine a probabilistic null model that generates random strings as representatives of
a class of sequences. From these, one can deduce general statistical properties.

In this thesis, we give a thorough derivation of a probabilistic model, called proba-
bilistic arithmetic automaton (PAA). This models sequences of operations associated
to operands depending on chance and provides the computational framework to
calculate the exact distribution of the value resulting from those operations. For
instance, the PAA framework can be used to compute the expected molecular mass
of a peptide resulting from the cleavage reaction of a protease.

Moreover, we show that the framework is sufficiently general to cover com-
pletely different applications arising in the computational analysis of biological
sequences. To this end, we consider three distinct levels of biosequences, namely
1) amino acid sequences, 2) long DNA sequences and genomes, and 3) short nu-
cleotide sequence reads.

In the first application, protein identification by means of mass spectrometry and
database search, we compute characteristical statistics of so-called peptide mass
fingerprints to obtain a reasonable, database-independent significance value for
the identification of an unknown protein. Going one step further than recent ap-
proaches, we additionally incorporate post-translational modifications and incom-
plete enzymatic digestion that alter the measured molecular masses and, hence,
may influence the search results.

iii

The second application arises from the context of DNA similarity search. We use
the PAA framework to investigate the quality of filtration criteria employed to select
candidate sequences from a comprehensive nucleotide sequence database. The
PAA we propose comprises recent models and provides additional statistics. This
allows us to investigate different definitions of optimality not discussed formerly.

Searching for similar DNA sequences, which provides the basis for comparative
genomics in general, was enabled by the growing amount of nucleotide sequences
stored in sequence databases. This development was accelerated by high through-
put sequencing strategies such as 454 sequencing, that allow for faster sequenc-
ing at reduced price. However, these technologies yield relatively short reads of
sequenced nucleotides, which poses new challenges to genome assembly tools. By
means of the PAA approach, we compute the length distribution of sequence reads
resulting from 454 sequencing. Moreover, we discuss how to adjust the machine
settings to obtain on average the longest reads possible. The designed PAA is used
for evaluation.

Besides the PAA framework and its applications, we present a biologically mo-
tivated random string model adjusted to protein sequences, referred to as SSE
model. It captures properties of local segments forming protein secondary struc-
tures. In order to evaluate the model’s capability, we compare four random string
models by means of penalized model selection criteria. We show that among these
models, the SSE model yields the most plausible description of considered protein
sequences, outperforming the widely used i.i.d. and first-order Markov model.

iv

ACKNOWLEDGMENTS

There was a time when I thought that I would never reach this point and write
the last parts of this thesis. But, as you see, I do so and I am really glad that I
succeeded (at least) in this respect. It is an encouraging feeling to fill these pages.
After all, I really enjoyed writing up the work I did during the last three years.
Before I finally close, I want to thank all the lovely people that made those years
unforgettable and that supported me in any respect.
First and foremost, I want to thank Jens Stoye for his encouragement, for his aid
and advisable discussions both from the academic and the personal side. Thanks
also to Sven Rahmann who initialized this project and who pointed out valuable
directions.
With Epameinondas Fritzilas (Nondas), José Augusto Quitzau (Zé), and Eyla Will-
ing, there was always an especially good mood in our office. Besides concentrated
work, we could talk, laugh, and discuss. Further, I will remember many great
coffee breaks, cocktail parties, games evenings, and dinner with Nondas Fritzilas,
Peter Husemann, Katharina Jahn, Zé Quitzau, Eyla Willing, and Roland Wittler
(in alphabetic order). I especially appreciated the amiable gestures and the last-
minute support of Eyla and Roland. Thank you all for your friendship and the
marvelous time in Bielefeld.
Moreover, I thank Heike Samuel for her advice in all the administrative is-
sues and particularly for being so interested and amiable. Thanks also to Su-
sanne Schneiker-Bekel for providing me with biological data and for making the
contact to Rafael Szczepanowski, whom I thank for his endurance in answering
my questions about 454 sequencing.
I also acknowledge the financial and academic support of the International NRW
Graduate School in Bioinformatics and Genome Research.
Further, the cooperation with Stefan Wolfsheimer was a great experience, and I am
pleased that we still intercommunicate.
I want to thank Zsuzsanna Lipták (Zsuzsa), Roland Wittler, Nondas Fritzilas,
Katharina Jahn, and Peter Husemann for proofreading parts of the manuscript
and giving valuable comments. In particular, I am very grateful to Zsuzsa, who

v

gave me various advice in academic and personal concerns.
Surely, it is my pleasure to thank my parents, Sigrid and Burkhard, who sup-
ported me in my studies, who taught me to be ambitious and to conclude things I
began, who encouraged me to carry out my various interests and who give me the
feeling to be proud of me. Thank you both so much.
Last but not least, I am very grateful to have a wonderful husband and a lovely
daughter, who always knew when to encourage me and when to distract me.
Robert, Alicia, I love you.

vi

CONTENTS

Abstract iii

1 Introduction 1
1.1 Notational Conventions . 3
1.2 Organization of the Thesis . 4

2 Probabilistic Arithmetic Automata 7
2.1 Introduction to Probabilistic Automata 7

2.1.1 Deterministic Finite Automata 10
2.1.2 Pattern Matching . 12
2.1.3 Markov Chain Embedding . 18

2.2 Formal Definition of Probabilistic Arithmetic Automata 23
2.3 A Toy Example from Gambling . 25
2.4 Computations and Implementation . 26
2.5 Applications Overview . 28

3 Application I: Peptide Mass Fingerprinting 31
3.1 Introduction to Mass Spectrometry . 32

3.1.1 Instrumentation . 32
3.1.2 Characteristics of Mass Spectra 35

3.2 Protein Identification by Mass Spectrometry 37
3.2.1 Sample Preparation . 38
3.2.2 Peptide Mass Fingerprinting . 39
3.2.3 Tandem Mass Spectrometry . 41
3.2.4 De novo Peptide Sequencing . 41

3.3 Measuring Proteolytic Fragments with a PAA 42
3.3.1 In silico Digestion . 43
3.3.2 Automaton Construction . 45
3.3.3 Fragment Statistics . 48
3.3.4 Missed Cleavages and Post-translational Modifications 50

i

3.4 Results: Comparison of Fragment Statistics 52

4 SSE Random String Model for Protein Sequences 57
4.1 Model Selection Criteria . 58
4.2 Secondary Structure Elements Based Protein Model 63

4.2.1 Secondary Structure Elements 64
4.2.2 Information from Secondary Structure Annotation 65
4.2.3 Model Architecture and Parameter Estimation 67

4.3 Computing Likelihood Values . 69
4.3.1 Proof of Concept . 73

4.4 Results: Comparison of Random String Models 74

5 Application II: Computing Alignment Seed Sensitivity 79
5.1 Seeded Alignment and Seed Sensitivity 80
5.2 Underlying String Models . 82

5.2.1 Homology Model . 82
5.2.2 Seed Model . 83

5.3 Computing Seed Sensitivity with a PAA 86
5.3.1 Automaton Construction . 86
5.3.2 Hit Distribution and Seed Sensitivity 89

5.4 Results: Comparison to Other Methods 91
5.4.1 Spaced Seeds . 92
5.4.2 Indel Seeds . 92
5.4.3 Multiple Seeds . 94
5.4.4 Alternative Criteria . 96

6 Application III: 454 Sequencing Read Statistics 103
6.1 Introduction to DNA Sequencing . 103

6.1.1 Sanger Sequencing . 104
6.1.2 Pyrosequencing . 106

6.2 The 454 Sequencing Technology . 107
6.3 Computing 454 Read Length Statistics with a PAA 110

6.3.1 Proof of Concept . 115
6.4 Finding the Optimal Dispensation Order 116

7 Conclusion and Outlook 121

ii

CHAPTER 1

INTRODUCTION

In the 1970s, DNA sequencing emerged, and the first sequences were discovered
by means of laborious methods. With the advent of shotgun sequencing, the first
bacterial genome, Haemophilus influenzae, was published in 1995. Since then,
large-scale DNA sequencing efforts led to an exponential increase in the amount
of sequence data stored in sequence databases. In particular, sequencing projects
such as the Human Genome Project (yielding 3.3 billion base pairs of the entire
human genome) produced an immense amount of data, which made automatic,
computational methods necessary. Today, comprehensive databases contain mil-
lions of sequences comprising billions of nucleotides.

Besides genomic sequences, experimental technologies such as microarrays or
mass spectrometry additionally yield a host of data that has to be stored, pro-
cessed, analyzed, visualized and compared. Arising from these needs, the disci-
pline of computational molecular biology mainly relies on quantitative methods in
order to interpret the large amount of data.

Many problems faced are essentially statistical due to the stochasticity inherent to
biological systems, the random processes responsible for evolution, and errors in-
trinsic to measurements from large-scale experiments. Hence, most sophisticated
methods to analyze biological sequence data are based on probabilistic modeling.
Generally, a model refers to a system that simulates the object under study. A
probabilistic model generates a whole class of objects, assigning each an asso-
ciated probability. It is always understood as a reference, a so-called null model,
describing representatives of a considered class of objects. Here, the objects corre-
spond to biological sequences and, hence, a probabilistic model might for instance
generate a family of related sequences.

Examples of probabilistic methods employed in computational sequence analysis
include the inference of phylogenetic trees using maximum likelihood approaches,

1

1 Introduction

the computation of the significance of a sequence alignment based on probabilisti-
cally derived scores, and the classification of proteins or protein domains by means
of hidden Markov models to sequence families.

A hidden Markov model (HMM) is a powerful probabilistic method capable of het-
erogeneities in the considered objects. It generates a sequence of observations
determined by a sequence of “hidden” states. That is to say, there is no one-to-one
correspondence between states and observations since different states can lead to
the same observation. HMMs are for instance used to find CpG islands, i.e. DNA
stretches with high abundancy of CG dinucleotides.

In this thesis, we investigate the practicability of a novel probabilistic model ex-
tending HMMs, focussed on problems from computational sequence analysis. The
method carries along a computational framework that provides the straightfor-
ward computation of statistics associated to biological sequences such as DNA
and proteins, or alignments thereof. Furthermore, we design a generative model
for protein sequences. For the general purpose of probabilistic modeling, the con-
sidered sequences are abstracted to strings. We therefore have a brief look at the
biological background of DNA and proteins and their string representation. More
details can be found in various textbooks, e.g. in [129].

DNA: Deoxyribonucleic acid (DNA) is a double-stranded macromolecule (double
helix) that carries the genetic information of a cell. This is to say, it contains the
instructions necessary to construct other components of cells, such as proteins
and RNA molecules. Each strand consists of nucleotides, where the backbone
is formed by repeating units of sugar (deoxyribose) and phosphate, joined by es-
ter bonds, and a nucleotide base is attached to each sugar. The DNA bases are
adenine (A), cytosine (C), guanine (G), and thymine (T). The two strands are an-
tiparallel and stabilized by complementary base pairings between A and T as well
as between C and G. The sequence of bases along the backbone encodes the ge-
netic information.
Thus, a DNA sequence is represented by the order of nucleotide bases on one
strand, denoted by the upper-case letters A, C, G, and T.

The information in the DNA is transcribed into RNA and (after processing steps)
further translated into proteins. This indirect information transfer is known as the
central dogma of molecular genetics.

Proteins: As the name protein, deduced from protos (greek (πρὼτoς)= primary),
suggests, proteins are essential macromolecules of all organisms and play a cen-
tral role in almost all processes within cells. For instance, they take part in the
storage or transport of substances as oxygen or other molecules, they are impor-
tant in signal transduction and immune response, have structural or mechanical
functions, or regulate metabolic reactions in the form of enzymes. Proteins are
polymers of amino acids, referred to as polypeptides. Amino acids are organic
molecules carrying a carboxyl (COOH) and an amino (NH3) group. The 20 amino
acids differ only in the variable side chain. Corresponding chemical groups deter-
mine the physical and chemical properties of the amino acids. When the carboxyl

2

1.1 Notational Conventions

group of one amino acid is arranged next to the amino group of another amino
acid, they can be covalently linked by a condensation reaction. This is to say that
a water molecule is split of thus forming a so-called peptide bond. A polypeptide
is read from the N-terminus (the free amino group) to the C-terminus (the free
carboxyl group). The repetitive succession of nitrogen and carbon atoms -N-C-
C-N-C-C- along the polypeptide chain is called the peptide backbone. Hence, a
polypeptide is a polymer consisting of many amino acids linked by peptide bonds.
Each polypeptide is uniquely determined by the sequence of amino acid residues
(the amino acid molecules without terminal OH and H split during the conden-
sation reaction). In fact, a protein consists of one or more polypeptides that are
folded and coiled in a specific way. This conformation determines the structure
and the function of the protein. We refer to this in Chapter 4.
The term “protein sequence” refers to the sequence of amino acids. Hence, in a
generic way, a protein sequence is represented as sequence of upper-case letters
denoting the amino acids.

1.1 Notational Conventions

Throughout this thesis, we use the following notations. Let Σ denote a finite al-
phabet, i.e. a finite, non-empty set of discriminative characters, and let the set
Σ∗ include all finite words, called strings, over Σ. It also includes ε, the empty
string. Any subset of Σ∗ is called a formal language over Σ. The set Σl contains all
strings of length l, i.e. strings s = s[1]s[2] . . . s[l] with |s| = l. Here, s[i] denotes the
character at position i, and s[i, j] refers to the substring of s ranging from position
i to j (inclusive). For convenience, we define s[i, j] = ε for the cases i > j, i < 1, and
j > |s|. Further, Σ+ := Σ∗\{ε} is the set of all non-empty words over Σ. The con-
catenation of objects r and s is written as rs, where “object” refers to characters,
strings, or sets, respectively. For two sets A and B, the concatenation is defined
as AB = {ab | a ∈ A, b ∈ B}. The cardinality of a set C is denoted by |C|.
Moreover, for two strings r, s ∈ Σ∗, r C s indicates that r is a prefix of s, while
r J s says that r is a suffix of s. In particular, we abbreviate the sets of all pre-
fixes and suffixes (including ε) of a string s by Prefixes(s) = {s[1, i] | 0 ≤ i ≤ |s|} and
Suffixes(s) = {s[i, |s|] | 0 ≤ i ≤ |s|}, respectively.
Further, L(X) denotes the probability distribution of a random variable X with
corresponding generic probability measure P. If X is continuous, P defines the
probability density function (pdf), otherwise if X is a discrete random variable, P
refers to the probability mass function (pmf).
Moreover, A ⊆ B includes the case A = B, whereas A ⊂ B does not. The set N de-
notes all positive natural numbers, i.e. N = {1, 2, 3, . . . }, while we write N0 = N∪ {0}
for all non-negative integers. For a set A ⊆ Σ, we write Ā := Σ\A to denote the
complementary set of A with respect to the superset Σ.

3

1 Introduction

1.2 Organization of the Thesis

This work aims at the thorough treatment of a general, stochastic computational
framework called probabilistic arithmetic automaton (PAA). This extension of the
widely used HMM formalizes a sequence of binary operations where the operands
depend on chance. It naturally provides recurrence relations to compute the prob-
ability distribution of the value resulting of a given number of operations. We dis-
cuss three different applications arising in biological sequence analysis, and, thus,
demonstrate the flexibility and applicability of the PAA framework. The problems
considered here deal with nucleotide and protein sequences in the course of dif-
ferent genomic and proteomic studies. Connected to modern technologies such
as tandem mass spectrometry and high throughput sequencing, the investigated
questions pose important tasks in computational biology. Furthermore, analyzing
stochastic models for protein sequences inspired us to design a novel, biologically
motivated model for amino acid sequences.

The thesis is organized as follows: we dedicate Chapter 2 to the introduction of the
probabilistic arithmetic automaton. This probabilistic method to model sequences
of operations whose operands depend on chance is derived from the concept of
probabilistic automata, augmented with a stochastic process performing arith-
metic operations. We recall important characteristics of probabilistic automata,
give the formal definition of a PAA following Marschall and Rahmann [84] and an
introductory example from gambling. Then, we define recurrence relations related
to the PAA framework and state how to efficiently implement the corresponding
computations. An applications’ overview closes the chapter.

The first application of the PAA framework to computational biology we consider
in this thesis relates to peptide mass fingerprinting (PMF), a method for protein
identification based on mass spectrometry (MS). Our research continues the the-
sis of Kaltenbach [54] as we compute characteristics of peptide mass fingerprints
derived from random protein sequences. Chapter 3 thus starts with a brief in-
troduction to MS and PMF and a recall of necessary definitions adopted from [54],
before we state an appropriate PAA to compute peptide statistics. Furthermore, we
set up a PAA modified to incorporate site specific post-translational modifications
and account for peptides that are not entirely fragmented. Finally, we compare
our results to empirical data, obtained from the Swissprot database, and to the
former work.

The application mentioned above motivates the need for a more plausible (string)
representation of proteins and peptides. Hence, in Chapter 4, we present the SSE
random string model that incorporates information from secondary structure and
is thus adjusted to protein sequences. We describe how the model is designed and
which parameters are suited for it. To evaluate the quality of the model, we use
so-called penalized model selection criteria. We introduce selected criteria, define
necessary calculations related to the SSE model, and compare different string
models according to the criteria.

4

1.2 Organization of the Thesis

Chapter 5 deals with another application of the PAA framework. In local alignment
search tools, a filtering criterion, a so-called seed, is applied to select candidate
sequences from a database. We use the PAA framework to compute the quality of a
given seed. To this end, we give a background in so-called seeded alignment meth-
ods and seed sensitivity, the common measure of filtering quality. We present an
appropriate PAA, comprising the majority of recent models, and the corresponding
recurrence relations. Then, we compare our results to existing methods. Addition-
ally, we discuss alternative optimality criteria and compare them to sensitivity.

In Chapter 6, we consider the third application of the PAA framework. It deals with
an up-to-date high throughput sequencing technology, the 454 sequencing, and
is the most recent application. After a short introduction to customary and high
throughput DNA sequencing in general, we explain 454 sequencing in particular.
The latter technology washes deoxynucleotides across a plate with single-stranded
DNA probes and measures the amount of nucleotides synthesized by the DNA
polymerase at each washing step. We present a PAA that computes, for a given
order of repetitive nucleotide washes, the length distribution of sequence reads
generated in the course of a given number of washes. Moreover, we discuss a
strategy to find the optimal order in which nucleotides should be washed over the
plate in order to generate on average the longest reads possible.

Finally, in Chapter 7 we summarize our work and close with an outlook for sub-
sequent research.

Contributions

This thesis yields a thorough treatment of probabilistic arithmetic automata and
demonstrates their applicability to various problems in computational biology. The
individually designed methods give rise to unifying frameworks and allow for the
integration and investigation of issues not treated so far. Besides, we systemati-
cally analyzed the settings of the 454 sequencing technology giving hints how to
improve the platforms. Furthermore, to the best of our knowledge, we are the first
to present a generative random string model for protein sequences incorporating
secondary structure information.

Publications

The contents of Chapter 5 have been published in the refereed conference proceed-
ings of the Workshop on Algorithms in Bioinformatics (WABI) 2008 [48]. Further,
a poster about the application to peptide statistics was presented at the Summer
School of Proteomics Basics in Brixen, Italy, 2006. Moreover, the joint work with
Stefan Wolfsheimer on alignment score statistics using arbitrary null models, in
particular hybrid models for transmembrane proteins, is under revision in a ref-
ereed journal.

5

1 Introduction

Two further papers are in preparation. The first presents the SSE model prepared
in Chapter 4. The second is devoted to the contents of Chapter 6.

Software

The algorithms and methods described in this thesis were implemented in Java,
Mathematica, and Perl. Source code is available from the author upon request.

6

CHAPTER 2

PROBABILISTIC ARITHMETIC AUTOMATA

This chapter is dedicated to the introduction of the central object of this thesis,
namely the probabilistic arithmetic automaton (PAA). This is a stochastic compu-
tational framework extending ordinary HMMs by the insertion of a sequence of
(arithmetic) operations performed on state emissions. A similar concept has previ-
ously been referred to as weighted HMM (wHMM) introduced by Kaltenbach [54].
There, the accumulation of emissions is described by a separate formal model,
called Markov additive chain (MAC) pursuant to Ney and Nummelin [93]. However,
the definition using MACs is quite restrictive, since it only allows for adding up the
states’ emissions. Though this may suffice for many applications from computa-
tional biology, we use a more general definition comprising wHMM/MAC following
Marschall and Rahmann [84], which shows the flexibility of the model. The ap-
plication of probabilistic automata and the PAA framework in particular to the
context of pattern matching statistics has been investigated by Tobias Marschall
in his diploma thesis [83], supervised by the author of this thesis and Sven Rah-
mann. Here, we give a compressed derivation of probabilistic pattern matching in
Section 2.1 integrating results of Lladser et al. [74]. Next, in Section 2.2, we recall
the general definition of the PAA framework. Section 2.3 illustrates the method
using a toy example from gambling. In Section 2.4, we present the algorithm
PAADIST to compute the value distribution of a PAA and discuss its performance.
Finally, we give a foretaste of applications in Section 2.5.

2.1 Introduction to Probabilistic Automata

In applications from molecular biology, one often searches for patterns (motifs)
that are “overrepresented” within a given sequence, i.e. patterns that occur more
often than expected as a substring of the respective sequence. To this end, one has

7

2 Probabilistic Arithmetic Automata

to know how many occurrences are expected on average. For even more precise
statements, one can consult the statistical significance: Suppose, we have found a
pattern n times within a sequence of length t. What is the probability that it occurs
at least n times just “by chance”? To specify the notion of “by chance”, we consider
a (generative) random text of length t generated according to an appropriate null
model.

Definition 2.1.1 (Random text). A random text, also referred to as random string,
over a finite alphabet Σ is a stochastic process S with index set N taking values in Σ.
Its finite-dimensional distribution is given by the joint distribution of the constituting
characters:

L(SI) = L(Si1 , . . . , Sit)

for all finite index sets I = {i1, . . . , it} ⊂ N.

Asking for the probability to observe at least n occurrences of the pattern within
a random text is referred to as probabilistic pattern matching, since the text to be
analyzed is not fixed as in deterministic pattern matching, but rather generated by
a random process. Typically, a biological sequence is assumed to be produced by a
memoryless i.i.d. source or a Markovian source, or sometimes by a hidden Markov
model (HMM), when heterogeneities should be included. We recall the prevalent
random string models and refer to the textbooks of Durbin et al. [38], Karlin and
Taylor [56], Robin et al. [105] and the article of Rabiner [101] for a general intro-
duction to Markov chains and HMMs.

Example 2.1.2 (The i.i.d. random string model). The i.i.d. model is a generative
random string model, where each character is assumed to be chosen independently
of all other characters from the same distribution (independently and identically
distributed). The finite-dimensional distributions are then given by the product mea-
sure. Hence, for a string SI with given index set I = {1, . . . , t}, the probability is given
by the product of the characters’ probabilities:

P(SI = s[1, t]) =
t∏
i=1

P(Si = s[i]) .

Example 2.1.3 (The kth-order homogeneous Markov model). A kth-order homoge-
neous Markov model is a generative random string model taking dependencies into
account. This is to say, the probability of a character depends on the k previous
positions. For the specification of a string’s probability, one needs an initial distri-
bution for the first character as well as conditional character distributions for the
subsequent positions. The most prominent representative of this class of models is
the first-order homogeneous Markov model (M1). The probability of a string SI for
I = {1, . . . , t} under M1 is given by

P(SI = s[1, t]) = P(S1 = s[1])
t−1∏
i=1

P(Si+1 = s[i+ 1] |Si = s[i]) .

For a homogeneous Markov chain, the conditional character distributions are identi-
cal for all positions i.

8

2.1 Introduction to Probabilistic Automata

A (simple) pattern is a string where each position in the string is exactly specified
by one letter from the alphabet. However, there are more involved patterns. For
instance, a compound pattern refers to a finite set of simple patterns. Further, a
regular pattern can be described by a regular expression. For the sake of simplicity,
from now on we write “pattern” synonymous for “set of patterns”. A single pattern
then corresponds to a singleton.

Previous work on probabilistic pattern matching dealt with different problems.

i) Counting: what is the probability that a pattern occurs n times within a
random text of length t ?

ii) Occurrence: what is the probability that a pattern occurs or does not occur
in a random text of length t ? This is a special case of i).

iii) Occurrence position: what is the probability that a pattern is first observed
at a certain position within the text?

iv) Distance between occurrences: what is the expected distance between two
successive occurrences of a pattern in a random text of length t ?

Additionally, when concerned with counting all occurrences of a pattern or cal-
culating the distance between successive occurrences, one has to specify how to
handle overlaps. To this end, we distinguish three different count statistics:

• The overlapping occurrence count: all substrings of the text which correspond
to a word specified by the pattern are counted.

• The non-overlapping occurrence count only non-overlapping substrings which
correspond to a word specified by the pattern are counted.

• The occurrence position count: all positions in the text where at least one word
specified by the pattern ends are counted.

Let Ik(s, w) be the indicator variable defining whether the word w ends at position
k in a text s, i.e.

Ik(s, w) = 1{s[k−|w|+1,k]=w} .

Further, Ik(s,W) induces the indicator on a set W of words, i.e.

Ik(s,W) = 1{{w∈W | s[k−|w|+1,k]=w}6=∅} .

Herewith, we define the different occurrence counts separately:

Definition 2.1.4 (Overlapping occurrence count). Let W ∈ P(Σ+) be a set of pat-
terns and s ∈ Σ∗ be a text over Σ. The overlapping occurrence count of W in s is
defined as

No(s,W) =
|s|∑
i=1

∑
w∈W

Ii(s, w) .

Note that we use the ending positions to indicate a match. In order to count only
non-overlapping occurrences of all patterns in W , all matches of a pattern to the
text have to be identified first. To this end, we define the matching set.

9

2 Probabilistic Arithmetic Automata

Definition 2.1.5 (Matching set). Let W ∈ P(Σ+) be a set of patterns and s ∈ Σ∗ be
a text over Σ.

MW (s) = {(i, j) ∈ N0 × N0 | ∃w ∈W : s[i, j] = w}

contains all substrings of s matching any word from W and is called the matching
set of W in s.

A set M ⊂ MW (s) is non-overlapping if all intervals (i1, j1), (i2, j2) ∈ M with (i1, j1) 6=
(i2, j2) are disjoint. Further, a non-overlapping set M is called maximal if there is no
non-overlapping matching set M ′ with |M ′| > |M |, i.e. with more non-overlapping
matches.

Definition 2.1.6 (Non-overlapping occurrence count). Let W ∈ P(Σ+) be a set of
patterns and s ∈ Σ∗ be a text over Σ.

Nn(s,W) = |M | where M ⊂MW (s) is non-overlapping and maximal

is called the non-overlapping occurrence count of W in s.

The occurrence position count is defined analogously to the overlapping occur-
rence count. In particular, it agrees with the overlapping count unless some pat-
terns in the set are suffixes of others.

Definition 2.1.7 (Occurrence position count). Let W ∈ P(Σ+) be a set of patterns
and s ∈ Σ∗ be a text over Σ.

Np(s,W) =
|s|∑
i=1

Ii(s,W) .

is called the occurrence position count of W in s.

We now discuss methods from automata theory instrumental in deriving pattern
matching statistics.

2.1.1 Deterministic Finite Automata

The questions i) to iv) mentioned above can be answered by means of probabilistic
automata. The general idea is to extend the use of deterministic finite automata
(DFAs) for classical pattern matching problems such that the resulting probabilis-
tic automata quantify probabilities of occurrences of strings in random texts. Let
us therefore give a review on DFAs and classical pattern matching, before we state
the probabilistic version.

Definition 2.1.8 (Deterministic Finite Automaton (DFA)). A deterministic finite
automaton is a 5-tuple of the form G = (Q,Σ,∆, q0, F), where

• Q is a finite set whose elements are called states.

10

2.1 Introduction to Probabilistic Automata

• Σ is a finite alphabet.
• ∆ : Q × Σ → Q is a transition function determining the unique next state de-

pending on the current state and the character read.
• q0 ∈ Q is called start state.
• F ⊂ Q is a (possibly empty) subset of states. It is called the set of final states.

G can be represented as a graph with vertex set Q and directed edges according to
∆. In other words, there is a directed edge labeled with character σ ∈ Σ connecting
vertex u to vertex v if ∆(u, σ) = v. In particular, for all u ∈ Q and σ ∈ Σ, there exists
a unique edge labeled with σ that starts in u. The property that in each state the
next state is entirely determined by Σ and ∆, is called determinism. In contrast,
in a non-deterministic finite automaton, the transition function is replaced by
∆′ : Q× Σ→ P(Q) which maps the current state to a set of subsequent states.

Outgoing from the start state q0, a DFA reads a given string over the alphabet Σ
character by character. Based on the current state, the next state is determined
by means of the transition function ∆. We extend this function to a transition
function operating on strings by ∆∗ : Q× Σ∗ → Q with

∆∗(q, s) =

{
q if s = ε,

∆∗
(
∆(q0, s[1]), s[2, |s|]

)
otherwise.

Consequently, the following recursion holds:

∆∗(q, st) = ∆∗
(
∆∗(q, s), t

)
. (2.1.1)

Those strings that correspond to a concatenation of edge labels on a path that
starts in q0 and ends in a final state are said to be accepted by G. The set

L(G) = {s ∈ Σ∗ |∆∗(q0, s) ∈ F} (2.1.2)

of these accepted strings is called the language recognized by G. The following
definition connects this to the notion of regular languages.

Definition 2.1.9 (Regular language). A language L ⊂ Σ∗ is called regular if and
only if there exists a DFA G = (Q,Σ,∆, q0, F) such that L = L(G).

Remark 2.1.10. Note that a regular language, although induced by a finite automa-
ton, may consist of infinitely many strings. Moreover, each finite set of strings is a
regular language.

To conclude this section about deterministic finite automata, observe that there
exists more than one DFA accepting the same language. For instance, Figure 2.1
shows two DFAs accepting A =

{
{a, b}a∗b

}
.

DFAs that recognize the same language are called equivalent. Obviously, among
equivalent DFAs, it is preferable to operate on this one with the minimal number
of states. According to Myhill [90] and Nerode [92], the number of states in a
minimal automaton equivalent to G = (Q,Σ,∆, q0, F) corresponds to the number of
equivalence classes in Q. The according equivalence relation on Q is defined as
follows:

11

2 Probabilistic Arithmetic Automata

Figure 2.1: Two different DFAs accepting the language L =
{
{a, b}a∗b

}
. The initial state

is called ε, final states are represented by two concentric circles. The automaton to the
right is minimal.

Definition 2.1.11 (Equivalence of states). Let G = (Q,Σ,∆, q0, F) be a DFA. Two
states u, v ∈ Q are called equivalent if

∆∗(u, s) ∈ F ⇔ ∆∗(v, s) ∈ F for all s ∈ Σ∗ .

A minimal automaton is defined up to isomorphism (refer to Kozen [62]). For a
given automaton, the minimal counterpart is obtained merging equivalent states
into a single state. The asymptotically fastest minimization algorithm is due to
Hopcroft [50]. It runs in O(|Σ| · n log n) time, where n is the number of states in the
given automaton. For a detailed discussion of the algorithm, its implementation
and an in-depth analysis, the reader is referred to Knuutila [59].

Here, we give a brief sketch:

1. Separate the final states F from the non-final states Q\F .

2. Repeat the following until the partition is not modified anymore:
Separate any two states which have a transition with the same label to two
states which are separated, i.e. that are in different parts of the partition.

3. The remaining partition defines the states of a minimal automaton.

The algorithm starts from an initial partition of the set of states into final states
and non-final states, because a final state is not equivalent to any non-final state.
In the course of the algorithm, this partition is refined step by step, such that
at the end two states are in the same part of the partition if and only if they are
equivalent. To this end, all parts are investigated for all characters σ ∈ Σ such that
a part has to be split if two of its states have an outgoing transition labeled with
the same character leading to different parts of the partition.

2.1.2 Pattern Matching

Important work on the subject of pattern matching with finite automata has been
presented by Aho and Corasick [2]. They defined the so-called Aho-Corasick au-
tomaton to detect all occurrences of a finite set W of strings, called keywords,

12

2.1 Introduction to Probabilistic Automata

within a general text. To state the definition, we denote the prefixes and suffixes
of a string s by Prefixes(s) and Suffixes(s), as defined before. Note that these sets
also include the empty prefix and suffix, respectively.

Aho-Corasick Automata

Definition 2.1.12 (Aho-Corasick Automaton (ACA)). An Aho-Corasick automaton
for a finite set W ⊂ Σ+ of words is a 5-tuple of the form (Q,Σ,∆,Φ,Θ) where

• Q =
⋃
w∈W

Prefixes(w) is the set of all prefixes of all keywords.

• Σ is a finite alphabet.
• The goto transition function ∆ : Q × Σ → Q ∪ {?} (with ? /∈ Σ and hence, ? /∈ Q)

is defined such that

∆(q, σ) =

qσ if qσ ∈ Q,
ε if q = ε and σ /∈ Q,
? otherwise.

From the current state q, we follow the transition function to the state qσ if
it exists, i.e. if any keyword starts with qσ. Otherwise, the assignment of ?
indicates, that we follow a failure link, defined next.
• The failure function Φ : Q→ Q links a state to its longest suffix which is also a

prefix in the ACA. It is defined as

Φ(q) = argmax
s∈Q∩Suffixes(q)\{q}

|s| .

This means, whenever a word qσ is not a prefix of any keyword and thus would
not lead to a match of W , we follow the failure link in order to find the longest
suffix of q that, reading σ, may still lead to a hit.
• The output function Θ : Q→ P(W) is defined as

Θ(q) = W ∩ Suffixes(q) .

It displays all keywords ending in state q.

See Figure 2.2 (left) for an example of an ACA for the set of keywords
W = {bin,bit,in,int,it}. To construct the Aho-Corasick automaton for a finite set
of keywords W , denoted ACA(W), we have to build the prefix trie of the given key-
words and augment it with the failure links. The failure function guarantees an
efficient search for matches. Instead of generally resuming the search when a
word qσ does not lead to a match, we follow the failure link in order to “remember”
the longest already read part that still can be extended to a match. Consider state
6 in the example. If we have read bin, then the only character that will lead to
another match is t. To this end, the failure link directs us to state 4, which is to

13

2 Probabilistic Arithmetic Automata

Figure 2.2: To the left, the Aho-Corasick automaton for the set W = {bin,bit,in,int,it} of
keywords is shown. It corresponds to the prefix trie of W . Concentric circles indicate
w ∈ W . Failure links are displayed as dashed arrows, where we omitted failure links to
ε, i.e. to vertex 0. The numbers serve as orientation for the connection between failure
function and direct descent in the suffix tree of the reversed keywords Ŵ , shown to the
right. The longest suffix of a string that is also a prefix of any keyword refers to the
longest prefix in the mentioned suffix tree that is also a suffix of any reversed keyword.
The dashed node in the suffix tree does not correspond to any node in the ACA.

say that in is the longest suffix that can be extended to int and hence indicate a
further match. If the next character read differs from t, the failure link guides us
from state 4 to state 0, i.e. there is no keyword starting with nt or t, and the longest
suffix refers to ε.

The construction of ACA(W) takes time proportional to the total length of keywords,
i.e. O(

∑
w∈W |w|), for integer alphabets. Such a linear-time construction algorithm

can be found in the original paper [2], whereas recently, Dori and Landau [36]
presented another nice algorithm with the same running time. They make use
of the connection between failure function and direct descent in the suffix tree of
the reversed patterns Ŵ , which is demonstrated in Figure 2.2 (right). The failure
function assigns a state its longest suffix which is also a prefix of any keyword. In
the suffix tree of the reversed keywords this corresponds to the closest ancestor
of a state, marked by $, since this is the largest element which is a prefix of the
state’s label and also itself a suffix of a reversed keyword. We will get back to this
relation later in Section 5.3.

Definition 2.1.13. The DFA G = (Q,Σ,∆, ε,W) with transition function ∆ such that

∆(u, σ) = argmaxx∈Suffixes(uσ)∩Q |x| for all (u, σ) ∈ Q× Σ (2.1.3)

defines the DFA underlying ACA(W).

The longest prefix-suffix property leads us to the following lemma. It states that
in an ACA, a path from ε to u is labeled with string s if and only if u is the longest
suffix of s which is also a prefix of some keyword w ∈W :

Lemma 2.1.14 (Aho and Corasick [2]). LetG = (Q,Σ,∆, ε,W) be the DFA underlying
ACA(W). For all s ∈ Σ∗, ∆∗(ε, s) = u if and only if u = argmaxx∈Suffixes(s)∩Q |x|.

14

2.1 Introduction to Probabilistic Automata

For the proof, we follow Lladser et al. [74], Lemma 4.3.

