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Abstract

Industrial part assembly has evolved significantly throughout the last decades. Together
with more elaborated methods of part assembly, automated visual inspection has been
refined as well and plays an important role in contemporary quality assurance efforts.
Nevertheless, one of the key issues in automated visual inspection, the exact localization
of objects under inspection, has so far seen little progress for the case of articulated
assemblies with more than two or three rigid parts. This thesis proposes a system for the
inspection of assemblies consisting of multiple rigid subparts. The system is envisioned
to be part of a highly automated industrial manufacturing environment. In an offline
stage, the system prepares models of rigid subparts and assemblies, given CAD data.
Online, the system uses a novel kernel particle filter to localize all assembly subparts that
are observed within images taken by a monocular camera.
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1 Introduction

Industry, n. (...) (Polit. Econ.) Human exertion of any kind employed
for the creation of value, and regarded by some as a species of capital or
wealth; (Webster’s 1913 Dictionary)

Industrial manufacturing has shaped our life. Take modern vehicles like cars, for in-
stance: We really appreciate their benefits, though our enthusiasm occasionally suffers a
bit when we’re stuck in a traffic jam. Nevertheless, one can hardly imagine a life without
cars anymore. So, within our everyday life we really depend on modern inventions and
all of us use them day by day but only few ask the question of how these creations come
into existence. This thesis takes part in asking the ”how” question. It is concerned with
taking the industrial assembly of complex products one step ahead, by devising a visual
inspection system that measures whether assemblies have been put together according to
given plans.

1.1 Automated Visual Inspection in the Context of
Quality Assurance

The industrial process of manufacturing has brought with it a number of problems. From
an engineering point of view, problems related to product quality are among the most
challenging ones. One may start by asking the simple question what quality really is. In
plain words, one has achieved high quality when it’s the customers returning to the shop
and not the merchandise. This indicates that quality correlates with properties people
generally desire, e.g. durability, maintainability or safety. However, a more exhaustive
specification of properties really depends on the item whose quality is being discussed
and the way it is perceived by its customers.

Once a definition of the term quality is at hand, one might ask how it can be guaranteed
that the production outcome is of the desired quality. This is where engineering problems
really start. Accordingly, many systematic approaches have been developed which are
known in the literature as approaches of quality management1. They generally affect a

1An extensive review of past and contemporary quality management strategies is given in [Bec98].
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1 Introduction

company or organization as a whole, from management down to the shop floor level.
However, within this thesis only a specific part of quality management activities will be
of concern: The ones collecting evidence that quality requirements have been met, i.e.
quality assurance procedures.

Traditional quality assurance relies on statistical quality control, in the following named
SQC. As the term ”statistical” indicates, SQC is based on selecting samples from pro-
duced items which are then inspected. Inspection is carried out at a few points along an
assembly line. Here, defective items are removed and eventually reworked. SQC suffers
from the problem that any erroneous operational unit might be far away from the next
point of inspection. As a consequence, it might be very difficult to hunt down and elimi-
nate the error source. What is more, sampling from produced items only rationalizes the
inspection task. Apart from rationalization it does not help to improve quality.

Contemporary quality assurance methods try to overcome the problems of SQC. An il-
lustrative example is the approach proposed by Shigeo Shingo [Shi86]. With regard to
terminology, he distinguishes between defects and errors. Defects are unacceptable de-
viations from quality requirements. They arise when errors are made within production
processes which are not corrected later on. His approach ultimately aims to prevent errors
from being made at all and thus to reach a defect-free production level. Shingo tries to
reach this goal by re-organizing inspection. By performing self-checks, i.e. by having an
operational unit inspect each item it has just worked on, errors might be discovered much
faster and the cause rapidly removed. Furthermore, the defect level can be improved by
employing source inspection. This means to inspect production conditions even before a
new step is carried out. Production is pursued only for the case of proper preconditions.
Otherwise, the underlying problem must first be removed before work is resumed. Both
types of proposed checks, self-checks and source inspection, make use of Poka-Yoke de-
vices. Poka-Yoke2 is the synonym for a mechanism that either prevents a mistake from
being made or else reveals it at a glance. In general, the term refers to mistake-proofing
quality assurance procedures.

Today, Poka-Yoke approaches are employed extensively. Instead of simply sorting out
produced items of bad quality, priority is now given to maintaining proper production
conditions. And in the same way that quality assurance changed, inspection activities
evolved, too. Traditional inspection equaled fault detection. Today, this task extends
to gathering and processing information about the whole production environment and
about the in- and output of operational units [BA83]. Consider for example an ignition
plug (outlined in red on the very left side of Fig. 1.1) and an operational unit at which
a worker is supposed to attach the plug to a connector (outlined in blue in Fig. 1.1).
Imagine further that at the beginning of a new work cycle, the worker is supposed to lay
out all parts needed for the next step in a special box. Inspection in this context could
mean to first detect whether the special box is initially empty - if it is not, the worker
2The term Poka-Yoke can be directly translated to ”Defect=0”.
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1.1 Automated Visual Inspection in the Context of Quality Assurance

Figure 1.1: Industrial and toy assemblies. From left to right: Ignition plug (red) and connector
(blue), Car engine with oil cap (highlighted in red), Toy screw and block, Toy plane.
Two leftmost pictures courtesy of DaimlerChrysler AG

might have forgotten to attach the remaining parts during the last work cycle. Inspection
could further include localizing the connector in order to verify that it is in the right place
before the worker starts attaching the ignition plug. Finally, inspection could mean to
localize the plug and the connector and to classify whether they have been put together
satisfactorily.

The ignition plug example illustrates three common subtasks of inspection: Part detec-
tion, localization, and classification. Usually they are carried out by performing manual
visual inspection which means to employ human operators and to rely on their ordinary
vision. However, since visual inspection is a highly repetitive task it tends to exhaust
humans quite fast which might in turn fail to recognize faults. Manufacturers conse-
quently put great effort into automating visual inspection and much progress has been
achieved for a variety of cases. For instance, automated systems can reliably inspect as-
semblies composed from two or three rigid parts (cf. Chap. 2). The ignition plug or the
screw-block assembly shown in Fig. 1.1 are good examples of this simple assembly type.
Nevertheless, much needs to be done with respect to assemblies composed from more
than two or three parts which will be addressed by this thesis. Figure 1.1 shows examples
of this more complex type of assembly, too.

Automated visual inspection, to which this thesis contributes, is a very promising and
active field of research. Progress in this area, in combination with advances in manage-
ment, might help to increase the overall product quality of industrial manufacturing. A
very good example of the huge potential that remains to be tapped with respect to product
quality is provided, again, by the automotive industry: In its annual report for 2005, the
German Kraftfahrt-Bundesamt reports that about 1.4 million cars were recalled in Ger-
many for fixing minor to critical safety problems [Imm05]. The report gives no estimate
of the cost incurred by recalls but one might easily imagine that reworking cars isn’t
cheap. Hence, statistics like these stress the importance of rigorous quality management
and assurance efforts to which this thesis contributes.
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1 Introduction

1.2 Scope and Contribution of this Thesis

This thesis proposes a system for assembly inspection from computer vision. A first
overview of its architecture is illustrated in figure 1.2. The proposed system consists of
two main parts which are related to the design phase and the manufacturing phase of in-
dustrial production cycles. Within the design phase, Computer-Aided Design (CAD) and
Computer-Aided Engineering (CAE) techniques generate construction plans and proto-
typical realizations of new assemblies. The results are used to establish steady production
processes during the manufacturing phase. The two distinct parts of the proposed system
are designed to be integrated into the two production phases. During the design phase, the
system learns from construction plans what a proper assembly is. The design informa-
tion thus serves as a reference for later quality measurements. Within the manufacturing
phase, the system uses the gathered knowledge in order to localize assemblies from ima-
ges that are presented to it. Afterwards, a classification module is envisioned to decide
whether the set of localized parts is complete and was assembled correctly. It is impor-
tant to note, however, that the prototypical realization of the proposed system currently
doesn’t include a classification module. If, at any time, some parts of inspected assem-
blies change in shape or in the way they are put together, the system can be adapted to
updated design plans. Concerning the sensors used for assembly inspection, the system
processes images taken from industrial monocular CCD cameras which have the major
advantage of being cheap and standardized and thus easy to replace in case of malfunc-
tioning hardware.

Figure 1.2: Architectural overview of the proposed automated visual inspection system

The scope of this thesis covers the techniques that were developed and implemented in
order to extract part and assembly representations, in the following named part models
and assembly models, from design phase information. In scope are further all methods
developed and implemented for the localization of assembly parts from single images.
Furthermore, the topic of classification is addressed in order to describe, how the in-
formation obtained from the localization module can be employed for the purpose of

4



1.3 Organization of this Thesis

classification. Considerations concerning viewpoint and illumination planning are re-
stricted to the discussion of related work in Chap. 2.3 because both fields have already
been extensively covered in recent publications.

Past work in the field of automated visual inspection has usually examined some aspects
of either the detection, localization or classification of single rigid objects. The major
contribution of this thesis is a new system which covers the full process of localization
of assemblies composed from multiple rigid parts. Its design phase module employs
a versatile model feature extraction stage that automatically generates part models from
CAD descriptions. This thesis contributes a model feature optimization stage that extends
the automatic model feature extraction by filtering out all features that don’t contribute
to solving the assembly pose localization task. The optimized part models can then be
combined to powerful assembly models which efficiently and accurately represent fea-
ture visibility under perspective occlusion. For the assembly localization, a novel kernel
particle filter (KPF) is developed. A KPF is a recent approach for recursive Bayesian
Filtering that was introduced by Chang & Ansari [CA03] and Schmidt et al. [SKF06]
for the purpose of visual tracking. This thesis extends kernel particle filtering such that it
can be used for assembly pose localization from single monocular images. The proposed
system will be thoroughly evaluated with regard to localization accuracy and precision
and shown to be competitive to state-of-the-art systems that have been designed to deal
with objects composed from up to three rigid parts.

1.3 Organization of this Thesis

This thesis is organized in the following way: The next chapter explains inspection sub-
tasks in more detail. Afterwards, the related work on all issues that are identified as
relevant in the context of this thesis is reviewed. It is illustrated, too, what state-of-the-art
inspection systems are currently capable of. The strengths of these systems are analyzed
together with their shortcomings. In Chap. 3, it is shown how part models can be gene-
rated automatically from design phase data. It is further detailed how part models can be
optimized with respect to storage and put together to form assembly models. The next
chapter then provides an overview of the system part responsible for assembly inspection
subtasks. Here it is described in detail how the new KPF is designed and in which respect
it goes beyond previous work. Furthermore, concepts for the classification of assembly
pose integrity and part completeness are presented. Subsequently, the overall system
performance in terms of measurement accuracy and precision is evaluated in Chap. 5.
The results are compared to state-of-the-art systems. Finally, a summary of the achieved
results and an outlook to future work conclude this thesis.
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2 Related work on Automated Visual In-
spection

The first chapter presented the general context of automated visual inspection in manu-
facturing. It explained why this topic is an important and active field of research. It
further provided an outline of the assembly inspection system that will be presented and
defined the major contribution of this thesis. However, except for some general exam-
ples, the task of automated visual inspection has not been clearly described so far and
the term ”assembly” is still undefined, too. Assemblies are characterized in the following
and inspection tasks are specified in more detail. Afterwards, it is explained which of
the presented tasks and topics are of high relevance within the context of this thesis. The
literature on relevant issues is then reviewed.

According to the literature, there are at least three important characteristics of assemblies.
On a most general level, they are identified as man-made objects, e.g. by Bauckhage
[Bau02, p.11], with typical examples such as tools, furniture or vehicles. Bauckhage
also refers to a second important characteristic by observing that all these examples have
been created with an inherent utility or purpose anticipated by their human designers. The
notion of purpose sets assemblies apart from arbitrary pieces of work. It thus provides
a means to distinguish complete from partial assemblies (the latter have not been put
together far enough to fullfill a specific task). A third important aspect of assemblies that
is apparent from the literature is their composition from parts [RW91, RP96]. Parts might
be decomposable into subparts but only to a certain limit: Decomposition reaches a level
where parts are atomic such that further division would yield irreversible destruction.
This categorization can be simplified by regarding all parts as rigid or solid objects, as
it is modeled by Requicha & Whalen [RW91]. Hence, for the remainder of this thesis
we identify parts as rigid or solid and use the terms ”part”, ”rigid part”, and ”solid part”
interchangeably.

In this thesis, assemblies are defined in the restricted sense of articulated objects as pro-
posed by Hauck & Stöffler [HLZ97] or Byne & Anderson [BA98], i.e. objects composed
from rigid parts that are connected by joints introducing internal degrees of freedom
(DOF). A major motivation for this choice is the fact that only few computer vision sys-
tems have so far addressed visual inspection of articulated objects. Furthermore, inspect-
ing assemblies in general would have meant to consider parts with a higher flexibility
than the DOF defined by joints. Unfortunately, localization of flexible parts has so far
been accomplished only for specific subtypes. For example, Ellenrieder [Ell05] recently

7



2 Related work on Automated Visual Inspection

developed an approach for the inspection of near-arbitrary flexible objects like cables and
tubes of a car engine. His approach could principally be incorporated to the inspection
system proposed by this thesis. However, in order to keep the complexity of the task at
hand from growing further, we decided that such an undertaking is more promising in the
context of future work.

Automated visual inspection of assemblies can be broadly divided into six subtasks which
are illustrated in Fig. 2.1. The figure shows that the subtasks can be grouped into two de-
pendency levels. The subtasks of the upper level are known from the computer vision
literature as object detection, recognition, localization, and classification. The figure vi-
sualizes that these four tasks depend strongly on the tasks of the lower level, namely
model preparation and inspection planning. Regarding the upper level tasks, Object de-
tection is concerned with deciding whether something important is present in an image1.
It is typically employed early within a computer vision system as a means to focus the
system’s attention on important events. Object detection stages thus help to avoid wast-
ing computational power, e.g. by filtering out irrelevant images or image regions. Object
recognition aims to determine what objects can be seen in an image and is sometimes
also termed object identification. A large body of work in the literature is dedicated to
this task and the complementary problem of how to learn to recognize new objects. The
task is further strongly related to determining the position and orientation of objects, i.e.
the task of object localization. The latter is often also termed pose estimation. As will be
shown later in this chapter, published techniques mostly understand objects to mean rigid
parts that do not possess any internal variability. However, some work also addresses
assemblies. The task of classification in the context of visual inspection is related to
distinguishing unwanted items from nominal ones. It subsumes a variety of activities
such as the testing of shape and dimensional accuracy, surface inspection, or checks of
completeness and integrity.

As illustrated in Fig. 2.1, the performance of object detection, recognition, localization,
and classification techniques depends strongly model preparation, i.e. on the generation
of appropriate object representations within a computer vision system. On the lowest sys-
tem level, objects are often explicitly described by models consisting of sets of features2.
Regarding this term Ji & Marefat [JM97, p.266] note that ”there is no universally ac-
cepted definition of features. In fact, this has been one of the difficulties researchers have
faced in this area”. The difficulty remains. In this thesis, we follow their suggestion and
understand features as characteristic topological entities that together can be used to un-
ambiguously represent an object within a certain domain and application. The definition
must obviously be refined in order to really implement a computer vision system. For ex-
ample, it must be specified from which source of information features will be taken. One
1Due to the computer vision context, this thesis only considers signals acquired by cameras. In general,
any kind of computer readable signal obtained from some sensor could be used.
2The system presented in this thesis relies on explicit object knowledge. Consequently, approaches that
encode objects implicitly will not be discussed in the following.

8



Automated Visual Inspection

Object Detection Object Recognition Localization Classification

Model Preparation Inspection Planning

Figure 2.1: A coarse overview of automated visual inspection subtasks. Only the topics high-
lighted in blue are addressed in this chapter

must further describe how a system can extract features from the information presented
to it. Especially in manufacturing environments, automatic feature extraction techniques
are preferred to manual solutions. Once a certain feature set has been determined it is
further necessary to specify how features are grouped to part and assembly models. All
these topics will be dealt with in the following two sections. Finally, robust visual in-
spection depends on the selection of appropriate observation viewpoints and illumination
conditions. Techniques that address this issue are known from the literature as methods
of inspection planning and are discussed in this chapter, too.

Object detection, recognition, localization, and classification are carried out every time
a new sensor measurement is available. In contrast to this, feature extraction, assembly
modeling, and inspection planning results generally do not have to be updated whenever
new observations arrive. They can thus be computed in advance which increases the per-
formance of the remaining tasks. Consequently, precalculatable activities are categorized
in the following as offline tasks while object detection, recognition, localization, and clas-
sification will be referred to as online tasks. The following sections provide a systematic
review of work related to offline and online tasks. Regarding online activities, the in-
troduction already declared that only localization and classification will be considered.
The reason for this specialization is that the design of the proposed system is based on
two assumptions: First, it is assumed that the system processes only images that contain
assemblies. Second, it is assumed that the observed assemblies are known in advance.
Based on the first assumption, the proposed system does not provide any object detection
capabilities. These are considered unnecessary because within the target manufacturing
environment detection tasks are usually solved by employing simple and robust devices
such as photoelectric relays. Based on the second assumption, the proposed system does
not address object recognition issues either. The assumption is reasonable in any envi-
ronment where assemblies are presented to a camera in a highly controlled manner, e.g.
with robot manipulators. In summary, ”Automated Visual Inspection” within the title of
this thesis refers to the localization and classification of assemblies from monocular ima-
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2 Related work on Automated Visual Inspection

ges. Classification in this context means checks for part completeness and configuration
integrity. Other classification activities like surface inspection are omitted in the follow-
ing because they are typically carried out before parts are assembled to more complex
objects.

2.1 Part Model Features

In order to give an overview of features that might be used for an assembly inspection
system, this section initially presents a variety of features that have been successfully
used to accomplish a diverse range of computer vision tasks. It also presents some past
work on modeling feature visibility. When inspecting multi-part assemblies, feature visi-
bility is an important topic because individual assembly parts very often occlude each
other. Finally, this section considers how recent computer vision systems have acquired
part models.

In order to discuss features in detail, two important categorizations are introduced in the
following. The first concerns the scope which can either be global or local. Global fea-
tures arise from objects as a whole. Due to their dependence on entire objects, most
global features are sensitive to object occlusion or the presence of clutter in image obser-
vations. In contrast to this, local features only represent small object parts and thus can
usually be determined more robustly. However, they are less distinctive, too. The second
common categorization refers to the space in which features occur. It distinguishes image
features, which arise from image observations of objects, from model features. The latter
stem from object knowledge such as CAD data and are matched to image features in the
course of computer vision procedures.

2.1.1 Prominent Features

There have been so many different features employed in computer vision systems that
it would exceed the limits of this thesis by far to survey them all, even if such a survey
was restricted to object localization. We therefore present only a few that have been very
prominent in performing tasks like object localization or recognition.

A frequently used feature is color (for a detailed discussion see Luong [Luo93]): In
Wixson & Ballard [WB89] as well as in Swain & Ballard [SB90], color histograms are
used as global features for object recognition. Arnarson and Ásmundsson employ color
blobs as local image features to detect bloodspots on fish. Socher [Soc97] presents the
vision component of an integrated speech and image understanding system. In terms
of low-level activities it performs region segmentation with a polynomial classifier that
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2.1 Part Model Features

transforms pixel color values to a set of 11 color labels. Regions of equal color labels
then serve as local image features for more sophisticated object identification. In the
context of these and many more applications color has been a valuable cue. However, it
is not very robust to illumination changes.

Prototypes of holistic entities, termed templates, have successfully been used as features,
too. Kölzow [Köl02] extracts templates that represent edge junctions and corners from
CAD data and uses them as local features for object recognition, localization, and track-
ing. In [KMTB94], multiple ray-traced images of gearboxes are generated from CAD
models. Each image shows a gearbox configured within a range of acceptable variations.
The images are used to extract templates that encode the mean pixel intensities and inten-
sity variations of small image regions containing assembly subparts. They are matched
to real images by a multi-resolution template matching scheme. Generally, templates
are reliable features as long as the represented entities do not undergo rotations within
observation measurements.

A local feature that has been employed for decades in a variety of ways are edges
[Shi78, Bro83, DPR92, Ros03]. As the system proposed in this thesis is mainly based
on edge features, too, they are discussed in the following in some more detail. Towards
the reasons for the sustained usage, Yang et al. [YMK94] note that edges are rather
easy to measure from images in comparison to other model features such as slots, holes
or pockets. For this task a number of edge detectors such as [Can86] and [SB97] have
been developed. They exploit the fact that surface or reflective discontinuities often yield
abrupt changes in measured image pixel intensities. The respective detectors have been
used successfully in many computer vision systems. For instance, in the 3DPO system
of Horaud & Bolles [HB86], rigid objects that are jumbled together in a pile are recog-
nized and localized from range images by matching range image edges to mixtures of 3D
circular and straight model edges. The ACRONYM system from Brooks et al. [Bro83]
creates scene descriptions by using parametric models built from generalized cone fea-
tures. They are matched to ribbons which are specific groups of image edge segments.
Another well known example is the SCERPO system presented by Lowe [Low87] that
localizes rigid objects, e.g. disposable razors, by matching 3D model lines to 2D straight
image edge segments.

Unlike many prior systems, SCERPO predicts self-occlusion of model edges: Given an
hypothetical object pose relative to the camera, only those model edges that would be
visible from the respective viewpoint are matched to image edge segments. Each model
edge is associated with a unit vector set representing hemispheres from which the edge
can be seen. This approach is quite approximate but even simpler ones exist. A common
heuristic, e.g. reported by Chen & Li [CL02], is based on the dot-product of a feature’s
surface normal and the proposed viewing direction. The feature is assumed visible for
negative dot-products.

Recently, an accurate and efficient approach that models the visibility of geometrical fea-
tures such as edges has been presented by Ellenrieder et al. [EKSH05]. Given a feature
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reference point on the surface of an object, a unit sphere is centered on the reference point.
All object surfaces are projected onto the sphere. Afterwards, the sphere is rastered at
discrete azimuth and elevation angles. Note that each raster position represents a unique
view direction upon the object’s reference point. If any surface has been projected to
a specific raster position, a true-value is entered into a Boolean matrix, which denotes
that the reference point is occluded under the associated view direction. If a surface has
been projected to the reverse view direction, the reference point is not on the object’s
contour which also yields a true-entry into the Boolean matrix. Consequently, entries
of false-value are recorded whenever no surfaces have been projected to the considered
raster positions on the unit sphere. The resulting Boolean matrix is called visibility map
because it accurately encodes the visibility of the reference feature point. Visibility maps
usually contain rather large connected regions of the same visibility status and thus can
be compressed quite well by run-length encoding which yields a memory efficient repre-
sentation.

Edges are versatile features but have the drawback that surface or reflective discontinu-
ities do not always appear as intensity gradients in images, depending on the illumination
type and position within a scene. Olsen & Huttenlocher [OH97] alleviate this problem
by restricting themselves to contour edges, i.e. edges which form an object’s silhouette
against arbitrary backgrounds. They are more robust to illumination changes but they
might still be affected by shadows. Interestingly, in any 2D view of a 3D polyhedral mo-
del the number of contour edges is usually much smaller than the total number of edges.
For polyhedral models with n edges, Kettner & Welzl [KW97] provide empirical evi-
dence that 2D views typically contain contour edges in the order of O(

√
n). In summary,

contour edges are versatile features because they are comparatively robust to changes in
illumination and yield efficient object representations. It is because of these two advan-
tages that the system proposed by this thesis uses contour edges as primary local model
features. Optionally, colored regions can be used as additional local model features.

2.1.2 Automatic Model Feature Acquisition

Once an appropriate feature set is chosen an inspection system must, by means of a fea-
ture extraction stage, acquire features that can later be grouped to object models. In
highly automated manufacturing environments this task should preferably be automated
as well. However, many computer vision systems rely on a manually guided model fea-
ture acquisition. This is true in particular for all the systems we have presented so far,
except for the one introduced by Khawaja et al. [KMTB94]. It must be noted that fea-
ture extraction generally is a quite demanding task. For example, object models based
on image features must be trained from test images (e.g. in [WB89, KMTB94, OH97]).
The generation of test images is time consuming because it typically involves observ-
ing the same physical object from many different views and under varying illumination
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conditions. Additionally, test images often undergo preprocessing operations like region
segmentation. The results must then be carefully monitored in order to guarantee high
quality training data. All this effort easily amounts to long training sessions which are un-
favorable in manufacturing environments. Many feature extraction procedures therefore
generate model features from CAD data. The latter are usually a byproduct of general
product design workflows. In such a case, feature extraction can proceed immediately,
given that the input data has the correct format. From our own painful experience we
have to note, though, that CAD data conversion can corrupt model data, e.g. by intro-
ducing cracks or reversing surface normals. CAD data conversion is less time consuming
than test image generation but unfortunately not as mature as the tool providers like to
advertise.

Ji & Marefat [JM97] survey approaches for the machine interpretation of CAD data in
manufacturing applications. They classify CAD model based feature extraction algo-
rithms into five different categories: syntactic pattern recognition, graph-based, rule-
based, volumetric methods, and evidence-based reasoning. Syntactic pattern recognition
approaches as in [Jak82, Li96] have been applied together with extended context-free or
regular right part grammars. The grammar rules generate part descriptions from geomet-
ric primitives such as line or curve segments. The rules usually couple these primitives
with sweeping or revolution operators. This allows to describe 3D parts from 2D cross-
sections. Given a sequence of primitives that describes a part and its generating gram-
mar, parsers can extract features like holes, depressions or protrusions. Graph-based
approaches as in [JC88, HCG90] work on graphs that reflect part topologies. Typically,
the nodes and links of a graph correspond to edges and faces of a part’s boundary re-
presentation which models objects by hierarchically storing their boundaries in terms of
faces, edges, and vertices. The graph is then searched for isomorphic subgraphs that
represent features like cavities or protrusions. Because searching for subgraph isomor-
phism is NP complete, heuristics are often used to initially divide the graph into small
components that could contain features. In the rule based approaches of Henderson
[Hen84] or Dong & Wozny [DW88], inference rules encode knowledge about geometri-
cal and topological feature characteristics. An inference mechanism applies the rules to
model data, employing forward chaining, backward chaining or opportunistic rule firing.
Volumetric strategies, e.g. presented by Woo [Woo82], extract features from solid mo-
dels. They systematically decompose the volume of a part into smaller volumes in order
to characterize the material that must be taken away from a raw stock in order to produce
a part. Evidence-based reasoning feature extraction proceeds in two stages. At first, fea-
ture hypotheses are generated through pattern recognition techniques. The second stage
verifies features based on additional constraints. For example, Hanheide [Han01] uses
scoring functions that assign weights to the edges of a boundary representation of a rigid
3D part. The scoring functions rate local edge properties like the convexity of adjoining
surface patches or the angle between their surface normals. The subsequent feature veri-
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fication removes edges with too little weight. It can restrict features further, e.g. to those
edges that meet with others in specific corners.

The system reported in this thesis is based on Hanheide’s work because his scoring func-
tions are favorably simple compared to the heuristics or rules needed by alternative ap-
proaches. The approach is extended in various ways, e.g. with the visibility map concept
of Ellenrieder et al. [EKSH05] which was sketched above. This unique combination
amounts to an automated determination of contour edges for single parts. The whole
model preparation stage is detailed in Chap. 3.2.

2.2 Rigid Part and Assembly Representation

Now that we have learned how objects can be characterized by features, the next question
is how features can be organized to model assemblies and their parts. This question is
answered in the following by presenting relevant work in the context of object recognition
and localization tasks.

A good starting point for systematic considerations is the envisioned model purpose. Ac-
cording to the widely recognized book on object recognition by Grimson et al. [GLPH90,
p.8], part and assembly models must facilitate a process that matches model to image fea-
tures in an attempt to obtain feasible observation data interpretations. Pope [Pop94, p.4]
presents some criteria that such models should meet: First, assembly and part models
must provide an appropriate scope and sensitivity, i.e. they must describe all relevant
shape characteristics and preserve object distinctions. Second, the representation should
be unique such that only identical physical objects will have an identical model repre-
sentation. Third, the models should be stable which means that small shape changes
yield small changes in description. Finally, the chosen representation must provide data
structures that support an efficient feature access.

Many different model representations have been proposed in the past but none satisfies
the above requirements exclusively better than the others. By looking at the choice of co-
ordinate system for the localization of model features most representations can be catego-
rized as either object-centered or viewer-centered. Both types are illustrated in Fig. 2.2.
Object-centered approaches attach a single local coordinate system to each rigid object or
part of a represented assembly [Low89, BM98]. The coordinate system affixed to a part
is used to localize all model features belonging to that specific part. Physical relation-
ships between parts such as parts that move with respect to each other are then efficiently
encoded by specifying the possible transformations between the respective coordinate
systems. On the other hand, viewer-centered approaches represent objects with a number
of different views [AKSA05, MN95]. Each view encodes object appearance from a cer-
tain perspective and slight variations to it. Therefore such approaches are also referred to
as appearance-based representations.
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Object−centered
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Appearance−based
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Screw−Block Assembly
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Block c.s.
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Figure 2.2: An exemplary assembly in object-centered representation (with individual screw and
block models and coordinate systems) and viewer-centered representation (with N
different views)

Especially for the task of object recognition, viewer-centered approaches have received
much attention recently (the well-known object recognition via SIFT features proposed
by Lowe [Low04] is a popular example). Peters [Pet03, p.12] even cites various articles
of biological and psychological vision research in order to support the claim that ”there
are uncountable behavioral studies with primates that support the model of a view-based
description of three-dimensional objects by our visual system”. And they undoubtedly
offer a number of advantages. For instance, each view automatically accounts for object
regions that are hidden from the viewer. Furthermore, views can be compared to images
in 2D which greatly supports fast computations. However, in order to capture appearance
information accurately even simple objects like rigid parts often require many views. For
multi-part assemblies the number of views grows excessively with an increasing number
of internal DOF. Because object-centered approaches, on the contrary, are much more
compact in terms of required storage and can be designed to account for occlusion, too,
they were chosen for the system presented in this thesis. Finally, it must be noted that
hybrid approaches exist that combine object-centered models with view-like appearance
information [HS96, BA98]. However, they have not been investigated in the context of
this thesis because the training effort involved in maintaining appearance information
was considered very high and the expected performance increase neglectable.

A thorough survey of assembly representations has been carried out by Bauckhage
[Bau02] in the context of Collaborative Research Center 360 (SFB 360) activities at
Bielefeld University. His considerations emerged from a scenario that studied ad-
vanced human-computer interaction in the field of cooperative assembly of toy airplanes
[BFF+06] (quite similar to the toy airplanes appearing as example assemblies within this
thesis). The survey proposes the level of abstraction as another important dimension
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Figure 2.3: Three subtypes of object-centered geometric models. a) Pure part model. b) Param-
eterized model with translation and size parameter. c) Constrained model with 1)
constant distance constraint, 2) co-linearity constraint and 3) parallel constraint

along which assembly representations can be categorized. Geometric models have a very
low level of abstraction [RP96]. They are typically constructed with the help of CAD
software and aim at accurately modeling the spatial position, orientation and shape of
assembly parts. Structural models are placed on a higher level of abstraction [dMS90].
Instead of representing geometric details they denote semantic, topological or functional
dependencies such as contact relations or forces between assembly parts. Bauckhage
refers to syntactic models as the most compact form of structural assembly knowledge
which is represented as grammars. He further shows that such grammars facilitate generic
assembly detection. However, as the detection step is not part of the considerations of
this thesis, syntactic models will not be considered further. In this thesis, the chosen re-
presentation is essentially geometric in order to convey a high amount of spatial shape
information which is essential for a fine-grained pose estimation. Nevertheless, it is also
attributed with structural information that encodes hierarchical dependencies and the pos-
sible motion of parts relative to each other.

