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SummaryOver the last de
ades, the amount of data about mole
ular pro
esses within 
ells hastremendously in
reased leading in parti
ular to an in
reased interest in theoreti
alinvestigations of su
h systems. One basi
 theoreti
al approa
h in this 
ontext is tomodel pro
esses in biologi
al 
ells as 
hemi
al rea
tion (di�usion-) systems and tostudy their properties by 
omputer simulations.One major problem in handling su
h systems is that they often simultaneously
ontain substrates with a wide range of possible parti
le numbers. For example,ribosomes typi
ally exist in small numbers; tRNA-mole
ules or proteins are repre-sented in intermediate quantities; and some ions, su
h as potassium or sodium, aretypi
ally present in large quantities. However, no 
onventional algorithm works wellfor su
h a wide range of parti
le numbers: Small parti
le numbers require sto
hasti
algorithms, whereas intermediate and large parti
le numbers 
an only be treated by
omputationally more e�
ient, though perhaps less exa
t modeling.To address this problem, I developed the COntrollable Approximative STo
hasti
Algorithm (COAST). COAST is a self adjusting algorithm that 
an be applied to sim-ulate rea
tion and di�usion systems. It is based on three di�erent levels of modeling:an exa
t sto
hasti
 approa
h for low parti
le numbers, an approximative sto
hasti
approa
h by Gaussian distributions for intermediate numbers, and a des
ription bydeterministi
 kineti
s for high parti
le numbers.A spe
ial 
hara
teristi
 of COAST is that it automati
ally determines the optimallevel of modeling for the rea
tion 
hannel at ea
h time step. This is done by using
riteria, whi
h appropriately depend on one single error 
ontrol parameter α. One
an show that all approximations of COAST lead to errors even smaller than α.Thus, by 
hoosing a suitable value for α, the user 
an easily �nd an optimal trade o�between a

ura
y and 
omputational e�
ien
y for an individual simulation system.It is demonstrated in test simulations that COAST is able to reprodu
e resultsof exa
t sto
hasti
 algorithms with small errors. In most 
ases, the error is mu
hsmaller than α. On the other hand, COAST shows a di�erent asymptoti
 dependen
eof the runtime on the number of parti
les N : For n-order rea
tions, the asymptoti
runtime is proportional to Nn for exa
t algorithms, but proportional to Nn−1 forCOAST. So 
learly, COAST provides signi�
ant improvements, in parti
ular if N islarge and n is small.
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1 Introdu
tionTo understand the 
omplexity and dynami
s of biologi
al systems, mathemati
almodeling and 
omputer simulations have be
ome an important area of resear
h in thelast de
ade. Here, I present an algorithm that is espe
ially designed for the simulationof rea
tion di�usion systems with a wide variety of spe
ies present in very di�erentorders of magnitudes of 
on
entration. It is a 
ontribution to the 
urrent developmentof algorithms for systems biology that aims at providing a 
omprehensive view on
hemi
al pro
esses in general, and 
ellular pro
esses in parti
ular. In the last years,biologi
al resear
h has fo
used on the mole
ular details of the systems under study.Presently, systems biology tries to put these pie
es together 
ombining theoreti
aland experimental approa
hes.Computational Modeling Biology was on
e limited to redu
tionist approa
hes,whi
h were very helpful in the past. However, by blinding out 
onne
tions in thosesystems, the retained models are in
omplete, ina

urate and simply in
orre
t [Mell-man and Misteli, 2003℄. To really obtain a 
omprehensive view on biologi
al systems,we have to be able to pro
ess, analyze, and interpret intera
tions and dynami
 events.Computational modeling allows us to explore su
h events taking a

ount of the 
om-ponents and the pathways established within the 
ellular systems under investigation.Modeling has had a long tradition, and remarkable su

ess, in dis
iplines su
h asengineering and physi
s. Physi
al s
ien
e, for example, is supported by three pillars:experimental studies, theoreti
al studies and simulation. Now, the 
urrent devel-opment in systems biology indi
ates that simulations will be
ome more and moreimportant in the future of life s
ien
es. The amount of information gained in biologi-
al s
ien
e has developed tremendously over the last years. Biologi
al modeling useswell-established methods su
h as the �nite element method (=�nite element analy-sis, FEA) or numeri
al te
hniques to solve ordinary di�erential equations (ODEs)or partial di�erential equations (PDEs) des
ribing biologi
al systems [Doyle, 2001℄.ODEs and PDEs are 
ommonly used to model biologi
al networks like metaboli
 orsignal transdu
tion networks [Vilar et al., 2003℄.The roots of the theory of di�erential equations go ba
k to the time of the de-velopment of in�nitesimal 
al
ulus by I.Newton (1643-1727) and G.Leibniz (1646-1716) at the end of the 17th 
entury. Sin
e then, famous mathemati
ians su
h asJ.Bernoulli (1654-1705), who 
al
ulated the orbits of the planets, L.Euler (1707-1783), J.L.Lagrange (1736-1813) and C.F.Gauÿ worked in that �eld. Di�erentialequations be
ame an important tool in physi
s (motion, ele
tri
al resonant 
ir
uits),1



1 Introdu
tion

Figure 1.1: The �gure shows the signal transdu
tion network leading to apoptosis presentedby Hanahan. It gives an example of how 
omplex 
ellular pro
esses 
an be.Reprinted from Cell, Vol.100, Hanahan and Weinberg, The hallmarks of 
an
er,p57-70, 
opyright (2000), with permission from Elsevier.biology (population dynami
s, Lotka-Volterra model of predator-prey relation), 
he-mistry (
hemi
al rea
tions, 
arbon dating C14-method) and the �nan
ial se
tor (
y
leof growth).Advantages of Computational Models Some biologi
al 
on
epts have alreadybeen dis
overed by 
omputational modeling. They in
lude bistability [Bhalla andIyengar, 1999℄, ultrasensitivity [Ferrell and Ma
hleder, 1998, Ferrell, 1999℄, and rhyth-mi
 behavior [Elowitz, 2000℄. Ultrasensitivity de�nes a response that is more sen-sitive to ligand 
on
entration as 
ompared to the standard responses as de�ned byMi
haelis-Menten kineti
s [Goldbeter and Koshland, 1981℄. A 
lassi
al Mi
haelis-Menten rea
tion is des
ribed by a hyperboli
 rea
tion velo
ity 
urve, while an ul-trasensitive rea
tion is des
ribed by a sigmoidal 
urve. In 1996, Huang and Ferrellanalyzed the MAPKinase-signaling-pathway (MAPK: mitogen a
tivated protein ki-nase) in Xenopus oo
ytes [Huang and Ferrell, 1996℄. They found that one part, themodule 
onsisting of the three MAPKinases, worked as a swit
h, �ltering noise andonly being a
tivated if the input rea
hed a 
ertain level. This behavior is experi-mentally observable only if one analyzes a single 
ell. Another example of 
omputa-2



Chara
teristi
 Quantity Sour
eproteins 225,000ribosomes 15,000tRNA-mole
ules 170,000small organi
 mole
ules 15,000,000ions 25,000,000water 25% [Goodsell, 1993℄no. of genes 4497 [Keseler et al., 2005℄no. of rea
tions per 
ell 
y
le 1014 − 1016 [Endy and Brent, 2001℄Table 1.1: The table shows some 
hara
teristi
s of an average E.
oli 
ell. The 
omplexityis about a fa
tor thousand smaller for the smallest 
ell types (my
oplasms) andabout a fa
tor of thousand larger for typi
al plant and animal 
ells [S
hwehm,2001℄.tional modeling is the modeling of ion-
hannels whi
h goes ba
k several years [Levitt,1999℄, rea
tion-di�usion systems simulating transport pro
esses out of the nu
leus, ortransport pro
esses of proteins between the endoplasmati
 reti
ulum and the Golgi
omplex [Ladinsky et al., 1999℄.These models provide a systemati
 framework to des
ribe and analyze su
h 
om-plex systems (
f. Table 1.1); this 
omplexity is the result of the number of singlenodes within these networks and their intera
tions. They summarize the 
urrentknowledge and hypotheses about missing information. Speaking from a bio
hemi-
al point of view the nodes are biologi
ally a
tive substrates and the edges are the
hemi
al intera
tions between them.Models in general have several advantages. The problem with analyzing 
omplexsystems is that the output is far from intuitive; doubling the input does not mean thatthe output will be doubled [Voit, 2002℄. This nonlinearity is 
aused by synergisti
e�e
ts, whi
h results in the invalidity of the summation prin
iple of single events.Modeled systems are easier to manipulate than real systems. One 
lear example forthis are multiple kno
k-out experiments. Another example involves the times
alesof biologi
al pro
esses. The time span for mole
ular movements is within µ-se
onds,whereas a human life is approximately 109 s (75 years). The former time span ishard to observe and the latter di�
ult to follow. Simulations allow s
ientists to
apture time and s
ales together. It should be noted, however, that a model is onlyan approximation of reality, and all predi
tions made with those models 
an only beas good as the model used to make those predi
tions.It is not the aim of simulations to repla
e in vivo experiments, but rather to o�erimportant amendments for their planing and analyses. The model 
an be used toobtain an overview of possible out
omes. Su�
iently detailed and a

urate models
an serve as a referen
e for interpreting experimental results and suggesting further3



1 Introdu
tion

Figure 1.2: The �gure presents the hypothesis-driven resear
h in systems biology demon-strating how mathemati
al models 
an be a 
ontribution to resear
h. Reprintedwith permission from SCIENCE, Vol.100, Kitano, Systems biology: a briefsummary, p1662-1664, Mar
h 2002. Copyright (2002) AAAS.hypotheses [Takahashi and al., 2002℄. Simulations 
an provide insight into otherwiseimpossible s
enarios and so will be able to save time and money. They are expe
tedto guide wet-lab pro
esses and narrow the experimental sear
h spa
e.Progress in bio
hemistry and biology in general has provided s
ien
e with greatdetail of 
ellular pro
esses. Computational biology seeks to understand the prin
i-ples underlying their dynami
 behavior. As Bunds
huh et al. [2003℄ state , there hasbeen 
onsiderable e�ort in the past to model the bio
hemi
al network of a whole 
ellor 
ellular subsystems. He provides examples for the bene�ts gained by modeling,namely enhan
ing our understanding of 
ell fun
tions, easily observing the desig-nated systems and determining the quantities of interest (measuring them would beonly possible by 
omplex experiments). For these reasons, he sees the future of drugdevelopment, where the e�e
ts of a putative drug on a 
ell 
an be immediately tested.The Problem of Modeling Cellular Pro
esses and Stru
ture The tools neededto establish a working model are provided by mathemati
s and bioinformati
s. Forbulk 
hemi
al rea
tions, it is 
ommon to �nd deterministi
 models resulting from themass a
tion law and formulated by di�erential equations.However ba
k in 1930, John Burdon Haldane, the 
o-founder of population geneti
s,4



expressed that 
ertain 
riti
al pro
esses in the 
ell may be 
arried out by only a fewenzymes [Haldane, 1930℄. 16 years later, M
Ilwain [1946℄ already repeated this in hisnature arti
le as a well known fa
t. In 1989 P.J.Halling asks, in the title of his publi-
ation, �Do the laws of 
hemistry apply to living 
ells?� and 
omes to the 
on
lusionthat a 
ell is a unique 
hemi
al system [Halling, 1989℄. It is su
h a small rea
tionunit, that some spe
ies only appear in very small quantities - sometimes only a 
oupleof mole
ules. In su
h 
ases, deterministi
 models are no longer appropriate. Theyare misleading and likely to result in in
orre
t expe
tations. For situations where
hemi
al spe
ies exist in very small quantities, it may be better to use sto
hasti
models.The �rst s
ientists to mention sto
hasti
 methods as a tool for modeling 
hemi
alrea
tions were the biophysi
ist and Nobel prize winner Max Delbrü
k (1906-1981)and the dut
h physi
ist and (Niels Bohr's �rst s
ienti�
 assistant) Hendrik Anton(Hans) Kramers (1894-1952) [Delbrü
k, 1940, Kramers, 1940℄.Delbrü
k examined enzyme rea
tions, and Kramers studied Brownian motion in afor
e �eld. In the 1950's, Alfred Renyi (1921-1970) was able to show that the Lawof Mass A
tion breaks down for small systems [Renyi, 1954℄, and K.Singer explainedthat even small �u
tuations 
an have signi�
ant e�e
ts on 
hemi
al rea
tions, that
onsequently 
an lead to the irreprodu
ibility of experiments. If a system has onlyspe
ies present in low 
opy numbers, their steady-state �u
tuations be
ome signi�-
ant in 
omparison to the mean. That is why the system 
an no longer be des
ribedby the deterministi
 law of mass a
tion.Many geneti
 regulatory rea
tions o

ur only at low 
on
entrations. However, tiny
hanges 
an have a big in�uen
e on the whole system, as demonstrated by the phage
λ lysis-lysogeny de
ision 
ir
uit [M
Adams and Arkin, 1999, Rao et al., 2002℄. Thissto
hasti
 swit
hing has been analyzed using sto
hasti
 kineti
s and by deterministi
models [Srivastava et al., 2002℄.To attempt resear
h on a 
ellular level, new algorithms were required. Gillespie[1977℄ proposed his Sto
hasti
 Simulation Algorithm (SSA), whi
h will be des
ribedin the form of the First Rea
tion Method in Se
tion 2.4.2. It is also 
alled the Exa
tSto
hasti
 Method (ESA) [Veree
ken et al., 1997℄. Sin
e Gillespie's proposal, im-provements have been suggested su
h as the Next Rea
tion Method by Gibson andBru
k [2000℄ that -as has been re
ently shown- is not always faster, even thoughit uses less random numbers, due to its larger 
omputational overhead [Cao et al.,2004b℄.So far, several quantitative kineti
 tools have been developed to model dynami
systems behavior (e.g.: E-CELL [Tomita et al., 1999℄, GEPASI [Mendes, 1993℄, andVirtual Cell [S
ha� et al., 1997℄). They 
an all be used for a wide variety of s
e-narios. If one momentarily ignores usability and implementation, they all in
ludeeither 
ompletely sto
hasti
 (a form of the SSA) or stri
tly deterministi
 algorithms.5



1 Introdu
tionAs mentioned previously and dis
ussed in 2.3.1, both approa
hes have their realmsof appropriateness in 
ertain environments. Ordinary di�erential equations (ODE's)have the advantage of being fast and reliable in the ma
ros
opi
 limit where a largenumber of mole
ules is available. However, at low 
on
entrations, they 
annot bedes
ribed by these deterministi
 methods any more, due to sto
hasti
 e�e
ts. Thepresen
e of sto
hasti
 e�e
ts in gene expression and signal transdu
tion pro
esseshas been shown by both, theoreti
al and experimental approa
hes [Levin et al., 1998,M
Adams and Arkin, 1997, Ozbudak and al., 2002, Elowitz et al., 2002℄. In this 
ase,a sto
hasti
 approa
h su
h as Gillespie's Dire
t Method for modeling and simulationis bio
hemi
ally and biophysi
ally more realisti
, but 
omputationally limited in viewof the high numbers of mole
ules (parti
les are tra
ed as individuals simulating theirmovements and rea
tions).Of 
ourse, sto
hasti
 algorithms are 
loser to reality, but very time 
onsuming,restri
ting their use to systems with small and intermediate parti
le numbers. Onthe other hand deterministi
 models are better suited for systems with large parti
lenumbers, but they fail at predi
tions for systems with intermediate amounts of mole-
ules. Therefore, so 
alled approximative algorithms have been invented that aremostly based on the Dire
t Method, and promise to �ll the gap between sto
hasti
and deterministi
 approa
hes. They are further des
ribed in Se
tion 2.4.2. The keyidea is to de�ne a time interval in whi
h the number of rea
tions is small, so therea
tion probabilities 
an be assumed to be 
onstant. However, those approximativealgorithms, whi
h work well for intermediate parti
le numbers, do not 
over the 
om-plexity of a 
ellular system. The idea was 
on
eived to develop hybrid algorithms,that use the afore-mentioned approa
hes and 
ombine them into one strategy [Kiehlet al., 2004℄. The 
ru
ial problem is to de�ne the point of transition, i.e., when toswit
h from a sto
hasti
 to an approximate to a deterministi
 approa
h.For example, some algorithms exist that are based on �xed partitions of the systeminto slow and fast rea
tions. �Fast� means here that it is likely to have a lot of rea
-tions per time span and �slow� the opposite. With this 
ombination, slow rea
tionsare treated by the First Rea
tion Method, and fast rea
tions either by determinis-ti
 rea
tion kineti
s [Haseltine, 2002, Kiehl et al., 2004, Takahashi et al., 2004℄, byLangevin equations [Haseltine, 2002℄, or by random variables distributed a

ordingto the probability density fun
tions at a quasi-stationary state [Rao and Arkin, 2003℄.The disadvantage is that the user of the algorithm has to partition the system,de�ning the point of transition. The non-automati
 prede�ned partitioning makesthese algorithms unusable for systems with os
illating 
on
entrations, whi
h is likelyin most biologi
al systems, be
ause here a rea
tion 
hanges its 
ondition between�slow� and �fast�. This is not the only point of 
riti
ism. Another aspe
t that has notbeen 
onsidered enough is spatial dimension, i.e., the 
ellular stru
ture. Sin
e auto-mati
 adaption does not exist, the ideas des
ribed are not appropriate for systems6



Figure 1.3: A volume split in volume elements (voxels).with non-homogeneously distributed substrates. A 
ell is not a single rea
tion entity,it is a 
omplex organization of spe
ialized rea
tion 
ompartments (i.e., mito
hondria,Golgi 
omplex). It has a 
omplex three dimensional stru
ture and whoever tries tosimulate this, has to a

ount for that as well.So, although mu
h data on 
ellular stru
ture, 
onstru
tion, and 
onstitution hasbeen a

umulated, there is still need for e�
ient algorithms simulating the 
ell asa rea
tion-di�usion system. The 
urrent implementations la
k algorithms for multi-s
ale parti
le numbers and a 
omplete representation of three dimensional di�usionpro
esses. Most of the existing simulators divide the 
ell into a few homogeneous re-a
tion spa
es. In those simulators, the information on the whereabouts of mole
uleswithin the 
ell is lost, so that there is no way to re�e
t the 
hange of gradients anymore. Cal
ium waves are only one example to demonstrate the importan
e of spatialdimension [Fink et al., 2000℄.The New Approa
h In my approa
h, the 
ell is divided into a grid of 
ubi
alvolume elements (VE) (
f. Figure 1.3). Using this approa
h, we in
rease the numberof observable spa
es and are able to lo
ate spe
ies dependently on the grid size.Another advantage of subvolumes is related to the way rea
tions are handled. Asubvolume is the smallest rea
tion jar. There are two general ideas of 
al
ulatingbio
hemi
al kineti
s. Either the 
hanges of 
on
entrations are predi
ted based onordinary and partial di�erential equations (PDE), or by a sto
hasti
 approa
h usingMonte Carlo simulations.The VE-approa
h enables me to use a hybrid model that 
ombines the advan-tages of exa
t, approximative, and deterministi
 approa
hes. With the ControllableApproximative Sto
hasti
 rea
tion-algorithm (COAST) presented herein, I have de-veloped an algorithm ful�lling the needs of state-of-the-art simulators [Möller and7



1 Introdu
tionWagner, 2005℄.In re
ent years the 
ommunity involved in the simulation of modeling biologi
alsystems emphasized the ne
essity of e�
ient designs of algorithms [S
hwehm, 2001℄.Based on the data by Endy and Brent [2001℄ S
hwehm assumed 1014 rea
tions too

ur per 
ell 
y
le in Es
heri
hia 
oli and 
al
ulated that a sto
hasti
 simulation ofa whole 
ell 
y
le would take about twelve years on a single pro
essor. Therefore he
on
luded:�Sto
hasti
 whole 
ell simulation is thus either the realm of massively parallel 
om-puting, or it needs new algorithms whi
h 
an 
ombine deterministi
 and sto
hasti
simulation te
hniques.�With COAST, I present su
h an algorithm based on three di�erent regimes ofmodeling. The transition points are de�ned by only a single error parameter α. Thisvalue 
ontrols the partitioning of the rea
tions. Three modeling levels are used: anexa
t way based on Gillespie's Dire
t Method for small parti
le numbers, for interme-diate an approximative method based on Gaussian distributions, and for high parti
lenumbers a deterministi
 approa
h.To prove its reliability and a

ura
y, I 
ompared COAST to the First Rea
tionMethod and the tau-leap method, whi
h is used as an example for an approximativealgorithm [Gillespie, 1976, 2001℄. It turns out that COAST is as a

urate as the exa
tmethod, but is signi�
antly faster than the exa
t and the approximative algorithm.It has shown reliable results for simple and 
omplex systems like the Oregonator orMi
haelis-Menten kineti
s [Gillespie, 1977, Mi
haelis and Menten, 1913℄. The keyadvantages of COAST are the wide s
ale of parti
le numbers 
overed, the self parti-tioning of the rea
tions 
hannels, and the �easy-to-set� error value.Another advantage of the COAST-algorithm is to model di�usion as well. Asalready suggested by Stundzia and Lumsden [1996℄, who 
onsidered the transitionto neighbor volume elements (voxels) as merely additional rea
tions using the FirstRea
tion Method, rea
tion algorithms 
an be adopted for di�usion. Thus far, partialdi�erential equations have been the most e�
ient way in the three dimensional spa
enext to tra
k single mole
ules. It depends on the experiment, if the re
onstru
tion ofdi�usion within a 
ell is ne
essary or if it 
an be negle
ted. This of 
ourse depends onthe type of information one wants to gain. Essentially, all 
ellular pro
esses in
ludesome kind of di�usive transport of metabolite- and enzyme-sized solutes [Oelve
zkyand Verkman, 1998℄.It 
an be shown that di�usion and sub
ellular 
ompartmentalization in�uen
es thesignaling 
hemistry of a 
ell, whi
h results in di�erent signaling, su
h as washout ofsignals, reinfor
ement of signals, and the 
onversion of steady responses to transients[Bhalla, 2004℄. It is important that one takes the three dimensional stru
ture of a8




ell into a

ount. Spa
ial appearan
es su
h as 
al
ium-waves have been modeled andexperimentally shown [Fink et al., 2000, Strier et al., 2003℄. The di�usion is be
omingimportant sin
e sto
hasti
 e�e
ts on a 
ellular s
ale have a higher impa
t.Nowadays, s
ientist have the tools to study mole
ular di�usion pro
esses. Bi-ologists are assisted by using the green �uores
ent protein (GFP) of the jelly�shAequorea vi
toria to tag nearly any protein and study their lo
alization, dynami
sand intera
tions in living 
ells [Lippin
ott-S
hwartz et al., 2001, Tsien, 1998℄. Other�uores
ent proteins in
luding the yellow �uores
ent protein (YFP) are also used.New imaging methods improved the way of observing the GFP fusion proteins, su
has �uores
en
e re
overy (FRAP), �uores
en
e 
orrelation spe
tros
opy (FCS) and�uores
en
e resonan
e energy transfer (FRET). They allow resear
hers to tra
e sin-gle mole
ules, measure 
on
entrations of substrates, and analyse their distribution.Lippin
ott-S
hwartz et al. [2001℄ point out that the te
hni
al advan
es will help s
i-entists to move from a steady-state view to a dynami
 model of 
ellular fun
tion.Su
h data has then been used to establish reliable three dimensional 
ellular modelsa

urate enough to simulate 
ellular pro
esses [Oelve
zky and Verkman, 1998℄.The most important algorithms that 
an be used to model di�usion are the RandomWalk or Wiener Pro
ess (
f. Se
tion 2.4.1), and sto
hasti
 deterministi
 equations(Langevin equation). The advantage of the Random Walk is the a

urate modelingof all possible intera
tions that 
an o

ur, but the 
omputational expense be
omesvery high, if the parti
le numbers rise. The Langevin equations des
ribe the sto
has-ti
 traje
tories of single parti
les. Furthermore 
omputationally expensive for largeparti
le numbers. Other deterministi
 di�usion models suppress sto
hasti
 �u
tua-tions and are therefore not useful for simulating signaling 
ellular networks with lowparti
le numbers.The rea
tion algorithm COAST 
an be modi�ed to be a rea
tion di�usion algo-rithm, des
ribing both 
ru
ial elements of a dynami
 
ell with one approa
h. Todemonstrate the 
apabilities of COAST, I applied it to a one dimensional grid andtested speed and a

ura
y against the random walk as the most elementary way ofmodeling di�usion.The a

ura
y of COAST is better than set by the error parameter α. I have beenable to model the di�usion of parti
les without and in a for
e�eld. The results showthat COAST is able to model the means and varian
es of the expe
ted distributionsa

urately.In this thesis I des
ribe the rea
tion algorithm COAST and its appli
ation todi�usion. Furthermore I tested its a

ura
y and reliability 
ompared to 
ommonalgorithms and give a pra
ti
al reasoning for the points of transition between themodeling regimes. The results indi
ate that the symbiosis of the di�usion and rea
-tion implementations provide a powerful instrument for simulating 
ellular pro
esses.
9



2 State of the ArtIn the introdu
tion I have explained the ne
essity of the development of e�
ientalgorithms to model 
ellular systems. The main problems are the simulation ofrea
tion pro
esses involving strong 
hanging numbers of parti
les and therefore theneed of using deterministi
 models but also sto
hasti
 models to give a realisti
pi
ture of stru
tures with low 
on
entrations. In this 
hapter I will give an overviewon existing methods to model 
hemi
al rea
tion and di�usion pro
esses and dis
usssome of the existing tools for modeling biologi
al systems.2.1 Meaning of Chemi
al Rea
tions & Di�usion forBiologi
al Systems2.1.1 Chemi
al Rea
tionsMaybe it is true to say that 
hemistry is not everything, but without it, everythingwould be nothing. I am sure one will be always able to �nd ex
eptions, but when it
omes to life and biologi
al systems this statement 
annot be more true.Chemi
al rea
tions are the pro
esses that result in the inter
onversion of 
hemi
alsubstan
es. The driving for
e behind 
hemi
al rea
tions is the desire of the rea
tingspe
ies to rearrange themselves into a lower energeti
 state. This is not limitedto the inorgani
 world. It rea
hes its highest 
omplexity by using 
arbon whi
hallows a manifoldly variety of high 
omplex mole
ules whi
h are the basi
 
omponentsof life in the form we know; therefore the 
hemistry of 
arbon is named organi

hemistry. Stri
tly, 
hemi
al rea
tions involve the motion of ele
trons in the formingand breaking of 
hemi
al bonds. However, the general 
on
ept of a 
hemi
al rea
tionis also appli
able to transformations based on non 
ovalent bondings.Every rea
tion R has a di�erent rea
tion velo
ity, quanti�ed by a rea
tion 
onstant
k. The 
ourse of a 
hemi
al rea
tion is des
ribed by a rea
tion equation:rea
tant(s) or edu
t(s) −→ produ
t(s)All biologi
al pro
esses depend on the formation and breaking of 
ovalent and non
ovalent bondings. The latter in
lude so 
alled weak bondings whi
h 
an be spe
i�edas ele
trostati
 intera
tions, hydrogen bonds or van der Waals intera
tions. Theseweak intera
tions are the way of enzymes intera
t with their substrates, hormoneswith their re
eptors and antibodies with antigens.10



2.2 From Systems Biology to Mathemati
al ModelingThe 
ell is the main site of enormous bio
hemi
al a
tivity 
alled the metabolism.This is the pro
ess of 
hemi
al 
hanges whi
h goes on 
ontinuously in the livingorganism. The build-up of tissue, repla
ement of old tissue, 
onversion of food toenergy, disposal of waste materials and reprodu
tion - all these a
tivities are whatwe 
hara
terize as �life�. Life needs 
hemi
al rea
tions.2.1.2 Di�usionDi�usion des
ribes the spreading or distribution of a substan
e be
ause of the thermalmovement of their parti
les. Nowadays we de�ne it as a spontaneous physi
al pro
essof equilibration along a gradient of 
on
entration, whi
h is degraded during thatpro
ess.Di�usion is the most important way of mole
ular transport within 
ells, but mainlyfor small distan
es. To 
over twi
e the distan
e a parti
le needs four times the dif-fusion time. In this way di�usion is limiting the size of a 
ell and de�nes for multi-
ellular organisms the need of other not on di�usion based transport systems (nervesystem, bloodstream). The di�usibility of a parti
le depends on the temperature,its size and its 
harge. We observe the di�usion of parti
les as a 
onsequen
e of a
on
entration gradient. Corresponding to the se
ond fundamental theorem of ther-modynami
s, whi
h demands an in
rease of entropy, one 
an observe seemingly adire
ted movement of parti
les from the area of higher 
on
entration to the area oflower 
on
entration, but it is not a dire
ted movement. The seemingly dire
ted �owis the 
onsequen
e of the sto
hasti
 pro
ess o

urring here.Biologi
al pro
esses 
onstantly generate gradients of 
on
entration by produ
ingspe
ies in a lo
alized manner, for example the produ
tion of proteins at the ribosomes.2.2 From Systems Biology to Mathemati
alModelingTo make biomole
ular knowledge useful for medi
al or te
hni
al purposes one needsan integral understanding of 
ellular systems. Resear
h has been 
on
entrated overthe last years on mole
ular details. Systems biology is the a
ademi
 �eld that seeks tointegrate di�erent levels of information to understand how biologi
al systems work.It is a �whole-isti
� [Chong and Ray, 2002℄, interdis
iplinary approa
h with methodsand 
on
epts of mole
ular biology, systemiology and informati
s to gain a betterunderstanding of 
ellular pro
esses. It is not 
on
entrated on single genes or proteins,but on the intera
tions between all 
omponents of a system.H. Kitano [2002℄ published an ex
ellent overview on Systems Biology. A

ordingto him it is an examination of stru
ture and dynami
s of 
ellular and organismalfun
tion rather than the fo
us on isolated parts of a 
ell. Many properties arise at11



2 State of the Artthe systems level only and 
annot be derived by looking at details. A 
ell is an ex-ample for a system with a 
omplex mi
rostru
ture, whose 
omponents 
ommuni
atemanifoldly among ea
h other and with the outside world. Voit [2002℄ supports thisby stating, that the 
hallenge dealing with 
omplex systems is a result of synergisti
properties, whi
h do not exist in any 
onstituents, but only in their intri
ate inter-relationships .Knowing the parts of a -for example- gene-regulatory network and their intera
-tions is not enough. We have to understand how 
hanges in one part are a�e
ting theothers, how they dynami
ally intera
t. Kitano thinks understanding of a system 
anbe gained by insight into four properties: �System stru
ture� (gene intera
tions, bio-
hemi
al pathways), �System dynami
s� (system behavior over time under 
hanging
onditions), �The 
ontrol method� (me
hanisms that 
ontrol the state of the 
ell),�The design method� (modify systems to have desired properties).Biology delivers the data and has the methods to gain them, informati
s pro
essesand stru
tures it. Another purpose of informati
s is to provide tools to model andvisualize. The system s
ien
es provide methods to des
ribe, analyse and abstra
tthe biologi
al systems. Classi
al examples of systems are the immune system, orthe nerve system. The original idea of a system level understanding is not new andgoes ba
k to the �rst half of the last 
entury [Wiener, 1948℄, but new methods likeautomated gene sequen
ing, DNA mi
roarrays, proteome 
hips and metaboli
 pro�leshave provided s
ien
e with valuable information about the geneti
 and metaboli
responses of organisms to stimuli to make an in sili
o 
ell envisionable [Voit, 2002℄.Kitano points out, that understanding of the properties of biologi
al systems mighthave an impa
t on the future of medi
ine. Drug dis
overy through trial and error hasbeen su

essful throughout the 
enturies [Voit, 2002℄. Then man began to do resear
hon the details of the organism, to disassemble it and its 
omponents to optimize thepro
ess in �nding the fundamental me
hanisms of health and disease. This approa
his 
alled redu
tionism and has been useful over the last de
ades. As des
ribed abovethe knowledge of details is not enough. By knowing more about the inter
hange ofthose single parts, pharma
euti
al 
ompanies would be able to undergo their resear
hmu
h more e�
ient with less failures and less expense.There are 
urrent ongoing initiatives for systems biology and I will only list someexamples: Institute for systems biology Seattle, USA, by Leroy Hood; Allian
e for
ellular signaling, USA, by A. Gilamn; and in Japan the Systems biology group byH.Kitano. [Kitano, 2002℄. In Germany the BMBF has �nan
ed proje
ts within thes
ope of the resear
h program "Systeme des Lebens - Systembiologie". The aim is avirtual representation of a 
ell like a virtual laboratory. This should smooth the wayfor predi
tive biology, where 
omparable resear
h is possible like in a real biologi
alsystem.This is not easy. The biologi
al and metaboli
 systems governing the e�e
ts are12



