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SummaryOver the last deades, the amount of data about moleular proesses within ells hastremendously inreased leading in partiular to an inreased interest in theoretialinvestigations of suh systems. One basi theoretial approah in this ontext is tomodel proesses in biologial ells as hemial reation (di�usion-) systems and tostudy their properties by omputer simulations.One major problem in handling suh systems is that they often simultaneouslyontain substrates with a wide range of possible partile numbers. For example,ribosomes typially exist in small numbers; tRNA-moleules or proteins are repre-sented in intermediate quantities; and some ions, suh as potassium or sodium, aretypially present in large quantities. However, no onventional algorithm works wellfor suh a wide range of partile numbers: Small partile numbers require stohastialgorithms, whereas intermediate and large partile numbers an only be treated byomputationally more e�ient, though perhaps less exat modeling.To address this problem, I developed the COntrollable Approximative STohastiAlgorithm (COAST). COAST is a self adjusting algorithm that an be applied to sim-ulate reation and di�usion systems. It is based on three di�erent levels of modeling:an exat stohasti approah for low partile numbers, an approximative stohastiapproah by Gaussian distributions for intermediate numbers, and a desription bydeterministi kinetis for high partile numbers.A speial harateristi of COAST is that it automatially determines the optimallevel of modeling for the reation hannel at eah time step. This is done by usingriteria, whih appropriately depend on one single error ontrol parameter α. Onean show that all approximations of COAST lead to errors even smaller than α.Thus, by hoosing a suitable value for α, the user an easily �nd an optimal trade o�between auray and omputational e�ieny for an individual simulation system.It is demonstrated in test simulations that COAST is able to reprodue resultsof exat stohasti algorithms with small errors. In most ases, the error is muhsmaller than α. On the other hand, COAST shows a di�erent asymptoti dependeneof the runtime on the number of partiles N : For n-order reations, the asymptotiruntime is proportional to Nn for exat algorithms, but proportional to Nn−1 forCOAST. So learly, COAST provides signi�ant improvements, in partiular if N islarge and n is small.
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1 IntrodutionTo understand the omplexity and dynamis of biologial systems, mathematialmodeling and omputer simulations have beome an important area of researh in thelast deade. Here, I present an algorithm that is espeially designed for the simulationof reation di�usion systems with a wide variety of speies present in very di�erentorders of magnitudes of onentration. It is a ontribution to the urrent developmentof algorithms for systems biology that aims at providing a omprehensive view onhemial proesses in general, and ellular proesses in partiular. In the last years,biologial researh has foused on the moleular details of the systems under study.Presently, systems biology tries to put these piees together ombining theoretialand experimental approahes.Computational Modeling Biology was one limited to redutionist approahes,whih were very helpful in the past. However, by blinding out onnetions in thosesystems, the retained models are inomplete, inaurate and simply inorret [Mell-man and Misteli, 2003℄. To really obtain a omprehensive view on biologial systems,we have to be able to proess, analyze, and interpret interations and dynami events.Computational modeling allows us to explore suh events taking aount of the om-ponents and the pathways established within the ellular systems under investigation.Modeling has had a long tradition, and remarkable suess, in disiplines suh asengineering and physis. Physial siene, for example, is supported by three pillars:experimental studies, theoretial studies and simulation. Now, the urrent devel-opment in systems biology indiates that simulations will beome more and moreimportant in the future of life sienes. The amount of information gained in biologi-al siene has developed tremendously over the last years. Biologial modeling useswell-established methods suh as the �nite element method (=�nite element analy-sis, FEA) or numerial tehniques to solve ordinary di�erential equations (ODEs)or partial di�erential equations (PDEs) desribing biologial systems [Doyle, 2001℄.ODEs and PDEs are ommonly used to model biologial networks like metaboli orsignal transdution networks [Vilar et al., 2003℄.The roots of the theory of di�erential equations go bak to the time of the de-velopment of in�nitesimal alulus by I.Newton (1643-1727) and G.Leibniz (1646-1716) at the end of the 17th entury. Sine then, famous mathematiians suh asJ.Bernoulli (1654-1705), who alulated the orbits of the planets, L.Euler (1707-1783), J.L.Lagrange (1736-1813) and C.F.Gauÿ worked in that �eld. Di�erentialequations beame an important tool in physis (motion, eletrial resonant iruits),1



1 Introdution

Figure 1.1: The �gure shows the signal transdution network leading to apoptosis presentedby Hanahan. It gives an example of how omplex ellular proesses an be.Reprinted from Cell, Vol.100, Hanahan and Weinberg, The hallmarks of aner,p57-70, opyright (2000), with permission from Elsevier.biology (population dynamis, Lotka-Volterra model of predator-prey relation), he-mistry (hemial reations, arbon dating C14-method) and the �nanial setor (yleof growth).Advantages of Computational Models Some biologial onepts have alreadybeen disovered by omputational modeling. They inlude bistability [Bhalla andIyengar, 1999℄, ultrasensitivity [Ferrell and Mahleder, 1998, Ferrell, 1999℄, and rhyth-mi behavior [Elowitz, 2000℄. Ultrasensitivity de�nes a response that is more sen-sitive to ligand onentration as ompared to the standard responses as de�ned byMihaelis-Menten kinetis [Goldbeter and Koshland, 1981℄. A lassial Mihaelis-Menten reation is desribed by a hyperboli reation veloity urve, while an ul-trasensitive reation is desribed by a sigmoidal urve. In 1996, Huang and Ferrellanalyzed the MAPKinase-signaling-pathway (MAPK: mitogen ativated protein ki-nase) in Xenopus ooytes [Huang and Ferrell, 1996℄. They found that one part, themodule onsisting of the three MAPKinases, worked as a swith, �ltering noise andonly being ativated if the input reahed a ertain level. This behavior is experi-mentally observable only if one analyzes a single ell. Another example of omputa-2



Charateristi Quantity Soureproteins 225,000ribosomes 15,000tRNA-moleules 170,000small organi moleules 15,000,000ions 25,000,000water 25% [Goodsell, 1993℄no. of genes 4497 [Keseler et al., 2005℄no. of reations per ell yle 1014 − 1016 [Endy and Brent, 2001℄Table 1.1: The table shows some harateristis of an average E.oli ell. The omplexityis about a fator thousand smaller for the smallest ell types (myoplasms) andabout a fator of thousand larger for typial plant and animal ells [Shwehm,2001℄.tional modeling is the modeling of ion-hannels whih goes bak several years [Levitt,1999℄, reation-di�usion systems simulating transport proesses out of the nuleus, ortransport proesses of proteins between the endoplasmati retiulum and the Golgiomplex [Ladinsky et al., 1999℄.These models provide a systemati framework to desribe and analyze suh om-plex systems (f. Table 1.1); this omplexity is the result of the number of singlenodes within these networks and their interations. They summarize the urrentknowledge and hypotheses about missing information. Speaking from a biohemi-al point of view the nodes are biologially ative substrates and the edges are thehemial interations between them.Models in general have several advantages. The problem with analyzing omplexsystems is that the output is far from intuitive; doubling the input does not mean thatthe output will be doubled [Voit, 2002℄. This nonlinearity is aused by synergistie�ets, whih results in the invalidity of the summation priniple of single events.Modeled systems are easier to manipulate than real systems. One lear example forthis are multiple knok-out experiments. Another example involves the timesalesof biologial proesses. The time span for moleular movements is within µ-seonds,whereas a human life is approximately 109 s (75 years). The former time span ishard to observe and the latter di�ult to follow. Simulations allow sientists toapture time and sales together. It should be noted, however, that a model is onlyan approximation of reality, and all preditions made with those models an only beas good as the model used to make those preditions.It is not the aim of simulations to replae in vivo experiments, but rather to o�erimportant amendments for their planing and analyses. The model an be used toobtain an overview of possible outomes. Su�iently detailed and aurate modelsan serve as a referene for interpreting experimental results and suggesting further3



1 Introdution

Figure 1.2: The �gure presents the hypothesis-driven researh in systems biology demon-strating how mathematial models an be a ontribution to researh. Reprintedwith permission from SCIENCE, Vol.100, Kitano, Systems biology: a briefsummary, p1662-1664, Marh 2002. Copyright (2002) AAAS.hypotheses [Takahashi and al., 2002℄. Simulations an provide insight into otherwiseimpossible senarios and so will be able to save time and money. They are expetedto guide wet-lab proesses and narrow the experimental searh spae.Progress in biohemistry and biology in general has provided siene with greatdetail of ellular proesses. Computational biology seeks to understand the prini-ples underlying their dynami behavior. As Bundshuh et al. [2003℄ state , there hasbeen onsiderable e�ort in the past to model the biohemial network of a whole ellor ellular subsystems. He provides examples for the bene�ts gained by modeling,namely enhaning our understanding of ell funtions, easily observing the desig-nated systems and determining the quantities of interest (measuring them would beonly possible by omplex experiments). For these reasons, he sees the future of drugdevelopment, where the e�ets of a putative drug on a ell an be immediately tested.The Problem of Modeling Cellular Proesses and Struture The tools neededto establish a working model are provided by mathematis and bioinformatis. Forbulk hemial reations, it is ommon to �nd deterministi models resulting from themass ation law and formulated by di�erential equations.However bak in 1930, John Burdon Haldane, the o-founder of population genetis,4



expressed that ertain ritial proesses in the ell may be arried out by only a fewenzymes [Haldane, 1930℄. 16 years later, MIlwain [1946℄ already repeated this in hisnature artile as a well known fat. In 1989 P.J.Halling asks, in the title of his publi-ation, �Do the laws of hemistry apply to living ells?� and omes to the onlusionthat a ell is a unique hemial system [Halling, 1989℄. It is suh a small reationunit, that some speies only appear in very small quantities - sometimes only a oupleof moleules. In suh ases, deterministi models are no longer appropriate. Theyare misleading and likely to result in inorret expetations. For situations wherehemial speies exist in very small quantities, it may be better to use stohastimodels.The �rst sientists to mention stohasti methods as a tool for modeling hemialreations were the biophysiist and Nobel prize winner Max Delbrük (1906-1981)and the duth physiist and (Niels Bohr's �rst sienti� assistant) Hendrik Anton(Hans) Kramers (1894-1952) [Delbrük, 1940, Kramers, 1940℄.Delbrük examined enzyme reations, and Kramers studied Brownian motion in afore �eld. In the 1950's, Alfred Renyi (1921-1970) was able to show that the Lawof Mass Ation breaks down for small systems [Renyi, 1954℄, and K.Singer explainedthat even small �utuations an have signi�ant e�ets on hemial reations, thatonsequently an lead to the irreproduibility of experiments. If a system has onlyspeies present in low opy numbers, their steady-state �utuations beome signi�-ant in omparison to the mean. That is why the system an no longer be desribedby the deterministi law of mass ation.Many geneti regulatory reations our only at low onentrations. However, tinyhanges an have a big in�uene on the whole system, as demonstrated by the phage
λ lysis-lysogeny deision iruit [MAdams and Arkin, 1999, Rao et al., 2002℄. Thisstohasti swithing has been analyzed using stohasti kinetis and by deterministimodels [Srivastava et al., 2002℄.To attempt researh on a ellular level, new algorithms were required. Gillespie[1977℄ proposed his Stohasti Simulation Algorithm (SSA), whih will be desribedin the form of the First Reation Method in Setion 2.4.2. It is also alled the ExatStohasti Method (ESA) [Vereeken et al., 1997℄. Sine Gillespie's proposal, im-provements have been suggested suh as the Next Reation Method by Gibson andBruk [2000℄ that -as has been reently shown- is not always faster, even thoughit uses less random numbers, due to its larger omputational overhead [Cao et al.,2004b℄.So far, several quantitative kineti tools have been developed to model dynamisystems behavior (e.g.: E-CELL [Tomita et al., 1999℄, GEPASI [Mendes, 1993℄, andVirtual Cell [Sha� et al., 1997℄). They an all be used for a wide variety of se-narios. If one momentarily ignores usability and implementation, they all inludeeither ompletely stohasti (a form of the SSA) or stritly deterministi algorithms.5



1 IntrodutionAs mentioned previously and disussed in 2.3.1, both approahes have their realmsof appropriateness in ertain environments. Ordinary di�erential equations (ODE's)have the advantage of being fast and reliable in the marosopi limit where a largenumber of moleules is available. However, at low onentrations, they annot bedesribed by these deterministi methods any more, due to stohasti e�ets. Thepresene of stohasti e�ets in gene expression and signal transdution proesseshas been shown by both, theoretial and experimental approahes [Levin et al., 1998,MAdams and Arkin, 1997, Ozbudak and al., 2002, Elowitz et al., 2002℄. In this ase,a stohasti approah suh as Gillespie's Diret Method for modeling and simulationis biohemially and biophysially more realisti, but omputationally limited in viewof the high numbers of moleules (partiles are traed as individuals simulating theirmovements and reations).Of ourse, stohasti algorithms are loser to reality, but very time onsuming,restriting their use to systems with small and intermediate partile numbers. Onthe other hand deterministi models are better suited for systems with large partilenumbers, but they fail at preditions for systems with intermediate amounts of mole-ules. Therefore, so alled approximative algorithms have been invented that aremostly based on the Diret Method, and promise to �ll the gap between stohastiand deterministi approahes. They are further desribed in Setion 2.4.2. The keyidea is to de�ne a time interval in whih the number of reations is small, so thereation probabilities an be assumed to be onstant. However, those approximativealgorithms, whih work well for intermediate partile numbers, do not over the om-plexity of a ellular system. The idea was oneived to develop hybrid algorithms,that use the afore-mentioned approahes and ombine them into one strategy [Kiehlet al., 2004℄. The ruial problem is to de�ne the point of transition, i.e., when toswith from a stohasti to an approximate to a deterministi approah.For example, some algorithms exist that are based on �xed partitions of the systeminto slow and fast reations. �Fast� means here that it is likely to have a lot of rea-tions per time span and �slow� the opposite. With this ombination, slow reationsare treated by the First Reation Method, and fast reations either by determinis-ti reation kinetis [Haseltine, 2002, Kiehl et al., 2004, Takahashi et al., 2004℄, byLangevin equations [Haseltine, 2002℄, or by random variables distributed aordingto the probability density funtions at a quasi-stationary state [Rao and Arkin, 2003℄.The disadvantage is that the user of the algorithm has to partition the system,de�ning the point of transition. The non-automati prede�ned partitioning makesthese algorithms unusable for systems with osillating onentrations, whih is likelyin most biologial systems, beause here a reation hanges its ondition between�slow� and �fast�. This is not the only point of ritiism. Another aspet that has notbeen onsidered enough is spatial dimension, i.e., the ellular struture. Sine auto-mati adaption does not exist, the ideas desribed are not appropriate for systems6



Figure 1.3: A volume split in volume elements (voxels).with non-homogeneously distributed substrates. A ell is not a single reation entity,it is a omplex organization of speialized reation ompartments (i.e., mitohondria,Golgi omplex). It has a omplex three dimensional struture and whoever tries tosimulate this, has to aount for that as well.So, although muh data on ellular struture, onstrution, and onstitution hasbeen aumulated, there is still need for e�ient algorithms simulating the ell asa reation-di�usion system. The urrent implementations lak algorithms for multi-sale partile numbers and a omplete representation of three dimensional di�usionproesses. Most of the existing simulators divide the ell into a few homogeneous re-ation spaes. In those simulators, the information on the whereabouts of moleuleswithin the ell is lost, so that there is no way to re�et the hange of gradients anymore. Calium waves are only one example to demonstrate the importane of spatialdimension [Fink et al., 2000℄.The New Approah In my approah, the ell is divided into a grid of ubialvolume elements (VE) (f. Figure 1.3). Using this approah, we inrease the numberof observable spaes and are able to loate speies dependently on the grid size.Another advantage of subvolumes is related to the way reations are handled. Asubvolume is the smallest reation jar. There are two general ideas of alulatingbiohemial kinetis. Either the hanges of onentrations are predited based onordinary and partial di�erential equations (PDE), or by a stohasti approah usingMonte Carlo simulations.The VE-approah enables me to use a hybrid model that ombines the advan-tages of exat, approximative, and deterministi approahes. With the ControllableApproximative Stohasti reation-algorithm (COAST) presented herein, I have de-veloped an algorithm ful�lling the needs of state-of-the-art simulators [Möller and7



1 IntrodutionWagner, 2005℄.In reent years the ommunity involved in the simulation of modeling biologialsystems emphasized the neessity of e�ient designs of algorithms [Shwehm, 2001℄.Based on the data by Endy and Brent [2001℄ Shwehm assumed 1014 reations toour per ell yle in Esherihia oli and alulated that a stohasti simulation ofa whole ell yle would take about twelve years on a single proessor. Therefore heonluded:�Stohasti whole ell simulation is thus either the realm of massively parallel om-puting, or it needs new algorithms whih an ombine deterministi and stohastisimulation tehniques.�With COAST, I present suh an algorithm based on three di�erent regimes ofmodeling. The transition points are de�ned by only a single error parameter α. Thisvalue ontrols the partitioning of the reations. Three modeling levels are used: anexat way based on Gillespie's Diret Method for small partile numbers, for interme-diate an approximative method based on Gaussian distributions, and for high partilenumbers a deterministi approah.To prove its reliability and auray, I ompared COAST to the First ReationMethod and the tau-leap method, whih is used as an example for an approximativealgorithm [Gillespie, 1976, 2001℄. It turns out that COAST is as aurate as the exatmethod, but is signi�antly faster than the exat and the approximative algorithm.It has shown reliable results for simple and omplex systems like the Oregonator orMihaelis-Menten kinetis [Gillespie, 1977, Mihaelis and Menten, 1913℄. The keyadvantages of COAST are the wide sale of partile numbers overed, the self parti-tioning of the reations hannels, and the �easy-to-set� error value.Another advantage of the COAST-algorithm is to model di�usion as well. Asalready suggested by Stundzia and Lumsden [1996℄, who onsidered the transitionto neighbor volume elements (voxels) as merely additional reations using the FirstReation Method, reation algorithms an be adopted for di�usion. Thus far, partialdi�erential equations have been the most e�ient way in the three dimensional spaenext to trak single moleules. It depends on the experiment, if the reonstrution ofdi�usion within a ell is neessary or if it an be negleted. This of ourse depends onthe type of information one wants to gain. Essentially, all ellular proesses inludesome kind of di�usive transport of metabolite- and enzyme-sized solutes [Oelvezkyand Verkman, 1998℄.It an be shown that di�usion and subellular ompartmentalization in�uenes thesignaling hemistry of a ell, whih results in di�erent signaling, suh as washout ofsignals, reinforement of signals, and the onversion of steady responses to transients[Bhalla, 2004℄. It is important that one takes the three dimensional struture of a8



ell into aount. Spaial appearanes suh as alium-waves have been modeled andexperimentally shown [Fink et al., 2000, Strier et al., 2003℄. The di�usion is beomingimportant sine stohasti e�ets on a ellular sale have a higher impat.Nowadays, sientist have the tools to study moleular di�usion proesses. Bi-ologists are assisted by using the green �uoresent protein (GFP) of the jelly�shAequorea vitoria to tag nearly any protein and study their loalization, dynamisand interations in living ells [Lippinott-Shwartz et al., 2001, Tsien, 1998℄. Other�uoresent proteins inluding the yellow �uoresent protein (YFP) are also used.New imaging methods improved the way of observing the GFP fusion proteins, suhas �uoresene reovery (FRAP), �uoresene orrelation spetrosopy (FCS) and�uoresene resonane energy transfer (FRET). They allow researhers to trae sin-gle moleules, measure onentrations of substrates, and analyse their distribution.Lippinott-Shwartz et al. [2001℄ point out that the tehnial advanes will help si-entists to move from a steady-state view to a dynami model of ellular funtion.Suh data has then been used to establish reliable three dimensional ellular modelsaurate enough to simulate ellular proesses [Oelvezky and Verkman, 1998℄.The most important algorithms that an be used to model di�usion are the RandomWalk or Wiener Proess (f. Setion 2.4.1), and stohasti deterministi equations(Langevin equation). The advantage of the Random Walk is the aurate modelingof all possible interations that an our, but the omputational expense beomesvery high, if the partile numbers rise. The Langevin equations desribe the stohas-ti trajetories of single partiles. Furthermore omputationally expensive for largepartile numbers. Other deterministi di�usion models suppress stohasti �utua-tions and are therefore not useful for simulating signaling ellular networks with lowpartile numbers.The reation algorithm COAST an be modi�ed to be a reation di�usion algo-rithm, desribing both ruial elements of a dynami ell with one approah. Todemonstrate the apabilities of COAST, I applied it to a one dimensional grid andtested speed and auray against the random walk as the most elementary way ofmodeling di�usion.The auray of COAST is better than set by the error parameter α. I have beenable to model the di�usion of partiles without and in a fore�eld. The results showthat COAST is able to model the means and varianes of the expeted distributionsaurately.In this thesis I desribe the reation algorithm COAST and its appliation todi�usion. Furthermore I tested its auray and reliability ompared to ommonalgorithms and give a pratial reasoning for the points of transition between themodeling regimes. The results indiate that the symbiosis of the di�usion and rea-tion implementations provide a powerful instrument for simulating ellular proesses.
9



2 State of the ArtIn the introdution I have explained the neessity of the development of e�ientalgorithms to model ellular systems. The main problems are the simulation ofreation proesses involving strong hanging numbers of partiles and therefore theneed of using deterministi models but also stohasti models to give a realistipiture of strutures with low onentrations. In this hapter I will give an overviewon existing methods to model hemial reation and di�usion proesses and disusssome of the existing tools for modeling biologial systems.2.1 Meaning of Chemial Reations & Di�usion forBiologial Systems2.1.1 Chemial ReationsMaybe it is true to say that hemistry is not everything, but without it, everythingwould be nothing. I am sure one will be always able to �nd exeptions, but when itomes to life and biologial systems this statement annot be more true.Chemial reations are the proesses that result in the interonversion of hemialsubstanes. The driving fore behind hemial reations is the desire of the reatingspeies to rearrange themselves into a lower energeti state. This is not limitedto the inorgani world. It reahes its highest omplexity by using arbon whihallows a manifoldly variety of high omplex moleules whih are the basi omponentsof life in the form we know; therefore the hemistry of arbon is named organihemistry. Stritly, hemial reations involve the motion of eletrons in the formingand breaking of hemial bonds. However, the general onept of a hemial reationis also appliable to transformations based on non ovalent bondings.Every reation R has a di�erent reation veloity, quanti�ed by a reation onstant
k. The ourse of a hemial reation is desribed by a reation equation:reatant(s) or edut(s) −→ produt(s)All biologial proesses depend on the formation and breaking of ovalent and nonovalent bondings. The latter inlude so alled weak bondings whih an be spei�edas eletrostati interations, hydrogen bonds or van der Waals interations. Theseweak interations are the way of enzymes interat with their substrates, hormoneswith their reeptors and antibodies with antigens.10



2.2 From Systems Biology to Mathematial ModelingThe ell is the main site of enormous biohemial ativity alled the metabolism.This is the proess of hemial hanges whih goes on ontinuously in the livingorganism. The build-up of tissue, replaement of old tissue, onversion of food toenergy, disposal of waste materials and reprodution - all these ativities are whatwe haraterize as �life�. Life needs hemial reations.2.1.2 Di�usionDi�usion desribes the spreading or distribution of a substane beause of the thermalmovement of their partiles. Nowadays we de�ne it as a spontaneous physial proessof equilibration along a gradient of onentration, whih is degraded during thatproess.Di�usion is the most important way of moleular transport within ells, but mainlyfor small distanes. To over twie the distane a partile needs four times the dif-fusion time. In this way di�usion is limiting the size of a ell and de�nes for multi-ellular organisms the need of other not on di�usion based transport systems (nervesystem, bloodstream). The di�usibility of a partile depends on the temperature,its size and its harge. We observe the di�usion of partiles as a onsequene of aonentration gradient. Corresponding to the seond fundamental theorem of ther-modynamis, whih demands an inrease of entropy, one an observe seemingly adireted movement of partiles from the area of higher onentration to the area oflower onentration, but it is not a direted movement. The seemingly direted �owis the onsequene of the stohasti proess ourring here.Biologial proesses onstantly generate gradients of onentration by produingspeies in a loalized manner, for example the prodution of proteins at the ribosomes.2.2 From Systems Biology to MathematialModelingTo make biomoleular knowledge useful for medial or tehnial purposes one needsan integral understanding of ellular systems. Researh has been onentrated overthe last years on moleular details. Systems biology is the aademi �eld that seeks tointegrate di�erent levels of information to understand how biologial systems work.It is a �whole-isti� [Chong and Ray, 2002℄, interdisiplinary approah with methodsand onepts of moleular biology, systemiology and informatis to gain a betterunderstanding of ellular proesses. It is not onentrated on single genes or proteins,but on the interations between all omponents of a system.H. Kitano [2002℄ published an exellent overview on Systems Biology. Aordingto him it is an examination of struture and dynamis of ellular and organismalfuntion rather than the fous on isolated parts of a ell. Many properties arise at11