Summing it up, we have learned so far that the system proposed by this thesis employs an
object-centered geometric assembly representation. Let us now take a closer look at the
literature reported on just this kind of representation. Three different types are apparent,
namely pure part, parameterized, and constrained models. They are illustrated in Fig. 2.3.

Pure part models represent assemblies as a plain set of parts. No further information
than individual part description is registered. Accordingly, part localization proceeds for
each part individually, i.e. without accounting for any previously found parts. Models of
this type have been used in early computer vision systems such as [Shi75, Per78, Goa86]
where they were successfully employed for the pose estimation of rigid parts. How-
ever, with respect to the initially introduced representation requirements they fail to pro-
vide an appropriate scope for assembly models because they don’t supply information
on spatial dependencies between parts. In contrast to this, parameterized models con-

16



2.3 Inspection Planning

sist of features, the description of geometric relations between them, and free variables
that parameterize different shape aspects. Such models were for example employed in
[Bro81, Low89, KDN93]. The free variables model the internal DOF of the represented
objects. A common problem of parameterized models is that they are difficult to gene-
rate automatically for it is unclear without further knowledge how the free parameters
are selected that capture the dependencies between parts. A more general type of repre-
sentation is offered by constrained models which were introduced by Hel-Or & Werman
in [HOW96]. The constrained model of an assembly consists of a set of features per
part, matrices representing the transformations from local part coordinate systems to the
camera coordinate system and a collection of constraints that is given as a set of equality
and inequality equations. The constraints reflect e.g. the co-linearity of part or feature
locations and rotational or translational relationships between parts.

The assembly representation in this thesis is closely related to constrained models. How-
ever, Hel-Or & Werman propose the use of ”hard” constraints that model how assemblies
must be configured. But in an inspection scenario many spatial relationships might only
hold for correctly assembled artifacts. Accordingly, ”soft” constraints are desireable that
are able to cope with misplaced parts. The latter define how parts can be configured in
terms of physically possible or likely variations. Thus, the representation proposed in
this thesis models physically feasible ranges of part locations and orientations. Instead of
equality and inequality equations, the range information is encoded in a tree-like struc-
ture supporting efficient sampling from feasible part locations which is important for the
kernel particle filter employed for pose estimation.

2.3 Inspection Planning

The placement of camera sensors and light sources is crucial to reliably estimate assem-
bly poses and determine fault configurations. Badly placed cameras might miss important
assembly parts and might capture some observed regions out of focus. Badly placed light
sources almost always incur shadows or reflections that might distract vision algorithms.
But even if it is known where cameras and light sources should be placed, the manu-
facturing environment itself sometimes prohibits a certain setup. Inspection planning
activities aim to counteract problems like these. Because they have been studied exten-
sively in the past, this thesis will not investigate them further. However, in order to give
a thorough overview of visual inspection in the literature some important references are
given in the following.

Among the first systems that not only considered the placement of cameras but also aimed
at modeling the lighting conditions was the one reported by Cowan & Bergman [CB89].
Given polygonal CAD models of the inspected objects with explicitly marked flat tar-
get surfaces, their system first determines boundaries of 3D regions in which the place-
ment of a camera satisfies a number of constraints. The constraints express requirements
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regarding minimum spatial resolution, field of view limitations, depth of field ranges,
and target surface visibility. A second stage automatically chooses a suitable aperture.
Concerning the placement of lights, the authors only model one point light source. Fur-
thermore, object surfaces only show pure Lambertian reflection plus a specular lobe. The
light source is placed such that no specular reflection is turned to the camera sensor.
The light placement technique was later enhanced by Cowan in [Cow91]. The proposed
technique tries to position a light source such that the contrast between target surfaces is
maximized. The envisioned purpose of this approach is to support edge detection opera-
tions.

Yang et al. [YMK94] created an inspection planning system that puts remarkable ef-
fort in automatically determining target features for inspection planning. They propose
a unique representation that encodes objects in a boundary representation enriched with
geometric and part knowledge. The latter describes semantic features (e.g. slots and
holes) and possible feature interactions (e.g. intersection). The proposed knowledge re-
presentation further provides inspection planning information like the camera model. The
authors use a geometric reasoning component to infer topological entities such as edges
that should be extracted from images in order to measure their dimensional attributes. A
sensor planning module then employs linear programming to search for camera sensor ar-
rangements that are optimal in terms of target feature visibility and minimum path-length
between sensor positions. Field of depth, spatial resolution or aperture requirements are
not considered, neither do the authors model lighting.

The above mentioned systems have provided important advances in the field of inspection
planning. However, their shortcomings have rendered them unsuitable for real manufac-
turing environments. The first system designed to explicitly meet the requirements of
such environments has recently been put forward by Ellenrieder [Ell05]. Besides offer-
ing a detailed survey on state-of-the-art inspection planning, the author describes a new
system that proceeds in four steps. Each step aims at optimally solving a specific sub-
problem of the high-dimensional planning problem. First, an assignment phase is used
to assign target feature areas to observing perspective pinhole-cameras. The author des-
cribes a method that numerically minimizes the number of cameras while accounting
for maximum feature area visibility. The method is compared to the performance of a
brute force solution. Second, a definition phase enforces constraints regarding spatial
resolution, focus, field of view, viewing angle, visibility, and many other inspection task
requirements that are all modeled as convex scalar functions. Third, a viewpoint optimi-
zation stage employs a simplex approach to find the six-dimensional external parameters
of each camera that was assigned within the assignment phase. Finally, an illumination
planning phase optimizes internal camera parameters and illumination device positions
according to criteria that are expressed as (quasi)-convex cost functions. Internal camera
parameters include shutter-time, aperture, and focus setting. Surface reflection is mo-
deled for Lambertian and Non-Lambertian materials. The whole system is successfully
evaluated on synthetic and real inspection tasks.
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Figure 2.4: A coarse overview of the topics and concepts that are discussed in Chap. 2.4

Regarding the inspection of assemblies, Ellenrieder’s system does not explicitly account
for the internal degrees of freedom of articulated objects. However, extending the feature
area concept used by the system to make use of knowledge on articulated objects might
be a straight forward task. Interestingly, loose flexible objects like tubes or cables are
already treated by the system. The author reports that the system is being introduced in
real factory setup.

2.4 Object Localization

The last three sections have considered tasks that are, at least from the perspective of
this thesis, essentially offline tasks: Extracting model features, composing them to part
and assembly models and devising inspection plans are activities that this thesis proposes
to be precomputed. This section deals with recent work on the most important online
task of the suggested system, namely object localization. It proceeds by first outlining
the origins of pose estimation approaches in the literature. After characterizing different
categories and judging their relevance for this thesis, past work on the most important
category of pose estimation techniques is surveyed in more detail. An outlook of the key
topics of this section is provided in Fig. 2.4.

The determination of an object’s pose from image measurements is a well studied prob-
lem, e.g. in the research fields of photogrammetry, robotics, and computer vision. In this
thesis, the term pose denotes a set of parameters specifying a rotation and translation with
respect to a reference coordinate system that bring a given object model into best accor-
dance with observation measurements. In the photogrammetry literature the pose estima-
tion problem is also termed exterior orientation problem. Work in this field dates back
to the second half of the 19th century (nearly 80 classical manual solutions have been
surveyed in the work of Szczepanski [Szc58]). Contributions from computer vision have
obviously been published much later. First proposals like the one of Roberts [Rob65]
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were put forward in the 1960s. However, according to Haralick & Joo [HJ88], the first re-
ally robust approach to computer vision based pose estimation was the RANSAC method
of Fischler & Bolles [FB81] from 1981.

The literature on computer vision pose estimation techniques can be categorized accor-
ding to the dimensionality of the measurement and model data, as it is done by Chen
[Che91]. The resulting categories are 2D-2D, 2D-3D, and 3D-3D approaches. 2D-2D
methods use two-dimensional image measurements to localize two-dimensional models.
They are considered irrelevant here because manufacturing models and their model space
are three-dimensional. 3D-3D techniques rely on three-dimensional image data to loca-
lize three-dimensional models. Except for one well known example (the 3DPO system
that was briefly introduced in Chap. 2.1) these approaches are not discussed here be-
cause 2D imaging is considered a more desirable foundation for pose localization than
3D imaging. One reason for this is that hardware like an industry-standard CCD camera
is much cheaper than accurate 3D imaging devices. Furthermore, a single CCD camera is
comparatively easy to set up and calibrate which implies low setup cost. Another appeal-
ing fact is that the physical space requirements of a single CCD camera are comparatively
small. Consequently, 2D-3D approaches which estimate the pose of three-dimensional
object models from two-dimensional image data are of major interest in the following.
However, because the number of proposed systems is so large, surveying them all would
by far exceed appropriate size limitations of this thesis. We will therefore only report sys-
tems that have either proposed ideas also used by our system or that illustrate frequently
used techniques. For a detailed survey on object localization from computer vision until
the mid 1990s refer to Goddard [God97]. A fine-grained survey of more recent methods
is provided by Rosenhahn [Ros03].

2.4.1 Interpretation Trees

The separation of pose estimation activities into offline precomputations and an online
part is a frequently used strategy to increase a given system’s online performance and
is also used by the system proposed in this thesis. It was first introduced by Goad in
[Goa83]. Goad’s system relies on matching straight image edges to model lines and
proceeds by using search trees, also called interpretation trees, in a predict-observe-
back-project loop: Given a candidate image edge, the system predicts possible camera
positions and orientations from which a virtual camera might be looking at a specific
matching model edge. Given this prediction, other model edges are back-projected to
the image and compared to the measured image edges. Each matching edge reduces the
considered range of camera viewpoints and lets the search step down one level within
the search tree. The search terminates once a certain depth in the tree is reached, i.e.
a minimal number of edges have been matched. Mismatches aid in pruning the search
tree. The method is successfully tested on real images but has three major limitations.
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First, the distance between the camera and the object must be accurately known, reducing
the dimensionality of the pose estimation problem to 5 DOF. Second, internal visibility
assumptions of the algorithm require a camera with rather small field of view. Third, it
only facilitates the localization of single rigid models.

Pose localization based on interpretation trees has been used quite frequently. The PRE-
MIO system of Camps et al. [CSH91] uses a Branch-and-Bound algorithm to improve the
tree search when localizing single rigid objects. The 3DPO system [BHH83] combines a
model-directed tree search similar to that of Goad with a low-level data-driven analysis
that locates edges and groups them to circular arcs and straight lines. By evaluating focus
features first, i.e. model features that are expected to be of strong visual salience, the
average search time is reduced considerably. The method works with rigid objects, only,
which can be jumbled together in a pile. Hauck et al. [HLZ97] use search trees to localize
articulated objects from video images. Articulated objects are also modeled in tree-like
structures which are known as kinematic trees. Their nodes represent rigid parts while
information about part-connecting joints or about the pose of two parts relative to each
other is attached to respective edges. Kinematic trees offer a compact representation of
motion dependencies between parts connected by joints that is used by many computer
graphics modeling tools and also by the system proposed in this thesis. However, the
approach of Hauck et al. has a severe limitation which renders it inappropriate for the
inspection scenario considered in this thesis: The motion of joints between any two parts
of the object is restricted to one DOF.

The restriction of joint articulation that was mentioned above illustrates the limitation
of interpretation tree based pose estimation. A formal analysis of this method has been
published by Grimson et al. [GLPH90]. They show that the expected number of search
steps is linear in the product of model and image edges, if all image edges arise from a
single rigid object in the processed scene. When further objects are present, the expected
number of search steps grows exponentially in the number of matches that must be es-
tablished for a full scene interpretation. Especially the problem of localizing articulated
objects suffers from this combinatorial explosion in the search space.

2.4.2 Generalized Hough Transform and Geometric Hashing

Two main methods for the recognition and localization of objects are the generalized
hough transform and geometric hashing. The generalized hough transform searches in
the space of pose transformations rather than in feature correspondence space. Examples
are given in [Bal81] and [BB82, pp. 128-131]. Transformation parameters are repre-
sented as dimensions of an accumulator array in which votes for specific pose parameters
are collected by hypothesizing matches between model and image feature subsets. As the
accumulator consumes space exponential in the number of array dimensions the method
does not scale to recover full poses of articulated objects at once. To dampen the memory
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consumption of the generalized hough transform, Byne & Anderson [BA98] augment the
geometric models of articulated objects with appearance information from real training
images. For new images this information leads to a rejection of most candidate transfor-
mations before they are entered to the accumulator array. The latter is encoded with a
sparse array representation to further dampen memory consumption. For each rigid part
of an articulated object the system generates a number of part pose hypotheses, inclu-
ding false positives. The most likely full pose is then searched by an evaluation of part
pose hypotheses combinations. To reduce the average time complexity of this exhaustive
search which is exponential in the number of models, the appearance information is used
to reject part pose hypotheses that do not match the image data well. Unfortunately, this
rejection step relies on strongly colored or textured materials whereas in manufacturing
environments parts might be monochrome and textureless. Together with the bad time
complexity of the pose parameter search, the high cost for appearance information train-
ing and missing results on the pose estimation accuracy, this fact has led us to consider
this approach inappropriate for the industrial inspection of articulated objects.

Geometric hashing was proposed by Lamdan & Wolfson [LW88]. It proceeds by first
preparing a model library: During a preprocessing step, k-tupels of model features lying
in planar sections of a 3D model are selected as a coordinate system basis. The remaining
model feature positions are transformed to this coordinate system. The new coordinates
are hashed to a table that stores all (model, k − tuple) pairs for all coordinates. For
3D models, preprocessing is carried out with k = 4. Online recognition or localization
proceeds by selecting 4-tupels of image features and transforming the remaining image
features to the respective coordinate system. The results are used to obtain votes for
a certain model from the hash table. If the votes score strongly for a specific model,
it is assumed present in the image and a rough object pose estimate can be retrieved.
Otherwise, further 4-tupels are selected and matched against the hash table. As this
method works on fixed coordinate systems defined by model and image feature subsets, it
is especially well-suited for the recognition and localization of single rigid objects. It has
been applied to the recognition of articulated objects in [BW91] but only for 2D models.
A major limitation of this method is that it does not explicitly model occlusion between
parts. In [SVD03], a different hashing approach called Parameter-Sensitive Hashing is
used to localize models of human bodies exhibiting 13 DOF from color images. Instead
of feature coordinates, the approach inserts compact representations of whole feature
sets into hash tables. The drawback of this method is that it needs excessive amounts of
segmented training images (150.000 for the human localization example).

Alignment or hypothesize-and-test methods [HU86] can be seen as an extension of meth-
ods like geometric hashing and the generalized hough transform. They start with a data-
driven analyzation of a certain number of model and image feature correspondences at a
time, of dimensionality sufficient to compute a complete preliminary pose. Preliminary
poses are called pose hypotheses in order to indicate that they still need verification or
rejection. The latter is provided in a model-driven fashion by matching the respective ob-
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ject models to an image after transforming the model feature coordinates according to the
pose hypotheses. Unlike geometric hashing or hough transform techniques, hypothesize-
and-test methods have no fixed algorithmic approach to obtain pose hypotheses and quite
often heuristics are used that incorporate external knowledge. For instance, Kölzow
[Köl02] uses edge histogram matching for initial hypotheses generation. He further spe-
cifies rules that define when to fuse similar hypotheses or to delete unpromising ones.
The rules incorporate knowledge of a motion tracking module such that hypotheses con-
flicting with motion estimates are deleted after some time. The approach of [BA98]
mentioned above is another example for an alignment-based system (employing a gener-
alized hough transform). In general, hypothesize-and-test methods are computationally
heavy due to large numbers of hypotheses that must be verified. So far, they have mainly
been used to localize rigid objects. To our knowledge, there exists no alignment-based
system that would yet facilitate the visual inspection scenario targeted by this thesis.

2.4.3 Feature Correspondence vs. Object Appearance

The pose estimation problem is often separated into two subproblems [RKRS01]: The
correspondence problem that aims at establishing a mapping between model and image
features and the spatial matching problem that tries to find a pose parameterization mini-
mizing some mismatch function. Accordingly, many computer vision systems use search
trees, generalized hough transform, geometric hashing or other strategies only to obtain
an initial solution of the correspondence problem after which a spatial fit is performed
[HEG+91, DD95]. A classical example is the already mentioned SCERPO system from
Lowe [Low87]. Once initial matches have been established, the 6 DOF transformation
relating the model to the world coordinate system is determined by a least-squares fit.
For this, Lowe linearizes the equations describing the model to image projection, assum-
ing an affine camera model. The resulting linear equation system is solved iteratively by
using Newton’s method. Interestingly, this pose estimation procedure could principally
determine fully articulated object poses, too, but it remains unclear how to obtain the
necessary model to image feature correspondences.

Basri states in [Bas93, p. 879] that ”finding the correspondence between the model and
the image is the difficult problem in recognition.” The vision system details presented so
far might illustrate that it is also the difficult problem in localization. Especially in the
case of articulated objects composed from multiple parts, a brute-force evaluation of all
possible feature mappings is computationally intractable. This could explain why many
systems don’t solve the problem at all but let the user establish initial correspondence
information manually [DC00, GBCS00]. A recent example is the work of Taylor [Tay00]
where the body pose of humans is inferred from single uncalibrated images. Given a
weak camera model, the absolute lengths of body segments and a manual selection of
joint positions in an image, the system estimates the relative positions of joints in 3D
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space with respect to a reference point. In comparison to the ground truth measured with
a motion capturing system, the average reported angle deviation is about 5 degrees.

If a solution of the correspondence problem is provided, the spatial matching can be suc-
cessfully determined in a variety of ways. Many published computer vision approaches
are solving what Fischler & Bolles [FB81] termed the Perspective-n-Point problem, i.e.
the spatial matching procedure relies on minimizing the distance of n corresponding mo-
del and feature points. For example, Haralick & Joo [HJ88] have compared Lowe’s
approach with different methods for robust least-squares fitting. Araújo et al. [ACB96]
have improved Lowe’s approach by exchanging the affine with a fully projective ca-
mera model. Lu et al. [LHM00] developed an algorithm that decouples the computation
of rotation and translation parameters by minimizing a unique error function based on
collinearity in the 3D object space.

The spatial matching problem has of course not only been treated as an Perspective-n-
Point problem. Quite often, mappings between image measurements and higher order
geometrical entities have been exploited as well. Published approaches were for example
based on lines [PHYP93], line-plane correspondences [Hom91], polynomials of second
order [GJW94], ellipses [SRTBS91], and image conics [KBG97]. Free-form objects have
been considered, too, e.g. in [KVP92, ZN96]. Rosenhahn [Ros03] has recently reformu-
lated the 2D-3D pose estimation problem as an interaction of Euclidean, projective, and
conformal geometry and expressed the interaction in a conformal geometric algebra. His
approach proceeds by projectively reconstructing image features and transforming the re-
sults together with model features to entities in conformal space. The latter are compared
by using scaled constraint equations which is interpreted as obtaining a distance mea-
sure in the Euclidean space. Rosenhahn’s approach allows to express the pose estimation
based on points, lines, planes, circles, spheres, cycloidal curves, and kinematic chains in
one unifying mathematical framework and to use these entities simultaneously. In sum-
mary, the spatial matching problem can be considered to be solved to a very satisfying
degree while on the other hand, similar progress is still lacking for the correspondence
problem, especially with regard to articulated objects.

All pose estimation methods discussed above demand a mapping between individual
image and model features, i.e. they are correspondence-based. In contrast to this,
appearance-based methods directly compare viewer-centered object representations or
view-specific groups of model features with the content of 2D images, e.g. by template
matching [KMTB94], chamfer matching [Gav00] or even neural networks [WWH97].
Ekvall et al. [EKH05] first obtain a rough pose estimate with appearance-based color
histogram matching that is refined with correspondence-based techniques. However, they
only deal with single rigid objects. Appearance-based object localization is particularly
effective if object rotations can be restricted to camera-plane rotations or if the localized
objects are completely rigid. In contrast to this, articulated objects with many parts re-
quire a very high amount of training images which is why this approach was not pursued
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in the context of this thesis. Nevertheless, the system in this thesis uses a generalization of
the chamfer matching technique mentioned above, namely matching by minimizing the
Hausdorff distance, as important part of a density estimation process. Note that Haus-
dorff matching has been covered in detail in the book of Rucklidge [Ruc96]. The need
for training images is eliminated by designing the system such that it can transform its
object-centered model of an articulated object online to a viewer-centered representation.

2.4.4 Sampling-Based Pose Estimation

So far, this section presented major methods and computer vision systems for 2D-3D
object localization. It also described their limitations. An important conclusion from
the presented information is that the reported methods either only localize single rigid
objects or else have some properties that render them inappropriate for our inspection
scenario. This might explain why, regarding the vast amount of literature on pose esti-
mation, comparatively few systems have been proposed yet to deal with visual inspection
in a manufacturing environment. Section 2.6 presents some systems in more detail that
form a basis for later comparison. But apart from correspondence and appearance-based
methods there is one more major class of methods that have been used in the context
of object localization. Sampling-based methods, such as the particle filters employed
by Isard & Blake [IB98a, IB98b] or kernel particle filters [CA03, SKF06], generate a
discrete sample set representation of a continuous posterior probability density, in short
”posterior”. The posterior, or rather its sample set approximation, captures how much
evidence for hypothetical object poses arises from given image measurements. But unlike
correspondence-based methods traversing the space of feature mappings, sampling-based
object localization operates in the pose space. Each sample represents a hypothetical pose
of the object under consideration, similar to hypotheses employed by the already men-
tioned hypothesize-and-test methods. Additionally, sampling-based methods associate a
weight with each sample that rates how strongly the respective pose agrees with available
image measurements.

In contrast to hypothesize-and-test methods, sampling-based methods proceed by itera-
tively resampling whole sample sets. In this way, all samples contribute to the solution
of the localization problem and not just the verified ones. Another benefit of sampling-
based techniques is that they avoid solving the correspondence problem. On the other
hand, the pose space of articulated objects is high-dimensional, i.e. many samples might
be needed to obtain a discrete approximation to the posterior. In order to keep their num-
ber in a computationally tracktable range it is necessary to represent ”important” regions,
only. This is feasible because the posterior density is usually very low for vast parts of
the pose space. A suitable strategy is thus to concentrate on representing the modes of
the posterior. A detailed illustration of a sampling-based object localization scheme and
the extensions that have been developed in the context of this thesis in order to maintain
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a compact representation of the posterior is provided in Chap. 4.2. To our knowledge,
no one has so far tried to solve the assembly localization problem by using an equivalent
approach.

2.5 Classification

Given that an inspection system has somehow acquired the position and orientation of
an object within an image, the inspection scenario that was presented in the introduction
chapter gives rise to a number of further questions that must be answered by the system.
These new questions concern quality aspects of the localized object, e.g. in the sense of
”does the observed object have exactly the expected parts?” or ”are the object parts all
positioned and oriented according to the design plans?”. The former question asks for
part completeness while the latter is concerned with pose integrity. Both quality aspects
can be analyzed by means of performing classification techniques.

In the following, classification is understood in a pattern recognition sense, i.e. as the
task of assigning a label to a given input feature or to a set of input features. The la-
bel is a symbolic description of the class to which the input is mapped. In the case of
part completeness classification, input features might be a mixture of the image features
presented in Chap. 2.1. The corresponding labels qualify the input features as ”part miss-
ing”, ”part present”, or as ”rejected”, if no reliable decision can be taken. In the case
of pose integrity classification, the input features are recovered assembly poses and the
output labels either ”valid pose configuration”, ”fault configuration”, or ”rejected”.

The pattern recognition literature offers a vast amount of different techniques to solve
classification tasks. Rather than attempting an exhaustive survey, only three wide-spread
techniques are sketched in the following. Their presentation aims at introducing some
fundamental concepts that are relevant for the discussion in Chap. 4.3. A thorough formal
introduction to classification in the context of pattern recognition is provided by [Nie83].

The nearest neighbor (NN) classifier [CH67, DK80] is a frequently used classification
technique. It proceeds by first storing all features of a labeled training set as prototype
features. Input features are then classified according to their distance to the stored proto-
types within the feature space. Note that this simple procedure can be extended to allow
feature rejection, if the m nearest neighbors of an unclassified feature are taken into ac-
count. The great advantage of the NN classifier is its simplicity. A major drawback is the
induced computational load, because all prototype features must be searched during each
classification. Furthermore, the performance of a NN classifier depends strongly on the
choice of the distance function that is used to determine the nearest neighbors. Finding a
suitable distance can be very difficult.

Another group of frequently employed classifiers is known in the literature under the term
decision trees. A decision tree is a tree whose nodes contain tests that are performed on
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the input features. The leaf nodes of the tree contain the class labels. Classification pro-
ceeds by filtering input features through the tests of the tree nodes, starting at the root
node. A number of algorithms have been proposed to automatically learn decision trees
from labeled test sets [Qui93, BFOS84]. The learning procedures automatically deter-
mine suitable tests and an appropriate test order, usually by minimizing some uncertainty
criterion. The major advantage of decision trees is that they are very fast. Compared to
the many distance calculations that are usually made in the course of NN classification,
only a very small number of tests are performed with decision trees. The tree training is
computationally heavy but can proceed offline.

A third well-known classifier is the Bayes classifier [Ris01]. It operates on a set of input
features, the prior probabilities of each output class (class priors) and the probabilities of
the input features conditioned on the class (conditional feature models). Given appropri-
ate class priors and conditional feature models, the Bayes classifier determines the output
class that is associated with the highest posterior probability. The class priors and con-
ditional feature models can be learned from labeled training sets. An appealing property
of the Bayes classifier is that its decisions are optimal w.r.t. minimizing the probability
of misclassification. Furthermore, its online performance is quite fast. Above all, the
Bayes classifier provides means of combining different types of input features within one
classification. Because each feature is associated with an individual conditional feature
model, the Bayes classifier can be interpreted as transforming each feature value to a
global probabilistic space in which the classification is carried out. This principle has
e.g. been exploited in [Köl02]. Compared to the other two classifiers mentioned above,
it is important to note that the Bayes classifier performs no rejection.

2.6 State-of-the-Art Inspection Systems

The previous sections have provided an overview of related work on all major aspects
of computer vision systems for visual inspection of assemblies. What remains to be es-
tablished is an evaluation of today’s inspection systems performance. Ideally this would
yield a set of performance indicators against which the system proposed in this thesis
could be compared. Such indicators should e.g. document the accuracy and precision of
the object localization process. Unfortunately, this kind of performance information is
hard to obtain, though a few systems have been designed that could be used as reference
for comparison. For instance, Khawaja and colleagues [KMTB94] report an inspection
system for nearly rigid assemblies but fail to document any numbers on the localization
accuracy and precision at all.

A thorough survey of the computer vision literature yielded five systems which perform
pose estimation under comparable conditions and whose performance has been docu-
mented to some degree. Together they form the baseline for the performance evaluation
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of the system proposed by this thesis. All five systems are concerned with localizing ob-
ject poses, and two of them perform part completeness or pose integrity classification. All
five system are research prototypes as, to our knowledge, none of the commercially avail-
able image processing tools provides an out-of-the-box solution to the pose estimation of
arbitrarily articulated objects. They are presented in more detail in the following. After-
wards, the systems’ measurement characteristics for pose estimation are summarized in
Tab. 2.1.

Kölzow [Köl02] has proposed a model-based system for the localization and classifica-
tion of rigid objects from sequences of monocular images that has already been men-
tioned before. In his work, classification refers to the decision whether a rigid object
is present in an image sequence. The strength of the system lies in its robustness. The
author presents a unique strategy that fuses information on the quality of local feature
matches across different feature types to a global match value. Such values can be used
to reliably refine multiple pose hypotheses in a correspondence-based hypothesize-and-
test framework. Notably his system generates object models according to the approach in
[Han01]. The latter has been used in our system, too, but only for the generation of part
models. With regard to the classification process, the author has not documented per-
formance indicators but of all systems presented here, he conducted the most thorough
evaluation of the measurement performance.

The research system TINA, as reported by Lacey and colleagues [LTCP02], was origi-
nally developed within a pick-and-place scenario in robotics where a robot arm is guided
by a vision system in order to manipulate objects. The system locates objects from stereo
image data by performing 3D model matching: After edge detection, edge point corre-
spondences are built for the stereo images and 3D edge points inferred. These are linked
to straight lines and circular arcs and matched to a wireframe model by using a local
feature-focus technique. The strength of the system lies in the fact that today it is a rich
framework for vision research as many modules have been contributed to it over time. Its
main drawback is that it only operates on rigid models.

Hel-Or & Werman [HOW96] have presented an approach for the localization of articu-
lated objects stereo images. They employ a unique Extended Kalman Filter that estimates
the pose of objects to conform with measurements while satisfying constraints modeled
as a set of constraint equations. Unfortunately, the constraint fusion mechanism inher-
ently depends on establishing correct model to image feature correspondences so that the
algorithm still suffers from the problems of correspondence-based approaches, though in
somewhat alleviated form. Consequently, the authors state that the success of the method
relies on a manually defined approximate pose initialization. Furthermore, they localize
a three-part desklamp whose joints exhibit only 5 DOF.

Bank et al. [vBGW03] presented a system for appearance-based industrial quality in-
spection from single monocular images. In an offline stage, the system extracts a large
set of 2D edge templates from 3D CAD models. The template set captures the appear-
ance of rigid objects from a dense discretization of a view hemisphere. It is organized
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in a template hierarchy in order to improve the efficiency of the subsequent online pose
estimation process. The latter employs an hierarchical edge matching scheme based on
the chamfer distance transform. The pose is then classified into either correct or fault
configurations. The strength of the system lies in its robust performance and its process-
ing speed which is close to real-time. Furthermore, no approximate pose initialization is
needed. On the other hand side, only rigid objects exhibiting 5 DOF are inspected. The
system is able to classify the placement of ignition plugs with a rate of 98.4% correctly
recognized faults at a false positive rate of 0%.

Socher [Soc97] described a vision component for the integrated speech and image un-
derstanding system QUASI-ACE. The system was developed in the context of the joint
research project ”Situated Artificial Communicators” within the Collaborative Research
Center 360 at Bielefeld University. Socher’s component recovers a 3D scene recon-
struction based on stereo images and geometrical models of the contained rigid objects.
Exemplary objects are wooden building blocks from the toy construction kit baufixr

which are used within the experimental investigations of this thesis, too. The recon-
struction process proceeds by hypothesizing objects from color blobs and edge features
and subsequently refining the object poses in a hypothesize-and-test manner. The pose
refinement is carried out as an iterative minimization of a cost function measuring the
difference between projected model features and measured image features. The system
is designed to deal with rigid objects, only. The measurement performance of her sys-
tem is illustrated in Tab. 2.1, together with the characteristics of the other four systems
presented here.

