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�Das Höchste, wozu der Mensch gelangen kann, ist das Erstaunen.�

Johann Wolfgang von Goethe





aAbstract

In this thesis we apply methods from statistical physics to stochastic inflation. Those

methods, the replica field theory and the Gaussian variational methods, have to our

knowledge never been applied before in this context, and allow us to compute the power

spectrum of a scalar test field in the most general set-up. It provides a framework to

perform calculations in regions of arbitrarily large quantum fluctuations and may also

serve as a starting point to address the issue of back reaction.

We first give an introduction to cosmological inflation, cosmological perturbation the-

ory and cosmic microwave background anisotropies. Then we explain the idea of sto-

chastic inflation, including some detailed derivations, and give an overview over major

progress in this field. This is followed by an introduction to replica field theory, pre-

sented in a way directly applicable to stochastic inflation. Our work continues with a

detailed calculation of the power spectrum of a scalar test field in a Friedmann Universe.

We show the effect of the quantum fluctuations on the spectrum and derive explicit ex-

pressions showing its dependence on time and other important parameters. The effect of

self-interactions and possible effects on the cosmic microwave background are discussed.

We conclude with a summary of our results and give an outlook.

One part of our major results has been published in Phys. Rev. D 78, 103501 (2008),

where for the first time we present a replica field-theoretical approach to stochastic

inflation in which we find a manifestation of the phenomena of so-called dimensional

reduction. It implies under certain conditions inevitable infra-red divergencies of corre-

lation functions on large-scales. These conditions are examined in detail in Phys. Rev. D

79, 44009 (2009), where we find that generically for a wide class of circumstances the

divergencies are pushed exponentially fast well beyond observable scales. A subsequent

publication is dedicated to the inclusion of self-interaction within our non-perturbative

replica framework. For a quartic self-coupling we find a damping of the power spectrum

on large scales — an issue which has recently attracted significant attention. Our find-

ings are fully consistent with those in the literature and may provide an explanation

of certain features in the cosmic microwave background, and might also help to resolve

some long-standing infra-red problems in inflationary cosmology.
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aAbriss

In dieser Arbeit wenden wir Methoden aus der statistischen Physik auf die stochastis-

che Inflation an. Diese, die Replika-Feldtheorie und die Gauß’sche Variationsmethode,

sind unseres Wissens nach noch nie zuvor in diesem Kontext angewendet worden, und

erlauben, das Leistungsspektrum eines skalaren Testfeldes in großer Allgemeinheit zu

bestimmen. Diese Methoden stellen einen Rahmen zur Verfügung, in welchem beliebige

Quantenfluktuationen behandelt werden können, und könnten ein Startpunkt sein, um

Rückwirkungseffekte bezüglich der Geometrie der Raumzeit einzubeziehen.

Einführungen in kosmologische Inflation, kosmologische Störungstheorie und Anisotro-

pien des kosmischen Mikrowellenhintergrundes leiten diese Arbeit ein. Danach erklären

wir die Idee der stochastischen Inflation, wobei wir auch einige detaillierte Herleitungen

präsentieren, und geben einen Überblick über wichtige Fortschritte in diesem Feld. Es

folgt eine Einführung in die Methoden der Replika-Feldtheorie, und zwar in einer Weise,

die direkt anwendbar ist auf die stochastische Inflation. Unsere Arbeit wird fortgeführt

durch eine explizite Berechnung des Leistungsspektrums eines skalaren Testfeldes in

einem Friedmann-Universum. Wir untersuchen den Einfluss von Quantenfluktuationen

auf dieses Spektrum und leiten explizite Ausdrücke her, welche die Abhängigkeiten von

der Zeit, sowie von anderen wichtigen Parametern deutlich machen. Der Effekt von

Selbst-Wechselwirkungen und mögliche Auswirkungen auf den kosmischen Mikrowellen-

hintergrund werden diskutiert. Wir schließen mit einer Zusammenfassung unserer Ergeb-

nisse und geben einen Ausblick.

Ein Teil unserer Hauptresultate wurde in Phys. Rev. D 78, 103501 (2008) publiziert,

worin wir zum ersten Mal einen Replika-Feldtheorie-Zugang für die stochastische In-

flation präsentieren und das Auftreten des Phänomens der sogenannten dimensionellen

Reduktion zeigen. Dieses impliziert, dass unter bestimmten Bedingungen Infrarot-Diver-

genzen in Korrelationsfunktionen auftreten können. Die genauen Bedingungen hierfür

haben wir in der Veröffentlichung Phys. Rev. D 79, 44009 (2009) untersucht, worin wir

zeigen konnten, dass für eine große Klasse von Ausgangssituationen diejenigen Berei-

che, in denen diese Divergenzen auftreten, exponentiell schnell aus den beobachtbaren

Regionen verschoben werden.
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iv Abriss

Eine weitere Publikation werden wir dem Studium von Selbst-Wechselwirkungen inner-

halb des nicht-perturbativen Replika-Feldtheorie-Rahmens widmen. Für eine quartische

Selbst-Wechselwirkung finden wir eine Dämpfung auf großen Skalen – ein Aspekt der in

jüngerer Zeit Aufmerksamkeit auf sich gezogen hat. Unsere Resultate sind konsistent

mit denen aus der Literatur und könnten dazu beitragen, gewisse Fragestellungen zum

kosmischen Mikrowellen-Hintergrund zu beantworten, sowie zu helfen, einige Probleme

bezüglich Infrarot-Divergenzen in der inflationären Kosmologie zu klären.
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Chapter1
Cosmological Inflation

� ‘αρµoνίη
′
αϕανὴς ϕανερη̃ς κρείττων.�

[�The hidden harmony is better than the open.� ]

Heraclitus of Ephesus

A consistent and fundamental understanding of the observed isotropy of our Universe

is one the main goals of modern cosmology. Based on old ideas of Starobinsky [Sta80]

and Guth [Gut80], the Universe underwent a phase of quasi-exponential expansion,

inflation, before the time when it was radiation dominated. As powerful as it is, this set-

up can — at least phenomenologically — be realised in an extremely simple manner in

terms of a single scalar field in a sufficiently flat potential, causing the desired expansion.

The quantum fluctuations of this field, called inflaton field, as they are stretched to

cosmological scales, are responsible for the observed fluctuations in the cosmic microwave

background radiation and provide the seeds for the formation of structure in general.

1.1 Friedmann Space-Time

Before we discuss the usefulness of the idea of cosmological inflation, we first present some

basics of standard Big Bang cosmology. These insights allow us to understand several

of its conceptual insufficiencies. We will restrict ourselves to a rather brief discussion as

most of these issues are well-known in cosmology and shall serve more as a remainder

of the most important concepts and formulae, as well as to fix notation.
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2 1 Cosmological Inflation

We start with the basic four-dimensional space-time accounting for the observed

isotropy in the matter distribution on a few hundred megaparsecs: The Friedmann

Universe. This space-time can be defined by the line element

ds2 = gµν dxµdxν = dt2 − a(t)2

[
dr2

1− κr2
+ r2

(
dθ2 + sin2(θ)dφ2

)]
, (1.1)

with the metric gµν , the scale factor a(t), and the constant κ which can take the values

1, −1, 0, depending on whether the Universe is closed, open or flat. Observations suggest

[KDN+09] that the latter is realised, and hence we will mainly consider this case in the

following. In (1.1) and throughout this work we employed the Einstein summation

convention, i.e. any expression with two common indices implicitly means a sum over

all of their values: Greek indices run from 0 to 3 and Latin over 1, 2 and 3.

The evolution of the scale factor can be calculated by the Einstein field equations

Gµν = Tµν , (1.2)

with the Einstein tensor Gµν , the energy-momentum tensor Tµν , and for con-

venience we set 8πG
!

= 1, } !
= 1, and c

!
= 1. With the assumptions of homogene-

ity and isotropy, the energy-momentum tensor can be written in the diagonal form

(Tµ
ν) = diag(ε,−p,−p,−p), which yields from the 0-0-component of (1.2) the Fried-

mann equation

H2 ≡
(
ȧ

a

)2

=
ε

3
− κ

a2
. (1.3)

Equation (1.3) also defines the Hubble parameter H, the basic quantity measuring

the expansion rate, where as usual, a dot means a differentiation with respect to time.

One then finds from (1.2)

Ḣ = −1

2
(ε+ p) +

κ

a2
. (1.4)

The Friedmann equation (1.3) provides a relation of the curvature of the Universe to

the energy density and the expansion rate via

Ω− 1 =
κ

a2H2
, (1.5)

where Ω := ε/εcrit. with εcrit. := 3H2. Now, if Ω > 1 the Universe is positively curved,

Ω < 1 corresponds to a negative curvature and finally Ω = 1 implies a flat space-time.



1.1 Friedmann Space-Time 3

This last case seems to be realised to good precision, as combined measurements give

Ω0 := Ω(t0) = 1.00+0.07
−0.03 [KDN+09]. The present understanding is that Ω0 is a sum of

mainly three parts: Ω0 = Ωb + ΩDM + ΩΛ (baryons, dark matter, dark energy), where

these fractions have been determined to Ωb = 0.044 ± 0.003, ΩDM = 0.214 ± 0.027 and

ΩΛ = 0.742± 0.030; the radiation fraction is negligible today [KDN+09].

With the so-called conformal time η, defined via dη ≡ a(t)−1 dt, and for κ = 0, the

metric gµν underlying the line element (1.1) can be written as

gµν = a(η)2 ηµν , (1.6)

with the Minkowski metric ηµν . This implies for a power-law scale factor a(t) ∝ tn

the result a(η) ∝ ηn/(1−n). An exponential scale factor a(t) ∝ eHt yields a(η) ∝ η−1,

which can be obtained from the former case in the limit n → ∞. In general, for an

equation of state p/ε = ω ∈ R, one finds a(t) ∝ t2/(3+3ω) and ε ∝ a−3−3ω. If the

Universe is matter dominated one has ω = 0, implying a(t) ∝ t2/3 and ε ∝ a−3.

The case of radiation domination is described by ω = 1/3, which yields a(t) ∝ t1/2,

ε ∝ a−4, and so a ∝ T−1 if ε ∝ T 4, where T is the temperature of the Universe.

It is convenient to define analogous to H the quantity H := a′/a, where a prime

denotes differentiation with respect to η. Then equation (1.4) becomes

H′ = −1

6
(ε+ 3p) . (1.7)

Other useful relations are

H =
H
a
, Ḣ =

H′ −H2

a2
, H2 =

εa2

3
− κ . (1.8)

A concept we will employ is that of a particle horizon RH. It is defined as the maximal

distance a photon can travel since the Big Bang (at time ti) until time t:

RH(t) = a(t)

∫ t

ti

dt′

a(t′)
= a(η)

∫ η

ηi

dη′ . (1.9)

One finds

RH =


n
n−1

1
H

[(
t/ti
)n−1− 1

]
(power-law) ,

1
H

[
eH(t−ti) − 1

]
(exponential) .

(1.10)

We see that, while H is constant in the exponential case, RH diverges if ti → −∞,

meaning that all points were in causal contact. However, one should keep in mind that

the de Sitter space-time is geodesically incomplete and is only used as an approximation.
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1.2 Shortcomings of the Standard Big Bang Theory

Having briefly reviewed some basic concepts of the standard Big Bang cosmology in the

previous section, we will now discuss two of its insufficiencies, namely the so-called flat-

ness problem and the horizon problem. Although termed ‘problems’, these issues do not

reflect any logical inconsistency, but require a rather fine-tuned ‘unnatural’ arrangement

of the initial conditions to describe the measured cosmological data.

1.2.1 Flatness Problem

We have already mentioned the observed flatness of the present Universe. If today

Ω0 ' 1, one may ask what are the implications for the initial conditions of the Universe.

To this end we notice that in the case of radiation domination

Ω− 1 ∝ a2 , (1.11)

which implies with the temperature dependence a ∝ T−1 for the ratio

|Ω− 1|t=ti
|Ω− 1|t=t0

'

(
a(ti)

a(t0)

)2

'
(
T0

Ti

)2

. (1.12)

As the present-day temperature of the cosmic microwave background photons is roughly

T0 ≈ 10−13 GeV, we find that the choice of Ti = TPlanck = 1019 GeV yields for the right-

hand side of (1.12) the value 10−64. Thus, to get the observed value of Ω0 one needs an

amazingly strong fine-tuning.

1.2.2 Horizon Problem

As mentioned, the Universe today is extremely homogeneous on scales of a few hundred

megaparsecs. This domain of homogeneity is at least as large as the present horizon,

which represents the maximal length at which causal processes can take place. Its linear

extension has initially been smaller by the ratio of the corresponding scale factors ai/a0,

implying that the size of the homogeneous and isotropic patch from which our Universe

originated was at least as large as (linear extension)

`i ∼ t0
ai
a0

, (1.13)

assuming that inhomogeneity cannot be dissolved by expansion.



1.3 Standard Inflationary Universe 5

If one compares this to the size of a causal region of linear extent `c (at initial time ti),

one obtains
`i
`c
∼ t0
ti

ai
a0

. (1.14)

Hence, assuming radiation domination and ti = tPlanck, we find the ratio to be 1028,

meaning that the Universe was very smooth over (1028)3 = 1084 initially causally discon-

nected regions. Therefore, there is no causal physical process in a decelerating Friedmann

Universe that can be responsible for this extremely fine-tuned matter distribution.

1.3 Standard Inflationary Universe

The previous discussion of the shortcomings of the Big Bang theory suggests that the

Universe underwent a period in which the horizon scale H−1 grew slower than a physical

scale λph. As these grow like a(t), the previous consideration yields

0 <
d

dt

(
λph

H−1

)
∝ ..
a , (1.15)

as a criterion for cosmological inflation, i.e. accelerated expansion. It can be deduced

from equation (1.7) that
p < −ε

3
(1.16)

is required to have
..
a > 0 and therefore neither radiation- nor matter-domination fulfills

this requirement.

One remarkably simple possibility to realise this is by means of a single scalar field ϕ,

called inflaton. Let us for simplicity assume its action to be the canonical one,

S[ϕ] =

∫
d4x
√
−g L[ϕ] =

∫
d4x
√
−g

[
1

2
gµν ϕ,µϕ,ν − V(ϕ)

]
, (1.17)

for which the corresponding energy-momentum tensor Tµν reads

Tµν =
2√
−g

δS[ϕ]

δgµν
= ϕ,µϕ,ν − gµνL[ϕ] . (1.18)

This implies

ε = T0
0 =

ϕ̇2

2
+ V(ϕ) +

(∇ϕ)2

2a2
, (1.19a)

p = −1

3
Ti

i =
ϕ̇2

2
− V(ϕ)− (∇ϕ)2

6a2
. (1.19b)

Hence, we find p = −ε/3 if the gradient term dominates, if the potential dominates one

has p = −ε, and p = ε if the kinetic term prevails.
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1.3.1 Slow-Roll

Let us split the scalar field into a homogeneous part ϕ0 and fluctuations δϕ around ϕ0,

ϕ(t,x) = ϕ0(t) + δϕ(t,x) . (1.20)

Since fluctuations will intensively be discussed the next chapters, we will focus here on

the homogeneous part ϕ0. It obeys the equation of motion

..
ϕ0 + 3H

.
ϕ0 +

dV(ϕ0)

dϕ0

= 0 . (1.21)

The so-called slow-roll approximation consists of taking
.
ϕ

2
0 � V(ϕ0) and | ..ϕ0| � |H

.
ϕ0|,

and assuming that the potential is sufficiently flat. It reduces equation (1.21) to

3H
.
ϕ0 ' −

dV(ϕ0)

dϕ0

. (1.22)

Then, the assumptions that the inflaton field dominates the energy density yields

H2(ϕ0) ' 1

3
V(ϕ0) , (1.23)

and hence that the slow-roll condition can be expressed in terms of constraints on the

first slow-roll parameter

εsr := −d ln(H)

d ln(a)
= −

.

H

H2
=

.
ϕ

2
0

2H2
' 1

2

(
V′

V

)2

� 1 , (1.24a)

and the second slow-roll parameter

ηsr := −
d ln
(
H ′
)

d ln(a)
' V′′

V
' V′′

3H2
� 1 . (1.24b)

Above, a prime denotes a derivative with respect to ϕ0. From the definition of εsr it

follows that
..
a

a
= H2 + Ḣ = (1− εsr)H2 , (1.25)

and hence inflation can only occur for εsr < 1. Furthermore, we have ε̇sr, η̇sr = O(ε2sr, η
2
sr),

implying that working to first order in the slow-roll parameters tantamounts to take them

as constants in time.
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Usually, the amount of inflation is quantified by the logarithm of the ratio of the scale

factor at the end of inflation at time tf , to its value at some time t. It is called number

of e-folds

N(t) := ln

(
a(tf )

a(t)

)
. (1.26)

In the case of single-field slow-roll inflation one has

N(t) =

∫ tf

t

dt′ H
(
t′
)
' −

∫ ϕ(tf )

ϕ(t)

dϕ
V(ϕ)

V′(ϕ)
. (1.27)

Let us once again return to the equation of state for the scalar-field model under

consideration, i.e. to p = −ε. From the equations (1.3) and (1.4) we find that in this

case both ε and H are constant. This implies for the scale factor

a(t) = ai e
H(t−ti) , (1.28)

and thus the total number of e-folds is just given by

NT := N(ti) = H (tf − ti) . (1.29)

1.3.2 Inflation and the Shortcomings of the Standard Big Bang Theory

We will first discuss how inflation can provide a solution to the horizon problem. As

mentioned previously, the (de Sitter) horizon H is constant. Thus, for sufficiently many

e-folds all physical scales that left the horizon could have been subhorizon, because of

their exponential suppression in the past.

Let us therefore calculate the number of e-folds which are necessary to solve the

horizon problem. For simplicity we assume a two-stage history of the Universe with an

instantaneous transition from an exponential to a radiation-dominated period.

The minimum requirement is that a scale as large as the present horizon H−1
0 has

been inside the horizon at the beginning of inflation, i.e. inside H−1
i . Hence,

H−1
i & H−1

0

a(ti)

a(t0)
= H−1

0

a(tf )

a(t0)

a(ti)

a(tf )
' H−1

0

T0

Tf
e−NT (1.30)

and thus for the choice H0 = 10−42 GeV and T0 = 10−13 GeV the lower bound

NT & ln

(
T0

H0

)
− ln

(
Tf
Hi

)
' 67− ln

(
Tf
Hi

)
, (1.31)

where Tf is the temperature at the end of inflation, just before radiation-domination.
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The size of the last term in (1.31) is very model dependent and determined by the

value of the temperature Tf at so-called reheating and the initial Hubble constant Hi.

In the case of chaotic inflation, where all relevant energy scales are Planckian, and

for Tf = TGUT ≈ 1016 GeV we find ln(Hi/Tf ) ≈ 7, whereas for Tf = TEW ≈ 102 GeV the

corresponding value is more than five times larger. For a discussion on the issue of the

number of e-folds, we refer interested reader to the article [LL03].

Inflation also elegantly solves the flatness problem. Because H is constant during in-

flation, we find

Ω− 1 ∝ a−2 , (1.32)

which implies

|Ω− 1|t=tf
|Ω− 1|t=ti

≈

(
a(ti)

a(tf )

)2

= e−2NT . (1.33)

This means that if inflation lasts long enough, Ω can be made as close to one as desired.

Of course, inflation-induced flatness is to be understood cum grano salis: A space-time

with an open or closed geometry will stay open or closed, respectively. It is only that

the observable patch becomes much smaller than the curvature radius of the Universe.

1.4 Inflation and Cosmological Perturbations

Although being intensively discussed in the next chapter, we will now briefly comment

on the link of inflation to the generation of cosmological perturbations, for completeness.

Inflation may provide a simple and almost perfect way for homogenisation and isotropi-

sation our observable patch of the Universe. Now, ‘almost’ is a key to the issue of struc-

ture formation. In fact, the most important aspect of inflation is the explanation of

the origin of large-scale structure, which, as discussed, could not be generated by causal

processes, since, e.g. the angular distance of the horizon at radiation/matter equality is

about one degree.

What basically happens is that quantum fluctuations of the scalar field induce fluctu-

ations in the gravitational potential. This leads in turn to a concentration of matter in

the gravitational troughs, which attracts more and more matter. The quasi-exponential

inflation is then stretching these seeds to cosmological scales.



Chapter2
Cosmological Perturbations

&
Primordial Inhomogeneities

�Anbeginn von Raum und Zeiten –

urgetrieben Weltenkeim

lässt den Kosmos fortan schreiten;

Schau, ein Stern – wir sind daheim.�

F. K.

At the time of recombination, the Universe was very isotropic and homogeneous. Also

today, when averaged over a few hundred megaparsecs, inhomogeneities in the density

distributions are small. However, with galaxies and clusters, superclusters or filaments

of such, the Universe has a well developed non-linear structure. An explanation for this

is found in gravitational instabilities originating from the attractive nature of gravity.

Over-dense regions attract matter, which increases the density further and, in turn, leads

to an amplification of the original inhomogeneity in the distribution of matter.

In this chapter, which follows [Muk05], we will first discuss the issue of metric per-

turbations and gravitational instabilities. Afterwards we apply this to various types of

perturbations and study the origin of primordial inhomogeneities, including their spec-

trum. We conclude with a discussion of quantum cosmological perturbations.

9
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2.1 Perturbations

Let us study small perturbations δg around a flat Friedmann Universe using the metric

ds2 = gαβ dxα dxβ ≡
(

g(0)
αβ + δgαβ

)
dxα dxβ , (2.1)

where, g(0)
αβ(η) = a(η)2 ηαβ with

∣∣δgαβ∣∣� |g(0)
αβ|, for all α, β. In (2.1) and throughout

this work, a superscript ‘(0)’ shall indicate background quantities. Since (δgαβ) is real

and symmetric, it has 10 real, independent components. It is convenient to categorise

them into scalar, vector and tensor perturbations. To see how this precisely works, we

write — without loss of generality — the metric fluctuations in the form

δg00 ≡ 2 a2 φ , (2.2a)

δg0i ≡ a2
(
B,i + Si

)
, (2.2b)

δgij ≡ a2
(
2ψ δij + 2 E,ij + 2 Fi,j + 2 Fj,i + 2 hij

)
, (2.2c)

with the constraints that the 3-vectors ~F and ~S are divergence-free

Fi,i = 0 , Si,i = 0 , (2.3)

and that the 3-tensor h is traceless and transverse,

hii = 0 , hij,i = 0 . (2.4)

Now, scalar perturbations are described by the four functions φ, ψ, B and E. They

exhibit gravitational instabilities and are thus considerably responsible for the formation

of large-scale structure.