2 State of the Artthe systems level only and annot be derived by looking at details. A ell is an ex-ample for a system with a omplex mirostruture, whose omponents ommuniatemanifoldly among eah other and with the outside world. Voit [2002℄ supports thisby stating, that the hallenge dealing with omplex systems is a result of synergistiproperties, whih do not exist in any onstituents, but only in their intriate inter-relationships .Knowing the parts of a -for example- gene-regulatory network and their intera-tions is not enough. We have to understand how hanges in one part are a�eting theothers, how they dynamially interat. Kitano thinks understanding of a system anbe gained by insight into four properties: �System struture� (gene interations, bio-hemial pathways), �System dynamis� (system behavior over time under hangingonditions), �The ontrol method� (mehanisms that ontrol the state of the ell),�The design method� (modify systems to have desired properties).Biology delivers the data and has the methods to gain them, informatis proessesand strutures it. Another purpose of informatis is to provide tools to model andvisualize. The system sienes provide methods to desribe, analyse and abstratthe biologial systems. Classial examples of systems are the immune system, orthe nerve system. The original idea of a system level understanding is not new andgoes bak to the �rst half of the last entury [Wiener, 1948℄, but new methods likeautomated gene sequening, DNA miroarrays, proteome hips and metaboli pro�leshave provided siene with valuable information about the geneti and metaboliresponses of organisms to stimuli to make an in silio ell envisionable [Voit, 2002℄.Kitano points out, that understanding of the properties of biologial systems mighthave an impat on the future of mediine. Drug disovery through trial and error hasbeen suessful throughout the enturies [Voit, 2002℄. Then man began to do researhon the details of the organism, to disassemble it and its omponents to optimize theproess in �nding the fundamental mehanisms of health and disease. This approahis alled redutionism and has been useful over the last deades. As desribed abovethe knowledge of details is not enough. By knowing more about the interhange ofthose single parts, pharmaeutial ompanies would be able to undergo their researhmuh more e�ient with less failures and less expense.There are urrent ongoing initiatives for systems biology and I will only list someexamples: Institute for systems biology Seattle, USA, by Leroy Hood; Alliane forellular signaling, USA, by A. Gilamn; and in Japan the Systems biology group byH.Kitano. [Kitano, 2002℄. In Germany the BMBF has �naned projets within thesope of the researh program "Systeme des Lebens - Systembiologie". The aim is avirtual representation of a ell like a virtual laboratory. This should smooth the wayfor preditive biology, where omparable researh is possible like in a real biologialsystem.This is not easy. The biologial and metaboli systems governing the e�ets are12



2.3 Modelingdramatially omplex. Voit points out, a ell is more than a olletion of membranes,organelles and proteins, mixed with some DNA and RNA. Redutionist methods areneessary, but they need to be aompanied by mathematial onepts, whih areapable of apturing the essene of omplex, integrated systems.2.3 ModelingA entral role is the mathematial modeling of omplex ellular networks. The math-ematial models onnet the parts of systems biology. The Proess of modeling isinterative. That is the model world has to onverge towards the reality. All mod-els have to be ompared to real data and than be adjusted. In Setion 2.5 someapproahes toward modeling ellular systems are desribed.A �rst step to get away from a statial biologial network (f. 'Biohemial Path-way', Boehringer®) is to model biologial proesses by algorithms and to representtheir dynamial harater with these algorithms. All available data for funtion, lo-alisation, onentration and interations are thereby alulatively ombined. Mod-els are abstrations that are easier to manipulate than the atual system [Endy andBrent, 2001℄. They are typially heuristi and develop alongside the experiments andare inseparable from them. Future development of omputational speed will be ofritial need to implement high saled networks. The development of reliable modelsis ruially dependent on the data the model is based on. Gaps in knowledge aboutomponents of the system, interations and of other parts of related networks an bevery harmful. Abstration is neessary for a model, but the simpli�ation must bedone arefully. The impat of moleular rowding is well known [Minton, 2001℄, butbeause of its omplexity it has not yet been modeled. One riterion of biologialomplexity is the rih network of interations among the onstituents. These inter-ations are numerous and have nonlinear harateristis that are di�ult to handlewith intuition alone [Voit, 2002℄. Nonlinearities make omplex systems di�ult tounderstand. Only mathematial models are able to help us predit those systems faraway from our intuition.In the 1950s the omputer beame useful in solving systems of di�erential equa-tions. However, it took 20 more years until in the 1970s stohasti methods havebeen developed to model low representations of speies (f. Setion 2.3.1 for stohas-ti and deterministi methods) [Gillespie, 1976℄. Those methods have been improved(f. next setion for details) [Gibson and Bruk, 2000℄ and used in the 90's to de-sribe di�erent systems [Arkin et al., 1998, Bhalla, 2002℄. Further improvementsan be expeted by ombining stohasti and deterministi approahes (f. Setion2.4.2). This dissertation is to be a ontribution to the worldwide disussion on thattopi. A system an be at some steady state for a ertain parameter value. If thisvalue is now raised above a ertain threshold, a feedbak mehanism an result in13



2 State of the Artan osillating system and not a proportional inrease of the output. Here are someexamples how mathematial models have been used in the past.J.Tyson [1991℄ modeled the ell-division-yle. In his model like in most mathe-matial models hemial kinetis are represented by involving ordinary and partialdi�erential equations. With suh simulators the swith-like behavior of the MAPK-module in signal transdution has been lari�ed [Ferrell, 1999℄, whih is experimen-tally only aessible if experiments are done on single ells. Other simulations thathave been done were simulations of ion hannels [Hodgkin and Huxley, 1952℄ and thehuman heart [Noble, 2002℄. The work by Hodgkin and Huxley represents one of thehighest-points in ellular biophysis and the quantitative model of ation potentialgeneration and propagation they developed forms the basis for understanding andmodeling the exitable behavior of all neurons; it is the single most suessful quanti-tative model in neurosiene [Hille, 1984℄. Smith et al. [2002℄ were the �rst to modelthe transport of moleules into and out of the nuleus. Other examples are aliumwaves desribing the release of alium ions from the saroplasmi retiulum [Loewand Sha�, 2001℄.Several tools are available already to enable biologists to get aess to a �eldthat hitherto has been restrited to the design of integrated iruits and hemialproessing plants [Doyle, 2001℄ (f. Setion 2.5).The main problems of modeling result from simpli�ation and abstration. Theell is not a well stirred reation tube. It is highly ompartmented with high loalonentrations (e.g. mitohondria matrix). Maromoleular rowding has a greatimpat on di�usion and reation. Moleules of a ertain size are not able to dif-fuse at all or by a muh smaller di�usion oe�ient than in experimental bu�er.Furthermore endogenous obstales hinder di�usion. Many reations our on two-dimensional membranes or in dimensionally restrited environments.Another di�ulty is the nonlinearity of omplex systems. They defy the law of su-perposition, whih means that Devide and Conquer (Julius Caesar: Divide et Impera)is not possible. The single parts of linear systems an be analysed independently fromeah other, but nonlinear systems usually lose essential harateristis when takenapart [Voit, 2000℄. Without mathematial analysis it is di�ult to predit simplemehanisms like a feedbak loop. Does the output inrease or derease or don'thange at all? Intuition does not help here. Other systems begin to osillate underertain onditions and when the parameters are slightly hanged it does not respondat all [Kholodenko, 2000℄.Modeling gives a �exibility atual lab experiments annot provide. One is ableto model time expensive experiments in a fration of the otherwise needed timeor observe proesses in detail whih take only miroseonds. However, the aim ofmodeling is to assist traditional laboratory work, to suggest and ounil, but not toreplae it.14



2.3 Modeling2.3.1 Deterministi Versus Stohasti ModelingMathematial modeling is a powerful approah for understanding the omplexity ofbiologial systems. There have been already suessful attempts for simulating om-plex biologial proesses like metaboli pathways, gene regulatory networks and ellsignaling. The models have not only generated experimentally veri�able hypothe-sis but have also provided valuable insights into the behavior of omplex biologialsystems [Meng et al., 2004℄. Modeling an be divided into three levels:� marosopi: dynamis of moleular onentrations, mostly deterministi mod-els (di�erential equations or S-System [Voit, 2000℄)� mesosopi: dynamis of single moleules, in general without referring to phys-ial fores (mostly stohasti models)� mirosopi: simulation of physial fores between and within moleules, e.g.protein folding, doking, moleular modelingThe most aurate way would be modeling moleular dynamis - modeling ona mirosopi level. Therefore one has to trak the position and veloity of everymoleule in the system. Furthermore every ollision has to be observed, if thereis a hemial reation or not. By modeling moleular dynamis we investigate thehanges in speies populations and their spatial distribution. The main problem withthis approah is the omputational expense. Although omputer tehnology made abig leap forward during the last deade, suh operations are still for superomputersout of reah referring to omplex biologial systems in terms of time.There are several more e�ient approahes to model hemial and physial pro-esses like reation and diffusion. In Setion 2.4 some of these models are presentedin detail. With slight simpli�ations the models an be lassi�ed in two ategories.They an be lassi�ed as either stohasti or deterministi, exluding onsiously theapproximate approahes at this point. Nowadays hybrid models are introdued tolose the gap between these two regimes. To simplify the proess let us onentratenow on deterministi and stohasti algorithms for hemial reation and afterwardsdisuss how the existing ideas an be used to model di�usion.Deterministi Modeling If we assume the amount of reative ollisions to be lowompared to the amount of unsuessful reations, a simpli�ation an be made.Partiles an now di�use within a ertain area and keep the system in a well-stirredondition. Based on this assumption in hemistry it is quite ommon to formulatehemial kinetis of a hemial reation using the Law of Mass Ation:
2A + B ← k2 | k1 → C [A]2 · [B]

[C]2
= K(T, p) = k2

k1
, 15



2 State of the Artwhere K is the reation onstant and a funtion of the temperature T and the pressure
p. This funtion is derived from:

d[C]

dt
= k1 [A]2 [B] − k2 [C].Here k1 and k2 are the veloity onstants for the two single reations. The veloityonstants are proportionality onstants equal to the initial rate of a reation dividedby the onentration of the reatant. A,B and C are the substrates and [A],[B] and

[C] are the onentrations of the substrates, usually in [mol
l

].In words the Law of Mass Ation says: The produt of the onentration of thereation partners with all onentrations always taken to the power of their stoi-hiometri fators, equals a onstant K whih has a numerial value that dependson the temperature and the pressure. K is alled the reation onstant. The Lawof Mass Ation follows if one assumes that the system has reahed equilibrium and
d[C]
dt

= 0. Let us emphasize the main problem with determinism diretly here. Thedi�erential equation assumes that the system is ontinuously preditable, whih isof ourse not the ase for a omplex biologial system. Furthermore, the di�erentialequation or a system of di�erential equations works very well for high numbers ofpartiles where �utuations an be negleted, but often moleules in ell struturesare only present in small amounts and show a stohasti behavior. Moreover, thenumbers of partiles hange not ontinuously, but disrete. The modeling of hemialreations using deterministi rate laws has proven to be extremely suessful in bothhemistry and biohemistry [Epstein and Pojman, 1998, Heinrih and Shuster, 1996℄.Usually one is interested in the hange of metaboli onentrations over time.Therefore a di�erential equation or a system of di�erential equations has to be solved.However, exat solutions only exist for very simple systems. Consider the systemin the following reation equation as an example where again A and B mark thesubstrates and k is the reation onstant:
A

k→ B ⇒ d[A]

dt
= −k [A] ⇒ [A] = [A0] e

−ktMore omplex systems have to be solved by numerial simulation (e.g., Runge-KuttaMethod [Buther, 1987℄). In suh a deterministi system of di�erential equationsevery substrate and eah of its derivates (modi�ed substrate) must have one equa-tion. So the number of reations is diretly depending on the amount of speiespresent in this system. An additional ompliation an result from di�erently fastreations, then the system is alled �sti��.If one applies ordinary di�erential equations, one makes three impliit assumptions:16



2.3 Modeling

Figure 2.1: A Cell, a homogenous volume?Reprinted from �Invitation to Biology� by H.Curtis & N.S. Barnes, Worth Pub-lishers. Copyright (1994), with permission from W.H. Freeman and Company/ Worth Publishers� a very large reation volume with high partile numbers present� an equilibrium of the system� a homogeneous distribution of all moleulesLet us now have a loser look at those assumptions. The fous of this thesis arealgorithms that shall be applied to biologial systems. The appropriate reationvolume would be the volume of a single ell.If we observe the hanges of onentrations in the ytosol of a ell, desribingthem by ODEs is a ommon way. Therefore one onsiders hemial reations tobe marosopi under onvetive or di�usive stirring, ontinuous and deterministi[Cox, 1994℄. This is evidently a simpli�ation, as it is well understood that hemialreations involve disrete, random ollisions between individual moleules. However,if we only look at small reation volumes like single vesiles, one annot speak of adeterminism any more. We are used to alulate with onentrations, but on suha low level the hanges are moleule by moleule - disrete and not ontinuous. Wereah a level on whih a deterministi approah is not useful anymore beause it17



2 State of the Artannot desribe spontaneous hanges of the reating moleule number. The systemis now showing a stohasti behavior.Assoiated with this is the question about the equilibrium. If an equilibriumis reahed in a deterministi system, nothing is hanging any more, but beausehemial reations are stohasti events, one annot neglet �utuations. Biologialsystems an leave suh apparent stable states. Furthermore, biologial systems arequite often lose to instable onditions.The last assumption, the homogeneous distribution, is neessary if one uses ordi-nary di�erential equations, beause they do not take loal resolutions into aount.If one wants to do that, one has to use partial di�erential equations. This is maybenot neessary if the observed system is a lake, but a single ell represents a veryomplex strutured system. The single ompartments separated by single or doublemembranes are spei� reation volumes with optimal reation onditions for spe-i� reations (i.e., mitohondria, liposomes, endoplasmati retiulum, nuleus, Golgiapparatus). To assume everything as one volume is not only far from reality in astrutural but also physiologial sense, beause ertain reations are not able to existnext to eah other. Beause of the presented limitations, deterministi models arelimited to areas in whih high numbers of partiles our, like metaboli proesses,but they are not suited for signal transdution or gene expression due to the low rep-resentation of substrates. Here one has to use mesosopi models suh as stohastimodels.Nevertheless deterministi modeling has led to some interesting results. In allbiologial systems, it is neessary to inrease or derease ativities in response toexternal and internal signals. The sensitivity of the system to suh signals beomesvery important. The term ultrasensitivity has now been de�ned to indiate a ase inwhih the sensitivity is greater than that to be expeted from standard hyperboli(Mihaelis-Menten) response [Goldbeter and Koshland, 1984℄. In 1996 Huang andFerrell were solving the rate equations for the MAPKinase-system numerially andpredited the asade to work as a swith [Huang and Ferrell, 1996℄ (ultrasensitive).They were able to show the ultra sensitivity of this bistable system in experimentswith Xenopus ooyte. In 2000 Kholodenko demonstrated how negative feedbaksand ultrasensitivity an lead to osillations in the mitogen-ativated protein kinaseasades [Kholodenko, 2000℄. Levhenko et al. [2000℄ simulated the in�uene of saf-folding proteins on the MAPK-system.Another framework, whih is worth to be mentioned, was developed over the last30 years to model omplex metaboli pathways and gene regulatory networks: itis alled anonial modeling [Voit, 1991℄. It is based on the Biohemial SystemsTheory (BST) [Savageau, 1969℄. The variables desribing e.g. a signal transdutionpathway are metabolites and enzymes. The dynamis of eah variable is desribedby the hange of its value over time and this hange is governed by the di�ereneof all in�uxes and e�uxes. All �uxes are desribed by power-law funtions whih18



2.3 Modelingare justi�ed by the Taylor's expansion based on the alulus of �nite di�erenesdeveloped by Brook Taylor (1685-1731). In fat virtually any ordinary di�erentialequation an be written equivalently in anonial form of a Generalized Mass Ation(GMA)-, S-, or Lotka-Volterra-system. Equation (2.1) shows the most importanttype of anonial models, the S-system [Savageau, 1969℄:
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j i = 1, 2, ..., n (2.1)where X1, ..., Xn stand for dependent variables (dynami onentrations of internalmetabolites), Xn+1, ..., Xn+m stand for external variables (�xed onentrations ofexternal metabolites), gij, hij are kineti orders, whih may be non-integer and non-positive, and αi, βi are rate onstants. In a nutshell, the funtions and variables arerepresented in logarithmi oordinates. In this oordinate system, the funtions areapproximated by Taylor series, where only the onstant and linear terms are retained.Stohasti Modeling The ourrene of stohasti phenomena in a variety of phys-ial systems like turbulent �uid �ow, is well established. In the reent past attentionhas shifted to stohastiity, noise and its impat on biologial systems [Meng et al.,2004℄. On a moleular level random �utuations are inevitable and get more sig-ni�ant if the number of interating partiles is very low. This is for example thease during transription where transription fators interat with DNA binding sites[Ozbudak and al., 2002, Elowitz et al., 2002℄. Beyond this MAdams and Arkin [1997℄were able to prove that low opy RNA an be signi�ant for the regulation of down-stream pathways. Ross and al. [1994℄ desribed mRNA being produed in randompulses.One harateristi of stohasti systems is that idential initial onditions, suhas initial onentrations or an initial temperature, an lead to ompletely di�erentresults. One studied example is the lysis/lysogeni swith of the bateriophage λinfeting E.oli [Arkin et al., 1998℄. Due to noise the network may randomly evolveinto one of the two bistable states [Hasty, 2000℄.The ourring �utuations in the onentrations or partile numbers an be as-ribed to two di�erent e�ets. That is why one distinguishes between intrinsi andextrinsi noise. Stohasti e�ets arising due to the inherent nature of biohemiale�ets are termed as intrinsi noise [Meng et al., 2004℄. This is for example the aseduring transription, while only a few transription fators and mRNA moleulesare interating with the DNA. Reations our here only randomly. On the otherhand the subsequent step -the translation- has an extrinsi omponent of noise. Therandomly �utuating fators are the number of ribosomes, the stage of the ell yle,the mRNA degradation and the ellular environment. They all depend on externalenvironmental onditions.
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2 State of the ArtAs we now have seen proesses like gene regulation annot su�iently be modeledby a deterministi model, observing the system from a marosopi point of view.As desribed above one has to distinguish between intrinsi and extrinsi noise orstohastiity. There are many equivalent formulations of stohasti kinetis. One,the hemial master equation, desribes the evolution in time of the probability dis-tribution of system omposition. The hemial master equation is a set of linearordinary di�erential equations with disrete hanges of partile numbers. This setannot be solved analytially, only numerially. One approah is Gillespies Stohas-ti Simulation Algorithm (f. Setion 2.4.2); another one is the Chemial LangevinEquation (CLE) also proposed by Gillespie [2000℄. To treat extrinsi stohastiity astohasti term is introdued into the governing reation equation, whih simulatesthe �utuating noise:
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~νj ≡ (ν1j...νNj) : the hange in the number of Si moleules aused
∼= νij by one Rj event,
aj(~x) : a propensity funtion (given the system in state~x), aj(~x)dt,is the probability that one Rj event will our in the next dt .This equation does not refer to di�usion. All other dynamial proesses exept ofreation are assumed to have ome to equilibrium muh faster than the omposition,so we have the situation of a �well-stirred system�. The transitions between di�erentompositions are alled propensities. If the noise Γ is Gaussian and white, the prob-ability distribution satis�es a Fokker-Plank equation. Robert Zwanziger [2001℄ wasable to show that Γ is not really a Gaussian distribution, but as an approximationit is su�ient. The disrete stohasti proess ~X(t) is now approximated as a on-tinuous stohasti proess. The CLE an be invoked, if the reatant population is�su�iently large�.The stohasti treatment of hemial reations was initiated by Kramers in 1940[Turner et al., 2004℄. Fundamental is the idea that moleular reations are essentiallyrandom proesses; it is not possible to say with omplete ertainty when the next20



2.4 Existing Methodsreation will our within a volume. Turner points out that in marosopi systems,with large numbers of interating moleules, the randomness of this behavior averagesout so that the overall marosopi state of the system beomes highly preditable. Itis this property of large sale random systems that enables a deterministi approahto be adopted.2.4 Existing Methods2.4.1 Methods for Simulating Di�usionHistorial Bakground In 1827 the English botanist Robert Brown (∗1773, †1858)observed pollen grains in aqueous solution. He was stunned to see that even afterhours of observation they still moved restless. He laimed he was able to reproduethis observation with sulfur, volani ash and other �ne grained substanes, but thereare doubts if he really was able to observe it [Deutsh, 1991℄.We now refer to stohasti movements of harged or unharged partiles in wa-tery solution as Brownian motion. The �rst quantitative desription of a di�usionproess was done by the physiologist A. Fik [1855℄ (∗1829, †1901). The relationshiphe found, known as Fik's Law of Di�usion, states that the rate at whih the on-entration of a substane dereases at any point x in a system is proportional to theurvature of the onentration gradient at that point. The onstant of proportional-ity, D, is the di�usion oe�ient or di�usivity in the system [Agutter et al., 2000℄.During his PhD thesis in Zuerih in 1905 and in two publiations in the �Annalender Physik� (1905/1906) A. Einstein (∗1879, †1955) and independently von Smolu-howski (∗1872, †1917) found an explanation for Fik's law in moleular terms.Part of the analysis also led to a derivation of Fik's law and to the general infer-ene that the marosopi di�usion proess an be explained by the moleular-kinetimehanism of Brownian motion in �uid systems where there are onentration gradi-ents. Einstein was able to alulate Avogadro's number, whih had so far only beenroughly determined. Additionally the theory was seen as an additional proof forthe relatively new atomisti theory. The work of Einstein and Smoluhowski furtherassisted in the development of the theory of stohasti proesses. The Amerian N.Wiener (∗1894− †1964) used the Einstein-von Smoluhowski equation for the prob-ability distribution of di�using partiles to derive the probability that an individualpartile would pass during a stated interval of time between any two points in a de-�ned spae in 1923. Today the �Wiener proess� is a synonym for Brownian motion.Stohasti theory has been in�uential in quantum mehanis (e.g. Feynman's pathintegral method), in mathematis (leading to the disovery of profound onnetionsbetween funtional analysis, di�erential equations and probability theory), and in21



2 State of the Artseveral other �elds.Partial Di�erential Equations The most onservative way to model diffusion arepartial differential equations (PDE's). These an be further divided into two mainlasses: linear PDE's and non linear PDE's. The usual way of desribing di�usionproesses would be by using non linear partial di�erential equations (NLPDE's). Theaim here is to model the interations between the partiles of the same speies. Thisresults in equations of higher order (non linear). Several tehniques are known tointegrate them numerially:� multigrid method� �nite elements method� �Monte Carlo� method� spetral theory� ellular automata� lattie Boltzmann gas methodIf one an assume that the onentration of partiles is so low that interationsbetween partiles of the same speies an be negleted, linear PDE's are su�ient.There are again two di�erent approahes related to the linear PDE's. The Smo-luhowski-approah requires the strong frition limit; i.e., the partiles do not havean inertia, whih results in a Markov-proess. For the Fokker-Plank di�erentialequation the strong frition limit is not used and therefore we do not have a Markov-proess, this again results in ones ability to give information about the aelerationof the partiles. The Fokker-Plank di�erential equation desribes the time evolutionof the partile distribution funtion.Partial di�erential equations are for example used by Virtual Cell with the �nitevolume method [Sha� et al., 1997℄. The spae is divided into subvolumes and thetransfer between the volumes is alulated by PDEs. A smaller grid is produingmore aurate results, but with a higher omputational ost. The main problemwith PDE's is that they are not apable to re�et stohasti e�ets, but noise isimportant and it gains on importane the smaller the subvolumes are.Another way to desribe spatial movement of partiles are stohasti di�erentialequations. They have already been applied in biology with a di�erent fous (popula-tion growth [Kiester A.R., 1974℄, granuloyte movement [Boyarsky et al., 1976℄ andpopulations genetis.The most important form is the Langevin Equation:22



2.4 Existing Methods
m · a = F (x(t)) − γv ·m + ξ(t), (2.2)with F being the interation fore on a single Brownian partile, m the mass of thispartile, x the x-position of the partile, γ its frition oe�ient, v the veloity and

a its aeleration.
F (x(t)) desribes the interatomi fores and are therefore equivalent to Newton'sequation of motion. The seond term on the right side in Equation (2.2) representsthe fritional fore by the solvent. ξ(t) is the random stohasti fore due to thermal�utuations of the solvent. The solvent is not expliitly represented, but its e�etson the moleules by the fritional and the stohasti term. If ξ(t) has the mean ofzero, the equation is alled the Langevin Equation (1908). The Langevin Equationis an alternative way next to the Foker Plank Equation (FPE) to desribe MarkovProesses and is the alulus of stohasti di�erential equations (SDE) governing thedynamis of the system.The FPE is a deterministi partial di�erential equation, whih an be solved eitherby numerial or analytial methods:
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p,where p is the transition probability, m the mass of a partile, γ the frition oe�-ient, T the temperature, kB the Boltzmann onstant, v the veloity of the partileand F (x) the external fore �eld.Its original purpose has been to desribe mirosopi proesses in the presene ofrandom fores (noise). Three oupled Langevin equations are needed to desribe themotion of a single partile in three dimensions. To solve SDE's there are in prinipaltwo possible ways: one is to model single trajetories by using for example Gillespie'sSSA (f. Setion 2.4.2) or integrating the SDE's to �nd the solving probabilitydistribution. If the fritional and the random fores are zero, the Langevin Equationredues to Newton's equation of motion, whih is the mathematial simple desriptionof moleular dynamis (MD). All fores a�eting every moleule in a alulated andthis results in the omputational ost of MD simulation to inrease linearly with thenumber of interating atoms. MD's are despite of being most aurate not feasiblefor whole ell simulations. So far it was only used for small numbers of partiles andlittle volumes [Baynes and Trout, 2004, Friedel and Shea, 2004℄.While the FPE is a statisti approah to alulate the hange of the probabilitydensity over time, the Langevin Equation on the other hand was originally desribingthe temporal hange of the veloity of partiles due to a stohasti fore. 23



