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Summary

Over the last decades, the amount of data about molecular processes within cells has
tremendously increased leading in particular to an increased interest in theoretical
investigations of such systems. One basic theoretical approach in this context is to
model processes in biological cells as chemical reaction (diffusion-) systems and to
study their properties by computer simulations.

One major problem in handling such systems is that they often simultaneously
contain substrates with a wide range of possible particle numbers. For example,
ribosomes typically exist in small numbers; tRNA-molecules or proteins are repre-
sented in intermediate quantities; and some ions, such as potassium or sodium, are
typically present in large quantities. However, no conventional algorithm works well
for such a wide range of particle numbers: Small particle numbers require stochastic
algorithms, whereas intermediate and large particle numbers can only be treated by
computationally more efficient, though perhaps less exact modeling.

To address this problem, I developed the COntrollable Approximative STochastic
Algorithm (COAST). COAST is a self adjusting algorithm that can be applied to sim-
ulate reaction and diffusion systems. It is based on three different levels of modeling:
an exact stochastic approach for low particle numbers, an approximative stochastic
approach by Gaussian distributions for intermediate numbers, and a description by
deterministic kinetics for high particle numbers.

A special characteristic of COAST is that it automatically determines the optimal
level of modeling for the reaction channel at each time step. This is done by using
criteria, which appropriately depend on one single error control parameter a. One
can show that all approximations of COAST lead to errors even smaller than .
Thus, by choosing a suitable value for «, the user can easily find an optimal trade off
between accuracy and computational efficiency for an individual simulation system.

It is demonstrated in test simulations that COAST is able to reproduce results
of exact stochastic algorithms with small errors. In most cases, the error is much
smaller than «. On the other hand, COAST shows a different asymptotic dependence
of the runtime on the number of particles N: For n-order reactions, the asymptotic
runtime is proportional to N™ for exact algorithms, but proportional to N™"~! for
COAST. So clearly, COAST provides significant improvements, in particular if N is
large and n is small.
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1 Introduction

To understand the complexity and dynamics of biological systems, mathematical
modeling and computer simulations have become an important area of research in the
last decade. Here, I present an algorithm that is especially designed for the simulation
of reaction diffusion systems with a wide variety of species present in very different
orders of magnitudes of concentration. It is a contribution to the current development
of algorithms for systems biology that aims at providing a comprehensive view on
chemical processes in general, and cellular processes in particular. In the last years,
biological research has focused on the molecular details of the systems under study.
Presently, systems biology tries to put these pieces together combining theoretical
and experimental approaches.

Computational Modeling Biology was once limited to reductionist approaches,
which were very helpful in the past. However, by blinding out connections in those
systems, the retained models are incomplete, inaccurate and simply incorrect [Mell-
man and Misteli, 2003]. To really obtain a comprehensive view on biological systems,
we have to be able to process, analyze, and interpret interactions and dynamic events.
Computational modeling allows us to explore such events taking account of the com-
ponents and the pathways established within the cellular systems under investigation.

Modeling has had a long tradition, and remarkable success, in disciplines such as
engineering and physics. Physical science, for example, is supported by three pillars:
experimental studies, theoretical studies and simulation. Now, the current devel-
opment in systems biology indicates that simulations will become more and more
important in the future of life sciences. The amount of information gained in biologi-
cal science has developed tremendously over the last years. Biological modeling uses
well-established methods such as the finite element method (=finite element analy-
sis, FEA) or numerical techniques to solve ordinary differential equations (ODEs)
or partial differential equations (PDEs) describing biological systems |Doyle, 2001].
ODEs and PDEs are commonly used to model biological networks like metabolic or
signal transduction networks |[Vilar et al., 2003].

The roots of the theory of differential equations go back to the time of the de-
velopment of infinitesimal calculus by I.Newton (1643-1727) and G.Leibniz (1646-
1716) at the end of the 17th century. Since then, famous mathematicians such as
J.Bernoulli (1654-1705), who calculated the orbits of the planets, L.Euler (1707-
1783), J.L.Lagrange (1736-1813) and C.F.Gauk worked in that field. Differential
equations became an important tool in physics (motion, electrical resonant circuits),
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Figure 1.1: The figure shows the signal transduction network leading to apoptosis presented
by Hanahan. It gives an example of how complex cellular processes can be.
Reprinted from Cell, Vol.100, Hanahan and Weinberg, The hallmarks of cancer,
p&7-70, copyright (2000), with permission from Elsevier.

biology (population dynamics, Lotka-Volterra model of predator-prey relation), che-
mistry (chemical reactions, carbon dating C14-method) and the financial sector (cycle
of growth).

Advantages of Computational Models Some biological concepts have already
been discovered by computational modeling. They include bistability [Bhalla and
Iyengar, 1999|, ultrasensitivity |Ferrell and Machleder, 1998, Ferrell, 1999|, and rhyth-
mic behavior |Elowitz, 2000]. Ultrasensitivity defines a response that is more sen-
sitive to ligand concentration as compared to the standard responses as defined by
Michaelis-Menten kinetics [Goldbeter and Koshland, 1981]. A classical Michaelis-
Menten reaction is described by a hyperbolic reaction velocity curve, while an ul-
trasensitive reaction is described by a sigmoidal curve. In 1996, Huang and Ferrell
analyzed the MAPKinase-signaling-pathway (MAPK: mitogen activated protein ki-
nase) in Xenopus oocytes [Huang and Ferrell, 1996]. They found that one part, the
module consisting of the three MAPKinases, worked as a switch, filtering noise and
only being activated if the input reached a certain level. This behavior is experi-
mentally observable only if one analyzes a single cell. Another example of computa-



Characteristic Quantity | Source
proteins 225,000
ribosomes 15,000
tRNA-molecules 170,000
small organic molecules 15,000,000
ions 95,000,000
water 25% [Goodsell, 1993]
no. of genes 4497 [Keseler et al., 2005|
no. of reactions per cell cycle | 101 — 10'° | [Endy and Brent, 2001|

Table 1.1: The table shows some characteristics of an average E.coli cell. The complezity
is about a factor thousand smaller for the smallest cell types (mycoplasms) and
about a factor of thousand larger for typical plant and animal cells [Schwehm,
2001].

tional modeling is the modeling of ion-channels which goes back several years |Levitt,
1999|, reaction-diffusion systems simulating transport processes out of the nucleus, or
transport processes of proteins between the endoplasmatic reticulum and the Golgi
complex [Ladinsky et al., 1999|.

These models provide a systematic framework to describe and analyze such com-
plex systems (cf. Table 1.1); this complexity is the result of the number of single
nodes within these networks and their interactions. They summarize the current
knowledge and hypotheses about missing information. Speaking from a biochemi-
cal point of view the nodes are biologically active substrates and the edges are the
chemical interactions between them.

Models in general have several advantages. The problem with analyzing complex
systems is that the output is far from intuitive; doubling the input does not mean that
the output will be doubled |Voit, 2002|. This nonlinearity is caused by synergistic
effects, which results in the invalidity of the summation principle of single events.
Modeled systems are easier to manipulate than real systems. One clear example for
this are multiple knock-out experiments. Another example involves the timescales
of biological processes. The time span for molecular movements is within p-seconds,
whereas a human life is approximately 10° s (75 years). The former time span is
hard to observe and the latter difficult to follow. Simulations allow scientists to
capture time and scales together. It should be noted, however, that a model is only
an approximation of reality, and all predictions made with those models can only be
as good as the model used to make those predictions.

It is not the aim of simulations to replace in vivo experiments, but rather to offer
important amendments for their planing and analyses. The model can be used to
obtain an overview of possible outcomes. Sufficiently detailed and accurate models
can serve as a reference for interpreting experimental results and suggesting further
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Figure 1.2: The figure presents the hypothesis-driven research in systems biology demon-
strating how mathematical models can be a contribution to research. Reprinted
with permission from SCIENCE, Vol.100, Kitano, Systems biology: a brief
summary, pl1662-1664, March 2002. Copyright (2002) AAAS.

hypotheses |Takahashi and al., 2002|. Simulations can provide insight into otherwise
impossible scenarios and so will be able to save time and money. They are expected
to guide wet-lab processes and narrow the experimental search space.

Progress in biochemistry and biology in general has provided science with great
detail of cellular processes. Computational biology seeks to understand the princi-
ples underlying their dynamic behavior. As Bundschuh et al. [2003] state , there has
been considerable effort in the past to model the biochemical network of a whole cell
or cellular subsystems. He provides examples for the benefits gained by modeling,
namely enhancing our understanding of cell functions, easily observing the desig-
nated systems and determining the quantities of interest (measuring them would be
only possible by complex experiments). For these reasons, he sees the future of drug
development, where the effects of a putative drug on a cell can be immediately tested.

The Problem of Modeling Cellular Processes and Structure The tools needed
to establish a working model are provided by mathematics and bioinformatics. For
bulk chemical reactions, it is common to find deterministic models resulting from the
mass action law and formulated by differential equations.

However back in 1930, John Burdon Haldane, the co-founder of population genetics,



expressed that certain critical processes in the cell may be carried out by only a few
enzymes |Haldane, 1930]. 16 years later, McIlwain [1946] already repeated this in his
nature article as a well known fact. In 1989 P.J.Halling asks, in the title of his publi-
cation, "Do the laws of chemistry apply to living cells?” and comes to the conclusion
that a cell is a unique chemical system [Halling, 1989]. It is such a small reaction
unit, that some species only appear in very small quantities - sometimes only a couple
of molecules. In such cases, deterministic models are no longer appropriate. They
are misleading and likely to result in incorrect expectations. For situations where
chemical species exist in very small quantities, it may be better to use stochastic
models.

The first scientists to mention stochastic methods as a tool for modeling chemical
reactions were the biophysicist and Nobel prize winner Max Delbriick (1906-1981)
and the dutch physicist and (Niels Bohr’s first scientific assistant) Hendrik Anton
(Hans) Kramers (1894-1952) [Delbriick, 1940, Kramers, 1940].

Delbriick examined enzyme reactions, and Kramers studied Brownian motion in a
force field. In the 1950’s, Alfred Renyi (1921-1970) was able to show that the Law
of Mass Action breaks down for small systems |Renyi, 1954|, and K.Singer explained
that even small fluctuations can have significant effects on chemical reactions, that
consequently can lead to the irreproducibility of experiments. If a system has only
species present in low copy numbers, their steady-state fluctuations become signifi-
cant in comparison to the mean. That is why the system can no longer be described
by the deterministic law of mass action.

Many genetic regulatory reactions occur only at low concentrations. However, tiny
changes can have a big influence on the whole system, as demonstrated by the phage
A lysis-lysogeny decision circuit [McAdams and Arkin, 1999, Rao et al., 2002|. This
stochastic switching has been analyzed using stochastic kinetics and by deterministic
models |Srivastava et al., 2002].

To attempt research on a cellular level, new algorithms were required. Gillespie
[1977| proposed his Stochastic Simulation Algorithm (SSA), which will be described
in the form of the First Reaction Method in Section 2.4.2. It is also called the Ezact
Stochastic Method (ESA) |Vereecken et al., 1997|. Since Gillespie’s proposal, im-
provements have been suggested such as the Next Reaction Method by Gibson and
Bruck [2000] that -as has been recently shown- is not always faster, even though
it uses less random numbers, due to its larger computational overhead [Cao et al.,
2004b].

So far, several quantitative kinetic tools have been developed to model dynamic
systems behavior (e.g.: E-CELL [Tomita et al., 1999|, GEPASI [Mendes, 1993|, and
Virtual Cell [Schaff et al., 1997]). They can all be used for a wide variety of sce-
narios. If one momentarily ignores usability and implementation, they all include
either completely stochastic (a form of the SSA) or strictly deterministic algorithms.
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As mentioned previously and discussed in 2.3.1, both approaches have their realms
of appropriateness in certain environments. Ordinary differential equations (ODE’s)
have the advantage of being fast and reliable in the macroscopic limit where a large
number of molecules is available. However, at low concentrations, they cannot be
described by these deterministic methods any more, due to stochastic effects. The
presence of stochastic effects in gene expression and signal transduction processes
has been shown by both, theoretical and experimental approaches |Levin et al., 1998,
McAdams and Arkin, 1997, Ozbudak and al., 2002, Elowitz et al., 2002|. In this case,
a stochastic approach such as Gillespie’s Direct Method for modeling and simulation
is biochemically and biophysically more realistic, but computationally limited in view
of the high numbers of molecules (particles are traced as individuals simulating their
movements and reactions).

Of course, stochastic algorithms are closer to reality, but very time consuming,
restricting their use to systems with small and intermediate particle numbers. On
the other hand deterministic models are better suited for systems with large particle
numbers, but they fail at predictions for systems with intermediate amounts of mole-
cules. Therefore, so called approximative algorithms have been invented that are
mostly based on the Direct Method, and promise to fill the gap between stochastic
and deterministic approaches. They are further described in Section 2.4.2. The key
idea is to define a time interval in which the number of reactions is small, so the
reaction probabilities can be assumed to be constant. However, those approximative
algorithms, which work well for intermediate particle numbers, do not cover the com-
plexity of a cellular system. The idea was conceived to develop hybrid algorithms,
that use the afore-mentioned approaches and combine them into one strategy [Kiehl
et al., 2004]. The crucial problem is to define the point of transition, i.e., when to
switch from a stochastic to an approximate to a deterministic approach.

For example, some algorithms exist that are based on fixed partitions of the system
into slow and fast reactions. "Fast” means here that it is likely to have a lot of reac-
tions per time span and "slow” the opposite. With this combination, slow reactions
are treated by the First Reaction Method, and fast reactions either by determinis-
tic reaction kinetics |Haseltine, 2002, Kiehl et al., 2004, Takahashi et al., 2004|, by
Langevin equations [Haseltine, 2002], or by random variables distributed according
to the probability density functions at a quasi-stationary state [Rao and Arkin, 2003].

The disadvantage is that the user of the algorithm has to partition the system,
defining the point of transition. The non-automatic predefined partitioning makes
these algorithms unusable for systems with oscillating concentrations, which is likely
in most biological systems, because here a reaction changes its condition between
“slow” and "fast”. This is not the only point of criticism. Another aspect that has not
been considered enough is spatial dimension, i.e., the cellular structure. Since auto-
matic adaption does not exist, the ideas described are not appropriate for systems
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Figure 1.3: A volume split in volume elements (vozels).

with non-homogeneously distributed substrates. A cell is not a single reaction entity,
it is a complex organization of specialized reaction compartments (i.e., mitochondria,
Golgi complex). It has a complex three dimensional structure and whoever tries to
simulate this, has to account for that as well.

So, although much data on cellular structure, construction, and constitution has
been accumulated, there is still need for efficient algorithms simulating the cell as
a reaction-diffusion system. The current implementations lack algorithms for multi-
scale particle numbers and a complete representation of three dimensional diffusion
processes. Most of the existing simulators divide the cell into a few homogeneous re-
action spaces. In those simulators, the information on the whereabouts of molecules
within the cell is lost, so that there is no way to reflect the change of gradients any
more. Calcium waves are only one example to demonstrate the importance of spatial
dimension |Fink et al., 2000].

The New Approach In my approach, the cell is divided into a grid of cubical
volume elements (VE) (cf. Figure 1.3). Using this approach, we increase the number
of observable spaces and are able to locate species dependently on the grid size.

Another advantage of subvolumes is related to the way reactions are handled. A
subvolume is the smallest reaction jar. There are two general ideas of calculating
biochemical kinetics. Either the changes of concentrations are predicted based on
ordinary and partial differential equations (PDE), or by a stochastic approach using
Monte Carlo simulations.

The VE-approach enables me to use a hybrid model that combines the advan-
tages of exact, approximative, and deterministic approaches. With the Controllable
Approximative Stochastic reaction-algorithm (COAST) presented herein, T have de-
veloped an algorithm fulfilling the needs of state-of-the-art simulators [Moller and



1 Introduction

Wagner, 2005|.

In recent years the community involved in the simulation of modeling biological
systems emphasized the necessity of efficient designs of algorithms [Schwehm, 2001].
Based on the data by Endy and Brent [2001] Schwehm assumed 10'* reactions to
occur per cell cycle in Escherichia coli and calculated that a stochastic simulation of
a whole cell cycle would take about twelve years on a single processor. Therefore he
concluded:

"Stochastic whole cell simulation is thus either the realm of massively parallel com-
puting, or it needs new algorithms which can combine deterministic and stochastic
simulation techniques.”

With COAST, I present such an algorithm based on three different regimes of
modeling. The transition points are defined by only a single error parameter . This
value controls the partitioning of the reactions. Three modeling levels are used: an
exact way based on Gillespie’s Direct Method for small particle numbers, for interme-
diate an approximative method based on Gaussian distributions, and for high particle
numbers a deterministic approach.

To prove its reliability and accuracy, I compared COAST to the First Reaction
Method and the tau-leap method, which is used as an example for an approximative
algorithm |Gillespie, 1976, 2001]. Tt turns out that COAST is as accurate as the exact
method, but is significantly faster than the exact and the approximative algorithm.
It has shown reliable results for simple and complex systems like the Oregonator or
Michaelis-Menten kinetics [Gillespie, 1977, Michaelis and Menten, 1913]. The key
advantages of COAST are the wide scale of particle numbers covered, the self parti-
tioning of the reactions channels, and the "easy-to-set” error value.

Another advantage of the COAST-algorithm is to model diffusion as well. As
already suggested by Stundzia and Lumsden [1996], who considered the transition
to neighbor volume elements (voxels) as merely additional reactions using the First
Reaction Method, reaction algorithms can be adopted for diffusion. Thus far, partial
differential equations have been the most efficient way in the three dimensional space
next to track single molecules. It depends on the experiment, if the reconstruction of
diffusion within a cell is necessary or if it can be neglected. This of course depends on
the type of information one wants to gain. Essentially, all cellular processes include
some kind of diffusive transport of metabolite- and enzyme-sized solutes [Oelveczky
and Verkman, 1998|.

It can be shown that diffusion and subcellular compartmentalization influences the
signaling chemistry of a cell, which results in different signaling, such as washout of
signals, reinforcement of signals, and the conversion of steady responses to transients
[Bhalla, 2004]. It is important that one takes the three dimensional structure of a



cell into account. Spacial appearances such as calcium-waves have been modeled and
experimentally shown [Fink et al., 2000, Strier et al., 2003|. The diffusion is becoming
important since stochastic effects on a cellular scale have a higher impact.
Nowadays, scientist have the tools to study molecular diffusion processes. Bi-
ologists are assisted by using the green fluorescent protein (GFP) of the jellyfish
Aequorea victoria to tag nearly any protein and study their localization, dynamics
and interactions in living cells [Lippincott-Schwartz et al., 2001, Tsien, 1998|. Other
fluorescent proteins including the yellow fluorescent protein (YFP) are also used.
New imaging methods improved the way of observing the GFP fusion proteins, such
as fluorescence recovery (FRAP), fluorescence correlation spectroscopy (FCS) and
fluorescence resonance energy transfer (FRET). They allow researchers to trace sin-
gle molecules, measure concentrations of substrates, and analyse their distribution.
Lippincott-Schwartz et al. [2001] point out that the technical advances will help sci-
entists to move from a steady-state view to a dynamic model of cellular function.
Such data has then been used to establish reliable three dimensional cellular models
accurate enough to simulate cellular processes [Oelveczky and Verkman, 1998].

The most important algorithms that can be used to model diffusion are the Random
Walk or Wiener Process (cf. Section 2.4.1), and stochastic deterministic equations
(Langevin equation). The advantage of the Random Walk is the accurate modeling
of all possible interactions that can occur, but the computational expense becomes
very high, if the particle numbers rise. The Langevin equations describe the stochas-
tic trajectories of single particles. Furthermore computationally expensive for large
particle numbers. Other deterministic diffusion models suppress stochastic fluctua-
tions and are therefore not useful for simulating signaling cellular networks with low
particle numbers.

The reaction algorithm COAST can be modified to be a reaction diffusion algo-
rithm, describing both crucial elements of a dynamic cell with one approach. To
demonstrate the capabilities of COAST, T applied it to a one dimensional grid and
tested speed and accuracy against the random walk as the most elementary way of
modeling diffusion.

The accuracy of COAST is better than set by the error parameter a. I have been
able to model the diffusion of particles without and in a forcefield. The results show
that COAST is able to model the means and variances of the expected distributions
accurately.

In this thesis I describe the reaction algorithm COAST and its application to
diffusion. Furthermore I tested its accuracy and reliability compared to common
algorithms and give a practical reasoning for the points of transition between the
modeling regimes. The results indicate that the symbiosis of the diffusion and reac-
tion implementations provide a powerful instrument for simulating cellular processes.



2 State of the Art

In the introduction I have explained the necessity of the development of efficient
algorithms to model cellular systems. The main problems are the simulation of
reaction processes involving strong changing numbers of particles and therefore the
need of using deterministic models but also stochastic models to give a realistic
picture of structures with low concentrations. In this chapter I will give an overview
on existing methods to model chemical reaction and diffusion processes and discuss
some of the existing tools for modeling biological systems.

2.1 Meaning of Chemical Reactions & Diffusion for
Biological Systems

2.1.1 Chemical Reactions

Maybe it is true to say that chemistry is not everything, but without it, everything
would be nothing. I am sure one will be always able to find exceptions, but when it
comes to life and biological systems this statement cannot be more true.

Chemical reactions are the processes that result in the interconversion of chemical
substances. The driving force behind chemical reactions is the desire of the reacting
species to rearrange themselves into a lower energetic state. This is not limited
to the inorganic world. It reaches its highest complexity by using carbon which
allows a manifoldly variety of high complex molecules which are the basic components
of life in the form we know; therefore the chemistry of carbon is named organic
chemistry. Strictly, chemical reactions involve the motion of electrons in the forming
and breaking of chemical bonds. However, the general concept of a chemical reaction
is also applicable to transformations based on non covalent bondings.

Every reaction R has a different reaction velocity, quantified by a reaction constant
k. The course of a chemical reaction is described by a reaction equation:

reactant(s) or educt(s) — product(s)

All biological processes depend on the formation and breaking of covalent and non
covalent bondings. The latter include so called weak bondings which can be specified
as electrostatic interactions, hydrogen bonds or van der Waals interactions. These
weak interactions are the way of enzymes interact with their substrates, hormones
with their receptors and antibodies with antigens.
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2.2 From Systems Biology to Mathematical Modeling

The cell is the main site of enormous biochemical activity called the metabolism.
This is the process of chemical changes which goes on continuously in the living
organism. The build-up of tissue, replacement of old tissue, conversion of food to
energy, disposal of waste materials and reproduction - all these activities are what
we characterize as "life”. Life needs chemical reactions.

2.1.2 Diffusion

Diffusion describes the spreading or distribution of a substance because of the thermal
movement of their particles. Nowadays we define it as a spontaneous physical process
of equilibration along a gradient of concentration, which is degraded during that
process.

Diffusion is the most important way of molecular transport within cells, but mainly
for small distances. To cover twice the distance a particle needs four times the dif-
fusion time. In this way diffusion is limiting the size of a cell and defines for multi-
cellular organisms the need of other not on diffusion based transport systems (nerve
system, bloodstream). The diffusibility of a particle depends on the temperature,
its size and its charge. We observe the diffusion of particles as a consequence of a
concentration gradient. Corresponding to the second fundamental theorem of ther-
modynamics, which demands an increase of entropy, one can observe seemingly a
directed movement of particles from the area of higher concentration to the area of
lower concentration, but it is not a directed movement. The seemingly directed flow
is the consequence of the stochastic process occurring here.

Biological processes constantly generate gradients of concentration by producing
species in a localized manner, for example the production of proteins at the ribosomes.

2.2 From Systems Biology to Mathematical
Modeling

To make biomolecular knowledge useful for medical or technical purposes one needs
an integral understanding of cellular systems. Research has been concentrated over
the last years on molecular details. Systems biology is the academic field that seeks to
integrate different levels of information to understand how biological systems work.
It is a "whole-istic” [Chong and Ray, 2002|, interdisciplinary approach with methods
and concepts of molecular biology, systemiology and informatics to gain a better
understanding of cellular processes. It is not concentrated on single genes or proteins,
but on the interactions between all components of a system.

H. Kitano [2002] published an excellent overview on Systems Biology. According
to him it is an examination of structure and dynamics of cellular and organismal
function rather than the focus on isolated parts of a cell. Many properties arise at
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the systems level only and cannot be derived by looking at details. A cell is an ex-
ample for a system with a complex microstructure, whose components communicate
manifoldly among each other and with the outside world. Voit [2002| supports this
by stating, that the challenge dealing with complex systems is a result of synergistic
properties, which do not exist in any constituents, but only in their intricate inter-
relationships .

Knowing the parts of a -for example- gene-regulatory network and their interac-
tions is not enough. We have to understand how changes in one part are affecting the
others, how they dynamically interact. Kitano thinks understanding of a system can
be gained by insight into four properties: "System structure” (gene interactions, bio-
chemical pathways), "System dynamics” (system behavior over time under changing
conditions), "The control method” (mechanisms that control the state of the cell),
"The design method” (modify systems to have desired properties).

Biology delivers the data and has the methods to gain them, informatics processes
and structures it. Another purpose of informatics is to provide tools to model and
visualize. The system sciences provide methods to describe, analyse and abstract
the biological systems. Classical examples of systems are the immune system, or
the nerve system. The original idea of a system level understanding is not new and
goes back to the first half of the last century [Wiener, 1948|, but new methods like
automated gene sequencing, DNA microarrays, proteome chips and metabolic profiles
have provided science with valuable information about the genetic and metabolic
responses of organisms to stimuli to make an in silico cell envisionable [Voit, 2002].

Kitano points out, that understanding of the properties of biological systems might
have an impact on the future of medicine. Drug discovery through trial and error has
been successful throughout the centuries [Voit, 2002]. Then man began to do research
on the details of the organism, to disassemble it and its components to optimize the
process in finding the fundamental mechanisms of health and disease. This approach
is called reductionism and has been useful over the last decades. As described above
the knowledge of details is not enough. By knowing more about the interchange of
those single parts, pharmaceutical companies would be able to undergo their research
much more efficient with less failures and less expense.

There are current ongoing initiatives for systems biology and 1 will only list some
examples: Institute for systems biology Seattle, USA, by Leroy Hood; Alliance for
cellular signaling, USA, by A. Gilamn; and in Japan the Systems biology group by
H.Kitano. |Kitano, 2002|. In Germany the BMBF has financed projects within the
scope of the research program "Systeme des Lebens - Systembiologie". The aim is a
virtual representation of a cell like a virtual laboratory. This should smooth the way
for predictive biology, where comparable research is possible like in a real biological
system.