Vector perturbations are characterised by the two 3-vectors ~F and ~S, having to-

gether four independent components due to the constraints (2.3). Because they decay

quickly — since they are related to rotational motion, which is damped in an expanding

Universe — they are of minor interest in inflationary cosmology.

The tensor perturbations describe gravitational waves, which are encoded in the

transverse and traceless 3-tensor h, that has two independent components, regarding the

constraints (2.4). To linear order, they do not induce any perturbations in the baryon-

radiation fluid.

A trivial, but important fact is that these kinds of perturbations do not mix at linear

order and hence can be studied separately. In the following paragraph we will focus on

scalar perturbations.
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2.2 Gauges

Having now classified the different types of perturbations, we will next classify different

gauges. With a gauge transformation we shall understand a general coordinate trans-

formation

x→ x̃(x) , (2.5)

where we restrict ourselves to infinitesimal ones, i.e.

x̃ = x+ ζ , (2.6)

with ζ chosen such that it leads to infinitesimal changes in observables only.

Let us briefly discuss two important choices of (classes of) coordinate systems. The

first is the so-called longitudinal (or conformal-Newton) gauge, which is fixed by

B ≡ E ≡ 0 . (2.7)

With this choice, the line element takes the form

ds2 = a2
[
(1 + 2φ) dη2 − (1− 2ψ) dx · dx

]
. (2.8)

As shown below in this chapter, for a diagonal spatial part of the energy-momentum

tensor, i.e. with Tij ∝ δij, one has φ = ψ. Furthermore, the variable φ is a generalisation

of the Newton potential, justifying thus the name conformal-Newton gauge.

The synchronous gauge is defined by the choice

φ ≡ B ≡ 0 , (2.9a)

or equivalently,

δg0α ≡ 0 . (2.9b)

We should stress that this gauge does not specify a certain observer but rather a class

of coordinate systems, due to the residual gauge freedom

η → η̃(η,x) := η +
c1(x)

a(η)
, (2.10a)

x→ x̃(η,x) := x+
(
∇xc1(x)

)∫ dη

a(η)
+∇xc2(x) , (2.10b)

which leaves (2.9a,b) invariant. c1 and c2 are arbitrary functions of x only.
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Hence, the physical interpretation in this gauge might be difficult due to the appearance

of unphysical gauge modes. It is therefore common practice to supplement the syn-

chronous gauge with another condition to fix the residual freedom, e.g. the comoving

synchronous gauge.

Appart from these two, there is a full variety of other gauges. All of those are defined

by certain choices of (classes of) coordinate systems, which themselves are connected by

diffeomorphisms. According to this, one has a defined link between the various metric

perturbations.

It seems necessary to remark further on the word gauge: Usually in field theory, a

gauge refers to a transformation of the associated vector potential within the inherent

redundancy of such a description. This has nothing to do with the coordinate system,

whereas a gauge in general relativity specifies exactly that: A particular observer. Hence,

every measurement selects a certain gauge.

2.3 Gauge-Invariant Variables

Let us now derive connections between different gauges. Therefore we take the coordinate

transformation (2.6) and write

~ζ = ~ζ⊥ +∇xξ , (2.11)

where ∇x · ~ζ⊥ = 0 and ξ is a scalar function. Then we find

δg̃00 = δg00 − 2 a (a ζ0)
′
, (2.12a)

δg̃0i = δg0i + a2
[
(ζ⊥)

′

i + (ξ′ − ζ0)
,i

]
, (2.12b)

δg̃ij = δgij + a2

[
2
a′

a
ζ0 δij + 2 ξ,ij +

(
(ζ⊥)i,j + (ζ⊥)j,i

)]
, (2.12c)

where a comma denotes a partial derivative with respect to the corresponding coordinate.

For scalar perturbations, the line element takes the form

ds2 = a2
[
(1 + 2φ)dη2 + 2 B,idx

i dη −
(
(1− 2ψ)δij − 2 E,ij

)
dxi dxj

]
, (2.13)



2.4 Dynamical Equations 13

which implies for the transformation of the scalar metric functions:

φ→ φ̃ = φ− 1

a
(a ζ0)

′
, (2.14a)

ψ → ψ̃ = ψ +
a′

a
ζ0 , (2.14b)

B→ B̃ = B + ξ′ − ζ0 , (2.14c)

E→ Ẽ = E + ξ . (2.14d)

This allows one to construct gauge-independent quantities, i.e. those that are invari-

ant under coordinate changes. From (2.14a-d) one sees that (for scalar perturbations)

only ζ0 and ξ contribute to the transformation and hence one can make any two of

φ, ψ, B, or E vanish. Two simple gauge-invariant linear combinations of these quanti-

ties are

Φ := φ− 1

a

[
a
(
B− E′

)]′
, (2.15a)

Ψ := ψ +
a′

a

(
B− E′

)
. (2.15b)

A nice feature about these variables is that, by construction, they do not change under

coordinate transformations and hence, if one of them is zero in a certain frame, it is zero

for any observer. In particular, if both Φ and Ψ are zero, there is no physical scalar metric

perturbation. Furthermore, if one has a solution to the Einstein field equations derived

in one gauge, one can easily express it in any gauge using gauge-invariant variables,

without solving these equations again.

2.4 Dynamical Equations

To derive dynamical equations for the metric perturbations, we employ the Einstein field

equations,

G(0)α

β + δGα
β ≡ Gα

β = Tα
β ≡ T(0)α

β + δTα
β , (2.16)

which imply for the corresponding linear part in the metric perturbations

δGα
β = δTα

β . (2.17)

It is important to note that neither δG nor δT are gauge invariant, but are easily

modified to yield gauge-invariant objects.
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For the linear fluctuations of the energy-momentum tensor one finds that

δT̄0
0 := δT0

0 −
(

T(0)0

0

)′(
B− E′

)
, (2.18a)

δT̄0
i := δT0

i −
(

T(0)0

0 −
1

3
T(0)k

k

)(
B− E′

)
,i
, (2.18b)

δT̄i
j := δTi

j −
(

T(0)i

j

)′(
B− E′

)
(2.18c)

provides a gauge-independent version, and for the fluctuations of the Einstein tensor

one has simliar expressions but with T replaced by G. Scalar perturbations imply after

some algebra

∆Ψ− 3H
(
Ψ′ +HΦ

)
=

1

2
a2 δT̄0

0 , (2.19a)(
Ψ′ +HΦ

)
,i

=
1

2
a2 δT̄0

i , (2.19b)[
Ψ′′ +H (2 Ψ + Φ)′ + (2H′ +H2)Φ

+
1

2
∆(Φ−Ψ)

]
δij −

1

2
(Φ−Ψ),i,j = −1

2
a2 δT̄i

j ,

(2.19c)

from which we see that the spatial part of the energy-momentum tensor is diagonal if

and only if Φ ≡ Ψ.

2.5 Hydro-Dynamical Perturbations

Having now equations for scalar perturbations for an arbitrary energy-momentum tensor,

we next discuss their solutions for special choices of Tµ
ν . The first will be that of a

perfect fluid, which is described by

Tµ
ν = (ε+ p)uµ uν − p δµν (2.20)

with uµuµ = 1. It implies for the corresponding linear fluctuations,

δT̄0
0 = δε̄ := δε− ε ′0

(
B− E′

)
, (2.21a)

δT̄0
i =

1

a
(ε0 + p0) δūi ≡

1

a
(ε0 + p0)

[
δui − a

(
B− E′

)
,i

]
, (2.21b)

δT̄i
j = −δp̄ δij ≡

[
δp− p ′0

(
B− E′

)]
δij . (2.21c)

Thus, as stated before, one finds from (2.19c) and the diagonal structure of (2.20) that

the potentials Φ and Ψ are equal.
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The equation we would like to derive is one which characterises the dynamics of Φ.

To this end, we decompose the pressure fluctuation δp̄ into fluctuations of the energy

density ε and the entropy S according to

δp̄ =
∂p

∂ε

∣∣∣∣
S

δε̄+
∂p

∂S

∣∣∣∣
ε

δS ≡ c2
s δε̄+ ρ δS , (2.22)

which defines the speed of sound cs and the parameter ρ. One can then combine the

equations (2.19a-c) and (2.21a-c) to the desired single equation for Φ,

Φ′′ + 3(1 + c2
s)HΦ′ − c2

s ∆Φ +
[
2H′ + (1 + 3 c2

s)H2
]
Φ =

1

2
a2ρ δS . (2.23)

In the following paragraph we will focus on adiabatic perturbations, where δS ≡ 0.

To simplify equation (2.23) we first eliminate the “friction” term proportional to Φ′ by

the substitution

v :=
Φ√

ε0 + p0

. (2.24)

Then, with ω0 := p0/ε0 and the definition

ϑ :=
1

a

1√
1 + ω0

=
1

a

2

3

(
1− H

′

H2

)−1/2

, (2.25)

one arrives after some algebra at

v′′ − c2
s ∆v − ϑ′′

ϑ
v = 0 . (2.26)

2.5.1 Long-Wavelength Solutions

For the regime we are primarily interested in (c.f. the discussion of the next chapter),

the long-wavelength perturbations, i.e. those with cs η k � 1, we can neglect spatial

derivatives in (2.26) and obtain the first solution

v(η) ∝ ϑ(η)

∫ η

η0

dτ

ϑ2(τ)
. (2.27)

The second solution is proportional to ϑ and decays with time (c.f. (2.25)).



16 2 Cosmological Perturbations & Primordial Inhomogeneities

From the long-wavelength solution (2.27) it is easy to construct a conserved quantity.

The simplest possibility is

ϑ2

(
v

ϑ

)′
=
√

3
H−1 Φ′ + Φ

1 + ω
+ Φ , (2.28)

which is constant even if ω is changing.

Let us now assume that the system consists of two components with different constant

equation of state, pi/f = ωi/f εi/f , for which one dominates at conformal time ηi and the

other at ηf . Then the constancy of (2.28) shows

Φ(ηf ) =
1 + ωf
1 + ωi

5 + 3ωi
5 + 3ωf

Φ(ηi) . (2.29)

This yields for the case of a transition from a radiation-dominated Universe with ωi = 1
3

to a matter-dominated one with ωf = 0, that the gravitational potential drops by a

factor of 9/10:

Φ(ηf ) =
9

10
Φ(ηi) . (2.30)

From this equation we deduce how to relate the potential for regions far away from the

transition.

For the radiation/matter system, it is possible to derive an exact solution displaying

the full time dependence. Defining κ := (
√

2 − 1) η/ηeq, one obtains

Φ(κ) =
κ + 1

(κ + 2)3

[
A

(
3

5
κ2 + 3 κ +

1

κ + 1
+

13

3

)
+B

1

κ3

]
, (2.31)

where A and B are integration constants.

2.5.2 Short-Wavelength Solutions

In the region where csηk � 1, one can neglect the last term on the right-hand side of

(2.26). The result is

v′′k + c2
s k

2 vk ' 0 , (2.32)

which describes sound waves with time-dependent amplitude.
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2.6 Baryon-Radiation Plasma and Cold Dark Matter

The ideal-fluid approximation made so far does not take into account that photons can

transfer energy from regions of the fluid over distances due to their mean free path. Tak-

ing, in turn, shear viscosity into account, the energy momentum tensor (2.20) acquires

an additional contribution proportional to the shear viscosity coefficient ηvis and readsI

Tµ
ν = (ε+ p)uµ uν − p δµν − ηvis

(
P µ

γ u
;γ
ν + P γ

ν u
µ

;γ − 2
3
P µ

ν u
γ

;γ

)
. (2.33)

Here, P µ
ν := δµν − uµuν is a projection operator, and a semicolon denotes a covariant

derivative with respect to the corresponding coordinate. One can show [Tho30] that the

shear viscosity coefficient is given by ηvis = 4/15 εγ τγ, where τγ is the mean free time of

the photons (c.f. also [Wei71, And76]).

Opposed to the case without shear viscosity, the potentials Φ and Ψ are a priori not

equal, which is only the case if the spatial part of the energy-momentum tensor vanishes,

being obviously not fulfilled under the given circumstances. Nevertheless, it is easy to

show that their difference, i.e. Φ−Ψ, is in any case suppressed by the ratio of the mean

free path of the photons to the perturbation scale, and is strongly damped after the

radiation/matter equality. Hence, in the following we will set Φ ≡ Ψ.

Using conformal-Newton gauge, one finds from the conservation law Tµ
ν;µ = 0 to first

order in the perturbations and for ν = 0 that

δε′ + 3H (δε+ δp)− 3(ε+ p)Φ′ + a (ε+ p)ui,i = 0 , (2.34a)

in which we observe the absence of shear viscosity. The case of ν = i leads to

1

a4

(
a5 (ε+ p)ui,i

)′
− 4

3
ηvis ∆ui,i + ∆δp+ (ε+ p)∆Φ = 0 . (2.34b)

These equations are separately valid for the components of the baryon-radiation plasma

and the dark matter.

IIn principle, one would also have to take the bulk viscosity into account. However, one can show that
it is negligible for the case at hand [Wei71]. There is also a general theorem, proven be Tisza [Tis42],
stating that the bulk viscosity coefficient ζbul vanishes if the trace of the energy-momentum tensor is
a function solely of the energy density ε and the particle number density n. In particular, ζbul = 0 for
a gas of structureless point particles in the extreme relativistic and non-relativistic limits. However,
negligible ζbul is the exception, rather than the rule for general imperfect fluids [Tis42].
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Using the photon density contrast

δγ :=
δεγ
εγ

, (2.35)

and (2.34a) one finds (
δγ − 4 Φ

)′
+

4

3
a ui,i = 0 . (2.36)

This expression allows us to express the gradient ui,i in terms of δγ and S, and to write

equation (2.34b) in the form(
δ′γ
c2
s

)′
− 3ηvis

εγ a
∆δ′γ −∆δγ =

4

3c2
s

∆Φ +

(
4Φ′

c2
s

)′
− 12ηvis

εγ a
∆Φ′ . (2.37)

2.6.1 Long-Wavelength Solutions

In the case of long-wavelength perturbations, for which one can neglect the ui,i term,

equation (2.36) implies

δγ − 4 Φ = const. (2.38)

Above, the constant on the right-hand side can be determined by noting that within the

radiation-dominated area, the gravitational potential stays constant on super-horizon

scales and is primarily due to fluctuations in the radiation component. Thus,

δγ ' −2 Φ(η � ηeq) ≡ −2 Φ0 , (2.39)

which implies with

Φ(η � ηeq) '
9

10
Φ0 (2.40)

at recombination (subscript ‘r’) the results

δγ(ηr) ' −
8

3
Φ(ηr) ' −2.4 Φ0 , (2.41a)

δ′γ(ηr) ' 0 . (2.41b)

These formulae will be used in the following chapter when we discuss cosmic microwave

background anisotropies.
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2.6.2 Short-Wavelength Solutions

At the end of the following chapter we will discuss acoustic peaks in the spectrum of the

cosmic microwave background radiation. Since these are generated by short-wavelength

perturbations, i.e. those with ηr k > 1, we will discuss them next.

To get analytically tractable solutions, we assume that the speed of sound is slowly

varying, neglect the contribution of the baryons to the gravitational potential, since they

form just a small fraction of the total matter density, and consider only times η > ηeq,

which allows us to take the gravitational potential constant in time. This last fact redu-

ces equation (2.37) to

d2δγ
dx2
− 4τγ

5a
∆

dδγ
dx
− 1

c2
s

∆δγ =
4

3c4
s

∆Φ , (2.42)

where we changed to the variable x, defined by dx ≡ c2
s dη. The solution to this linear

differential equation can be expressed as the sum of a general solution to the homoge-

neous equation (r.h.s. = 0) plus a particular solution of the inhomogeneous one. The

latter is obviously given by

δpart

γ (η, k) ' − 4

3c2
s(η)

Φ(k) . (2.43a)

Using the assumptions mentioned at the beginning of this subsection together with the

wkb approximation, one finds for the former:

δhom

γ (η, k) ' A(k)
√
cs(η) cos

(
k

∫ η

0

dρ cs(ρ)

)
e−(k/kD(η))

2

, (2.43b)

where A(k) is an integration constant, and the dissipation scale kD is given by

kD(η) :=

(
2

5

∫ η

0

dρ
c2
s(ρ)τγ(ρ)

a(ρ)

)−1/2

. (2.44)

Thus, the full solution of (2.42) reads

δγ(η, k) ' − 4

3c2
s(η)

Φ(k) + A(k)
√
cs(η) cos

(
k

∫ η

0

dρ cs(ρ)

)
e−(k/kD(η))

2

, (2.45)

It can be shown that for vanishing shear viscosity together with constant sound speed,

the above equation is also valid in the regime k η � 1.
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Eventually, we would like to have a relation between the primordial gravitational

potential Φ0 and the photon density contrast evaluated after equality. For the long-

wavelength modes we found in section 2.5.1 that Φ drops by a factor of 9/10. Similarly

one can show that for short-wavelength perturbations the following equation holds

Φ(η > ηeq, k) =
ln(0.15k ηeq)

(0.27k ηeq)2
Φ0(k) . (2.46)

Furthermore, one finds that the integration constant A(k) is given by

A(k � η−1
eq ) ' 6

4
√

3 Φ0(k) , (2.47)

whereas for perturbations which enter the horizon long after equality, the result is

A(k � η−1
eq ) ' 6

5
4
√

3 Φ0(k) =
1

5
A(k � η−1

eq ) . (2.48)

We will, however, postpone further discussions on this subject until section 3.4.1 and

continue now with the study of the origin of primordial inhomogeneities.

2.7 Origin of Primordial Inhomogeneities

So far, we have studied gravitational instabilities in a Universe filled with hydro-dynami-

cal matter. For a better understanding of the generation of primordial inhomogeneities,

we will now extend our analysis to a study of scalar-field condensates. We will study

the behaviour of perturbations during an inflationary stage and close with a discussion

of gravitational waves from inflation.

Let us consider a flat Universe filled with a scalar-field condensate, described by the

action

S[X] =

∫
d4x
√
−g L

(
X(ϕ), ϕ

)
, (2.49)

where

X(ϕ) :=
1

2
gµν ϕ,µϕ,ν . (2.50)

Setting

uµ :=
ϕ,µ√
2X

, p := L , ε := 2X p,X − L (2.51)
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it is possible to write the corresponding energy-momentum tensor in an ideal-fluid form,

Tµ
ν = (ε+ p)uµuν − p δµν . (2.52)

For the canonical scalar field with L = X−V(ϕ) one has ε = X+V(ϕ). In general, ε, ϕ

and X have to be treated as independent variables and it is not possible to write down

an equation of state in the form p = p(ε). However, if L = Xn we have p = ε/(2n− 1),

which in the case of n = 2 describes an ultra-relativistic fluid, where p = ε/3.

2.7.1 Perturbations

We will now derive equations for inhomogeneities caused by the model (2.49). For sim-

plicity we will work in conformal-Newton gauge to express the gauge-invariant perturba-

tions of the energy-momentum tensor in terms of metric and scalar field perturbations.

Analogous to the gauge-invariant energy-density perturbation δε̄ introduced in equa-

tion (2.21a), we define the gauge-invariant scalar-field perturbation δϕ̄ via

δϕ̄ := δϕ− ϕ ′0
(
B− E′

)
, (2.53)

where ϕ0 denotes the homogeneous field subject to the unperturbed background. Ex-

pressing the speed of sound via

c2
s =

p,X
ε,X

, (2.54)

and defining the variables u and v through

u :=
√
ε,X a

(
δϕ̄+

ϕ ′0
H

Ψ

)
, v :=

2Ψ√
ε+ p

, (2.55)

one finds

u′′ − c2
s ∆u− z′′

z
u = 0 , (2.56a)

v′′ − c2
s ∆v − ϑ′′

ϑ
v = 0 . (2.56b)

Here, the quantities z and ϑ are given by

z :=
1

cs
a
√

1 + ω , ϑ :=
1

cs z
=

1

a

1√
1 + ω

. (2.57)
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We note that equation (2.56b) is the same as (2.26), which is also clear from the ideal-

fluid form of Tµν , c.f. (2.52). The corresponding solutions have already been discussed

in section 2.5. Here, however, the meaning is different as they describe scalar-field

perturbations. We briefly review the corresponding results.

If these are of short-wavelength, i.e. if csk �
√
|ϑ′′|/|ϑ| , the wkb approximation yields

Φ ∝ ϕ̇0

√
p,X
cs

exp

(
± i k

∫
dt

cs(t)

a(t)

)
, (2.58a)

δϕ̄ ∝

√
1

cs p,X

(
± i cs

k

a
+H + . . .

)
exp

(
± i k

∫
dt

cs(t)

a(t)

)
. (2.58b)

Thus, the scalar-field and metric perturbations oscillate in the short-wavelength regime.

In case of long-wavelength perturbation, i.e. for csk �
√
|ϑ′′|/|ϑ| , one obtains

Φ ∝ 1− H

a

∫
dt a(t) , (2.59a)

δϕ̄ ∝ ϕ̇0

a

∫
dt a(t) . (2.59b)

2.7.2 Canonical Scalar Field

Having formally discussed a general class of scalar-field models described by the action

(2.49), we now work out explicitly the example of a minimally-coupled canonical scalar

field in a potential.

In the following paragraph, we will use conformal-Newton gauge to perform explicit

calculations and start with the action (1.17), i.e.