2 State of the ArtBrownian dynamis Another approah are Brownian dynamis whih are realizedin the tool MCell [Stiles and al., 1998℄. This is a stohasti approah where sin-gle moleules are followed. Their movement is aording to the Langevin equation,whih inludes random fores. These random fores re�et the interations betweensubstrates and solvent moleules. With this method rowded environments an besimulated, but it is ausing high omputational e�ort.Cellular Automata Using a di�erent approah, Weimar [1997℄ desribes two lassesof ellular automata for reation di�usion systems. The �rst type realizes di�usion bya random walk of partiles on a lattie (reative lattie gas automata) and the seondone, moving average ellular automata, is based on a loal average. The moleulesare replaed by idealized partiles. These ellular automata evolve on a square lattieon whih partiles propagate in two dimensions, with nearest neighbor interationsonly.Diret Method Nowadays exat stohasti approahes have beome the norm inbiohemial simulations. However, it was not until the 90's of last entury whenresearhers were thinking of modeling moleular movement in the ell. Stundzia andLumsden [1996℄ extended Gillespie's Diret Method (f. Setion 2.4.2) to di�usionby treating the di�usion from one subvolume to an adjaent volume as an additionalreation step. The time step is alulated stohastially by a probability funtion,whih is determined by the intrinsi reation kinetis and di�usion dynamis.Mesosopi Approah In the same year Ander et al. [2004℄ published Smart -Cell,a framework to simulate ellular reation di�usion proesses. It uses a mesosopi re-ation model to simulate di�usion and loalisation of partiles. In ontrast to MCelland Smoldyn [Lipkow et al., 2005℄, SmartCell (f. Setion 2.5 for details) does nottreat di�usion as a random walk, where all moleules are simulated individually. Thealgorithm is very similar to the Next Subvolume Method by Hattne and Elf, whihwas independently developed and published in 2005 [Hattne et al., 2005℄. SmartCellis based also on the idea to separate the volume into subvolume elements. Similarto the approah by Stundzia and Lumbsden they treat the di�usion as an additionalstohasti reation, but using the Next Reation Method by Gibson and Bruk tomodel di�usion as a single transloation of a moleule between adjaent voxels. Likein many other simulators, the partiles do not have a volume here, so exluded vol-ume e�ets annot be modeled. For eah event a probability is alulated and thena timespan τ . The event with the lowest τ is exeuted and the probabilities arerealulated.
24



2.4 Existing MethodsMethod abbr. Spae Sale Stohasti Exludedmoleular dynamis MD Partile Miro - +Brownian dynamis BD Partile Miro + +Smoldyn - Partile Miro + -ellular automata CA Disrete Miro + +Spatial Gillespie - Disrete Meso + -partial di�erential equations PDE Mesh Maro - -Gillespie - - Meso + -ordinary di�erential equations ODE - Maro - -Table 2.1: Summary of existing approahes to model di�usion proesses (freely adapted from[Takahashi et al., 2005℄)MD: moleular dynamis; BD: Brownian dynamis; CA: Cellular automata;PDE: partial di�erential equations; ODE: ordinary di�erential equationsNext Subvolume Method Hattne and Elf introdued the Next Subvolume Methodone year after SmartCell [Hattne et al., 2005℄. The algorithm is based on the reationdi�usion master equation (RDME,[Baras and Mansour, 1996℄). The spae is dividedinto subvolumes, whih must be hosen small enough to ensure homogeneity and theRDME is applied to every voxel. The Di�usion is now a �rst order elementary rea-tion between the subvolumes. The RDME is omplex and with analytial solutionshard to ome by. Thats why so far only 1D systems where modeled [Baras and Man-sour, 1996, Góreki et al., 1999℄. The Next Subvolume Method is the implementationof the RDME to more dimensions. With an inreasing number of voxels GillespiesDiret Method is not feasible any more, beause the omputational e�ort rises linearwith the amount of voxels. The Next Subvolume Method is using the Diret Methodby Gillespie for sampling the time for a next reation or di�usion event and the NextReation Method by Gibson and Bruk to deide in whih subvolume the next eventours. They laim the omputational time of the algorithm inreases only logarith-mially, than linear with the amount of subvolumes.The approahes by Stundzia and Lumbsden, by Ander et al. and by Hattne andElf are three similar di�usion algorithms, that is why they are also alled as �spatialGillespie� approahes [Takahashi et al., 2005℄.2.4.2 Reation AlgorithmsStohasti Simulation Algorithm - SSA Gillespie [1976℄ presented a stohastireation algorithm based on Newtonian physis and thermodynamis. Furthermorehe desribed two possible implementations of his algorithm, namely the Diret Methodand the First Reation Method. His model assumes a system of N hemial speies25



2 State of the Art(S1, ..., SN ) that interat through M reation mehanisms (or hannels) (R1, ..., RM )in a spei�ed Volume V at a onstant temperature T . The Grand Probability Funtion
P ( ~X; t) gives the probability that there will be present in V at time t, Xi of speies
Si, where ~X ≡ (X1, X2, ..., XN ) is a vetor of moleular speies populations [Turneret al., 2004℄. The knowledge of this funtion provides a omplete understanding ofthe probability distribution of all possible states at all times.If the system is well stirred or the amount of reative ollisions is muh smallerthan the number of nonreative ollisions, eah reation Rµ an be desribed bythe propensity funtion whih is also known as the Fundamental Hypothesis of thestohasti formulation of hemial kinetis:

aµ dt ≡ hµ cµ dt. (2.3)The propensity funtion in Equation (2.3) gives the probability aµ of reation µourring in the time interval [t, t + dt]. µ is an index (1 ≤ µ ≤ M). hµ denotes thenumber of possible ombinations of reatant moleules involved in reation µ. TheTable 2.2 shows some examples.reation cµ = hµmonomoleular reation Si → P kµ |Si|bimoleular reation Si + Sj → P kµ

V
|Si| · |Sj|bimoleular reation 2Si → P 2 kµ

V
1
2
|Si| · (|Sj| − 1) =

(
|Si|
2

)Table 2.2: Conversion from kineti to stohasti reation onstants
kµ is the marosopi veloity onstant of a hemial reation. To measure it, oneonly needs marosopi properties of the hemial system, mainly the onentrationsof the partiipating speies. However, cµ is the mesosopi veloity onstant, whihis di�erent from kµ, but an be alulated from kµ by knowing the volume of theobserved system and the kind of hemial reation taking plae (f. Table 2.2).If one onsiders an in�nitesimal small time interval (t, t + dt), in whih either oneor zero reations our, there are only M + 1 possible ways to lead to the state ~X attime t + dt. So one an formulate:

P ( ~X, t + dt) = P ( ~X, t) ·P (no state hange over dt)
+

M∑

µ=1

P ( ~X − ~vµ, t) ·P (state hange to ~X over dt),where ~µ is a stoihiometri vetor de�ning the result of reation µ on the state vetor
~X( ~X → ~X + ~vµafter reation µ) and further26



2.4 Existing Methods
P (no state hange over dt) = 1−

M∑

µ=1

aµ( ~X) dt and
P (state hange to ~X over dt) =

M∑

µ=1

P ( ~X − ~vµ, t)aµ( ~X − ~vµ) dt.By using
lim
dt→0

P ( ~X, t + dt)− P ( ~X, t)

dt
=

∂P ( ~X, t)

∂t
,one obtains the Chemial Master Equation that desribes the stohasti dynamis ofthe system:

∂P ( ~X, t)

∂t
=

M∑

µ=1

aµ( ~X − ~vµ) P ( ~X − ~µµ, t) − aµ( ~X)P ( ~X, t).To simulate now a system of hemial reations, one has to be able to give infor-mation about two things:� when is the next reation going to our� whih reation will it beGillespie [1977℄ introdued a probability distribution to desribe the system gov-erned by the master equation. P (τ, µ)dt is the probability for the next reation toour in the interval [t+τ ,t+τ+dτ ℄ and is of type µ. P (τ, µ)dt is a two dimensionaldensity funtion with the ontinuous variable τ(0 ≤ τ <∞), whih gives informationof the point in time, and the disrete variable µ (µ = 1, ...,M), whih states whihreation is ourring. The probability for the next reation an now be formulatedas following
P (τ, µ)dτ = P0(τ)hµcµdτ,where P0(τ) is the probability for no reation within [t,t+τ ℄. This is multiplied by

hµcµdτ , the probability that in the upoming interval [t+τ ,t+τ+dτ ℄ the reation
µ takes plae. To alulate P0(τ) one an divide the interval [t,t+τ ℄ in K partialintervals ǫ = τ

K
of equal size. The probability for no reation in the �rst interval[t,t+ǫ℄ is now

M∏
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1− hµcµǫ = 1−
M∑

µ=1

hµcµǫ. 27



2 State of the Art1. initialisation t=0, set initial partile numbers2. alulate ai = hicifor all i =1,...,M3. τi generate for all reations the orresponding τi a-ording to an exponential distribution using theFirst Reation Method → τi = 1
ai

ln 1
r4. reation exeute the reation with the lowest τi and adjustpartile numbers5. time step t=t+τi6. loop go to step 2Table 2.3: Proedure of the SSA using the First Reation MethodThis is also true for all partial intervals K:
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.If one now forms the limit for K → ∞, one obtains:
P0(τ) = e−

∑M

µ=1
hµcµτ .This leads to the wanted density funtion P(τ, µ)

P (τ, µ) = hµcµe
−
∑M

µ=1
hµcµτ .So Pν(τ) = e−aντaνdτ (with aν = hνcν) is the probability that now the reation ν ishappening in the interval [t+ τ, t+ τ +dτ ℄ and before that nothing. The reation Rνfor whih the probability Pν(τ) is the highest, is the next to our. The First ReationMethod is now alulating the next ourring reation, updating the partiles numbersand starting with the next iteration. The time τi of the single reations are alulatedby the inverse funtion of Pν(τ):

P−1
ν (τ) = τν =

1

aν

ln
1

r
,where r is a uniformly distributed random number.This is resulting in a linear time omplexity.The First Reation Method works �ne, but it is very time onsuming. All ai-valuesare reomputed in step two, although the value has not hanged for some reations.The First Reation Method and the Diret Method di�er in the way how the randompair (τ, µ) is alulated from the joint probability density funtion P (τ, µ). Shwehm[2001℄ desribes the di�erene as following:For eah reation in the Diret Method a probability is omputed by multiplyingthe rate onstant of eah reation with the onentration of its substrates. Then a28



2.4 Existing Methodsdeterministi modeling stohasti modelingrates probabilitiesonentrations partile numbersOne set of starting values → onesolution One set of starting values → dif-ferent solutions
⊕ fast more realisti: pays respet tosmall volumes, heterogeneity, in-stabilitiesgood for metaboli proesses low partile numbers → �utua-tionsgood for signal-transdution andgene expression
⊖ demands high partile numbers omputationally expensiveTable 2.4: Charateristis of deterministi and stohasti modelsrandom number is used to perform a roulette-wheel seletion aording to the relativeprobabilities of all reations, and a seond random number determines the exeutiontime used for this reation. The Diret Method used two random numbers for eahreation seletion.The First Reation Method omputes, as desribed above, for eah reation (usingone random number for eah reation) a tentative exeution time. Then the reationwith the smallest exeution time is seleted. This method uses one random numberfor eah reation and iteration. This leads to the following onlusion: The First Re-ation Method requires as many reation numbers as there are reations, the DiretMethod on the other hand demands only two numbers. If the number of reationsexeeds two, the Diret Method is more e�ient. The First Reation Method has theadvantage of being easier to implement.In 2000 Gibson & Bruk have introdued an improvement, the Next ReationMethod [Gibson and Bruk, 2000℄. They introdued a dependeny graph, to apturethe relations between single reations and made an update only for those variableswhih have really hanged. To ahieve this, only used random numbers are newlygenerated the others are reused by transferring the ai-values to the hanged timesale. By this the omplexity is redued from linear to logarithmi. However, Caoet al. [2004a℄ have just reently published a omparison between the Diret Methodand the Next Reation Method and laimed the Diret Method to be for all but a veryspeialized lass of problems muh more e�ient than the Next Reation Method.
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2 State of the ArtApproximative Algorithms and Hybrid Methods At this point it has to be lar-i�ed that there is no strit nomenlature referring to approximative and hybrid algo-rithms. For this reason I would like to make my own de�nition to simplify the furtherdisussion. Let us de�ne approximative algorithms as the losing gap between sto-hasti and deterministi approahes. An approximative algorithm does not predita single reation stohastially, but several events at one. However, in ontrast todeterminism the results an still di�er if one ompares single experiments, this isdue to the fat, that random numbers are still used. Hybrid methods use now sto-hasti and/or approximative and/or deterministi algorithms together, partitioningthe reations by spei� rules into one of the ategories and alulate the eventsper time. COAST is a hybrid modeling tool using a stohasti, approximative anddeterministi algorithm.
τ -leap method One approximative algorithm is the τ -leap method [Gillespie, 2001,Gillespie and Petzold, 2003℄, whih �ts the regime of intermediate partile numbersquite well. The key idea of this method is to determine time-intervals of length τ (soalled τ -leaps), in whih the number of reations is so small that the propensity fun-tions (reation probabilities) are assumed to be approximately onstant. By doingso, all reation probabilities are formulated in terms of Poisson-distributions, and thelength of these τ -leaps is omputed dependently on an error ontrol parameter. Notethat the assumption of approximative onstant reation probabilities allows for thesuessive omputation of reation numbers in the di�erent reation hannels. It alsofailitates the desription of reations of higher order (e.g. 2 X → P or X + Y → P )as independent probability experiments with idential distributions.Beside of this there are also some negative aspets. In the τ -leap method all reationprobabilities are formulated in terms of Poisson-distributions, whih are binomial-distributions limited by de�nition to in�nitely large partile numbers and in�nitelysmall reation probabilities [Giri, 1974, p. 65℄. Hene, the usage of Poisson-distribu-tions does not �t the desription of reation hannels with small partile numbers.Additionally the usage of Poisson distributions an lead to negative partile num-bers, this led to the development of versions of the τ -leap method based on thebinomial distribution [Tian and Burrage, 2004, Chatterjee et al., 2005℄: the so-alledbinomial leap methods. The number of steps neessary for evaluating Poisson andbinomial-distributions is asymptotially, proportional to the number of partiles (orequivalently: from the expetation). In ontrast the osts for the evaluation of aGaussian-distribution or of the deterministi reation kinetis are onstant, so thelatter models must be advantageous for large partile numbers.Thus, all the algorithms mentioned so far are well adapted to a ertain range ofpartile numbers, but not for the entire range from low to high numbers. Conse-quently, algorithms have been developed, whih use di�erent levels of modeling for30



2.4 Existing Methodsthe di�erent partile numbers. For example there exist some algorithms, that arebased on �xed partitions of the system into slow and fast reation hannels. Withthis ombination, slow reations are treated by the First Reation Method, and fastreations are treated either by: deterministi reation kinetis [Haseltine, 2002, Kiehlet al., 2004, Takahashi et al., 2004℄; by Langevin equations [Haseltine, 2002℄; or byrandom variables distributed aording to the probability density funtions at quasistationary state [Rao and Arkin, 2003℄. However, these partitioning methods requirediret intervention of the modeler to partition the system into reation sets overingdi�erent time and onentration ranges. Thus these algorithms annot be appropri-ate for the simulation of systems with strongly �utuating partile numbers (e.g. theOregonator whih will be disussed in Setion 4.1.2). Furthermore, �xed partition-ing is not suitable for systems with heterogeneously distributed substrates, whih isespeially problemati if applied to reation-di�usion models.Maximum Reation Time Method Another modeling approah is the MaximumReation Time Method [Puhalka and Kierzek, 2004℄. It desribes slow reationsby the Next Reation Method of Gibson and Bruk, and fast reations by the τ -leap method. The partitioning into slow and fast reation hannels is performedautomatially in eah time step by riteria depending on two error ontrol parameters.A third error ontrol parameter is the value of the maximum time step.The automati partitioning makes the Maximum Reation Time Method approahvery interesting. However, there remain some problems. For example, it is verydi�ult to de�ne appropriate values for the error ontrol parameters. To show this,let us onsider the in�uene of the error ontrol parameter r, whih de�nes a thresholdvalue for the treatment by the τ -leap method. In a system with M reation hannels,the τ -leap method is only applied to a reation hannel µ if
r < fµ := aµ

∑M

ν:=1
aν

, (µ ∈ {1, ..,M}) (2.4)where aµ is the propensity funtion of the reation hannel µ. Hene, for onstantvalue aµ, fµ gets smaller if the number of reation hannels gets larger (The mostsimple ase: If all aν have the same value, then fµ = 1/M). Thus, for onstant aµand r, it is more likely that the reation hannel Rµ is treated by the τ -leap methodif it is embedded in a small system than in a large system, whih does not make toomuh sense. Thus, r depends on the number M of reation hannels.Furthermore, let us onsider the system A+B ⇋ C +D and let us assume that allpartile numbers #A, #B, #C , and #D are proportional to a saling fator z. Thesystem an be split into the two single reations A+B → C +D and C +D → A+Bwith orresponding values f1 := a1

a1+a2
and f2 := a2

a1+a2
. Consequently, the reationrates a1 := k1 #A #B and a2 := k2 #C #D, are proportional to z2, but f1 := a1

a1+a2and f2 := a2

a1+a2
(f. Equation (2.4)) are independent of z. Hene, it an happen31



2 State of the Artthat f1 < r for all z so that A + B → C + D is always treated by the next rea-tion method. However, for large z, the propensity a1 an reah arbitrarily large values.These two simple examples show that the error ontrol parameter r depends on atleast two quantities: the number of reation hannels, and the number of partiles,where the latter an �utuate strongly during a simulation. Analogous onsiderationsare appliable for other error ontrol parameters. Thus, the searh for optimal valuesof error ontrol parameters is quite a di�ult task whih should, in my opinion, notbe left to the user.A further problem may be that all `slow' reation hannels are only evaluated bythe Next Reation Method, whih evaluates eah reation hannel for time intervalsorresponding to the mean time between two reations. However, it an happen thatthe mean time between two reations in a `slow' reation hannel is of the same orderof magnitude as the mean time between two reations of a fast reation hannel. Inthis ase, the fastest slow reation ditates the size of the time steps; so that, onaverage, only a few fast reations our in eah time step. Hene, the gain obtainedfrom the τ -leap method is minimized.
probability-weighted Dynami Monte Carlo method Another approximative ap-proah is the probability-weighted Dynami Monte Carlo method (PW-DMC) ,pub-lished by Resat et al. [2001℄. In this method, reations with large probabilities areallowed to our in �bundles�, whih means that a single Monte Carlo step orre-sponds not only to a single reation, but to several reations in the same hannel.As a onsequene, the reations follow a ompletely di�erent statistis in eah timestep than in the original model. Suppose, for example, that there are two reationhannels with similar reation probabilities. Then, eah PW-DMC time step � maybegiven by hundreds or thousands of reations in one hannel, but no reation in theother � represents a very unlike event in the real reation system. As a onsequene,PW-DMC partiularly leads to larger �utuations than an exat algorithm. Resatet al. [2001℄ argue that this statistial error signi�antly anels out if many simu-lation trajetories are averaged, whih is true for stable dynamial systems, but notneessarily true for unstable dynamial systems. Furthermore, it does not make muhsense to redue the desription of stohasti model to the mean of many trajetories.Suh an average an more e�iently be omputed by deterministi reation kinetis.Instead of this, one has to try to also re�et the �utuations orretly.
32
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2 State of the Art2.5 Existing ImplementationsThe inreasing availability of data and the omplexity of ellular systems have mo-tivated several programmers to provide integrative support to biology, after all: theoverall goal of omputational ell biology is to enable ell biologists to build andexerise preditive models of ellular proesses. There are several tools for the sim-ulation of dynami biohemial systems available using the desribed reation anddi�usion algorithms. They are mainly freeware and an be downloaded from theauthors websides. The Table 2.6 gives an overview on some of the desribed tools.The list is not exhaustive. It shows some important produts sorted by the year ofits �rst release. Most of the named simulators are still under maintenane, so theremight have been some improvements, that are not inluded in this thesis. The foushere will be the implementation of algorithms on reation and di�usion. Furtherdetails on the software an be obtained diretly from the distributors.The simulators an be in general lassi�ed by two harateristis: if they anmodel spatial aspets and by the main strategy to simulate (stohasti or determin-isti). GEPASI is for example a non-spatial, ODE based tool for omplex biohem-ial reation pathways and therefore deterministi simulator; spatial information isnot inluded (f. Appendix C.1). Non-spatial deterministi simulators are typiallyODE-solvers applied to mass ation equations. The simulated spae is just one entityand stohasti e�ets are not simulated. This of ourse makes GEPASI fast but setsits limitations.Like GEPASI NEURON is also a deterministi simulator and designed to simulateeletrophysiologial behavior of single neurons using ODEs (f. Appendix C.1).Using ODE-solver is not without any problems. If systems inludes both very fastand very slow dynamis, that is, some reations are muh faster than the others, thesystem is alled sti� [Haavisto, 2004℄. Sti� systems are hard to simulate sine thefast dynamis require for short step size and the slow dynamis inrease the totalsimulation time interval. Using a small stepsize, the simulation of the whole proessbeomes very slow. Consequently, some numerial algorithms are developed espe-ially for the simulation of this kind of systems.An example representing the fration of stohasti spatial simulators is MCell (f.Appendix C.1). The authors desribe it as a �general Monte Carlo simulator of el-lular physiology�. MCell aptures stohasti �utuations seen with small numbers ofpartiles and models di�usion by simulating Brownian random walk.An exeptional simulator is StohSim (f. Appendix C.1). It is using a very ownreation algorithm. This stohasti simulator was developed by Carl Firth (formerlyknown as Morton-Firth) bak in 1998 as a biohemial simulator - simulating omplex34



2.5 Existing Implementations

Figure 2.2: Charaterisation of existing ellular simulators; red: algorithms, blak: imple-mentationsstohasti signaling pathways in baterial hemotaxis. Single moleules are treated assingle objets or intraellular automata. StohSim is apable of handling multistatemoleules. For small numbers of reations and single state moleules it is slower thanSSA, but in other ases it is muh faster and more aurate. Gillespie's algorithmannot identify moleules as individual elements, their states, positions and veloitieswithin the reation volume annot be followed over time and multistate moleulesannot be represented. At eah time step, two moleules are piked and a randomnumber generator is used to deide, if a reation ours or not using a lookup ta-ble of probabilities of all possible reations. Sine version 1.2 StohSim an modelin two dimensions with squares forming the tessellation. Sine v1.4 also trianglesand hexagons an be used but there are no representations of ellular ompartments.Speed gained by look up tables for reations.Cellware is a relatively new tool �rst released in 2004. It uses several reation algo-rithms. One own development is StohODE, whih is solving ODE's plus an externalnoise term; therefore StohODE is a solver for SDE's [Dhar et al., 2004℄. Others usedare NRM, SSA, tau-leap and several ODE-solver. Di�usion is not modeled, althoughsimple ompartments are represented. Cellware an only use one algorithm at a time.The muh older E-Cell (�rst appearane in 1996) is using a hybrid approah. Parts35



2 State of the Artof the reations are modeled using Gillespie's SSA while others use ODE's. Speedand auray are ombined to model the stohasti behavior of -for example- geneexpression. Like Cellware E-Cell is not able to model di�usion.Some simulators espeially the newer ones model di�usion by either random walkor partial di�erential equations and paying respet to spatial aspet of the ell. Thishas been enouraged by onfoal and two-photon exited �uoresene mirosopy,that permit investigators to study the struture and dynamis of living ells withsubmirometer threedimensional spatial resolution and with time resolutions as fastas milliseonds [Slephenko et al., 2002℄.With Virtual Cell (VCell) Sha� Sha� et al. [1997℄ introdued a simulation tool,that uses the �nite element method (FE) to solve reation di�usion PDE's if a spa-tial resolution is demanded; otherwise ODE's are taken (f. Appendix C.1). In theFE-approah the volume is divided in subvolumes and for eah volume one assumeswell-mixed onditions. Di�erential equations , whih desribe mass ation kinetisare used to ompute �uxes between and reation rates within eah voxel. The prob-lem is that with realisti ellular struture, the grid has to be very �ne or irregular inshape. In the �rst ase, the �ner the grid, the higher the omputational ost, in thelater the grid itself beomes a omputational problem. The less voxels are taken, theworse the assumption beomes that a voxel represents a homogeneous spae. VirtualCell represents a typial deterministi simulator, whih an pay respet to spatialaspets, but is not able to re�et the in�uene of stohasti events/noise. By down-sizing the �nite subvolumes the e�ets of noise are ampli�ed, beause the moleulenumbers in eah subvolume are getting smaller than when they were taken as whole(Bhalla [2004℄).In September 2004 Andrews and Lipkow introdued Smoldyn [Lipkow et al., 2005℄.The name is derivated from �Smoluhowski dynamis�. This tool is designed to modelhemial reations networks espeially to look at the e�ets of ellular arhitetureand moleular rowding on signal transdution pathways. Eah moleule is treatedas a single point (enters of mass), so there is no volume and no inertia. The mole-ules di�use freely in the test volume. All partiles have a given binding radius. Iftwo moleules get lose enough, so the distane is smaller than the binding radius, areation ours. It has to be emphasized that the binding radius and the sum of themoleule radii are not the same. Beause of the fat that most reations our at aslower rate beause of a reation ativation energy, the sum of the moleular radiiis replaed by a smaller binding radius. For reversible reations Andrews de�ned adebinding radius, whih is totally arti�ial, but helped to prevent two moleules fromimmediately reombine after just being split. Steri interations between partilesthat annot reat, are ignored. The leap length of a partile is derived from Fik'slaw sB =
√