Table 2.1: Measurement characteristics of 5 computer vision systems for pose estimation. A ’-’
denotes that the respective value is unknown

System Ndata Nobj Nparts
DOF
object

mm
pixel ‖µtrl‖ σtrl ‖µrot‖ σrot

[Köl02] 420 1 1 6 ≈ 0.7 ≤ 1mm ≤ 1mm ≤ 1◦ ≤ 2◦

[LTCP02] - 1 1 6 - ≤ 5mm - - -
[HOW96] - 1 3 5 ≈ 1.5 - - ≤ 1◦ ≤ 1◦

[vBGW03] - 1-2 1 5 0.2 ≤ 1mm - ≤ 1◦ -
[Soc97] 27 2 1 6 ≈ 0.4 ≤ 4mm - ≤ 5◦ -

The first six columns of Tab. 2.1 document important aspects of the pose localization
processes. More precisely, Ndata denotes the total number of measurements performed.
Unfortunately, only Kölzow and Socher reported their test set size3. Each measurement
3Kölzow [Köl02] localized a variety of objects with measurements in the order of 104 images. The numbers
stated here reflect a subset showing an oil cap attached to a car engine. The other reported computer
vision systems localized objects of similar size. In contrast to this, the remaining part of Kölzow’s test set
contained objects like vehicles or airplanes whose scale is so large that the measurement process would not
have been comparable at all. We therefore concentrated on analyzing the oil cap subset.
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localized Nobj separate objects consisting of Nparts parts. It can be seen that the systems
had to determine 6 DOF at maximum when localizing an object, even though in the case
of Hel-Or & Werman objects consisted of three parts. The 6th column of Tab. 2.1 lists the
scale of the processed image data, or estimates thereof that were obtained from published
images together with known object dimensions.

The final four columns of Tab. 2.1 indicate the performance of translation and rotation
parameter estimation. Regarding translation parameters, any values on how well the sys-
tems estimated object distances to the camera were ignored in order not to favor those
estimating only 5 DOF, as the systems that determined only 5 DOF knew the camera dis-
tance in advance. The measurement accuracy is stated in terms of the mean absolute error
µtrl and µrot with which the pose estimates deviated from the ground truth. The measure-
ment precision is stated in terms of standard deviations σtrl and σrot. Unfortunately, four
out of the five systems failed to document precision values. Furthermore it must be noted
that the way in which the ground truth values were recorded differs significantly from
system to system. Hel-Or & Werman and Socher used manually measured recordings,
Kölzow relied on a manually established fit via PovRay, Bank et al. employed a cali-
brated robot arm and Lacey et al. don’t discuss their methodology. As a consequence, all
listed accuracy and precision values are rounded to the next integer precision in order to
avoid an over-interpretation of the available data.

The information provided in Tab. 2.1 does not suffice to make out ”the best” system.
However, it does give a clear picture of today’s computer vision systems that localize ob-
jects: When determining object poses with up to 6 DOF within images of approximately
1 mm

pixel
pixel resolution, a measurement accuracy and precision in the order of 1mm and 1◦

can be considered state-of-the-art. The visual inspection system that is presented in the
following chapters will be compared against this finding.
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The previous chapter presented a detailed overview of the literature on all major problems
and tasks related to visual assembly inspection. We have learned that the respective tasks
can be categorized into offline and online tasks, according to the question whether they
can be precomputed or depend on the latest image measurements. We have learned, too,
that model feature extraction and assembly modeling are typical offline tasks. Together,
they were subsumed under the term model preparation. This chapter reports how model
preparation is accomplished in the system proposed by this thesis. It initially presents
a system overview in order to illustrate the driving forces that result in requirements on
the system’s model representation. The subsequent sections elaborate how part models
are extracted from CAD data, optimized with regard to memory consumption and access
speed and finally aggregated to assembly models.

3.1 System Overview

Manufacturing processes depend on thorough planning, accurate design, and continu-
ous optimization. Neither can be achieved without the strict application of engineer-
ing techniques which have considerably evolved with the advent of CAx techniques like
computer-aided design (CAD), computer-aided manufacturing (CAM), computer-aided
engineering (CAE), and computer-aided process planning (CAPP). Consequently, Hoff-
mann et al. pointed out that computer vision systems should evolve likewise: ”Ideally the
entire manufacturing process should be information driven, so that all functions neces-
sary to support machine vision are performed solely from computer-aided design (CAD)
models.” [HKT89, p.1477]. The authors also address the problem that other informa-
tion sources for vision systems like training examples are quite often too expensive to be
useful in a manufacturing context. As a consequence, the system proposed here employs
CAD data as its main source of information from the manufacturing environment. In this,
it follows the same paradigm of CAD-driven vision systems that was used by all the sys-
tems presented in Sect. 2.6, too. Our system additionally relies on some external scene
knowledge, e.g. a camera model and a reference to the assembly model that represents
the object under inspection. Given a new image measurement, our system localizes the
assembly model with respect to the camera coordinate system.
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3.1.1 System Modularization

A functional system decomposition that refines the architecture overview of Fig. 1.2 is
illustrated in Fig. 3.1. We can see that it has a pipe-and-filter architecture, with CAD
data at its beginning and pose data at its end. The filter chain consists of two main parts,
namely offline model preparation and online inspection. The initialization isn’t counted
as a system part but illustrated separate from the online inspection because it doesn’t need
to be repeated with each new image measurement.

Figure 3.1: Refined architectural view of the proposed inspection system

Figure 3.1 shows that offline model preparation proceeds by first normalizing the CAD
data for individual assembly parts. Normalization has two steps. First, the data is con-
verted from one of the many existing formats to one appropriate for the subsequent algo-
rithms. Second, the CAD information is transformed in order to fix topological irregu-
larities resulting from the CAD processing tool chain like the ones already mentioned in
Sect. 2.1. These steps can be performed by commercially available converter tools and
so-called mesh healers and thus won’t be described any further. The resulting normalized
CAD data are sets of vertices, edges, and facets that together form the closed-surface re-
presentation of an assembly part. These part representations are processed by the feature
extraction stage in order to automatically extract sets of characteristic model features,
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yielding pure part models. The latter are optimized with respect to storage consump-
tion. Afterwards, the compressed pure part models are composed to a constrained model
which represents a validly configured assembly and physically possible (but not always
valid) configuration deviations.

Online visual inspection, as illustrated in Fig. 3.1, must be initialized with a scene model.
It specifies the overall inspection task, e.g. by providing the camera model parameters
and a reference to the assembly model that represents the currently inspected object.
Afterwards, new image measurements are preprocessed by an edge detection stage. Note
that the system employs a simple pinhole camera model for 3D-2D central projection. A
detailed discussion of this well known camera model and important variations is given
in the book of Hartley & Zisserman [HZ03]. In order to compensate lens distortion, for
which the pinhole camera model does not account, image measurements are assumed to
be rectified1. The edge information and the original image are then both passed to the
pose localization module. This employs a novel kernel particle filter (KPF) in order to
determine the full assembly pose parameterization. Finally, a classification stage might
receive the pose data, image, and edge information in order to classify individual part
completeness and pose integrity. As the prototypical implementation of the proposed
system currently doesn’t have a classification module, the latter is visualized in a dashed
frame in Fig. 3.1.

3.1.2 Assembly Model Requirements

From the system’s overall task, its functional decomposition and interaction with a ma-
nufacturing environment, a set of requirements on the assembly model representation can
be derived. The detailed presentation of the system’s model feature extraction, optimi-
zation, and assembly model composition, which is carried out in the following sections,
will address these requirements and discuss how far they can be met:

1. The visual inspection task places a high priority on measurement accuracy. The
model features that are extracted by the offline model preparation stage must there-
fore facilitate accurate and robust object localization.

2. Optimizing or changing manufacturing processes can lead to changes in the pro-
duced parts and assemblies. Such changes must be propagated quickly to the in-
spection system. The offline model preparation stage must therefore be simple to
use, at best fully automated.

1Image rectification and the corresponding camera calibration issues are not discussed within this thesis,
hence the rectification process has been omitted in the system illustration.
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3. The pose localization follows a sampling-based 2D-3D approach. As already in-
dicated in Sect. 2.4, this approach samples a large number of pose hypotheses and
compares them to the current image. This means that for each generated pose
hypothesis, the object-centered 3D assembly model must be projected to the 2D
image plane by employing the pinhole camera model, which produces a very high
computational load. Above all, the constrained assembly model must thus be speed
optimized for this kind of online transformation to a viewer-centered representa-
tion.

4. The central projection transformation must precisely account for view-dependend
model feature occlusion. Inaccuracies will either yield false negative model edges,
which should have been projected to the image plane but were considered hidden,
or false positive model edges, which were considered visible but are really oc-
cluded. Both cases might degrade the accuracy of subsequent image measurement
comparisons.

3.2 Automatic Model Feature Extraction

Hanheide [Han01] reported a powerful model feature extraction stage for model-based
object localization systems which was already successfully used by Kölzow in [Köl02].
Its appeal lies in the fact that it automatically extracts local edge features from CAD mo-
dels of single parts. Hanheide’s and Kölzow’s experimental investigations also showed
that the extracted model features are well suited for accurate part localization. By em-
ploying his approach, we are therefore immediately able to meet the first two require-
ments stated above, at least for rigid parts. For the system proposed in this thesis, Han-
heide’s approach is combined with the visibility map concept reported in [EKSH05]. We
will see later in this section that this combination is important for meeting requirements 3
and 4 with respect to single rigid parts. The resulting automatic model feature extraction
system is presented in the following.

The model feature extraction stage processes normalized CAD models Mcad, each of
which represents an individual rigid part as a 3-tupel

Mcad = (Vcad, Ecad, Scad) . (3.1)

Here, Vcad denotes a set of 3D vertices and Ecad a set of connecting edges. Furthermore,
Scad specifies a set of polygonal surfaces (or facets) that are defined w.r.t. the edge set.
The first step of the model feature extraction stage preprocesses Mcad by decomposing the
arbitrary polygonal surfaces in Scad to triangles, adding new edges to Ecad. All edges are
then subdivided into minimal edges such that they always belong to exactly two triangles.
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Figure 3.2: From left to right: A baufixr screw-ring-nut assembly, the nut’s normalized CAD
model, preprocessed edges Epre, and the final contour edges Econtour

Subdividing an edge might insert new vertices to Vcad. The resulting preprocessed model
is

Mpre = (Vpre, Epre, Spre) . (3.2)

Afterwards, the model feature extraction stage assigns constant scores to each edge in
Epre longer than 1% of the largest Euclidean distance between any two vertices in Vpre.
Additional constant scores are given to those edges whose adjacent facets’ normals form
an inner angle larger than 1◦ and whose adjacent facets’ normals are oriented away from
each other which together determines convex edges. Finally, all edges with a score higher
than some fixed threshold form a new edge set Econtour ⊆ Epre. Figure 3.2 illustrates an
example of a physical object, its normalized CAD model, its preprocessed edge set, and
its contour edge set.

The accumulation of scores, which can also be interpreted as gathering evidence for
characteristic model features, and the subsequent edge selection ensures that the edges in
Econtour share two key properties. First, they are of significant length relative to the whole
model extent. This is important because long edges on the corresponding physical part
might result in strong intensity discontinuities within image measurements. Second, the
model edges are convex. Under 3D-2D transformations such as image measurements,
only convex edges can be part of an object’s contour or silhouette, i.e. the outline which
separates the object from the image background. As the silhouette usually appears in
real world images as a very strong intensity gradient and is also robust against illumina-
tion changes, the contour edges Econtour form a set of highly characteristic local features,
meeting the first of the requirements specified in the previous section. If the facet infor-
mation of the CAD model is attributed with color descriptors, the color information can
be extracted as an additional local feature.

With respect to the criteria of [Pop94, p.4] that we presented in Sect. 2.2, Hanheide’s
work showed that the contour edges Econtour are sufficiently sensitive, unique, stable,
and of appropriate scope. However, concerning the access efficiency, there is still much
room for improvement because the edge set hasn’t been optimized for 3D-2D central
projections, yet. Basically, the problem is that for any central projection of the model
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onto an image plane, most edges in Econtour are either occluded from view by other parts
of the model or just don’t belong to the actual contour2. As long as there is only one rigid
part to be observed in a scene, both cases depend entirely on the view direction under
which a model is perceived. Hence, the visibility of Econtour elements can be precomputed
for the representation of a single rigid part.

In Hanheide’s work, edge visibility is modeled either by a simple dot-product rule similar
to [CL02] or by a union of hemispheres that describe from which viewing directions an
edge can be seen. The latter rule is comparable to the work of [Low87]. However,
both approaches model occlusion very inaccurately. What is more, convex edges that
are facing the viewer but aren’t part of the projected object’s silhouette aren’t modeled
at all. Both issues are addressed much more satisfactorily by the visibility map concept
of Ellenrieder et al. [EKSH05] which we used instead. A visibility map fvis represents
the visibility of a point on an arbitrary facet model. An example is shown in Fig. 3.3.
It is a Boolean matrix that encodes whether the point can be seen under given azimuth
and elevation angles. For our system, an azimuth and elevation step width of 1◦ was
considered small enough to meet requirement 4. The overall generation scheme has
already been detailed in Sect. 2.1. Given surfaces Spre consisting of n triangles, a visibility
map can be constructed with a computational effort of O(n). The encoded information
can later be looked up in constant time, which exquisitely meets requirement 3 when
performing the 3D-2D central projection of a single rigid part.

As already indicated, visibility maps model the status of a specific point. Fortunately,
Ellenrieder et al. show that this concept is also suited for model features with a spa-
tial extent in 2D or 3D. Our contour edges Econtour can for example be associated with
visibility maps by first choosing one reference point ri per contour edge ei ∈ Econtour.
Afterwards, for each of the reference points ri a visibility map fi,vis is determined. Given
that the camera distance to the reference points is many times larger than the largest
feature diameter maxi {‖ei‖}, the error introduced by this operation is smaller than the
inaccuracy arising from the discretization of the unit sphere.

For the tasks in the subsequent chapters and sections, the facets Spre are of no more im-
portance and are thus deleted from a rigid part’s model. The vertex information in Vpre is
kept and will be used in the following section. Furthermore, each of the N contour edges
from Econtour is grouped together with its reference point and visibility map, resulting in
a model feature set Fcontour. Thus, the representation of a rigid part, resulting from the
automatic model feature extraction stage presented so far, is a model of the form

Mpart = (Vpre, Fcontour) , where (3.3)

Fcontour = {(ei, ri, fi,vis)}N
i=1. (3.4)

2In [SHS+04], experimental investigations with baufixr part models under random central projections
showed that on average only 12% of the contour edges were forming the model’s contour.
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Figure 3.3: Cube with model feature point (black), around which a sphere is highlighted (red) for

all positions, from which the feature point is part of the cube’s contour. The positions
are marked in red, too, in the corresponding visibility map on the right. The arrows
indicate (azimuth, elevation) pairs of (0◦, 0◦) at I, (90◦, 0◦) at II, and (·, 90◦) at III

In summary, this section has presented us a very versatile model feature extraction
scheme. It can automatically extract sets of contour edges from CAD descriptions of
rigid assembly parts. The contour edge visibility is determined accurately and automa-
tically, too. Furthermore, the visibility information is stored in a compact representation
that supports fast look-up operations, e.g. in the context of 3D-2D central projections.
However, the approach presented so far only models single rigid parts. Therefore, this
thesis contributes proposals how to extend the visibility concept to assemblies, how to
optimize part models, and how to aggregate part models to assembly models. Taken to-
gether, these contributions yield a new, unique approach to create powerful constrained
assembly models.

3.3 Model Feature Set Optimization

Along with the model feature extraction stage employed by the system proposed in this
thesis, the previous section presented us some considerations on feature occlusion re-
garding a single rigid part. This section will first extend the considerations to assemblies
composed from arbitrary many parts. Afterwards, we will see that the chosen occlu-
sion determination approach can be storage and speed optimized by refining the sets of
contour edge features from the previous section. This model feature set optimization is
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COP

COP

Figure 3.4: Model of an ignition plug and connector (courtesy of DaimlerChrysler AG). A contour
edge’s reference point (red cross) is hidden due to intra-part occlusion (left) and inter-
part occlusion (right). COP denotes a camera’s center of projection

carried out by minimizing a cost functions that either evaluate visibility map information
or geometrical properties of contour edges.

3.3.1 Extending the Visibility Map Concept

Visibility maps model how reference points on the surface of a rigid part can become
hidden behind regions of the same part, i.e. they represent self-occlusion which can also
be termed intra-part occlusion, as it describes the effects occurring within a rigid part.
If more than one part is present in a scene, however, reference points on one part can
also become hidden from view because they are occluded by regions of another part in
the scene. The latter phenomenon can be termed inter-part occlusion, as it refers to
the effects between different objects. Performing 3D-2D central projection on the con-
tour edges of multi-part assembly models requires the representation of both phenomena,
intra-part as well as inter-part occlusion, if feature visibility is to be modeled accurately.
Figure 3.4 illustrates the two occlusion types.

One might ask if the visibility map concept can be modified to account for inter-part
occlusion. Unfortunately, a straight-forward extension is intractable in terms of me-
mory consumption. The reason for this is that an extended visibility map would have
to record reference point occlusion for each discrete view direction and each discrete as-
sembly pose parameterization. However, the number of discretizations of the assembly
pose space grows exponentially in the number of assembly parts. Thus, for assemblies
with more than two or three parts, the discretization would have to be extremely coarse-
grained, if a tractable number of assembly poses is to be analyzed. This in turn would
soon yield an unacceptably large approximation error. In summary, we can’t precalculate
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the entire visibility information. The key to success lies in finding an information subset
for which this is possible.

Obviously, inter-part occlusion can only occur for model features that would otherwise
have been visible in a certain scene, i.e. inter-part occlusion can only affect model fea-
tures that aren’t already self-occluded. Therefore, the visibility information of model
features on multi-part assemblies can be determined with a two-stage process. First,
given the pose of an assembly relative to a camera or an observer, one can determine
all potentially visible model features that aren’t affected by intra-part occlusion. After-
wards, the potentially visible model features can be narrowed down to fully visible ones
by evaluating inter-part occlusion. As we already described a representation that yields
fast determination of self-occlusion, the question remains how we intend to perform the
second step.

This thesis models inter-part occlusion with the help of oriented bounding boxes (OBBs).
According to Arvo & Kirk [AK89], OBBs have been used in the past to speed up ray-
tracing scenarios where viewrays must be tested for intersection with objects in a given
scene. A bounding box is a cuboid which is tightly fitted around a set of 3D points, in our
case the vertices in Vpre which provide a sufficiently dense representation of the original
part shape. An oriented bounding box always exhibits an orientation in 3D space which
yields a tight fit to the point cloud Vpre while minimizing the enclosed volume. On the
contrary, axis aligned bounding boxes (AABBs) are always oriented parallel to the axes
of the world coordinate system. Discussing the details of OBB generation lies outside
the scope of this thesis, though, as this is a too common technique. It must suffice to note
that OBBs can be generated automatically from the vertex data of CAD models, e.g. by
using the approach of Gottschalk et al. [GLM96]. An outline of this approach is given in
appendix A.

Given that our system can automatically create a set of OBBs for each part of an assembly
model, the two-stage determination of contour edge visibility proceeds as illustrated in
Fig. 3.5. We assume that a scene is given containing a camera and an assembly whose part
locations are known in camera coordinates. The first step then retrieves all potentially
visible contour edges by querying all visibility maps. The potentially visible contour
edges are called active. The respective active model feature set of an assembly part with
index j is denoted Fj

active in the following. Obviously Fj
active ⊂ Fj

contour, where Fj
contour

specifies the model feature set of assembly part j as defined in Eqn. (3.4). In the second
step, for each part j, view rays between the camera’s center of projection (COP) and each
reference point in Fj

active are intersected with the OBBs of all assembly parts k 6= j. Only
active edge segments whose view ray doesn’t intersect any OBB are perceived as visible
by the camera. They can now be projected to the camera’s image plane by performing
central projection. Some real contour edge determination results are shown in Fig. 3.6.

Requirement 3 from Sect. 3.1 has already specified that determining the visibility of
model features is a mission critical part of our application. Now that we have defined a
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CameraCameraCamera

Figure 3.5: Two-stage occlusion determination. Left: Ignition plug assembly model (courtesy of
DaimlerChrysler AG) with tightly fitted OBBs. Middle: Active contour edges yielded
by the 1st stage (red dashed lines). Right: Visible edges resulting from the 2nd stage
(blue lines). The arrows denote topmost OBB-intersecting view rays

Figure 3.6: A scart plug and connector, perceived from varying directions. The black lines are
contour edges that have been determined as visible. The gaps in the contour occur
because of bounding box intersections, modeling inaccuracies, and due to the fact
that a number of edges have been eliminated in the preprocessing stage because they
were too short
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corresponding process, the question remains what its computational complexity is. Let
Nfeatures denote the total number of contour edge features in all Fj

contour. Furthermore, let
Nactive be the total number of elements in all Fj

active and NOBBs the total number of OBBs
fitted around assembly parts. Given this, performing self-occlusion checks has a worst-
case time complexity of O(Nfeatures), as each of the Nfeatures contour edge features is
tested for self-occlusion in constant time. Additionally, all active model features must be
tested against the bounding boxes, which is performed in O(Nactive · NOBBs) in the worst
case. Consequently, the overall worst-case time complexity of the two-stage visibility
determination process is O(Nfeatures + Nactive · NOBBs).

The computational complexity of the visibility determination process is linear in all of
its three variables. This result is already very satisfying but it might still be possible to
decrease it in the order of some constant factor by minimizing the three contributing vari-
ables. Concerning the number of OBBs NOBBs, such a minimization is easy to achieve.
One simply sets the number of OBBs to the lowest value that permits intersection tests,
i.e. one OBB per part. All experimental investigations reported in the evaluation chapter
of this thesis have been carried out with this setting which shows that it still yields a
reasonable contour edge visibility approximation.

In contrast to the OBBs, minimizing the total number of contour edge features Nfeatures

and the number of active model features Nactive is a more complex task. It proceeds
by considering each assembly part separately and erasing elements from the associated
contour edge feature set Fj

contour. However, the elements to erase must be selected care-
fully because the remaining set has to facilitate online inspection. More specifically, the
remaining model features must still be suited for pose localization as the system’s clas-
sification performance will depend crucially on the pose localization accuracy. When
minimizing contour edge features, we therefore try to eliminate those elements that con-
tribute little to solving the pose localization task.

Such a choice depends on the pose localization approach itself. Correspondence-based
approaches require at least three part model points that are neither co-linear nor co-planar
to be mapped to an image before the spatial matching problem can be solved for that part.
Line segments like contour edges often serve as robust point features by mapping their
mid-point to the mid-point of image edges. Consequently, at least three contour edge
elements whose mid-points aren’t co-linear and co-planar must be visible per assem-
bly part to recover that part’s pose. More than three visible contour edges in general
yield a more accurate part localization. Furthermore, matching model to image features
proceeds more robustly, if pairs of contour edges meet in corner-like structures. In con-
trast to this, appearance-based and sampling-based pose estimation approaches operate
on the full appearance of an object which is in our case represented as the object’s con-
tour. This means that predicted object contours must match well with the really detected
ones. Deleting more and more contour edge features from a part model might give rise
to changes like cracks or gaps in the predicted contours which might decrease the respec-
tive match quality. Consequently, edge feature minimization for such approaches must
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reduce the total number of model features Nfeatures, while leaving the number of poten-
tially visible model features Nactive almost unchanged. In the following, a minimization
procedure is specified that can be tailored for all pose localization approaches mentioned
above. The model feature set optimization contributed here might thus be suited for many
more model-based vision systems than the inspection system detailed in this thesis.

3.3.2 Optimizing Sets of Part Model Features

Let Mj
part be the assembly part model whose contour edge feature set Fj

contour is currently
processed in order to obtain an optimized model feature set Fj∗

contour. Furthermore, let
all the individual contour edge features f j

i,contour ∈ Fj
contour of the part model, analogous

to Eq. (3.4), be of the form f j
i,contour = (ej

i, rj
i, f j

i,vis). Assume that for each of the contour
edge features a score uj

i can be determined that rates the model feature utility for the
pose localization task. The problem of optimizing the set of contour features can then be
specified as a one-dimensional knapsack problem with Boolean variables (see [MT90]
for an in-depth discussion of this problem class). It has the form

Fj∗
contour = max {

Nj∑
i=1

uj
ix

j
i|

Nj∑
i=1

xj
i ≤ b, b ∈ R, b ≥ 1, xj

i ∈ {0, 1}, i = 1, ..., N j}, (3.5)

where the xj
i are Boolean variables. They define which of the N j contour edge features

f j
i,contour ∈ Fj

contour belong to the optimized set. The optimization in Eqn. (3.5) maximizes
the model feature utility score while keeping the total number of elements in the opti-
mized set below a threshold b. We assume in the following that all elements in Fj∗

contour

are sorted such that the associated utility scores uj
i comply with the regularity condition

uj
1 ≥ uj

2 ≥ · · · ≥ uj
Nj . (3.6)

The problem from Eqn. (3.5) is an important mathematical model for combinatorial op-
timization and generally known to be NP-hard [BDKS04]. Fortunately, there exist a
number of algorithms for the fast computation of good approximate solutions which
completely suffice for the task at hand. Among these, greedy algorithms were proposed
as favorable in [BDKS04] because they have an execution time linear in the number of
contour edge features N j, if the regularity condition (3.6) holds. Accordingly, such an
approach was chosen for the model feature set optimization proposed here.

The greedy algorithm employed in this thesis proceeds as follows. Initially, the infea-
sible solution xj = (xj

1, · · · , xj
Nj) = (1, · · · , 1) is chosen that represents the completely

unoptimized model feature set Fj
contour. Afterwards, starting with the right-most element

xj
Nj , the xj

i are iteratively set to zero, until a feasible solution is found that satisfies the
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optimization equation (3.5). Due to the regularity constraint, this procedure first erases
the contour edge feature with the smallest utility score and then eliminates further ones
in the order of increasing utility.

Optionally, Fj∗
contour can be restricted to satisfy a number of additional constraints that can

be obtained from visibility maps. Let f j
i,vis(a, e) denote the visibility of a contour edge

feature that is perceived from a direction specified by the discrete azimuth a and elevation
e. Then, each pair (a, e) for which a Booelan entry was recorded to f j

i,vis yields a constrain
of the form

Nj∑
i=1

f j
i,vis(a, e) ≥ Nmin, (3.7)

i.e. for any discrete view sphere position, Fj∗
contour must provide at least Nmin active model

features. Equation (3.7) is termed visibility constraint in the following. The greedy
algorithm accounts for extra constraints by setting any element xj

i only to zero, if this
operation doesn’t lead to a violation of the additional constraint set. If it would, the
greedy algorithm skips this element and resumes with processing xj

i−1.

Visibility constraints are important when optimizing model feature sets for
correspondence-based pose localization. In this case they are necessary to provide suffi-
ciently many contour edge features that can later contribute to solving the spatial match-
ing problem. Given visibility constraints, threshold b from Eqn. (3.5) is best set to a
value that is just high enough to permit a non-empty optimization solution. An appropri-
ate choice of b can be found by initializing it to N j − 1 and continually decreasing it as
long as the greedy optimization procedure yields a non-empty set.

In the context of appearance-based or sampling-based pose localization, a good choice
for b is much harder to obtain. We have already learned that these methods operate on the
object appearance as a whole and that the size of a contour edge set can only be reduced
as long as the represented contour information is preserved, at least to a large degree.
Clearly, removing a contour edge feature f j

i,contour from Fj
contour can only induce a loss

of contour information for those view directions, for which the feature would have been
active. Consequently, if the condition f j

i,contour /∈ Fj
active holds regardless of the chosen

view direction, i.e. the model feature is never active at all, it can be removed safely.
On the contrary, model features that are active from many view sphere positions might
induce too much loss of contour information. Thus, before a suitable choice of b can
be specified, it is necessary to obtain a measure for the amount of contour information
conveyed by a model feature set Fj

contour and to decide how much loss is acceptable.

Given a model feature set Fj
contour, a statistical measure for its amount of contour infor-

mation is given by the expected number of active contour edge features per view. It is
denoted qj in the following, or qj∗ when referring to the respective optimized set. Given
the visibility maps f j

i,vis, the value of qj is calculated by evaluating the visibility maps for
each discrete view direction recorded in the maps and normalizing over the number of
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view directions. Let D denominate the set of azimuth and elevation pairs (a, e) for which
visibility map entries have been recorded, with d = card(D). Then, as outlined above, qj

is given by

qj =

∑Nj

i=1

∑
(a,e)∈D f j

i,vis(a, e)

d
. (3.8)

We can now specify, how many percent of qj might be traded in for the sake of a model
feature set reduction and write this acceptable loss as ∆qj. Thus, for a model feature
set optimization in the context of appearance-based or sampling-based pose estimation,
the original problem in Eqn. (3.5) can additionally be constrained by restricting feasible
solutions to those sets Fj∗

contour that comply with

qj∗ ≥ qj(1−∆qj). (3.9)

Given this extra constraint, a suitable value for b can again be found by initializing it to
N j−1 and continually decreasing it as long as the greedy optimization procedure outlined
above yields a non-empty set.

3.3.3 Feature Utility Scores

It has so far been assumed that a score uj
i can be assigned to each contour edge feature

of the set Fj
contour. The score’s purpose is to represent the model feature utility with

respect to a given pose localization task and might therefore vary for different tasks. It is
specified in the following, which scores are employed in this thesis.

In the context of appearance-based and sampling-based pose estimation, the previous
considerations have stressed the paramount importance of potential model feature visibi-
lity. The larger the view sphere area is, from which a contour edge feature is potentially
visible, the more likely it is that the feature is classified as visible at the end of the 2-stage
process that was outlined at the beginning of this section. In order to select those model
features that are likely to be visible, uj

i can be calculated from the visibility map f j
i,vis of

the corresponding model feature f j
i,contour by determining

uj
i = V(f j

i,contour) =
visible area of f j

i,vis

total area of f j
i,vis

≈
∑

(a,e)∈D f j
i,vis(a, e)

d
, (3.10)

where V(f j
i,contour) is the visibility ratio from [EKSH05]. Given a small acceptable loss

∆qj, it can now be established empirically how much contour edge information of an
assembly part model can be optimized away. Figure 3.7 shows the results of optimizing
21 different assembly part models, with ∆qj varying from 0 to 6 percent. It can be seen
that the size of contour edge feature sets is reduced by approx. 50 percent in the best
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Figure 3.7: Optimization of 21 assembly part models with varying ∆qj. The dashed red line
illustrates the mean of all measurements

cases. The fat dashed line, which illustrates the measurement mean, shows that more
than 25% size reduction is achieved on average by performing the optimization scheme
with ∆qj ≥ 3.

In the context of correspondence-based approaches, model feature visibility is already
sufficiently enforced by means of the visibility constraints. Therefore, the utility score
doesn’t need to account for this kind of information any more. Instead, groups of contour
edge features should be selected that form locally salient structures like corners when
projected to the image plane. Corners are of high utility to correspondence-based pose
estimation because they can be matched more robustly to image features than straight
edges. Accordingly, in the context of such pose estimation approaches, utility scores uj

i
should reflect the ”cornerness” of pairs of contour edge features under projection to an
image plane. In the following, the absolute sine of two meeting edges’ inner angle is
used as score. Therefore, perpendicular edges receive the highest possible weight, while
co-linear edges are discounted.

The utility scores for an assembly part model Mj
part are calculated by traversing each

view direction (a, e) ∈ D for which visibility map entries were recorded. For each
view direction, the set of active contour edge features Fj

active is looked up and all of its
elements are projected to the 2D image plane. Afterwards, all 2D edge segment pairs are
determined that have endpoints meeting in an ε − ball. For each such pair (ej

l, ej
k), the

associated utility scores uj
l and uj

k are increased by abs(sin (∠(ej
l, ej

k))).
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Table 3.1 illustrates the model feature set reduction rates that were achieved when op-
timizing the 21 models from the previous experimental investigation. The setting was
Nmin = 15. It can be seen that this setting yields a compression rate of up to 91% and
achieves an average reduction of 54%. Thus, whenever a vision task needs part models
that always provide a small number of characteristic visible model features, e.g. in order
to establish correspondences, the automatically extracted contour edge feature sets can
be dramatically reduced in size by employing the optimization stage contributed here.