2.3 Modelingdramati
ally 
omplex. Voit points out, a 
ell is more than a 
olle
tion of membranes,organelles and proteins, mixed with some DNA and RNA. Redu
tionist methods arene
essary, but they need to be a

ompanied by mathemati
al 
on
epts, whi
h are
apable of 
apturing the essen
e of 
omplex, integrated systems.2.3 ModelingA 
entral role is the mathemati
al modeling of 
omplex 
ellular networks. The math-emati
al models 
onne
t the parts of systems biology. The Pro
ess of modeling isintera
tive. That is the model world has to 
onverge towards the reality. All mod-els have to be 
ompared to real data and than be adjusted. In Se
tion 2.5 someapproa
hes toward modeling 
ellular systems are des
ribed.A �rst step to get away from a stati
al biologi
al network (
f. 'Bio
hemi
al Path-way', Boehringer®) is to model biologi
al pro
esses by algorithms and to representtheir dynami
al 
hara
ter with these algorithms. All available data for fun
tion, lo-
alisation, 
on
entration and intera
tions are thereby 
al
ulatively 
ombined. Mod-els are abstra
tions that are easier to manipulate than the a
tual system [Endy andBrent, 2001℄. They are typi
ally heuristi
 and develop alongside the experiments andare inseparable from them. Future development of 
omputational speed will be of
riti
al need to implement high s
aled networks. The development of reliable modelsis 
ru
ially dependent on the data the model is based on. Gaps in knowledge about
omponents of the system, intera
tions and of other parts of related networks 
an bevery harmful. Abstra
tion is ne
essary for a model, but the simpli�
ation must bedone 
arefully. The impa
t of mole
ular 
rowding is well known [Minton, 2001℄, butbe
ause of its 
omplexity it has not yet been modeled. One 
riterion of biologi
al
omplexity is the ri
h network of intera
tions among the 
onstituents. These inter-a
tions are numerous and have nonlinear 
hara
teristi
s that are di�
ult to handlewith intuition alone [Voit, 2002℄. Nonlinearities make 
omplex systems di�
ult tounderstand. Only mathemati
al models are able to help us predi
t those systems faraway from our intuition.In the 1950s the 
omputer be
ame useful in solving systems of di�erential equa-tions. However, it took 20 more years until in the 1970s sto
hasti
 methods havebeen developed to model low representations of spe
ies (
f. Se
tion 2.3.1 for sto
has-ti
 and deterministi
 methods) [Gillespie, 1976℄. Those methods have been improved(
f. next se
tion for details) [Gibson and Bru
k, 2000℄ and used in the 90's to de-s
ribe di�erent systems [Arkin et al., 1998, Bhalla, 2002℄. Further improvements
an be expe
ted by 
ombining sto
hasti
 and deterministi
 approa
hes (
f. Se
tion2.4.2). This dissertation is to be a 
ontribution to the worldwide dis
ussion on thattopi
. A system 
an be at some steady state for a 
ertain parameter value. If thisvalue is now raised above a 
ertain threshold, a feedba
k me
hanism 
an result in13



2 State of the Artan os
illating system and not a proportional in
rease of the output. Here are someexamples how mathemati
al models have been used in the past.J.Tyson [1991℄ modeled the 
ell-division-
y
le. In his model like in most mathe-mati
al models 
hemi
al kineti
s are represented by involving ordinary and partialdi�erential equations. With su
h simulators the swit
h-like behavior of the MAPK-module in signal transdu
tion has been 
lari�ed [Ferrell, 1999℄, whi
h is experimen-tally only a

essible if experiments are done on single 
ells. Other simulations thathave been done were simulations of ion 
hannels [Hodgkin and Huxley, 1952℄ and thehuman heart [Noble, 2002℄. The work by Hodgkin and Huxley represents one of thehighest-points in 
ellular biophysi
s and the quantitative model of a
tion potentialgeneration and propagation they developed forms the basis for understanding andmodeling the ex
itable behavior of all neurons; it is the single most su

essful quanti-tative model in neuros
ien
e [Hille, 1984℄. Smith et al. [2002℄ were the �rst to modelthe transport of mole
ules into and out of the nu
leus. Other examples are 
al
iumwaves des
ribing the release of 
al
ium ions from the sar
oplasmi
 reti
ulum [Loewand S
ha�, 2001℄.Several tools are available already to enable biologists to get a

ess to a �eldthat hitherto has been restri
ted to the design of integrated 
ir
uits and 
hemi
alpro
essing plants [Doyle, 2001℄ (
f. Se
tion 2.5).The main problems of modeling result from simpli�
ation and abstra
tion. The
ell is not a well stirred rea
tion tube. It is highly 
ompartmented with high lo
al
on
entrations (e.g. mito
hondria matrix). Ma
romole
ular 
rowding has a greatimpa
t on di�usion and rea
tion. Mole
ules of a 
ertain size are not able to dif-fuse at all or by a mu
h smaller di�usion 
oe�
ient than in experimental bu�er.Furthermore endogenous obsta
les hinder di�usion. Many rea
tions o

ur on two-dimensional membranes or in dimensionally restri
ted environments.Another di�
ulty is the nonlinearity of 
omplex systems. They defy the law of su-perposition, whi
h means that Devide and Conquer (Julius Caesar: Divide et Impera)is not possible. The single parts of linear systems 
an be analysed independently fromea
h other, but nonlinear systems usually lose essential 
hara
teristi
s when takenapart [Voit, 2000℄. Without mathemati
al analysis it is di�
ult to predi
t simpleme
hanisms like a feedba
k loop. Does the output in
rease or de
rease or don't
hange at all? Intuition does not help here. Other systems begin to os
illate under
ertain 
onditions and when the parameters are slightly 
hanged it does not respondat all [Kholodenko, 2000℄.Modeling gives a �exibility a
tual lab experiments 
annot provide. One is ableto model time expensive experiments in a fra
tion of the otherwise needed timeor observe pro
esses in detail whi
h take only mi
rose
onds. However, the aim ofmodeling is to assist traditional laboratory work, to suggest and 
oun
il, but not torepla
e it.14



2.3 Modeling2.3.1 Deterministi
 Versus Sto
hasti
 ModelingMathemati
al modeling is a powerful approa
h for understanding the 
omplexity ofbiologi
al systems. There have been already su

essful attempts for simulating 
om-plex biologi
al pro
esses like metaboli
 pathways, gene regulatory networks and 
ellsignaling. The models have not only generated experimentally veri�able hypothe-sis but have also provided valuable insights into the behavior of 
omplex biologi
alsystems [Meng et al., 2004℄. Modeling 
an be divided into three levels:� ma
ros
opi
: dynami
s of mole
ular 
on
entrations, mostly deterministi
 mod-els (di�erential equations or S-System [Voit, 2000℄)� mesos
opi
: dynami
s of single mole
ules, in general without referring to phys-i
al for
es (mostly sto
hasti
 models)� mi
ros
opi
: simulation of physi
al for
es between and within mole
ules, e.g.protein folding, do
king, mole
ular modelingThe most a

urate way would be modeling mole
ular dynami
s - modeling ona mi
ros
opi
 level. Therefore one has to tra
k the position and velo
ity of everymole
ule in the system. Furthermore every 
ollision has to be observed, if thereis a 
hemi
al rea
tion or not. By modeling mole
ular dynami
s we investigate the
hanges in spe
ies populations and their spatial distribution. The main problem withthis approa
h is the 
omputational expense. Although 
omputer te
hnology made abig leap forward during the last de
ade, su
h operations are still for super
omputersout of rea
h referring to 
omplex biologi
al systems in terms of time.There are several more e�
ient approa
hes to model 
hemi
al and physi
al pro-
esses like rea
tion and diffusion. In Se
tion 2.4 some of these models are presentedin detail. With slight simpli�
ations the models 
an be 
lassi�ed in two 
ategories.They 
an be 
lassi�ed as either sto
hasti
 or deterministi
, ex
luding 
ons
iously theapproximate approa
hes at this point. Nowadays hybrid models are introdu
ed to
lose the gap between these two regimes. To simplify the pro
ess let us 
on
entratenow on deterministi
 and sto
hasti
 algorithms for 
hemi
al rea
tion and afterwardsdis
uss how the existing ideas 
an be used to model di�usion.Deterministi
 Modeling If we assume the amount of rea
tive 
ollisions to be low
ompared to the amount of unsu

essful rea
tions, a simpli�
ation 
an be made.Parti
les 
an now di�use within a 
ertain area and keep the system in a well-stirred
ondition. Based on this assumption in 
hemistry it is quite 
ommon to formulate
hemi
al kineti
s of a 
hemi
al rea
tion using the Law of Mass A
tion:
2A + B ← k2 | k1 → C [A]2 · [B]

[C]2
= K(T, p) = k2

k1
, 15



2 State of the Artwhere K is the rea
tion 
onstant and a fun
tion of the temperature T and the pressure
p. This fun
tion is derived from:

d[C]

dt
= k1 [A]2 [B] − k2 [C].Here k1 and k2 are the velo
ity 
onstants for the two single rea
tions. The velo
ity
onstants are proportionality 
onstants equal to the initial rate of a rea
tion dividedby the 
on
entration of the rea
tant. A,B and C are the substrates and [A],[B] and

[C] are the 
on
entrations of the substrates, usually in [mol
l

].In words the Law of Mass A
tion says: The produ
t of the 
on
entration of therea
tion partners with all 
on
entrations always taken to the power of their stoi-
hiometri
 fa
tors, equals a 
onstant K whi
h has a numeri
al value that dependson the temperature and the pressure. K is 
alled the rea
tion 
onstant. The Lawof Mass A
tion follows if one assumes that the system has rea
hed equilibrium and
d[C]
dt

= 0. Let us emphasize the main problem with determinism dire
tly here. Thedi�erential equation assumes that the system is 
ontinuously predi
table, whi
h isof 
ourse not the 
ase for a 
omplex biologi
al system. Furthermore, the di�erentialequation or a system of di�erential equations works very well for high numbers ofparti
les where �u
tuations 
an be negle
ted, but often mole
ules in 
ell stru
turesare only present in small amounts and show a sto
hasti
 behavior. Moreover, thenumbers of parti
les 
hange not 
ontinuously, but dis
rete. The modeling of 
hemi
alrea
tions using deterministi
 rate laws has proven to be extremely su

essful in both
hemistry and bio
hemistry [Epstein and Pojman, 1998, Heinri
h and S
huster, 1996℄.Usually one is interested in the 
hange of metaboli
 
on
entrations over time.Therefore a di�erential equation or a system of di�erential equations has to be solved.However, exa
t solutions only exist for very simple systems. Consider the systemin the following rea
tion equation as an example where again A and B mark thesubstrates and k is the rea
tion 
onstant:
A

k→ B ⇒ d[A]

dt
= −k [A] ⇒ [A] = [A0] e

−ktMore 
omplex systems have to be solved by numeri
al simulation (e.g., Runge-KuttaMethod [But
her, 1987℄). In su
h a deterministi
 system of di�erential equationsevery substrate and ea
h of its derivates (modi�ed substrate) must have one equa-tion. So the number of rea
tions is dire
tly depending on the amount of spe
iespresent in this system. An additional 
ompli
ation 
an result from di�erently fastrea
tions, then the system is 
alled �sti��.If one applies ordinary di�erential equations, one makes three impli
it assumptions:16



2.3 Modeling

Figure 2.1: A Cell, a homogenous volume?Reprinted from �Invitation to Biology� by H.Curtis & N.S. Barnes, Worth Pub-lishers. Copyright (1994), with permission from W.H. Freeman and Company/ Worth Publishers� a very large rea
tion volume with high parti
le numbers present� an equilibrium of the system� a homogeneous distribution of all mole
ulesLet us now have a 
loser look at those assumptions. The fo
us of this thesis arealgorithms that shall be applied to biologi
al systems. The appropriate rea
tionvolume would be the volume of a single 
ell.If we observe the 
hanges of 
on
entrations in the 
ytosol of a 
ell, des
ribingthem by ODEs is a 
ommon way. Therefore one 
onsiders 
hemi
al rea
tions tobe ma
ros
opi
 under 
onve
tive or di�usive stirring, 
ontinuous and deterministi
[Cox, 1994℄. This is evidently a simpli�
ation, as it is well understood that 
hemi
alrea
tions involve dis
rete, random 
ollisions between individual mole
ules. However,if we only look at small rea
tion volumes like single vesi
les, one 
annot speak of adeterminism any more. We are used to 
al
ulate with 
on
entrations, but on su
ha low level the 
hanges are mole
ule by mole
ule - dis
rete and not 
ontinuous. Werea
h a level on whi
h a deterministi
 approa
h is not useful anymore be
ause it17



2 State of the Art
annot des
ribe spontaneous 
hanges of the rea
ting mole
ule number. The systemis now showing a sto
hasti
 behavior.Asso
iated with this is the question about the equilibrium. If an equilibriumis rea
hed in a deterministi
 system, nothing is 
hanging any more, but be
ause
hemi
al rea
tions are sto
hasti
 events, one 
annot negle
t �u
tuations. Biologi
alsystems 
an leave su
h apparent stable states. Furthermore, biologi
al systems arequite often 
lose to instable 
onditions.The last assumption, the homogeneous distribution, is ne
essary if one uses ordi-nary di�erential equations, be
ause they do not take lo
al resolutions into a

ount.If one wants to do that, one has to use partial di�erential equations. This is maybenot ne
essary if the observed system is a lake, but a single 
ell represents a very
omplex stru
tured system. The single 
ompartments separated by single or doublemembranes are spe
i�
 rea
tion volumes with optimal rea
tion 
onditions for spe-
i�
 rea
tions (i.e., mito
hondria, liposomes, endoplasmati
 reti
ulum, nu
leus, Golgiapparatus). To assume everything as one volume is not only far from reality in astru
tural but also physiologi
al sense, be
ause 
ertain rea
tions are not able to existnext to ea
h other. Be
ause of the presented limitations, deterministi
 models arelimited to areas in whi
h high numbers of parti
les o

ur, like metaboli
 pro
esses,but they are not suited for signal transdu
tion or gene expression due to the low rep-resentation of substrates. Here one has to use mesos
opi
 models su
h as sto
hasti
models.Nevertheless deterministi
 modeling has led to some interesting results. In allbiologi
al systems, it is ne
essary to in
rease or de
rease a
tivities in response toexternal and internal signals. The sensitivity of the system to su
h signals be
omesvery important. The term ultrasensitivity has now been de�ned to indi
ate a 
ase inwhi
h the sensitivity is greater than that to be expe
ted from standard hyperboli
(Mi
haelis-Menten) response [Goldbeter and Koshland, 1984℄. In 1996 Huang andFerrell were solving the rate equations for the MAPKinase-system numeri
ally andpredi
ted the 
as
ade to work as a swit
h [Huang and Ferrell, 1996℄ (ultrasensitive).They were able to show the ultra sensitivity of this bistable system in experimentswith Xenopus oo
yte. In 2000 Kholodenko demonstrated how negative feedba
ksand ultrasensitivity 
an lead to os
illations in the mitogen-a
tivated protein kinase
as
ades [Kholodenko, 2000℄. Lev
henko et al. [2000℄ simulated the in�uen
e of s
af-folding proteins on the MAPK-system.Another framework, whi
h is worth to be mentioned, was developed over the last30 years to model 
omplex metaboli
 pathways and gene regulatory networks: itis 
alled 
anoni
al modeling [Voit, 1991℄. It is based on the Bio
hemi
al SystemsTheory (BST) [Savageau, 1969℄. The variables des
ribing e.g. a signal transdu
tionpathway are metabolites and enzymes. The dynami
s of ea
h variable is des
ribedby the 
hange of its value over time and this 
hange is governed by the di�eren
eof all in�uxes and e�uxes. All �uxes are des
ribed by power-law fun
tions whi
h18



2.3 Modelingare justi�ed by the Taylor's expansion based on the 
al
ulus of �nite di�eren
esdeveloped by Brook Taylor (1685-1731). In fa
t virtually any ordinary di�erentialequation 
an be written equivalently in 
anoni
al form of a Generalized Mass A
tion(GMA)-, S-, or Lotka-Volterra-system. Equation (2.1) shows the most importanttype of 
anoni
al models, the S-system [Savageau, 1969℄:
Ẋi = αi

n+m∏

j=1

X
gij

j − βi

n+m∏

j=1

X
hij

j i = 1, 2, ..., n (2.1)where X1, ..., Xn stand for dependent variables (dynami
 
on
entrations of internalmetabolites), Xn+1, ..., Xn+m stand for external variables (�xed 
on
entrations ofexternal metabolites), gij, hij are kineti
 orders, whi
h may be non-integer and non-positive, and αi, βi are rate 
onstants. In a nutshell, the fun
tions and variables arerepresented in logarithmi
 
oordinates. In this 
oordinate system, the fun
tions areapproximated by Taylor series, where only the 
onstant and linear terms are retained.Sto
hasti
 Modeling The o

urren
e of sto
hasti
 phenomena in a variety of phys-i
al systems like turbulent �uid �ow, is well established. In the re
ent past attentionhas shifted to sto
hasti
ity, noise and its impa
t on biologi
al systems [Meng et al.,2004℄. On a mole
ular level random �u
tuations are inevitable and get more sig-ni�
ant if the number of intera
ting parti
les is very low. This is for example the
ase during trans
ription where trans
ription fa
tors intera
t with DNA binding sites[Ozbudak and al., 2002, Elowitz et al., 2002℄. Beyond this M
Adams and Arkin [1997℄were able to prove that low 
opy RNA 
an be signi�
ant for the regulation of down-stream pathways. Ross and al. [1994℄ des
ribed mRNA being produ
ed in randompulses.One 
hara
teristi
 of sto
hasti
 systems is that identi
al initial 
onditions, su
has initial 
on
entrations or an initial temperature, 
an lead to 
ompletely di�erentresults. One studied example is the lysis/lysogeni
 swit
h of the ba
teriophage λinfe
ting E.
oli [Arkin et al., 1998℄. Due to noise the network may randomly evolveinto one of the two bistable states [Hasty, 2000℄.The o

urring �u
tuations in the 
on
entrations or parti
le numbers 
an be as-
ribed to two di�erent e�e
ts. That is why one distinguishes between intrinsi
 andextrinsi
 noise. Sto
hasti
 e�e
ts arising due to the inherent nature of bio
hemi
ale�e
ts are termed as intrinsi
 noise [Meng et al., 2004℄. This is for example the 
aseduring trans
ription, while only a few trans
ription fa
tors and mRNA mole
ulesare intera
ting with the DNA. Rea
tions o

ur here only randomly. On the otherhand the subsequent step -the translation- has an extrinsi
 
omponent of noise. Therandomly �u
tuating fa
tors are the number of ribosomes, the stage of the 
ell 
y
le,the mRNA degradation and the 
ellular environment. They all depend on externalenvironmental 
onditions.
19



2 State of the ArtAs we now have seen pro
esses like gene regulation 
annot su�
iently be modeledby a deterministi
 model, observing the system from a ma
ros
opi
 point of view.As des
ribed above one has to distinguish between intrinsi
 and extrinsi
 noise orsto
hasti
ity. There are many equivalent formulations of sto
hasti
 kineti
s. One,the 
hemi
al master equation, des
ribes the evolution in time of the probability dis-tribution of system 
omposition. The 
hemi
al master equation is a set of linearordinary di�erential equations with dis
rete 
hanges of parti
le numbers. This set
annot be solved analyti
ally, only numeri
ally. One approa
h is Gillespies Sto
has-ti
 Simulation Algorithm (
f. Se
tion 2.4.2); another one is the Chemi
al LangevinEquation (CLE) also proposed by Gillespie [2000℄. To treat extrinsi
 sto
hasti
ity asto
hasti
 term is introdu
ed into the governing rea
tion equation, whi
h simulatesthe �u
tuating noise:
d ~X(t)

dt
=

M∑

j=1

~νj aj ( ~X(t)) +
M∑

j=1

~νj

√

aj ( ~X(t)) Γj(t),where
~X : stores the number of mole
ules for all spe
ies,

~νj ≡ (ν1j...νNj) : the 
hange in the number of Si mole
ules 
aused
∼= νij by one Rj event,
aj(~x) : a propensity fun
tion (given the system in state~x), aj(~x)dt,is the probability that one Rj event will o

ur in the next dt .This equation does not refer to di�usion. All other dynami
al pro
esses ex
ept ofrea
tion are assumed to have 
ome to equilibrium mu
h faster than the 
omposition,so we have the situation of a �well-stirred system�. The transitions between di�erent
ompositions are 
alled propensities. If the noise Γ is Gaussian and white, the prob-ability distribution satis�es a Fokker-Plan
k equation. Robert Zwanziger [2001℄ wasable to show that Γ is not really a Gaussian distribution, but as an approximationit is su�
ient. The dis
rete sto
hasti
 pro
ess ~X(t) is now approximated as a 
on-tinuous sto
hasti
 pro
ess. The CLE 
an be invoked, if the rea
tant population is�su�
iently large�.The sto
hasti
 treatment of 
hemi
al rea
tions was initiated by Kramers in 1940[Turner et al., 2004℄. Fundamental is the idea that mole
ular rea
tions are essentiallyrandom pro
esses; it is not possible to say with 
omplete 
ertainty when the next20



2.4 Existing Methodsrea
tion will o

ur within a volume. Turner points out that in ma
ros
opi
 systems,with large numbers of intera
ting mole
ules, the randomness of this behavior averagesout so that the overall ma
ros
opi
 state of the system be
omes highly predi
table. Itis this property of large s
ale random systems that enables a deterministi
 approa
hto be adopted.2.4 Existing Methods2.4.1 Methods for Simulating Di�usionHistori
al Ba
kground In 1827 the English botanist Robert Brown (∗1773, †1858)observed pollen grains in aqueous solution. He was stunned to see that even afterhours of observation they still moved restless. He 
laimed he was able to reprodu
ethis observation with sulfur, vol
ani
 ash and other �ne grained substan
es, but thereare doubts if he really was able to observe it [Deuts
h, 1991℄.We now refer to sto
hasti
 movements of 
harged or un
harged parti
les in wa-tery solution as Brownian motion. The �rst quantitative des
ription of a di�usionpro
ess was done by the physiologist A. Fi
k [1855℄ (∗1829, †1901). The relationshiphe found, known as Fi
k's Law of Di�usion, states that the rate at whi
h the 
on-
entration of a substan
e de
reases at any point x in a system is proportional to the
urvature of the 
on
entration gradient at that point. The 
onstant of proportional-ity, D, is the di�usion 
oe�
ient or di�usivity in the system [Agutter et al., 2000℄.During his PhD thesis in Zueri
h in 1905 and in two publi
ations in the �Annalender Physik� (1905/1906) A. Einstein (∗1879, †1955) and independently von Smolu-
howski (∗1872, †1917) found an explanation for Fi
k's law in mole
ular terms.Part of the analysis also led to a derivation of Fi
k's law and to the general infer-en
e that the ma
ros
opi
 di�usion pro
ess 
an be explained by the mole
ular-kineti
me
hanism of Brownian motion in �uid systems where there are 
on
entration gradi-ents. Einstein was able to 
al
ulate Avogadro's number, whi
h had so far only beenroughly determined. Additionally the theory was seen as an additional proof forthe relatively new atomisti
 theory. The work of Einstein and Smolu
howski furtherassisted in the development of the theory of sto
hasti
 pro
esses. The Ameri
an N.Wiener (∗1894− †1964) used the Einstein-von Smolu
howski equation for the prob-ability distribution of di�using parti
les to derive the probability that an individualparti
le would pass during a stated interval of time between any two points in a de-�ned spa
e in 1923. Today the �Wiener pro
ess� is a synonym for Brownian motion.Sto
hasti
 theory has been in�uential in quantum me
hani
s (e.g. Feynman's pathintegral method), in mathemati
s (leading to the dis
overy of profound 
onne
tionsbetween fun
tional analysis, di�erential equations and probability theory), and in21



2 State of the Artseveral other �elds.Partial Di�erential Equations The most 
onservative way to model diffusion arepartial differential equations (PDE's). These 
an be further divided into two main
lasses: linear PDE's and non linear PDE's. The usual way of des
ribing di�usionpro
esses would be by using non linear partial di�erential equations (NLPDE's). Theaim here is to model the intera
tions between the parti
les of the same spe
ies. Thisresults in equations of higher order (non linear). Several te
hniques are known tointegrate them numeri
ally:� multigrid method� �nite elements method� �Monte Carlo� method� spe
tral theory� 
ellular automata� latti
e Boltzmann gas methodIf one 
an assume that the 
on
entration of parti
les is so low that intera
tionsbetween parti
les of the same spe
ies 
an be negle
ted, linear PDE's are su�
ient.There are again two di�erent approa
hes related to the linear PDE's. The Smo-lu
howski-approa
h requires the strong fri
tion limit; i.e., the parti
les do not havean inertia, whi
h results in a Markov-pro
ess. For the Fokker-Plan
k di�erentialequation the strong fri
tion limit is not used and therefore we do not have a Markov-pro
ess, this again results in ones ability to give information about the a

elerationof the parti
les. The Fokker-Plan
k di�erential equation des
ribes the time evolutionof the parti
le distribution fun
tion.Partial di�erential equations are for example used by Virtual Cell with the �nitevolume method [S
ha� et al., 1997℄. The spa
e is divided into subvolumes and thetransfer between the volumes is 
al
ulated by PDEs. A smaller grid is produ
ingmore a

urate results, but with a higher 
omputational 
ost. The main problemwith PDE's is that they are not 
apable to re�e
t sto
hasti
 e�e
ts, but noise isimportant and it gains on importan
e the smaller the subvolumes are.Another way to des
ribe spatial movement of parti
les are sto
hasti
 di�erentialequations. They have already been applied in biology with a di�erent fo
us (popula-tion growth [Kiester A.R., 1974℄, granulo
yte movement [Boyarsky et al., 1976℄ andpopulations geneti
s.The most important form is the Langevin Equation:22



2.4 Existing Methods
m · a = F (x(t)) − γv ·m + ξ(t), (2.2)with F being the intera
tion for
e on a single Brownian parti
le, m the mass of thisparti
le, x the x-position of the parti
le, γ its fri
tion 
oe�
ient, v the velo
ity and

a its a

eleration.
F (x(t)) des
ribes the interatomi
 for
es and are therefore equivalent to Newton'sequation of motion. The se
ond term on the right side in Equation (2.2) representsthe fri
tional for
e by the solvent. ξ(t) is the random sto
hasti
 for
e due to thermal�u
tuations of the solvent. The solvent is not expli
itly represented, but its e�e
tson the mole
ules by the fri
tional and the sto
hasti
 term. If ξ(t) has the mean ofzero, the equation is 
alled the Langevin Equation (1908). The Langevin Equationis an alternative way next to the Fo
ker Plan
k Equation (FPE) to des
ribe MarkovPro
esses and is the 
al
ulus of sto
hasti
 di�erential equations (SDE) governing thedynami
s of the system.The FPE is a deterministi
 partial di�erential equation, whi
h 
an be solved eitherby numeri
al or analyti
al methods:

∂p

∂t
=

[

− ∂

∂v
v +

∂

∂v

(

γv − F (x)

m
+

γkBT

m

∂2

∂v2

)]

p,where p is the transition probability, m the mass of a parti
le, γ the fri
tion 
oe�-
ient, T the temperature, kB the Boltzmann 
onstant, v the velo
ity of the parti
leand F (x) the external for
e �eld.Its original purpose has been to des
ribe mi
ros
opi
 pro
esses in the presen
e ofrandom for
es (noise). Three 
oupled Langevin equations are needed to des
ribe themotion of a single parti
le in three dimensions. To solve SDE's there are in prin
ipaltwo possible ways: one is to model single traje
tories by using for example Gillespie'sSSA (
f. Se
tion 2.4.2) or integrating the SDE's to �nd the solving probabilitydistribution. If the fri
tional and the random for
es are zero, the Langevin Equationredu
es to Newton's equation of motion, whi
h is the mathemati
al simple des
riptionof mole
ular dynami
s (MD). All for
es a�e
ting every mole
ule in a 
al
ulated andthis results in the 
omputational 
ost of MD simulation to in
rease linearly with thenumber of intera
ting atoms. MD's are despite of being most a

urate not feasiblefor whole 
ell simulations. So far it was only used for small numbers of parti
les andlittle volumes [Baynes and Trout, 2004, Friedel and Shea, 2004℄.While the FPE is a statisti
 approa
h to 
al
ulate the 
hange of the probabilitydensity over time, the Langevin Equation on the other hand was originally des
ribingthe temporal 
hange of the velo
ity of parti
les due to a sto
hasti
 for
e. 23



2 State of the ArtBrownian dynami
s Another approa
h are Brownian dynami
s whi
h are realizedin the tool MCell [Stiles and al., 1998℄. This is a sto
hasti
 approa
h where sin-gle mole
ules are followed. Their movement is a

ording to the Langevin equation,whi
h in
ludes random for
es. These random for
es re�e
t the intera
tions betweensubstrates and solvent mole
ules. With this method 
rowded environments 
an besimulated, but it is 
ausing high 
omputational e�ort.Cellular Automata Using a di�erent approa
h, Weimar [1997℄ des
ribes two 
lassesof 
ellular automata for rea
tion di�usion systems. The �rst type realizes di�usion bya random walk of parti
les on a latti
e (rea
tive latti
e gas automata) and the se
ondone, moving average 
ellular automata, is based on a lo
al average. The mole
ulesare repla
ed by idealized parti
les. These 
ellular automata evolve on a square latti
eon whi
h parti
les propagate in two dimensions, with nearest neighbor intera
tionsonly.Dire
t Method Nowadays exa
t sto
hasti
 approa
hes have be
ome the norm inbio
hemi
al simulations. However, it was not until the 90's of last 
entury whenresear
hers were thinking of modeling mole
ular movement in the 
ell. Stundzia andLumsden [1996℄ extended Gillespie's Dire
t Method (
f. Se
tion 2.4.2) to di�usionby treating the di�usion from one subvolume to an adja
ent volume as an additionalrea
tion step. The time step is 
al
ulated sto
hasti
ally by a probability fun
tion,whi
h is determined by the intrinsi
 rea
tion kineti
s and di�usion dynami
s.Mesos
opi
 Approa
h In the same year Ander et al. [2004℄ published Smart -Cell,a framework to simulate 
ellular rea
tion di�usion pro
esses. It uses a mesos
opi
 re-a
tion model to simulate di�usion and lo
alisation of parti
les. In 
ontrast to MCelland Smoldyn [Lipkow et al., 2005℄, SmartCell (
f. Se
tion 2.5 for details) does nottreat di�usion as a random walk, where all mole
ules are simulated individually. Thealgorithm is very similar to the Next Subvolume Method by Hattne and Elf, whi
hwas independently developed and published in 2005 [Hattne et al., 2005℄. SmartCellis based also on the idea to separate the volume into subvolume elements. Similarto the approa
h by Stundzia and Lumbsden they treat the di�usion as an additionalsto
hasti
 rea
tion, but using the Next Rea
tion Method by Gibson and Bru
k tomodel di�usion as a single translo
ation of a mole
ule between adja
ent voxels. Likein many other simulators, the parti
les do not have a volume here, so ex
luded vol-ume e�e
ts 
annot be modeled. For ea
h event a probability is 
al
ulated and thena timespan τ . The event with the lowest τ is exe
uted and the probabilities arere
al
ulated.
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2.4 Existing MethodsMethod abbr. Spa
e S
ale Sto
hasti
 Ex
ludedmole
ular dynami
s MD Parti
le Mi
ro - +Brownian dynami
s BD Parti
le Mi
ro + +Smoldyn - Parti
le Mi
ro + -
ellular automata CA Dis
rete Mi
ro + +Spatial Gillespie - Dis
rete Meso + -partial di�erential equations PDE Mesh Ma
ro - -Gillespie - - Meso + -ordinary di�erential equations ODE - Ma
ro - -Table 2.1: Summary of existing approa
hes to model di�usion pro
esses (freely adapted from[Takahashi et al., 2005℄)MD: mole
ular dynami
s; BD: Brownian dynami
s; CA: Cellular automata;PDE: partial di�erential equations; ODE: ordinary di�erential equationsNext Subvolume Method Hattne and Elf introdu
ed the Next Subvolume Methodone year after SmartCell [Hattne et al., 2005℄. The algorithm is based on the rea
tiondi�usion master equation (RDME,[Baras and Mansour, 1996℄). The spa
e is dividedinto subvolumes, whi
h must be 
hosen small enough to ensure homogeneity and theRDME is applied to every voxel. The Di�usion is now a �rst order elementary rea
-tion between the subvolumes. The RDME is 
omplex and with analyti
al solutionshard to 
ome by. Thats why so far only 1D systems where modeled [Baras and Man-sour, 1996, Góre
ki et al., 1999℄. The Next Subvolume Method is the implementationof the RDME to more dimensions. With an in
reasing number of voxels GillespiesDire
t Method is not feasible any more, be
ause the 
omputational e�ort rises linearwith the amount of voxels. The Next Subvolume Method is using the Dire
t Methodby Gillespie for sampling the time for a next rea
tion or di�usion event and the NextRea
tion Method by Gibson and Bru
k to de
ide in whi
h subvolume the next evento

urs. They 
laim the 
omputational time of the algorithm in
reases only logarith-mi
ally, than linear with the amount of subvolumes.The approa
hes by Stundzia and Lumbsden, by Ander et al. and by Hattne andElf are three similar di�usion algorithms, that is why they are also 
alled as �spatialGillespie� approa
hes [Takahashi et al., 2005℄.2.4.2 Rea
tion AlgorithmsSto
hasti
 Simulation Algorithm - SSA Gillespie [1976℄ presented a sto
hasti
rea
tion algorithm based on Newtonian physi
s and thermodynami
s. Furthermorehe des
ribed two possible implementations of his algorithm, namely the Dire
t Methodand the First Rea
tion Method. His model assumes a system of N 
hemi
al spe
ies25