2 D t. A problem is the alulation for bimoleular reations. If two par-36



2.5 Existing Implementationstiles A and B were moving, the question is, if their distane during the last δt hasever been smaller than the reation radius. Beause of the omputational omplex-ity of answering that question for multi partile systems. Andrews et al. simpli�edthe onept by only looking at the �nal positions of all partiles and keking if anydistanes fall below a binding radius. The auray now depends on the setting of δt.Two simulators presented in 2004 are SmartCell and MesoRD (f. Appendix C.1).They are both using the Next Subvolume Method (NSM) by Elf and Ehrenberg [2004℄to model di�usion. SmartCell was developed to simulate di�usion-reation frame-works in a whole ell-ontext [Ander et al., 2004℄. Beause of the fat that thedistribution of entities an be ruial for ertain proesses, SmartCell is using theidea of deviding the modeling spae into subvolumes and was at �rst using the NRMof Gibson and Bruk to model di�usion and reation but reently hanged to the NextSubvolume Method. This makes SmartCell a spatial stohasti simulator. Within thesingle volume elements the partiles are assumed to be equidistributed, so the sto-hasti algorithm an be used. SmartCell does not simulate exluded volume e�etsbeause the simulated partiles have the volume 0. MesoRD was using the NSM fromthe beginning [Hattne et al., 2005℄. The NSM sales logarithmially with the numberof subvolumes, the NRM by Gibson and Bruk also, but memory requirements andoperations per seond are higher. Gillespies SSA on the other hand sales linearlyand is therefore muh slower.What to expet In the last two subsetion I have presented several approahesto model ellular systems. In Setion 2.4.2 the most important reation algorithmswere desribed. By applying them to a spatial grid as demonstrated by some imple-mentations in Setion 2.5 they an be applied to simulate di�usion as well.The main problems of the existing algorithms are their limitations. No algorithmalone is apable of performing e�ient and aurate simulations. If they are au-rate like the First Reation Method they lak of speed and if they are fast like adeterministi approah they do not reprodue stohasti �utuations anymore. Andnot only that, but τ -leap methods using Poisson distributions are also based on thewrong assumption when applied to small partile numbers. The hybrid methods arethe logial onsequene, but the solutions so far do not over the whole spetrum ofourring partile numbers. Either they only use an exat approah and an approx-imative method like the maximum reation time method or they totally blind outintermediate partile numbers like the hybrid method by Takahashi et al. [2004℄.What is needed is an algorithm overing small, intermediate and high partilenumbers and simulating them as aurate as neessary and as fast as possible. Thelimited partitioning is not the only problem the hybrid methods so far have. Thepartitioning is not very intuitive. In the approahes by Haseltine [2002℄, Kiehl et al.37



2 State of the Art Simulator yearof 1strelease
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2.5 Existing Implementations[2004℄ and Takahashi et al. [2004℄ the user has to divide the reation hannels into thedi�erent modeling lasses. This is very inonvenient and furthermore inappropriateif the system is osillating or at least one speies would have to be relassi�ed as'slow' or 'fast'. A omplex system like the Oregonator (f. Setion 4.1.2) is a goodexample for this.So far only the Maximum Reation Time Method and the probability weighted Dy-nami Monte Carlo method provide an automati shifting between a limited amountof modeling levels (f. Table 3.3). However, they use more than one error parameterand they are not very intuitive.Rao et al. [2002℄ made an important and for this thesis ruial statement regardingthe existing reation algorithms in the journal �Nature� : �Although a few new strate-gies have been proposed to inrease the e�ieny of the Gillespie algorithm (tau-leapand NRM), there are urrently no satisfatory approahes simulating proesses on-urrently aross multiple sales of time, spae and onentration. An alternativeapproah is to separate timesales expliitly and redue the model by singular per-turbations. Yet another approah is to onstrut hybrid models involving ontinuousand disrete representations. Both these approahes require diret intervention bythe modeler - a umbersome and sometimes impossible task. The long-term goal isto develop algorithms that do this both automatially and adaptively.�With COAST I am on�dent to present in the following hapter an algorithmthat ful�lls this demand. This algorithm overs exat stohasti, approximative anddeterministi ases. However, at the same time its auray is only de�ned by onesingle parameter α.
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3 COAST for Reation and Di�usionSo far I have introdued the problem and main goal of this thesis in the �rst hapter.In the last hapter I gave an overview on existing methods to model reation anddi�usion and their advantages and disadvantages for modeling ellular proesses. Atthe end I presented some existing simulators in this sienti� area.In the following hapter I will introdue the Controllable Approximative Stohastireation-algorithm (COAST). COAST is a hybrid algorithm using three levels ofmodeling and is ontrolled by one single error parameter α. This hapter explainsstep by step the algorithm for reation problems and its appliation to di�usionsenarios.3.1 Conept of COASTGillespie's approah (f. Setion 2.4.2) answers two important questions:� Whih reation will our next?� When is the reation going to our?With COAST, the questions have slightly hanged:� Whih reation will de�ne the next time step?� How long is this time step?COAST uses some ideas of the maximum reation time method - partiularly theautomati partitioning of the reation hannels into lasses with di�erent levels ofmodeling (f. Setion 2.4.2). COAST allows for all reation hannels to performseveral reations within a single time step. Within this given time step, the di�erentreation hannels are evaluated suessively using three di�erent levels of modeling:� an exat stohasti level based on Gillespie's First Reation Method for smallnumbers of partiles,� an approximative stohasti modeling by Gaussian-distributions for intermedi-ate partile numbers,� and the deterministi reation kinetis for large numbers of partiles.40



3.2 Derivation of the FundamentalsTherefore, the partitioning into three levels of modeling is done automatially inevery time step.In ontrary to the First Reation Method, the stohasti method used in COASTallows for more than one reation to take plae within a given time step.As previously mentioned, the subdivision of the reation hannels into the threedi�erent modeling levels also depends on a single error ontrol parameter α. Thisontrol parameter α is hosen so that the error of COAST is always smaller than
(α · 100) % of the value of an exat algorithm. In Setion 3.10 I will give some �rtherinformation on the di�erent errors that are estimated by α. Furthermore, in pratie,I show that the error in simulations is usually muh smaller than the upper boundgiven by this parameter. So, an α-value of 0.05 would mean that one allows an errorof 5% in all alulations.Thus, the algorithm an be ontrolled by the hoie of α ∈ [0, 1]. This makesit easy to �nd an optimal trade o� between auray and performane for a givensimulation system.In the next setion I present the mathematial bakground supporting COAST.Setion 3.3 desribes the single steps of the COAST-algorithm.3.2 Derivation of the FundamentalsIn ontrast to other existing hybrid algorithms, α o�ers a preise method to deter-mine when to swith from one modeling level to another. The usual way to applythe First Reation Method in order to alulate whih is the next reation and whenit is going to our is by evaluating binomial distributions. This is omputationallyexpensive for more than one ourring reation sine several random numbers haveto be hosen. By using Gaussian distributions one an ompute random numberswith less omputational e�ort. It is a well known property of binomial distributionsto onverge toward a Gaussian distribution if the size of the set inreases.For the algorithm, two essential problems must be solved: Firstly, one has to deter-mine time spans in whih the partile numbers and, thus, the reation probabilitiesare nearly onstant. Seondly, one needs - at least for intermediate and large par-tile numbers - methods whih allow to ompute the number of reations e�ientlywithout too large errors.3.2.1 MethodsIn this paragraph I will derive the neessary transition riteria for the three appliedregimes of COAST. The riteria result in two requirements formulated in Equation41



3 COAST for Reation and Di�usion(3.17) and Equation (3.18) (and Equations (3.19) and (3.20) respetively).Exat stohasti model: If the partile numbers are low the reations are alu-lated by a modi�ed First Reation Method, where we allow more than one reationuntil the reation probabilities hange by more than α · 100 %. This �rst regime isalled Σ.Approximative stohasti model: Sine the reation probabilities (propensities)are nearly onstant, the number of reations during suh a time step an approxi-matively be desribed by binomial distributions and, thus, for su�iently large par-tile numbers by disrete Gaussian-distributions. This de�nes the seond regime Γ.A ritial question is de�ning the point of transition between Σ (nearly binomial-distributed) and Γ.I will now explain when it is appropriate to swith from a binomial distribution toa Gaussian distribution with an error of α.Let PB(k; N, p) be the probability for k events given by a binomial distributionwith parameters N and p

PB(k; N, p) =

(

N
k

)

pk (1− p)N−k . (3.1)The expetation is E := N · p and the variane is V := N · p · (1− p). In terms of areation system, PB(k; N, p) would be the probability for k reations ourring withoriginally N partiles in the system and the probability p for a single reation toour.Further, let X be a standard normal variable and Z be a probability variable
Z := Round (√V X + E

) (3.2)with the Round-proedureRound ( x ) :=

{
[x ] + 1 , if x− [x ] ≥ 1/2 ,

[x ] , if x− [x ] < 1/2 .
([x ] := max{n ∈ Z, n ≤ x }) (3.3)Let PG(k,N) be the probability of a �disrete Gaussian distribution� for Z = k eventswith the same expetation E and variane V .Equation (3.2) implies that the probability for Z = k is

PG(k,N) = 1√
2 π

∫ k−E+1/2√
V

k−E−1/2√
V

e−x2/2 dx , (3.4)so that it must be shown that PB(k; N, p) and PG(k,N) are approximatively iden-tial for large N , where, for a �xed value of the error ontrol parameter α, PG(k,N)is a valid approximation for PB(k; N, p) for all N > N0(α) ∈ N if the supremumnorm42



3.2 Derivation of the Fundamentals
sup{|PB(k; N, p)− PG(k,N)|; 0 ≤ k ≤ N

}

< α for all N ≥ N0(α) . (3.5)This is a relatively simple approximation, other approahes like the DeMoivre Laplaelimit theorem [Feller, 1970, 182pp℄ will possibly give better approximations with apositive impat on the algorithms performane.The aim of this setion is the derivation of an appropriate value N0(α). To thisaim, we will �rstly prove three Lemmas. The value N0(α) itself is the ontent of thetheorem at the end of the setion.Lemma 1 : If |k − E| >
√

V
α
, then |PB(k; N, p) − PG(k,N)| < α is ful�lled for all

k with |k − E| >
√

V
α
.Proof: In aordane with Thebyhe�'s inequality [deFinetti, 1974, p.172f.℄

PB

(

|Y − E| >
√

V
α
, N

)

< α , PG

(

|Z − E| >
√

V
α
, N

)

< α . (3.6)Sine all PB > 0 and PG > 0, |PB(k; N, p) − PG(k,N)| < α is, thus, always ful�lledfor all k with |k − E| >
√

V
α
. �In what follows, we will determine NB(α) and NG(α), so that for all |k − E| <

√
V
α

DB(k,N) := |PB(k; N, p)− π(k,N) | < α

2
, ∀N ≥ NB(α) , (3.7)

DG(k,N) := |PG(k,N)− π(k,N) | < α

2
, ∀N ≥ NG(α) , (3.8)where

π(k,N) :=
exp

(

− (k−N p)2

2 N p (1−p)

)

√

2 π N p (1− p)Criterion (3.5) is then ful�lled for all N > N0(α) := max{NB(α), NG(α)}.Lemma 2 : Let |k − E| <
√

V
α
. Then DB(k,N) < α

2
for all N > NB(α) with

NB(α) :=
1

3 α p (1− p)
.Proof: We replae the binomial oe�ient in Equation (3.1) by the extension toSterling's formula of Buhner [1951℄ . Therefore we de�ne a funtion ζ(N, k) in thefollowing way: 43



3 COAST for Reation and Di�usion
ζ(N, k) = ln





(
N
k

)

Q(N, k)



 ⇒
(

N

k

)

= eζ(N,k) Q(N, k) (3.9)where
Q(N, k) =

√

N

2 π k (N − k)

(
N

k

)k ( N

n− k

)N−k

. (3.10)Notie that k will be replaed by κ ·N .This leads to
PB(k;N, p) = eζ(N,k)

√

N

2πk(N − k)

(
N

Nκ

)κn(
N

N(1− κ)

)N(1−κ)

pκ N (1− p)N(1−κ)

=
eζ(N,k)+ 1

2 ln 1
κ(1−κ)

+(κN) ln 1
κ +N(1−κ) ln 1

1−κ +(κN) ln p+N(1−κ) ln 1−p

√
2πN

=
eζ(N,k)− 1

2 ln
κ(1−κ) p(1−p)

p(1−p)
−κN(ln κ−ln p)−N(1−κ)(ln(1−κ)−ln(1−p))

√
2πN

=
eζ(N,k)− 1

2 ln
κ(1−κ)
p(1−p)

+ln (p(1−p)−
1
2 )−κN ln κ

p −N(1−κ) ln 1−κ
1−p

√
2πN

PB(k;N, p) =
exp

(

ζ(N, k)− 1
2 ln(κ (1−κ)

p (1−p) )−N (κ ln(κ
p
) + (1− κ) ln(1−κ

1−p
))
)

√

2π N p (1− p)
(3.11)To ontinue we perform a Taylor-expansion of the exponent in Equation (3.11). κlater on is replaed by k

N
. Furthermore we neglet all terms of the order N−1, whihhas a onsequene the disappearane of the ζ-funtion. For the single parts of theexponent one obtains the following derivations:

f(x) = −1

2
ln

κ(1− κ)

p(1− p)

f ′(x) =
−1 + 2κ

2κ(1− κ)

f ′′(x) =
2κ2 − 2κ + 1

2(κ− κ2)2

f ′′′(x) =
3κ− 3κ2 + 2κ3 − 1

(κ− κ2)3
(3.12)44



3.2 Derivation of the Fundamentals
f(x) = −n

(

κ ln
κ

p
+ (1− κ) ln

1− κ

1− p

)

f ′(x) = n

(

− ln
κ

p
+ ln

1− κ

1− p

)

f ′′(x) =
−n

κ(1− κ)

f ′′′(x) =
n(1− 2κ)

κ2(1− κ)2
(3.13)Sine (κ− p) is of the order N−1/2 , a Taylor-expansion of the exponent in Equation(3.11) results in:

PB(k; N, p) ≈
exp

(
−1+2p
2p(1−p)

(κ− p) + 1
2

−N
p(1−p)

(κ− p)2 + 1
6

N(1−2p)
p2(1−p)2

(κ− p)3
)

√
2 π V

≈
exp

(
−1+2p
2p(1−p)

( k
N
− p) + 1

2
−N

p(1−p)
( k

N
− p)2 + 1

6
N(1−2p)
p2(1−p)2

( k
N
− p)3

)

√
2 π V

≈
exp

(

− 1−2p
2Np(1−p)

(k −Np)− 1
2

N
pN2(1−p)

(k −Np)2 + 1
6

N(1−2p)
N3p2(1−p)2

(k −Np)3
)

√
2 π V

≈
exp

(

− (k−N p)2

2 V
+ 1−2 p

6 V 2 (k −N p)3 − 1−2 p
2 V

(k −N p)
)

√
2 π V

(3.14)By using 1−e−x ≈ x (e−x ≈ 1−x) for small x , Equation (3.14) an be reformulatedto:
PB(k; N, p) ≈ g(k) :=

e−
(k−Np)2

2V√
2πV

(

1 +
1− 2p

6V 2
(k −Np)3 − 1− 2p

2V
(k −Np)

)

.The upper bound of DB(k,N) :≈ |g(k) − π(k,N)| in the relevant interval [E −
√

V
α
, E +

√
V
α
] is given by a loal maximum (see Figure 3.1). Now we set x = k−Np√

Vto simplify alulations. This results in
DB(x) ≈ e−

x2

2√
2πV

(

1− 2p

6

x3

V
− 1− 2p

2

x√
V

)and the �rst deviation
D′

B(x) ≈ e−
x2

2 (1− 2p)

2
√

2πV

(

−x4

3
+ 2x2 − 1

)

. 45



3 COAST for Reation and Di�usion

Figure 3.1: The graph of the funtion f(x) := |PB(x; N, p)−π(x, N)| for p = α = 0.02 and
V = 50 (⇒ N = 2551), where for PB the approximative expression (3.14) isused. As implied by (3.6) , the interval relevant for the estimation of DB(x, N)is given by [E −

√
V
α , E +

√
V
α ] = [1.02, 101.02].This results in x0 ≈ −

√

3−
√

6. Hene, one an estimatemax{DB(k,N)} ≈ DB(−
√

3−
√

6, N)

≈ (1− 2p)
√

3−
√

6
√

6 e
−3+

√
6

2√
2πV 6

<
1

6V
,so that DB(k,N) < α

2
(f. Equation (3.7)) is ful�lled for

N >
1

3 p (1− p) α
. �

Lemma 3 : Let |k − E| <
√

V
α
. Then DG(k, n) < α

2
for all

N :=
1

9 α2/3 p (1− p)
.Proof: PG(k,N) (f. Equation (3.4)) an be rewritten by a Taylor-expansion of46



3.2 Derivation of the Fundamentals
f(x) = exp(−x2/2) at x0 = k−E√

V
in the form:

PG(k,N) =
1√
2π

∫ k−E+1/2
√

V

k−E−1/2
√

V

(

f(x0) + f ′(x0) (x− x0) + f ′′(x0)
(x− x0)

2

2

)

dx

=
1√
2π

∫ k−E+1/2
√

V

k−E−1/2
√

V

e−
(k−E)2

2V − 2

(
k − E√

V

)

e−
(k−E)2

2V

(

x− k − E√
V

)

+f ′′(x0) (x− x0)
2 dx

=
1√
2π

∫ k−E+1/2
√

V

k−E−1/2
√

V

e−
(k−E)2

2V − 2

(
k − E√

V

)

e−
(k−E)2

2V x + 2

(

x− (k − E)2

V

)

e−
(k−E)2

2V

+f ′′(x0) (x− x0)
2 dx

= π(k,N) +
1√
8π

∫ k−E+1/2
√

V

k−E−1/2
√

V

f ′′(x0) (x− x0)
2 dx ,By negleting terms of the order O(n−1), one thus obtains for Equation (3.8)

DG(k, n) =

∣
∣
∣
∣
∣
∣

1√
8 π

∫ k−E+1
2√

V

k−E− 1
2√

V

f ′′(x0) (x− x0)
2 dx

∣
∣
∣
∣
∣
∣

≤ max{|f ′′(x0)|}√
8π

∫ x0+ 1

2
√

V

x0− 1

2
√

V

(x− x0)
2 dxnow we use k = x0

√
V + E

≤ max{|f ′′(x0)|}√
8π

∣
∣
∣
∣
∣

x3

3
− x2x0 + xx2

0

∣
∣
∣
∣
∣

x0+ 1

2
√

V

x0− 1

2
√

V

≤ max{|f ′′(x0)|}√
8π

1

12 V 3/2

≤ 1√
8 π 12 V 3/2

. (3.15)Notie that |f ′′(x0)| has three extrema (at x1 = −
√

3, x2 = 0 and x3 =
√

3) andmax{|f ′′(x0)|} is at position x = 0 with |f ′′(0) = 1|. Hene, DG(k,N) < α
2
is ful�lledfor all k if

α

2
>

1√
8π12V

3
2

.Beause V = N p (1− p) we obtain
α

2
>

1√
8π12(N

3
2 p

3
2 (1− p)

3
2 )
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3 COAST for Reation and Di�usionBy solving for N we reeive
N

3
2 >

1√
8π6αp

3
2 (1− p)

3
2

>
1

(288π)1/3 α2/3 p (1− p)
.By approximating the existing quotient the resulting inequality is

N >
1

9 α2/3 p (1− p)
� (3.16)

Theorem 1 : sup{|PB(k; N, p)− PG(k,N)|; 0 ≤ k ≤ N
}

< α for all N > 1
3 α p (1−p)

.Proof: Due to Lemma (1), the estimations an be restrited to |k − E| <
√

V
α
. Onthe other hand, Lemma (2) and Lemma (3) lead to the result, that sup{|PB(k; N, p)−

PG(k,N)|; 0 ≤ k ≤ N
}

< α (f. Equation (3.5)) for all |k − E| <
√

V
α
if

N ≥ N0(α) := max {NB(α), NG(α)} =
1

3 α p (1− p)
. �So we an onlude that the binomial distribution PB(k; N, p) and the Gaussiandistribution PG(k,N) are referred to be the same with respet to the error α for all

N ≥ 1

3 α p (1− p)
. (3.17)Deterministi reation kinetis: Furthermore, one an de�ne the transition pointbetween the approximative and the deterministi regime by applying similar onsider-ations. It is a well know fat that for large partile numbers the statisti �utuationsan be negleted and we reah the regime of determinism [Ethier and Kurtz, 2005℄.In the following text I will onsider three possible ways to alulate the transitionbetween the regimes Γ and ∆. The �rst one introdued is omparably rude, butbased on the well known Tshebyshe�'s inequality [deFinetti, 1974, p.172f.℄. Thealulated riterion (3.18) was used in the simulations of COAST. It is possibleto estimate an earlier point of transition using more aurate approahes. Theseimprovements ould be used to improve the runtime results of COAST. The seondapproah uses the quantiles of the normal distribution and the third approximatesthe Gaussian distribution by another e-funtion.To unify the three approahes one has to standardize the distributions. A randomvariable Y is given by the Gaussian distribution Y ≈ N

(

µ, σ2

N

) where µ = p and48



3.2 Derivation of the Fundamentals
σ2 = p(1− p). Its distribution is transformed to a the standard normal distribution
(x−µ) ·√N

σ
with x := 1

N

∑
yi.Now we demand that the probability for a ertain number of reations being furtheraway from the expeted value than a given distane ǫ is P (|Z| ≥ ǫ) ≤ α.First let us onsider Tshebyshe�'s inequality.