Table 3.1: Optimization of 21 assembly part models with visibility constraints and Nmin = 15

Model Feature set reduction
3-hole bar 42%
5-hole bar 57%
7-hole bar 67%
chinch connector, type a 73%
chinch connector, type b 68%
chinch plug, type a 73%
chinch plug, type b 58%
cube 74%
flat washer 48%
handle 91%
hexagonal nut 29%
ignition connector 32%
ignition plug 71%
industry norm screw 20%
nut 27%
oil cap 48%
wheel bearing 53%
ring 61%
scart connector 44%
scart plug 52%
toy screw 39%
average 54%

This section presented a two-stage process for the fast, reliable, and accurate determi-
nation of model feature visibility that operates on multi-part assembly models. When
analyzing the time complexity of this process, it became clear that the system’s online
performance would benefit from reducing the number of assembly part features. In order
to achieve such a reduction, this section contributed a new model feature optimization
stage which reduces the number of contour edge features down to a minimal number.
Two preliminary experimental investigations documented typical model feature set size
reductions that can be achieved with this approach. It remains to be established, whether
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the resulting contour edge feature sets are really suited for visual assembly inspection.
Performance aspects such as this one are evaluated in Chap. 5.

3.4 Aggregating Rigid Parts to Assembly Models

The previous two sections have shown us how contour edge features can be automati-
cally extracted from CAD models and how the model feature visibility determination can
be extended from part to assembly models. It has further been detailed how part model
feature sets can be optimized with respect to memory consumption. Taken together, this
information gives a clear picture of the structure of part models. However, the structure
of assembly models, i.e. part model aggregations, still remains to be covered to a similar
degree. In order to do so, it is important to get an idea of the the application context,
i.e. the vision system operations that must be supported by the assembly model repre-
sentation. It can then be defined how assembly models are structured and explained how
application context and assembly representation fit together. The following section ad-
dresses these issues, starting with a brief recapitulation of the information on assembly
models presented so far and a description of the application context.

3.4.1 Application Context of Assembly Models

Chapter 2.2 already explained that the system proposed in this thesis employs an object-
centered geometric assembly model representation and also motivated the choice of re-
presentation type. According to this categorization, each assembly part model is affixed
with its own object coordinate system and conveys a high amount of geometric shape
information. The latter is represented as sets of contour edge features3. We have also
learned that assembly models are attributed with structural knowledge like descriptions
of hierarchical part dependencies and possible motion between parts. Nevertheless, it is
still unclear what these hierarchical part dependencies really are and how motion bet-
ween parts is defined and constrained. And it is unclear in which respect these aspects
are relevant for performing visual inspection tasks. Within this application context, it
is mainly the assembly pose localization stage that imposes requirements on the assem-
bly model representation. It has already been declared before that this thesis employs
a new sampling-based pose estimation approach, namely a unique KPF. Details of this
approach are presented in the following chapter. At this point, it is sufficient to declare
that the KPF interfaces with assembly models mainly via three operations:
3It has been shortly mentioned before that color regions can be used as an additional kind of model feature.
The current implementation of the assembly inspection system doesn’t extract them automatically, though
the proposed model feature extraction stage could be extended accordingly. Therefore, the considerations
within this thesis are centered on contour edge features, as this is the only model feature type that was
automatically extracted within the experimental investigations
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1. Transform: Given an assembly pose, retrieve the position and orientation of
each assembly part model with respect to the camera coordinate system.

2. Query: Determine the visibility of assembly part features with respect to a given
assembly pose parameterization and camera.

3. Sample: Randomly draw an assembly pose parameterization from some distribu-
tion over the space of all physically possible assembly poses.

3.4.2 Assembly Pose Representation

All three interface operations somehow depend on an assembly pose or on an assembly
pose parameterization which is used as a synonym. Hence, it should be explained how
assembly poses are modeled within this thesis. Let A denote an assembly model that is
configured according to an assembly pose xA. Furthermore, the j individual part models
of the assembly are again referred to as Mj

part. Because we decided to use an object-
centered representation, each part model is affixed with its own local coordinate system.
Consequently, assembly pose xA must specify the orientation and position of each part’s
coordinate system. This leads to a pose vector of the form

xA = (x1
trl,x

1
rot, · · · ,x

j
trl,x

j
rot)

T, (3.11)

where xk
trl and xk

rot with k = 1, . . . , j specify the translation and rotation of the j part
models relative to some reference coordinate system. Note that the current system im-
plementation represents rotations with roll, pitch, and yaw angles as defined in [Cra89,
pp.45-48].

If the xk
trl and xk

rot would specify part translations and rotations relative to the same
reference coordinate system, A would be a pure part assembly model. However, it has
already been pointed out in Chap. 2.2 that models of this type fail to represent spatial
dependencies between individual parts. Because spatial dependencies help in stabilizing
the pose localization task, they are an important part of assembly models.

The description of spatial part dependencies is commonly divided into static and dynamic
information. The static description relates pairs of assembly part models to each other.
For each pair of models, one is declared as attached part and the other as base part.
By definition, the former might move with respect to the latter. Hence, the coordinate
system of an attached part is defined relative to the one of its base part. The dynamic
description of spatial part dependencies then specifies the relative pose parameter values.
In our case, the dynamic description is represented by the pose vector xA. Accordingly,
part translation xk

trl and orientation xk
rot with k = 1, . . . , j are interpreted with respect to

the base part of the kth part model.
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Figure 3.8: A baufixr assembly (left) and its kinematic tree (right)

Many CAD modeling packages represent the static part of spatial dependencies as a
directed graph structure in which nodes denote part models and directed edges represent
part relationships. Within such a dependency graph representation, any part model can
be attached to multiple other parts and also be the base part relative to multiple attached
elements. For our purposes, it is sufficient to restrict the graph representation to trees.
This decision simplifies modeling spatial relationships as it restricts attached parts to
have exactly one base part. Within an assembly model, the edges of a dependency tree
are attributed with dynamic part information, resulting in a kinematic tree as introduced
in Chap. 2.4. Thus, the pose xA of an assembly A is changed by modifying the edge
attribute values of the assembly’s kinematic tree, whereas the tree structure remains fixed.

Figure 3.8 illustrates an assembly composed from baufixr part models, together with
a corresponding kinematic tree. The example shows that the tree root is also a part, alas
without any base part. It is termed the root node part in the following. Its position and
orientation is always interpreted with respect to the world coordinate system.

Note that the kinematic tree from Fig. 3.8 isn’t unique. For example, there are many dif-
ferent ways of modeling ”being attached to” relationships, so a screw might be modeled
attached to a cube or vice versa and such decisions yield different dependency trees. One
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could also choose any other part for the tree’s root node. Fortunately, the pose locali-
zation stage doesn’t make any assumptions concerning kinematic trees. It just depends
on some spatial information being specified at all. So how is a kinematic tree like the
presented example obtained? Principally, this could be done by exploiting the internal
data of CAD modelers or by automatic conversion of liaison graphs. The latter were
originally introduced in [Bou84]. They encode physical contact relationships and can be
created automatically by analyzing surface contacts of CAD models or bounding box in-
tersections. Nevertheless, the current system implementation relies on manual kinematic
tree specifications, encoded as XML documents.

Returning to the application context, the above considerations also help to explain how
the Transform operation interacts with assembly models. First, the coordinate system
of the root node part is transformed to the camera coordinate system. This is easy because
the transformation between the world and the camera is known from applying standard
camera calibration techniques. Thus, one must simply concatenate the pose of the root
node part, which is defined relative to the world coordinate system, to the calibration
result. Afterwards, the Transform operation recursively traverses the kinematic tree.
With each step along a tree edge, the relative pose data that is attributed to the edge is
concatenated to the transformed pose of the respective base part. Once all model part
coordinate systems have been transformed to the camera coordinate system, the Query
operation can determine the assembly feature visibility by proceeding as presented in
Chap. 3.3.1.

3.4.3 Constrained Assembly Models

Transform and Query operate on given assembly poses. In contrast to this, Sample
is supposed to generate them. It has already been declared above that the task of this ope-
ration is to draw a random sample out of some distribution over the space of physically
possible poses. It remains to be established, what the meaning of ”physically possible”
is, what the purpose of this concept is, and how such a space can be represented.

Concerning the definition of ”physically possible”, Chap. 2.2 referred to those assembly
configurations that are specified in accordance with the laws of physics. For example,
both assembly poses in Fig. 3.9 are physically possible, though only the right hand side
instance is configured regularly. Impossible assembly poses would for example arise
from parameter values in xA that would require some assembly parts to float freely in
the air or vacate the same region in 3D space. In the following, CA denotes the space of
physically possible poses for assembly A or an approximation thereof.

The concept of ”physically possible” assembly poses is important in order to describe the
search space of assembly pose estimation activities in the context of visual inspection.
Most importantly, the space CA must subsume all regularly configured assemblies as well

50



3.4 Aggregating Rigid Parts to Assembly Models
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Figure 3.9: Screw-block assembly in a fault configuration (left) and with regularly mounted screw
(right). A, B, C, and D indicate specific part point positions

as fault configurations. Some systems only consider assemblies of the former subspace.
For example, the already presented system of Hel-Or & Werman [HOW96] estimates the
pose of a desklamp based on a set of constraint equations that provide valuable informa-
tion to the pose estimation task. We have learned in Chap. 2.2 that these constraints define
spatial invariants like co-linearity, co-planarity, parallelity or fixed distance relationships
of feature point groups. However, none of these constraints might hold if an assembly
isn’t built properly which is exactly the type of situation our system might encounter.
This problem is illustrated in Fig. 3.9. The points A,B and C,D on the screw-block as-
sembly could be subject to a parallel-constraint which would hold regardless of how far
the screw is twisted into the block. However, in case of a fault configuration such as
the illustrated one, the constraint would be violated and corresponding pose solutions
rejected.

This thesis modifies the constrained model concept of Hel-Or & Werman such that it be-
comes applicable for the visual inspection scenario. The assembly models proposed here
represent spatial constraints as additional kinematic tree attributes instead of constraint
equations. This approach exploits the fact that kinematic trees already model hierarchies
of parts that are being attached to each other. Therefore, what remains to be specified is
the variety of positions and orientations that any attached part might exhibit relative to its
base part. For this, a very simple model is chosen in the following.

Let the static spatial dependencies between the parts of an assembly be expressed as a
kinematic tree. Furthermore, let Ck

A denote the space of poses that a part model Mk
part with

k = 1, . . . , j can exhibit relative to its respective base part. Define the pose space of the
root node part model C1

A relative to the world coordinate system. Under the assumption
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that all part pose spaces Ck
A are static and mutually independent, the assembly pose space

CA can be composed by means of the cartesian product

CA = C1
A × · · · × C

j
A. (3.12)

We define that the kth part is expected to be placed at a fixed position and orientation re-
lative to its base part, called reference translation and orientation. Around this reference,
Ck
A might deviate in all 6 DOF within some enclosing hypercuboid. Formally, this model

of Ck
A can be expressed as

Ck
A =


∆x · φ1

∆y · φ2

∆z · φ3

∆α · φ4

∆β · φ5

∆γ · φ6

 +


x
y
z
α
β
γ

 , φ1, . . . , φ6 ∈ [−1, 1], (3.13)

where x, y, z denote the reference translation and the reference rotation is specified as
X–Y–Z fixed angles with γ roll, β pitch, and α yaw as defined in [Cra89, pp.45–48].
Note that this rotation angle convention is used consistently within this thesis. Addition-
ally, ∆x, ∆y, ∆z ∈ R define the maximal deviation from the reference translation and
∆α, ∆β, ∆γ ∈ [0, π] the maximal deviation from the reference rotation. Figure 3.10
illustrates how the pose space Cscrew

A of a screw is modeled with this approach. In this
example, ∆y models the possible screw translation along its thread axis as it is twisted
into the block. An arbitrary screw rotation about its thread is modeled with ∆β = π.
Furthermore, possible fault configuration are accounted for by specifying small values
0 < ∆α� π and 0 < ∆γ � π.

Principally, a pose space Ck
A isn’t independent from the other pose spaces C l

A with
l = 1, . . . , j and l 6= k. This is so because a specific part pose xk

A can become phy-
sically impossible, e.g. if another part is already vacating the associated position in
space. Because this interdependency between part pose spaces is neglected in the mo-
del of CA, Eqn. (3.12) and (3.13) strictly speaking capture not only physically possible
poses. Instead, they yield a rough approximation to the real space of physically possible
poses. The model nevertheless sufficiently constrains the assembly pose estimation pro-
cess. And it is general enough to represent regular and fault configurations of all major
conventional joint types like revolute, prismatic, cylindrical, planar, screw, and spher-
ical joints. What is even more important, one can easily sample from Ck

A by drawing
scalars φ1, φ2, φ3, φ4, φ5, φ6 from a uniform distribution in the interval [−1, 1] and apply-
ing Eqn. (3.13). Concatenating the sampled part poses analog to Eqn. (3.12) then yields
a sampled assembly pose.

Sampling assembly part poses as proposed above yields a pose distribution which is
uniform over the translation subspace but not over the rotation subspace. The latter phe-
nomenon arises from the employed rotation angle representation. For uniformly dis-
tributed values of roll, pitch, and yaw angles, the encoded orientations are distributed
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Figure 3.10: Representation of Cscrew
A for a screw-block assembly. Left: The screw origin O is at

reference (x, y, z, γ, β, α)T w.r.t. the fixed coordinate system of its base part (drawn
at the lower left for illustrational purposes). Arrows illustrate the maximal deviation
∆y. The other screw configurations correspond to different parameterizations of
(φ1, φ2, φ3, φ4, φ5, φ6)T

non-uniformly. However, the resulting distribution is smooth enough for the KPF to de-
termine assembly poses accurately. Furthermore, rotation angles are easier to interprete
and specify for humans as alternative representations like unit quaterions. This is im-
portant here because the current system implementation relies on a manual definition
of reference pose values and their maximal deviations. The automatic determination of
such parameters has already been attempted. For example, Sinha et al. [SGPK98] re-
trieve articulation information of assemblies by analyzing their CAD surface models.
Unfortunately, such approaches so far only cope with planar, cylindrical, and spherical
joints between assembly parts and thus aren’t mature enough for our purposes.

3.5 Summary

This chapter has covered all important aspects of the preparation of models for automated
visual assembly inspection. It initially provided ”the big picture” of the system modula-
rization and the interaction of the functional units. It also motivated, why CAD models
have been and still are a fundamental source of information for computer vision tasks in
the context of automated manufacturing. The system overview concluded with the enu-
meration of four requirements to assembly representations. In this way, the driving forces
were documented that dominated all subsequent considerations and design decisions.

The first section of this chapter then presented an approach for the automatic extraction
of model features from CAD models. Here, we learned that the chosen approach is a

53



3 Model Preparation

versatile combination of work from [Han01] and [EKSH05]. It can automatically retrieve
sets of contour edge features from CAD descriptions of single rigid assembly parts. The
model feature visibility is automatically precomputed for the case of scenes with single
parts and efficiently organized in look-up tables.

The second section initially discussed, how model feature visibility can be modeled in
the context of assemblies. As a result of the considerations, the visibility map concept for
single parts was extended to the multi-part case by specifying a fast two-stage visibility
determination process. The automatic model feature extraction stage and the two-stage
visibility determination process were reported in [SHS+04] which was published and
presented at the DAGM 2004 Conference in Tübingen.

When analyzing the time complexity of the visibility determination process, it became
clear that performance gains can be achieved by reducing the size of contour edge feature
sets. Therefore, this thesis contributed a new approach for the optimization of part fea-
ture sets. The approach uses two different optimization strategies in order to account for
the different requirements of correspondence-based or sampling-based (and appearance-
based) pose estimation techniques. Preliminary experimental investigations indicated
that the automatically extracted sets of contour edge features can be reduced significantly
in their size while retaining the information needed for solving the assembly pose estima-
tion task. It is important to note that both optimization strategies rely on the specification
of only one parameter which might be determined in advance for a given application
domain. This means that large parts of the model preparation effort can be automated,
namely the extraction and optimization of assembly part models.

The last section presented how part models are combined to form assembly models. It
first gave a more detailed specification of the application context within which assembly
models are embedded. Most importantly, a set of operations was defined that defines
the interface between assembly models and the system module for assembly pose loca-
lization. Afterwards, the structure of assembly pose specifications was discussed. Here,
we learned that assembly models within this thesis represent static ”being attached to”
relations between connected parts together with dynamic position and orientation infor-
mation via kinematic trees. Furthermore, this thesis contributed a versatile extension
of the concept of constrained models: By additionally attributing kinematic trees with
reference pose and maximal pose deviation information, assembly models obtain an ap-
proximate description of the space of possible part poses. Finally, this description was
shown to facilitate pose sampling in a simple and straight-forward manner. This property
is very important for the new KPF that is presented in the next chapter.

54



4 Assembly Inspection

Model-based computer vision demands high quality models. If the employed models
don’t live up to this strong expectation, none of the algorithms and approaches presented
here are able to turn water into wine. Accordingly, the previous chapter dedicated much
effort to the model preparation topic. This part illustrates how assembly models are put
into action. More specifically, it describes the online activities of the proposed system
for automated visual assembly inspection.

The considerations start with discussing assembly inspection task specifications, i.e. the
set of information that is needed to unambiguously define inspection scenarios such that
online visual inspection can proceed in an automated fashion. The following section
then provides a fine-grained presentation of the new kernel particle filter for assembly
pose estimation that is contributed by this thesis. Based on this description, it is finally
explained how part completeness and pose integrity classification can be performed, once
an assembly pose has been recovered.

4.1 Inspection Task Specification

Before our visual assembly inspection system can enter online operation, it needs to be
handed task specific information from the manufacturing environment. It is important
to discuss this information set because it concisely represents important assumptions on
which the proposed inspection system is built. For example, we have learned in the
introduction of Chap. 2 that the system expects to be told which assembly is inspected
next. This expectation is justified because production lines must track the identity of any
object that proceeds along them. Accordingly, object detection and recognition topics
were excluded from the scope of this thesis. In the following, the collection of external
task specific information is termed assembly task specification. The term scene model is
used as a synonym.

In the previous chapter, Fig. 3.1 has already illustrated that an assembly task specification
or scene model is used to initialize the proposed inspection system. As long as the type
of inspected assembly or any other item of the scene model information doesn’t change,
this initialization needs only to be performed once. The initialization data is currently
represented as a set of XML documents. In short, assembly task specifications collect the
following data from the manufacturing environment:

55



4 Assembly Inspection

- Assembly ID: An identifier of the assembly that is currently being inspected. The
identifier enables the inspection system to select the corresponding assembly model
from a database that maintains all model preparation outcomes.

- Interior camera parameters: Description of the camera’s effective focal length, de-
centering, and lens distortion (the current system implementation uses the ”Brown-
Conrady” distortion model that was proposed by Brown in [Bro66]). Based on this
parameter set, input images can be rectified prior to any further processing. After
rectification, the imaging transformation is represented with a simple pinhole ca-
mera model. This parameter set is determined together with the exterior camera
parameters by applying standard camera calibration techniques.

- Exterior camera parameters: Parameterization for the 6 DOF that relate the co-
ordinate system of the inspection camera to the world coordinate system. To-
gether with the camera’s effective focal length, this parameter set is needed for
the Transform operation from Chap. 3.4.

- Root node part pose initialization: Just as any other pose estimation approaches
known from the literature, the new KPF filter that is presented in this chapter per-
forms much more robustly, if approximate pose information is available as an ini-
tial pose hypothesis. Nevertheless, the KPF doesn’t depend on a full assembly pose
initialization. Instead, it only requires that the root node pose is known in advance.
This information is present in any manufacturing environment where the root node
part is manipulated in a very controlled manner, e.g. by mounting it on a fixture or
gripping it with a robotic manipulator. The root node pose might also be located
with any of the pose estimation approaches for single rigid objects that have been
presented in the related work chapter.

- Localization targets: In many situations, only some parts of an assembly must be
localized. Accordingly, this information identifies all assembly parts for which
pose information must be recovered. The KPF uses this list to restrict the pose
estimation efforts to the smallest connected subtree of the kinematic tree that re-
presents the assembly part dependencies.

- Classification targets. Analog to the localization targets above, this data lists the
identifiers of those parts for which classification results must be obtained. Note
that this set must be a true subset of the localization targets, i.e. classification is
only possible for parts that have also been localized.

- Valid pose space: Defines the space of valid assembly poses. This space is a strict
subspace of CA from (3.12) and (3.13). The description of the valid pose space is
needed in order to distinguish correct, i.e. valid, from fault assembly configura-
tions. It might be represented in a way similar to the representation of CA.
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4.2 Assembly Localization

With regard to the system overview that was presented in Fig. 3.1, the parts denoted
as ”Offline Model Preparation” and ”Initialization” have now been covered in detail.
Concerning the remaining issue of ”Online Inspection”, assembly pose localization is
addressed next.

In Chapter 2.4, sampling-based approaches were identified to be the most promising
methods for assembly localization. A key advantage is that they don’t depend on solving
the correspondence problem. Due to the self-occlusion that often arises from monocu-
lar observations of multi-part assemblies, this property is very valuable. Furthermore,
sampling-based approaches work well with memory-efficient assembly model represen-
tations. This sets them apart from appearance-based techniques. Consequently, it was
decided to pursue a sampling-based assembly pose localization approach in this thesis.
More specifically, the chosen method is a unique combination, modification, and exten-
sion of recent particle filtering techniques.

Figure 4.1 presents the functional modularization of the assembly localization process
that is contributed by this thesis. The process starts whenever a new input image becomes
available for inspection. The corresponding data element is positioned in the top left
figure corner. It’s underlined to indicate its status as major input- or output resource. The
upper half of the figure illustrates the preprocessing steps that are applied to each new
image, namely rectification, SUSAN edge detection [SB97], and chamfering [Bor86].
Parallel to the image preprocessing, the localization process is reinitialized whenever a
new assembly is presented to the observing camera. This process is visualized in the box
at the lower left corner of the figure. It employs the assembly pose space specification CA
from Chap. 3.4.3 to construct an initial particle set that represents the prior knowledge
on assembly poses. The concept of particle filters, particles and their initialization is
explained in full detail in Chap. 4.2.2, as indicated by the box subtitle.

The initial particle set is passed to the extended kernel particle filter which is detailed
in Chap. 4.2.3-4.2.7. This phase is depicted as the big box in the lower right half of the
figure. Its first major subpart is a conventional particle filter. The latter transforms the
input particle set to a new particle set that represents a coarse interpretation of the latest
image measurement. Within this transformation, the assembly model is projected to the
image plane under many different hypothetical assembly poses. Each projection is then
matched against the current image. As indicated in the figure, this step involves evalua-
ting the image cues that are detailed in appendix C. Furthermore, it makes use of the
reference pose information from Eqn. (3.13). The resulting particle set is subsequently
refined by several iterations of mean shift and weight update processes. The weight up-
dates involve projecting the assembly model and evaluating the image cues in a similar
manner than the SIR particle filter process. The final particle set is used to recover the
assembly pose. Furthermore, if new images of the inspected assembly become available,
the particle set can be fed back to the SIR particle filter without reinitialization.
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Figure 4.1: Architectural overview of the assembly localization process

Now that the modularization of the localization process has been introduced, its funda-
mental image processing steps can be explained in more detail. This is done in Fig. 4.2.
With respect to the architectural overview in Fig. 4.1, it zooms into the interaction details
of the extended kernel particle filter module. Most importantly, this figure introduces
symbolic representations of the interacting elements that will be used throughout the
theoretical considerations in the remainder of this chapter.

The illustrated process starts with the particle set {sn
t−1, wn

t−1} in the top left corner of
the figure. It can be interpreted as hypothetical assembly poses that are associated with
weights. By means of the weighted pose hypotheses, the localization module represents
all knowledge that is has of an assembly, after evaluating a sequence of images that
capture the assembly up to a scalar time step t − 1. At the subsequent time step t, this
knowledge is augmented with the information obtained from a new image observation
of the assembly. This is done by performing the depicted optimization loop that was
coarsely introduced in the previous figure. Note that the loop is performed for each
pose hypothesis and for several times, generating a set of weighted optimized hypotheses
{sn

t , wn
t } of the current time step t. The latter is finally used to obtain an estimate of the

assembly pose x̂t in the observing image at time step t, as shown at the lower right side
of the figure.
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Figure 4.2: The core image processing activities of the assembly localization module

Conceptually, the optimization loop carries out two principal tasks. Given a set of hy-
potheses that predict the assembly pose at time step t, the first task is to update the hy-
potheses weights. As stated before, the resulting weighted set represents the knowledge
of the assembly pose in the observing image sequence at time step t. The second task is
to optimize the predicted {sn

t }. Afterwards, the loop can start all over again.

The first principal task is initiated by projecting the assembly model to the image plane.
As already explained in the context of the previous figure, each projection corresponds
to a specific pose hypothesis. The resulting projections are then individually matched
against the current image by means of evaluating image cues. Figure 4.2 illustrates that
the cues are based on the Hausdorff distance and the Euclidean distance in some color
space. The latter is depicted with a dashed arrow, in order to indicate that the dependency
of the system on color information is purely optional. Afterwards, the system converts
each match score into a likelihood value. Note that this step assumes normally distributed
cue responses, which is explained in detail in Chap. 4.2.2. The likelihood value is used
as an estimate of the observation density p̂(yt|xt) which is assigned as new hypothesis
weight wn

t . Once the task of updating the hypotheses weights has been accomplished in
this way, the second principal task is then carried out by means of mean shift optimization
on the weighted pose hypotheses {sn

t , wn
t }.
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Chapter 1 has announced that this thesis proposes a system for the localization of as-
semblies from single monocular images. Considering this statement, it may come as a
surprise that the localization process introduced above is apparently designed to deal with
sequences of images. However, the findings aren’t contradictory. For the proposed locali-
zation approach, a single image is just a special type of image sequence, namely one that
provides measurements only for time step t = 1. In this case, the weighted hypotheses
set of the previous time step t = 0 is obtained from a uniform random sampling from the
space CA as stated earlier in this paragraph. The weights of this initial hypotheses set are
distributed uniformly, too.

The architectural overview from Fig. 4.1 shows that the image processing operations in-
troduced above implement different particle filtering techniques. It remains to be speci-
fied, though, what particle filters are. Most generally, they are categorized as Sequential
Monte Carlo methods. Their key idea is to approximate unknown probability distribution
functions (pdfs) with sets of weighted random samples such as the {sn

t , wn
t } introduced

above. In the context of computer vision tasks, the target pdfs usually model the state of
dynamic systems like moving objects. Particle filters observe how such systems evolve
over a series of scalar-valued time steps. At each time step t, a new image measurement is
made and the sample set approximation is updated to incorporate the latest observation.

The sequential update process of particle filtering is very versatile in the context of com-
puter vision tasks like tracking because it can process image streams online, whereas
batch procedures need the full set of image measurements in advance. Accordingly,
many different particle filters have been proposed for tracking. As tracking is closely re-
lated to the pose localization task, it deemed plausible that particle filters should also be
capable of performing 3D assembly pose estimation when this dissertation was started.
This principle turned out to be sound. Therefore, some important particle filters for vi-
sual tracking are outlined in the following. Then, it is explained how the task of assembly
pose localization can be addressed with conventional particle filtering. Afterwards, it is
shown how kernel particle filtering can be used in order to obtain a more compact re-
presentation of the modes of a pdf. The remaining subsections step-by-step introduce
important modifications that together form the new extended kernel particle filter for the
localization of multi-part assemblies.

4.2.1 Particle Filtering for Visual Tracking

A number of different approaches to particle filtering have influenced this thesis. In order
to account for each of them appropriately, they are outlined in the following. Note that
they have entirely been proposed for performing object tracking within image sequences.
It is discussed at the end of this paragraph in which important respects this task differs
from general pose estimation for assembly inspection.
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A widely recognized paper was published by Blake & Isard [IB98a] who were among
the first authors that used particle filtering to accomplish computer vision tasks. In their
work, they propose the CONDENSATION algorithm which they successfully apply to
the problem of visual tracking. For example, they track the contour model of a person
walking in front of other persons, the contour model of a dancing girl’s head, and the
model of a human hand. The first two examples require the determination of 6 DOF
whereas the hand model exhibits 12 DOF. Note that the hand was moved over a very
cluttered desk. However, in all cases the object motion was restricted to affine transfor-
mations which simplifies the tracking task considerably. Furthermore, a strong motion
model was available. It was learned prior to CONDENSATION tracking in a bootstrap
procedure that employed conventional Kalman filtering on video footage without (or only
little) clutter.

The work of Blake and Isard received much attention in the computer vision community
because it became apparent that, in the context of object tracking, particle filtering offers
advantages over conventional techniques like Kalman Filtering. A major reason for this
is the finding that object tracking frequently involves the approximation of non-Gaussian
and multi-modal pdfs, based on observation pdfs that are also non-Gaussian and multi-
modal. Deutscher et al. [DBNB99] illustrate this problem in the context of tracking
human motion. Such pdfs violate the fundamental assumption of Kalman filters and
extended Kalman filters that the respective pdfs are Gaussian. On the contrary, particle
filtering doesn’t impose any restrictions on the approximated pdfs.

A large body of literature has sprung from the original proposal of Blake and Isard. For
instance, Fritsch [Fri03] extends it with the incorporation of symbolic context knowledge
in order to recognize manipulative gestures in an office and an assembly construction
domain. Nevertheless, it is important to note that CONDENSATION particle filtering
becomes computationally intractable for state spaces of a dimension higher than 10 to
15. The basic problem is that a suitable approximation of pdfs requires particle numbers
to increase exponentially in the dimension of the state space. Consequently, standard
particle filtering is computationally intractable for the pose localization of multi-part as-
semblies, as their state space easily exceeds a critical number of dimensions.

Chang & Ansari [CA03, CA05] and Schmidt et al. [SKF06] recently proposed kernel
particle filtering to alleviate the above mentioned problem. By interpreting particles as
state space positions around which kernels can be shaped, they combine particle filtering
with kernel density estimation. This approach offers the advantage that positions between
samples can be interpolated via kernel density estimation. The kernel representation thus
allows to approximate a pdf with rather sparsely distributed particles. Furthermore, the
authors note that quite frequently one isn’t interested in approximating a whole target
pdf but rather needs to find its modes. They consequently apply a local mode finding
approach, namely the mean shift algorithm. An instructive tutorial that demonstrates the
application of this standard technique in the domain of image segmentation can be found
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in [CM02]. The application of mean shift iterations on sets of particles yields a compact
representation of the modes of a high-dimensional pdf. With this technique, Schmidt et
al. manage to track the articulated 3D model of a human torso and arm with 10 DOF in
real-time performance on a standard PC. In this thesis, we also follow a kernel particle
filtering approach. Several extensions and modifications are contributed that improve the
measurement accuracy and precision of the respective assembly pose localization.