Proof. Induction on the length |s|:
The base for |s| = 0 is trivial, since for s = ε, ∆(ε, ε) = ε by definition, and Suffixes(ε) =
{ε}. Thus, u = ε. We show that if |s| = n + 1 and the lemma holds for all strings of
length n, then it also holds for s:
Let u be the longest element in Q such that u J s. Further, let ∆∗(ε, s[1, n]) = v and
∆∗(ε, s) = w. Observe that ∆∗(v, s[n+1]) = w according to Equation (2.1.1). Further,
v is the longest element in Q with v J s[1, n] according to the induction hypothesis.
This implies w J s, because

w = vs[n+ 1] J s[1, n]s[n] = s . (2.1.4)

To prove the lemma, it suffices to show that u = w. To this end, observe that the
following conditions hold:

(i) |w| ≤ |u| ≤ |v| + 1: the first inequality directly follows from the definition of
u. We show the second inequality by contradiction: suppose |u| > |v| + 1.
Since u is the longest element in Q with u J s and vs[n] J s, there would be a
non-empty string y such that u = yvs[n + 1]. Then, since u ∈ Q, yv must be a
prefix of a word in W and hence, yv ∈ Q. This would imply yv J s[1, n], which
contradicts the defining property of v. Thus, the second inequality follows.

(ii) |w| ≥ |u|: since u J s and w = vs[n + 1] J s according to Equation (2.1.4), the
second inequality in (i) implies u J vs[n+ 1] = w and hence, |u| ≤ |w|.

It follows that |w| = |u|. Moreover, u J w, and thus, u = w.

This lemma shows that ACA(W) recognizes the language Σ∗W , i.e. all words over Σ
ending with a pattern from W .

Once constructed, ACA(W) can be used to search a text s for all matches to words
specified by W . The appropriate pattern matching algorithm is described in Algo-
rithm 2.1. It reads a given text s character by character, following the edge labeled
with the current character in order to determine the next state of the automaton.
In each state q, the output function Θ is consulted and if there is any keyword
ending in q, Θ(q) is output. If there is no edge labeled with the currently read
character, the algorithm follows the failure link defined by Φ and investigates the
respective state.

The pattern matching algorithm ACA-MATCH reports all substrings of the searched
text matching any word from the set of given keywords (line 9). Speaking figu-
ratively, it corresponds to a sliding window approach with a window of flexible
length. The size of the window is extended (line 7) as long as a potential match
can be found. If a character enters the window such that it contradicts a potential
match (line 4), the window is shifted (and hence possibly shortened) to the first
position that refers to a potential starting position of any keyword. In contrast
to the naive approach, here the number of shifted positions may be larger than
one.

15

2 Probabilistic Arithmetic Automata

Algorithm 2.1 ACA-MATCH(K)

Input: ACA K = (Q,Σ,∆,Φ,Θ) corresponding to W , string s ∈ Σ+

Output: Substrings of s matching any word from W
1: state← ε
2: for i = 1 to |s| do
3: σ ← s[i]
4: while ∆(state, σ) = ? do
5: state← Φ(state) //follow the failure function
6: end while
7: state← ∆(state, σ)
8: if Θ(state) 6= ∅ then
9: report Θ(state)

10: end if
11: end for

ACA-MATCH runs in O(n+k) time for a scanned text of length n and k occurrences
of words from W . Thus, automaton construction and matching takes O(m + n +
k) time with m =

∑
w∈W |w|. Searching with an ACA is a generalization of the

algorithm of Knuth, Morris, and Pratt [58], which is the best known linear-time
algorithm (O(n+m)) for the exact pattern matching problem “report all occurrences
of a given pattern of length m in a given text of length n” in the case of a single
pattern, i.e. W = {w} and hence, m = |w|.

Remark 2.1.15. Note that in the case of |W | = 1, for all w ∈ Σ+, ACA({w}) is the
automaton with the smallest number of vertices that recognizes the language Σ∗{w},
that is, ACA({w}) is minimal.

Counting with an Automaton

In particular, Aho-Corasick automata are able to treat sets of patterns where one
pattern is a substring of another pattern. Thus, in contrast to other DFAs, they
can indicate if more than one pattern ends at a certain position within a text.
However, we are interested in the number of pattern occurrences. To this end, we
introduce a count function, i.e. a mapping µ : Q → N0, assigning each state the
number of patterns ending here. Herewith, we define Counting Deterministic Finite
Automata (CDFA) as has been done in [83].

Definition 2.1.16 (Counting Deterministic Finite Automaton (CDFA)). A counting
deterministic finite automaton is a 5-tuple of the form (Q,Σ,∆, q0, µ), where the set
of final states in a DFA

(
Q,Σ,∆, q0, F

)
(according to Definition 2.1.8) is replaced by a

count function µ : Q→ N0 with µ(q) = |{w ∈W |w J q}|.

Remark 2.1.17. Note that CDFAs are a generalization of DFAs, since the CDFA
(Q,Σ,∆, q0, µ) induces the DFA (Q,Σ,∆, q0, F = {q ∈ Q |µ(q) > 0}). Hence, the mini-
mization algorithm by Hopcroft [50] can straightforwardly be extended to CDFAs.

16

2.1 Introduction to Probabilistic Automata

The initial partition has to take the count function into account. Instead of only dis-
tinguishing between final and remaining states, two states u and v are in the same
initial part if µ(u) = µ(v).

In the case of ACA, the respective CDFA is given by (Q,Σ,∆′, ε, µ) where

∆′(q, σ) =

{
∆(q, σ) if ∆(q, σ) 6= ? ,

∆′
(
Φ(q), σ

)
otherwise

and µ : q 7→ |Θ(q)| counts the number of output patterns. Hence, via µ, a CDFA
can be used to count the number of occurrences of patterns from a finite set W of
patterns. We define the occurrence count of W in a given text s with respect to a
CDFA as follows.

Definition 2.1.18 (CDFA Occurrence Count). Given a CDFA K = (Q,Σ,∆, q0, µ) for
a finite set W of patterns and a string s ∈ Σ∗,

CK(s) =
|s|∑
i=1

µ
(
∆∗(q0, s[1, i])

)
(2.1.5)

is called the CDFA occurrence count of W in s.

The CDFA occurrence count deduced from the Aho-Corasick counting automaton
corresponds to the overlapping occurrence count defined in Section 2.1. This
result is stated in the next lemma.

Lemma 2.1.19. Let W be a finite set of patterns and (Q,∆,Φ,Θ) the corresponding
ACA(W). Further, let K = (Q,Σ,∆′, ε, µ) be the respective CDFA as defined above.
Then it holds for all s ∈ Σ+:

CK(s,W) = No(s,W)

with the overlapping occurrence count No(s,W) as defined in Definition 2.1.4.

Proof. The equality follows directly from the definitions and the properties of ACA:

CK(s,W) =
|s|∑
i=1

µ
(
∆∗(q0, s[1, i])

)
=

|s|∑
i=1

|Θ(argmaxx∈Suffixes(s[1,i])∩Q |x|)| (def. of µ in CDFA)

=
|s|∑
i=1

|Θ(s[1, i])| (construction of ACA)

=
|s|∑
i=1

∑
w∈W

1{wJs[1,i]} (def. of Θ in ACA)

= No(s,W) .

17

2 Probabilistic Arithmetic Automata

Moreover, the final states of the ACA satisfy an important property which is useful
for our intention to count occurrences of patterns in random strings. This property
is described by the following theorem. It is a rephrasing of two lemmata by Aho
and Corasick [2]. We cite it and its proof, following Lladser et al. [74], Lemma 4.4.

Theorem 2.1.20 (Lladser et al. [74]). For w ∈W define B(w) := {u ∈ Q |w J u}. For
all w ∈ W and all s ∈ Σ∗, w occurs m times as substring of s if and only if the path
associated with s in ACA(W) visits the set B(w) exactly m times.

Proof. Suppose that w occurs m times as substring of s and that the path associ-
ated with s in ACA(W) visits B(w) exactly l times. The following properties show
that m = l.

(i) If for some i, 0 ≤ i ≤ |s|, ∆∗(ε, s[1, i]) = u ∈ B(w), then, according to
Lemma 2.1.14, w J u J s[1, i]. Thus, m ≥ l.

(ii) If for some 1 ≤ i ≤ |s| it is w J s[1, i], and u = ∆∗(ε, s[1, i]), then, according to
Lemma 2.1.14, u is the longest string in Q such that u J s[1, i]. Since w ∈ Q,
it follows that |w| ≤ |u|. In particular, w J u and hence, u ∈ B(w). This shows
that m ≤ l.

Thus, m = l, and this completes the proof.

Theorem 2.1.20 shows that the probability that a word occurs in a random text
of a certain length can be determined from the probability that an appropriate
automaton visits a specified set of states within a certain number of steps. This
transformation of the pattern matching problem into a question about the behav-
ior of a Markov chain is called Markov chain embedding. In the next section, we
consider the embedding of a random text into the states of a deterministic automa-
ton.

2.1.3 Markov Chain Embedding

Now that we have all necessary notations at hand, we move from deterministic
to probabilistic pattern matching. To this end, we describe random walks on
automata which is referred to as Markov chain embedding.

Definition 2.1.21 (Markov chain embedding). Let X = (Xn)n∈N0 be a random
text over Σ and G = (Q,Σ,∆, q0, F) be a DFA. Define QG := ∆∗(q0,Σ+), i.e.
QG = {q ∈ Q | ∃ s ∈ Σ+ : ∆∗(q0, s) = q}. The Markov chain embedding of X in G is
the sequence of QG-valued random variables XG = (XG

n)n∈N0 where (for n ≥ 0)

XG
n = ∆∗(q0, X0 . . . Xn) .

18

2.1 Introduction to Probabilistic Automata

The following theorem shows that this embedded process, is indeed a Markov
chain (cf. [74, Theorem 5.1]). In particular, a transition that is triggered by a char-
acter σ ∈ Σ in the deterministic automaton occurs randomly with probability pσ in
the random walk on the automaton’s states. This random walk can be represented
by a first-order homogeneous Markov chain, since the transition probability only
depends on the current state (and not on preceding states).

Theorem 2.1.22 (Lladser et al. [74]). If X = (Xn)n∈N0 is a sequence of i.i.d. Σ-
valued random variables and G = (Q,Σ,∆, q0, F) is a DFA, then XG = (XG

n)n∈N0 is a
first-order homogeneous Markov chain with initial distribution

P(XG
0 = u) =

∑
σ∈Σ:∆(q0,σ)=u

pσ for all u ∈ QG , (2.1.6)

and transition probabilities

P(XG
n+1 = v |XG

n = u) =
∑

σ∈Σ:∆(u,σ)=v

pσ for all u, v ∈ QG . (2.1.7)

We recall the proof following the original article.

Proof. The proof of (2.1.6) directly follows from P(XG
0 = u) = P(∆(q0, X0) = u). Then,

we still have to show two properties:

• Markov property: Observe that XG
n+1 = ∆(XG

n , Xn+1) according to Equation
(2.1.1). Thus, for all u1, . . . , un, v ∈ Q it is

P
(
XG

1 = u1, . . . , X
G
n = un, X

G
n+1 = v

)
= P

(
XG

1 = u1, . . . , X
G
n = un,∆(un, Xn+1) = v

)
= P

(
XG

1 = u1, . . . , X
G
n = un

)
· P
(
∆(un, Xn+1) = v

)
,

because Xn+1 is independent of X1, . . . , Xn. This shows that XG is a first-order
Markov chain.

• Homogeneity: Since the distribution of Xn+1 does not depend on n,
P(XG

n+1 = v |XG
n = un, . . . , X

G
1 = u1) = P(∆(XG

n , Xn+1) = v |XG
n = un) depends

only on un and v, but not on n. This shows that XG is homogeneous.

Herewith, (2.1.7) follows immediately.

This theorem is of major importance. It allows us to calculate statistics linked
to patterns in random strings by computing probabilities associated with a first-
order homogeneous Markov chain defined on the state space of an appropriate
automaton. Thus, we can apply well-known techniques from Markov chain theory
and combinatorics in order to solve probabilistic pattern matching problems.

19

2 Probabilistic Arithmetic Automata

Convergence of Embedded Markov Chains

Before we come to this, let us consider the behavior of the embedded Markov chain
after a long period n. In the following, we show in which case the distribution of
XG settles down when time passes (n→∞). To this end, we recall some important
properties of discrete-time homogeneous Markov chains, conforming with Grim-
mett and Stirzaker [44]. Let X = (Xn)n∈N0 be a homogeneous Markov chain with
state space S and stochastic transition matrix P = (pij)i,j∈S. The n-step transition
matrix, which is the nth power of P , is denoted as Pn =

(
p

(n)
ij

)
i,j∈S. Moreover, each

character occurs with positive probability, which is to say that pσ > 0 for all σ ∈ Σ.
Otherwise, if a character has zero probability, it is removed from Σ and all words
containing this character are removed from W . Then, these words do not occur in
the language recognized by G.

Definition 2.1.23 (Communication). State i communicates with state j (i → j) if
there exists an m ≥ 0 such that p(m)

ij > 0. Analogously, i and j intercommunicate
(i↔ j) if i→ j and j → i.

Definition 2.1.24 (Irreducibility). A set C of states is called

• irreducible if i↔ j for all i, j ∈ C,
• closed if pij = 0 for all i ∈ C, j /∈ C.

In other words, a set of states is irreducible if each state can be reached from each
other state. If the whole state space S is irreducible, we also call the Markov chain
irreducible. On the other hand, if the chain takes a value in a closed set C, it
subsequently never leaves C. If a closed set contains only one state, we call this
state absorbing.

Definition 2.1.25 (Recurrence). A state i ∈ S is called recurrent (persistent) if

∃n ≥ 1 : P(Xn = i |X0 = i) = 1,

Otherwise, if this probability is strictly less than 1, i is called transient.

To show that the states of an embedded Markov chain are recurrent, we make use
of the following lemma (adapted from [44, Section 6.2]).

Lemma 2.1.26. State i is recurrent if and only if
∑
n≥0

p
(n)
ii =∞.

For the proof, the reader is referred to the text book mentioned above. Let us
further investigate the time up to the first visit of state i. This is given by

Ti = min{n ≥ 1 |Xn = i} .

For convenience, we define Ti = ∞ if the chain never visits state i. We have
P(Ti =∞|X0 = i) > 0 if and only if i is transient. Usually, one is interested in
the average number of steps to the subsequent visit.

20

2.1 Introduction to Probabilistic Automata

Definition 2.1.27 (Mean recurrence time). The mean recurrence time µi of a state
i is defined as

µi = E(Ti |X0 = i) =

∑
n≥1

n · P(X1 6= i, . . . ,Xn−1 6= i,Xn = i |X0 = i) if i is recurrent,

∞ if i is transient.

Note that µi may be infinite even if i is recurrent. Hence, we classify recurrent
states according to the next definition.

Definition 2.1.28 (Positive and null recurrence). For a recurrent state i,

i is called

{
null recurrent if µi =∞,
positive recurrent if µi <∞.

For the case of a finite state space, this definition leads us to the following property.
The lemma and its proof can be found in Grimmett and Stirzaker [44].

Lemma 2.1.29. If S is finite, then at least one state is recurrent and all recurrent
states are positive recurrent.

Proof. See Grimmett and Stirzaker [44], Section 6.3.

Let us now investigate the existence of a limiting distribution for X as n → ∞.
It turns out that this is closely related to the existence of a so-called stationary
distribution.

Definition 2.1.30 (Stationary distribution). Let X be a Markov chain with state
space S. The vector π = (πi)i∈S is called stationary distribution for X if

(a) πi ≥ 0 for all i ∈ S and
∑
i∈S

πi = 1,

(b) π = πP , i.e. πj =
∑
i∈S

πipij for all j ∈ S.

In particular, this definition comprises πPn = π for all n ≥ 0. This is to say, if X0

has distribution π, then Xn has distribution π for all n, and in this case, π is the
limiting distribution of X as n → ∞. We use the following theorem to investigate
the existence of a stationary distribution for XG.

Theorem 2.1.31 (Grimmett and Stirzaker [44]). An irreducible chain has a station-
ary distribution π if and only if all the states are positive recurrent; in this case, π is
the unique stationary distribution and is given by πi = 1/µi for all i ∈ S, where µi is
the mean recurrence time of state i.

Proof. See Grimmett and Stirzaker [44], Section 6.4.

21

2 Probabilistic Arithmetic Automata

The following corollary, adjusted from the diploma thesis mentioned before, shows
that this theorem applies to the Markov chain embedded in a minimal DFA.

Corollary 2.1.32. Let XG =
(
XG
n

)
n∈N0

be a Markov chain embedded in a minimal
DFA G = (Q,Σ,∆, q0, F) recognizing Σ∗L. If there exists an s ∈ Σ+ such that(

Suffixes(ts) ∩
⋃
l∈L

Prefixes(l)
)
\{ε} = ∅ (2.1.8)

for all t ∈ Σ∗, then XG is irreducible and all states are positive recurrent. Thus,
π = (πq)q∈QG =

(
1/µq
)
q∈QG is the unique stationary distribution.

Proof. We have to show that Equation (2.1.8) implies that

(a) XG is irreducible and

(b) all states q ∈ QG are positive recurrent.

Then, the statement directly results from Theorem 2.1.31. To show (a), observe
that for all u, v ∈ QG

∃m ≥ 0 : p(m)
uv > 0⇔ ∃ r ∈ Σ+ : ∆∗(u, r) = v , (2.1.9)

because we assume that pσ > 0 for all σ ∈ Σ. We use this equivalence and show
that for all pairs of states such a word exists if Equation (2.1.8) holds.

Recall that QG is defined as the set of states that are reachable from q0. We show
that also q0 is reachable from every state q ∈ QG, thus every state q′ is reachable
from every other state q via the path q → q0 → q′.

Let q1 be the current state and t ∈ Σ∗ the string read so far, i.e. q1 = ∆∗(q0, t).
Reading s ∈ Σ+ leads to another state q2 = ∆∗(q1, s) = ∆∗(q0, ts). We show that
Equation (2.1.8) implies that q2 = q0, and hence, q0 is reachable from every state
q1 ∈ QG. To this end, we define

Lq = {r ∈ Σ+ |∆∗(q, r) ∈ F} for q ∈ QG .

In particular, Lq0 = Σ∗L. Moreover, Lq0 ⊆ Lq for all q ∈ QG because of the follow-
ing: since q ∈ QG, there exists a word x ∈ Σ∗ such that ∆∗(q0, x) = q. Now let
y ∈ Lq0 = Σ∗L. Then, xy ∈ Σ∗L and thus, ∆∗(q0, xy) = ∆∗(q, y) ∈ F .
We show by contradiction that indeed Lq0 = Lq2. For this purpose, assume that
Lq2\Lq0 6= ∅ and let x ∈ Lq2\Lq0. Hence, tsx ∈ Lq0, which implies the existence of
r′ ∈ Σ∗ and l ∈ L such that r′l = tsx. But then, we have the following:

• If |r′| ≥ |ts|, then l J x and thus, x ∈ Σ∗L = Lq0. But this contradicts the
defining property of x.

• If |r′| < |ts|, then x J l and thus, there exists an x′ ∈ Σ+ such that x′x = l.
However, this implies x′ ∈ Suffixes(ts) ∩ Prefixes(l), which contradicts (2.1.8).

22

2.2 Formal Definition of Probabilistic Arithmetic Automata

It follows that Lq2 = Lq0. Further, since G is minimal, we have q2 = q0, which
completes the proof of irreducibility.

Equation (2.1.9) further implies that all states are recurrent, because of the fol-
lowing observation: let ∆∗(q0, t) = q1 and ∆∗(q1, s) = q0 as above. But also
∆∗(q1, σs) = ∆∗(q′1, s) = q0 for all σ ∈ Σ, since the argumentation given above does
not depend on q1. Hence, in general, ∆∗(q1, ys) = q0 for all y ∈ Σ∗. Thus, p(|yst|)

q1q1 > 0
for all y ∈ Σ∗, and

∑
n≥1

p
(n)
qq = ∞ for all q ∈ QG. Herewith, part (b) follows by means

of Lemma 2.1.29.

Now, we have provided the theoretical basis for the next section, where we in-
troduce the Probabilistic Arithmetic Automaton and use the evolution of the em-
bedded Markov chain in order to calculate statistics linked to patterns in random
texts.

2.2 Formal Definition of Probabilistic Arithmetic
Automata

In this section, we introduce probabilistic arithmetic automata (PAA) which are
used to model sequences of operations whose operands depend on chance. For
this purpose, the concept of probabilistic automata as explained in Section 2.1 is
extended by calculations on the count function. In particular, a PAA entails the
probabilistic variant of the CDFA occurrence count (2.1.5), which is to say that
it provides the distribution of accumulated occurrences of patterns in a random
string. While previous methods use a Markov additive chain (MAC) defined on the
counts output during a random walk on the states of a probabilistic automaton,
the PAA framework comprises this process. Besides, it is more flexible in the choice
of operations. As the name indicates, MACs only accomplish the accumulation of
counts, whereas a PAA permits more complicated operation designs.

In accordance with former definitions, we define the framework of PAAs as intro-
duced in Marschall and Rahmann [84] before we illustrate its principal proper-
ties.

Definition 2.2.1 (Probabilistic Arithmetic Automaton (PAA)). A probabilistic arith-
metic automaton is a 8-tuple of the form

(
Q,T, q0, E, e = (eq)q∈Q, Ng, n0, θ = (θq)q∈Q

)
,

where

• Q is a finite set of states.

• T =
(
Tuv
)
u,v∈Q is a stochastic state transition matrix, i.e.

∑
v∈Q Tuv = 1 for all

u ∈ Q.

• q0 ∈ Q is called start state.

• E is a finite set called emission set.

23

2 Probabilistic Arithmetic Automata

• Each eq : E → [0, 1] is a weight distribution associated with state q. In particu-
lar,

∑
e∈E eq(e) = 1.

• Ng is a set called value set.
• n0 ∈ Ng is called start value.
• Each θq : Ng × E → Ng is an operation associated with state q.

If we denote the Dirac measure assigning probability 1 to outcome x with δx, the
tuple (Q,T, δq0) defines a Markov chain on state space Q with initial state q0 and
transitions according to T . We denote its associated state process with

(
Yn
)
n∈N0

.
Thus, P(Yn = q) is the probability that the Markov chain visits state q in step n.
Analogously,

(
Zn
)
n∈N0

represents the sequence of emissions, and
(
Vn
)
n∈N0

denotes
the sequence of values Vl = θYl(Vl−1, Zl), with V0 = n0, resulting from the operations
performed. In fact, not only the customary arithmetic operations like “+,−, ∗, /”
are allowed, but rather any kind of binary operation. Indeed, caution has to be
exercised such that emission value 0 is prohibited when the operation is “/”.

Remark 2.2.2. Note that, in general, the set Ng of values is not finite. For instance,
in the applications we consider later, we have that all states are associated with
the operation “+”, and Ng = N. For our computations, we then use a finite subset
N ⊂ Ng by defining an upper bound for the maximal value. In the case that Ng is
finite, N = Ng.

To state it in more practical terms, the PAA starts in state q0, i.e. Y0 = q0, with
initial value V0 = n0. Then, according to the transition probabilities, the following
state, say q, is determined. A value z1 depending on the entered state is emitted
appropriate to the associated weight distribution eq. The operation θq determines
the next value n1 = θq(n0, z1). While traversing the Markov chain, a PAA performs
a sequence of operations on a set N of values, starting with the value n0, and as-
signs probabilities to those values. Hence, a PAA parses strings yielding not only a
boolean result (compare DFAs) but their probability under the respective random
string model and the distribution of their emitted values subject to associated
operations. Moreover, through the choice of states and emissions, the PAA frame-
work can account for different counting schemes, as discussed in Section 2.1. We
make use of this property in Chapter 5.

Remark 2.2.3. It is noteworthy that the Markov chain (Q,T, δq0) together with the
set of state emissions e = (eq)q∈Q defines an HMM. Thus, PAAs may be treated as
an extension of HMMs. However, in the PAA framework the states are usually not
unknown like in HMM applications, and we are not interested in the state process
but in the value process.

24

2.3 A Toy Example from Gambling

2.3 A Toy Example from Gambling

Now that we have formally defined the PAA framework, let us consider a toy exam-
ple (see Figure 2.3).

Figure 2.3: Sketch of the PAA modelling the game described in the text: the states cor-
respond to three fair dice with 6, 8 and 12 faces. These are sequentially sampled with
replacement. Each die has an associated operation which is performed on the emitted
values.

Along with the majority of textbooks about probability theory, we consider an ex-
ample of gambling. Assume the following game: in a bag there are three fair dice;
one 6-faced, one 8-faced and one 12-faced die. The gambler draws a die, rolls it,
notes the pips, and puts it back. This procedure is repeated t times. Moreover,
there are three operations associated with the dice. The value resulting of rolling
the 6-faced die is added to the current total value. Whenever the 8-faced die is
drawn, the current total value is replaced by the minimum of itself and the thrown
pips, and for the 12-faced die, the maximum of the current total value and the
thrown pips is noted. In the end, the gambler wins if the total value exceeds a
given threshold. A profit-oriented casino would probably set a threshold above the
value expected on average. For instance, a threshold could be chosen such that
40% of the games are expected to be won by the gambler. What is the expected total
value, then? And how could one compute the quantiles of the value distribution?

To answer these questions, we use the PAA framework to model the game. Each
die is represented by a state. All transition probabilities are set to 1/3, since each
die is drawn with equal probability. The weight distributions associated to the
states correspond to uniform distributions over the number of faces of the respec-
tive die. In the game described above, the operations refer to “add” (6-faced die),
“take the minimum” (8-faced die), and “take the maximum” (12-faced die). The so
constructed PAA is shown in Figure 2.3. Note that we do not need to assign a
weight distribution nor an operation to the start state. This is superfluous when-
ever the start state is transient since then Yl = q0 only for l = 0.
Running the Markov chain for t steps yields the distribution of total values. Hence,

25

2 Probabilistic Arithmetic Automata

we can easily calculate the respective expectation value. Note that, in general, var-
ious combinations of arithmetic operations are imaginable.

Table 2.1 displays possible outcomes, running the game for t = 10 steps. Yt denotes
the state, i.e. which die was drawn, Zt shows the thrown pips, i.e. the emitted
value, and Vt gives the total value after round t.

Table 2.1: Possible outcomes of ten rounds of the game described in the text. Here, the
gambler has obtained a total value of eight after ten rounds.

t 0 1 2 3 4 5 6 7 8 9 10
Yt start 8 8 6 12 8 12 12 6 8 6
Zt 0 6 7 5 10 3 2 8 2 4 4
Vt 0 0 0 5 10 3 3 8 10 4 8

The gambler wins this game if the threshold set by the casino is smaller than 8.
The casino would usually calculate the probability to obtain a certain value after
t rounds as reference. In the next section, we make the computation of the value
distribution L(Vt) precise.

2.4 Computations and Implementation

The PAA framework yields the probability distribution L(Vt) of the resulting total
value after t steps. We therefore compute the joint state-value distribution L(Yt, Vt),
from which we determine the sought quantities via marginalization:

P(Vt = v) =
∑
q∈Q

P(Yt = q, Vt = v) .

For the sake of readability, throughout this thesis we use the short hand nota-
tion

ft(q, v) := P(Yt = q, Vt = v) .

The following general recurrence relation gives the joint state-value distribution:

fl(q, v) =
∑
q′∈Q

∑
(v′,u)∈θ−1

q (v)

fl−1(q′, v′)Tq′qeq(u) , (2.4.1)

where θ−1
q (v) denotes the inverse image of v under θq, that is the set of all (value,

emission) pairs such that θq(v′, u) = v.

In order to calculate the desired distribution ft = L(Yt, Vt), we start with f0 =
L(Y0, V0) and iteratively apply Equation (2.4.1) to obtain subsequent distributions
and finally ft. We state this algorithmic approach in Algorithm 2.2. In some cases,
the recurrence can also be solved analytically by means of a probability generating
function (pgf).

26

2.4 Computations and Implementation

Algorithm 2.2 PAADIST

Input: f0 = L(Y0, V0), t ∈ N, two tables of size |Q| × |N |
Output: ft = L(Yt, Vt)
1: for l = 1 to t do
2: for all q ∈ Q and v ∈ N do
3: compute fl(q, v) by means of (2.4.1) and table fl−1

4: end for
5: store values fl(q, v) in table fl
6: rename table fl−1 to fl+1

7: end for
8: output ft

As can be seen from Algorithm 2.2, we use a push-strategy to implement the re-
cursion. The idea is, starting with f0, to “push” already computed values forward.
Thus, we store the values fl−1(q, v) for all q ∈ Q and all v ∈ N in an array of size
|Q| × |N | and iterate over all these entries in order to calculate fl by means of the
recurrence (2.4.1). When all values fl(q, v) have been found, fl−1 can be discarded.
Hence, in each step, two arrays have to be stored consuming O(|Q| · |N |) space. To
calculate a table fl, Equation (2.4.1) has to be evaluated |Q| · |N | times. Further,
to derive a single entry fl(q, v), we have to sum over |Q| · |E| values, because for
fixed v, |θ−1

q (v)| depends only on the emissions in q. Moreover, θ−1
q (v1) ∩ θ−1

q (v2) = ∅
for v1 6= v2, and ∪v∈Nθ−1

q (v) = N × E. Consequently, the update from fl−1 to fl
takes O(|Q|2 · |N | · |E|) time and hence, the total runtime of Algorithm PAADIST is
O(t · |Q|2 · |N | · |E|).

For the case of large t, Marschall and Rahmann [84] introduced an alternative
algorithm, called Doubling Technique, which is based on the Chapman-Kolmogorov
Equation for homogeneous Markov chains [39, Chapter XV]. The idea is to reduce
the number of update steps (evaluations of Equation (2.4.1)) from t to log(t). Rather
than performing each step fl−1 to fl, we only consider transitions from fl−1 to fl−1+k

for a step size k > 1. Following the original paper, we set

Uk(q1, q2, v1, v2) = P(Yi+k = q2, Vi+k = v2 |Yi = q1, Vi = v1) .

Note that this definition does not depend on i, because of the homogeneity prop-
erty. With this, we get the distribution L(Yt, Vt) via the correspondence

P(Yt = q, Vt = v) = U t(q0, q, n0, v) .

Generalizing the Chapman-Kolmogorov Equation, we have

Uk1+k2(q1, q2, v1, v2) =
∑
q∈Q

∑
v∈N

Uk1(q1, q, v1, v)Uk2(q, q2, v, v2) . (2.4.2)

This update takes O(|Q|3 · |N |3) time. In particular, Equation (2.4.2) holds for
k1 = k2 = k. Then, only the distribution Uk has to be known. All distributions U2j

for 0 ≤ j ≤ dlog(t)e can be computed in dlog(t)e steps, and hence, the total runtime
of the Doubling Technique is O(log(t) · |Q|3 · |N |3).

27

2 Probabilistic Arithmetic Automata

2.5 Applications Overview

As we have seen in the previous sections, the PAA framework is a flexible prob-
abilistic method to model sequences of operations whose operands depend on
chance. It yields recurrence relations for the exact probability distribution of the
resulting value. Since it refers to a probabilistic automaton extending the concept
of DFAs, we can reuse related algorithms. The implementation, as presented in
the last section, is straightforward.

The general definition of PAAs comprises different levels of dependence (i.i.d.,
Markovian) between the operands as well as various operations associated with
them. In applications concerning computational biology, in particular biological
sequence analysis, addition of emitted values is the most likely operation. This
relates to counting patterns within randomly generated biosequences. Usually,
this random text is a longer sequence of nucleotides, amino acids, or alignment
columns following an appropriate null model. The patterns may be exact or ap-
proximate orders of nucleotides, amino acids, or alignment columns. They can be
represented by a string, a set of strings, or even more complex formats. To this
end, we generally define a pattern in form of a regular expression.

From the computational biology perspective, interesting problems include the fol-
lowing:

• motif statistics in general used for discovery of genes, introns, and regulatory
elements

• finding patterns that are statistically over- or underrepresented in given
genomes

• computing the significance of protein classifications

• computing the significance of transcription factor binding sites (TFBS)

• determining the sensitivity of seeds used for filtering databases in local align-
ment search

• computing the length distribution of reads resulting from pyrosequencing

• computing the expected population size/growth under specified evolutionary
processes

Furthermore, the capability of the PAA framework definitely exceeds applications
from computational biology. We think that this method might be of value for
instance for (i) HMM-based speaker recognition, and for (ii) music retrieval and
comparison.

Regarding (i), in text-dependent speaker recognition methods [103], the input ut-
terance is represented by a sequence of short-term spectral feature vectors. Vari-
ations in such signals are modeled by the emission distributions in the HMM. In
order to compare the utterance to a reference model of registered speakers, a sim-
ilarity score is computed in each state and cumulated over the sequence. Thus,
the HMM approach could be replaced by an appropriate PAA model in order to get

28

2.5 Applications Overview

the probability distribution that the input utterance corresponds to the registered
speakers.

In view of (ii) music retrieval and comparison, projects such as C-BRAHMS at
the university of Helsinki consider the task of finding pieces of music in large
databases that contain symbolically encoded music [68, 77]. One famous research
topic is the “what you hum is what you get” application. The PAA framework could
be used in order to compute the distribution of hits of symbolic excerpts to the
compositions within the database, and in particular to compute the significance of
such a comparison.

In the following chapters, we present selected applications from the field of com-
putational biology which address prevalent research areas.

29

30

CHAPTER 3

APPLICATION I: PEPTIDE MASS
FINGERPRINTING

The topic of this chapter was motivated by the thesis of Kaltenbach [54], who set up
a probabilistic framework to compute the significance of protein identification by
means of peptide mass fingerprinting (PMF). This is a standard technique based on
mass spectrometry (MS) and database search to rapidly characterize and quantify
proteins. To this end, the protein of interest is biochemically dissociated into
smaller peptides, whose masses are determined by MS. The set of peptide masses,
the so-called peptide mass fingerprint, is then used to query a protein database.
We formulate a general PAA to mimic the enzymatic dissociation of random protein
sequences and investigate arising peptide fragment statistics. In particular, our
model extends the framework mentioned such that protein sequences are modeled
by a Markovian rather than an i.i.d. source. Additionally, we state modifications
of the model taking inefficiencies during the dissociation and post-translational
modifications of proteins into account.

We start with an introduction to mass spectrometry in Section 3.1. For a more
detailed discussion on the subject, the reader is referred to one of the textbooks
[34, 45, 72, 85] and to the overview article by Aebersold and Mann [1]. Further-
more, we describe corresponding methods for protein identification in Section 3.2.
Then, in Section 3.3, we present a PAA appropriate to generate and measure pep-
tide fragments typically resulting in the course of PMF. Moreover, we calculate
associated peptide statistics, which allow the computation of a significance value
for protein identification by PMF following [54]. Finally, Section 3.4 concludes this
chapter with a comparison of our statistics to empirical ones and those derived by
Kaltenbach [54].

31

3 Application I: Peptide Mass Fingerprinting

3.1 Introduction to Mass Spectrometry

One focus in proteomics is to determine the compound of proteins present in a cell
and how this compound changes under different conditions. Since most cellular
proteomes are very complex and many of the constituting proteins occur with low
abundance, related studies require highly sensitive analytical techniques. Mass
spectrometry is an efficient tool to characterize and quantify proteins in a high-
throughput manner, which improved the accuracy of proteomic studies and even
enabled the characterization of entire genomes. In principle, a mass spectrometer
is a device that determines the molecular mass, or more precisely the mass-to-
charge ratio m/z, of the sample molecules present in the compound of interest (the
analyte). To this end, it generates gas phase ions of the analyte, separates these
ions by their m/z values, and detects them qualitatively and quantitatively. The
abundances of respective m/z values are returned in form of a mass spectrum.
The Molecular masses are typically measured in Dalton (Da), where one Dalton is
defined as 1/12 of the molecular mass of the 12C carbon isotope. This corresponds
approximately to the mass of a single proton; i.e. 1 Da = 1/NA g ≈ 1.66 ·10−24 g, where
NA denotes Avogadro’s number, i.e. the number of atoms in exactly 12 g of 12C
carbon.

3.1.1 Instrumentation

While different methods can be used for ionization, separation, and detection, each
mass spectrometer consists of the three basic components shown in Figure 3.1.

Figure 3.1: General design of a mass spectrometer. The sample of interest is introduced
to the ion source which generates gas phase ions. By applying electric/magnetic fields,
these ions are transported to the mass analyzer that sorts the ions according to their m/z
values. The detector measures an indicator quantity (such as time-of-flight) providing
information about the molecular masses and the abundances of the ions present.

The Ionizer

The ion source converts gas phase sample molecules into charged particles, i.e.
ions, or moves ions that exist in solution into the gas phase. These ions are then
transported by magnetic and/or electric fields to the mass analyzer.

32

3.1 Introduction to Mass Spectrometry

Although used in many physical and chemical applications since 1900, earlier
ionization methods limited the use of former spectrometers to measure relatively
small (light) biological molecules. This could be overcome when matrix-assisted
laser desorption/ionization (MALDI) [49, 55] and electrospray ionization (ESI) [40]
were developed in the late 1980s. These techniques allow measurements of up
to tens or even hundreds of kilodaltons (kDa) and thus became the methods of
choice for MS of proteins and peptides. MALDI-MS is usually used to analyze
relatively simple peptide samples, whereas ESI-MS is applied for the analysis of
more complex mixtures.