P (|Z| ≥ ǫ) ≤ V

N · ǫ2
.This results in α = V

N · ǫ2 . With this we an give a de�nition for ǫ.
ǫ =

√

V

N ·α =
σ√

α ·NThe seond step is to demand the deviation ǫ to be very small ompared to theexpeted value µ.
σ√

α ·N << µThis inequality has to be quanti�ed to be useful. Beause we only want one singleerror parameter we use α again to simplify the estimation:
σ√

α ·N < α ·µ.Squaring both sides results in
σ2

α ·N < α2 · p2.Using σ2 = p(1− p) we an onlude
(1− p)

α3 · p < NTschebyscheff . (3.18)With Equation (3.18) we have an estimation when to apply the deterministi insteadof the Gaussian distribution due to the fat that the expeted value used is the onegiven by the deterministi dynamis.However, Tshebyshe�'s inequality is relatively oarse and there are better es-timations possible. The seond approah is based on the quantile-funtion. We�rst de�ne an ǫ, so that the probability for a value to be further away than ǫfrom the expeted value is less or equal the error α. Φ(ǫ) is de�ned as the inte-gral Φ(ǫ) = 1√
2π

∫ ǫ
−∞ e−

t2

2 dt. This onludes to
2 (1− Φ(ǫ)) = α. 49



3 COAST for Reation and Di�usionSo we an obtain
1− α

2
= Φ(ǫ).By applying the inverse funtion Φ−1, we reeive the following expression for ǫ

Φ−1
(

1− α

2

)

= ǫ.Again one has to demand ǫ to be muh smaller than the expeted value; i.e. we allowa relative error of α · 100% and therefor ǫ is set as α ·µ. It has to be emphasized thatdue to the standardization one now has to resale ǫ with σ√
N

Φ−1
(

1− α

2

) · σ√
N

< α ·µ.By using the fat µ = p the inequality hanges to
Φ−1

(

1− α

2

) · σ√
N

< α · p.Finally we solve the inequality for N :
Φ−1

(

1− α

2

)2 (1− p)

α2 · p < NQuantiles. (3.19)Using (3.19) is the most aurate way to alulate the point of transition. Howeverhandling the tabulated values for the Φ−1-funtion an be ompliated. Thereforeit might be better to �nd an approximative solution whih is our third approah tothis problem.
P (|Z| ≥ ǫ) = 2 (1− Φ(ǫ))Now we an apply the de�nition for Φ and obtain

= 2 · ∫ ∞

ǫ

1√
2π

e−
x2

2 dx

=
2√
2π

· ∫ ∞

ǫ
e−

x2

2 dx.The fator in front of the integral is smaller than 1. The problem is the integral, itannot be solved analytially. However, we an replae it by another larger integralof whih we know the antiderivative [Wasserman, 2006, p.8℄.
P (|Z| ≥ ǫ) ≤

∫ ∞

ǫ
x e−

x2

2 dx

≤
[

−e−
x2

2

]∞

ǫ

≤ e−
ǫ2

2 .
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3.2 Derivation of the FundamentalsThis results in the following riterion for ǫ, beause the desribed probability issupposed to be α

ǫ =

√

ln
1

α2
.Like in the two other approahes we set ǫ = α µ and undo the standardization, whihleads to

√

ln
1

α2
· σ√

N
< α ·µ.Squaring both sides of the inequality results in

√

ln
1

α2
· σ√

N
< α ·µ.By solving the inequality for N we obtain �nally

ln
(

1

α2

) · 1− p

p α2
< NApproximation. (3.20)Figure 3.2 ompares the three approahes. Using the quantile-funtion or the ap-proximation with the modi�ed e-funtion results in an earlier swith between the Γand ∆-regime, demanding less partiles to be present with a given reation proba-bility. The improvement is depending on the given α-value. For low α-values it utsthe needed partile number by more than 90%.With Equation (3.17) and Equation (3.18), I have de�ned the borders between thethree regimes. Equation (3.17) marks the transition between Σ and Γ, and Equation(3.18) marks the transition between Γ and ∆.Illustration of the �ndings: Let us onsider the derived riteria for α = 0.05(respetively α = 0.01) in more detail. For small reation probabilities p (Note:

p ≤ α), 1 ≈ 1− p. Thus, one obtains from Equation (3.17) and Equation (3.18) thefollowing estimations of the mean number of reations N p:
N p ≈ N p (1− p) ≥ 1

3 α
and N p ≈ N p (1− p) ≥ 1

α3 .Hene, riteria (3.17) is ful�lled if the mean reation number is larger than 7 (for
α = 0.01 : 34). This is also the upper bound for the amount of random numbers perreation hannel neessary in a time-interval, sine for larger reation numbers (onaverage), Equation (3.2) an be used, for whih only one random number is required.Analogously, one an see, that deterministi reation kinetis an be used if the ex-petation of the reation number is larger than 8000 (For α = 0.01 : 106). Then,obviously, no random number is neessary. Of ourse, the atual number of partilesdepends on the reation probability p.
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3 COAST for Reation and Di�usion

Figure 3.2: This �gure demonstrates the three approahes presented to model the transitionbetween the Γ and the ∆-regime give by the three Equations (3.18), (3.19) and(3.20). The probability p was assumed to be always equal to α. The numberof partiles needed is presented with respet to α. The most aurate approahis the one using the quantile-funtions, losely followed by an approximationusing another e-funtion. These two methods allow up to only one 1/15th ofthe original amount of partiles for the algorithm to swith from Γ to ∆.3.2.2 Length of the Time StepsOne of the important properties of the COAST algorithm is the assumption of nearlyonstant reations probabilities, whih is again de�ned by the error parameter α.We have to larify how many reations are allowed to our without a hange ofthe probabilities by more than α. This paragraph will solve this problem. Equation(3.24) de�nes the ritial number of reations per reation hannel. It is possiblewith Equation (3.22) to alulate the timespan in whih these reations are going toour depending on the type of reation.Let us onsider a single reation hannel A+B → P with a stohasti reation on-stant c and partile numbers NA ≤ NB, where P is an unde�ned produt. Aordingto the First Reation Method, l ≤ NA reations have ourred after the time
δt :=

l−1∑

i=0

− ln(ri)

c (NA − i) (NB − i)
,where ri are independent random variables uniformly distributed in [0, 1]. The meantill l reations have ourred is given by52



3.2 Derivation of the Fundamentals
〈δt〉 (l) :=

l−1∑

i=0

(

−1

c (NA − i) (NB − i)

∫ 1

0
ln(x) dx

)

.The integral an be solved to −1 and by fatoring out NA twie in the nominator weobtain
〈δt〉 (l) =

1

c N2
A

l−1∑

i=0

1

(1− i
NA

) (NB

NA
− i

NA
)
.Now i

NA
is replaed by x. The ourring sum an be interpreted as a Riemann sumfor the orresponding integral. With an estimated error of O(N−1

A ) the equationhanges to
〈δt〉 (l) =

1

c NA





∫ l
NA

0

1

(1− x) (NB

NA
− x)

dx +O(N−1
A )



 .Thus, by eliminating terms of the order O(N−2
A ), one obtains [Gradshteyn andRyshik, 1980, p.68 (2.172)℄:

〈δt〉 (l) =







1
c (NB−NA)

ln
(

NB−l
NA−l

NA

NB

)

, if NA 6= NB ,
1

c NA

l
NA−l

, if NA = NB .
(3.21)This result an also be obtained by an deterministi approah. As derived in theAppendix A.5, A(t) the onentration of the speies A in the reation A + B

c→ Pafter a timespan t an be desribed by
A(t) =

(NANB −N2
A) · e−kt(NB−NA)

NB −NA · e−ct(NB−NA)
,where NA and NB mark the starting onentrations of A and B.Beause we are looking for the timespan τ for l expeted reations, we have toalulate l �rst:

l = NA − A(t)

⇒ l = NA −
(NANB −N2

A) · e−cτ(NB−NA)

NB −NA · e−cτ(NB−NA)

⇒ l =
NA NB (1− e−cτ(NB−NA))

NB −NA e−cτ(NB−NA)This an be reformulated to
τ(l) =

1

c(NB −NA)
ln

(

NB − l

NA − l

NA

NB

)

, 53



3 COAST for Reation and Di�usionwhih is the same we have obtained in Equation (3.21). The deterministi and thestohasti way led both to the same result.The deterministi uses usually onentrations for a single substrates, but this isnot an obstale, beause if a onstant volume is used through the simulations allonentrations are equivalent to spei� partile numbers. Furthermore one has tonotify that the onstant used here is the stohasti reation onstant.For all type of reations it is possible to alulate an expetany for the time span
τ until l reations have ourred, either by a stohasti or a deterministi approah.The deterministi way has the advantage of being muh easier to alulate and thesimple relation of time and reations is enough for the purpose of this thesis.In more detail, for �rst and seond order reations the time span τ for l reationsis

τ(l) =







1
c

ln
(

NA

NA−l

)

, for A→ P ,
1

c (NB−NA)
ln
(

NB−l
NA−l

NA

NB

)

, for A + B → P (NA 6= NB) ,
1

c NA

l
NA−l

, for A + B → P (NA = NB) ,
2

cµ NA

l
NA−2 l

, for 2 A→ P ,

(3.22)whih is equivalent to the ourring number of reations
l(τ) =







NA (1− e−c τ ) , for A→ P ,
NB NA (1−e−(NB−NA) c τ )

NB −NA e−(NB−NA) c τ , for A + B → P (NA 6= NB) ,
N2

A c τ

1+ NA c τ
, for A + B → P , (NA = NB) ,

N2
A c τ

2+2 NA c τ
, for 2 A→ P .

(3.23)Analogous results an be derived for higher order funtions.I will now show that all reation probabilities are onsidered onstant up to
α · 100%, if for all reation hannels Rµ with σµ(A) A + σµ(B) B → σµ(P ) P thenumber of reations is smaller than

lµ := min{ α NS

2 ̺(S) σµ(S)
; S ∈ {A,B, P}

} (3.24)where ̺(S) is the number of reation hannels in whih S ours and σµ(S) is thestoihiometri fator of S in the reation hannel µ.I.e., a riterion will be derived for how many reation steps an be allowed withouthanging any reation probability in a relevant fashion. To this aim, let us onsidera small variation ǫ of the partile numbers NA and NB in a (seond order) reation54



3.3 The Reation Algorithmhannel A + B −→ P . In this ase, the expeted number of reations in a timeinterval of length τ is (f. Equation (3.23)):
l(NA, NB) =

NB NA (1− e−(NB−NA) c δt)

NB −NA e−(NB−NA) c δt
. (3.25)This leads in a zeroth order Taylor expansion to (NB > NA)

l(NA, NB) ≈ NB ·NA

NB − NA

. (3.26)We de�ne the reation probabilities (propensities) for NA + ǫ and NB + ǫ are approx-imately the same as for NA and NB if
| l(NA + ǫ,NB + ǫ)− l(NA, NB) | < α l(NA, NB) .By using approximation (3.26), one obtains

|ǫNB + ǫNA | < α NA NB . (3.27)For A→ P and 2 A→ P , one obtains analogously (f. Equation (3.22)):
|ǫ| < α NA and |ǫ| < α NA

2
(3.28)respetively, where for the latter estimation, one has to assume that 1+(NA+ǫ) cτ ≈

1 + NA cτ .Let us assume that substrate S ours in ̺(S) reation hannels. Then, inequalities(3.27) and (3.28) are valid if the number of reations lµ in eah reation hannel Rµwith σµ(A) A + σµ(B) B → σµ(P ) P ful�lls
lµ ≤ min{ α NS

2 ̺(S) σµ(S)
; S ∈ {A,B, P}

}

.In this ase, hemial reations an, in a �rst approximation, be onsidered asindependent, identially distributed events, so that the reation probabilities anbe approximated by binomial- or (for large partile numbers) disrete Gaussian-distributions.3.3 The Reation AlgorithmCOAST follows the sheme in Figure 3.3 and a detailed list of all steps is presentedin Table 3.1. After initialization, the length τ of a time interval is estimated, wherereation probabilities are expeted to be nearly onstant. This is the ase if theexpeted number of reations is smaller than lµ, as de�ned in Equation (3.24). Thisis done in the subroutine �Next evaluation time�. 55



3 COAST for Reation and Di�usion
Figure 3.3: Shemati representation of COAST. The sheme shows the determination ofthe number of reations at a lattie point i in the time interval [t, t + ∆t[.These nearly onstant reation probabilities allow one to onsider higher orderreations as nearly independent proesses. Furthermore, one an also ompute thenumber of reations in the di�erent reation hannels suessively, sine the mutualin�uenes of the reations an be onsidered small. Note that the nearly onstantpartile numbers imply that the exat order of the evaluations of the reation hannelsis not essential for the outome.Aordingly, the number of reations in the di�erent reation hannels during thisinterval of length τ is omputed suessively by appliation of the subroutine �Eval-uation of reation hannels�. Finally, an update of partile numbers is performed,partly in �Evaluation of reation hannels�, partly in �Final update�.This proedure is repeated until time T0 + ∆t = tstop is reahed. For pure reationsystems, T0 +∆t represents the end of the simulation. However, in Setion 5.3, I willdisuss how to extend this reation-algorithm to a reation-di�usion algorithm, wherereations and thermal motions in the same time interval are determined suessively.In this ontext, [T0, T0 +∆t[ represents only a short simulation step. In what follows,I will onsider in more detail the three most important steps in the algorithm: �Nextevaluation time�, �Evaluation of reation hannels� and �Final update�.3.3.1 Next Evaluation Time TInitially, a value for the error parameter α must be hosen; a lower α results ininreasing auray, but at the expense of inreasing omputational ost. Then, theritial number of reations lµ (f. Equation (3.24)) is omputed for eah reationhannel Rµ with an additional simpli�ation:In a time step [T, T + τ [ no partile an reat twie1.Aordingly, the riterion in Equation (3.24) is restrited to the eduts of thereations, simplifying the omputation without leading to unreliable results. This1Note that the probability for a single reation of a partile in a time interval is smaller than α.Hene, the probability for two or more reations of a partile in a time interval is smaller than

α2.56



3.3 The Reation Algorithm

I. Preparation Phase
α set by user
◦ t = 0
◦ alulate cµ out of all kµII. Main loop until T=tstopa) Next evaluation time
◦ alulate λ(S) (max. no. of allowed reating partiles)
◦ alulate lµ (max. no. of allowed reations per hannel)
◦ alulate τµ (time till lµ reations our)
◦ sort hannels by τ (lowest τ �rst)
◦ T = T + τminb) Evaluation of reation hannels
◦ loop over all reation hannels µ

• alulate pµ (reation probabilities)
• divide in Σ, Γ, ∆
• alulate κµ (no. of ourring reations)
• update eduts) Final Update

◦ update produtsTable 3.1: The single steps of the reation algorithmThe proess is split into two phases. During the preparation phase α is setand the kineti onstants are transformed into stohasti reation onstants. Inthe main loop the three routines �Next evaluation time�, �Evaluation of reationhannels� and �Final update� are exeuted until the time stop tstop is reahed.
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3 COAST for Reation and Di�usion

Figure 3.4: Illustration for the di�erent time symbols used in the algorithm.

Figure 3.5: Time-evolution of the partile numbers NA and NC in both systems for COAST-simulations (α = 0.05) and for the deterministi reation kinetis. The left(right) diagram shows the behavior for A+B ⇌ C (A+B ⇌ 2 C). kleft = 0.002
kright = 0.0002. In the beginning, COAST applies the deterministi reationkinetis to A + B → 2 C, but the �rst reation method to the bak reation.assumption an be eliminated by applying Equation (3.24) to both eduts and prod-uts.The most stringent test for this simplifying assumption is the investigation of thetime-evolution of a system with a very fast and a slow reation hannel, so that thefast hannel is treated by the deterministi reation kinetis, and the slow hannelby the First Reation Method. Suh systems are shown in Figure 3.5, where thereation systems A+B ⇌ C and A+B ⇌ 2C are onsidered. The initial onditions

NA = NB = 106, NC = 0 where hosen suh that, in the beginning, A + B → 2Cis treated by the deterministi reation kinetis, but the bak reation by the FirstReation Method. Clearly, the mean value of the COAST-simulations oinide withthe values of the ODE-solutions, so that one annot observe a (relevant) error dueto the assumption �no partile reats twie�.58



3.3 The Reation AlgorithmSubsequently, for eah reation hannel Rµ, the time Told + τµ is determined atwhih lµ reations are expeted (f. Equation (3.22)). The next evaluation time Tnewis given either by the minimum Told + τµ or by T0 + ∆t, where T0 + ∆t is either theend of the whole simulation or, in reation-di�usion models, the end of a time step2.In more detail, the module �Next evaluation time� is omposed of the following threesteps:Step 1: For eah substrate A, ompute the maximal number of partiles per speies,whih is allowed to reat suh that the propensity is not hanging by more than α(derivation in Equation (3.22))
λ(A) := max{1, α NA

2 ̺(A)

}where ̺(A) is the number of reation hannels in whih A ours as a reatant.Step 2: For eah reation hannel Rµ with σµ(A) A+σµ(B) B → σµ(C) C +σµ(D) D,ompute the maximal number of allowed reations
lµ := min { λ(A)

σµ(A)
, λ(B)

σµ(B)

}

. (3.29)and τµ(lµ given by Equation (3.22)).Step 3: Determine
Tnew := min{Told + min{ τµ }, T0 + ∆t} .So Tnew is either the sum of the lowest τ of all hannels and the old T , or the timespantill the end of T0 + ∆t.3.3.2 Evaluation of Reation ChannelsThe suessive evaluation of the reation numbers starts at the reation hannel withminimum τµ and ends at the reation hannel with maximum τµ

3. Aordingly, the�rst step is the ordering of the reation hannels Rµ aording to the τµ's. In theseond step, one determines to whih of the model lasses Σ, Γ and ∆ eah reationhannel belongs, where Σ represents the First Reation Method of Gillespie [1976,1977℄, Γ a Gaussian-distribution (f. Equation (3.2)), and ∆ the deterministi re-ation kinetis. Correspondingly, this lassi�ation is performed by the riteria in2In reation -di�usion models one often omputes reations and thermal motions in the same timestep suessively [Hebert, 1992, Möller and Wagner, 2005℄3Sine the reation probabilities are nearly onstant during a time step, the exat suession ofthe evaluation steps do not have a strong in�uene on the outomes 59



3 COAST for Reation and Di�usionEquation (3.17) and Equation (3.18), where the probabilities pµ are given by the ex-petations in Equations (3.23) of the First Reation Method divided by the (smaller)partile number.Between the evaluation of two reation hannels, a �rst update of the numberof partiles is performed. This �rst update is restrited to a redution of partilenumbers orresponding to the onsumption of eduts. The seond update due to theprodution of partiles in reations will be performed in the �Final update� at theend of eah time step. Note that this splitting of updates is in aordane with theassumption that no partile reats twie in [T, T + τ [.Step 1: If there are m reation hannels Rµ, determine the sequene a(ν1, ..., νm)(νi ∈ {1, ..,m}), so that for all i < j: Rνi
6= Rνj

and τνi
≤ τνj

. (sorting the hannelswith lowets τ �rst)Step 2: For i := 1 to m do:(a) Compute
aνi

:=

{

NA , for A→ ?, 2 A→ ? ,min{NA, NB} , for A + B → ? ,and the reation probabilities pνi
:=

lνi (τ)

aνi
, where lνi

(τ) is given by Equation (3.23).(b) Perform the lassi�ation
Rνi
∈







∆ , if aνi
> 1

α3 pνi (1−pνi )
,

Γ , if 1
α3 pνi (1−pνi )

≥ aνi
> 1

3 α pνi (1−pνi )
,

Σ , if 1
3 α pνi (1−pνi )

≥ aνi
.() Compute the number of reations κνi

in [T, T + τ [ byIf Rνi
∈ Σ:

κνi
:= min


m ∈ N0, t0 −

m∑

j=0

ln(r
(j)
νi

)

Qνi (j)
> T






,where r(j)

νi
are random variables equidistributed in [0, 1] and where

Qνi
(j) :=







cνi
(NA − j) , for A→ C + D,

cνi
(NA − j) (NB − j) for A + B → C + D,

cνi

2
(NA − 2 j) (NA − 2 j − 1) , for 2 A→ C + D .60



3.3 The Reation Algorithm
If Rνi

∈ Γ:
κνi

= min{ NA

σνi (A)
, NB

σνi (B)
,max {0, nνi

}
}with Equation (3.3):

nνi
:= Round(√NA pνi

(1− pνi
) X + NA pνi

)where the normally distributed random variable X an e�iently be omputed by theBox-Muller algorithm [Box and Muller, 1958℄.If Rνi
∈ ∆:

κνi
:= Round (NA pνi

) .(d) Update of eduts: If Rνi
is given by σνi

(A) A + σνi
(B) B → σνi

(C) C + σνi
(D) D,then NA = NA − σνi

(A) κνi
and NB = NB − σνi

(B) κνi
.3.3.3 Final UpdateIn the �nal update, the partile numbers are inreased aording to the number ofreations. Thus, the �nal update an be desribed in the following fashion:Update of produts: For all reation hannels Rµ with σµ(A) A+σµ(B) B → σµ(C) C +

σµ(D) D do: NC := NC + σµ(C) κµ, ND := ND + σµ(D) κµ ,

61



3 COAST for Reation and Di�usion3.4 Extending COAST to Di�usion3.4.1 Problems and ApproahesThe models for the desription of thermi motions of partiles is omposed of twolasses (f. Figure 3.2): The stohasti desription of the trajetories of single parti-les and di�usion models re�ets the time-evolution of the probability distribution ofsuh a partile. Correspondingly, the �rst lass of models is able to re�et stohastie�ets due to small partile numbers, whereas their simulations are omputation-ally very expensive for large partile numbers. On the other hand, di�usion modelsare omputationally very e�ient, but their deterministi time-evolution suppressesstohasti �utuations, so that they are only suitable for large partile numbers.Consequently, both kinds of models are not suitable to represent ellular networks,sine they often ontain substrates with a wide range of possible partile numbers[Goodsell, 1991, Endy and Brent, 2001℄.Algorithm/Model Referene Modeling of kind of modelMoleular dynamis Baynes 2004, single partiles deterministiFriedel 2004Langevin-equation Stiles 1998 single partiles stohastiSmoldyn Lipkow 2005 single partiles stohasti(Spatial) Gillespie Takahashi 2004 single partiles stohastiGibson-Bruk Hattne 2005, single partiles stohastiStundzia 1996Di�usion model (PDE) Evans 1999 distributions deterministiof partilesTable 3.2: An overview of the algorithms for (reation-) di�usion models. Note that mole-ular dynamis (MD) requires a desription of all partiles in a system, whereasall other models allow a onsideration of subsystems.However, the thermal motion of partiles an be interpreted as a kind of �rea-tion�: one onsiders moleules of the substrate with di�erent positions as di�erentsubstrates and, thus, the transitions from one lattie point to another as a reationhannel. Aordingly, reation-di�usion algorithms an be onsidered published [Elfet al., 2003, Stundzia and Lumsden, 1996℄ treating not only reations, but also thedi�usive motions by exat stohasti reation-algorithms [Gillespie, 1977, Gibson andBruk, 2000℄. For large partile numbers, these methods lead to high omputationalosts. Consequently, they an only be e�iently applied to systems with small orintermediate partile numbers.62



3.4 Extending COAST to Di�usionsmall intermediate large subdivision
τ -leap Gillespie 1977 Poisson Poisson Poissonbinomial leap Chatterjee 2005 binomial binomial binomialTian 2004hybrid methods Takahashi 2004 NRM NRM deterministi by user, �xedKiehl 2004 NRM NRM deterministi by user, �xedCao 2005 FRM FRM quasi steady state by user, �xedRao 2003Haseltine 2002 FRM FRM Langevin-equation by user, �xedmaximum Puhalka 2004 NRM Poisson Poisson automatitime step in eah stepPW-DMC Resat 2004 Monte Carlo Monte Carlo Monte Carlo automatiwith with with in eah stepsingle reations bundles bundlesCOAST FRM Gauss deterministi automatiin eah stepTable 3.3: Charaterization of the reently published reation-algorithms: FRM denotes theFirst Reation Method or Diret Method of Gillespie Gillespie [1977℄, NRM theNext Reation Method of Gibson and Bruk Gibson and Bruk [2000℄. �bundle�means several reations of the same type.Some reently published reation-algorithms (f. Figure 3.3) try to solve the dilem-ma between the exatness of modeling and omputational osts by using di�erentlevels of modeling for the di�erent ranges of partile numbers. I will now desribehow COAST , as a multi-level algorithm, an be applied to di�usion proesses andby keeping its original funtion extending it to a reation-di�usion-algorithm.