This is not easy. The biological and metabolic systems governing the effects are
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dramatically complex. Voit points out, a cell is more than a collection of membranes,
organelles and proteins, mixed with some DNA and RNA. Reductionist methods are
necessary, but they need to be accompanied by mathematical concepts, which are
capable of capturing the essence of complex, integrated systems.

2.3 Modeling

A central role is the mathematical modeling of complex cellular networks. The math-
ematical models connect the parts of systems biology. The Process of modeling is
interactive. That is the model world has to converge towards the reality. All mod-
els have to be compared to real data and than be adjusted. In Section 2.5 some
approaches toward modeling cellular systems are described.

A first step to get away from a statical biological network (cf. 'Biochemical Path-
way’, Boehringer®)) is to model biological processes by algorithms and to represent
their dynamical character with these algorithms. All available data for function, lo-
calisation, concentration and interactions are thereby calculatively combined. Mod-
els are abstractions that are easier to manipulate than the actual system [Endy and
Brent, 2001|. They are typically heuristic and develop alongside the experiments and
are inseparable from them. Future development of computational speed will be of
critical need to implement high scaled networks. The development of reliable models
is crucially dependent on the data the model is based on. Gaps in knowledge about
components of the system, interactions and of other parts of related networks can be
very harmful. Abstraction is necessary for a model, but the simplification must be
done carefully. The impact of molecular crowding is well known [Minton, 2001|, but
because of its complexity it has not yet been modeled. One criterion of biological
complexity is the rich network of interactions among the constituents. These inter-
actions are numerous and have nonlinear characteristics that are difficult to handle
with intuition alone |Voit, 2002|. Nonlinearities make complex systems difficult to
understand. Only mathematical models are able to help us predict those systems far
away from our intuition.

In the 1950s the computer became useful in solving systems of differential equa-
tions. However, it took 20 more years until in the 1970s stochastic methods have
been developed to model low representations of species (cf. Section 2.3.1 for stochas-
tic and deterministic methods) [Gillespie, 1976]. Those methods have been improved
(cf. next section for details) |Gibson and Bruck, 2000| and used in the 90’s to de-
scribe different systems |Arkin et al., 1998, Bhalla, 2002|. Further improvements
can be expected by combining stochastic and deterministic approaches (cf. Section
2.4.2). This dissertation is to be a contribution to the worldwide discussion on that
topic. A system can be at some steady state for a certain parameter value. If this
value is now raised above a certain threshold, a feedback mechanism can result in
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an oscillating system and not a proportional increase of the output. Here are some
examples how mathematical models have been used in the past.

J.Tyson [1991] modeled the cell-division-cycle. In his model like in most mathe-
matical models chemical kinetics are represented by involving ordinary and partial
differential equations. With such simulators the switch-like behavior of the MAPK-
module in signal transduction has been clarified |Ferrell, 1999|, which is experimen-
tally only accessible if experiments are done on single cells. Other simulations that
have been done were simulations of ion channels [Hodgkin and Huxley, 1952] and the
human heart [Noble, 2002]. The work by Hodgkin and Huxley represents one of the
highest-points in cellular biophysics and the quantitative model of action potential
generation and propagation they developed forms the basis for understanding and
modeling the excitable behavior of all neurons; it is the single most successful quanti-
tative model in neuroscience [Hille, 1984|. Smith et al. [2002] were the first to model
the transport of molecules into and out of the nucleus. Other examples are calcium

waves describing the release of calcium ions from the sarcoplasmic reticulum [Loew
and Schaff, 2001].

Several tools are available already to enable biologists to get access to a field
that hitherto has been restricted to the design of integrated circuits and chemical
processing plants [Doyle, 2001] (cf. Section 2.5).

The main problems of modeling result from simplification and abstraction. The
cell is not a well stirred reaction tube. It is highly compartmented with high local
concentrations (e.g. mitochondria matrix). Macromolecular crowding has a great
impact on diffusion and reaction. Molecules of a certain size are not able to dif-
fuse at all or by a much smaller diffusion coefficient than in experimental buffer.
Furthermore endogenous obstacles hinder diffusion. Many reactions occur on two-
dimensional membranes or in dimensionally restricted environments.

Another difficulty is the nonlinearity of complex systems. They defy the law of su-
perposition, which means that Devide and Conquer (Julius Caesar: Divide et Impera)
is not possible. The single parts of linear systems can be analysed independently from
each other, but nonlinear systems usually lose essential characteristics when taken
apart |[Voit, 2000]. Without mathematical analysis it is difficult to predict simple
mechanisms like a feedback loop. Does the output increase or decrease or don’t
change at all? Intuition does not help here. Other systems begin to oscillate under
certain conditions and when the parameters are slightly changed it does not respond
at all [Kholodenko, 2000].

Modeling gives a flexibility actual lab experiments cannot provide. One is able
to model time expensive experiments in a fraction of the otherwise needed time
or observe processes in detail which take only microseconds. However, the aim of
modeling is to assist traditional laboratory work, to suggest and council, but not to
replace it.
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2.3.1 Deterministic Versus Stochastic Modeling

Mathematical modeling is a powerful approach for understanding the complexity of
biological systems. There have been already successful attempts for simulating com-
plex biological processes like metabolic pathways, gene regulatory networks and cell
signaling. The models have not only generated experimentally verifiable hypothe-
sis but have also provided valuable insights into the behavior of complex biological
systems [Meng et al., 2004]. Modeling can be divided into three levels:

e macroscopic: dynamics of molecular concentrations, mostly deterministic mod-
els (differential equations or S-System [Voit, 2000])

e mesoscopic: dynamics of single molecules, in general without referring to phys-
ical forces (mostly stochastic models)

e microscopic: simulation of physical forces between and within molecules, e.g.
protein folding, docking, molecular modeling

The most accurate way would be modeling molecular dynamics - modeling on
a microscopic level. Therefore one has to track the position and velocity of every
molecule in the system. Furthermore every collision has to be observed, if there
is a chemical reaction or not. By modeling molecular dynamics we investigate the
changes in species populations and their spatial distribution. The main problem with
this approach is the computational expense. Although computer technology made a
big leap forward during the last decade, such operations are still for supercomputers
out of reach referring to complex biological systems in terms of time.

There are several more efficient approaches to model chemical and physical pro-
cesses like reaction and diffusion. In Section 2.4 some of these models are presented
in detail. With slight simplifications the models can be classified in two categories.
They can be classified as either stochastic or deterministic, excluding consciously the
approximate approaches at this point. Nowadays hybrid models are introduced to
close the gap between these two regimes. To simplify the process let us concentrate
now on deterministic and stochastic algorithms for chemical reaction and afterwards
discuss how the existing ideas can be used to model diffusion.

Deterministic Modeling If we assume the amount of reactive collisions to be low
compared to the amount of unsuccessful reactions, a simplification can be made.
Particles can now diffuse within a certain area and keep the system in a well-stirred
condition. Based on this assumption in chemistry it is quite common to formulate
chemical kinetics of a chemical reaction using the Law of Mass Action:

A2.B 5
24 + B — ky|ky — C A = K(Tp) = &2,
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where K is the reaction constant and a function of the temperature 7" and the pressure
p. This function is derived from:

d[C]
dt
Here k; and ko are the velocity constants for the two single reactions. The velocity

constants are proportionality constants equal to the initial rate of a reaction divided
by the concentration of the reactant. A,B and C are the substrates and [A],[B] and

[C] are the concentrations of the substrates, usually in [mT"l}

= k1 [A* [B] — k2 [C].

In words the Law of Mass Action says: The product of the concentration of the
reaction partners with all concentrations always taken to the power of their stoi-
chiometric factors, equals a constant K which has a numerical value that depends
on the temperature and the pressure. K is called the reaction constant. The Law
of Mass Action follows if one assumes that the system has reached equilibrium and
% = 0. Let us emphasize the main problem with determinism directly here. The
differential equation assumes that the system is continuously predictable, which is
of course not the case for a complex biological system. Furthermore, the differential
equation or a system of differential equations works very well for high numbers of
particles where fluctuations can be neglected, but often molecules in cell structures
are only present in small amounts and show a stochastic behavior. Moreover, the
numbers of particles change not continuously, but discrete. The modeling of chemical
reactions using deterministic rate laws has proven to be extremely successful in both

chemistry and biochemistry [Epstein and Pojman, 1998, Heinrich and Schuster, 1996].

Usually one is interested in the change of metabolic concentrations over time.
Therefore a differential equation or a system of differential equations has to be solved.
However, exact solutions only exist for very simple systems. Consider the system
in the following reaction equation as an example where again A and B mark the
substrates and k is the reaction constant:

d[A]
dt
More complex systems have to be solved by numerical simulation (e.g., Runge-Kutta
Method [Butcher, 1987]). In such a deterministic system of differential equations
every substrate and each of its derivates (modified substrate) must have one equa-
tion. So the number of reactions is directly depending on the amount of species
present in this system. An additional complication can result from differently fast

reactions, then the system is called "stiff”.

A D = kA = A= [l

If one applies ordinary differential equations, one makes three implicit assumptions:
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Figure 2.1: A Cell, a homogenous volume?
Reprinted from "Invitation to Biology” by H.Curtis & N.S. Barnes, Worth Pub-
lishers. Copyright (1994), with permission from W.H. Freeman and Company
/ Worth Publishers

e a very large reaction volume with high particle numbers present
e an equilibrium of the system

e a homogeneous distribution of all molecules

Let us now have a closer look at those assumptions. The focus of this thesis are
algorithms that shall be applied to biological systems. The appropriate reaction
volume would be the volume of a single cell.

If we observe the changes of concentrations in the cytosol of a cell, describing
them by ODEs is a common way. Therefore one considers chemical reactions to
be macroscopic under convective or diffusive stirring, continuous and deterministic
|Cox, 1994|. This is evidently a simplification, as it is well understood that chemical
reactions involve discrete, random collisions between individual molecules. However,
if we only look at small reaction volumes like single vesicles, one cannot speak of a
determinism any more. We are used to calculate with concentrations, but on such
a low level the changes are molecule by molecule - discrete and not continuous. We
reach a level on which a deterministic approach is not useful anymore because it
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cannot describe spontaneous changes of the reacting molecule number. The system
is now showing a stochastic behavior.

Associated with this is the question about the equilibrium. If an equilibrium
is reached in a deterministic system, nothing is changing any more, but because
chemical reactions are stochastic events, one cannot neglect fluctuations. Biological
systems can leave such apparent stable states. Furthermore, biological systems are
quite often close to instable conditions.

The last assumption, the homogeneous distribution, is necessary if one uses ordi-
nary differential equations, because they do not take local resolutions into account.
If one wants to do that, one has to use partial differential equations. This is maybe
not necessary if the observed system is a lake, but a single cell represents a very
complex structured system. The single compartments separated by single or double
membranes are specific reaction volumes with optimal reaction conditions for spe-
cific reactions (i.e., mitochondria, liposomes, endoplasmatic reticulum, nucleus, Golgi
apparatus). To assume everything as one volume is not only far from reality in a
structural but also physiological sense, because certain reactions are not able to exist
next to each other. Because of the presented limitations, deterministic models are
limited to areas in which high numbers of particles occur, like metabolic processes,
but they are not suited for signal transduction or gene expression due to the low rep-
resentation of substrates. Here one has to use mesoscopic models such as stochastic
models.

Nevertheless deterministic modeling has led to some interesting results. In all
biological systems, it is necessary to increase or decrease activities in response to
external and internal signals. The sensitivity of the system to such signals becomes
very important. The term ultrasensitivity has now been defined to indicate a case in
which the sensitivity is greater than that to be expected from standard hyperbolic
(Michaelis-Menten) response |Goldbeter and Koshland, 1984|. In 1996 Huang and
Ferrell were solving the rate equations for the MAPKinase-system numerically and
predicted the cascade to work as a switch [Huang and Ferrell, 1996] (ultrasensitive).
They were able to show the ultra sensitivity of this bistable system in experiments
with Xenopus oocyte. In 2000 Kholodenko demonstrated how negative feedbacks
and ultrasensitivity can lead to oscillations in the mitogen-activated protein kinase
cascades [Kholodenko, 2000]. Levchenko et al. [2000] simulated the influence of scaf-
folding proteins on the MAPK-system.

Another framework, which is worth to be mentioned, was developed over the last
30 years to model complex metabolic pathways and gene regulatory networks: it
is called canonical modeling [Voit, 1991]. It is based on the Biochemical Systems
Theory (BST) [Savageau, 1969|. The variables describing e.g. a signal transduction
pathway are metabolites and enzymes. The dynamics of each variable is described
by the change of its value over time and this change is governed by the difference
of all influxes and effluxes. All fluxes are described by power-law functions which
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are justified by the Taylor’s expansion based on the calculus of finite differences
developed by Brook Taylor (1685-1731). In fact virtually any ordinary differential
equation can be written equivalently in canonical form of a Generalized Mass Action
(GMA)-, S-, or Lotka-Volterra-system. Equation (2.1) shows the most important
type of canonical models, the S-system [Savageau, 1969]:

n+m n+m
X;=a [[ X9 -6 [I X/ i=1,2,..n (2.1)

j=1 j=1
where X7, ..., X, stand for dependent variables (dynamic concentrations of internal
metabolites), X1, ..., Xim stand for external variables (fixed concentrations of
external metabolites), g;;, h;; are kinetic orders, which may be non-integer and non-
positive, and «;, 3; are rate constants. In a nutshell, the functions and variables are
represented in logarithmic coordinates. In this coordinate system, the functions are
approximated by Taylor series, where only the constant and linear terms are retained.

Stochastic Modeling The occurrence of stochastic phenomena in a variety of phys-
ical systems like turbulent fluid flow, is well established. In the recent past attention
has shifted to stochasticity, noise and its impact on biological systems |[Meng et al.,
2004]. On a molecular level random fluctuations are inevitable and get more sig-
nificant if the number of interacting particles is very low. This is for example the
case during transcription where transcription factors interact with DNA binding sites
[Ozbudak and al., 2002, Elowitz et al., 2002]. Beyond this McAdams and Arkin [1997]
were able to prove that low copy RNA can be significant for the regulation of down-
stream pathways. Ross and al. [1994]| described mRNA being produced in random
pulses.

One characteristic of stochastic systems is that identical initial conditions, such
as initial concentrations or an initial temperature, can lead to completely different
results. One studied example is the lysis/lysogenic switch of the bacteriophage A
infecting E.coli [Arkin et al., 1998]. Due to noise the network may randomly evolve
into one of the two bistable states [Hasty, 2000].

The occurring fluctuations in the concentrations or particle numbers can be as-
cribed to two different effects. That is why one distinguishes between intrinsic and
extrinsic noise. Stochastic effects arising due to the inherent nature of biochemical
effects are termed as intrinsic noise [Meng et al., 2004]. This is for example the case
during transcription, while only a few transcription factors and mRNA molecules
are interacting with the DNA. Reactions occur here only randomly. On the other
hand the subsequent step -the translation- has an extrinsic component of noise. The
randomly fluctuating factors are the number of ribosomes, the stage of the cell cycle,
the mRNA degradation and the cellular environment. They all depend on external
environmental conditions.
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As we now have seen processes like gene regulation cannot sufficiently be modeled
by a deterministic model, observing the system from a macroscopic point of view.

As described above one has to distinguish between intrinsic and extrinsic noise or
stochasticity. There are many equivalent formulations of stochastic kinetics. One,
the chemical master equation, describes the evolution in time of the probability dis-
tribution of system composition. The chemical master equation is a set of linear
ordinary differential equations with discrete changes of particle numbers. This set
cannot be solved analytically, only numerically. One approach is Gillespies Stochas-
tic Simulation Algorithm (cf. Section 2.4.2); another one is the Chemical Langevin
Equation (CLE) also proposed by Gillespie [2000]. To treat extrinsic stochasticity a
stochastic term is introduced into the governing reaction equation, which simulates
the fluctuating noise:

aX(@t) & Mo =
— = 2 7a (X)) + X7 Ve (X(0)T5(0),
j=1 j=1
where
X : stores the number of molecules for all species,
U; = (vy5...vn;) : the change in the number of S; molecules caused
= vy by one R; event,
a;(Z) : a propensity function (given the system in state), a;(Z)dt,

is the probability that one R; event will occur in the next dt.

This equation does not refer to diffusion. All other dynamical processes except of
reaction are assumed to have come to equilibrium much faster than the composition,
so we have the situation of a "well-stirred system”. The transitions between different
compositions are called propensities. If the noise I' is Gaussian and white, the prob-
ability distribution satisfies a Fokker-Planck equation. Robert Zwanziger [2001] was
able to show that I' is not really a Gaussian distribution, but as an approximation
it is sufficient. The discrete stochastic process X(t) is now approximated as a con-
tinuous stochastic process. The CLE can be invoked, if the reactant population is
“sufficiently large”.

The stochastic treatment of chemical reactions was initiated by Kramers in 1940

[Turner et al., 2004]. Fundamental is the idea that molecular reactions are essentially
random processes; it is not possible to say with complete certainty when the next
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reaction will occur within a volume. Turner points out that in macroscopic systems,
with large numbers of interacting molecules, the randomness of this behavior averages
out so that the overall macroscopic state of the system becomes highly predictable. It
is this property of large scale random systems that enables a deterministic approach
to be adopted.

2.4 Existing Methods

2.4.1 Methods for Simulating Diffusion

Historical Background In 1827 the English botanist Robert Brown (1773, 11858)
observed pollen grains in aqueous solution. He was stunned to see that even after
hours of observation they still moved restless. He claimed he was able to reproduce
this observation with sulfur, volcanic ash and other fine grained substances, but there
are doubts if he really was able to observe it [Deutsch, 1991].

We now refer to stochastic movements of charged or uncharged particles in wa-
tery solution as Brownian motion. The first quantitative description of a diffusion
process was done by the physiologist A. Fick [1855] (x1829,11901). The relationship
he found, known as Fick’s Law of Diffusion, states that the rate at which the con-
centration of a substance decreases at any point z in a system is proportional to the
curvature of the concentration gradient at that point. The constant of proportional-
ity, D, is the diffusion coefficient or diffusivity in the system [Agutter et al., 2000].
During his PhD thesis in Zuerich in 1905 and in two publications in the "Annalen
der Physik” (1905/1906) A. Einstein (*1879,11955) and independently von Smolu-
chowski (x1872,11917) found an explanation for Fick’s law in molecular terms.

Part of the analysis also led to a derivation of Fick’s law and to the general infer-
ence that the macroscopic diffusion process can be explained by the molecular-kinetic
mechanism of Brownian motion in fluid systems where there are concentration gradi-
ents. Einstein was able to calculate Avogadro’s number, which had so far only been
roughly determined. Additionally the theory was seen as an additional proof for
the relatively new atomistic theory. The work of Einstein and Smoluchowski further
assisted in the development of the theory of stochastic processes. The American N.
Wiener (%1894 — 11964) used the Einstein-von Smoluchowski equation for the prob-
ability distribution of diffusing particles to derive the probability that an individual
particle would pass during a stated interval of time between any two points in a de-
fined space in 1923. Today the "Wiener process” is a synonym for Brownian motion.
Stochastic theory has been influential in quantum mechanics (e.g. Feynman’s path
integral method), in mathematics (leading to the discovery of profound connections
between functional analysis, differential equations and probability theory), and in
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several other fields.

Partial Differential Equations The most conservative way to model diffusion are
partial differential equations (PDE’s). These can be further divided into two main
classes: linear PDE’s and non linear PDE’s. The usual way of describing diffusion
processes would be by using non linear partial differential equations (NLPDE’s). The
aim here is to model the interactions between the particles of the same species. This
results in equations of higher order (non linear). Several techniques are known to
integrate them numerically:

e multigrid method

e finite elements method
e "Monte Carlo” method
e spectral theory

e cellular automata

e lattice Boltzmann gas method

If one can assume that the concentration of particles is so low that interactions
between particles of the same species can be neglected, linear PDE’s are sufficient.
There are again two different approaches related to the linear PDE’s. The Smo-
luchowski-approach requires the strong friction limit; i.e., the particles do not have
an inertia, which results in a Markov-process. For the Fokker-Planck differential
equation the strong friction limit is not used and therefore we do not have a Markov-
process, this again results in ones ability to give information about the acceleration
of the particles. The Fokker-Planck differential equation describes the time evolution
of the particle distribution function.

Partial differential equations are for example used by Virtual Cell with the finite
volume method [Schaff et al., 1997|. The space is divided into subvolumes and the
transfer between the volumes is calculated by PDEs. A smaller grid is producing
more accurate results, but with a higher computational cost. The main problem
with PDE’s is that they are not capable to reflect stochastic effects, but noise is
important and it gains on importance the smaller the subvolumes are.

Another way to describe spatial movement of particles are stochastic differential
equations. They have already been applied in biology with a different focus (popula-
tion growth [Kiester A.R., 1974, granulocyte movement [Boyarsky et al., 1976] and
populations genetics.

The most important form is the Langevin Equation:
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m-a = F(z(t)) — vo-m + £(b), (2.2)

with F' being the interaction force on a single Brownian particle, m the mass of this
particle, x the x-position of the particle, ~ its friction coefficient, v the velocity and
a its acceleration.
F(z(t)) describes the interatomic forces and are therefore equivalent to Newton’s
equation of motion. The second term on the right side in Equation (2.2) represents
the frictional force by the solvent. £(¢) is the random stochastic force due to thermal
fluctuations of the solvent. The solvent is not explicitly represented, but its effects
on the molecules by the frictional and the stochastic term. If {(¢) has the mean of
zero, the equation is called the Langevin Equation (1908). The Langevin Equation
is an alternative way next to the Focker Planck Equation (FPE) to describe Markov
Processes and is the calculus of stochastic differential equations (SDE) governing the
dynamics of the system.

The FPE is a deterministic partial differential equation, which can be solved either
by numerical or analytical methods:

dp 0 0 F(x) ~kgT 02
o~ [‘av“*av(”"" m m a2)| P

where p is the transition probability, m the mass of a particle, v the friction coeffi-
cient, T the temperature, kg the Boltzmann constant, v the velocity of the particle
and F'(x) the external force field.

Its original purpose has been to describe microscopic processes in the presence of
random forces (noise). Three coupled Langevin equations are needed to describe the
motion of a single particle in three dimensions. To solve SDE’s there are in principal
two possible ways: one is to model single trajectories by using for example Gillespie’s
SSA (cf. Section 2.4.2) or integrating the SDE’s to find the solving probability
distribution. If the frictional and the random forces are zero, the Langevin Equation
reduces to Newton’s equation of motion, which is the mathematical simple description
of molecular dynamics (MD). All forces affecting every molecule in a calculated and
this results in the computational cost of MD simulation to increase linearly with the
number of interacting atoms. MD’s are despite of being most accurate not feasible
for whole cell simulations. So far it was only used for small numbers of particles and
little volumes [Baynes and Trout, 2004, Friedel and Shea, 2004].

While the FPE is a statistic approach to calculate the change of the probability
density over time, the Langevin Fquation on the other hand was originally describing
the temporal change of the velocity of particles due to a stochastic force.
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Brownian dynamics Another approach are Brownian dynamics which are realized
in the tool MCell |Stiles and al., 1998]. This is a stochastic approach where sin-
gle molecules are followed. Their movement is according to the Langevin equation,
which includes random forces. These random forces reflect the interactions between
substrates and solvent molecules. With this method crowded environments can be
simulated, but it is causing high computational effort.

Cellular Automata Using a different approach, Weimar [1997] describes two classes
of cellular automata for reaction diffusion systems. The first type realizes diffusion by
a random walk of particles on a lattice (reactive lattice gas automata) and the second
one, moving average cellular automata, is based on a local average. The molecules
are replaced by idealized particles. These cellular automata evolve on a square lattice
on which particles propagate in two dimensions, with nearest neighbor interactions
only.

Direct Method Nowadays exact stochastic approaches have become the norm in
biochemical simulations. However, it was not until the 90’s of last century when
researchers were thinking of modeling molecular movement in the cell. Stundzia and
Lumsden [1996] extended Gillespie’s Direct Method (cf. Section 2.4.2) to diffusion
by treating the diffusion from one subvolume to an adjacent volume as an additional
reaction step. The time step is calculated stochastically by a probability function,
which is determined by the intrinsic reaction kinetics and diffusion dynamics.

Mesoscopic Approach In the same year Ander et al. [2004| published Smart - Cell,
a framework to simulate cellular reaction diffusion processes. It uses a mesoscopic re-
action model to simulate diffusion and localisation of particles. In contrast to MCell
and Smoldyn |Lipkow et al., 2005|, SmartCell (cf. Section 2.5 for details) does not
treat diffusion as a random walk, where all molecules are simulated individually. The
algorithm is very similar to the Next Subvolume Method by Hattne and Elf, which
was independently developed and published in 2005 [Hattne et al., 2005|. SmartCell
is based also on the idea to separate the volume into subvolume elements. Similar
to the approach by Stundzia and Lumbsden they treat the diffusion as an additional
stochastic reaction, but using the Nexzt Reaction Method by Gibson and Bruck to
model diffusion as a single translocation of a molecule between adjacent voxels. Like
in many other simulators, the particles do not have a volume here, so excluded vol-
ume effects cannot be modeled. For each event a probability is calculated and then
a timespan 7. The event with the lowest 7 is executed and the probabilities are
recalculated.
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Method abbr.  Space Scale  Stochastic Excluded
molecular dynamics MD  Particle Micro - +
Brownian dynamics BD  Particle Micro + +
Smoldyn - Particle Micro + -
cellular automata CA  Discrete Micro + +
Spatial Gillespie - Discrete  Meso + -
partial differential equations PDE Mesh ~ Macro - -
Gillespie - - Meso + -
ordinary differential equations ODE - Macro - -

Table 2.1: Summary of existing approaches to model diffusion processes (freely adapted from
[Takahashi et al., 2005])
MD: molecular dynamics; BD: Brownian dynamics; CA: Cellular automata;
PDE: partial differential equations; ODE: ordinary differential equations

Next Subvolume Method Hattne and Elf introduced the Nexzt Subvolume Method
one year after SmartCell [Hattne et al., 2005|. The algorithm is based on the reaction
diffusion master equation (RDME,|Baras and Mansour, 1996|). The space is divided
into subvolumes, which must be chosen small enough to ensure homogeneity and the
RDME is applied to every voxel. The Diffusion is now a first order elementary reac-
tion between the subvolumes. The RDME is complex and with analytical solutions
hard to come by. Thats why so far only 1D systems where modeled [Baras and Man-
sour, 1996, Gorecki et al., 1999|. The Next Subvolume Method is the implementation
of the RDME to more dimensions. With an increasing number of voxels Gillespies
Direct Method is not feasible any more, because the computational effort rises linear
with the amount of voxels. The Next Subvolume Method is using the Direct Method
by Gillespie for sampling the time for a next reaction or diffusion event and the Next
Reaction Method by Gibson and Bruck to decide in which subvolume the next event
occurs. They claim the computational time of the algorithm increases only logarith-
mically, than linear with the amount of subvolumes.