S[ϕ] =

∫
d4x
√
−g L(ϕ) =

∫
d4x
√
−g

[
1

2
gµν ϕ,µϕ,ν − V(ϕ)

]
. (2.60)

Then one finds with equation (2.19b) if εsr � 1 (in cosmic time t),

Φ̇ +HΦ =
1

2
ϕ̇0 δϕ = εsrH

2 δϕ

ϕ̇0

, (2.61)

on super-horizon scales for the comoving curvature perturbation

R := ψ +H
δϕ

ϕ̇0

' H
δϕ

ϕ̇0

. (2.62)

By definition, this quantity is gauge-invariant.
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Thus we observe that the spatial behaviour of R is directly determined by that of δϕ.

The knowledge of δϕ is therefore crucial in determining correlation functions of R like

the dimensionless curvature power spectrum

PR(k) := k3
〈
RkR∗k

〉
, (2.63)

where, the angle brackets represent quantum averages. Concerning the k-dependence,

one has from (2.62) the relation

PR(k) ∝ Pϕ(k) := k3
〈
δϕk δϕ

∗
k

〉
. (2.64)

In chapter 6 we show that for free minimally-coupled scalar fields with mass µ, the result

on super-horizon scales reads

Pϕ(k) ' k3−ν , (2.65)

with

ν ' 3− 2

3

µ2

H2
+ 2 εsr = 3− 2ηsr + 2 εsr . (2.66)

Hence, up to corrections in ηsr � 1 and εsr � 1 one finds that the spectra are scale

invariant, i.e. P is constant in k.

As we have seen in chapter 1, generic single-field inflation models need a flat potential,

which in particular means that the mass has to be small. According to this we arrive

at the conclusion that single-field inflation predicts an almost scale-invariant curvature

spectrum. Another crucial prediction is the generation of gravitational waves, which we

discuss subsequently.

2.7.3 Inflationary Gravitational Waves

Similar to the previous subsection, the study of gravitational waves starts with the

corresponding action, which reads in this case to second order in the tensor h:

S[h] =
1

8

∫
dη d3x a(η)2 Tr

[(
h(η,x)′

)2 −
(
∇h(η,x)

)2
]
. (2.67)

After substituting the expansion

hij(η,x) =

∫
d3k

(2π)3
h(η,k) eij(k)e−ik·x , (2.68)
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with the polarisation tensor e(k) and the definition

v(η,k) :=
√

Tr
[
e(k)2

]
a(η)h(η,k) , (2.69)

one finds that (2.67) in a de Sitter Universe reduces to

S[h] =
1

2

∫
dηd3k

[∣∣v(η,k)′
∣∣2 − (k2 − 2

η2

)∣∣v(η,k)
∣∣2] . (2.70)

This is just the equation for a free, massless scalar field discussed in chapter 6, which

implies a scale-invariant spectrum on super-horizon scales. Furthermore, it can be shown

that in terms of physical wavelengths λph, the dimensionless power spectrum for primor-

dial gravitational waves obeys

Ph(λph) ∼


λph : λph < H−1

0 z−1/2
eq ,

λ2
ph : H−1

0 z−1/2
eq < λph < H−1

0 ,

const. : H−1
0 < λph ,

(2.71)

where its amplitude on scales of a few light years is about 10−17 for realistic models of

inflation.



Chapter3
Cosmic Microwave Background

Anisotropies

�Les miracles véritables, qu’ils font peu de bruit!�

Antoine de Saint-Exupery

The cosmic microwave background (cmb) radiation consists of photons that —

after recombination — freely stream through the Universe, basically without further

scattering. It provides a snapshot of the radiation distribution at redshift z ≈ 1000

when photons last interacted with matter.

As predicted by inflation, this radiation is very homogeneous — relative fluctuations

are of order 10−5 on average. It is interesting that this is just the amount needed to

explain the formation of large-scale structures in the case of a Universe with cold, dark

and ordinary matter.

Figure 3.1: A foreground-reduced map (internal linear combination)
based on the five-year wmap data. (Figure taken from [LAMDA].)

25
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In figure 3.1 we show the cmb fluctuations across the entire sky, as measured by the

wmap satellite and processed by the wmap collaboration [LAMDA]. On this map, an

angular diameter of θ ≈ 1◦ corresponds to the Hubble radius at recombination, dividing

small- and large-scale inhomogeneities. While the former have entered the horizon before

recombination, hence being vitally influenced by gravitational instabilities, the latter

have not changed since inflation and thus provide a direct insight into the primordial

spectra of perturbations.

This chapter deals with a derivation of the dominant physical effects inducing fluctu-

ations in the cmb radiation. The discussion shall be restricted to the leading large-scale

effects. On the one hand this sacrifices some accuracy but has, on the other hand,

the advantage of being analytically tractable, providing hence solid and clear analytical

insights in all major dependencies. In our discussion we mainly follow [Muk05].

3.1 Boltzmann Equation and Temperature Fluctuations

In this section we first discuss the Boltzmann equation, which is then, in section 3.2, used

to derive a relation between the temperature fluctuations and the gravitational potential.

We also focus on the temperature spectrum and the coordinate transformation properties

of the cmb temperature.

Given an ensemble of identical particles, it follows from the invariance of the phase-

space volume

d3x d3p := dx1 dx2 dx3 dp1 dp2 dp3 (3.1)

under general coordinate transformations,

x→ x̃(x) , (3.2)

that the one particle phase-space distribution f, defined via

dN ≡ f(x,p, η) d3x d3p , (3.3)

is a space-time scalar. Here, dN is the number of particles with the volume d3x d3p and,

as usual, a symbol in bold face denotes a 3-vector with contravariant components.
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If these particles are stable and non-interacting, the particle number does not change

with time within this volume element, and hence, the distribution function obeys the

collisionless Boltzmann equation

df(x,p, η)

dη
=
∂f(x,p, η)

∂η
+

dx

dη
· ∇xf(x,p, η) +

dp

dη
· ∇pf(x,p, η) = 0 . (3.4)

It is experimentally well established that the distribution f(x,p, η) of the cmb radiation

is Planckian to good precision and hence given by

f(x,p, η) ≡ f
(
ω/T

)
:=

2

exp
(
ω/T

)
− 1

. (3.5)

Additionally, it is known that the cmb temperature T is extremely isotropic. Therefore,

T (η,x, l) = T0(η) + δT (η,x, l) , (3.6)

where the temperature fluctuations δT are small compared to the cmb background

temperature T0, i.e. δT � T0, and η might take any value between recombination and

today. Above, −l := p / ‖p‖ is the direction of the photon momentum. For any observer

with four-velocity uα, the frequency ω of the radiation can be expressed as

ω = pαu
α . (3.7)

Now, in the rest frame of each observer, we have

g00 (u0)
2

= 1 (3.8)

and hence the physical frequency ωph is given by

ωph = ω =
p0√
g00

. (3.9)

Using the latter formula and pαp
α = 0 one can relate the frequency ω measured by an

observer O, to the frequency ω̃ measured by another observer Õ, who’s frame is related

to O’s via

x̃ = x+ ζ , (3.10)

for all i, j = 1, 2, 3. Let us now calculate to first order in ζ and its derivatives. Equation

(3.10) then implies

g̃00 =
∂xα

∂η̃

∂xβ

∂η̃
gαβ ' g00 − 2

∂ζ0

∂η̃
, (3.11)
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and

p̃0 =
∂xβ

∂η̃
pβ ' p0 −

∂ζβ

∂η̃
pβ , (3.12)

from which we obtain

ω̃ ' ω

(
1 +

∂ζ

∂η
· l
)
. (3.13)

Since f is a Lorentz-scalar, ω/T is too and thus from

T̃ ' T0 − T ′0 ζ0 (3.14)

we have that the temperature fluctuations in Õ are related to those in O via

δT̃ ' δT − T ′0 ζ0 + T0
∂ζ

∂η
· l . (3.15)

The monopole (l-independent term) and the dipole (term proportional to l) depend

on the particular rest frame of the observer. Because up to now, we can only measure

the cmb radiation accurately from one vantage point, the monopole can be removed by

a redefinition of the background temperature. The dipole relies on the observer’s motion

relative to the frame of the background radiation. Thus we will subtract them in the

following part of this thesis since we are interested in information inherent to the initial

temperature fluctuations.

3.2 Sachs-Wolfe Effect

With the Boltzmann equation and the transformation properties of the cmb tempera-

ture — derived and discussed in the previous section — together with the results from

chapter 2, we have all necessary tools at hand to study the spectrum of temperature

fluctuations. Since our goal will be to calculate temperature correlations on scales that

exceed the horizon at recombination, θr ≈ 0.87◦ in a flat Universe, we focus on large-scale

effects only.

Assuming instantaneous decoupling, we may impose a matching condition of a hydro-

dynamical energy-momentum tensor (describing the radiation before decoupling) and

its kinetic pendant (immediately afterwards). For the 0-0-component, this means

εγ (1 + δγ) = T(hyd) 0
0

!
= T(kin) 0

0 =
1√
−g

∫
d3p f

(
ω

T
(p)

)
p0 . (3.16)
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To find a relation between the density contrast δγ := δεγ/εγ of the radiation and the

relative temperature fluctuations, we now solve the Boltzmann equation for freely prop-

agating radiation. This shall be done in an almost flat Universe using the conformal-

Newtonian gauge, in which the metric takes the form (neglecting anisotropic stress)

gµν = a2
(
ηµν + 2 Φ δµν

)
. (3.17)

Here, the metric potential Φ of the scalar field fluctuations is assumed to be small,

i.e. Φ� 1. In this metric, it follows from pαp
α = 0 that

p0 =

√∥∥p2
∥∥

a2
≡ p

a2
(3.18a)

and

p0 = (1 + 2 Φ) p . (3.18b)

Taking into account the geodesic equation for radiation

dpα
dλ

=
1

2

∂gγδ
∂xα

pγ pδ ,
dxα

dλ
= pα , (3.19)

where λ is an affine parameter along the geodesic, we find

dx

dη
=
p

p0
= (1 + 2 Φ) l (3.20)

and hence, with the metric (3.17),

dpα
dη
' 2 p

∂Φ

∂xα
. (3.21)

According to this, the Boltzmann equation can be written as

∂f

∂η
= − (1− 2 Φ) l · ∇pf − 2 p (∇xΦ) ·

(
∇pf
)
, (3.22)

which shows for the distribution (3.5) to zeroth order in Φ and δT/T that

(T0 a)′ = 0 , (3.23)

therefore giving that the radiation temperature is inversely proportional to the scale

factor. The first order of (3.22) reads(
∂

∂η
+ l · ∇x

)(
δT

T
+ Φ

)
= 2

∂Φ

∂η
, (3.24)
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where we used the fact that

ω

T
=

p0

T
√

g00

' p

T0a

(
1 + Φ− δT

T

)
. (3.25)

Equation (3.24) determines the temperature fluctuations of the cmb.

When we apply the results of this chapter to the main results of this thesis in chapter

6, we will restrict ourselves to the case of a constant gravitational potential, i.e. ∂Φ
∂η

= 0.

Along null geodesics we then find the obvious solution to equation (3.24)

δT

T
+ Φ = const. (3.26)

This result, among others, was first derived by Sachs and Wolfe [SW67] and is therefore

called ordinary Sachs-Wolfe effect. If Φ depends on time, e.g. as a result of a small

fraction of radiation after recombination or if some form of dark energy is present, we

speak about the integrated Sachs-Wolfe effect. As numerical calculations show, the

effect does practically never contribute more than 10–15% for an almost scale-invariant

spectrum (see below).

Using (3.18b) and (3.25), the right hand side of (3.16) might be expressed as

1√
−g

∫
d3p f

(
ω

T
(p)

)
p0 '

1

a4(1− 2Φ)

∫
d3p f

(
p0√
g00 T

(p)

)
p0

'
∫

d3p f

(
p0

aT0

[
1 + Φ− δT

T

]
(p)

)
(1− 4Φ)p

a4

'
(

4 π T 4
0

∫
dy f(y) y

)∫
d2l

4π

(
1 + 4

δT

T
(l)

)
(3.27)

≡ εγ

(
1 + 4

∫
d2l

4π

δT

T
(l)

)
!

= εγ (1 + δγ) ,

which implies

δγ = 4

∫
d2l

4π

δT

T
(l) . (3.28)

As has been shown in the previous chapter, the gravitational potential Φ and the density

contrast of the radiation at recombination (subscript ‘r’) can, for k ηr � 1, be related
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as

δγ(k, ηr) ' −
3

8
Φ(k, ηr) , (3.29a)

δ′γ(k, ηr) ' 0 . (3.29b)

From equation (3.26) we have for the temperature fluctuation today (subscript ‘0’)

δT

T
(η0,x0, l) =

δT

T
(ηr,xr, l) + Φ(ηr,xr)− Φ(η0,x0) , (3.30)

and hence, by virtue of (3.28) together with (3.29a,b) one obtains

δT

T
(η0,x0, l) '

1

3
Φ(ηr,x0 − l η0) , (3.31)

where we subtracted the gravitational potential today, since it is l-independent and thus

just contributes to the monopole. Thus, the cmb temperature fluctuations today are

given by one-third of the gravitational potential at the time of recombination.

3.3 Temperature Correlation

Having derived an approximate large-scale expression for the temperature fluctuations of

the cosmic microwave background in the last section, we will now study their spectrum.

So far, precision experiments today measure only the cmb radiation on or nearby

the earth, which on cosmological scales count like a point measurement. Under the

assumption of homogeneity and isotropy, it should be approximately equivalent to take a

patch of certain size of the cmb sky and to average over all possible different patches from

a single vantage point, than averaging the data from given directions at different places,

being more than one Hubble distance apart from each other. The smaller the observed

region in question, the more of such patches are found, the better the statistics are,

and the smaller the difference between the two averaging procedures is. The root-mean

square of this difference is called cosmic variance. Another uncertainty is caused by the

fact that often only a part of the sky is used for the analysis and the associated difference

to the full-sky study is termed sample difference. Of course, to those uncertainties

one also has to add uncertainties from the measurement instrument itself.
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Figure 3.2: Three-color map from the maximum entropy method model
for the wmap five-year W frequency band (83.75–104.25GHz). This
map indicates which emission mechanism dominates as a function of
frequency and sky position (synchrotron in red, free-free in green, ther-
mal dust in blue). (Figure taken from [LAMDA].)

Because there are other sources than the cmb that radiate in the observed frequency

bands of ongoing and future cmb experiments, one tries to reduce this contamination and

in turn cuts out a region of the sky associated with our own galaxy, which provides the

most dominant contribution of extrinsic radiation to the cmb (c.f. figure 3.2). Depending

on the specific exclusion mask one has to adjust the calculation and interpretation of

the results inferred from temperature-fluctuation correlation functions.

In general, the spectrum of temperature fluctuations can be described by an infinite

set of correlation functions

C
(
θ1 2, θ1 3, . . . , θn−1n

)
:=

〈
δT

T
(l1)

δT

T
(l2) · · · δT

T
(ln)

〉
θ12,θ13,...,θn−1n

(3.32)

with n ∈ N and the angle brackets denote an average over all possible directions li, for

a given configuration of angles θi k := arccos(li · lk). If it is nearly Gaussian, it can be

described alone by the two-point function

C(θ) := C(θ1 2) =

〈
δT

T
(l1)

δT

T
(l2)

〉
θ12

. (3.33)
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It is convenient to decompose this function as

C(θ) ≡
∞∑
`=2

2 `+ 1

4π
C` P`

(
cos(θ)

)
, (3.34)

where the multipole moments C` ∈ R are expansion coefficients, P`

(
cos(θ)

)
is a

Legendre polynominal of degree `, and we subtracted the monopole and the dipole.

Again under the assumption of homogeneity and isotropy, the average over directions —

appearing in the definition of C(θ) — is equivalent to the average over different points,

keeping the directions l1 and l2 fixed with the condition θ = arccos(l1 · l2), for a given

angle θ. Hence, from the Sachs-Wolfe formula (3.31), and with x(η) = x(η0) + l (η− η0)

and ηr/η0 ' 0, we have

C(θ) =

〈
δT

T
(η0,x0, l1)

δT

T
(η0,x0, l2)

〉
θ

=
1

9

〈
Φ
(
ηr,x0 + l1(ηr − η0)

)
Φ
(
ηr,x0 + l2(ηr − η0)

)〉
θ

' 1

9

∫
d3x0

∫
d3k

(2π)3

∫
d3p

(2π)3
Φ(ηr,k) Φ(ηr,p) e−i(k+p)·x0−i(k·l1+p·l2)η0

' 1

9

∫
d3k

(2π)3
Φ(ηr,k) Φ∗(ηr,k) e−ik·(l1−l2)η0 (3.35)

=
1

2π2

∫
dk k2 sin

(
k |l1 − l2|η0

)
k |l1 − l2|η0

1

9

∣∣Φ(ηr, k)
∣∣2

=
1

4π

∫
dk k2

∞∑
`=2

(2 `+ 1)
[
j`(k η0)

]2
P`

(
cos(θ)

) 2

9π

∣∣Φ(ηr, k)
∣∣2

!
=
∞∑
`=2

2 `+ 1

4π
C` P`

(
cos(θ)

)
,

where j` is a spherical Bessel function of order `, implying

C` '
2

9π

∫
dk k2

∣∣Φ(ηr,k)
∣∣2 [ j`(k η0)

]2
. (3.36)

Taking into account that the gravitational potential on super-horizon scales drops by

a factor of 9
10

after radiation/matter equality and writing∣∣Φ(ηr,k)
∣∣2 ≡ 9

10
B kns−4 , (3.37)

we find by virtue of the identity∫
dk km−1[ j`(k)]

2
=

2m−3 π Γ
(
2−m

)
Γ
(
`+ m

2

)
Γ2
(

3−m
2

)
Γ
(
`+ 2− m

2

) , (3.38)
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the result

C` '
2ns−4B

5

Γ
(
3− ns

)
Γ
(
`+ ns−1

2

)
Γ2
(
2− ns

2

)
Γ
(
`− ns−5

2

) . (3.39)

Observations [KDN+09] suggest a nearly Gaussian and scale-invariant power spec-

trum, i.e. ns ' 1. Hence we find that the angular power spectrum

` (`+ 1) C`

2π
(3.40)

is constant in ` and equal to B/(20π2). This flatness at low multipoles is often called

Sachs-Wolfe plateau.

3.4 Other Effects

Although it is not necessary for the specific calculation presented in this work, we now

give a concise overview over some other effects that influence the cosmic microwave

background radiation. The idea behind this is to provide a more — though not fully —

complete picture of the underlying physics.

3.4.1 Small-Scale Anisotropies

Perturbations on small scales, i.e. on scales that are smaller than the sound horizon at

recombination, entered this horizon before recombination and hence undergo evolution,

which might significantly modify the primordial spectrum. This, in turn, should also

modify the angular power spectrum for multipoles higher than around `r ≈ π/θ ≈ 200.

The general calculation for all multipoles is quite involved and impossible to perform

analytically. Hence, we will impose several assumptions and approximations. One im-

portant will be that the speed of sound changes slowly, which allows us to use the wkb

subhorizon solution (2.45) after radiation/matter equality. It implies, by virtue of (3.28),

Φ(ηr, k) +
δT

T
(ηr, k) = Φ(ηr, k) +

1

4
δγ(ηr, k)

= Tp

(
1− 1

3c2
s

)
Φ0(k)

= + To

√
cs cos

(
k η0 %(ηr)

)
e−(k/kD)2Φ0(k) ,

(3.41)



3.4 Other Effects 35

where we defined

% :=
1

η0

∫ ηr

0

dη cs(η) . (3.42)

Equation (3.41) also defines the transfer functions Tp and To, whose values follow from

the results of section 2.6.2. They depend strongly on whether perturbations entered the

horizon before or after radiation/matter equality. While for the concordance model, the

former case shows that

Tp '
9

10
, To ' 0.4 , (3.43a)

we find for k ηeq � 1 the result

Tp ' 0 , To ' 1.97 . (3.43b)

The above changes have a clear physical explanation: While the gravitational potential

decays for subhorizon modes during the radiation-dominated stage, it stays constant

for perturbations that enter the horizon long after equality, when cold matter already

dominates. Therefore, Tp changes from almost unity to zero. Since To defines the ampli-

tude of the sound wave, its increase is caused by the gravitational field of radiation, which

becomes significant when modes enter the horizon.

Next, we would like to derive an analytical expression for the multipole moments.

Therefore, we note that all of the previous discussions in this chapter assume instanta-

neous recombination — an assumption which is certainly spoiled on small scales (finite

thickness effect). The inherent uncertainty in the time of decoupling adds a suppres-

sion on small scales and is approximately accommodated by the overall factor

exp
(
−2 (σk ηr)

2
)

(3.44)

in the integrand of C`, equation (3.36). Therein, the damping scale σ depends (among

others) on the ionisation fraction and (weakly) on the amount of cold dark matter and

the number of light neutrinos. For the concordance model, σ is of order 10−2. Taking

(3.41) and the extra damping factor (3.44) to calculate the multipole moments,

C` '
2

π

∫
dk

∣∣∣∣Φ(ηr, k) +
1

4
δγ(ηr, k)

∣∣∣∣2 k2 e−2(σkηr)2
[
j`(k η0)

]2
, (3.45)

schematically yields

` (`+ 1)C` ' O` +N` . (3.46)

Here, O stands for the oscillating and N for the non-oscillating contribution.
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After some algebra, one obtains for the `-dependence of the former,

O` '
√

1

`

[
o1 e−o2 `

2

cos
(
`%+ π/4

)
+ o3 cos

(
2`%+ π/4

)]
e−o4 `

2

, (3.47)

where o1, . . . , o4 are positive constants that depend on the densities Ωm, ΩΛ, Ωb, the

equation of state parameter ω, and the Hubble constant today H0. The oscillations

due to this formula reproduce those obtained with full numerical calculations to a few

percent accuracy. As can be seen in figure 3.3, the theory agrees quite well with the

measurements. The `-dependence of the non-oscillating part is

N` '
(
n1 − n2 `

0.3 − n3

)2

1 + n4 `1.4
e−n5 `2 +

(
n1 − n6 `

0.3 + n7

)2

1 + n8 `1.4
e−n9 `2

+

(
n1 − n10 `

0.55 + n11

)2

1 + n12 `2
e−n9 `2 ,

(3.48)

with the positive parameters n1, . . . , n12 depending on Ωm, ΩΛ, Ωb, ω, and H0.