3.4.2 OutlineHere I will disuss the adoption of the COAST to the needs of linear di�usion mod-els. Thereby, linear di�usion model means that the di�usion rates of eah desribedsubstrate is independent from the onentrations of all of these expliitly desribedsubstanes. This is a reasonable approximation if the interations between thesesubstrates are small ompared to the interations with other substrates. Thus, lineardi�usion models may not be suitable for all biologial systems [Agutter et al., 1995℄,but are always appropriate if the onentrations of the expliitly desribed substratesare low enough.On the other hand, linear di�usion models allow the subdivision of the di�usionmodel into (approximatively) independent subunits: the thermal motions of di�erentsubstrates an be treated independently, and the transitions from di�erent lattiepoints an, for small time steps, also be onsidered as approximatively independentevents. Last but not least, the transitions from the same lattie site into di�erent63



3 COAST for Reation and Di�usiondiretions an also be treated independently; provided that one uses appropriatelyonstrained probabilities.This allows to deompose the dynamis into (nearly) independent proesses helpto simplify the algorithm enormously. Additionally, sine linear di�usion modelsorrespond to �rst order reations, they an work with onstant time steps, whihadditionally allows for a simpli�ation of the algorithm.I emphasize here the onept of error ontrol of COAST to linear di�usion models,whih means that the errors due to the disretization of the spatial oordinates areestimated dependently from two error ontrol parameters, namely the parameter αmentioned before and a parameter R orresponding to the spatial resolution of thedi�usion model.In the following setion, the di�usion model and the orresponding random walkused by COAST are introdued. The ontent of Setion 3.6 is the estimation of theerrors due to the neessary disretization of time and spae dependently from errorparameters.3.5 The Disrete Di�usion ModelIn this paragraph I will desribe how to get from the ontinuous di�usion modelto a disrete di�usion model. This approah allows us to approximate the ontin-uous di�usion by a disrete approah and gain with Equation (3.35) an quantita-tive expression for the transition probability between two adjaent volume elements.For the disussion of the di�usion-model on whih COAST is based, namely theSmoluhowski-equation, let us onsider the ase of a one-dimensional motion of asingle substrate A with a frition oe�ient γ and an external fore fA(x).The motion of a partile A in a time span δt is given by the Langevin-equation inthe strong frition limit (i.e. mẍ→ 0):
x(t + δt)− x(t) =

∫ t+δt

t

fA(x(s))
γA

ds +
√

2 DA δtW ,where kB is the Boltzmann's onstant, T is the absolute temperature, and W is anormally distributed random number with density
σ(W ) := 1√

2 π
e−

W2

2 . (3.30)
DA is the di�usion oe�ient of the substrate A and is related to the Boltzmann-onstant kB, the temperature T and the frition oe�ient of substrate A by

DA := kB T
γA

.By Ito-integration [Oksendahl, 1985, p. 20 �.℄ of Equation (3.30), one obtains thedi�usion-equation, whih desribes the time-evolution of the orresponding probabil-ity density funtion ̺(x, t):64



3.5 The Disrete Di�usion Model
∂
∂ t

̺(x, t) = −1
γA

∂
∂ x

( fA(x) ̺(x, t) ) + DA
∂2

∂ x2 ̺(x, t) , (3.31)namely the Smoluhovski-equation.Now let us onsider, the disrete Smoluhovski-equation based on the lattie Λ andopen boundary onditions:
Λ :=

{

(i ∆x , j ∆t ) | − n ≤ i ≤ n ; j ∈ N0

}

,and
̺(−n, t) = ̺(n, t) = 0 ∀t ∈ N0 .we obtain from subtrating or adding respetively the two Taylor-expansions of garound the point b

g(b + ∆b) = g(b) + ∆b g′(b) + ∆b2

2
g′′(b) + ∆b3

6
g′′′(b) +

+∆b4

24
g′′′′(b) +O(∆b5) ,

g(b−∆b) = g(b)−∆b g′(b) + ∆b2

2
g′′(b)− ∆b3

6
g′′′(b)

+∆b4

24
g′′′′(b)−O(∆b5)the approximations

g′(b) = g(b+∆b)−g(b−∆b)
2∆b

+O((∆b)2),

g′′(b) = g(b+∆b)−2 g(b)+g(b−∆b)
(∆b)2

+O((∆b)2). (3.32)For ∂
∂t

̺(x, t) we need a slightly di�erent approah. To keep it a Markov-proess, weapproximate this expression by another Taylor-polynomial around the point t:
̺(t + ∆t) = ̺(t) + ̺′(t) · ((t + ∆t) − t)

̺′(t) =
̺(t + ∆t) − ̺(t)

∆t
. (3.33)Inserting Equation (3.32) and Equation (3.33) into Equation (3.31) and substituting

b by x, leads to: 65



3 COAST for Reation and Di�usion
̺(i, t + ∆t) = ̺(i, t) (1−∆t

(

DA

∆x2
− f(i− 1)

γA 2∆x

)

−∆t

(

DA

∆x2
+

f(i + 1)

γA 2∆x

)

)

+̺(i− 1, t) ∆t

(

DA

∆x2
+

f(i)

γA 2∆x

)

+̺(i + 1, t) ∆t

(

DA

∆x2
− f(i)

γA 2∆x

) (3.34)where the �rst term on the right side desribes the partiles staying at lattie point
i between t and t + 1. The seond term desribes the partiles moving from i− 1 to
i and the third term the partiles moving from i + 1 to i. The fators onneted tothe density funtion ̺ are the transition probabilities. Therefore I de�ne:

q(i + ν|i; ∆t) := ∆t
(

DA

(∆x)2
+ ν fA(i+ν)

2 γA ∆x

) (3.35)as the probability for the transition i→ i + ν to obtain the disrete di�usion-model:
̺(i, t + ∆t) =

(

1− q(i + 1|i; ∆t)− q(i− 1|i; ∆t)
)

̺(i, t)

+ q(i|i + 1; ∆t) ̺(i + 1, t) + q(i|i− 1; ∆t) ̺(i− 1, t) . (3.36)An analogous derivation of the di�usion proess in reversed order an be found instandard stohasti literature (e.g. Feller [1970, 354pp℄).3.6 The Values of the Disretization Parameters
∆x and ∆tIn this setion, appropriate hoies for the disretization parameters ∆x and ∆t arepresented. To this aim, I will �rstly set up four onditions, whih will result inde�nitions for ∆x and ∆t. In doing so, we will always onsider the ase of a singlesubstrate A. At the end of this setion, the derived �ndings will be summarized andthe extension to systems with many substrates will be disussed.3.6.1 First Condition: Approximation of ContinuousDistributionsBy approximation of a ontinuous distribution by a disrete distribution we gain ariterion for ∆x.66



3.6 The Values of the Disretization Parameters ∆x and ∆tIn a di�usion model like the Smoluhowski-equation, the partiles are desribed byontinuous distributions, so that the number of partiles in the interval [x−∆x
2

, x+∆x
2

[is given by the integral over a density funtion ̺

Pcont :=

∫ x+∆x
2

x−∆x
2

̺(y) dy(2nd grade Taylor-polynomial of ̺(y))
=

∫ x+∆x
2

x−∆x
2

̺(x) + ̺′(x) (y − x) + (y−x)2

2 ̺′′(x) +O((∆x)3) dy

= ̺(x)∆x + ̺′(x) 0 + 2(∆x)3

24
̺′′(x)

2 +O((∆x)5)

= ̺(x)∆x + (∆x)3

24 ̺′′(x) +O((∆x)5) . (3.37)On the other hand, the simulations are based on a disrete distribution assumingthat the partiles are homogeneously distributed within a voxel. Thus, the numberof partiles in the interval [x− ∆x
2

, x + ∆x
2

[ is given in a disrete model by
Pdisc ≈ ̺(x) ∆x . (3.38)Aordingly, the ondition |Pcont − Pdisc| < α Pcont an, as a �rst approximation, bewritten as

∣
∣
∣̺(x)∆x + (∆x)3

24 ̺′′(x) − ̺(x)∆x
∣
∣
∣ < α

∣
∣
∣̺(x)∆x + (∆x)3

24 ̺′′(x)
∣
∣
∣withα (∆x)3

24 ̺′′(x) ≈ 0

⇔
∣
∣
∣
(∆x)3

24 ̺′′(x)
∣
∣
∣ < α |̺(x)∆x|

⇔ ∆x <

√

24α min
∣
∣
∣

̺
̺′′

∣
∣
∣. (3.39)For a reformulation of this inequality, an assumption about the exat form of ̺ isneessary. Suh an assumption is naturally problemati sine ̺ usually depends ontime. On the other hand, in most ases ̺ will be nearly a Gaussian distribution -for example at the loal minima of the potential. Hene, we de�ne ̺ as a probabilitydensity funtion of a Gaussian-distribution with standard deviation R

̺(x) := 1√
2 π R

e−
x2

2 R2 , (3.40)whih results in
∆x <

√

24 α
∣
∣
∣

R4

x2−R2

∣
∣
∣. (3.41)Due to Tshebyshe�'s inequality, x is smaller than R√

α
with probability 1−α. Withsimilar onsiderations like the one justi�ed in Setion 3.2.1 it is possible to derive67



3 COAST for Reation and Di�usiona di�erent value for x, whih would result in a larger value for ∆x and possibly abetter performane in total for the implementation. However, the general ideas arethe same and therefore I limit the disussion only to the value for x derived fromTshebyshe�s inequality. By negleting events with probability smaller than α, oneobtains the estimation
∆x <

√

24 α
∣
∣
∣

R4

x2−R2

∣
∣
∣.Now we substitute x by R√

α
to obtain
∆x <

√
√
√
√
√
√24 α

∣
∣
∣
∣
∣
∣
∣

R4
(

R√
α

)2

−R2

∣
∣
∣
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∣
∣.For small values of α one an estimate 1− α ≈ 1 whih results in

∆x <
√

24 α R, (3.42)so that the standard deviation R of the Gaussian-distribution an be used as para-meter desribing the spatial resolution of the system: Distributions with standarddeviations smaller than R an show additional errors.3.6.2 Seond Condition: Approximation of MomentsThe disrete di�usion model shown in Equation (3.36) is very di�erent from theLangevin-equation (f. Equation (3.5)). Partiularly, it is less similar to the Lange-vin-equation than the random walk:
x(t + τ̃)− x(t) = τ̃ fA(x(t))

γA
+
√

2 DA τ̃ W . (3.43)In this equation γA is the frition oe�ient of substrate A and fA(x(t)) is the foreon A as a funtion of the loation x and the time t. W is a normally distributedrandom number. One has to impose the requirement that both dynamial modelsresult in nearly the same distribution of partiles, where these distributions will beharaterized by the expetation and variane.68



3.6 The Values of the Disretization Parameters ∆x and ∆tThe expetation and variane of the random walk (f. Equation (3.43)) are
Erw = τ̃ fA(x)

γA
, Vrw = 2 DA τ̃ . (3.44)On the other hand, the expetany of the disrete di�usion model (f. Equation(3.36)) is

Eddm = ∆x (q(x + ∆x) − q(x−∆x)).By using the de�nitions for the transition probabilities given by Equation (3.35) andsetting ∆t = τ , the equation hanges to
Eddm = ∆x

(

τ D

∆x2 +
τ f(x + ∆x)

2 γ ∆x
−
(

τ D

∆x2 −
τ f(x−∆x)

2 γ ∆x

))

=
τ

2 γ
(f(x + ∆x) + f(x−∆x)) .Replaing the funtions f(x + ∆x) and f(x − ∆x) by the orresponding Taylor-polynomials we obtain for the expetany of the diret di�usion model

Eddm =
τ f(x)

γ
+ τ̃

f ′′
A(x) (∆x)2

2 γA

+O(∆x4). (3.45)The variane is desribed as the sum over the three jump options (left, right andstay) by
Vddm = ∆x2 q(i + 1|i) + ∆x2 q(i− 1|i) + 02 q(i|i)

= ∆x2
(
q(i + 1|i) + q(i− 1|i)

)
.We replae again the transition probabilities by their de�nitions given by Equation(3.35) and set ∆t = τ̃ to obtain

= τ̃ (2DA +
(fA(x + ∆x)− fA(x−∆x))∆x

2 γA

)−
(

τ̃
fA(x + ∆x) + fA(x−∆x)

2 γA

)2

.Finally by applying Taylor-polynomials of the involved funtions the variane anbe de�ned as
Vddm = τ̃ (2DA +

f ′
A(x)∆x2

γA

)−
(

τ̃
fA(x)

γA

)2

+O(∆x4) . (3.46)
69



3 COAST for Reation and Di�usionWe therefore onsider Vddm as nearly idential to Vrw if for a value α ∈ [0, 1] thefollowing onditions hold:
2α DA >

f ′
A(x)∆x2

γA

⇔ ∆x <

√

2α kB T

|f ′|

(withDA =
kBT

γ

)

,and
2α DA τ̃ >

(
fA(x(t))τ̃

γA

)2

⇔ τ̃ <
2α kB T γA

|fA|2
. (3.47)Furthermore we onsider Eddm as nearly idential to Erw if for a value α ∈ [0, 1] thefollowing ondition holds:

Eddm − Erm < α Erm

Eddm < (α + 1)Erm

1 +
f

′′

A(x)∆x2

2
< α + 1

∆x <

√

2fAα

f
′′

AConluding, we de�ne that the random walk and the disrete di�usion model leadto nearly the same distributions, if
|Eddm − Erm| < α |Erm| and |Vddm − Vrm| < α Vrm . (3.48)By negleting terms of the order ∆x4, these onditions are ful�lled if

∆x < min{√2 fA α

f ′′
A

,
√

2 α kB T
f ′

A

}

, (3.49)
τ̃ < min{2 α kB T γA

|fA|2
}

, (3.50)
T is the temperature and kB the Boltzmann's-onstant.3.6.3 Third Condition: Positive ProbabilitiesIn the disrete di�usion model (3.36) the transition probabilities q between adjaentvolume elements or lattie points are desribed as (f. Equation (3.35)):

q(i + ν|i;∆t) := ∆t
(

DA

(∆x)2 + ν fA(i+ν)
2 γA ∆x

)

. (3.51)To guarantee positive transition probabilities one has to demand:
0 < q(i + ν|i;∆t) ⇔ ∆x < 2 kB T

fmax(A)

(

DA =
kB T

γA

)

. (3.52)70



3.7 Summary of Formulas for ∆x and τThe variables are named like in the setions above. fmax(A) is the maximal foreon A within the observed spatial interval. This Equation (3.51) will be used as anadditional riterion for the distane between two lattie points ∆x.3.6.4 Fourth Condition: Small Changes of Partile NumbersIn eah time step of length τ̃A, the probability of a transition from any lattie point
i must be smaller than α, whih implies

q(i + 1|i) + q(i− 1|i) = τ̃A

(
2 DA

(∆x)2
+ f ′

max(A)
γA

)

≤ α . (3.53)By inserting Equation (3.49), Equation (3.53) an be rewritten as
τ̃A < α (∆x)2

2 DA (1+α)
. (3.54)3.7 Summary of Formulas for ∆x and τTo derive an appropriate lattie distane ∆x, one an use Equation (3.49), (3.52)and (3.42). On the other hand, it is also desirable that the length of the interval

[a, b], in whih the system is simulated, is a natural multiple of the lattie distane
∆x. Hene, we de�ne

∆x :=
b− a

[
b−a

δ

]

+ 1
, ([ x ] := max{n ∈ Z |n ≤ x }) , (3.55)where

δ := min{√2 fA

f ′′
A

,
√

2 α kB T
f ′

A
, 2 kB T

fA
,
√

24 α R |x ∈ [a, b] , A ∈ S

} (3.56)is the generalization of Equations (3.49), (3.52) and (3.42) to systems with manysubstrates.Starting from this value for ∆x, one an ompute for eah substrate A the length
∆t of a time step in the following fashion (f. Equations (3.50) and (3.54))

∆t := min{ 2 α kB T γAmax{f2
A} , α (∆x)2

2 DA (1+α)
|x ∈ [a, b], A ∈ S

}

. (3.57)3.8 Calulation of TransitionsAs desribed in Setion 3.2 one basi idea of COAST is to subdivide the system intoindependent subproesses: First, the di�usion of di�erent substrates are independent71



3 COAST for Reation and Di�usionproesses. Seond, the transitions of the same substrates from di�erent lattie points
i and j are independent proesses. By using the probabilities p := q(i + 1|i)(for
i → i + 1) and p := q(i−1|i)

1−q(i+1|i) (for i → i − 1), the transition numbers i → i + 1 and
i→ i− 1) an be omputed suessively without additional errors.Starting from these probabilities, I will present in this setion three methods toompute the number of transitions in one of the diretions i→ i± 1. The hoie ofthe method depends on the number of partiles Ni at a lattie point i.Exat stohasti model (Σ): For small numbers of partiles the transitionsfrom lattie point i to i ± 1 an be omputed by suessive evaluation of binomial-distributions of the form (Ni:=number of partiles at point i)

PB(κ,Ni) =

(

Ni

κ

)

pκ (1− p)Ni−κ , (3.58)where one has to use suitable onditioned probabilities for the seond transition (f.Figure 3.8).Approximative stohasti model (Γ): For su�iently large Ni, Equation (3.58)an be approximated by the distribution of the random variable
Z := Round(p Ni + X

√

Ni p (1− p)
)

, (3.59)where X is a normally distributed probability variable and where Round is given byEquation (3.3).In more detail:If PG(κ,Ni) is the probability for Z = κ, then sup{|PB(κ,Ni)− PG(κ,Ni)|} < α (f.Equation (3.5) and (1) for details), for
Ni ≥ 1

3 α p (1−p)
. (3.60)Partial di�erential equation (∆): It is desribed in Equation (3.17), that thedeviations from the expetation E are, with probability 1 − α, smaller than α Ewhen

Ni ≥ 1−p
α3 p

. (3.61)In this ase, the deterministi desription an be applied:
κ := Round (Ni p) (3.62)In COAST, Equations (3.59) and (3.62) will be used for e�ient omputations of thetransition numbers in the ase of intermediate and large partile numbers.72



3.9 The Algorithm
i = n− 1

i < n− 1

Transitions i→ i + 1 Transitions i→ i− 1 Final update

i := i + 1

endstart

Figure 3.6: Shemati representation of COAST. The sheme illustrates the omputationof the transitions for a substrate S during [t, t+∆t[. In doing so, one starts atlattie point −n + 1 and ends at n− 1.
i i + 1i− 1 i + 2

Transitions from i + 1

Update without

imigrations

Transition from i

lattice points i i + 1i− 1 i + 2

Update including

imigrations

Transitions from i + 1

Transition from i

lattice points

Figure 3.7: Comparison between an immediate update inluding immigrations (left) and aonsideration of immigrations in a �nal update after omputing all transitions(right). It is assumed that at time t there is a single partile at lattie point i.The suessive omputation of the transitions from the di�erent lattie leadingin the left senario to artii�al, asymmetri transition sheme.3.9 The Algorithm3.9.1 OverviewAssume that spae and time oordinates have been disretized by using the parame-ters ∆x (f. Equation (3.55)) and ∆t (f. Equation (3.57)). Furthermore, supposethat the disretization of the spae oordinate x has led to 2n + 1 lattie points
i ∈ {−n, ..., n}, where ̺(±n) = 0 re�ets open boundary onditions. Then, the ap-pliation of COAST to di�usion follows the sheme shown in Figure 3.6: For eahsubstrate A, the omputation of the thermal motions in a time interval [t, t+∆t[ oneomputes suessively the transitions from eah lattie point i ∈ {−n + 1, ..., n− 1},where �rst of all one always omputes the number of transitions in the positive di-retion i→ i+1 and then the transitions in negative diretion (f. Setion 3.8). Thenumber of transitions are omputed in the following fashion:Firstly, the subroutine �Transitions� (f. Setion 3.9.2) is used to ompute thenumber of transitions from i to i+1. Then the same subroutine is used to determinethe transitions from i to i − 1. Subroutine �Transitions� also inludes an updaterestrited to a redution of partile numbers due to emigrations. The other part ofthe update, namely the inrease of partile numbers due to immigrations, is shifted to73



3 COAST for Reation and Di�usionthe subroutine �Final update�, performed after the omputation of all transitions inthe time interval [t, t+∆t[. Note that this split of the partile update is neessary (f.Figure 3.7): A omplete update immediately after the omputation of the transitionsfrom a lattie point i would lead to the artifat that, in a time interval [t0, t0 + ∆t[,a partile an jump from lattie point i to all lattie points i + j with j > 0 (inthe fore free ase: with probability qj), but to no lattie point i − k with k > 1.The update of the partile numbers at a spei� lattie point after one diretion, forexample γ = 1, has been proessed, is neessary. Otherwise the possible amount oftransitions alulated for γ = −1 may be larger than what would be left after the�rst transition. This ould result in negative partile numbers.In what follows, the two subroutines �Transitions� and �Final update� are presentedin more detail.3.9.2 SubroutinesTransitions In a �rst step, one has to de�ne the transition probabilities. Assumewe alulate �rstly the transition i→ i + 1, then the transition probability q
(+1)
i anbe used. However, for the subsequently omputed number of transitions i → i − 1,one must not use q

(−1)
i , but the onditioned probability that there was no transition

i→ i + 1 (f. Figure 3.8).
i i + 1i− 1

1− q(i−1|i)
1−q(i+1|i) 1

q(i−1|i)
1−q(i+1|i)

q(1 + 1|i)

1− q(i− 1|i)− q(i + 1|i)

1− q(i + 1|i)

Resulting probabilities

Transition i→ i− 1

Transition i→ i + 1

lattice points

q(i− 1|i) q(i + 1|i)Figure 3.8: Suessive omputation of the transitions from lattie point i in the di�erent di-retions. The numbers at the edges of the graph are the probabilities used in thetwo steps. The resulting probabilities, given by the produts of the probabilitiesin both steps, are in agreement with the orret transition probabilities.Seondly, the number of transitions κ(i + γ|i) from i to i + γ is omputed, wherethree modeling levels are used:74



3.9 The AlgorithmIf the riterion in Equation (3.60) is not ful�lled, two binomial distributions (f.Equation (3.58)) are evaluated, whih is de�ned as the Σ-regime.If Equation (3.60) is valid, but Equation (3.61) is not, then κ(i + ν|i) is omputedby evaluating two Gaussian distributions (f. Equation (3.59)), where one has totake are that neither the number of partiles nor the number of transitions beomenegative. This is the Γ-regime.Finally, if Equation (3.61) is valid, the deterministi desription (f. Equation(3.62)) is used, whih is named the ∆-regime.In the last step, an update of the partile numbers is performed, whih is restritedto the redution of the partile number Ni due to emigrations.Step 1: De�ning the probabilities:
p :=

{

q(i + 1|i) , if γ = +1 ,
q(i−1|i)

1−q(i+1|i) , if γ = −1 ,Step 2: Compute the number of transitions κ(i + γ|i):
Σ : If Ni ≤ (3 α p (1− p))−1:

κ(i + γ|i) := max{m ∈ N0 |
m∑

k=0

P (k,Ni, p) < r

}

,where r is a random number equidistributed in [0, 1] and PB follows Equation (3.58) sothat
P (0, Ni, p) := ( 1− p )Ni

P (l + 1, Ni, p) := (Ni−l) p
(l+1) (1−p)

P (l, Ni, p) (l ≥ 0) .

Γ : If (3 α p (1− p))−1 < Ni ≤ (α3 p (1− p))
−1:

κ(i + ν|i) :=







0 , if X < −
√

Ni p
1−p

,

Ni , if X >

√

Ni (1−p)
p

,Round (√Ni p (1− p) X + Ni p
)

, otherwise .with normally distributed random variable X.
∆ :If (α3 p (1− p)

−1
< Ni:

κ(i + γ|i) = Round ( Ni p ) . 75



3 COAST for Reation and Di�usion
Step 3: Update due to emigrations

Ni := Ni − κ(i + γ|i).Final update due to immigrations After omputing all κ(i+ ν|i), a �nal updateof the partile numbers is performed re�eting the additional partiles due to immi-grations.Loop over all lattie points (−n < i < n)
Ni := Ni + κ(i|i + 1) + κ(i|i− 1) .

3.10 The Error Parameter αAfter the development of COAST in the past paragraphs there are maybe someaentuations neessary regarding the error parameter α. Sine it was the intentionto present an algorithm depending on as least di�erent parameters as neessary.The deision was made that all ourring approximations during the derivation ofneessary formulas for COAST had at the end to be adapted by only one single value,whih then was de�ned by α.I am fully aware of the fat that α is approximating relatively di�erent errors. Inthe �rst paragraph about the �Exat Stohasti Model� in Setion 3.2.1 α is meant asthe maximal deviation allowed for the hange of the reation probabilities for everyreation hannel.In the following paragraph �Approximative Stohasti Model� α desribes the supre-mum norm of the two distributions.Then in �Deterministi Reation Kinetis� α is used in two ways. First of all α isset as the error probability for the Tshebyshe� inequality and afterwards a seonderror parameter is introdued whih quanti�es the expression of the expetany µbeing muh larger √ V
N ·α (α desribes the width of an interval). To simplify theresulting formula (f. Equation (3.18) )the seond error is assumed to be of the samevalue as α.To adopt COAST to di�usion proesses alpha had to gain an additional meaningin Setion 3.6.4. Here the sum of the transition probabilities with respet to a singlelattie point or (equivalently volume element) has to be smaller than α.
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4 Test SimulationsIn hapter one I have introdued the problem of simulating reation and di�usionproesses in ellular strutures. Chapter two gave an overview on existing methodsovering solution strategies for this question. In the last hapter I presented myown hybrid approah, COAST, the Controllable Approximative Stohasti reation-algorithm. I have explained how di�erently this algorithm is working dependingon the reation probabilities. It uses three levels of modeling, an exat stohastimethod, an approximative method based on Gaussian distributions and a determinis-ti method. The swithing between the three levels is ontrolled by one error ontrolparameter.Furthermore, I have explained how the basi ideas of COAST an be applied todi�usion problems and presented the mathematial bakground for di�usion in onedimension.In the upoming hapter I demonstrate the ability of COAST to ope with basireation problems as well as multi sale senarios like the Oregonator and the Cir-adian Clok. COAST gives very reliable results even better than demanded by theerror parameter α. Espeially due to its seond modeling level COAST outruns manyof the existing implementations based on exat methods or binomial distributions.The appliation of COAST to linear di�usion is also tested in this hapter. Ihave hosen seneries with and without an external fore�eld and COAST re�etsvery well the results predited by random walk simulations, but with a muh betterruntime behavior.
4.1 Test Simulations Using COASTIn this setion, an assessment of COAST will be performed. To this aim, I willompare COAST and the First Reation Method by omparing simulation results andomputational osts of the two approahes for di�erent reation systems [Gillespie,1976, 1977℄.Partiularly, I will onsider the in�uene of the error ontrol parameter α on theoutomes of the simulations and on the omputing time. 77



4 Test Simulations4.1.1 Basi SystemsTo begin with, I onsider the two elementary hemial reation-systems given by
A + B

k1
⇋ C and A + B

k2
⇋ 2 C , (4.1)where, in both systems, the forward- and the bakward-reations have the samedeterministi reation rates k1 or k2 respetively. Both reation rates are linked tothe stohasti reation onstants cµ used in COAST and the FRM via [Gillespie,1976, 1977℄:

cµ :=

{
kµ

V
, for X → P,X + Y → P ,

kµ

V
· 2 , for 2 X → P,

(4.2)where V is the volume of the reation system and P an arbitrary produt. In allsimulations performed here, k1 = k2 = 0.21
s
, V := 1, and NC(0) = 0.To ompare the omputational ost, both systems were simulated by the FRM, bythe τ -leap method [Dhar et al., 2005℄, and by COAST for di�erent initial values

NA(0) = NB(0). In doing so, α = 0.05 was set for A+B 0.2
⇋ C and α = 0.03 for A+B

0.2
⇋2C.The run time of these simulations are monitored, the results of whih are sum-marized in Figure 4.1. Sine it is not my intention to disuss the e�ets of di�erentimplementations, but rather the e�ets of di�erent algorithms, I do not present ab-solute run times. Instead, I have de�ned the run time of the simulation for eahalgorithm with N = 100 as 1. Furthermore, to illustrate the e�ets of the di�erentmodeling levels in COAST on the run time, the relative frequenies of the usage ofmodel lass Γ are also shown in the same �gure.As an be seen from Figure 4.1, all algorithms were notieably fast for small NA(0).However, the run time behavior of the FRM and τ -leap was qualitatively di�erentfrom the run time behavior of COAST, when modeling levels Γ and ∆ are predom-inantly used in COAST. To illustrate these di�erent behaviors, I performed leastmean square (lms)-�ts of the measured run times in the range of partile numbersdominated by Γ and ∆. For A+B ⇋ C, the leading terms of these �tted funtionswere proportional to N1.01

A for FRM, proportional to N0.98
A for the τ -leap method,but proportional to N0.4

A for COAST. Similarly, the �t urves for A+B ⇋ 2 C wereproportional to N1.99
A for FRM, to N1.97

A for τ -leap, but proportional to N0.96
A forCOAST. The reasons for these di�erent behaviors will be disussed in Setion 5.1.For A+B ⇋ C, the fration of the stohasti model Γ is dereasing for large partilenumbers, whih re�ets the inreasing usage of the deterministi modeling level ∆.As one an see, the inreasing usage of ∆ does not lead to a strong redution ofomputational osts when ompared to the osts of stohasti model Γ.In order to investigate whether COAST is able to reprodue the results of theFRM, I simulated both reation systems by FRM and by COAST with di�erent78



4.1 Test Simulations Using COASTvalues of α, and initial values NA = NB = 10000 (k1 = k2 = 0.21
s
; V = 1; NC(0) = 0).The simulation times were t = 0.5s for A + B ⇌ C and t = 1s for A + B ⇌ 2 C.Sine both the FRM and COAST are stohasti algorithms, one annot ompare asingle COAST-run with a single FRM-run. Therefore one must ompare olletionsof idential simulations. Aordingly, I repeated all simulations 1000 times and stored

NA at the end of eah of these runs, whih is, due to the onservation laws
NA(t)−NB(t) = onst (4.3)and

NA(t) + NB(t) + 2 NC(t) = onst , for A + B ⇌ C ,
NA(t) + NB(t) + NC(t) = onst , for A + B ⇌ 2 C ,

(4.4)su�ient to also haraterize NB and NC .The desription by deterministi reation kinetis leads to the ODEs:
A + B ⇋ C : ṄA = −k N2

A + k (10000−NA) ,

A + B ⇋ 2 C : ṄA = −k N2
A + k (20000−NA)2 , (4.5)where the onservation laws in Equation (4.3) and Equation (4.4) as well as theinitial ondition NA(0) = NB(0) = 10000, NC(0) = 0 are used. The equilibriumstates of these models, whih are de�ned by ṄA = 0, are given by

A + B ⇋ C : NA = 99.5 ,

A + B ⇋ 2 C : NA = 6666.7 . (4.6)The derivations of the equilibria an be found in the Appendix A. Sine the outomesof the 1000 runs with idential algorithms are given by independent, identially dis-tributed random variables, the olletions of outomes are always approximations ofGaussian-distributions [Feller, 1970, p. 182 f.℄ ompletely de�ned by their expeta-tions and their varianes.In Figure 4.2, the time-evolution of NA is given for both systems, where the out-omes of COAST (α = 0.05) are ompared with the results of the deterministireation kinetis. Obviously, one annot observe systemati deviations between theresults of COAST and the values of deterministi reation kinetis.Figure 4.3 shows the mean value and the standard deviation of NA at the endof the simulations. These values are shown for COAST-simulations as a funtionof α. These values are ompared with the outomes of FRM-simulations and theequilibrium values of the deterministi reation kinetis (f. Equation (4.6)), theseare NA = 99.25 (A + B ⇋ C) and NA = 6666 (A + B ⇋ 2 C). Thus, the graphs f79



4 Test Simulationsand g, given the values of the deterministi reation kinetis times (1 ± α), an beused to illustrate whether or not the algorithm is as good as stated.For both reation systems, the mean values of FRM are in agreement with theresults of the deterministi reation kinetis. Furthermore, the deviations betweenthe outome of COAST and the results of FRM are muh smaller and thereforeeven better than the promised α · 100 %.