The approaches by Stundzia and Lumbsden, by Ander et al. and by Hattne and
Elf are three similar diffusion algorithms, that is why they are also called as "spatial
Gillespie” approaches |Takahashi et al., 2005].

2.4.2 Reaction Algorithms

Stochastic Simulation Algorithm - SSA Gillespie [1976] presented a stochastic
reaction algorithm based on Newtonian physics and thermodynamics. Furthermore
he described two possible implementations of his algorithm, namely the Direct Method
and the First Reaction Method. His model assumes a system of N chemical species
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(S, ..., Sy) that interact through M reaction mechanisms (or channels) (R, ..., Ry)
in a specified Volume V at a constant temperature T'. The Grand Probability Function
P()?; t) gives the probability that there will be present in V' at time ¢, X; of species
S;, where X = (X1, X, ..., Xn) is a vector of molecular species populations |[Turner
et al., 2004]. The knowledge of this function provides a complete understanding of
the probability distribution of all possible states at all times.

If the system is well stirred or the amount of reactive collisions is much smaller
than the number of nonreactive collisions, each reaction R, can be described by
the propensity function which is also known as the Fundamental Hypothesis of the
stochastic formulation of chemical kinetics:

a,dt = hy,c,dt. (2.3)

The propensity function in Equation (2.3) gives the probability a, of reaction p
occurring in the time interval [t,¢ + dt]. p is an index (1 < p < M). h, denotes the
number of possible combinations of reactant molecules involved in reaction p. The
Table 2.2 shows some examples.

’ reaction \ \ Cp = \ hy, ‘
monomolecular reaction Si — P k, | S;]
bimolecular reaction | S; +S5; — P kv" 1S:| - |15
bimolecular reaction 28, — P % % 1S - (]S;] —1) = ("Z”)

Table 2.2: Conversion from kinetic to stochastic reaction constants

k,, is the macroscopic velocity constant of a chemical reaction. To measure it, one
only needs macroscopic properties of the chemical system, mainly the concentrations
of the participating species. However, ¢, is the mesoscopic velocity constant, which
is different from k,, but can be calculated from k, by knowing the volume of the
observed system and the kind of chemical reaction taking place (cf. Table 2.2).

If one considers an infinitesimal small time interval (¢,¢ + dt), in which either one
or zero reactions occur, there are only M + 1 possible ways to lead to the state X at
time ¢ 4+ dt. So one can formulate:

P(X,t+dt) = P(X,t)-P(no state change over dt)

M
+ Y P(X —0,,t)- P(state change to X over dt),
pn=1

where [i is a stoichiometric vector defining the result of reaction p on the state vector
X (X — X + v,after reaction ) and further
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M
P(no state change over dt) = 1— ) au()?) dt and
pn=1
— M — —
P(state change to X over dt) = Y P(X — ¥,,t)a,(X — 0,)dt.
pn=1

By using

. P(X,t+dt)— P(X,1) OP(X 1)
lim = —F,
dt—0 dt 815

one obtains the Chemical Master Equation that describes the stochastic dynamics of
the system:

aP(X t) M LS
_— Z P(X fst) —a,(X)P(X,1).

To simulate now a system of chemical reactions, one has to be able to give infor-
mation about two things:

e when is the next reaction going to occur

e which reaction will it be

Gillespie [1977] introduced a probability distribution to describe the system gov-
erned by the master equation. P(7,u)dt is the probability for the next reaction to
occur in the interval [t+7,t+7+d7| and is of type pu. P(7,u)dt is a two dimensional
density function with the continuous variable 7(0 < 7 < 00), which gives information
of the point in time, and the discrete variable p (u = 1,..., M), which states which
reaction is occurring. The probability for the next reaction can now be formulated
as following

P(r1,p)dr = Py(7)h,c dT,

where Py(7) is the probability for no reaction within [t,t-+7|. This is multiplied by
hyc,dr, the probability that in the upcoming interval [t+7,t+7-+d7| the reaction
p takes place. To calculate Py(7) one can divide the interval [t,t-+7] in K partial

intervals € = & of equal size. The probability for no reaction in the first interval
[t,t-+€| is now

M M
H 1—-huce=1~- Z hucpe.
p=1 p=1
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—_

initialisation t=0, set initial particle numbers
calculate a; = hyefor all i =1,...,M
3. T; generate for all reactions the corresponding 7; ac-
cording to an exponential distribution using the
First Reaction Method — 7; = a% 1n%
4. reaction execute the reaction with the lowest 7; and adjust
particle numbers
time step t—t+7
loop go to step 2

DO

SR

Table 2.3: Procedure of the SSA using the First Reaction Method

This is also true for all partial intervals K:

M K M K
Po(7) = (1 -2 hucu€> = (1 -2 huCuT>
=1 =1 K
% %
If one now forms the limit for K — oo, one obtains:

Py(t) =€ Xz huent,
This leads to the wanted density function P (7, u)

M
P(Ta :u) = hucue_ Z”:l h“c’ﬁ.

So P,(1) = e ™7a,dr (witha, = h,c,) is the probability that now the reaction v is
happening in the interval [t 4+ 7,1 4 7 + d7| and before that nothing. The reaction R,
for which the probability P,(7) is the highest, is the next to occur. The First Reaction
Method is now calculating the next occurring reaction, updating the particles numbers
and starting with the next iteration. The time 7; of the single reactions are calculated
by the inverse function of P,(7):

PN =7, = —n-,

a, T
where 7 is a uniformly distributed random number.
This is resulting in a linear time complexity.

The First Reaction Method works fine, but it is very time consuming. All a;-values
are recomputed in step two, although the value has not changed for some reactions.
The First Reaction Method and the Direct Method differ in the way how the random
pair (7, p) is calculated from the joint probability density function P(7, ). Schwehm
[2001| describes the difference as following:

For each reaction in the Direct Method a probability is computed by multiplying
the rate constant of each reaction with the concentration of its substrates. Then a
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‘ ‘ deterministic modeling ‘ stochastic modeling ‘
rates probabilities
concentrations particle numbers
One set of starting values — one | One set of starting values — dif-
solution ferent solutions
@ | fast more realistic: pays respect to
small volumes, heterogeneity, in-
stabilities
good for metabolic processes low particle numbers — fluctua-
tions
good for signal-transduction and
gene expression
© | demands high particle numbers computationally expensive

Table 2.4: Characteristics of deterministic and stochastic models

random number is used to perform a roulette-wheel selection according to the relative
probabilities of all reactions, and a second random number determines the execution
time used for this reaction. The Direct Method used two random numbers for each
reaction selection.

The First Reaction Method computes, as described above, for each reaction (using
one random number for each reaction) a tentative execution time. Then the reaction
with the smallest execution time is selected. This method uses one random number
for each reaction and iteration. This leads to the following conclusion: The First Re-
action Method requires as many reaction numbers as there are reactions, the Direct
Method on the other hand demands only two numbers. If the number of reactions
exceeds two, the Direct Method is more efficient. The First Reaction Method has the
advantage of being easier to implement.

In 2000 Gibson & Bruck have introduced an improvement, the Next Reaction
Method |Gibson and Bruck, 2000]. They introduced a dependency graph, to capture
the relations between single reactions and made an update only for those variables
which have really changed. To achieve this, only used random numbers are newly
generated the others are reused by transferring the a;-values to the changed time
scale. By this the complexity is reduced from linear to logarithmic. However, Cao
et al. [2004a| have just recently published a comparison between the Direct Method
and the Next Reaction Method and claimed the Direct Method to be for all but a very
specialized class of problems much more efficient than the Next Reaction Method.
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Approximative Algorithms and Hybrid Methods At this point it has to be clar-
ified that there is no strict nomenclature referring to approximative and hybrid algo-
rithms. For this reason I would like to make my own definition to simplify the further
discussion. Let us define approximative algorithms as the closing gap between sto-
chastic and deterministic approaches. An approximative algorithm does not predict
a single reaction stochastically, but several events at once. However, in contrast to
determinism the results can still differ if one compares single experiments, this is
due to the fact, that random numbers are still used. Hybrid methods use now sto-
chastic and /or approximative and/or deterministic algorithms together, partitioning
the reactions by specific rules into one of the categories and calculate the events
per time. COAST is a hybrid modeling tool using a stochastic, approximative and
deterministic algorithm.

7-leap method One approximative algorithm is the 7-leap method |Gillespie, 2001,
Gillespie and Petzold, 2003|, which fits the regime of intermediate particle numbers
quite well. The key idea of this method is to determine time-intervals of length 7 (so
called 7-leaps), in which the number of reactions is so small that the propensity func-
tions (reaction probabilities) are assumed to be approximately constant. By doing
so, all reaction probabilities are formulated in terms of Poisson-distributions, and the
length of these 7-leaps is computed dependently on an error control parameter. Note
that the assumption of approximative constant reaction probabilities allows for the
successive computation of reaction numbers in the different reaction channels. It also
facilitates the description of reactions of higher order (e.g. 2X — Por X +Y — P)
as independent probability experiments with identical distributions.

Beside of this there are also some negative aspects. In the 7-leap method all reaction
probabilities are formulated in terms of Poisson-distributions, which are binomial-
distributions limited by definition to infinitely large particle numbers and infinitely
small reaction probabilities |Giri, 1974, p. 65|. Hence, the usage of Poisson-distribu-
tions does not fit the description of reaction channels with small particle numbers.
Additionally the usage of Poisson distributions can lead to negative particle num-
bers, this led to the development of versions of the 7-leap method based on the
binomial distribution |[Tian and Burrage, 2004, Chatterjee et al., 2005|: the so-called
binomial leap methods. The number of steps necessary for evaluating Poisson and
binomial-distributions is asymptotically, proportional to the number of particles (or
equivalently: from the expectation). In contrast the costs for the evaluation of a
Gaussian-distribution or of the deterministic reaction kinetics are constant, so the
latter models must be advantageous for large particle numbers.

Thus, all the algorithms mentioned so far are well adapted to a certain range of
particle numbers, but not for the entire range from low to high numbers. Conse-
quently, algorithms have been developed, which use different levels of modeling for
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the different particle numbers. For example there exist some algorithms, that are
based on fixed partitions of the system into slow and fast reaction channels. With
this combination, slow reactions are treated by the First Reaction Method, and fast
reactions are treated either by: deterministic reaction kinetics [Haseltine, 2002, Kiehl
et al., 2004, Takahashi et al., 2004]; by Langevin equations [Haseltine, 2002|; or by
random variables distributed according to the probability density functions at quasi
stationary state [Rao and Arkin, 2003|. However, these partitioning methods require
direct intervention of the modeler to partition the system into reaction sets covering
different time and concentration ranges. Thus these algorithms cannot be appropri-
ate for the simulation of systems with strongly fluctuating particle numbers (e.g. the
Oregonator which will be discussed in Section 4.1.2). Furthermore, fixed partition-
ing is not suitable for systems with heterogeneously distributed substrates, which is
especially problematic if applied to reaction-diffusion models.

Maximum Reaction Time Method Another modeling approach is the Mazimum
Reaction Time Method |Puchalka and Kierzek, 2004]. It describes slow reactions
by the Nexzt Reaction Method of Gibson and Bruck, and fast reactions by the 7-
leap method. The partitioning into slow and fast reaction channels is performed
automatically in each time step by criteria depending on two error control parameters.
A third error control parameter is the value of the maximum time step.

The automatic partitioning makes the Mazimum Reaction Time Method approach
very interesting. However, there remain some problems. For example, it is very
difficult to define appropriate values for the error control parameters. To show this,
let us consider the influence of the error control parameter r, which defines a threshold
value for the treatment by the 7-leap method. In a system with M reaction channels,
the 7-leap method is only applied to a reaction channel p if

r< fu= zﬁ:la,, : (wedl,..,M}) (2.4)

where a,, is the propensity function of the reaction channel p. Hence, for constant
value a,, f, gets smaller if the number of reaction channels gets larger (The most
simple case: If all a, have the same value, then f, = 1/M). Thus, for constant a,
and r, it is more likely that the reaction channel R, is treated by the 7-leap method
if it is embedded in a small system than in a large system, which does not make too
much sense. Thus, r depends on the number M of reaction channels.

Furthermore, let us consider the system A+ B = C'+ D and let us assume that all
particle numbers # 4, #pg, #¢, and #p are proportional to a scaling factor z. The
system can be split into the two single reactions A+ B — C+D and C+D — A+ B

with corresponding values f; := - and f, := “2-. Consequently, the reaction
rates a, := ki #4#p and ay := ky #c #p, are proportional to 22, but f; = afﬁaz
and fo 1= 22— (cf. Equation (2.4)) are independent of z. Hence, it can happen
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that f; < r for all z so that A+ B — C + D is always treated by the next reac-
tion method. However, for large z, the propensity a; can reach arbitrarily large values.

These two simple examples show that the error control parameter r» depends on at
least two quantities: the number of reaction channels, and the number of particles,
where the latter can fluctuate strongly during a simulation. Analogous considerations
are applicable for other error control parameters. Thus, the search for optimal values
of error control parameters is quite a difficult task which should, in my opinion, not
be left to the user.

A further problem may be that all ‘slow’ reaction channels are only evaluated by
the Next Reaction Method, which evaluates each reaction channel for time intervals
corresponding to the mean time between two reactions. However, it can happen that
the mean time between two reactions in a ‘slow’ reaction channel is of the same order
of magnitude as the mean time between two reactions of a fast reaction channel. In
this case, the fastest slow reaction dictates the size of the time steps; so that, on
average, only a few fast reactions occur in each time step. Hence, the gain obtained
from the 7-leap method is minimized.

probability-weighted Dynamic Monte Carlo method Another approximative ap-
proach is the probability-weighted Dynamic Monte Carlo method (PW-DMC) ,pub-
lished by Resat et al. |2001]|. In this method, reactions with large probabilities are
allowed to occur in “bundles”, which means that a single Monte Carlo step corre-
sponds not only to a single reaction, but to several reactions in the same channel.
As a consequence, the reactions follow a completely different statistics in each time
step than in the original model. Suppose, for example, that there are two reaction
channels with similar reaction probabilities. Then, each PW-DMC time step — maybe
given by hundreds or thousands of reactions in one channel, but no reaction in the
other — represents a very unlike event in the real reaction system. As a consequence,
PW-DMC particularly leads to larger fluctuations than an exact algorithm. Resat
et al. [2001] argue that this statistical error significantly cancels out if many simu-
lation trajectories are averaged, which is true for stable dynamical systems, but not
necessarily true for unstable dynamical systems. Furthermore, it does not make much
sense to reduce the description of stochastic model to the mean of many trajectories.
Such an average can more efficiently be computed by deterministic reaction kinetics.
Instead of this, one has to try to also reflect the fluctuations correctly.
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2 State of the Art

2.5 Existing Implementations

The increasing availability of data and the complexity of cellular systems have mo-
tivated several programmers to provide integrative support to biology, after all: the
overall goal of computational cell biology is to enable cell biologists to build and
exercise predictive models of cellular processes. There are several tools for the sim-
ulation of dynamic biochemical systems available using the described reaction and
diffusion algorithms. They are mainly freeware and can be downloaded from the
authors websides. The Table 2.6 gives an overview on some of the described tools.
The list is not exhaustive. It shows some important products sorted by the year of
its first release. Most of the named simulators are still under maintenance, so there
might have been some improvements, that are not included in this thesis. The focus
here will be the implementation of algorithms on reaction and diffusion. Further
details on the software can be obtained directly from the distributors.

The simulators can be in general classified by two characteristics: if they can
model spatial aspects and by the main strategy to simulate (stochastic or determin-
istic). GEPASI is for example a non-spatial, ODE based tool for complex biochem-
ical reaction pathways and therefore deterministic simulator; spatial information is
not included (cf. Appendix C.1). Non-spatial deterministic simulators are typically
ODE-solvers applied to mass action equations. The simulated space is just one entity
and stochastic effects are not simulated. This of course makes GEPASI fast but sets
its limitations.

Like GEPASI NEURON is also a deterministic simulator and designed to simulate
electrophysiological behavior of single neurons using ODEs (cf. Appendix C.1).

Using ODE-solver is not without any problems. If systems includes both very fast
and very slow dynamics, that is, some reactions are much faster than the others, the
system is called stiff [Haavisto, 2004|. Stiff systems are hard to simulate since the
fast dynamics require for short step size and the slow dynamics increase the total
simulation time interval. Using a small stepsize, the simulation of the whole process
becomes very slow. Consequently, some numerical algorithms are developed espe-
cially for the simulation of this kind of systems.

An example representing the fraction of stochastic spatial simulators is MCell (cf.
Appendix C.1). The authors describe it as a "general Monte Carlo simulator of cel-
lular physiology”. MCell captures stochastic fluctuations seen with small numbers of
particles and models diffusion by simulating Brownian random walk.

An exceptional simulator is StochSim (cf. Appendix C.1). It is using a very own

reaction algorithm. This stochastic simulator was developed by Carl Firth (formerly
known as Morton-Firth) back in 1998 as a biochemical simulator - simulating complex
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Figure 2.2: Characterisation of existing cellular simulators; red: algorithms, black: imple-
mentations

stochastic signaling pathways in bacterial chemotaxis. Single molecules are treated as
single objects or intracellular automata. StochSim is capable of handling multistate
molecules. For small numbers of reactions and single state molecules it is slower than
SSA, but in other cases it is much faster and more accurate. Gillespie’s algorithm
cannot identify molecules as individual elements, their states, positions and velocities
within the reaction volume cannot be followed over time and multistate molecules
cannot be represented. At each time step, two molecules are picked and a random
number generator is used to decide, if a reaction occurs or not using a lookup ta-
ble of probabilities of all possible reactions. Since version 1.2 StochSim can model
in two dimensions with squares forming the tessellation. Since v1.4 also triangles
and hexagons can be used but there are no representations of cellular compartments.
Speed gained by look up tables for reactions.

Cellware is a relatively new tool first released in 2004. It uses several reaction algo-
rithms. One own development is StochODE, which is solving ODE’s plus an external
noise term; therefore StochODE is a solver for SDE’s [Dhar et al., 2004]. Others used
are NRM, SSA | tau-leap and several ODE-solver. Diffusion is not modeled, although
simple compartments are represented. Cellware can only use one algorithm at a time.
The much older E-Cell (first appearance in 1996) is using a hybrid approach. Parts
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2 State of the Art

of the reactions are modeled using Gillespie’s SSA while others use ODE’s. Speed
and accuracy are combined to model the stochastic behavior of -for example- gene
expression. Like Cellware E-Cell is not able to model diffusion.

Some simulators especially the newer ones model diffusion by either random walk
or partial differential equations and paying respect to spatial aspect of the cell. This
has been encouraged by confocal and two-photon excited fluorescence microscopy,
that permit investigators to study the structure and dynamics of living cells with
submicrometer threedimensional spatial resolution and with time resolutions as fast
as milliseconds [Slepchenko et al., 2002].

With Virtual Cell (VCell) Schaff Schaff et al. [1997| introduced a simulation tool,
that uses the finite element method (FE) to solve reaction diffusion PDE’s if a spa-
tial resolution is demanded; otherwise ODE’s are taken (cf. Appendix C.1). In the
FE-approach the volume is divided in subvolumes and for each volume one assumes
well-mixed conditions. Differential equations , which describe mass action kinetics
are used to compute fluxes between and reaction rates within each voxel. The prob-
lem is that with realistic cellular structure, the grid has to be very fine or irregular in
shape. In the first case, the finer the grid, the higher the computational cost, in the
later the grid itself becomes a computational problem. The less voxels are taken, the
worse the assumption becomes that a voxel represents a homogeneous space. Virtual
Cell represents a typical deterministic simulator, which can pay respect to spatial
aspects, but is not able to reflect the influence of stochastic events/noise. By down-
sizing the finite subvolumes the effects of noise are amplified, because the molecule
numbers in each subvolume are getting smaller than when they were taken as whole

(Bhalla [2004]).

In September 2004 Andrews and Lipkow introduced Smoldyn |Lipkow et al., 2005].
The name is derivated from "Smoluchowski dynamics”. This tool is designed to model
chemical reactions networks especially to look at the effects of cellular architecture
and molecular crowding on signal transduction pathways. Each molecule is treated
as a single point (centers of mass), so there is no volume and no inertia. The mole-
cules diffuse freely in the test volume. All particles have a given binding radius. If
two molecules get close enough, so the distance is smaller than the binding radius, a
reaction occurs. It has to be emphasized that the binding radius and the sum of the
molecule radii are not the same. Because of the fact that most reactions occur at a
slower rate because of a reaction activation energy, the sum of the molecular radii
is replaced by a smaller binding radius. For reversible reactions Andrews defined a
debinding radius, which is totally artificial, but helped to prevent two molecules from
immediately recombine after just being split. Steric interactions between particles
that cannot react, are ignored. The leap length of a particle is derived from Fick’s
law sg = v2 Dt. A problem is the calculation for bimolecular reactions. If two par-
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ticles A and B were moving, the question is, if their distance during the last Jt has
ever been smaller than the reaction radius. Because of the computational complex-
ity of answering that question for multi particle systems. Andrews et al. simplified
the concept by only looking at the final positions of all particles and ckecking if any
distances fall below a binding radius. The accuracy now depends on the setting of dt.

Two simulators presented in 2004 are SmartCell and MesoRD (cf. Appendix C.1).
They are both using the Next Subvolume Method (NSM) by Elf and Ehrenberg [2004]
to model diffusion. SmartCell was developed to simulate diffusion-reaction frame-
works in a whole cell-context [Ander et al., 2004]. Because of the fact that the
distribution of entities can be crucial for certain processes, SmartCell is using the
idea of deviding the modeling space into subvolumes and was at first using the NRM
of Gibson and Bruck to model diffusion and reaction but recently changed to the Next
Subvolume Method. This makes SmartCell a spatial stochastic simulator. Within the
single volume elements the particles are assumed to be equidistributed, so the sto-
chastic algorithm can be used. SmartCell does not simulate excluded volume effects
because the simulated particles have the volume 0. MesoRD was using the NSM from
the beginning [Hattne et al., 2005]. The NSM scales logarithmically with the number
of subvolumes, the NRM by Gibson and Bruck also, but memory requirements and
operations per second are higher. Gillespies SSA on the other hand scales linearly
and is therefore much slower.

What to expect In the last two subsection I have presented several approaches
to model cellular systems. In Section 2.4.2 the most important reaction algorithms
were described. By applying them to a spatial grid as demonstrated by some imple-
mentations in Section 2.5 they can be applied to simulate diffusion as well.

The main problems of the existing algorithms are their limitations. No algorithm
alone is capable of performing efficient and accurate simulations. If they are accu-
rate like the First Reaction Method they lack of speed and if they are fast like a
deterministic approach they do not reproduce stochastic fluctuations anymore. And
not only that, but 7-leap methods using Poisson distributions are also based on the
wrong assumption when applied to small particle numbers. The hybrid methods are
the logical consequence, but the solutions so far do not cover the whole spectrum of
occurring particle numbers. Either they only use an exact approach and an approx-
imative method like the mazimum reaction time method or they totally blind out
intermediate particle numbers like the hybrid method by Takahashi et al. [2004].

What is needed is an algorithm covering small, intermediate and high particle
numbers and simulating them as accurate as necessary and as fast as possible. The
limited partitioning is not the only problem the hybrid methods so far have. The
partitioning is not very intuitive. In the approaches by Haseltine [2002|, Kiehl et al.
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E-Cell 1996 SSA, ODE, 0 O |+ | 0| generegulatory networks, | Tomita,1999
NRM signal transduction,
metabolic networks
VCell 1997 ODE’s and PDE’s with finite | /| v/ | v/ | distribution and dynamics | Schaff,1997
Jor PDEs volume method of intracellular
biochemical processes
MCell 1997 bimol.react.: 3D Random Walk | 0 | /| / neurotransmission, Stiles,1998
collision signal transduction,
unimol. react.: trasmembrane flux
similar to SSA simulations in 3D
Smoldyn | 2003 bimol.react.: 3D Random Walk | § | /| +/ signal transduction, Andrews,2004
collision general
unimol. react.: biochemical
similar to SSA simulator
Cellware | 2004 | ODE, Direct Method, 0 /AN signal transduction, Dhar,2005
NRM, StochODE, gene regul. networks
explicit T-leap metabolic networks
SmartCell | 2004 NSM NSM vV IV | V| diff. & react.networks Ander,2004
MesoRD | 2004 | stoch. mode: NSM | stoch. mode: NSM | v/ | v/ | / stoch. & determ. sim. Hattne,2005
deter. mode: PDE deter. mode: PDE of chemical reactions
and diffusion in 3D

Table 2.6: A Selection of present cellular simulators
to spatial aspects and what is their main area of application.

with respect to how they model reaction and diffusion, how they pay respect
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[2004| and Takahashi et al. [2004]| the user has to divide the reaction channels into the
different modeling classes. This is very inconvenient and furthermore inappropriate
if the system is oscillating or at least one species would have to be reclassified as
'slow’ or ‘fast’. A complex system like the Oregonator (cf. Section 4.1.2) is a good
example for this.

So far only the Mazimum Reaction Time Method and the probability weighted Dy-
namic Monte Carlo method provide an automatic shifting between a limited amount
of modeling levels (cf. Table 3.3). However, they use more than one error parameter
and they are not very intuitive.

Rao et al. [2002] made an important and for this thesis crucial statement regarding
the existing reaction algorithms in the journal "Nature” : "Although a few new strate-
gies have been proposed to increase the efficiency of the Gillespie algorithm (tau-leap
and NRM), there are currently no satisfactory approaches simulating processes con-
currently across multiple scales of time, space and concentration. An alternative
approach is to separate timescales explicitly and reduce the model by singular per-
turbations. Yet another approach is to construct hybrid models involving continuous
and discrete representations. Both these approaches require direct intervention by
the modeler - a cumbersome and sometimes impossible task. The long-term goal is
to develop algorithms that do this both automatically and adaptively.”