• Matrix-Assisted Laser Desorption/Ionization (MALDI): The analyte is
mixed with a chemical compound, the matrix, which absorbs light at a spe-
cific wavelength. The sample is cocrystallized with the matrix and spotted
onto a small plate, which is placed into the ion source. A short-pulsed laser
beam (with wavelength specific to the matrix) causes the matrix to evaporate
and to transfer energy and protons to the analyte. The resulting ions with
mainly single positive charge are released into the gas phase and directed
into the mass analyzer.

• Electrospray Ionization (ESI): In contrast to MALDI, here the peptides to
analyze exist as ions in aqueous solution which is passed through a fine
needle held at high potential, causing the analyte flow to disperse as a fine
spray of multiply charged droplets. The (usually) positively charged droplets
are directed to the orifice at the front end of the mass spectrometer, held at
lower potential. The orifice is the interface between the ion source (atmo-
spheric pressure) and the mass spectrometer (vacuum). During the passage
to the orifice, the droplets shrink by evaporation. The resulting increased
charge density creates a Coulomb repulsion force that eventually exceeds the
surface tension and causes drop explosion (Coulomb explosion) into smaller
drops. This process continues until the drops are small enough to desorb
analyte ions into the gas phase.

The Analyzer

After the ions generated by the ion source are transported through an elec-
tric/magnetic field, the mass analyzer sorts the ions according to their mass-to-
charge ratio m/z. Currently, various types of analyzers are used in proteomics re-
search, e.g. time-of-flight (TOF), ion trap (IT), quadrupole (TQ), and Fourier trans-
form ion cyclotron resonance (FT-ICR) analyzers. Since these differ in perfor-
mance, mass accuracy and cost, different designs are chosen for different tasks.
We concentrate on the most common analyzer techniques employed in the context
of protein identification by MS: MALDI ionization is usually coupled to time-of-flight
analyzers that measure the mass of intact peptides, whereas ESI is frequently cou-
pled to ion trap or quadrupole instruments that generate fragmentation spectra of
selected peptide ions.

33

3 Application I: Peptide Mass Fingerprinting

• Time-of-flight (TOF): The ions produced by an ionizer as for instance MALDI
are accelerated by an electric field, before they drift through a field-free tube
towards the detector. Since the electric field strength is the same for all ions,
the speed of a particular ion depends solely on its m/z value. Ions with smaller
m/z ratio have higher velocity and hence drift faster through the analyzer tube.
The detector records the time between the acceleration and the arrival of the
ions, from which the m/z values are computed. A linear TOF analyzer with
coupled MALDI ionizer is shown in Figure 3.2.

Figure 3.2: Schematic view of a linear MALDI-TOF instrument. During a laser pulse, ions
are created from the sample and continuously accelerated by a voltage. Drifting through
the field-free tube, the ions are dispersed in time according to their m/z values. Lighter
ions reach the detector first.

• Quadrupole: A linear quadrupole consists of four metal rods that are ar-
ranged in parallel such that each opposing rod pair is electrically connected.
Between the rods, an oscillating electromagnetic field is established, forc-
ing the ions to travel through the tube in corkscrew-like trajectories. The
quadrupole functions as a mass filter since only ions with a stable trajectory,
i.e. with an appropriate m/z value, reach the detector, whereas all other ions
are diverted. An entire spectrum is obtained varying the nature of the field.

• Ion Trap: Whereas quadrupoles analyze peptide ions “on the fly” during their
passage through the analyzer tube, ion traps first collect ions. To this end,
the ions are slowed down using helium gas and trapped in a quadrupole
field where they are forced into oscillatory trajectories. By applying another
field with specific frequency, ions are ejected according to their m/z value.
Detecting the ejected ions at different field frequencies produces a spectrum
of all peptide ions present in the trap at any given time.

34

3.1 Introduction to Mass Spectrometry

The Detector

The detector measures an indicator quantity such as time-of-flight, from which
the corresponding m/z values can be deduced. In fact, the detector records the
current produced or the charge induced when an ion passes or hits a surface
in form of a mass spectrum. For an overview of available techniques, e.g. to
transform kinetic energy into an electrical current, the reader is referred to Gross
[45]. The strength of the ion current relates to the abundance of ions with that
particular m/z value and is thus referred to as “intensity”. Note that this does
in general not correspond to the number of respective analyte molecules, since
the detector is also hit by other particles. This fact complicates a straightforward
interpretation of mass spectra [1]. Typically, the whole process is repeated several
times because the number of ions leaving the mass analyzer (cf. Figure 3.2) at a
particular instance of time is usually quite small. The resulting mass spectra are
then averaged to obtain the final spectrum.

3.1.2 Characteristics of Mass Spectra

In nature, elements are usually composed of one or more isotopes that occur with
different frequencies. Isotopes of an element have the same number of protons
in the nucleus, i.e. the same atomic number, but different numbers of neutrons
and hence different molecular masses. Therefore, almost all natural molecules
occur with different masses according to the isotope species, i.e. the isotopes the
molecule consists of. If all atom isotopes are those with minimal mass, the isotopic
species is called monoisotopic and the corresponding molecule mass is termed
monoisotopic mass. Moreover, the sum of abundance weighted averages of iso-
topic atom masses yields the average mass of the molecule. Table 3.1 displays
the natural isotopes of the most common atoms and their frequencies. A list of
the 20 standard amino acids with 3- and 1-letter code, molecular composition,
monoisotopic and average mass is provided in Table 3.2.

The isotopic distribution of a molecule can be determined from the atoms’ isotopic
distributions by convolution. The number of distinct isotope species of a molecule
CiCHiHNiNOiOPiPSiS consisting of iC C atoms, iH H atoms and so on and so far is
(iC+1)(iH+1)(iN+1)

(iO+2
2

)(iS+3
3

)
, e.g. 72 in the case of glycine and 792 for tryptophan.

This follows from the fact that there are
(
l+r−1
r−1

)
possibilities to combine l elements

that can choose r types each [24]. The number of isotope species determines the
dimension of a molecule’s isotopic distribution.

Also in mass spectra, the isotopic distribution is seen. Usually, the monoisotopic
peak, referring to the monoisotopic mass of the molecule, is followed by one or
more smaller isotopic peaks. Interpreting this information is called isotopic de-
convolution. For a closer look at isotopes and isotope patterns in mass spectra,
we refer the reader to the article of Böcker et al. [24].

35

3 Application I: Peptide Mass Fingerprinting

Table 3.1: Natural isotopic distribution: Isotopes for the elements CHNOPS, their masses
in Dalton and their natural abundances.

Element Isotope Mass (Da) Abundance (%)

Hydrogen
1H 1.007825 99.985
2H 2.014102 0.015

Carbon
12C 12.000000 98.890
13C 13.003355 1.110

Nitrogen
14N 14.003074 99.634
15N 15.000109 0.366

Oxygen

16O 15.994915 99.762
17O 16.999132 0.038
18O 17.999161 0.200

Phosphorus 31P 30.973762 100.000

Sulfur

32S 31.972071 95.020
33S 32.971459 0.750
34S 33.967867 4.210
36S 35.967081 0.020

In order to analyze mass spectra, signal processing algorithms are applied to filter
noise, normalize the signal level (“baseline correction”), and select mono-isotopic
peaks from observed isotopic patterns. Subsequently, peak detection algorithms
define ion signals from the processed spectrum. Algorithms for spectrum process-
ing and peak detection are described in [29, 67, 89], to name a few. The identified
m/z values together with their measured intensities are recorded in a so-called peak
list. This is employed for all further tasks such as protein identification explained
in the following section. Note that commonly the term “spectrum” is also used in
place of “peak list”.

Mass accuracy

The mass accuracy of a mass spectrometer indicates the deviation of the instru-
ment’s response from the monoisotopic mass of a known entity. It is usually
measured in parts per million (ppm). That is to say, a spectrometer with 100 ppm
measures a mass of 1000 Da with an error of 0.1 Da. According to [9], current
MALDI-TOF instruments have a mass accuracy of better than 50 ppm, and about
10 ppm can be achieved with careful instrument calibration. Modern FT-ICR mass
spectrometers operate with an accuracy of approximately 1 ppm. An overview of
the resolution, the mass range, the mass accuracy, and the price of leading higher-
resolution spectrometers is provided in [10].

36

3.2 Protein Identification by Mass Spectrometry

Table 3.2: Molecular (monoisotopic and average) masses of the 20 standard amino acids
together with their 1- and 3-letter codes and their molecular composition. The molecular
formulas are given for residues in a polypeptide chain, i.e. without terminal O- and OH-
groups.

Amino acid Symbols molecular
formula

monoisotopic
mass (Da)

average
mass (Da)

Alanine Ala A C3H5NO 71.037113790 71.079323045
Arginine Arg R C6H12N4O 156.101111044 156.188746822
Asparagine Asn N C4H6N2O2 114.042927452 114.104467719
Aspartatic Acid Asp D C4H5NO3 115.026943030 115.089069711
Cysteine Cys C C3H5NOS 103.009184490 103.143711176
Glutamic Acid Glu E C5H7NO3 129.042593094 129.116158896
Glutamine Gln Q C5H8N2O2 128.058577516 128.171556905
Glycine Gly G C2H3NO 57.021463726 57.052233860
Histidine His H C6H7N3O 137.058911874 137.142140206
Isoleucine Ile I C6H11NO 113.084063982 113.160590603
Leucine Leu L C6H11NO 113.084063982 113.160590603
Lysine Lys K C6H12N2O 128.094963024 128.175293325
Methionine Met M C5H9NOS 131.040484618 131.197889547
Phenylalanine Phe F C9H9NO 147.068413918 147.178050372
Proline Pro P C5H7NO 97.052763854 97.117549470
Serine Ser S C3H5NO 87.032028410 87.078627759
Threonine Thr T C4H7NO 101.047678474 101.105716944
Tryptophan Trp W C11H10N2O 186.079312960 186.215027571
Tyrosine Tyr Y C9H9NO 163.063328538 163.177355085
Valine Val V C5H9NO 99.068413918 99.133501417

3.2 Protein Identification by Mass Spectrometry

Mass spectrometry is an emerging technique for the identification of molecular
mixtures of proteins, DNA, or metabolites. We concentrate on the identification of
protein mixtures, which involves the extraction of a sample from the cell or tissue
and protein purification, before separated molecules are measured by MS. In the
following, we outline how samples are prepared before they are introduced to the
mass spectrometer. Then, we discuss three common methods using MS to iden-
tify proteins and peptides, namely peptide mass fingerprinting (PMF), tandem MS,
and de novo peptide sequencing. PMF and tandem MS rely on a protein sequence
database for the identification, whereas de novo sequencing is a database indepen-
dent method to deduce the amino acid sequence of a given peptide. However, also
the latter is frequently combined with a database search in so-called tag-based
approaches.

37

3 Application I: Peptide Mass Fingerprinting

The continuously growing amount of protein sequences contained in protein se-
quence databases together with improved MS techniques allow automated pro-
tein identification in a high-throughput manner. An overview of the mentioned
methods and the corresponding computational identification tools is provided in
Matthiesen [85] and in various reviews [1, 7, 35, 87, 95]. More details about ex-
perimental techniques are given in the books of Liebler [72], Snyder [114], and
Patzkill [96].

3.2.1 Sample Preparation

Before the actual MS analysis, protein extracts are purified. First, proteins are sep-
arated from other cell components such as DNA, cellulose, or metabolites. Second,
at least in case that one strives for PMF, the proteins in the resulting protein mix-
ture are separated from each other in order to allow reliable MS measurements.
There are two common techniques for this protein separation, suitable for sub-
sequent analysis by MS: 2D-gel electrophoresis (2-DE) and liquid chromatography
(LC). In 2-DE, the proteins are first separated according to their net charge by iso-
electric focusing and then, in the second dimension, according to their molecular
mass. The separation is usually done by sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (2D-SDS-PAGE) which gives a high separation efficiency. In
LC, the analyte is dissolved in a liquid (the mobile phase) which moves through
the chromatography column (the stationary phase). By interacting with particles
of the stationary phase, the analyte is separated. See [96] for a more detailed
description of these separation techniques.

For the identification of a single protein, there are generally two approaches re-
ferred to as “top-down” and “bottom-up”. In the “top-down” approach, the entire
molecule is ionized and introduced to the mass analyzer. On the contrary, in
the “bottom-up” approach, the molecule under consideration is first enzymatically
cleaved into smaller peptides which are then ionized and introduced to the mass
analyzer. This protein digestion is mediated by a protease, also called proteolytic
enzyme or peptidase, which catalyzes the hydrolysis of peptide bonds. In mass
spectrometry applications, so-called endoproteases such as trypsin or pepsin are
used that hydrolyze site-specific peptide bonds within the polypeptide chain. For
example, trypsin cleaves after arginine and lysine unless the subsequent amino
acid is proline. Trypsin is well-suited for MS experiments because the result-
ing peptide fragments provide at least two protonation sites for efficient ioniza-
tion [9, 87].

Usually, a “bottom-up” procedure is preferred since the mass of the protein itself is
not discriminative enough to identify the protein of interest in a database, whereas
the set of peptide masses usually is [123]. Moreover, analyzing an intact protein
is difficult because of its large molecular mass, and thus typically requires more
expensive MS instruments. We distinguish the following methods, where protein
identification can be achieved either by comparing the measured peptide masses
to a database, or de novo, i.e. without prior knowledge.

38

3.2 Protein Identification by Mass Spectrometry

3.2.2 Peptide Mass Fingerprinting

Peptide mass fingerprinting (PMF), also referred to as peptide mass mapping, was
the first available method for protein identification by MS [47] and is still widely
used, particularly for high-throughput protein identification [111]. It is a mass-
based approach using a reference protein database, where the set of peptide
masses is compared to theoretical masses computed for each database entry.

The protein of interest is enzymatically digested into peptides which are measured
by the mass spectrometer, and the pattern of the respective peptide m/z values,
referred to as peptide mass fingerprint, is used for the identification. Considerable
amplification yields a reliable mass spectrum which is processed and converted
into a peak list as described at the end of Section 3.1. On the other hand, each
database sequence is theoretically subjected to the same experimental conditions
as the sample protein. First, in silico cleavage corresponding to the protease used
in the experimental setting yields a set of fragments for each protein sequence.
The respective (monoisotopic or average) fragment masses form a theoretical fin-
gerprint which is then compared to the experimental one. A score is assigned to
each comparison, and the highest scoring protein is recorded as identification. Ide-
ally, all peptide masses of a mass fingerprint would be shared by the top-ranking
protein. However, this is rarely true because of a number of factors such as incom-
plete digestion with the protease, post-translational modifications, the presence of
protein mixtures, or genetic variations [111].

Note that the term “fingerprint” is theoretically not adequate, since the set of pep-
tide masses is not unique. Two peptides with the same multiplicity of amino acids
can have the same molecular mass (depending on the isotope species). Further-
more, leucine and isoleucine are isobar, i.e. they have the same atomic composition
and hence the same mass distribution. Therefore, peptide mass fingerprints can
be stored more precisely taking the intensities into account. Then, the experimen-
tal spectrum is compared to theoretical spectra computed in silico. See Figure 3.3
for a schematic overview of PMF.

A good measure is sought to assess how well two fingerprints or spectra match.
Many strategies have been developed for the comparison of mass spectra (see
[87] for a general overview), including the approach of mass spectra alignment
by Kaltenbach [54]. The most basic method is the so-called shared peaks count.
As the name suggests, the number of peaks at the same positions m/z (or within a
narrow mass range) in both spectra are counted. The theoretical spectrum with the
highest shared peak count gives rise to the best-scoring database sequence. If the
corresponding PMF-score exceeds a set threshold, the protein is said to be iden-
tified. The definition of this threshold is difficult because it controls the trade-off
between false positives (incorrectly identified proteins) and false negatives (protein
sequences that are not identified though included in the database). Recent statis-
tical methods determine the optimal threshold such that the false positive rate is
below a given percentage [78].

39

3 Application I: Peptide Mass Fingerprinting

Figure 3.3: Protein identification by peptide mass fingerprinting.

There are many software packages providing protein identification by PMF. A thor-
ough overview of the more popular packages Aldente [75], Mascot [31, 98], MS-Fit
as part of ProteinProspector [28], and ProFound [128], as well as comparisons
thereof, can be found in [87].

One limitation of PMF is its sensitivity to database size. This is to say that in a
larger database the chance of the experimental set of peptide masses to match
the masses predicted from database sequences is generally higher. This leads
to a decreased confidence of protein identification by PMF in larger databases.
Nevertheless, it is reported that PMF scores are quickly computed and in many
cases lead to confident identifications. Following McHugh and Arthur [87], there
is still a number of recent developments in PMF scoring and applications, which
indicates the method’s popularity. Today, biologists tend to initially use PMF,
and if this fails or remains ambiguous, proceed with more involved but powerful
methods such as tandem mass spectrometry [128].

40

3.2 Protein Identification by Mass Spectrometry

3.2.3 Tandem Mass Spectrometry

Tandem mass spectrometry (MS/MS), also called peptide fragment fingerprinting
(PFF), is a two-stage shotgun proteomics approach to identify and quantify pro-
teins in a large-scale fashion. In contrast to PMF, it requires no protein separation
prior to MS-based analysis, but can start directly with a sample of proteins [126].
This is enzymatically digested, resulting in a complex peptide mixture, which is
subsequently separated by LC. At the first stage, the peptides are then ionized and
subjected to the mass spectrometer, yielding a spectrum as for PMF. At the second
stage, selected peptide ions, often referred to as “precursor” ions, are further disso-
ciated into smaller fragment ions. This is achieved in the collision cell of the mass
spectrometer, where the peptide collides with a noble gas, and peptide bonds are
broken by a process termed collision-induced dissociation (CID). These fragments
are again measured by MS, yielding the MS/MS spectrum, i.e. the m/z values and
intensities of all resulting fragment ions generated from an isolated precursor ion.
Since the majority of the peptide ions fragment only once, the fragments mea-
sured correspond to either prefixes or suffixes of the original peptide sequence.
Depending on the fragmentation site along the peptide backbone, different types
of ions with slightly different masses are generated. The most common ion types
are the so-called “b-ions” (corresponding to prefixes) and “y-ions” (corresponding
to suffixes).

Protein identification again relies on a protein sequence database, similar to the
PMF procedure. The experimentally measured peptide MS/MS spectra are com-
pared to theoretical MS/MS spectra, computed for all peptides in the database. A
similarity score is assigned to each comparison, and the highest scoring peptide is
returned as identification. If several peptides from one database protein have been
identified by MS/MS, the corresponding protein sequence is reported as candidate
for the protein identification. Usually, a significance value is computed to find the
“best” candidate.

Several software tools have been developed to search MS/MS spectra against a
protein sequence database, including the two most popular software packages
SEQUEST [124, 125] and Mascot [31, 98]. The latter tool allows the interpretation
of both PMF and MS/MS data. The textbook of Matthiesen [85] and the review
article [87] contain more detailed information on automated protein identification
tools and MS/MS database searching.

3.2.4 De novo Peptide Sequencing

Of course, the presented techniques assume that the considered protein or at
least a biologically related protein sequence is already contained in the regarded
database. In contrast, de novo peptide sequencing uses the information gained
in an MS/MS experiment to deduce the primary sequence of a peptide, i.e. the
amino acid sequence that gave rise to the MS/MS spectrum, without querying a
database. The basic idea is that, for an ideal fragmentation process and an ideal

41

3 Application I: Peptide Mass Fingerprinting

mass spectrometer, the MS/MS spectrum would contain peaks corresponding to
all prefixes and suffixes of the peptide sequence. Thus, the sequence could be
determined by converting the mass differences between consecutive ion peaks to
amino acids with appropriate molecular masses. Due to the restricted mass ac-
curacy of mass spectrometers and the high complexity of most MS/MS spectra,
de novo sequencing tools often return only short, unambiguous sequences called
“peptide sequence tags”. These tags are then searched against a database, in
which a candidate is expected to match multiple tags. Corresponding algorithms
are based on finding a path of maximal length through the so-called spectrum
graph [33]. An overview of de novo sequencing algorithms and current tag-based
approaches is provided in the review of McHugh and Arthur [87].

3.3 Measuring Proteolytic Fragments with a PAA

After this excursion, we now concentrate on protein identification by PMF. As in-
dicated, PMF scores determined by the comparison of peak lists in standard PMF
packages are not deterministic, but depend on the size of the considered database.
For this reason, it is desirable to define a comparison strategy yielding significance
values based on a thorough null model. Kaltenbach [54] introduced p-value scores
that are independent of the size of the sequence database and that reduce the
influence of sequence length and peak list size. The underlying null model repre-
sents protein sequences as i.i.d. random strings, i.e. as sequences of independent
random variables that take values from the alphabet of amino acids according to
the amino acid composition estimated from the Swissprot database [8, 16].

In this section, we present a PAA that generates random peptide fragments that
obey the rules of a related cleavage enzyme and provides statistics as the mass
and the joint length-mass distribution of these fragments. This mimics the enzy-
matic cleavage reaction, e.g. with Trypsin as cleavage agent, and the statistics of
peptides usually measured in an MS experiment. In particular, we use the the-
oretical statistics to calculate the mass occurrence probability, i.e. the probability
that the peptide mass fingerprint of a given protein contains at least one peptide
of a certain mass. This, in turn, provides a significance value for PMF identifi-
cations as explored in [54]. However, we formulate the task in the more general
PAA framework using a first-order Markovian (M1) source to model random pro-
teolytic fragments. Furthermore, we analyze the influence of incomplete cleavage
and post-translational modifications by means of appropriate modifications of the
PAA.

Following the work mentioned above, we state the concept of a so-called cleavage
scheme to formalize the cleavage “rules” of the proteolytic enzyme employed. More-
over, we briefly summarize the characteristics of the resulting peptides and recall
the definitions necessary to calculate the mentioned statistics. Then, we present
an appropriate PAA as well as the recurrences to compute fragment statistics and
mass occurrence probabilities.

42

3.3 Measuring Proteolytic Fragments with a PAA

3.3.1 In silico Digestion

As described above, in the course of PMF all protein sequences in a (comprehen-
sive) database are digested in silico, and the resulting fragments are measured e.g.
by summing up the monoisotopic or average amino acid masses listed in Table 3.2.
This yields a theoretical fingerprint which is then compared to the empirical one.
The more realistic the masses of the theoretical fragments, the better the result
from the comparison strategy. This applies in particular to the comprehension of
isotopic distributions and to the inclusion of post-translational modifications and
missed cleavage sites. Furthermore, for the comparison of mass spectra, a more
realistic null model will provide more reasonable significance values.

In order to model the proteolytic digestion of a (random or fixed) protein, we take
care of the cleavage rules of the enzyme employed in the experiment. For many
digestion agents, cleavage rules depend on one or two adjacent amino acids (see
[54, 121] for a list of proteases along with their cleavage rules). For this reason,
we adopt the following definition:

Definition 3.3.1 (Cleavage scheme). Let Σ = {A, . . . , Z}\{B, J,O,X,Z} denote the
alphabet of amino acid one-letter codes. A cleavage scheme (Γ,Π) is a pair of a
set Γ ⊂ Σ of cleavage characters and a possibly empty set Π ⊂ Σ of prohibition
characters. If these sets are disjoint, i.e. Γ ∩ Π = ∅, we refer to this as standard
cleavage scheme. Further, if Π = ∅, we call it a simple cleavage scheme.

Strings P = P1P2 ∈ ΓΠ̄ are referred to as cleavage patterns. Throughout this
chapter, we use the standard cleavage scheme Γ = {K,R}, Π = {P} corresponding
to the widely used enzyme Trypsin, which cleaves after lysine (K) and arginine (R)
unless these are followed directly by proline (P). However, the model we will present
is capable of all proteases with simple and standard cleavage schemes.

The cleavage scheme determines the cleavage sites which describe the fragmen-
tation of a protein into peptides, also referred to as (proteolytic) fragments. We
model amino acid sequences as strings over the alphabet Σ of one-letter codes. To
this end, let {Si}i∈N0 be a stochastic process with index set N and values in Σ that
describes random amino acid sequences. Since we analyze protein and peptide
sequences, we deal with finite prefixes S = S1S2 . . . S` that refer to random amino
acid sequences of length `. For the treatment of infinite strings and a thorough
discussion of the necessary adjustments from infinite to finite strings, the reader
is referred to [54].

Occurrences of cleavage patterns within a protein sequence define the cleavage
sites where the sequence is split into consecutive, non-overlapping substrings, the
fragments.

Definition 3.3.2 (Cleavage site). Let S be a (random or fixed) string of length `
over Σ. Each Ci(S) with

Ci(S) := min
(
{Ci−1(S) < k < ` |Sk ∈ Γ, Sk+1 /∈ Π} ∪ {`}

)

43

3 Application I: Peptide Mass Fingerprinting

and C0(S) = 0 is called a cleavage site of S and indicates the occurrence of a cleavage
pattern. Note that the last character in S always defines a cleavage site, namely for
the case that the former set is empty. Further, if S is known from the context, we
write Ci instead of Ci(S).

We denote the index of the last cleavage site by NC(S). Hence, CNC(S) = |S|. The
cleavage sites determine the fragments resulting from proteolytic digestion. A frag-
ment is a substring of S, beginning directly after a cleavage site (if no prohibition
character follows) and ending with the subsequent cleavage site.

Definition 3.3.3 (Fragment; fragmentation). For each i, 1 ≤ i ≤ NC(S), the sub-
string Fi(S) := S[Ci−1 + 1, Ci] is called the ith fragment of S. The family (Fi(S))NC(S)

i=1

of fragments constitutes the fragmentation of S.

In the following we will omit the dependence on S and write Fi and NC if S is
clear from the context. The size of the fragmentation, i.e. the number of fragments
resulting from the enzymatic cleavage, is given by the index NC of the last cleavage
site. A sketch of the fragmentation of an amino acid string according to tryptic
cleavage is shown in Figure 3.4.

Figure 3.4: Sketch of the fragmentation of a short protein string S = MAVKIEPRKPLQI
into NC(S) = 3 fragments according to tryptic cleavage rules.

We distinguish the first fragment F1 from following fragments F+ due to their dis-
tinct structure. While the first fragment may start with a prohibition character,
following fragments do not. Further, the structure of all following fragments but
the last is the same, which is to say that the statistics of following fragments
are i.i.d. (depending on the remaining string length) [54, 121]. The last fragment
deserves particular attendance since it does not necessarily end with a cleavage
character because of the finiteness of protein sequences. As mentioned before, the
last fragment ends with the last character of the protein sequence irrespective of
its type. This is reasonable since the last part cut by the protease is also mea-
sured by the mass spectrometer. We will use the abbreviated form F◦ to denote
any fragment.

Remark 3.3.4. The fragmentation of a string under a cleavage scheme can be seen
as renewal process (see e.g. [44, Section 8.3] or [39, Chapters XIII and XIV]) with
delay C1 and the following fragment lengths as inter-renewal sequence. Since the
cleavage sites correspond to recurrent events, the fragmentation can indeed be mod-
eled as a regenerative process [121].

44

3.3 Measuring Proteolytic Fragments with a PAA

Next, we state an appropriate PAA that models random cleavage fragments and
yields their molecular mass distribution according to different isotope species.

3.3.2 Automaton Construction

The desired PAA should model the proteolytic digestion of random protein se-
quences, yielding statistics as the length and the mass distribution of resulting
fragments. As mentioned above, the first fragment has to be distinguished from
following fragments. Hence, we will construct two alternative PAAs, one to mea-
sure first fragments, one designed for following fragments.

According to Section 2.2, a PAA consists of three components: a Markov chain
generating a random sequence of operands, a set of state emissions referred to
as weight distributions, and a set of operations associated with the states, which
determine the distribution of a sought value. Recall that the state process is
denoted (Yn)n∈N0, the sequence of emission is represented by (Zn)n∈N0, and the
sequence of values is identified (Vn)n∈N0.

In this application, the underlying Markov chain should represent random pro-
teolytic fragments. To this end, we model protein sequences as random i.i.d. or
first-order Markovian strings over the alphabet Σ and apply appropriate cleav-
age rules as described above. Amino acid frequencies (for i.i.d. strings) as well
as initial and conditional amino acid distributions (for Markovian strings) are es-
timated from the Swissprot database. Since our aim is to “measure” the mass
of generated fragments, we choose the amino acids as states, and their respec-
tive isotopic distributions (cf. Section 3.1.2) as weight distributions. More-
over, since the sought value is the accumulated fragment mass, the operation
associated to each state is “+”. Thus, in terms of emission and value pro-
cesses, we have Vl = Vl−1 + Zl with V0 = 0, which is to say that we seek a PAA(
Q,T, q0, E, e = (eq)q∈Q,N0, n0 = 0, (θq(v, e) = v + e)q∈Q

)
.

We build the Markov chain (Q,T, δq0) on the state space

Q = {ε} ∪ {σ ∈ Σ} ∪ {ζ}, (3.3.1)

i.e. Q consists of a start state q0 = ε, the 20 standard amino acids, and one fi-
nal state F = {ζ}. Transitions from the start state to any other state correspond
to the initial amino acid distribution p0 = (p0

σ)σ∈Σ, i.e. the relative frequencies of
amino acids at the first position of protein sequences, estimated from the Swis-
sprot database. Transitions T from one amino acid to another are given by the
conditional frequency matrix P = (Pij) with Pij = P(s[k + 1] = j | s[k] = i) (for any k)
counted from protein sequences s. To include the cleavage rules, transitions out-
going from a cleavage character have to be specified differently: on the one hand,
the transition probability Tγπ from a cleavage character γ ∈ Γ to a prohibition char-
acter π ∈ Π is given by the conditional amino acid frequency. On the other hand,
the probability of the complementary event, i.e. one minus the sum of all transi-
tions from γ to Π, is assigned to the transition from γ to ζ. Hence, the probability

45

3 Application I: Peptide Mass Fingerprinting

to transit from γ to any state outside Π ∪ F is zero. This intuitively makes sense:
either the fragment ends with a cleavage character, or cleavage is suppressed by
a prohibition character, which is the only case in which a cleavage character may
occur within a fragment. The stochastic matrix of transition probabilities for states
u, v ∈ Q thus reads

Tuv =

p0
σ if u = ε, v = σ ∈ Σ,
Pσσ′ if u = σ ∈ Γ̄, v = σ′ ∈ Σ,
Pσσ′ if u = σ ∈ Γ, v = σ′ ∈ Π,
1−

∑
π∈Π Pσπ if u = σ ∈ Γ, v = ζ,

0 otherwise .

(3.3.2)

For following fragments, we account for two things: since the initial distribution p0

for first fragments is estimated from the very first amino acid in protein sequences,
we consider the i.i.d. amino acid frequencies p = (pσ)σ∈Σ instead. Moreover, the
probability that a following fragment starts with a prohibition character is zero
due to the structure of proteolytic fragments. Hence, for the PAA treating following
fragments we modify the transition matrix such that the initial transitions for u = ε
are given by

Tuv =

{
pσ

1−
P
π∈Π pπ

if v = σ ∈ Π̄,

0 otherwise .
(3.3.3)

As said before, the weight distribution associated to a state corresponds to the
respective amino acid’s isotopic distribution. In line with [54], we scale the molec-
ular amino acid masses to integers, using a preset mass precision ∆m. This re-
flects the accuracy of known molecular masses and the finite mass precision of
the spectrometer. For instance, a MALDI-TOF instrument has a mass accuracy of
50 ppm, i.e. ±0.1 Da for a typical fragment mass of 2000 Da. Thus, it is appropriate
to multiply all masses by a factor of 10 and round to the nearest integer, i.e. to
consider natural masses up to one decimal. This corresponds to a mass precision
of ∆m = 0.1. Then, m(σ) = round(m∗(σ)/∆m) determines the integer mass of the
natural mass m∗(σ) of amino acid σ (given in Da). The molecule’s natural mass
m∗(σ) depends on the isotope species. We can either use the monoisotopic or av-
erage mass or take the entire distribution of natural masses of the distinct isotope
species into account.

Denoting the largest amino acid integer mass by mmax, we define the emission
set E := {0, 1, . . . ,mmax} and |E|-dimensional weight distributions eq : E → [0, 1]
for all q ∈ Q. If we design the PAA to use the monoisotopic or average amino
acid masses instead of their isotopic distributions, the weight distributions are
given by |E|-dimensional Dirac measures eq assigning probability 1 to m(q). For
convenience, we set m(ε) = m(ζ) = 0. Note that, as explained in Section 2.2,
the weight distribution assigned to ε is redundant as it is covered in the initial
condition of the recurrence equation.

Corollary 3.3.5. The PAA
(
Q,T, q0 = ε, E = {0, 1, . . . ,mmax}, e = (eq)q∈Q,N0, n0 =

0, (θq(v, e) = v+e)q∈Q
)

with Q and T given in equations (3.3.1) and (3.3.2) (with mod-

46

3.3 Measuring Proteolytic Fragments with a PAA

ification (3.3.3) for following fragments), and weight distributions eq : E → [0, 1] for all
q ∈ Q, measures the molecular mass distribution of randomly generated proteolytic
fragments.

The construction requires O(|Q|2 + |E|) time and space which is constant since
|Q| = 22 and |E| depends on the mass precision. For mass precision ∆m = 0.1, we
have |E| = 1892. Using doubles with 8 byte each, we need 18.56 kb to store the
transitions and the weight distributions of the PAA. The constructed PAA is shown
in Figure 3.5.

Figure 3.5: Sketch of the PAA measuring the mass of the first fragment resulting from
tryptic cleavage of a random polypeptide. Following fragments are handled by a modified
PAA where the initial distribution is normalized by 1 − pP and start in P is prohibited
since following fragments cannot start with a prohibition character. For the sake of
simplicity, not all transitions are shown. The states’ weight distributions correspond
to the respective isotopic distributions. Here, integer masses for precision ∆m = 1 are
displayed. The operation associated to each state is “+”.

Remark 3.3.6. In the presented model we can easily account for additional masses
that are not associated to a specific character. These masses, shared by any pro-
teolytic fragment, are assigned to the start state ε. In particular, in the course of
proteolytic cleavage, the protease hydrolyzes the peptide chain, thus adding an H
and an OH group to the N- and C-terminus, respectively. This adds approximately
18 Da to each peptide fragment. Moreover, in the ion source of the mass spectrometer,
the fragment is ionized, which results in another mass change. For instance, MALDI
ionization adds a single proton of mass approximately 1 Da to a fragment. Hence, in
a MALDI-TOF experiment, all fragment masses will be augmented by about 19 Da.
We can cover this fact by setting m(ε) = n0 = 19/∆m.

47

3 Application I: Peptide Mass Fingerprinting

3.3.3 Fragment Statistics

By means of the constructed PAA, we are now able to compute fragment statistics
as the length distribution, the joint length-mass distribution, and in particular
the desired mass occurrence probabilities. We denote the length of a fragment by
L(F◦) and the (integer) mass of a fragment by M(F◦). The distribution of fragment
length can be deduced directly from the distribution of the number of cleavage
sites (see [54]) because L(Fi) = Ci − Ci−1 for all 1 ≤ i ≤ NC . Furthermore, the
length of a random fragment generated by the PAA corresponds to the number of
steps until the underlying Markov chain (Q,T, δε) arrives in the final state ζ, not
counting the last transition to ζ. This is to say that the length distribution of a
proteolytic fragment is given by the distribution of the Markov chain’s arrival time
in the final state ζ. Using the Chapman-Kolmogorov equation, this is given by

λ◦(k) := P(L(F◦) = k) = P(Yk+1 = ζ) = (δεT k+1)[ζ] ,

where [q] denotes the index of state q ∈ Q. The choice of the Markov chain param-
eters accounts for the first or the following fragment, respectively.

The joint state-value distribution ft(q, v) = P(Yt = q, Vt = v) discussed in Section 2.2
yields the joint length-mass distribution ν◦(k,m) := P(L(F◦) = k,M(F◦) = m) of a
fragment, namely

ν◦(k,m) = fk+1(ζ,m) = P(Yk+1 = ζ, Vk+1 = m) .

In order to state the corresponding recurrences (cf. Equation (2.4.1)), let us first
define the mass support of a particular state.

Definition 3.3.7 (Mass support). The set MS(q) := {m ∈ E | eq(m) > 0} of integer
masses with positive emission probabilities is called the mass support of state q ∈ Q.

Indeed, as we use the amino acids’ isotopic distributions, the mass support of an
amino acid state corresponds to the set of integer masses derived from natural
masses of possible isotope species. The mass support of ε and ζ equals {m = 0}
(unless additional masses should be taken into account). According to our intro-
duction to the PAA framework, the following recurrence relations hold:

fk(q,m) =
∑
q′∈Q

∑
m′∈MS(q)

fk−1(q′,m−m′)Tq′qeq(m′) for q ∈ Q, k ≥ 1 (3.3.4)

with initial condition f0(ε, 0) = 1 or f0(ε, n0) = 1, respectively. The particular pa-
rameters account for the kind of fragment.