The mentioned parameter dependencies of the angular power spectrum allow to de-

termine these parameters by comparison to results of cmb measurements. The location

of the first peak, for example, is basically determined by %, as follows from (3.47). For

the n’th extremum one finds from the first term in (3.47)

`n =
π

%

(
n− 1

8

)
, (3.49)

which gives for the concordance model the peak values `1 ' 225–265, `3 ' 825–865.

From the second term in (3.47), one infers that the second peak should be located at

`2 ' 525–565.

Additionally to the peak locations, one can use their height to determine cosmological

parameters. In this manner, one arrives at the conclusion that, e.g. the height of the

first peak plus the existence of the second one already implies the existence of cold

dark matter, with its density exceeding that of baryons, and being less than the critical

density. These statements are valid for a scale-invariant spectrum.

The cases of e.g. a spectral tilt or some from of quintessential dark matter, weaken

to some extent the conclusions mentioned so far, because they increase the parameter

space. Therefore, it is important to study more than just the first few peaks to constrain

not only parameters but also cosmological models itself.
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Figure 3.3: Results for the angular power spectrum, derived from the
wmap five-year, acbar, Boomerang, and cbi experiments. The red
curve shows the best-fit Λcdm model. (Figure taken from [NDH+09].)

3.4.2 Reionisation

Observations suggest that at redshifts of about z ' 5 most of the intergalactic hydrogen

is ionised. This influences the cmb radiation, because photons can scatter on the free

electrons and therefore leaves imprints in the angular power spectrum.

Assuming Thomson scattering for simplicity, the probability of a cmb photon to avoid

interactions and to propagate freely equals

exp
(
−τ(z)

)
= exp

(
−σT

∫ z

0

dz′
X(z′)nt

H(z′)(1 + z′)

)
, (3.50)

where the optical depth τ depends (among others) on the redshift z, the ionisation

fraction X(z), the Thomson cross section σT and the total number of electrons nt. Taking

H(z) ' H0

√
Ωm (1 + z)3/2 and assuming X(z < zion) ' 1, one finds for the concordance

model

τ(zion) ' 2× 10−3 z
3/2
ion . (3.51)
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The photons that rescatter change direction and may have appeared from any point

remote from the original scattering point within their horizon. The multipole `ion asso-

ciated with the angular diameter of this horizon patch is given by

`ion '
π

∆θion

= π
η0

ηion

' π
√
zion Ω0.09

m , (3.52)

which is about `ion ' 12 for the concordance model. For multipoles larger than this

value one should have an extra damping due to (3.50). Hence, one find for `� `ion

Cobs

` = e−τ C` . (3.53)

As we shall discuss in subsection 3.4.4, there is not only a damping on small, but also a

boost of the angular power spectrum on large scales around ` ≈ `ion.

3.4.3 Gravitational Waves

The generation of primordial gravitational waves is a basic prediction of inflationary

cosmology. They are described by transverse and traceless metric perturbations. We

therefore use the metric

ds2 = a2
(

dη2 − dxt(1+ h) dx
)

(3.54)

with Tr[h] = 0 and ∇th = 0. As for scalar perturbations we first employ the geodesic

equation

dp

dη
= −p

2
∇(lthl) ,

dx

dη
' l +O(h) , (3.55)

this time for the metric (3.54), and find using

ω

T
=

p0

T
√

g00

' p

T0a

(
1− δT

T
− 1

2
lthl

)
, (3.56)

that the Boltzmann equation to first order becomes(
∂

∂η
+ l · ∇x

)
δT

T
= −1

2
lt
∂h

∂η
l . (3.57)
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The solution to (3.57), and thus the multipole moments associated with tensor pertur-

bations, which we denote by CT
` , have in general to be calculated numerically. However,

for certain regions of ` one finds exact solutions. As for the scalar perturbations, there

is a flat plateau at low multipoles due to super-horizon gravitational waves,

` (`+ 1) CT
` = const. for `r � `� 1 . (3.58a)

At the larger `, roughly where the acoustic peaks occur, one has

` (`+ 1) CT
` ∝

1

`2
for `� `eq , (3.58b)

where `r := η0/ηr and `eq := η0/ηeq, which take the values `r ' 55 and `eq ' 150 for the

concordance model. These results mean that, after the plateau at moderately small `,

we find a strong decrease at higher `, making thus the tensor contribution to the total

C` power spectrum negligible.

For the concordance model one finds that — even for low multipoles — the tensor

modes are always at least one order of magnitude suppressed. Furthermore, from just the

temperature multipole moments it is impossible to disentangle the tensor contribution

from other effects, like a spectral tilt, i.e. ns 6= 1, or reionisation. The study of different

polarisation-mode correlations provides a better way to detect primordial gravitational

waves.

3.4.4 Polarisation

As concisely discussed in section 3.4.1, the process of recombination is in general not

instantaneous, but gradual. Through their interactions with free electrons via Thomson

scattering, the cmb photons become linearly polarised.

Let us first decompose the electric field E as

E = Eaea , (3.59)

where a ∈ {1, 2} labels two orthogonal directions in the plane perpendicular to the

direction of propagation. If m := maea denotes the orientation of polarisation, the

polarisation tensor, which is defined through

Pab :=
〈EaEb〉 − 1

2
〈EcEc〉 ea · eb

〈EeEe〉
, (3.60)
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is connected to the brightness-temperature fluctuations via

δT (m) ∝ Pabm
amb . (3.61)

In this sense, one can determine the polarisation tensor for linear polarisation. Such an

electromagnetic wave with electric field E has, after it is scattered in direction n by an

electron, the electric field

Ẽ ∝
(
(E × n)× n

)
, (3.62)

where we assumed Thomson scattering. For unpolarised light scattered in direction n,

one has to integrate over all incoming directions l and finds after some algebra

Pab(n) ' 3

∫
dη

∫
d2l

4π

[
1

2
ea · eb

(
1− (l · n)2

)
− (l · ea)(l · eb)

]
× δT (η, l)

T
τ ′(η) e−τ(η) ,

(3.63)

where we used the fact that the intensity is proportional to the fourth power of the

temperature. So one infers that the polarisation tensor is quadratic in ` and is thus

proportional to the quadrupole temperature anisotropy, generated during the delayed

recombination. Furthermore, it is proportional to the duration of recombination. Nu-

merically it has been shown that polarisation never exceeds 10% of the temperature

fluctuations on any scale.

Since P is symmetric and traceless, it has two independent components. It is conve-

nient to decompose it as

E(n) := P ; ab
ab , (3.64a)

B(n) := P b ; ac
a εcb , (3.64b)

where the first quantity behaves as a scalar under spatial reflections, being therefore

referred to as electric polarisation mode (or E mode), whereas the second quantity

is called the magnetic polarisation mode (or B mode), due to its odd behaviour

under spatial reflections.

Both modes have very distinct polarisation patterns. To illustrate this, let us introduce

the polarisation vector pa. It is defined as an eigenvector of the polarisation tensor,

Pa
b pa ∝ pb . (3.65)
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For the E mode one can show that the polarisation vector is proportional to either eθ or

eϕ at every point. The B mode polarisation vectors are linear combinations of eθ and

eϕ and hence orientated in circulating patters around the direction of the k.

An important fact is that scalar perturbations do not generate B modes. Thus, the

associated correlation function provides a decisive way to detect primordial gravitational

waves. As with the polarisation patterns, the cross correlations

CET(θ) :=

〈
E(n1)

δT (n2)

T

〉
θ

, (3.66a)

CBT(θ) :=

〈
B(n1)

δT (n2)

T

〉
θ

, (3.66b)

and in turn their associated multipole moments CET
` and CBT

` , display quite different

behaviour. While, for the concordance model, the BT cross correlation decreases above

about ` ' 100, one finds that the ET cross correlation increases till ` ' 1000. From the

previous subsection it is clear that around the reionisation horizon, i.e. for ` ' `ion, one

has an extra contribution to polarisation, which is thus able to tremendously amplify

the cross polarisation multipole moments around this `.

Hence, the precise knowledge of the polarisation correlation functions allows not only

for a distinct study of primordial gravitational waves and of the recombination history,

but provides a way to analyse reionisation.





Chapter4
Stochastic Cosmological Inflation

�Ach, daß die inn’re Schöpfungskraft

Durch meinen Sinn erschölle!

Daß eine Bildung voller Saft

Aus meinen Fingern quölle!

Wirst alle meine Kräfte mir

In meinem Sinn erheitern

Und dieses enge Dasein hier

Zur Ewigkeit erweitern.�

Johann Wolfgang von Goethe

Inflationary cosmology has become a successful building block of our current under-

standing of the Universe. While descriptions at the classical and semi-classical level

seem fairly well developed, a full understanding of the inflationary dynamics, including

regions of strong quantum fluctuations (c.f. figure 4.1), is still lacking. A major step

in this direction has been made by Starobinsky [Sta86], who introduced the concept

of stochastic inflation, which provides a framework to study the evolution of quantum

fields in an inflationary Universe [GLM87, Rey87, Kan89, LLM94]. This approach has

acquired considerable interest over the last few years [WV00, Bel00, Bel01, LMM+04,

HY05, MM05, TW05, MB06, MM06b, MM06a, LW07, KS08, KS09]. Its idea lies in

splitting the quantum fields into long- and short-wavelength modes, and viewing the

former as classical objects evolving stochastically in an environment provided by quan-

tum fluctuations of shorter wavelengths.

43
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Figure 4.1: Schematic picture of the stages of inflation via a scalar field.

Given the de Sitter horizon as a natural length scale of the problem, one then focusses

on the ‘relevant’ degrees of freedom (the long-wavelength modes) and regards the short-

wavelength modes as ‘irrelevant’ ones, where ‘short’ and ‘long’ are due to the horizon.

This chapter is organised as follows: First we derive an effective stochastic equation

of motion for the long-wavelength field, which in turn is solved in detail for simple cases

and approximations. Then, we give an overview of major results obtained in the litera-

ture, including a sketch of a rigorous approach to stochastic inflation.

4.1 Effective Equation of Motion

Let us follow [Rey87] and take a minimally-coupled real scalar field with the Lagrangian

L =
1

2
gµν ∂µΦ∂νΦ− V(Φ) , (4.1)

where Φ is a gauge singlet and V its potential. We assume a fixed de Sitter background

geometry, i.e. we take (gµν) = diag(1,−a(t)2,−a(t)2,−a(t)2) with the scale factor a(t) =

exp(t). As before we set } !
= c

!
= 1 but 8πG 6= 1 and instead use H

!
= 1 for convenience.



4.1 Effective Equation of Motion 45

Then, with the definition

� :=
1
√

g
∂µ
(√

g gµν ∂ν
)
, (4.2)

where g is the absolute value of the determinant of the metric tensor (gµν), one finds

the exact equation of motion

�Φ +
∂V(Φ)

∂Φ
= 0 , (4.3a)

or (
∂2

∂t2
+ 3

∂

∂t
− e−2t∇2

)
Φ +

∂V(Φ)

∂Φ
= 0 . (4.3b)

To derive an effective equation of motion, one performs a split of the full quantum

field Φ into a short- and a long-wavelength part like

Φ = φ+ ϕ , (4.4)

where φ and ϕ contain (in the Fourier sense) the wavelengths that are shorter and longer

than the Hubble scale, respectively. Specifically, the splitting is done by a filter function

W, which might be approximated by a sharp cut, i.e. W = Θ. In general, one has

φ(t,x) '
∫

d3k W
(
k η(t)− ε

)[
â(k)u(t, k) e−i k·x + â†(k)u∗(t, k) e+i k·x

]
, (4.5)

where the corrections of this free-field expansion to the full case vanish at leading order

in the Taylor coefficients of V, which are anyway constraint to be small. The parameter

ε basically says where to split into short and long wavelengths, and should be chosen

much smaller than one in order to cut far beyond the Hubble radius. On the other hand,

this parameter should not be to small, because otherwise the change in the background

metric has to be taken into account. One can show [Sta82] that the bounds on this

parameter can be expressed via 1� ε� exp(−H2/Ḣ).

The mode function obeys the equation of motion for free fields, i.e. it is a solution of

equation (4.3a) with V = 0, and is approximately given by

u(t, k) ' 1√
2k

(
η(t)− i

η(t)

k

)
e−i k η(t) . (4.6)
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We define the noise ζ via

ζ(t,x) :=
1

3

(
∂2

∂t2
− 3

∂

∂t
+ e−2t∇2

)
φ(t,x) , (4.7)

and further

v[ϕ] :=
1

3

∫
d3xdt

[
1

2

(
e−t∇ϕ

)2

+ V(ϕ)

]
. (4.8)

Assuming slow-roll, we obtain a functional Langevin equation for the coarse-grained

field ϕ:
∂ϕ(t,x)

∂t
' − δv[ϕ]

δϕ(t,x)
+ ζ(t,x) . (4.9)

As it stands, it is viewed as a stochastic equation of motion for the classical field ϕ. For

a full specification one needs to specify the noise correlators of ζ, which are basically

determined by the quantum averages of the short-wavelength field φ.

For a sharp cut, a simple calculation shows

ζ(t,x) ' i
ε

η(t)

∫
d3k δ

(
η(t)k − ε

)√ 1

2k3

[
â(k) e−i k·x + â†(k) e+i k·x

]
, (4.10)

from which one can check that [
ζ(t,x), ζ(t,y)

]
' 0 , (4.11)

hence justifying the ‘classical’ treatment of ‘quantum’ operators. It follows that ζ is a

Gaussian white noise with two-point correlator

∆(t, x, t′, y) :=
〈
ζ(t,x)ζ(t′,y)

〉
' 1

4π

sin
(
ε |x− y| /η(t)

)
ε |x− y| /η(t)

δ(t− t′) ,
(4.12)

which also displays the Markovian nature of this random process. Of course, this prop-

erty heavily relies on the choice of the filter function — an issue which is studied in detail

in section 6.3.

It is easy to show that the stochastic Langevin equation (4.9) is equivalent to a

Fokker-Planck equation for the probability density functional P [ϕ, t], namely

∂P [ϕ, t]

∂t
'
∫

d3x
δ

δϕ(t, x)

[
δv[ϕ]

δϕ(t, x)
P [ϕ, t]

]

+
1

2

∫
d3xd3y ∆(t, x, t′, y)

δ

δϕ(t, x)

δ

δϕ(t, y)
P [ϕ, t] .

(4.13)
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The distribution P [ϕ, t] is defined such that the statistical average of a functional F [ϕ]

can be expressed as 〈
F [ϕ]

〉
≡
∫
D[ϕ] F [ϕ]P [ϕ, t] . (4.14)

It also obeys the normalisation condition∫
D[ϕ] P [ϕ, t]

!
= 1 . (4.15)

Solutions to the Fokker-Planck equation (4.13) for an inhomogeneous field can become

rather complicated. In fact, this is an unsolved problem in general, and hence we will now

illustrate the power of the stochastic formalism for homogeneous fields. An extension to

spatial dependencies is developed in the next two chapters.

Homogeneous Solutions

Let us now derive an analog to (4.13) for homogeneous fields and discuss corresponding

solutions. It is interesting to note that below the coarse-graining scale ∼ H−1, one finds

that the quantity

F(ϕ, t) := exp

(
4π2

3

(
V(ϕ)− V(0)

))
P(ϕ, t) (4.16)

obeys the Schrödinger-like equation

−∂F(ϕ, t)

∂t
' ĤFP F(ϕ, t) , (4.17)

with the Fokker-Planck Hamiltonian

ĤFP := −1

2

[
1

4π2

∂2

∂ϕ2
+
(
V′(ϕ)

)2 − V′′(ϕ)

]
. (4.18)

To calculate the moments 〈ϕn〉 we employ (4.13) and use P(ϕ→ ±∞, t) = 0 to obtain

∂

∂t
〈ϕn〉 =

∫ +∞

−∞
dϕ ϕn

∂P(ϕ, t)

∂t

' 1

8π2

∫ +∞

−∞
dϕ ϕn

∂2P(ϕ, t)

∂2ϕ
+

1

3

∫ +∞

−∞
dϕ ϕn

∂

∂ϕ

[
∂V

∂ϕ
P(ϕ, t)

]
=

1

8π2
n(n− 1)

〈
ϕn−2

〉
− n

3

〈
ϕn−1 ∂V

∂ϕ

〉
.

(4.19)
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For a free massive field with the potential

V(ϕ) =
1

2
µ2ϕ2 , (4.20)

one has (
∂

∂t
+

2µ2

3

)〈
ϕ2(t)

〉
' 1

4π2
(4.21)

and finds the result〈
ϕ2(t)

〉
' 3

8π2µ2

1− exp

(
−2µ2 t

3

) µ→ 0−−−→ t

4π2
. (4.22)

A Higgs-type potential

V(ϕ) =
λ

4

(
ϕ2 − µ2

λ

)2

(4.23)

with λ > 0 leads to (
∂

∂t
− 2µ2

3

)〈
ϕ2(t)

〉
' 1

4π2
− 2λ

3

〈
ϕ4(t)

〉
. (4.24)

In general, this equation is difficult to solve exactly, but with the mean-field (Hartree-

Fock) approximation, 〈
ϕ4(t)

〉
' 3

〈
ϕ2(t)

〉2

, (4.25)

one easily obtains

〈
ϕ2(t)

〉
' 3

8π2µ2

exp

(
2µ2 t

3

)
− 1

+ f(t) , (4.26a)

where

f(t) '


3λ
µ2

(
3

8π2 µ2

)2
[

2µ2 t
3
−
(

2µ2 t
3

)2
]

: t� 1 ,

−2λ t2

8π2 exp
(

2µ2 t
3

)
: t & 1 .

(4.26b)

This displays the exponential acceleratory behaviour of the scalar field as it rolls down

the potential hill. One easily checks that in the limit λ → 0 and for µ2 → −µ2 the

solution (4.26a) reproduces (4.22).



4.2 Other Results 49

In fact, for many scalar fields there is another approximation, namely that of large N .

Therefore, one takes an N -component scalar field ~ϕ evolving in the potential

V
(
~ϕ 2
)

=
λ′

4

(
~ϕ 2 − µ2

λ′

)2

, (4.27)

with λ′ := λ/N and λ ∈ R fixed. Then a simple analysis [Rey87] shows that〈
~ϕ 2(t)

〉
' 3N

8π2µ2

1− exp

(
−2µ2 t

3

)+O
(

1

N

)
. (4.28)

Except for the amplification by the factor N and up to O(N−1)-corrections, it is essen-

tially the result of a simple free massive scalar field derived in (4.22).

4.2 Other Results

After rather detailed derivations in the previous section, we will now give a brief over-

view over some major results that have been obtained so far.

Let us proceed chronologically. As we have already mentioned the fundamental 1986-

proceedings article by Starobinsky and discussed in detail the paper by Rey, we would

like to shortly comment on the 1988-paper by Nakao et al. [NNS88]. There, the authors

studied stochastic dynamics in the context of the scenario of new inflation, where all

the energies involved are well below the Planck mass. This means, they took for the

early stage of inflation a Higgs-type double-well potential of the form (4.23), where they

assumed
µ4

m4
Planck

� λ� µ2

m2
Planck

, (4.29)

with mPlanck being the Planck mass. They put special emphasis on the condition for

the realisation of the slow roll-over phase, in which the scalar field evolves according to

the slow-roll version of the classical equation of motion. When determining this from

the comparison of the quantum force to the potential force, they took into account the

difference in the physical volume of a horizon-size region, because of the ϕ-dependence

of the expansion rate H. A result is that on a global scale, the Universe would expand

forever till the scalar field reaches a critical value ϕ∗ in some region and begins to evolve

into one of the potential minima. Then this region enters the classical slow roll-over

phase. The authors determined this critical value to be ϕ∗ ' 0.5± 0.1H3µ−2.
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This set-up of eternal inflation, in which the Universe — having neither beginning

nor end — constitutes of regions that expand forever, has already been studied in 1983

by Vilenkin [Vil83] also using a stochastic formalism.

In [MOL89] Matarrese et al. studied the stochastic dynamics of the inflaton for a

variety of models (free massive, quartic massless, exponential). They found that for scale-

free potentials a so-called scaling regime arises, where the coarse-grained probability

distribution develops a sharp peak around the classical slow-roll solution. This solution

is non-Gaussian and a self-similar function of a single scaling variable. It is also worth

noting that the authors have a discussion on Itô and Stratonovich calculus and include

both as special cases in their derivations.I

Then in 1994, a major step towards a deeper understanding and a better calculability

was made with the paper [SY94] by Starobinsky and Yokoyama. The authors studied

in detail the stochastic evolution of a slowly-rolling scalar test field in exact de Sitter

space-time. They developed a general method of calculating arbitrary n-point correla-

tion functions, which allowed them to prove the de Sitter invariance for a self-interacting

scalar field with a small mass term of arbitrary sign. It has been found that these fields

loose their memory of their initial state at the beginning of the de Sitter phase at late

times. For the Higgs-type potential (4.23) the corresponding relaxation time has been

calculated to

trel ∼ min
{
H |µ|−2, H−1λ−1/2

}
, (4.30)

which can be much shorter than the correlation time. For the double-well potential

(4.23) with |µ|2 �
√
λ H2, the space is covered by domains with ϕ = ±ϕ0, where ϕ0 is

the absolute value of a minimum of (4.23). These domains are separated by relatively

thinner (although being still much thicker than H−1) domain walls between them. Their

typical size is

RDW ∼ H−1 exp
(
H2/|µ|2

)
, (4.31a)

that of these domains is found to be

RD ∼ H−1 exp
(
π2µ4/3λH4

)
. (4.31b)

First we notice that RDW � RD, i.e. the domain walls are thin walls under the given

assumptions, and second that the physical lengths RDW and RD are independent of time.