With COAST I am confident to present in the following chapter an algorithm
that fulfills this demand. This algorithm covers exact stochastic, approximative and
deterministic cases. However, at the same time its accuracy is only defined by one
single parameter a.
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3 COAST for Reaction and Diffusion

So far I have introduced the problem and main goal of this thesis in the first chapter.
In the last chapter I gave an overview on existing methods to model reaction and
diffusion and their advantages and disadvantages for modeling cellular processes. At
the end I presented some existing simulators in this scientific area.

In the following chapter I will introduce the Controllable Approzimative Stochastic
reaction-algorithm (COAST). COAST is a hybrid algorithm using three levels of
modeling and is controlled by one single error parameter «. This chapter explains
step by step the algorithm for reaction problems and its application to diffusion
scenarios.

3.1 Concept of COAST

Gillespie’s approach (cf. Section 2.4.2) answers two important questions:
e Which reaction will occur next?
e When is the reaction going to occur?

With COAST, the questions have slightly changed:

e Which reaction will define the next time step?

e How long is this time step?

COAST uses some ideas of the mazimum reaction time method - particularly the
automatic partitioning of the reaction channels into classes with different levels of
modeling (cf. Section 2.4.2). COAST allows for all reaction channels to perform
several reactions within a single time step. Within this given time step, the different
reaction channels are evaluated successively using three different levels of modeling:

e an exact stochastic level based on Gillespie’s First Reaction Method for small
numbers of particles,

e an approximative stochastic modeling by Gaussian-distributions for intermedi-
ate particle numbers,

e and the deterministic reaction kinetics for large numbers of particles.
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3.2 Derivation of the Fundamentals

Therefore, the partitioning into three levels of modeling is done automatically in
every time step.

In contrary to the First Reaction Method, the stochastic method used in COAST
allows for more than one reaction to take place within a given time step.

As previously mentioned, the subdivision of the reaction channels into the three
different modeling levels also depends on a single error control parameter «. This
control parameter « is chosen so that the error of COAST is always smaller than
(ar-100) % of the value of an exact algorithm. In Section 3.10 I will give some firther
information on the different errors that are estimated by a. Furthermore, in practice,
I show that the error in simulations is usually much smaller than the upper bound
given by this parameter. So, an a-value of 0.05 would mean that one allows an error
of 5% in all calculations.

Thus, the algorithm can be controlled by the choice of a € [0,1]. This makes
it easy to find an optimal trade off between accuracy and performance for a given
simulation system.

In the next section I present the mathematical background supporting COAST.
Section 3.3 describes the single steps of the COAST-algorithm.

3.2 Derivation of the Fundamentals

In contrast to other existing hybrid algorithms, « offers a precise method to deter-
mine when to switch from one modeling level to another. The usual way to apply
the First Reaction Method in order to calculate which is the next reaction and when
it is going to occur is by evaluating binomial distributions. This is computationally
expensive for more than one occurring reaction since several random numbers have
to be chosen. By using Gaussian distributions one can compute random numbers
with less computational effort. It is a well known property of binomial distributions
to converge toward a Gaussian distribution if the size of the set increases.

For the algorithm, two essential problems must be solved: Firstly, one has to deter-
mine time spans in which the particle numbers and, thus, the reaction probabilities
are nearly constant. Secondly, one needs - at least for intermediate and large par-
ticle numbers - methods which allow to compute the number of reactions efficiently
without too large errors.

3.2.1 Methods

In this paragraph I will derive the necessary transition criteria for the three applied
regimes of COAST. The criteria result in two requirements formulated in Equation
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3 COAST for Reaction and Diffusion

(3.17) and Equation (3.18) (and Equations (3.19) and (3.20) respectively).

Exact stochastic model: If the particle numbers are low the reactions are calcu-
lated by a modified First Reaction Method, where we allow more than one reaction
until the reaction probabilities change by more than «-100%. This first regime is
called X.
Approximative stochastic model: Since the reaction probabilities (propensities)
are nearly constant, the number of reactions during such a time step can approxi-
matively be described by binomial distributions and, thus, for sufficiently large par-
ticle numbers by discrete Gaussian-distributions. This defines the second regime T'.
A critical question is defining the point of transition between Y (nearly binomial-
distributed) and T.

I will now explain when it is appropriate to switch from a binomial distribution to
a Gaussian distribution with an error of a.

Let Pg(k; N,p) be the probability for k& events given by a binomial distribution
with parameters N and p

Polh o) = ()t (5.)

The expectation is F := N -p and the variance is V := N -p- (1 — p). In terms of a
reaction system, Pg(k; N, p) would be the probability for k reactions occurring with
originally N particles in the system and the probability p for a single reaction to
occur.

Further, let X be a standard normal variable and Z be a probability variable

Z = Round (\/VX + E) (3.2)
with the Round-procedure

[z]+1, ifz—[x]>1/2,

(2], it (o] <1/2. ([z] :=max{n € Z,n < x}) (3.3)

Round () ::{

Let Pg(k, N) be the probability of a "discrete Gaussian distribution” for Z = k events
with the same expectation E and variance V.
Equation (3.2) implies that the probability for Z = k is

k—E+1/2
IV g2

Pa(k,N) = 7= [, >, e ?dz, (3.4)
VvV

so that it must be shown that Pg(k; N, p) and Pg(k, N) are approximatively iden-
tical for large N, where, for a fixed value of the error control parameter a, Pg(k, N)
is a valid approximation for Pg(k; N,p) for all N > Ny(a) € N if the supremum
norm
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3.2 Derivation of the Fundamentals

sup{|PB(k;N,p) — Po(k,N)[;0 <k < N} <« for all N > No(«).  (3.5)

This is a relatively simple approximation, other approaches like the DeMoivre Laplace
limit theorem [Feller, 1970, 182pp| will possibly give better approximations with a
positive impact on the algorithms performance.

The aim of this section is the derivation of an appropriate value Ny(«). To this
aim, we will firstly prove three Lemmas. The value Ny(«) itself is the content of the
theorem at the end of the section.

Lemma 1 : If |k — E| > \/g, then |Pg(k; N,p) — Pg(k, N)| < « is fulfilled for all

k with |k — E| > \/g
Proof: In accordance with Tchebycheff’s inequality [deFinetti, 1974, p.172f.]

Py (Y — B> /Y. N) <a, Pe(|Z—E|> /Y, N)<a.  (36)

Since all Pg > 0 and Pg > 0, |Pg(k; N,p) — Pa(k, N)| < « is, thus, always fulfilled
for all k with [k — B > /Y. O

~—

In what follows, we will determine Np(a) and Ng(«), so that for all |k — F| < \/g

Dy(k,N) = |Pa(k;N.p)—w(k,N)| <5,  VN=Np(a), (3.7)
Dok, N) = |Po(k,N) —w(k,N)| < % YN > Ne(a), (3.8)
where
(k,N) = &P (_2%;7%)
\/27T Np(l—p)

Criterion (3.5) is then fulfilled for all N > Ny(«) := max{Ng(«a), Na(a)}.

Lemma 2 : Let |k — E| < \/g Then Dg(k,N) < § for all N > Np(a) with

1
~Bap(l-p)

Proof: We replace the binomial coefficient in Equation (3.1) by the extension to

Sterling’s formula of Buchner [1951] . Therefore we define a function ((N, k) in the
following way:

NB(Oé) .
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where

W = o (1) Goe)

Notice that k& will be replaced by x- N.
This leads to

(3.9)

(3.10)

N N Kn N N(1—k)
P k'N = C(N’k) - — - r N 1 o N(lf,t{)
B( ) ap) € 27TkJ(N—kJ) Nk N(l—,‘{,) p ( p)

6C(N,k)+% In ﬁjL(KN) InL4+N(1—k)In 2= +(kN)Inp+N(1—k) In1—p

V21N
REGEORS In 2028 PEZP) N (In k—In p)— N (1) (In(1—k) —In(1-p))
B V2rN
€C<N’k)7% In ;8:;; +In (p(lfp)fé)meln 2—N(1—r)In i:—:
a 27N
exp (C(N. k) = § In(EH=8) = N (k In(%) + (1 — ) In(4=%)))
2rNp(l-p)

(3.11)

To continue we perform a Taylor-expansion of the exponent in Equation (3.11). &
later on is replaced by % Furthermore we neglect all terms of the order N~!, which
has a consequence the disappearance of the (-function. For the single parts of the

exponent one obtains the following derivations:

1 k(l—rk)
o) = =i =)
) = 2;z1+—2:)
” 3k — 3K? 4+ 2k3 — 1
/ (l’) = (/’i — H2)3
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p L=p
f (l‘) - /{(1—%)
" o n(l_zﬂ)
') = e (3.13)

Since (k — p) is of the order N~/2 | a Taylor-expansion of the exponent in Equation
(3.11) results in:

i (k= p) + 5o (k= p)* + %[J,\é(&:%)g (k — p)S)

Q

N (k— Np)?+ L-N0=2) Np))

6 N3p2(1—p)?

Q

—142 k 1 —N k 1 N(1-2p) / k
D (515 (% —2) + 35 (v — P + i (v —2)°)

2(k— Np))

Q

(3.14)

xT

By using 1 —e™
to:

_ (k=Np)?

1—-2p 1—-2p
— 1+ —5-(k— N
V21V < 612 ( Py’ -

The upper bound of Dg(k,N) = |g(k) — w(k,N)| in the relevant interval [E —

Y E+ \/g] is given by a local maximum (see Figure 3.1). Now we set x = k%/g”

to simplify calculations. This results in

Py(k; N,p) = g(k) =

e‘é 1—-2pax3 1-2p z
oV \ 6 V 2 Vv

and the first deviation

/ (1—2]?) 2! 2
Di(x) ~ va ( §+2x —1).
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Figure 3.1: The graph of the function f(x) := |Pg(x; N,p) —7n(xz, N)| for p = a = 0.02 and
V =50 (= N = 2551), where for Pg the approzimative expression (3.14) is
used. As implied by (3.6) , the interval relevant for the estimation of Dp(x, N)

is given by [E — /¥, B + /Y] = [1.02,101.02].

This results in 2y &~ —\/3 — v/6. Hence, one can estimate

max{Dg(k,N)} ~ Dp(—\/3—+6,N)

(1-2p)y/3 — V6B e—F"
V27V 6

~

< [
6V’

so that Dp(k, N) < § (cf. Equation (3.7)) is fulfilled for

N>——F7—. U

Lemma 3 : Let |k — E| < \/g Then Dg(k,n) < § for all

1

N = )
9023 p(1—p)

Proof: P;(k,N) (cf. Equation (3.4)) can be rewritten by a Taylor-expansion of
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T
1 k—E+1/2
vV .Z‘ — l‘o
Polk,N) = —— (f(wo) #1020+ (e} T o
27 k—\E/—V1/2
k—E+1/2
1 WV (kB2 <k—E> (h—1)2 ( k— E)
= @ — e 2V — 2| ——— Jem T2V Tz - —
NOX k—}\E/%l/Z \/V \/V
+f"(x0) (x — 29)* du
k—E+1/2
1 W e (k- F P Y (k — E)? RO
o Je—E-12 VV 1%
+f"(z0) (x — x0)” dx
1 k—E+1/2
Vo
= W(k,N) + \/ﬁ /1;7E71/2 f”(l’o) (SC — .To) d{E,

By neglecting terms of the order O(n~1), one thus obtains for Equation (3.8)

+1
2

Dg(k,n) = 7o) (. — x0)? da

el
max{|/"(xo)} 2
< Vor wo—ﬁ (ZE—(L’O> dx

now we use k = 2oVV + E

oot L
< max{\|/f§$o) . R 0+2\1/V
po——L_
was{l" (o)} 1 -
- NG 12V3/2
W. (3.15)
Notice that |f”(zo)| has three extrema (at ; = —v/3,25 = 0 and z3 = V/3) and

max{|f"(zo)|} is at position = 0 with | f”(0) = 1|. Hence, Dg(k, N) < § is fulfilled
for all k if

1
V812V :

|2

>

Because V' = N p (1 — p) we obtain

1
>
2 7 VBra(NipE(1-p)

Njw
~—
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By solving for N we receive

ol

N

1
V8m6aps (1 —p)?

1
(288 )13 a3 p (1 —p)

>

By approximating the existing quotient the resulting inequality is

1
N > O 3.16
9a2/3p(1—p) (316)

Theorem 1 : sup{|PB(k:; N,p) — Pg(k,N);0 <k < N} < a for all N > m.

Proof: Due to Lemma (1), the estimations can be restricted to |k — E| < \/g On
the other hand, Lemma (2) and Lemma (3) lead to the result, that sup{|PB(k;; N,p)—

Pa(k,N)[;0 <k < N} < a (cf. Bquation (3.5)) for all [k — B| < /¥ if

1

N > No(a) := max {Ng(«), Ng(a)} = Sapi—p)

0

So we can conclude that the binomial distribution Pg(k; N,p) and the Gaussian
distribution Pg(k, N) are referred to be the same with respect to the error « for all

1
N > ETITEIR (3.17)

Deterministic reaction kinetics: Furthermore, one can define the transition point
between the approximative and the deterministic regime by applying similar consider-
ations. It is a well know fact that for large particle numbers the statistic fluctuations
can be neglected and we reach the regime of determinism |Ethier and Kurtz, 2005].

In the following text I will consider three possible ways to calculate the transition
between the regimes I' and A. The first one introduced is comparably crude, but
based on the well known Tschebyscheft’s inequality [deFinetti, 1974, p.172f.]. The
calculated criterion (3.18) was used in the simulations of COAST. It is possible
to estimate an earlier point of transition using more accurate approaches. These
improvements could be used to improve the runtime results of COAST. The second
approach uses the quantiles of the normal distribution and the third approximates
the Gaussian distribution by another e-function.

To unify the three approaches one has to standardize the distributions. A random
variable Y is given by the Gaussian distribution ¥ ~ N (,u, %) where p = p and
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3.2 Derivation of the Fundamentals

02 = p(1 — p). Its distribution is transformed to a the standard normal distribution
Em) VN ith 7 = + i

Now we demand that the probability for a certain number of reactions being further
away from the expected value than a given distance € is P(|Z| > ¢€) < a.

First let us consider Tschebyscheft’s inequality.

P(2]2 6 < 5.

\%

This results in a = 7.

With this we can give a definition for e.

V o
€ = =
N-a +a-N
The second step is to demand the deviation e to be very small compared to the
expected value pu.

o
Van F

This inequality has to be quantified to be useful. Because we only want one single
error parameter we use « again to simplify the estimation:

o
< - u.
va-N a
Squaring both sides results in
2
g 2 2
< o -
a-N b
Using 02 = p(1 — p) we can conclude
(1-p)
as - D < NTschebyscheff- (318)

With Equation (3.18) we have an estimation when to apply the deterministic instead
of the Gaussian distribution due to the fact that the expected value used is the one
given by the deterministic dynamics.

However, Tschebyscheft’s inequality is relatively coarse and there are better es-
timations possible. The second approach is based on the quantile-function. We
first define an €, so that the probability for a value to be further away than ¢

from the expected value is less or equal the error a. ®(¢) is defined as the inte-
2
gral ®(e) = \/% /€. e~T dt. This concludes to

2(1—=®(e)) = «a.
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3 COAST for Reaction and Diffusion

So we can obtain
«

1—5 = d(e).

By applying the inverse function ®~!, we receive the following expression for e

ot (1 — C;) = €

Again one has to demand € to be much smaller than the expected value; i.e. we allow
a relative error of ar- 100% and therefor € is set as « - p. It has to be emphasized that
due to the standardization one now has to rescale ¢ with j—ﬁ

o o
ot (1-9) T

2) VN
By using the fact 4 = p the inequality changes to

ot <1—§) .\;‘N < a-p.

Finally we solve the inequality for N:

< a-p.

- a\? (1 -p)
o ! (1 - 2) o2 p < NQuantiles- (319)

Using (3.19) is the most accurate way to calculate the point of transition. However
handling the tabulated values for the ®~!-function can be complicated. Therefore
it might be better to find an approximative solution which is our third approach to
this problem.

P(1Z] =€) = 2(1-(c))
Now we can apply the definition for ® and obtain

o ]
_ 2./ .
€ \/277'
2 00 2
= —- e 2dux.
\ 2 /5

2
_z
2 dx

The factor in front of the integral is smaller than 1. The problem is the integral, it
cannot be solved analytically. However, we can replace it by another larger integral
of which we know the antiderivative [Wasserman, 2006, p.8|.

P(|Z| >¢) < / ze Tdx

ac2 o0
[
€

&
e 2

IN
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3.2 Derivation of the Fundamentals

This results in the following criterion for €, because the described probability is
supposed to be «

Like in the two other approaches we set ¢ = o u and undo the standardization, which

leads to
JmL .2 <
n—-—— o
2 N a

Squaring both sides of the inequality results in

1 o
In—-— < a-pu.

a® /N

By solving the inequality for N we obtain finally

In ((52) : lpaf < NApproximation- (320)
Figure 3.2 compares the three approaches. Using the quantile-function or the ap-
proximation with the modified e-function results in an earlier switch between the I'
and A-regime, demanding less particles to be present with a given reaction proba-
bility. The improvement is depending on the given a-value. For low a-values it cuts
the needed particle number by more than 90%.

With Equation (3.17) and Equation (3.18), I have defined the borders between the
three regimes. Equation (3.17) marks the transition between ¥ and I', and Equation
(3.18) marks the transition between I' and A.

Illustration of the findings: Let us consider the derived criteria for a = 0.05
(respectively o = 0.01) in more detail. For small reaction probabilities p (Note:
p < a), 1 = 1—p. Thus, one obtains from Equation (3.17) and Equation (3.18) the
following estimations of the mean number of reactions N p:
NpmNp(l—p)Z?%a and Np%Np(l—p)Z%.

Hence, criteria (3.17) is fulfilled if the mean reaction number is larger than 7 (for
a =0.01:34). This is also the upper bound for the amount of random numbers per
reaction channel necessary in a time-interval, since for larger reaction numbers (on
average), Equation (3.2) can be used, for which only one random number is required.
Analogously, one can see, that deterministic reaction kinetics can be used if the ex-
pectation of the reaction number is larger than 8000 (For o = 0.01 : 10°). Then,
obviously, no random number is necessary. Of course, the actual number of particles
depends on the reaction probability p.
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3 COAST for Reaction and Diffusion

ratio of n(Tscheb.) / n(Quantile)

0.01 002 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

a-value

- ¢ :n(Tscheb.)/n(Quantiles) —=— Approximation
—=— Quantiles —— Tschebyscheff

Figure 3.2: This figure demonstrates the three approaches presented to model the transition
between the T' and the A-regime give by the three Equations (3.18), (3.19) and
(3.20). The probability p was assumed to be always equal to o. The number
of particles needed is presented with respect to ao. The most accurate approach
18 the ome using the quantile-functions, closely followed by an approzimation
using another e-function. These two methods allow up to only one 1/15th of
the original amount of particles for the algorithm to switch from I' to A.

3.2.2 Length of the Time Steps

One of the important properties of the COAST algorithm is the assumption of nearly
constant reactions probabilities, which is again defined by the error parameter a.
We have to clarify how many reactions are allowed to occur without a change of
the probabilities by more than «. This paragraph will solve this problem. Equation
(3.24) defines the critical number of reactions per reaction channel. It is possible
with Equation (3.22) to calculate the timespan in which these reactions are going to
occur depending on the type of reaction.

Let us consider a single reaction channel A+ B — P with a stochastic reaction con-
stant ¢ and particle numbers N4 < Npg, where P is an undefined product. According
to the First Reaction Method, | < N4 reactions have occurred after the time

- -1 —In(r;)
= N Ns =)

where r; are independent random variables uniformly distributed in [0, 1]. The mean
till [ reactions have occurred is given by
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3.2 Derivation of the Fundamentals

6t (1) = %_Z;<C(NA—;)1<NB—@ /Olln(x)dm).

1=

The integral can be solved to —1 and by factoring out N4 twice in the nominator we
obtain

1 = 1
I e ve
¢ Aizo(_m)(m—m)
Now -- is replaced by x. The occurring sum can be interpreted as a Riemann sum

Na
for the corresponding integral. With an estimated error of O(N;') the equation
changes to

6ty (1) = chvA (/ONA = (1%_@ dx+(9(N;1)) |

Na

Thus, by eliminating terms of the order O(N,?), one obtains [Gradshteyn and
Ryshik, 1980, p.68 (2.172)]:

! Ng—l N .
6ty (1) = { e~ In (§2=] N4), if Ny # N,
Vi it Ny = N

cNa Na—l°

(3.21)

This result can also be obtained by an deterministic approach. As derived in the
Appendix A.5, A(t) the concentration of the species A in the reaction A + B = P
after a timespan ¢ can be described by

(NgsNp — N2%) . e kt(Np=Na)

Alt) = Np — Ny -e—t(Np=Na)

where N, and Np mark the starting concentrations of A and B.
Because we are looking for the timespan 7 for [ expected reactions, we have to
calculate [ first:

[ = Nyu—At)
(NsNp — N?%)- e—cT(NB—Na)
Ng — Ny -e—c7(Np=Na)
N4y Np (1 — e~emNVB=Na))
Ng — Nje—cT(N5—Na)

=] = NA—

=[] =

This can be reformulated to

” 1 (Ns—1Na
p— n —_—
= Ny —Na) \N4—INg )
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3 COAST for Reaction and Diffusion

which is the same we have obtained in Equation (3.21). The deterministic and the
stochastic way led both to the same result.

The deterministic uses usually concentrations for a single substrates, but this is
not an obstacle, because if a constant volume is used through the simulations all
concentrations are equivalent to specific particle numbers. Furthermore one has to
notify that the constant used here is the stochastic reaction constant.

For all type of reactions it is possible to calculate an expectancy for the time span
7 until [ reactions have occurred, either by a stochastic or a deterministic approach.
The deterministic way has the advantage of being much easier to calculate and the
simple relation of time and reactions is enough for the purpose of this thesis.

In more detail, for first and second order reactions the time span 7 for [ reactions
is

%ln(N]X{l), for A— P,
1 Np—l N
(1) ={ 0 B (lNﬁ—z Ne) o for A B — P (Na# Np), (3.22)
c2NANAl*l’ fOTA+B—>P(NA:NB)>
i Na Naal for2A — P,
which is equivalent to the occurring number of reactions
Ny(l—e7), for A— P,
_e—(Ng—Np)er
l(T)_ N]@;szsfie;(NBBfN:‘)CT)’ fOI'A—i-B—)P(NA?éNB), (3 23)
- N4 cT .
1+];\‘[ACT, for A+ B— P,(Ns= Ng),
% , for2A— P.

Analogous results can be derived for higher order functions.

I will now show that all reaction probabilities are considered constant up to
a-100%, if for all reaction channels R, with o,(A)A + 0,(B)B — 0,(P)P the
number of reactions is smaller than

= min { &l 5 € {A, B, P}} (3.24)

where ¢(5) is the number of reaction channels in which S occurs and o,(S) is the
stoichiometric factor of S in the reaction channel p.

I.e., a criterion will be derived for how many reaction steps can be allowed without
changing any reaction probability in a relevant fashion. To this aim, let us consider
a small variation € of the particle numbers N4 and Np in a (second order) reaction
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3.3 The Reaction Algorithm

channel A + B — P. In this case, the expected number of reactions in a time
interval of length 7 is (cf. Equation (3.23)):

Ng Ny (1 _ 6—(NB—NA)c6t)

I(N4,Np) = Ny — Noe (Vo Naea (3.25)
This leads in a zeroth order Taylor expansion to (Ng > Ny)
Np-Ngy
[(Nao,Np) %~ ————. 3.26
( As B) NB . NA ( )

We define the reaction probabilities (propensities) for N4 + € and Np + € are approx-
imately the same as for Ny and Np if

|I(Na+¢€, Ng+¢€)—1(Na,Np)| < al(Na,Np).
By using approximation (3.26), one obtains
leNg+eNa| <aNyNg. (3.27)
For A — P and 2A — P, one obtains analogously (cf. Equation (3.22)):
a Ny

el <aNsy and e < (3.28)
respectively, where for the latter estimation, one has to assume that 14+ (N4 +e€) e ~
1 + NA CT.

Let us assume that substrate S occurs in o(S) reaction channels. Then, inequalities
(3.27) and (3.28) are valid if the number of reactions /,, in each reaction channel R,
with 0,(A) A+ 0,(B) B — 0,(P) P fulfills

: a N .
ll’« Smln{m, SG {A,B,P}} .

In this case, chemical reactions can, in a first approximation, be considered as
independent, identically distributed events, so that the reaction probabilities can
be approximated by binomial- or (for large particle numbers) discrete Gaussian-
distributions.

3.3 The Reaction Algorithm

COAST follows the scheme in Figure 3.3 and a detailed list of all steps is presented
in Table 3.1. After initialization, the length 7 of a time interval is estimated, where
reaction probabilities are expected to be nearly constant. This is the case if the
expected number of reactions is smaller than [, as defined in Equation (3.24). This
is done in the subroutine “Next evaluation time”.
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3 COAST for Reaction and Diffusion

i Next Sucessive - T=T +At
start | Initia ‘.’a'fe — evaluation evaluation of || Final update for o end
of time: T=T, c c [T, T.+T]
time T reaction channels 0o

T—{ Time update: T:= T+t }‘—,

Figure 3.3: Schematic representation of COAST. The scheme shows the determination of
the number of reactions at a lattice point i in the time interval [t,t + At][.

These nearly constant reaction probabilities allow one to consider higher order
reactions as nearly independent processes. Furthermore, one can also compute the
number of reactions in the different reaction channels successively, since the mutual
influences of the reactions can be considered small. Note that the nearly constant
particle numbers imply that the exact order of the evaluations of the reaction channels
is not essential for the outcome.

Accordingly, the number of reactions in the different reaction channels during this
interval of length 7 is computed successively by application of the subroutine “Eval-
uation of reaction channels”. Finally, an update of particle numbers is performed,
partly in “Evaluation of reaction channels”, partly in “Final update”.