From the joint length-mass distribution ν◦(k,m), we derive the distributions of
fragment length and mass by marginalization. The length distribution λ◦(k) inves-
tigated above can also be determined from ν◦(k,m) by summing over all possible
fragment masses, i.e.

λ◦(k) =
∑
m∈N0

ν◦(k,m) .

48

3.3 Measuring Proteolytic Fragments with a PAA

Analogously, we determine the fragment mass distribution µ◦(m) := P(M(F◦) = m)
by summing over all possible fragment lengths, i.e.

µ◦(m) =
∑
k∈N

ν◦(k,m) .

Indeed, we can estimate upper bounds µmax and λmax for the maximal integer
fragment mass and length detectable by the MS instrument. If µmax denotes the
maximal integer mass that is detectable by the mass spectrometer, this naturally
bounds the maximal fragment mass. Further, if mmin identifies the minimal amino
acid mass, i.e. the integer molecular mass of glycine (G), then

λmax =
⌊
µmax

mmin

⌋
in order to ensure λmax ·mmin ≤ µmax. Furthermore, the joint length-mass distri-
bution together with the length distribution yields the mass avoidance probability,
i.e. the probability that a fragment has length k, but not mass m: ν̄◦(k,m) :=
λ◦(k)− ν◦(k,m).

The molecular mass of a fragment is determined by the constituting character
masses. In particular, for a fixed fragment length l, the mass distribution ν◦(l, ·)
is given by the convolution of l character weight distributions. Hence, one can
identify whether a given mass is decomposable over the set of masses supported
by the individual characters. An efficient mass decomposition algorithm has been
presented by Böcker and Lipták [15].

We go a step further as we compute the mass occurrence probability of mass m, i.e.
the probability that the fragmentation of a random protein sequence contains at
least one fragment of mass m. To this end, we introduce the waiting time W (m) ≡
W (S,m) until the first occurrence of a fragment of mass m in the fragmentation of
a random finite string S. Or to put it differently, we seek the first index in S where
a fragment F◦ of mass M(F◦) = m ends:

W (m) := min{1 ≤ i ≤ |S| | ∃ k, 1 ≤ k ≤ NC(S) : Ck = i,M(Fi) = m} , (3.3.5)

where we define W (m) = ∞ if the minimum is taken over the empty set, i.e. if
the mass m cannot be composed as fragment mass. In terms of the waiting time,
the mass occurrence probability is defined as o|S|(m) := P(W (m) ≤ |S|), i.e. the
probability that S contains a fragment of mass m. For the computation, we follow
[54] as we deduce o|S|(m) from the probability ō|S|(m) of the complementary event
that no fragment of mass m occurs:

ō|S|(m) := P
(
W (m) > |S|

)
= P

(
M(F1) 6= m, . . . ,M(FNC(S)) 6= m

)
.

Although fragment masses are not independent, the mass of a fragment becomes
conditionally independent of the remaining masses once its length is known. This
fact is the basis for the recurrence equation stated in Recurrence (3.1), adapted
from [54].

49

3 Application I: Peptide Mass Fingerprinting

Recurrence 3.1 Recurrence to compute the mass occurrence probability o|S|(m) =
P(W (m) ≤ |S|) of mass m in the fragmentation of string S.

ō|S|(m) =
|S|∑
k=1

ō
|S|−k
+ (m) · ν̄1(k,m), (3.3.6)

with initial condition ō0(m) = 1 and

ō
|S|
+ (m) =

|S|∑
k=1

ō
|S|−k
+ (m) · ν̄+(k,m), (3.3.7)

also with initial condition ō0
+(m) = 1. Finally, o|S|(m) = 1− ō|S|(m).

3.3.4 Missed Cleavages and Post-translational Modifications

Protein identification by MS using a bottom-up approach as explained earlier is
complicated by the occurrence of partial enzymatic cleavage which results in pep-
tides with internal missed cleavage sites. Proteases work with different efficiency.
They perform best at a particular pH, e.g. Trypsin is a basic protease with a pH
optimum of 7 to 8 as it is found in the small intestine. The cleavage of a pro-
tein into peptides may be incomplete due to inadequate conditions or the fact that
proteases themselves tend to be cleaved by other protease molecules. Moreover,
the specificity of the cleavage agent, i.e. the cleavage pattern defined by the enzy-
matic mechanism, is simplified in most search tools, since actually “it is likely to
be influenced by other residues in close proximity of the cleavage site in addition
to other factors such as local conformation, tertiary structure and experimental
conditions” as stated in [111]. Even for Trypsin, which is reported to have a high
cleavage specificity, incomplete digestion is not uncommon, but tryptic peptides
usually contain about one missed cleavage site [85, 111].

In order to account for missed cleavages, we modify the presented PAA by ad-
justing the transition probabilities outgoing from a cleavage character. Assuming
that only every second cleavage site results in a fragment, we multiply the tran-
sition probabilities from any cleavage character γ ∈ Γ to ζ by 1/2 . The remaining
half is distributed to the transitions from γ to any other amino acid state σ ∈ Π̄,
corresponding to missed cleavages. Thus, for each γ ∈ Γ,

Tγv =

Pγπ if v = π ∈ Π,
(1−

P
π∈Π Pγπ)/2 if v = ζ,

Pγσ/2 if v = σ ∈ Π̄,
0 otherwise .

Corresponding fragment statistics are shown in Section 3.4. In addition, one could
even include information about missed cleavage patterns, i.e. amino acid residues
favoring missed cleavages. As reported in recent articles [88, 111, 117, 127], it

50

3.3 Measuring Proteolytic Fragments with a PAA

is more likely to observe one of D, E, G, M, or S following a cleavage character
than any other non-prohibition character. Besides, the cleavage characters K and
R themselves are very unlikely to occur in direct neighborhood of a cleavage site.
These propensities could be taken into account defining a weight function accord-
ing to empirically observed frequencies. Moreover, any other rate than 1/2 of missed
cleavages can be analyzed.

Another aspect influencing the characterization of a protein is the fact that many
proteins are modified after translation. A post-translational modification (PTM) is
a chemical process that changes the properties of a protein. There exists a whole
zoo of PTMs that have different impact on the translated polypeptide [81]. Namely,
the modification changes the function of the protein, or it controls the activity
state of an enzyme, or it is necessary to transform a precursor molecule into the
active protein as for the hormone insulin. Further, it can determine the protein’s
localization or interactions with other proteins. The covalent modification consists
in the addition of functional groups such as acetate or phosphate, in the change
of the nature of an amino acid, or in structural changes such as the formation
of disulfide bridges. Putative modifications can be discovered by means of MS,
comparing the mass measured to the mass expected for the identified protein or
peptide [6, 81, 119].

Examples of common modifications include phosphorylation (+80 Da) of tyrosine
(Y), serine (S), or threonine (T) residues, acetylation (+42 Da) found on the N-
terminus or on lysine (K) residues, and methylation (+14 Da or +28 Da) of arginine
(R) or lysine (K). An overview of important PTMs along with the resulting mass
shifts in Da is provided in the review of Mann and Jensen [81].

Our aim is to incorporate PTMs in the PAA presented above in order to allow for
even more reliable significance values for PMF protein identification, provided that
PTMs are considered in the computation of theoretical masses of in silico digested
database sequences. To this end, we modify the weight distributions associated to
the model states. For each amino acid state q ∈ Q bearing a potential modification,
the respective mass shift is included into the weight distribution. That is to say,
if a modification introducing a mass shift ∆ occurs with frequency r∆,q at amino
acid q, the masses m + ∆ for all m ∈ MS(q) are added to the weight distribution
with probability r∆,q · eq(m). These probabilities have to be subtracted from the
respective eq(m) values in order to ensure that the weight distributions remain
probability measures. Reasonable frequencies of PTMs associated to particular
amino acids are provided in a study of Tsur et al. [119].

Example 3.3.8 (Weight distribution of lysine). Lysine may for instance be methy-
lated once (+14 Da) or twice (+28 Da). Following [119], we assume that sin-
gle methylation of K occurs with a frequency of 0.0239 and dimethylation occurs
with probability 0.0680. We assume the simplified isotopic weight distribution
eK = {0.925, 0.071, 0.004} (all zero entries omitted) for mass support {1281, 1291, 1331}
for mass precision ∆m = 0.1. Including the mentioned PTMs, i.e. adding +14
and +28 to each supported mass, the mass support would be extended to

51

3 Application I: Peptide Mass Fingerprinting

{1281, 1291, 1295, 1305, 1309, 1319, 1331, 1345, 1359}, and the associated weight distribu-
tion would read {0.8399925, 0.0644751, 0.0221075, 0.0629, 0.0016969, 0.004828, 0.0036324,
0.0000956, 0.000272}.

3.4 Results: Comparison of Fragment Statistics

We implemented the presented PAA and computed the statistics described above
for a mass precision of ∆m = 0.1. As mentioned before, we modeled proteolytic frag-
ments by first-order Markovian strings, while Kaltenbach [54] used i.i.d. strings.
Our aim is to investigate whether the more complex model influences the quality
of fragment statistics. To this end, we also implemented the PAA based on i.i.d.
parameters. We compared the length distribution computed for first and following
fragments under the Markov model (M1) to those determined under the i.i.d. model
and to the empirical frequencies estimated from in silico derived fragments of Swis-
sprot sequences, see Figure 3.6. For first fragments, this shows that the M1 model
fits the frequencies of short fragments better, but overestimates the frequency for
moderate lengths (8 ≤ L(F◦) ≤ 23) more than the i.i.d. model. This is to say that
also the conditional frequencies do not capture the inhomogeneous nature of the
distribution of tryptic cleavage characters within protein sequences.

*

*

*

*

*
*

*
*

*
*

*
*

***�
�

�

�

�

�
�

�
�

�
�

�
�

��+
+

+
+

+
+

+

+
+

+
+++

0 10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

fragment length

p
ro

b
ab

il
it

y

+ empirical
� M1
* i.i.d.

(a) Length distribution of first fragments.

*

*

*

*

*
*

*
*

*
*

*
*

***�

�

�

�

�
�

�
�

�
�

�
�

���+

+

+

+

+

+

+
+

+
+

+
+

+++

0 10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

fragment length

p
ro

b
ab

il
it

y

+ empirical
� M1
* i.i.d.

(b) Length distribution of following fragments.

Figure 3.6: Comparison of the theoretical length distributions of first and following frag-
ments resulting from in silico digestion of random i.i.d. or Markovian (M1) strings to
their empirical counterpart estimated from Swissprot sequences.

For following fragments, the theoretical values are nearly identical. The reason
for this is that we use the i.i.d. frequencies instead of p0, and the Markov condi-
tional frequencies PKP and PRP do not differ much from the Swissprot frequency
pP . Hence, the fragmentation is very similar under both models. As explored in
[54], we also observed that the length distribution of following fragments can be
approximated by a geometric distribution with parameter p = 1/E(L(F+)).

52

3.4 Results: Comparison of Fragment Statistics

The comparison of theoretical length distributions shows that the difference is
stronger for first fragments. Here, the difference is mainly introduced by the initial
character distribution, which enables the Markov model to better describe the
beginning of protein sequences.

Taking the masses into account, we considered the joint length-mass distribution
of first and following fragments. The theoretical distributions for fragments of
length 25 under i.i.d. and Markov sequences are shown in Figure 3.7.

2400 2600 2800 3000 3200

0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

mass m in Dalton

p
ro

b
ab

il
it

y

Markov

i.i.d.

(a) Length-mass distribution of first fragments of
length 25.

2400 2600 2800 3000 3200
0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

mass m in Dalton

p
ro

b
ab

il
it

y

Markov

i.i.d.

(b) Length-mass distribution of following frag-
ments of length 25.

Figure 3.7: Theoretical length-mass distributions of first and following fragments of length
25 resulting from i.i.d. and Markov sequences.

Here, we again observe that the distributions differ more in the case of first frag-
ments. The underlying Markov model shifts the statistics towards heavier frag-
ments.

Using the length distribution and the joint length-mass distribution of first and fol-
lowing fragments as described in Recurrence 3.1, we derived the mass occurrence
probability, i.e. the probability P(W (m) ≤ |S|) that mass m occurs in the fragmen-
tation of sequence S. In Figure 3.8, the i.i.d. and M1 theoretical distributions are
compared to their empirical counterpart for proteins of length 300. Along with
[54], we consider only masses up to 200 Da; larger fragment masses were insuf-
ficiently observed in Swissprot sequences in order to estimate their frequencies.

The predicted mass occurrence probabilities shown in Figure 3.8 were computed
from PAAs using the monoisotopic amino acid distributions. In addition, isotope
species were recognized when using isotopic amino acid frequencies (not shown).
Within the considered mass range, the most prominent masses refer to fragments
of length one, namely the cleavage characters K and R, which occur with proba-
bility of about 0.8. Furthermore, there exist fragments of length two, e.g. GK, that
fall into this mass range and occur with relatively high frequency of about 0.2. The
agreement between theoretical and empirical frequencies of single character frag-
ments (namely K and R) is better in the case of Markov sequences. Nevertheless,

53

3 Application I: Peptide Mass Fingerprinting

*

*

*

*

*********���

�

���

�

���

�

���

�

���������+++

+

+++

+

+++

+

+++

+

+++++++++
100 120 140 160 180 200

0.0

0.2

0.4

0.6

0.8

mass m in Dalton

p
ro

b
a
b
il

it
y

+ empirical
� Markov
* i.i.d.

Figure 3.8: Mass occurrence probabilities in the fragmentation of protein sequences of
length 300: Comparison of theoretical i.i.d. and M1 values with empirical frequencies.

this does not suffice to get a general impression whether the Markov model yields
improved statistics.

Besides the comparison of fragment statistics based on i.i.d. and Markov se-
quences, we wanted to investigate the influence of missed cleavages and post-
translational modifications. To this end, we computed the length distribution and
the joint length-mass distribution for first and following fragments as well as the
mass occurrence probabilities under the respective PAAs described above.

Figure 3.9(a) displays the length distribution of first fragments regarding incom-
plete cleavage, compared to the theoretical M1 values without integration of missed
cleavages. Figure 3.9(b) shows the joint length-mass distribution for fragments of
length 25 with and without inclusion of missed cleavages. As expected, the in-
clusion of missed cleavage sites leads to a decrease in the fragmentation size (not
shown) and an increase in resulting peptide lengths and masses. Moreover, inter-
nal cleavage patterns tolerated by incomplete cleavage yield different decompos-
able fragment masses. Hence, also for a fixed length, the distribution of fragment
masses is affected by missed cleavages (see Figure 3.9(b)).

According to Siepen et al. [111], incomplete digestion plays an important role in
protein identification by PMF as it influences not only the score of the top-ranking
protein, but also the identified protein. Hence, this should be taken into account
for the in silico digestion of peptides, and the significance values for peak list
alignments should be computed from the adjusted statistics. We leave this as a
task for future research.

In the case of PTMs, the length distribution is identical to the M1 distribution (data
not shown). This was expected since the considered modifications only change
the mass of a fragment, but not its structure. Considering the joint length-mass
distribution, inclusion of PTMs leads to a small shift towards higher masses, cf.
Figure 3.10. In general, the expected extension in the mass range of fragments as
well as in possible mass decompositions was not seen here.

54

3.4 Results: Comparison of Fragment Statistics

�
�

�

�

�

�

�

�
�

�
�

�
�

�
�

��++

+
+

+++

0 10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

0.10

fragment length

p
ro

b
ab

il
it

y

+ missed cleavages

� Markov

(a) Length distribution of first fragments.

2200 2400 2600 2800 3000 3200 3400
0

2. ´ 10-6

4. ´ 10-6

6. ´ 10-6

8. ´ 10-6

mass m in Dalton

p
ro

b
ab

il
it

y

missed cleavages

complete cleavage

(b) Length-mass distribution of first fragments of
length 25.

Figure 3.9: Theoretical length and length-mass distributions of first fragments with and
without incorporation of missed cleavages.

2200 2400 2600 2800 3000 3200 3400

0

1. ´ 10-6

2. ´ 10-6

3. ´ 10-6

4. ´ 10-6

mass m in Dalton

p
ro

b
ab

il
it

y

add. PTMs

Markov

Figure 3.10: Joint length-mass distribution of first fragments of length 25 derived by the
PAA under Markovian sequences and additional influence of PTMs.

Considering the mass occurrence probabilities, computed for proteins of length
300 and fragment masses up to 1500 Da, we recognized that the frequencies of
short fragments are decreased when cleavage sites are missed by the protease, see
Figure 3.11(a). This agrees with our former results, cf. Figure 3.9(a). Moreover,
the mass occurrence probabilities exhibit more fragment masses occurring in the
fragmentation of protein sequences when PTMs are included. This suggests evi-
dence for additional decomposable masses introduced by PTMs. Only the small
range of masses between 100 Da and 200 Da as investigated before is shown in
Figure 3.11(b).

Directions for future research

As we have seen, the inclusion of missed cleavages or post-translational modifica-
tions affects the statistics of proteolytic fragments, especially the mass occurrence

55

3 Application I: Peptide Mass Fingerprinting

���

�

���

�

���

�

���

�

���������+++

+

+++

+

+++

+

+++

+

+++++++++
100 120 140 160 180 200

0.0

0.2

0.4

0.6

0.8

mass m in Dalton

p
ro

b
ab

il
it

y

+ missed cleavages

� complete cleavage

(a) Mass occurrence probabilities in protein se-
quences of length 300 with and without inclusion
of missed cleavages.

���

�

���

�

���

�

���

�

���������+++

+

+++++++++

+

+++
+
+++

+

+++++++++

+

+++

+

+++

+

+++++++++
100 120 140 160 180 200

0.0

0.2

0.4

0.6

0.8

mass m in Dalton

p
ro

b
ab

il
it

y

+ add. PTMs

� Markov

(b) Mass occurrence probabilities in protein se-
quences of length 300 with and without inclusion
of PTMs.

Figure 3.11: Influence of incomplete cleavage and PTMs on mass occurrence probabilities.

probabilities. Hence, a next step towards more reliable significance values for pro-
tein identification by PMF is the computation of peak list alignments introduced
by [54] under incorporation of missed cleavages and PTMs. Our explorations of
associated fragment statistics would then yield respective significance values.

In particular, the inclusion of incomplete cleavage modifies the distributional
properties of peptide fragments. In prospect of an even more realistic model, it
would thus be illuminative to take the propensities of amino acids into account as
sketched before.

Another interesting task is the generalization of our framework to the tandem
MS context since this more and more becomes the method of choice in the MS
society. In this case, proteolytic fragments are further split randomly, e.g. by
collision-induced dissociation. This is to say that we could model MS/MS frag-
ments as amino acid strings without internal cleavage patterns, resulting from
random cleavage of proteolytic fragments. From an appropriate PAA we could
then compute the statistics of MS/MS fragments, analogous to the explorations
so far. These should finally be used to come up with a significance value for the
comparison of MS/MS spectra.

56

CHAPTER 4

SSE RANDOM STRING MODEL FOR
PROTEIN SEQUENCES

Probabilistic methods in biological sequence analysis mainly concentrate on i.i.d.
or low-order Markov sources. Higher-order models as for instance HMMs are
used with respect to DNA or RNA sequences, e.g. when the analysis distinguishes
between coding and non-coding DNA regions or when it deals with alignments
of sequences rather than the sequences themselves. Nevertheless, in the case of
protein sequences it lacks a (biologically) meaningful model. In general, the choice
of the background model is rarely questioned. Prevalently, the simple i.i.d. model
is considered although this ignores dependencies of any kind.

Why is it important do design a proper random string model suited to amino acid
sequences? The answer to this is simple: the statistics provided by bioinformatics
solutions rely on the quality of the null model. The more reasonable the null
model, the more realistic the sought results. Examples of applications using a
null model describing protein sequences include

• the identification of unknown proteins,

• the classification of protein domains or protein families, and

• the prediction of secondary structure for a sequence of amino acids.

We discussed the application of protein identification in the previous chapter.
There, we modeled proteins and peptides by i.i.d. and first-order Markovian
strings. However, proteins (and protein complexes) are described on four different
levels, referred to as primary, secondary, tertiary, and quaternary structure [73].
Uniquely determined by the primary structure (for the vast majority of proteins),
a protein’s biochemical function is due to the three-dimensional (3D) structure,
the fold, that brings together amino acids from different parts of the polypeptide

57

4 SSE Random String Model for Protein Sequences

chain(s). As a consequence, chemical groups are positioned in configurations that
form a binding site for another protein or a small molecule, or that build the active
site of an enzyme affording catalytic activity.

Since the 3D-structure determines the overall function of a protein, structure
is much more conserved during evolution than is the sequence of amino acids.
Hence, it is desirable to take structural information into account if a proper ran-
dom string model for protein sequences is sought. To this end, we concentrated
on secondary structure elements which constitute the three-dimensional shape of
local segments of amino acids and thus form the structure most closely related to
the amino acid sequence.

This chapter is devoted to the comparison of generative random string models for
protein sequences and, in particular, the introduction of a new, biologically moti-
vated string model incorporating information from secondary structure elements.
We begin with the methodology of model selection and introduce criteria of multi-
model inference in Section 4.1. After summarizing secondary structure elements
and their characteristics, we state a new generative random string model dedi-
cated to protein sequences in Section 4.2. As required from a generative random
string model, the model we will present enables (i) the generation of random pro-
tein sequences of a given length and (ii) the calculation of the probability of a given
sequence under the model, i.e. the probability that the sequence was generated
by the model. We give the corresponding calculations in Section 4.3. On this ba-
sis, we present the conclusive comparison of four random string models and, in
particular, the evaluation of the proposed model in Section 4.4.

4.1 Model Selection Criteria

Model selection, as e.g. discussed in [23, 122], refers to the task to find the prin-
ciple behind a sequence of observations, e.g. outcomes of an experiment. Never-
theless, models are not true in the sense that they do not represent full reality,
but rather approximate the reality that underlies a sample of observations. Hence,
in model selection theory, the goal is to select the statistical model from a set of
(competing) candidate models which explains the observed data “best”. There-
fore, a criterion of what is the best model has to be justified. Such a criterion
must yield a number for each fitted model, given the data, and it should provide
weights which quantify the uncertainty that each model is the best model. Note
that there is no true model that generated the data. Rather, there is a concept of
truth behind. However, selecting the best model coincides with the task to choose
the candidate model that most likely generated the observed data. This relates to
the likelihood function, often simply referred to as likelihood, which allows us to
estimate unknown parameters, based on known outcomes.

58

4.1 Model Selection Criteria

Definition 4.1.1 (Likelihood function). The likelihood function of model parame-
ter (vector) θ is defined as the joint probability of a sequence x = (x1, x2, . . . , xn) of
observations (for discrete random variables X1, X2, . . . , Xn), considered as a function
of θ:

L(θ) = L(θ |x) = P(x | θ) = P(X1 = x1, X2 = x2, . . . , Xn = xn | θ) .

Note that the likelihood is no probability distribution, i.e. it does not generally
sum to one. Rather, it quasi reverses probability. That is to say that L(θ |x)
lets us reason about parameter θ based on the outcome x, while P(x | θ) gives
the probability of outcome x depending on the parameter θ. According to Bayes
theorem [13], it holds

P(θ |x) =
P(θ)L(θ |x)

P(x)
∝ L(θ |x) (4.1.1)

for P(x) > 0. Here, P(θ) is called the a-priori probability of θ. It expresses the
prior degree of belief in θ before the experiment was performed. The conditional
probability P(θ |x) of θ given that x was observed, is called the posterior degree of
belief in θ. The likelihood corresponds to the conditional probability P(x | θ) that x
occurred if θ were the true parameter.

Example 4.1.2. For a possible outcome x = (x1, x2, . . . , xn) of i.i.d. random variables
X1, X2, . . . , Xn with probability distribution fX(x | θ), the likelihood is given by

L(θ) = L(θ, x) = fX(x1 | θ)fX(x2 | θ) . . . fX(xn | θ) .

Note that fX corresponds to the pdf in the case that X is a continuous random
variable, and to the pmf when X is discrete. In view of random strings, which we
interpret as random processes taking values in the finite set of amino acids Σ =
{A, . . . , Z}\{B, J,O,U,X,Z}, we are concerned with the discrete case. We keep this
here, although all concepts we will introduce carry over to sequences of continuous
variables.

To decide how likely a certain model M explains the observed data x, we con-
sider the likelihood of model M , i.e. L(M) = L(M |x) =

∫
P(x | θ,M)P(θ |M) dθ under

parameter vectors θ. Note that this does not depend on the parameters used by
the model, but rather takes into account all possible parameter values. Alterna-
tively, instead of integrating over all parameter vectors, it is common practice to
use the particular parameter that maximizes the likelihood function, the so-called
maximum likelihood estimator:

Definition 4.1.3 (Maximum likelihood estimator). The maximum likelihood esti-
mator (MLE) of a model parameter θ is the random variable

θ̂ = θ̂(X1, . . . , Xn) = argmaxθ L(θ |X),

maximizing the likelihood function.

59

4 SSE Random String Model for Protein Sequences

The MLE is an asymptotically unbiased point estimator for the parameter θ de-
termining the distribution of X, i.e. limn→∞ E(θ̂ − θ) = 0. Further, its variance
Var(θ̂) = E(θ̂ − E(θ̂))2 becomes minimal (with respect to the variance of all other
estimators of θ) with increasing sample size. For more information about point
estimators and their desired properties, unbiasedness, consistency, and minimal
variance, the reader is referred to [91, 115].

In order to determine the MLE of θ, i.e. to find the maximum of the likelihood
function, one has to calculate the derivative(s) of L(θ). As we will see, it is generally
convenient to use the logarithm of the likelihood, referred to as log likelihood:

Definition 4.1.4 (Log likelihood). The log likelihood of parameter θ, given observa-
tions x, is defined as

`(θ) = `(θ |x) := lnL(θ |x) . (4.1.2)

Of course, `(θ |x) =
∑n

i=1 ln fX(xi | θ) for the case of i.i.d. events considered in the
example above. Maximizing the log likelihood yields the same result as maximizing
the likelihood function since the logarithm is a monotone one-to-one mapping. Yet,
maximizing `(θ, x) is much easier since, speaking figuratively, calculating deriva-
tives is easier in a sum than in a product.

Likelihood Ratios

Since the likelihood represents an entire equivalence class of proportional func-
tions (see Equation (4.1.1)), model selection methods usually consider likelihood
ratios. In fact, one takes the (natural) logarithm of this ratio. This yields us an
additive measure with respect to the outcomes x = (x1, x2, . . . , xn), referred to as
log likelihood ratio.

Definition 4.1.5 (Log likelihood ratio). The log likelihood ratio of two competing
models M1 and M2 is given by

ln
L(M1 |x)
L(M2 |x)

= ln
P(x |M1)
P(x |M2)

. (4.1.3)

A log likelihood ratio of zero indicates that the outcome x is equally likely under
both models. If the statistics is positive, the outcome is more likely under M1;
otherwise it is more likely under M2.

Remark 4.1.6. The log likelihood ratio yields a prevalent additive scoring system,
the so-called log-odds score used in biological sequence alignment tools [38]. There,
the outcome x refers to a pair of amino acids and the log-odds ratio indicates whether
it is more likely that these amino acids are evolutionarily related or rather paired
randomly.

60

4.1 Model Selection Criteria

A measure related to the log likelihood ratio is the Kullback-Leibler divergence (KL)
[66], also known as the relative entropy according to Shannon [110], between two
probability distributions f and g of a (discrete) random variable X (and analogously
for pdfs with the sum replaced by an integral in the continuous case):

I(f, g) =
∑
x

fX(x) ln
fX(x)
gX(x)

= Ef (ln fX(X)− ln gX(X)) . (4.1.4)

While for mathematics the natural logarithm is more convenient, the logarithm to
the base two is usually used in information theory. Hence, the units for (relative)
entropy are “nats” or “bits”, respectively. KL measures the divergence between two
distributions, usually between an approximation g and the “true” distribution f .
It is non-negative and zero if and only if the two distributions are identical, i.e. if
f = g. The closer I is to zero, the more similar are the two distributions. Note that
it is no metric in the usual sense since it is not symmetric, i.e. I(f, g) 6= I(g, f),
and does not satisfy the triangle inequality. Hence, it is called “divergence” rather
than “distance”. From the information theory perspective [43], the relative entropy
measures the expected number of extra bits required to code samples from f when
using a code based on g. It thus refers to the information lost about X when g is
used to approximate f .

It is important to note that statistics based on the models’ likelihoods always favor
the most complex model from a set of candidate models. The reason is that a
more complex model with more degrees of freedom can fit the data better than
any other model from the set, yielding a higher posterior probability. Besides, the
likelihood scales with the posterior probability of observations, as we have seen in
Equation (4.1.1). Thus, a good model selection method balances “goodness of fit”
and “model complexity”. In fact, higher order models have to be penalized such
that the best suited model is selected that is additionally as simple as possible.
Respective model selection methods are called penalized model selection criteria.

Penalized Model Selection

In general, penalized model selection accounts for the difference in complexity of
the considered models. According to the principle of parsimony, the idea is to
choose an acceptably good model with as few parameters as possible. This is
reasonable in two respects: first, a higher order model provides predictions with
less bias but with higher variance, and the aim is to balance these two. Second,
a model with more parameters tends to be more sensitive to small changes in the
data [122].

Since generally a good model leads to a high maximum likelihood for the data x,
penalized model selection criteria refine the log likelihood ratio by introducing a
penalty term depending on the sample size n and/or the number k of free parame-
ters in the model. Overall, it has become common practice to choose a model that

61

4 SSE Random String Model for Protein Sequences

maximizes an objective like

2 · `(θ̂, x)− penalty(number k of model parameters, sample size n) .

There exist several criteria, which differ in the penalty adjustment (see [65] for an
overview). However, there does not exist the “gold standard” among these crite-
ria. Rather, each penalty proposal has its advantages and disadvantages. One of
the first criteria introduced in the statistics literature is the Information theoretic
criterion of Akaike (AIC). In the following, we give a brief mathematical derivation
of this criterion. For a thorough treatment, the reader is referred to the book of
Burnham and Anderson [22] or the article of Kuha [65].

The AIC defined by Akaike [3] is based on the idea to select the model, among
a set M of candidate models, that minimizes the information loss with respect
to the truth. Hence, the AIC criterion chooses the model that minimizes the KL
divergence (cf. Equation 4.1.4) between model distributions gi(θ̂i) (1 ≤ i ≤ |M|) and
the distribution f considered closest to the truth. We write Î(f, gi(θ̂i)) to indicate
that the candidate model gi depends on an estimated parameter, i.e. the respective
MLE θ̂i. Assuming that all gi(θ̂i) (1 ≤ i ≤ |M|) are independent of f , we have that

Î(f, gi) = Ef (ln f(X))− Ef
(

ln gi(X | θ̂i)
)
.

The former expectation is unknown, but since it is the same for all investigated
models, it can be seen as a constant not influencing the minimization. That is to
say that from the set of candidate models the model is selected that minimizes the
relative KL divergence

Î(f, gi) = C − Ef
(

ln gi(X | θ̂i)
)
.

For two models g1 and g2, model g1 is better if and only if Î(f, g1) < Î(f, g2). The
difference

Î(f, g1)− Î(f, g2) = Ef
(

ln
g2(X | θ̂2)

g1(X | θ̂1)

)
quantifies how much better g1 is, but on a relative scale because without knowing
C, we do not know the absolute measure of how good even g1 is. It refers to the
expected log likelihood ratio given in (4.1.3).

Moreover, according to Burnham and Anderson [22], for a rigorous model selection
criterion based on the relative KL divergence, one has to estimate E(E

(
ln gi(X | θ̂i)

)
.

The maximized log likelihood provides a biased estimator, where the bias is ap-
proximately the number of free model parameters.

The AIC criterion formalized by Akaike [3] is an asymptotically unbiased estimator
[115] of the relative expected KL divergence. The AIC value for a model with MLE
θ̂ and k free parameters, given a sample x, is defined as

AIC := −2 · `(θ̂, x) + 2k . (4.1.5)

The first term on the right hand side decreases when more parameters are added
to the approximating model, the second term clearly increases. As mentioned
before, this presents a trade-off between bias and variance of the estimator.

62

4.2 Secondary Structure Elements Based Protein Model

Remark 4.1.7. Note that one also finds the definition AIC := −`(θ̂, x) + k in the
literature. As long as both log likelihood and bias correction are multiplied by the
same positive constant, this does not change the minimization.

In applications, one computes the AIC value for each candidate model and finally
selects the model with the smallest value. This model is estimated to be the can-
didate model closest to the unknown reality underlying the observed data. As the
criterion chooses the best model on a relative base, usually the AIC differences

∆i := AIC(Mi)−min
j

AIC(Mj)

are computed for all models Mi ∈M. These provide a ranking of candidate models
with respect to the model estimated to be best, namely the model Mi for which
∆i ≡ 0. The larger ∆i is, the less plausible it is that the fitted model Mi is the best
model according to the KL criterion. There exist some guideline values indicating
the empirical support of a candidate model depending on its AIC difference, see
[22].

Note that the AIC criterion may perform poorly when the sample size n is small
with respect to the number k of free parameters in the candidate model with high-
est dimension. For that reason, unless the sample x is much larger than the
number of parameters, it is recommended by Burnham and Anderson [22] to use
a refinement of the AIC criterion, referred to as second-order AIC (AICc):

AICc = AIC +
2k(k + 1)
n− k − 1

= −2 · `(θ̂, x) + 2k
n

n− k − 1
. (4.1.6)

A directive is to use AICc instead of AIC if n/k < 40. Otherwise, both criteria are
similar (since the correction term is then close to 1) and tend to select the same
model.

We apply the discussed criteria later in order to compare different generative string
models and, in particular, to evaluate the model we will present in the following.

4.2 Secondary Structure Elements Based Protein Model

In this section, we present the secondary structure elements (SSE) based protein
model, short SSE model. It is a generative random string model to describe ran-
dom protein sequences. As mentioned before, statistics based on such a null
model afford information as the significance of an alignment score or the average
length or mass of a peptide fragment in the application from Chapter 3. There,
we introduced a strategy used daily in many areas of life science research: using
sequence information to find similar (putatively related) protein sequences in huge
databases gathering knowledge which can help to deduce properties such as the
structure and the function of an unknown protein. A more refined null model will
lead to more reasonable results.

63

4 SSE Random String Model for Protein Sequences

Here, we set up a new, biologically motivated random string model adjusted to
protein sequences. It shall incorporate biological information and still depend
on a feasible number of parameters. To this end, rather than concentrating on
the sequence of amino acids only, we take the secondary structure into account.
Hence, we call this background model secondary structure element based model,
or short SSE model.

4.2.1 Secondary Structure Elements

As mentioned before, the secondary structure is the first level of protein fold-
ing. Parts of the polypeptide chain fold to form local generic structures that are
found in all proteins. Secondary structure, as introduced by Linderstrøm-Lang
[73] in 1952, is generally defined by patterns of hydrogen bonds (H-bonds) be-
tween polypeptide backbone -NH and -C=O groups (interactions of the kind side
chain/side chain or side chain/main chain are irrelevant). The most common
secondary structure elements are α-helix and β-sheet.

In nature, many regular structures are helical. A helix results from energetically
favorable hydrogen bonding between all the backbone groups. Thus, the helix
is a very regular and stable arrangement. In proteins, there are three types of
helices, namely the α-helix, the 310-helix, and the π-helix, which differ in their
hydrogen bonding patterns. The α-helix is a particularly stable right-handed helix
which is formed in peptide chain stretches with repetitive torsion angles (used to
define the conformation of bonds that are free to rotate, see [129]) of approximately
(φ, ψ) = (−60◦,−60◦). Therefore, the -C=O and -NH groups are hydrogen bonded to
the peptide bond four residues away, i.e. there exist H-bonds between the oxygen
of amino acid i and the amide group of amino acid i+ 4 and between the nitrogen
of residue i and the carboxyl group of residue i+ 4. In the 310 helix, H-bonds exists
between residues i and i+ 3, and in the π helix, stabilization results from H-bonds
between amino acids i and i+ 5. These patterns are also referred to as 3n, 4n, and
5n. Left-handed helices rarely exist in proteins because of steric hindrance.

Another regular secondary structure is the β-sheet. It is formed by β-strands,
i.e. stretches of 5-10 amino acids (whose peptide backbones are almost fully ex-
tended), that are connected laterally by three or more hydrogen bonds. Adjacent
strands can be in antiparallel, parallel, or mixed arrangement. In antiparallel
sheets, the N-terminus of one strand is adjacent to the C-terminus of the next
strand, which allows planar hydrogen bonds and is thus very stable. In the
slightly less stable parallel arrangement, all strands have the same direction as
all N-termini are adjacent.

Moreover, tight turns, isolated β-bridges and loose, flexible loops link the more
regular structures helix and sheet. Also single pairs of amino acids can be anno-
tated as turn or β-bridge. In contrast, helices and sheets are required to have a
reasonable length, i.e. a certain number of adjacent amino acids in the primary
structure have to form the same hydrogen bonding pattern. Otherwise, if this

64

4.2 Secondary Structure Elements Based Protein Model

pattern is too short, the amino acids are annotated as turn or bridge. Metaphor-
ically speaking, repeating turns form helices, repeating bridges are ladders, and
connected ladders represent sheets.