IAt this point we would like to recommend the excellent article Itô versus Stratonovich [van81].
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This means that their comoving size is shrinking. Hence, the expansion of the background

space-time is not followed by a corresponding expansion of physical domains. Instead

new domains, separated by new domain walls, are created at a constant rate.

A careful study of the spatial dependence of the noise correlator has been performed

by Winitzki and Vilenkin [WV00]. In their paper they put special emphasis on possible

smooth filter functions.

The investigation of the wave function of the matter field fluctuations in the infra-

red sector is dealt with in the paper [Bel01] by Bellini. For power-law inflation, where

a(t) ∝ tp, it has been found from a phase-space analysis with focus on coherence aspects,

that for p < 4.6 a classical stochastic treatment is not valid.

In the same spirit — concerning the reliability of stochastic inflation — Martin and

Musso [MM06b] presented a new method to estimate the precision of the perturbative

expansion studied in their previous paper [MM06a]. It has been shown with this method,

which is based on the use of the Lagrange remainder theorem [WW90], that except for the

very end of inflation, the approximate probability density functions derived in [MM06a]

are very good approximations to the actual ones.

More on the application side of the stochastic formalism is the paper [LMM+04] by

Liguori et al. In this work, the authors generalise the treatment of inflationary pertur-

bations to consider non-Markovian coloured noise, and calculate the power spectrum

of the gauge-invariant comoving curvature perturbation to first oder in the slow-roll

parameters. For this quantity they found a blue tilt on the largest observable scales.

In 2005 a rigorous derivation and an extension (to scalar qed) of the stochastic in-

flation framework has been given by Woodard [Woo05]. Let us briefly sketch his line

of thought. We note that in general, non-quadratic interactions result in non-linear

noise terms on the right hand side of the field equation. However, if one is interested

in the late-time behaviour, or more precisely in the leading-ln(a(t)) contribution, one

may restrict to linear, Gaussian-distributed noise terms. As discussed, this has been

argued already a long time ago by Starobinsky [Sta82] and has been rigorously proven

by Woodard [Woo05] (see also [TW05, MW06]). Therefore, consider the model (4.1)

with the potential V(ϕ) = 1
4
λϕ4 in de Sitter background. Then the energy density ε
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reads

ε(t) = γ +
3λ

32π4

[
−1

2
ln2
(
a(t)

)
+ ζ ln

(
a(t)

)
+O

(
a(t)−1

)]
+O

(
λ2
)
, (4.32)

with γ, ζ ∈ R. The quantity γ contains all possible constant terms, in particular the

one-loop effect from the kinetic energy of the inflationary scalar.

In general, when calculating observables in scalar-field theories in de Sitter back-

ground, one generically encounters so-called infra-red logarithms, which means fac-

tors of ln(a(t)) = t. These grow without limit until they overcome the (self-)coupling and

eventually become non-perturbative. Hence, new methods are needed to tackle those

issues. One is the above-mentioned leading-log approximation [Woo05].

From the conjecture stating that powers of a(t)−1 = e−t can be resumed by a renor-

malisation of the initial state [OW02], it follows the energy density can be expressed in

the general form

ε(t) = const. +
∞∑
n=2

λn−1

2n−3∑
k=0

c
(n)
k

[
ln
(
a(t)

)]2n−2−k
, (4.33a)

where the c
(n)
k s are real numbers. The leading-log approximation would be in this case

ε(t)
∣∣∣
leading-log

= const. +
∞∑
n=2

c
(n)
0

[
λ ln
(
a(t)

)2
]n−1

, (4.33b)

which takes into account arbitrary powers of λ but only the dominant (late-time) con-

tribution in the scale factor. If one works with the infra-red field ϕ, i.e. the part of Φ

which is separated from the high-frequency modes by the filter function W, one sees

that the field equation changes. This in turn does not leave the original stress-energy

tensor conserved because of ultra-violet modes that redshift past the horizon. As shown

in [Woo05], it is indeed possible — by adding non-local source terms — to modify Tµν

to obtain a fully consistent model of only the infra-red modes which reproduces the

leading infra-red logarithms. Employing then the Yang-Feldman equation [YF50] makes

it possible to derive the stochastic Langevin equation (4.9).



Chapter5
Replica Field Theory

�Aus der unbekannten Ferne

von des ew’gen weiten Zelt

leuchtet hier ein kleiner Sterne –

ein Gedanke in die Welt.�

according to Julius Lohmeyer

So far we discussed some basic concepts of cosmology with the focus on cosmological

inflation. In the last chapter we summarised the ideas behind stochastic inflation which

have been developed so far. As the aim of this thesis is to go beyond some of the

mentioned aspects, we would like do devote this chapter to the fundamentals of replica

field theory which actually allows us to extend the progress made in the past. This

presentation shall be done in a concise stand-alone manner, with an introduction and an

explanation of these methods in the context they were originally developed for, namely

so-called disordered systems. However, the way of presenting is chosen to be directly

applicable to stochastic inflation. This application will be performed in the following

chapter.

The treatment of disordered systems is an important task since almost all real systems

are not really pure, i.e. free from impurities. Examples of such systems in condensed

matter physics that have been intensively studied are amorphous magnets [HPZ73,

SO92], liquid crystals in porous media [CBM+93], nematic elastomers, He-3 in aero-

gel [PP95] and vortex phases of impure superconductors [BFG+94]. The presence of

random impurities produces in general an energy landscape with plenty of meta-stable

states which makes the determination of the global ground state highly non-trival. Such

states are very close in energy but in phase-space may be far apart.
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The structure of this chapter is as follows. First we discuss the perhaps most famous

example of a disordered system: The random-field Ising model. Second, we introduce

pure elastic systems and discuss the effect of disorder. This is followed by the introduc-

tion of a method to perform disorder averages: The replica trick. The chapter continues

with a section on disorder distributions. We conclude with a discussion of the Gaussian

variational method which is followed by two sections on replica symmetry breaking, in-

cluding mathematical details and a worked example.

5.1 Random Field Ising Model

Probably the oldest, simplest, discrete non-trivial model which exhibits spontaneous

symmetry breaking is the Ising model (c.f. [Nat97, Bel98] for reviews). In the presence

of an external field H, its Hamiltonian is given by

H = −
∑
<ij>

Jij uiuj +
∑
i

Hiui , (5.1)

with ui = ±1 for all lattice sites i, and
∑

<ij> means summation over nearest neighbours.

Impurities in the quantities Jij and Hi are modelled by additional random contributions:

Jij → Jij + δJij , Hi → Hi + hi . (5.2)

In a simple case, hi and δJij are Gaussian-distributed random variables with mean zero:

δJij δJkl = Sijkl J
2 , hihj = δij h2 , (5.3)

with

Sijkl :=
1

3

(
δij δkl + δik δjl + δil δjk

)
. (5.4)

When δJ = 0 and δh 6= 0 we talk about pure random-bond disorder (or noise). The

situation with δJ 6= 0 and δh = 0 is referred to as the pure random-field case.
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Figure 5.1: A domain of reversed spins of size R.

Assuming

δJij = 0 , hi 6= 0 , h� J , (5.5)

and taking the continuum limit, one can show that the above theory can be modelled

by the so-called Ginzburg-Landau functional

H[s] =
1

2

∫
x

(
∇xu(x)

)2 − µ2

2

∫
x

(
u(x)

)2
+
λ

4

∫
x

(
u(x)

)4
+

∫
x

h(x)s(x) , (5.6)

where
∫
x

:=
∫

ddx, λ > 0, and µ2, λ ∈ R. Equation (5.3) then becomes

h(x)h(y) = δ(x− y)h2 . (5.7)

As was shown by an exact treatment (c.f. [Fro84, Ber85]), for sufficiently large random

fields h (compared to J), the system is disordered at low temperatures. For the case of

h� J and d ≤ 2 it has been proven [IM75] that the ground state becomes unstable with

regard to the formation of ill-oriented domains (see figure 5.1).
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There are also some experiments on the random-field Ising Model. Based on univer-

sality, there is no need that the Hamiltonian of the studied system does precisely cor-

respond to that of this model — the important aspect is that it has the appropriate

symmetries. Perhaps the most intensively studied experimental realisations are diluted

antiferromagnets in a homogeneous external field [FA79, Bel98]. There, the combination

of the external field and the dilution yields a random field. Other examples are adsorbed

mono-layers on impure substrates like Cu(100) or Xe [Vil82], mixed Jahn-Teller liquids

[deG84, DW87] or binary liquids in porous media [GMP+87]. Gutin et al. discussed co-

operativity of protein folding as an application of the random-field Ising model [GAS96].

5.2 Elastic Systems

Elastic systems play a crucial role in statistical physics. In a discrete model where a

displacement at lattice site i is described by the variables ui ∈ R, the Hamiltonian might

be approximated by

H =
k

2

∑
j,z

(uj − uj+z)2 , (5.8)

where k ∈ R is the elasticity constant and z spans over nearest neighbours. Assuming

that the quantity uj varies smoothly at low-enough temperatures, we can go to a con-

tinuous variable u(x) with

uj+z − uj → z · ∇u(x) , (5.9)

and find thus for a d-dimensional lattice

H =
k

2

∫
ddx

∑
a,b

∑
z

za zb ∂au(x)∂bu(x) . (5.10)

On a square lattice with lattice constant α the result is [Gia03]

H =
kα2

2

∫
ddx

∑
a

∂au(x)∂au(x) . (5.11)
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Figure 5.2: Deformation of a domain wall of an Ising magnet by disorder
at low temperature. Without impurities it is flat.

Adding Disorder

The above considerations were made for pure systems. We now discuss the inclusion

of disorder. Perhaps the simplest physical example of a disordered system is an Ising

magnet with impurities at low temperature T . Imposing boundary conditions such that

all spins are up on the upper and all spins are down on the lower boundary, a domain

wall separates the two regimes. It is completely flat at T = 0. Disorder, e.g. due to

wrong or missing constituents, can deform this wall — it becomes rough (c.f. figure 5.2).

As in the previous section, the displacement is described by a scalar function. An ex-

ample with a more-component displacement is the Bragg glass. Charge-density waves

are three-dimensional examples. So each of the systems can be described by an N -

component displacement-vector field ~ϕ(x). Usually, the number N is called external

dimension and the number d of components of x is labelled as the internal dimension

of the underlying manifold.
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We already saw that pure elastic systems can be described by

H0 =
1

2

∫
x

∑
a

∂a~ϕ(x) · ∂a~ϕ(x) , (5.12)

where we absorbed the constants in the definition of the fields. Since we now deal with

disordered systems, we have an additional disorder-induced contribution to the energy,

which might be described by a potential V via

HD =

∫
x

V
(
~ϕ(x)

)
=

∫
x

∞∑
j=1

N∑
i1...ij

hi1...ij(x)ϕi1(x) · · ·ϕij(x) , (5.13)

here the (stochastic) Taylor coefficients hλ depend on the particular disorder realisation.

5.3 Replica Trick

As every observable is an averaged quantity, we have for disordered systems an extra

average over the different disorder realisations, which we indicate by a bar. One has in

particular to compute the disorder average of the free energy F = −T ln(Z). But this

is difficult to achieve directly. One uses instead the so-called replica trick

F = −T ln(Z) = −T lim
n→0

1

n
ln
(

1 + n ln(Z)
)

= −T lim
n→0

1

n
ln
(

exp
(
n ln(Z)

))
= −T lim

n→0

1

n
ln
(
Zn
)
.

(5.14)

This means, one first has to compute Zn for n integer. Then, if the result is an analy-

tic function of n, one performs an analytic continuation and takes the limit n → 0.

Explicitly:

Zn =

∫ n∏
a=1

D[~ϕa] exp

−β n∑
b=1

H[~ϕb]


≡
∫ n∏

a=1

D[~ϕa] exp
(
−βH(n)[~ϕ1, . . . , ~ϕn]

) (5.15)

The n-times replicated systems get coupled by the disorder average. In particular a

Gaussian disorder distribution yields for the replicated Hamiltonian

H(n) =
1

2

n∑
a=1

∫
k

G−1
0 (k) ~ϕa(k) · ~ϕa(−k)−

∫
x

f
(
~ϕ1(x), . . . , ~ϕn(x)

)
, (5.16)

where G0 is the free propagator and we defined
∫
k

:=
∫

ddk/(2π)d. The function f is

determined by the disorder distribution (see below).
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The replica trick is much older than one might think. Marc Mézard said: �Giorgio

Parisi dates it back to at least the fourteenth century when the bishop of Lisieux Nicolas

d’Oresme used a similar trick in order to define non-integer powers.� [Mez04] The

replica method allows one to study the free-energy landscape and, in particular, the

regions of low free energy. After averaging over disorder, the replicated action, which

has been an action of n non-interacting theories, becomes an action without disorder, but

with an attractive interaction between the replicas. But why is it attractive? Well, the

reason is that they share the same Hamiltonian. Hence they will be attracted towards

the same favourable regions in phase space, while they are repelled from unfavourable

ones.

In a very simple case, in which the phase space has basically one large valley, the

replicas fall altogether in this valley, in other words it is replica symmetric. Then the

order parameter, the typical ‘distance’ between any two replicas, gives the valley size.

The situation is much more complicated if the system has many meta-stable states. In

general, different replicas do not fall into the same valley and the situation one is con-

fronted with is called replica symmetry breaking, which is technically spontaneous

symmetry breaking where the underlying group is the permutation group. This may

look simpler than it is, because one has to take the ‘physical’ limit n → 0 at the end,

which can be rather non-trival. It turns out that the order parameter is in general a

function P(q), which is the probability of finding two replicas having their overlap equal

to q. Here, the overlap q measures the ‘distance’ between two replicas. A mathematical

specification is presented in the appendix.

5.4 Noise Distributions

In this sections we present some general considerations on the distribution of a random

potential. We will formulate them in a way in which they are applicable to stochastic

inflation, where the quantum fluctuations induce the noise, c.f. the equation (4.9). In

turn, the coordinates are now elements of a space-time manifold. For simplicity we

assume zero mean and for the second cumulant of the random potential V the form

V
(
~ϕa(x), x

)
V
(
~ϕb(y), y

)
= φ(x, y)N R

(
Ξab(x, y)

N

)
, (5.17)

where, for later convenience, we rescale by the number N of field components.
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The function R reflects the correlation in replica field space, with, e.g.

Ξab(x, y) := ~ϕa(x) · ~ϕb(y) (5.18a)

or

Ξab(x, y) :=
[
~ϕa(x)− ~ϕb(y)

]2
. (5.18b)

We refer to (5.18a) as product correlation, while (5.18b) is called difference cor-

relation. Below we will mainly use the former. Of course, the specific form of the

function R, as well as of its argument, have to be determined from first principles. The

space-time correlation φ(x, y) is called short-range, if φ(x, y) = ℘(t, t′)δd−1(x−y), and

long-range for all other cases. Note, that for the example of a free field, the Gaussian

distribution is exact and that the function R is linear. A difference between (5.18a) and

(5.18b) is that the latter has the so-called statistical tilt symmetry

~ϕa(x)→ ~ϕa(x) + ~g(x) , (5.19)

where ~g(x) is some function without replica index.

When performing the noise average of correlation functions, one has to average the

factor exp( −
∑

a S[~ϕa]), where here and in remainder of this chapter, we study the

Wick-rotated system. Assuming short-range product correlation, the part containing

noise may be calculated as

exp

∑∫
λ

hλϕλ . . . ϕλ

 ∝ ∫ D[{h}] exp

∑∫
λ

hλϕλ . . . ϕλ −
1

2

∑∫
λ,λ′

hλAλ,λ′ hλ′


∝ exp

1

2

∑∫
λ,λ′

ϕλ . . . ϕλA−1
λ,λ′ ϕλ . . . ϕλ′

 (5.20)

≡ exp

1

2

n∑
a,b=1

∫
x

N R

(
~ϕa(x) · ~ϕb(x)

N

) ,

where the matrix (Aλ,λ′) describes the Gaussian noise distribution.

This is perhaps a good place to mention a difference between what is described in

this thesis and what is described in the field of disordered systems. In the latter one

studies macroscopic objects, like a crystal with defects, such as vacancies, or wrong

constituents, misaligned layers or substrate impurities. These kinds of disorder are mi-

micked by random variables.
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Averages over disorder are thought of as averages over different realisation, i.e. prac-

tically different pieces of a crystal, for instance. Mézard and Parisi [MP91] made a con-

sistent replica field theoretic approach to those systems, whose n copies — arising due

to the application of the replica trick — are viewed as respectively different, coming

from different realisations, carrying different random variables, with distinct correla-

tions among them.

This is, however, not the case in stochastic inflation, where the noise arises from the

short wavelengths of some quantum field within one and the same system. For the case

under consideration, the replica trick gives us a simple procedure to perform stochastic

averages over the generating functional. There, each Z is a function of the random

variables {h}, so its averaged n’th power Zn is too. It is only the integration variables

~ϕ that acquires an additional label, namely the replica index a = 1, . . . , n.

5.5 Variational Method

This section is devoted to the application of the Feynman-Jensen inequality and a Gaus-

sian variational principle to derive variational equations, which allows us to obtain a

closed expression for the full propagator of the long-wavelength modes.

5.5.1 Feynman-Jensen Inequality

To perform the stochastic average over the noise potential V, we use the replica trick

and obtain

Zn =

∫ n∏
a=1

D[~ϕa] exp

− n∑
b=1

S[~ϕb]

 ≡ ∫ n∏
a=1

D[~ϕa] exp
(
−S(n)

[
~ϕ
])

, (5.21)

with the replicated action

S(n)
[
~ϕ
]

:=
1

2

n∑
a=1

∫
t,t′

∫
k

G−1
0 (t, t′,k) ~ϕa(t,k) · ~ϕa(t′,−k)

− 1

2

n∑
a,b=1

∫
x,y

φ(t, t′)δ(x− y)N R

(
~ϕa(x) · ~ϕb(y)

N

)
.

(5.22)
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For simplicity, we used short-range product correlation and refrained from writing the

different replica fields in the argument of the action, i.e.

[~ϕ ] :=
[
~ϕ1, . . . , ~ϕn

]
. (5.23)

We proceed with a Feynman-Jensen variation principle [Fey55] and therefore

define the Gaussian trial action

S0[~ϕ ] =
1

2

n∑
a,b=1

∫
t,t′,k

G−1
ab(t, t

′,k) ~ϕa(t,k) · ~ϕb(t′,−k) , (5.24)

where we make the following ansatz for the propagator

G−1
ab :=

[
G−1

0 + σc + σaa
]
δab − σab , (5.25)

only making the replica matrix structure explicit.

Let us comment on the structure of (5.25). On the main diagonal (in replica space)

we have the inverse of the noiseless propagator G−1
0 plus some mass correction σc, to be

determined later, e.g. by the variational principle described below in this section. This

alone would not only be trivial but also inconsistent, as we will see later. Hence, the off-

diagonal part is filled by some, a priori unknown, replica structure σab, which in general

can be time dependent and, if one includes long-range noise correlation (see below),

also momentum dependent, directly affecting the scaling behaviour of the propagator.

Thus, although this variational method only generates a mass-energy contribution, its

off-diagonal replica structure might have a viable influence on large-scale correlations.

The Gaussian variational method becomes exact in the limit N →∞ and allows

one to go beyond ordinary perturbation theory. It is based on the Feynman-Jensen

inequality [Fey55]

ln(Z) ≥ ln(Z0) +
〈
S(n)

0 − S(n)
〉

0
=: Fvar , (5.26)

where the subscript 0 refers to the variational action (5.24) and we temporarily Wick-

rotate to Euclidean signature. Equation (5.26) can easily be proven by using the Jensen

inequality exp
(
〈. . .〉

)
≤ 〈exp(. . .)〉, which comes from the convexity of the exponential.

The problem is to find the best Gab, i.e. the best σab, by maximising the right-hand side

of (5.26), which means to solve δFvar/δGab = 0.
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Computing Fvar per component and spatial volume yields

Fvar

N Vol(d− 1)
=

1

2

n∑
a=1

∫
t,t′,k

G−1
0 (t, t′,k)Gaa(t, t

′,k)

− 1

2

∫
t,t′,k

Tr ln
(
G(t, t′,k)

)
+ C (5.27)

− 1

2

n∑
a,b=1

∫
t,t′
φ(t, t′) R̂

(∫
k

Gab(t, t
′,k)

)
,

where we temporarily switched to finite spatial volume Vol(d−1). The constant C ∈ R,

which vanishes after variation, includes 〈S0〉 as well as terms from F0. For difference

correlation (5.18b) one just has to replace the argument of R̂ by∫
k

(
Gaa(t, t

′,k) + Gbb(t, t
′,k)− 2Gab(t, t

′,k)
)
. (5.28)

The ‘hat’ over the function R in (5.28) is defined through

R̂
(
〈 · 〉0

)
:=
〈
R( · )

〉
0
. (5.29)

In the limit N →∞, averaging and applying the (analytic) function R commute and so

we drop the ‘hat’ when such a limit is considered.

The variation of Fvar, given in (5.28), with respect to the n2 variational parameters

Gab gives for a 6= b:

σab(t) = φ(t) R̂′
(∫

k

Gab(t,k)

)
, (5.30a)

σc(t) = −φ(t) R̂′
(∫

k

Gaa(t,k)

)
, (5.30b)

where here a primed function denotes its differentiation with respect to its argument.

We use
δGab(t,k)

δGcd(r,p)
= δ(t− r)δ(d−1)(k − p)δac δbd (5.31)

and define for equal times sab(t) := sab(t, t), sc(t) := sc(t, t), Gab(t,k) := Gab(t, t,k), and

G0(t,k) := G0(t, t,k).

Again, for difference correlation we obtain a similar result as (5.30b) (c.f. equation

(3.12) in [MP91]) with the argument of R̂′ replaced by∫
k

(
Gaa(t,k) + Gbb(t,k)− 2Gab(t,k)

)
(5.32a)

plus a global minus sign in front of σ.
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Additionally, we find in this case

σc(t) = −
n∑
a=1
a6=b

σab(t) . (5.32b)

It is important to note that any interaction not containing noise just modifies the mass

through its diagonal structure in replica space and that the free Gaussian case studied

in the main text, necessarily yields replica symmetry.