2 State of the Art(S1, ..., SN ) that intera
t through M rea
tion me
hanisms (or 
hannels) (R1, ..., RM )in a spe
i�ed Volume V at a 
onstant temperature T . The Grand Probability Fun
tion
P ( ~X; t) gives the probability that there will be present in V at time t, Xi of spe
ies
Si, where ~X ≡ (X1, X2, ..., XN ) is a ve
tor of mole
ular spe
ies populations [Turneret al., 2004℄. The knowledge of this fun
tion provides a 
omplete understanding ofthe probability distribution of all possible states at all times.If the system is well stirred or the amount of rea
tive 
ollisions is mu
h smallerthan the number of nonrea
tive 
ollisions, ea
h rea
tion Rµ 
an be des
ribed bythe propensity fun
tion whi
h is also known as the Fundamental Hypothesis of thesto
hasti
 formulation of 
hemi
al kineti
s:

aµ dt ≡ hµ cµ dt. (2.3)The propensity fun
tion in Equation (2.3) gives the probability aµ of rea
tion µo

urring in the time interval [t, t + dt]. µ is an index (1 ≤ µ ≤ M). hµ denotes thenumber of possible 
ombinations of rea
tant mole
ules involved in rea
tion µ. TheTable 2.2 shows some examples.rea
tion cµ = hµmonomole
ular rea
tion Si → P kµ |Si|bimole
ular rea
tion Si + Sj → P kµ

V
|Si| · |Sj|bimole
ular rea
tion 2Si → P 2 kµ

V
1
2
|Si| · (|Sj| − 1) =

(
|Si|
2

)Table 2.2: Conversion from kineti
 to sto
hasti
 rea
tion 
onstants
kµ is the ma
ros
opi
 velo
ity 
onstant of a 
hemi
al rea
tion. To measure it, oneonly needs ma
ros
opi
 properties of the 
hemi
al system, mainly the 
on
entrationsof the parti
ipating spe
ies. However, cµ is the mesos
opi
 velo
ity 
onstant, whi
his di�erent from kµ, but 
an be 
al
ulated from kµ by knowing the volume of theobserved system and the kind of 
hemi
al rea
tion taking pla
e (
f. Table 2.2).If one 
onsiders an in�nitesimal small time interval (t, t + dt), in whi
h either oneor zero rea
tions o

ur, there are only M + 1 possible ways to lead to the state ~X attime t + dt. So one 
an formulate:

P ( ~X, t + dt) = P ( ~X, t) ·P (no state 
hange over dt)
+

M∑

µ=1

P ( ~X − ~vµ, t) ·P (state 
hange to ~X over dt),where ~µ is a stoi
hiometri
 ve
tor de�ning the result of rea
tion µ on the state ve
tor
~X( ~X → ~X + ~vµafter rea
tion µ) and further26



2.4 Existing Methods
P (no state 
hange over dt) = 1−

M∑

µ=1

aµ( ~X) dt and
P (state 
hange to ~X over dt) =

M∑

µ=1

P ( ~X − ~vµ, t)aµ( ~X − ~vµ) dt.By using
lim
dt→0

P ( ~X, t + dt)− P ( ~X, t)

dt
=

∂P ( ~X, t)

∂t
,one obtains the Chemi
al Master Equation that des
ribes the sto
hasti
 dynami
s ofthe system:

∂P ( ~X, t)

∂t
=

M∑

µ=1

aµ( ~X − ~vµ) P ( ~X − ~µµ, t) − aµ( ~X)P ( ~X, t).To simulate now a system of 
hemi
al rea
tions, one has to be able to give infor-mation about two things:� when is the next rea
tion going to o

ur� whi
h rea
tion will it beGillespie [1977℄ introdu
ed a probability distribution to des
ribe the system gov-erned by the master equation. P (τ, µ)dt is the probability for the next rea
tion too

ur in the interval [t+τ ,t+τ+dτ ℄ and is of type µ. P (τ, µ)dt is a two dimensionaldensity fun
tion with the 
ontinuous variable τ(0 ≤ τ <∞), whi
h gives informationof the point in time, and the dis
rete variable µ (µ = 1, ...,M), whi
h states whi
hrea
tion is o

urring. The probability for the next rea
tion 
an now be formulatedas following
P (τ, µ)dτ = P0(τ)hµcµdτ,where P0(τ) is the probability for no rea
tion within [t,t+τ ℄. This is multiplied by

hµcµdτ , the probability that in the up
oming interval [t+τ ,t+τ+dτ ℄ the rea
tion
µ takes pla
e. To 
al
ulate P0(τ) one 
an divide the interval [t,t+τ ℄ in K partialintervals ǫ = τ

K
of equal size. The probability for no rea
tion in the �rst interval[t,t+ǫ℄ is now

M∏

µ=1

1− hµcµǫ = 1−
M∑

µ=1

hµcµǫ. 27



2 State of the Art1. initialisation t=0, set initial parti
le numbers2. 
al
ulate ai = hicifor all i =1,...,M3. τi generate for all rea
tions the 
orresponding τi a
-
ording to an exponential distribution using theFirst Rea
tion Method → τi = 1
ai

ln 1
r4. rea
tion exe
ute the rea
tion with the lowest τi and adjustparti
le numbers5. time step t=t+τi6. loop go to step 2Table 2.3: Pro
edure of the SSA using the First Rea
tion MethodThis is also true for all partial intervals K:

P0(τ) =



1−
M∑

µ=1

hµcµǫ





K

=



1−
M∑

µ=1

hµcµ
τ

K





K

.If one now forms the limit for K → ∞, one obtains:
P0(τ) = e−

∑M

µ=1
hµcµτ .This leads to the wanted density fun
tion P(τ, µ)

P (τ, µ) = hµcµe
−
∑M

µ=1
hµcµτ .So Pν(τ) = e−aντaνdτ (with aν = hνcν) is the probability that now the rea
tion ν ishappening in the interval [t+ τ, t+ τ +dτ ℄ and before that nothing. The rea
tion Rνfor whi
h the probability Pν(τ) is the highest, is the next to o

ur. The First Rea
tionMethod is now 
al
ulating the next o

urring rea
tion, updating the parti
les numbersand starting with the next iteration. The time τi of the single rea
tions are 
al
ulatedby the inverse fun
tion of Pν(τ):

P−1
ν (τ) = τν =

1

aν

ln
1

r
,where r is a uniformly distributed random number.This is resulting in a linear time 
omplexity.The First Rea
tion Method works �ne, but it is very time 
onsuming. All ai-valuesare re
omputed in step two, although the value has not 
hanged for some rea
tions.The First Rea
tion Method and the Dire
t Method di�er in the way how the randompair (τ, µ) is 
al
ulated from the joint probability density fun
tion P (τ, µ). S
hwehm[2001℄ des
ribes the di�eren
e as following:For ea
h rea
tion in the Dire
t Method a probability is 
omputed by multiplyingthe rate 
onstant of ea
h rea
tion with the 
on
entration of its substrates. Then a28



2.4 Existing Methodsdeterministi
 modeling sto
hasti
 modelingrates probabilities
on
entrations parti
le numbersOne set of starting values → onesolution One set of starting values → dif-ferent solutions
⊕ fast more realisti
: pays respe
t tosmall volumes, heterogeneity, in-stabilitiesgood for metaboli
 pro
esses low parti
le numbers → �u
tua-tionsgood for signal-transdu
tion andgene expression
⊖ demands high parti
le numbers 
omputationally expensiveTable 2.4: Chara
teristi
s of deterministi
 and sto
hasti
 modelsrandom number is used to perform a roulette-wheel sele
tion a

ording to the relativeprobabilities of all rea
tions, and a se
ond random number determines the exe
utiontime used for this rea
tion. The Dire
t Method used two random numbers for ea
hrea
tion sele
tion.The First Rea
tion Method 
omputes, as des
ribed above, for ea
h rea
tion (usingone random number for ea
h rea
tion) a tentative exe
ution time. Then the rea
tionwith the smallest exe
ution time is sele
ted. This method uses one random numberfor ea
h rea
tion and iteration. This leads to the following 
on
lusion: The First Re-a
tion Method requires as many rea
tion numbers as there are rea
tions, the Dire
tMethod on the other hand demands only two numbers. If the number of rea
tionsex
eeds two, the Dire
t Method is more e�
ient. The First Rea
tion Method has theadvantage of being easier to implement.In 2000 Gibson & Bru
k have introdu
ed an improvement, the Next Rea
tionMethod [Gibson and Bru
k, 2000℄. They introdu
ed a dependen
y graph, to 
apturethe relations between single rea
tions and made an update only for those variableswhi
h have really 
hanged. To a
hieve this, only used random numbers are newlygenerated the others are reused by transferring the ai-values to the 
hanged times
ale. By this the 
omplexity is redu
ed from linear to logarithmi
. However, Caoet al. [2004a℄ have just re
ently published a 
omparison between the Dire
t Methodand the Next Rea
tion Method and 
laimed the Dire
t Method to be for all but a veryspe
ialized 
lass of problems mu
h more e�
ient than the Next Rea
tion Method.
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2 State of the ArtApproximative Algorithms and Hybrid Methods At this point it has to be 
lar-i�ed that there is no stri
t nomen
lature referring to approximative and hybrid algo-rithms. For this reason I would like to make my own de�nition to simplify the furtherdis
ussion. Let us de�ne approximative algorithms as the 
losing gap between sto-
hasti
 and deterministi
 approa
hes. An approximative algorithm does not predi
ta single rea
tion sto
hasti
ally, but several events at on
e. However, in 
ontrast todeterminism the results 
an still di�er if one 
ompares single experiments, this isdue to the fa
t, that random numbers are still used. Hybrid methods use now sto-
hasti
 and/or approximative and/or deterministi
 algorithms together, partitioningthe rea
tions by spe
i�
 rules into one of the 
ategories and 
al
ulate the eventsper time. COAST is a hybrid modeling tool using a sto
hasti
, approximative anddeterministi
 algorithm.
τ -leap method One approximative algorithm is the τ -leap method [Gillespie, 2001,Gillespie and Petzold, 2003℄, whi
h �ts the regime of intermediate parti
le numbersquite well. The key idea of this method is to determine time-intervals of length τ (so
alled τ -leaps), in whi
h the number of rea
tions is so small that the propensity fun
-tions (rea
tion probabilities) are assumed to be approximately 
onstant. By doingso, all rea
tion probabilities are formulated in terms of Poisson-distributions, and thelength of these τ -leaps is 
omputed dependently on an error 
ontrol parameter. Notethat the assumption of approximative 
onstant rea
tion probabilities allows for thesu

essive 
omputation of rea
tion numbers in the di�erent rea
tion 
hannels. It alsofa
ilitates the des
ription of rea
tions of higher order (e.g. 2 X → P or X + Y → P )as independent probability experiments with identi
al distributions.Beside of this there are also some negative aspe
ts. In the τ -leap method all rea
tionprobabilities are formulated in terms of Poisson-distributions, whi
h are binomial-distributions limited by de�nition to in�nitely large parti
le numbers and in�nitelysmall rea
tion probabilities [Giri, 1974, p. 65℄. Hen
e, the usage of Poisson-distribu-tions does not �t the des
ription of rea
tion 
hannels with small parti
le numbers.Additionally the usage of Poisson distributions 
an lead to negative parti
le num-bers, this led to the development of versions of the τ -leap method based on thebinomial distribution [Tian and Burrage, 2004, Chatterjee et al., 2005℄: the so-
alledbinomial leap methods. The number of steps ne
essary for evaluating Poisson andbinomial-distributions is asymptoti
ally, proportional to the number of parti
les (orequivalently: from the expe
tation). In 
ontrast the 
osts for the evaluation of aGaussian-distribution or of the deterministi
 rea
tion kineti
s are 
onstant, so thelatter models must be advantageous for large parti
le numbers.Thus, all the algorithms mentioned so far are well adapted to a 
ertain range ofparti
le numbers, but not for the entire range from low to high numbers. Conse-quently, algorithms have been developed, whi
h use di�erent levels of modeling for30



2.4 Existing Methodsthe di�erent parti
le numbers. For example there exist some algorithms, that arebased on �xed partitions of the system into slow and fast rea
tion 
hannels. Withthis 
ombination, slow rea
tions are treated by the First Rea
tion Method, and fastrea
tions are treated either by: deterministi
 rea
tion kineti
s [Haseltine, 2002, Kiehlet al., 2004, Takahashi et al., 2004℄; by Langevin equations [Haseltine, 2002℄; or byrandom variables distributed a

ording to the probability density fun
tions at quasistationary state [Rao and Arkin, 2003℄. However, these partitioning methods requiredire
t intervention of the modeler to partition the system into rea
tion sets 
overingdi�erent time and 
on
entration ranges. Thus these algorithms 
annot be appropri-ate for the simulation of systems with strongly �u
tuating parti
le numbers (e.g. theOregonator whi
h will be dis
ussed in Se
tion 4.1.2). Furthermore, �xed partition-ing is not suitable for systems with heterogeneously distributed substrates, whi
h isespe
ially problemati
 if applied to rea
tion-di�usion models.Maximum Rea
tion Time Method Another modeling approa
h is the MaximumRea
tion Time Method [Pu
halka and Kierzek, 2004℄. It des
ribes slow rea
tionsby the Next Rea
tion Method of Gibson and Bru
k, and fast rea
tions by the τ -leap method. The partitioning into slow and fast rea
tion 
hannels is performedautomati
ally in ea
h time step by 
riteria depending on two error 
ontrol parameters.A third error 
ontrol parameter is the value of the maximum time step.The automati
 partitioning makes the Maximum Rea
tion Time Method approa
hvery interesting. However, there remain some problems. For example, it is verydi�
ult to de�ne appropriate values for the error 
ontrol parameters. To show this,let us 
onsider the in�uen
e of the error 
ontrol parameter r, whi
h de�nes a thresholdvalue for the treatment by the τ -leap method. In a system with M rea
tion 
hannels,the τ -leap method is only applied to a rea
tion 
hannel µ if
r < fµ := aµ

∑M

ν:=1
aν

, (µ ∈ {1, ..,M}) (2.4)where aµ is the propensity fun
tion of the rea
tion 
hannel µ. Hen
e, for 
onstantvalue aµ, fµ gets smaller if the number of rea
tion 
hannels gets larger (The mostsimple 
ase: If all aν have the same value, then fµ = 1/M). Thus, for 
onstant aµand r, it is more likely that the rea
tion 
hannel Rµ is treated by the τ -leap methodif it is embedded in a small system than in a large system, whi
h does not make toomu
h sense. Thus, r depends on the number M of rea
tion 
hannels.Furthermore, let us 
onsider the system A+B ⇋ C +D and let us assume that allparti
le numbers #A, #B, #C , and #D are proportional to a s
aling fa
tor z. Thesystem 
an be split into the two single rea
tions A+B → C +D and C +D → A+Bwith 
orresponding values f1 := a1

a1+a2
and f2 := a2

a1+a2
. Consequently, the rea
tionrates a1 := k1 #A #B and a2 := k2 #C #D, are proportional to z2, but f1 := a1

a1+a2and f2 := a2

a1+a2
(
f. Equation (2.4)) are independent of z. Hen
e, it 
an happen31



2 State of the Artthat f1 < r for all z so that A + B → C + D is always treated by the next rea
-tion method. However, for large z, the propensity a1 
an rea
h arbitrarily large values.These two simple examples show that the error 
ontrol parameter r depends on atleast two quantities: the number of rea
tion 
hannels, and the number of parti
les,where the latter 
an �u
tuate strongly during a simulation. Analogous 
onsiderationsare appli
able for other error 
ontrol parameters. Thus, the sear
h for optimal valuesof error 
ontrol parameters is quite a di�
ult task whi
h should, in my opinion, notbe left to the user.A further problem may be that all `slow' rea
tion 
hannels are only evaluated bythe Next Rea
tion Method, whi
h evaluates ea
h rea
tion 
hannel for time intervals
orresponding to the mean time between two rea
tions. However, it 
an happen thatthe mean time between two rea
tions in a `slow' rea
tion 
hannel is of the same orderof magnitude as the mean time between two rea
tions of a fast rea
tion 
hannel. Inthis 
ase, the fastest slow rea
tion di
tates the size of the time steps; so that, onaverage, only a few fast rea
tions o

ur in ea
h time step. Hen
e, the gain obtainedfrom the τ -leap method is minimized.
probability-weighted Dynami
 Monte Carlo method Another approximative ap-proa
h is the probability-weighted Dynami
 Monte Carlo method (PW-DMC) ,pub-lished by Resat et al. [2001℄. In this method, rea
tions with large probabilities areallowed to o

ur in �bundles�, whi
h means that a single Monte Carlo step 
orre-sponds not only to a single rea
tion, but to several rea
tions in the same 
hannel.As a 
onsequen
e, the rea
tions follow a 
ompletely di�erent statisti
s in ea
h timestep than in the original model. Suppose, for example, that there are two rea
tion
hannels with similar rea
tion probabilities. Then, ea
h PW-DMC time step � maybegiven by hundreds or thousands of rea
tions in one 
hannel, but no rea
tion in theother � represents a very unlike event in the real rea
tion system. As a 
onsequen
e,PW-DMC parti
ularly leads to larger �u
tuations than an exa
t algorithm. Resatet al. [2001℄ argue that this statisti
al error signi�
antly 
an
els out if many simu-lation traje
tories are averaged, whi
h is true for stable dynami
al systems, but notne
essarily true for unstable dynami
al systems. Furthermore, it does not make mu
hsense to redu
e the des
ription of sto
hasti
 model to the mean of many traje
tories.Su
h an average 
an more e�
iently be 
omputed by deterministi
 rea
tion kineti
s.Instead of this, one has to try to also re�e
t the �u
tuations 
orre
tly.
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2.4 Existing Methods

Dateof
Author

Content
Referen
e

re
eption Jan.1976
Gillespie
Dire
tMeth
od,FirstRea

tionMetho
d
Gillespie,197
6

Feb.1977
Gillespie
Dire
tMeth
od,FirstRe
a
tionMeth
od
Gillespie,197
7

Sep.1999
Gillespie
The
hemi
a
lLangevine
quation
Gillespie,200
0

O
t.1999
Gibson&B
ru
k
nextrea
tion
method
Gibson,2000

De
.2000
Gillespie
Poissonτ-le
apMethod,e
stimatedmid
pointmethod
Gillespie,200
1

Jun.2002
Haseltine&
Rawlings
partitionsys
tem:sto
ha
sti
&deter
ministi

Haseltine,20
02

Aug.2002
Rao&Arki
nqu
asi-steadyst
ateassumpt
iontoGilles
piealgorithm
Rao,2003

De
.2002
Kiehl
hybridsimu
lation:dire
t
method&de
terministi

Kiehl,2004

Jan.2003
Rathinam&
Cao
impli
itτ-le
apingmetho
d
Rathinam,2
003

&Petzold&
Gillespie

Apr.2003
Takahashi&
Tomita
hybridsimu
lation:
Takahashi,2
004

NextRea
tio
nMethod&
deterministi



May2003
Gillespie&
Petzold
improvedlea
p-sizesele
t
ion
Gillespie,200
3

O
t.2003
Burrage&T
ian
AMulti-s
a
ledApproa

h:
Burrage,200
4

SSA,τ-leap
&Euler-met
hod

Aug.2003
Pu
halka&
Kierzek
MaximalTi
mestepMeth
od:
Pu
halka,20
04

nextrea
tion
method&τ-
leap-method

Mar.2004
Cao&Petzo
ld
OptimizedD
ire
tMethod
Cao,2004a

Apr.2004
Tian&Burr
age
Binomialτ-
leapMethod
Tian,2004

Jul.2004
Cao&Gille
spie&Petzo
ld
atheoreti
a
limproveme
nts
Cao,2005

De
.2004*
Cao&Petzo
ld&Gillesp
ie
Stabilityof
leapingmeth
ods
Cao,2004

Jan.2005
Chatterjee
anotherBin
omialτ-leap
Method
Chatterjee,2
005

Table2.5:T
histabelgive
sa
hronolog
i
aloverview
ofimportant
publi
ations
onrea
tiona
lgorithmsfor
biologi
almo
deling,

sortedbydat
eofre
eption
.*:dateofav
ailability
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2 State of the Art2.5 Existing ImplementationsThe in
reasing availability of data and the 
omplexity of 
ellular systems have mo-tivated several programmers to provide integrative support to biology, after all: theoverall goal of 
omputational 
ell biology is to enable 
ell biologists to build andexer
ise predi
tive models of 
ellular pro
esses. There are several tools for the sim-ulation of dynami
 bio
hemi
al systems available using the des
ribed rea
tion anddi�usion algorithms. They are mainly freeware and 
an be downloaded from theauthors websides. The Table 2.6 gives an overview on some of the des
ribed tools.The list is not exhaustive. It shows some important produ
ts sorted by the year ofits �rst release. Most of the named simulators are still under maintenan
e, so theremight have been some improvements, that are not in
luded in this thesis. The fo
ushere will be the implementation of algorithms on rea
tion and di�usion. Furtherdetails on the software 
an be obtained dire
tly from the distributors.The simulators 
an be in general 
lassi�ed by two 
hara
teristi
s: if they 
anmodel spatial aspe
ts and by the main strategy to simulate (sto
hasti
 or determin-isti
). GEPASI is for example a non-spatial, ODE based tool for 
omplex bio
hem-i
al rea
tion pathways and therefore deterministi
 simulator; spatial information isnot in
luded (
f. Appendix C.1). Non-spatial deterministi
 simulators are typi
allyODE-solvers applied to mass a
tion equations. The simulated spa
e is just one entityand sto
hasti
 e�e
ts are not simulated. This of 
ourse makes GEPASI fast but setsits limitations.Like GEPASI NEURON is also a deterministi
 simulator and designed to simulateele
trophysiologi
al behavior of single neurons using ODEs (
f. Appendix C.1).Using ODE-solver is not without any problems. If systems in
ludes both very fastand very slow dynami
s, that is, some rea
tions are mu
h faster than the others, thesystem is 
alled sti� [Haavisto, 2004℄. Sti� systems are hard to simulate sin
e thefast dynami
s require for short step size and the slow dynami
s in
rease the totalsimulation time interval. Using a small stepsize, the simulation of the whole pro
essbe
omes very slow. Consequently, some numeri
al algorithms are developed espe-
ially for the simulation of this kind of systems.An example representing the fra
tion of sto
hasti
 spatial simulators is MCell (
f.Appendix C.1). The authors des
ribe it as a �general Monte Carlo simulator of 
el-lular physiology�. MCell 
aptures sto
hasti
 �u
tuations seen with small numbers ofparti
les and models di�usion by simulating Brownian random walk.An ex
eptional simulator is Sto
hSim (
f. Appendix C.1). It is using a very ownrea
tion algorithm. This sto
hasti
 simulator was developed by Carl Firth (formerlyknown as Morton-Firth) ba
k in 1998 as a bio
hemi
al simulator - simulating 
omplex34



2.5 Existing Implementations

Figure 2.2: Chara
terisation of existing 
ellular simulators; red: algorithms, bla
k: imple-mentationssto
hasti
 signaling pathways in ba
terial 
hemotaxis. Single mole
ules are treated assingle obje
ts or intra
ellular automata. Sto
hSim is 
apable of handling multistatemole
ules. For small numbers of rea
tions and single state mole
ules it is slower thanSSA, but in other 
ases it is mu
h faster and more a

urate. Gillespie's algorithm
annot identify mole
ules as individual elements, their states, positions and velo
itieswithin the rea
tion volume 
annot be followed over time and multistate mole
ules
annot be represented. At ea
h time step, two mole
ules are pi
ked and a randomnumber generator is used to de
ide, if a rea
tion o

urs or not using a lookup ta-ble of probabilities of all possible rea
tions. Sin
e version 1.2 Sto
hSim 
an modelin two dimensions with squares forming the tessellation. Sin
e v1.4 also trianglesand hexagons 
an be used but there are no representations of 
ellular 
ompartments.Speed gained by look up tables for rea
tions.Cellware is a relatively new tool �rst released in 2004. It uses several rea
tion algo-rithms. One own development is Sto
hODE, whi
h is solving ODE's plus an externalnoise term; therefore Sto
hODE is a solver for SDE's [Dhar et al., 2004℄. Others usedare NRM, SSA, tau-leap and several ODE-solver. Di�usion is not modeled, althoughsimple 
ompartments are represented. Cellware 
an only use one algorithm at a time.The mu
h older E-Cell (�rst appearan
e in 1996) is using a hybrid approa
h. Parts35



2 State of the Artof the rea
tions are modeled using Gillespie's SSA while others use ODE's. Speedand a

ura
y are 
ombined to model the sto
hasti
 behavior of -for example- geneexpression. Like Cellware E-Cell is not able to model di�usion.Some simulators espe
ially the newer ones model di�usion by either random walkor partial di�erential equations and paying respe
t to spatial aspe
t of the 
ell. Thishas been en
ouraged by 
onfo
al and two-photon ex
ited �uores
en
e mi
ros
opy,that permit investigators to study the stru
ture and dynami
s of living 
ells withsubmi
rometer threedimensional spatial resolution and with time resolutions as fastas millise
onds [Slep
henko et al., 2002℄.With Virtual Cell (VCell) S
ha� S
ha� et al. [1997℄ introdu
ed a simulation tool,that uses the �nite element method (FE) to solve rea
tion di�usion PDE's if a spa-tial resolution is demanded; otherwise ODE's are taken (
f. Appendix C.1). In theFE-approa
h the volume is divided in subvolumes and for ea
h volume one assumeswell-mixed 
onditions. Di�erential equations , whi
h des
ribe mass a
tion kineti
sare used to 
ompute �uxes between and rea
tion rates within ea
h voxel. The prob-lem is that with realisti
 
ellular stru
ture, the grid has to be very �ne or irregular inshape. In the �rst 
ase, the �ner the grid, the higher the 
omputational 
ost, in thelater the grid itself be
omes a 
omputational problem. The less voxels are taken, theworse the assumption be
omes that a voxel represents a homogeneous spa
e. VirtualCell represents a typi
al deterministi
 simulator, whi
h 
an pay respe
t to spatialaspe
ts, but is not able to re�e
t the in�uen
e of sto
hasti
 events/noise. By down-sizing the �nite subvolumes the e�e
ts of noise are ampli�ed, be
ause the mole
ulenumbers in ea
h subvolume are getting smaller than when they were taken as whole(Bhalla [2004℄).In September 2004 Andrews and Lipkow introdu
ed Smoldyn [Lipkow et al., 2005℄.The name is derivated from �Smolu
howski dynami
s�. This tool is designed to model
hemi
al rea
tions networks espe
ially to look at the e�e
ts of 
ellular ar
hite
tureand mole
ular 
rowding on signal transdu
tion pathways. Ea
h mole
ule is treatedas a single point (
enters of mass), so there is no volume and no inertia. The mole-
ules di�use freely in the test volume. All parti
les have a given binding radius. Iftwo mole
ules get 
lose enough, so the distan
e is smaller than the binding radius, area
tion o

urs. It has to be emphasized that the binding radius and the sum of themole
ule radii are not the same. Be
ause of the fa
t that most rea
tions o

ur at aslower rate be
ause of a rea
tion a
tivation energy, the sum of the mole
ular radiiis repla
ed by a smaller binding radius. For reversible rea
tions Andrews de�ned adebinding radius, whi
h is totally arti�
ial, but helped to prevent two mole
ules fromimmediately re
ombine after just being split. Steri
 intera
tions between parti
lesthat 
annot rea
t, are ignored. The leap length of a parti
le is derived from Fi
k'slaw sB =
√

2 D t. A problem is the 
al
ulation for bimole
ular rea
tions. If two par-36



2.5 Existing Implementationsti
les A and B were moving, the question is, if their distan
e during the last δt hasever been smaller than the rea
tion radius. Be
ause of the 
omputational 
omplex-ity of answering that question for multi parti
le systems. Andrews et al. simpli�edthe 
on
ept by only looking at the �nal positions of all parti
les and 
ke
king if anydistan
es fall below a binding radius. The a

ura
y now depends on the setting of δt.Two simulators presented in 2004 are SmartCell and MesoRD (
f. Appendix C.1).They are both using the Next Subvolume Method (NSM) by Elf and Ehrenberg [2004℄to model di�usion. SmartCell was developed to simulate di�usion-rea
tion frame-works in a whole 
ell-
ontext [Ander et al., 2004℄. Be
ause of the fa
t that thedistribution of entities 
an be 
ru
ial for 
ertain pro
esses, SmartCell is using theidea of deviding the modeling spa
e into subvolumes and was at �rst using the NRMof Gibson and Bru
k to model di�usion and rea
tion but re
ently 
hanged to the NextSubvolume Method. This makes SmartCell a spatial sto
hasti
 simulator. Within thesingle volume elements the parti
les are assumed to be equidistributed, so the sto-
hasti
 algorithm 
an be used. SmartCell does not simulate ex
luded volume e�e
tsbe
ause the simulated parti
les have the volume 0. MesoRD was using the NSM fromthe beginning [Hattne et al., 2005℄. The NSM s
ales logarithmi
ally with the numberof subvolumes, the NRM by Gibson and Bru
k also, but memory requirements andoperations per se
ond are higher. Gillespies SSA on the other hand s
ales linearlyand is therefore mu
h slower.What to expe
t In the last two subse
tion I have presented several approa
hesto model 
ellular systems. In Se
tion 2.4.2 the most important rea
tion algorithmswere des
ribed. By applying them to a spatial grid as demonstrated by some imple-mentations in Se
tion 2.5 they 
an be applied to simulate di�usion as well.The main problems of the existing algorithms are their limitations. No algorithmalone is 
apable of performing e�
ient and a

urate simulations. If they are a

u-rate like the First Rea
tion Method they la
k of speed and if they are fast like adeterministi
 approa
h they do not reprodu
e sto
hasti
 �u
tuations anymore. Andnot only that, but τ -leap methods using Poisson distributions are also based on thewrong assumption when applied to small parti
le numbers. The hybrid methods arethe logi
al 
onsequen
e, but the solutions so far do not 
over the whole spe
trum ofo

urring parti
le numbers. Either they only use an exa
t approa
h and an approx-imative method like the maximum rea
tion time method or they totally blind outintermediate parti
le numbers like the hybrid method by Takahashi et al. [2004℄.What is needed is an algorithm 
overing small, intermediate and high parti
lenumbers and simulating them as a

urate as ne
essary and as fast as possible. Thelimited partitioning is not the only problem the hybrid methods so far have. Thepartitioning is not very intuitive. In the approa
hes by Haseltine [2002℄, Kiehl et al.37



2 State of the Art Simulator yearof 1strelease
rea
tion algorithms
di�usion algorithms
subvolumes 
ompartments 3D
areaof appli
ation
referen
e

E-Cell1996SSA,ODE,
∅

∅
√

∅generegulatorynetworks,Tomita,1999

NRM

signaltransdu
tion,
metaboli
networks

VCell1997ODE'sandPDE'swith�nite

√
√
√distributionanddynami
sS
ha�,1997

/orPDEsvolumemethod
ofintra
ellular

bio
hemi
alpro
esses

MCell1997bimol.rea
t.:3DRandomWalk

∅
√
√neurotransmission,Stiles,1998


ollision

signaltransdu
tion,

unimol.rea
t.:

trasmembrane�ux

similartoSSA

simulationsin3D

Smoldyn2003bimol.rea
t.:3DRandomWalk
∅
√
√signaltransdu
tion,Andrews,2004


ollision

general

unimol.rea
t.:

bio
hemi
al

similartoSSA

simulator

Cellware2004ODE,Dire
tMethod,
∅

∅
√

∅signaltransdu
tion,Dhar,2005

NRM,Sto
hODE,

generegul.networks

expli
it
τ-leap

metaboli
networks

SmartCell2004NSM
NSM

√
√
√di�.&rea
t.networksAnder,2004

MesoRD2004sto
h.mode:NSMsto
h.mode:NSM
√
√
√sto
h.&determ.sim.Hattne,2005

deter.mode:PDEdeter.mode:PDE
of
hemi
alrea
tions

anddi�usionin3D

Table2.6:ASele
tionofpresent
ellularsimulatorswithrespe
ttohowtheymodelrea
tionanddi�usion,howtheypayrespe
t

tospatialaspe
tsandwhatistheirmainareaofappli
ation.
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2.5 Existing Implementations[2004℄ and Takahashi et al. [2004℄ the user has to divide the rea
tion 
hannels into thedi�erent modeling 
lasses. This is very in
onvenient and furthermore inappropriateif the system is os
illating or at least one spe
ies would have to be re
lassi�ed as'slow' or 'fast'. A 
omplex system like the Oregonator (
f. Se
tion 4.1.2) is a goodexample for this.So far only the Maximum Rea
tion Time Method and the probability weighted Dy-nami
 Monte Carlo method provide an automati
 shifting between a limited amountof modeling levels (
f. Table 3.3). However, they use more than one error parameterand they are not very intuitive.Rao et al. [2002℄ made an important and for this thesis 
ru
ial statement regardingthe existing rea
tion algorithms in the journal �Nature� : �Although a few new strate-gies have been proposed to in
rease the e�
ien
y of the Gillespie algorithm (tau-leapand NRM), there are 
urrently no satisfa
tory approa
hes simulating pro
esses 
on-
urrently a
ross multiple s
ales of time, spa
e and 
on
entration. An alternativeapproa
h is to separate times
ales expli
itly and redu
e the model by singular per-turbations. Yet another approa
h is to 
onstru
t hybrid models involving 
ontinuousand dis
rete representations. Both these approa
hes require dire
t intervention bythe modeler - a 
umbersome and sometimes impossible task. The long-term goal isto develop algorithms that do this both automati
ally and adaptively.�With COAST I am 
on�dent to present in the following 
hapter an algorithmthat ful�lls this demand. This algorithm 
overs exa
t sto
hasti
, approximative anddeterministi
 
ases. However, at the same time its a

ura
y is only de�ned by onesingle parameter α.