4.2.2 Information from Secondary Structure Annotation

In order to derive secondary structure information, we used protein sequences
listed in the PDB database [14] that are annotated with secondary structure ele-
ments. The annotation is provided via the automated assignment methods DSSP
(Dictionary of Protein Secondary Structure) [53] or STRIDE [41]. While DSSP de-
termines secondary structure according to hydrogen-bonding patterns between
the amino acid residues, STRIDE additionally uses the backbone torsion angles
[129]. We use the DSSP which is the widely accepted standard.

The secondary structure labeling according to DSSP classifies amino acid residues
into 8 different structural element classes:

• B: Residue in isolated β-bridge; a single β-sheet hydrogen bonding pattern.

• E: Extended β-strand; at least two residues in parallel or anti-parallel β-sheet
conformation.

• S: Bend; a region with high curvature, quantified by the backbone angles.

• T: Hydrogen bonded turn (3n, 4n, or 5n).

• G: 310-helix; at least three residues forming 3n-turns.

• H: α-helix; at least four residues forming 4n-turns.

• I: π-helix; at least five residues forming 5n-turns.

• C: Random coil; in general not B,E,G,H,I,S,T.

The annotation as random coil is somewhat misleading, since it could denote flex-
ible parts of the protein (loops) which do not take part in a local structure as well
as residues not classified to any structure element. To get an intuition about the
general distribution of structure annotations, we estimated the relative frequen-
cies of amino acids assigned a particular annotation, cf. Figure 4.1. As indicated
before, the most prominent structures are α-helix (31.3%) and β-sheet (19.9%).

Next, we investigated the properties of amino acid chains assigned to different
structural elements. For this purpose, we cut the annotated protein sequences
into substrings subject to the residues’ structural correspondence. This is to say
that, for a sequence and its annotation like

sequence MQHVSAPVFVFECTRLAYVQHK
annotation CCCCCHHHHHHCCCCHHHEEEE

65

4 SSE Random String Model for Protein Sequences

B E S T G H I C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Figure 4.1: Histogram of the relative frequencies of secondary structure annotations ac-
cording to DSSP for protein sequences in the PDB database.

we produced the following sets of substrings for the structure element classes C, E,
and H: {MQHVS,ECTR}, {VQHK}, and {APVFVF,LAY}, respectively. From these
strings, we estimated the frequencies of amino acids, the distribution of the initial
amino acid, the conditional amino acid frequencies, and the length distribution,
separately for each class. A comparison of the distributions of amino acid frequen-
cies within different classes on the basis of relative entropy values is provided in
Figure 4.2. Relative entropy, as stated in Section 4.1, measures the divergence
between two distributions. It is zero if and only if the distributions are identical.
Larger values indicate larger divergence.

Figure 4.2: Relative entropy between amino acid frequency distributions estimated for
different structural elements. Color intensity encodes the strength of deviation on a
relative scale. The two distributions are more similar the lighter the corresponding cell
color. White indicates zero divergence, i.e. that the two distributions are identical.

Bioinformatics tools such as secondary structure prediction tools [129] or align-
ment methods using information from SSEs [11] typically collapse DSSP output
into three classes associated with helices, sheets, and coils. Overall, there are
different strategies to join DSSP classes, see [100]. The effect of various assign-

66

4.2 Secondary Structure Elements Based Protein Model

ments with respect to secondary structure prediction performance was studied in
[32]. We observed, however, that the similar distributions within classes S and T
differ significantly from those estimated from other elements. Thus, taking into
account that only a very small percentage of residues is annotated to B, I, and
G, we merged G, H, and I into one class to represent helices, B and E to denote
sheets, and S and T to collect bends and turns. C remains unmodified. This is to
say, we classified secondary structure elements into the following four classes:

• C: coil (random coil),

• E: sheet (β-bridges and strands),

• H: helix (some kind of helix),

• T: turn (bends and turns).

The amino acid frequencies we counted from subsequences assigned to these four
elements mainly agree with the propensities of amino acids provided in the lit-
erature [129, Chapter 11]. For example, amino acids including methionine (M),
alanine (A), leucine (L), glutamic acid (E), and lysine (K) prefer to adopt helical con-
formations, while other amino acids as proline (P) and glycine (G) are rarely found
in helices. These “helix-breakers” interrupt the regular helical structure and are
rather seen in turns. Moreover, the large aromatic amino acids as phenylalanine
(F), tryptophan (W), and tyrosine (Y), and the β-branched amino acids isoleucine
(I), valine (V), and threonine (T) preferably adopt sheet conformations. The amino
acid compositions estimated for the four structure classes are shown in Figure 4.3.
As can be seen, A, L, E, and K are preferably seen in the helix class, in particular
L (11.7%) and A (11.4%). In contrast, G (3.7%) and P (2.4%) occur less frequently and
usually at substring ends. Further, our counts agree that β-branched residues V
(13.4%) and I (9.7%) prefer sheet conformation, while we do not observe high fre-
quencies for the large aromatic amino acids. However, we recognize that these are
rarely found in flexible turns, where G (16.4%) is the most frequent amino acid, as
proposed.

4.2.3 Model Architecture and Parameter Estimation

The main idea leading to the SSE random string model was to refine a first-
order Markov model by combining individual Markov chains for the four structure
classes specified before. Each individual chain generates parts of the final protein
sequence, i.e. substrings of the final string. Analogous to the previous chapter, a
finite random amino acid sequence of length n is described by the length n prefix
of a stochastic process (Si)i∈N taking values in Σ = {A, . . . , Z}\{B, J,O,X,Z}, i.e.
S = S1, . . . , Sn with Si ∈ Σ.

The architecture of the SSE model is shown in Figure 4.4. A first-order Markov
chain Y = (Yn)n∈N with state space Q = {C,E,H, T} defines the order of structural
correspondence of amino acids in a protein sequence. In each state (structural
element) v ∈ Q, an individual Markov chain Xv = (Xv

n)n∈N generates parts of the

67

4 SSE Random String Model for Protein Sequences

coil C

A C D E F G H I K L M N P Q R S T V WY
0.00

0.05

0.10

0.15 helix H

A C D E F G H I K L M N P Q R S T V WY
0.00

0.05

0.10

0.15

sheet E

A C D E F G H I K L M N P Q R S T V WY
0.00

0.05

0.10

0.15 turnT

A C D E F G H I K L M N P Q R S T V WY
0.00

0.05

0.10

0.15

Figure 4.3: Amino acid compositions estimated from PDB annotated sequences after col-
lapsing DSSP elements to the four structure classes C (top left), E (bottom left), H (top
right), and T (bottom right).

resulting string. These Markov chains act on the space Σ of amino acid characters.
Hence, the corresponding transitions are given by the conditional frequencies of
amino acids within the respective structure class. The number of amino acid
residues produced at one run in a certain element v ∈ Q depends on the length
distribution associated with the according state.

Let us introduce the following notations:

p0(v, σ) := P(Y1 = v, S1 = σ)

denotes the initial joint probability of amino acids σ ∈ Σ and annotations v ∈ Q.
Further,

T uvσσ′ := P(Ym+1 = v, Sm+1 = σ′ |Ym = u, Sm = σ) for all m

is the transition probability between two characters while changing from state u
to state v, such that

∑
v∈Q

∑
σ′∈Σ T

uv
σσ′ = 1 for all fixed (u, σ) ∈ Q× Σ. For each state

v ∈ Q, the conditional character frequencies define the transition probability P vσσ′
from character σ to σ′. Finally, the random variable R(v) counts the number of
residues produced in state v. Its distribution is denoted by

(
P(R(v) = k)

)
k∈N.

Parameter Estimation

We intend to compare four generative random string models for protein sequences,
i.e. the i.i.d. model, the first-order (M1) and second-order (M2) Markov models, and
the SSE model. For all of those, we need to estimate appropriate model parame-
ters. As described above, we make use of the respective MLEs. To this end, we first
prepared the following sets of PDB sequences: we extracted all 115, 267 sequences
from the PDB database that are annotated with secondary structure elements.

68

4.3 Computing Likelihood Values

Figure 4.4: Sketch of the secondary structure element based random string model for pro-
tein sequences. Four different structure classes Q = {C,E,H, T} are taken into account.
A first-order Markov chain Y specifies the order of structural correspondence. In each
state v ∈ Q, a first-order Markov chain Xv generates substrings of the resulting pro-
tein sequence. The length of these substrings is determined by the length distributions
associated with each state.

Since it is reported that functional proteins consist of at least 40 residues, we dis-
carded shorter sequences, leaving 109, 218 annotated sequences. Then, we divided
these into a training set of 97.083 sequences (88.9%) and a test set of 12, 135 (11.1%)
sequences. We used the training sample to estimate necessary model parameters
(MLE). That is to say, for the i.i.d. model, we counted the frequencies of amino
acids, for a first-order and a second-order Markov model, we counted the initial
frequencies as well as the conditional amino acid frequencies (of order one and
two, respectively). For the SSE model, we needed to estimate parameters for the
superior and the four individual Markov chains. We therefore counted the pairs of
initial character and assigned structure class to estimate (p0(v, σ))(v,σ)∈Q×Σ as well
as the transitions between amino acids with different secondary structure annota-
tion for (T uvσσ′)u,v∈Q;σ,σ′∈Σ. These parameters determine the superior Markov chain
Y . Furthermore, after splitting the sequences as explained in Section 4.2.2, we
counted the conditional character frequencies P v = (P vσσ′)σ,σ′∈Σ for the individual
Markov chains from the corresponding substrings.

The sequences we left out in the training step were then investigated in order to
generate a revised test sample. For this purpose, sequences with at least 30%
sequence identity with respect to sequences in the training set were removed from
the test set. This resulted in 912 (0.8%) revised test sequences.

4.3 Computing Likelihood Values

Our aim is to compare the presented SSE model to customary random string mod-
els, i.e. to the i.i.d. model, the M1 model, and the M2 model. To this end, we want

69

4 SSE Random String Model for Protein Sequences

to use the criteria introduced in Section 4.1. Hence, we need to compute the log
likelihood

∑
s ln P(s |Mi) of each model Mi, given protein sequences s from PDB or

another protein database, e.g. the revised test sequences.

The corresponding calculation of ln P(s |Mi) is easy in the case of i.i.d. and low-
order Markov models:

ln P(s | i.i.d.) =
|s|∑
i=1

ln P(Si = s[i]) =
|s|∑
i=1

ln ps[i],

ln P(s |M1) = ln p0
s[1] +

|s|−1∑
i=1

ln P(Si+1 = s[i+ 1] |Si = s[i])

= ln p0
s[1] +

|s|−1∑
i=1

lnPs[i]s[i+1],

ln P(s |M2) = ln p0
s[1] + lnPs[1]s[2] +

|s|−2∑
i=1

ln P(Si+2 = s[i+ 2] |Si = s[i], Si+1 = s[i+ 1]) .

It is more involved in the case of the SSE model. However, since the model’s
structure is similar to an HMM, we can apply variants of the forward or backward
algorithms [38, Chapter 3]. Hence, we first show how to derive the probability
P(S = s |SSE) for a sequence s of length n by marginalization, before introducing
the logarithm.

f(s) := P(S = s) = P(S1, . . . , Sn = s[1, n]) =
∑
v∈Q

P(S1, . . . , Sn = s[1, n], Yn = v) . (4.3.1)

The following calculation relates to the forward algorithm known from classical
HMM theory:

fk(v) := P(S1, . . . , Sk = s[1, k], Yk = v, Yk+1 6= v) for 1 ≤ k < n,

fn(v) := P(S1, . . . , Sn = s[1, n], Yn = v) .

It is the probability to observe the length k prefix of a sequence s, or the entire
sequence s, respectively, with the last part generated in element v. Herewith, the
probability that sequence s was generated by the SSE model reads

f(s) =
∑
v∈Q

f|s|(v) .

Moreover, to denote the probability that a substring of s has been generated in
state v ∈ Q, we write pv(s[j1, j2]) :=

∏j2−1
i=j1

P vs[i]s[i+1]. Herewith, we formulate the
system of recurrence relations given in Recurrence 4.1.

Note that, for n = |s|, we use P(R(v) ≥ m) = 1 −
∑m−1

m′=1 P(R(v) = m′) in order to
account for the fact that protein sequences are finite. That is to say that for the last

70

4.3 Computing Likelihood Values

Recurrence 4.1 Computation of the probability that a protein sequence s of length
|s| = n was generated by the SSE model.

fk(v) =
∑
u∈Q

k−1∑
l=1

fl(u)T uvs[l]s[l+1] p
v(s[l + 1, k]) P(R(v) = k − l)

+ P start,v πvs[1] p
v(s[1, k]) P(R(v) = k) for 1 ≤ k < n,

fn(v) =
∑
u∈Q

n−1∑
l=1

fl(u)T uvs[l]s[l+1] p
v(s[l + 1, n]) P(R(v) ≥ n− l)

+ P start,v πvs[1] p
v(s[1, n]) P(R(v) ≥ n),

Output: f(s) =
∑

v∈Q fn(v).

character of s, it is irrelevant whether it is the last character of a substring or not.
Nevertheless, (functional) proteins range in length from 40 to several thousand
residues. Therefore, multiplying many small probabilities to compute P(S = s)
may lead to underflow errors. To avoid these, we implemented the log likelihood
ln P(S = s) = ln

∑
v∈Q f|s|(v) as discussed in Section 4.1. For this purpose, however,

we had to come up with the logarithms of sums of small values.

To this end, we used the following property: ln(x+ y) = ln(x(1 + y/x)) = lnx+ ln(1 +
exp(ln y− lnx)). Thus, if the logarithmical values lnxi of the summands in ln

∑n
i=1 xi

are known, we have

ln
n∑
i=1

xi = ln
(
x1

(
1 +

x2

x1
+
x3

x1
+ · · ·+ xn

x1

))
= ln(x1) + ln

(
1 +

x2

x1
+
x3

x1
+ · · ·+ xn

x1

)
= ln(x1) + ln

(
1 + exp(lnx2 − lnx1) + exp(lnx3 − lnx1)

+ · · ·+ exp(lnxn − lnx1)
)
,

where it is reasonable to choose x1 = maxi xi. Then, from the Taylor series expan-
sion

ln(1 + x) =
∞∑
k=1

(−1)k
xk

k
≈ x+O(x2)

it follows the approximation ln(1 + x) ≈ x for small values of x. This approximation
is performed by the method log1p incorporated in the Java.Math library.

For our purpose to compute ln f(s) = ln
∑

v∈Q fn(v), we defined

F 0
k (v) := p0(v, s[1]) pv(s[1, k]) P(R(v) = k)

F lk(v) :=
∑
u∈Q

fl(u)T uvs[l]s[l+1] p
v(s[l + 1, k]) P(R(v) = k − l) for 1 ≤ l < k (4.3.2)

71

4 SSE Random String Model for Protein Sequences

and the analogs F≥0
k (v) and F≥lk (v) (1 ≤ l < n) for the last part of the sequence,

respectively. In words, F lk(v) defines the probability of a path through the superior
Markov chain Y that generates the length k prefix s[1, k] ending in state v ∈ Q
with the last (k − l) characters produced in v. Thus, the F l correspond to the
probabilities of all paths. Clearly, summing up all path probabilities yields the
entire probability:

fk(v) =
k−1∑
l=0

F lk(v)

and fn(v) analogously. As mentioned above, the F lk(v) are sorted in descending
order such that F 0

k (v) = maxl F lk(v), i.e. F 0 then refers to the probability of the most
probable path. We then compute

ln fk(v) = lnF 0
k (v) + log1p

(k−1∑
l=1

exp
(

lnF lk(v)− lnF 0
k (v)

))
. (4.3.3)

To determine the logarithmical value of the inner sum in (4.3.2), we apply the same
principle again.

Caution has to be exercised with sequences that have probability 0 under the con-
sidered model. In that case, all paths through the Markov chain have probability
0, leading to lnF ln(v) = −∞ for all 0 ≤ l < n and all v ∈ Q (as well as F≥l

′
for

0 ≤ l′ < n). A problem arises when we want to compute exp(lnF l − lnF 0). To
prevent this, we exclude those summands from the log1p calculation and obtain
ln f(s) =

∑
v∈Q lnF 0

n(v) = −∞.

Runtime

The runtime to compute ln f(s), for the probability f(s) of a protein sequence s
as defined in Equation (4.3.1), is of order O(n2), if we precompute the logarithms
of the probabilities pv(s[j1, j2]). For this purpose, we define the logarithm of the
probability for a suffix by d[v, k] := ln pv(s[k, n]) for v ∈ Q and 1 ≤ k ≤ n according
to:

d[v, k] =

{
0 for k = n,

d[v, k + 1] + lnP vs[k]s[k+1] for k < n.
(4.3.4)

With this O(n) preprocessing, we get the logarithm of the probability that a sub-
string s[k, l] was generated within element v ∈ Q via the following update:

ln pv(s[k, l]) =

0 if l = k,

−∞ if d[v, k] = −∞ and d[v, l] 6= −∞,∑l−1
i=k lnP vs[i]s[i+1] if d[v, l] = −∞,

d[v, k]− d[v, l] otherwise .

(4.3.5)

These values can be stored in O(n2) space. For the computation of ln f(s), |Q| = 4
values resulting from the calculation of 4.3.3 have to be added. To this end, n

72

4.3 Computing Likelihood Values

variables F l have to be computed which takes O(n) time each. Thus, the total
runtime as well as the space requirements are of order O(n2).

4.3.1 Proof of Concept

As motivated, the presented SSE model is a refinement of a first-order Markov
model. More precisely, the first-order Markov model M1 is a special case of the
SSE model. Hence, in order to check our implementation, we set the parameters
such that the SSE model defines the inherent Markov model. This is to say, the
transitions

(
P vσσ′

)
σ,σ′∈Σ

for the individual Markov chains Xv (v ∈ Q) were all deter-
mined by the conditional amino acid frequencies estimated from the set of PDB
training sequences. Moreover, the transitions

(
T uvσσ′

)
u,v∈Q;σ,σ′∈Σ

for u 6= v were set to
those frequencies, normalized by 1/(|Q|−1).

As expected, the log likelihood values of the PDB test sequences computed under
this special SSE model agree with the respective M1 values. The model’s log likeli-
hood under the revised test sequences is −561, 060 in both cases. In Figure 4.5, the
statistical properties of the computed sample values are shown. Since all values
are identical under both models, also the median and the quartiles are the same.

+

+++
+
++
+
+++++
++++++++
+++
+++
+++
++++++++
+++

+

++
++
++
+
+++++
++++++++
++++
+++
+++++
+++++++
+

M1 SSE-M1

-6000

-5000

-4000

-3000

-2000

-1000

0

model

lo
g

li
k

el
ih

o
o

d

Figure 4.5: Boxplots representing the log likelihood values for the 912 PDB revised test
sequences under the M1 model and under the M1 special case inherent in the SSE
model.

73

4 SSE Random String Model for Protein Sequences

4.4 Results: Comparison of Random String Models

In order to evaluate the performance of the SSE model, we compared it to the i.i.d.
model, the first-order Markov model M1, and the second-order Markov model M2.
As mentioned before, the respective model parameters were chosen to be the max-
imum likelihood parameters, i.e. the relative (conditional) frequencies estimated
from the set of PDB training sequences. For instance, the i.i.d. model needs only
one distribution of dimension |Σ| = 20. Since

∑
σ∈Σ pσ = 1, the respective degree

of freedom equals 19. For the Markov models, additionally conditional probability
distributions of dimension Σ× Σ and Σ× Σ× Σ are considered. Hence, the degree
of freedom is 19 + 20 · 19 = 399 (M1) or 399 + 20 · 20 · 19 = 7999 (M2), respectively. For
the SSE model, the relevant distributions are

• the initial distribution p0(v, σ) of dimension Q× Σ,

• the first-order Markov transitions
(
P vσσ′

)
σ,σ′∈Σ

within each element v ∈ Q,
again each with |Σ|(|Σ| − 1) degrees of freedom,

• the length distributions R(v) associated with each element v ∈ Q, which we
restricted to dimension 100, and

• the transitions
(
T uvσσ′

)
u,v∈Q;σ,σ′∈Σ

with |Q|(|Q|− 1)|Σ|(|Σ|− 1) degrees of freedom,
because

∑
v∈Q

∑
σ′∈Σ T

uv
σσ′ = 1 and T uuσσ′ = 0 for all character pairs (σ, σ′) ∈ Σ×Σ.

In total, the number of free model parameters is thus 6552. Note that we do not
need initial character frequencies within the individual elements to specify the
according Markov chains, cf. Recurrence 4.1. These are actually covered by the
initial distribution and the transitions of the superior Markov chain Y .

The respective numbers of free model parameters are summarized in Table 4.1.

Table 4.1: Numbers of free model parameters for the four models under consideration.
The corresponding derivations are given in the text.

i.i.d. M1 M2 SSE
19 399 7999 6552

Following our explanation above, we first computed the log likelihoods of the four
models under the set of test sequences and revised test sequences, respectively.
As expected, for both samples, the pairwise log likelihood ratios favor the model
with highest dimension since the log likelihood scales with model complexity. This
is to say that the ranking according to pairwise log likelihood ratios is

1. M2
2. SSE
3. M1
4. i.i.d.

74

4.4 Results: Comparison of Random String Models

Further, we computed the average log likelihood values (normalized by sequence
lengths) for the revised test sequences under the considered models. The boxplots
in Figure 4.6 display the statistics of these values. This yields a visual inspection
of the former ranking. Moreover, the boxplots show that the variance increases
with the number of parameters, as stated above.

+

+

+++++++
+++++
++++
++++++++++++++++++
++++++

+++
++

+

++
+++
++++++
+++
++++++++++++
++++++++
++++++

+++

+
+
+

++++
+++++
++++++++++++
++++++
+++++

+++++
+++++
++

+

++
+
+++++
+++
+++++++
+++++++++
+++++++

++++
+

i.i.d. M1 M2 SSE

-3.3

-3.2

-3.1

-3.0

-2.9

-2.8

-2.7

model

av
g

.l
o

g
li

k
el

ih
o

o
d

Figure 4.6: Boxplots representing the length-normalized log likelihood values for the 912
PDB test sequences under the four candidate models. As can be seen, the values scale
with model complexity.

Next, we used these average log likelihoods in order to determine the models’ AIC
values and differences. In fact, we used the second-order AIC criterion, AICc, be-
cause the test samples are quite small with respect to the maximal number of free
parameters. Even for the not revised test set of 12, 135 protein sequences, clearly
12,135/7,999 < 40. In Table 4.2, we show the ranking of the four candidate models
according to AICc under the revised test sequences along with their respective AIC
differences ∆i = AIC c(Mi)−minj AIC c(Mj).

Table 4.2: Ranking and AIC differences ∆i (rounded to integers) of the candidate models
according to the AICc criterion.

rank model ∆i

1 SSE 0
2 M2 63.99
3 i.i.d. 2184.03
4 M1 3536.34

Thus, the AIC criterion estimates the SSE model to be the best candidate model to
describe protein sequences. It outperforms the widely used i.i.d. and M1 models
as well as M2, which maximizes the goodness of fit part.

75

4 SSE Random String Model for Protein Sequences

Moreover, the number of adjustable parameters for the SSE model can be reduced
substantially. For instance, we observed that the first amino acid of all annotated
PDB sequences is assigned to random coil. Hence, modeling the initial character
annotation such that

P(Y1 = v, S1 = σ) =

{
p0
σ if v = C

0 otherwise,

would reduce the number of free parameters to 6495. Further, approximating the
amino acid transitions implying a change of structural annotation rather than
using an individual transition probability for each combination would lead to 2007
free parameters. However, this reduction does not affect the resulting ranking.
This indicates that the inclusion of more complex (biological) information pays off
in order to provide a more plausible description of protein sequences.

Discussion and Directions for future research

The SSE model we presented demonstrates how biological information can be in-
corporated in a generative random string model. Although it combines Markov
chains for four structural elements, it has still less free parameters than the M2
model. Our analysis revealed that, among the considered candidate models, the
AIC criterion favors the SSE model in order to describe protein sequences.

Nevertheless, the considered approach has to deal with the fact that it is gener-
ally difficult to uniquely link secondary structure to the sequence of amino acids.
The problem is that secondary structure annotation is not good enough yet [118].
In particular, long-range interactions affecting secondary structure formation are
usually disregarded. Moreover, there are too few annotations available in order
to estimate reasonable model parameters. Further, secondary structures are not
perfectly regular. Hence, it is difficult to exactly define the ends of those local
structures. Moreover, in some cases there exist hydrogen-bonding patterns inter-
mediate between the presented forms.

For these reasons, we think that subsequent research can further improve the
performance of the SSE model. It would be interesting to replace the individual
Markov chains Xv by more reasonable models taking the characteristics of each
structure class into account. For example, since we know that α-helices are built
by repetitive H-bonds between amino acids 4 residues apart, we could use a third-
order Markov model in the helix state.

Furthermore, the fact that the secondary structure annotation is especially insuf-
ficient for initial amino acid residues impairs the SSE results. Thus, an idea for
future research is to build a hybrid model leaving out the secondary structure
information for the first part of the sequence. In addition, we would like to investi-
gate an application of the SSE model for which the initial amino acid residues are
irrelevant and hence the mentioned drawback is circumvented. This application
relates to the significance of patterns extracted from protein sequences that are

76

4.4 Results: Comparison of Random String Models

used as signatures for protein families, domains, or functional sites, contained in
the PROSITE database [51]. The SSE model could be used as background model
in order to compute significance values for PROSITE patterns [112], i.e. regular
expressions used to assign a protein sequence to a specific family.

Another application of the SSE model has been investigated in cooperation with
Stefan Wolfsheimer who analyzed the statistics of alignment scores (for the align-
ment of protein sequences) under arbitrary null models. In particular, our idea
was that a more reasonable null model would yield exacter results. However, for
efficient computation, a fast update from the null model probability of a protein
sequence to the probability of a specified neighbor sequence is desired. The com-
putations for the SSE model were tedious since it had to be recomputed from
scratch for each sequence. It would be interesting to investigate how to improve
this.

Lastly, the question is how good a null model for the whole universe of protein
sequences can be anyway. We think that the SSE model could be more appropriate
to describe a family of proteins (e.g. taken from the Pfam database [12]) for which
the layout of secondary structures is more similar.

77

78

CHAPTER 5

APPLICATION II: COMPUTING
ALIGNMENT SEED SENSITIVITY

Now, we look back on the connection between the PAA framework and determin-
istic automata used to investigate probabilistic pattern matching problems (Sec-
tion 2.1). In this chapter, we consider a special case of pattern matching statistics
arising in computational biology. Here, the pattern is called seed and refers to
a short initial match between a query and database sequences when searching
for homologous sequences by means of heuristic methods referred to as seeded
alignment techniques.

In this application, the model again shows its universality and flexibility as it
comprises the majority of recent models. We generalize the Markov chain approach
of Choi and Zhang [26], extending the model to characterize a seed by its entire hit
distribution rather than its sensitivity only. The obtained recurrences also allow
a symbolic calculation as performed by Mak and Benson [80]. Moreover, the PAA
can be designed for indel seeds used in the context of gapped alignments [79] as
well as for sets of seeds. Our framework also provides a greedy covering algorithm
to design a good set of seeds. The contents of this chapter have been published in
Herms and Rahmann [48].

In Section 5.1, we describe how seeds are used in heuristic homology search algo-
rithms and summarize related work. Afterwards in Section 5.2, we introduce the
underlying string models, namely the homology model describing sequence align-
ments and the seed model. We analyze the number of matches of a given seed,
and in particular its sensitivity, to a randomly generated sequence alignment by
means of a properly designed PAA in Section 5.3. Finally, Section 5.4 concludes
this chapter with a comparison to other methods and a discussion on alternative
criteria to measure the quality of seeds.

79

5 Application II: Computing Alignment Seed Sensitivity

5.1 Seeded Alignment and Seed Sensitivity

In large-scale homology search, large databases are searched for sequences that
are putatively homologous to a given query sequence. To this end, a local align-
ment of any pair of query and database sequence has to be computed. Then, those
sequences obtaining an optimal alignment whose score exceeds a given thresh-
old, are returned by the particular method. Because of the large size of rele-
vant databases, comparing each position in the query with each position in the
database, as in the quadratic-time Smith-Waterman algorithm [113], is too com-
putationally intensive. Since the 1980’s, when BLAST [4] was designed, heuristic
methods have been used for faster homology search. Most heuristic homology
search algorithms [4, 5, 57, 97] (and some repeat detection algorithms [42]) are
based on a filtration technique called seeded alignment. This is a two step method
to quickly detect database sequences similar to a given query sequence. The key
idea is to focus on such sequences that share a specified initial pattern with the
query. This pattern, the seed, is assumed to witness a potential similarity. Then,
the optimal alignment has to be computed only for a subset of the database se-
quences. In the filtration step, one identifies candidate sequences that share a
common pattern of matching characters with the query. This can be done effi-
ciently by first indexing query and database words of the same length as the seed.
In the confirmation step, the matches in such candidates, called hits, are further
investigated by exact local alignment methods, such as the Smith-Waterman algo-
rithm, to see whether they can be extended to high-scoring alignments.

It has been shown by Ma et al. [76] that careful seed design is important for both
the sensitivity and the specificity of seeded alignment. The sensitivity is the prob-
ability to hit biologically meaningful alignments, the specificity refers to the true
negative rate TN/(TN+FP) or, to put it differently, to one minus the false positive
rate, i.e. 1 − FP/(FP+TN). Increasing the sensitivity usually decreases the speci-
ficity, and vice versa. To achieve a good sensitivity/specificity trade-off is the key
issue of local alignment tools.

Initially, only contiguous perfect matches (e.g., DNA 11-mers in the initial BLAST
implementation) were used as seeds. PatternHunter (PH) by Ma et al. [76] was
the first tool to systematically advocate and investigate spaced seeds, i.e. a dis-
contiguous sequence of required matches: PH looks for 18-mers with at least 11
matching positions distributed as πPH =111∗1∗∗1∗1∗∗11∗111, where 1 denotes a nec-
essary match and ∗ denotes a “don’t care” position (match or mismatch).

Over time, various seed models have been proposed in the literature, ranging from
consecutive seeds [4, 97] to spaced seeds [17, 20, 27, 76], subset seeds [64], vector
seeds [18], and indel seeds [79].

Usually, to qualify a seed, we use a probabilistic model, the so-called homology
model, to describe all local alignments between the query and the database se-
quences. The fraction of alignments that satisfy the pattern specified by the seed
corresponds to the fraction of selected candidates. The sensitivity of a seed can

80

5.1 Seeded Alignment and Seed Sensitivity

then be computed as the probability to match an alignment generated randomly
according to the homology model. A good seed exhibits high sensitivity for align-
ment models that describe evolutionarily related sequences, and low sensitivity
values for models that represent unrelated sequences. The latter property ensures
that the seed does not detect too many random hits. Random hits decrease the
efficiency of the filtration phase, since they are checked in vain for a significant
alignment. An interesting finding was that the PH approach led to an increase in
both sensitivity and filtration efficiency, compared to seeds of contiguous matches.
Based on the observations of Ma et al. [76], the advantages of spaced seeds over
consecutive seeds have been subsequently shown by many authors [20, 26, 71].

Remark 5.1.1. Since the homology model is used to describe alignments of both
evolutionarily related sequences and sequences of biologically unrelated species, a
more reasonable name would be similarity model. To conform to recent literature,
we continue to write homology model keeping this differentiation in mind.

An extension to the previously mentioned seed models dealing with a single seed
is the design of a multiple seed. This is a set of spaced seeds to be used simul-
taneously, such that a similarity is detected when it is found by (at least) one of
the seeds. The idea to use a family of spaced seeds for BLAST-type DNA local
alignment has been suggested by Ma et al. [76] and was implemented in Pattern-
Hunter II [70]. It has also been applied to local protein alignment [19]. Since
finding optimal multiple seeds is challenging, most authors concentrate on the de-
sign of efficient sets of seeds which lead to a higher sensitivity than optimal single
seeds [63, 70, 116]. Kucherov et al. [63] characterize a set of seeds only by its se-
lectivity. That is, they compare seeds with 100% sensitivity according to their false
positive rate. Recent approaches [52, 60] approximate the sensitivity of multiple
spaced seeds by means of correlation functions. Moreover, Kong [60] discussed
that sensitivity should rather be measured via a criterion averaging over different
target alignment lengths.

When searching optimal seeds, one faces the following problems to evaluate candi-
date seeds. The second, more general one has not yet been extensively considered
in the literature. Note that we give the appropriate definitions and a formal de-
scription of different seed models in the subsequent sections.

Problem 1 (Sensitivity computation). Given a homology model representing the
level of sequence similarity, a target length t of alignments, and a set of seeds,
what is the probability that an alignment of length t is matched by the seed (at least
once)?

Problem 2 (Hit distribution). Given a homology model, a target length t of align-
ments, a set of seeds, and a maximal match number K, what is the probability
that an alignment of length t is matched by the seed exactly/at least k times, for
k = 0, . . . ,K, when counting (a) overlapping matches or (b) non-overlapping matches?

81

5 Application II: Computing Alignment Seed Sensitivity

5.2 Underlying String Models

As prerequisites for the computation of the above-mentioned problems, we need to
describe (a) probabilistic models for sequence alignments, (b) seed models defining
the initial similarity region, and (c) when a seed hits an alignment, that is to say
how to count seed matches by means of an appropriate PAA.

5.2.1 Homology Model

To be able to compute seed sensitivity, we need to describe random alignments
with known degree of similarity (e.g., a certain percent identity value). In the
context of seed sensitivity computations, we need to model all local alignments.
Hence, it is customary not to model random sequence pairs and derive alignment
properties from those, but to directly model the similarity, i.e. the alignment’s
representative string A over an alphabet Σ indicating the status of the alignment
columns. Table 5.1 shows an example of a representative string for an ungapped
alignment. In the simplest and most frequently studied case only substitution

Table 5.1: The representative string A over Σ = {0, 1} for an ungapped alignment. Note
that in the following, we directly model A ignoring the particular characters in the
aligned sequences.

query AACGATGTACCTA
target AAGGACGTTCCAA
A 1101101101101

mutations are considered [17, 20, 26, 27, 76, 116]; i.e. Σ = {0, 1}, referring to
matches (1) and mismatches (0). We also deal with the binary alphabet in the case
of spaced seeds. On the contrary, indel seeds use the alignment alphabet Σ = Σδ =
{0, 1, 2, 3}, where additionally 2 denotes an insertion in the database sequence, and
3 indicates an insertion in the query sequence. There are various other alignment
alphabets, e.g. the ternary alphabet representing match / transition / transversion
in DNA [94], or even larger alphabets to distinguish different pairs of amino acids
in the case of proteins [19].

A random alignment can be modeled by a kth-order Markov chain or an HMM. Usu-
ally, we use a first-order Markov chain (Σ, P, p0) with stochastic transition matrix P
on the alignment alphabet Σ and initial distribution p0. Corresponding parameters
are referred to as homology parameters.

If we consider the binary case Σ = {0, 1} and an i.i.d. homology model, where the
transition probability Pij does not depend on i, then p0 = (1− p, p) and

P =
(

1− p p
1− p p

)

82

5.2 Underlying String Models

with a match probability p ∈ [0, 1] which quantifies the average percent identity of
such alignments. In this case, p is the only homology parameter. Using indel seeds,
a first-order Markov chain is appropriate to model sequence alignments, since this
allows to respect that a substitution is more plausible than two consecutive indels
(one in each sequence). Hence, the homology model should prohibit the pairs ‘23’
and ‘32’ in a representative string. With the intention to compare our results later
on, we work with the transition matrix P proposed by [79]. There,

P =

0 1 2 3

0 p0 p1 pg pg
1 p0 p1 pg pg
2 p∗0 p∗1 pg 0
3 p∗0 p∗1 0 pg

, (5.2.1)

where p0 is the probability of a mismatch, p1 is the probability of a match, and pg
refers to the probability of a gap in the alignment. In order to ensure a stochastic
transition matrix, p∗i = pi + pgpi/(p0+p1) for i = 0, 1. This results from distributing pg
to matches and mismatches. The initial distribution is given by p0 = (p0, p1, pg, pg).
Other transition probabilities are possible, e.g. if alignments with affine gap costs
should be modeled. Then, a transition of the form ’2’ 7→’2’ or ’3’ 7→’3’ is related to
gap extension, the other gap probabilities are replaced by the probability corre-
sponding to gap opening.

We conclude this section with a few remarks. From the biological perspective, even
sequences with high degree of sequence similarity may be evolutionarily unrelated
and other sequences may be homologous although their DNA sequences differ in
large parts of the genome. This might indicate that the i.i.d. model over- or under-
estimates the number of homologous sequences (depending on p). Hence, several
groups investigated more involved homology models (often based on HMMs). These
were usually designed and trained for a special type of sequences, e.g. for coding
and non-coding DNA regions or for protein sequences.