The physical interpretation of the saddle-point equations (5.25), (5.30a,b), (5.32a,b)

is as follows: The replica structure σ might be viewed as a generalised self energy. This

follows from an expansion of the stationarity equations (5.30a,b) and (5.32a,b) in powers

of (Gab).

5.5.2 Long-Range Correlation

We now consider the case where the noise-correlation is non-local. This is described by

the correlation

V
(
~ϕa(x), x

)
V
(
~ϕb(y), y

)
= φ(t, t′,x− y)N R

(
Ξab(x, y)

N

)
. (5.33)

Going through analogous steps as in the previous section, we obtain pendants to (5.30a,b),

σab(t,p) =

∫
x

φ(t,x)e−ip·x R̂′
(∫

k

e−ik·x Gab(t,k)

)
, (5.34a)

σc(t,p) = −
∫

x

φ(t,x)e−ip·x R̂′
(∫

k

e−ik·x Gaa(t,k)

)
+ 2Û′

(∫
k

Gaa(t,k)

)
,

(5.34b)

for product correlation and to (5.32a,b),

σab(t,p) = −2

∫
x

φ(t,x)e−ip·x

× R̂′
(∫

k

e−ik·x (Gaa(t,k) + Gbb(t,k)− 2Gab(t,k)
))
,

(5.34c)

σc(t,p) = −
n∑
a=1
a6=b

σab(t,p) , (5.34d)

for difference correlation, where a 6= b.
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We also generalised to a non-random potential U (with suitable rescaling by factors

of N), which is so far taken to be arbitrary. It may arise from non-zero averages of the

random distributions. The last equation is restricted to Û′ ≡ 0.

Equations (5.34a-d) show that the replica matrix is in general space-time dependent,

which affects the scaling behaviour of the two-point function (c.f. [KMT83]). Clearly,

the short-range variational equations are included in (5.34a-d).

5.5.3 Replica Symmetric Propagator

In the previous section we derived the variational equations (5.34a-d) for a general matrix

(σab). It is important to try the simplest ansatz, which consists of taking σab = σ for all

a 6= b, meaning that different replicas couple all in the same way among each other. This

replica symmetric case is exact for quadratic as well as for quartic self-interactions.

One finds

(Gab)
−1 =

[
G−1

0 + σc
]
1− σ(1ll− 1) = G−1

0 1− σ 1ll . (5.35)

Thus, the inverse Gab has the form

(Gab) = G01+ σG2
0 1ll , (5.36)

where the physical limit n → 0 has been taken and we define the n × n-matrix 1ll by

1llij = 1 for all i, j. It has the property 1ll2 = n1ll
n→0−−→ 0. We observe that the limit

of vanishing correlation, i.e. σ → 0, gives back the free propagator as expected. The

physical propagator G(k) is given by

G(k) = lim
n→0

1

n
Tr
[(

Gab(k)
)]
. (5.37)
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&
Replica Field Theory

�µια υπέρoχη αρµoνία πρoκύπτει απó συνδυασµó πoυ συνδέει

ϕαινoµενικά άσχετα.�

[�A wonderful harmony arises from joining together the seemingly unconnected.� ]

according to Heraclitus of Ephesus

This chapter brings together now what has been introduced in chapter 4 and 5, namely

stochastic inflation and replica field theory. While the former treats quantum fluctua-

tions in a stochastic manner, and the latter is designed for the treatment of a wide class

of systems with a random potential, it seems tempting to combine them. By doing so,

we study in a new non-perturbative way the dependence of the power spectrum on filter

functions. If these deviate on an unbounded interval from the step function, a variant

of the so-called dimensional reduction [AIM76, PS79, KLP84] is found, which results in

a strong deviation from scale invariance in the infra-red, signalling a breakdown of the

test-field assumption [KS08, KS09]. However, we show that scale invariance is preserved

on all scales at late times for filters with bounded support (for wavelengths above the

cut). Besides discussing the aspect of filter functions, we are able to treat general self-

interactions. This is illustrated for the case of a quartic potential. Consequently we

touch the important issue of whether our results for stochastic inflation might have an

observable effect. We discuss how the cosmic microwave background radiation could be

influenced.

67
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In detail, this chapter is organised as follows: After calculating the free, noiseless

propagator for exponential as well as for power-law inflation, we derive an expression for

the effective infra-red power spectrum in section 6.2. Special focus is put on the depen-

dence of the filter functions (section 6.3). A non-linearity parameter gNL is introduced

to quantify the modification of the power spectrum. Then in section 6.4, we discuss the

inclusion of self-interactions, where particular emphasis is put on the case of a quartic

potential. This is followed by a discussion on possible effects of the obtained results on

the cosmic microwave background radiation (section 6.5).

6.1 Free Power Spectrum

We devote this section to review the quantisation of a free, M -component, minimally-

coupled, real, scalar test field ~Φ with mass µ. We solve the classical mode equations,

calculate the power spectrum and give expressions for the spectral index.

Let us concentrate on a spatially-flat, isotropic and homogeneous Universe in four-

dimensional space-time. For its scale factor we will assume either exponential inflation,

a(t) := eHt, or power-law inflation, a(t) := (t/t1)p with p > 1 and the reference time t1

defined by a1 := a(t1) = 1. For convenience we use } !
= c

!
= 1 and set H

!
= 1 in the case

of de Sitter or t1
!

= 1 for power-law inflation. The mode function u(t, k) is defined by

the decomposition of the field components

Φi(t,k) = âi(k)u(t, k) + H.c. , (6.1)

with the modulus of the comoving momentum k := |k|. The annihilation and creation

operators obey the commutation relations[
âi(p), â†j(k)

]
= (2π)3 δ3(p− k)δij , (6.2a)[

âi(p), âj(k)
]

= 0 . (6.2b)

The rescaled mode functions v(η, k) := a(η)u(η, k) fulfil the mode equation

v′′ +

[
k2 + µ2 a2 − a′′

a

]
v = 0 , (6.3)

with primes denoting derivatives with respect to conformal time η. Solutions to (6.3)

are fixed by requiring that for very short wavelengths the effect of space-time curvature
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and mass becomes irrelevant, and thus a Minkowski solution should be obtained, i.e.

lim
k
a
→∞

v(η, k) =
e−i k η

√
2k

. (6.4)

The factor 1/
√

2k is fixed by the canonical commutation relations of ϕ and its conjugate

momentum.

Recall that exponential inflation implies a(η) = |η|−1 and for power-law models one

finds a(η) ∝ |η|−
p
p−1 , where both cases match in the limit p→∞. Then, equation (6.3)

can be rewritten in the form

v′′ +

[
k2 − 1

η2

(
ν2 − 1

4

)]
v = 0 , (6.5)

with

ν =

√
9

4
− µ2 (exponential) , (6.6a)

and for zero mass

ν =
p

p− 1
+

1

2
(power-law) . (6.6b)

A general solution to (6.5), fulfilling (6.4), is given in terms of Bessel functions:

u(η, k) =

√
π

2

√
|η|

a(η)

[
Jν
(
k |η|

)
+ iYν

(
k |η|

)]
. (6.7)

On large scales (for k → 0) and for positive ν, the leading term of (6.7) is

u(η, k) ' − i 2ν−1 |η|1/2−ν Γ(ν)√
πa(η)

k−ν , (6.8a)

while for negative ν one has

u(η, k) '
2−ν−1

√
π |η|1/2+ν ( i cot(πν) + 1

)
Γ(ν + 1)a(η)

kν . (6.8b)

The free (equal-time) propagator G0(t,p,k) shall be defined via

G0(t,p,k) (2π)3 δ3(k − p) ≡ 1

2M

〈
Ω
∣∣∣ ~Φ(t,p) · ~Φ†(t,k)

∣∣∣Ω〉 , (6.9)

where the vacuum |Ω〉 is defined by â(k)|Ω〉 = 0 and a subscript ‘0’ indicates a quantity

that is calculated in the absence of any classical noise.
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An object of central interest in cosmology is the dimensionless power spectrum

P(t, k). As explained previously, its relation to some (equal-time) propagator G(t, k) :=

G(t,k,k), with assumed infra-red behaviour G(t, k) ∼ k−κ, is given by

P(k) := k3 G(k) ∼ kns−1 , (6.10)

where we omitted the time argument for the sake of brevity. The spectral index ns is

connected to the so-called critical exponent κ via ns = 4 − κ. For µ = 0 the power

spectrum of the free, noiseless theory is scale invariant, i.e. ns = 1 for κ0 = 3. Non-zero

mass leads to

ns = 4− 3

√
1− 4

9
µ2 = 1 +

2

3
µ2 +O

(
µ4
)
, (6.11a)

and the power-law case with µ = 0 yields

ns =
p− 3

p− 1
= 1− 2

p
+O

(
1

p2

)
. (6.11b)

Note that ns(µ 6= 0) > 1 for exponential inflation, while ns < 1 in the massless power-law

case. A scale-invariant spectrum is recovered in the limits µ→ 0 or p→∞, respectively.

Also note that the results (6.11a) and (6.11b) do not include any metric perturbation,

which would generally cause negative deviations from ns = 1 (c.f. [LLM+02]).

6.2 Effective Power Spectrum

This section contains the study of the infra-red behaviour of the physical propagator G

and therefore of the power spectrum P . We first study some rather general set-up and

discuss the phenomenon of dimensional reduction. Then we focus on the specific case of

stochastic inflation.

6.2.1 Long-Range Correlation

The full two-point function for the long-wavelength modes, G := 1
M

〈
~ϕ · ~ϕ

〉
, has been

calculated in the previous chapter, using a Feynman-Jensen-type variational calculation

together with replica field theory. From equation (5.36) we have

G(t, k) = G0(t, k) + σ(t, k)G0(t, k)2 , (6.12)

where the replica structure σ is determined by the variational equations (5.34a,b).
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To analyse the physical consequence of equation (6.12) on the power spectrum, let us

now assume for the two-point noise correlation hi(x)hj(y) = φ(x − y) ∼ |x− y|−3+ρ

with ρ < 3. This is a case of the so-called long-range correlation (c.f. section 5.5.2),

which describes properly the infra-red limit of the physical model discussed below. In

momentum space, the above choice implies φ(k) ∼ k−ρ and hence σ(t, k) = ℘(t)k−ρ

by virtue of (5.34a,b). For ρ > −κ0, the infra-red behaviour of the power spectrum

deviates from the noiseless result, and we find κ = 2κ0 + ρ. This result is consistent

with previous studies in flat space for a propagator with κ0 = 2 [KMT83].

What does this mean for the spectral index? Since ns = 4− κ, we find the result

ns = 4− 2κ0 − ρ (6.13)

if ρ > −κ0. Thus, one would find a dramatic change of the super-horizon power spectrum

as compared to the case without noise. Specifically, for exponential inflation this implies

a modification of the spectral index on large super-horizon scales if the spatial noise

correlator decreases at most like |x|−6 if µ = 0, while for finite mass this exponent

changes to −6 + 2/3µ2 + O(µ4). In the massless power-law model the power is given

by −6 − 2p−1 + O(p−2). Equation (6.13) constitues one variant of the phenomenon of

dimensional reduction [AIM76, PS79, KLP84], which can rigorously be proven to

all orders in perturbation theory for ρ = 0 and for arbitrary non-random potentials

(see especially [KLP84] for a supersymmetric version of the proof). Because this effect

originates from the second piece of G in (6.12) it will be referred to as the dimensional

reduction part.

Please note that those changes only concern the power spectrum of the smoothed

(classical) long-wavelength modes, which are influenced by their short (quantum) coun-

terparts. It does not mean that the full quantum two-point function obeys dimensional

reduction. We should underline that the above statements on dimensional reduction de-

pend on the specific choice of the filter function. Their influence on the power spectrum

is discussed in section 6.3.

A natural question to ask is on which scales the effect of dimensional reduction shows

up. Let us therefore define the transition scale k∗ at which the two terms on the

right-hand side of equation (6.12) balance each other via

G0(t, k∗)
!

= σ(t, k∗)G0(t, k∗)
2 . (6.14)

It separates two regions such that for k � k∗ the behaviour is noiseless and for k � k∗,

dimensional reduction holds.
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6.2.2 Stochastic Inflation

Let us now return to our physical model of stochastic inflation. The split of the field ~Φ

into a long- and short-wavelength part, ~Φ = ~ϕ+ ~φ, together with the free field equation

(�+ µ2)~Φ = ~0 implies for the infra-red part of the propagator

G(t, k) '

∣∣∣∣∣∣∣
(
�̃k + µ2

)Wκ

(
k

a(t)
− ε

)
u(t, k)


∣∣∣∣∣∣∣
2 ∣∣u(t, k)

∣∣4 , (6.15)

where �̃k is the (spatially Fourier-transformed) covariant Laplacian, u(t, k) is the mode

function from equation (6.1), and Wκ is a smooth high-pass filter (c.f. section 6.3), cut-

ting out the large wavelengths above ε. The parameter κ controls the width of the cut.

In the limit κ→ 0, Wκ approaches a step function. Here we choose

Wκ(z) =
1

π
arctan

(
z

κ

)
+

1

2
(6.16)

and take 0 < ε � 1 in order to separate at wavelengths well below the Hubble scale

H−1(= 1), and κ� ε to have a narrow transition region between quantum and classical

modes. We do not impose any restriction on µ except that we demand the radicant in

(6.11a) to be positive, i.e. µ2 ≤ 9/4.

Please note that the filter function (6.16) does not have a bounded support for wave-

lengths above the cut scale, meaning that also modes from the far infra-red influence

the quantum noise. A further discussion on filter functions, in particular of such with

bounded support (above the cut), is presented in the subsequent section.

Using (6.16), one finds that the model given in (6.15) is of long-range-type and implies

ρ = 3

√
1− 4

9
µ2 − 2 = 1− 2

3
µ2 +O

(
µ4
)

(6.17a)

for exponential inflation, and

ρ =
p+ 1

p− 1
= 1 +

2

p
+O

(
1

p2

)
(6.17b)

for massless power-law models. Thus for k � k∗ we obtain with (6.13)

ns = 6− 9

√
1− 4

9
µ2 = −3 + 2µ2 +O

(
µ4
)

(6.18a)



6.2 Effective Power Spectrum 73

in the exponential case, and

ns = 3
p+ 1

1− p
= −3− 6

p
+O

(
1

p2

)
(6.18b)

for power-law inflation with µ = 0. In the infra-red limit we see that scale invariance of

the effective power spectrum is destroyed even in the massless, exponential inflationary

scenario. Also the power-law case changes drastically.

For scales k � k∗ the noiseless spectral index (6.11a) is recovered. The late-time

behaviour of the transition scale k∗, defined in equation (6.14), can be calculated ana-

lytically:

k∗ =
(
e−t
)8−2x

2x−2 π−
2

x−1

22x−3(5− 2µ2 − x)κ2 Γ
(

1
2
x
)4

(ε2 + κ2)2


1

2x−2

, (6.19)

where

x :=
√

9− 4µ2 , (6.20)

for exponential inflation, and

k∗ = 2

(
p

tp+1

)1
2
− 1

2p

κΓ
(

3
2

+ 1
p−1

)2

π2
(
ε2 + κ2

)


1
2
− 1

2p

(6.21)

for massless power-law inflation. In the zero-mass limit (6.19) yields the asymptotic form

k∗(t) = e−t/2
2
√
κ

√
π
√
ε2 + κ2

. (6.22)

Thus for ε 6= 0, k∗ goes to zero in the (step-function) limit κ→ 0, i.e. dimensional reduc-

tion is absent — a statement that holds for both exponential and power-law inflation.

This is a general feature of the free theory where is no mixing of the short (quantum)

modes with the long classical ones as a sharp cut-off is introduced. In a slightly different

setup, with a filter function having only one parameter, i.e. ε = κ, this has already been

noted in reference [MMR04].
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Let us turn to the issue of the compatibility of (6.21) with (6.19). As has already

been mentioned in section 6.1, for p → ∞ and µ = 0, both cases should match. A

naive limit of (6.21) shows that this is not obvious. The point here is that one should

carefully look at the time dependence. Expressing (6.21) in terms of the number of

e-folds, N := ln(a/a1), shows indeed the desired coincidence. So for all plots related to

power-law cases, we will make the replacement

t =
(
pet̃
) 1
p+1

. (6.23)

A straightforward calculation shows the relation between t̃ and N ,

N =
p

p+ 1

[
t̃+ ln(p)

]
= t̃+ ln(p) +O

(
p−1
)
. (6.24)

This means that for large p, t̃ = N up to a shift which originates from different time

normalisation of the power-law and the de Sitter case where t = N . This shift is indeed

visible in figures 6.4 and 6.6, where only the last part of the transient phenomenon shows

up, contrary to the corresponding exponential-inflation plots, where a larger part can

be observed (details below).

In figure 6.1 (figure 6.2) we show the effective long-wavelength power spectrum P as

a function of k for fixed time Ht = 10 and mass µ = 0.1 (t̃ = 4 and p = 12) with

ε = 10−2 and κ = 10−3 for the de Sitter (massless power-law) model. One can see

that it diverges stronger than the noiseless power spectrum as k tends to zero, putting

therefore more correlation on large scales. Furthermore one sees that the part k3σG2
0

approximates the full power spectrum P in the infra-red as well as that the noiseless

piece k3 G0 gives a suitable ultra-violet approximation. In all plots we took the filter

function (6.16). Figure 6.3 shows the time behaviour of the comoving momentum k∗

for exponential inflation for different values of the mass µ. Figure 6.4 displays the

same for the power-law model. The solid rays represent the analytic approximations

(6.19) and (6.21), respectively, while the dashed curves are the full results, obtained

numerically from (6.14) using the FindRoot function of Mathematica 7. Well below

this borderline the two-point function obeys dimensional reduction, while well above

ordinary scaling holds. After an initial transient phenomenon, whose duration depends

on the specific choice of ε and κ, the comoving transition scale decays exponentially

fast. Hence, the dimensional-reduction contribution is pushed to larger and larger scales

as time increases. This therefore guarantees that quantum modes induce only a minor

change of the spectral index on sub-horizon as well as on moderate super-horizon scales.
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Figure 6.1: Power spectrum P for a massive test field (µ = 0.1H) for
exponential inflation at tH = 10 as a function of comoving momentum
k. The parameters of the filter function (6.16) are fixed to κ = 10−3 and
ε = 10−2.
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Figure 6.2: Power spectrum P for a massless test field for power-law
inflation (p = 12) at t̃ = 4 [c.f. (6.23)] as a function of comoving momen-
tum k (in units of 1/t1). The parameters of the filter function (6.16) are
fixed as in figure 6.1.
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Figure 6.3: Comoving transition scale k∗ [c.f. (6.19)] for exponential
inflation as a function of cosmic time t (in units of H−1) for mass µ/H =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 (dashed lines, top to bottom). Dashed curves
are numerical results, coloured solid lines are analytic approximations,
and enveloping black lines are ε

2a(t) and the asymptotic form (6.22),
respectively. The parameters of the filter function (6.16) are fixed as in
figure 6.1.
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Figure 6.4: Comoving transition scale k∗ for power-law inflation
as a function of modified cosmic time t̃ [c.f. (6.23)] for p =
5, 10, 12, 14, 16, 18 (dashed lines, top to bottom). Dashed curves are
numerical results, coloured solid lines are analytic approximations. The
parameters of the filter function (6.16) are fixed as in figure 6.1.
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For the sake of being specific, let us consider a mode with comoving momentum

k = 0.05H. At t = 0 it is within the region of ordinary scaling, suffering at most slightly

from dimensional reduction. This mode enters then, after roughly two e-folds, the region

of broken scale invariance, but leaves it at the latest (for µ = 0) after seven e-folds and

stays eternally in the scale-invariant regime, which itself grows exponentially fast.

6.3 Filter Functions

The discussion of possible smooth filter functions and their influence on the phenomenon

of dimensional reduction shall be dealt with in this subsection. In particular, we study

their effects on the transition scale k∗(t).

Let Θ be the Heaviside function. Then we define a filter function as a function Wκ

depending on a parameter κ (controlling the width of the transition) such that

lim
κ→0

Wκ(z) ≡ Θ(z) . (6.25)

One may divide filter functions fulfilling (6.25) into two classes: Those for which Θ−Wκ

has an unbounded support J and those for which J is bounded. Let us now discuss these

two cases separately.

Unbounded Support

Some well-known smooth filter functions are:

tan−1
(
z
κ

)
π

+
1

2
, (6.26a)

1

2
erf

(
z

κ

)
+

1

2
, (6.26b)

Si
(
π z
κ

)
π

+
1

2
, (6.26c)

1

1 + e−
z
κ

, (6.26d)

e−e−
z
κ , (6.26e)

1

2
tanh

(
z

κ

)
+

1

2
. (6.26f)

Here, ‘erf’ is the error function, defined by erf(z) := 2√
π

∫ z
0

dt e−t
2
, and ‘Si’ is the sine-

integral function, defined by Si(z) :=
∫ z

0
dt sin(t)/t.
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The following two figures show the dependence of the transition scale on various filter

functions, where we choose the functions (6.26a), (6.26d) and (6.26f). It can clearly be

seen that only the quantitative behaviour changes, i.e. the position of the ‘bump’, which

marks the end of the transient phenomenon, and not the qualitative shape. Note that

the curves have been rescaled by a fixed factor (one for each filter function) and that

those functions all have precisely the same asymptotic behaviour. These statements

concern both the exponential as well as the power-law case.

In figure 6.7 we display the dependence of k∗ on various values of the width parameter

κ. We find that decreasing this parameter shifts the curves downwards, therefore pushing

the dimensional reduction effect to larger and larger scales. This can also be seen directly

from the late-time formulae (6.19). The power-law case behaves similarly.

Bounded Support

We note that all of the filter functions (6.26a-f) do not have a lower bound on their

support — a crucial ingredient for the occurrence of dimensional reduction in the far

infra-red. This can be seen as follows: From equation (6.12) one observes that the di-

mensional-reduction part σG2
0 is proportional to σ, which itself is related to the filter

function Wκ in such a way that if Wκ 6≡ Θ on an interval J only, σ = 0 outside of J.