39



3 COAST for Rea
tion and Di�usionSo far I have introdu
ed the problem and main goal of this thesis in the �rst 
hapter.In the last 
hapter I gave an overview on existing methods to model rea
tion anddi�usion and their advantages and disadvantages for modeling 
ellular pro
esses. Atthe end I presented some existing simulators in this s
ienti�
 area.In the following 
hapter I will introdu
e the Controllable Approximative Sto
hasti
rea
tion-algorithm (COAST). COAST is a hybrid algorithm using three levels ofmodeling and is 
ontrolled by one single error parameter α. This 
hapter explainsstep by step the algorithm for rea
tion problems and its appli
ation to di�usions
enarios.3.1 Con
ept of COASTGillespie's approa
h (
f. Se
tion 2.4.2) answers two important questions:� Whi
h rea
tion will o

ur next?� When is the rea
tion going to o

ur?With COAST, the questions have slightly 
hanged:� Whi
h rea
tion will de�ne the next time step?� How long is this time step?COAST uses some ideas of the maximum rea
tion time method - parti
ularly theautomati
 partitioning of the rea
tion 
hannels into 
lasses with di�erent levels ofmodeling (
f. Se
tion 2.4.2). COAST allows for all rea
tion 
hannels to performseveral rea
tions within a single time step. Within this given time step, the di�erentrea
tion 
hannels are evaluated su

essively using three di�erent levels of modeling:� an exa
t sto
hasti
 level based on Gillespie's First Rea
tion Method for smallnumbers of parti
les,� an approximative sto
hasti
 modeling by Gaussian-distributions for intermedi-ate parti
le numbers,� and the deterministi
 rea
tion kineti
s for large numbers of parti
les.40



3.2 Derivation of the FundamentalsTherefore, the partitioning into three levels of modeling is done automati
ally inevery time step.In 
ontrary to the First Rea
tion Method, the sto
hasti
 method used in COASTallows for more than one rea
tion to take pla
e within a given time step.As previously mentioned, the subdivision of the rea
tion 
hannels into the threedi�erent modeling levels also depends on a single error 
ontrol parameter α. This
ontrol parameter α is 
hosen so that the error of COAST is always smaller than
(α · 100) % of the value of an exa
t algorithm. In Se
tion 3.10 I will give some �rtherinformation on the di�erent errors that are estimated by α. Furthermore, in pra
ti
e,I show that the error in simulations is usually mu
h smaller than the upper boundgiven by this parameter. So, an α-value of 0.05 would mean that one allows an errorof 5% in all 
al
ulations.Thus, the algorithm 
an be 
ontrolled by the 
hoi
e of α ∈ [0, 1]. This makesit easy to �nd an optimal trade o� between a

ura
y and performan
e for a givensimulation system.In the next se
tion I present the mathemati
al ba
kground supporting COAST.Se
tion 3.3 des
ribes the single steps of the COAST-algorithm.3.2 Derivation of the FundamentalsIn 
ontrast to other existing hybrid algorithms, α o�ers a pre
ise method to deter-mine when to swit
h from one modeling level to another. The usual way to applythe First Rea
tion Method in order to 
al
ulate whi
h is the next rea
tion and whenit is going to o

ur is by evaluating binomial distributions. This is 
omputationallyexpensive for more than one o

urring rea
tion sin
e several random numbers haveto be 
hosen. By using Gaussian distributions one 
an 
ompute random numberswith less 
omputational e�ort. It is a well known property of binomial distributionsto 
onverge toward a Gaussian distribution if the size of the set in
reases.For the algorithm, two essential problems must be solved: Firstly, one has to deter-mine time spans in whi
h the parti
le numbers and, thus, the rea
tion probabilitiesare nearly 
onstant. Se
ondly, one needs - at least for intermediate and large par-ti
le numbers - methods whi
h allow to 
ompute the number of rea
tions e�
ientlywithout too large errors.3.2.1 MethodsIn this paragraph I will derive the ne
essary transition 
riteria for the three appliedregimes of COAST. The 
riteria result in two requirements formulated in Equation41



3 COAST for Rea
tion and Di�usion(3.17) and Equation (3.18) (and Equations (3.19) and (3.20) respe
tively).Exa
t sto
hasti
 model: If the parti
le numbers are low the rea
tions are 
al
u-lated by a modi�ed First Rea
tion Method, where we allow more than one rea
tionuntil the rea
tion probabilities 
hange by more than α · 100 %. This �rst regime is
alled Σ.Approximative sto
hasti
 model: Sin
e the rea
tion probabilities (propensities)are nearly 
onstant, the number of rea
tions during su
h a time step 
an approxi-matively be des
ribed by binomial distributions and, thus, for su�
iently large par-ti
le numbers by dis
rete Gaussian-distributions. This de�nes the se
ond regime Γ.A 
riti
al question is de�ning the point of transition between Σ (nearly binomial-distributed) and Γ.I will now explain when it is appropriate to swit
h from a binomial distribution toa Gaussian distribution with an error of α.Let PB(k; N, p) be the probability for k events given by a binomial distributionwith parameters N and p

PB(k; N, p) =

(

N
k

)

pk (1− p)N−k . (3.1)The expe
tation is E := N · p and the varian
e is V := N · p · (1− p). In terms of area
tion system, PB(k; N, p) would be the probability for k rea
tions o

urring withoriginally N parti
les in the system and the probability p for a single rea
tion too

ur.Further, let X be a standard normal variable and Z be a probability variable
Z := Round (√V X + E

) (3.2)with the Round-pro
edureRound ( x ) :=

{
[x ] + 1 , if x− [x ] ≥ 1/2 ,

[x ] , if x− [x ] < 1/2 .
([x ] := max{n ∈ Z, n ≤ x }) (3.3)Let PG(k,N) be the probability of a �dis
rete Gaussian distribution� for Z = k eventswith the same expe
tation E and varian
e V .Equation (3.2) implies that the probability for Z = k is

PG(k,N) = 1√
2 π

∫ k−E+1/2√
V

k−E−1/2√
V

e−x2/2 dx , (3.4)so that it must be shown that PB(k; N, p) and PG(k,N) are approximatively iden-ti
al for large N , where, for a �xed value of the error 
ontrol parameter α, PG(k,N)is a valid approximation for PB(k; N, p) for all N > N0(α) ∈ N if the supremumnorm42



3.2 Derivation of the Fundamentals
sup{|PB(k; N, p)− PG(k,N)|; 0 ≤ k ≤ N

}

< α for all N ≥ N0(α) . (3.5)This is a relatively simple approximation, other approa
hes like the DeMoivre Lapla
elimit theorem [Feller, 1970, 182pp℄ will possibly give better approximations with apositive impa
t on the algorithms performan
e.The aim of this se
tion is the derivation of an appropriate value N0(α). To thisaim, we will �rstly prove three Lemmas. The value N0(α) itself is the 
ontent of thetheorem at the end of the se
tion.Lemma 1 : If |k − E| >
√

V
α
, then |PB(k; N, p) − PG(k,N)| < α is ful�lled for all

k with |k − E| >
√

V
α
.Proof: In a

ordan
e with T
heby
he�'s inequality [deFinetti, 1974, p.172f.℄

PB

(

|Y − E| >
√

V
α
, N

)

< α , PG

(

|Z − E| >
√

V
α
, N

)

< α . (3.6)Sin
e all PB > 0 and PG > 0, |PB(k; N, p) − PG(k,N)| < α is, thus, always ful�lledfor all k with |k − E| >
√

V
α
. �In what follows, we will determine NB(α) and NG(α), so that for all |k − E| <

√
V
α

DB(k,N) := |PB(k; N, p)− π(k,N) | < α

2
, ∀N ≥ NB(α) , (3.7)

DG(k,N) := |PG(k,N)− π(k,N) | < α

2
, ∀N ≥ NG(α) , (3.8)where

π(k,N) :=
exp

(

− (k−N p)2

2 N p (1−p)

)

√

2 π N p (1− p)Criterion (3.5) is then ful�lled for all N > N0(α) := max{NB(α), NG(α)}.Lemma 2 : Let |k − E| <
√

V
α
. Then DB(k,N) < α

2
for all N > NB(α) with

NB(α) :=
1

3 α p (1− p)
.Proof: We repla
e the binomial 
oe�
ient in Equation (3.1) by the extension toSterling's formula of Bu
hner [1951℄ . Therefore we de�ne a fun
tion ζ(N, k) in thefollowing way: 43



3 COAST for Rea
tion and Di�usion
ζ(N, k) = ln





(
N
k

)

Q(N, k)



 ⇒
(

N

k

)

= eζ(N,k) Q(N, k) (3.9)where
Q(N, k) =

√

N

2 π k (N − k)

(
N

k

)k ( N

n− k

)N−k

. (3.10)Noti
e that k will be repla
ed by κ ·N .This leads to
PB(k;N, p) = eζ(N,k)

√

N

2πk(N − k)

(
N

Nκ

)κn(
N

N(1− κ)

)N(1−κ)

pκ N (1− p)N(1−κ)

=
eζ(N,k)+ 1

2 ln 1
κ(1−κ)

+(κN) ln 1
κ +N(1−κ) ln 1

1−κ +(κN) ln p+N(1−κ) ln 1−p

√
2πN

=
eζ(N,k)− 1

2 ln
κ(1−κ) p(1−p)

p(1−p)
−κN(ln κ−ln p)−N(1−κ)(ln(1−κ)−ln(1−p))

√
2πN

=
eζ(N,k)− 1

2 ln
κ(1−κ)
p(1−p)

+ln (p(1−p)−
1
2 )−κN ln κ

p −N(1−κ) ln 1−κ
1−p

√
2πN

PB(k;N, p) =
exp

(

ζ(N, k)− 1
2 ln(κ (1−κ)

p (1−p) )−N (κ ln(κ
p
) + (1− κ) ln(1−κ

1−p
))
)

√

2π N p (1− p)
(3.11)To 
ontinue we perform a Taylor-expansion of the exponent in Equation (3.11). κlater on is repla
ed by k

N
. Furthermore we negle
t all terms of the order N−1, whi
hhas a 
onsequen
e the disappearan
e of the ζ-fun
tion. For the single parts of theexponent one obtains the following derivations:

f(x) = −1

2
ln

κ(1− κ)

p(1− p)

f ′(x) =
−1 + 2κ

2κ(1− κ)

f ′′(x) =
2κ2 − 2κ + 1

2(κ− κ2)2

f ′′′(x) =
3κ− 3κ2 + 2κ3 − 1

(κ− κ2)3
(3.12)44



3.2 Derivation of the Fundamentals
f(x) = −n

(

κ ln
κ

p
+ (1− κ) ln

1− κ

1− p

)

f ′(x) = n

(

− ln
κ

p
+ ln

1− κ

1− p

)

f ′′(x) =
−n

κ(1− κ)

f ′′′(x) =
n(1− 2κ)

κ2(1− κ)2
(3.13)Sin
e (κ− p) is of the order N−1/2 , a Taylor-expansion of the exponent in Equation(3.11) results in:

PB(k; N, p) ≈
exp

(
−1+2p
2p(1−p)

(κ− p) + 1
2

−N
p(1−p)

(κ− p)2 + 1
6

N(1−2p)
p2(1−p)2

(κ− p)3
)

√
2 π V

≈
exp

(
−1+2p
2p(1−p)

( k
N
− p) + 1

2
−N

p(1−p)
( k

N
− p)2 + 1

6
N(1−2p)
p2(1−p)2

( k
N
− p)3

)

√
2 π V

≈
exp

(

− 1−2p
2Np(1−p)

(k −Np)− 1
2

N
pN2(1−p)

(k −Np)2 + 1
6

N(1−2p)
N3p2(1−p)2

(k −Np)3
)

√
2 π V

≈
exp

(

− (k−N p)2

2 V
+ 1−2 p

6 V 2 (k −N p)3 − 1−2 p
2 V

(k −N p)
)

√
2 π V

(3.14)By using 1−e−x ≈ x (e−x ≈ 1−x) for small x , Equation (3.14) 
an be reformulatedto:
PB(k; N, p) ≈ g(k) :=

e−
(k−Np)2

2V√
2πV

(

1 +
1− 2p

6V 2
(k −Np)3 − 1− 2p

2V
(k −Np)

)

.The upper bound of DB(k,N) :≈ |g(k) − π(k,N)| in the relevant interval [E −
√

V
α
, E +

√
V
α
] is given by a lo
al maximum (see Figure 3.1). Now we set x = k−Np√

Vto simplify 
al
ulations. This results in
DB(x) ≈ e−

x2

2√
2πV

(

1− 2p

6

x3

V
− 1− 2p

2

x√
V

)and the �rst deviation
D′

B(x) ≈ e−
x2

2 (1− 2p)

2
√

2πV

(

−x4

3
+ 2x2 − 1

)
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3 COAST for Rea
tion and Di�usion

Figure 3.1: The graph of the fun
tion f(x) := |PB(x; N, p)−π(x, N)| for p = α = 0.02 and
V = 50 (⇒ N = 2551), where for PB the approximative expression (3.14) isused. As implied by (3.6) , the interval relevant for the estimation of DB(x, N)is given by [E −

√
V
α , E +

√
V
α ] = [1.02, 101.02].This results in x0 ≈ −

√

3−
√

6. Hen
e, one 
an estimatemax{DB(k,N)} ≈ DB(−
√

3−
√

6, N)

≈ (1− 2p)
√

3−
√

6
√

6 e
−3+

√
6

2√
2πV 6

<
1

6V
,so that DB(k,N) < α

2
(
f. Equation (3.7)) is ful�lled for

N >
1

3 p (1− p) α
. �

Lemma 3 : Let |k − E| <
√

V
α
. Then DG(k, n) < α

2
for all

N :=
1

9 α2/3 p (1− p)
.Proof: PG(k,N) (
f. Equation (3.4)) 
an be rewritten by a Taylor-expansion of46



3.2 Derivation of the Fundamentals
f(x) = exp(−x2/2) at x0 = k−E√

V
in the form:

PG(k,N) =
1√
2π

∫ k−E+1/2
√

V

k−E−1/2
√

V

(

f(x0) + f ′(x0) (x− x0) + f ′′(x0)
(x− x0)

2

2

)

dx

=
1√
2π

∫ k−E+1/2
√

V

k−E−1/2
√

V

e−
(k−E)2

2V − 2

(
k − E√

V

)

e−
(k−E)2

2V

(

x− k − E√
V

)

+f ′′(x0) (x− x0)
2 dx

=
1√
2π

∫ k−E+1/2
√

V

k−E−1/2
√

V

e−
(k−E)2

2V − 2

(
k − E√

V

)

e−
(k−E)2

2V x + 2

(

x− (k − E)2

V

)

e−
(k−E)2

2V

+f ′′(x0) (x− x0)
2 dx

= π(k,N) +
1√
8π

∫ k−E+1/2
√

V

k−E−1/2
√

V

f ′′(x0) (x− x0)
2 dx ,By negle
ting terms of the order O(n−1), one thus obtains for Equation (3.8)

DG(k, n) =

∣
∣
∣
∣
∣
∣

1√
8 π

∫ k−E+1
2√

V

k−E− 1
2√

V

f ′′(x0) (x− x0)
2 dx

∣
∣
∣
∣
∣
∣

≤ max{|f ′′(x0)|}√
8π

∫ x0+ 1

2
√

V

x0− 1

2
√

V

(x− x0)
2 dxnow we use k = x0

√
V + E

≤ max{|f ′′(x0)|}√
8π

∣
∣
∣
∣
∣

x3

3
− x2x0 + xx2

0

∣
∣
∣
∣
∣

x0+ 1

2
√

V

x0− 1

2
√

V

≤ max{|f ′′(x0)|}√
8π

1

12 V 3/2

≤ 1√
8 π 12 V 3/2

. (3.15)Noti
e that |f ′′(x0)| has three extrema (at x1 = −
√

3, x2 = 0 and x3 =
√

3) andmax{|f ′′(x0)|} is at position x = 0 with |f ′′(0) = 1|. Hen
e, DG(k,N) < α
2
is ful�lledfor all k if

α

2
>

1√
8π12V

3
2

.Be
ause V = N p (1− p) we obtain
α

2
>

1√
8π12(N

3
2 p

3
2 (1− p)

3
2 )
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3 COAST for Rea
tion and Di�usionBy solving for N we re
eive
N

3
2 >

1√
8π6αp

3
2 (1− p)

3
2

>
1

(288π)1/3 α2/3 p (1− p)
.By approximating the existing quotient the resulting inequality is

N >
1

9 α2/3 p (1− p)
� (3.16)

Theorem 1 : sup{|PB(k; N, p)− PG(k,N)|; 0 ≤ k ≤ N
}

< α for all N > 1
3 α p (1−p)

.Proof: Due to Lemma (1), the estimations 
an be restri
ted to |k − E| <
√

V
α
. Onthe other hand, Lemma (2) and Lemma (3) lead to the result, that sup{|PB(k; N, p)−

PG(k,N)|; 0 ≤ k ≤ N
}

< α (
f. Equation (3.5)) for all |k − E| <
√

V
α
if

N ≥ N0(α) := max {NB(α), NG(α)} =
1

3 α p (1− p)
. �So we 
an 
on
lude that the binomial distribution PB(k; N, p) and the Gaussiandistribution PG(k,N) are referred to be the same with respe
t to the error α for all

N ≥ 1

3 α p (1− p)
. (3.17)Deterministi
 rea
tion kineti
s: Furthermore, one 
an de�ne the transition pointbetween the approximative and the deterministi
 regime by applying similar 
onsider-ations. It is a well know fa
t that for large parti
le numbers the statisti
 �u
tuations
an be negle
ted and we rea
h the regime of determinism [Ethier and Kurtz, 2005℄.In the following text I will 
onsider three possible ways to 
al
ulate the transitionbetween the regimes Γ and ∆. The �rst one introdu
ed is 
omparably 
rude, butbased on the well known Ts
hebys
he�'s inequality [deFinetti, 1974, p.172f.℄. The
al
ulated 
riterion (3.18) was used in the simulations of COAST. It is possibleto estimate an earlier point of transition using more a

urate approa
hes. Theseimprovements 
ould be used to improve the runtime results of COAST. The se
ondapproa
h uses the quantiles of the normal distribution and the third approximatesthe Gaussian distribution by another e-fun
tion.To unify the three approa
hes one has to standardize the distributions. A randomvariable Y is given by the Gaussian distribution Y ≈ N

(

µ, σ2

N

) where µ = p and48



3.2 Derivation of the Fundamentals
σ2 = p(1− p). Its distribution is transformed to a the standard normal distribution
(x−µ) ·√N

σ
with x := 1

N

∑
yi.Now we demand that the probability for a 
ertain number of rea
tions being furtheraway from the expe
ted value than a given distan
e ǫ is P (|Z| ≥ ǫ) ≤ α.First let us 
onsider Ts
hebys
he�'s inequality.

P (|Z| ≥ ǫ) ≤ V

N · ǫ2
.This results in α = V

N · ǫ2 . With this we 
an give a de�nition for ǫ.
ǫ =

√

V

N ·α =
σ√

α ·NThe se
ond step is to demand the deviation ǫ to be very small 
ompared to theexpe
ted value µ.
σ√

α ·N << µThis inequality has to be quanti�ed to be useful. Be
ause we only want one singleerror parameter we use α again to simplify the estimation:
σ√

α ·N < α ·µ.Squaring both sides results in
σ2

α ·N < α2 · p2.Using σ2 = p(1− p) we 
an 
on
lude
(1− p)

α3 · p < NTschebyscheff . (3.18)With Equation (3.18) we have an estimation when to apply the deterministi
 insteadof the Gaussian distribution due to the fa
t that the expe
ted value used is the onegiven by the deterministi
 dynami
s.However, Ts
hebys
he�'s inequality is relatively 
oarse and there are better es-timations possible. The se
ond approa
h is based on the quantile-fun
tion. We�rst de�ne an ǫ, so that the probability for a value to be further away than ǫfrom the expe
ted value is less or equal the error α. Φ(ǫ) is de�ned as the inte-gral Φ(ǫ) = 1√
2π

∫ ǫ
−∞ e−

t2

2 dt. This 
on
ludes to
2 (1− Φ(ǫ)) = α. 49



3 COAST for Rea
tion and Di�usionSo we 
an obtain
1− α

2
= Φ(ǫ).By applying the inverse fun
tion Φ−1, we re
eive the following expression for ǫ

Φ−1
(

1− α

2

)

= ǫ.Again one has to demand ǫ to be mu
h smaller than the expe
ted value; i.e. we allowa relative error of α · 100% and therefor ǫ is set as α ·µ. It has to be emphasized thatdue to the standardization one now has to res
ale ǫ with σ√
N

Φ−1
(

1− α

2

) · σ√
N

< α ·µ.By using the fa
t µ = p the inequality 
hanges to
Φ−1

(

1− α

2

) · σ√
N

< α · p.Finally we solve the inequality for N :
Φ−1

(

1− α

2

)2 (1− p)

α2 · p < NQuantiles. (3.19)Using (3.19) is the most a

urate way to 
al
ulate the point of transition. Howeverhandling the tabulated values for the Φ−1-fun
tion 
an be 
ompli
ated. Thereforeit might be better to �nd an approximative solution whi
h is our third approa
h tothis problem.
P (|Z| ≥ ǫ) = 2 (1− Φ(ǫ))Now we 
an apply the de�nition for Φ and obtain

= 2 · ∫ ∞

ǫ

1√
2π

e−
x2

2 dx

=
2√
2π

· ∫ ∞

ǫ
e−

x2

2 dx.The fa
tor in front of the integral is smaller than 1. The problem is the integral, it
annot be solved analyti
ally. However, we 
an repla
e it by another larger integralof whi
h we know the antiderivative [Wasserman, 2006, p.8℄.
P (|Z| ≥ ǫ) ≤

∫ ∞

ǫ
x e−

x2

2 dx

≤
[

−e−
x2

2

]∞

ǫ

≤ e−
ǫ2

2 .
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3.2 Derivation of the FundamentalsThis results in the following 
riterion for ǫ, be
ause the des
ribed probability issupposed to be α

ǫ =

√

ln
1

α2
.Like in the two other approa
hes we set ǫ = α µ and undo the standardization, whi
hleads to

√

ln
1

α2
· σ√

N
< α ·µ.Squaring both sides of the inequality results in

√

ln
1

α2
· σ√

N
< α ·µ.By solving the inequality for N we obtain �nally

ln
(

1

α2

) · 1− p

p α2
< NApproximation. (3.20)Figure 3.2 
ompares the three approa
hes. Using the quantile-fun
tion or the ap-proximation with the modi�ed e-fun
tion results in an earlier swit
h between the Γand ∆-regime, demanding less parti
les to be present with a given rea
tion proba-bility. The improvement is depending on the given α-value. For low α-values it 
utsthe needed parti
le number by more than 90%.With Equation (3.17) and Equation (3.18), I have de�ned the borders between thethree regimes. Equation (3.17) marks the transition between Σ and Γ, and Equation(3.18) marks the transition between Γ and ∆.Illustration of the �ndings: Let us 
onsider the derived 
riteria for α = 0.05(respe
tively α = 0.01) in more detail. For small rea
tion probabilities p (Note:

p ≤ α), 1 ≈ 1− p. Thus, one obtains from Equation (3.17) and Equation (3.18) thefollowing estimations of the mean number of rea
tions N p:
N p ≈ N p (1− p) ≥ 1

3 α
and N p ≈ N p (1− p) ≥ 1

α3 .Hen
e, 
riteria (3.17) is ful�lled if the mean rea
tion number is larger than 7 (for
α = 0.01 : 34). This is also the upper bound for the amount of random numbers perrea
tion 
hannel ne
essary in a time-interval, sin
e for larger rea
tion numbers (onaverage), Equation (3.2) 
an be used, for whi
h only one random number is required.Analogously, one 
an see, that deterministi
 rea
tion kineti
s 
an be used if the ex-pe
tation of the rea
tion number is larger than 8000 (For α = 0.01 : 106). Then,obviously, no random number is ne
essary. Of 
ourse, the a
tual number of parti
lesdepends on the rea
tion probability p.
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3 COAST for Rea
tion and Di�usion

Figure 3.2: This �gure demonstrates the three approa
hes presented to model the transitionbetween the Γ and the ∆-regime give by the three Equations (3.18), (3.19) and(3.20). The probability p was assumed to be always equal to α. The numberof parti
les needed is presented with respe
t to α. The most a

urate approa
his the one using the quantile-fun
tions, 
losely followed by an approximationusing another e-fun
tion. These two methods allow up to only one 1/15th ofthe original amount of parti
les for the algorithm to swit
h from Γ to ∆.3.2.2 Length of the Time StepsOne of the important properties of the COAST algorithm is the assumption of nearly
onstant rea
tions probabilities, whi
h is again de�ned by the error parameter α.We have to 
larify how many rea
tions are allowed to o

ur without a 
hange ofthe probabilities by more than α. This paragraph will solve this problem. Equation(3.24) de�nes the 
riti
al number of rea
tions per rea
tion 
hannel. It is possiblewith Equation (3.22) to 
al
ulate the timespan in whi
h these rea
tions are going too

ur depending on the type of rea
tion.Let us 
onsider a single rea
tion 
hannel A+B → P with a sto
hasti
 rea
tion 
on-stant c and parti
le numbers NA ≤ NB, where P is an unde�ned produ
t. A

ordingto the First Rea
tion Method, l ≤ NA rea
tions have o

urred after the time
δt :=

l−1∑

i=0

− ln(ri)

c (NA − i) (NB − i)
,where ri are independent random variables uniformly distributed in [0, 1]. The meantill l rea
tions have o

urred is given by52



3.2 Derivation of the Fundamentals
〈δt〉 (l) :=

l−1∑

i=0

(

−1

c (NA − i) (NB − i)

∫ 1

0
ln(x) dx

)

.The integral 
an be solved to −1 and by fa
toring out NA twi
e in the nominator weobtain
〈δt〉 (l) =

1

c N2
A

l−1∑

i=0

1

(1− i
NA

) (NB

NA
− i

NA
)
.Now i

NA
is repla
ed by x. The o

urring sum 
an be interpreted as a Riemann sumfor the 
orresponding integral. With an estimated error of O(N−1

A ) the equation
hanges to
〈δt〉 (l) =

1

c NA





∫ l
NA

0

1

(1− x) (NB

NA
− x)

dx +O(N−1
A )



 .Thus, by eliminating terms of the order O(N−2
A ), one obtains [Gradshteyn andRyshik, 1980, p.68 (2.172)℄:

〈δt〉 (l) =







1
c (NB−NA)

ln
(

NB−l
NA−l

NA

NB

)

, if NA 6= NB ,
1

c NA

l
NA−l

, if NA = NB .
(3.21)This result 
an also be obtained by an deterministi
 approa
h. As derived in theAppendix A.5, A(t) the 
on
entration of the spe
ies A in the rea
tion A + B

c→ Pafter a timespan t 
an be des
ribed by
A(t) =

(NANB −N2
A) · e−kt(NB−NA)

NB −NA · e−ct(NB−NA)
,where NA and NB mark the starting 
on
entrations of A and B.Be
ause we are looking for the timespan τ for l expe
ted rea
tions, we have to
al
ulate l �rst:

l = NA − A(t)

⇒ l = NA −
(NANB −N2

A) · e−cτ(NB−NA)

NB −NA · e−cτ(NB−NA)

⇒ l =
NA NB (1− e−cτ(NB−NA))

NB −NA e−cτ(NB−NA)This 
an be reformulated to
τ(l) =

1

c(NB −NA)
ln

(

NB − l

NA − l

NA

NB

)

, 53



3 COAST for Rea
tion and Di�usionwhi
h is the same we have obtained in Equation (3.21). The deterministi
 and thesto
hasti
 way led both to the same result.The deterministi
 uses usually 
on
entrations for a single substrates, but this isnot an obsta
le, be
ause if a 
onstant volume is used through the simulations all
on
entrations are equivalent to spe
i�
 parti
le numbers. Furthermore one has tonotify that the 
onstant used here is the sto
hasti
 rea
tion 
onstant.For all type of rea
tions it is possible to 
al
ulate an expe
tan
y for the time span
τ until l rea
tions have o

urred, either by a sto
hasti
 or a deterministi
 approa
h.The deterministi
 way has the advantage of being mu
h easier to 
al
ulate and thesimple relation of time and rea
tions is enough for the purpose of this thesis.In more detail, for �rst and se
ond order rea
tions the time span τ for l rea
tionsis

τ(l) =







1
c

ln
(

NA

NA−l

)

, for A→ P ,
1

c (NB−NA)
ln
(

NB−l
NA−l

NA

NB

)

, for A + B → P (NA 6= NB) ,
1

c NA

l
NA−l

, for A + B → P (NA = NB) ,
2

cµ NA

l
NA−2 l

, for 2 A→ P ,

(3.22)whi
h is equivalent to the o

urring number of rea
tions
l(τ) =







NA (1− e−c τ ) , for A→ P ,
NB NA (1−e−(NB−NA) c τ )

NB −NA e−(NB−NA) c τ , for A + B → P (NA 6= NB) ,
N2

A c τ

1+ NA c τ
, for A + B → P , (NA = NB) ,

N2
A c τ

2+2 NA c τ
, for 2 A→ P .