This procedure is repeated until time Ty + At = t,, is reached. For pure reaction
systems, Ty + At represents the end of the simulation. However, in Section 5.3, I will
discuss how to extend this reaction-algorithm to a reaction-diffusion algorithm, where
reactions and thermal motions in the same time interval are determined successively.
In this context, [Ty, Ty + At| represents only a short simulation step. In what follows,
I will consider in more detail the three most important steps in the algorithm: “Next
evaluation time”, “Evaluation of reaction channels” and “Final update”.

3.3.1 Next Evaluation Time T

Initially, a value for the error parameter o must be chosen; a lower « results in
increasing accuracy, but at the expense of increasing computational cost. Then, the
critical number of reactions [, (cf. Equation (3.24)) is computed for each reaction
channel R, with an additional simplification:
In a time step [T, T + 7[ no particle can react twicel.
Accordingly, the criterion in Equation (3.24) is restricted to the educts of the
reactions, simplifying the computation without leading to unreliable results. This

!Note that the probability for a single reaction of a particle in a time interval is smaller than o.
Hence, the probability for two or more reactions of a particle in a time interval is smaller than
2
.
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3.3 The Reaction Algorithm

I. Preparation Phase
« set by user
ot=20
o calculate ¢, out of all k,
II. Main loop until T=14,,
a) Next evaluation time
calculate A(.S)
calculate [,
calculate 7,
sort channels by 7
T=T + Thin
b) Evaluation of reaction channels
o loop over all reaction channels y

max. no. of allowed reacting particles)
max. no. of allowed reactions per channel)
time till [, reactions occur)

lowest 7 first)

(
(
(
(

o O O O O

e calculate p, (reaction probabilities)
e divide in X, ", A
e calculate r, (no. of occurring reactions)

e update educts
c) Final Update
o update products

Table 3.1: The single steps of the reaction algorithm
The process is split into two phases. During the preparation phase « is set
and the kinetic constants are transformed into stochastic reaction constants. In
the main loop the three routines "Next evaluation time”, "Evaluation of reaction
channels” and "Final update” are executed until the time stop teep 45 reached.
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3 COAST for Reaction and Diffusion

T +At

Figure 3.4: Illustration for the different time symbols used in the algorithm.
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Figure 3.5: Time-evolution of the particle numbers N4 and N¢ in both systems for COAST-
simulations (o = 0.05) and for the deterministic reaction kinetics. The left
(right) diagram shows the behavior for A+B = C (A+B = 2C). kijept = 0.002
krighe = 0.0002. In the beginning, COAST applies the deterministic reaction
kinetics to A+ B — 2C, but the first reaction method to the back reaction.

assumption can be eliminated by applying Equation (3.24) to both educts and prod-
ucts.

The most stringent test for this simplifying assumption is the investigation of the
time-evolution of a system with a very fast and a slow reaction channel, so that the
fast channel is treated by the deterministic reaction kinetics, and the slow channel
by the First Reaction Method. Such systems are shown in Figure 3.5, where the
reaction systems A+ B = C' and A+ B = 2C' are considered. The initial conditions
N, = Np = 10 Ng = 0 where chosen such that, in the beginning, A + B — 2C
is treated by the deterministic reaction kinetics, but the back reaction by the First
Reaction Method. Clearly, the mean value of the COAST-simulations coincide with
the values of the ODE-solutions, so that one cannot observe a (relevant) error due
to the assumption “no particle reacts twice”.
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3.3 The Reaction Algorithm

Subsequently, for each reaction channel R, the time T4 + 7, is determined at
which [, reactions are expected (cf. Equation (3.22)). The next evaluation time 7).,
is given either by the minimum 774 + 7, or by Ty + At, where Ty + At is either the
end of the whole simulation or, in reaction-diffusion models, the end of a time step?.
In more detail, the module “Next evaluation time” is composed of the following three
steps:

Step 1: For each substrate A, compute the maximal number of particles per species,
which is allowed to react such that the propensity is not changing by more than «
(derivation in Equation (3.22))

AA) = max{l, 20‘9](\[2‘) }

where p(A) is the number of reaction channels in which A occurs as a reactant.

Step 2: For each reaction channel R, with 0,(A) A+0,(B)B — 0,(C)C+0,(D) D,
compute the maximal number of allowed reactions

— min { 24 AB)
l, = mln{au(A),%(B)} . (3.29)

and 7,(l, given by Equation (3.22)).

Step 3: Determine

Thew = min{T,q + min{ 7, },To + At}.

S0 T,eq s either the sum of the lowest 7 of all channels and the old T, or the timespan
till the end of Ty + At.

3.3.2 Evaluation of Reaction Channels

The successive evaluation of the reaction numbers starts at the reaction channel with
minimum 7, and ends at the reaction channel with maximum 7,%. Accordingly, the
first step is the ordering of the reaction channels R, according to the 7,’s. In the
second step, one determines to which of the model classes X, I' and A each reaction
channel belongs, where ¥ represents the First Reaction Method of Gillespie [1976,
1977|, I' a Gaussian-distribution (cf. Equation (3.2)), and A the deterministic re-
action kinetics. Correspondingly, this classification is performed by the criteria in

2Tn reaction -diffusion models one often computes reactions and thermal motions in the same time
step successively [Hebert, 1992, Moller and Wagner, 2005]

3Since the reaction probabilities are nearly constant during a time step, the exact succession of
the evaluation steps do not have a strong influence on the outcomes
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3 COAST for Reaction and Diffusion

Equation (3.17) and Equation (3.18), where the probabilities p, are given by the ex-
pectations in Equations (3.23) of the First Reaction Method divided by the (smaller)
particle number.

Between the evaluation of two reaction channels, a first update of the number
of particles is performed. This first update is restricted to a reduction of particle
numbers corresponding to the consumption of educts. The second update due to the
production of particles in reactions will be performed in the “Final update” at the
end of each time step. Note that this splitting of updates is in accordance with the
assumption that no particle reacts twice in [T, T + 7].

Step 1: If there are m reaction channels R,, determine the sequence a(vy,...,vp)
(vi € {1,..,m}), so that for all i < j: R,, # R,, and 7, < 7,,. (sorting the channels
with lowets 7 first)

Step 2: For i :=1 to m do:
(a) Compute

o Ny, for A —72A—7,
v min{N4, Nz}, for A+ B —7?,

lu, (7)

Vi

and the reaction probabilities p,, :=

, where [,,,(7) is given by Equation (3.23).

(b) Perform the classification

; 1
A y if Ay, >1W s X
RV 6 F7 |f a3pui (11_7’%') Z ayl- > 304pu2- (l—pui) )
%, if 3apy; (1-py;) 2 Gy,

(c) Compute the number of reactions x,, in [T,T + 7[ by
If R, € X

J=

. i ln('r’l(,j))
Ky, = min ¢m € Ny, ¢y — . ) > T,
where r{7) are random variables equidistributed in [0, 1] and where
¢y (Na—17), forA— C+ D,

Qu(5) = ¢ (Na—34)(Ng—j)  for A+ B— C+ D,
Y (Ny—24)(Na—25—1), for2A— C+ D.

2
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3.3 The Reaction Algorithm

If R, €I

Ky, = min {%, %, max {0, n,, } }

with Equation (3.3):

n,, := Round (\/NApW (1—p,) X+ NAPW)

where the normally distributed random variable X can efficiently be computed by the
Box-Muller algorithm [Box and Muller, 1958].

If R, € A
Ky, = Round (Nap,, ) .

(d) Update of educts: If R,, is given by 0,,(A) A+ 0,.(B)B — 0,,(C)C +0,,(D) D,
then Ny = Ny —0,,(A) ky, and Ng = Ng — 0,,(B) k,,.

3.3.3 Final Update

In the final update, the particle numbers are increased according to the number of
reactions. Thus, the final update can be described in the following fashion:

Update of products: For all reaction channels R, with ¢,,(A) A+0,(B) B — 0,(C)C+
0,(D) D do: N¢ := N¢+0,(C)ku, Np:=Np+o0,(D)k, ,
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3 COAST for Reaction and Diffusion

3.4 Extending COAST to Diffusion

3.4.1 Problems and Approaches

The models for the description of thermic motions of particles is composed of two
classes (cf. Figure 3.2): The stochastic description of the trajectories of single parti-
cles and diffusion models reflects the time-evolution of the probability distribution of
such a particle. Correspondingly, the first class of models is able to reflect stochastic
effects due to small particle numbers, whereas their simulations are computation-
ally very expensive for large particle numbers. On the other hand, diffusion models
are computationally very efficient, but their deterministic time-evolution suppresses
stochastic fluctuations, so that they are only suitable for large particle numbers.
Consequently, both kinds of models are not suitable to represent cellular networks,

since they often contain substrates with a wide range of possible particle numbers
|Goodsell, 1991, Endy and Brent, 2001].

’ Algorithm /Model H Reference H Modeling of ‘ kind of model ‘
Molecular dynamics Baynes 2004, single particles | deterministic
Friedel 2004
Langevin-equation Stiles 1998 single particles stochastic
Smoldyn Lipkow 2005 single particles stochastic
(Spatial) Gillespie Takahashi 2004 || single particles stochastic
Gibson-Bruck Hattne 2005, single particles stochastic
Stundzia 1996
Diffusion model (PDE) Evans 1999 distributions deterministic
of particles

Table 3.2: An overview of the algorithms for (reaction-) diffusion models. Note that mole-
cular dynamics (MD) requires a description of all particles in a system, whereas
all other models allow a consideration of subsystems.

However, the thermal motion of particles can be interpreted as a kind of “reac-
tion” one considers molecules of the substrate with different positions as different
substrates and, thus, the transitions from one lattice point to another as a reaction
channel. Accordingly, reaction-diffusion algorithms can be considered published |Elf
et al., 2003, Stundzia and Lumsden, 1996| treating not only reactions, but also the
diffusive motions by exact stochastic reaction-algorithms |Gillespie, 1977, Gibson and
Bruck, 2000|. For large particle numbers, these methods lead to high computational
costs. Consequently, they can only be efficiently applied to systems with small or
intermediate particle numbers.
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3.4 Extending COAST to Diffusion

small [ intermediate [ large subdivision
T-leap Gillespie 1977 Poisson Poisson Poisson
binomial leap Chatterjee 2005 binomial binomial binomial
Tian 2004
hybrid methods Takahashi 2004 NRM NRM deterministic by user, fixed
Kiehl 2004 NRM NRM deterministic by user, fixed
Cao 2005 FRM FRM quasi steady state by user, fixed
Rao 2003
Haseltine 2002 FRM FRM Langevin-equation by user, fixed
maximum Puchalka 2004 NRM Poisson Poisson automatic
time step in each step
PW-DMC Resat 2004 Monte Carlo Monte Carlo Monte Carlo automatic
with with with in each step
single reactions bundles bundles
COAST FRM Gauss deterministic automatic
in each step

Table 3.3: Characterization of the recently published reaction-algorithms: FRM denotes the
First Reaction Method or Direct Method of Gillespie Gillespie [1977], NRM the
Nezt Reaction Method of Gibson and Bruck Gibson and Bruck [2000]. “bundle”
means several reactions of the same type.

Some recently published reaction-algorithms (cf. Figure 3.3) try to solve the dilem-
ma between the exactness of modeling and computational costs by using different
levels of modeling for the different ranges of particle numbers. I will now describe
how COAST , as a multi-level algorithm, can be applied to diffusion processes and
by keeping its original function extending it to a reaction-diffusion-algorithm.

3.4.2 Qutline

Here I will discuss the adoption of the COAST to the needs of linear diffusion mod-
els. Thereby, linear diffusion model means that the diffusion rates of each described
substrate is independent from the concentrations of all of these explicitly described
substances. This is a reasonable approximation if the interactions between these
substrates are small compared to the interactions with other substrates. Thus, linear
diffusion models may not be suitable for all biological systems |Agutter et al., 1995],
but are always appropriate if the concentrations of the explicitly described substrates
are low enough.

On the other hand, linear diffusion models allow the subdivision of the diffusion
model into (approximatively) independent subunits: the thermal motions of different
substrates can be treated independently, and the transitions from different lattice
points can, for small time steps, also be considered as approximatively independent
events. Last but not least, the transitions from the same lattice site into different
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3 COAST for Reaction and Diffusion

directions can also be treated independently; provided that one uses appropriately
constrained probabilities.

This allows to decompose the dynamics into (nearly) independent processes help
to simplify the algorithm enormously. Additionally, since linear diffusion models
correspond to first order reactions, they can work with constant time steps, which
additionally allows for a simplification of the algorithm.

I emphasize here the concept of error control of COAST to linear diffusion models,
which means that the errors due to the discretization of the spatial coordinates are
estimated dependently from two error control parameters, namely the parameter «
mentioned before and a parameter R corresponding to the spatial resolution of the
diffusion model.

In the following section, the diffusion model and the corresponding random walk
used by COAST are introduced. The content of Section 3.6 is the estimation of the
errors due to the necessary discretization of time and space dependently from error
parameters.

3.5 The Discrete Diffusion Model

In this paragraph I will describe how to get from the continuous diffusion model
to a discrete diffusion model. This approach allows us to approximate the contin-
uous diffusion by a discrete approach and gain with Equation (3.35) an quantita-
tive expression for the transition probability between two adjacent volume elements.
For the discussion of the diffusion-model on which COAST is based, namely the
Smoluchowski-equation, let us consider the case of a one-dimensional motion of a
single substrate A with a friction coefficient 7 and an external force f4(z).

The motion of a particle A in a time span 4t is given by the Langevin-equation in
the strong friction limit (i.e. mi — 0):

t+6t
ot + 6t) — x(t) :/t LAl gs /2 DSt W,

where kg is the Boltzmann’s constant, 7" is the absolute temperature, and W is a
normally distributed random number with density

_w?
o(W) = \/%76 7. (3.30)
D, is the diffusion coefficient of the substrate A and is related to the Boltzmann-
constant kg, the temperature T and the friction coefficient of substrate A by
.— kT
Dy ===
By Ito-integration [Oksendahl, 1985, p. 20 ff.] of Equation (3.30), one obtains the
diffusion-equation, which describes the time-evolution of the corresponding probabil-
ity density function o(x,t):
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3.5 The Discrete Diffusion Model

Doo(x,t) = 222 (falw) o(w, b)) + Da 2z o(x, 1), (3.31)

namely the Smoluchovski-equation.

Now let us consider, the discrete Smoluchovski-equation based on the lattice A and
open boundary conditions:

A={(iAr,jAN)| —n<i<nijeN},
and
o(—n,t) =o(n,t) =0 VteN.

we obtain from subtracting or adding respectively the two Taylor-expansions of g
around the point b

glb+Ab) = g(b) + Abg'(b) + 2 ¢"(b) + 22 ¢ (b) +
+45 " (b) + O(ADY),

g(b—Ab) = g(b) = Abg'(b) + 4 ¢"(b) — A g" (b)
+A2734 g////(b) - O(Ab5)

the approximations

g(b) = L0 L O((AL)?)

g'(b) = HEESSERISS £ O((A0)) (3:32)

For %Q(l‘,t) we need a slightly different approach. To keep it a Markov-process, we
approximate this expression by another Taylor-polynomial around the point t:

ot +At) = ot) + o(t) - ((t + At) — 1)
o(t + At) — oft)

Jt) = N . (3.33)

Inserting Equation (3.32) and Equation (3.33) into Equation (3.31) and substituting
b by z, leads to:
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3 COAST for Reaction and Diffusion

| B . Dy fli—1)
o(i,t +At) = o(i, 1) (1 — At (Amz 4 2A$>

Dy f(i+1)
- At <A:172 + ’}/AQA[E>)

+g(z’—1,t)At(DA iU )

Az?  y42Ax
: Dy f (@)
+o(i+1,t) At (MZ - T oAs (3.34)

where the first term on the right side describes the particles staying at lattice point
it between ¢t and ¢ 4+ 1. The second term describes the particles moving from ¢ — 1 to
1 and the third term the particles moving from ¢ + 1 to ¢. The factors connected to
the density function o are the transition probabilities. Therefore I define:

gli+ vlis At) == At (R4, + v 205 (3.35)

as the probability for the transition ¢ — ¢ + v to obtain the discrete diffusion-model:

oli,t+At) = (1 —q(i+ 1]i; At) — i — 1]i; At)) o(i, 1)
+ q(i)i+ L;At) o(i + 1,t) + q(i]i — 1;At) o(i — 1,t) . (3.36)

An analogous derivation of the diffusion process in reversed order can be found in
standard stochastic literature (e.g. Feller [1970, 354pp]).

3.6 The Values of the Discretization Parameters
Az and At

In this section, appropriate choices for the discretization parameters Az and At are
presented. To this aim, I will firstly set up four conditions, which will result in
definitions for Az and At. In doing so, we will always consider the case of a single
substrate A. At the end of this section, the derived findings will be summarized and
the extension to systems with many substrates will be discussed.

3.6.1 First Condition: Approximation of Continuous
Distributions

By approximation of a continuous distribution by a discrete distribution we gain a
criterion for Ax.
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3.6 The Values of the Discretization Parameters Az and At

In a diffusion model like the Smoluchowski-equation, the particles are described by
continuous distributions, so that the number of particles in the interval [x—%, x—l—%[
is given by the integral over a density function o

cont = /
T—

Az
(2nd grade Taylor-polynomial of o(y))

+AT )
= [ e+ @)+ (A dy

o(x) Az + o/ (z) 0+ 252 2"@) L O((Az)?)
Az + B2 () + O((Ax)?) . (3.37)

On the other hand, the simulations are based on a discrete distribution assuming
that the particles are homogeneously diq’rribu’red within a voxel. Thus, the number

of particles in the interval [z — M , T+ A2 5° | is given in a discrete model by

Pise = o(z) Ax. (3.38)

Accordingly, the condition |P.on; — Pise| < & Peont can, as a first approximation, be
written as

o(x) Az + (Aﬁ) o' (z) — o(x) Am‘ < « ‘Q z) Ar + (A;fl)a g”(a:)‘

witha(AQZ) o'(x) =~ 0

& S50 @)| < alo@) Adl

= Az < 24 amin |5 (3.39)

For a reformulation of this inequality, an assumption about the exact form of o is
necessary. Such an assumption is naturally problematic since p usually depends on
time. On the other hand, in most cases o will be nearly a Gaussian distribution -
for example at the local minima of the potential. Hence, we define o as a probability
density function of a Gaussian-distribution with standard deviation R

x2
o(z) == \/%R e 2R7 (3.40)
which results in
Az < [24a ||, (3.41)

Due to Tschebyscheff’s inequality, x is smaller than T with probability 1 —a. With
similar considerations like the one justified in Section 3.2.1 it is possible to derive
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3 COAST for Reaction and Diffusion

a different value for x, which would result in a larger value for Az and possibly a
better performance in total for the implementation. However, the general ideas are
the same and therefore I limit the discussion only to the value for x derived from
Tschebyscheffs inequality. By neglecting events with probability smaller than «, one
obtains the estimation

Ar < 24 o IQIELLRQ )
Now we substitute x by % to obtain
Az < |24a |—B—
()
R4
< 24 2
< /24« fjl
< 240 |E2]

For small values of & one can estimate 1 — o ~ 1 which results in

Az < V24aR, (3.42)

so that the standard deviation R of the Gaussian-distribution can be used as para-
meter describing the spatial resolution of the system: Distributions with standard
deviations smaller than R can show additional errors.

3.6.2 Second Condition: Approximation of Moments

The discrete diffusion model shown in Equation (3.36) is very different from the
Langevin-equation (cf. Equation (3.5)). Particularly, it is less similar to the Lange-
vin-equation than the random walk:

ot +7) —a(t) =7 42D 4 oD, Fw. (3.43)

In this equation 74 is the friction coefficient of substrate A and fa(x(¢)) is the force
on A as a function of the location x and the time t. W is a normally distributed
random number. One has to impose the requirement that both dynamical models
result in nearly the same distribution of particles, where these distributions will be
characterized by the expectation and variance.
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3.6 The Values of the Discretization Parameters Az and At

The expectation and variance of the random walk (cf. Equation (3.43)) are

By =749y —2D,7. (3.44)

YA

On the other hand, the expectancy of the discrete diffusion model (cf. Equation
(3.36)) is

Eipm = Az (q(z+ Az) — q(z — Ax)).

By using the definitions for the transition probabilities given by Equation (3.35) and
setting At = 7, the equation changes to

A D rtflz+Az) (7D 7 f(x—Ax)
‘ Az? 2~ Ax Az? 2y Ax
- 277(f(x+Ax)+f(x—Ax)).

Eigm =

Replacing the functions f(z + Az) and f(z — Az) by the corresponding Taylor-
polynomials we obtain for the expectancy of the direct diffusion model

Eddm -

Tf(@) | . filr) (Ax)? "
) +7 27 + O(Az?). (3.45)

The variance is described as the sum over the three jump options (left, right and
stay) by

Viam = Az® q(i +1]i) + Az® q(i —1]i) + 0% q(i)

Az® (q(i+1]i) + q(i —1]1)).

We replace again the transition probabilities by their definitions given by Equation
(3.35) and set At = 7 to obtain

_ rap, 4 Fale+A2) —fa@ = Ax)) Az, (% fala+ Az) + fa(z — Ax))f

294 294

Finally by applying Taylor-polynomials of the involved functions the variance can
be defined as

Vddm = 7:(2DA+M)_ (&: fA(l')
A YA

)2 +0(Azh). (3.46)
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We therefore consider Vg, as nearly identical to V,,, if for a value o € [0,1] the
following conditions hold:

! 2 20k T kT
QaDA>M &S Az < @ /B <withDA:B>,
YA L] ¥
and )
)7 2a0kgT
2aDs7 > <fA(x( ))T> o F ZIBE A (3.47)
YA | fal

Furthermore we consider Fguq,, as nearly identical to E.,,, if for a value « € [0, 1] the
following condition holds:

Eddm - Erm < aErm

Eagm < (a+1)E.,
1" A 2
1+ 7&(2 o< a+1l

Ar < Qf#a
fa

Concluding, we define that the random walk and the discrete diffusion model lead
to nearly the same distributions, if

|Eddm — Erm| <« |Erm| and |‘/ddm — ‘/rm| <aVin. (348)

By neglecting terms of the order Az*, these conditions are fulfilled if

2
Ar < min{ ff‘,o‘,,/mff"f}, (3.49)
A

7 < min{2efpfoat (3.50)

T is the temperature and kg the Boltzmann’s-constant.

3.6.3 Third Condition: Positive Probabilities

In the discrete diffusion model (3.36) the transition probabilities ¢ between adjacent
volume elements or lattice points are described as (cf. Equation (3.35)):

q(i + v|i; At) == At ((fgf)z +v J;‘i/(:zl;)) . (3.51)

To guarantee positive transition probabilities one has to demand:

kT
0<qli+v]isAl) & Av< el (DA = j) . (3.52)
s "
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3.7 Summary of Formulas for Ax and T

The variables are named like in the sections above. f,.:(A) is the maximal force
on A within the observed spatial interval. This Equation (3.51) will be used as an
additional criterion for the distance between two lattice points Ax.

3.6.4 Fourth Condition: Small Changes of Particle Numbers

In each time step of length 74, the probability of a transition from any lattice point
¢ must be smaller than «, which implies

g(i+10i) + q(i — 1)i) = 74 (E2 + Lot} <0, (3.53)

By inserting Equation (3.49), Equation (3.53) can be rewritten as

3

~ o (Ax)?

3.7 Summary of Formulas for Az and 7

To derive an appropriate lattice distance Az, one can use Equation (3.49), (3.52)
and (3.42). On the other hand, it is also desirable that the length of the interval
[a,b], in which the system is simulated, is a natural multiple of the lattice distance
Ax. Hence, we define
b—a
Az = e, ([z]:=max{n € Z|n<z}), (3.55)
[55¢] +1

5= mm{q/?f{ff fEERT 2mT aR|z e at], Ae S} (3.56)

is the generalization of Equations (3.49), (3.52) and (3.42) to systems with many
substrates.

Starting from this value for Az, one can compute for each substrate A the length
At of a time step in the following fashion (cf. Equations (3.50) and (3.54))

where

max{f3}’2Da (14«

N min{MkBT“ aloel |4 € [a,b], AeS}. (3.57)
3.8 Calculation of Transitions

As described in Section 3.2 one basic idea of COAST is to subdivide the system into
independent subprocesses: First, the diffusion of different substrates are independent
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3 COAST for Reaction and Diffusion

processes. Second, the transitions of the same substrates from different lattice points
i and j are independent processes. By using the probabilities p := ¢(i + 1|i)(for
lg(g(iilifi)
i — i — 1) can be computed successively without additional errors.

Starting from these probabilities, I will present in this section three methods to
compute the number of transitions in one of the directions ¢ — ¢ £ 1. The choice of

the method depends on the number of particles NV; at a lattice point <.

i—i+1)and p:= (for i — ¢ — 1), the transition numbers i — ¢ 4+ 1 and

Exact stochastic model (X): For small numbers of particles the transitions
from lattice point 7 to ¢ &= 1 can be computed by successive evaluation of binomial-
distributions of the form (V;:=number of particles at point )

Pale ) = () (- (3.9)

where one has to use suitable conditioned probabilities for the second transition (cf.
Figure 3.8).

Approximative stochastic model (I'): For sufficiently large NN;, Equation (3.58)
can be approximated by the distribution of the random variable

Z = Round (p N+ X/N;p(1 —p)) : (3.59)

where X is a normally distributed probability variable and where Round is given by
Equation (3.3).

In more detail:

If Po(k, N;) is the probability for Z = &, then sup{|Pg(k, N;) — Pg(k, N;)|} < a (cf.
Equation (3.5) and (1) for details), for

N> 1 (3.60)

= 3ap(l-p) -

Partial differential equation (A): It is described in Equation (3.17), that the
deviations from the expectation E are, with probability 1 — a, smaller than o F
when

N, > L2, (3.61)

- Oé3p

In this case, the deterministic description can be applied:

k := Round (V; p) (3.62)

In COAST, Equations (3.59) and (3.62) will be used for efficient computations of the
transition numbers in the case of intermediate and large particle numbers.
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3.9 The Algorithm

i=n-—1
Start—> _> |T‘ransiti0nsiﬁi71 — g | Final update |—— g end

i<n-—1

Figure 3.6: Schematic representation of COAST. The scheme illustrates the computation
of the transitions for a substrate S during [t,t+ At[. In doing so, one starts at
lattice point —m + 1 and ends at n — 1.

lattice points i—1 i i1 it2 lattice points i—1

Transition from i Transition from i

Update without Update including

imigrations imigrations
Transitions from i+ 1 Transitions from i+ 1

Figure 3.7: Comparison between an immediate update including immigrations (left) and a
consideration of immigrations in a final update after computing all transitions
(right). It is assumed that at time t there is a single particle at lattice point i.
The successive computation of the transitions from the different lattice leading
in the left scemario to articifical, asymmetric transition scheme.