Consequently, G = G0, i.e. dimensional reduction is absent, on the complement R\J.

However, this does not mean that one can forget about dimensional reduction in the

context of stochastic inflation: Any smooth filter function Wκ will definitely cause a

deviation from scale invariance, although it might be that this deviation disappears for

scales outside the support of Wκ − Θ. Furthermore, the results of this work are not

arbitrary, since an ultimate derivation of the stochastic inflation paradigm from first

principles will single out a specific filter function.

We now study the effect of generic filter functions (with support that is bounded from

below) on the power spectrum. For J = ]− κ,+κ [ one may choose

Wκ(k
′) =


0 : k′ ≤ −κ ,

k′ : k′ ∈ J ,

1 : k′ ≥ +κ

(6.27a)

as a prototype filter function, where k′ := (kη−ε)/κ. Hence, its derivative W′
κ is given by
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Figure 6.5: Influence of filter functions on the comoving transition scale
k∗ for exponential inflation as a function of cosmic time t (in units of
H−1) for mass µ/H = 0.1. A smoothing width κ = 10−3 and short-
wavelength cut ε = 10−2 are chosen. The variable k′ is a short-hand
notation for (kη − ε)/κ.
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Figure 6.6: Influence of filter functions on the comoving transition scale
k∗ for power-law inflation as a function of modified cosmic time t̃

[c.f. (6.23)] for p = 12. Filter argument and parameters are fixed as
in figure 6.5.
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Figure 6.7: Dependence of the comoving transition scale k∗ on the width
parameter κ of filter (6.16) for exponential inflation as a function of
cosmic time t (in units of H−1) for mass µ/H = 0.1 and ε = 10−2.
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Figure 6.8: Effective power spectrum P(k) for filter (6.28) with
bounded interval J =]−κ,+κ[ for different values of κ. P(k) is evaluated
for exponential expansion at t = 6.5H with µ = 0 and ε = 10−2.
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W′
κ(k
′) =


0 : k′ ≤ −κ ,

1 : k′ ∈ J ,

0 : k′ ≥ +κ ,

(6.27b)

leading us to the smooth approximation

W′
κ(k
′) '


0 : k′ ≤ −κ ,

exp
(
1− κ4

(κ2−k′2)2

)
: k′ ∈ J ,

0 : k′ ≥ +κ .

(6.28)

Figure 6.8 shows the influence of J 6= R on the power spectrum for the filter function

due to (6.28). Although for kη > ε + κ the dimensional reduction effect disappears,

one clearly has an effect inside the interval J. As the size of J shrinks, the domain

in wave-number space for which the dimensional reduction part is dominant also sizes

down, albeit the magnitude of P(k), as an effect of wavelength separation, increases

considerably. This is reasonable, since the (step-function) limit κ → 0 contains second

derivatives on the Heaviside function, which correspond to the pole forming for (6.28).

In figure 6.9 we display the effective power spectrum P(k) at different times. As anti-

cipated, the dimensional reduction ‘bumps’ decline as time increases. One also observes

the same behaviour as in figure 6.3, namely the grows of the comoving transition scale,

up to the point where the dimensional reduction effect disappears. It is subdominant in

the shaded region of figure 6.10, which visualises the ratio

η :=
σG2

0

G0

= σG0 (6.29)

of the dimensional reduction part to the noiseless part, evaluated at the most ultra-violet

peak (c.f. figure 6.8).

One sees that η diminishes exponentially fast in time. Hence, after some few e-folds,

the transition region becomes unimportant (shaded region in figure 6.10) and the classical

power spectrum provides an excellent approximation.
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Figure 6.9: Effective power spectrum P(k) at various times and for
κ = 10−3, otherwise as in figure 6.8.

6.3.1 Modified Gaussian Fluctuations

One may connect the replica structure σ to a non-linearity parameter gNL, which can in

general be defined by

ϕi(t, k) ≡ ϕG

i (t, k)− gNL(t, k)
(
ϕG

i (t, k)
)2
, (6.30)

where ~ϕG(t, k) is a free Gaussian field. On the level of propagators, this translates to

G(t, k) = G0(t, k) + 3gNL(t, k)2 G0(t, k)2 (6.31)

and hence

σ(t, k) = 3gNL(t, k)2 (6.32)

can be directly read off, using equation (6.12). The quantity gNL measures the influence

of the quantum fluctuations, picked up by a smooth filter function. Formally, it resembles

an effective non-Gaussianity parameter [KS01] for the long-wavelength modes. However,

this association is misleading since the full theory we started with is Gaussian (but with

a non-trivial replica structure).
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Figure 6.10: Time dependence of the ratio η of the dimensional reduc-
tion part to the noiseless part of the effective power spectrum for the
filter (6.28) for exponential expansion with κ = 10−3, ε = 10−2 and
µ = 0.

Unbounded Support

Let us first consider the case of a filter function for which J is unbounded. Exemplary

we choose the function (6.16). Figure 6.11 shows the dependence of gNL on the comov-

ing momentum k for various values of µ for fixed time t = 10H, using equation (6.32).

Firstly, one sees that increasing µ shifts the curve upwards, and secondly, one observers a

divergence in the infra-red — displaying the effect of dimensional reduction. For k � k∗

one obtains a scale-invariant spectrum. Figure 6.12 visualises the same for power-law

inflation with µ = 0 for various values of p, where t̃ has been fixed to t̃ = 4. One observes

that increasing p lowers the curves which converge towards their asymptotic value for

p→∞. This coincides with the µ→ 0-limit of the exponential case as already noted in

section 6.1.

Bounded Support

To discuss the effect of a bounded support J on the non-linearity parameter gNL, we

choose the filter corresponding to (6.28). The dependence of gNL on the comoving mo-

mentum k is depicted in figure 6.13. All curves shown in this plot are strictly zero

outside the plotted interval. This means that there is only a small (∼κ) window around
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Figure 6.11: Non-linearity parameter gNL for exponential inflation as
a function of comoving momentum k (in units of H) for mass µ/H =
0.1 (uppermost), 0.2, 0.3, 0.4, 0.5 and 0.6 (lowermost) at Ht = 10. For
the filter (6.16) we fix κ = 10−3 and ε = 10−2.
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Figure 6.12: Non-linearity parameter gNL for power-law inflation as
a function of comoving momentum k (in units of 1/t1) for p =
10 (uppermost), 12, 14, 16, 18 (lowermost) and t̃ = 4. Filter and param-
eters are as in figure 6.11.
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Figure 6.13: Non-linearity parameter gNL as a function of comoving
momentum k (in units of H) for de Sitter inflation with mass µ/H =
0.1 (uppermost), 0.2, 0.3, 0.4, 0.5 and 0.6 (lowermost) with Ht = 1.
The filter (6.28) is used with κ = 10−3 and ε = 10−2.
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Figure 6.14: Non-linearity parameter gNL as a function of time
t (in units of H−1) for de Sitter inflation with mass µ/H =
0.1, 0.2, 0.3, 0.4, 0.5, 0.6 (dashed lines, top to bottom) evaluated at the
first ultra-violet ‘bump’ of figure 6.13. Filter and parameters are as
in figure 6.13.
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ε in which the wavelength-separation effects play a role at all. However, for sufficiently

early times, the transition effect becomes indeed pronounced. Figure 6.14 shows the

time dependence of the non-linearity parameter gNL for various masses. After some few

e-folds, gNL is completely negligible and Gaussianity of the fluctuations in the proper

sense holds true.

6.4 Self-Interactions

In this section we extend the results of the previous sections, which have been published

in [KS08, KS09], to include self-interactions of a massive, scalar test field in a de Sitter

background. We put special emphasis on the calculation of the power spectrum and show

that self-couplings cause a lack of power on large scales. This is explicitly demonstrated

for the case of a quartic self-interaction.

Our starting point is the following Lagrangian for the massive scalar field Φ with a

quartic self-interaction,

L =
1

2
gµν∂µΦ∂νΦ−

µ2

2
Φ2 − λ

4
Φ4 , (6.33)

where µ is the mass and λ is a self-coupling constant. Furthermore, we assume a de

Sitter background geometry with an exponential scale factor a(t) = exp(t), where again,

for convenience we use } !
= c

!
= H

!
= 1. After the general study of chapter 5, we can

easily write down the solution to the variational equations (5.34a,b). They are replica

symmetric and read for a 6= b:

σab = σ , (6.34a)

σc = −σ + 4λGaa . (6.34b)

Equations (6.34a) and (6.34b) imply the following self-consistent equation for the

power spectrum

P(k) = k3
[
G−1

0 (k) + 8λ k−3P(k)
]−1

+ k3σ(k)
[
G−1

0 (k) + 8λ k−3P(k)
]−2

. (6.35)

The explicit form of the solution to (6.35) for arbitrary values of µ and t is rather lengthy

and shall not be given here. Instead we present its late-time expression for zero mass:

P(k) '

√
4 + 6λk−6 cos

(
1
3

arctan
(

6
√

3
√
λ−1 k6+2

8λ−3/2 k9+18λ−1/2 k3

))
− 2

3λk−6
. (6.36)
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This quantity shows basically three different shapes:

P(k)→


∼ k3 : k � k1/2 ,

const. : k1/2 � k � H ,

∼ k2 : H � k .

(6.37)

Here k1/2 is the argument value of P at which it has dropped to half of its asymptotic

value. It is given by

k1/2 =
6

√
λ

4
. (6.38)

In the limit λ→ 0 it takes the constant value 1/2, which is just the ordinary scale-free

result obtained without any noise (in our normalisation). Hence, the result (6.36) is

fully consistent with our previous work.

We observe in figure 6.15 that, depending on the coupling, the power spectrum is

heavily suppressed on large scales. This damping becomes more pronounced as the

coupling is increased. Thus, the region of broken scale invariance is pushed to smaller

scales, which seems intuitive since the stronger the self-interaction the less (almost) free

propagation is possible. Another way of seeing this is that the replica method applied in

this work effectively resums arbitrary powers of the coupling λ, generating a self-energy

σ, c.f. equation (5.25). Although dependent on space and time, this entity might be

viewed as an effective mass term, which shifts the pole of the propagator G to non-zero

values, resulting in a finite range of the inherent effective interaction.

6.5 Possible CMB effects

Recent investigations [HBB+96, SVP+03, CHS+06, CHS+08] show that there are vir-

tually no large-scale correlations on the non-galactic cosmic microwave background. It

is evident from figure 6.17 that above an angular scale of around 60◦ there is basically

no correlation at all, if one excludes the largest angular scales (∼ 160◦ − 180◦).

We recall that the two-point correlation function C(θ) of the observed relative cmb

temperature fluctuations ∆T := δT/T is defined and can be decomposed as

C(θ) :=
〈

∆T (ê1) ∆T (ê2)
〉
θ

=
1

4π

∞∑
`=0

(2`+ 1) C` P`(cos θ) , (6.39)
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Figure 6.15: Power spectrum P(k) of a massless test field with quartic
self-coupling as a function of comoving momentum k. Plotted are the
results for various values of λ, where time has been fixed to tH = 6.
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Figure 6.16: Comparison of different C`. The (black) dashed line rep-
resents the exact result from (6.41) for

√
`(`+ 1)C`/2π from a scale-

invariant spectrum, which is constant. The (red) dashed curve displays
the same quantity but evaluated with a sharp cut-off, and the (blue)
dot-dashed line shows this for the power spectrum (6.36).
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where P` is the Legendre polynominal of degree ` and the angle brackets represent an

average over all pairs of points on the sky (or at least the portion of the sky being ana-

lysed) that are separated by an angle θ. The coefficients C` ∈ R are influenced by

many effects, e.g. varying gravitational potential, reionisation, delayed recombination,

polarisation, etc. We refer the interested reader to chapter 3 for details.

Because we expect drastic changes of C(θ) due to the large-scale damping of P(k),

and to have analytically tractable results, we only consider the leading ordinary Sachs-

Wolfe effect [SW67]. Taking into account that the power spectrum (6.36) is actually a

function of λ1/6 k, we find with the definition of the new coupling parameter

λ′ := e−6Ñ [Hη0]6 λ (6.40)

after a change of the integration variable from equation (3.36) for the multipole moments

C` ≈ A

∫ ∞
0

dk

k

[
j`(k)

]2

P(k, λ′) . (6.41)

Here j` is a spherical Bessel function of degree ` and η0 is the conformal time of reception

of cmb photons today. We define A := 9/(25π)∆2
RT

2
0 e−2τ ≈ 1733.57µK2, where the

values of the amplitude ∆2
R ≈ 2.45 × 10−9 and the optical depth τ ≈ 0.084 have been

taken from [KDN+09].

The factor e−6Ñ in (6.40) arises from the conversion from comoving to physical mo-

menta and depends on the specific model and parameters for the evolution of the Uni-

verse. If we assume as an extremely simple approximation a two-period model with an

instantaneous transition from a de Sitter to a radiation-dominated stage, the factor Ñ

is given by

Ñ = NT + ln

(
Treh

T0

)
, (6.42)

where Treh is the reheating temperature. The factor NT := (tf−ti)H is the total number

of (inflationary) e-folds, where ti and t0 being the initial and final time of this interval,

respectively.

In figure 6.16 we show a comparison of the quantity
√
`(`+ 1)C`/2π with C` subject

to (6.41) for the cases of a scale-invariant power spectrum (black, dotted), the power

spectrum from (6.36) with k1/2 = 4.8η0 (blue, dot-dashed) and a scale-invariant power

spectrum but with a sharp lower momentum cut-off at kcut = 4.8η0 (red, dashed).
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Figure 6.17: Angular temperature two-point correlation function C(θ),
with the monopole and the dipole being subtracted. The (blue) dot-
dashed line corresponds to the late-time power spectrum (6.36) and the
(red) dashed curve represents the same quantity, but with a sharp cut
at k = k1/2 η0 = 4.8 to fit observations. Also plotted are the wmap

five-year data (ilc kq75 mask) [KDN+09] (greed, solid), the result for a
scale-invariant power spectrum (black, dotted) and the one-sigma cosmic
variance band around the sharp-cut curve (red-shaded).

The latter is suggested from the step-like form of P(k) obtained in this work (fig. 6.15).

One sees in figure 6.16 that C` is damped especially for low ` if either a smooth or a

step-like momentum cut-off is used. For ` & 10 all cases basically coincide.

Let us briefly mention that the sharp cut just mentioned may also correspond to some

extend to certain models with non-simply connected space-times [ALS+04, ALS+05,

ALS05a, ALS05b, AJL+08], where, e.g. in the torodial case, the length L of the funda-

mental domain gives — besides a discrete spectrum — the infra-red cut-off k = 2π/L.

Figure 6.17 shows our results for the two-point function C(θ), which has been obtained

from the full power spectrum (6.36) together with formulae (6.39) and (6.41), in which we

sum up to ` = 200, calculated with the NIntegrate function of Mathematica 7. One

clearly sees that it matches all significant features of the corresponding wmap five-year

curve. Remarkable: This is even better fulfilled for the sharp cut: The corresponding

curve and the data basically lie on top of each other in the angular range 8◦ . θ . 25◦.
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Moreover, almost the entire wmap data is found inside the one-sigma cosmic variance

band (red-shaded). Also the scale of around 70◦, above which C(θ) remains close to zero,

can quantitatively be very well reproduced. For the best-fit value of k1/2 we find

k1/2η0 ≈ 4.8 . (6.43)

Inserting

η0 ≈
2√

Ωm H0

, (6.44)

where Ωm ≈ 0.27 [KDN+09] is the matter density of the Universe today, we obtain

k1/2 ≈ 1.25H0 ≈ 2.95× 10−4 Mpc−1 . (6.45)

Now, equation (6.38) together with equation (6.40) provides a relation among this

damping scale, the associated self-coupling and the total number of inflationary e-folds

NT. As k1/2 and λ are fixed or at least constrained from observations, one may use this

relation to determine NT. We find for λ = 10−13, H0 = 10−42 GeV, H = 1017 GeV,

Treh = 1015 GeV and T0 = 10−13 GeV the result

NT = ln

(
4(k1/2η0)(Hη0)

6

√
λ

4

T0

Treh

)
≈ 70.5 , (6.46)

which is well consistent with the minium amount derived in section 1.3.2.

The conclusion that the observed low-multipole suppression is caused by a damping

of the power spectrum might be weakened to some extend by the integrated Sachs-Wolfe

effect [SW67], which — among others — has to be included in a full numerical study.

In fact, Mortonson and Hu [MH09] recently commented on this issue. As follows from

(6.45), their bound of kcut < 5.2× 10−4 Mpc−1 is in full agreement with our results.





aSummary & Outlook

�Das Ziel ist erreicht; doch auch aus dem Rückblick

schöpfe die Kraft zur Krönung des Werks.�

according to Wilhelm Jordan

In this thesis we studied the large-scale behaviour of the power spectrum of the long-

wavelength part of multi-component scalar test fields in curved space-time, using a

stochastic description for the quantum modes as introduced by Starobinsky [Sta82].

We focused on the two important cases of a spatially-flat Friedmann geometry with

an exponential and a power-law scale factor. The effective spectral index is calculated

in the framework of replica field theory after Mézard and Parisi [MP91], which we

recently introduced in a cosmological context [KS08, KS09]. Using a Gaussian variational

approximation [Fey55], we derived an expression for the physical propagator G and thus

for the power spectrum of long-wavelength fluctuations. These methods allow us to study

the spatial behaviour of arbitrary long-wavelength two-point correlation functions.

A discussion on possible filter functions has been given with special focus on the

aspect of the compactness of their support. For filter functions which deviate from

the step function on an unbounded interval J, we find the phenomenon of dimensional

reduction on super-horizon scales. It heavily amplifies the power spectrum in the infra-

red. The time evolution of the long-wavelength field pushes the dimensionally-reduced

region exponentially fast to unobservable scales. Taking the limit of vanishing width of

the filter function, i.e. of a sharp separation of long- and short-wavelength modes, has a

similar same effect.

For filter functions with a bounded interval J, we show that the smooth separation

might also lead to strong modifications of the power spectrum. However, this effect is

limited to J and decreases exponentially fast, becoming negligible after a few e-folds.

Our findings provide further support for the self-consistency of the idea of inflation.

Either regions of broken scale invariance with extraordinarily large fluctuations disappear

faster than any causal patch of the universe expands (unbounded J), or large extra power

is strongly damped by the time evolution (bounded J).
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The scenario of eternal inflation [Vil83, LLM94], where huge fluctuations on large

scales are responsible for the permanent creation of new Universes, is also qualitatively

consistent with our results. However, when talking about the birth of new Universes, our

set-up of a test field on a fixed background is surely wrong and a quantitative comparison

is not possible.

The huge effect of quantum noise on large super-horizon scales (may they occur on a

finite or infinite momentum range) does not permit us to speak about the spectrum of

fluctuations in the usual, perturbative sense and clearly signals a breakdown of ordinary

perturbation theory. This noise modifications further display the failure of the test-field

assumption, since in the situation at hand it is no longer valid to neglect the back-

reaction of the field on the geometry. In the case of bounded J it is possible to avoid

the breakdown of perturbation theory and the test field assumption by an appropriate

choice of the filter width.

We then applied our new methods to interacting scalar fields, where we focus on quar-

tic self-coupling. There, it is found that the long-wavelength power spectrum acquires

an additional damping on large scales, which can be understood from the effective mass

generation due the resummation of the stochastic quantum effects.

This damping is then applied to the description of the cmb data. Depending on the

particular damping scale and by virtue of only the ordinary Sachs-Wolfe effect, one ob-

tains a temperature autocorrelation function fairly close to the one observed by wmap.

As our derivation does not take into account the integrated Sachs-Wolfe effect, which

might largely compensate the damping effect, a final statement can only be drawn from

a full numerical study.

Another open task is to study more general space-times, such as those modelling

inhomogeneities and to treat also the geometry stochastically. For a fully consistent

treatment this is necessary because the Einstein field equations relate the energy densi-

ties, e.g. of the quantum field, to the curvature of the underlying space-time.

A further, rather obvious challenge would be to perform a full functional renormalisa-

tion-group study [Fis85, Fis86, GL94, Fel00, LW02, LW04, LWC04, LW06], which is

linked to replica field theory (c.f. e.g. [LMW08]). This approach allows for studying

the (functional) beta function of the renormalised noise correlator R̃ and is thus — via a

fixed point analysis — capable of determining the specific form of the physical correlator.



Appendix

Replica Symmetry Breaking

�When the stars threw down their spears,

And water’d heaven with their tears:

Did he smile his work to see?

Did he who made the Lamb make thee?

Tyger Tyger, burning bright,

In the forests of the night;

What immortal hand or eye,

Dare frame thy fearful symmetry?�

William Blake

In the preceding chapters we saw the occurrence of the matrix σ which is used as a

variational parameter. Even for very simple models like the Sherrington-Kirkpatrick

model [SK75] it is impossible to treat the case where σ is arbitrary. So one is forced to

make assumptions due to its structure. The easiest, the replica symmetric ansatz, has

been introduced above. However, one can show that this ansatz produces in discrete

models a negative entropy at zero temperature.

One thus looks in the treatment of disordered systems at low temperatures for a more

fruitful ansatz. It consists no longer of a uniform replica matrix — that is why this cases

is referred to as replica symmetry breaking. Due to the occurrence of ergodicity

breaking at low temperatures T , which becomes stronger if T is lowered, we may find

it, at least a bit, intuitive to give σ a hierarchical structure. By this we mean a matrix

consisting of blocks inside blocks (c.f. the illustrative example on the subsequent page).