(3.23)Analogous results 
an be derived for higher order fun
tions.I will now show that all rea
tion probabilities are 
onsidered 
onstant up to
α · 100%, if for all rea
tion 
hannels Rµ with σµ(A) A + σµ(B) B → σµ(P ) P thenumber of rea
tions is smaller than

lµ := min{ α NS

2 ̺(S) σµ(S)
; S ∈ {A,B, P}

} (3.24)where ̺(S) is the number of rea
tion 
hannels in whi
h S o

urs and σµ(S) is thestoi
hiometri
 fa
tor of S in the rea
tion 
hannel µ.I.e., a 
riterion will be derived for how many rea
tion steps 
an be allowed without
hanging any rea
tion probability in a relevant fashion. To this aim, let us 
onsidera small variation ǫ of the parti
le numbers NA and NB in a (se
ond order) rea
tion54



3.3 The Rea
tion Algorithm
hannel A + B −→ P . In this 
ase, the expe
ted number of rea
tions in a timeinterval of length τ is (
f. Equation (3.23)):
l(NA, NB) =

NB NA (1− e−(NB−NA) c δt)

NB −NA e−(NB−NA) c δt
. (3.25)This leads in a zeroth order Taylor expansion to (NB > NA)

l(NA, NB) ≈ NB ·NA

NB − NA

. (3.26)We de�ne the rea
tion probabilities (propensities) for NA + ǫ and NB + ǫ are approx-imately the same as for NA and NB if
| l(NA + ǫ,NB + ǫ)− l(NA, NB) | < α l(NA, NB) .By using approximation (3.26), one obtains

|ǫNB + ǫNA | < α NA NB . (3.27)For A→ P and 2 A→ P , one obtains analogously (
f. Equation (3.22)):
|ǫ| < α NA and |ǫ| < α NA

2
(3.28)respe
tively, where for the latter estimation, one has to assume that 1+(NA+ǫ) cτ ≈

1 + NA cτ .Let us assume that substrate S o

urs in ̺(S) rea
tion 
hannels. Then, inequalities(3.27) and (3.28) are valid if the number of rea
tions lµ in ea
h rea
tion 
hannel Rµwith σµ(A) A + σµ(B) B → σµ(P ) P ful�lls
lµ ≤ min{ α NS

2 ̺(S) σµ(S)
; S ∈ {A,B, P}

}

.In this 
ase, 
hemi
al rea
tions 
an, in a �rst approximation, be 
onsidered asindependent, identi
ally distributed events, so that the rea
tion probabilities 
anbe approximated by binomial- or (for large parti
le numbers) dis
rete Gaussian-distributions.3.3 The Rea
tion AlgorithmCOAST follows the s
heme in Figure 3.3 and a detailed list of all steps is presentedin Table 3.1. After initialization, the length τ of a time interval is estimated, whererea
tion probabilities are expe
ted to be nearly 
onstant. This is the 
ase if theexpe
ted number of rea
tions is smaller than lµ, as de�ned in Equation (3.24). Thisis done in the subroutine �Next evaluation time�. 55



3 COAST for Rea
tion and Di�usion
Figure 3.3: S
hemati
 representation of COAST. The s
heme shows the determination ofthe number of rea
tions at a latti
e point i in the time interval [t, t + ∆t[.These nearly 
onstant rea
tion probabilities allow one to 
onsider higher orderrea
tions as nearly independent pro
esses. Furthermore, one 
an also 
ompute thenumber of rea
tions in the di�erent rea
tion 
hannels su

essively, sin
e the mutualin�uen
es of the rea
tions 
an be 
onsidered small. Note that the nearly 
onstantparti
le numbers imply that the exa
t order of the evaluations of the rea
tion 
hannelsis not essential for the out
ome.A

ordingly, the number of rea
tions in the di�erent rea
tion 
hannels during thisinterval of length τ is 
omputed su

essively by appli
ation of the subroutine �Eval-uation of rea
tion 
hannels�. Finally, an update of parti
le numbers is performed,partly in �Evaluation of rea
tion 
hannels�, partly in �Final update�.This pro
edure is repeated until time T0 + ∆t = tstop is rea
hed. For pure rea
tionsystems, T0 +∆t represents the end of the simulation. However, in Se
tion 5.3, I willdis
uss how to extend this rea
tion-algorithm to a rea
tion-di�usion algorithm, whererea
tions and thermal motions in the same time interval are determined su

essively.In this 
ontext, [T0, T0 +∆t[ represents only a short simulation step. In what follows,I will 
onsider in more detail the three most important steps in the algorithm: �Nextevaluation time�, �Evaluation of rea
tion 
hannels� and �Final update�.3.3.1 Next Evaluation Time TInitially, a value for the error parameter α must be 
hosen; a lower α results inin
reasing a

ura
y, but at the expense of in
reasing 
omputational 
ost. Then, the
riti
al number of rea
tions lµ (
f. Equation (3.24)) is 
omputed for ea
h rea
tion
hannel Rµ with an additional simpli�
ation:In a time step [T, T + τ [ no parti
le 
an rea
t twi
e1.A

ordingly, the 
riterion in Equation (3.24) is restri
ted to the edu
ts of therea
tions, simplifying the 
omputation without leading to unreliable results. This1Note that the probability for a single rea
tion of a parti
le in a time interval is smaller than α.Hen
e, the probability for two or more rea
tions of a parti
le in a time interval is smaller than

α2.56



3.3 The Rea
tion Algorithm

I. Preparation Phase
α set by user
◦ t = 0
◦ 
al
ulate cµ out of all kµII. Main loop until T=tstopa) Next evaluation time
◦ 
al
ulate λ(S) (max. no. of allowed rea
ting parti
les)
◦ 
al
ulate lµ (max. no. of allowed rea
tions per 
hannel)
◦ 
al
ulate τµ (time till lµ rea
tions o

ur)
◦ sort 
hannels by τ (lowest τ �rst)
◦ T = T + τminb) Evaluation of rea
tion 
hannels
◦ loop over all rea
tion 
hannels µ

• 
al
ulate pµ (rea
tion probabilities)
• divide in Σ, Γ, ∆
• 
al
ulate κµ (no. of o

urring rea
tions)
• update edu
ts
) Final Update

◦ update produ
tsTable 3.1: The single steps of the rea
tion algorithmThe pro
ess is split into two phases. During the preparation phase α is setand the kineti
 
onstants are transformed into sto
hasti
 rea
tion 
onstants. Inthe main loop the three routines �Next evaluation time�, �Evaluation of rea
tion
hannels� and �Final update� are exe
uted until the time stop tstop is rea
hed.
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3 COAST for Rea
tion and Di�usion

Figure 3.4: Illustration for the di�erent time symbols used in the algorithm.

Figure 3.5: Time-evolution of the parti
le numbers NA and NC in both systems for COAST-simulations (α = 0.05) and for the deterministi
 rea
tion kineti
s. The left(right) diagram shows the behavior for A+B ⇌ C (A+B ⇌ 2 C). kleft = 0.002
kright = 0.0002. In the beginning, COAST applies the deterministi
 rea
tionkineti
s to A + B → 2 C, but the �rst rea
tion method to the ba
k rea
tion.assumption 
an be eliminated by applying Equation (3.24) to both edu
ts and prod-u
ts.The most stringent test for this simplifying assumption is the investigation of thetime-evolution of a system with a very fast and a slow rea
tion 
hannel, so that thefast 
hannel is treated by the deterministi
 rea
tion kineti
s, and the slow 
hannelby the First Rea
tion Method. Su
h systems are shown in Figure 3.5, where therea
tion systems A+B ⇌ C and A+B ⇌ 2C are 
onsidered. The initial 
onditions

NA = NB = 106, NC = 0 where 
hosen su
h that, in the beginning, A + B → 2Cis treated by the deterministi
 rea
tion kineti
s, but the ba
k rea
tion by the FirstRea
tion Method. Clearly, the mean value of the COAST-simulations 
oin
ide withthe values of the ODE-solutions, so that one 
annot observe a (relevant) error dueto the assumption �no parti
le rea
ts twi
e�.58



3.3 The Rea
tion AlgorithmSubsequently, for ea
h rea
tion 
hannel Rµ, the time Told + τµ is determined atwhi
h lµ rea
tions are expe
ted (
f. Equation (3.22)). The next evaluation time Tnewis given either by the minimum Told + τµ or by T0 + ∆t, where T0 + ∆t is either theend of the whole simulation or, in rea
tion-di�usion models, the end of a time step2.In more detail, the module �Next evaluation time� is 
omposed of the following threesteps:Step 1: For ea
h substrate A, 
ompute the maximal number of parti
les per spe
ies,whi
h is allowed to rea
t su
h that the propensity is not 
hanging by more than α(derivation in Equation (3.22))
λ(A) := max{1, α NA

2 ̺(A)

}where ̺(A) is the number of rea
tion 
hannels in whi
h A o

urs as a rea
tant.Step 2: For ea
h rea
tion 
hannel Rµ with σµ(A) A+σµ(B) B → σµ(C) C +σµ(D) D,
ompute the maximal number of allowed rea
tions
lµ := min { λ(A)

σµ(A)
, λ(B)

σµ(B)

}

. (3.29)and τµ(lµ given by Equation (3.22)).Step 3: Determine
Tnew := min{Told + min{ τµ }, T0 + ∆t} .So Tnew is either the sum of the lowest τ of all 
hannels and the old T , or the timespantill the end of T0 + ∆t.3.3.2 Evaluation of Rea
tion ChannelsThe su

essive evaluation of the rea
tion numbers starts at the rea
tion 
hannel withminimum τµ and ends at the rea
tion 
hannel with maximum τµ

3. A

ordingly, the�rst step is the ordering of the rea
tion 
hannels Rµ a

ording to the τµ's. In these
ond step, one determines to whi
h of the model 
lasses Σ, Γ and ∆ ea
h rea
tion
hannel belongs, where Σ represents the First Rea
tion Method of Gillespie [1976,1977℄, Γ a Gaussian-distribution (
f. Equation (3.2)), and ∆ the deterministi
 re-a
tion kineti
s. Correspondingly, this 
lassi�
ation is performed by the 
riteria in2In rea
tion -di�usion models one often 
omputes rea
tions and thermal motions in the same timestep su

essively [Hebert, 1992, Möller and Wagner, 2005℄3Sin
e the rea
tion probabilities are nearly 
onstant during a time step, the exa
t su

ession ofthe evaluation steps do not have a strong in�uen
e on the out
omes 59



3 COAST for Rea
tion and Di�usionEquation (3.17) and Equation (3.18), where the probabilities pµ are given by the ex-pe
tations in Equations (3.23) of the First Rea
tion Method divided by the (smaller)parti
le number.Between the evaluation of two rea
tion 
hannels, a �rst update of the numberof parti
les is performed. This �rst update is restri
ted to a redu
tion of parti
lenumbers 
orresponding to the 
onsumption of edu
ts. The se
ond update due to theprodu
tion of parti
les in rea
tions will be performed in the �Final update� at theend of ea
h time step. Note that this splitting of updates is in a

ordan
e with theassumption that no parti
le rea
ts twi
e in [T, T + τ [.Step 1: If there are m rea
tion 
hannels Rµ, determine the sequen
e a(ν1, ..., νm)(νi ∈ {1, ..,m}), so that for all i < j: Rνi
6= Rνj

and τνi
≤ τνj

. (sorting the 
hannelswith lowets τ �rst)Step 2: For i := 1 to m do:(a) Compute
aνi

:=

{

NA , for A→ ?, 2 A→ ? ,min{NA, NB} , for A + B → ? ,and the rea
tion probabilities pνi
:=

lνi (τ)

aνi
, where lνi

(τ) is given by Equation (3.23).(b) Perform the 
lassi�
ation
Rνi
∈







∆ , if aνi
> 1

α3 pνi (1−pνi )
,

Γ , if 1
α3 pνi (1−pνi )

≥ aνi
> 1

3 α pνi (1−pνi )
,

Σ , if 1
3 α pνi (1−pνi )

≥ aνi
.(
) Compute the number of rea
tions κνi

in [T, T + τ [ byIf Rνi
∈ Σ:

κνi
:= min


m ∈ N0, t0 −

m∑

j=0

ln(r
(j)
νi

)

Qνi (j)
> T






,where r(j)

νi
are random variables equidistributed in [0, 1] and where

Qνi
(j) :=







cνi
(NA − j) , for A→ C + D,

cνi
(NA − j) (NB − j) for A + B → C + D,

cνi

2
(NA − 2 j) (NA − 2 j − 1) , for 2 A→ C + D .60



3.3 The Rea
tion Algorithm
If Rνi

∈ Γ:
κνi

= min{ NA

σνi (A)
, NB

σνi (B)
,max {0, nνi

}
}with Equation (3.3):

nνi
:= Round(√NA pνi

(1− pνi
) X + NA pνi

)where the normally distributed random variable X 
an e�
iently be 
omputed by theBox-Muller algorithm [Box and Muller, 1958℄.If Rνi
∈ ∆:

κνi
:= Round (NA pνi

) .(d) Update of edu
ts: If Rνi
is given by σνi

(A) A + σνi
(B) B → σνi

(C) C + σνi
(D) D,then NA = NA − σνi

(A) κνi
and NB = NB − σνi

(B) κνi
.3.3.3 Final UpdateIn the �nal update, the parti
le numbers are in
reased a

ording to the number ofrea
tions. Thus, the �nal update 
an be des
ribed in the following fashion:Update of produ
ts: For all rea
tion 
hannels Rµ with σµ(A) A+σµ(B) B → σµ(C) C +

σµ(D) D do: NC := NC + σµ(C) κµ, ND := ND + σµ(D) κµ ,
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3 COAST for Rea
tion and Di�usion3.4 Extending COAST to Di�usion3.4.1 Problems and Approa
hesThe models for the des
ription of thermi
 motions of parti
les is 
omposed of two
lasses (
f. Figure 3.2): The sto
hasti
 des
ription of the traje
tories of single parti-
les and di�usion models re�e
ts the time-evolution of the probability distribution ofsu
h a parti
le. Correspondingly, the �rst 
lass of models is able to re�e
t sto
hasti
e�e
ts due to small parti
le numbers, whereas their simulations are 
omputation-ally very expensive for large parti
le numbers. On the other hand, di�usion modelsare 
omputationally very e�
ient, but their deterministi
 time-evolution suppressessto
hasti
 �u
tuations, so that they are only suitable for large parti
le numbers.Consequently, both kinds of models are not suitable to represent 
ellular networks,sin
e they often 
ontain substrates with a wide range of possible parti
le numbers[Goodsell, 1991, Endy and Brent, 2001℄.Algorithm/Model Referen
e Modeling of kind of modelMole
ular dynami
s Baynes 2004, single parti
les deterministi
Friedel 2004Langevin-equation Stiles 1998 single parti
les sto
hasti
Smoldyn Lipkow 2005 single parti
les sto
hasti
(Spatial) Gillespie Takahashi 2004 single parti
les sto
hasti
Gibson-Bru
k Hattne 2005, single parti
les sto
hasti
Stundzia 1996Di�usion model (PDE) Evans 1999 distributions deterministi
of parti
lesTable 3.2: An overview of the algorithms for (rea
tion-) di�usion models. Note that mole-
ular dynami
s (MD) requires a des
ription of all parti
les in a system, whereasall other models allow a 
onsideration of subsystems.However, the thermal motion of parti
les 
an be interpreted as a kind of �rea
-tion�: one 
onsiders mole
ules of the substrate with di�erent positions as di�erentsubstrates and, thus, the transitions from one latti
e point to another as a rea
tion
hannel. A

ordingly, rea
tion-di�usion algorithms 
an be 
onsidered published [Elfet al., 2003, Stundzia and Lumsden, 1996℄ treating not only rea
tions, but also thedi�usive motions by exa
t sto
hasti
 rea
tion-algorithms [Gillespie, 1977, Gibson andBru
k, 2000℄. For large parti
le numbers, these methods lead to high 
omputational
osts. Consequently, they 
an only be e�
iently applied to systems with small orintermediate parti
le numbers.62



3.4 Extending COAST to Di�usionsmall intermediate large subdivision
τ -leap Gillespie 1977 Poisson Poisson Poissonbinomial leap Chatterjee 2005 binomial binomial binomialTian 2004hybrid methods Takahashi 2004 NRM NRM deterministi
 by user, �xedKiehl 2004 NRM NRM deterministi
 by user, �xedCao 2005 FRM FRM quasi steady state by user, �xedRao 2003Haseltine 2002 FRM FRM Langevin-equation by user, �xedmaximum Pu
halka 2004 NRM Poisson Poisson automati
time step in ea
h stepPW-DMC Resat 2004 Monte Carlo Monte Carlo Monte Carlo automati
with with with in ea
h stepsingle rea
tions bundles bundlesCOAST FRM Gauss deterministi
 automati
in ea
h stepTable 3.3: Chara
terization of the re
ently published rea
tion-algorithms: FRM denotes theFirst Rea
tion Method or Dire
t Method of Gillespie Gillespie [1977℄, NRM theNext Rea
tion Method of Gibson and Bru
k Gibson and Bru
k [2000℄. �bundle�means several rea
tions of the same type.Some re
ently published rea
tion-algorithms (
f. Figure 3.3) try to solve the dilem-ma between the exa
tness of modeling and 
omputational 
osts by using di�erentlevels of modeling for the di�erent ranges of parti
le numbers. I will now des
ribehow COAST , as a multi-level algorithm, 
an be applied to di�usion pro
esses andby keeping its original fun
tion extending it to a rea
tion-di�usion-algorithm.

3.4.2 OutlineHere I will dis
uss the adoption of the COAST to the needs of linear di�usion mod-els. Thereby, linear di�usion model means that the di�usion rates of ea
h des
ribedsubstrate is independent from the 
on
entrations of all of these expli
itly des
ribedsubstan
es. This is a reasonable approximation if the intera
tions between thesesubstrates are small 
ompared to the intera
tions with other substrates. Thus, lineardi�usion models may not be suitable for all biologi
al systems [Agutter et al., 1995℄,but are always appropriate if the 
on
entrations of the expli
itly des
ribed substratesare low enough.On the other hand, linear di�usion models allow the subdivision of the di�usionmodel into (approximatively) independent subunits: the thermal motions of di�erentsubstrates 
an be treated independently, and the transitions from di�erent latti
epoints 
an, for small time steps, also be 
onsidered as approximatively independentevents. Last but not least, the transitions from the same latti
e site into di�erent63



3 COAST for Rea
tion and Di�usiondire
tions 
an also be treated independently; provided that one uses appropriately
onstrained probabilities.This allows to de
ompose the dynami
s into (nearly) independent pro
esses helpto simplify the algorithm enormously. Additionally, sin
e linear di�usion models
orrespond to �rst order rea
tions, they 
an work with 
onstant time steps, whi
hadditionally allows for a simpli�
ation of the algorithm.I emphasize here the 
on
ept of error 
ontrol of COAST to linear di�usion models,whi
h means that the errors due to the dis
retization of the spatial 
oordinates areestimated dependently from two error 
ontrol parameters, namely the parameter αmentioned before and a parameter R 
orresponding to the spatial resolution of thedi�usion model.In the following se
tion, the di�usion model and the 
orresponding random walkused by COAST are introdu
ed. The 
ontent of Se
tion 3.6 is the estimation of theerrors due to the ne
essary dis
retization of time and spa
e dependently from errorparameters.3.5 The Dis
rete Di�usion ModelIn this paragraph I will des
ribe how to get from the 
ontinuous di�usion modelto a dis
rete di�usion model. This approa
h allows us to approximate the 
ontin-uous di�usion by a dis
rete approa
h and gain with Equation (3.35) an quantita-tive expression for the transition probability between two adja
ent volume elements.For the dis
ussion of the di�usion-model on whi
h COAST is based, namely theSmolu
howski-equation, let us 
onsider the 
ase of a one-dimensional motion of asingle substrate A with a fri
tion 
oe�
ient γ and an external for
e fA(x).The motion of a parti
le A in a time span δt is given by the Langevin-equation inthe strong fri
tion limit (i.e. mẍ→ 0):
x(t + δt)− x(t) =

∫ t+δt

t

fA(x(s))
γA

ds +
√

2 DA δtW ,where kB is the Boltzmann's 
onstant, T is the absolute temperature, and W is anormally distributed random number with density
σ(W ) := 1√

2 π
e−

W2

2 . (3.30)
DA is the di�usion 
oe�
ient of the substrate A and is related to the Boltzmann-
onstant kB, the temperature T and the fri
tion 
oe�
ient of substrate A by

DA := kB T
γA

.By Ito-integration [Oksendahl, 1985, p. 20 �.℄ of Equation (3.30), one obtains thedi�usion-equation, whi
h des
ribes the time-evolution of the 
orresponding probabil-ity density fun
tion ̺(x, t):64



3.5 The Dis
rete Di�usion Model
∂
∂ t

̺(x, t) = −1
γA

∂
∂ x

( fA(x) ̺(x, t) ) + DA
∂2

∂ x2 ̺(x, t) , (3.31)namely the Smolu
hovski-equation.Now let us 
onsider, the dis
rete Smolu
hovski-equation based on the latti
e Λ andopen boundary 
onditions:
Λ :=

{

(i ∆x , j ∆t ) | − n ≤ i ≤ n ; j ∈ N0

}

,and
̺(−n, t) = ̺(n, t) = 0 ∀t ∈ N0 .we obtain from subtra
ting or adding respe
tively the two Taylor-expansions of garound the point b

g(b + ∆b) = g(b) + ∆b g′(b) + ∆b2

2
g′′(b) + ∆b3

6
g′′′(b) +

+∆b4

24
g′′′′(b) +O(∆b5) ,

g(b−∆b) = g(b)−∆b g′(b) + ∆b2

2
g′′(b)− ∆b3

6
g′′′(b)

+∆b4

24
g′′′′(b)−O(∆b5)the approximations

g′(b) = g(b+∆b)−g(b−∆b)
2∆b

+O((∆b)2),

g′′(b) = g(b+∆b)−2 g(b)+g(b−∆b)
(∆b)2

+O((∆b)2). (3.32)For ∂
∂t

̺(x, t) we need a slightly di�erent approa
h. To keep it a Markov-pro
ess, weapproximate this expression by another Taylor-polynomial around the point t:
̺(t + ∆t) = ̺(t) + ̺′(t) · ((t + ∆t) − t)

̺′(t) =
̺(t + ∆t) − ̺(t)

∆t
. (3.33)Inserting Equation (3.32) and Equation (3.33) into Equation (3.31) and substituting

b by x, leads to: 65



3 COAST for Rea
tion and Di�usion
̺(i, t + ∆t) = ̺(i, t) (1−∆t

(

DA

∆x2
− f(i− 1)

γA 2∆x

)

−∆t

(

DA

∆x2
+

f(i + 1)

γA 2∆x

)

)

+̺(i− 1, t) ∆t

(

DA

∆x2
+

f(i)

γA 2∆x

)

+̺(i + 1, t) ∆t

(

DA

∆x2
− f(i)

γA 2∆x

) (3.34)where the �rst term on the right side des
ribes the parti
les staying at latti
e point
i between t and t + 1. The se
ond term des
ribes the parti
les moving from i− 1 to
i and the third term the parti
les moving from i + 1 to i. The fa
tors 
onne
ted tothe density fun
tion ̺ are the transition probabilities. Therefore I de�ne:

q(i + ν|i; ∆t) := ∆t
(

DA

(∆x)2
+ ν fA(i+ν)

2 γA ∆x

) (3.35)as the probability for the transition i→ i + ν to obtain the dis
rete di�usion-model:
̺(i, t + ∆t) =

(

1− q(i + 1|i; ∆t)− q(i− 1|i; ∆t)
)

̺(i, t)

+ q(i|i + 1; ∆t) ̺(i + 1, t) + q(i|i− 1; ∆t) ̺(i− 1, t) . (3.36)An analogous derivation of the di�usion pro
ess in reversed order 
an be found instandard sto
hasti
 literature (e.g. Feller [1970, 354pp℄).3.6 The Values of the Dis
retization Parameters
∆x and ∆tIn this se
tion, appropriate 
hoi
es for the dis
retization parameters ∆x and ∆t arepresented. To this aim, I will �rstly set up four 
onditions, whi
h will result inde�nitions for ∆x and ∆t. In doing so, we will always 
onsider the 
ase of a singlesubstrate A. At the end of this se
tion, the derived �ndings will be summarized andthe extension to systems with many substrates will be dis
ussed.3.6.1 First Condition: Approximation of ContinuousDistributionsBy approximation of a 
ontinuous distribution by a dis
rete distribution we gain a
riterion for ∆x.66



3.6 The Values of the Dis
retization Parameters ∆x and ∆tIn a di�usion model like the Smolu
howski-equation, the parti
les are des
ribed by
ontinuous distributions, so that the number of parti
les in the interval [x−∆x
2

, x+∆x
2

[is given by the integral over a density fun
tion ̺

Pcont :=

∫ x+∆x
2

x−∆x
2

̺(y) dy(2nd grade Taylor-polynomial of ̺(y))
=

∫ x+∆x
2

x−∆x
2

̺(x) + ̺′(x) (y − x) + (y−x)2

2 ̺′′(x) +O((∆x)3) dy

= ̺(x)∆x + ̺′(x) 0 + 2(∆x)3

24
̺′′(x)

2 +O((∆x)5)

= ̺(x)∆x + (∆x)3

24 ̺′′(x) +O((∆x)5) . (3.37)On the other hand, the simulations are based on a dis
rete distribution assumingthat the parti
les are homogeneously distributed within a voxel. Thus, the numberof parti
les in the interval [x− ∆x
2

, x + ∆x
2

[ is given in a dis
rete model by
Pdisc ≈ ̺(x) ∆x . (3.38)A

ordingly, the 
ondition |Pcont − Pdisc| < α Pcont 
an, as a �rst approximation, bewritten as

∣
∣
∣̺(x)∆x + (∆x)3

24 ̺′′(x) − ̺(x)∆x
∣
∣
∣ < α

∣
∣
∣̺(x)∆x + (∆x)3

24 ̺′′(x)
∣
∣
∣withα (∆x)3

24 ̺′′(x) ≈ 0

⇔
∣
∣
∣
(∆x)3

24 ̺′′(x)
∣
∣
∣ < α |̺(x)∆x|

⇔ ∆x <

√

24α min
∣
∣
∣

̺
̺′′

∣
∣
∣. (3.39)For a reformulation of this inequality, an assumption about the exa
t form of ̺ isne
essary. Su
h an assumption is naturally problemati
 sin
e ̺ usually depends ontime. On the other hand, in most 
ases ̺ will be nearly a Gaussian distribution -for example at the lo
al minima of the potential. Hen
e, we de�ne ̺ as a probabilitydensity fun
tion of a Gaussian-distribution with standard deviation R

̺(x) := 1√
2 π R

e−
x2

2 R2 , (3.40)whi
h results in
∆x <

√

24 α
∣
∣
∣

R4

x2−R2

∣
∣
∣. (3.41)Due to Ts
hebys
he�'s inequality, x is smaller than R√

α
with probability 1−α. Withsimilar 
onsiderations like the one justi�ed in Se
tion 3.2.1 it is possible to derive67



3 COAST for Rea
tion and Di�usiona di�erent value for x, whi
h would result in a larger value for ∆x and possibly abetter performan
e in total for the implementation. However, the general ideas arethe same and therefore I limit the dis
ussion only to the value for x derived fromTs
hebys
he�s inequality. By negle
ting events with probability smaller than α, oneobtains the estimation
∆x <

√

24 α
∣
∣
∣

R4

x2−R2

∣
∣
∣.Now we substitute x by R√

α
to obtain
∆x <

√
√
√
√
√
√24 α

∣
∣
∣
∣
∣
∣
∣

R4
(

R√
α

)2

−R2

∣
∣
∣
∣
∣
∣
∣

<

√

24 α

∣
∣
∣
∣

R4

R2

α
−R2

∣
∣
∣
∣

<

√

24 α

∣
∣
∣
∣

R2

1
α
−1

∣
∣
∣
∣

<

√

24 α
∣
∣
∣
R2 ·α
1−α

∣
∣
∣.For small values of α one 
an estimate 1− α ≈ 1 whi
h results in

∆x <
√

24 α R, (3.42)so that the standard deviation R of the Gaussian-distribution 
an be used as para-meter des
ribing the spatial resolution of the system: Distributions with standarddeviations smaller than R 
an show additional errors.3.6.2 Se
ond Condition: Approximation of MomentsThe dis
rete di�usion model shown in Equation (3.36) is very di�erent from theLangevin-equation (
f. Equation (3.5)). Parti
ularly, it is less similar to the Lange-vin-equation than the random walk:
x(t + τ̃)− x(t) = τ̃ fA(x(t))

γA
+
√

2 DA τ̃ W . (3.43)In this equation γA is the fri
tion 
oe�
ient of substrate A and fA(x(t)) is the for
eon A as a fun
tion of the lo
ation x and the time t. W is a normally distributedrandom number. One has to impose the requirement that both dynami
al modelsresult in nearly the same distribution of parti
les, where these distributions will be
hara
terized by the expe
tation and varian
e.68



3.6 The Values of the Dis
retization Parameters ∆x and ∆tThe expe
tation and varian
e of the random walk (
f. Equation (3.43)) are
Erw = τ̃ fA(x)

γA
, Vrw = 2 DA τ̃ . (3.44)On the other hand, the expe
tan
y of the dis
rete di�usion model (
f. Equation(3.36)) is

Eddm = ∆x (q(x + ∆x) − q(x−∆x)).By using the de�nitions for the transition probabilities given by Equation (3.35) andsetting ∆t = τ , the equation 
hanges to
Eddm = ∆x

(

τ D

∆x2 +
τ f(x + ∆x)

2 γ ∆x
−
(

τ D

∆x2 −
τ f(x−∆x)

2 γ ∆x

))

=
τ

2 γ
(f(x + ∆x) + f(x−∆x)) .Repla
ing the fun
tions f(x + ∆x) and f(x − ∆x) by the 
orresponding Taylor-polynomials we obtain for the expe
tan
y of the dire
t di�usion model

Eddm =
τ f(x)

γ
+ τ̃

f ′′
A(x) (∆x)2

2 γA

+O(∆x4). (3.45)The varian
e is des
ribed as the sum over the three jump options (left, right andstay) by
Vddm = ∆x2 q(i + 1|i) + ∆x2 q(i− 1|i) + 02 q(i|i)

= ∆x2
(
q(i + 1|i) + q(i− 1|i)

)
.We repla
e again the transition probabilities by their de�nitions given by Equation(3.35) and set ∆t = τ̃ to obtain

= τ̃ (2DA +
(fA(x + ∆x)− fA(x−∆x))∆x

2 γA

)−
(

τ̃
fA(x + ∆x) + fA(x−∆x)

2 γA

)2

.Finally by applying Taylor-polynomials of the involved fun
tions the varian
e 
anbe de�ned as
Vddm = τ̃ (2DA +

f ′
A(x)∆x2

γA

)−
(

τ̃
fA(x)