3.9 The Algorithm

3.9.1 Overview

Assume that space and time coordinates have been discretized by using the parame-
ters Az (cf. Equation (3.55)) and At (cf. Equation (3.57)). Furthermore, suppose
that the discretization of the space coordinate x has led to 2n + 1 lattice points
i € {—n,...,n}, where o(£n) = 0 reflects open boundary conditions. Then, the ap-
plication of COAST to diffusion follows the scheme shown in Figure 3.6: For each
substrate A, the computation of the thermal motions in a time interval [¢, ¢+ At[ one
computes successively the transitions from each lattice point i € {—n+1,...,n — 1},
where first of all one always computes the number of transitions in the positive di-
rection ¢ — i+ 1 and then the transitions in negative direction (cf. Section 3.8). The
number of transitions are computed in the following fashion:

Firstly, the subroutine “Transitions” (cf. Section 3.9.2) is used to compute the
number of transitions from ¢ to ¢4+ 1. Then the same subroutine is used to determine
the transitions from ¢ to ¢ — 1. Subroutine “Transitions” also includes an update
restricted to a reduction of particle numbers due to emigrations. The other part of
the update, namely the increase of particle numbers due to immigrations, is shifted to
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3 COAST for Reaction and Diffusion

the subroutine “Final update”, performed after the computation of all transitions in
the time interval [t, t+ At[. Note that this split of the particle update is necessary (cf.
Figure 3.7): A complete update immediately after the computation of the transitions
from a lattice point ¢ would lead to the artifact that, in a time interval [to, o + At],
a particle can jump from lattice point ¢ to all lattice points ¢ + j with j > 0 (in
the force free case: with probability ¢7), but to no lattice point i — k with & > 1.
The update of the particle numbers at a specific lattice point after one direction, for
example v = 1, has been processed, is necessary. Otherwise the possible amount of
transitions calculated for v = —1 may be larger than what would be left after the
first transition. This could result in negative particle numbers.

In what follows, the two subroutines “Iransitions” and “Final update” are presented
in more detail.

3.9.2 Subroutines

Transitions In a first step, one has to define the transition probabilities. Assume
we calculate firstly the transition ¢ — i + 1, then the transition probability qZ(H) can
be used. However, for the subsequently computed number of transitions ¢ — 7 — 1,
one must not use qz-(_l), but the conditioned probability that there was no transition

i — i+ 1 (cf. Figure 3.8).

lattice points i—1 i itr1

Transition i — i+ 1 1-q(i+1[i) q(1+1[i)
i 1

Transition i —i—1 1?2(i+|::ii) 1- 1?g(i+‘1l)\i) 1

Resulting probabilities q(i-1f) 1-q(i-1[)—qi+1[i) a(i+1[i)

Figure 3.8: Successive computation of the transitions from lattice point i in the different di-
rections. The numbers at the edges of the graph are the probabilities used in the
two steps. The resulting probabilities, given by the products of the probabilities
in both steps, are in agreement with the correct transition probabilities.

Secondly, the number of transitions k(i + v|i) from i to i 4+ 7 is computed, where
three modeling levels are used:
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3.9 The Algorithm

If the criterion in Equation (3.60) is not fulfilled, two binomial distributions (cf.
Equation (3.58)) are evaluated, which is defined as the X-regime.

If Equation (3.60) is valid, but Equation (3.61) is not, then (i + v|i) is computed
by evaluating two Gaussian distributions (cf. Equation (3.59)), where one has to
take care that neither the number of particles nor the number of transitions become
negative. This is the ['-regime.

Finally, if Equation (3.61) is valid, the deterministic description (cf. Equation
(3.62)) is used, which is named the A-regime.

In the last step, an update of the particle numbers is performed, which is restricted
to the reduction of the particle number N; due to emigrations.

Step 1: Defining the probabilities:

(i + 1), ify=+1,
Sl QTGS 1) B SV

T—q(i+1[5) °

Step 2: Compute the number of transitions (i + 7|7):
SN, < Bap(l—p) "

k(i +7|i) = max{m €Ny | Y P(k,N;,p) < 7"} :
k=0

where 7 is a random number equidistributed in [0, 1] and Py follows Equation (3.58) so
that

P(I+1,Nip) = gyl PULNup) (120).

T:lf Bap(l—p) " <N, <(@®p(1-p) "

0, if X < — /2L,
p
k(i 4 Vi) = N, if X >/l

Round ( Nip(1—p) X + Nip) , otherwise.

with normally distributed random variable X.

Adf (@Pp(1—p) ' < N;:

k(i 4+ v]i) = Round (N;p) .
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Step 3: Update due to emigrations

Final update due to immigrations  After computing all k(i + v|i), a final update
of the particle numbers is performed reflecting the additional particles due to immi-
grations.

Loop over all lattice points (—n < i < n)

3.10 The Error Parameter «

After the development of COAST in the past paragraphs there are maybe some
accentuations necessary regarding the error parameter . Since it was the intention
to present an algorithm depending on as least different parameters as necessary.
The decision was made that all occurring approximations during the derivation of
necessary formulas for COAST had at the end to be adapted by only one single value,
which then was defined by a.

I am fully aware of the fact that « is approximating relatively different errors. In
the first paragraph about the "Exact Stochastic Model” in Section 3.2.1 « is meant as
the maximal deviation allowed for the change of the reaction probabilities for every
reaction channel.

In the following paragraph "Approximative Stochastic Model” o describes the supre-
mum norm of the two distributions.

Then in "Deterministic Reaction Kinetics” « is used in two ways. First of all « is
set as the error probability for the Tschebyscheff inequality and afterwards a second

error parameter is introduced which quantifies the expression of the expectancy u
being much larger \/ﬁ (v describes the width of an interval). To simplify the
resulting formula (cf. Equation (3.18) )the second error is assumed to be of the same
value as a.

To adopt COAST to diffusion processes alpha had to gain an additional meaning
in Section 3.6.4. Here the sum of the transition probabilities with respect to a single

lattice point or (equivalently volume element) has to be smaller than .
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4 Test Simulations

In chapter one I have introduced the problem of simulating reaction and diffusion
processes in cellular structures. Chapter two gave an overview on existing methods
covering solution strategies for this question. In the last chapter I presented my
own hybrid approach, COAST, the Controllable Approzimative Stochastic reaction-
algorithm. 1 have explained how differently this algorithm is working depending
on the reaction probabilities. It uses three levels of modeling, an exact stochastic
method, an approximative method based on Gaussian distributions and a determinis-
tic method. The switching between the three levels is controlled by one error control
parameter.

Furthermore, I have explained how the basic ideas of COAST can be applied to
diffusion problems and presented the mathematical background for diffusion in one
dimension.

In the upcoming chapter I demonstrate the ability of COAST to cope with basic
reaction problems as well as multi scale scenarios like the Oregonator and the Clir-
cadian Clock. COAST gives very reliable results even better than demanded by the
error parameter a. Especially due to its second modeling level COAST outruns many
of the existing implementations based on exact methods or binomial distributions.

The application of COAST to linear diffusion is also tested in this chapter. I
have chosen sceneries with and without an external forcefield and COAST reflects
very well the results predicted by random walk simulations, but with a much better
runtime behavior.

4.1 Test Simulations Using COAST

In this section, an assessment of COAST will be performed. To this aim, I will
compare COAST and the First Reaction Method by comparing simulation results and
computational costs of the two approaches for different reaction systems |Gillespie,
1976, 1977].

Particularly, T will consider the influence of the error control parameter o on the
outcomes of the simulations and on the computing time.
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4 Test Simulations

4.1.1 Basic Systems

To begin with, I consider the two elementary chemical reaction-systems given by

A+B2=¢C  and A+B220C, (4.1)

where, in both systems, the forward- and the backward-reactions have the same
deterministic reaction rates ki or ko respectively. Both reaction rates are linked to
the stochastic reaction constants ¢, used in COAST and the FRM via |Gillespie,
1976, 1977):

4.2
M2, for2X — P, (42)
where V' is the volume of the reaction system and P an arbitrary product. In all
simulations performed here, ki = ky = 0.2%, V=1, and N¢(0) = 0.

To compare the computational cost, both systems were simulated by the FRM, by

the 7-leap method |Dhar et al., 2005], and by COAST for different initial values
N4(0) = Ng(0). In doing so, a = 0.05 was set for A+B 22 Cand a = 0.03 for A+ B

0.2
=2C.

The run time of these simulations are monitored, the results of which are sum-
marized in Figure 4.1. Since it is not my intention to discuss the effects of different
implementations, but rather the effects of different algorithms, I do not present ab-
solute run times. Instead, I have defined the run time of the simulation for each
algorithm with N = 100 as 1. Furthermore, to illustrate the effects of the different
modeling levels in COAST on the run time, the relative frequencies of the usage of
model class I' are also shown in the same figure.

As can be seen from Figure 4.1, all algorithms were noticeably fast for small N4(0).
However, the run time behavior of the FRM and 7-leap was qualitatively different
from the run time behavior of COAST, when modeling levels I' and A are predom-
inantly used in COAST. To illustrate these different behaviors, I performed least
mean square (Ims)-fits of the measured run times in the range of particle numbers
dominated by I' and A. For A+B = C, the leading terms of these fitted functions
were proportional to N} for FRM, proportional to N9 for the 7-leap method,
but proportional to N3* for COAST. Similarly, the fit curves for A+B = 2 C were
proportional to N1% for FRM, to N}°7 for 7-leap, but proportional to N$% for
COAST. The reasons for these different behaviors will be discussed in Section 5.1.

For A+B = C, the fraction of the stochastic model I is decreasing for large particle
numbers, which reflects the increasing usage of the deterministic modeling level A.
As one can see, the increasing usage of A does not lead to a strong reduction of
computational costs when compared to the costs of stochastic model I'.

In order to investigate whether COAST is able to reproduce the results of the
FRM, I simulated both reaction systems by FRM and by COAST with different

) ._{ M for X - PX+Y P,
L=
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values of v, and initial values Ny = Ng = 10000 (k; = ko = 0.2§; V =1; Nc(0) = 0).
The simulation times were t = 0.5s for A+ B= C and t = 1s for A+ B = 2C.
Since both the FRM and COAST are stochastic algorithms, one cannot compare a
single COAST-run with a single FRM-run. Therefore one must compare collections
of identical simulations. Accordingly, I repeated all simulations 1000 times and stored
Ny at the end of each of these runs, which is, due to the conservation laws

N4(t) — Np(t) = const (4.3)

and

Na(t) + Np(t) + 2 Ne(t) = const, for A+ B=C,

Na(t) + Ng(t) + No(t) = const, for A+ B=2C, (4.4)
sufficient to also characterize Ng and N¢.
The description by deterministic reaction kinetics leads to the ODEs:
A+B=C: Ny = —kN2%+k(10000— N,),
A+B=2C: Ny = —kN3+k(20000— N,)?, (4.5)

where the conservation laws in Equation (4.3) and Equation (4.4) as well as the
initial condition N4(0) = Ng(0) = 10000, Nc(0) = 0 are used. The equilibrium
states of these models, which are defined by N4 = 0, are given by

A+B=C: N4y=995,
A+B=2C: Nj=G6666.7. (4.6)

The derivations of the equilibria can be found in the Appendix A. Since the outcomes
of the 1000 runs with identical algorithms are given by independent, identically dis-
tributed random variables, the collections of outcomes are always approximations of
Gaussian-distributions |Feller, 1970, p. 182 f.| completely defined by their expecta-
tions and their variances.

In Figure 4.2, the time-evolution of N, is given for both systems, where the out-
comes of COAST (a = 0.05) are compared with the results of the deterministic
reaction kinetics. Obviously, one cannot observe systematic deviations between the
results of COAST and the values of deterministic reaction kinetics.

Figure 4.3 shows the mean value and the standard deviation of N4 at the end
of the simulations. These values are shown for COAST-simulations as a function
of a. These values are compared with the outcomes of FRM-simulations and the
equilibrium values of the deterministic reaction kinetics (cf. Equation (4.6)), these
are Ny =99.25 (A+ B = C) and Ny = 6666 (A + B = 2C). Thus, the graphs f
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and g, given the values of the deterministic reaction kinetics times (1 £+ «), can be
used to illustrate whether or not the algorithm is as good as stated.

For both reaction systems, the mean values of FRM are in agreement with the
results of the deterministic reaction kinetics. Furthermore, the deviations between
the outcome of COAST and the results of FRM are much smaller and therefore
even better than the promised « - 100 %.
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Figure 4.1: Run time behavior of COAST , FRM and 7-leap method for A+B = C (left)

(simulation time t=100s) and A+B 22 20 (right) (simulation time t=0.3s),
where a = 0.05 was used for COAST. In all cases, the run times of the simu-
lations with NAo—100 were defined as 1. Additionally, the amount of reaction
channels evaluated in COAST by I' and A are shown. The following functions
were determined by least mean square fit to the run times of the different al-
gorithms led to: t o« N3 (r-leap), f < N (FRM), ¢ o« N340 (COAST);
l o< NY97 (r-leap), m < N} (FRM), h oc N3¢ (COAST).

These results bring up the obvious question of how useful the A-regime is within
COAST. This question is not easily answered. Without any doubt in theory there is
an advantage by using no random number to using one like in the case of the modeling
level of I'. T performed an experiment to reveal the influence of the A-regime on the
performance of a simulation (cf. Figure 4.4). To test the speedup, I had to generate
a system in which the educts are kept constant, so their changing does not have an
influence on the reaction. The model was found to be a reaction of the kind:

A+ B — C
with the parameters k=1, V=1, §t=0.001s, t=0.018s, a=0.05

The values presented are the mean of ten single runs. One can observe that at
an initial concentration of more than 310,000 particles of A and B, the criterion in
Equation (3.18) is fulfilled and for A=B=320,000 particles 99,99% of all reactions
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Figure 4.2: Time-evolution of the particle numbers N in both systems for COAST-
simulations (o = 0.05) and for the deterministic reaction kinetics. The left
(right) diagram shows the behavior for A+ B= C (A+ B =2C).

are calculated by the A-regime. The graph is rising constantly because the time
intervals decrease with increasing particle numbers, and therefore the computational
effort (cf. Equation (3.22)). The benefit is a reduction of the run time by 10% and
a better linear run time bahavior for higher particle numbers.

However, it is difficult to say how likely the activation of the A-regime is in a
specific case. This has to be tested individually.

4.1.2 The Oregonator

In addition to the very simple system described in Section 4.1.1, T also investigated
the behavior of COAST when simulating a more complex reaction system, namely
the Oregonator. In this system, different substrates have radically different particle
numbers, and the particle number of a given substrate is subject to strong fluctuations
over time. Before presenting my simulation results, I will give some background
information on this interesting topic.

Historical Background A chemical system, in which during the reaction the con-
centration of at least one specie periodically fluctuates, is called an oscillating system.
The most famous oscillating chemical reaction is the Belousov-Zhabotinsky (BZ) re-
action |Belousov, 1958|. It involves the oxidation of an organic acid by acidified
bromate in the presence of a metal ion catalyst (often cerium ion). The BZ reaction
is a classical example of instability and self organization in non equilibrium systems.
Oscillating reactions can also be found in biological systems (e.g. oscillations at cell
membranes, stimulus transition, oscillating enzyme reactions and circadian rhythm

[Goldbeter, 1996]).
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In August 1825, J.F.W.Herschel (%1792, 11871) examined the passivity of iron in
nitric acid. He discovered that the occurring reaction activity is oscillating between
pure Fe and passive Fe;(O3. But it lasted until 1828 when G.T.Fechner was the first
to publish about an oscillating chemical reaction (with silver nitrate treated iron in

sulfuric acid)|Fechner, 1828|. Other observations of temporal oscillating reactions
followed |Schénbein, 1842, Joule, 1844].

F.F. Runge [1850], the father of paper chromatography, was the first to describe
the spontaneous formation of spatial structures in chemical systems. Although sim-
ilar discoveries were also made, scientists did not believe in chemical oscillations.
The conversion of the educts should continue until thermodynamical equilibrium is
reached. Oscillations were seen as a contradiction to the second law of thermodynam-
ics. This demands that a closed system (system without energy and mass transfer)
aspires towards an equilibrium.

In 1958, the Russian chemist B. Belousov discovered a homogenous oscillating
reaction: He tried to oxidate citric acid in sulfuric acid with potassic bromate and
a cerium(IV)-salt. He observed the rhythmic appearance of the yellow cerium(IV)-
ion [Belousov, 1958, Tyson, 1976]. A. Zhabotinsky repeated his work in 1961, and
improved the chemical compositions [Zhabotinsky, 1964]. Tt took until 1967 that
western world became familiar with the results that have been made in the former
Soviet Union.

The Belgian scientist I. Prigogine realized that classical thermodynamics only ap-

ply for closed systems, which are next to their equilibrium. All open systems (i.e.
systems having energy and mass transfer with the surrounding) are in a state of
non-equilibrium. Systems like the human body maintain their identity by means of
energy flow from a variety of separate sources. Prigogine was able to demonstrate
that these systems operate far from the realms of equilibrium and therefore could
exhibit strange and unexpected behavior patterns (in full coherence with the second
law of thermodynamics). Prigogine gave such systems the name dissipative systems
|Glansdorff and Prigogine, 1971], because the ability to do work as a consequence of
the increase entropy is being lost (dissipated) as the process unfolds.
He and his coworkers suggested a mathematical model of a chemical non-living dis-
sipative system consisting of four single reactions. This model is known as the Briis-
selator. His work was later recognized with a Nobel price in 1977, leading to full
acceptance of oscillating reactions.

The Briisselator has one major problem, it includes a trimolecular reaction, which
can be regarded a quite unlikely. In 1972, R.J. Field, E. Koroés and R.M. Noyes
developed a mechanism for the BZ-reaction consisting of 18 single reactions with 21
different molecules [Noyes et al., 1972]. The Field-Koros-Noyes model can be broken
down in 5 essential reactions: the Oregonator (named after their patron institution,
the University of Oregon) and will be described in the following section.
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The FKN-Model There are certain demands that have to be fulfilled so that os-
cillating reactions are likely to occur in a chemical system:

e the chemical system has to be far away from thermodynamic equilibrium (this
is necessary to have chemical reactions at all)

e the chemical system must be an open system (so energy transfer and multipli-
cation of entropy are possible)

e there have to be at least two meta-stable states in the system

e the chemical system must contain a feedback loop (with different impacts on
the two states)

As with in all chemical reactions, the educts are consumed while the concentration
of the products increase. If the concentration of the educts is too low, the reaction
stops. In principle, all oscillating chemical systems are capable of developing spatial
structures, because even small random gradients of concentration can be amplified.
Only open systems allow undamped oscillations. Table 4.1 shows the five reactions
of the FKN-model.

The FKN-model includes one auto-catalytic step with bromous acid (H BrO,) as
an auto catalytic intermediate product. Reactions one and two describe a negative
feedback loop in which H BrO; is captured by bromide (auto inhibition). The auto-
catalytic increase of bromous acid H BrQO, is slowed down by the disproportion in
reaction four. In reaction five bromide is reproduced and the catalyst is reduced
under the influence of the organic compounds malonic acid (MA) and bromomalonic
acid (BrMA). The oscillations occur because the system is changing between two
conditions. In the reduced condition, with high bromide concentration, the catalyst
is mainly present as cerium(IIl) and malonic acid is brominated. The bromide is
reduced by the reaction with bromate. If the Br~ -concentration (bromide), is below
a critical concentration the auto-catalytic reaction begins and Ce(III) is oxidized to
Ce(IV). The system switches to the oxidized condition, which is characterized by
high concentrations of HBrO~ and Ce(IV) and by oxidation and bromination of the
organic compounds.

In other words: reactions one and two consume bromide ions. If the amount of
bromide-ions becomes too low, reaction two is no longer the dominant channel for
reaction of HBrQO,, and reaction three takes over. In this auto-catalytic reaction,
H BrQO, is produced at a rate that depends on the H BrO, concentration. The growth
of HBrOs is limited by reaction four, which accelerates as the H BrO, concentration
increases. Reaction four has another important effect: it regenerates the reactant
bromate. Reaction five regenerates now Ce3* and Br~. This last reaction is only
important when the level of Ce(IV) is high enough. There is a delay between the
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(1) Br= 4+ BrOs~ +2Ht — HBrOs+ HOBr A+B — C
(2) Br=+ HBrOzs+Ht — 2HOBr C+B — D
(3) 2Ce*t + BrO3~ + HBrO2 +3HT — 20e*t +2HBrO2 + H:O E+C — 20+ F
(4) 2HBrOy — HOBr+ BrOs~ + H*t 2 — G
(5) Ce*t +org.comp. —  fBr— +Ce3t +orgcomp. H+F — B

Table 4.1: The five chemical reactions describing the Field-Koros-Noyes model of the orego-
nator.
A = BrOs (bromate); H =  alloxidiz.org.species; D =
HOBr (hypobromousacid); C = HBrOs(bromousacid); B = Br~(bromide);
F = Ce**(cerium — 4); f ~ 1; E,G = simpli fications

reactions which consume bromide and C'e?", and those which regenerate these reac-
tants. As a result, the system cycles from high values of Ce** and Br~, and back
again. The oscillations can be nicely illustrated if the oscillating specie is colorfull.
In this experiment the color of the C'e3*-ion is magenta and the one of the Ce**-ion
is blue.

Figure 4.5 presents such a system where instead of cer ferroin (cf. Appendix B.1) is
used as redox indicator where iron is changing between two states. A ferroin solution
is colloquial for a 1,10-phenanthroline ferrous sulfate solution ((CioHgN3)3FeSOy).
It is used as a redox indicator, because of its reversible color change from the red
hexammineiron(II) complex (reduced form) to the blue hexammineiron(IIT) complex
(oxidized form). The oxidized form is called ferriin. The reactions and composition
of this experiment can be found in the appendix.

Experimentally, the HT-concentration is held constant by a buffer system. Fur-
thermore, the oscillations are observed when the bromate is in large excess, such that
its concentration is approximately constant.

Chemical oscillators only appear to be contradictory to the second law of thermo-
dynamics. But the changes one observes is only a small part of all reactions that are
occurring. The important reaction is the oxidation of malonic acid by bromate. Their
concentrations are constantly decreasing without oscillations, just by two reactions
taking it in turns.

The experimental setup of the Oregonator The setup is identical to the imple-
mentation of Gillespie [1977|, which he used for testing his SSA. It should be noted
that there are tiny differences between the original FKN-model |Field and Noyes,
1974] and the setup of Gillespie, but these differences do not effect the outcome
of the experiment. With this knowledge, the presented equations are used without
any adjustments. This simple model consists of the following five reaction channels
(values given are the deterministic rate constants):
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Figure 4.5:  This picture illustrates the temporal changes of the Belousov-Zhabotinsky
reaction under the presence of ferroin as a redox indicator.

A+ BY ¢, C+BY D, E+Cc™o0 4+ F,
2028 q, H+F"% B, (4.7)

where S denotes that Ng is considered constant in time. This means the system is
open for that species. Additionally, volume parameter V-—1 and the following initial
conditions are chosen (z € RY):

NA(0) =500-%, Ng(0)=1000-z, Ne(0)=500-2, Np(0)=0,
Np(0) =1000 2, Ng(0)=2000-2, Ng(0)=0, Ny (0)=2000-z.(4.8)

This system was simulated for a time span ¢ = 1 with x = 5 by FRM, and by
COAST with o = 0.05. In Figure 4.7, the time-behavior of Ny in the FRM- and
COAST-simulation is monitored.

It is worth noting that the initial conditions shown in Equation (4.8) are the
equilibrium state of the ordinary differential equation, so that an application of de-
terministic reaction kinetics results in time-constant particle numbers. Conversely,
the oscillating particle numbers shown in Figure 4.7 are only due to the application of
stochastic dynamics. Hence, it should come as no surprise that, Ny initially exhibits
very different behavior in the two simulations. This behavior depends on the exact
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fluctuations from the equilibrium state: For the FRM, Np immediately decreases,
whereas in the case of COAST, Ny increases to a small local maximum.

After this starting time, N oscillates in both simulations with nearly the same
amplitude and nearly the same period. For the determination of the amplitudes and
periods, I performed a simulation of three seconds of the Oregonator with a time
resolution of 0.00005 s by both algorithms, using the same parameters as mentioned
above. As a result, I obtained for FRM an amplitude of 42587 + 471 and a periodic
time of 0.1405 4 0.0016, and for COAST an amplitude of 42355 4+ 864 and a periodic
time of 0.1405+0.0016. A numerical solution of the ODEs from deterministic reaction
kinetics led to an amplitude 42040 and a periodic time of 0.1405.

The determination of the amplitudes requires the computation of local extrema
of the particle numbers, which is a non trivial task in stochastic systems. These
difficulties are the reason for the different values of the variances of the amplitudes.

In order to demonstrate that the Oregonator is very suitable to test an algorithm,
let us consider the time scales of the different reaction channels in this system.

For the FRM, the time of the next reaction in an arbitrary reaction channel p is
given by

— In(r
Op = =5, (4.9)
where 7 is a random variable equidistributed in [0, 1], and where @, is the propensity
(cf. Equation (3.3.2)). Thus, the mean time until the next reaction is given by

L 1

such that Q;l is an appropriate quantity to characterize the time scale of a reaction
channel. Figure 4.6 shows Q;l dependently of time for three reaction channels, these
are B+C —- D, C+F —2C+ F,and 2C — G, where x = 5 was used again. For
2C — @, the expectation of the time step length @, " has values between 10~"%
and 107%%s, for C + E — 2C + F and B+ C — D, Q;l has values between 10~%%s
and 107%% or 107°%s and 10~%%, respectively. The Q' of the two other reaction
channels are always between the values for 2C — Gand C+ EF —2C + F.

Thus, the Oregonator is not only a multiple time scale-system, but the time scales
are subject to strong fluctuations. Consequently, the Oregonator is suitable to test
both the ability of an algorithm to treat reactions with different time scales and the
ability to adapt itself to rapidly changing conditions.