The density estimation that is inert to kernel particle filtering demands the specification of
bandwidth parameters. Their number grows linear in the dimension of the sample space.
However, Chang & Ansari [CA05] suggest that one bandwidth parameter is sufficient,
if the sample space undergoes a variance normalization. This thesis takes up the idea of
Chang & Ansari and extends it with an automatic bandwidth selection scheme. The latter
is similar to an approach that was proposed by Comaniciu et al. [CRM01] in the context
of mean shift image segmentation. The resulting KPF still depends on one bandwidth
parameter but behaves more stable.

Deutscher at al. [DBR00] published an alternative idea in order to dampen the amount
of particles needed for pdf approximation. The authors generate particle sets in a layered
fashion. Each layer contains a small number of particles that are sparsely distributed
in the state space. By manipulating the function that associates weights to particles,
Deutscher and colleagues manage to iteratively migrate the particles to the modes of the
target pdf. Because their approach uses ideas from simulated annealing procedures, they
name it annealed particle filtering. This thesis incorporates a new KPF extension that is
related to the idea of weighting function manipulation in the course of mode detection.

Gavrila & Davies [GD96] proposed a multi-view approach for the 3D model-based track-
ing of humans. Here, they use a search space decomposition strategy in order to re-
duce the complexity of the tracking task. It proceeds by first determining the position of
head and torso. Afterwards, the model parts representing arms and legs are fitted to the
image independent from each other. The advantage of this approach is that it divides the
state space into three subspaces within which the subsequent search is computationally
tractable. However, the proposed partitioning of the search space is quite ad hoc as the
authors don’t state a decomposition strategy. In this thesis, the proposed KPF employs a
heuristic that dynamically partitions the state space into subspaces of constant dimensio-
nality. This strategy is fundamental for obtaining a KPF that can perform pose estimation
for assemblies that are composed from multiple parts.

In Summary, all mentioned approaches have contributed advances in the field of visual
tracking. Their capability to localize even articulated objects is appealing. However, it
must be noted that the presented tracking approaches rely on two key assumptions that
can’t be made in the more general case of pose estimation for assembly inspection. First,
all mentioned approaches depend on a full pose initialization to be given in advance.
Second, based on this initialization, the approaches determine the object pose in subse-
quent images by exploiting a tracking assumption. The latter assumes that an object can’t

62



4.2 Assembly Localization

move far in the small time that elapses in between the recording of two successive image
frames. The tracking assumption helps to exclude large image and pose space regions
from further consideration and thus provides a powerful search constraint. Furthermore,
in some of the proposed tracking scenarios, motion models are learned in bootstrap pro-
cesses which also guide the tracking.

In a case like assembly pose localization, where all the above mentioned assumptions
and constraints are missing, any single of the proposed tracking approaches wouldn’t
take us very far. Therefore, the most important contribution of this thesis is to combine
and extend the ideas presented above in order to obtain a new kernel particle filter that
performs the task of assembly localization.

4.2.2 Particle Filtering for Assembly Pose Estimation

In order to gain a thorough understanding of the proposed new kernel particle filter, the
theoretical foundation of particle filtering in general is shortly recapitulated first. We then
encounter the algorithmic implementation of an important particle filter subtype whose
working principle is closely related to kernel particle filtering. The presented algorithm
is very simple but illustrates all the better, how our assembly models are employed in
the process of particle filtering. Taken together, the considerations of this section will
introduce us firmly to assembly pose estimation from sequences of image measurements.
We will also see that the method is applicable to the special case of single images. Once
this has been established, it is discussed in the subsequent sections how kernel density
estimation techniques can be mixed with particle filtering and how this combination can
be refined in order to increase the localization accuracy and precision for a fixed number
of samples.

Theoretical Foundation

Consider the example assembly that is illustrated in Fig. 4.3(a). In order to obtain its
model, the CAD models from subfigure 4.3(b) were processed with the approach from
Chap. 3.2 to automatically extract the part model features that are illustrated in subfi-
gure 4.3(c). The latter were optimized, following the procedure described in Chap. 3.3.
Finally, the optimized part models were manually composed to an assembly model which
is sketched in 4.3(d) together with its kinematic tree. Our overall aim is now to deter-
mine the assembly model pose from image measurements like the one shown in subfigure
4.3(e). This task is first considered theoretically in the following.

Let xA,t ∈ CA denote an assembly pose vector of the form given in Eqn. (3.11). From
the perspective of particle filtering, such a pose vector describes the state of an arbitrary
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(a) (b) (c)

(d) (e)

Figure 4.3: The assembly localization scenario. a) An assembly of two bars, a screw, and a nut
under reference configuration. b) Input CAD models for the model preparation stage.
c) Automatically generated part models. d) The final assembly model and a sketch of
its kinematic tree. Here, the assembly is configured according to the reference pose
values from CA. Black lines denote visible contour edge features. e) A new image
that contains the assembly with unknown pose parameters

system and is therefore also termed state vector or system state. Generally, system states
are expected to change over time. For ease of notation, the system state or assembly pose
at time step t ∈ N is expressed as xt in the following. An estimate of the true system
state will be denoted as x̂t, consistent with the notation from Fig. 4.2. Furthermore, let yt

be an image measurement which observes the assembly at time step t, and let the history
of individual image measurements be denoted by Yt = {y1, . . . ,yt}. The overall task of
particle filtering in such a setting is to determine p(xt|Yt).

The pdf p(xt|Yt) is a probabilistic characterization of the knowledge about assembly pose
xt that is gathered from the history of image measurements Yt. In order to construct this
characterization, particle filtering relies on a system model and an observation model that
are written as
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p(xt|xt−1) for t ≥ 1 (4.1)
p(yt|xt) for t ≥ 1 (4.2)

The system model (4.1) captures the expected system dynamics, independent from any
observation measurements. Particle filtering assumes that this model is a first-order
Markov process that depends solely on the knowledge of the previous state. The observa-
tion model (4.2) specifies a pdf that is also termed observation density in the following. It
reflects how well the latest image measurement complies with a specific assembly pose.

Conceptually, particle filtering constructs the pdf of the current state p(xt|Yt) by imple-
menting a recursive Bayesian filter. Such filters operate in two steps that are repeated
for each new measurement. The first step recursively processes the result of the previous
iteration, p(xt−1|Yt−1), by updating it with the expected system dynamics. Formally, this
update or prediction step is described as [IB98a]

p(xt|Yt−1) =

∫
p(xt|xt−1)p(xt−1|Yt−1)dxt−1. (4.3)

At time step t = 1, there clearly is no previous state pdf to be updated and the history
of measurements Yt−1 is the empty set. Therefore, it is assumed that an overall prior
p(x0) is given such that one can define p(x0|Y0) ≡ p(x0). The second step then accounts
for a new incoming image measurement by augmenting the intermediate prediction step
result with the observation model (4.2), yielding the posterior pdf p(xt|Yt) at time step
t. Assuming that the image measurements depend conditionally only on the current time
step, this is done by applying Baye’s rule as a propagation step

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)∫

p(yt|xt)p(xt|Yt−1)dxt
. (4.4)

Arulampalam et al. [AMGC02] provide a detailed introduction to recursive Bayesian
filtering and various algorithmic implementations thereof. They make clear that Kalman
filtering provides the exact solution in the highly restricted case where all involved pdfs
are Gaussian and the functions that are inherent to the observation and system model are
linear. For non-Gaussian pdfs, particle filtering is a simple and effective way to obtain an
approximate solution.

Particle filtering generates Ns discrete samples {sn
t }Ns

n=1 within the state space considered
at time step t that can be interpreted as hypothetical instantiations of the system state
xt. In our case, the state space is the space of physically feasible assembly poses as
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described in Chap. 3.4.3, i.e. sn
t ∈ CA for 1 ≤ n ≤ Ns. Each sample is associated with

an individual weight wn
t . A weighted sample is called particle. The outcome of a particle

filtering iteration, i.e. a particle set {sn
t , wn

t }Ns
n=1, is a discrete weighted approximation of

the posterior pdf. The approximation is formally expressed as

p̂(xt|Yt) =
Ns∑

n=1

wn
t δ(xt − sn

t ), (4.5)

where the Dirac δ-function provides the transition from the continuous to the discrete
space. The more particles are contained in the set, the closer this approximation is to a
functional representation of the posterior.

The core algorithmic problem of particle filtering is how to generate a particle set that
approximates the posterior pdf as in Eqn. (4.5). Ideally, one would like to sample it
directly from the posterior pdf. However, this would demand a functional representation
that doesn’t exist in situations where particle filtering is applied. Instead, many different
particle filtering algorithms have been proposed, each manipulating the sample set in its
own way in order to arrive at the posterior pdf approximation. According to [AMGC02],
the main differences of particle filters lie in the way they generate weights and how they
compensate particle set degeneration. The latter describes the problem that, after some
iterations, a particle set might contain a large number of samples whose weights are
almost zero and thus effectively don’t contribute to the solution any more. This problem
has been addressed with various resampling techniques. In this thesis, a mean shift based
approach is used which is presented in Chap. 4.2.3 to 4.2.5.

The generation of weights has been approached in ways that mainly vary in the additional
assumptions being made. However, the underlying theoretical foundation usually is an
importance sampling approach. The principle of importance sampling is summarized in
appendix B. It leads to weights wn

t that are chosen according to

wn
t ∝ wn

t−1

p(yt|sn
t )p(sn

t |sn
t−1)

q(sn
t |sn

t−1,yt)
, (4.6)

where p(yt|sn
t ) and p(sn

t |sn
t−1) are point-wise evaluations of the measurement and system

model, and q(sn
t |sn

t−1,yt) evaluates a proposal distribution q(xt|xt−1,yt) at specific sam-
ple positions. The proposal distribution q(xt|xt−1,yt) is used to generate new samples
{sn

t }Ns
n=1 from the samples of the previous time step. If the weights of the new samples

are updated according to (4.6), the resulting particle set is a valid representation of the
posterior pdf.

Note that we’re allowed to choose the proposal distribution q(·) freely. This enables us
to fully control the state space regions from which new samples are drawn. Clearly, the
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Algorithm 1 CONDENSATION
Input: St−1 ← {sn

t−1, wn
t−1}Ns

n=1, new image measurement yt

// For single images, let t = 1 and initialize St−1 from prior p(x0)
1: For all n = 1 : Ns do
2: Choose sk

t−1 randomly out of St−1 with probability wk
t−1 and 1 ≤ k ≤ Ns.

3: Sample sn
t ∼ p(xt|sk

t−1).
4: Evaluate wn

t = p̂(yt|sn
t ).

5: End For
6: Normalize weights wt such that

∑
n wn

t = 1.
Output: St ← {sn

t , wn
t }Ns

n=1 // For single images: stop here

particular choice of q(·) is crucial for the performance of the associated particle filter. We
will see later that the key to the good performance of kernel particle filtering lies in the
fact that it employs a smart proposal distribution. At first, however, a simple choice of
q(·) is discussed in the following that leads to a considerable simplification of the weight
generation scheme from (4.6).

SIR Particle Filtering and CONDENSATION

The proposal distribution q(·) in Eqn. (4.6) reflects application specific knowledge,
namely state space regions of paramount importance. If such regions are known, parti-
cles can be exclusively drawn from them instead of sampling from the whole state space.
However, quite frequently a separate model for q(·) isn’t available. In this case one can
simply plug in the system model (4.1) by defining

q(xt|xt−1,yt) = p(xt|xt−1). (4.7)

Point-wise evaluation of q(·) at sample positions now reduces expression (4.6) to

wn
t ∝ wn

t−1p(yt|sn
t ). (4.8)

This choice leads to sampling importance resampling (SIR) particle filters. Most interes-
tingly, it will be shown later in this thesis that kernel particle filtering is closely related
to SIR particle filtering. Therefore, its working principle is illustrated in the following.
This is done by discussing CONDENSATION, which is a well known algorithmic im-
plementation that was originally proposed by Isard & Blake [IB98a].

Algorithm 1 describes one iteration of CONDENSATION. It operates on the particle
set St−1 of the previous time step. As discussed in the previous paragraph, the initial
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particles at time step t = 1 are created by sampling from the overall prior p(x0). In
our case, this simply means to draw samples from some distribution over the assembly
state space CA by means of the Sample operation as described in Chap. 3.4.3. In the
absence of any further knowledge, we choose a uniform distribution to create the samples
sn
0 ∼ p(x0) for n = 1, . . . , Ns. Each sample is assigned a uniform weight wn

0 = 1
Ns

.

Once the input particle set St−1 is available, the CONDENSATION algorithm creates the
particle set of the current time step t. Each new particle at time step t emerges from a
sequence of three operations. The first step performs resampling. This proceeds by ran-
domly choosing a sample with replacement from St−1. Afterwards, stochastic diffusion
applies the system dynamics model as stated in line 3. As long as no further informa-
tion is available, the latter simply adds some zero-mean Gaussian noise to the sample
copied from St−1. If global motion information is available, e.g. because the currently
inspected assembly is deliberately moved with robotic manipulators or along an assembly
line, it must be incorporated here as well. By means of stochastic diffusion, the algorithm
implements the sampling from the proposal distribution q(xt|xt−1,yt) = p(xt|xt−1). Fur-
thermore, the resampling effects that each copied sample sn

t receives a uniform weight
wn

t = 1
Ns

. The next major algorithmic operation is to update the sample weight as stated
in line 4. According to Eqn. (4.8), this update step incorporates the latest image mea-
surement information by evaluating the observation model w.r.t. the current sample and
image. The next paragraph will illustrate the chosen observation model in more detail.
The evaluation step yields an approximation to the true density values up to a proportio-
nality constant.

After performing resampling, stochastic diffusion and weight update, the particle weights
are finally normalized as indicated in line 6, which enforces that they sum up to 1.
The resulting particle set approximates the current time step’s posterior pdf as given
in Eqn. (4.5). The assembly pose at time step t can then be recovered in different ways.
If the posterior is unimodal and unskewed, a MAP estimate x̂t of the expected assembly
pose at time step t is given by the posterior’s mean

x̂t =
Ns∑

n=1

wn
t s

n
t . (4.9)

In this thesis, it is assumed that the posterior pdf is multi-modal. For such distributions,
the highest local mode can be used to recover the assembly pose as a MAP estimate. In
order to determine this mode from a given particle set, the particle (sn

t , wn
t ) with the high-

est associated weight can be used as a coarse estimate. In Chap. 4.2.7, it is explained how
the KPF proposed in this thesis determines a more robust estimate of the most prominent
local mode.
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Evaluating the Observation Density

So far, we have learned that particle filtering involves the representation of several pdfs.
Before one of them is discussed in more detail in the following, it is important to put
forward some words of caution. None of the ”estimates” of pdfs that have been presented
so far and that are presented in the remainder of Chap. 4.2 are valid statistical probability
density estimates. The reason for this finding is that the number of particles that can
be employed by a particle filtering implementation doesn’t nearly suffice to obtain such
estimates. Fortunately, they aren’t needed because the overall aim of the proposed system
is just to determine the positions in the pose space that correspond to the local modes of
the posterior pdf. The true quality of the employed density estimates isn’t important, as
long as the sparsely distributed particles are sufficient to correctly locate peaks of the
posterior. Principally, the particle filtering approach that is proposed in this thesis can be
understood as the attempt to approximate a function that has its maxima at the same state
space positions than the true posterior pdf.

As explained in the previous paragraph, a particle set representation of the posterior is
obtained by choosing weights according to (4.8). Thus, the nth weight must be chosen
proportional to the observation density p(yt|xt), evaluated at the associated sample po-
sition sn

t , 1 ≤ n ≤ Ns. This step is very important since it integrates the latest image
measurement into the posterior estimate. And it is the first point at which the assembly
models are put into action. In order to give a thorough account of the proposed assembly
localization approach, it is therefore discussed in the following how the proposed system
performs the weight update and estimates p(yt|xt).

The overall concept of weight updates is illustrated in Fig. 4.4. The figure shows that
each particle sn

t can be interpreted as hypothetical assembly pose xt = sn
t . For each such

pose, the assembly model is transformed to the camera coordinate space by invoking
Transform as indicated in Chap. 3.4.2. The visible model features are then predicted
by means of a Query operation (cf. Chap. 3.3.1) and projected to the image plane. Note
that this step is the projection operation of the SIR particle filter that is illustrated in the
overview figure 4.1. Finally, the observation density is evaluated by rating how well the
latest image observation agrees with the current pose hypothesis and its model feature
set. The resulting value is used as new particle weight.

It was already visualized in figures 4.1 and 4.2 that an estimate of the observation density
p̂(yt|sn

t ) is obtained from the evaluation of different cues. In the current system imple-
mentation, these cues are based on edge and color features. However, the approach allows
to change or add cues at need, which is useful if other model and image features like tex-
ture are available. The cues are applied to the visible model features of each individual
assembly part. Each resulting cue strength, also termed filter response, is then converted
into a likelihood value by employing a Gaussian weighting function. The latter assumes
that filter responses are normally distributed with zero mean and a cue specific variance
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Figure 4.4: The weight update process of a specific particle sn
t

that can easily be estimated from training data. Though this assumption oversimplifies the
real filter response distribution, it still facilitates a robust assembly pose estimation. The
likelihood values are finally combined to an approximation of the observation density, up
to an unknown but neglectable normalizing constant. Note that this approach simplifies
previous work by Sidenbladh & Black [SB01] who additionally employ a background
model. It is also related to the approach of Schmidt et al. [SKF06] but uses different cues
and a more robust cue combination scheme. A full account of the observation density
estimation procedure proposed by this thesis is given in the following.

As indicated earlier in this paragraph, the estimation of the observation density is pre-
pared by obtaining the visible model features of an assembly under pose xt = sn

t . This
is done by invoking a Transform and Query operation. For each assembly part, the
visible model features are then individually projected to the image plane and a set of 2D
points is created from sampling along the projected model features. Let zk

t denote a set of
2D points that have been placed equidistantly along the projected visible model features
of part k as illustrated in Fig. 4.5. Note that all points z ∈ zk

t and the image yt share the
same coordinate system in the remainder of this paragraph. Each cue can then be defined
as a function fc(z

k
t ,yt) where c is a placeholder for the cue type. For the prototype of

the proposed system, three cues were implemented, namely the forward distance cue (in
short fw), the backward distance cue (bw), and the color cue (col). They are described
in appendix C. By means of small pilot studies, it was found that the color cue provided
little extra stability for our application domain. Therefore, all experimental investigations
of the evaluation section were carried out with edge based cues.

In order to combine cues to an approximate observation density, the individual filter
responses must first be transformed to a joint probabilistic space. Assuming that the filter
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(a) (b) (c)

Figure 4.5: Sampling from projected model features. a) The 4-part assembly from the previous
figures. b) Sample points (red) have been placed equidistantly along the visible con-
tour edges (black) of part 1, resulting in z1

t . c) Sampling from the visible contour
edges of part 4 yields z4

t

responses are normally distributed and centered at zero, Gaussian weighting functions
are employed for this task. They are of the form

p(fc(z
k
t ,yt)) ∝ exp

(
−(fc(zk

t ,yt))
2

2σ2
c

)
. (4.10)

Here, c denotes either of the three cues presented above, i.e. c ∈ {fw, bw, col}. Accor-
dingly, σc is a cue specific variance that can be estimated from training data.

In the following, the p(fc(z
k
t ,yt)) are interpreted as cue specific approximations of a like-

lihood function p(yt|xk
t ) that judges how likely different part pose hypotheses xk

t are
causing the current image measurement yt. They are also termed cue likelihoods. Unlike
Schmidt et al., we combine these individual approximations to a more robust estimate of
the likelihood function p(yt|xk

t ) by averaging over the weighted cues

p̂(yt|xk
t ) = N−1

cues

∑
c∈{fw,bw,col}

p(fc(z
k
t ,yt)), (4.11)

where Ncues is the number of cues over which we average1. An unknown normalization
constant has been neglected here, which isn’t problematic because the weights that arise
from this estimate are normalized after updating.

1Based on the findings from [TvBDK00], forming the average can be considered more robust than using a
product rule, if each of the combined densities is subject to strong estimation errors. This is certainly the
case because the filter responses aren’t really normally distributed.
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Assuming that the likelihood functions for different assembly parts explain mutually in-
dependent parts of the image measurement, they can be combined to an estimate of the
observation density p(yt|sn

t ) at the state space position xt = sn
t by forming their product

p̂(yt|sn
t ) = N−1

cues

j∏
k=1

∑
c∈{fw,bw,col}

p(fc(z
k
t ,yt)). (4.12)

Again, an unknown normalization constant has been neglected here. It can be safely
ignored in the context of weight generation, because this estimate is still proportional
to the true density and we know from (4.8) that this is sufficient. The weights are then
normalized as stated in line 6 of Alg. 1.

Chapter 4.1 introduced localization targets as part of an assembly task specification. The
set of localization targets consists of the indices of those assembly parts that are asserted
relevant for the ongoing inspection task. This concept allows us to specify multiple
inspection tasks that consider the same assembly but focus on different part subsets. The
latter is important, if inspection planning yields that image measurements from a specific
point don’t suffice to capture all assembly parts but rather multiple camera perspectives
and settings are needed. In that case, it is possible to restrict the product of cue likelihoods
in Eqn. (4.12) to apply only to subsets of {1, . . . , k}. The remaining parts are nevertheless
important, namely for the prediction of visible model features by means of Transform
and Query operations. Their pose must either be explicitly known or defaults to the
reference translation and rotation from (3.13).

Sometimes a hypothesized assembly part whose index is among the localization targets
yields only an empty set of visible model features. This happens if, with regard to the full
considered assembly pose, the part is completely occluded by others. None of the above
cues can then be evaluated. Assuming that, after proper inspection planning, localization
targets should be at least partially visible within an image measurement, the observation
density in such a case receives a value very close to zero. Most importantly, this effects
the pose localization module proposed in this thesis is incapable of recovering assem-
bly poses in which localization target parts are completely occluded because these pose
hypotheses will always receive insignificant weights.

This paragraph provided a detailed introduction to particle filtering for assembly pose
localization. It was shown how particle filters facilitate sequential processing of image
sequences. Because no assumptions were made concerning the sequence length, all that
has been said specifically holds for image sequences of length one. Based on a sin-
gle monocular input image that observes the assembly under inspection, the presented
SIR particle filter can therefore generate a sample set approximation of the posterior.
The paragraph also explained the details of adapting SIR particle filtering to the task of
assembly localization. The most important step was to define an application specific ap-
proximation of the observation density. The approximation is based on the combination
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of different image cues. The resulting SIR particle filter is an important part of the kernel
particle filter that is introduced next.

4.2.3 Foundations of Kernel Particle Filtering

A fair sample set representation of the posterior p(xt|Yt) depends strongly on the dimen-
sionality of the state space, which in our case is the assembly pose space. Clearly, the
more DOF an assembly exhibits, the more particles are needed in order to cover the pose
space and to identify subspaces of high density. In fact, after one iteration of the CON-
DENSATION algorithm from the previous paragraph, many particles will have nearly
zero weight. We have already learned that this phenomenon is commonly known as the
degeneracy problem. In order to determine, how many particles of a given set effectively
contribute to the posterior approximation, the effective sample size was proposed (e.g. by
Kong et al. [KLW94]). Its estimate, N̂eff , is obtained from

N̂eff =

[
Ns∑

n=1

(wn
t )

2

]−1

. (4.13)

In order to identify critically degenerated particle sets, one can test whether N̂eff falls
below a task specific threshold T . Alternatively, one can try to estimate the particle
survival rate α. The latter expresses the number of particles that are expected to survive
a resampling step such as the one in line 2 of Alg. 1. For particle sets with large Ns, one
can approximate the survival rate as [MI00]

α ≈ N̂eff

Ns

, with 0 ≤ α ≤ 1. (4.14)

Clearly, the smaller the survival rate α is, the more particles are needed in order to retain
a minimal number of effective samples after a particle filtering iteration. More precisely,
MacCormick & Isard [MI00] estimated that approaches like SIR particle filtering demand
a particle set size Ns of at least

Ns ≥
T
αd (4.15)

particles, where T is the smallest acceptable efficient sample size and d is the dimension
of the state space.

Many different approaches have been proposed in order to increase the particle survival
rate α and thus alleviate the problem of excessive particle set sizes when facing high-
dimensional state spaces. Within the application domain of visual inspection, we can
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exploit the fact that we don’t depend on representing the posterior pdf p(xt|Yt) equally
well over the full state space. Instead, we are much more interested in a compact re-
presentation of its local modes. The strongest such mode yields a MAP estimate of the
assembly pose that gave rise to the observed image. In contrast to this, posterior regions
of low density carry no information that is relevant for our task. The general idea of
kernel particle filtering hence consists of moving the particles towards local modes of the
posterior pdf.

It is important to note that the central idea of kernel particle filtering was independently
developed and published by Chang & Ansari [CA03, CA05] and Schmidt et al. [SKF06].
The following discussion adopts large parts of the approach in [CA05]. However, the
presented contents differ in two important respects. First, a CONDENSATION step is
used for the initialization. This stabilizes the approach by providing a coarse estimate
of the posterior that can afterwards be improved with the mean shift iteration. At the
same time, it reduces the computational load of the reweighting steps that are performed
after each iteration of mean shift. Second, this thesis contributes a thorough grounding of
the KPF algorithm to the concepts of kernel density estimation, mean shift and particle
filtering. Above all, this allows to better understand why the KPF algorithm has been
reported to improve the performance of SIR particle filters significantly.

The general concept of the kernel particle filtering procedure is illustrated in Fig. 4.6.
The first subfigure shows the particle representation of a posterior pdf that was cre-
ated by performing one iteration of CONDENSATION. It can be seen that the particles
{sn

t , wn
t }Ns

n=1 populate the state space sparsely. Nevertheless, they suffice to obtain a first
estimate of the posterior by means of some procedure that will be discussed in the next
paragraphs. Subfigure 4.6(b) shows a kernel density estimation outcome. The parti-
cles are then shifted towards the local peaks within the estimated density as depicted in
Fig. 4.6(c).

The shift operation leaves the particles scattered near local density modes. As a result,
a more precise estimate of the density near the local modes can be obtained. One might
consequently update the particle weights and repeat the density estimation and particle
shifting steps of Fig. 4.6(b) and 4.6(c) for several times. In this way, the particles are
gradually concentrated at the local modes of the estimated density. Afterwards, a new
image measurement can be processed by performing a new CONDENSATION step that
uses the shifted and reweighted particles as prior, and so forth. Both the density estima-
tion and the particle shifting process will be introduced formally in the following.

Non-Parametric Density Estimation

The previous paragraph showed us that kernel particle filtering involves the estimation
of the density underlying the particle set {sn

t , wn
t }Ns

n=1. This might seem a waste of time,
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(a) Initial particles (b) Kernel density estimate of the posterior

(c) Induced shifts

Figure 4.6: Kernel particle filtering. a) Initial particle set after CONDENSATION in a 1D exam-
ple state space. The y-axis denotes the particle weight. b) Kernel density estimate of
the associated posterior density. The particle positions {sn

t }Ns
n=1 are indicated as black

vertical lines. c) Arrows denote the shift induced by one iteration of mean shift. Black
vertical lines denote the new particle positions {sn∗

t }Ns
n=1

given that this density is exactly the posterior that is already being approximated by the
particle set according to Eqn. (4.5). However, the latter equation only holds for Ns that are
large enough to permit a dense sampling of the posterior pdf. The reason for this is that
the particle set approximation to the posterior pdf is fair at sample positions but possibly
bad in between them. Given a rather sparsely sampled state space, the application of
additional density estimation techniques therefore still has the potential to yield a more
robust density estimate.
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Principally, there are two classes of density estimation techniques. Parametric methods
assume that a specific model function is known and aim at finding the set of parameters
that best fit the model to the observations. Because we don’t have such a model, we can
dismiss the idea of employing parametric density estimation. The second broad class
consists of nonparametric techniques which don’t rely on knowing a specific model. For
example, histograms are a widely used nonparametric density estimation approach. In the
following, we focus on employing kernel density estimation. In the pattern recognition
literature, this approach is also known as the Parzen windowing technique (e.g. [DH73]).

The kernel density estimate (KDE) f̂K(x) of an unknown probability density function f (x)
is obtained from a sample {xn ∈ Rd}Nx

n=1 of the unknown density. The KDE is computed
by determining the distance between x and the Nx data points xn, rating the distances
with a kernel K, and averaging the outcomes. Formally, this is expressed as

f̂K(x) =
1

Nxbd

Nx∑
n=1

K
(

x− xn

b

)
, (4.16)

where b is the kernel bandwidth that parameterizes the width of the kernel K. In the
following, K is taken to be a radially symmetric, non-negative function that is centered
at 0 and integrates to 1 [CM99]. Note that one could also employ a bandwidth matrix
instead of scalar b in order to parameterize the estimator. However, we refrain from
doing so because this would make the parameter value choice even more complicated
than it already is for one bandwidth parameter. This topic is considered in more detail in
Chap. 4.2.5.

The above estimator determines the density of the unweighted data points xn. Conse-
quently, each data point contributes equally strong to the kernel evaluations. In case of
weighted samples, the estimator can be extended in order to account for the weight in-
formation [Gis03]. In the latter form, kernel density estimation is directly applicable to
a particle set {sn

t , wn
t }Ns

n=1 in order to obtain a robust estimate of the underlying posterior
pdf. If the particle weights were chosen according to (4.8) and (4.12) and afterwards
normalized such that they sum up to 1, the posterior can be estimated as

p̂(xt|Yt) =
1

bd

Ns∑
n=1

K
(

xt − sn
t

b

)
wn

t . (4.17)

So far, it hasn’t been specified what kernel K we intend to use. This choice is application
specific. In the following, we employ the Epanechnikov kernel which has a parabolic
shape. Besides being optimal with respect to minimizing the mean integrated square
error (MISE), this kernel has the advantage of simplifying some of the later following
equations. Its multi-variate and radially-symmetric version is defined as
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K(x) =

{
1
2
c−1

d (d + 2)(1− ‖x‖2) if ‖x‖ ≤ 1
0 otherwise, (4.18)

where cd is a normalization constant that depends on the dimensionality d of the state
space. Furthermore, ‖·‖ denotes the Euclidean norm.

In summary, we have learned how the KDE of a posterior pdf can be obtained. The next
important topic to discuss is how the modes of such a density estimate can be efficiently
found and the particles shifted towards it.

Mean Shift Based Mode Localization

An efficient technique for the iterative localization of modes within a KDE is offered
by the mean shift algorithm. It was proposed by Fukunaga & Hostetler [FH75] and has
since then been used in many different applications. In the following, the mean shift
algorithm is presented briefly. A fine-grained discussion is provided by Comaniciu &
Meer [CM99]. Their formalization has been adopted here to a large degree. One major
difference, however, lies in the form of the employed kernel density estimator. While the
literature usually refers to the form given in Eqn. (4.16), an estimator of form (4.17) is
used here. Comaniciu & Meer [CM02] stress that the convergence properties of the mean
shift algorithm remain unaltered in such a setting. Thus, mean shift is directly applicable
to particle sets, too.

The mean shift algorithm is based on estimating the gradient of a density at point xt ∈ Rd.
Let f̂K(xt) be the kernel density estimate with kernel K of a pdf that is represented by the
particle set {sn

t , wn
t }Ns

n=1. Furthermore, let K be a differentiable kernel. Then, the gradient
∇f̂K(xt) is given by

∇f̂K(xt) =
1

bd

Ns∑
n=1

∇K
(

xt − sn
t

b

)
wn

t . (4.19)

In order to find zero-gradient points such as density modes, the mean shift algorithm
proceeds as follows. First, the local density gradient is measured at an arbitrary point
xt. The point is then shifted along the direction of the estimated density gradient. This
procedure is repeated until the position of xt converges to a point of zero gradient. In
order to find all modes of a density function, each iteration evaluates and shifts a large
number of such points that are distributed over the whole search space.