γA

)2

+O(∆x4) . (3.46)
69



3 COAST for Rea
tion and Di�usionWe therefore 
onsider Vddm as nearly identi
al to Vrw if for a value α ∈ [0, 1] thefollowing 
onditions hold:
2α DA >

f ′
A(x)∆x2

γA

⇔ ∆x <

√

2α kB T

|f ′|

(withDA =
kBT

γ

)

,and
2α DA τ̃ >

(
fA(x(t))τ̃

γA

)2

⇔ τ̃ <
2α kB T γA

|fA|2
. (3.47)Furthermore we 
onsider Eddm as nearly identi
al to Erw if for a value α ∈ [0, 1] thefollowing 
ondition holds:

Eddm − Erm < α Erm

Eddm < (α + 1)Erm

1 +
f

′′

A(x)∆x2

2
< α + 1

∆x <

√

2fAα

f
′′

ACon
luding, we de�ne that the random walk and the dis
rete di�usion model leadto nearly the same distributions, if
|Eddm − Erm| < α |Erm| and |Vddm − Vrm| < α Vrm . (3.48)By negle
ting terms of the order ∆x4, these 
onditions are ful�lled if

∆x < min{√2 fA α

f ′′
A

,
√

2 α kB T
f ′

A

}

, (3.49)
τ̃ < min{2 α kB T γA

|fA|2
}

, (3.50)
T is the temperature and kB the Boltzmann's-
onstant.3.6.3 Third Condition: Positive ProbabilitiesIn the dis
rete di�usion model (3.36) the transition probabilities q between adja
entvolume elements or latti
e points are des
ribed as (
f. Equation (3.35)):

q(i + ν|i;∆t) := ∆t
(

DA

(∆x)2 + ν fA(i+ν)
2 γA ∆x

)

. (3.51)To guarantee positive transition probabilities one has to demand:
0 < q(i + ν|i;∆t) ⇔ ∆x < 2 kB T

fmax(A)

(

DA =
kB T

γA

)

. (3.52)70



3.7 Summary of Formulas for ∆x and τThe variables are named like in the se
tions above. fmax(A) is the maximal for
eon A within the observed spatial interval. This Equation (3.51) will be used as anadditional 
riterion for the distan
e between two latti
e points ∆x.3.6.4 Fourth Condition: Small Changes of Parti
le NumbersIn ea
h time step of length τ̃A, the probability of a transition from any latti
e point
i must be smaller than α, whi
h implies

q(i + 1|i) + q(i− 1|i) = τ̃A

(
2 DA

(∆x)2
+ f ′

max(A)
γA

)

≤ α . (3.53)By inserting Equation (3.49), Equation (3.53) 
an be rewritten as
τ̃A < α (∆x)2

2 DA (1+α)
. (3.54)3.7 Summary of Formulas for ∆x and τTo derive an appropriate latti
e distan
e ∆x, one 
an use Equation (3.49), (3.52)and (3.42). On the other hand, it is also desirable that the length of the interval

[a, b], in whi
h the system is simulated, is a natural multiple of the latti
e distan
e
∆x. Hen
e, we de�ne

∆x :=
b− a

[
b−a

δ

]

+ 1
, ([ x ] := max{n ∈ Z |n ≤ x }) , (3.55)where

δ := min{√2 fA

f ′′
A

,
√

2 α kB T
f ′

A
, 2 kB T

fA
,
√

24 α R |x ∈ [a, b] , A ∈ S

} (3.56)is the generalization of Equations (3.49), (3.52) and (3.42) to systems with manysubstrates.Starting from this value for ∆x, one 
an 
ompute for ea
h substrate A the length
∆t of a time step in the following fashion (
f. Equations (3.50) and (3.54))

∆t := min{ 2 α kB T γAmax{f2
A} , α (∆x)2

2 DA (1+α)
|x ∈ [a, b], A ∈ S

}

. (3.57)3.8 Cal
ulation of TransitionsAs des
ribed in Se
tion 3.2 one basi
 idea of COAST is to subdivide the system intoindependent subpro
esses: First, the di�usion of di�erent substrates are independent71



3 COAST for Rea
tion and Di�usionpro
esses. Se
ond, the transitions of the same substrates from di�erent latti
e points
i and j are independent pro
esses. By using the probabilities p := q(i + 1|i)(for
i → i + 1) and p := q(i−1|i)

1−q(i+1|i) (for i → i − 1), the transition numbers i → i + 1 and
i→ i− 1) 
an be 
omputed su

essively without additional errors.Starting from these probabilities, I will present in this se
tion three methods to
ompute the number of transitions in one of the dire
tions i→ i± 1. The 
hoi
e ofthe method depends on the number of parti
les Ni at a latti
e point i.Exa
t sto
hasti
 model (Σ): For small numbers of parti
les the transitionsfrom latti
e point i to i ± 1 
an be 
omputed by su

essive evaluation of binomial-distributions of the form (Ni:=number of parti
les at point i)

PB(κ,Ni) =

(

Ni

κ

)

pκ (1− p)Ni−κ , (3.58)where one has to use suitable 
onditioned probabilities for the se
ond transition (
f.Figure 3.8).Approximative sto
hasti
 model (Γ): For su�
iently large Ni, Equation (3.58)
an be approximated by the distribution of the random variable
Z := Round(p Ni + X

√

Ni p (1− p)
)

, (3.59)where X is a normally distributed probability variable and where Round is given byEquation (3.3).In more detail:If PG(κ,Ni) is the probability for Z = κ, then sup{|PB(κ,Ni)− PG(κ,Ni)|} < α (
f.Equation (3.5) and (1) for details), for
Ni ≥ 1

3 α p (1−p)
. (3.60)Partial di�erential equation (∆): It is des
ribed in Equation (3.17), that thedeviations from the expe
tation E are, with probability 1 − α, smaller than α Ewhen

Ni ≥ 1−p
α3 p

. (3.61)In this 
ase, the deterministi
 des
ription 
an be applied:
κ := Round (Ni p) (3.62)In COAST, Equations (3.59) and (3.62) will be used for e�
ient 
omputations of thetransition numbers in the 
ase of intermediate and large parti
le numbers.72



3.9 The Algorithm
i = n− 1

i < n− 1

Transitions i→ i + 1 Transitions i→ i− 1 Final update

i := i + 1

endstart

Figure 3.6: S
hemati
 representation of COAST. The s
heme illustrates the 
omputationof the transitions for a substrate S during [t, t+∆t[. In doing so, one starts atlatti
e point −n + 1 and ends at n− 1.
i i + 1i− 1 i + 2

Transitions from i + 1

Update without

imigrations

Transition from i

lattice points i i + 1i− 1 i + 2

Update including

imigrations

Transitions from i + 1

Transition from i

lattice points

Figure 3.7: Comparison between an immediate update in
luding immigrations (left) and a
onsideration of immigrations in a �nal update after 
omputing all transitions(right). It is assumed that at time t there is a single parti
le at latti
e point i.The su

essive 
omputation of the transitions from the di�erent latti
e leadingin the left s
enario to arti
i�
al, asymmetri
 transition s
heme.3.9 The Algorithm3.9.1 OverviewAssume that spa
e and time 
oordinates have been dis
retized by using the parame-ters ∆x (
f. Equation (3.55)) and ∆t (
f. Equation (3.57)). Furthermore, supposethat the dis
retization of the spa
e 
oordinate x has led to 2n + 1 latti
e points
i ∈ {−n, ..., n}, where ̺(±n) = 0 re�e
ts open boundary 
onditions. Then, the ap-pli
ation of COAST to di�usion follows the s
heme shown in Figure 3.6: For ea
hsubstrate A, the 
omputation of the thermal motions in a time interval [t, t+∆t[ one
omputes su

essively the transitions from ea
h latti
e point i ∈ {−n + 1, ..., n− 1},where �rst of all one always 
omputes the number of transitions in the positive di-re
tion i→ i+1 and then the transitions in negative dire
tion (
f. Se
tion 3.8). Thenumber of transitions are 
omputed in the following fashion:Firstly, the subroutine �Transitions� (
f. Se
tion 3.9.2) is used to 
ompute thenumber of transitions from i to i+1. Then the same subroutine is used to determinethe transitions from i to i − 1. Subroutine �Transitions� also in
ludes an updaterestri
ted to a redu
tion of parti
le numbers due to emigrations. The other part ofthe update, namely the in
rease of parti
le numbers due to immigrations, is shifted to73



3 COAST for Rea
tion and Di�usionthe subroutine �Final update�, performed after the 
omputation of all transitions inthe time interval [t, t+∆t[. Note that this split of the parti
le update is ne
essary (
f.Figure 3.7): A 
omplete update immediately after the 
omputation of the transitionsfrom a latti
e point i would lead to the artifa
t that, in a time interval [t0, t0 + ∆t[,a parti
le 
an jump from latti
e point i to all latti
e points i + j with j > 0 (inthe for
e free 
ase: with probability qj), but to no latti
e point i − k with k > 1.The update of the parti
le numbers at a spe
i�
 latti
e point after one dire
tion, forexample γ = 1, has been pro
essed, is ne
essary. Otherwise the possible amount oftransitions 
al
ulated for γ = −1 may be larger than what would be left after the�rst transition. This 
ould result in negative parti
le numbers.In what follows, the two subroutines �Transitions� and �Final update� are presentedin more detail.3.9.2 SubroutinesTransitions In a �rst step, one has to de�ne the transition probabilities. Assumewe 
al
ulate �rstly the transition i→ i + 1, then the transition probability q
(+1)
i 
anbe used. However, for the subsequently 
omputed number of transitions i → i − 1,one must not use q

(−1)
i , but the 
onditioned probability that there was no transition

i→ i + 1 (
f. Figure 3.8).
i i + 1i− 1

1− q(i−1|i)
1−q(i+1|i) 1

q(i−1|i)
1−q(i+1|i)

q(1 + 1|i)

1− q(i− 1|i)− q(i + 1|i)

1− q(i + 1|i)

Resulting probabilities

Transition i→ i− 1

Transition i→ i + 1

lattice points

q(i− 1|i) q(i + 1|i)Figure 3.8: Su

essive 
omputation of the transitions from latti
e point i in the di�erent di-re
tions. The numbers at the edges of the graph are the probabilities used in thetwo steps. The resulting probabilities, given by the produ
ts of the probabilitiesin both steps, are in agreement with the 
orre
t transition probabilities.Se
ondly, the number of transitions κ(i + γ|i) from i to i + γ is 
omputed, wherethree modeling levels are used:74



3.9 The AlgorithmIf the 
riterion in Equation (3.60) is not ful�lled, two binomial distributions (
f.Equation (3.58)) are evaluated, whi
h is de�ned as the Σ-regime.If Equation (3.60) is valid, but Equation (3.61) is not, then κ(i + ν|i) is 
omputedby evaluating two Gaussian distributions (
f. Equation (3.59)), where one has totake 
are that neither the number of parti
les nor the number of transitions be
omenegative. This is the Γ-regime.Finally, if Equation (3.61) is valid, the deterministi
 des
ription (
f. Equation(3.62)) is used, whi
h is named the ∆-regime.In the last step, an update of the parti
le numbers is performed, whi
h is restri
tedto the redu
tion of the parti
le number Ni due to emigrations.Step 1: De�ning the probabilities:
p :=

{

q(i + 1|i) , if γ = +1 ,
q(i−1|i)

1−q(i+1|i) , if γ = −1 ,Step 2: Compute the number of transitions κ(i + γ|i):
Σ : If Ni ≤ (3 α p (1− p))−1:

κ(i + γ|i) := max{m ∈ N0 |
m∑

k=0

P (k,Ni, p) < r

}

,where r is a random number equidistributed in [0, 1] and PB follows Equation (3.58) sothat
P (0, Ni, p) := ( 1− p )Ni

P (l + 1, Ni, p) := (Ni−l) p
(l+1) (1−p)

P (l, Ni, p) (l ≥ 0) .

Γ : If (3 α p (1− p))−1 < Ni ≤ (α3 p (1− p))
−1:

κ(i + ν|i) :=







0 , if X < −
√

Ni p
1−p

,

Ni , if X >

√

Ni (1−p)
p

,Round (√Ni p (1− p) X + Ni p
)

, otherwise .with normally distributed random variable X.
∆ :If (α3 p (1− p)

−1
< Ni:

κ(i + γ|i) = Round ( Ni p ) . 75



3 COAST for Rea
tion and Di�usion
Step 3: Update due to emigrations

Ni := Ni − κ(i + γ|i).Final update due to immigrations After 
omputing all κ(i+ ν|i), a �nal updateof the parti
le numbers is performed re�e
ting the additional parti
les due to immi-grations.Loop over all latti
e points (−n < i < n)
Ni := Ni + κ(i|i + 1) + κ(i|i− 1) .

3.10 The Error Parameter αAfter the development of COAST in the past paragraphs there are maybe somea

entuations ne
essary regarding the error parameter α. Sin
e it was the intentionto present an algorithm depending on as least di�erent parameters as ne
essary.The de
ision was made that all o

urring approximations during the derivation ofne
essary formulas for COAST had at the end to be adapted by only one single value,whi
h then was de�ned by α.I am fully aware of the fa
t that α is approximating relatively di�erent errors. Inthe �rst paragraph about the �Exa
t Sto
hasti
 Model� in Se
tion 3.2.1 α is meant asthe maximal deviation allowed for the 
hange of the rea
tion probabilities for everyrea
tion 
hannel.In the following paragraph �Approximative Sto
hasti
 Model� α des
ribes the supre-mum norm of the two distributions.Then in �Deterministi
 Rea
tion Kineti
s� α is used in two ways. First of all α isset as the error probability for the Ts
hebys
he� inequality and afterwards a se
onderror parameter is introdu
ed whi
h quanti�es the expression of the expe
tan
y µbeing mu
h larger √ V
N ·α (α des
ribes the width of an interval). To simplify theresulting formula (
f. Equation (3.18) )the se
ond error is assumed to be of the samevalue as α.To adopt COAST to di�usion pro
esses alpha had to gain an additional meaningin Se
tion 3.6.4. Here the sum of the transition probabilities with respe
t to a singlelatti
e point or (equivalently volume element) has to be smaller than α.
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4 Test SimulationsIn 
hapter one I have introdu
ed the problem of simulating rea
tion and di�usionpro
esses in 
ellular stru
tures. Chapter two gave an overview on existing methods
overing solution strategies for this question. In the last 
hapter I presented myown hybrid approa
h, COAST, the Controllable Approximative Sto
hasti
 rea
tion-algorithm. I have explained how di�erently this algorithm is working dependingon the rea
tion probabilities. It uses three levels of modeling, an exa
t sto
hasti
method, an approximative method based on Gaussian distributions and a determinis-ti
 method. The swit
hing between the three levels is 
ontrolled by one error 
ontrolparameter.Furthermore, I have explained how the basi
 ideas of COAST 
an be applied todi�usion problems and presented the mathemati
al ba
kground for di�usion in onedimension.In the up
oming 
hapter I demonstrate the ability of COAST to 
ope with basi
rea
tion problems as well as multi s
ale s
enarios like the Oregonator and the Cir-
adian Clo
k. COAST gives very reliable results even better than demanded by theerror parameter α. Espe
ially due to its se
ond modeling level COAST outruns manyof the existing implementations based on exa
t methods or binomial distributions.The appli
ation of COAST to linear di�usion is also tested in this 
hapter. Ihave 
hosen s
eneries with and without an external for
e�eld and COAST re�e
tsvery well the results predi
ted by random walk simulations, but with a mu
h betterruntime behavior.
4.1 Test Simulations Using COASTIn this se
tion, an assessment of COAST will be performed. To this aim, I will
ompare COAST and the First Rea
tion Method by 
omparing simulation results and
omputational 
osts of the two approa
hes for di�erent rea
tion systems [Gillespie,1976, 1977℄.Parti
ularly, I will 
onsider the in�uen
e of the error 
ontrol parameter α on theout
omes of the simulations and on the 
omputing time. 77



4 Test Simulations4.1.1 Basi
 SystemsTo begin with, I 
onsider the two elementary 
hemi
al rea
tion-systems given by
A + B

k1
⇋ C and A + B

k2
⇋ 2 C , (4.1)where, in both systems, the forward- and the ba
kward-rea
tions have the samedeterministi
 rea
tion rates k1 or k2 respe
tively. Both rea
tion rates are linked tothe sto
hasti
 rea
tion 
onstants cµ used in COAST and the FRM via [Gillespie,1976, 1977℄:

cµ :=

{
kµ

V
, for X → P,X + Y → P ,

kµ

V
· 2 , for 2 X → P,

(4.2)where V is the volume of the rea
tion system and P an arbitrary produ
t. In allsimulations performed here, k1 = k2 = 0.21
s
, V := 1, and NC(0) = 0.To 
ompare the 
omputational 
ost, both systems were simulated by the FRM, bythe τ -leap method [Dhar et al., 2005℄, and by COAST for di�erent initial values

NA(0) = NB(0). In doing so, α = 0.05 was set for A+B 0.2
⇋ C and α = 0.03 for A+B

0.2
⇋2C.The run time of these simulations are monitored, the results of whi
h are sum-marized in Figure 4.1. Sin
e it is not my intention to dis
uss the e�e
ts of di�erentimplementations, but rather the e�e
ts of di�erent algorithms, I do not present ab-solute run times. Instead, I have de�ned the run time of the simulation for ea
halgorithm with N = 100 as 1. Furthermore, to illustrate the e�e
ts of the di�erentmodeling levels in COAST on the run time, the relative frequen
ies of the usage ofmodel 
lass Γ are also shown in the same �gure.As 
an be seen from Figure 4.1, all algorithms were noti
eably fast for small NA(0).However, the run time behavior of the FRM and τ -leap was qualitatively di�erentfrom the run time behavior of COAST, when modeling levels Γ and ∆ are predom-inantly used in COAST. To illustrate these di�erent behaviors, I performed leastmean square (lms)-�ts of the measured run times in the range of parti
le numbersdominated by Γ and ∆. For A+B ⇋ C, the leading terms of these �tted fun
tionswere proportional to N1.01

A for FRM, proportional to N0.98
A for the τ -leap method,but proportional to N0.4

A for COAST. Similarly, the �t 
urves for A+B ⇋ 2 C wereproportional to N1.99
A for FRM, to N1.97

A for τ -leap, but proportional to N0.96
A forCOAST. The reasons for these di�erent behaviors will be dis
ussed in Se
tion 5.1.For A+B ⇋ C, the fra
tion of the sto
hasti
 model Γ is de
reasing for large parti
lenumbers, whi
h re�e
ts the in
reasing usage of the deterministi
 modeling level ∆.As one 
an see, the in
reasing usage of ∆ does not lead to a strong redu
tion of
omputational 
osts when 
ompared to the 
osts of sto
hasti
 model Γ.In order to investigate whether COAST is able to reprodu
e the results of theFRM, I simulated both rea
tion systems by FRM and by COAST with di�erent78



4.1 Test Simulations Using COASTvalues of α, and initial values NA = NB = 10000 (k1 = k2 = 0.21
s
; V = 1; NC(0) = 0).The simulation times were t = 0.5s for A + B ⇌ C and t = 1s for A + B ⇌ 2 C.Sin
e both the FRM and COAST are sto
hasti
 algorithms, one 
annot 
ompare asingle COAST-run with a single FRM-run. Therefore one must 
ompare 
olle
tionsof identi
al simulations. A

ordingly, I repeated all simulations 1000 times and stored

NA at the end of ea
h of these runs, whi
h is, due to the 
onservation laws
NA(t)−NB(t) = 
onst (4.3)and

NA(t) + NB(t) + 2 NC(t) = 
onst , for A + B ⇌ C ,
NA(t) + NB(t) + NC(t) = 
onst , for A + B ⇌ 2 C ,

(4.4)su�
ient to also 
hara
terize NB and NC .The des
ription by deterministi
 rea
tion kineti
s leads to the ODEs:
A + B ⇋ C : ṄA = −k N2

A + k (10000−NA) ,

A + B ⇋ 2 C : ṄA = −k N2
A + k (20000−NA)2 , (4.5)where the 
onservation laws in Equation (4.3) and Equation (4.4) as well as theinitial 
ondition NA(0) = NB(0) = 10000, NC(0) = 0 are used. The equilibriumstates of these models, whi
h are de�ned by ṄA = 0, are given by

A + B ⇋ C : NA = 99.5 ,

A + B ⇋ 2 C : NA = 6666.7 . (4.6)The derivations of the equilibria 
an be found in the Appendix A. Sin
e the out
omesof the 1000 runs with identi
al algorithms are given by independent, identi
ally dis-tributed random variables, the 
olle
tions of out
omes are always approximations ofGaussian-distributions [Feller, 1970, p. 182 f.℄ 
ompletely de�ned by their expe
ta-tions and their varian
es.In Figure 4.2, the time-evolution of NA is given for both systems, where the out-
omes of COAST (α = 0.05) are 
ompared with the results of the deterministi
rea
tion kineti
s. Obviously, one 
annot observe systemati
 deviations between theresults of COAST and the values of deterministi
 rea
tion kineti
s.Figure 4.3 shows the mean value and the standard deviation of NA at the endof the simulations. These values are shown for COAST-simulations as a fun
tionof α. These values are 
ompared with the out
omes of FRM-simulations and theequilibrium values of the deterministi
 rea
tion kineti
s (
f. Equation (4.6)), theseare NA = 99.25 (A + B ⇋ C) and NA = 6666 (A + B ⇋ 2 C). Thus, the graphs f79



4 Test Simulationsand g, given the values of the deterministi
 rea
tion kineti
s times (1 ± α), 
an beused to illustrate whether or not the algorithm is as good as stated.For both rea
tion systems, the mean values of FRM are in agreement with theresults of the deterministi
 rea
tion kineti
s. Furthermore, the deviations betweenthe out
ome of COAST and the results of FRM are mu
h smaller and thereforeeven better than the promised α · 100 %.

Figure 4.1: Run time behavior of COAST , FRM and τ -leap method for A+B ⇋ C (left)(simulation time t=100s) and A+B 0.2
⇋ 2C (right) (simulation time t=0.3s),where α = 0.05 was used for COAST. In all 
ases, the run times of the simu-lations with NA=100 were de�ned as 1. Additionally, the amount of rea
tion
hannels evaluated in COAST by Γ and ∆ are shown. The following fun
tionswere determined by least mean square �t to the run times of the di�erent al-gorithms led to: t ∝ N0.98

A (τ -leap), f ∝ N1.01
A (FRM), c ∝ N0.40

A (COAST);
l ∝ N1.97

A (τ -leap), m ∝ N1.99
A (FRM), h ∝ N0.96

A (COAST).These results bring up the obvious question of how useful the ∆-regime is withinCOAST. This question is not easily answered. Without any doubt in theory there isan advantage by using no random number to using one like in the 
ase of the modelinglevel of Γ. I performed an experiment to reveal the in�uen
e of the ∆-regime on theperforman
e of a simulation (
f. Figure 4.4). To test the speedup, I had to generatea system in whi
h the edu
ts are kept 
onstant, so their 
hanging does not have anin�uen
e on the rea
tion. The model was found to be a rea
tion of the kind:
A + B → Cwith the parameters k=1, V=1, δt=0.001s, t=0.018s, α=0.05The values presented are the mean of ten single runs. One 
an observe that atan initial 
on
entration of more than 310,000 parti
les of A and B, the 
riterion inEquation (3.18) is ful�lled and for A=B=320,000 parti
les 99,99% of all rea
tions80
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Figure 4.2: Time-evolution of the parti
le numbers NA in both systems for COAST-simulations (α = 0.05) and for the deterministi
 rea
tion kineti
s. The left(right) diagram shows the behavior for A + B ⇌ C (A + B ⇌ 2 C).are 
al
ulated by the ∆-regime. The graph is rising 
onstantly be
ause the timeintervals de
rease with in
reasing parti
le numbers, and therefore the 
omputationale�ort (
f. Equation (3.22)). The bene�t is a redu
tion of the run time by 10% anda better linear run time bahavior for higher parti
le numbers.However, it is di�
ult to say how likely the a
tivation of the ∆-regime is in aspe
i�
 
ase. This has to be tested individually.4.1.2 The OregonatorIn addition to the very simple system des
ribed in Se
tion 4.1.1, I also investigatedthe behavior of COAST when simulating a more 
omplex rea
tion system, namelythe Oregonator. In this system, di�erent substrates have radi
ally di�erent parti
lenumbers, and the parti
le number of a given substrate is subje
t to strong �u
tuationsover time. Before presenting my simulation results, I will give some ba
kgroundinformation on this interesting topi
.Histori
al Ba
kground A 
hemi
al system, in whi
h during the rea
tion the 
on-
entration of at least one spe
ie periodi
ally �u
tuates, is 
alled an os
illating system.The most famous os
illating 
hemi
al rea
tion is the Belousov-Zhabotinsky (BZ) re-a
tion [Belousov, 1958℄. It involves the oxidation of an organi
 a
id by a
idi�edbromate in the presen
e of a metal ion 
atalyst (often 
erium ion). The BZ rea
tionis a 
lassi
al example of instability and self organization in non equilibrium systems.Os
illating rea
tions 
an also be found in biologi
al systems (e.g. os
illations at 
ellmembranes, stimulus transition, os
illating enzyme rea
tions and 
ir
adian rhythm[Goldbeter, 1996℄). 81
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Figure 4.3: Mean value and standard deviation of NA for simulations of A+B 0.2
⇋ C (left)and A+B 0.2

⇋ 2C (right) in dependen
e from α. The error bars of the FRM-simulations are shown by the solid and the dashed lines. The 
orrespondingvalues are given at the right hand side of the diagrams. The mean values ofthe FRM-simulations (99.25/6666) are in nearly perfe
t agreement with theequilibrium values of the ODEs (
f. Equation (4.6)). f and g are given by thevalues of the ODE times (1± α).

Figure 4.4: The diagram shows the behavior for A + B → C with k=1, V=1, δt=0.001s,t=0.018s, α=0.0582



4.1 Test Simulations Using COASTIn August 1825, J.F.W.Hers
hel (∗1792, †1871) examined the passivity of iron innitri
 a
id. He dis
overed that the o

urring rea
tion a
tivity is os
illating betweenpure Fe and passive Fe2O3. But it lasted until 1828 when G.T.Fe
hner was the �rstto publish about an os
illating 
hemi
al rea
tion (with silver nitrate treated iron insulfuri
 a
id)[Fe
hner, 1828℄. Other observations of temporal os
illating rea
tionsfollowed [S
hönbein, 1842, Joule, 1844℄.F.F. Runge [1850℄, the father of paper 
hromatography, was the �rst to des
ribethe spontaneous formation of spatial stru
tures in 
hemi
al systems. Although sim-ilar dis
overies were also made, s
ientists did not believe in 
hemi
al os
illations.The 
onversion of the edu
ts should 
ontinue until thermodynami
al equilibrium isrea
hed. Os
illations were seen as a 
ontradi
tion to the se
ond law of thermodynam-i
s. This demands that a 
losed system (system without energy and mass transfer)aspires towards an equilibrium.In 1958, the Russian 
hemist B. Belousov dis
overed a homogenous os
illatingrea
tion: He tried to oxidate 
itri
 a
id in sulfuri
 a
id with potassi
 bromate anda 
erium(IV)-salt. He observed the rhythmi
 appearan
e of the yellow 
erium(IV)-ion [Belousov, 1958, Tyson, 1976℄. A. Zhabotinsky repeated his work in 1961, andimproved the 
hemi
al 
ompositions [Zhabotinsky, 1964℄. It took until 1967 thatwestern world be
ame familiar with the results that have been made in the formerSoviet Union.The Belgian s
ientist I. Prigogine realized that 
lassi
al thermodynami
s only ap-ply for 
losed systems, whi
h are next to their equilibrium. All open systems (i.e.systems having energy and mass transfer with the surrounding) are in a state ofnon-equilibrium. Systems like the human body maintain their identity by means ofenergy �ow from a variety of separate sour
es. Prigogine was able to demonstratethat these systems operate far from the realms of equilibrium and therefore 
ouldexhibit strange and unexpe
ted behavior patterns (in full 
oheren
e with the se
ondlaw of thermodynami
s). Prigogine gave su
h systems the name dissipative systems[Glansdor� and Prigogine, 1971℄, be
ause the ability to do work as a 
onsequen
e ofthe in
rease entropy is being lost (dissipated) as the pro
ess unfolds.He and his 
oworkers suggested a mathemati
al model of a 
hemi
al non-living dis-sipative system 
onsisting of four single rea
tions. This model is known as the Brüs-selator. His work was later re
ognized with a Nobel pri
e in 1977, leading to fulla

eptan
e of os
illating rea
tions.The Brüsselator has one major problem, it in
ludes a trimole
ular rea
tion, whi
h
an be regarded a quite unlikely. In 1972, R.J. Field, E. Körös and R.M. Noyesdeveloped a me
hanism for the BZ-rea
tion 
onsisting of 18 single rea
tions with 21di�erent mole
ules [Noyes et al., 1972℄. The Field-Koros-Noyes model 
an be brokendown in 5 essential rea
tions: the Oregonator (named after their patron institution,the University of Oregon) and will be des
ribed in the following se
tion. 83



4 Test SimulationsThe FKN-Model There are 
ertain demands that have to be ful�lled so that os-
illating rea
tions are likely to o

ur in a 
hemi
al system:� the 
hemi
al system has to be far away from thermodynami
 equilibrium (thisis ne
essary to have 
hemi
al rea
tions at all)� the 
hemi
al system must be an open system (so energy transfer and multipli-
ation of entropy are possible)� there have to be at least two meta-stable states in the system� the 
hemi
al system must 
ontain a feedba
k loop (with di�erent impa
ts onthe two states)As with in all 
hemi
al rea
tions, the edu
ts are 
onsumed while the 
on
entrationof the produ
ts in
rease. If the 
on
entration of the edu
ts is too low, the rea
tionstops. In prin
iple, all os
illating 
hemi
al systems are 
apable of developing spatialstru
tures, be
ause even small random gradients of 
on
entration 
an be ampli�ed.Only open systems allow undamped os
illations. Table 4.1 shows the �ve rea
tionsof the FKN-model.The FKN-model in
ludes one auto-
atalyti
 step with bromous a
id (HBrO2) asan auto 
atalyti
 intermediate produ
t. Rea
tions one and two des
ribe a negativefeedba
k loop in whi
h HBrO2 is 
aptured by bromide (auto inhibition). The auto-
atalyti
 in
rease of bromous a
id HBrO2 is slowed down by the disproportion inrea
tion four. In rea
tion �ve bromide is reprodu
ed and the 
atalyst is redu
edunder the in�uen
e of the organi
 
ompounds maloni
 a
id (MA) and bromomaloni
a
id (BrMA). The os
illations o

ur be
ause the system is 
hanging between two
onditions. In the redu
ed 
ondition, with high bromide 
on
entration, the 
atalystis mainly present as 
erium(III) and maloni
 a
id is brominated. The bromide isredu
ed by the rea
tion with bromate. If the Br− -
on
entration (bromide), is belowa 
riti
al 
on
entration the auto-
atalyti
 rea
tion begins and Ce(III) is oxidized toCe(IV). The system swit
hes to the oxidized 
ondition, whi
h is 
hara
terized byhigh 
on
entrations of HBrO− and Ce(IV) and by oxidation and bromination of theorgani
 
ompounds.In other words: rea
tions one and two 
onsume bromide ions. If the amount ofbromide-ions be
omes too low, rea
tion two is no longer the dominant 
hannel forrea
tion of HBrO2, and rea
tion three takes over. In this auto-
atalyti
 rea
tion,
HBrO2 is produ
ed at a rate that depends on the HBrO2 
on
entration. The growthof HBrO2 is limited by rea
tion four, whi
h a

elerates as the HBrO2 
on
entrationin
reases. Rea
tion four has another important e�e
t: it regenerates the rea
tantbromate. Rea
tion �ve regenerates now Ce3+ and Br−. This last rea
tion is onlyimportant when the level of Ce(IV) is high enough. There is a delay between the84



4.1 Test Simulations Using COAST(1) Br− + BrO3
− + 2H+ → HBrO2 + HOBr A + B → C(2) Br− + HBrO2 + H+ → 2HOBr C + B → D(3) 2Ce3+ + BrO3

− + HBrO2 + 3H+ → 2Ce4+ + 2HBrO2 + H2O E + C → 2C + F(4) 2HBrO2 → HOBr + BrO3
− + H+ 2C → G(5) Ce4+ + org.comp. → fBr− + Ce3+ + org.comp. H + F → BTable 4.1: The �ve 
hemi
al rea
tions des
ribing the Field-Körös-Noyes model of the orego-nator.