Figure 4.1: Run time behavior of COAST , FRM and τ -leap method for A+B ⇋ C (left)(simulation time t=100s) and A+B 0.2
⇋ 2C (right) (simulation time t=0.3s),where α = 0.05 was used for COAST. In all ases, the run times of the simu-lations with NA=100 were de�ned as 1. Additionally, the amount of reationhannels evaluated in COAST by Γ and ∆ are shown. The following funtionswere determined by least mean square �t to the run times of the di�erent al-gorithms led to: t ∝ N0.98

A (τ -leap), f ∝ N1.01
A (FRM), c ∝ N0.40

A (COAST);
l ∝ N1.97

A (τ -leap), m ∝ N1.99
A (FRM), h ∝ N0.96

A (COAST).These results bring up the obvious question of how useful the ∆-regime is withinCOAST. This question is not easily answered. Without any doubt in theory there isan advantage by using no random number to using one like in the ase of the modelinglevel of Γ. I performed an experiment to reveal the in�uene of the ∆-regime on theperformane of a simulation (f. Figure 4.4). To test the speedup, I had to generatea system in whih the eduts are kept onstant, so their hanging does not have anin�uene on the reation. The model was found to be a reation of the kind:
A + B → Cwith the parameters k=1, V=1, δt=0.001s, t=0.018s, α=0.05The values presented are the mean of ten single runs. One an observe that atan initial onentration of more than 310,000 partiles of A and B, the riterion inEquation (3.18) is ful�lled and for A=B=320,000 partiles 99,99% of all reations80



4.1 Test Simulations Using COAST

Figure 4.2: Time-evolution of the partile numbers NA in both systems for COAST-simulations (α = 0.05) and for the deterministi reation kinetis. The left(right) diagram shows the behavior for A + B ⇌ C (A + B ⇌ 2 C).are alulated by the ∆-regime. The graph is rising onstantly beause the timeintervals derease with inreasing partile numbers, and therefore the omputationale�ort (f. Equation (3.22)). The bene�t is a redution of the run time by 10% anda better linear run time bahavior for higher partile numbers.However, it is di�ult to say how likely the ativation of the ∆-regime is in aspei� ase. This has to be tested individually.4.1.2 The OregonatorIn addition to the very simple system desribed in Setion 4.1.1, I also investigatedthe behavior of COAST when simulating a more omplex reation system, namelythe Oregonator. In this system, di�erent substrates have radially di�erent partilenumbers, and the partile number of a given substrate is subjet to strong �utuationsover time. Before presenting my simulation results, I will give some bakgroundinformation on this interesting topi.Historial Bakground A hemial system, in whih during the reation the on-entration of at least one speie periodially �utuates, is alled an osillating system.The most famous osillating hemial reation is the Belousov-Zhabotinsky (BZ) re-ation [Belousov, 1958℄. It involves the oxidation of an organi aid by aidi�edbromate in the presene of a metal ion atalyst (often erium ion). The BZ reationis a lassial example of instability and self organization in non equilibrium systems.Osillating reations an also be found in biologial systems (e.g. osillations at ellmembranes, stimulus transition, osillating enzyme reations and iradian rhythm[Goldbeter, 1996℄). 81



4 Test Simulations

Figure 4.3: Mean value and standard deviation of NA for simulations of A+B 0.2
⇋ C (left)and A+B 0.2

⇋ 2C (right) in dependene from α. The error bars of the FRM-simulations are shown by the solid and the dashed lines. The orrespondingvalues are given at the right hand side of the diagrams. The mean values ofthe FRM-simulations (99.25/6666) are in nearly perfet agreement with theequilibrium values of the ODEs (f. Equation (4.6)). f and g are given by thevalues of the ODE times (1± α).

Figure 4.4: The diagram shows the behavior for A + B → C with k=1, V=1, δt=0.001s,t=0.018s, α=0.0582



4.1 Test Simulations Using COASTIn August 1825, J.F.W.Hershel (∗1792, †1871) examined the passivity of iron innitri aid. He disovered that the ourring reation ativity is osillating betweenpure Fe and passive Fe2O3. But it lasted until 1828 when G.T.Fehner was the �rstto publish about an osillating hemial reation (with silver nitrate treated iron insulfuri aid)[Fehner, 1828℄. Other observations of temporal osillating reationsfollowed [Shönbein, 1842, Joule, 1844℄.F.F. Runge [1850℄, the father of paper hromatography, was the �rst to desribethe spontaneous formation of spatial strutures in hemial systems. Although sim-ilar disoveries were also made, sientists did not believe in hemial osillations.The onversion of the eduts should ontinue until thermodynamial equilibrium isreahed. Osillations were seen as a ontradition to the seond law of thermodynam-is. This demands that a losed system (system without energy and mass transfer)aspires towards an equilibrium.In 1958, the Russian hemist B. Belousov disovered a homogenous osillatingreation: He tried to oxidate itri aid in sulfuri aid with potassi bromate anda erium(IV)-salt. He observed the rhythmi appearane of the yellow erium(IV)-ion [Belousov, 1958, Tyson, 1976℄. A. Zhabotinsky repeated his work in 1961, andimproved the hemial ompositions [Zhabotinsky, 1964℄. It took until 1967 thatwestern world beame familiar with the results that have been made in the formerSoviet Union.The Belgian sientist I. Prigogine realized that lassial thermodynamis only ap-ply for losed systems, whih are next to their equilibrium. All open systems (i.e.systems having energy and mass transfer with the surrounding) are in a state ofnon-equilibrium. Systems like the human body maintain their identity by means ofenergy �ow from a variety of separate soures. Prigogine was able to demonstratethat these systems operate far from the realms of equilibrium and therefore ouldexhibit strange and unexpeted behavior patterns (in full oherene with the seondlaw of thermodynamis). Prigogine gave suh systems the name dissipative systems[Glansdor� and Prigogine, 1971℄, beause the ability to do work as a onsequene ofthe inrease entropy is being lost (dissipated) as the proess unfolds.He and his oworkers suggested a mathematial model of a hemial non-living dis-sipative system onsisting of four single reations. This model is known as the Brüs-selator. His work was later reognized with a Nobel prie in 1977, leading to fullaeptane of osillating reations.The Brüsselator has one major problem, it inludes a trimoleular reation, whihan be regarded a quite unlikely. In 1972, R.J. Field, E. Körös and R.M. Noyesdeveloped a mehanism for the BZ-reation onsisting of 18 single reations with 21di�erent moleules [Noyes et al., 1972℄. The Field-Koros-Noyes model an be brokendown in 5 essential reations: the Oregonator (named after their patron institution,the University of Oregon) and will be desribed in the following setion. 83



4 Test SimulationsThe FKN-Model There are ertain demands that have to be ful�lled so that os-illating reations are likely to our in a hemial system:� the hemial system has to be far away from thermodynami equilibrium (thisis neessary to have hemial reations at all)� the hemial system must be an open system (so energy transfer and multipli-ation of entropy are possible)� there have to be at least two meta-stable states in the system� the hemial system must ontain a feedbak loop (with di�erent impats onthe two states)As with in all hemial reations, the eduts are onsumed while the onentrationof the produts inrease. If the onentration of the eduts is too low, the reationstops. In priniple, all osillating hemial systems are apable of developing spatialstrutures, beause even small random gradients of onentration an be ampli�ed.Only open systems allow undamped osillations. Table 4.1 shows the �ve reationsof the FKN-model.The FKN-model inludes one auto-atalyti step with bromous aid (HBrO2) asan auto atalyti intermediate produt. Reations one and two desribe a negativefeedbak loop in whih HBrO2 is aptured by bromide (auto inhibition). The auto-atalyti inrease of bromous aid HBrO2 is slowed down by the disproportion inreation four. In reation �ve bromide is reprodued and the atalyst is reduedunder the in�uene of the organi ompounds maloni aid (MA) and bromomaloniaid (BrMA). The osillations our beause the system is hanging between twoonditions. In the redued ondition, with high bromide onentration, the atalystis mainly present as erium(III) and maloni aid is brominated. The bromide isredued by the reation with bromate. If the Br− -onentration (bromide), is belowa ritial onentration the auto-atalyti reation begins and Ce(III) is oxidized toCe(IV). The system swithes to the oxidized ondition, whih is haraterized byhigh onentrations of HBrO− and Ce(IV) and by oxidation and bromination of theorgani ompounds.In other words: reations one and two onsume bromide ions. If the amount ofbromide-ions beomes too low, reation two is no longer the dominant hannel forreation of HBrO2, and reation three takes over. In this auto-atalyti reation,
HBrO2 is produed at a rate that depends on the HBrO2 onentration. The growthof HBrO2 is limited by reation four, whih aelerates as the HBrO2 onentrationinreases. Reation four has another important e�et: it regenerates the reatantbromate. Reation �ve regenerates now Ce3+ and Br−. This last reation is onlyimportant when the level of Ce(IV) is high enough. There is a delay between the84



4.1 Test Simulations Using COAST(1) Br− + BrO3
− + 2H+ → HBrO2 + HOBr A + B → C(2) Br− + HBrO2 + H+ → 2HOBr C + B → D(3) 2Ce3+ + BrO3

− + HBrO2 + 3H+ → 2Ce4+ + 2HBrO2 + H2O E + C → 2C + F(4) 2HBrO2 → HOBr + BrO3
− + H+ 2C → G(5) Ce4+ + org.comp. → fBr− + Ce3+ + org.comp. H + F → BTable 4.1: The �ve hemial reations desribing the Field-Körös-Noyes model of the orego-nator.

A = BrO3
− (bromate); H = all oxidiz. org.species; D =

HOBr (hypobromousacid); C = HBrO2(bromousacid); B = Br−(bromide);
F = Ce4+(cerium− 4); f ≈ 1; E, G = simplificationsreations whih onsume bromide and Ce3+, and those whih regenerate these rea-tants. As a result, the system yles from high values of Ce3+ and Br−, and bakagain. The osillations an be niely illustrated if the osillating speie is olorfull.In this experiment the olor of the Ce3+-ion is magenta and the one of the Ce4+-ionis blue.Figure 4.5 presents suh a system where instead of er ferroin (f. Appendix B.1) isused as redox indiator where iron is hanging between two states. A ferroin solutionis olloquial for a 1,10-phenanthroline ferrous sulfate solution ((C12H8N2)3FeSO4).It is used as a redox indiator, beause of its reversible olor hange from the redhexammineiron(II) omplex (redued form) to the blue hexammineiron(III) omplex(oxidized form). The oxidized form is alled ferriin. The reations and ompositionof this experiment an be found in the appendix.Experimentally, the H+-onentration is held onstant by a bu�er system. Fur-thermore, the osillations are observed when the bromate is in large exess, suh thatits onentration is approximately onstant.Chemial osillators only appear to be ontraditory to the seond law of thermo-dynamis. But the hanges one observes is only a small part of all reations that areourring. The important reation is the oxidation of maloni aid by bromate. Theironentrations are onstantly dereasing without osillations, just by two reationstaking it in turns.The experimental setup of the Oregonator The setup is idential to the imple-mentation of Gillespie [1977℄, whih he used for testing his SSA. It should be notedthat there are tiny di�erenes between the original FKN-model [Field and Noyes,1974℄ and the setup of Gillespie, but these di�erenes do not e�et the outomeof the experiment. With this knowledge, the presented equations are used withoutany adjustments. This simple model onsists of the following �ve reation hannels(values given are the deterministi rate onstants): 85



4 Test Simulations

Figure 4.5: This piture illustrates the temporal hanges of the Belousov-Zhabotinskyreation under the presene of ferroin as a redox indiator.
A + B

0.004−→ C , C + B
0.1−→ D , E + C

0.104−→ 2C + F ,

2 C
0.008−→ G , H + F

0.013→ B , (4.7)where S denotes that NS is onsidered onstant in time. This means the system isopen for that speies. Additionally, volume parameter V=1 and the following initialonditions are hosen (x ∈ R
+):

NA(0) = 500 · x , NB(0) = 1000 · x , NC(0) = 500 · x , ND(0) = 0 ,

NE(0) = 1000 · x , NF (0) = 2000 · x , NG(0) = 0 , NH(0) = 2000 · x . (4.8)This system was simulated for a time span t = 1 with x = 5 by FRM, and byCOAST with α = 0.05. In Figure 4.7, the time-behavior of NF in the FRM- andCOAST-simulation is monitored.It is worth noting that the initial onditions shown in Equation (4.8) are theequilibrium state of the ordinary di�erential equation, so that an appliation of de-terministi reation kinetis results in time-onstant partile numbers. Conversely,the osillating partile numbers shown in Figure 4.7 are only due to the appliation ofstohasti dynamis. Hene, it should ome as no surprise that, NF initially exhibitsvery di�erent behavior in the two simulations. This behavior depends on the exat86



4.1 Test Simulations Using COAST�utuations from the equilibrium state: For the FRM, NF immediately dereases,whereas in the ase of COAST, NF inreases to a small loal maximum.After this starting time, NF osillates in both simulations with nearly the sameamplitude and nearly the same period. For the determination of the amplitudes andperiods, I performed a simulation of three seonds of the Oregonator with a timeresolution of 0.00005 s by both algorithms, using the same parameters as mentionedabove. As a result, I obtained for FRM an amplitude of 42587± 471 and a perioditime of 0.1405± 0.0016, and for COAST an amplitude of 42355± 864 and a perioditime of 0.1405±0.0016. A numerial solution of the ODEs from deterministi reationkinetis led to an amplitude 42040 and a periodi time of 0.1405.The determination of the amplitudes requires the omputation of loal extremaof the partile numbers, whih is a non trivial task in stohasti systems. Thesedi�ulties are the reason for the di�erent values of the varianes of the amplitudes.In order to demonstrate that the Oregonator is very suitable to test an algorithm,let us onsider the time sales of the di�erent reation hannels in this system.For the FRM, the time of the next reation in an arbitrary reation hannel µ isgiven by
δµ := − ln(r)

Qµ
, (4.9)where r is a random variable equidistributed in [0, 1], and where Qµ is the propensity(f. Equation (3.3.2)). Thus, the mean time until the next reation is given by

〈 δµ 〉 =
∫ 1

0

− ln(r)
Qµ

dr = 1
Qµ

, (4.10)suh that Q−1
µ is an appropriate quantity to haraterize the time sale of a reationhannel. Figure 4.6 shows Q−1

µ dependently of time for three reation hannels, theseare B + C → D, C + E → 2 C + F , and 2 C → G, where x = 5 was used again. For
2 C → G, the expetation of the time step length Q−1

µ has values between 10−1.9sand 10−6.2s, for C + E → 2 C + F and B + C → D, Q−1
µ has values between 10−4.8sand 10−6.8s or 10−5.3s and 10−6.5s, respetively. The Q−1
µ of the two other reationhannels are always between the values for 2 C → G and C + E → 2 C + F .Thus, the Oregonator is not only a multiple time sale-system, but the time salesare subjet to strong �utuations. Consequently, the Oregonator is suitable to testboth the ability of an algorithm to treat reations with di�erent time sales and theability to adapt itself to rapidly hanging onditions.To allow a omparison between FRM and COAST, I also show in Figure 4.6 thetime step length τµ of COAST for the three reation hannels B +C → D, C +E →

2 C + F , and 2 C → G. The most obvious di�erenes between the time-behavior ofthe τµ and the Q−1
µ is that τµ has larger values and a smoother behavior, where thelarger values of the τµ's imply that COAST works faster than the FRM. 87



4 Test SimulationsSine all reation hannels of the Oregonator are seond-order reations, all Q−1
µare proportional to x−2 (f. Setion (3.3.2)), where x is the saling fator introduedin Equation (4.8). On the other hand, sine lµ (f. Equation (3.29)) (the expetednumber of reations of the hannel µ) is in a �rst approximation proportional tothe number of partiles, the τµ -the timespan until all reations l have ourred inhannel µ- of seond-order reations (f. Equation (3.22)) are proportional to x−1.Consequently, one an expet that the omputational ost is proportional to x2 forFRM, but proportional to x for COAST.

Figure 4.6: Charaterisation of the time-sales of reation hannels in the Oregonator withsaling fator x = 5 (f. Equation (4.8)). Q−1
µ (left diagram) is the expetationof the time span till the next reation in the hannel with the FRM. τµ (rightdiagram) is the possible length of a time step omputed by COAST for a reationhannel.To test this hypothesis, I ompared the run time of both methods. Therefore Iperformed again FRM- and COAST-simulations (α = 0.05) with t = 1s for di�erentvalues of the fator x (f. Equation (4.8)) and measured the run time of eah of thesesimulations. The results are shown in Figure 4.8, where the portion of the reationhannels evaluated by Σ and Γ is also presented.To haraterize the asymptoti dependene of the run times on the partile number,least mean square �ts were performed on the run times in the range with more than80 % evaluations by the Γ-regime in COAST.Again, one an see that the ratios between the run times of COAST and FRM de-reases with larger numbers of Γ evaluations. Furthermore, as an be seen from the�tted funtions, the asymptoti run time behavior of COAST is proportional to x,but proportional to x1.9 for the FRM, whih is onsistent with the hypothesis aboutthe run time behaviors of these systems derived from the analyses of the Q−1

µ and τµ.Figure 4.9 provides more insight information on this experiment by presenting more
α-values. The total run time of this experiment was slightly hanged to t = 0.5s. As88



4.1 Test Simulations Using COAST

Figure 4.7: Comparison of the time-evolution of NF in the COAST- and FRM-simulationsof the Oregonator. For COAST, α = 0.05 was hosen. The initial values ofthe partile numbers were given by Equation (4.8) with x = 5.one an observe, the total run time for the COAST-experiments depends very muhon the set α-value. The higher the α-value, the earlier the algorithm will swithfrom the Σ-regime to the Γ-regime, whih proesses the reation muh faster due tothe fat, that it is using less random number operations. For an α-value of 5%, the
Γ-regime is used very early and for an α-value equal to 1% relatively late as an beseen by observing the solid lines. Another interesting fat is, that the performaneof COAST for an α-value of 0% ompared to the FRM is worse. Sine, in this ase,COAST is in priniple performing the same task as the FRM , but has an additionaloverhead to hek the other two regimes, this is very reasonable.This paragraph should have illustrated how the error-parameter α in�uenes theperformane of COAST. Therefore before setting α one has to onsider that a higher
α-value results in a better performane in terms of run time behavior, but alsoresults in a lower auray. Furthermore a lower α-value slows down the proessing,but inreases the auray.4.1.3 Ciradian ClokBakground Information All eukaryotes (like plants, animals and fungi) and someprokaryotes (yanobateria) display hanges in gene ativity, biohemistry, physiol-89



4 Test Simulations

Figure 4.8: Run time behavior of the COAST- (α = 0.05) and the FRM-simulations of theOregonator in dependene of the initial values of the partile numbers parame-trized by x (f. Equation (4.8)). Additionally, the number of reations alu-lated in COAST by the model lasses Σ and ∆ is shown. k(x) := 0.7 · x1,9and l(x) := 2.2 · x1,0 are results of least mean square-�ts to the run times ofFRM (k(x)) or COAST (l(x)) in the interval [10, 100], where in COAST morethan 80 % evaluations are done by Γ.ogy and behavior through the yle of days and nights. These endogen rhythmshave a period length of approximately 24h and help the organism to adjust to dailyrepeating inidents, so alled Ciradian Cloks.For most animals a paemaker was able to be loalized in the area of the visualsystem, but only for simple organisms the Ciradian Clok behind these rhythms isalready desribed.The iradian model the following simulations are based on, was originally de-sribed by Barkai and Leibler [2000℄ and is founded on experimental results. Vilaret al. [2002℄, who did further researh on this system desribe the funtionality ofthe Ciradian Clok as following:�The main harateristi is the presene of intraellular transription regulationnetworks with a set of lok elements that give rise to stable osillations in geneexpression. A positive element ativates genes oupled to the Ciradian Clok. Itsimultaneously promotes the expression of a negative element, whih in turn repressesthe positive element. The yle ompletes itself upon degradation of the negativeelement and re-expression of the positive element.�90



4.1 Test Simulations Using COAST

Figure 4.9: Run time behavior of COAST (α = 0, 0.01, 0.02, 0.03 and 0.05) and the FRM ofthe Oregonator dependent on the initial values of the partile numbers parame-trized by x (f. Equation (4.8)). The ratio of reations alulated in COAST bythe model lass ∆ is presented by solid lines.The experimental System The model inludes two genes, an ativator-gene anda repressor-gene, whih are transribed into mRNA and translated into the produtsA and R. The two genes have promotor regions Pa and Pr. If the ativator A bindsto the promotors, the expression of the respetive mRNAs (mRNAa, mRNAr) isenhaned. By forming a dimer with A, R is able to inhibit the ativator. Figure 4.12re�ets the reation hannels of this system.It may be worth noting that Pa, Pr, Pr-A and Pa-A are variables that an onlytake the values 0 or 1. Sine I want to ompare a deterministi simulation with astohasti one, I allow ontinuous values between zero and one as also proposed byVilar et al. [2002℄. It has to be noted, that for ODEs the osillations an disappear,but in a stohasti model the osillations will persist. This phenomenon is a mani-festation of �oherene resonane� and illustrates the ruial interplay between noiseand dynamis.To demonstrate that the Ciradian Clok is also a multiple time sale-model, Figure4.10 shows the expeted length of the time steps Q−1
µ (f. Equation (4.10)) in theFRM-simulations; the illustration is restrited to the fastest and the slowest reationhannels. As one an easily see, there are �ve orders of magnitude between the fastestand the slowest reation hannels in the Ciradian Clok. 91