5.2.2 Seed Model

A seed π = π[1]π[2] . . . π[`π] is a string over an alphabet Ξ of “care” and “don’t care”
characters (not to be confused with the alignment alphabet Σ). It represents align-
ment regions that indicate matches at the “care” positions. A seed is classified by
(`π, ω): its length `π = |π| and its weight ω, which refers to the number of “care”
positions.

A consecutive seed is a continuous sequence of “care” positions.

A spaced seed is a string over the alphabet Ξ = {1, ∗}. The “care” positions are
indicated by ‘1’, while ‘∗’ refers to a match/mismatch wildcard. Reasonable seeds
for the purpose of homology search always require π[1] = π[`π] = 1.

83

5 Application II: Computing Alignment Seed Sensitivity

Figure 5.1: Exemplified use of the indel seed 11??11 to select candidate database se-
quences. Word extraction (as explained in the text) is shown for relevant positions.
Target 1 can be aligned to the query such that the resulting alignment is hit by the
seed. Hence, target 1 is selected as candidate, while target 2 is not.

An indel seed according to Mak et al. [79] is a string over the alphabet Ξ = {1, ∗, ?},
where ‘1’ and ‘∗’ are used as above and ‘?’ stands for zero or one character from the
alignment alphabet Σδ = {0, 1, 2, 3}. Two consecutive ‘?’ symbols may not represent
‘23’ or ‘32’, because in an alignment such a case would rather be described by
one mismatch (0). This seed model explicitly allows for indels of variable size. We
explain how indel seeds are used in the filtration step by the following example.
For a more detailed description, the reader is referred to the original article.

Example 5.2.1. The indel seed 11??11 permits indels of size zero, one, or two rather
than forcing two indels. This implies that ’?’ can also refer to a match/mismatch
position. Query and database sequences are processed as follows. For each position
i in a sequence s, we extract three words s[i− 5, i− 4]s[i− 1, i], s[i− 4, i− 3]s[i− 1, i],
and s[i−3, i−2]s[i−1, i] ending at this particular position, because the indel size can
be zero, one, or two (at the borders we extract less words because of edge effects).
Then, extracted words from the query (group A) are compared to extracted words
from the database sequence (group B). If any word from A matches any word from
B, the database sequence is selected as a candidate sequence. In Figure 5.1, the
extraction is shown for position i = 9 in the query and position 8 in each of the two
target database sequences. The displayed alignment of target 1 and the query is
hit by the indel seed and thus, target 1 would be selected as a candidate for further
investigation.

According to Burkhardt and Kärkkäinen [21], a (consecutive or spaced) seed is
uniquely determined by its relative position set RP(π) = {x1, x2, . . . , xω} = {y ∈
{1, . . . , `π} |π[y] = 1}, where we constrain x1 = 1 and xω = `π as mentioned before.
Therewith, the pattern set, that is the set of all words described by π, is usually
defined as PS(π) = {T ∈ Σ`π |T [xi] = 1 , 1 ≤ i ≤ ω}. Some authors even define a
seed as such an ordered list of indices, see [116]. Note that for indel seeds, the

84

5.2 Underlying String Models

definition of the relative position set is not adequate. Hence, to define a general,
unifying model, we introduce generalized seeds.

Definition 5.2.2 (Generalized seed). Let Ψ = {[1], [01], [ε0123]} contain the character
sets induced by Ξ, where we write [xy] as shorthand for {x, y}, and let π be a seed
over Ξ. The generalized seed that refers to π is G(π) = g(π[1]) . . . g(π[`π]), where
g : Ξ→ Ψ is a mapping such that ’1’ 7→ [1], ’∗’ 7→ [01], and ’?’ 7→ [ε0123].

This enables a novel definition of the set of patterns corresponding to a given
seed.

Definition 5.2.3 (Pattern set). Let π = π[1]π[2] . . . π[`π] be a seed of length `π over
the alphabet Ξ. The pattern set

PS(π) =
{
s = s[1] . . . s[`π] | s[i] ∈ g(π[i])

}
contains all words satisfying the seed, i.e. all strings that match G(π).

Example 5.2.4. For the spaced seed π =1∗1∗1 of length 5 and weight 3 (class
(5, 3)), G(π) = [1][01][1][01][1] and PS(π) = {10101, 10111, 11101, 11111}. The patterns
of the indel seed π =1∗1?1 with G(π) = [1][01][1][ε0123][1] are given by PS(π) =
{1011, 1111, 10101, 10111, 10121, 10131, 11101, 11111, 11121, 11131}.

Definition 5.2.5 (Hit position). A seed π hits the representative string A ending at
position i if and only if there exists an

M ∈ PS(π) such that A[i− |M |+ 1, i] = M .

Example 5.2.6. For the representative string A = A[1, 16] = 1011111001111101 for
instance, the consecutive seed 1111 hits ending at positions 6, 7, 13, and 14, the seed
π = 1 ∗ 11 ∗ 1 hits at positions 6 and 16, and the indel seed π =11∗1?1 hits at positions
7, 14 and 16, respectively.

Since it has been shown that, considering ungapped alignments, spaced seeds
outperform consecutive seeds with respect to filtration efficiency [20, 26, 71], we
will from now on concentrate on spaced seeds for ungapped alignments. Why are
spaced seeds better than consecutive seeds (of the same weight)? To get an in-
tuition, note first that the random hit rate of a seed is mainly controlled by its
weight. If we assume uniformly distributed character frequencies (all nucleotides
occur with probability 1/4), the probability that two nucleotides within the aligned
sequences match just by chance is 4 ∗ 1/4 ∗ 1/4 = 1/4. Thus, a seed of weight ω has
probability 1/4ω to hit an alignment of random sequences. This is referred to as
random hit rate. In fact, two seeds with the same weight generate approximately
the same number of overall hits [76]. On the other hand, if a consecutive seed
hits an alignment, it is very likely that it hits again at the next position (cf. Exam-
ple 5.2.6), since it only requires one more match position. Therefore, a consecutive
seed tends to hit an alignment more often than a spaced seed of the same weight.

85

5 Application II: Computing Alignment Seed Sensitivity

Consequently, the spaced seed will (usually) detect more similarities and thus, will
have better sensitivity.

The idea to use a finite, non-empty set Π = {π1, . . . , πm} of spaced seeds, called
multiple spaced seed, turned out to further improve the quality of filtering [17,
20, 70, 116]. The reason for that is simple: any given seed may fail to detect
some homologies. But, different seeds tend to fail at different homologies. Hence,
using a combination of seeds whose detection abilities are complementary should
significantly improve the overall detection rate. However, increasing the sensitivity
generally implies a decrease in specificity. Let us analyze this relation at this
point.

In general, there are two alternatives to trade sensitivity for specificity. One pos-
sibility to substantially increase sensitivity is to reduce the number of required
match positions. This in turn results in an exponential increase (of magnitude 4
or 20 if we assume i.i.d. random DNA or protein sequences with uniformly dis-
tributed character frequencies as explained earlier) in the false positive rate and
hence decreases specificity and search speed. The other possibility is to add seeds
to the search algorithm. As pointed out by Sun and Buhler [116], this increases
the false positive rate at most linearly and is thus more attractive than reducing
the weight of a single seed.

The patterns of a multiple seed Π are collected in PS(Π) = ∪mi=1PS(πi). A multiple
seed is said to hit A if at least one of its components does (in contrast to Pevzner
and Waterman [99] where all seeds are required to match). From now on, for the
sake of generality, we use Π also for single seeds, i.e. Π = {π}.

5.3 Computing Seed Sensitivity with a PAA

As we have motivated, sensitivity is a measure for the quality of seeds and hence,
for the quality of seeded alignment. It is used in order to compare seeds as well as
to design good sets of seeds. We show that the framework of Probabilistic Arithmetic
Automata (PAA) provides a general and flexible approach to exact seed sensitivity
computation. While it covers recent methods [20, 26, 64], the PAA framework can
handle both ungapped and gapped alignments. Moreover, it allows the investi-
gation of overlapping and non-overlapping hits of a single or a multiple seed as
discussed in Section 2.1. It yields recurrence relations to compute the entire hit
distribution and in particular seed sensitivity. From these recurrences, we also
derive a polynomial which allows a fast computation for any parameter set.

5.3.1 Automaton Construction

In order to answer the posed questions (Problem 1, Problem 2), the PAA should
be designed such that (a) the underlying Markov chain generates a proper random
sequence alignment, and (b) the number of seed hits to the alignment are counted.

86

5.3 Computing Seed Sensitivity with a PAA

This is to say that at each position of the alignment, the number of matches ending
there is emitted and added to the current count. To this end, we associate to
each state the operation “+”. Thus, in terms of emission and value processes,
Vl = Vl−1 + Zl with V0 = 0, reducing the free parameters of the sought PAA to(
Q,T, q0, E, e = (eq)q∈Q

)
.

Given the homology model (Σ, P, p0), we first construct a Markov chain (Q,T, δq0)
that generates an appropriate random sequence alignment. Since we deal with a
probabilistic pattern matching problem for the set of patterns satisfying a seed Π,
the set of states Q can be represented by all prefixes of those patterns (following
Section 2.1.2). Further, we introduce the (remaining) characters from the align-
ment alphabet as supplementary states, and a start state q0 = ε to ensure the
initial character distribution. Thus, the state space of a seed Π is given by

Q(Π) = {ε} ∪ {σ ∈ Σ} ∪
⋃

M∈PS(Π)

Prefixes(M) . (5.3.1)

We mark a finite set F of final states in order to distinguish states that contribute
to the number of seed hits. In contrast to ACA(W), where F = W , here the final
states are those hit by Π, that is F = {q ∈ Q | ∃M ∈ PS(Π) : M J q}.

Remark 5.3.1. In the case that |Π| > 1, we use Hopcroft’s algorithm [50] to minimize
the size of the state space as mentioned in Section 2.1.1. Here, the initial partition
is induced by grouping states with the same emitted value C(q), the same ingoing
and the same outgoing transition probability (depending on the last character in the
case of Markov transitions). Certainly, testing for equivalent character transitions is
not necessary for the simple case of an i.i.d. alignment model.

The transitions again remind us of the ACA. Nevertheless, we need to describe
(outgoing) transitions for every character σ ∈ Σ which implies the following al-
ternative failure function. There is a non-zero outgoing transition from state
u to state v if v is the maximal suffix of uσ, that is if there exists a σ ∈ Σ
such that v = argmaxx∈Q∩Suffixes(uσ) |x|. The corresponding transition probability
is Pu[|u|−1]σ = P(σ |u[|u| − 1]), where the conditional probabilities are given by the
homology model. Thus, in the i.i.d. case it is just the character frequency pσ. The
stochastic state transition matrix of the PAA with u, v ∈ Q is therefore given by

Tuv =

p0
σ if u = ε, v = σ ∈ Σ,
Pu[|u|−1]σ if u 6= ε, ∃σ ∈ Σ : v = argmaxx∈Q∩Suffixes(uσ) |x|,
0 otherwise.

(5.3.2)

The so constructed Markov chain (Q, T , δε) generates a random sequence align-
ment whose similarity level is specified by the homology parameters. It is adapted
to a given seed through the choice of states.

Here, we can easily introduce a variant that shows the flexibility of the PAA ap-
proach. Modifying the Markov chain transitions outgoing from a final state, the

87

5 Application II: Computing Alignment Seed Sensitivity

(a) PAA counting overlapping hits of π =1∗1. (b) PAA for non-overlapping hits of π =1∗1.

Figure 5.2: Sketch of the PAA constructed for π =1∗1. Part (a) shows the transitions in
order to count all occurrences of π in a random alignment over Σ = {0, 1} generated
according to the i.i.d. model with match probability p. Part (b) is designed to count
non-overlapping hits.

model is suited to count non-overlapping seed occurrences. We will use these in
Section 5.4.4 in order to define an alternative criterion to rate seed quality. The
modification comprises the following: whenever a hit has been found, the Markov
chain has to start again in one of the states representing the next character to
read. To this end, we set the transitions outgoing from a final state u ∈ F to

Tuv =

{
P1σ if v = σ ∈ Σ,
0 if v /∈ Σ,

since the last character read was a 1 (by definition). Then, the Markov chain
becomes reducible, and we remove states from Q that are not reachable from ε.
Figure 5.2 shows an example with Markov chains adapted to overlapping and non-
overlapping hits.

In order to count the number of seed hits, we still need to assign the family e =
(eq)q∈Q of weight output distributions. To this end, let C(q) denote the number of
hit counts in state q ∈ Q. Then,

C(q) = |{M ∈ PS(Π) : M J q}| . (5.3.3)

Consequently, we deal with the emission set E = {0, 1, . . . , cmax}, cmax =
maxq∈QC(q), and |E|-dimensional Dirac measures eq assigning probability 1 to C(q).
Note that C(q) = 0 for states q /∈ F . Moreover, in the case of non-overlapping hits,
C(q) = 1 for all q ∈ Q, because of the reduced state space.

Corollary 5.3.2. The PAA
(
Q,T, q0 = ε, E = {0, 1, . . . , cmax}, e = (eq)q∈Q

)
with Q and

T given in equations (5.3.1) and (5.3.2), and eq = δC(q) with C(q) given in Equa-
tion (5.3.3), counts the number of hits of a given seed Π to a randomly generated
sequence alignment according to the specified homology model. The inherent Markov
Additive Chain (Vl)l∈N0 with

V0 ≡ 0

88

5.3 Computing Seed Sensitivity with a PAA

Vl = Vl−1 + C(Yl)

yields the number Vt of accumulated hits in a random alignment of length t.

Remark 5.3.3. If we want to explicitly specify the number of overlapping or non-
overlapping hits, we write Vt;o or Vt;n, respectively.

Construction time.

As presented in Section 2.1.2, the ACA can be constructed in linear time, propor-
tional to the total length of keywords (patterns). This includes an elegant algorithm
to set up the failure function in linear time. Although already Aho and Corasick
[2] formulated a linear-time algorithm in their original work, we point to Dori and
Landau [36] who used the suffix tree of the reversed patterns. Following their
approach, we can construct the presented PAA in O(|Σ| · (` + |Σ|)) time and space
according to the observations hereafter.

Let ` =
∑

M∈PS(Π) |M | denote the total length of seed patterns. Then, the state
space Q of the PAA (5.3.1) is of size O(`+ |Σ|), and the number of transitions is of
order O(|Σ| · (`+ |Σ|)). To derive the transitions and the number C(q) of hits in each
state q ∈ Q, we use the suffix tree of the reversed seed patterns. This is constructed
during one scan of the patterns, in time proportional to ` [46]. Within a depth-first
traversal of the tree, states are labeled with the number of prefixes that represent
a reverse pattern, cumulating the numbers of a branch. This can be done in
O(` · |Σ|) time since we read each reverse pattern in the suffix tree and annotate
the corresponding vertex. Transferring these numbers to the corresponding states
in the PAA completes the construction and precomputation of C in time and space
O(|Σ| · (`+ |Σ|)).

Remark 5.3.4. In our first approach to apply the PAA framework to the context of
seed sensitivity computation, we used all `max-mers as states, where `max refers to
the maximal length of a seed from Π. In that case, the state space is of size O(|Σ|`max)
with O(|Σ| · |Σ|`max) transitions. The number of `max-mers grows exponentially with
the length of the longest seed, whereas in the approach presented in this chapter,
the number grows only exponentially with the number of wildcards. Consequently,
when the number of wildcards throughout the seeds is smaller than `max, we now
have to deal with substantially less states. Indeed, this is the relevant case in
multiple seed design in order to ensure high specificity (few random hits).

5.3.2 Hit Distribution and Seed Sensitivity

In order to compute the sensitivity of a given seed Π (Problem 1) and its entire hit
distribution (Problem 2) for a target alignment length t, we seek the distribution
L(Vt) of accumulated seed hits. This is obtained by marginalization from the joint

89

5 Application II: Computing Alignment Seed Sensitivity

state-value distribution ft(q, k) = P(Yt = q, Vt = k) as described in Section 2.4. Here-
with, we can reformulate the mentioned problems. Seed sensitivity is commonly
defined as

S(Π, t) = P(Vt ≥ 1) = 1− P(Vt = 0) = 1− ft(0) . (5.3.4)

It is related to the hit distribution, i.e. the frequency of alignments of length t that
contain exactly k hits:

P
(
{A | |A| = t, Vt = k}

)
= P(Vt = k) = ft(k) for k ≥ 0 . (5.3.5)

The constructed PAA yields the following system of recurrence relations:

fl(q, k) =
∑
q′∈Q

fl−1(q′, k − C(q))Tq′q for q ∈ Q, l ≥ 1, (5.3.6)

with initial condition f0(ε, 0) = 1.

Space and Time Consumptions.

In order to efficiently implement the computation of seed sensitivity, we make use
of the vector Fl(0) =

(
fl(q, 0)

)
q∈Q and the update formula Fl(0) = Fl−1(0)T ′. By T ′, we

denote the transition matrix projected to the columns representing q with C(q) = 0.
This means, all entries within a column corresponding to a state hit by Π are set
to 0 in order to ensure fl(q, 0) = 0 for q with C(q) > 0. Likewise, we use a vector
update for the computation of the hit distribution fl(q, k) for k ≥ 1. For this purpose
we store the matrix Fl =

(
fl(q, k)

)
q∈Q,0≤k≤t−`min+1

to compute Fl+1, where `min refers
to the length of the shortest seed within Π.

For the computation of seed sensitivity (Problem 1), we store the transition matrix
as well as the vector C of emission counts for constant-time access. Further,
for each update step we store two vectors Fl−1(0) and Fl(0) of size |Q|. Together,
this consumes O(|Q|2) space, where |Q| is of order O(` + |Σ|). The vector update
then takes O(|Q|2) time. Hence, we can compute the sensitivity S(Π, t) in time
O(t · |Q|2).

The space consumption of the PAA to compute the entire hit distribution (Prob-
lem 2) is O(|Q| · (t + |Q|)), since for each update step we now store two tables Fl−1

and Fl. The corresponding computation time is of magnitude O(t · |Q|2), when C
has been stored during the construction. Since |Q| grows exponentially with the
number of wildcards (even after minimization), the memory requirements to store
the state transitions are the method’s bottleneck. For instance, we observed a
multiple seed consisting of only three seeds that produces a minimal automaton
of size |Q| = 60, 000. This means, we have to allocate memory for 3, 600, 000, 000
doubles (8 byte), resulting in approximately 26.8 GB. Even if we scale the probabil-
ities storing integers (4 byte), we need about 13.4 GB memory. In such cases, the
approximate methods by Ilie and Ilie [52] or Kong [60] are certainly preferable.

90

5.4 Results: Comparison to Other Methods

Parameter free calculation.

Another advantage of our approach is the possibility to represent the recurrence
relation in a symbolic manner. Such a parameter-free calculation has previously
been presented by Mak and Benson [80]. Without setting the homology parame-
ters in advance, a polynomial (in these parameters) can be computed from Equa-
tion (5.3.6) by means of a computer algebra system like Mathematica R©. The poly-
nomial obtained for the PH seed 111∗1∗∗1∗1∗∗11∗111 under an i.i.d. homology model
for ungapped alignments of target length 64 is provided in (5.3.7).

1− q7(120 p57 + 60046 p56q + 6454323 p55q2 + 268389309 p54q3 + 5829433985 p53q4

+ 78663279218 p52q5 + 736493116933 p51q6 + 5158005916919 p50q7 + 28506821936930 p49q8

+ 129302147880455 p48q9 + 495710355475511 p47q10 + 1642746872975316 p46q11

+ 4788458918512655 p45q12 + 12446316851341899 p44q13 + 29162078256160894 p43q14

+ 62130106545519883 p42q15 + 121208665847580369 p41q16 + 217759100297917382 p40q17

+ 361933096117132953 p39q18 + 558610847453807986 p38q19 + 803021552527398866 p37q20

+ 1077778533431254331 p36q21 + 1353148889713300599 p35q22 + 1591547502223381478 p34q23

+ 1755650543264156900 p33q24 + 1817824562288653658 p32q25 + 1767643947486681481 p31q26

+ 1614719381147262338 p30q27 + 1385790635445210792 p29q28 + 1117254821139848731 p28q29

+ 845940164130258653 p27q30 + 601264312631447468 p26q31 + 400925632502881515 p25q32

+ 250609569910552071 p24q33 + 146708890435753575 p23q34 + 80343866157172783 p22q35

+ 41107080446425363 p21q36 + 19619517499141187 p20q37 + 8719836468607201 p19q38

+ 3601681546299789 p18q39 + 1379369096282095 p17q40 + 488526802204385 p16q41

+ 159518986099945 p15q42 + 47855698857794 p14q43 + 13136858747458 p13q44

+ 3284214700565 p12q45 + 743595781777 p11q46 + 151473214816 p10q47

+ 27540584512 p9q48 + 4426165368 p8q49 + 621216192 p7q50 + 74974368 p6q51

+ 7624512 p5q52 + 635376 p4q53 + 41664 p3q54 + 2016 p2q55 + 64 pq56 + q57)

(5.3.7)

Herewith, one can quickly assess the sensitivity of a seed under different param-
eter values. This strategy is of particular interest when we investigate optimal
parameter ranges of competing seeds. We will see later (in Section 5.4.3) that
different seeds turn out to be optimal for different similarity levels.

5.4 Results: Comparison to Other Methods

In this section, we show that the sensitivity computed by means of the presented
PAA agrees with formerly published values. Notice that the PAA approach com-
prises seed models for ungapped and gapped alignments, and appropriate homol-
ogy models. Furthermore, we give exact probabilities for the sensitivity of a multi-
ple seed as well as for the entire distribution of the number of seed hits to a random
alignment. We present a greedy-covering algorithm to design good multiple seeds
and finally, we discuss alternative criteria to rank seeds. Since PH was the first
tool that investigated spaced seeds and thus improved the sensitivity/specificity
trade-off significantly, subsequently designed seeds were usually compared to the
default PH seed πPH = 111∗1∗∗1∗1∗∗11∗111. Moreover, the analyses focussed on the
PH seed class (18, 11). In order to compare to existing results, we follow the field.

91

5 Application II: Computing Alignment Seed Sensitivity

Table 5.2: Sensitivity of the four top-ranking seeds from the PH seed class (18, 11) under
the i.i.d. model for different homology parameters and target length 64. For lower homol-
ogy levels, the PH seed πPH = 111∗1∗∗1∗1∗∗11∗111 is optimal. For high similarity levels,
the second seed is more sensitive.

p πPH 111∗∗1∗11∗∗1∗1∗111 11∗1∗1∗11∗∗1∗∗1111 111∗∗11∗1∗∗1∗1∗111

0.1 4.69997× 10−10 4.69979× 10−10 4.70020× 10−10 4.69934× 10−10

0.2 9.62340× 10−7 9.62336× 10−7 9.62332× 10−7 9.62334× 10−7

0.3 8.30140× 10−5 8.30085× 10−5 8.30049× 10−5 8.30065× 10−5

0.4 0.00193 0.00193 0.00193 0.00193
0.5 0.02120 0.02118 0.02117 0.02117
0.6 0.13172 0.13158 0.13140 0.13140
0.7 0.46712 0.46698 0.46613 0.46602
0.8 0.88207 0.88240 0.88142 0.88121
0.9 0.99843 0.99848 0.99842 0.99840

5.4.1 Spaced Seeds

Spaced seeds have previously been intensely studied by many authors. We ex-
emplarily show that our approach yields the same sensitivity values. To this end,
we consider the PH seed class (18, 11) and the class (11, 7) with a target alignment
length t = 64 as it has been done by Choi and Zhang [26]. Regarding the same
(top-ranking) four seeds, we computed the sensitivities shown in Tables 5.2 and
5.3.

In general, the computed sensitivities agree with those determined in the orig-
inal article [26] (data not shown). However, values given there for class (11, 7)
and low similarity levels are erroneous. Instead of sensitivity 0.05398 for p = 0.1
we computed 5.39821 × 10−6, and instead of sensitivity 0.1140 for p = 0.3 our re-
sult is 0.01140. Our values are consistent with the polynomial obtained from the
recurrences. Furthermore, our results agree with the following plausibility ar-
gument: Let hi be the probability of the event that the seed from (11, 7) hits the
random alignment at position i. If we assume independence of positions, then
hi = p7(1−p)4+4p8(1−p)3+

(
4
2

)
p9(1−p)2+

(
4
3

)
p10(1−p)+p11 for all positions 11 ≤ i ≤ 64.

For p = 0.1 this rough calculation yields a sensitivity of 5.40021×10−6, which shows
that our results exhibit the appropriate magnitude.

5.4.2 Indel Seeds

To show that our approach also works for indel seeds and thus for alignments
with gaps, we compared our results to sensitivities provided by Mak et al. [79]. To

92

5.4 Results: Comparison to Other Methods

Table 5.3: Sensitivity of the four top-ranking seeds from the seed class (11, 7) under the
i.i.d. model for different homology parameters and target length 64.

p 11∗∗1∗1∗111 11∗1∗∗1∗111 11∗1∗1∗∗111 1∗111∗∗1∗11

0.1 5.39821× 10−6 5.39820× 10−6 5.39822× 10−6 5.39786× 10−6

0.2 6.87015× 10−4 6.86994× 10−4 6.87002× 10−4 6.86520× 10−4

0.3 0.01140 0.01140 0.01140 0.01137
0.4 0.07772 0.07764 0.07763 0.07738
0.5 0.29376 0.29302 0.29294 0.29218
0.6 0.66225 0.66005 0.65992 0.65954
0.7 0.93649 0.93473 0.93468 0.93516
0.8 0.99805 0.99786 0.99786 0.99796
0.9 0.9999992 0.99999892 0.99999892 0.99999914

Table 5.4: Sensitivity of indel seeds. Homology parameters are given as (t,p1,p0,pg). We
compare the sensitivities given by Mak et al. [79] to our values.

indel seed homology parameters Mak et al. [79] our sensitivity

11∗11?1∗1111 (64, 0.7, 0.25, 0.025) 0.775944 0.777538
11∗11?1∗1111 (100, 0.7, 0.25, 0.025) 0.915175 0.915521
11111∗111?1111 (64, 0.7, 0.2, 0.05) 0.368235 0.373607
11111∗111?1111 (100, 0.7, 0.2, 0.05) 0.536510 0.536843
1111111?11111 (64, 0.75, 0.1, 0.075) 0.612365 0.613500
1111111?11111 (100, 0.75, 0.1, 0.075) 0.792340 0.792590

this end, we investigated different seeds under a Markov homology model with Σ =
{0, 1, 2, 3} and transitions according to (5.2.1). Note that in the original article, the
authors use normalized positions. This means, only positions in the representative
string that refer to a character in the query are counted. Thus, any 2 in A does
not contribute to the target alignment length t. We used the expected number t̄ of
characters to read up to the tth normalized position and computed S(π, t̄) as well as
S(π, t) according to Equation (5.3.4). The results in Table 5.4 and Table 5.5 show
that sensitivity S(π, t) is in general overestimated when using normalized positions
(Mak et al. [79], S(π, t̄)). The reason for this is that some alignments are ignored,
although sensitivity is defined as the fraction of sequence alignments among all
local alignments that are matched by the seed. Comparing spaced and indel seeds
of equivalent random hit rates, Mak et al. [79] observed that with increasing indel
to mismatch ratio, indel seeds outperform spaced seeds, even if the “winning seed”
changes with target length. Our method yields the same results (see Table 5.5).
Note that the random hit rate for indel seeds depends on its weight as well as
on the number of comparisons between any query and database pattern. For

93

5 Application II: Computing Alignment Seed Sensitivity

Table 5.5: Sensitivity of pairs of spaced and indel seeds with equivalent random hit rates
for different homology parameters (t,p1,p0,pg). We compare the sensitivities given by Mak
et al. [79] to our values S(π, t̄) and S(π, t). Winning seeds are shown in bold.

seed homology parameters Mak et al. [79] S(π, t̄) S(π, t)

1111∗111111 (64, 0.7, 0.2, 0.05) 0.488697 0.494082 0.470369
1111∗111?1111 (64, 0.7, 0.2, 0.05) 0.487703 0.492503 0.468351

1111∗111111 (100, 0.7, 0.2, 0.05) 0.669123 0.668821 0.649304
1111∗111?1111 (100, 0.7, 0.2, 0.05) 0.670198 0.669884 0.650131

111∗11∗1111 (64, 0.8, 0.15, 0.025) 0.943899 0.943609 0.937750
111∗11?11∗111 (64, 0.8, 0.15, 0.025) 0.943214 0.942985 0.936985

111∗11∗1111 (100, 0.8, 0.15, 0.025) 0.991157 0.990945 0.989497
111∗11?11∗111 (100, 0.8, 0.15, 0.025) 0.991239 0.991044 0.989594

instance, the random hit rate of the seed 11??11 is approximately 9 · (1/4)4, since
for each query position we extract and compare three query patterns with three
database patterns (refer to Example 5.2.1) which are required to match at four
positions. The accurate probability is actually a little less, because the extracted
patterns are not independent.

Remark 5.4.1. The restriction to one ‘?’ follows the original article [79]. Indel seeds
with more ‘?’ wildcards produce a different number of random hits and thus have to
be compared to different spaced seeds.

5.4.3 Multiple Seeds

It is already NP-hard to find a single globally optimal seed [70]. Namely, we have
to compute the sensitivity for all seeds of a given class, and the computation takes
O(t · |Q|2) time for a single seed. In the case of multiple seeds, exhaustive search
to find the optimal seed is infeasible because there are two exponential factors.
Besides the exponential number of seeds in a given seed class, also the search
space, i.e. all combinations of seeds of equal weight, grows exponentially with
the number n of seeds. However, “good” multiple seeds are computed by heuristic
algorithms presented in [60] and [52]. These approaches use different quality mea-
sures correlated with sensitivity. Our exact sensitivity values indicate that their
approximations are reasonable (see Table 5.6). As expected, since both methods
are exact, our values agree with the dynamic programming algorithm presented
by Li et al. [70] (data not shown).

Recall that by adding seeds to the search algorithm, we can substantially increase
the method’s sensitivity while the false positive rate is increased at most linearly
(Section 5.2.2). To obtain a good multiple seed, we seek for seeds that produce ap-
proximately the same number of overall hits (regulating the specificity), while their

94

5.4 Results: Comparison to Other Methods

Table 5.6: Sensitivity of formerly approximated multiple seeds. Target alignment length
is 64, similarity levels are given in parentheses. Besides, we give the size of the PAA
before and after minimization. Considered sets of seeds are A = {11∗1∗11∗∗11∗1111,
111∗11∗∗1∗1∗1∗∗111}, B = {111∗1∗1∗∗1∗11∗111, 1111∗∗∗1∗∗1∗∗∗1∗1∗111}. We compare our
exact sensitivities to approximated values given by Kong [60] (1) and Ilie and Ilie [52] (2).

multiple seed |Q| |Qmin| approximated sensitivity our sensitivity

A (p = 0.75) 902 498 0.815865 (1), 0.823314 (2) 0.820278
A (p = 0.50) 902 498 0.038393 (1), 0.038554 (2) 0.038855
B (p = 0.70) 6276 1563 0.621992 (2) 0.581914

detection abilities are complementary (maximizing sensitivity). Since the overall
number of hits is mainly determined by the weight, seeds in a multiple seed are
limited to the same weight.

We can also apply the PAA framework to design efficient sets of seeds in a greedy
manner. The corresponding algorithm is summarized in Algorithm 5.1. Similar to
[116], we can successively find seeds (of the same weight and a length at most L)
with a complementary set of detectable similarities, i.e. seeds that locally maximize
the conditional probability to hit a random alignment, given that the seeds in the
set do not match:

P(Vt(π) ≥ 1 |Vt(Π) = 0) for π /∈ Π . (5.4.1)

To this end, we start from the PAA for an initial seed Π = {π0}. Then, for all seeds
of the same weight and a length limited by L, we modify a copy of the current PAA
such that we can compute the conditional hit probability. The modification in-
cludes that states corresponding to PS(Π) are marked as accepting states and are
removed from the set of final states (line 9). Transitions outgoing an accepting state
are set to zero, i.e. once the automaton visits one accepting state, it stays there.
Thus, the automaton does no longer count alignments which are also matched by
Π. The seed exhibiting the maximal conditional hit probability is chosen as new
member of the multiple seed. This procedure is repeated (n − 1) times to generate
a set of n seeds.

It has been shown by Sun and Buhler [116] that this greedy design yields nearly
the same results as the local search implemented in the Mandala software [20],
whereas it has a clear advantage in computational cost. The authors identified
a seven-fold speedup. This results from the following facts. The local search
method starts with n randomly chosen seeds, which are successively modified
until no further local improvement in sensitivity is possible. In contrast, greedy
covering starts with one seed and has to optimize only one seed in each step.
Moreover, most evaluations are performed on sets of n′ < n seeds. Clearly, there is
no guarantee that the sensitivity of a greedily designed multiple seed is as high as
the sensitivity of a set designed simultaneously. To improve the quality of greedy
design, one can, for instance, restart the procedure for several initial seeds.

95

5 Application II: Computing Alignment Seed Sensitivity

Algorithm 5.1 DESIGNMULTIPLESEED

Input: initial seed π0 with weight ω, Π = {π0}, PAA(Π) constructed from PS(π0),
number of seeds n

Output: multiple seed Π of size n
1: A ← PS(π0) //set of accepting states
2: F ← ∅ //set of final states
3: while |Π| < n do
4: max ← 0
5: candidate ← ε
6: for all π /∈ Π with weight ω and |π| ≤ L do
7: PAA’ ← copy of PAA(Π)
8: add prefixes of π to PAA’
9: F ← PS(π)\A

10: set transition probabilities outgoing A to 0
11: hitProb ← P(Vt ≥ 1) in PAA’ //conditional hit probability
12: if hitProb > max then
13: max ← hitProb
14: candidate ← π
15: end if
16: end for
17: add candidate to Π, A ← A∪ PS(candidate)
18: end while
19: output Π

5.4.4 Alternative Criteria

In fact, a good seed for homology search should satisfy two competitive criteria:

1. It should maximize the sensitivity (hitting probability) to alignments referring
to homologous sequences.

2. At the same time, it should maximize the specificity (probability of no hit) to
alignments referring to random, unrelated sequences.

To this end, we investigated optimality criteria which take both conditions into
account. Instead of considering only one homology model and maximizing sensi-
tivity, we deal with two alternative homology models; one describing alignments of
homologous sequences, referred to as Mhom, and one describing alignments of ran-
dom, unrelated sequences, referred to as M0. Then, the random variables Vt(Mhom)
and Vt(M0) denote the number of hits of a given seed up to target length t under
the former and the latter model, respectively.

Furthermore, the PAA approach yields the entire distribution of overlapping and
non-overlapping seed hits. We also used this fact in order to describe alternative
criteria for seed quality, both under a single homology model as well as for the
presented competitive criteria. The first optimality criterion we defined intends
to rank seeds subject to their probability to produce at least two non-overlapping

96

5.4 Results: Comparison to Other Methods

hits in a random alignment generated according to a single homology model. This
corresponds to the FASTA approach [97]. There, several top-scoring initial hits are
combined to an optimal alignment if the penalty for joining them is small enough
such that the resulting score exceeds a specified threshold. We refer to this as the
fasta-hits criterion. Moreover, in analogy to the plausibility argument why spaced
seeds are more sensitive than consecutive seeds of the same weight (Section 5.2.2),
a seed should produce few (redundant) hits to a single alignment. Note that those
hits might overlap. We call the criterion ranking seeds according to the probability
to produce few overlapping hits the few-hits criterion.

Definition 5.4.2 (Optimality criteria based on seed hits). A seed from seed class
(`, ω) is said to be optimal if it maximizes

fasta-hits: P(Vt;n ≥ 2).

few-hits:
∑k

i=1 P(Vt = k) for k = 1, . . . ,K.

Sensitivity and Fasta-hits criterion

A good seed should be sensitive to alignments in a wide range of similarity values,
since homologous sequences also have diverse similarity. To analyze parameter
ranges in which seeds are optimal, we calculate the distributions (5.3.5) of over-
lapping and non-overlapping hits for all seeds from seed classes (11, 7) and (18, 11)
(data not shown). Then, we investigate the partitioning of the parameter space of
the i.i.d. homology model according to the fasta-hits criterion and seed sensitiv-
ity. Figure 5.3 shows the parameter ranges for best-performing seeds from the
PH seed class (18, 11) under both criteria for target alignment lengths 50, 64, and
100. In the course of our studies, we find that the seeds given in Table 5.7 are the
best-performing seeds under various homology parameters across different target
lengths.

Table 5.7: Seeds from seed class (18, 11) that occur frequently among the best-performing
seeds under various homology parameters, target lengths, and different optimality cri-
teria. Seed A is the default PH seed.