A = BrO3
− (bromate); H = all oxidiz. org.species; D =

HOBr (hypobromousacid); C = HBrO2(bromousacid); B = Br−(bromide);
F = Ce4+(cerium− 4); f ≈ 1; E, G = simplificationsrea
tions whi
h 
onsume bromide and Ce3+, and those whi
h regenerate these rea
-tants. As a result, the system 
y
les from high values of Ce3+ and Br−, and ba
kagain. The os
illations 
an be ni
ely illustrated if the os
illating spe
ie is 
olorfull.In this experiment the 
olor of the Ce3+-ion is magenta and the one of the Ce4+-ionis blue.Figure 4.5 presents su
h a system where instead of 
er ferroin (
f. Appendix B.1) isused as redox indi
ator where iron is 
hanging between two states. A ferroin solutionis 
olloquial for a 1,10-phenanthroline ferrous sulfate solution ((C12H8N2)3FeSO4).It is used as a redox indi
ator, be
ause of its reversible 
olor 
hange from the redhexammineiron(II) 
omplex (redu
ed form) to the blue hexammineiron(III) 
omplex(oxidized form). The oxidized form is 
alled ferriin. The rea
tions and 
ompositionof this experiment 
an be found in the appendix.Experimentally, the H+-
on
entration is held 
onstant by a bu�er system. Fur-thermore, the os
illations are observed when the bromate is in large ex
ess, su
h thatits 
on
entration is approximately 
onstant.Chemi
al os
illators only appear to be 
ontradi
tory to the se
ond law of thermo-dynami
s. But the 
hanges one observes is only a small part of all rea
tions that areo

urring. The important rea
tion is the oxidation of maloni
 a
id by bromate. Their
on
entrations are 
onstantly de
reasing without os
illations, just by two rea
tionstaking it in turns.The experimental setup of the Oregonator The setup is identi
al to the imple-mentation of Gillespie [1977℄, whi
h he used for testing his SSA. It should be notedthat there are tiny di�eren
es between the original FKN-model [Field and Noyes,1974℄ and the setup of Gillespie, but these di�eren
es do not e�e
t the out
omeof the experiment. With this knowledge, the presented equations are used withoutany adjustments. This simple model 
onsists of the following �ve rea
tion 
hannels(values given are the deterministi
 rate 
onstants): 85



4 Test Simulations

Figure 4.5: This pi
ture illustrates the temporal 
hanges of the Belousov-Zhabotinskyrea
tion under the presen
e of ferroin as a redox indi
ator.
A + B

0.004−→ C , C + B
0.1−→ D , E + C

0.104−→ 2C + F ,

2 C
0.008−→ G , H + F

0.013→ B , (4.7)where S denotes that NS is 
onsidered 
onstant in time. This means the system isopen for that spe
ies. Additionally, volume parameter V=1 and the following initial
onditions are 
hosen (x ∈ R
+):

NA(0) = 500 · x , NB(0) = 1000 · x , NC(0) = 500 · x , ND(0) = 0 ,

NE(0) = 1000 · x , NF (0) = 2000 · x , NG(0) = 0 , NH(0) = 2000 · x . (4.8)This system was simulated for a time span t = 1 with x = 5 by FRM, and byCOAST with α = 0.05. In Figure 4.7, the time-behavior of NF in the FRM- andCOAST-simulation is monitored.It is worth noting that the initial 
onditions shown in Equation (4.8) are theequilibrium state of the ordinary di�erential equation, so that an appli
ation of de-terministi
 rea
tion kineti
s results in time-
onstant parti
le numbers. Conversely,the os
illating parti
le numbers shown in Figure 4.7 are only due to the appli
ation ofsto
hasti
 dynami
s. Hen
e, it should 
ome as no surprise that, NF initially exhibitsvery di�erent behavior in the two simulations. This behavior depends on the exa
t86



4.1 Test Simulations Using COAST�u
tuations from the equilibrium state: For the FRM, NF immediately de
reases,whereas in the 
ase of COAST, NF in
reases to a small lo
al maximum.After this starting time, NF os
illates in both simulations with nearly the sameamplitude and nearly the same period. For the determination of the amplitudes andperiods, I performed a simulation of three se
onds of the Oregonator with a timeresolution of 0.00005 s by both algorithms, using the same parameters as mentionedabove. As a result, I obtained for FRM an amplitude of 42587± 471 and a periodi
time of 0.1405± 0.0016, and for COAST an amplitude of 42355± 864 and a periodi
time of 0.1405±0.0016. A numeri
al solution of the ODEs from deterministi
 rea
tionkineti
s led to an amplitude 42040 and a periodi
 time of 0.1405.The determination of the amplitudes requires the 
omputation of lo
al extremaof the parti
le numbers, whi
h is a non trivial task in sto
hasti
 systems. Thesedi�
ulties are the reason for the di�erent values of the varian
es of the amplitudes.In order to demonstrate that the Oregonator is very suitable to test an algorithm,let us 
onsider the time s
ales of the di�erent rea
tion 
hannels in this system.For the FRM, the time of the next rea
tion in an arbitrary rea
tion 
hannel µ isgiven by
δµ := − ln(r)

Qµ
, (4.9)where r is a random variable equidistributed in [0, 1], and where Qµ is the propensity(
f. Equation (3.3.2)). Thus, the mean time until the next rea
tion is given by

〈 δµ 〉 =
∫ 1

0

− ln(r)
Qµ

dr = 1
Qµ

, (4.10)su
h that Q−1
µ is an appropriate quantity to 
hara
terize the time s
ale of a rea
tion
hannel. Figure 4.6 shows Q−1

µ dependently of time for three rea
tion 
hannels, theseare B + C → D, C + E → 2 C + F , and 2 C → G, where x = 5 was used again. For
2 C → G, the expe
tation of the time step length Q−1

µ has values between 10−1.9sand 10−6.2s, for C + E → 2 C + F and B + C → D, Q−1
µ has values between 10−4.8sand 10−6.8s or 10−5.3s and 10−6.5s, respe
tively. The Q−1
µ of the two other rea
tion
hannels are always between the values for 2 C → G and C + E → 2 C + F .Thus, the Oregonator is not only a multiple time s
ale-system, but the time s
alesare subje
t to strong �u
tuations. Consequently, the Oregonator is suitable to testboth the ability of an algorithm to treat rea
tions with di�erent time s
ales and theability to adapt itself to rapidly 
hanging 
onditions.To allow a 
omparison between FRM and COAST, I also show in Figure 4.6 thetime step length τµ of COAST for the three rea
tion 
hannels B +C → D, C +E →

2 C + F , and 2 C → G. The most obvious di�eren
es between the time-behavior ofthe τµ and the Q−1
µ is that τµ has larger values and a smoother behavior, where thelarger values of the τµ's imply that COAST works faster than the FRM. 87



4 Test SimulationsSin
e all rea
tion 
hannels of the Oregonator are se
ond-order rea
tions, all Q−1
µare proportional to x−2 (
f. Se
tion (3.3.2)), where x is the s
aling fa
tor introdu
edin Equation (4.8). On the other hand, sin
e lµ (
f. Equation (3.29)) (the expe
tednumber of rea
tions of the 
hannel µ) is in a �rst approximation proportional tothe number of parti
les, the τµ -the timespan until all rea
tions l have o

urred in
hannel µ- of se
ond-order rea
tions (
f. Equation (3.22)) are proportional to x−1.Consequently, one 
an expe
t that the 
omputational 
ost is proportional to x2 forFRM, but proportional to x for COAST.

Figure 4.6: Chara
terisation of the time-s
ales of rea
tion 
hannels in the Oregonator withs
aling fa
tor x = 5 (
f. Equation (4.8)). Q−1
µ (left diagram) is the expe
tationof the time span till the next rea
tion in the 
hannel with the FRM. τµ (rightdiagram) is the possible length of a time step 
omputed by COAST for a rea
tion
hannel.To test this hypothesis, I 
ompared the run time of both methods. Therefore Iperformed again FRM- and COAST-simulations (α = 0.05) with t = 1s for di�erentvalues of the fa
tor x (
f. Equation (4.8)) and measured the run time of ea
h of thesesimulations. The results are shown in Figure 4.8, where the portion of the rea
tion
hannels evaluated by Σ and Γ is also presented.To 
hara
terize the asymptoti
 dependen
e of the run times on the parti
le number,least mean square �ts were performed on the run times in the range with more than80 % evaluations by the Γ-regime in COAST.Again, one 
an see that the ratios between the run times of COAST and FRM de-
reases with larger numbers of Γ evaluations. Furthermore, as 
an be seen from the�tted fun
tions, the asymptoti
 run time behavior of COAST is proportional to x,but proportional to x1.9 for the FRM, whi
h is 
onsistent with the hypothesis aboutthe run time behaviors of these systems derived from the analyses of the Q−1

µ and τµ.Figure 4.9 provides more insight information on this experiment by presenting more
α-values. The total run time of this experiment was slightly 
hanged to t = 0.5s. As88
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Figure 4.7: Comparison of the time-evolution of NF in the COAST- and FRM-simulationsof the Oregonator. For COAST, α = 0.05 was 
hosen. The initial values ofthe parti
le numbers were given by Equation (4.8) with x = 5.one 
an observe, the total run time for the COAST-experiments depends very mu
hon the set α-value. The higher the α-value, the earlier the algorithm will swit
hfrom the Σ-regime to the Γ-regime, whi
h pro
esses the rea
tion mu
h faster due tothe fa
t, that it is using less random number operations. For an α-value of 5%, the
Γ-regime is used very early and for an α-value equal to 1% relatively late as 
an beseen by observing the solid lines. Another interesting fa
t is, that the performan
eof COAST for an α-value of 0% 
ompared to the FRM is worse. Sin
e, in this 
ase,COAST is in prin
iple performing the same task as the FRM , but has an additionaloverhead to 
he
k the other two regimes, this is very reasonable.This paragraph should have illustrated how the error-parameter α in�uen
es theperforman
e of COAST. Therefore before setting α one has to 
onsider that a higher
α-value results in a better performan
e in terms of run time behavior, but alsoresults in a lower a

ura
y. Furthermore a lower α-value slows down the pro
essing,but in
reases the a

ura
y.4.1.3 Cir
adian Clo
kBa
kground Information All eukaryotes (like plants, animals and fungi) and someprokaryotes (
yanoba
teria) display 
hanges in gene a
tivity, bio
hemistry, physiol-89
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Figure 4.8: Run time behavior of the COAST- (α = 0.05) and the FRM-simulations of theOregonator in dependen
e of the initial values of the parti
le numbers parame-trized by x (
f. Equation (4.8)). Additionally, the number of rea
tions 
al
u-lated in COAST by the model 
lasses Σ and ∆ is shown. k(x) := 0.7 · x1,9and l(x) := 2.2 · x1,0 are results of least mean square-�ts to the run times ofFRM (k(x)) or COAST (l(x)) in the interval [10, 100], where in COAST morethan 80 % evaluations are done by Γ.ogy and behavior through the 
y
le of days and nights. These endogen rhythmshave a period length of approximately 24h and help the organism to adjust to dailyrepeating in
idents, so 
alled Cir
adian Clo
ks.For most animals a pa
emaker was able to be lo
alized in the area of the visualsystem, but only for simple organisms the Cir
adian Clo
k behind these rhythms isalready des
ribed.The 
ir
adian model the following simulations are based on, was originally de-s
ribed by Barkai and Leibler [2000℄ and is founded on experimental results. Vilaret al. [2002℄, who did further resear
h on this system des
ribe the fun
tionality ofthe Cir
adian Clo
k as following:�The main 
hara
teristi
 is the presen
e of intra
ellular trans
ription regulationnetworks with a set of 
lo
k elements that give rise to stable os
illations in geneexpression. A positive element a
tivates genes 
oupled to the Cir
adian Clo
k. Itsimultaneously promotes the expression of a negative element, whi
h in turn repressesthe positive element. The 
y
le 
ompletes itself upon degradation of the negativeelement and re-expression of the positive element.�90



4.1 Test Simulations Using COAST

Figure 4.9: Run time behavior of COAST (α = 0, 0.01, 0.02, 0.03 and 0.05) and the FRM ofthe Oregonator dependent on the initial values of the parti
le numbers parame-trized by x (
f. Equation (4.8)). The ratio of rea
tions 
al
ulated in COAST bythe model 
lass ∆ is presented by solid lines.The experimental System The model in
ludes two genes, an a
tivator-gene anda repressor-gene, whi
h are trans
ribed into mRNA and translated into the produ
tsA and R. The two genes have promotor regions Pa and Pr. If the a
tivator A bindsto the promotors, the expression of the respe
tive mRNAs (mRNAa, mRNAr) isenhan
ed. By forming a dimer with A, R is able to inhibit the a
tivator. Figure 4.12re�e
ts the rea
tion 
hannels of this system.It may be worth noting that Pa, Pr, Pr-A and Pa-A are variables that 
an onlytake the values 0 or 1. Sin
e I want to 
ompare a deterministi
 simulation with asto
hasti
 one, I allow 
ontinuous values between zero and one as also proposed byVilar et al. [2002℄. It has to be noted, that for ODEs the os
illations 
an disappear,but in a sto
hasti
 model the os
illations will persist. This phenomenon is a mani-festation of �
oheren
e resonan
e� and illustrates the 
ru
ial interplay between noiseand dynami
s.To demonstrate that the Cir
adian Clo
k is also a multiple time s
ale-model, Figure4.10 shows the expe
ted length of the time steps Q−1
µ (
f. Equation (4.10)) in theFRM-simulations; the illustration is restri
ted to the fastest and the slowest rea
tion
hannels. As one 
an easily see, there are �ve orders of magnitude between the fastestand the slowest rea
tion 
hannels in the Cir
adian Clo
k. 91
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Figure 4.10: The Cir
adian Clo
k as a multiple time s
ale-model. The �gure presentssome 
hannels with their 
orresponding Q−1
µ -value, whi
h 
orrespondsto the expe
ted length of a time step in the FRM.Figure 4.11 in
ludes three graphi
s representing three 150 se
ond runs using theCOAST-algorithm, Gillespie's FRM, and the deterministi
 solution, with the initial
onditions

NX(0) =

{

1 if X = Pa or X = Pr ,
0 otherwise. (4.11)In all three simulations, the Cir
adian Clo
k showed periodi
 os
illations. Theperiods and the amplitudes are given in Table 4.2. The COAST results 
oin
idewithin 1.1% (amplitude) or 4.8 % (period) with the values of FRM. Sin
e α = 0.05was 
hosen for the error 
ontrol parameter, the obtained a

ura
y is in agreementwith the estimated error.The deterministi
 rea
tion kineti
s deviates strongly from the results of FRM,whi
h 
an be explained by the ne
essary modi�
ations of the modeling mentionedabove, i.e. deterministi
 models allow values between 0 and 1, while sto
hasti
 donot.Table 4.2 shows the results for the initial values given by Figure 4.12.92
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Figure 4.11: Simulation of the Cir
adian Clo
k. 150 se
onds using Gillespies FRM,COAST and a deterministi
 approa
h
Pa

50 h−1

−→ Pa + mRNAa Pa− A
500 h−1

−→ Pa−A + mRNAa

Pr
0.01 h−1

−→ Pr + mRNAr Pr − A
50 h−1

−→ Pr − A + mRNAr

mRNAa
50 h−1

−→ mRNAa + A mRNAr
5 h−1

−→ mRNAr + R

A + R
2 g−1

−→ A−R Pa + A
1 g−1

−→ Pa−A

Pa− A
50 h−1−→ Pa + A Pr + A

1 g−1

−→ Pr − A

Pr − A
100 h−1−→ Pr + A A

1 h−1−→ ∅
R

0.2 h−1

−→ ∅ mRNAa
10 h−1

−→ ∅
mRNAr

0.5 h−1

−→ ∅ A− R
1 h−1

−→ RFigure 4.12: The rea
tion 
hannels of the Cir
adian Clo
k (h=hour).FRM COAST determ. solutionamplitude [N℄ 1599.8 ± 72.1 1617.4 ± 78.8 1717.2 ± 001period [s℄ 23.0 ± 2.7 24.1 ± 1.8 25.± 0.002Table 4.2: Amplitude and periodi
ity for the di�erent simulations of the Cir
adianClo
k.
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4 Test Simulations4.1.4 Mi
haelis-Menten Kineti
sThe Mi
haelis-Menten kineti
s formulates an expression 
ombining the velo
ity of
atalysis with the 
on
entrations of substrate and enzyme. It is the simplest modelto des
ribe the kineti
 
hara
teristi
s of many enzyme 
atalysed rea
tions. The modelis named for Mr. Leonor Mi
haelis and Ms. Maud Leonora Menten who publishedtheir results in 1913 [Mi
haelis and Menten, 1913℄. These kineti
s are valid only whenthe 
on
entration of the substrate is higher than the 
on
entration of the enzyme,and in the parti
ular 
ase of a steady-state, where the 
on
entration of the 
omplexenzyme-substrate is 
onstant. The des
ribed system is shown in Equation (4.12).
E + S

k1

⇋

k−1

ES
k2

⇋

k−2

E + P (4.12)E and S are the 
on
entrations of the enzyme and the substrate, and ES and Pthe 
on
entrations of the resulting 
omplex and the produ
t. By looking at the topof Figure 4.13 one 
an see the theoreti
al development of the 
on
entrations in thissystem for initial enzyme and substrate 
on
entrations, where the substrate is ofhigher 
on
entration then the enzyme. It is observed in nature that k−2 is mu
hsmaller than k2. Therefore the 
on
entrations of all spe
ies are 
hanging in a pre-steady state until they rea
h the equilibrium. There is no net 
hange of produ
t orsubstrate in the equilibrium. In this phase, the rea
tion from produ
t to substrate
an no longer be negle
ted.The development of the pre-steady state 
an be des
ribed by the rea
tion equationsin Table 4.3. E + S c1→ CES c2→ E + SES c3→ E + PTable 4.3: Mi
helis-Menten: rea
tion equationsThis system was simulated with COAST and has also been solved numeri
allyusing an implementation of the system in the form of di�erential equations using themathemati
al software MATLAB (
f. Table 4.4). It 
an be demonstrated in the bot-tom left of Figure 4.13 that the implementation of a system of ordinary di�erentialequations mat
hes the sto
hasti
 approa
h with COAST. The sto
hasti
 represen-tation of this biologi
al pro
ess is mu
h more realisti
 than the deterministi
 one,sin
e the deterministi
 model allows 
ontinuous variables and the sto
hasti
 modeldoes not. On the lower right �gure one is able to observe an important di�eren
ebetween the deterministi
 model and the sto
hasti
 one. Although the mean values94



4.1 Test Simulations Using COAST

Figure 4.13: Mi
haelis-Menten Kineti
s: the top �gure shows the development of 
on
en-trations in theory and the lower left one the results of the simulation with time=5se
; α=0.05; c1=0.05, c2=5.0, c3=1.0; S0=1000, E0=500, ES0 = P0 = 0;the lower right �gure illustrates the same simulation with only 1/10th of theinitial parti
le numbers
95



4 Test Simulationsare the same, the 
urves representing the enzyme-
on
entration is always higher thanthe one for the enzyme-substrate 
omplex. However, the sto
hasti
 model presents adi�erent pi
ture. Here, the enzyme substrate 
omplex 
an exist in higher 
on
entra-tions than the free enzyme. This is a good example to demonstrate the signi�
antdi�eren
e between sto
hasti
 and deterministi
 models. The rate parameters havenot 
hanged between the two experiments. Only the initial mole
ular 
on
entrationswere lowered.
dE
dt

= - E ·S · c1 + ES · (c2 + c3)
dS
dt

= - E ·S · c1 + ES · c2
dES
dt

= E ·S · c1 - ES · (c2 + c3)
dP
dt

= ES · c3Table 4.4: Mi
helis-Menten: di�erential equations4.2 Test Simulations Regarding COAST'sExtension to Di�usion4.2.1 Basi
 SystemsIn this se
tion, the reliability and a

ura
y of COAST as applied to di�usion is eval-uated by test simulations. To this aim, COAST-simulations of the one-dimensionalmotion of a single substrate were 
ompared with the predi
tions of the di�usionequations and with the results of random-walk simulations (
f. Equation (3.5)):
x(t + 1) = x(t) + ∆t f(x(t))

γ
+
√

2 D ∆t W , (4.13)with a normally distributed random variable W . All simulations in this subse
tionwere performed with a di�usion 
oe�
ient of D = 10−13 m2

s
, T = 298 K, and R = 100nm.Di�usion without external for
e Let us 
onsider 0.75s-simulations of the Smolu-
howski-equation (
f. Equation (3.31)) with f = 0 in the interval [-2000nm,+2000nm℄. In doing so, two initial 
onditions were 
onsidered: First,

̺1(x, 0) = N · δ(x) , (4.14)(N=total number of parti
les) i.e. at time t = 0 all parti
les have position x = 0. Inthis 
ase, the Smolu
howski-equation has the solution
̺2(x, t) := 1√

4 π D t
e−

x2

4 D t (4.15)96



4.2 Test Simulations Regarding COAST's Extension to Di�usion

Figure 4.14: The error bars of the standard-deviation for free di�usion with initial 
ondition
̺1 -delta-distribution- (
f. Equation (4.14)). The diagram shows the out
omeof COAST-simulations dependent on α. For 
omparison sake, the results ofthe random walk-simulations are also in
luded, where, for ea
h α, the timesteps are identi
al with the time steps of the COAST-simulation.t=0.75s; D=1 · 10−13 m2

s ; k=0kg
s2 ; R=100nm; N=100000; 25 repetitionsDue to its diminishing standard deviation, a δ-distribution 
an lead to additionalnumeri
al errors (
f. Se
tion 3.6).For all α-values, the value of the mean position of the parti
les was 
onsistentwith the exa
t value of 0. For example, for α = 0.05 the averaged mean valuefrom 25 runs was -1.53 nm. A

ordingly, the fo
us will be on the se
ond quantityne
essary to 
hara
terize Gaussian-distributions, this is the standard deviation σ.To 
hara
terize the dependen
y of σ on α, simulations for both initial values with

N = 105 were performed, where ea
h simulation was repeated 25 times. Additionally,random walk-simulations of the same system with δt adjusted to the 
orresponding
α-value by Equation (3.57) were also performed.To illustrate the statisti
al e�e
ts, the standard deviation from the position of100,000 parti
les randomly distributed a

ording to ̺2 (
f. Equation (4.15)) werealso 
omputed. This experiment was repeated 10 times. The 
orresponding errorbar of the standard deviation is also shown in Figure 4.14.As one 
an easily see from Figure 4.14, the out
omes of COAST-simulations always97



4 Test Simulations

Figure 4.15: Chara
terization of the run time behavior of COAST dependent on the numberof parti
les N . The left �gure shows for α = 0.01 and α = 0.05 the depen-den
e of the run time from the modeling level used: Γ-fra
tion is the portion ofevaluations done by Gaussian-distributions. In the right �gure, the run timebehavior of COAST (α = 0.05) is 
ompared with the run time behavior of ran-dom walk-simulations with identi
al time steps. y and z are least mean square�ts to the run times of random walk-simulations (y) or COAST-simulations(z) respe
tively.showed a similar a

ura
y as the results of the random walk-simulations. Further-more, the mean values of both simulations were always within the error bar of thevalue 
omputed from the pla
ement of the parti
les a

ording to the exa
t distribu-tion (
f. Figure 4.14). Hen
e, in this 
ase, COAST led to quite a

urate simulationresults.As a next step, let us 
hara
terize the run time behavior of COAST dependenton the number of parti
les N . To this aim, COAST-simulations for α = 0.01 and
α = 0.05 with initial 
ondition ̺1 were 
onsidered and 
ompared with random walk-simulations of the same system. The results are shown in Figure 4.15, whi
h in
ludestwo diagrams: The left diagram shows the run times of the COAST-simulationstogether with the fra
tions of transition numbers 
omputed by the modeling level
Γ, whi
h means the des
ription by Gaussian-distributions (
f. Equation (3.59)).whereas the right diagram 
ontains a 
omparison between the run times of theCOAST-simulations for α = 0.05 and the run times of the random walk-simulations.It 
an be seen from the left diagram in Figure 4.15 that, for both α = 0.01, the runtime of the COAST-simulation is maximal if about 2/3 of the transition numbers are
omputed by modeling level Γ. For larger portions of Γ & ∆, the run time be
omessmaller and 
onverges to a 
onstant value. Similar observations 
an be found forother α-values.98



4.2 Test Simulations Regarding COAST's Extension to Di�usionTo des
ribe this asymptoti
 run time behavior quantitatively, a least mean square�t to the run times of the COAST-simulations with α = 0.05 for N > 105 wereperformed, whi
h resulted in the fun
tion z(N) = (−1 · 10−7 N + 46.97) s. For 
om-parison: A least mean square �t to the run time of the random walk-simulationsled to the �t 
urve y(N) = (7 · 10−9 N2 + 0.0033N + 0.05) s, whi
h is also shownin the right diagram in Figure 4.15. A

ordingly, for N = 106, the run time of therandom walk-simulations is about three hours, whi
h is an enormous di�eren
e tothe 18 se
onds of COAST.Di�usion with a linear external for
e Additionally, three-se
onds-simulations ofthe Smolu
howski-equation with external for
e
f(x) := −k x with k = 10−7 kg

s2 (4.16)in the simulation interval to [−1000 nm, +1000 nm] were investigated. As initialvalues, the uniform distribution
̺2(x, 0) :=

N

2000 nm (4.17)was 
hosen.This results in the implementation for N = 100000 and α = 0.01 in 197 volumeelements with a width of ∆x = 1 · 10−8m and 507 parti
les in ea
h volume elementand 628 in the 
enter. The solution of the Smolu
howski-equation with linear externalfor
e f = −k x is given by [S
hulten and Kosztin, 1999℄:
̺2(x, t) =

∫ +1000nm

−1000nm
p(x|y; t) ̺2(y, 0) dy , (4.18)where

p(x|y; t) :=
√

k
2 π kB T (1−s2(t))

exp
(

− k ( x−y s(t))2

2 kB T (1−s2(t))

) with s(t) := e−
k t
γ .(4.19)It follows that after three se
onds the system has rea
hed its state of equilibrium,whi
h is given by a Gaussian-distribution with a mean value of 0 and a standard-deviation

√

kB T

k
= 202.8nm . (4.20)To assess the a

ura
y of COAST-simulations, the standard deviation of the dis-tributions at the end of the simulations were 
ompared with the standard deviationof the positions of one hundred thousand parti
les randomly lo
ated over the ther-modynami
 equilibrium distribution given by 99



4 Test Simulations

Figure 4.16: The error bar of the standard deviations for the 25 COAST-simulations and25 random walk-simulations of the di�usion system with linear for
e (
f. Equa-tion (4.16)) dependent on α, where, for all α, the random walk is based on thesame time steps as COAST. The bold and the dotted lines 
orrespond to theerror bar of the standard deviation 
al
ulated from the position of 100000 par-ti
les randomly lo
ated over the thermodynami
 equilibrium distribution (
f.Equation (4.21)).t=5s; D=1 · 10−13 m2

s
; k=1 · 10−7 kg

s2 ; R=100nm; N=100000; 25 repetitions
ω(x) :=

√

k

2 kB T π
e

−k x2

2 kB T , (4.21)whi
h 
oin
ides with Equation (4.19) in the limit t→∞.As 
an be seen from Figure 4.16, the mean values from COAST-simulations lie for
α ≤ 0.075 always within the error bar of the value derived from the thermodynami
equilibrium distribution. Furthermore, for all α ≤ 0.1, the COAST-results deviateless than 1% from the averaged values of the thermodynami
 equilibrium, so thatthe COAST-results are found to 
oin
ide with the exa
t results.4.2.2 Kramer's Transition State TheoryOne of the most prominent appli
ations of di�usion models is the predi
tion of de-
ay rates for 
hemi
al bindings by Kramers' transition state theory [Kramers, 1940,100
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Figure 4.17: The potential used for the simulation of Kramers theory and the 
orrespondingthermodynami
 equilibrium distribution. a and b are the minimum and thelo
al maximum of the potential, where b re�e
ts the transition between bindedand disso
iated state.Hänggi et al., 1990℄. The basi
 idea of this theory is to des
ribe the state of a mole-
ule by a single (rea
tion) 
oordinate x, where the time-evolution of this 
oordinateis des
ribed by a Langevin-equation in the strong fri
tion limit (i.e. the fri
tionalfor
e is mu
h larger than the for
e of inertia). x ∈]−∞, b[ 
orresponds to an existingbond, where x > b re�e
ts a disso
iated mole
ule. Thus, the mole
ule is prote
tedagainst disso
iation by a potential U , whi
h has its lo
al maximum at b (
f. Figure4.17).Furthermore, a = 0 is the minimum U for x ∈] − ∞, b[. Thus, Kramer's theorypredi
ts that, in thermodynami
s equilibrium, the de
ay rate of this model is givenby
r = c · e− U‡

kB T , (4.22)where U ‡ := U(b)− U(a) is the height of the potential barrier and where c dependsonly on the fri
tion 
oe�
ient and on the 
urvatures of the potential, but not ontemperature T .In this se
tion, simulations of the transitions of parti
les over su
h a potentialbarrier for di�erent temperatures are presented, where COAST is used with α = 0.05.The aim of these simulations is to test if COAST is able to reprodu
e the results ofKramers theory.Ea
h simulation was started with N := 106 parti
les, whi
h were distributed a
-
ording to the the thermal equilibrium of this system. More spe
i�
ally, the proba-bility distribution of parti
les is given by 101



4 Test Simulations

Figure 4.18: Kramers-Theory: The left pi
ture shows the number of transitions for aCOAST-simulation (α := 0.05) at 20 K. The �gure to the right displays theresult of 10 independent runs in the temperature span of 20K to 30K.
ω(x, k) :=

√

k

2 kB T π
e

−k · x2

2 kB T ∆x , (4.23)a fri
tion 
oe�
ient 1 γ = 3.45165 · 10−9 Ns
m

and a potential
U :=

k · x2

2
(k := 10−7 kg

s2 ) . (4.24)Furthermore, it is assumed that the disso
iation o

urs at b = 250 nm, so that thepotential height U ‡ was given by
U‡

kB
= U(250 nm)−U(0 nm)

kB
= 226.34 K (4.25)Let N(t) be the expe
ted number of parti
les after time t, where N0 = N(0) is theinitial value. If there exists any time-
onstant transition rate r, then one obtains:

N(t) = N0 e−r t ⇔ r t = − ln(N(t)/N0) . (4.26)A

ordingly, the quantity − ln(N(t)/N0) was measured in ea
h simulation, so thatthe transition rate r 
ould be determined as the gradient of this straight line. InFigure 4.18, this is shown for a COAST-simulation (α = 0.05) at 20 K. This pro
edurewas performed for T=20, 21, 22, ..., 30 K, where for every T the simulation wasrepeated ten times. The simulations have been best a

ording to the theory for lowtemperatures. Therefore simulations just above 0K would have been ideal, but the1The fri
tion 
oe�
ient γ and the di�usion 
oe�
ient D are 
onne
ted by γ = kB T
D

this resultsin D = 1 10−13 for T=25K102



4.2 Test Simulations Regarding COAST's Extension to Di�usion
omputational e�ort in
reased dramati
ally so the area around 20K was 
hosen as a
ompromise.Figure 4.18 illustrates how ln(r(T )) responds to 
hanges in T−1. Parti
ularly, aleast mean square �t was performed to the 
urve, whi
h resulted in
ln(r) = −222.02 K 1

T
+ 1.38 . (4.27)For 
omparison, the predi
tion of Kramers theory (
f. Equation (4.22)) is

ln(r) = −U‡

kB

1
T

+ ln(c) = −226.34 K 1
T

+ ln(c) . (4.28)Hen
e, the COAST-simulation (α = 0.05) was able to reprodu
e the predi
tion ofKramers theory within 1.9 %.4.2.3 Linear Di�usionThis se
tion applies COAST to a 
ommon biophysi
al problem and des
ribes how a
on
entration gradient rea
hes the equilibrium by linear di�usion. This pro
ess 
anbe des
ribed by Fi
k's Se
ond Law of di�usion:
(