The mean shift algorithm obviously performs gradient ascent. As with all gradient ascent
methods, the choice of the step size is crucial, if convergence to density modes must be
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guaranteed. The mean shift algorithm automatically adapts its step size by pursuing the
normalized gradient

mb(xt) = cb
∇f̂K(xt)

f̂G(xt)
, (4.20)

where cb is a normalization constant and mb(xt) is called the sample mean shift, both
depending on bandwidth b. Furthermore, G is a kernel that is related to kernel K by
G(x) = cG,KK′(x), where cG,K is a kernel-dependent normalization constant. The nor-
malized gradient effects that for regions of small density, the algorithm makes large steps
along the density gradient, and vice versa.

Comaniciu & Meer [CM99] prove that this adaptation scheme guarantees convergence
to points of zero density gradient. By using an Epanechnikov kernel and writing out the
normalized gradient term, they furthermore show that

mb(xt) = cb
∇f̂K(xt)

f̂G(xt)
=

1

wS

∑
snt ∈Sb(xt)

sn
t wn

t − xt. (4.21)

Here, Sb(xt) denotes a hyper-sphere of radius b that is centered on xt and encloses parti-
cles with a total accumulated weight of wS ≤ 1. Equation (4.21) specifies that the sample
mean shift at position xt can be computed from the weighted average of all samples that
fall into a sphere centered on xt. The appealing property of this expression is that it deter-
mines the sample mean shift without explicitly calculating the gradient estimate∇f̂K(xt),
which would be much more sensitive to noise.

As stated before, the mean shift algorithm repeatedly translates a number of evaluation
points xt by their sample mean shift mb(xt). Throughout this process, the sample posi-
tions sn

t remain fixed. In contrast to this, the kernel particle filtering approach employs
the mean shift operation directly on the particle positions {sn

t }Ns
n=1 as shown in Fig. 4.6.

This is achieved by evaluating mb(xt = sn
t ) for all n = 1, . . . , Ns and then translating

the particles by their respective sample mean shift. Doing so herds the particles towards
local density modes of the posterior pdf estimate. In the following, the shifted particle
positions are denoted as {sn∗

t }Ns
n=1.

Now that we have learned how the mean shift algorithm can be applied to particles, a
more detailed discussion of kernel particle filtering is possible. As illustrated in Fig. 4.6,
kernel particle filtering is initialized with a CONDENSATION step that incorporates the
current image measurement into the particle representation of the estimated posterior
pdf. The resulting particles {sn

t , wn
t }Ns

n=1 are then shifted to local modes of the estimated
posterior by means of a mean shift step, yielding the new particle positions {sn∗

t }Ns
n=1.
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The shift moves the particles to interesting regions of the state space, namely regions of
high estimated posterior density. But from a theoretical point of view, it also breaks the
representation of the posterior because the weights of the {sn∗

t }Ns
n=1 don’t correspond to

the new particle positions any more. The crucial question therefore is, how the weights
must be updated in order to maintain a valid particle representation.

This question can be answered by defining an appropriate proposal distribution
q(xn

t |xn
t−1,yt). In the context of SIR particle filtering, we have learned that it is chosen

according to (4.7), i.e. it is defined as the system dynamics model p(xt|xt−1). Because
the KPF is initialized with an SIR particle filter, its proposal distribution therefore sub-
sumes p(xt|xt−1) as well. After sampling from this distribution, however, the particles
are shifted along their individual sample mean. The resulting distribution is expressed as
qms(xt) in the following. Note that no functional representation of it is available. Instead,
qms(xt) is constructed by performing mean shift steps on the particles of time step t. In
order to express that qms(xt) is applied to particles sampled from p(xt|xt−1), we define
the KPF proposal distribution as

q(xn
t |xn

t−1,yt) = qms(xt)p(xt|xt−1). (4.22)

By definition, sampling from q(xn
t |xn

t−1,yt) means to shift the particles {sn
t , wn

t }Ns
n=1 to the

new positions {sn∗
t }Ns

n=1. Plugging this into the weight update scheme (4.6) yields

wn∗
t ∝ wn

t−1

p(yt|sn∗
t )p(sn

t |sn
t−1)

qms(sn∗
t )p(sn

t |sn
t−1)

= wn
t−1

p(yt|sn∗
t )

qms(sn∗
t )

. (4.23)

Due to the resampling step that is inherent to CONDENSATION, we can again assume
that wn

t−1 takes on uniform values, which simplifies the KPF weight update scheme to

wn∗
t =

p(yt|sn∗
t )

qms(sn∗
t )

, for all n = 1, . . . , Ns. (4.24)

In order to evaluate qms(·) at particle position sn∗
t , we simply obtain the unweighted KDE

over the set of shifted samples. This yields the estimate

q̂ms(s
n∗
t ) =

1

Nsbd

Ns∑
l=1

K
(

sn∗
t − sl∗

t

b

)
. (4.25)

It is important to note that the weight update scheme from Rashid & Ansari [CA03,
CA05] is considerably more expensive in terms of induced computational load than
(4.24). The reason for this is that, for each iteration of mean shift, Rashid & Ansari
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Algorithm 2 Kernel Particle Filter (KPF)
Input: Particles {sn

t−1, wn
t−1}Ns

n=1, image yt, bandwidth b0, decrease factor λ ∈]0, 1[
// For single images, let t = 1 and initialize {sn

t−1, wn
t−1}Ns

n=1 from prior p(x0)
1: Create particles {sn

t , wn
t }Ns

n=1 ← condensation({sn
t−1, wn

t−1}Ns
n=1,yt).

2: For all i = 1 : I do
3: Compute whitening matrix A from empirical sample covariance matrix Ĉ.
4: Perform whitening {sn

t,v}Ns
n=1 ← {A(sn

t − s̄t)}Ns
n=1 with s̄t =

∑Ns

n=1 sn
t .

5: Shift particles according to {sn∗
t,v}Ns

n=1 ← mean shift({sn
t,v, wn

t }Ns
n=1, b = b0λ

i).

6: Perturb and transform {sn∗
t }Ns

n=1 ← {A−1sn∗
t,v + s̄t + bA−1e}Ns

n=1 with e ∼ N (0, Id).

7: Update weights {wn∗
t }Ns

n=1 ← {
p̂(yt|sn∗

t )
q̂ms(sn∗

t )
}.

8: Normalize {sn
t , wn

t }Ns
n=1 ← {sn∗

t , wn∗
tPNs

n=1 wn∗
t
}Ns

n=1

9: End For
Output: Particles {sn

t , wn
t }Ns

n=1 // For single images: stop here

apply the system model (4.1) at time step t − 1 to the complete particle set in order to
maintain an estimate of the posterior pdf. In our approach, this propagation step is carried
out before the mean shift iterations, by means of CONDENSATION. Doing so guaran-
tees a valid particle representation of the estimated posterior while being computationally
cheaper.

In summary, performing a mean shift operation on a particle set that was initialized with
CONDENSATION yields a consistent representation of the posterior pdf, if the weight
update scheme from (4.24) is used. In such a case, kernel particle filtering can be ca-
tegorized as mean shift guided CONDENSATION. Note that, in contrast to many other
particle filtering approaches that attempt to steer particles to interesting regions of the
state space, kernel particle filtering uses a deterministic approach to translate the parti-
cles. The good performance characteristics of the KPF algorithm result mainly from the
fast convergence of the mean shift steps.

The basic kernel particle filtering steps are summarized in Alg. 2 which is discussed in the
following. Line 1 expresses that a CONDENSATION step is used to propagate the parti-
cle set representation of the posterior from time step t− 1 to t. Afterwards, I iterations of
mean shift are performed on the particle set. In each iteration, a standard whitening trans-
form matrix A is obtained by an eigenvalue decomposition of the empirical covariance
matrix Ĉ of the samples {sn

t }Ns
n=1. The samples then undergo a variance normalization

by subtracting their mean s̄t and applying the whitening transform A as indicated in line
4. This step rescales the sample space. After rescaling, the d vector components of the
samples {sn

t,v}Ns
n=1 are decorrelated and of unit variance. This is important because the

untransformed samples contain translation and rotation parameters that vary on different
scales. Within the unwhitened space, a spherical kernel such as (4.18) would tend to
oversmooth parameters with small variance while it would tend to undersmooth parame-
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ters with large variance. After whitening, the particles undergo a mean shift as indicated
in line 5. Note that the bandwidth parameter b is decreased by 0 < λ < 1 at each of
the I iterations. The decrease aims at changing the smoothing behavior of kernel K. We
will discuss this heuristic in Chap. 4.2.5 and present an alternative and theoretically more
promising approach. Line 6 of the algorithm transforms the shifted samples back to their
original parameter space. Additionally, the particle positions are perturbed by some small
random noise, in order to push them away from local density plateaus. Afterwards, the
particle weights are updated according to Eqn. (4.24) and normalized such that they sum
up to 1.

Formally, kernel particle filtering is strongly related to SIR particle filtering. In fact,
we have seen that kernel particle filtering is mean shift guided CONDENSATION. The
fast conversion of the mean shift to local modes of the posterior estimate explains why,
compared to SIR particle filtering, the KPF algorithm successfully increases the particle
survival rate α from (4.14). However, Chang & Ansari restrict the evaluation of their
algorithm to state spaces of dimension 3 ≤ d ≤ 9. And in our application context, kernel
particle filtering still needs intractably many particles to localize even simple assemblies
with competitive accuracy and precision. This thesis therefore contributes several exten-
sions to Alg. 2. The extended kernel particle filter (EKPF) facilitates the computationally
tractable localization of multi-part assemblies with competitive accuracy and precision.

4.2.4 Weighting Function Manipulation

The first KPF extension that is provided by this thesis is aimed at further increasing the
particle survival rate α from (4.14). In order to achieve this, an extension is incorporated
to the KPF framework that addresses two fundamental problems of mean shift based
mode detection under sparse sampling conditions. The posterior pdf estimate that is
illustrated in Fig. 4.7(a) provides an instructive example to explain these problems.

Figure 4.7(a) depicts a typical posterior pdf with narrow peaks and regions of almost
zero density. It also shows the sample positions of a typical particle set that populates the
state space sparsely. Consider the highlighted particle at the figure’s center whose kernel
range is indicated above it. Like the surrounding particles, it is positioned in a region of
almost zero posterior density. A mean shift step doesn’t affect this particle because there
is no density gradient within its kernel range. It is trapped in a density plateau. Thus, the
particle can’t contribute to locating local modes of the posterior density. And the more
particles get stuck in plateaus of low density, the lower the resulting particle survival rate
will be. This problem is alleviated somewhat by the random noise that the KPF algorithm
adds to particles (cf. line 6 of Alg. 2). However, the noise must be kept at a small level,
in order not to induce too much variance to the estimation results.

A second problem that can be understood from Fig. 4.7(a) arises from the fact that sparse
sampling from the state space can lead to an undersampling of narrow density peaks.
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(a) (b)

Figure 4.7: The effects of weighting function manipulation. a) Typical posterior pdfs exhibit
narrow peaks and regions of near zero density. The vertical bars denote particle po-
sitions (a 1D state space was chosen for illustrative purposes). For the particle high-
lighted in red, an exemplary kernel range is indicated. A mean shift with this band-
width wouldn’t move the highlighted particle because no density gradient is detectable
within its kernel range. b) The posterior after weighting function manipulation, with
the same set of particles. A mean shift step would now shift the highlighted particle
towards the nearest density mode

Such peaks occur because the standard deviations σc of the Gaussian cue weighting func-
tions (4.10) are typically chosen close to zero. As a result, very narrow peaks are induced
to the observation density, which in turn leads to narrow peaks in the estimated poste-
rior. An illustrative example is given with the highest peak at the figure’s left side. Note
that the particles completely miss the peak. Therefore, a mean shift step doesn’t detect
density gradients towards it.

For assemblies with many DOF, sparse sampling is inevitable because the associated par-
ticle state space is extremely large. The question thus is how to deal with the problem
of narrow peaks and density plateaus. Chang & Ansari [CA03] proceed by using a large
initial kernel bandwidth b0. The larger b0 is, the more likely particles of non-zero den-
sity fall into the kernel range and draw other particles away from plateaus. However,
the problem of missed narrow peaks remains. Also, the posterior pdf is now grossly
oversmoothed. This flattens out peaks and blends them together. As a result, the KDE
variance is decreased and the oversmoothed density yields a coarse indication of state
space regions with density peaks. On the other hand side, oversmoothing increases the
KDE bias. Chang & Ansari thus decrease the kernel bandwidth after each iteration of
mean shift by a constant factor.

In this thesis, it was decided to decouple the bandwidth selection from the problems of
dealing with density plateaus and narrow peaks. The solution to the former problem is
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discussed in Chap. 4.2.5. Regarding the latter problem, the heuristic that is used in the
following manipulates the Gaussian cue weighting functions from (4.10). The manipula-
tion reshapes the peaks of the estimated observation density from (4.12) such that they are
widened. The estimated posterior is affected likewise which is illustrated in Fig. 4.7(b).
Here, the left-most peak is no longer missed. What is more, when applying the depicted
example bandwidth, a non-zero posterior gradient can be determined for all particles.
Thus, a mean shift step now moves more particles towards the nearest local modes of the
estimated posterior density.

Our approach is related to the annealed particle filtering concept of Deutscher and col-
leagues [DBR00]. In their setting, estimates p̂(yt|sn

t ) of the observation density are ob-
tained by evaluating a weighting function w(yt, s

n
t ) that arises from the evaluation of

simple image features and yields values in the range of [0, 1]. In order to successively re-
shape the peaks of w(yt, s

n
t ), the authors exponentiate the weighting function by defining

p̂(yt|sn
t ) = w(yt, s

n
t )

β . Starting with a value of β close to zero, the authors perform up
to 10 iterations of CONDENSATION. For each iteration, β is increased which gradually
narrows down the peaks of the estimated observation density and the associated estimate
of the posterior.

In our case, the observation density is estimated by combining multiple cues as defined
in (4.12) and (4.10), i.e.

p̂(yt|sn
t ) = N−1

cues

j∏
k=1

∑
c∈{fw,bw,col}

exp

(
−(fc(zk

t ,yt))
2

2σ2
c

)
, (4.26)

where Ncues is the number of cues and fc(zk
t ,yt) denotes a cue response that is assumed

to be normally distributed. As indicated above, the cue specific standard deviation σc is
typically chosen to be close to zero. In other words, each of the summed cue likelihoods
is very sensitive to small deviations of the cue response fc(zk

t ,yt) from its optimum at
1. By artificially increasing σc, the sensitivity can be lowered in a controlled fashion.
Noting this, we enhance σc in (4.26) with a rescale factor rc ≥ 1 that is varied for each of
the i = 1 . . . I iterations of mean shift. From this we obtain

p̂(yt|sn
t ) = N−1

cues

j∏
k=1

∑
c∈{fw,bw,col}

exp

(
−(fc(zk

t ,yt))
2

2(rcσc)2

)
. (4.27)

The KPF Algorithm is altered in the following way. For the first iteration i = 1 of mean
shift, the rc are assigned large values. Consequently, p̂(yt|sn

t ) exhibits comparatively
broad peaks for the first application of mean shift. For the following iterations, the rc

are decreased by a constant factor. Furthermore, the initial value of the rc is chosen such
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(a) (b)

Figure 4.8: The effects of weighting function manipulation. a) An example image of an oil cap
(courtesy of DaimlerChrysler AG). b) The posterior density of an oil cap model and
the example image is estimated with one iteration of CONDENSATION, using the
observation density estimate from (4.27) and varying scale factors rc. The survival
rate α of the resulting particle set is plotted against the scale factors rc. The survival
rate clearly increases with increasing values of rc

that they converge to 1 at the final iteration i = I of mean shift. At this final iteration of
mean shift, the observation density estimate is thus determined from the original equation
(4.26).

In contrast to Deutscher et al., our approach has the advantage that we can control the sen-
sitivity of each cue independently. Another major difference between our KPF and their
particle filter is the fact that we don’t need to perform intermediate CONDENSATION
iterations on the particle sets in order to migrate particles to local modes in the posterior.
Our mean shift approach allows to do this much more efficiently. Typically, 2 or 3 ite-
rations of mean shift are sufficient to locate the posterior modes while, in [DBR00], 10
annealing iterations are proposed.

The concept of weighting function manipulation is a heuristic that leads to initially
broadly peaked estimates of the observation density and the posterior. The effect of
this manipulation on the particle survival rate α is exercised in Fig. 4.8. It can be seen
that the particle survival rate increases with increasing scale factors rc. However, with
increasingly large scale factors, the bias of the estimated posterior grows rapidly. The
scale factors rc are therefore forced to converge to 1 at the final iteration of mean shift,
as stated above, in order to translate the particles gradually to the true modes of the esti-
mated posterior pdf. The heuristic is evaluated in the second experimental investigation
of the following chapter. The evaluation yields empirical evidence that the heuristic suc-
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Figure 4.9: Antagonal driving forces of bandwidth selection. The true density (solid line) is esti-
mated with a small (dotted line) and a large kernel bandwidth (dashed line). The small
bandwidth yields a reasonable estimate of the density peak but induces strong false
local modes at the sparsely sampled density tail. The large bandwidth yields better
approximation of the tail but grossly oversmooths the peak

cessfully increases the particle survival rate and thus improves the assembly localization
accuracy and precision.

4.2.5 Automatic Bandwidth Selection

The KPF algorithm from diagram 2 employs a global kernel bandwidth b0 that is de-
creased in each iteration by a factor 0 < λ < 1. Finding a suitable bandwidth is a very
hard problem and in practice often includes a certain amount of guessing. The difficul-
ties arise from two antagonal driving forces that are illustrated in Fig. 4.9. The figure
shows that high density regions such as peaks are reconstructed best with a small ker-
nel bandwidth which avoids oversmoothing. However, the figure also shows that small
kernel bandwidths introduce strong variance in regions of low density such as the tail
of the example density. For the tail, a large kernel bandwidth achieves superior results.
Bandwidth selection techniques aim at finding a compromise.

Finding a compromise in the scenario described above is far from being trivial. What
is more, in the original kernel particle filtering approach, it is complicated unnecessarily
because bandwidth selection is mixed with the task of increasing the particle survival
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rate. Within this thesis, it was decided to decouple the two problems. By this separation
of concerns, both tasks can be solved more satisfactorily. Consequently, the following
considerations focus entirely on performing a bandwidth selection that yields a fair con-
tinuous estimate of the posterior pdf.

When estimating multi-modal densities with peaks of varying strength and width, the
above mentioned problems with selecting a global kernel bandwidth become notorious.
In such cases, fixed bandwidth kernel density estimators as (4.16) and (4.17) perform
rather poorly. An interesting alternative is offered by adaptive kernel estimators [Sil86]
that are also known as sample-point estimators [BMP77]. When estimating the density
represented by the particle set {sn

t , wn
t }Ns

n=1, such estimators are of the form

f̂K(xt) =
Ns∑

n=1

wn
t

(bλn(sn
t ))

d K
(

xt − sn
t

bλn(sn
t )

)
. (4.28)

Here, b is a global bandwidth parameter. However, this global bandwidth is now en-
hanced by the local bandwidth parameters λn(s

n
t ). This means that each particle is asso-

ciated with its individual local kernel bandwidth.

Regarding computer vision tasks, Comaniciu and colleagues [CRM01] have successfully
employed sample-point estimators in the context of mean shift based image segmenta-
tion. However, the method hasn’t been adapted to particle filtering yet, which is done in
the following. Sample-point estimators have the advantage that the local bandwidths can
be made small at points of high density and vice versa. Intuitively, this yields more ac-
curate estimates of multi-modal densities because the bandwidths can be tuned locally to
avoid over- and undersmoothing. A major disadvantage is that we now have to select Ns

additional parameters. Silverman [Sil86] proposed the adaptive kernel method in order
to solve this problem. It determines the local bandwidths as

λn(s
n
t ) =

[
g/f̂p(sn

t )
] 1

2
, with (4.29)

g =

[
Ns∏

n=1

f̂p(sn
t )

] 1
Ns

. (4.30)

In the above equations, f̂p(sn
t ) is an initial local density estimate at sn

t , termed pilot density.
Furthermore, g is the geometric mean of the pilot density.

The adaptive kernel method has the following effect. Suppose that a coarse pilot density
f̂p(sn

t ) is available. Then, this density estimate can be used in order to distinguish locally
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high from locally low density values. The former are expected to be higher than the
geometric mean g of the pilot density. The latter are expected to be lower than g. Note that
the above equations guarantee f̂p(sn

t ) < g ⇒ λn(s
n
t ) > 1 and f̂p(sn

t ) > g ⇒ λn(s
n
t ) < 1.

Thus, whenever the pilot density at a certain point drops below its geometric mean, (4.29)
effects that the global bandwidth b is increased at that point. If the pilot density is above
its geometric mean, the b is locally decreased.

At this point, it seems that we have extended the problem of selecting one global band-
width with the burden of estimating a pilot density. Luckily, the literature indicates that
the final estimate is rather insensitive to the specific details of the pilot density [Gis03].
For example, in [CRM01] a plugin-rule is used to obtain a fixed-bandwidth pilot density.
The resulting final sample-point density estimate is empirically shown to be more accu-
rate than a fixed-bandwidth estimator. Another possibility is to define λn(s

n
t ) on the basis

of the associated particle weight wn
t

λn(s
n
t ) = (Nswn

t )
− 1

2 . (4.31)

According to Gisbert [Gis03], this yields a bandwidth weighted kernel density estimate.
It effects that the global bandwidth b is increased at points where wn

t < 1
Ns

and decreased
whenever wn

t > 1
Ns

.

With either of the two approaches, sample-point estimation becomes applicable. All
that remains to be done is to integrate a sample-point density estimate into our mean
shift procedure. This can be done straight forward. We observe that the sample mean
shift formulation in (4.21) can be interpreted as evaluating a uniform kernel with fixed
bandwidth b that is centered at a specific sample sr

t , 1 ≤ sr
t ≤ Ns [CM99]. The fixed

bandwidth determines the radius of the sphere Sb(s
r
t ) by which the sn

t ∈ Sb(s
r
t ) for the

mean computation are selected. In order to use a variable bandwidth kernel within the
mean shift procedure, all we have to do is to exchange the fixed-radius sphere Sb(s

r
t ) with

spheres of variable radius bλn that are centered around the elements of comparison sn
t .

Formally, the variable bandwidth sample mean shift mbλn(s
r
t ) is now written as

mbλn(s
r
t ) =

1

wS

∑
{snt |srt∈Sbλn (sn

t )}

sn
t wn

t − sr
t , (4.32)

where wS again denotes the total accumulated weight of all samples sn
t in the set {sn

t |sr
t ∈

Sbλn(s
n
t )}.

Depending on the underlying density, this approach employs a large local bandwidth pa-
rameter, if sr

t lies in a low-density region and vice versa. The global bandwidth parameter
b must still be chosen somehow. In our application, this is done manually. However, be-
cause b is adapted to local fluctuations of the posterior density, the resulting estimate is
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expected to be less sensitive against a particular choice of b. This expectation agrees
with the finding that b could be held constant within the individual experimental investi-
gations from the following chapter. In contrast to this, an EKPF with conventional mean
shift had to be re-parameterized repeatedly in order to yield comparable performance.
What is more, the second experimental investigation of the following chapter yields em-
pirical evidence that the adaptive bandwidth selection improves the assembly localization
and accuracy in comparison to the original KPF.

4.2.6 Dynamic State Space Decomposition

The extensions that have been contributed so far were all aimed at increasing the particle
survival rate α of the EKPF, or at reducing the estimation bias and variance. However,
the approach still doesn’t scale to a high-dimensional state space. The basic problem is
that the bias of kernel density estimates increases with a growing number of state space
dimensions d, assuming that the bandwidth is enlarged in order to keep the variance
of the estimates constant. The only possible compensation would be to increase the
number of particles but this soon becomes computationally intractable. In the light of
these considerations, it isn’t surprising that Chang & Ansari [CA03] test the performance
of their KPF in visual tracking scenarios with maximum 9 dimensional state spaces. But
when localizing multi-part assemblies, each of the j parts contributes six dimensions to
the state space, yielding d = 6j dimensions. These considerations suggest that kernel
particle filtering is tractable only for assemblies composed from very few parts.

The scalability problem is addressed in the following by proposing a final EKPF exten-
sion. It decomposes the state space into subspaces of tractable size which are then filtered
individually. By means of this extension, the EKPF can localize assemblies composed
from multiple components, at the prize of reduced robustness against inter-part occlu-
sion. The extension is related to the search space decomposition approach of Gavrila &
Davis [GD96] who use an hypothesize-and-test procedure for the model-based tracking
of humans from multiple views. In order to track a 3D contour model with 22 DOF, they
subdivide the search space into three disjunctive subspaces of 5, 9, and 8 dimensions.
Each subspace is then searched individually by keeping the remaining parameters fixed
at some predicted value. However, the authors employ deterministic best first search over
a uniformly discretized search space. It is therefore discussed in the following, how a
state space decomposition concept can be realized in the context of kernel particle filte-
ring.

Let the estimated posterior of time step t − 1 be represented by a particle set
{sn

t−1, wn
t−1}Ns

n=1. Then, this thesis proposes to perform state space decomposition in the
context of kernel particle filtering as illustrated in Fig. 4.10. First, the particle samples
St−1 = {sn

t−1}Ns
n=1 are orthogonally projected along the assembly pose space CA onto
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Figure 4.10: Kernel particle filtering on a decomposed state space

disjunctive subspaces A and B. This operation results in two sets SA
t−1 and SB

t−1 of pro-
jected samples. The samples in SA

t−1 are then updated to SA
t and reweighted by means of

a CONDENSATION step. Afterwards, mean shift iterations are performed that migrate
the elements of SA

t towards the gradient of the posterior confined to subspace A, resulting
in SA∗

t . The same scheme is performed for SB
t−1 which produces SB∗

t . Finally, the positions
of the k strongest modes within the obtained particle sets can be combined as cartesian
product and reweighted. This results in a particle set that carries k2 pose hypotheses.

The decomposition scheme seems to be simple but it provides a number of substantial
caveats. For example, CONDENSATION is carried out in the individual subspaces A and
B of the assembly pose space CA. Consequently, the observation density estimate p̂(yt|sn

t )
that is used for particle reweighting must be modified such that it can be applied within
A or B. The same problem exists for the reweighting steps after mean shift iterations. We
solve it in the following by evaluating (4.12) only for those parts whose pose parameters
belong to the considered subspace.

A further potential caveat of the decomposition scheme becomes apparent when consi-
dering the sample points zk

t from the kth assembly part model that appear in (4.12). We
recall that they are placed along visible model features. In order to guarantee that the vi-
sibility prediction accurately accounts for inter-part occlusion, one would have to feed all
assembly pose parameters into the visibility prediction process. This means that there are
coupling effects between the assembly pose parameters on the level of visibility predic-
tion. Decomposing the state space assumes that these coupling effects can be neglected.
In order to alleviate this problem, we exploit the information that is provided by the kine-
matic tree of an assembly and use the reference parameters from (3.13) as initial guess
for all pose parameters that aren’t available in a given subspace. As soon as pose para-
meters have been recovered, they are used to update the initial guess which stabilizes the
visibility prediction process of part model features to a large degree. In summary, state
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space decomposition reduces the robustness of kernel particle filtering against inter-part
occlusion. Despite this drawback, the evaluation chapter of this thesis shows empirically
that, in practice, state space decomposition permits accurate and precise assembly pose
localization for multi-part assemblies.

Of course, the state space decomposition scheme can divide CA into more than two dis-
junctive subspaces. For example, it has already been stated that Gavrila & Davis [GD96]
chunk their original search space into three parts. The resulting subspaces correspond
to the pose parameters of head+torso, arms, and legs. However, the authors don’t indi-
cate whether this setting is in some sense optimal. It thus remains unclear how many
subspaces are desireable and how large their respective dimensionality should be.

With regard to the potential coupling effects, the best practice is to create subspaces of
maximum possible dimensionality. Such subspaces are as large as kernel particle filtering
can reliably manage. Therefore, it must be assessed how far kernel particle filtering might
scale. To our knowledge, no theoretical bounds have been established for the KPF. But as
mentioned before, Chang & Ansari suggest that their KPF works well within a range of
3 to 9 dimensions. To be on the safe side, d = 6 was chosen as subspace dimensionality.
This coincides with the findings of Scott & Sain [SS04], who suggest that densities with
6 dimensions might be robustly estimated by means of kernel density estimation. The
EKPF extension therefore decomposes the state space into 6-dimensional subspaces. In
order to further exploit the spatial structure information of the assembly, this is done by
recursively traversing the kinematic tree in a depth-first manner. For each node of the
kinematic tree, a subspace is defined that subsumes the relative pose parameters of the
part corresponding to the respective tree node.

The presented heuristic sequentially applies kernel particle filtering to subspaces of the
assembly pose space. By means of this extension, an EKPF can localize assemblies
that are composed from many parts. The following chapter provides empirical results
on localizing different objects. For example, in the third experimental investigation the
EKPF successfully localizes a subset of seven parts from a 20-part toy plane. To our
knowledge, no approach has been published yet that scales equally well to an increasing
number of parts. In order to give a complete overview of this new approach, the EKPF
algorithm with all proposed extentions is presented in the next paragraph.

4.2.7 The Extended Kernel Particle Filter

This thesis contributes three important extensions to conventional kernel particle filtering.
Algorithm 3 presents the pseudo-code of the resulting EKPF algorithm. Here, T is used
to denote the kinematic tree of an assembly that is composed from j parts. Furthermore,
Bk denotes the matrix that projects sample vectors to the subspace of the kth assembly
part. Projected samples and their weights are marked with a high index k, accordingly.
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4.2 Assembly Localization

Algorithm 3 Extended Kernel Particle Filter (EKPF)
Input: Particles {sn

t−1, wn
t−1}Ns

n=1, image yt, bandwidth b, kinematic tree T with j nodes
// For single images, let t = 1 and initialize {sn

t−1, wn
t−1}Ns

n=1 from prior p(x0)
1: x̂t ← reference pose(T )
2: For all k← traverse(T ) do
3: {sn,k

t , wn,k
t }Ns

n=1 ← condensation({Bks
n
t−1, wn

t−1}Ns
n=1,yt) // Employs largest rc.

4: For all i = 1 : I do
5: ({sn,k

t,v}Ns
n=1, A−1, s̄n,k

t )← whitening({sn,k
t }Ns

n=1)

6: f̂pilot(·)← kde({sn,k
t,v}Ns

n=1, b)

7: {λn}Ns
n=1 ← local bandwidths({sn,k

t,v}Ns
n=1, f̂pilot(·))

8: {sn,k∗
t,v }Ns

n=1 ← variable bandwidth mean shift({sn,k
t,v , wn,k

t }Ns
n=1, {λn}Ns

n=1, b)

9: {sn,k∗
t }Ns

n=1 ← retransform({sn,k
t,v}Ns

n=1, A−1, s̄n,k
t )

10: {wn,k∗
t }Ns

n=1 ← {
p̂(yt|sn,k∗

t )

qms(s
n,k∗
t )
} // With decreasing rc from 4.2.4.