A 111∗1∗∗1∗1∗∗11∗111

B 111∗∗1∗11∗∗1∗1∗111

C 111∗1∗∗11∗1∗1∗∗111

D 11∗∗111∗1∗∗1∗111∗1
E 1111∗1∗11∗∗1∗∗∗111

For very low similarity levels p ≤ 0.25, i.e. in alignments with fewer matches than
would be observed by chance (under i.i.d. uniformly distributed characters), the
top-ranking seed alters frequently, which is denoted “miscellaneous”. First, we

97

5 Application II: Computing Alignment Seed Sensitivity

Figure 5.3: Parameter ranges for best-performing seeds from the PH seed class (18, 11)
according to sensitivity (top,gray) and the fasta-hits criterion (bottom) for the i.i.d. ho-
mology model at target alignment lengths 50, 64, and 100. The top-ranking seeds are
given in Table 5.7.

observe that (according to any criterion) different seeds are optimal for different
similarity levels. Furthermore, optimality ranges vary as homology region length
varies. These properties were also expected from earlier studies [20, 26, 27, 80].
Note, however, that the set of winning seeds according to sensitivity remains rela-
tively stable over a range of lengths, whereas there exist more differences accord-
ing to the fasta-hits criterion. Moreover, with increasing target alignment length,
both criteria agree in the top-ranking seeds for large parts of the parameter space.
Nevertheless, they choose different seeds for smaller alignment lengths and for
extreme values of p, i.e. to detect closely related and distantly related sequences.

For some parameters, the optimal seed has only a slightly higher sensitivity than
its competitors. In such cases, another criterion might help to identify a unique
seed. For instance, for t = 64 and p = 0.4, where the four top-ranking seeds have
almost the same sensitivity (cf. Table 5.2), we observed the PH seed A to maximize
the fasta-hits criterion clearly.

Few-hits criterion

Next, we investigate the few-hits criterion. It is based on the idea that a seed
producing less hits to an alignment, i.e. redundant hits in respect of detecting
similarities, finds more putatively homologous sequences and is thus more sensi-
tive. The few-hits criterion appoints a seed to be good if it hits alignments at least

98

5.4 Results: Comparison to Other Methods

once, but at most k times, for different values of k = 1, . . . ,K. We considered non-
overlapping hits, because otherwise the criterion would be too restrictive for high
similarity levels, where overlapping hits are very likely. The according probabilities
were computed up to K = 10 for the five seeds from class (18, 11) given in Table 5.7.
These were found to be the top-ranking seeds with respect to sensitivity and the
fasta-hits criterion, cf. Figure 5.3. For target alignment length t = 64, we analyzed
the few-hits probabilities under several homology parameter settings. The corre-
sponding rankings for p = 0.5, p = 0.7, and p = 0.9 are presented in Table 5.8. For

Table 5.8: Seed-ranking according to the few-hits criterion for the candidate seeds given
in Table 5.7 for target length 64 and homology parameters p = 0.5, p = 0.7, and p = 0.9 for
different parameters k = 1, . . . , 5. Rankings that agree with sensitivity are highlighted.

p = 0.5 p = 0.7 p = 0.9
k A B C D E A B C D E A B C D E

1 1 2 3 4 5 1 2 3 5 4 5 4 1 3 2
2 1 2 3 4 5 1 2 3 5 4 5 4 1 2 3
3 1 2 3 4 5 1 2 3 5 4 2 3 1 4 5
4 1 2 3 4 5 1 2 3 5 4 2 3 1 4 5
5 1 2 3 4 5 1 2 3 5 4 2 3 1 4 5

k = 6, . . . , 10, the rankings remain the same for all similarity levels. The rankings
that agree with the ranking according to sensitivity are highlighted. This shows
that in the majority of cases, the few-hits criterion is concordant with sensitivity.
Thus, our reasoning holds, but does not provide further information.

Sens-spec criterion

Furthermore, we considered an optimality criterion based on two i.i.d. homology
models Mhom and M0 with varying similarity levels phom and p0. An intuitive value
for p0 is 0.25, since this refers to the probability to observe a match just by chance.
We used the independence of Mhom and M0 and defined the following optimality
criterion in order to maximize the conjunction of the competitive conditions men-
tioned at the beginning of this section.

Definition 5.4.3 (Optimality criterion based on two homology models). A seed
from seed class (`, ω) is said to be optimal if it maximizes

sens-spec: P(Vt(Mhom) ≥ k) · P(Vt(M0) < k) for k = 1, . . . ,K.

This criterion is based on the idea to maximize sensitivity for Mhom and speci-
ficity for M0, which refers to the case k = 1. To put it differently, it aims at
maximizing the probability to hit alignments of homologous sequences and at the
same time minimizing the probability to hit alignments of unrelated sequences,
i.e. computing P(Vt(Mhom) ≥ k)− P(Vt(M0) ≥ k) for k = 1, . . . ,K. This is essentially

99

5 Application II: Computing Alignment Seed Sensitivity

the same as sens-spec since Mhom and M0 are independent, and the probability
P(Vt(Mhom) ≥ k |Vt(M0) ≥ k) is close to one. Note that all criteria depending on k
are maximized for k = 1 since P(Vt ≥ k) decays exponentially with k.

We computed the sens-spec values for K = 10, t = 64, and various combinations of
phom and p0 for the candidate seeds given in Table 5.7. A selection of corresponding
seed rankings is presented in Table 5.9.

Table 5.9: Seed-ranking for the candidate seeds given in Table 5.7 for target length 64
according to the sens-spec optimality criterion and several homology parameters. Seed
rankings for the same value of phom agree for different p0.

phom = 0.50, p0 = 0.25 phom = 0.70, p0 = 0.25 phom = 0.90, p0 = 0.25
k A B C D E A B C D E A B C D E

1 1 2 3 4 5 1 2 3 5 4 3 1 2 4 5
2 5 4 3 2 1 1 3 2 5 4 2 1 3 4 5
3 5 4 3 2 1 2 4 3 5 1 2 1 3 5 4
4 5 4 3 1 2 5 4 3 1 2 1 2 3 4 5
5 5 4 3 1 2 5 4 3 1 2 1 2 3 5 4

phom = 0.50, p0 = 0.40 phom = 0.70, p0 = 0.40 phom = 0.90, p0 = 0.40
k A B C D E A B C D E A B C D E

1 1 2 3 4 5 1 2 3 5 4 3 1 2 4 5
2 5 4 3 2 1 1 3 2 5 4 2 1 3 4 5
3 5 4 3 2 1 2 4 3 5 1 2 1 3 5 4
4 5 4 3 1 2 5 4 3 1 2 1 2 3 5 4
5 5 4 3 1 2 5 4 3 1 2 1 2 3 5 4

We observe that, for the same phom, the rankings mainly agree irrespective of p0

(see Table 5.9). We found that this holds for the most part of rankings up to
p0 = 0.5. Typical alignments of unrelated sequences do not contain more than
50% matches. This means, in general, it suffices to consider one homology model
describing alignments of putatively homologous sequences.

Moreover, both tables show the dependence of seed ranking according to the sens-
spec criterion on the parameter k. As mentioned earlier, the case k = 1 corresponds
to the sensitivity/specificity tradeoff. In order to evaluate the quality of different
seed rankings, we made the following analysis:

1. We searched the nucleotides database from NCBI with BLASTALL for the
DNA sequence of the complete genome of Corynebacterium glutamicum ATCC
13032 as query.

2. The same search was performed by means of PH with each of the candidate
seeds from Table 5.7.

100

5.4 Results: Comparison to Other Methods

3. We compared the resulting hits from each PH search to the BLAST results
with the intention to note additional and missing hits.

This comparison yielded no distinction in the detection ability of the seeds since PH
and BLAST results were in agreement. For future research on this topic, a possible
approach to biologically judge different seed rankings would be the following: first,
one selects sets of sequences that are known to be homologous and that have a
certain degree of sequence similarity. Then, one performs a PH search for one of
the sequences as query in a nucleotide sequence database. A good seed should
yield all sequences in the selected set. Since different seeds have been shown to
be optimal for different similarity levels, this property should also be evident from
the analysis.

If we can get an intuition which k leads to the most reasonable ranking, it would
also be of interest to investigate more plausible homology models Mhom and M0.
In particular, training models for coding and non-coding regions should for in-
stance help to identify reasonable criteria and optimal seeds when searching for
homologous genes.

101

102

CHAPTER 6

APPLICATION III: 454 SEQUENCING
READ STATISTICS

In this chapter, we present another application of the PAA framework in the context
of DNA sequence analysis. Here, we construct a PAA that computes the length
distribution of sequencing reads produced by an up-to-date large-scale sequencing
technology.

First, we give a brief introduction to relevant DNA sequencing methods (Sec-
tion 6.1) and explain the 454 sequencing technology in particular (Section 6.2).
Then, we formulate a PAA to calculate the length distribution of sequence reads
resulting from the 454 sequencing method in Section 6.3. On this basis, we inves-
tigate a potential quality improvement of the sequencing method in Section 6.4.

6.1 Introduction to DNA Sequencing

DNA sequencing refers to the determination of the sequence of the four nucleotide
bases within a DNA oligonucleotide. First DNA sequences have been discovered by
laborious methods based on two-dimensional chromatography in the early 1970s.
Since then, with the development of dye-based labeling techniques and automated
analysis, sequencing methods became faster and more convenient. Today, knowl-
edge of DNA sequences (of genes or regulatory elements, for instance) has become
indispensable for the exploration of biological processes as well as for applied fields
like diagnostics or forensic research.

The advent of DNA sequencing has significantly accelerated biological research and
discovery. In 1990, the Human Genome Project was founded with the objective of
sequencing an entire human genome. An elaborate genome map would provide the

103

6 Application III: 454 Sequencing Read Statistics

basis for a better understanding of the molecular processes of complex diseases
like cancer, diabetes or Alzheimer’s disease. Related projects have revealed the
DNA sequences of many microbial, plant and animal genomes. In recent years,
these projects have driven the development of high throughput sequencing tech-
nologies that can parallelize the sequencing process, and hence yield thousands
or millions of sequences at once. Furthermore, these strategies are intended to
work at a lower cost, per sequenced nucleotide, than standard techniques. In-
deed, while sequencing a human genome first consumed 300 million U.S. dollars,
the costs have been reduced to 100, 000 dollars today. This advance makes the
1000 Genomes Project possible. Initiated in 2008, it should provide the entirely
sequenced genomes of approximately 1200 people from around the world during
the next three years. The intention is to generate a more detailed map of the
human genome and hence, get an improved picture of DNA variations, especially
so-called single nucleotide polymorphisms (SNPs). These point mutations, which
occur with a frequency of about 1%, are of special interest, because they can influ-
ence the development of diseases and the response to agents like drugs, chemicals
or pathogens. In biomedical research, SNPs are used to compare genomic regions
of individuals affected and not affected by a disease.

Craig Venter, whose genome was the first entirely sequenced [69], announced an
award of 500, 000 dollars for the group that first provides a human genome for
a price of only 1000 dollars. This indicates the direction of future progress. Al-
though higher throughput is achieved at the expense of shorter sequence reads
(DNA fragments), which implicates the need for improved genome assembly tools,
the subject of cost-efficient massively parallel DNA sequencing plays an important
role in today’s molecular biology, especially in biomedical research. One famous
representative of such second-generation sequencing strategies, allowing for par-
allelization, is Roche’s 454 sequencing. We outline this technology after a brief
review of traditional methods.

6.1.1 Sanger Sequencing

The possibility to “read” the sequence of nucleotides has induced the era of genome
research and the application of bioinformatics tools in sequence analysis. The first
sequencing methods were introduced by Maxam and Gilbert [86] and Sanger et al.
[109] in 1977. Since Sanger’s chain termination technique uses less toxic chemi-
cals and lower amounts of radioactivity, it rapidly became the method of choice.
For this enzymatic method, the DNA double helix is first heat denatured into sin-
gle strand templates. Then, starting from a short known primer sequence, the
template’s complementary strand is elongated by means of the enzyme DNA poly-
merase. The idea is to generate fragments that end with an identifiable nucleotide
and to construct the order of such fragments afterwards. Therefore, the DNA sam-
ple is divided into four separate sequencing reactions, all of them containing DNA
polymerase and deoxynucleotides (dATP, dCTP, dGTP, dTTP). Moreover, one kind
of labeled dideoxynucleotide (ddNTP) is added to each reaction. These molecules

104

6.1 Introduction to DNA Sequencing

lack the 3’-OH group required to form the phosphodiester bond between two nu-
cleotides. Hence, when a ddNTP is inserted into the synthesized strand, the elon-
gation process is terminated. This results in DNA fragments of various lengths.
These fragments are subsequently separated by size by gel electrophoresis, each
reaction run on one individual lane of the gel. Since this separation works at a
resolution of one nucleotide, the sequence can be read off the visualized bands, as
shown in Figure 6.1(a).

(a) Principle of the original chain termination method using
four individual reactions and dideoxynucleotides (ddNTPs) la-
beled with a radioactive tag.

(b) Labeling ddNTPs with fluorescent
tags enables sequencing in a single
reaction.

Figure 6.1: Overview of the Sanger chain termination method. Dideoxynucleotides
(ddNTPs), which terminate the chain elongation by DNA polymerase, are labeled and
added to the synthesizing reaction. This results in fragments of varying length which
are subsequently separated by size by electrophoresis. The DNA sequence can be read
off from the gel bands on the autoradiogram (a) or the chromatogram of fluorescence
peaks (b), respectively.

Since the 1990s, dideoxynucleotides are usually labeled with fluorescent dyes with
different wavelengths. This allows sequencing in one single reaction rather than
separating the sample into four reactions. The resulting fragments are then sep-
arated by capillary electrophoresis and stimulated by a laser. Detecting the trig-
gered fluorescence, the sequence of nucleotides can be determined from the chro-
matogram of fluorescent peaks, see Figure 6.1(b). The development of fluorescently
labeled ddNTPs was a prerequisite for automated, high throughput sequencing.

105

6 Application III: 454 Sequencing Read Statistics

This is of particular importance in large scale sequencing that aims at sequenc-
ing large pieces of DNA, such as whole chromosomes. Conventional methods first
fractionate the DNA into shorter fragments which are subsequently cloned into a
vector and amplified in E. coli. Then, the clones are purified from the bacterial
colonies and sequenced individually. The resulting sequence reads are typically
800−1000 nucleotides long. Finally, these reads have to be electronically assembled
into one long, contiguous sequence.

6.1.2 Pyrosequencing

Another method offering high throughput automated sequencing is the so-called
pyrosequencing. This technique was developed by Ronaghi et al. [107] in 1996. In
contrast to the idea of chain termination, it relies on the detection of pyrophos-
phate (PPi) released in the course of DNA synthesis by means of the enzyme DNA
polymerase. This refers to the sequencing by synthesis principle which involves
sequencing a single strand of DNA by synthesizing its complementary strand one
base at a time. Therefore, the template strand is immobilized, and unlabeled
deoxynucleotides (dNTPs) are added sequentially and removed after the reaction.
When a nucleotide is complementary to the first unpaired base of the template, a
light signal is produced by means of two more enzymatic reactions. The detection
and subsequent analysis of such chemi-luminescent signals finally determines the
sequence of nucleotides.
The enzymatic cascade is shown in Figure 6.2. Whenever the polymerase catalyzes
the incorporation of nucleotides that are complementary to the template strand,
inorganic pyrophosphate (PPi) is released and converted to ATP by ATP sulfurylase.
ATP provides energy for the luciferase-mediated oxidation of luciferin, accompa-
nied by a flash of light. The emitted light is recorded by a charge-coupled device
(CCD) camera, for instance. The light intensity is proportional to the amount of
ATP.

Figure 6.2: Schematic representation of the pyrosequencing method. The four nucleotides
are periodically added to the reaction. An incorporation by the polymerase results in an
enzymatic cascade producing a detectable flash of light.

Currently, two different pyrosequencing strategies are available: solid-phase py-

106

6.2 The 454 Sequencing Technology

rosequencing [107], which utilizes the three-enzyme system described previously,
and liquid-phase pyrosequencing [108] using a four-enzyme system. Here, the
introduction of the nucleotide-degrading enzyme apyrase allows nucleotides to be
added iteratively without any intermediate washing step which is necessary in
solid-phase. Apyrase continuously decomposes unincorporated dNTPs and exces-
sive ATP:

dNTP
apyrase−−−−−→ dNDP + dNMP + phosphate

ATP
apyrase−−−−−→ ADP + AMP + phosphate

The next deoxynucleotide is added, when degradation is complete. As described
in Ronaghi [106], apyrase fulfills the following criteria necessary to allow iterative
nucleotide addition: First, all dNTPs are degraded at the same rate. Second, ATP
is hydrolyzed and, hence, accumulation of ATP (stimulating luciferase) between
cycles is prevented. Third, the time for nucleotide degradation is slower than
nucleotide incorporation by the polymerase. Besides, it is important to note that
the apyrase ensures primer-directed incorporation to achieve about 100% before
the concentration of dNTPs is too low for rapid polymerization.

Pyrosequencing allows fast, high throughput generation of sequenced nucleotide
data. It is limited to reads of 300 − 500 nucleotides length. This can make the
process of genome assembly more difficult than it is for reads resulting from chain
termination methods, in particular for genomes which contain large amounts of
repetitive DNA.

“Overall, sequence analysis by using high throughput pyrosequencing
technology is accurate and reproducible and can be almost fully au-
tomated. The technology is also less expensive, time-consuming, and
labor-intensive, as well as easier to perform, than conventional Sanger
sequencing.” [120]

6.2 The 454 Sequencing Technology

454 Life Sciences1 developed an array-based pyrosequencing technology for mas-
sively parallel sequencing, called 454 sequencing [82]. So far, two platforms have
emerged: the Genome Sequencer 20 (GS20) system in 2005 and the Genome Se-
quencer FLX (GS-FLX) instrument in 2007. They support the analysis of various
DNA samples providing a 2 Mb (million base pairs) genome in 4.5 hours, whereas
it takes approximately 720 hours with the conventional Sanger sequencing.

In the following, we will explain the 454 sequencing workflow sketched in Fig-
ure 6.3. Samples such as genomic DNA are firstly fractionated into shorter double-
stranded fragments of 300 to 800 bp. Afterwards, special short adaptors, A and B,

1Center of excellence of Roche Applied Science, Roche Diagnostics GmbH, Mannheim

107

6 Application III: 454 Sequencing Read Statistics

Figure 6.3: Overview of the 454 sequencing technology. DNA fragments are ligated with
adaptors, separated into single strands, and immobilized onto DNA capture beads. By
means of emulsion PCR the fragments are amplified, resulting in ten million clones
bound to each bead. The beads are then deposited into the wells of an array-like op-
tic chip. Additionally, enzymes, primer sequences and nucleotides for the sequenc-
ing process are provided. Finally, the unknown sequence is determined by means of
pyrosequencing.

are attached to the fragments. These provide primer sequences for both amplifi-
cation and sequencing. After separation into single strands, those single-stranded
DNA (ssDNA) fragments with both A and B adaptors compose the sample library
used for subsequent steps.

The library is now mixed with an excess of DNA capture beads that carry oligonu-
cleotides complementary to the B-adaptor sequence. Hence, the ssDNA templates
are immobilized onto these beads, usually one library fragment per bead. Dur-
ing the subsequent emulsion PCR (emPCR) procedure, the bead-bound library is
emulsified with amplification reagents in a water-in-oil mixture. The beads are
captured within droplets of this emulsion, enabling clonal amplification of the

108

6.2 The 454 Sequencing Technology

ssDNA fragments within their own microreactors. Subsequently, each bead car-
ries about ten million ssDNA clones.

In the next step, the beads are added to a mixture of reagents containing DNA
polymerase. The mixture is deposited into wells of a fibre-optic chip and layered
with smaller enzyme carrying beads (containing sulfurylase and luciferase). This
layer ensures that the DNA capture beads remain within the wells during the
sequencing process. The optical device is a 70mm × 75mm plate containing 1.6
million wells at a diameter of 44µm each. Usually, 30% to 40% of the wells are
loaded with beads, and only one bead (around 30µm) fits into one well.

The loaded device is placed into the sequencing instrument, where sequencing
reagents, containing primer sequences and nucleotides, are flowed across the
plate. Nucleotides are flowed sequentially in a fixed order. Note that, during
nucleotide flows, hundreds of thousands of bead-bound DNA fragments are se-
quenced in parallel. If a nucleotide complementary to the next unpaired nucleotide
on the template strand is flowed into a well, it is synthesized to the template
clones, mediated by the polymerase. Incorporation of one or more nucleotides
provokes the enzymatic cascade described in Section 6.1.2 and results in a chemi-
luminescent signal that is recorded by a CCD camera. The detected light intensity
is proportional to the number of nucleotides incorporated in one flow. This num-
ber mainly refers to homopolymers, that is stretches of one repetitive nucleotide.
However, this linearity holds only up to stretches of about eight nucleotides [see
82].

The standard order of nucleotide flows for the two systems mentioned above is
T,A,C,G. Each nucleotide is cycled 42 times on the GS20 system, 100 times on the
ultra-fast GS-FLX. During the sequencing process, the system’s software generates
a bar graph of light intensities, called flowgram, for each well. These are in turn
analyzed, yielding hundreds of thousands of DNA sequences simultaneously.

Actually, the GS-FLX typically generates more than 400, 000 reads per run with an
average length of 250 bases. This is a total of 100 megabases of sequence data.
In addition, since fall 2008, the company delivers the FLX Titanium reagents and
associated software, thereby providing read lengths of 400 bp on average with a
throughput of 400 to 600 megabases.

After signal processing, a consensus sequence can be determined from all reads
of the sample, or a pool of sample runs, respectively. Therefore, the 454 systems
provide de novo assembly and whole genome mapping software. After all, the
average read length of approximately 400 bases (using the FLX Titanium series)
is quite short in comparison to 800 bases provided by the conventional Sanger
method. Thus, genome assembly is much more involved here. Nevertheless, a
wide range of applications has been addressed by means of 454 sequencing [37],
and it is reported that particularly the up-to-date FLX Titanium series efficiently
replaces Sanger sequencing. However, both technologies have their drawbacks.
While Sanger sequencing is more expensive and time consuming (per base), 454
generates shorter reads with a higher error rate when reading homopolymers.

109

6 Application III: 454 Sequencing Read Statistics

6.3 Computing 454 Read Length Statistics with a PAA

As introduced above, current high throughput sequencing methods can directly
sequence only relatively short reads of 100 to 500 nucleotides. The difficulty in
obtaining longer reads consists in the insufficient separation power of longer frag-
ments at a resolution of only one nucleotide. In large scale sequencing applica-
tions, however, one aims at sequencing a whole chromosome or even an entire
genome. The required assembly is more complicated and error-prone, the shorter
the sequenced reads are. Broadly speaking, the average read length has an effect
on the overall quality of the assembled DNA sequence.

While the order of flowed nucleotides does not influence the read length distribu-
tion when all four nucleotides are equally probable and all nucleotides are flowed
once per cycle, this property does no longer hold for arbitrary nucleotide compo-
sitions. Although it has been shown that the frequencies of complementary bases
(A and T, C and G) are equal in dsDNA, and approximately equal in ssDNA [25],
the joint frequencies of (A,T) and (C,G) are generally unbalanced.

To this end, we investigate the exact length distribution of 454 reads and thereby
the average read length. Rahmann [102] studied the combinatorics of sequences
that can be reliably sequenced by the 454 technology. Recently, Kong [61] pre-
sented the length distributions for fixed number of flow cycles and for fixed se-
quence length. The author gives the probability generating functions and thereby
explicit formulas for the respective values for mean and variance. Nevertheless,
only flow cycles of length four and exclusively i.i.d. nucleotide probabilities are
considered.

Within the PAA framework, we formulate an appropriate model that allows for ar-
bitrarily long flow cycles and different underlying string models, and assigns prob-
abilities to the number of nucleotides incorporated by the polymerase within a 454
sequencing run. In accordance with previous sections, once again we concentrate
on first-order Markovian strings. Input to the model is the fixed dispensation order
of nucleotide flows in each cycle, defined as follows:

Definition 6.3.1 (Dispensation Order). A dispensation order d = d[1] . . . d[`d] is an
ordering of nucleotides, where d[i] ∈ Σ = {A,C,G, T} for each 1 ≤ i ≤ `d and

i) ∀σ ∈ Σ : |{1 ≤ i ≤ `d | d[i] = σ}| ≥ 1. This implies `d ≥ |Σ|.

ii) ∀σ ∈ Σ, ∀ 1 ≤ i < `d : d[i] = σ ⇒ d[i+ 1] 6= σ.

iii) d[1] 6= d[`d].

The systems GS20 and GS-FLX mentioned above use d = TACG. For the moment,
we focus on this dispensation order and, hence, deal with the case that each
nucleotide is flowed exactly once per cycle, i.e. `d = |Σ|. Figure 6.4 shows how a
read, sequenced from a bead-bound fragment, is determined by the dispensation
order.

110

6.3 Computing 454 Read Length Statistics with a PAA

cycle nt flow TACG GTCA

1 1 -
√

2 -
√

3 -
√

4
√

-
2 5

√ √

6 -
√

7
√

-
8

√ √

3 9
√

-
10

√ √

11 -
√

(3×)
12 - -

read length: 6 10

Figure 6.4: Effect of the dispensation order on the read length. Depending on the dis-
pensation order, different numbers of nucleotides complementary to an immobilized
fragment can be sequenced during three cycles.

In order to study the influence of the dispensation order on the expected read
length in Section 6.4, the PAA has to incorporate information about the order of
flowed nucleotides. That means, we cannot only count the steps through the un-
derlying Markov chain, as we did in previous applications, but additionally we have
to remember the position within the dispensation order. We do so by introducing
weights to the automaton’s edges which display the number of flows required to
observe a certain transition, i.e. a certain pair of nucleotides within the described
read.

Figure 6.5 shows a sketch of an appropriate PAA. We use the set Q = {0, 1, . . . , `d}
as states of the Markov chain, where 0 denotes the start state, and state i corre-
sponds to d[i]. The transitions T = (Tqq′)q,q′∈Q relate to the i.i.d. and the conditional
nucleotide frequencies (e.g. estimated from the nucleotides and dinucleotides in a
nucleotide sequence database), i.e.

Tqq′ =

pd[q′] if q = 0, q′ 6= 0
Pd[q]d[q′] if q, q′ 6= 0
0 otherwise .

In the matrix S = (Sqq′)q,q′∈Q, we store the number of flows inducing a transition
from q to q′:

Sqq′ = (q′ − q) mod `d .

Further, the state emission distributions are set to Dirac measures. In all states
weight 1 is emitted with probability one. That is to say, whenever a state is visited,

111

6 Application III: 454 Sequencing Read Statistics

Figure 6.5: Sketch of the PAA counting the number of nucleotides incorporated by the
polymerase during the 454 sequencing process when nucleotides are flowed sequentially
according to d = TACG. Transitions correspond to Pσσ′ for σ, σ′ ∈ Σ with initial distribu-
tion π. Integer weights indicate the number of nucleotide flows inducing the respective
transition. Note that we display state i as d[i] (and state 0 as ε) for comprehensibility.

one nucleotide is sequenced. The arithmetic operation, namely taking the sum of
the emitted value and the so far achieved read length, is the same in all states.
Note that homopolymer stretches are modeled by self-transitions which spend 0
steps. This implies exact proportionality of the light signal generated during py-
rosequencing.

All in all, this defines a PAA to compute the distribution of 454 read lengths assum-
ing DNA fragments to follow a Markovian string model. As in previous applications,
we denote the state process of the underlying Markov chain with (Yn)n∈N0 and the
value process of incorporated nucleotides with (Vn)n∈N0. Further prerequisites we
need are a function g : N → Q that maps the number of nucleotide flows to the
state defining the corresponding nucleotide within d, and a function h : Q× N→ N
that gives the last preceding flow corresponding to nucleotide q. With the shifted
modulo function given by

n mod1 `d := (n− 1) mod `d + 1 for n ∈ N ,

we define

g(n) := (n− 1) mod1 `d and

h(q, n) := max{i : 1 ≤ i ≤ n | g(i) = q} .

Now, we compute the distribution L(L(d, t)) of the random variable L(d, t) denoting
the number of sequenced nucleotides during t nucleotide flows according to the
order defined by d. We set fd;t(l) = P(L(d, t) = l) and write ft(l) when d is clear from
the context. It refers to the sum of probabilities for all paths that yield a read of
length l after t nucleotide flows. In the PAA framework (as presented in Chapter 2),
this is given by ft(l) =

∑
q∈Q ft(q, l) with joint probability ft(q, l) = P(Yt = q, Vt = l).

These probabilities can be computed recursively as given in Recurrence 6.1.

112

6.3 Computing 454 Read Length Statistics with a PAA

Recurrence 6.1 454 Read Length Distribution
• initial condition for q = 0:

ft(0, l) =

1 if t = 0, l = 0
0 if l ≥ 1,
0 if t ≥ `d,

1−
t∑

q′=1

T0q′ otherwise .

(6.3.1)

As long as no nucleotide has been synthesized, the Markov chain remains in
the start state ε.

• for q 6= 0, s < t:

fs(q, l) =

∑
q′∈Q

fs−Sq′q(q
′, l − 1)Tq′q if q = g(s),

fh(q,s)(q, l) otherwise .
(6.3.2)

The probability that after s nucleotide flows the PAA visits state q and l nu-
cleotides have been sequenced computes as follows: when the last flowed
nucleotide corresponds to q (q = g(s)), then there is one nucleotide sequenced
corresponding to q. The recurrence relation reminds us of the general one
for the joint state-value distribution as given in Equation (2.4.1). Instead of
consulting the preceding step s − 1, we account for the weights according to
the particular transition q′ → q. Otherwise, when q 6= g(s), the Markov chain
has remained in q since the last corresponding nucleotide flow h(q, s).

• for q 6= 0, s = t:

ft(q, l) =

∑
q′∈Q

ft−Sq′q(q
′, l − 1)Tq′q(1− Tqq) if q = g(t),

fh(q,t)(q, l)
(

1−
(g(t)−q) mod1 `d∑

j=0
T
q
(

(q+j) mod1 `d

)) otherwise .
(6.3.3)

For the last flowed nucleotide, we have to account for edge effects. That is
to say, correction terms specify forbidden transitions in order to obtain the
exact read length distribution.

As can be seen, we make two distinctions. First, we specify whether the currently
flowed nucleotide corresponds to the current state of the Markov chain. Thus,
we differentiate between q = g(s) and q 6= g(s). The case q 6= g(s) implies that the
Markov chain remained in state q, which refers to the last character synthesized,
and that, hence, no further transition outgoing q occurred. Second, we distinguish
s < t and s = t in order to compute exact read lengths. On the one hand, in the tth

nucleotide flow, more than one nucleotide might be sequenced due to homopoly-

113

6 Application III: 454 Sequencing Read Statistics

mers. On the other hand, if the read length is already reached before the tth flow,
the path only contributes if no further flown nucleotide can be incorporated. The
correction terms introduced for s = t account for these cases.

In this application, we have extended the conventional PAA framework in the sense
that the underlying stochastic process is influenced by deterministic information.
Storing the probabilities ft(q, l) in space O(t · |Q|) = O(t · `d), ft can be computed in
time O(t2·|Q|2) = O(t2·`2d) according to the push-strategy explained in Section 2.4.

Extension to general dispensation orders

The presented model is also valid for dispensation orders d with `d > |Σ|. In this
case, the transition matrix has to be adjusted properly: A transition from the start
state 0 to some state j ∈ Q happens with positive probability if and only if there
is no state i < j with d[i] = d[j]. Then, T0i = pd[i] and T0j = 0. Similarly, we set
the transition from state i to state k to 0 if there exists another state j ∈ Q with
d[j] = d[k] and Sij < Sik.

Alternative Model for Homopolymer Stretches

Instead of modeling self-transitions and using Dirac measures as weight distribu-
tions, we can delete the self-transitions and use the following state emissions (for
q 6= 0):

eq(k) =

{
0 if k = 0,
(Pqq)k−1 if k ≥ 1 .

(6.3.4)

In the recurrence equations we then have terms like

fs(q, l) =

∑
q′∈Q

∑l
k=1 fs−Sq′q(q

′, l − k)Tq′qeq(k) if q = g(s),

fh(q,s)(q, l) otherwise .
(6.3.5)

The basic system including the correction terms for the case s = t remain the same
as given in Recurrence 6.1.

Irrespective of the representation, the presented PAA assumes that the light in-
tensities detected during pyrosequencing are exactly proportional to the number
of incorporated nucleotides. It would be interesting to further investigate how to
modify our model in order to adapt to the technological settings better and account
for errors in reading homopolymer stretches. To this end, states can be added to
the automaton (such that the self-transitions happen at smaller rate), or the weight
distributions can be altered. Therefore, one might take the intersections of normal
distributions into account, following [104].

114

6.3 Computing 454 Read Length Statistics with a PAA

6.3.1 Proof of Concept

Before we use the presented model to derive characteristics of the expected read
length subject to the dispensation order, we show the verification of the length
distribution obtained comparing it to empirical data. For this purpose, the genetic
department of Bielefeld University provided 454 sequence reads from two GC-rich
bacteria, R. lupinii and S. meliloti. One sample was produced on the GS20 system,
one sample with the GS-FLX instrument. We also have the assembled contigs
available. From these, we estimated the (conditional) nucleotide frequencies which
were used as model parameters.

For a first evaluation, we concentrated on the GS-FLX data and calculated the the-
oretical read length distribution for t = 400 nucleotide flows (100 cycles) by means
of the recurrences (6.3.1), (6.3.2), and (6.3.3). The comparison to its empirical
counterpart is shown in Figure 6.6.

0 50 100 150 200 250 300 350

0.000

0.005

0.010

0.015

0.020

0.025

0.030

length

fr
eq

u
en

cy

empirical

theoretical

Figure 6.6: Comparison of the read length distribution calculated by the PAA to its em-
pirical counterpart. Nucleotide frequencies as well as the empirical read lengths were
counted from an actual sequencing project of a GC-rich bacterium.

One observes that the empirical distribution is shifted towards shorter reads. Even
read lengths shorter than 100 nucleotides occur. Theoretically, we expect read
lengths of at least 100 nucleotides since each cycle TACG should lead to at least one
incorporation. This indicates the influence of the system’s signal processing steps.
In order to meet respective heuristic adaptations, we also implemented a naive
read simulator. It first generates 100, 000 random DNA fragments with a length
of 600 nucleotides according to the estimated conditional nucleotide frequencies.
Then, it creates a flowgram for each fragment, where the emitted light intensity for
a homopolymer of length l is modeled by a normal distribution N (l, 0.15

√
l) follow-

ing Richter et al. [104]. Noise signals, resulting from asynchronous incorporation
at the template clones within one well, are introduced with a rate of 1.9% in agree-
ment with Margulies et al. [82]. From the flowgram, the final read length can be

115

6 Application III: 454 Sequencing Read Statistics

derived either with or without further processing.

The quantile-quantile plot in Figure 6.7 shows the accordance of simulation and
theoretical length distribution. Application of the so-called TrimBackValleyFilter
is reported to result in an apparent decrease in read lengths of 10% to 20%. From
our analysis, we observed that the simulated reads were 11.3% shorter on aver-
age (from 257 to 228 nt) when we accounted for the TrimBack filter. The thereby
shifted distribution reflects the layout of the empirical distribution, as indicated in
Figure 6.8.

ææ
ææææææ
ææææ
æææ
ææææ
ææ
æ
ææ
ææ
ææ
ææ
æ
æ
ææ
æ

ææ

æ
æ

ææ
æ
æ

æ
æ
æ

ææ

æ
æ
ææ

æ

æ

ææ

ææ
æ
æ
æ

æææ
æ
æææææ
ææ

0.000 0.005 0.010 0.015 0.020 0.025 0.030

0.000

0.005

0.010

0.015

0.020

0.025

0.030

theoretical distribution

s
im

u
la

te
d

d
is

tr
ib

u
ti

o
n

Figure 6.7: Quantile-Quantile Plot of the theoretical length distribution and the simulated
values. The quantiles of the simulated distribution fit the quantiles of the theoretical
distribution quite well.

6.4 Finding the Optimal Dispensation Order

As discussed before, the length of sequenced reads and the sequence coverage in-
fluence the power of customary assembly tools. At least for the dimensions related
to shotgun sequencing, it is easier to assemble reads to contigs (sets of overlap-
ping DNA segments), which are then disposed to the complete DNA sequence, the
longer the reads are and the higher the sequence coverage is. Although research
centers employing the up-to-date 454 FLX Titanium sequencing kits state that the
454 sequencing technology efficiently replaces the conventional Sanger sequenc-
ing, there are still endeavors for improvement. In general, the average length of
produced reads depends on the dispensation order. Particularly if the composition

116

6.4 Finding the Optimal Dispensation Order

0 50 100 150 200 250 300 350

0.000

0.005

0.010

0.015

0.020

length

fr
eq

u
en

cy

empirical

simulated

Figure 6.8: Comparison of the simulated data and the empirical read length distribution.
Application of the TrimBack filter yields 11.3% shorter reads on average.

of nucleotides is heterogeneous, such as in GC-rich genomes, the average read
length can be enhanced significantly.