∂c

∂t

)

x

= D

(

∂2c

∂x2

) (4.29)D is assumed to be independent from the 
on
entration of the substrate 
 andtherefore from the lo
ation of the parti
les. We further assume the initial 
onditionto be c = c0 in the interval [-∞,0℄ and c = 0 in ℄0,∞℄. Thus, the solution forEquation (4.29) is
c(x0, t) =

c0

2
[1− φ(u)] with u =

x

2
√

Dt
(4.30)

φ(u) is the so 
alled error fun
tion
φ(u) =

2√
π

u∫

0

e
−x2

4Dt (4.31)with this the quotient c/c0 
an be formulated as following
c(x, t)

c0

=
1

2
[1− φ(u)] (4.32)In Figure 4.19 one 
an observe how well the theoreti
al 
urve of the gradientafter the timespan of t=16d mat
hes with the simulations done with COAST. The103
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Figure 4.19: Linear Di�usion: D=2.9 · 10−6 cm2

s , t=16d=1382400s, δx=1
m, α=0.05theoreti
al 
urve is limited to the left and right side by the limited amount of valuestabled for the error fun
tion. This problem did not o

ur as a positive side e�e
t forthe appli
ation of COAST.4.3 General Te
hni
al Considerations4.3.1 Run time analysesIn this 
hapter several time depending simulations have been dis
ussed. To obtainthe most a

urate results all simulations should have been run on the same systemunder exa
tly the same 
onditions without the in�uen
e of any 
ounter pro
esses.This is not the 
ase for the simulations performed here. Usually the tasks weretransfered to a 
luster of 
omputers and pro
essors and it has been up to this gridto 
hoose an appropriate ma
hine. However, due to the fa
t that most simulationruns took several hours and by that taking mu
h more time than the usual 
ounterpro
esses o

urring. I am positively 
onvin
ed that on an average the measuredrun times are 
omparable. Very short simulations have been performed on an IBMnotebook with an Intel Pentium III 
entral pro
essing unit running on 700Mhz and768Mb of memory using the Windows2000 operating system.104



4.3 General Te
hni
al Considerations4.3.2 Used Software
COAST was implemented in JAVA 1.4 using the integrated development environ-ment e
lipse in the version 3.0, whi
h is freely available via internet. To make thepro
ess of implementation easier I 
hose the programming language o�ered byMatlabin the Version 6.5 to apply COAST to di�usion pro
esses.
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5 Dis
ussion and Con
lusionAfter outlining the task of e�
iently modeling 
ellular pro
esses in the introdu
tion, Igave an overview on existing strategies for simulating rea
tion and di�usion pro
essesin the se
ond 
hapter. In 
hapter three I introdu
ed with the Controllable Approxi-mative Sto
hasti
 Rea
tion Algorithm a hybrid algorithm for simulating rea
tion anddi�usion. After setting one error parameter α, COAST adjusts itself a

ording to thedevelopment of the system. Its three modeling levels are used to be as a

urate asne
essary and as fast as possible. In the last 
hapter I have presented the appli
ationof COAST to a variety of problems related to rea
tion and di�usion.COAST was able to show its reliability and a

ura
y for rea
tion and di�usionpro
esses for di�erent settings of α. In this last 
hapter I will sum up my �ndingsand dis
uss COAST for the ba
kground of existing tools available and the possibilitieso�ered by s
ien
e.5.1 Re�e
ting on COASTGood algorithms have four 
ommon features: they are fast, a

urate, simple toimplement, and they 
an be applied without too mu
h knowledge of the details ofthe basi
 methods and 
on
epts. In this se
tion, I will dis
uss how the COntrollableApproximative STo
hasti
 rea
tion algorithm (COAST) ful�lls these 
riteria.The runtime behavior of COAST in the simulations was 
omposed of two di�erentparameter ranges; one range, in whi
h the First Rea
tion Method (FRM)-like model-ing level Σ dominates, and one in whi
h mainly the regimes by Gaussian-distributions(Γ) or by deterministi
 rea
tion kineti
s (∆) were used.If Σ was predominantly used, the runtime of COAST was nearly identi
al to theruntime of the FRM, on the 
ontrary I found for higher parti
le numbers qualita-tive di�eren
es between the runtime behaviors of COAST and the FRM. If the totalnumber of parti
les N in the system was large enough so that Γ and ∆ were predom-inantly used, then the runtime of COAST in
reased with Na with 0 ≤ a ≤ 1. Theruntime of FRM in
reased with N b, where 1 ≤ b ≤ 2 (
f. Se
tion 4.1.1). Sin
e the τ -leap method showed a similar behavior to the FRM, we 
an 
on
lude that COAST isfast in 
omparison to the FRM and the τ -leap method. This 
an be easily explainedby the length of a single time step and the amount of random numbers generated;for the FRM, the mean length of a time step is proportional to N−1
A for �rst orderrea
tions and proportional to N−2

A (
f. Table 2.3) for se
ond order rea
tions [Gille-spie, 1977℄, so that the quantity of random numbers is proportional to NA and N2
A,106



5.1 Re�e
ting on COASTrespe
tively. For the τ -leap method and COAST, the length of the time steps, or the
τ -leaps, are proportional to N−1

A for se
ond order rea
tions, but independent from
NA for �rst order rea
tions (
f. Equation (3.22)).However, for ea
h time step or τ -leap, the evaluation of a Poisson-distributionin the τ -leap method requires1 a quantity of random numbers proportional to theexpe
ted number of rea
tions, or equivalently to the number of parti
les. Whereasthe evaluation of a Gaussian-distribution 
an always be performed by generating asingle random number [Box and Muller, 1958℄.In 
ontrast, an optimization of the τ -leap method would require a method forevaluating the Poisson-distribution with 
omputational 
osts independent from theparti
le number. The only method to my knowledge is the approa
h of Ahrens andDieter [1982℄, who approximated Poisson-distributions for large parti
le numbers byusing a Gaussian-distribution. However, this is equivalent to repla
ing the Poisson-distribution in the τ -leap method by the the modeling level Γ of COAST, with theex
eption that COAST is based on probabilities that are more realisti
 for the longtime steps used in both algorithms.As mentioned above, the runtime for both modeling levels Γ and ∆ always in
reaseswith the same exponent of n. In Se
tion 4.1.1 I was able to show for a single rea
tion
hannel, that ∆ redu
es the runtime of simulations by about 10% as 
ompared with Γ.Negle
ting �u
tuations by using deterministi
 rea
tion kineti
s ∆ leads to additionalina

ura
ies. Thus, it is quite di�
ult to globally answer the question if one shoulduse ∆, or if one should redu
e COAST to the two other modeling levels Σ and Γ.Instead, it is re
ommended to introdu
e an option in the implementation of COAST ,so that the user 
an adjust this a

ording to the needs of the given system.To 
he
k the a

ura
y of COAST, I 
onsidered systems with relatively small num-bers of parti
les: the initial values were 20,000 for A+B ⇋ C and A+B ⇋ 2 C, 35,000for the Oregonator (
f. Se
tion 4.1.2), and 2 for the Cir
adian 
lo
k (
f. Se
tion4.1.3). Note that the ina

ura
ies of COAST de
rease for larger parti
le numbers,be
ause the approximation of binomial-distributions by Gaussian-distributions im-proves. That is why the usage of relatively small systems (
f. Se
tion 4.1.1) is thebest test for the reliability of COAST. In all these systems, the values of the COAST-simulations with error parameter α ≤ 0.05 
oin
ided with the 
orresponding valuesof the FRM-simulations within 1%, ex
ept for the period of the Cir
adian Clo
k.As a result, I 
on
lude that COAST is a fast and a

urate algorithm, not onlyfor elementary systems with smooth dynami
s, but also for 
omplex systems su
has the Oregonator and the Cir
adian Clo
k. Here, a �
omplex system� refers tomultiple time-s
ale systems with rapidly and strongly �u
tuating parti
le numbers.Another de�nition of a �
omplex system� refers to the fa
t that some of the substrates
ontribute to a large number of di�erent rea
tion 
hannels. It is worth noting that in1The implementation I used in my simulations has been Cellware [Dhar et al., 2005℄, it uses thereje
tion method. 107



5 Dis
ussion and Con
lusionthis 
ase, the 
riti
al number of rea
tions lµ (
f. Equation (3.24)), and thus the lengthof the time steps is redu
ed, so that the a

ura
y remains 
onstant. A

ordingly, one
an observe that the results for the Oregonator and the Cir
adian Clo
k, where apart of the substrates 
ontributes to several di�erent rea
tion 
hannels, are no lessa

urate than for the simple models. Furthermore, for every �xed set of rea
tion
hannels, the exponential dependen
y of the runtime from the parti
le number is not
hanged by the redu
tion of the time steps. Thus, COAST also works a

urately fora se
ond kind of 
omplex systems, namely systems in whi
h substrates 
ontribute tolarge number of rea
tion 
hannels.Furthermore, COAST is quite simple to implement and its usage does not re-quire a deep insight into its foundations. It is re
ommended users perform the �rstCOAST-simulation of their system with error 
ontrol parameter α = 0.05 and usageof modeling level ∆. This has led to quite a

urate results without too long run timesfor all simulations performed so far.It should be mentioned, that it is suboptimal to run COAST with α=0, sin
e thenthe algorithm requires the same amount of random numbers like the FRM, but hasa larger 
omputational overhead than the FRM, whi
h should be used then instead.For systems 
omposed of many rea
tion 
hannels, it would be of 
ourse helpful toredu
e the number of 
omputations ne
essary for the determination of the lengthof the time-steps and the su

ession of the evaluations. As a summary of these
onsiderations, COAST 
an be 
onsidered as a good rea
tion algorithm in the sensedes
ribed at the beginning of this 
hapter.5.2 The Adoption of COAST to Di�usionThe aim of Chapter 3.4 was the modi�
ation of COAST towards an e�
ient algorithmfor the simulation of thermal motions of parti
les. The starting point of COAST isthe Smolu
howski-equation [Smolu
howski, 1917℄, whi
h is a di�usion-model basedon two essential approximations. The �rst approximation is the strong fri
tion limit,whi
h is a good approximation if the moment of inertia of the parti
les is small
ompared to the for
es a
ting on the parti
les. The other approximation is thatthe intera
tions between the des
ribed substrates are 
onsidered as mu
h smallerthan the intera
tions between the des
ribed substrates and their environment (
ell
ompartments, water,...), whi
h results in a linear di�usion model. Obviously, thisse
ond approximation 
an always be applied if the 
on
entration of the des
ribedsubstrates is low enough.A related problem to this is, how good is our knowledge about the 
ell stru
ture.This is not a limitation of the algorithm but a problem of modeling itself. The
ommon pi
ture of the 
ell as a wet spa
e with some organelles and some �oatingenzymes is far from reality. Luby-Phelps et al. [1986℄ was able to show in experimentsusing ��uores
en
e re
overy after photoblea
hing� (FRAP), that the stru
ture of the108



5.2 The Adoption of COAST to Di�usion
ytoplasm has a deep impa
t on di�usion. It is a well known fa
t that di�usion
oe�
ients are usually measured for enzymes in vitro and so there is a big di�eren
ebetween these results and the real values in vivo and therefore the usability of thelisted in vitro values for simulations is very limited. Luby-Phelps also 
lari�ed that,on average, the vis
osity of the 
ytoplasm is four times as high as the one of water.Even more she found that the di�usibility of ma
romole
ules is limited by their size.This is due to stru
tural barriers within the 
ytoplasm. There are three types of �l-aments, whi
h are made responsible for this: F-a
tin, mi
rotubules and intermediate�laments, and an assortment of a

essory proteins that 
ross-link these �laments.They leave a pore size of about 300 to 400Å. Knowing the 
ellular stru
ture it ispossible to formulate a for
e�eld for the di�usion of the parti
les so COAST wouldbe able to handle this problem, sin
e this is a question of input. However, so far ourknowledge in this area is very limited.The situation be
omes even more 
ompli
ated if one 
onsiders that not only thesize of the di�using protein is responsible for the 
ytoplasmi
 di�usion 
oe�
ient, butthe stru
ture of that protein also has an e�e
t [Luby-Phelps, 2000℄. Hydrophobi
 do-mains and ionizable surfa
e groups in�uen
e the mobility of proteins signi�
antly.This implies that the di�usion 
oe�
ient is not a 
onstant, but rather depends onthe surroundings. Consequently one would have to model the whole 
ellular stru
-ture as well. Again, with detailed information, I am 
onvin
ed this 
an be done, butthe problem is the generation of reliable data. Luby-Phelbs points out that someinvestigators of 
ellular di�usion have 
ome to the 
on
lusion that most enzymes areimmobilized by 
ellular stru
ture, i.e., they are atta
hed to membranes or 
ytoskele-tal surfa
es. In this 
ase one does not have to model di�usion for those enzymesanymore, but now the whereabouts of these enzymes be
ome important. One needsthe exa
t lo
alization within the 
ell. Even if the assumption of spatially �xed en-zymes 
annot be veri�ed, this demonstrates one of the basi
 dilemma modeling hasto get along with and this is �few information�.A

ordingly, the Smolu
howski-equation 
annot possibly re�e
t all aspe
ts of ther-mal motions in 
ells [Agutter et al., 1995℄, but is suitable in quite general s
enarios.On the other hand, it is quite likely that for many systems, the Smolu
howski-equation is the best di�usion model for whi
h simulations 
an be performed. Itshould be noted that if one does not use the �strong fri
tion limit�, then one has to
onsider double the number of dimensions, (these are positions and velo
ities), sothat, in a �rst approximation, the 
omputational 
osts are no longer proportional to
nd (strong fri
tion limit) but proportional to n2d, where d is the number of dimensionsand n is the number of latti
e points (or voxels) in ea
h dire
tion.Note that nonlinear di�usion 
orresponds to se
ond and higher order rea
tions.Sin
e COAST allows one to treat all types of rea
tions, a derivation of an algorithmfor nonlinear di�usion model from COAST 
an easily be done, where one 
an useanalogous estimations as presented here for the appli
ation of COAST to di�usion.109



5 Dis
ussion and Con
lusionHowever, in this 
ase, one 
annot use 
onstant time steps; one has to 
ompute theappropriate length of su
h time steps for every simulation step (analogously to therea
tion version of COAST). As a result, the runtime would be nearly doubled andan appli
ation of parallel 
omputing to su
h an algorithm for nonlinear di�usion ismu
h more di�
ult and less e�
ient than for COAST. Hen
e, the appli
ation ofnonlinear di�usion models will not likely be possible in the generi
 
ase.For the 
urrent simulation, a dis
rete version of the Smolu
howski-equation wasused, so that the thermal motions of parti
les were identi�ed with jumps betweenadja
ent latti
e points (or analogously volume elements). This dis
rete di�usionmodel obviously looks quite di�erent than the Langevin-equation, from whi
h thedi�usion model was originally derived. Thus, to a
hieve that the dis
rete di�usionmodel 
an be used as an adequate des
ription of the thermal motion of parti
les,the 
onditions were imposed that the �rst (expe
tation) and the se
ond moment(varian
e) as well as the �ux of parti
les of the dis
rete di�usion model is, up to
α · 100 % (α ∈ [0, 1]), in agreement with the values of of the Langevin-equation. Theserequirements led to a large part of the 
onditions for the dis
retization parameters.The other 
riteria were derived from the 
onstraint that the transition probabilitiesmust have positive values and that in every time step the 
hanges of parti
le numbersat ea
h latti
e point must be small- at least on average.A dis
rete di�usion model allows a very natural interpretation of thermal motionin terms of 
hemi
al rea
tions, by identifying transitions between adja
ent latti
epoints as rea
tion 
hannels. Due to the linearity of the di�usion model, all transitions
orrespond to �rst-order rea
tions.The 
orresponden
e between dis
rete di�usion model and 
hemi
al rea
tion sys-tems makes it very natural to adapt an algorithm for the simulation of 
hemi
alrea
tion systems to the needs of a dis
rete di�usion model. In this thesis, this adap-tion pro
ess was performed for the COntrollable Approximative STo
hasti
 rea
tion-algorithm (COAST).One important feature of COAST is its usage of three di�erent levels of model-ing: for small parti
le numbers an exa
t sto
hasti
 model, for intermediate parti
lenumbers an approximative sto
hasti
 model by Gaussian distributions, and for largeparti
le numbers deterministi
 rea
tion kineti
s. Thereby, the 
riteria for the appli-
ation of the di�erent modeling levels are, as all errors due to used approximation,formulated dependently from one single error 
ontrol parameter α ∈ [0, 1], whi
hhelps one to easily �nd an optimal balan
e between a

ura
y and 
omputationale�
ien
y for ea
h individual system.This formulation dependently from a single 
ontrol parameter is, in general, alsoused in the adaption of COAST to linear di�usion � with the ex
eption that one
riterion in
ludes a se
ond parameter R, whi
h re�e
ts the spatial resolution of themodel. Howerver, the value of this se
ond parameter is also very easy to 
hoose, sothat the simple 
ontrollability of COAST is also given here.To test COAST, simulations of one-dimensional di�usion without external and with110



5.3 Combining Rea
tion and Di�usion Algorithmslinear external for
e were performed. In both 
ases, the deviations of the COAST-results from the exa
t values were always in the range of purely statisti
al errors,suggesting that COAST works pretty a

urate for these models.On the other hand, COAST showed a mu
h more advantageous runtime behaviorfor intermediate and large parti
le numbers as 
ompared to random walk-simulations:The runtime of COAST was asymptoti
ally independent from the parti
le number,whereas the runtime of random walk-simulations is asymptoti
ally proportional to thenumber of parti
les. Only for very small parti
le numbers, random walk-simulationsare faster than COAST. However, in this range, COAST is also quite fast, so thatthis disadvantage of COAST is not really problemati
.To further support the 
redibility of COAST, the es
ape rates of parti
les from alo
al potential minimum (metastable state) over a potential barrier were 
omputedfrom COAST-simulations and 
ompared with the predi
tions from the well-knownKramers-theory [Kramers, 1940℄. The essential statement of the Kramers-theory isthat the logarithm of the es
ape rate is, up to a 
onstant term, given by U‡

kB T
, where

U ‡ is the height of the potential barrier. From the COAST-simulations (α = 0.05),a value for U ‡ was obtained, whi
h 
oin
ided with the 
orre
t value up to 1.9 %.Thus, the result was mu
h better than expe
ted by the 
hoi
e of the error 
ontrolparameter α.Throughout this thesis, all 
onsiderations were restri
ted to a one-dimensionalmodel. This restri
tion was used to simplify the notation. An appli
ation of thepresented methods to higher dimensions is analogously possible. However, one hasto take into 
onsideration that the 
omputational 
osts (of di�usion and of rea
tion-di�usion models) are, as mentioned above, are proportional to nd. Although thepower of modern 
omputers is rapidly in
reasing, a full 3D-des
ription of su
h 
om-plex systems as biologi
al 
ells is not possible in the generi
 
ase.5.3 Combining Rea
tion and Di�usion Algorithms
Initialisationof time: t0 := 0 t0 := t0 +�tt0 < tsimt0 = tsimFor all substratessu

essively: di�usionin [t0; t0 +�t[ For all latti
e pointssu

essively: rea
tionsin [t0; t0 +�t[start end

Figure 5.1: S
heme of the module for rea
tion-di�usion systems. The keywords `rea
tion'and 'di�usion' mean the appli
ation of an arbitrary algorithm for rea
tion- ordi�usion models. tsim is the duration of the whole simulation.As mentioned in the introdu
tion, it 
an be very helpful to 
onsider rea
tion anddi�usion in the same time interval su

essively, be
ause this allows the subdivision111



5 Dis
ussion and Con
lusionof the system in independent subunits: For di�usion, the di�erent substrates 
an betreated independently, whereas for rea
tions the di�erent latti
e points are indepen-dent. Hen
e, one 
an use the algorithm illustrated in Figure 5.1.To avoid errors 
aused by the su

essive treatment of rea
tions and di�usion, onehas to use suitable 
onditioned probabilities. Analogously, to the treatment of thedi�erent dire
tions of thermal motions in COAST (
f. Figure 3.8), one has to use therea
tion probabilities under the 
ondition that the parti
les do not jump from onelatti
e point to an adja
ent point in the same time interval. This 
orre
tion 
an, ina �rst approximation, be performed by repla
ing the rea
tion 
onstants c [Gillespie,1977℄ by
c̃ :=







c
1−QA(i)

, for A→ P,
c

(1−QA(i)) (1−QB(i))
for A + B → P,

c
(1−QA(i)

)2 , for 2 A→ P ,where QS(i) := qS(i + 1|i) + qS(i − 1|i) is the total transition probability of thesubstrate S at a latti
e-point i and P an arbitrary produ
t.A 
ru
ial point to note here, is the 
hoi
e of an appropriate value ∆t for the lengthof a time step in whi
h di�usion and rea
tions 
an be treated su

essively. A possible
hoi
e would be to 
ompute the times (
f. Equation (3.57)):
∆tdiff := min{ τ̃A

2
| A ∈ S

}

= min{α kB T γA

f2
max(A)

, α (∆x)2

4 DA (1+α)
| A ∈ S

} (5.1)and ∆treac in whi
h all transition or rea
tion probabilities respe
tively are smallerthan α and to de�ne
∆t := min{∆tdiff , ∆treac } . (5.2)In this 
ase, one 
an easily show that all errors due to the su

essive treatment ofthermal motions and rea
tions are of the order O(α2), so that the algorithm willwork quite a

urately. But, on the other hand, if at any point the rea
tion rate ofa single rea
tion 
hannel or the di�usion rate of a single substrate is very large, onewould use this small ∆t for all transitions and rea
tions so that the algorithm willwork very ine�
iently. As a 
onsequen
e, the 
hoi
e of ∆t presented here is onlysuitable for rea
tion-di�usion systems with similar rea
tion and di�usion rates.5.4 Final Con
lusionsIn the last se
tion, I presented a method to 
ombine COAST and its appli
ationto linear di�usion to an algorithm for the sto
hasti
 simulation of rea
tion-di�usionmodels. Thereby, the 
ru
ial step is an appropriate 
hoi
e of the time step ∆t inwhi
h thermal motions and rea
tions 
an be 
omputed su

essively.In this thesis, I de�ned ∆t as the time span, in whi
h all 
hanges of probabilitiesfor rea
tions and transitions are smaller than α. In this 
ase, one 
an easily show that112



5.4 Final Con
lusionsthe errors are of the order of O(α2). On the other hand, one fast rea
tion 
hannelis, thus, su�
ient to use very small time steps for all rea
tion 
hannels and all tran-sitions, so that this de�nition of ∆t 
an only be good if the o

urring probabilitiesare not too inhomogeneous. For general systems, one has to look for better 
hoi
es.To justify su
h 
hoi
es, however many test simulations will be ne
essary, so that adis
ussion of these 
hoi
es is beyond the view of the present study.COAST is the �rst hybrid algorithm, to my knowledge, that spans three di�erentregimes of modeling and, therefore, the whole spe
trum of o

urring parti
le amountsin the most e�
ient way. All other algorithms (
f. Table 3.3) only 
onsider smalland large parti
le numbers. COAST is the only algorithm designed for strongly�u
tuating systems 
overing a large variety of mole
ular abundan
es, whi
h are likelyto o

ur in signal transdu
tion pathways. Sin
e intermediate parti
le numbers arethe most 
ommon s
enario, the idea of using a Gaussian distribution and redu
ingthe amount of random numbers is new in this s
ienti�
 �eld. So far the most e�
ientsto
hasti
 algorithms in this area are derivatives of the τ -leap method. Here severalrea
tions are allowed to take pla
e in one time step, but these are 
al
ulated bybinomial or Poisson-distributions; therefore for every rea
tion o

urring one randomnumber is used. COAST uses only one random number in a time step for one rea
tion,this results in an enormous 
ut down of 
omputational e�ort.COAST, as an hybrid algorithm, has 
hara
teristi
s of deterministi
 and sto
hasti
approa
hes (
f. Table 2.4). Small volumes have the resulting e�e
t that noise be
omessigni�
antly important (
f. Se
tion 2.3.1). COAST pays respe
t to that, be
ause ade
reasing volume makes it more likely the sto
hasti
 Σ-regime is a
tivated.This is the most important advantage of COAST referring to implementation andusability. COAST is the only algorithm so far, that uses an intuitive error 
ontrolparameter α. Other algorithms (
f. Se
tion 2.4.2 and Table 3.3) like the hybridmethods of Kiehl et al. [2004℄ or Haseltine [2002℄ demand a dire
t intervention by theuser to divide rea
tions in �slow� and �fast� rea
tions. Kiehl is treating rea
tions withlow rea
tion probabilities by the Next Rea
tion Method and �fast� rea
tions (rea
tionswith high rea
tion probabilities) by a deterministi
 approa
h, while Haseltine usesthe First Rea
tion Method for the �slow� rea
tions. Nevertheless, the user is the oneto do a �xed separation. If one of the rea
tion 
hannels 
hanges during the pro
essfrom �slow� to �fast� there is now way to 
hange the setting.Therefore an automati
 division of the rea
tion 
hannels in every time step is su-perior. The Maximum Time Step Method [Pu
halka and Kierzek, 2004℄ is an examplefor these group of algorithms. It uses the Next Rea
tion Method for single rea
tionsand a tau-leap method for faster rea
tions. Pu
halka uses three parameters r, n and
κ. Only κ whi
h is the maximal time step, has an intuitive meaning. The other twovalues are supposed to be sele
ted �empiri
ally�. On the other hand COAST is onlyusing one parameter α (for di�usion a spatial resolution is needed) that is de�ningthe a

ura
y of the results. This value de�ned by the user is in dire
t manner de�n-113



5 Dis
ussion and Con
lusioning the maximal allowed divergen
e between the experimental results and the exa
tvalues.In the experiments performed, COAST was able to show that its performan
e anda

ura
y is even better than expe
ted by the set error parameter α. COAST wasdesigned to be fast, therefore one has to make a 
ompromise presented in the form ofthe allowed error parameter. The runtime experiments were able to show that evena small α-value has a deeply positive impa
t on the speed of the 
al
ulations.COAST worked well for rea
tion and di�usion problems. A next developing stepwould be a 
omprehensive model 
ombining the appli
ation of COAST to rea
tionand to di�usion to model rea
tion-di�usion systems in one dimension.Finally, I would like to address a topi
 that is a 
ru
ial aspe
t for modeling 
hemi
alpro
esses within 
ellular stru
tures. In the literature it is known as ma
romole
ular
rowding, mole
ular 
rowding and also as ma
romole
ular 
on�nement [Chebotarevaet al., 2004℄. However, it is more a

urately termed as the �ex
luded volume e�e
t�.Bio
hemi
al pro
esses in living systems o

ur in media 
ontaining high 
on
entrationsof ma
romole
ules (50-400 mg/ml) [Ellis and Minton, 2003℄. The present mole
ulesare pa
ked in su
h a way that they do not leave enough spa
e for other mole
ules oftheir kind. This ex
luded volume is lost for these mole
ules. The theoreti
al aspe
tsof ex
luded volume on 
hemi
al rea
tions has been dis
ussed by Hall et al., Winzoret al. and others [Hall and Minton, 2003, Winzor and Wills, 1995℄. Crowding has a
omplex e�e
t on the rate of bio
hemi
al rea
tions. Simply put, as the a
tivity of aspe
i�
 parti
le in a 
rowded environment is in
reased, the di�usibility is redu
ed, andthe probability of two parti
les meeting and rea
ting de
reases. Of 
ourse, the overallresult of these opposing fa
tors depends on the nature of ea
h rea
tion [Chebotarevaet al., 2004℄.So far we know the ex
luded volume e�e
t 
annot be negle
ted, even though the
onsequen
es are still the topi
 of present studies. Therefore, the only way to 
ur-rently model the ex
luded volume e�e
t is to model single mole
ules with a distin
tvolume and shape, whi
h is 
omputationally very ine�
ient.As mentioned before, COAST was originally designed for diluted environments.Nevertheless, if a better understanding of the 
ellular pro
esses is known, a betteralgorithm based on COAST 
an be developed. To date, however, the 
urrent degreeof understanding is still not enough.I would like to �nish with a 
itation by Luby-Phelps [2000℄:�The potential impa
t of a
tual intra
ellular 
onditions on the kineti
s, me
ha-nisms, and regulation of metabolism make it imperative to reexamine 
ontinuumdes
riptions of 
ellular bio
hemistry that have been extrapolated from redu
tionistexperiments 
arried out in dilute solution.�Modeling relies on a

urate information. Mathemati
al models 
an only be devel-oped on the base of reliable data. So far there is still a big leak of details on exa
t
ellular stru
ture and the intera
tions between all the parts of a 
ell. Only with114



5.4 Final Con
lusionsbetter knowledge, more ba
kground information, and maybe a better approa
h on
ellular kineti
s, 
an modeling approa
h reality.However, COAST provides a new and signi�
ant step toward that goal.
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A Numeri
al solution of 
hemi
al di�erential equationsHere the solutions of the di�erential equations for basi
 
hemi
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tions are de-rived. A,B,C and D are substrates. k and l are the deterministi
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ie
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A.3 Bimole
ular Rea
tion; Two Spe
ies (Part 1)A.3 Bimole
ular Rea
tion; Two Spe
ies (Part 1)
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A.4 Bimole
ular Rea
tion; Two Spe
ies (Part 2)if t=0 ⇒ A = A0

lim
t→∞

=µ→∞

A = A0
4l − 2

√
lk

4l − kif l = k ⇒ A = 2
3
A0
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A Numeri
al solution of 
hemi
al di�erential equationsA.5 Bimole
ular Rea
tion; Two Spe
ies (Part 3)
A + B

k→ P , where P is an arbitrary produ
t.
I.

dA

dt
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B Belousov-Zhabotinsky Rea
tionThis appendix in
ludes details on the Belousov-Zhabotinsky rea
tion presented in Figure 4.5.B.1 The Composition� 0.50M sodiumbromate solution (NaBrO3)� 1.50M maloni
 a
id (HOOCCH2COOH)� 5.00M sulphuri
(VI) a
id (H2SO4)� 0.30M sodiumbromide solution (NaBr)� 0.01M ferroin solutionB.2 Rea
tion SystemI. 2Br− + BrO3
− + 3H+ + 3H2Mal → 3HBrMal + 3H2OII. BrO−

3 + 4 ferroin2+ + H2Mal + 5H+ → 4 ferriin3+ + HBrMal + 3H2OIII. 4 ferriin3+ + HBrMal + 2H2O → 4 ferroin2+ + HCOOH + 2CO2 + 5H+ + Br−IV. 3BrO−
3 + 5H2Mal + 3H+ → 3HBrMal + 2HCOOH + 4CO2 + 5H2OTable B.1: The 
hemi
al rea
tions des
ribing the os
illating system leading towardFigure 4.5

BrO3
− (bromate); H2Mal (maloni
 a
id); HBrMal (bromomaloni
a
id); Br− (bromide); CO2 (
arbondioxyde); H2O (water)
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B.3 Chemi
al Stru
tures of Ferroin and Brome Maloni
 A
idB.3 Chemi
al Stru
tures of Ferroin and BromeMaloni
 A
id

Figure B.1: On the left one 
an see the red iron(II)-1,10-phenanthroline 
omplex
[Fe(C12H8N2)3]

2+ and on the right side bromomaloni
 a
id.
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C.1 URL-List of Cellular SimulatorsC.1 URL-List of Cellular SimulatorsSimulator URLSmartCell http://smart
ell.embl.de/NEURON www.neuron.yale.eduGEPASI http://www.gepasi.org/Sto
hSim www.anat.
am.a
.uk/ 
omp
ell/Sto
hSim.htmlMesoRD http://mesord.sour
eforge.net/MCell www.m
ell.
nl.salk.edu/GENESIS www.genesis-sim.org/GENESIS/VirtualCell www.nr
am.u
h
.edu/Table C.1: Internet Representation of mentioned Simulators
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