11: {sn,k
t , wn,k

t }Ns
n=1 ← {s

n,k∗
t , wn,k∗

tPNs
n=1 wn,k∗

t
}Ns

n=1

12: End For
13: x̂k

t ← strongest mode({sn,k
t , wn,k

t }Ns
n=1)

14: End For
Output: Recovered assembly pose x̂t =

∑j
k=1 x̂k

t // For single images: stop here

Furthermore, a high index ∗ indicates mean shift optimized samples, whereas a low index
v flags samples as variance normalized. The details of the EKPF algorithm are discussed
in the following.

Line 1 of the EKPF algorithm initializes the estimated assembly pose x̂t by setting all part
pose vectors x̂k

t with k = 1 . . . j to their reference pose values. These are obtained from
the assembly pose specification CA that is associated to the kinematic tree T . Afterwards,
the index k of the next assembly part to consider is determined by recursing down the
kinematic tree. In line 3, Matrix Bk projects all particle samples {sn

t−1}Ns
n=1 of the previous

time step to the subspace that subsumes the pose parameters of the kth assembly part.
An iteration of CONDENSATION subsequently updates the posterior estimate that is
restricted to the current subspace. Note that this operation employs the same observation
density estimate as the reweighting step in line 10 of the algorithm, namely p̂(yt|xk

t )
from (4.11) with xk

t = sn,k∗
t for all n = 1 . . . Ns. Also remember that the associated

feature visibility prediction employs the j part pose vectors x̂k
t as default values for all

assembly pose parameters that don’t belong to the subspace of the kth assembly part.

Once the posterior estimate of the current time step is available, lines 4-12 perform I
iterations of mean shift. For this, the samples of the current time step undergo the same
kind of variance normalization that was already detailed at the end of Chap. 4.2.3. Lines 6
and 7 perform the estimation of local bandwidth parameters which proceeds as described
in Chap. 4.2.5. In line 8, the local bandwidths are finally employed for the variable

91



4 Assembly Inspection

bandwidth mean shift which is calculated from (4.32). Afterwards, the samples are re-
transformed to the original state space (line 9), reweighted (line 10) with the weighting
function manipulations from Chap. 4.2.4, and normalized (line 11). Finally, after I itera-
tions of mean shift, the position of the strongest local mode of the resulting particle set
is determined. Line 13 expresses that this position is interpreted as the localized relative
part pose of part k. The EKPF algorithm finally outputs the localized pose parameters
of the assembly at time step t. This parameter set is obtained from the direct sum of the
relative part pose vectors.

Regarding the details of the EKPF algorithm, it remains to be specified how the strongest
mode of a posterior estimate is recovered. So far, this has only been detailed with regard
to uni-modal posteriors. For them, an estimate of the assembly pose at time step t can be
obtained from calculating (4.9). In the case of multi-modal posteriors, a robust estimate
can be determined in a way that is related to calculating the variable bandwidth sample
meanshift from (4.32). For this, the potential modes x̂k

t (s
r,k
t ) near the particle samples

sr,k
t , 1 ≤ r ≤ Ns are determined by calculating

x̂k
t (s

r,k
t ) =

1

wS

∑
{sn,k

t |sr,k
t ∈Sbλn (sn,k

t )}

sn,k
t wn,k

t , (4.33)

where wS denotes the accumulated weight of all samples sn,k
t that are selected for sum-

mation. Out of the potential modes x̂k
t (s

r,k
t ), the one with the largest accumulated weight

wS is chosen as the strongest local mode x̂t of the posterior.

In its presented form, the EKPF algorithm outputs only the recovered assembly pose x̂t

for time step t. This form was chosen because, within the experimental investigations of
this thesis, the EKPF algorithm is only applied to single monocular images. However, the
algorithm can also process image sequences. By retrieving the strongest m modes, the
cartesian product over the associated relative part pose vectors yields an hypotheses set
that can afterwards be reweighted. This results in a particle representation of the posterior
at time step t that carries multiple assembly pose hypotheses and can be used as prior for
the next time step t + 1.

When operating with Ns particles and assembly models with a total of Nfeatures contour
edge features, the EKPF algorithm has a memory consumption in the order of O(Ns +
Nfeatures), because the particle set of the current time step t and the time step before
must be completely held in memory, together with the assembly representation. The
overall memory consumption of assembly localization can therefore be characterized as
moderate. For example, the memory representations of assemblies composed from up
to 20 parts that are localized throughout the experimental investigations each consume
less than 70MB of main memory. And for a 20-part assembly, two sets of 1000 particles
approx. consume a total of 1MB memory.
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In terms of computational effort, the worst-case time complexity of the EKPF depends
on the number of mean shift iterations Nms, the number of particles Ns, and the computa-
tional cost Cvisibility of the two-stage visibility determination process for assembly model
features that was analyzed in Chap. 3.3.1. With respect to these constants, the worst-case
time complexity of the EKPF algorithm is expressed asO(Nms ·N2

s +Nms ·Ns ·Cvisibility).
The left part Nms · N2

s of the complexity expression results from the bandwidth selection
and mean shift operations in lines 6-8 of Alg. 3. Both processes proceed by iterating over
the complete particle set in an outer and an inner loop, which gives rise to the quadratic
complexity in the number of particles. However, the operations that are performed within
the inner loops are rather cheap, when compared to the computational effort of evalua-
ting the observation density in lines 3 and 10. The latter task gives rise to the right part
Nms · Ns · Cvisibility of the complexity expression. Thus, for particle sets with Ns ≤ 1000
which were used for the experimental investigations, the largest part of computing power
is consumed by the process that projects model features to the image plane and predicts
the visible part model features. This finding stresses the importance of employing a fast
visibility determination process such as the one contributed in Chap. 3.3.1. Furthermore,
it shows that optimizing the part model feature sets as proposed in Chap. 3.3.2 has the po-
tential to yield a significant speed up when employing particle sets with several hundred
elements.

4.3 Inspection Classification

The previous section has described the EKPF that recovers assembly poses from mono-
cular images. Within the inspection system proposed by this thesis, the recovered pose
information is the input of the classification module that was illustrated in figures 1.2
and 3.1. So far, this module hasn’t been implemented in the inspection system proto-
type. Nevertheless, it is sketched in the following, how such a classification could be
performed. In this way, a conceptual solution for the classification of part completeness
and pose integrity is presented.

Figure 4.11 illustrates the problems that arise in the context of localizing the pose of
assemblies with missing parts. The fundamental problem with this kind of situation is that
the EKPF doesn’t verify the existence of localized parts. It merely fits assembly models
to given observations. If some parts of the currently inspected assembly are missing
as in Fig. 4.11(a), the EKPF algorithm provides no means for noticing this problem.
A resulting match is shown in Fig. 4.11(b). Clearly, an industrial inspection system
needs to be able to verify whether the currently observed assembly has a complete set of
parts. Given a recovered assembly pose, this task is much easier to solve than without
pose information because the verification step must only classify whether the individual
assembly parts are present at the recovered positions.
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(a) (b)

Figure 4.11: The localization of assemblies with missing parts. a) The toy vehicle axle from
experimental investigation 4. Six parts are missing on the right side of the assembly.
b) The recovered the assembly pose. The hypothesized contour edges of the missing
part models have been fitted to the background

As introduced in Chap. 2.5, classification in general is performed by assigning labels to
sets of input features. For the verification of part completeness, the set of labels consists
of the two elements Cp and Cm. The first label Cp denotes the event, or class, that an
assembly part is present in the given scene. The label Cm indicates a missing assembly
part. Concerning the input features, it would be desireable to reuse the image cues ffw,
fbw, and fcol that are employed in the context of pose localization (cf. appendix C). They
are well suited for the task because they are evaluated w.r.t. the sample points zk

t of a
specific assembly part with index k and the given image observation yt at time step t.
However, using multiple cues leads to the problem of cue integration.

A flexible and robust solution to the above formulated problem can be obtained from em-
ploying a Bayes classifier. The latter was already introduced in Chap. 2.5. This approach
has the very appealing property of providing a probabilistic framework for the integration
of different image cues into the classification process. As input, it operates on the class
priors P(Cp) and P(Cm), and the conditional probability densities p(fc|Cp) and p(fc|Cm)
with c ∈ {fw, bw, col}. The class priors model the probability of the two classification
events ”part present” and ”part missing” in the absence of any further information. The
conditional probability densities represent, how well the image cues comply to the as-
sumption that the assembly part for which the cues were evaluated is present in the image
or missing. The class priors and the conditional probability densities can be estimated
from representative labeled test sets. Such sets can be created with the assistance of the
assembly localization module proposed in this thesis. This is done by localizing assem-
blies automatically, and subsequently performing a manual classification that picks out
those parts that aren’t present in the processed images. Afterwards, the Bayes classifier
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(a) (b)

Figure 4.12: A toy vehicle axle in two different poses

verifies the existence of the kth assembly part at the recovered position and orientation
by choosing

argmax
l∈{p,m}

P(Cl)
∏

c∈{fw,bw,col}

p(fc(z
k
t ,yt)|Cl), (4.34)

where zk
t again denotes sample points from the projected visible model features of the

kth assembly part, and yt is the current image. The classification rule assumes that the
image cues depend conditionally on the output classes, only.

Concerning the verification of pose integrity, the classification task is to decide, whether
a given pose adheres to the design specification of an assembly. Consider for example
the toy vehicle axle from Fig. 4.12. Without external knowledge, it clearly is impossible
to decide whether the two depicted assembly poses are valid or fault configurations. This
knowledge must either be gathered from the assembly design process or from test sets
that contain manually labeled examples of valid and fault configurations. From either of
these information sources, two sets of assembly poses must be generated that correspond
to valid and fault configurations of an assembly.

Once two reference sets of valid and fault pose configurations are available, new assem-
bly poses can be classified against this reference. A simple approach would be to employ
a NN classifier (cf. Chap. 2.5). However, this would imply to determine a suitable dis-
tance function. If the Euclidean distance doesn’t yield reasonable results, an alternative
would be to use decision trees. The latter have the advantage that tree training algorithms
automatically generate short decision sequences that distinguish valid pose parameter
ranges from those of fault configurations. Thus, in comparison to the NN classifier, a
decision tree would be faster. On the other hand side, NN classifiers might perform bet-
ter in cases where the input features from different classes are strongly mixed within the
feature space.
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4.4 Summary

This chapter has contributed a unique approach for the localization of multi-part assem-
blies. Together with the offline model preparation stage from the previous chapter and
the sketched classification module, this thesis has thus described a complete system for
the visual inspection of assemblies from monocular images. The system operation is
automated to a large degree and envisioned to be integrated into a manufacturing en-
vironment. Except for the classification module that might be implemented based on
existing techniques, a working prototype of the system has been implemented in Matlab
and C++.

The first section of this chapter gave a detailed description of inspection task specifica-
tions. It specified precisely the minimal set of information that must be provided to the
proposed inspection system such that the online inspection processes can proceed auto-
matically. In other words, the section defined the interface between the proposed system
and manufacturing environments.

The second section gave a full account of the new EKPF for assembly pose localization.
It started with an overview of the assembly localization process that is followed by the
system proposed in this thesis. Afterwards, promising literature in the field of particle
filtering for visual tracking was presented. It was shown that interesting particle filtering
approaches for the tracking of articulated objects have been published in the recent past.
Furthermore, it was explained that neither of the techniques facilitates assembly pose lo-
calization due to the fact that the localization task doesn’t allow to make use of a tracking
assumption and due to a missing initialization of the pose parameters. Afterwards, the
theoretical foundations of particle filtering were explained. An important subtype, SIR
particle filtering, was considered in more detail. The CONDENSATION algorithm was
presented as a well-known implementation, which allowed to give an in-depth account
of the observation density model that is employed by the proposed system. Here, it was
shown how the system combines different cues to obtain a likelihood function that mea-
sures how well the current image measurement agrees with specific pose hypotheses. The
combination scheme is flexible to cue changes and modifications. Three example cues
are detailed in the appendix.

After the cue combination scheme, kernel particle filtering was introduced. Its general
concept was sketched first. Afterwards, this thesis contributed a thorough formal groun-
ding of kernel particle filtering in kernel density estimation and gradient ascent through
mean shift. What is more, the relationships between kernel particle filtering and other ex-
isting particle filters were defined clearly. This led to the conclusion that kernel particle
filtering is mean shift guided CONDENSATION.

The second half of the section contributed three new extensions to conventional kernel
particle filtering. Each extension was shown to aim at improving a specific weakness
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of conventional kernel particle filtering. The first extension was motivated by the fin-
ding that density plateaus and narrow peaks can impact on the efficiency of mean shift
based gradient ascent. The proposed extension manipulates weighting functions in a way
that induces a coarse-to-fine behavior to the mean shift iterations. The second extension
aims at selecting bandwidth parameters such that the bias and variance of kernel den-
sity estimates are minimized for a given number of particles. In order to achieve this
minimization, the theoretically most promising adaptive kernel method was employed,
together with the variable bandwidth mean shift for particle sets. The third extension
aims at improving the scalability of kernel particle filtering. It was shown that the ex-
isting approach doesn’t scale to the state space of multi-part assemblies, due to the fact
that the underlying kernel density estimation process suffers from the curse of dimensio-
nality. This problem was solved by contributing a state space decomposition scheme that
divides the state space into subspaces of computationally tractable dimensionality. The
theoretical limits and advantages of this heuristic were covered in detail.

The three extensions were finally combined within the extended kernel particle filtering
(EKPF) algorithm. The algorithm was explained in detail and shown to exhibit moderate
memory consumption. Furthermore, it was found to exhibit a worst-case time complex-
ity that is quadratic in the number of particles, and linear in the number of mean shift
iterations, assembly model features, and oriented bounding boxes. To our knowledge,
this algorithm is the first particle filter that facilitates an accurate and precise localization
of multi-part assemblies from monocular images. It has been reported in [SS06], which
was published and presented at the DAGM 2006 Conference in Berlin2. Its performance
aspects are evaluated in the following chapter.

Finally, the third section of this chapter discussed the classification of part completeness
and pose integrity, while providing illustrative examples for both of the problems. As a
conceptual solution to the problem of classifying part completeness, a Bayes classifier
was proposed. It was shown how such an approach would allow to reuse the image cues
from the pose localization module. Furthermore, NN classifiers and decision trees were
identified as eligible techniques for the task of pose integrity classification.

2The paper presents central parts of the whole inspection system. Due to the space limitations, it only
covers the variable bandwidth extension of the EKPF algorithm. Furthermore, the paper discusses the
processing of single images, only.
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5 Evaluation

Documenting the measurement accuracy and precision of a pose localization system such
as the EKPF is difficult because many parameters influence the pose estimation process.
For example, the imaging process might capture objects from different distances or with
varying zoom settings. The resulting images are of different scales. With small image
scales, each pixel represents a small area of the object space and objects appear large
within the image. The larger the image scale grows, the smaller the respective objects
will appear under projection to the image plane. Clearly, the EKPF will perform better
for objects that appear large within an image than for apparently small objects. Further
influences to the localization accuracy and precision arise e.g. from the perspective under
which an object is perceived, lighting, clutter, the inspected objects, and the employed
models.

In order to illustrate how well the EKPF can localize assemblies, four different experi-
mental investigations were conducted that document the system performance under vary-
ing conditions. Table 5.1 presents an overview which shortly describes the key issues.
Each experimental investigation involves the pose estimation of an individual object,
with recovered DOF ranging from 5 up to 29. The localized objects are chosen from
two application domains, namely a real industrial inspection scenario for experimental
investigation 2, and assemblies built from the wooden building blocks provided by the
baufixr construction set for experimental investigations 1, 3, and 4. The former do-
main allows to compare the achieved localization performance to an existing inspection
system. The parts of the baufixr domain have the advantage of being widely available
and standardized. Concerning the pose estimation task, they are very challenging because
they are uniformly colored and thus provide no texture that could be exploited as image
cue. Furthermore, the colored surfaces yield strong specular reflections and the edges

Table 5.1: Overview of the experimental investigations

Exp. No. Assembly Recovered DOF Key issues
1 Screw-Cube 6 Varying perspective and image scale
2 Oil Cap 5 Industrial application, EKPF extensions
3 Toy Airplane 28 Multi-part assembly, no clutter
4 Toy Axle 29 Multi-part assembly, clutter, model optimization
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Figure 5.1: A screw-cube assembly under two different image scales and perspectives. a) The
assembly is perceived under a 60◦ elevation from the yz-plane of the depicted coordi-
nate system that is attached to the cube. The image scale is 0.1mm per pixel. b) The
same assembly, perceived under an elevation of 0◦ and an image scale of 0.3mm per
pixel

of all parts are rounded, which both impacts negatively on the quality of the resulting
contour edges. With respect to the models, the true shape dimensions of the employed
real wooden parts deviate up to 3% w.r.t. the largest model extent.

5.1 Experimental Investigation 1

The first experimental investigation is aimed at investigating the effects of the first two
influencing factors stated above, namely image scale and perspective. In order to keep the
effects of other influencing factors at the lowest possible level, a setting of low complexity
is used. It is described and discussed in the following.

5.1.1 Methology and Data Sets

The inspected assembly is illustrated in Fig. 5.1. It simply consists of a wooden screw
that is screwed into a wooden cube. The picture also shows that the cube is held fixed.
Accordingly, the pose localization only needs to recover pose parameters of the screw.
This is done relative to the cube. Among the recovered pose parameters, only the z-axis
rotation and translation are considered in the following because only these two para-
meters could be reliably recorded as ground truth. The latter was carried out manually,
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by means of a goniometer and vernier calipers. The accuracy of such measurements is
expected to be better than 1◦ and 1mm.

With this assembly, a total of 1000 image measurements was recorded in the following
way. First, the cube was positioned at an elevation of 0◦ and a distance of 60cm from
a statically placed camera. The camera’s zoom lens was then adjusted to yield images
with a scale of 0.1mm per pixel. Afterwards, the camera was calibrated and 125 images
were captured that show the assembly with five different screw positions. The true screw
translations and rotations w.r.t. the z-axis were recorded manually for each individual
screw position. This procedure was repeated for an elevation of 30◦, 60◦, and 90◦. Fur-
thermore, the assembly was recorded under the same four elevation angles, but with an
image scale of 0.3mm per pixel and a recalibrated camera. The scene was illuminated
with two 110W cold light lamps that were statically placed to the left and right of the
camera, in addition to the neon head lights of the lab.

In order to evaluate the data, the retrieved pose information was separated into 8 sets.
These corresponded to the image measurements that were recorded under the two diffe-
rent image scales and four camera elevation angles. Each set consisted of 125 retrieved
screw poses. For each set, the deviations of the recovered pose parameters from the
manually measured ground truth were determined. Based on these deviations from the
ground truth, the mean pose estimation errors and standard deviations were calculated.
In the following, the mean error w.r.t. pose parameter deviations from the ground truth is
used to document the absolute system accuracy, while the standard deviation is used to
characterize the absolute precision.

5.1.2 Results

Figure 5.2 illustrates the results of the first experimental investigation, concerning the
measurements with a small image scale of 0.1mm per pixel. It can be seen from
Fig. 5.2(a) that the screw rotation is measured most accurately and precisely under a
camera elevation angle of 0◦. In this case, the hexagonal screw head is perceived straight
from above, such as in Fig. 5.1(b). Given this perspective, the mean error of the screw
rotation is smaller than 0.1◦, with a standard deviation of 1.9◦. For increasing camera
elevation angles, the localization performance quickly decays, so that at an elevation of
90◦ no meaningful determination of the rotation parameter is feasible. The reason for
this finding is that the screw shape exhibits strong rotational symmetries. The higher the
elevation angle is, the smaller are the shape changes that result from a screw rotation
around the z-axis.

Figure 5.2(b) shows that with regard to the screw translation, the measurement accuracy
and precision develops quite differently. Here, a camera perspective associated with a
0◦ elevation yields the highest mean error of 4.3mm and a standard deviation of 4.7mm,
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(a) (b)

Figure 5.2: The mean pose error and standard deviation at an image scale of 0.1mm per pixel. a)
Recovering the screw rotation around the z-axis, under four different camera elevation
angles. b) Recovering the screw translation along the z-axis

(a) (b)

Figure 5.3: The mean pose error and standard deviation at an image scale of 0.3mm per pixel. a)
Recovering the screw rotation around the z-axis, under four different camera elevation
angles. b) Recovering the screw translation along the z-axis

while the smallest values are achieved from a side-look position at 90◦ elevation (0.2mm
mean error and standard deviation). The reason for this finding is that, from a side-look, a
small translation of the screw along the z-axis yields a large change of the screw position
within the image plane. In contrast to this, the only changes that a z-axis translation
induces to an image perceived from 0◦ elevation result from depth changes which are
comparatively small under the given setup.
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Figure 5.3 shows that the same findings apply to the case of a larger image scale. The
only difference is that the best achievable mean pose error and standard deviation are
worse than for the small image scale. This is not surprising, given that the screw is now
much less prominent in the image. For the rotation parameter, the mean error is now 1.1◦

with a standard deviation of 4.3◦ in the best case. For the translation parameter, we obtain
a mean error and a standard deviation of 0.3mm each, which is still very accurate.

In comparison to the values that were presented in Tab. 2.1, the achieved performance
is clearly competitive concerning the translation parameter. For the rotation parameter,
the achieved performance is inferior to that of the systems reported in [vBGW03] and
[HOW96]. However, the former system is specialized on single rigid objects, while the
latter was tested on a desklamp with very elongated shape. The results of experimental
investigation 3 show that our system performs equally well for parts that exhibit similar
shape properties.

To conclude, the screw rotation and translation can both be recovered with satisfying
accuracy and precision, given a suitable choice of the camera perspective. However, it
must also be noted that it is impossible to measure the screw translation and rotation most
accurately from the same camera perspective. Above all, this finding stresses the impor-
tance of conducting a proper inspection planning phase prior to any object localization.
On a standard PC with a 2 GHz Pentium IV, running the EKPF with 500 Particles and
5 iterations of mean shift takes 5 seconds. The assembly representation consumes about
6MB of memory1.

5.2 Experimental Investigation 2

The second experimental investigation is performed in a real industrial application do-
main. It provides the data for a direct comparison of the localization accuracy and pre-
cision with the performance of the system reported by Bank et al. [vBGW03] that was
presented in Chap. 2.6. This comparison is feasible because the original image data,
the object model, and the ground truth data from [vBGW03] have been kindly shared
by the authors. Furthermore, the experimental investigation analyzes the effects of the
individual EKPF extensions on the pose estimation performance.

5.2.1 Methology and Data Sets

The pose localization scenario of the second experimental investigation is visualized in
Fig. 5.4. The left subfigure illustrates that the recorded image data shows an oil cap under
1All storage considerations presented in this thesis use the common but outdated convention of defining
1MB as 1024KB.
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x

yz

(a) (b)

Figure 5.4: The setup of experimental investigation 2. a) The inspected oil cap is observed from
constant distance under different ZXZ fixed angle rotations of the depicted coordinate
frame. The image scale is 2mm per pixel. b) The oil cap and a projection of its
model. The automatically extracted contour edge model was manually annotated with
lines that enclose the writing on the cap. All pictures and the model courtesy of
DaimlerChrysler AG

different perspectives. The images were captured with a camera that was mounted to a
robotic system, by placing the camera at equidistantly spaced positions along a hemi-
sphere around the oil cap. The resulting images contain considerable clutter. The right
subfigure shows that the oil cap model is annotated with four contour edge lines that
enclose the written label on top of the cap. These contour edge lines were added manu-
ally to the automatically extracted features, in order to stabilize the rotation parameter
estimation. As the oil cap is of circular shape, a pure automatically extracted contour
edge model would otherwise have failed to provide enough information about the actual
rotation of the cap within the image plane.

Bank and colleagues [vBGW03] report that their appearance based pose estimation ap-
proach is very accurate and precise in a small range of camera perspectives. In order
to get comparable results, a range of camera perspectives was chosen that is similarly
small. This range is represented by ZXZ fixed angle rotations in the intervals of 80◦ to
100◦ for the first Z-axis rotation, 30◦ to 50◦ for the rotation around X, and−10◦ to 10◦ for
the second Z-axis rotation. Within this range, 27 images were available. Each image was
processed 70 times, yielding a total of 1890 pose measurements that were each compared
to the ground truth2. Each recovered pose exhibits 5 DOF because the distance between
camera and oil cap is known. Note that out of these 5 DOF, only the rotational parameters

2Bank et al. report that their ground truth has an accuracy of about 1◦.

104



5.2 Experimental Investigation 2

(a) (b)

Figure 5.5: Mismatch of coordinate systems. a) The oil cap at a camera perspective of (0◦, 0◦, 0◦),
together with the backprojected model. The arrows mark spots where the mismatch
between the coordinate system of the image recording process and the model coor-
dinate space is most obvious. b) Applying the compensation rotation to the ground
truth values alleviates the mismatch. All pictures and the model courtesy of Daimler-
Chrysler AG

are analyzed in the following because the ground truth doesn’t contain any translation in-
formation. All pose measurements and the ground truth values were then converted to
the corresponding XYZ fixed angle parameters, in order to maintain a constant represen-
tation throughout this thesis. The deviations of the rotation parameters from the ground
truth were finally used to determine the mean pose error and its standard deviation for
each of the three rotation parameters.

When calculating the mean pose errors and standard deviations, it became apparent that
the provided ground truth refers to a coordinate system that is different from the coordi-
nate system of the oil cap model. This can be seen very clearly from an image that shows
the oil cap perceived straight from above as illustrated in Fig. 5.5(a). At the positions
marked by the red arrows, the model deviates very clearly from the image allthough the
correct ground truth values are used to project the model to the image plane. As a con-
sequence, all recovered pose parameters are biased when compared to the ground truth,
in addition to the inherent bias of the pose estimation process. In order to compensate
for this systematic error, a compensatory rotation was determined, whose effects are vi-
sualized in Fig. 5.5(b). The compensation was determined as the rotation matrix that
minimizes the sum of squared deviations of the recovered pose measurements from the
ground truth values. The compensating rotation parameters were found to be the XYZ
fixed angles (−1.9◦,−0.6◦,−1.3◦).
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Apart from the intriguing possibility of obtaining a direct comparison of localization
methods, the oil cap is an ideal test candidate to evaluate the individual effects of the
various EKPF extensions that have been proposed in the previous chapter. The reason
for this is that the state space decomposition heuristic is never applied for state spaces of
less than 6 DOF. Thus, the EKPF can be used without weighting function manipulation
or without adaptive bandwidth selection and the effects of the remaining extension can
be assessed without possible side-effects from the state space decomposition. Even the
KPF from from Alg. 2 can easily taken into the comparison. Therefore, the EKPF was
run in different modes of operation and its localization accuracy evaluated as before. The
KPF was employed, too. The gathered pose localization results are presented after the
system comparison.

5.2.2 Results

In Tab. 5.2, the mean pose estimation errors and standard deviations of the rotation para-
meter estimation with the EKPF are listed. When the compensation rotation is applied to
the ground truth, the mean pose error of all rotation parameters is well below 1◦, yielding
equal performance to the system in [vBGW03] and all other systems that were intro-
duced in Tab. 2.1 from Chap. 2.6. The standard deviations concerning the estimated Y-
and Z-axis rotations are larger than the 1◦ achieved by Hel-Or & Werman in [HOW96].
Nevertheless, the results are competitive when taking into account that the oil cap exhibits
strong rotational shape symmetries, in contrast to the elongated shape of the desklamp
that was localized by the system of Hel-Or & Werman. The histograms of all rotation pa-
rameter deviations from the compensated ground truth are illustrated in Fig. 5.6. Without
compensation, the mean pose error increases up to 3.7◦ for the Z-axis rotation because
the mismatch in the model coordinate system and the ground truth origin introduces a
systematic error to the pose measurements. But even in this case, the other two rotation
parameters are recovered with reasonable accuracy.

In order to achieve the performance values indicated in Tab. 5.2, the EKPF was run with
1000 Particles and 2 iterations of mean shift. This takes about 6s on a 2GHz Pentium
IV which is more than one order of magnitude slower than the approach reported in
[vBGW03]. The memory consumption is 5MB. Figure 5.7 provides a visual impression
of the achieved localization accuracy of the system, by means of the best and worst three
results w.r.t. the sum of squared pose parameter deviations from the ground truth.

The results of performing the EKPF in different modes of operation and of the KPF
performance are given in Tab. 5.3. The upper half lists the mean errors and standard
deviations that were achieved together with applying the compensatory rotation to the
ground truth. The lower half presents the same performance indicators for the uncom-
pensated ground truth values. Throughout the table, KPF denotes the kernel particle filter
from Alg. 2. Furthermore, WFM-only is an EKPF that was run with weighting function
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Table 5.2: The mean error (µ) and standard deviation (σ) of the X,Y, and Z-axis rotation parame-
ters w.r.t. the compensated and uncompensated ground truth

Compensation µX µY µZ σX σY σZ

On 0.2◦ 0.3◦ −0.1◦ 1.3◦ 1.5◦ 0.9◦

Off −1.4◦ 0.9◦ 3.7◦ 1.4◦ 1.6◦ 1.0◦

(a) X-axis rotation (b) Y-axis rotation

(c) Z-axis rotation

Figure 5.6: The histograms of the rotation parameter deviations from the compensated ground
truth. Solid vertical lines denote the mean error. Dashed vertical lines show the
standard deviation
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Results of the oil cap localization. The visible contour edges of the localized oil cap
have been backprojected to the image plane under the recovered part pose. a,c,e) Best
three results, ranked by the sum of squared deviations from the ground truth. The
backprojected contour edges fit quite well to the physical object. b,d,f) Worst three
results. All pictures and the model courtesy of DaimlerChrysler AG
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Table 5.3: The mean error (µ) and standard deviation (σ) of the X,Y, and Z-axis rotation parame-
ters w.r.t. the compensated and the uncompensated ground truth and different kernel
particle filters

Compensation Algorithm µX µY µZ σX σY σZ

yes KPF −0.3◦ 1.0◦ −0.1◦ 2.9◦ 3.3◦ 2.8◦

yes WFM-only −0.5◦ 0.9◦ 0.1◦ 2.6◦ 2.9◦ 2.5◦

yes ADAPT-only 0.2◦ 0.5◦ 0.1◦ 1.6◦ 2.0◦ 1.3◦

yes Full EKPF 0.2◦ 0.3◦ −0.1◦ 1.3◦ 1.5◦ 0.9◦

no KPF −1.8◦ 1.6◦ 3.8◦ 3.0◦ 3.3◦ 2.8◦

no WFM-only −2.0◦ 1.4◦ 3.8◦ 2.6◦ 3.0◦ 2.5◦

no ADAPT-only −1.4◦ 1.1◦ 3.8◦ 1.7◦ 2.1◦ 1.3◦

no Full EKPF −1.4◦ 0.9◦ 3.7◦ 1.4◦ 1.6◦ 1.0◦

manipulation but uses bandwidths like Alg. 2. In contrast to this, ADAPT-only denotes an
EKPF that doesn’t manipulate the weighting functions but performs adaptive bandwidth
selection. Finally, Full EKPF stands for fully activated extensions.

When regarding the mean error of the recovered rotation parameters, it can be seen that
the full EKPF always performs better than or at least equal to the KPF. Furthermore,
when running the EKPF with only one extension, the achieved mean error lies in bet-
ween the performance of the KPF and the EKPF, with the exception of the WFM-only
case w.r.t. the X-axis rotation. However, the most remarkable result arises from analy-
zing the standard deviations of the rotation parameter deviations from the ground truth.
For all three rotation parameters, the KPF measurements exhibit standard deviations that
are at least twice as high as those of the full EKPF. Furthermore, each of the proposed
extensions alone achieved better results than the KPF, but worse than for employing both
extensions together. This finding indicates that the weighting function manipulation and
the adaptive bandwidth selection schemes both significantly improve the measurement
accuracy and precision of the EKPF.