To allow a comparison between FRM and COAST, I also show in Figure 4.6 the
time step length 7, of COAST for the three reaction channels B+C — D, C+E —
2C + F, and 2C — G. The most obvious differences between the time-behavior of
the 7, and the Q;l is that 7, has larger values and a smoother behavior, where the
larger values of the 7,’s imply that COAST works faster than the FRM.
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Since all reaction channels of the Oregonator are second-order reactions, all Q;l
are proportional to 272 (cf. Section (3.3.2)), where z is the scaling factor introduced
in Equation (4.8). On the other hand, since [, (cf. Equation (3.29)) (the expected
number of reactions of the channel p) is in a first approximation proportional to
the number of particles, the 7, -the timespan until all reactions [ have occurred in
channel y- of second-order reactions (cf. Equation (3.22)) are proportional to z~'.

Consequently, one can expect that the computational cost is proportional to z? for
FRM, but proportional to x for COAST.

1.E-01 ! ! ! ! 1.E:01
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1.E-03 - 1.E:03 |
r—
2,
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- ]
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time [s] time [s]
—11:B+C->D — Ill: C+E->2C+F — IV:2C->G —B+C->D ~—C+E->2C+F —2C->G

Figure 4.6: Characterisation of the time-scales of reaction channels in the Oregonator with
scaling factor x =5 (cf. Equation (4.8)). Q;l (left diagram) is the expectation
of the time span till the next reaction in the channel with the FRM. 1, (right
diagram) is the possible length of a time step computed by COAST for a reaction
channel.

To test this hypothesis, I compared the run time of both methods. Therefore I
performed again FRM- and COAST-simulations (o = 0.05) with ¢ = 1s for different
values of the factor z (cf. Equation (4.8)) and measured the run time of each of these
simulations. The results are shown in Figure 4.8, where the portion of the reaction
channels evaluated by X and I' is also presented.

To characterize the asymptotic dependence of the run times on the particle number,
least mean square fits were performed on the run times in the range with more than
80 % evaluations by the I'-regime in COAST.

Again, one can see that the ratios between the run times of COAST and FRM de-
creases with larger numbers of I' evaluations. Furthermore, as can be seen from the
fitted functions, the asymptotic run time behavior of COAST is proportional to z,
but proportional to 2! for the FRM, which is consistent with the hypothesis about
the run time behaviors of these systems derived from the analyses of the Q;l and 7,.

Figure 4.9 provides more insight information on this experiment by presenting more
a-values. The total run time of this experiment was slightly changed to t = 0.5s. As
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Figure 4.7: Comparison of the time-evolution of N in the COAST- and FRM-simulations
of the Oregonator. For COAST, o = 0.05 was chosen. The initial values of
the particle numbers were given by Equation (4.8) with x = 5.

one can observe, the total run time for the COAST-experiments depends very much
on the set a-value. The higher the a-value, the earlier the algorithm will switch
from the Y-regime to the I'-regime, which processes the reaction much faster due to
the fact, that it is using less random number operations. For an a-value of 5%, the
[-regime is used very early and for an a-value equal to 1% relatively late as can be
seen by observing the solid lines. Another interesting fact is, that the performance
of COAST for an a-value of 0% compared to the FRM is worse. Since, in this case,
COAST is in principle performing the same task as the FRM , but has an additional
overhead to check the other two regimes, this is very reasonable.

This paragraph should have illustrated how the error-parameter « influences the
performance of COAST. Therefore before setting o one has to consider that a higher
a-value results in a better performance in terms of run time behavior, but also
results in a lower accuracy. Furthermore a lower a-value slows down the processing,
but increases the accuracy.

4.1.3 Circadian Clock

Background Information All eukaryotes (like plants, animals and fungi) and some
prokaryotes (cyanobacteria) display changes in gene activity, biochemistry, physiol-
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Figure 4.8: Run time behavior of the COAST- (o = 0.05) and the FRM-simulations of the
Oregonator in dependence of the initial values of the particle numbers parame-
trized by x (cf. Equation (4.8)). Additionally, the number of reactions calcu-
lated in COAST by the model classes ¥ and A is shown. k(z) := 0.7 29
and I(z) := 2.2 250 are results of least mean square-fits to the run times of
FRM (k(x)) or COAST (i(x)) in the interval [10,100], where in COAST more
than 80 % evaluations are done by I'.

ogy and behavior through the cycle of days and nights. These endogen rhythms
have a period length of approximately 24h and help the organism to adjust to daily
repeating incidents, so called Circadian Clocks.

For most animals a pacemaker was able to be localized in the area of the visual
system, but only for simple organisms the Circadian Clock behind these rhythms is
already described.

The circadian model the following simulations are based on, was originally de-
scribed by Barkai and Leibler [2000] and is founded on experimental results. Vilar
et al. [2002], who did further research on this system describe the functionality of
the Circadian Clock as following:

"The main characteristic is the presence of intracellular transcription regulation
networks with a set of clock elements that give rise to stable oscillations in gene
expression. A positive element activates genes coupled to the Circadian Clock. Tt
simultaneously promotes the expression of a negative element, which in turn represses
the positive element. The cycle completes itself upon degradation of the negative
element and re-expression of the positive element.”
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Figure 4.9: Run time behavior of COAST (o = 0,0.01,0.02,0.03 and0.05) and the FRM of
the Oregonator dependent on the initial values of the particle numbers parame-
trized by x (cf. Equation (4.8)). The ratio of reactions calculated in COAST by
the model class A is presented by solid lines.

The experimental System The model includes two genes, an activator-gene and
a repressor-gene, which are transcribed into mRNA and translated into the products
A and R. The two genes have promotor regions Pa and Pr. If the activator A binds
to the promotors, the expression of the respective mRNAs (mRNAa, mRNAr) is
enhanced. By forming a dimer with A, R is able to inhibit the activator. Figure 4.12
reflects the reaction channels of this system.

It may be worth noting that Pa, Pr, Pr-A and Pa-A are variables that can only
take the values 0 or 1. Since I want to compare a deterministic simulation with a
stochastic one, I allow continuous values between zero and one as also proposed by
Vilar et al. [2002]. It has to be noted, that for ODEs the oscillations can disappear,
but in a stochastic model the oscillations will persist. This phenomenon is a mani-
festation of "coherence resonance” and illustrates the crucial interplay between noise
and dynamics.

To demonstrate that the Circadian Clock is also a multiple time scale-model, Figure
4.10 shows the expected length of the time steps Q' (cf. Equation (4.10)) in the
FRM-simulations; the illustration is restricted to the fastest and the slowest reaction
channels. As one can easily see, there are five orders of magnitude between the fastest

and the slowest reaction channels in the Circadian Clock.
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Figure 4.10: The Circadian Clock as a multiple time scale-model. The figure presents
some channels with their corresponding Q;l—value, which corresponds
to the expected length of a time step in the FRM.

Figure 4.11 includes three graphics representing three 150 second runs using the
COAST-algorithm, Gillespie’s FRM, and the deterministic solution, with the initial
conditions

1 if X =Paor X = Pr,

Nx(0) = { 0 otherwise. (4.11)

In all three simulations, the Circadian Clock showed periodic oscillations. The
periods and the amplitudes are given in Table 4.2. The COAST results coincide
within 1.1% (amplitude) or 4.8 % (period) with the values of FRM. Since a = 0.05
was chosen for the error control parameter, the obtained accuracy is in agreement
with the estimated error.

The deterministic reaction kinetics deviates strongly from the results of FRM,
which can be explained by the necessary modifications of the modeling mentioned
above, i.e. deterministic models allow values between 0 and 1, while stochastic do
not.

Table 4.2 shows the results for the initial values given by Figure 4.12.

92



4.1

Test Simulations Using COAST

2000
A
| A i i w
1500 - | I f“\ . \
L H i A A [}
1} M o i\ \ .
\ | il I
= \ \ A i
€ 1000 - A | \ in
\ AN \ | . :
500 - N L ‘- \ Vo \
'\1 i ‘\ \ \v \ ;
Nl | y VN
0 a | N
0 30 60 90 120 150
time [s]
— COAST (stoch.) — MATLAB (deter.) - Gillespie(stoch.)

Figure 4.11: Simulation of the Circadian Clock.
COAST and a deterministic approach

150 seconds using Gillespies FRM,

50 h~1 500 h~1
Pa — Pa + mRNAa Pa—A "— Pa—A + mRNAa
Pr O'Mﬂ Pr + mRNAr Pr—A n Pr— A + mRNAr
mRNAa "5 mRNAa + A mRNAr = mRNAr + R
A+ R 2 A-R Pa+ A 5 pPa—A
Pa—A 5 puyoaA Pr+A Y proa
Pr—A '"C% prya A 2y
R 2y mRNAa U5 ¢
mRNAr 2150 ¢ A-R Y2 R

Figure 4.12: The reaction channels of the Circadian Clock (h=hour).

\ FRM \ COAST \ determ. solution ‘
amplitude [N] 1599.8 + 72.1 | 1617.4 £+ 78.8 1717.2 &= 001
period [S] 23.0 £ 2.7 24.1 £ 1.8 25.4 0.002

Table 4.2: Amplitude and periodicity for the different simulations of the Circadian

Clock.
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4.1.4 Michaelis-Menten Kinetics

The Michaelis-Menten kinetics formulates an expression combining the velocity of
catalysis with the concentrations of substrate and enzyme. It is the simplest model
to describe the kinetic characteristics of many enzyme catalysed reactions. The model
is named for Mr. Leonor Michaelis and Ms. Maud Leonora Menten who published
their results in 1913 [Michaelis and Menten, 1913|. These kinetics are valid only when
the concentration of the substrate is higher than the concentration of the enzyme,
and in the particular case of a steady-state, where the concentration of the complex
enzyme-substrate is constant. The described system is shown in Equation (4.12).

oy ks
E+S = ES = E+P (4.12)
koy ko

E and S are the concentrations of the enzyme and the substrate, and ES and P
the concentrations of the resulting complex and the product. By looking at the top
of Figure 4.13 one can see the theoretical development of the concentrations in this
system for initial enzyme and substrate concentrations, where the substrate is of
higher concentration then the enzyme. It is observed in nature that k_5 is much
smaller than ko. Therefore the concentrations of all species are changing in a pre-
steady state until they reach the equilibrium. There is no net change of product or
substrate in the equilibrium. In this phase, the reaction from product to substrate
can no longer be neglected.

The development of the pre-steady state can be described by the reaction equations
in Table 4.3.

E+S & C
ES 2 E+S
ES & E+P

Table 4.3: Michelis-Menten: reaction equations

This system was simulated with COAST and has also been solved numerically
using an implementation of the system in the form of differential equations using the
mathematical software MATLAB (cf. Table 4.4). It can be demonstrated in the bot-
tom left of Figure 4.13 that the implementation of a system of ordinary differential
equations matches the stochastic approach with COAST. The stochastic represen-
tation of this biological process is much more realistic than the deterministic one,
since the deterministic model allows continuous variables and the stochastic model
does not. On the lower right figure one is able to observe an important difference
between the deterministic model and the stochastic one. Although the mean values
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Figure 4.13: Michaelis-Menten Kinetics: the top figure shows the development of concen-
trations in theory and the lower left one the results of the simulation with time
=bsec; a=0.05; c1=0.05, c2=5.0, c3=1.0; So=1000, Ex=500, ESy = Py = 0;
the lower right figure illustrates the same simulation with only 1/10th of the

initial particle numbers
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are the same, the curves representing the enzyme-concentration is always higher than
the one for the enzyme-substrate complex. However, the stochastic model presents a
different picture. Here, the enzyme substrate complex can exist in higher concentra-
tions than the free enzyme. This is a good example to demonstrate the significant
difference between stochastic and deterministic models. The rate parameters have
not changed between the two experiments. Only the initial molecular concentrations
were lowered.

= . E-S-¢q + ES-(c;+c3)
% - - E-S'C1 + ES'CQ

azs — E-S-¢v - ES-(ca+c3)
% — ES'Cg

Table 4.4: Michelis-Menten: differential equations

4.2 Test Simulations Regarding COAST's
Extension to Diffusion

4.2.1 Basic Systems

In this section, the reliability and accuracy of COAST as applied to diffusion is eval-
uated by test simulations. To this aim, COAST-simulations of the one-dimensional
motion of a single substrate were compared with the predictions of the diffusion
equations and with the results of random-walk simulations (cf. Equation (3.5)):

p(t+1) = a(t) + 2L 4 VOD ALY, (4.13)

with a normally distributed random variable WW. All simulations in this subsection
were performed with a diffusion coefficient of D = 10713 m?z , T =298 K, and R = 100
nm.

Diffusion without external force Let us consider 0.75s-simulations of the Smolu-
chowski-equation (cf. Equation (3.31)) with f = 0 in the interval [-2000nm,+
2000nm]|. In doing so, two initial conditions were considered: First,

01(x,0) = N-0(x), (4.14)

(N—total number of particles) i.e. at time ¢ = 0 all particles have position z = 0. In
this case, the Smoluchowski-equation has the solution

L_ ¢~1p7 (4.15)
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Figure 4.14: The error bars of the standard-deviation for free diffusion with initial condition
01 -delta-distribution- (cf. Equation (4.14)). The diagram shows the outcome
of COAST-simulations dependent on «. For comparison sake, the results of
the random walk-simulations are also included, where, for each «, the time

steps are identical with the time steps of the COAST-simulation.
1=0.75s; D=1-10"13"; k—0*¢; R—100nm; N—100000; 25 repetitions

Due to its diminishing standard deviation, a d-distribution can lead to additional
numerical errors (cf. Section 3.6).

For all a-values, the value of the mean position of the particles was consistent
with the exact value of 0. For example, for a« = 0.05 the averaged mean value
from 25 runs was -1.53 nm. Accordingly, the focus will be on the second quantity
necessary to characterize Gaussian-distributions, this is the standard deviation o.
To characterize the dependency of ¢ on «, simulations for both initial values with
N = 10° were performed, where each simulation was repeated 25 times. Additionally,
random walk-simulations of the same system with 6t adjusted to the corresponding
a-value by Equation (3.57) were also performed.

To illustrate the statistical effects, the standard deviation from the position of
100,000 particles randomly distributed according to oo (cf. Equation (4.15)) were
also computed. This experiment was repeated 10 times. The corresponding error
bar of the standard deviation is also shown in Figure 4.14.

As one can easily see from Figure 4.14, the outcomes of COAST-simulations always
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Figure 4.15: Characterization of the run time behavior of COAST dependent on the number
of particles N. The left figure shows for a« = 0.01 and o = 0.05 the depen-
dence of the run time from the modeling level used: I'-fraction is the portion of
evaluations done by Gaussian-distributions. In the right figure, the run time
behavior of COAST (a = 0.05) is compared with the run time behavior of ran-
dom walk-simulations with identical time steps. y and z are least mean square
fits to the run times of random walk-simulations (y) or COAST-simulations
(z) respectively.

showed a similar accuracy as the results of the random walk-simulations. Further-
more, the mean values of both simulations were always within the error bar of the
value computed from the placement of the particles according to the exact distribu-
tion (cf. Figure 4.14). Hence, in this case, COAST led to quite accurate simulation
results.

As a next step, let us characterize the run time behavior of COAST dependent
on the number of particles N. To this aim, COAST-simulations for o« = 0.01 and
a = 0.05 with initial condition p; were considered and compared with random walk-
simulations of the same system. The results are shown in Figure 4.15, which includes
two diagrams: The left diagram shows the run times of the COAST-simulations
together with the fractions of transition numbers computed by the modeling level
I', which means the description by Gaussian-distributions (cf. Equation (3.59)).
whereas the right diagram contains a comparison between the run times of the
COAST-simulations for &« = 0.05 and the run times of the random walk-simulations.

It can be seen from the left diagram in Figure 4.15 that, for both o = 0.01, the run
time of the COAST-simulation is maximal if about 2/3 of the transition numbers are
computed by modeling level I'. For larger portions of I' & A, the run time becomes
smaller and converges to a constant value. Similar observations can be found for
other a-values.
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To describe this asymptotic run time behavior quantitatively, a least mean square
fit to the run times of the COAST-simulations with o = 0.05 for N > 10° were
performed, which resulted in the function z(N) = (—=1-107" N + 46.97) s. For com-
parison: A least mean square fit to the run time of the random walk-simulations
led to the fit curve y(N) = (7-107? N? + 0.0033 N + 0.05) s, which is also shown
in the right diagram in Figure 4.15. Accordingly, for N = 10°, the run time of the
random walk-simulations is about three hours, which is an enormous difference to

the 18 seconds of COAST.

Diffusion with a linear external force Additionally, three-seconds-simulations of
the Smoluchowski-equation with external force

fz):=—kx with k=10"% (4.16)

in the simulation interval to [-1000 nm, +1000 nm| were investigated. As initial
values, the uniform distribution

N
02(z,0) := 5000 o (4.17)
was chosen.
This results in the implementation for N = 100000 and a = 0.01 in 197 volume
elements with a width of Az = 1-1078m and 507 particles in each volume element
and 628 in the center. The solution of the Smoluchowski-equation with linear external

force f = —kx is given by [Schulten and Kosztin, 1999]:

+1000nm
eo@t)= [ plaly:t) ea(y. 0) dy. (4.18)
—1000nm
where
. o k k(z—ys(t)* . 1
p(alyit) = iy P~ Uy )  with  s() == e 7 (4.19)

It follows that after three seconds the system has reached its state of equilibrium,
which is given by a Gaussian-distribution with a mean value of 0 and a standard-
deviation

T
kf; — 202.8nm . (4.20)

To assess the accuracy of COAST-simulations, the standard deviation of the dis-
tributions at the end of the simulations were compared with the standard deviation
of the positions of one hundred thousand particles randomly located over the ther-
modynamic equilibrium distribution given by
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Figure 4.16: The error bar of the standard deviations for the 25 COAST-simulations and
25 random walk-simulations of the diffusion system with linear force (cf. Equa-
tion (4.16)) dependent on o, where, for all «, the random walk is based on the
same time steps as COAST. The bold and the dotted lines correspond to the
error bar of the standard deviation calculated from the position of 100000 par-
ticles randomly located over the thermodynamic equilibrium distribution (cf.
Equation (4.21)).
t=>5s; D=1"- 10_13%2; k=1- 10_7%; R=100nm; N=100000; 25 repetitions

k’ —k a2
Y 421

which coincides with Equation (4.19) in the limit ¢t — oo.

As can be seen from Figure 4.16, the mean values from COAST-simulations lie for
a < 0.075 always within the error bar of the value derived from the thermodynamic
equilibrium distribution. Furthermore, for all o < 0.1, the COAST-results deviate
less than 1% from the averaged values of the thermodynamic equilibrium, so that
the COAST-results are found to coincide with the exact results.

4.2.2 Kramer’'s Transition State Theory

One of the most prominent applications of diffusion models is the prediction of de-
cay rates for chemical bindings by Kramers’ transition state theory [Kramers, 1940,
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Figure 4.17: The potential used for the simulation of Kramers theory and the corresponding
thermodynamic equilibrium distribution. a and b are the minimum and the
local mazimum of the potential, where b reflects the transition between binded
and dissociated state.

Hénggi et al., 1990|. The basic idea of this theory is to describe the state of a mole-
cule by a single (reaction) coordinate =, where the time-evolution of this coordinate
is described by a Langevin-equation in the strong friction limit (i.e. the frictional
force is much larger than the force of inertia). x €] — o0, b| corresponds to an existing
bond, where x > b reflects a dissociated molecule. Thus, the molecule is protected
against dissociation by a potential U, which has its local maximum at b (cf. Figure
4.17).

Furthermore, ¢ = 0 is the minimum U for z €] — oo,b[. Thus, Kramer’s theory
predicts that, in thermodynamics equilibrium, the decay rate of this model is given
by

vt

r=c-e *8T (4.22)

where Ut := U(b) — U(a) is the height of the potential barrier and where ¢ depends
only on the friction coefficient and on the curvatures of the potential, but not on
temperature T

In this section, simulations of the transitions of particles over such a potential
barrier for different temperatures are presented, where COAST is used with o = 0.05.
The aim of these simulations is to test if COAST is able to reproduce the results of
Kramers theory.

Each simulation was started with N := 10° particles, which were distributed ac-
cording to the the thermal equilibrium of this system. More specifically, the proba-
bility distribution of particles is given by
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Figure 4.18: Kramers-Theory: The left picture shows the number of transitions for a
COAST-simulation (o := 0.05) at 20 K. The figure to the right displays the
result of 10 independent runs in the temperature span of 20K to 30K.

/ L ke a2
CLJ(ZU,k) = M]TGQI;BT A.’E, (423)

(k:=10""%) . (4.24)

Furthermore, it is assumed that the dissociation occurs at b = 250 nm, so that the
potential height U* was given by

Ut _ U(250nm)-U(0nm) __
z_ o8 = 226.34 K (4.25)

Let N(t) be the expected number of particles after time ¢, where Ny = N(0) is the
initial value. If there exists any time-constant transition rate r, then one obtains:

Nt)=Noe™ &  rt=—In(N(t)/No). (4.26)

Accordingly, the quantity — In(N(¢)/Ny) was measured in each simulation, so that
the transition rate r could be determined as the gradient of this straight line. In
Figure 4.18, this is shown for a COAST-simulation (a = 0.05) at 20 K. This procedure
was performed for T-20, 21, 22, ..., 30 K, where for every T the simulation was
repeated ten times. The simulations have been best according to the theory for low
temperatures. Therefore simulations just above 0K would have been ideal, but the

kp T
D

! The friction coefficient v and the diffusion coefficient D are connected by v = this results

in D=1 10713 for T=25K
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computational effort increased dramatically so the area around 20K was chosen as a
compromise.

Figure 4.18 illustrates how In(r(T)) responds to changes in T!. Particularly, a
least mean square fit was performed to the curve, which resulted in

In(r) = —222.02 K 1 + 1.38. (4.27)

For comparison, the prediction of Kramers theory (cf. Equation (4.22)) is
In(r) = —% 7+ In(c) = —226.34 K £ + In(c) . (4.28)
Hence, the COAST-simulation (o = 0.05) was able to reproduce the prediction of
Kramers theory within 1.9 %.

4.2.3 Linear Diffusion

This section applies COAST to a common biophysical problem and describes how a

concentration gradient reaches the equilibrium by linear diffusion. This process can
be described by Fick’s Second Law of diffusion:

Oc d%c
<8t>x =D (8:1:2> (4.29)

D is assumed to be independent from the concentration of the substrate ¢ and
therefore from the location of the particles. We further assume the initial condition
to be ¢ = ¢y in the interval [-00,0] and ¢ = 0 in |0,00]. Thus, the solution for
Equation (4.29) is

X

2v Dt

c(wo,t) = %[1 —b(u)]  with u = (4.30)

¢(u) is the so called error function
2 [ 2
¢(U) = ﬁ 0/ € 4Dt (431)
with this the quotient ¢/cy can be formulated as following

c(x,t)
Co

[1 = o(u)] (4.32)

N | —

In Figure 4.19 one can observe how well the theoretical curve of the gradient
after the timespan of t=16d matches with the simulations done with COAST. The
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Figure 4.19: Linear Diffusion: D:2.9-10_6%, t=16d=1582400s, dx=1cm, a=0.05

theoretical curve is limited to the left and right side by the limited amount of values

tabled for the error function. This problem did not occur as a positive side effect for
the application of COAST.

4.3 General Technical Considerations

4.3.1 Run time analyses

In this chapter several time depending simulations have been discussed. To obtain
the most accurate results all simulations should have been run on the same system
under exactly the same conditions without the influence of any counter processes.

This is not the case for the simulations performed here. Usually the tasks were
transfered to a cluster of computers and processors and it has been up to this grid
to choose an appropriate machine. However, due to the fact that most simulation
runs took several hours and by that taking much more time than the usual counter
processes occurring. [ am positively convinced that on an average the measured
run times are comparable. Very short simulations have been performed on an IBM
notebook with an Intel Pentium III central processing unit running on 700Mhz and
768Mb of memory using the Windows2000 operating system.
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4.3.2 Used Software

COAST was implemented in JAVA 1.4 using the integrated development environ-
ment eclipse in the version 3.0, which is freely available via internet. To make the
process of implementation easier I chose the programming language offered by Matlab
in the Version 6.5 to apply COAST to diffusion processes.
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After outlining the task of efficiently modeling cellular processes in the introduction, I
gave an overview on existing strategies for simulating reaction and diffusion processes
in the second chapter. In chapter three I introduced with the Controllable Approzi-
mative Stochastic Reaction Algorithm a hybrid algorithm for simulating reaction and
diffusion. After setting one error parameter oo, COAST adjusts itself according to the
development of the system. Its three modeling levels are used to be as accurate as
necessary and as fast as possible. In the last chapter I have presented the application
of COAST to a variety of problems related to reaction and diffusion.

COAST was able to show its reliability and accuracy for reaction and diffusion
processes for different settings of «. In this last chapter I will sum up my findings
and discuss COAST for the background of existing tools available and the possibilities
offered by science.

5.1 Reflecting on COAST

Good algorithms have four common features: they are fast, accurate, simple to
implement, and they can be applied without too much knowledge of the details of
the basic methods and concepts. In this section, I will discuss how the COntrollable
Approximative STochastic reaction algorithm (COAST) fulfills these criteria.

The runtime behavior of COAST in the simulations was composed of two different
parameter ranges; one range, in which the First Reaction Method (FRM)-like model-
ing level 2 dominates, and one in which mainly the regimes by Gaussian-distributions
(T') or by deterministic reaction kinetics (A) were used.

If > was predominantly used, the runtime of COAST was nearly identical to the
runtime of the FRM, on the contrary I found for higher particle numbers qualita-
tive differences between the runtime behaviors of COAST and the FRM. If the total
number of particles N in the system was large enough so that I' and A were predom-
inantly used, then the runtime of COAST increased with N* with 0 < a < 1. The
runtime of FRM increased with N where 1 <b < 2 (cf. Section 4.1.1). Since the 7-
leap method showed a similar behavior to the FRM, we can conclude that COAST is
fast in comparison to the FRM and the 7-leap method. This can be easily explained
by the length of a single time step and the amount of random numbers generated;
for the FRM, the mean length of a time step is proportional to N * for first order
reactions and proportional to N;? (cf. Table 2.3) for second order reactions [Gille-
spie, 1977|, so that the quantity of random numbers is proportional to N4 and N3,
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respectively. For the 7-leap method and COAST, the length of the time steps, or the
r-leaps, are proportional to N' for second order reactions, but independent from
N4 for first order reactions (cf. Equation (3.22)).