As a starting point, we exhaustively enumerated all valid dispensation orders d of a
fixed (short) length `d (4 ≤ `d ≤ 10) and computed the expected read length E(L(d, t))
after t nucleotide flows by means of the PAA presented above. The nucleotide
composition for the studied cases is p = (pA, pC , pG, pT) ≈ (0.21, 0.29, 0.29, 0.21). In
Table 6.1, we display the ranking of dispensation orders of length `d = |Σ| = 4
according to the expected read length after t = 400 flows. Here, the standard order
TACG does not perform well. In particular, the winning dispensation orders CGAT,
ATCG, TCGA, and GATC yield on average about 10% longer reads.

Moreover, we observed that dispensation orders of length four provide the highest
expected read length (among those lengths we considered), cf. Figure 6.9.

+

+

+

+

+

+

+

4 5 6 7 8 9 10

180

200

220

240

260

dispensation order length

av
er

ag
e

ex
p

.r
ea

d
le

n
g

th

Figure 6.9: Average expected length of reads generated in 400 flows by dispensation orders
of length four to ten.

117

6 Application III: 454 Sequencing Read Statistics

Furthermore, it can be seen from Table 6.1 that always `d dispensation orders yield
almost the same expected read length. These orders are circular shifts, consider
e.g. the winning orders CGAT, TCGA, ATCG, and GATC. According to this obser-
vation, we suggest the following criterion in order to find the optimal dispensation
order among all orders of length `d:

Definition 6.4.1 (Optimality criterion based on dinucleotide frequencies). A dis-
pensation order d = d[1, `d] is said to be optimal among orders of length `d if and only
if it maximizes

`d∑
i=1

Pd̃[i]d̃[i+1] ,

where d̃ = dd[1] represents the cyclic order of nucleotides.

This is to say, we seek the order d that maximizes the sum of dinucleotide frequen-
cies within dd[1] = d[1] . . . d[`d]d[1].

We computed the ranking of dispensation orders of a given length `d (4 ≤ `d ≤ 10)
according to the mentioned criteria and compared the results to the rankings with
respect to the expected read length. This showed that the optimality criterion
suggested perfectly agrees with the expected read length.

A corresponding algorithm to find a dispensation order satisfying this criterion
could be derived by means of an appropriate graph-theoretic approach [30, Chap-
ter 24 and 26]. The translation into a graph-based problem reads as follows:

Problem 3. Given a directed, weighted graph G = (V,E) with vertices V = Σ and
edges (u, v) for (u, v) ∈ V × V weighted by the respective dinucleotide frequencies,
i.e. w(u, v) = Puv, find a Hamilton circuit of maximal weight, i.e. a directed cycle
maximizing the sum of edge weights that visits each vertex exactly once.

Note that it is reasonable to specify the length of the dispensation order since oth-
erwise repeated orders are favored with respect to their constituting components,
i.e. TACGTACG would be favored against TACG although both yield the same ex-
pected read length and the shorter order would be preferred from the experimental
point of view.

Our current interest consists in the formulation of the modified task and the imple-
mentation of appropriate algorithms in order to find a dispensation order optimal
across different lengths. For instance, if there is an upper bound for `d, the task
would be the following:

Problem 4. Given a directed, weighted graph G = (V,E) with vertices V = Σ and
edges (u, v) for (u, v) ∈ V × V weighted by the respective dinucleotide frequencies,
i.e. w(u, v) = Puv, find a directed cycle of length at most `d maximizing the sum of
edge weights that visits each vertex at least once.

The solutions to the posed problems and the preparation of appropriate algorithms
represent the overall aims of future research.

118

6.4 Finding the Optimal Dispensation Order

Discussion and Directions for future research

We have presented a PAA that yields the length distribution of 454 sequencing
reads. Comparison to experimental data has shown that the computed values
are reasonable, though further technological properties could be taken into ac-
count. In particular, integration of errors resulting from reading long homopoly-
mer stretches, would improve the accordance between theoretical and empirical
length distribution. Furthermore, we have shown that the average length of reads
produced by 454 pyrosequencing depends on the nucleotide distribution, and the
performance may be significantly better compared to the standard order TACG.
Furthermore, we discussed a criterion to deduce the optimal dispensation order
from the nucleotide frequencies. A corresponding algorithm based on a graph-
theoretical formulation still needs to be prepared.

However, several questions remain for future research. First of all, it would be
interesting to theoretically investigate what is the highest expected read length
possible at all and whether there exist longer dispensation orders (`d > |Σ|) that
lead to a higher expected read length. If so, we have to regard that the number of
valid dispensation orders of length l grows exponentially. The ultimate goal is thus
to directly design the overall optimal dispensation order, generally for an arbitrary
length. Another strategy could be to determine which orders can never be optimal,
thereby reducing the search space.

Moreover, it is relevant to decide how heterogeneous (conditional) nucleotide fre-
quencies have to be such that another dispensation order performs better than
TACG.

Finally, in practice, one has no (explicit) knowledge of the nucleotide composition
in the fragments under consideration. One question is in how many cases does
the biologist have a priori information. The other question is whether it would be
possible to deduce the dinucleotide frequencies from an initial number of cycles
(with the standard dispensation order), proceeding with the optimal order.

119

6 Application III: 454 Sequencing Read Statistics

Table 6.1: Ranking of dispensation orders d of length `d = |Σ| according to the expected
read length E(L(d, 400)) (rounded to integers).

rank d E(L(d, 400))

1 CGAT 282
1 ATCG 282
1 TCGA 282
1 GATC 282
2 CATG 280
2 GCAT 280
2 ATGC 280
2 TGCA 280
3 CAGT 268
3 TCAG 268
3 AGTC 268
3 GTCA 268
4 ACTG 268
4 CTGA 268
4 GACT 268
4 TGAC 268
5 ACGT 257
5 CGTA 257
5 TACG 257
5 GTAC 257
6 CTAG 255
6 AGCT 255
6 GCTA 255
6 TAGC 255

120

CHAPTER 7

CONCLUSION AND OUTLOOK

In this thesis, we gave a thorough derivation of the probabilistic arithmetic automa-
ton (PAA), a stochastic computational framework extending the well-known HMM.
Additional to HMMs, a PAA performs binary operations on the sequence of emis-
sions thus yielding the exact distribution of the value resulting from a sequence of
operations whose operands depend on chance.

We demonstrated the framework’s practicability by means of three distinct appli-
cations arising from different aspects of biological sequence analysis.

The first application concerns the computation of peptide statistics to assess the
significance of protein identification by PMF. We constructed a PAA that generates
random (i.i.d. or Markov) proteolytic fragments, e.g. resulting of tryptic digestion
of a protein, and measures the corresponding molecular mass distribution. By
means of the associated recurrences, we calculated the exact distributions of the
length and the mass of proteolytic fragments. Using these, we derived the proba-
bilities that a certain mass occurs as fragment mass after the digestion of a pro-
tein sequence of given length, which can be used to determine the significance of
protein identification by PMF. We showed that the computed statistics differ only
slightly under i.i.d. and Markov strings; in particular, the Markov model is capable
of modeling the N-terminal methionine. Furthermore, we compared the statistics
to their respective empirical counterparts estimated from the Swissprot database,
obtaining a reasonable agreement. Additionally, we studied the influence of missed
cleavages and post-translational modifications. We demonstrated that especially
incomplete digestion affects peptide statistics and, thus, the significance of protein
identification.

For the second application, we built a PAA that computes the sensitivity of seeds
used to select candidate sequences from a comprehensive database that share

121

7 Conclusion and Outlook

high sequence similarity with a given query sequence. The presented PAA is gen-
eral enough to cope with different kinds of seeds and different models used to
quantify the similarity of DNA sequences. In addition to former approaches, the
framework yields the entire distribution of matchings between a target sequence
and the query. We used this to investigate novel criteria to evaluate seeds. In
particular, we contrasted two models for the similarity of DNA sequences. A good
seed should select sequences that are highly similar to the query, but reject other
sequences. Our analysis revealed that this combination of models yield the same
results as a single model for putatively related sequences.

The third application emerges from the field of next-generation high throughput
sequencing and is, hence, of great interest currently. Related technologies such
as 454 sequencing provide relatively short DNA sequence reads, which provides
challenges for the computational assembly. We presented a PAA that yields re-
currences to compute the exact length distribution of 454 sequence reads. By
comparison to experimental data, we depicted the influence of technological is-
sues and illustrated that the theoretical distribution describes the unprocessed
data reasonably. Nevertheless, it needs more insight into the technology, espe-
cially the applied filter, to get a better agreement of theoretical and empirical dis-
tributions. Moreover, the constructed PAA was used to evaluate the expected read
length under different dispensation orders. We demonstrated that the optimal or-
der depends on the nucleotide distribution and that the average read length can
be enhanced significantly. To this end, we derived a criterion, correlating with the
sought expectation, that can be assessed via a graph-theoretical approach.

Furthermore, motivated by the application to protein identification, we presented
a generative random string model for protein sequences. The so-called SSE model
takes information from secondary structure assignments into account and, hence,
provides a biologically relevant model. The development gave rise to a comparison
of customary random string models with respect of how well they represent protein
sequences. The comparison according to a penalized model selection criterion re-
vealed that the SSE model performs best among the considered candidate models.
In particular, it outperforms the widely used i.i.d. and first-order Markov model.

Throughout the thesis, we showed that the PAA framework is an elegant and flex-
ible model able to adapt to individual tasks. The model’s structure allows to reuse
algorithms connected to DFAs and Markov chain theory, and the corresponding
implementations are straightforward.

Open Problems

Several directions for future research have been opened up by this thesis. As
mentioned before, there are improvements and unsolved tasks related to the in-
dividual applications. For instance, in the PMF context, further investigation of
the influence of missed cleavages and post-translational modifications to the peak
lists alignment scores were interesting. In particular, one could take care of amino

122

acid propensities to design an even more plausible PAA including missed cleavage
sites. Moreover, a challenging extension would be the design of a PAA accomplish-
ing the statistics of peptide fragment fingerprints resulting from tandem MS. To
this end, fragments have to be modeled as amino acid strings without internal
cleavage pattern, resulting from random cleavage of a proteolytic fragment.

In the context of 454 sequence read statistics, we seek the overall optimal dispen-
sation order. For this purpose, it would be interesting to theoretically investigate
what is the highest expected read length possible at all and whether a longer dis-
pensation order could perform better than the winning order of length four. If so,
one could reduce the search space filtering out orders that can never be optimal.
A partition of the parameter space indicating how heterogeneous the nucleotide
distribution must be such that the expected read length can be enhanced signifi-
cantly would be another meaningful result.

We discussed various ideas to improve and apply the SSE random string model.
First, to circumvent the subtleties of secondary structure assignments especially
for the N-terminal segment of protein sequences, one could design a hybrid model
joining a customary random string model and the SSE model. For this purpose,
one could use the start state to model the leading segment of the sequence. Sec-
ond, to improve the influence of individual elements, one could replace the individ-
ual M1 models by more involved models taking into account dependencies within
secondary structure elements that go beyond directly subsequent residues. A fur-
ther perspective is to analyze the potential of family-specific SSE models. Since
the order of secondary structures is more similar in proteins from a protein fam-
ily, SSE information should yield a discriminative null model with respect to family
representatives.
Moreover, the SSE model should be applied as a biologically relevant null model.
Two potential applications are the computation of the significance of PROSITE pat-
terns used as signatures for protein families, and the computation of alignment
score statistics.

For our needs, we implemented the PAAs designed for the three applications in-
dividually. It would be convenient to have a general library capable of adapting
to individual settings. Furthermore, it might be a challenging task for software
engineers to make the implementations of the recurrences more efficient.
Another idea, proposed by Robert Giegerich, is to formulate the PAA as a stochas-
tic regular grammar and implement this in an algebraic dynamic programming
fashion.

On a more general level, one could investigate the expandability of the PAA frame-
work. The definition given in this thesis comprises only time-homogeneous Markov
processes. The framework could be generalized to heterogeneous transitions de-
pending on the emissions or the current value, respectively. Moreover, we used
operations associated with the automaton’s states. It would be challenging to in-
vestigate applications where the operations depend on the emissions or the current
value, respectively.

123

7 Conclusion and Outlook

Apart from the mentioned applications, we indicated that there are several tasks
that could be formulated in the PAA framework; both from the field of computa-
tional biology and from other areas. We also outlined various improvements and
extensions related to the presented topics. We thus showed that PAAs provide a
challenging area of research with a multitude of applications.

124

REFERENCES

References

[1] R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Nature,
422(6928):198–207, 2003.

[2] A.V. Aho and M.J. Corasick. Efficient string matching: An aid to biblio-
graphic search. Commun. ACM, 18(6):333–340, 1975.

[3] H. Akaike. A new look at the statistical identification model. AutomCont, 19:
716–723, 1974.

[4] S.F. Altschul, W. Gish, W. Miller, E. Myers, and D. Lipman. Basic local
alignment search tool. J. Mol. Biol, 215:403–410, 1990.

[5] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, and
D.J. Lipman. Gapped BLAST and PSI-BLAST: A new generation of protein
database search programs. Nucleic Acids Res., 25(17):3389–3402, 1997.

[6] R. S. Annan and S. A. Carr. The essential role of mass spectrometry in
characterizing protein structure: Mapping posttranslational modifications.
J. Protein Chem., 16(5):391–402, 1997.

[7] A.E. Ashcroft. Protein and peptide identification: The rôle of mass spectrom-
etry in proteomics. Nat. Prod. Rep., 20(2):202–215, 2003.

[8] A. Bairoch and B. Boeckmann. The SWISS-PROT protein sequence data
bank. Nucleic Acids Res, 19 Suppl:2247–2249, 1991.

[9] M.A. Baldwin. Protein identification by mass spectrometry: Issues to be
considered. Mol. Cell Proteomics, 3(1):1–9, 2004.

[10] M.P. Balogh. Debating resolution and mass accuracy in mass spectrometry.
Spectroscopy, 19(10):34–40, 2004.

[11] C. Bannert and J. Stoye. Protein annotation by secondary structure based
alignments (PASSTA). In Proc. of First International Symposium on Computa-
tional Life Sciences (CompLife), volume 3695 of LNBI, pp. 79–90, 2005.

[12] A. Bateman, L. Coin, R. Durbin, R.D. Finn, V. Hollich, S. Griffiths-Jones,
A. Khanna, M.Marshall, S. Moxon, E.L.L. Sonnhammer, D.J. Studholme,
C. Yeats, and S.R. Eddy. The Pfam protein families database. Nucleic Acids
Res, 32(Database issue):D138–D141, 2004.

[13] T. Bayes. An Essay Toward Solving a Problem in the Doctrine of Chances.
1763. Letter.

[14] H.M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig,
I.N. Shindyalov, and P.E. Bourne. The protein data bank. Nucleic Acids Res,
28(1):235–242, 2000.

[15] S. Böcker and Z. Lipták. Efficient mass decomposition. In Proc. of the 2005
ACM Symposium on Applied Computing (SAC), pp. 151–157. ACM, 2005.

125

REFERENCES

[16] B. Boeckmann, A. Bairoch, R. Apweiler, M. Blatter, A. Estreicher,
E. Gasteiger, M.J. Martin, K. Michoud, C. O’Donovan, I. Phan, S. Pilbout,
and M. Schneider. The SWISS-PROT protein knowledgebase and its supple-
ment TrEMBL in 2003. Nucleic Acids Res, 31(1):365–370, 2003.

[17] B. Brejová, D.G. Brown, and T. Vinar. Optimal spaced seeds for homologous
coding regions. J. Bioinform. Comput. Biol., 1(4):595–610, 2004.

[18] B. Brejová, D.G. Brown, and T. Vinar. Vector seeds: an extension to spaced
seeds. J. Computer System Sci., 70(3):364–380, 2005.

[19] D.G. Brown. Optimizing multiple seeds for protein homology search.
IEEE/ACM Trans. Comput. Biol. Bioinform., 2(1):29–38, 2005.

[20] J. Buhler, U. Keich, and Y. Sun. Designing seeds for similarity search in
genomic dna. In Proc. of the 7th annual international conference on Research
in computational molecular biology (RECOMB), pp. 67–75, 2003.

[21] S. Burkhardt and J. Kärkkäinen. Better filtering with gapped q-grams. In
Proc. of the 12th annual symposium on Combinatorial Pattern Matching (CPM),
pp., 2001.

[22] K.P. Burnham and D.R. Anderson. Model Selection and Multi-Model Infer-
ence. Springer, 2002.

[23] K.P. Burnham and D.R. Anderson. Multimodel inference: Understanding
AIC and BIC in model selection. Sociological Methods & Research, 33(2):
261–304.

[24] S. Böcker, M.C. Letzel, Z. Lipták, and A. Pervukhin. SIRIUS: decomposing
isotope patterns for metabolite identification. Bioinformatics, 25(2):218–224,
2009.

[25] E. Chargaff. Structure and function of nucleic acids as cell constituents.
Fed. Proc., 10(3):654–659, 1951.

[26] K.P. Choi and L. Zhang. Sensitivity analysis and efficient method for identi-
fying optimal spaced seeds. J. Computer System Sci., 68:22–40, 2004.

[27] K.P. Choi, F. Zeng, and L. Zhang. Good spaced seeds for homology search.
Bioinformatics, 20(7):1053–1059, 2004.

[28] K.R. Clauser, P. Baker, and A.L. Burlingame. Role of accurate mass mea-
surement (+/- 10 ppm) in protein identification strategies employing MS or
MS/MS and database searching. Anal. Chem., 71(14):2871–2882, 1999.

[29] K.R. Coombes, S. Tsavachidis, J.S. Morris, K.A. Baggerly, M. Hung, and
H.M. Kuerer. Improved peak detection and quantification of mass spectrom-
etry data acquired from surface-enhanced laser desorption and ionization
by denoising spectra with the undecimated discrete wavelet transform. Pro-
teomics, 5(16):4107–4117, 2005.

126

REFERENCES

[30] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. The MIT Press, 2nd revised edition edition,
2001.

[31] D.M. Creasy and J.S. Cottrell. Error tolerant searching of uninterpreted
tandem mass spectrometry data. Proteomics, 2(10):1426–1434, 2002.

[32] J.A. Cuff and G.J. Barton. Evaluation and improvement of multiple se-
quence methods for protein secondary structure prediction. Proteins, 34(4):
508–519, 1999.

[33] V. Dancik, T.A. Addona, K.R. Clauser, J.E. Vath, and P.A. Pevzner. De novo
peptide sequencing via tandem mass spectrometry: A graph-theoretical ap-
proach. In Proc. of the third annual international conference on Computational
molecular biology (RECOMB), pp. 135–144, New York, NY, USA, 1999. ACM
Press.

[34] K. Do, P. Müller, and M. Vannucci. Bayesian Inference for Gene Expression
and Proteomics. Cambridge University Press, 2006.

[35] B. Domon and R. Aebersold. Mass spectrometry and protein analysis. Sci-
ence, 312(5771):212–217, 2006.

[36] S. Dori and G.M. Landau. Construction of aho corasick automaton in linear
time for integer alphabets. Combinatorial Pattern Matching 168–177, 2005.

[37] M. Droege and B. Hill. The genome sequencer flx system–longer reads, more
applications, straight forward bioinformatics and more complete data sets.
J. Biotechnol., 136(1-2):3–10, 2008.

[38] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence Analy-
sis. Oxford University Press, 1998.

[39] W. Feller. An Introduction to Probability Theory and its Applications. John
Wiley & sons, 1968.

[40] J.B. Fenn, M. Mann, C.K. Meng, S.F. Wong, and C.M. Whitehouse. Electro-
spray ionization for mass spectrometry of large biomolecules. Science, 246
(4926):64–71, 1989.

[41] D. Frishman and P. Argos. Knowledge-based protein secondary structure
assignment. Proteins, 23(4):566–579, 1995.

[42] Y. Gelfand, A. Rodriguez, and G. Benson. TRDB–the Tandem Repeats
Database. Nucleic Acids Res., 35:D80–D87, 2007.

[43] R.M. Gray. Entropy and Information Theory. Springer, 1 edition, 1990.

[44] G.R. Grimmett and D.R. Stirzaker. Probability and Random Processes.
Clarendon Press, Oxford, 1992.

[45] J.H. Gross. Mass Spectrometry. Springer, 2004.

127

REFERENCES

[46] D. Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science
and Computational Biology. Cambridge University Press, 1997.

[47] W.J. Henzel, C. Watanabe, and J.T. Stults. Protein identification: The origins
of peptide mass fingerprinting. J. Am. Soc. Mass Spectrom., 14(9):931–942,
2003.

[48] I. Herms and S. Rahmann. Computing alignment seed sensitivity with prob-
abilistic arithmetic automata. In Proc. of the 8th Workshop on Algorithms in
Bioinformatics (WABI), volume 5251 of Lecture Notes in Computer Science, pp.
318–329. Springer, 2008.

[49] F. Hillenkamp, M. Karas, R.C. Beavis, and B.T. Chait. Matrix-assisted laser
desorption/ionization mass spectrometry of biopolymers. Anal. Chem., 63
(24):1193A–1203A, 1991.

[50] J.E. Hopcroft. An n log n algorithm for minimizing states in a finite automa-
ton. Technical report, Stanford, CA, USA, 1971.

[51] N. Hulo, A. Bairoch, V. Bulliard, L. Cerutti, B.A. Cuche, E. de Castro,
C. Lachaize, P.S. Langendijk-Genevaux, and C.J. Sigrist. The 20 years of
PROSITE. Nucleic Acids Res., 36(Database issue), 2008.

[52] L. Ilie and S. Ilie. Multiple spaced seeds for homology search. Bioinformatics,
23(22):2969–2977, 2007.

[53] W. Kabsch and C. Sander. Dictionary of protein secondary structure: Pattern
recognition of hydrogen-bonded and geometrical features. Biopolymers, 22:
2577–2637, 1983.

[54] H. Kaltenbach. Statistics and Algorithms for Peptide Mass Fingerprinting.
PhD thesis, Bielefeld University, 2007.

[55] M. Karas and F. Hillenkamp. Laser desorption ionization of proteins with
molecular masses exceeding 10,000 daltons. Anal. Chem., 60:2299–2301,
1988.

[56] S. Karlin and H.M. Taylor. A First Course in Stochastic Processes. Academic
Press, 2 edition, 1975.

[57] W.J. Kent. BLAT–the BLAST-like alignment tool. Genome Res., 12(4):656–
664, 2002.

[58] D.E. Knuth, J.H. Morris, and V.R. Pratt. Fast pattern matching in strings.
SIAM Journal of Computing, 6(2):323–350, 1977.

[59] T. Knuutila. Re-describing an algorithm by hopcroft. Theor. Comput. Sci.,
250(1-2):333–363, 2001.

[60] Y. Kong. Generalized correlation functions and their applications in selection
of optimal multiple spaced seeds for homology search. J. Comput. Biol., 14
(2):238–254, 2007.

128

REFERENCES

[61] Yong Kong. Statistical distributions of pyrosequencing. J Comput Biol, 16
(1):31–42, 2009.

[62] D. Kozen. Automata and Computability. Springer-Verlag, New York, 1997.

[63] G. Kucherov, L. Noé, and M. Roytberg. Multiseed lossless filtration.
IEEE/ACM Trans. Comput. Biol. Bioinform., 02(1):51–61, 2005.

[64] G. Kucherov, L. Noé, and M. Roytberg. A unifying framework for seed sen-
sitivity and its application to subset seeds. J. Bioinform. Comput. Biol., 4(2):
553–569, 2006.

[65] J. Kuha. AIC and BIC - comparisons of assumptions and performance. SMR,
33:188–229, 2004.

[66] S. Kullback and R.A. Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, 22(1):79–86, 1951.

[67] E. Lange, C. Gröpl, K. Reinert, O. Kohlbacher, and A. Hildebrandt. High-
accuracy peak picking of proteomics data using wavelet techniques. In Proc.
of the Pacific Symposium on Biocomputing (PSB), pp. 243–254, 2006.

[68] K. Lemstrom and A. Pienimaki. On comparing edit distance and geometric
frameworks in content-based retrieval of symbolically encoded polyphonic
music. Musicae Scientiae, Sp. Iss. SI:135–152, 2007.

[69] S. Levy, G. Sutton, P.C. Ng, L. Feuk, A.L. Halpern, B.P. Walenz, N. Axelrod,
J. Huang, E.F. Kirkness, G. Denisov, Y. Lin, J.R. MacDonald, A.W.C. Pang,
M. Shago, T.B. Stockwell, A. Tsiamouri, V. Bafna, V. Bansal, S.A. Kravitz,
D.A. Busam, K.Y. Beeson, T.C. McIntosh, K.A. Remington, J.F. Abril, J. Gill,
J. Borman, Y. Rogers, M.E. Frazier, S.W. Scherer, R.L. Strausberg, and J.C.
Venter. The diploid genome sequence of an individual human. PLoS Biol., 5
(10):e254, 2007.

[70] M. Li, B. Ma, D. Kisman, and J. Tromp. PatternHunter II: Highly sensitive
and fast homology search. J. Bioinform. Comput. Biol., 2(3):417–439, 2004.

[71] M. Li, B. Ma, and L. Zhang. Superiority and complexity of the spaced
seeds. In Proc. of the 17th annual ACM-SIAM symposium on discrete algo-
rithms (SIAM), pp. 444–453, 2006.

[72] D.C. Liebler. Introduction to Proteomics. Humana Press, 2002.

[73] K.U. Linderstrøm-Lang. Proteins and enzymes. volume 6 of Lane Medi-
cal Lectures, Stanford University Publications, Medical Sciences, pp. 1–115.
Stanford University Press, 1952.

[74] M.E. Lladser, M.D. Betterton, and R. Knight. Multiple pattern matching: a
markov chain approach. J. of Mathematical Biology, 56(1-2):51–92, 2008.

129

REFERENCES

[75] I. Coro C. Hoogland P.A. Binz R.D. Appel M. Tuloup, C. Hernandez. Aldente
and BioGraph : An improved peptide mass fingerprinting protein identifica-
tion environment. In Proc. of the Swiss Proteomics Society 2003 Congress:
Understanding Biological Systems through Proteomics, pp. 174–176, 2003.

[76] B. Ma, J. Tromp, and M. Li. PatternHunter - faster and more sensitive
homology search. Bioinformatics, 18:440–445, 2002.

[77] M. Goto M. Leman C. Rhodes M.A. Casey, R. Veltkamp and M. Slaney.
Content-based music information retrieval: Current directions and future
challenges. In Proc. of the IEEE, volume 96, pp. 668–696, 2008.

[78] J. Magnin, A. Masselot, C. Menzel, and J. Colinge. OLAV-PMF: A novel scor-
ing scheme for high-throughput peptide mass fingerprinting. J. Proteome
Res., 3(1):55–60, 2004.

[79] D. Mak, Y. Gelfand, and G. Benson. Indel seeds for homology search. Bioin-
formatics, 22(14):e341–e349, 2006.

[80] D.Y.F. Mak and G. Benson. All hits all the time: Parameter free calculation
of seed sensitivity. In Proc. of the 5th asia-pacific APBC bioinformatics con-
ference (APBC), volume 5 of Advances in Bioinformatics and Computational
Biology, pp. 327–340. Imperial College Press, 2007.

[81] M. Mann and O.N. Jensen. Proteomic analysis of post-translational modifi-
cations. Nat. Biotechnol., 21(3):255–261, 2003.

[82] M. Margulies, M. Egholm, W.E. Altman, S. Attiya, J.S. Bader, L.A. Bem-
ben, J. Berka, M.S. Braverman, Y. Chen, Z. Chen, S.B. Dewell, L. Du, J.M.
Fierro, X.V. Gomes, B.C. Godwin, W. He, S. Helgesen, C. Heen Ho, C. He
Ho, G.P. Irzyk, S.C. Jando, M.L.I. Alenquer, T.P. Jarvie, K.B. Jirage, J. Kim,
J.R.Knight, J.R. Lanza, J.H. Leamon, S.M. Lefkowitz, M. Lei, J. Li, K.L.
Lohman, H. Lu, V.B. Makhijani, K.E. McDade, M.P. McKenna, E.W.Myers,
E. Nickerson, J.R. Nobile, R. Plant, B.P. Puc, M.T. Ronan, G.T. Roth, G.J.
Sarkis, J.F. Simons, J.W. Simpson, M.Srinivasan, K.R. Tartaro, A. Tomasz,
K.A. Vogt, G.A. Volkmer, S.H. Wang, Y. Wang, M.P. Weiner, P. Yu, R.F. Beg-
ley, and J.M. Rothberg. Genome sequencing in microfabricated high-density
picolitre reactors. Nature, 437(7057):376–380, 2005.

[83] T. Marschall. Statistics on random texts. an approach based on finite au-
tomata. Diploma thesis, Faculty of Technology, Bielefeld University, Ger-
many, 2007.

[84] T. Marschall and S. Rahmann. Probabilistic arithmetic automata and their
application to pattern matching statistics. In Proc. of the 19th Annual Sym-
posium on Combinatorial Pattern Matching (CPM), pp., 2008.

[85] R. Matthiesen. Mass Spectrometry Data Analysis in Proteomics. Humana
Press, 2007.

130

REFERENCES

[86] A.M. Maxam and W. Gilbert. A new method for sequencing DNA. Proc Natl
Acad Sci U S A, 74:560–564, 1977.

[87] L. McHugh and J.W. Arthur. Computational methods for protein identifica-
tion from mass spectrometry data. PLoS Comput. Biol., 4(2):e12, 2008.

[88] F. Monigatti and P. Berndt. Algorithm for accurate similarity measurements
of peptide mass fingerprints and its application. J. Am. Soc. Mass Spectrom.,
16(1):13–21, 2005.

[89] J.S. Morris, K.R. Coombes, J. Koomen, K.A. Baggerly, and R. Kobayashi.
Feature extraction and quantification for mass spectrometry in biomedical
applications using the mean spectrum. Bioinformatics, 21(9):1764–1775,
2005.

[90] J. Myhill. Finite automata and the representation of events. Technical Re-
port 57-624, WADC, 1957.

[91] N.E. Nahi. Estimation Theory and Applications. Wiley, New York, 1969.

[92] A. Nerode. Linear automaton transformations. Proc. Amer. Math. Soc, 9:
541–544, 1958.

[93] P. Ney and E. Nummelin. Markov additive processes i: Eigenvalue properties
and limit, 1987.

[94] L. Noé and G. Kucherov. Improved hit criteria for dna local alignment. BMC
Bioinformatics, 5:149, 2004.

[95] P.M. Palagi, Pa. Hernandez, D. Walther, and R.D. Appel. Proteome informat-
ics i: Bioinformatics tools for processing experimental data. Proteomics, 6
(20):5435–5444, 2006.

[96] T. Patzkill. Proteomics. Kluwer Academic Publishers, 2002.

[97] W. Pearson and D. Lipman. Improved tools for biological sequence compari-
son. Proc. Natl. Acad. Sci. USA, 85:2444–2448, 1988.

[98] D.N. Perkins, D.J. Pappin, D.M. Creasy, and J.S. Cottrell. Probability-based
protein identification by searching sequence databases using mass spec-
trometry data. Electrophoresis, 20(18):3551–3567, 1999.

[99] P.A. Pevzner and M.S. Waterman. Multiple filtration and approximate pat-
tern matching. Algorithmica, 13(1/2):135–154, 1995.

[100] G. Pollastri, D. Przybylski, B. Rost, and P.Baldi. Improving the prediction
of protein secondary structure in three and eight classes using recurrent
neural networks and profiles. Proteins, 47(2):228–235, 2002.

[101] L. R. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257–286, 1989.

131

REFERENCES

[102] S. Rahmann. Subsequence combinatorics and applications to microarray
production, DNA sequencing and chaining algorithms. In Combinatorial Pat-
tern Matching (CPM), volume 4009 of LNCS, pp. 153–164, 2006.

[103] D. Reynolds. An overview of automatic speaker recognition technology. In
Proc. of the IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICA SSP), volume IV, pp. 4072–4075, 2002.

[104] D.C. Richter, F. Ott, A.F. Auch, R. Schmid, and D.H. Huson. MetaSim: A
sequencing simulator for genomics and metagenomics. PLoS ONE, 3(10):
e3373, 2008.

[105] S. Robin, F. Rodolphe, and S. Schbath. DNA, Words and Models: Statistics
of Exceptional Words. Cambridge University Press, 2005.

[106] M. Ronaghi. Pyrosequencing sheds light on dna sequencing. Genome Res.,
11(1):3–11, 2001.

[107] M. Ronaghi, S. Karamohamed, B. Pettersson, M. Uhlén, and P. Nyrén.
Real-time DNA sequencing using detection of pyrophosphate release. Anal.
Biochem., 242(1):84–89, 1996.

[108] M. Ronaghi, M. Uhlén, and P. Nyrén. A sequencing method based on real-
time pyrophosphate. Science, 281(5375):363–365, 1998.

[109] F. Sanger, S. Nicklen, and A.R. Coulson. DNA sequencing with chain-
terminating inhibitors. Proc Natl Acad Sci U S A, 74(12):5463–5467, 1977.

[110] C.E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423,623–656, 1948.

[111] J.A. Siepen, E. Keevil, D. Knight, and S.J. Hubbard. Prediction of missed
cleavage sites in tryptic peptides aids protein identification in proteomics. J.
Proteome Res., 6(1):399–408, 2007.

[112] C.J. Sigrist, L. Cerutti, N. Hulo, A. Gattiker, L. Falquet, M. Pagni, A. Bairoch,
and P. Bucher. PROSITE: A documented database using patterns and pro-
files as motif descriptors. Brief. Bioinform., 3(3):265–274, 2002.

[113] T.F. Smith and M.S. Waterman. Identification of common molecular subse-
quences. J. Mol. Biol., 147(1):195–197, 1981.

[114] A.P. Snyder. Interpreting Protein Mass Spectra. Oxford University Press,
2000.

[115] H. Stark and J.W. Woods. Probability, Random Processes, and Estimation
Theory for Engineers. Prentice Hall, Englewood Cliffs, NJ, 1994.

[116] Y. Sun and J. Buhler. Designing multiple simultaneous seeds for DNA simi-
larity search. J. Comput. Biol., 12(6):847–861, 2005.

132

REFERENCES

[117] B. Thiede, S. Lamer, J. Mattow, F. Siejak, C. Dimmler, T. Rudel, and P.R.
Jungblut. Analysis of missed cleavage sites, tryptophan oxidation and n-
terminal pyroglutamylation after in-gel tryptic digestion. Rapid Commun.
Mass Spectrom., 14(6):496–502, 2000.

[118] C. Tsai and R. Nussinov. The implications of higher (or lower) success in
secondary structure prediction of chain fragments. Protein Sci., 14(8):1943–
1944, 2005.

[119] D. Tsur, S. Tanner, E. Zandi, V. Bafna, and P.A. Pevzner. Identification of
post-translational modifications via blind search of mass-spectra. In Proc.
of the IEEE Computer Society Bioinformatics Conference (CSB), pp. 157–166,
2005.

[120] M. Unemo, P. Olcén, J. Jonasson, and H. Fredlund. Molecular typing of
neisseria gonorrhoeae isolates by pyrosequencing of highly polymorphic seg-
ments of the porb gene. J. Clin. Microbiol., 42(7):2926–2934, 2004.

[121] I-J. Wang, C.P. Diehl, and F.J. Pineda. A statistical model of proteolytic
digestion. In Proc. of the IEEE Computer Society Bioinformatics Conference
(CSB), pp. 506–508, 2003.

[122] D. Williams. Weighing the Odds: A Course in Probability and Statistics. Cam-
bridge University Press, 2001.

[123] J.R. Yates. Mass spectrometry. from genomics to proteomics. Trends Genet.,
16(1):5–8, 2000.

[124] J.R. Yates, J.K. Eng, and A.L. McCormack. Mining genomes: Correlating
tandem mass spectra of modified and unmodified peptides to sequences in
nucleotide databases. Anal. Chem., 67(18):3202–3210, 1995.

[125] J.R. Yates, J.K. Eng, A.L. McCormack, and D. Schieltz. Method to correlate
tandem mass spectra of modified peptides to amino acid sequences in the
protein database. Anal. Chem., 67(8):1426–1436, 1995.

[126] J.R. Yates, A.L. McCormack, D. Schieltz, E. Carmack, and A. Link. Direct
analysis of protein mixtures by tandem mass spectrometry. J. Protein Chem.,
16(5):495–497, 1997.

[127] C. Yen, S. Russell, A.M. Mendoza, K. Meyer-Arendt, S. Sun, K.J. Cios, N.G.
Ahn, and K.A. Resing. Improving sensitivity in shotgun proteomics using
a peptide-centric database with reduced complexity: Protease cleavage and
SCX elution rules from data mining of ms/ms spectra. Anal. Chem., 78(4):
1071–1084, 2006.

[128] W. Zhang and B.T. Chait. ProFound: An expert system for protein identifi-
cation using mass spectrometric peptide mapping information. Anal. Chem.,
72(11):2482–2489, 2000.

[129] M. Zvelebil and J.O. Baum. Understanding Bioinformatics. Garland Science,
2008.

133