5.3 Experimental Investigation 3

The first experimental investigation of this chapter investigated the pose estimation ac-
curacy and precision of the EKPF in a low-complexity setting. Similar to this, the third
experimental investigation aims at documenting the performance of the EKPF under fa-
vorable conditions, which in this case means scenes without clutter. However, unlike
the first two investigations, the third experimental investigation deals with an assembly
composed from 20 parts. It determines the pose estimation accuracy and precision based
on a manually measured ground truth.
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Figure 5.8: The setup of experimental investigation 3. a) A 20-part toy airplane in its reference
pose. b) A sketch of the airplane model’s kinematic tree. Only the pose parameters of
the parts in light blue are recovered

5.3.1 Methology and Data Sets

The setup of the third experimental investigation is illustrated in Fig. 5.8. It shows the
assembly that is localized in the following, namely a 20-part toy airplane, together with
a sketch of its kinematic tree. The assembly is mounted to a fixture consisting of a 5-
hole-bar, a red cube and a yellow screw that are not part of the model. To manually
record the ground truth data of each individual part would have been too difficult with
the available vernier calipers and goniometer. Thus, only the part poses of the five best
accessible parts are considered in the following. The respective parts are visualized in
Fig. 5.9(a). As ground truth, the rotation parameter of parts 1, 2, 3, and 5 was recorded
that was least constrained by the assembly structure. For example, the least constrained
rotation parameter of the nut part 1 was the rotation around the screw thread to which the
nut was attached. Furthermore, the least constrained translation parameter of part 1 and
4 was recorded, which was a translation along the individual screw thread to which the
respective parts were attached. As in experimental investigation 1, the accuracy of the
manual measurements is expected to be better than 1◦ for rotation parameters and better
than 1mm for translation parameters.

The experimental investigation was conducted in the following way. First, a camera was
statically placed at a distance of 80cm from the assembly. The camera was then zoomed
to capture images with a scale of 0.3mm per pixel and calibrated to the fixture to which
the airplane was mounted. Afterwards, 50 images of the assembly were captured in
which the part poses vary systematically. The extreme points of variation are illustrated
in Fig. 5.9. For each image measurement, the associated ground truth was recorded as
indicated above. Then, the EKPF was used to estimate the pose parameters of parts 1
to 5, together with the pose parameters of their respective parents within the kinematic
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1
2

3 4

5
(a) (b)

Figure 5.9: The range of recorded toy airplane poses. a) Pose parameters of the numbered parts
are manually measured and recorded as ground truth. b) Throughout the experimental
investigation, the assembly pose was varied in between the pose depicted in the left
image and this pose

tree. Note that the root node part, i.e. the 5-hole-bar, was held by the fixture and its pose
parameters known from the camera calibration. The complete set of seven localized parts
is marked in light blue within the kinematic tree sketch in Fig. 5.8(b).

Taken together, the localized parts exhibit 42 DOF. However, 14 DOF are strongly con-
strained by the assembly structure. The structurally constrained parameters are part of
the particle filtering state space but their values are nearly constant and known in ad-
vance from the assembly reference pose. Consequently, the number of DOF that were
effectively recovered in this experimental investigation is 28. The pose parameters of the
unlocalized parts were taken to be the values of the reference pose represented by the
kinematic tree, though this constraint wasn’t imposed on the real assembly when cap-
turing the images. The scene illumination was again provided by two 110W cold light
lamps that were placed to the left and to the right of the camera. Furthermore, the scene
illumination was influenced by strongly varying amounts of daylight.

5.3.2 Results

The mean error and standard deviation of the recovered pose parameters of parts 1 to
5 w.r.t. the ground truth is given in Tab. 5.4. For the rotation parameters, the mean
error is −1.4◦ in the worst case and −0.3◦ in the best case, while the standard deviations
range from 0.6◦ to 3.1◦. More specifically, the highest two standard deviations and mean
errors are associated with the most challenging parts 1 and 3. The former experiences
inter-part occlusion of up to 80% of its contour length while the latter exhibits strong
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Table 5.4: The mean error (µ) and standard deviation (σ) of rotation and translation parameter
measurements w.r.t. the ground truth

Rotation Translation
Part 1 Part 2 Part 3 Part 5 Part 1 Part 4

µ -0.4◦ -0.4◦ -1.4◦ -0.3◦ 0.2mm 0.3mm
σ 3.1◦ 0.6◦ 3.1◦ 2.1◦ 0.5mm 0.6mm

(a) part 1, rotation (b) part 1, translation

(c) part 2, rotation (d) part 3, rotation

(e) part 4, translation (f) part 5, rotation

Figure 5.10: Histograms of the pose parameter deviations from the ground truth. Solid vertical
lines denote the mean error. Dashed lines visualize the standard deviation
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Results of the airplane localization. The visible contour edges of the localized air-
plane parts have been backprojected to the image plane under the recovered part
poses. a,c,e) Best three results, ranked by the sum of squared deviations from the
ground truth. The backprojected contour edges fit quite well to the physical objects.
b,d,f) Worst three results
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rotational shape symmetries w.r.t. the axis of the recovered rotation parameter. In contrast
to this, the best localization performance is achieved for part 2 which provides favorable
edge information due to its very elongated shape. For this part, the achieved results
are competitive to the results of the system in [HOW96] which localized a desklamp
that was of similarly elongated shape. Concerning the recovered translation parameters,
our system again performs competitively well in comparison to all systems presented in
Chap. 2.6, i.e. with a mean error and standard deviation of less than 1mm.

The results in Tab. 5.4 were achieved by executing the EKPF with 500 Particles and 5
iterations of mean shift. Recovering the 28 DOF takes 56s on a 2GHz Pentium IV. The
memory consumption of the airplane assembly model is 41MB. Figure 5.11 provides a
visual impression of the localization accuracy of the system, by means of the best and
worst three results w.r.t. the sum of squared pose parameter deviations from the ground
truth. Furthermore, Fig. 5.10 shows the resulting histograms of the pose parameter devi-
ations from the ground truth.

5.4 Experimental Investigation 4

Experimental investigation 4 analyzes the localization accuracy and precision of the
EKPF concerning multi-part assembly observations with cluttered backgrounds. The
clutter is generated from a random distribution of parts that are also used within the ob-
served assembly. Note that out of the five systems that have been presented in Chap. 2.6,
only [vBGW03] and [Köl02] have been tested under similar conditions. The other three
systems were only tested on images with a rather uniform background. As a cluttered
background gives rise to many more contour edges than the ones arising from the ob-
served assembly, there is a high potential for the localization process to be distracted
from finding the correct part positions. Accordingly, the most important question within
this investigation is, how well the system performs in such an environment. Additionally,
the performance impact of model optimization is studied.

5.4.1 Methology and Data Sets

This experimental investigation performs the localization of a toy vehicle axle that is
composed from 16 parts. It is illustrated in Fig. 5.12, together with a sketch of its kine-
matic tree. As in the previous investigation, the assembly is held by a fixture that is not
part of the assembly model. But unlike the toy airplane from experimental investigation
3, the structure of the toy vehicle axle doesn’t support the manual determination of the
pose ground truth because the assembly is too small and to compact to reliably apply
the goniometer. Therefore, a simulated ground truth was used in this investigation. The
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Figure 5.12: The setup of experimental investigation 4. a) A 16-part toy vehicle axle in its re-
ference pose. The image background is cluttered. b) A sketch of the vehicle axle’s
kinematic tree. Only the pose parameters of the parts in light blue are recovered

latter was obtained by performing a manual fit of the assembly model to all recorded
images. Only the root node part position was determined from physical measurements,
by means of placing a calibration target at the 3-hole-bar before the rest of the assembly
was attached to it.

Out of the 16 parts of the toy vehicle axle, only 9 are considered in the following. These
parts are marked in light blue in the kinematic tree sketch from Fig. 5.12(b) and also
enumerated in Fig. 5.13(a). The wheels, bearings and rims are left out of the conside-
rations, because the correct respective models weren’t available. The models that were
employed instead were just similar enough in shape to facilitate the correct localization
of the remaining parts. Concerning the localized parts, only the most strongly varying
pose parameter per part is analyzed in the following. For parts 1 to 7, this is the rotation
around the screw thread, which either belongs to the respective part or to which the part
is attached. For the screws 8 and 9, the analyzed parameter is the translation along their
screw axis.

The experimental investigation was conducted in a way similar to that of the previous one.
First, a camera was statically placed at a distance of 80cm from the assembly. The ca-
mera was then zoomed to capture images with a scale of 0.2mm per pixel and calibrated.
Afterwards, 100 images of the assembly were captured in which the part poses vary sys-
tematically. The extreme points of variation are illustrated in Fig. 5.13. For each captured
image, the associated simulated ground truth was determined as indicated above. Then,
the EKPF was used to estimate the pose parameters of parts 1 to 9. This was done 50
times per recorded image, resulting in a total of 5000 assembly pose measurements.
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Figure 5.13: The range of recorded toy vehicle axle poses. Throughout experimental investigation
4, the assembly part poses were varied in between the depicted configurations. Only
the numbered parts in a) were localized

Taken together, the localized part poses exhibit 54 DOF. But due to the constraints arising
from the assembly structure, only 29 DOF had to be recovered effectively. All other
pose parameters were set to the values of the respective reference pose parameters from
the kinematic tree. The scene illumination was again provided by two 110W cold light
lamps that were placed to the left and to the right of the camera. Furthermore, the scene
illumination was influenced by strongly varying amounts of daylight.

In order to evaluate the pose localization performance in the context of model optimiza-
tion, three vehicle axle models were used that had been generated from varying degrees
of optimization. Model I was obtained without employing any contour edge feature op-
timization. Model II resulted from setting ∆qj in Eqn. (3.9) to accept a maximal loss of
30% of the expected number of active contour edge features per view. Model III was
obtained from refining model II by optimizing the models of all unlocalized parts with
a ∆qj of 90%. Furthermore, the contour edge features of the nut part in model III were
completely unoptimized, for reasons that will be explained within the discussion of re-
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Table 5.5: The mean error (µ) and standard deviation (σ) of rotation and translation parameter
measurements w.r.t. the simulated ground truth and vehicle axle model I

Rotation Translation
Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9

µ 0.2◦ -0.3◦ 0.4◦ -0.1◦ 0.3◦ -1.9◦ -1.7◦ 0.4mm -0.1mm
σ 2.5◦ 2.6◦ 2.9◦ 2.6◦ 3.3◦ 3.6◦ 3.2◦ 1.1mm 0.6mm

sults. Thus, vehicle axle model III was a hybrid model in which the localized parts were
represented with a fair amount of contour edge features, while the unlocalized parts were
represented with a feature set that was just large enough to provide some visual feedback
for the visual analyzation of localization results.

5.4.2 Results

In the following, the localization results are first discussed w.r.t. the unoptimized vehicle
axle model I. Afterwards, the achieved performance will be compared to the results of
employing the optimized assembly models II and III.

The mean error and standard deviation of the recovered pose parameters of parts 1 to
9 w.r.t. the simulated ground truth and model I is given in Tab. 5.5. For the rotation
parameters, the mean error is −1.9◦ in the worst case and −0.1◦ in the best case, while
the standard deviations range from 2.5◦ to 3.6◦. For the translation parameters, the mean
error ranges from 0.4mm to -0.1mm, while the standard deviations are 1.1mm and 0.6mm
in the worst and in the best case. When comparing these results to the performance
achieved in experimental investigation 3, it can be seen that the worst and best case
standard deviations are higher than in the previous investigation. Thus, the clutter has
clearly impacted on the pose estimation accuracy and precision. Nevertheless, no other
system is known to us that performs a similarly accurate and precise pose localization of
complex multi-part assemblies from monocular images with cluttered background.

The results in Tab. 5.5 were achieved by executing the EKPF with 200 Particles and 2
iterations of mean shift. Recovering the 29 DOF takes 91s on a 2GHz Pentium IV. The
memory consumption of the vehicle axle assembly model is 69MB. Figure 5.14 provides
a visual impression of the localization accuracy of the system, by means of three good
and three bad results. The illustrated results were taken out of the 100 best and worst
w.r.t. the sum of squared pose parameter deviations from the simulated ground truth. The
histograms of the pose parameter deviations from the simulated ground truth are given in
Fig. 5.10.

Table 5.6 compares the results that have been discussed so far to the pose localization
results achieved with the other two vehicle axle models. Concerning model II, it can
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Table 5.6: The mean error (µ) and standard deviation (σ) of rotation and translation parameter
measurements w.r.t. the simulated ground truth and vehicle axle models I, II, and III

Rotation Translation
Part 1 Part 2 Part 3 Part 4 Part 5 Part 6 Part 7 Part 8 Part 9

Model I
µ 0.2◦ -0.3◦ 0.4◦ -0.1◦ 0.3◦ -1.9◦ -1.7◦ 0.4mm -0.1mm
σ 2.5◦ 2.6◦ 2.9◦ 2.6◦ 3.3◦ 3.6◦ 3.2◦ 1.1mm 0.6mm

Model II
µ 0.3◦ -0.5◦ -0.3◦ -0.1◦ 0.4◦ -2.1◦ -1.8◦ 0.4mm -0.1mm
σ 2.5◦ 2.6◦ 11.7◦ 2.5◦ 3.2◦ 3.7◦ 3.2◦ 1.1mm 0.6mm

Model III
µ 0.3◦ -0.5◦ -0.3◦ -0.1◦ 0.3◦ -2.1◦ -1.8◦ 0.3mm -0.1mm
σ 2.7◦ 2.8◦ 2.8◦ 2.4◦ 3.4◦ 3.7◦ 3.2◦ 1.1mm 0.6mm

be seen that the localization accuracy and precision stays quite close to the values of
the unoptimized model, with the only extreme exception of the rotation parameter of
part 3. In this case, model optimization has clearly exceeded a critical level of contour
edge feature reduction. Note that part 3 is quite small and experiences strong inter-
part occlusion within the captured images. This is why within model III, part 3 was
completely unoptimized. As a result, the standard deviation w.r.t part 3 and model III is
very similar to that of model II. To conclude, Table 5.6 shows that a careful optimization
of contour edge feature sets only has a minor impact on the localization accuracy and
precision of the EKPF.

The real benefit from using model optimization becomes clear when comparing the exe-
cution speed of the EKPF w.r.t model I, II, and III. As indicated above, the EKPF needs
91s on a 2GHz Pentium IV when localizing the vehicle axle with model I. The latter va-
cates 69MB of main memory. Working with model II and the same parameterization of
the EKPF takes 67s, which is a speed up of 26%. The memory consumption of model II
is 57MB. Finally, performing pose localization with model III takes 41s, which achieves
a speed up of 55%. The model consumes 31MB of memory. In summary, the model op-
timization stage that was introduced in Chap. 3.3 facilitates a reduction of computational
load, while even improving the moderate memory consumption of the EKPF. When run-
ning the inspection system with model III, the total memory consumption of the system
(including all image preprocessing results, particles, assembly model data, and loaded
software libraries) is below 100MB.
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5.4 Experimental Investigation 4

(a) (b)

(c) (d)

(e) (f)

Figure 5.14: Results of the vehicle axle localization. The visible contour edges of the localized
parts have been backprojected to the image plane under the recovered part poses.
a,c,e) Three results out of the 100 best w.r.t the sum of squared deviations from
the simulated ground truth. The backprojected contour edges fit quite well to the
physical objects. b,d,f) Three results out of the 100 worst
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(a) part 1, rotation (b) part 2, rotation

(c) part 3, rotation (d) part 4, rotation

(e) part 5, rotation (f) part 6, rotation

(g) part 7, rotation (h) part 8, translation

(i) part 9, translation

Figure 5.15: Histograms of the pose parameter deviations from the simulated ground truth. Solid
vertical lines denote the mean error. Dashed lines visualize the standard deviation
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5.5 Summary

5.5 Summary

Experimental investigation 1 documents the accuracy and precision of the localization
module for a baufixr screw-cube assembly under varying perspective and image scale.
The investigation is carried out w.r.t. a manually measured ground truth. The screw
rotation around the screw thread is determined with an accuracy and precision that is
slightly inferior to that of the reference systems reported in Chap. 2.6. Regarding the
screw translation along its thread, the achieved localization accuracy and precision is
competitive to that of the reference systems.

Experimental investigation 2 estimates the 5 DOF pose of an oil cap. The ground truth
is given for the three oil cap rotation parameters. Within this industrial application do-
main, the EKPF pose estimation accuracy w.r.t. the three rotation parameters equals
that of the reference system from [vBGW03], which has been tested on the same data.
However, the system of [vBGW03] is specialized on estimating object poses with up
to 6 DOF. Consequently, the processing speed of the specialized system is considerably
higher than that of the EKPF. The EKPF pose estimation precision is comparable to that
of the other reference systems, when taking into account that the oil cap exhibits strong
rotational symmetries that principally impact negatively on the pose estimation accuracy
and precision. By testing the EKPF repeatedly on the same data but in different modes
of operation, it is demonstrated that the proposed weighting function manipulation and
adaptive bandwidth selection schemes can both significantly improve the pose estimation
accuracy and precision.

Experimental investigation 3 analyzes the pose estimation capabilities of the EKPF con-
cerning image measurements with uniform background and a 7-part subset of a 20-part
baufixr airplane. The seven localized parts effectively exhibit 28 DOF, out of which
four rotation parameters and two translation parameters are available as ground truth.
Regarding the achieved pose estimation accuracy, the EKPF performs as good as the re-
ference systems for five out of the six ground truth pose parameters. Regarding the pose
estimation precision, the EKPF achieves the reference system performance w.r.t. the two
recorded translation parameters and one out of four rotation parameters.

Experimental investigation 4 documents the localization accuracy and precision of the
EKPF concerning image measurements with cluttered background and a 9-part subset
of a 16-part baufixr vehicle axle. A simulated ground truth of the assembly pose is
available. For all of the seven rotation parameters and the two translation parameters
that are analyzed, the mean error of the pose deviations from the simulated ground truth
is smaller than 2◦ and 0.5mm. The corresponding standard deviations are all smaller
than 3.7◦ and 1.2mm. Furthermore, by employing two additional assembly models that
have been generated with varying degrees of contour edge feature optimization, it is
demonstrated that the model optimization scheme facilitates a reduction of computational
load, while further improving the moderate memory consumption of the EKPF.
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The four experimental investigations are carried out on a 2GHz Pentium IV PC with 1GB
of main memory. In all four cases, the total memory consumption of the whole image
processing system is well below 150MB. Depending on the size of the employed particle
sets, the number of mean shift iterations, and the number of contour edge features and
oriented bounding boxes within the employed assembly models, the processing speed
varies between 5 to 10 seconds per localized part.
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6 Conclusion and Outlook

Automated visual inspection is fundamental in the endeavor to manufacture products of
increasing complexity. In the context of quality assurance procedures, its chief purpose is
to identify errors within production processes, possibly before they become defects. Fur-
thermore, by tracing the identified errors and adapting the involved production processes
accordingly, many errors can be prevented from being made at all.

This thesis contributes a new system for automated visual inspection. Regarding prior
work in this field, the proposed system is unique in the following ways.

1. The system extends the localization of objects composed from single or few rigid
parts to the case of true multi-part assemblies. It employs a new assembly pose
estimation technique, namely the extended kernel particle filter (EKPF). The EKPF
determines assembly poses from monocular images and is robust against occlusion
between parts.

2. The EKPF integrates and extends a number of existing techniques. Individually,
the integrated techniques don’t facilitate multi-part assembly pose estimation with
equal accuracy and precision, when allocated comparable amounts of system re-
sources.

3. In addition to online localization, the system also performs offline assembly model
preparation. It automatically extracts contour edge features from 3D CAD models
of rigid parts. Furthermore, it supports the optimization of part feature models w.r.t.
storage, and their combination to representations of multi-part assemblies. The
resulting assembly models efficiently and accurately represent feature visibility
under different assembly pose configurations and perspective occlusion.

Except for its classification module that is presented only conceptually, the proposed sys-
tem has been fully implemented. The offline model preparation is written in MATLABr,
while the EKPF is written in C++. As image processing platform, the iceWing toolkit
of Frank Lömker is used, which is licensed under the GNU General Public License and
freely available at sourceforge.net.

The evaluation at the end of this thesis reports four experimental investigations that do-
cument the pose localization performance of the system prototype under varying condi-
tions. The localized assemblies exhibit up to 29 recovered DOF. Regarding the results, no
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6 Conclusion and Outlook

other system is known to us that localizes complex multi-part assemblies from monocu-
lar images with comparable accuracy and precision. In this respect, the proposed system
therefore defines the state-of-the-art. At the same time, the evaluation yields empirical
evidence which indicates that the system offers near state-of-the-art localization accuracy
and precision when localizing single parts.

Concerning future work, the most important step clearly is to implement the classification
module that is sketched in this thesis. Furthermore, there is still untapped potential for
speeding up the performance of the pose localization module. For example, the oriented
bounding boxes of the assembly models could be organized hierarchically. By testing
against the hierarchically organized bounding boxes in a coarse-to-fine fashion, many of
the contained part model features could be ruled out as invisible much faster than with
the current approach. Consequently, the number of operations that have to be performed
for the online feature visibility prediction could be significantly reduced. Finally, the
localization module could be extended to deal with rather flexible objects like cables and
tubes. This could for example be achieved by integrating the approach that was recently
proposed in [Ell05].
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A OBB Generation

The generation scheme of oriented bounding boxes (OBBs) that is sketched in the fol-
lowing is a simplified version of the approach proposed in [GLM96, pp. 6-8]. It starts by
considering the vertices of the normalized 3D CAD model of a rigid part. For this part, a
set of OBBs can be generated by the following decomposition principle.

1. Calculate the mean µ and the three-by-three covariance matrix C of the vertices of
the normalized CAD part.

2. Create an initial OBB. Its center is at µ, while the three eigenvectors of C define its
basis. In order to size the new OBB, find the extremal vertices along the OBB axes
and set the box size to tightly bound all vertices.

3. Split the OBB in two. The split is performed with a plane that is orthogonal to
the longest OBB axis and includes the box center. Assign the vertices within the
unsplit box to either of the new ones. Then update the center points, bases, and
sizes of the two resulting OBBs.

4. Keep splitting the OBBs according to the previous step, until a maximum total
number of OBBs is reached or until all box axes are smaller than a given threshold.
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B Importance Sampling

The following considerations largely follow the discussion presented in [AMGC02]. The
importance sampling principle is concerned with the problem of sampling from the pos-
terior pdf p(xt|Yt). Recall that the posterior can be approximated as

p(xt|Yt) ≈
Ns∑

n=1

wn
t δ(xt − sn

t ), (B.1)

where xt is the current system state, Yt is the history of image observations, δ is the Dirac
delta function, and {sn

t , wn
t }Ns

n=1 is a particle set representation of the posterior. As stated in
Chap. 4.2.2, in the context of particle filtering the posterior pdf usually can’t be sampled
directly. However, usually a pdf π(·) can be evaluated at given sample positions which
is known to be proportional to the posterior pdf, i.e. p(xt|Yt) ∝ π(sn

t |Yt). Assume that
such a π(·) is given, and that an importance density q(·) is known, from which one can
easily sample the particles sn

t ∼ q(xt|Yt). If this is done, choosing the particles weights
according to

wn
t =

π(sn
t |Yt)

q(sn
t |Yt)

∝ p(sn
t |Yt)

q(sn
t |Yt)

(B.2)

yields a valid particle set representation of the posterior.

In order to employ this approach within particle filtering, the distribution q(·) is chosen
to factorize according to

q(xt|Yt) = q(xt|xt−1,Yt)q(xt−1|Yt−1). (B.3)

In that case, the samples sn
t of the current time step t can be obtained by augmenting those

of the previous time step with the new state sn
t ∼ q(xt|xt−1,Yt). However, the weight

update scheme must be adapted to the factorized version of q(·), too. For this, it can be
shown that the posterior is proportional to

p(xt|Yt) ∝ p(yt|xt)p(xt|xt−1)p(xt−1|Yt−1), (B.4)
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if the observation of the current time step only depends on the current system state, and
if the same assumption is made as in (B.3) that the current state xt only depends on the
state of the previous time step. Plugging (B.3) and (B.4) into (B.2) yields

wn
t ∝

p(yt|sn
t )p(sn

t |sn
t−1)p(sn

t−1|Yt−1)

q(sn
t |sn

t−1,Yt)q(sn
t−1|Yt−1)

. (B.5)

Under the additional assumption that the importance density q(·) only depends on the
latest image measurement yt instead of the whole history, this can finally be regrouped
to the recursive weight update scheme

wn
t ∝ wn

t−1

p(yt|sn
t )p(sn

t |sn
t−1)

q(sn
t |sn

t−1,yt)
. (B.6)
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C Image Cues for Assembly Pose Estima-
tion

All particle filters that are described in this thesis approximate the observation density
at specific particle positions. As detailed in 4.2.2, this approximation is based on the
evaluation of different image cues. For the inspection system prototype, three cues were
implemented, namely the forward distance cue, the backward distance cue, and the color
cue. They are described in the following.

The forward distance cue is based on the partial directed Hausdorff distance (cf. [Ruc96,
p.38]). The latter rates the distance between two point sets. In our case, the first point
set is zk

t which results from sampling 2D points along the projected features of the kth
assembly part model, given a specific particle that is interpreted as pose hypothesis. The
second point set is the set of edge pixels E(yt) that results from the application of an
edge detection filter to the current image measurement. Both point sets are illustrated in
Fig. C.1(a). The forward distance cue is evaluated by first establishing the distance of
each point in zk

t to the nearest edge pixel as illustrated in Fig. C.1(b). The largest such
distance yields the directed Hausdorff distance.

(a) (b) (c)

Figure C.1: The directed Hausdorff distance. a) Point set zk
t (red) is sampled from the part model

features (black) of a nut whose pose is hypothesized according to a given particle.
The edge pixels E(yt) (blue) arise from the physical object. b) A line associates each
z ∈ zk

t with the nearest edge pixel. c) The largest distance (red line) is the directed
Hausdorff distance
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C Image Cues for Assembly Pose Estimation

(a) (b) (c)

Figure C.2: The effects of the chamfer distance transform. The image a) is treated with a SUSAN
edge detection filter [SB97]. The resulting edge image b) then undergoes a chamfer
distance transform. Within the chamfer distance image c), dark pixels denote posi-
tions that are close to edge pixels in the untransformed edge image. Image a) courtesy
of DaimlerChrysler AG

In order to compensate for outliers due to image noise, one can rank the shortest distances
between the point sets and choose the l-th quantile value among them. For example, the
0-th quantile value would select the smallest of all ranked values and the 1

2
-th quantile

value their median, while the 1-th quantile value yields the largest distance as chosen in
Fig. C.1(c). For 0 ≤ l ≤ 1, this procedure returns the partial directed Hausdorff distance

h(zk
t , E(yt)) = lthz∈zk

t
min

e∈E(yt)
‖z− e‖. (C.1)

Note that ‖·‖ within this thesis denotes the Euclidean distance or an approximation
thereof. The min ‖·‖ operation can be implemented as a simple look-up, if the edge
image E(yt) is filtered with a chamfer distance transform. The latter is an integer ap-
proximation to the Euclidean distance of any point on the image grid to the nearest edge
pixel. An efficient algorithm to compute this transform has e.g. been proposed by Borge-
fors [Bor86]. Its outcome is illustrated in Fig. C.2(c). At each 2D position z, one can
now read out the corresponding chamfer distance value in order to obtain the shortest
distance to the next image edge pixel.

The forward cue can be normalized to [0, 1] by taking into account that the chamfer
distance transform operates on images of finite dimensions. Thus, a value Dmax exists
that denotes the largest possible distance of any image point to an edge pixel within
the same image. We define the forward distance cue as the normalized partial directed
Hausdorff distance

ffw(zk
t ,yt) =

1

Dmax

h(zk
t , E(yt)). (C.2)
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(a) (b) (c)

Figure C.3: Clipping image regions for the backward distance cue. a) The edge image of an
observed nut and cube (blue) is overlaid with the projected model features of an
hypothesized nut model (black). b) Clipped region that fully contains the projected
model features. c) The projected model features have undergone a chamfer distance
transformation

The backward distance cue is similar to the forward distance cue but operates in the
reverse direction. While the forward distance cue rates how near model feature sample
points are to image edge pixels, the backward distance cue indicates how close image
edge pixels are to predicted part model features. Note that, for two point sets A and B
to be nearly identical, both forward and backward distance cue would have to close to 0.
However, the comparison of all image edge pixels to part feature points is problematic in
our case because the feature points arise from only one assembly part. Accordingly, they
usually account for a small part of the observed edge pixels. Those edge pixels arising
from other structures in the image must be excluded from consideration, or they would
bias the backward distance. This is why, as illustrated in Fig. C.3(b), the edge image
is clipped to a rectangular region that is tightly bounding the model feature points. If
C(E(yt)) denotes such a clipped image region, the backward distance cue is expressed as

fbw(zk
t ,yt) =

1

Dmax

lthe∈C(E(yt)) min
z∈zk

t

‖z− e‖. (C.3)

Analogue to the forward distance cue, the predicted model feature points within the
clipped region undergo a chamfer distance transform as illustrated in Fig. C.3(c). Af-
terwards, the min ‖·‖ operation can again be realized by a fast look-up. However, the
backward cue is computationally much more expensive than the forward cue. The reason
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for this is that the latter depends on a distance transform of E(yt) which must only be
calculated once for any new image measurement. In contrast to this, the backward cue
employs the distance transform of predicted part features, which must be computed for
each new part pose hypothesis.

The color cue evaluates the mean color of polygonal image patches. For this, the as-
sembly model must be annotated not only with contour edge features but with polygonal
surface regions of a certain uniform color. In the prototype system of this thesis, such an
annotation can only be carried out manually because the employed CAD models don’t
contain any color information. The polygons can then be decomposed to straight line
segments and treated with the same visibility prediction, transformation, and projection
concepts as the contour edge features. Samples zk

t are positioned within the image re-
gions that are enclosed by projected visible polygons. Given that each color region of the
kth assembly part is assigned a mean color Col

k
in the course of some system calibration

procedure, the mean color cue of that part is evaluated as the Euclidean distance

fcol(zk
t ,yt) =

1

Nz

√∑
z∈zk

t

(Col(z,yt)− Col
k
)2, (C.4)

where Col(z,yt) denotes the color within the current image measurement at sample point
z and Nz = card(zk

t ) is the number of 2D sample points. The prototype implementation
represents colors in the uv subspace of the yuv color space.
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Rückwärtseinschnitt. PhD thesis, Deutsche Geodätische Kommission,
1958. Reihe C: Dissertationen – Heft Nr. 29.

[Tay00] C. J. Taylor. Reconstruction of Articulated Objects from Point Correspon-
dences in a Single Uncalibrated Image. Computer Vision and Image Un-
derstanding, 80(3):349–363, December 2000.

[TvBDK00] D. M. J. Tax, M. van Breukelen, R. P. W. Duin, and J. Kittler. Combining
Multiple Classifiers by Averaging or by Multiplying? Pattern Recognition,
33(9):1475–1485, 2000.

[vBGW03] C. v. Bank, D. Gavrila, and C. Wöhler. A Visual Quality Inspection System
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