However, for each time step or 7-leap, the evaluation of a Poisson-distribution
in the 7-leap method requires’ a quantity of random numbers proportional to the
expected number of reactions, or equivalently to the number of particles. Whereas
the evaluation of a Gaussian-distribution can always be performed by generating a
single random number [Box and Muller, 1958|.

In contrast, an optimization of the 7-leap method would require a method for
evaluating the Poisson-distribution with computational costs independent from the
particle number. The only method to my knowledge is the approach of Ahrens and
Dieter [1982], who approximated Poisson-distributions for large particle numbers by
using a Gaussian-distribution. However, this is equivalent to replacing the Poisson-
distribution in the 7-leap method by the the modeling level I" of COAST, with the
exception that COAST is based on probabilities that are more realistic for the long
time steps used in both algorithms.

As mentioned above, the runtime for both modeling levels I and A always increases
with the same exponent of n. In Section 4.1.1 I was able to show for a single reaction
channel, that A reduces the runtime of simulations by about 10% as compared with T".
Neglecting fluctuations by using deterministic reaction kinetics A leads to additional
inaccuracies. Thus, it is quite difficult to globally answer the question if one should
use A, or if one should reduce COAST to the two other modeling levels ¥ and T.
Instead, it is recommended to introduce an option in the implementation of COAST ,
so that the user can adjust this according to the needs of the given system.

To check the accuracy of COAST, I considered systems with relatively small num-
bers of particles: the initial values were 20,000 for A+B = C and A+B = 2 C, 35,000
for the Oregonator (cf. Section 4.1.2), and 2 for the Circadian clock (cf. Section
4.1.3). Note that the inaccuracies of COAST decrease for larger particle numbers,
because the approximation of binomial-distributions by Gaussian-distributions im-
proves. That is why the usage of relatively small systems (cf. Section 4.1.1) is the
best test for the reliability of COAST. In all these systems, the values of the COAST-
simulations with error parameter a < 0.05 coincided with the corresponding values
of the FRM-simulations within 1%, except for the period of the Circadian Clock.

As a result, T conclude that COAST is a fast and accurate algorithm, not only
for elementary systems with smooth dynamics, but also for complex systems such
as the Oregonator and the Circadian Clock. Here, a “complex system” refers to
multiple time-scale systems with rapidly and strongly fluctuating particle numbers.
Another definition of a “complex system” refers to the fact that some of the substrates
contribute to a large number of different reaction channels. It is worth noting that in

!The implementation I used in my simulations has been Cellware [Dhar et al., 2005], it uses the
rejection method.
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this case, the critical number of reactions {,, (cf. Equation (3.24)), and thus the length
of the time steps is reduced, so that the accuracy remains constant. Accordingly, one
can observe that the results for the Oregonator and the Circadian Clock, where a
part of the substrates contributes to several different reaction channels, are no less
accurate than for the simple models. Furthermore, for every fixed set of reaction
channels, the exponential dependency of the runtime from the particle number is not
changed by the reduction of the time steps. Thus, COAST also works accurately for
a second kind of complex systems, namely systems in which substrates contribute to
large number of reaction channels.

Furthermore, COAST is quite simple to implement and its usage does not re-
quire a deep insight into its foundations. It is recommended users perform the first
COAST-simulation of their system with error control parameter a = 0.05 and usage
of modeling level A. This has led to quite accurate results without too long run times
for all simulations performed so far.

It should be mentioned, that it is suboptimal to run COAST with a=0, since then
the algorithm requires the same amount of random numbers like the FRM, but has
a larger computational overhead than the FRM, which should be used then instead.
For systems composed of many reaction channels, it would be of course helpful to
reduce the number of computations necessary for the determination of the length
of the time-steps and the succession of the evaluations. As a summary of these
considerations, COAST can be considered as a good reaction algorithm in the sense
described at the beginning of this chapter.

5.2 The Adoption of COAST to Diffusion

The aim of Chapter 3.4 was the modification of COAST towards an efficient algorithm
for the simulation of thermal motions of particles. The starting point of COAST is
the Smoluchowski-equation [Smoluchowski, 1917|, which is a diffusion-model based
on two essential approximations. The first approximation is the strong friction limit,
which is a good approximation if the moment of inertia of the particles is small
compared to the forces acting on the particles. The other approximation is that
the interactions between the described substrates are considered as much smaller
than the interactions between the described substrates and their environment (cell
compartments, water,...), which results in a linear diffusion model. Obviously, this
second approximation can always be applied if the concentration of the described
substrates is low enough.

A related problem to this is, how good is our knowledge about the cell structure.
This is not a limitation of the algorithm but a problem of modeling itself. The
common picture of the cell as a wet space with some organelles and some floating
enzymes is far from reality. Luby-Phelps et al. [1986] was able to show in experiments
using "fluorescence recovery after photobleaching” (FRAP), that the structure of the
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cytoplasm has a deep impact on diffusion. It is a well known fact that diffusion
coefficients are usually measured for enzymes in vitro and so there is a big difference
between these results and the real values in vivo and therefore the usability of the
listed in vitro values for simulations is very limited. Luby-Phelps also clarified that,
on average, the viscosity of the cytoplasm is four times as high as the one of water.
Even more she found that the diffusibility of macromolecules is limited by their size.
This is due to structural barriers within the cytoplasm. There are three types of fil-
aments, which are made responsible for this: F-actin, microtubules and intermediate
filaments, and an assortment of accessory proteins that cross-link these filaments.
They leave a pore size of about 300 to 400A. Knowing the cellular structure it is
possible to formulate a forcefield for the diffusion of the particles so COAST would
be able to handle this problem, since this is a question of input. However, so far our
knowledge in this area is very limited.

The situation becomes even more complicated if one considers that not only the
size of the diffusing protein is responsible for the cytoplasmic diffusion coefficient, but
the structure of that protein also has an effect [Luby-Phelps, 2000|. Hydrophobic do-
mains and ionizable surface groups influence the mobility of proteins significantly.
This implies that the diffusion coefficient is not a constant, but rather depends on
the surroundings. Consequently one would have to model the whole cellular struc-
ture as well. Again, with detailed information, I am convinced this can be done, but
the problem is the generation of reliable data. Luby-Phelbs points out that some
investigators of cellular diffusion have come to the conclusion that most enzymes are
immobilized by cellular structure, i.e., they are attached to membranes or cytoskele-
tal surfaces. In this case one does not have to model diffusion for those enzymes
anymore, but now the whereabouts of these enzymes become important. One needs
the exact localization within the cell. Even if the assumption of spatially fixed en-
zymes cannot be verified, this demonstrates one of the basic dilemma modeling has
to get along with and this is "few information”.

Accordingly, the Smoluchowski-equation cannot possibly reflect all aspects of ther-
mal motions in cells [Agutter et al., 1995], but is suitable in quite general scenarios.
On the other hand, it is quite likely that for many systems, the Smoluchowski-
equation is the best diffusion model for which simulations can be performed. It
should be noted that if one does not use the "strong friction limit”, then one has to
consider double the number of dimensions, (these are positions and velocities), so
that, in a first approximation, the computational costs are no longer proportional to
n? (strong friction limit) but proportional to n?¢, where d is the number of dimensions
and n is the number of lattice points (or voxels) in each direction.

Note that nonlinear diffusion corresponds to second and higher order reactions.
Since COAST allows one to treat all types of reactions, a derivation of an algorithm
for nonlinear diffusion model from COAST can easily be done, where one can use
analogous estimations as presented here for the application of COAST to diffusion.
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However, in this case, one cannot use constant time steps; one has to compute the
appropriate length of such time steps for every simulation step (analogously to the
reaction version of COAST). As a result, the runtime would be nearly doubled and
an application of parallel computing to such an algorithm for nonlinear diffusion is
much more difficult and less efficient than for COAST. Hence, the application of
nonlinear diffusion models will not likely be possible in the generic case.

For the current simulation, a discrete version of the Smoluchowski-equation was
used, so that the thermal motions of particles were identified with jumps between
adjacent lattice points (or analogously volume elements). This discrete diffusion
model obviously looks quite different than the Langevin-equation, from which the
diffusion model was originally derived. Thus, to achieve that the discrete diffusion
model can be used as an adequate description of the thermal motion of particles,
the conditions were imposed that the first (expectation) and the second moment
(variance) as well as the flux of particles of the discrete diffusion model is, up to
a-100% (« € [0,1]), in agreement with the values of of the Langevin-equation. These
requirements led to a large part of the conditions for the discretization parameters.
The other criteria were derived from the constraint that the transition probabilities
must have positive values and that in every time step the changes of particle numbers
at each lattice point must be small- at least on average.

A discrete diffusion model allows a very natural interpretation of thermal motion
in terms of chemical reactions, by identifying transitions between adjacent lattice
points as reaction channels. Due to the linearity of the diffusion model, all transitions
correspond to first-order reactions.

The correspondence between discrete diffusion model and chemical reaction sys-
tems makes it very natural to adapt an algorithm for the simulation of chemical
reaction systems to the needs of a discrete diffusion model. In this thesis, this adap-
tion process was performed for the COntrollable Approximative STochastic reaction-
algorithm (COAST).

One important feature of COAST is its usage of three different levels of model-
ing: for small particle numbers an exact stochastic model, for intermediate particle
numbers an approximative stochastic model by Gaussian distributions, and for large
particle numbers deterministic reaction kinetics. Thereby, the criteria for the appli-
cation of the different modeling levels are, as all errors due to used approximation,
formulated dependently from one single error control parameter o € [0, 1], which
helps one to easily find an optimal balance between accuracy and computational
efficiency for each individual system.

This formulation dependently from a single control parameter is, in general, also
used in the adaption of COAST to linear diffusion — with the exception that one
criterion includes a second parameter R, which reflects the spatial resolution of the
model. Howerver, the value of this second parameter is also very easy to choose, so
that the simple controllability of COAST is also given here.

To test COAST, simulations of one-dimensional diffusion without external and with
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linear external force were performed. In both cases, the deviations of the COAST-
results from the exact values were always in the range of purely statistical errors,
suggesting that COAST works pretty accurate for these models.

On the other hand, COAST showed a much more advantageous runtime behavior
for intermediate and large particle numbers as compared to random walk-simulations:
The runtime of COAST was asymptotically independent from the particle number,
whereas the runtime of random walk-simulations is asymptotically proportional to the
number of particles. Only for very small particle numbers, random walk-simulations
are faster than COAST. However, in this range, COAST is also quite fast, so that
this disadvantage of COAST is not really problematic.

To further support the credibility of COAST, the escape rates of particles from a
local potential minimum (metastable state) over a potential barrier were computed
from COAST-simulations and compared with the predictions from the well-known
Kramers-theory [Kramers, 1940|. The essential statement of the Kramers-theory is
that the logarithm of the escape rate is, up to a constant term, given by kg—iT, where

Ut is the height of the potential barrier. From the COAST-simulations (a = 0.05),
a value for U* was obtained, which coincided with the correct value up to 1.9 %.
Thus, the result was much better than expected by the choice of the error control
parameter .

Throughout this thesis, all considerations were restricted to a one-dimensional
model. This restriction was used to simplify the notation. An application of the
presented methods to higher dimensions is analogously possible. However, one has
to take into consideration that the computational costs (of diffusion and of reaction-
diffusion models) are, as mentioned above, are proportional to n?. Although the
power of modern computers is rapidly increasing, a full 3D-description of such com-
plex systems as biological cells is not possible in the generic case.

5.3 Combining Reaction and Diffusion Algorithms

For all substrates For all lattice points

to = teim
successively: diffusion ively: reactions | ——— | 1o := 1o + At end

in [to, to + At] in [to, t + At]

* ty < tsim

Y

Figure 5.1: Scheme of the module for reaction-diffusion systems. The keywords ‘reaction’
and ‘diffusion’ mean the application of an arbitrary algorithm for reaction- or
diffusion models. tg;p, is the duration of the whole simulation.

As mentioned in the introduction, it can be very helpful to consider reaction and
diffusion in the same time interval successively, because this allows the subdivision
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of the system in independent subunits: For diffusion, the different substrates can be
treated independently, whereas for reactions the different lattice points are indepen-
dent. Hence, one can use the algorithm illustrated in Figure 5.1.

To avoid errors caused by the successive treatment of reactions and diffusion, one
has to use suitable conditioned probabilities. Analogously, to the treatment of the
different directions of thermal motions in COAST (cf. Figure 3.8), one has to use the
reaction probabilities under the condition that the particles do not jump from one
lattice point to an adjacent point in the same time interval. This correction can, in
a first approximation, be performed by replacing the reaction constants ¢ [Gillespie,
1977] by

i QC ~ for A — P,

B - ?(1)

€= T-0x0) T-gat) for A+ B — P,
(17QA(Z4)) , for2A— P,

where Qs(i) := qs(i + 1]7) + gs(i — 1]7) is the total transition probability of the
substrate S at a lattice-point ¢ and P an arbitrary product.

A crucial point to note here, is the choice of an appropriate value At for the length
of a time step in which diffusion and reactions can be treated successively. A possible
choice would be to compute the times (cf. Equation (3.57)):

: T . « o (Ax)?
Aty :=min {3 | A€ S} = min{ofsToa S| 45 (5.1)

and At,.q. in which all transition or reaction probabilities respectively are smaller
than o and to define

At = mln{ Atdiff y Atreac } . (52)

In this case, one can easily show that all errors due to the successive treatment of
thermal motions and reactions are of the order O(a?), so that the algorithm will
work quite accurately. But, on the other hand, if at any point the reaction rate of
a single reaction channel or the diffusion rate of a single substrate is very large, one
would use this small At for all transitions and reactions so that the algorithm will
work very inefficiently. As a consequence, the choice of At presented here is only
suitable for reaction-diffusion systems with similar reaction and diffusion rates.

5.4 Final Conclusions

In the last section, I presented a method to combine COAST and its application
to linear diffusion to an algorithm for the stochastic simulation of reaction-diffusion
models. Thereby, the crucial step is an appropriate choice of the time step At in
which thermal motions and reactions can be computed successively.

In this thesis, I defined At as the time span, in which all changes of probabilities
for reactions and transitions are smaller than «. In this case, one can easily show that
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the errors are of the order of O(a?). On the other hand, one fast reaction channel
is, thus, sufficient to use very small time steps for all reaction channels and all tran-
sitions, so that this definition of At can only be good if the occurring probabilities
are not too inhomogeneous. For general systems, one has to look for better choices.
To justify such choices, however many test simulations will be necessary, so that a
discussion of these choices is beyond the view of the present study.

COAST is the first hybrid algorithm, to my knowledge, that spans three different
regimes of modeling and, therefore, the whole spectrum of occurring particle amounts
in the most efficient way. All other algorithms (cf. Table 3.3) only consider small
and large particle numbers. COAST is the only algorithm designed for strongly
fluctuating systems covering a large variety of molecular abundances, which are likely
to occur in signal transduction pathways. Since intermediate particle numbers are
the most common scenario, the idea of using a Gaussian distribution and reducing
the amount of random numbers is new in this scientific field. So far the most efficient
stochastic algorithms in this area are derivatives of the 7-leap method. Here several
reactions are allowed to take place in one time step, but these are calculated by
binomial or Poisson-distributions; therefore for every reaction occurring one random
number is used. COAST uses only one random number in a time step for one reaction,
this results in an enormous cut down of computational effort.

COAST, as an hybrid algorithm, has characteristics of deterministic and stochastic
approaches (cf. Table 2.4). Small volumes have the resulting effect that noise becomes
significantly important (cf. Section 2.3.1). COAST pays respect to that, because a
decreasing volume makes it more likely the stochastic ¥-regime is activated.

This is the most important advantage of COAST referring to implementation and
usability. COAST is the only algorithm so far, that uses an intuitive error control
parameter . Other algorithms (cf. Section 2.4.2 and Table 3.3) like the hybrid
methods of Kiehl et al. [2004] or Haseltine [2002] demand a direct intervention by the
user to divide reactions in "slow” and "fast” reactions. Kiehl is treating reactions with
low reaction probabilities by the Next Reaction Method and "fast” reactions (reactions
with high reaction probabilities) by a deterministic approach, while Haseltine uses
the First Reaction Method for the "slow” reactions. Nevertheless, the user is the one
to do a fixed separation. If one of the reaction channels changes during the process
from "slow” to "fast” there is now way to change the setting.

Therefore an automatic division of the reaction channels in every time step is su-
perior. The Mazimum Time Step Method [Puchalka and Kierzek, 2004 is an example
for these group of algorithms. It uses the Next Reaction Method for single reactions
and a tau-leap method for faster reactions. Puchalka uses three parameters r,n and
k. Only k which is the maximal time step, has an intuitive meaning. The other two
values are supposed to be selected "empirically”. On the other hand COAST is only
using one parameter « (for diffusion a spatial resolution is needed) that is defining
the accuracy of the results. This value defined by the user is in direct manner defin-
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ing the maximal allowed divergence between the experimental results and the exact
values.

In the experiments performed, COAST was able to show that its performance and
accuracy is even better than expected by the set error parameter . COAST was
designed to be fast, therefore one has to make a compromise presented in the form of
the allowed error parameter. The runtime experiments were able to show that even
a small a-value has a deeply positive impact on the speed of the calculations.

COAST worked well for reaction and diffusion problems. A next developing step
would be a comprehensive model combining the application of COAST to reaction
and to diffusion to model reaction-diffusion systems in one dimension.

Finally, I would like to address a topic that is a crucial aspect for modeling chemical
processes within cellular structures. In the literature it is known as macromolecular
crowding, molecular crowding and also as macromolecular confinement [Chebotareva
et al., 2004]. However, it is more accurately termed as the "excluded volume effect”.
Biochemical processes in living systems occur in media containing high concentrations
of macromolecules (50-400 mg/ml) |Ellis and Minton, 2003|. The present molecules
are packed in such a way that they do not leave enough space for other molecules of
their kind. This excluded volume is lost for these molecules. The theoretical aspects
of excluded volume on chemical reactions has been discussed by Hall et al., Winzor
et al. and others [Hall and Minton, 2003, Winzor and Wills, 1995|. Crowding has a
complex effect on the rate of biochemical reactions. Simply put, as the activity of a
specific particle in a crowded environment is increased, the diffusibility is reduced, and
the probability of two particles meeting and reacting decreases. Of course, the overall
result of these opposing factors depends on the nature of each reaction [Chebotareva
et al., 2004].

So far we know the excluded volume effect cannot be neglected, even though the
consequences are still the topic of present studies. Therefore, the only way to cur-
rently model the excluded volume effect is to model single molecules with a distinct
volume and shape, which is computationally very inefficient.

As mentioned before, COAST was originally designed for diluted environments.
Nevertheless, if a better understanding of the cellular processes is known, a better
algorithm based on COAST can be developed. To date, however, the current degree
of understanding is still not enough.

I would like to finish with a citation by Luby-Phelps [2000]:

"The potential impact of actual intracellular conditions on the kinetics, mecha-
nisms, and regulation of metabolism make it imperative to reexamine continuum
descriptions of cellular biochemistry that have been extrapolated from reductionist
experiments carried out in dilute solution.”

Modeling relies on accurate information. Mathematical models can only be devel-
oped on the base of reliable data. So far there is still a big leak of details on exact
cellular structure and the interactions between all the parts of a cell. Only with
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better knowledge, more background information, and maybe a better approach on
cellular kinetics, can modeling approach reality.
However, COAST provides a new and significant step toward that goal.
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A Numerical solution of chemical differential equations

Here the solutions of the differential equations for basic chemical reactions are de-
rived. A, B,C and D are substrates. k and [ are the deterministic velocity constants.
To simplify the writing in the equations S = [S], which means that all specie-symbols
characterize concentrations, and Sy is the initial concentration of a substrate.

A.1 Bimolecular Reaction; One Specie

2005 A+ B~2A+BEC

(if AO — Bo)

c
dt
dc
dc
c?

which results in: C

A.2 Unimolecular Reaction

AL o0
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A.3 Bimolecular Reaction; Two Species (Part 1)

A.3 Bimolecular Reaction; Two Species (Part 1)

A+ B2 C

t

/

to=0

dcC

dt
dcC

dt
dc'

dt

kdt

. dx
with _
ax? +bx +c

= KkAB—kC/A=B=A4,-C
= k(A-0C)? —kC

= k(A% —2CA+C?% - 0)

C
7 dc
B AZ 4+ C(—1—2A0) + C2
Cp=0

1 1 2ax +b—+—A
n
vV—=A  2ar+b+V—-A

a=1 b:—1—2A0
c:Ag A =4dac—b%2=—44¢—1

—2A0 —1—+4A0 +1

kt =

1 1 2C —2Ap — 1 —+/4Ag + 1 1
n — n
V4Ag + 1 20 —2A0 — 1+ 44y +1 V4Ag +1 —2A0 — 1+ +V4Ap + 1

20 —2A0 — 1 —4Ag +1

—2A0 —1—+4Ag+1
kt\/4A0 +1 +1
0 N oAy — 1+ Vad, 11

kte\/WJr —2A0—1—-+V4A0+1

1
N0 240 — 1 + ViAg £ 1
20 —2Ap0 — 1 —/4Ag + 1

—2A0 — 1+ V4Ag +1

20—2A0—1+\/4A0+1

"

2“0+M(—2A0—1+\/4A0+1) = 2C — 2Ap0— 1 —\/4Ap +1

C(QM—Q) = —2A0—1—\/4A0+1—;,L(—2A()—1+\/4A0+1)
—2A0 —1—+4Ap+1— ,u(—QA() —14++V4A0+1)

C

2 — 2

(A.3)

For ¢ tending toward infinity the system reaches an equilibrium with the following

concentration for C:

lim

t— o0
=p—o00

2A0+1—\/4A0+].
2 .

C =
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A Numerical solution of chemical differential equations

A.4 Bimolecular Reaction; Two Species (Part 2)

k.l
A+ B = 2C
assumption: Ag = By = A=B;Cy=0 = C = 2(A;— A)
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dA
— = —EA? +4l(Ap-A
a + 4i(Ap )
dA
o 4IAZ — 8lAGA + (41 — k) A?
t A
/ g - / dA
N (—k +41)A? + (—8lAg) A + 41A3
to=0 Ao=0
. dxr 1 2ax +b—+—A
with = In
ax? +bxr +c vV—=A  2ax+b++v—-A
a=—-k+4 b= —8lA,
c=4lA3 A = dac — b* = —161k Ay

4t Ay \/E =

AV

eAtAo fk+2\/>
k — 21k

AAﬁ(zu — k) + p(—4l + 2V1k)

M-k
4 )

0

A(A0(4l k) —

1 2(—k+41)AAO — 81Ay — 4A0V1k

- In
440V 1k

In
440V 1k
1

2(—k + 41)A — 8lAg + 4A0V1E
k+41)4e — 81Ag — 440V 1k

k + 41) 4o

— 8lA¢ + 4A0V1k

41— 2V1k —k— ok

(=
(-
( k+4l) 4 —
(—k+4z);;‘0

—1In
41+ 2V1k —k 4 2V1k
k;)——41—2fk ik

4 -k

4l -k

A = A

4l -k

(4

( )4 —dl+2Vik k+2Vik
(41— k)4 — 41— 2VIk

( )4 — 4l +2VIk

—2Vlik

— (=4l + 2V1k) — 41 — 2V1k

(4l — 2v/1k) — 4l — 21k

(4l —
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A.4 Bimolecular Reaction; Two Species (Part 2)

ift=0= A=A,

_ 41 — 21k

if =k = A=24,
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A Numerical solution of chemical differential equations

A.5 Bimolecular Reaction; Two Species (Part 3)

k . .
A + B — P , where P is an arbitrary product.

dA

1. —
dt

I1I. By—B
= B

dA
dt
dA
dt
A

/ dA
A(Bo — Ag) + A2
Ao

{ 1 : 24 ]A
n
BO — AO 2A + 2(30 — Ao) Ao

WA
A+ (Bo — Ao) By
In A —Indo0
e A+(Bo—Ao) Bo
In —A4A 7111@
e At+(Bo—40) e Bo
A
A+ (Bo — Ao)
A

A
Ao
All1-2= e—kt(Bo—Ao))
( By
A

A
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= —-A-B-k
= A;j—A
= (Bp— Ay + A

—A [(Bo—Ao)+A] k

[A (Bo— Ao) + A°] k

t

—k‘/dt

0

—kt

—kt(By — Ap)
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@ e~ kt(Bo—
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e—kt(Bo—

By
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B Belousov-Zhabotinsky Reaction

This appendix includes details on the Belousov-Zhabotinsky reaction presented in Figure 4.5.

B.1 The Composition

0.50M
1.50M
5.00M
0.30M

0.01M

sodiumbromate solution (NaBrOs3)
malonic acid (HOOCCH,COOH)
sulphuric(VI) acid (HyS0,)
sodiumbromide solution (NaBr)

ferroin solution

B.2 Reaction System

L.
IT.
I11.
IV.

2Br— 4+ BrO3~ +3Ht +3HyMal
BrOg +4 ferroin®t 4+ HoMal +5HT
4 ferriin®t + HBrMal + 2H20

3HBrMal + 3H20

4 ferriin®t + HBrMal + 3H20

4 ferroin®t + HCOOH +2C02 + 5H* + Br~
3HBrMal +2HCOOH + 4CO2 + 5H20

Ll

3BrO; +5HaMal +3H ™

Table B.1: The chemical reactions describing the oscillating system leading toward
Figure 4.5

BrOs;~ (bromate); HyMal (malonic acid); HBrMal (bromomalonic
acid); Br~ (bromide); C'Os (carbondioxyde); HoO (water)
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B.3 Chemical Structures of Ferroin and Brome Malonic Acid

B.3 Chemical Structures of Ferroin and Brome
Malonic Acid

Figure B.1:  On the left one can see the red iron(II)-1,10-phenanthroline complex
[Fe(C1aHgN2)3)?T and on the right side bromomalonic acid.
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C.1 URL-List of Cellular Simulators

C.1 URL-List of Cellular Simulators

Simulator ~ URL

SmartCell  http://smartcell.embl.de/

NEURON  www.neuron.yale.edu

GEPASI http://www.gepasi.org/

StochSim  www.anat.cam.ac.uk/ compcell /StochSim.html
MesoRD http://mesord.sourceforge.net/

MCell www.mcell.cnl.salk.edu/

GENESIS  www.genesis-sim.org/ GENESIS/

VirtualCell www.nrcam.uchc.edu/

Table C.1: Internet Representation of mentioned Simulators
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