If we have k blocks, we talk about k-step replica symmetry breaking. Because

the fragmentation of the phase space continues as the system is cooled down, one may

take the limit k →∞ in which the matrix (σab) becomes actually a function σ(u). This

is the case of so-called full-step replica symmetry breaking.
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σ =



σc σ3 σ2 σ2 σ1 σ1 σ1 σ1 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ3 σc σ2 σ2 σ1 σ1 σ1 σ1 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ2 σ2 σc σ3 σ1 σ1 σ1 σ1 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ2 σ2 σ3 σc σ1 σ1 σ1 σ1 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ1 σ1 σ1 σ1 σc σ3 σ2 σ2 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ1 σ1 σ1 σ1 σ3 σc σ2 σ2 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ1 σ1 σ1 σ1 σ2 σ2 σc σ3 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ1 σ1 σ1 σ1 σ2 σ2 σ3 σc σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0

σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σc σ3 σ2 σ2 σ1 σ1 σ1 σ1

σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ3 σc σ2 σ2 σ1 σ1 σ1 σ1

σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ2 σ2 σc σ3 σ1 σ1 σ1 σ1

σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ2 σ2 σ3 σc σ1 σ1 σ1 σ1

σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ1 σ1 σ1 σ1 σc σ3 σ2 σ2

σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ1 σ1 σ1 σ1 σ3 σc σ2 σ2

σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ1 σ1 σ1 σ1 σ2 σ2 σc σ3

σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ0 σ1 σ1 σ1 σ1 σ2 σ2 σ3 σc



. (6.47)

Mathematics of Replica Symmetry Breaking

Introductions to replica symmetry breaking can be found e.g. in [MP91, Dot00, Wie02].

We mainly follow these references here with emphasis on basic aspects for the purpose

of a mathematical specification.

To model the large amount of energy minima in disordered systems, one conveniently

utilises so-called Parisi matrices

Q = q̃1+
k∑
j=0

1̄j qj , (6.48)

where 1̄j := 1j − 1j+1 and 1j := 1mj is the matrix that has blocks of size mj on the

main diagonal with every entry equal to 1 inside the blocks and 0 outside. The imposed

restrictions are gcd(mj,mi) = min(mj,mi) and i < j implies mi > mj. Here we set

10 := 1ll and 1k+1 := 1. Defining further the matrices

Pj :=
1

mj

1j , P̄j := Pj −Pj−1 , P0 ≡ 0 , (6.49)
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we see that the P̄s are projectors:

P̄j P̄i ≡ δij P̄i ,
k∑
j=1

P̄j = 1 . (6.50)

According to this, formula (6.48) can be written as

Q = q̃1+
k∑
j=0

qj
(
mjPj −mj+1Pj+1

)
. (6.51)

This matrix has the eigenvalues

λ = q̃ +
k∑
j=0

qj
(
mj −mj+1

)
with multiplicity: 1 , (6.52a)

q̂i = q̃ +
k∑
j≥i

qj
(
mj −mj+1

)
−mi qi−1 with multiplicity: n

mi−1 −mi

mi−1mi

. (6.52b)

The last multiplicity is obtained by noting that

dim ker
(
P̄i

)
= dim ker

(
Pi −Pi−1

)
=

n

mi

− n

mi−1

= n
mi−1 −mi

mi−1mi

. (6.53)

The continuum limit is achieved through

k∑
j=0

qj
(
mj −mj+1

)
=
∑
(mj)

qmj
(
mj −mj+1

) mj → x−−−−→ −
1∫

n

dx q(x) (6.54)

and yields for (6.52a) and (6.52b)

λ = q̃ − 〈q〉n + nq(n) with multiplicity: 1 , (6.55a)

q̂n(x) = q̃ − 〈q〉n − [q]n(x) with multiplicity: − n dx

x2
. (6.55b)

The brackets are defined as follows

〈q〉n :=

1∫
n

dx q(x) + nq(n) , 〈 · 〉0=: 〈 · 〉 , (6.56a)

1 [q]n(x) := xq(x)−
x∫
n

dy q(y)− nq(n) , [ · ]0 =: [ · ] . (6.56b)
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Obviously we have

d[q]n(x)

dx
= xq′(x) , (6.57a)

1 [q]n(x) = 0 ⇔ q = const. , (6.57b)

1 [q]n(n) = 0 . (6.57c)

Armed with this machinery one can easily invert a Parisi matrix:

1 = RQ = R1Q1 =
∑
i, j

RP̄iQP̄j =
∑
i, j

r̂i P̄i q̂j P̄j =
∑
i

r̂i q̂i P̄i (6.58)

⇒ 1 = r̂i q̂i ∀ i

−→ 1 = q̂(x) r̂(x) =
(
q̃ − 〈q〉 − [q] (x)

)(
r̃ − 〈r〉 − [r] (x)

)
.

(6.59)

We can also calculate tr ln(Q):

1

n
tr ln(Q) =

1

n
ln
(
q̃ − 〈q〉n + nq(0)

)
−

1∫
n

dy

y2︸︷︷︸
from multiplicity (6.55b)

ln
(
q̃ − 〈q〉n − [q]n(x)

)

= ln
(
q̃ − 〈q〉n

)
+

1

n
ln

(
1 +

nq(0)

q̃ − 〈q〉n

)
−

1∫
n

dy

y2
ln

(
q̃ − 〈q〉n − [q]n(x)

q̃ − 〈q〉n

)

n→0−−→ ln
(
q̃ − 〈q〉

)
+

q(0)

q̃ − 〈q〉
−

1∫
0

dy

y2
ln

(
q̃ − 〈q〉 − [q] (x)

q̃ − 〈q〉

)
, (6.60)

which is important for evaluation of determinants arising form Gaussian path integrals.

(6.60) is exactly the result found by Mézard and Parisi [MP91]. After some work one

finds for the inverse Parisi matrix P =
(
p̃, p(x)

)
=
(
q̃, q(x)

)−1
= Q−1 in the continuum

limit

p(x) = − 1

q̃ − 〈q〉

 [q] (x)

x
[
q̃ − 〈q〉 − [q] (x)

] +
q(0)

q̃ − 〈q〉
+

x∫
0

dy

y2

[q] (y)

q̃ − 〈q〉 − [q] (y)

 , (6.61a)
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p̃ =
1

q̃ − 〈q〉

1− q(0)

q̃ − 〈q〉
−

1∫
0

dy

y2

[q] (y)

q̃ − 〈q〉 − [q] (y)

 , (6.61b)

⇒ p̃− p(x) =
1

x
[
q̃ − 〈q〉 − [q] (x)

] − 1∫
x

dy

y2

1

q̃ − 〈q〉 − [q] (y)
(6.61c)

and for the product of two Parisi matrices, R = PQ, (c.f. [Dot00])

r̃n = p̃ q̃ −
1∫

n

dx p(x)q(x) , (6.62a)

rn(x) = −na(x)b(x) +
(
p̃− 〈p〉n + np(n)

)
q(x) +

(
q̃ − 〈q〉n + nq(n)

)
p(x)

−
x∫
n

dy
(
p(y)− p(x)

)(
q(y)− q(x)

)
. (6.62b)

Thus for n→ 0 the product of three such matrices, G = MPQ, with m̃ = p̃ = q̃
!

= 0 is

g̃ =

1∫
0

dx

xm(x)p(x)q(x) +m(x)

1∫
x

dy p(y)q(y)

+q(x)

1∫
x

dy p(y)m(y) + p(x)

1∫
x

dy m(y)q(y)

 .

(6.63)

Using this one can obtain information of the structure of the underlying space. Therefore

we introduce the Sherrington-Kirkpatrick model [SK75], which is defined via

H := −
N∑
i<j

Ji j σiσj , P
[
Ji j
]

:=
∏
i<j

√
N

2π
exp

(
−N

2
Ji j

)
, (6.64)

with the spin variables σj ∈]− 1, +1[. The factor N in the exponential in front of the

J is essential for the free energy to be extensive. A bit of work yields [Dot00]

Zn ∝
∏
a<b

∑
{σ}

+∞∫
−∞

dQn
ab exp

β2n(N − n)

4
+ β2

∑
a<b
j∈N

Q
(n)
ab σ

a
j σ

b
j −

β2N

2

∑
a<b

(
Q

(n)
ab

)2

 .

(6.65)
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After the variation

δZn

δQ
(n)
ab

= 0 (6.66)

we have the important equation

Q
(n)
ab =

1

N

N∑
j=1

〈
σaj σ

b
j

〉
. (6.67)

For spin variables σj define the pure states α with weights ωα by the property〈
σj σk

〉
α

:=
〈
σj
〉
α
〈σk〉α (6.68)

for which

〈 · 〉 ≡
∑
α

ωα 〈 · 〉α . (6.69)

Furthermore we define the overlap qαβ via

qαβ :=
1

N

N∑
j=1

〈σi〉α 〈σi〉β (6.70)

and, to describe the statistics of the overlap, the probability distribution function

P(q) :=
∑
αβ

ωαωβ δ
(
q − qαβ

)
. (6.71)

As mentioned previously, it is the probability of finding two replicas having their overlap

equal to q. It is precisely this function which one can consider as an order parameter.

Victor Dotsenko said: �The fact that it is a function is actually a manifestation of the

crucial phenomenon that for the description of the spin glass phase we need an infinite

number of order parameters.� [Dot00]. Defining for all k ∈ N the quantities

q(k) :=
1

Nk

N∑
i1...ik=1

〈
k∏
j=1

σij

〉2

(6.72a)

we see, using (6.68) and (6.69), that

q(k) :=

∫
dq P(q)qk , (6.72b)
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0

1

Figure 6.18: An example of an ultrametrical tree.

which means, that these parameters are the moments of the probability density

P and that �the function P(q) originally defined to describe the statistics of (some-

what abstract) pure states, can be calculated (at least theoretically) from the multipoint

correlation functions in the Gibbs states.� [Dot00]

We note that the probability that three arbitrary pure states having mutual overlaps

qαβ, qαγ and qβγ equal to q1, q2 and q3 is

P(q1, q2, q3) =
∑
αβ γ

ωαωβ ωγ δ
(
q1 − qαβ

)
δ
(
q2 − qαγ

)
δ
(
q3 − qβγ

)
(6.73a)

and can be written as (c.f. [Dot00])

P(q1, q2, q3) = lim
n→0

1

n(n− 1)(n− 2)︸ ︷︷ ︸
= # of terms in the sum

∑
a, b, c

a6=b 6=c 6=a

δ
(
q1 −Qn

ab

)
δ
(
q2 −Qn

ac

)
δ
(
q3 −Qn

bc

)
.

(6.73b)
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With formula (6.63) we obtain from d
dq
x(q) = P(q) the result

P(q1, q2, q3) =
1

2
P(q1)x(q1)δ(q1 − q2) δ(q1 − q3) +

1

2
P(q1)P(q2)θ(q1 − q2) δ(q2 − q3)

+
1

2
P(q2)P(q3)θ(q2 − q3) δ(q1 − q3) +

1

2
P(q3)P(q1)θ(q1 − q3) δ(q1 − q2) .

(6.74)

This shows the characteristic topological property of ultrametricity, which is that of

the endpoints of a hierarchical tree (c.f. [RTV86, Dot00] for more detailed discussions).

A Replica Symmetry-Breaking Example

Except from the previous section, we studied cases of replica symmetry. Since for more

sophisticated random potentials this is only an assumption which might induce instabil-

ities under certain conditions (see e.g. [MP91]), we will now discuss the scenario where

replica symmetry is broken. It implies that the matrix σ is no longer uniform in replica

space. The case we will treat here is continuous replica symmetry breaking. Already

involved enough we will restrict ourselves to the short-range case throughout this section.

We stress that our motivation is of purely theoretical nature — we would like to un-

derstand what happens in the case of continuously broken replica symmetry, probably

arising from some more fundamental theory. Let us work in d space-time dimensions

and focus on correlators R̂ of the form R̂(z) ∝ z−γ, with γ ∈ R.

According to section 6.5 we can, in the limit n → 0, parametrise a Parisi matrix

by a function σ : [0, 1] → R (the off-diagonal elements), and a constant σc (the part

proportional to 1). In analogy we have for the propagators

Gaa(t, k) 7→ g̃(t, k) , Gab(t, k) 7→ g(t, k, u) . (6.75)

Then, using (5.18a), the variational equations (5.30a) and (5.30b) give in the limit n→ 0

σc(t) = −R̂′
(∫

k

g̃(t, k)

)
, (6.76a)

σ(t, u) = R̂′
(∫

k

g(t, k, u)

)
. (6.76b)
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Using (5.18b) yields for (5.32a)

σ(t, u) = −2R̂′
(

2

∫
k

(
g̃(t, k)− g(t, k, u)

))
. (6.77)

Let us define C(t, k) := G−1
0 (t, k)+M(t) with M(t) := σc(t)+〈σ〉(t). Of course, M(t) = 0

in the case of difference correlation if U ≡ 0. With (see (6.61b))

g̃(t, k) =
1

C(t, k)

1 +
σ(t, 0)

C(t, k)
+

1∫
0

dy

y2

[σ](t, y)

C(t, k) + [σ](t, y)

 , (6.78a)

g(t, k, u) =
1

C(t, k)

 [σ](t, u)

u
[
C(t, k) + [σ](t, u)

] +
σ(t, 0)

c(t)k2α +M(t)
+

u∫
0

dy

y2

[σ](t, y)

C(t, k) + [σ](t, y)


(6.78b)

we have for (6.76a) and (6.76b)

σc(t) = −R̂′

∫
k

1

C(t, k)

1 +
σ(t, 0)

C(t, k)
+

1∫
0

dy

y2

[σ](t, y)

C(t, k) + [σ](t, y)


 , (6.79a)

σ(t, u) = R̂′

∫
k

1

C(t, k)

 [σ](t, u)

u
[
C(t, k) + [σ](t, u)

] +
σ(t, 0)

C(t, k)
+

u∫
0

dy

y2

[σ](t, y)

C(t, k) + [σ](t, y)


.

(6.79b)

Equation (6.77) becomes (c.f. (6.61c))

g(t, k, u) =
1

u
[
C(t, k) + [σ](t, u)

] − 1∫
u

dy

y2

1

C(t, k) + [σ](t, y)
, (6.80)

and thus

σ(t, u) = −2R̂′

2

∫
k

 1

u
[
C(t, k) + [σ](t, u)

] − 1∫
u

dy

y2

1

C(t, k) + [σ](t, y)


 . (6.81)
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Differentiating (6.81) once with respect to u yields

σ′(u) = R̂′′(. . .)

∫
k

1[
C(t, k) + [σ](t, u)

]2 σ′(u) , (6.82)

so we have one replica-symmetric solution and, if σ′ 6= 0, another one given by

1

R̂′′(. . .)
=

∫
k

1[
C(t, k) + [σ](t, u)

]2 . (6.83)

Inverting (6.83), inserting this into (6.76b) and assuming the existence of R′′−1 yields in

analogy to [LW03] some very general formulae

σ(u, t) = R̂′

[R̂′′]−1

 1∫
k

1
[C(t,k)+[σ](t,u)]2


 , (6.84a)

u(t) =

[∫
k

1
[C(t,k)+[σ](t,u)]2

]3∫
k

1
[C(t,k)+[σ](t,u)]3

R̂′′′

[R̂′′]−1

 1∫
k

1
[C(t,k)+[σ](t,u)]2


 . (6.84b)

Once the R̂′ is known, one can determine the complete function [σ](t, u). It is clear from

(6.83) that random anisotropy does not provide continuous replica symmetry breaking,

neither for product nor for difference correlation. Now let d < 1 + 4α and assume

G−1
0 (t, k) = c(t)k2α and

R̂(z) ∝ z−γ . (6.85)

Thus, we see that equation (6.83) implies

(. . .)γ+2 ∝
[
M(t) + [σ](t, u)

] d−1−4α
2α , (6.86)

where we used ∫
dd−1k

1[
k2α + ρ

]ζ ∝ ρ
d−1−2αζ

2α . (6.87)

Differentiating (6.86) again with respect to u we find after some lines of calculation

M(t) + [σ](t, u) ∝ u
2α(γ+2)

d+(d−2α−1)γ−1 . (6.88)
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This and (6.78a) imply for k → 0

g̃(t, k) ∼ k
−2α

(
1+ d+(d−2α−1)γ−1

2α(γ+2)

)
= k1−d− 4α−d+1

γ+2 ≡ k−(d−1) kns−1 (6.89)

and hence for the spectral index

ns =
d− 4α + γ + 1

γ + 2
. (6.90)

Thus one can only achieve scale invariance only for γ = −1 − 4α
d−1

(being negative),

or in the limit γ →∞. However, scale invariance is observationally tightly constrained:

Experimental bounds, coming from five-year data of wmap and other surveys suggest

nϕ ' 1 [KDN+09]. This means that, assuming scale invariance is broken in a narrow

range only, γ will be very large. Let us in general write ∆l ≤ nϕ ≤ ∆u and ask what

this implies for γ. For general α we find

γ ≥ min

{
1− d+ 4α

∆l

− 2,
1− d+ 4α

∆u

− 2

}
, (6.91a)

γ ≤ max

{
1− d+ 4α

∆l

− 2,
1− d+ 4α

∆u

− 2

}
. (6.91b)

This means in particular that measurements might directly constrain the noise correlator.

It is worth noting that for γ = −1 the replica symmetric results are recovered (as

it should be for the random-field case). It is also interesting to compare our results to

those of Mézard and Parisi: For γ → γ − 1, d → d + 1 and α = 1 the results reduce

exactly to those found in [MP91].

The above derivations rely heavily on the specific form of the correlator R. Further-

more, we saw that power-law correlation does not allow for scale invariance. Never-

theless, the limit γ → ∞ of formula (6.90) reproduces nϕ = 1, suggesting to study an

exponential scenario, i.e.

R̂(x) ∝ e−χx (6.92)

with χ ∈ R. Performing an analogous derivation as with the correlator (6.85) yields

indeed a scale-invariant spectrum, i.e. ns = 1, as anticipated.
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Itô versus Stratonovich,

J. Stat. Phys. 1, 175 (1981)

[Vil82] J. Villain,

Commensurate-Incommensurate Transition with Frozen Impurities,

J. Physique Lett. (France) 43, 808 (1982)

[Vil83] A. Vilenkin,

Birth of Inflationary Universes,

Phys. Rev. D 27, 2848 (1983)

[Wei71] S. Weinberg,

Entropy Generation and the Survival of Protogalaxies . . .

ApJ. 168, 175 (1971)

[Wei72] S. Weinberg,

Gravitation and Cosmology: Principles and Applications . . .

1st eds., Wiley-VCH (1972)



120 Bibliography

[Wie92] K. J. Wiese,

Die Zeta-Funktion für ein su.-sy. nichtlineares Sigma-Modell,

Diploma thesis, Universität Heidelberg (1992)

[Wie02] K. J. Wiese,

Ungeordnete Systeme,

lecture notes, Universität ghs Essen (2002)

[Wie05] K. J. Wiese,

Why one Needs a Functional Renormalization Group to Survive . . .

Pramana 64, 817 (2005)

[Woo05] R. P. Woodard,

A Leading Logarithm Approximation for Inflationary . . .

Nucl. Phys. Proc. Suppl. 148, 108 (2005)

[WV00] S. Winitzki and A. Vilenkin,

Effective Noise in a Stochastic Description of Inflation,

Phys. Rev. D 61, 84008 (2000)

[WW90] E. T. Wittaker and G. N. Watson,

A Course in Modern Analysis,

4th eds., Cambridge University Press, p. 95 (1990)

[YF50] C. N. Yang and D. Feldman,

The S-Matrix in the Heisenberg Representation,

Phys. Rev. D 79, 972 (1950)

[YGH+94] U. Yaron, P. L. Gammel, D. A. Huse, et al.

Neutron Diffraction Studies of Flowing and Pinned Magnetic . . .

Phys. Rev. Lett. 73, 2748 (1994)

[Zin05] J. Zinn-Justin,

Quantum Field Theory and Critical Phenomena,

Oxford Science Publications, Forth Edition (2005)

[ZLF98] C. Zeng, P. L. Leath and D. S. Fisher,

Absence of Two-Dimensional Bragg Glasses,

cond-mat/9807281 (1998)


	1 Cosmological Inflation
	1.1 Friedmann Space-Time
	1.2 Shortcomings of the Standard Big Bang Theory
	1.2.1 Flatness Problem
	1.2.2 Horizon Problem

	1.3 Standard Inflationary Universe
	1.3.1 Slow-Roll
	1.3.2 Inflation and the Shortcomings of the Standard Big Bang Theory

	1.4 Inflation and Cosmological Perturbations

	2 Cosmological Perturbations & Primordial Inhomogeneities
	2.1 Perturbations
	2.2 Gauges
	2.3 Gauge-Invariant Variables
	2.4 Dynamical Equations
	2.5 Hydro-Dynamical Perturbations
	2.5.1 Long-Wavelength Solutions
	2.5.2 Short-Wavelength Solutions

	2.6 Baryon-Radiation Plasma and Cold Dark Matter
	2.6.1 Long-Wavelength Solutions
	2.6.2 Short-Wavelength Solutions

	2.7 Origin of Primordial Inhomogeneities
	2.7.1 Perturbations
	2.7.2 Canonical Scalar Field
	2.7.3 Inflationary Gravitational Waves


	3 Cosmic Microwave Background Anisotropies
	3.1 Boltzmann Equation and Temperature Fluctuations
	3.2 Sachs-Wolfe Effect
	3.3 Temperature Correlation
	3.4 Other Effects
	3.4.1 Small-Scale Anisotropies
	3.4.2 Reionisation
	3.4.3 Gravitational Waves
	3.4.4 Polarisation


	4 Stochastic Cosmological Inflation
	4.1 Effective Equation of Motion
	4.2 Other Results

	5 Replica Field Theory
	5.1 Random Field Ising Model
	5.2 Elastic Systems
	5.3 Replica Trick
	5.4 Noise Distributions
	5.5 Variational Method
	5.5.1 Feynman-Jensen Inequality
	5.5.2 Long-Range Correlation
	5.5.3 Replica Symmetric Propagator


	6 Stochastic Inflation & Replica Field Theory
	6.1 Free Power Spectrum
	6.2 Effective Power Spectrum
	6.2.1 Long-Range Correlation
	6.2.2 Stochastic Inflation

	6.3 Filter Functions
	6.3.1 Modified Gaussian Fluctuations

	6.4 Self-Interactions
	6.5 Possible CMB effects

	Summary & Outlook
	Appendix: Replica Symmetry Breaking
	Bibliography