4 Test Simulations

Figure 4.10: The Ciradian Clok as a multiple time sale-model. The �gure presentssome hannels with their orresponding Q−1
µ -value, whih orrespondsto the expeted length of a time step in the FRM.Figure 4.11 inludes three graphis representing three 150 seond runs using theCOAST-algorithm, Gillespie's FRM, and the deterministi solution, with the initialonditions

NX(0) =

{

1 if X = Pa or X = Pr ,
0 otherwise. (4.11)In all three simulations, the Ciradian Clok showed periodi osillations. Theperiods and the amplitudes are given in Table 4.2. The COAST results oinidewithin 1.1% (amplitude) or 4.8 % (period) with the values of FRM. Sine α = 0.05was hosen for the error ontrol parameter, the obtained auray is in agreementwith the estimated error.The deterministi reation kinetis deviates strongly from the results of FRM,whih an be explained by the neessary modi�ations of the modeling mentionedabove, i.e. deterministi models allow values between 0 and 1, while stohasti donot.Table 4.2 shows the results for the initial values given by Figure 4.12.92



4.1 Test Simulations Using COAST

Figure 4.11: Simulation of the Ciradian Clok. 150 seonds using Gillespies FRM,COAST and a deterministi approah
Pa

50 h−1

−→ Pa + mRNAa Pa− A
500 h−1

−→ Pa−A + mRNAa

Pr
0.01 h−1

−→ Pr + mRNAr Pr − A
50 h−1

−→ Pr − A + mRNAr

mRNAa
50 h−1

−→ mRNAa + A mRNAr
5 h−1

−→ mRNAr + R

A + R
2 g−1

−→ A−R Pa + A
1 g−1

−→ Pa−A

Pa− A
50 h−1−→ Pa + A Pr + A

1 g−1

−→ Pr − A

Pr − A
100 h−1−→ Pr + A A

1 h−1−→ ∅
R

0.2 h−1

−→ ∅ mRNAa
10 h−1

−→ ∅
mRNAr

0.5 h−1

−→ ∅ A− R
1 h−1

−→ RFigure 4.12: The reation hannels of the Ciradian Clok (h=hour).FRM COAST determ. solutionamplitude [N℄ 1599.8 ± 72.1 1617.4 ± 78.8 1717.2 ± 001period [s℄ 23.0 ± 2.7 24.1 ± 1.8 25.± 0.002Table 4.2: Amplitude and periodiity for the di�erent simulations of the CiradianClok.
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4 Test Simulations4.1.4 Mihaelis-Menten KinetisThe Mihaelis-Menten kinetis formulates an expression ombining the veloity ofatalysis with the onentrations of substrate and enzyme. It is the simplest modelto desribe the kineti harateristis of many enzyme atalysed reations. The modelis named for Mr. Leonor Mihaelis and Ms. Maud Leonora Menten who publishedtheir results in 1913 [Mihaelis and Menten, 1913℄. These kinetis are valid only whenthe onentration of the substrate is higher than the onentration of the enzyme,and in the partiular ase of a steady-state, where the onentration of the omplexenzyme-substrate is onstant. The desribed system is shown in Equation (4.12).
E + S

k1

⇋

k−1

ES
k2

⇋

k−2

E + P (4.12)E and S are the onentrations of the enzyme and the substrate, and ES and Pthe onentrations of the resulting omplex and the produt. By looking at the topof Figure 4.13 one an see the theoretial development of the onentrations in thissystem for initial enzyme and substrate onentrations, where the substrate is ofhigher onentration then the enzyme. It is observed in nature that k−2 is muhsmaller than k2. Therefore the onentrations of all speies are hanging in a pre-steady state until they reah the equilibrium. There is no net hange of produt orsubstrate in the equilibrium. In this phase, the reation from produt to substratean no longer be negleted.The development of the pre-steady state an be desribed by the reation equationsin Table 4.3. E + S c1→ CES c2→ E + SES c3→ E + PTable 4.3: Mihelis-Menten: reation equationsThis system was simulated with COAST and has also been solved numeriallyusing an implementation of the system in the form of di�erential equations using themathematial software MATLAB (f. Table 4.4). It an be demonstrated in the bot-tom left of Figure 4.13 that the implementation of a system of ordinary di�erentialequations mathes the stohasti approah with COAST. The stohasti represen-tation of this biologial proess is muh more realisti than the deterministi one,sine the deterministi model allows ontinuous variables and the stohasti modeldoes not. On the lower right �gure one is able to observe an important di�erenebetween the deterministi model and the stohasti one. Although the mean values94



4.1 Test Simulations Using COAST

Figure 4.13: Mihaelis-Menten Kinetis: the top �gure shows the development of onen-trations in theory and the lower left one the results of the simulation with time=5se; α=0.05; c1=0.05, c2=5.0, c3=1.0; S0=1000, E0=500, ES0 = P0 = 0;the lower right �gure illustrates the same simulation with only 1/10th of theinitial partile numbers
95



4 Test Simulationsare the same, the urves representing the enzyme-onentration is always higher thanthe one for the enzyme-substrate omplex. However, the stohasti model presents adi�erent piture. Here, the enzyme substrate omplex an exist in higher onentra-tions than the free enzyme. This is a good example to demonstrate the signi�antdi�erene between stohasti and deterministi models. The rate parameters havenot hanged between the two experiments. Only the initial moleular onentrationswere lowered.
dE
dt

= - E ·S · c1 + ES · (c2 + c3)
dS
dt

= - E ·S · c1 + ES · c2
dES
dt

= E ·S · c1 - ES · (c2 + c3)
dP
dt

= ES · c3Table 4.4: Mihelis-Menten: di�erential equations4.2 Test Simulations Regarding COAST'sExtension to Di�usion4.2.1 Basi SystemsIn this setion, the reliability and auray of COAST as applied to di�usion is eval-uated by test simulations. To this aim, COAST-simulations of the one-dimensionalmotion of a single substrate were ompared with the preditions of the di�usionequations and with the results of random-walk simulations (f. Equation (3.5)):
x(t + 1) = x(t) + ∆t f(x(t))

γ
+
√

2 D ∆t W , (4.13)with a normally distributed random variable W . All simulations in this subsetionwere performed with a di�usion oe�ient of D = 10−13 m2

s
, T = 298 K, and R = 100nm.Di�usion without external fore Let us onsider 0.75s-simulations of the Smolu-howski-equation (f. Equation (3.31)) with f = 0 in the interval [-2000nm,+2000nm℄. In doing so, two initial onditions were onsidered: First,

̺1(x, 0) = N · δ(x) , (4.14)(N=total number of partiles) i.e. at time t = 0 all partiles have position x = 0. Inthis ase, the Smoluhowski-equation has the solution
̺2(x, t) := 1√

4 π D t
e−

x2

4 D t (4.15)96



4.2 Test Simulations Regarding COAST's Extension to Di�usion

Figure 4.14: The error bars of the standard-deviation for free di�usion with initial ondition
̺1 -delta-distribution- (f. Equation (4.14)). The diagram shows the outomeof COAST-simulations dependent on α. For omparison sake, the results ofthe random walk-simulations are also inluded, where, for eah α, the timesteps are idential with the time steps of the COAST-simulation.t=0.75s; D=1 · 10−13 m2

s ; k=0kg
s2 ; R=100nm; N=100000; 25 repetitionsDue to its diminishing standard deviation, a δ-distribution an lead to additionalnumerial errors (f. Setion 3.6).For all α-values, the value of the mean position of the partiles was onsistentwith the exat value of 0. For example, for α = 0.05 the averaged mean valuefrom 25 runs was -1.53 nm. Aordingly, the fous will be on the seond quantityneessary to haraterize Gaussian-distributions, this is the standard deviation σ.To haraterize the dependeny of σ on α, simulations for both initial values with

N = 105 were performed, where eah simulation was repeated 25 times. Additionally,random walk-simulations of the same system with δt adjusted to the orresponding
α-value by Equation (3.57) were also performed.To illustrate the statistial e�ets, the standard deviation from the position of100,000 partiles randomly distributed aording to ̺2 (f. Equation (4.15)) werealso omputed. This experiment was repeated 10 times. The orresponding errorbar of the standard deviation is also shown in Figure 4.14.As one an easily see from Figure 4.14, the outomes of COAST-simulations always97



4 Test Simulations

Figure 4.15: Charaterization of the run time behavior of COAST dependent on the numberof partiles N . The left �gure shows for α = 0.01 and α = 0.05 the depen-dene of the run time from the modeling level used: Γ-fration is the portion ofevaluations done by Gaussian-distributions. In the right �gure, the run timebehavior of COAST (α = 0.05) is ompared with the run time behavior of ran-dom walk-simulations with idential time steps. y and z are least mean square�ts to the run times of random walk-simulations (y) or COAST-simulations(z) respetively.showed a similar auray as the results of the random walk-simulations. Further-more, the mean values of both simulations were always within the error bar of thevalue omputed from the plaement of the partiles aording to the exat distribu-tion (f. Figure 4.14). Hene, in this ase, COAST led to quite aurate simulationresults.As a next step, let us haraterize the run time behavior of COAST dependenton the number of partiles N . To this aim, COAST-simulations for α = 0.01 and
α = 0.05 with initial ondition ̺1 were onsidered and ompared with random walk-simulations of the same system. The results are shown in Figure 4.15, whih inludestwo diagrams: The left diagram shows the run times of the COAST-simulationstogether with the frations of transition numbers omputed by the modeling level
Γ, whih means the desription by Gaussian-distributions (f. Equation (3.59)).whereas the right diagram ontains a omparison between the run times of theCOAST-simulations for α = 0.05 and the run times of the random walk-simulations.It an be seen from the left diagram in Figure 4.15 that, for both α = 0.01, the runtime of the COAST-simulation is maximal if about 2/3 of the transition numbers areomputed by modeling level Γ. For larger portions of Γ & ∆, the run time beomessmaller and onverges to a onstant value. Similar observations an be found forother α-values.98



4.2 Test Simulations Regarding COAST's Extension to Di�usionTo desribe this asymptoti run time behavior quantitatively, a least mean square�t to the run times of the COAST-simulations with α = 0.05 for N > 105 wereperformed, whih resulted in the funtion z(N) = (−1 · 10−7 N + 46.97) s. For om-parison: A least mean square �t to the run time of the random walk-simulationsled to the �t urve y(N) = (7 · 10−9 N2 + 0.0033N + 0.05) s, whih is also shownin the right diagram in Figure 4.15. Aordingly, for N = 106, the run time of therandom walk-simulations is about three hours, whih is an enormous di�erene tothe 18 seonds of COAST.Di�usion with a linear external fore Additionally, three-seonds-simulations ofthe Smoluhowski-equation with external fore
f(x) := −k x with k = 10−7 kg

s2 (4.16)in the simulation interval to [−1000 nm, +1000 nm] were investigated. As initialvalues, the uniform distribution
̺2(x, 0) :=

N

2000 nm (4.17)was hosen.This results in the implementation for N = 100000 and α = 0.01 in 197 volumeelements with a width of ∆x = 1 · 10−8m and 507 partiles in eah volume elementand 628 in the enter. The solution of the Smoluhowski-equation with linear externalfore f = −k x is given by [Shulten and Kosztin, 1999℄:
̺2(x, t) =

∫ +1000nm

−1000nm
p(x|y; t) ̺2(y, 0) dy , (4.18)where

p(x|y; t) :=
√

k
2 π kB T (1−s2(t))

exp
(

− k ( x−y s(t))2

2 kB T (1−s2(t))

) with s(t) := e−
k t
γ .(4.19)It follows that after three seonds the system has reahed its state of equilibrium,whih is given by a Gaussian-distribution with a mean value of 0 and a standard-deviation

√

kB T

k
= 202.8nm . (4.20)To assess the auray of COAST-simulations, the standard deviation of the dis-tributions at the end of the simulations were ompared with the standard deviationof the positions of one hundred thousand partiles randomly loated over the ther-modynami equilibrium distribution given by 99



4 Test Simulations

Figure 4.16: The error bar of the standard deviations for the 25 COAST-simulations and25 random walk-simulations of the di�usion system with linear fore (f. Equa-tion (4.16)) dependent on α, where, for all α, the random walk is based on thesame time steps as COAST. The bold and the dotted lines orrespond to theerror bar of the standard deviation alulated from the position of 100000 par-tiles randomly loated over the thermodynami equilibrium distribution (f.Equation (4.21)).t=5s; D=1 · 10−13 m2

s
; k=1 · 10−7 kg

s2 ; R=100nm; N=100000; 25 repetitions
ω(x) :=

√

k

2 kB T π
e

−k x2

2 kB T , (4.21)whih oinides with Equation (4.19) in the limit t→∞.As an be seen from Figure 4.16, the mean values from COAST-simulations lie for
α ≤ 0.075 always within the error bar of the value derived from the thermodynamiequilibrium distribution. Furthermore, for all α ≤ 0.1, the COAST-results deviateless than 1% from the averaged values of the thermodynami equilibrium, so thatthe COAST-results are found to oinide with the exat results.4.2.2 Kramer's Transition State TheoryOne of the most prominent appliations of di�usion models is the predition of de-ay rates for hemial bindings by Kramers' transition state theory [Kramers, 1940,100



4.2 Test Simulations Regarding COAST's Extension to Di�usion

Figure 4.17: The potential used for the simulation of Kramers theory and the orrespondingthermodynami equilibrium distribution. a and b are the minimum and theloal maximum of the potential, where b re�ets the transition between bindedand dissoiated state.Hänggi et al., 1990℄. The basi idea of this theory is to desribe the state of a mole-ule by a single (reation) oordinate x, where the time-evolution of this oordinateis desribed by a Langevin-equation in the strong frition limit (i.e. the fritionalfore is muh larger than the fore of inertia). x ∈]−∞, b[ orresponds to an existingbond, where x > b re�ets a dissoiated moleule. Thus, the moleule is protetedagainst dissoiation by a potential U , whih has its loal maximum at b (f. Figure4.17).Furthermore, a = 0 is the minimum U for x ∈] − ∞, b[. Thus, Kramer's theorypredits that, in thermodynamis equilibrium, the deay rate of this model is givenby
r = c · e− U‡

kB T , (4.22)where U ‡ := U(b)− U(a) is the height of the potential barrier and where c dependsonly on the frition oe�ient and on the urvatures of the potential, but not ontemperature T .In this setion, simulations of the transitions of partiles over suh a potentialbarrier for di�erent temperatures are presented, where COAST is used with α = 0.05.The aim of these simulations is to test if COAST is able to reprodue the results ofKramers theory.Eah simulation was started with N := 106 partiles, whih were distributed a-ording to the the thermal equilibrium of this system. More spei�ally, the proba-bility distribution of partiles is given by 101



4 Test Simulations

Figure 4.18: Kramers-Theory: The left piture shows the number of transitions for aCOAST-simulation (α := 0.05) at 20 K. The �gure to the right displays theresult of 10 independent runs in the temperature span of 20K to 30K.
ω(x, k) :=

√

k

2 kB T π
e

−k · x2

2 kB T ∆x , (4.23)a frition oe�ient 1 γ = 3.45165 · 10−9 Ns
m

and a potential
U :=

k · x2

2
(k := 10−7 kg

s2 ) . (4.24)Furthermore, it is assumed that the dissoiation ours at b = 250 nm, so that thepotential height U ‡ was given by
U‡

kB
= U(250 nm)−U(0 nm)

kB
= 226.34 K (4.25)Let N(t) be the expeted number of partiles after time t, where N0 = N(0) is theinitial value. If there exists any time-onstant transition rate r, then one obtains:

N(t) = N0 e−r t ⇔ r t = − ln(N(t)/N0) . (4.26)Aordingly, the quantity − ln(N(t)/N0) was measured in eah simulation, so thatthe transition rate r ould be determined as the gradient of this straight line. InFigure 4.18, this is shown for a COAST-simulation (α = 0.05) at 20 K. This proedurewas performed for T=20, 21, 22, ..., 30 K, where for every T the simulation wasrepeated ten times. The simulations have been best aording to the theory for lowtemperatures. Therefore simulations just above 0K would have been ideal, but the1The frition oe�ient γ and the di�usion oe�ient D are onneted by γ = kB T
D

this resultsin D = 1 10−13 for T=25K102



4.2 Test Simulations Regarding COAST's Extension to Di�usionomputational e�ort inreased dramatially so the area around 20K was hosen as aompromise.Figure 4.18 illustrates how ln(r(T )) responds to hanges in T−1. Partiularly, aleast mean square �t was performed to the urve, whih resulted in
ln(r) = −222.02 K 1

T
+ 1.38 . (4.27)For omparison, the predition of Kramers theory (f. Equation (4.22)) is

ln(r) = −U‡

kB

1
T

+ ln(c) = −226.34 K 1
T

+ ln(c) . (4.28)Hene, the COAST-simulation (α = 0.05) was able to reprodue the predition ofKramers theory within 1.9 %.4.2.3 Linear Di�usionThis setion applies COAST to a ommon biophysial problem and desribes how aonentration gradient reahes the equilibrium by linear di�usion. This proess anbe desribed by Fik's Seond Law of di�usion:
(

∂c

∂t

)

x

= D

(

∂2c

∂x2

) (4.29)D is assumed to be independent from the onentration of the substrate  andtherefore from the loation of the partiles. We further assume the initial onditionto be c = c0 in the interval [-∞,0℄ and c = 0 in ℄0,∞℄. Thus, the solution forEquation (4.29) is
c(x0, t) =

c0

2
[1− φ(u)] with u =

x

2
√

Dt
(4.30)

φ(u) is the so alled error funtion
φ(u) =

2√
π

u∫

0

e
−x2

4Dt (4.31)with this the quotient c/c0 an be formulated as following
c(x, t)

c0

=
1

2
[1− φ(u)] (4.32)In Figure 4.19 one an observe how well the theoretial urve of the gradientafter the timespan of t=16d mathes with the simulations done with COAST. The103



4 Test Simulations

Figure 4.19: Linear Di�usion: D=2.9 · 10−6 cm2

s , t=16d=1382400s, δx=1m, α=0.05theoretial urve is limited to the left and right side by the limited amount of valuestabled for the error funtion. This problem did not our as a positive side e�et forthe appliation of COAST.4.3 General Tehnial Considerations4.3.1 Run time analysesIn this hapter several time depending simulations have been disussed. To obtainthe most aurate results all simulations should have been run on the same systemunder exatly the same onditions without the in�uene of any ounter proesses.This is not the ase for the simulations performed here. Usually the tasks weretransfered to a luster of omputers and proessors and it has been up to this gridto hoose an appropriate mahine. However, due to the fat that most simulationruns took several hours and by that taking muh more time than the usual ounterproesses ourring. I am positively onvined that on an average the measuredrun times are omparable. Very short simulations have been performed on an IBMnotebook with an Intel Pentium III entral proessing unit running on 700Mhz and768Mb of memory using the Windows2000 operating system.104



4.3 General Tehnial Considerations4.3.2 Used Software
COAST was implemented in JAVA 1.4 using the integrated development environ-ment elipse in the version 3.0, whih is freely available via internet. To make theproess of implementation easier I hose the programming language o�ered byMatlabin the Version 6.5 to apply COAST to di�usion proesses.

105



5 Disussion and ConlusionAfter outlining the task of e�iently modeling ellular proesses in the introdution, Igave an overview on existing strategies for simulating reation and di�usion proessesin the seond hapter. In hapter three I introdued with the Controllable Approxi-mative Stohasti Reation Algorithm a hybrid algorithm for simulating reation anddi�usion. After setting one error parameter α, COAST adjusts itself aording to thedevelopment of the system. Its three modeling levels are used to be as aurate asneessary and as fast as possible. In the last hapter I have presented the appliationof COAST to a variety of problems related to reation and di�usion.COAST was able to show its reliability and auray for reation and di�usionproesses for di�erent settings of α. In this last hapter I will sum up my �ndingsand disuss COAST for the bakground of existing tools available and the possibilitieso�ered by siene.5.1 Re�eting on COASTGood algorithms have four ommon features: they are fast, aurate, simple toimplement, and they an be applied without too muh knowledge of the details ofthe basi methods and onepts. In this setion, I will disuss how the COntrollableApproximative STohasti reation algorithm (COAST) ful�lls these riteria.The runtime behavior of COAST in the simulations was omposed of two di�erentparameter ranges; one range, in whih the First Reation Method (FRM)-like model-ing level Σ dominates, and one in whih mainly the regimes by Gaussian-distributions(Γ) or by deterministi reation kinetis (∆) were used.If Σ was predominantly used, the runtime of COAST was nearly idential to theruntime of the FRM, on the ontrary I found for higher partile numbers qualita-tive di�erenes between the runtime behaviors of COAST and the FRM. If the totalnumber of partiles N in the system was large enough so that Γ and ∆ were predom-inantly used, then the runtime of COAST inreased with Na with 0 ≤ a ≤ 1. Theruntime of FRM inreased with N b, where 1 ≤ b ≤ 2 (f. Setion 4.1.1). Sine the τ -leap method showed a similar behavior to the FRM, we an onlude that COAST isfast in omparison to the FRM and the τ -leap method. This an be easily explainedby the length of a single time step and the amount of random numbers generated;for the FRM, the mean length of a time step is proportional to N−1
A for �rst orderreations and proportional to N−2

A (f. Table 2.3) for seond order reations [Gille-spie, 1977℄, so that the quantity of random numbers is proportional to NA and N2
A,106



5.1 Re�eting on COASTrespetively. For the τ -leap method and COAST, the length of the time steps, or the
τ -leaps, are proportional to N−1

A for seond order reations, but independent from
NA for �rst order reations (f. Equation (3.22)).However, for eah time step or τ -leap, the evaluation of a Poisson-distributionin the τ -leap method requires1 a quantity of random numbers proportional to theexpeted number of reations, or equivalently to the number of partiles. Whereasthe evaluation of a Gaussian-distribution an always be performed by generating asingle random number [Box and Muller, 1958℄.In ontrast, an optimization of the τ -leap method would require a method forevaluating the Poisson-distribution with omputational osts independent from thepartile number. The only method to my knowledge is the approah of Ahrens andDieter [1982℄, who approximated Poisson-distributions for large partile numbers byusing a Gaussian-distribution. However, this is equivalent to replaing the Poisson-distribution in the τ -leap method by the the modeling level Γ of COAST, with theexeption that COAST is based on probabilities that are more realisti for the longtime steps used in both algorithms.As mentioned above, the runtime for both modeling levels Γ and ∆ always inreaseswith the same exponent of n. In Setion 4.1.1 I was able to show for a single reationhannel, that ∆ redues the runtime of simulations by about 10% as ompared with Γ.Negleting �utuations by using deterministi reation kinetis ∆ leads to additionalinauraies. Thus, it is quite di�ult to globally answer the question if one shoulduse ∆, or if one should redue COAST to the two other modeling levels Σ and Γ.Instead, it is reommended to introdue an option in the implementation of COAST ,so that the user an adjust this aording to the needs of the given system.To hek the auray of COAST, I onsidered systems with relatively small num-bers of partiles: the initial values were 20,000 for A+B ⇋ C and A+B ⇋ 2 C, 35,000for the Oregonator (f. Setion 4.1.2), and 2 for the Ciradian lok (f. Setion4.1.3). Note that the inauraies of COAST derease for larger partile numbers,beause the approximation of binomial-distributions by Gaussian-distributions im-proves. That is why the usage of relatively small systems (f. Setion 4.1.1) is thebest test for the reliability of COAST. In all these systems, the values of the COAST-simulations with error parameter α ≤ 0.05 oinided with the orresponding valuesof the FRM-simulations within 1%, exept for the period of the Ciradian Clok.As a result, I onlude that COAST is a fast and aurate algorithm, not onlyfor elementary systems with smooth dynamis, but also for omplex systems suhas the Oregonator and the Ciradian Clok. Here, a �omplex system� refers tomultiple time-sale systems with rapidly and strongly �utuating partile numbers.Another de�nition of a �omplex system� refers to the fat that some of the substratesontribute to a large number of di�erent reation hannels. It is worth noting that in1The implementation I used in my simulations has been Cellware [Dhar et al., 2005℄, it uses therejetion method. 107



5 Disussion and Conlusionthis ase, the ritial number of reations lµ (f. Equation (3.24)), and thus the lengthof the time steps is redued, so that the auray remains onstant. Aordingly, onean observe that the results for the Oregonator and the Ciradian Clok, where apart of the substrates ontributes to several di�erent reation hannels, are no lessaurate than for the simple models. Furthermore, for every �xed set of reationhannels, the exponential dependeny of the runtime from the partile number is nothanged by the redution of the time steps. Thus, COAST also works aurately fora seond kind of omplex systems, namely systems in whih substrates ontribute tolarge number of reation hannels.Furthermore, COAST is quite simple to implement and its usage does not re-quire a deep insight into its foundations. It is reommended users perform the �rstCOAST-simulation of their system with error ontrol parameter α = 0.05 and usageof modeling level ∆. This has led to quite aurate results without too long run timesfor all simulations performed so far.It should be mentioned, that it is suboptimal to run COAST with α=0, sine thenthe algorithm requires the same amount of random numbers like the FRM, but hasa larger omputational overhead than the FRM, whih should be used then instead.For systems omposed of many reation hannels, it would be of ourse helpful toredue the number of omputations neessary for the determination of the lengthof the time-steps and the suession of the evaluations. As a summary of theseonsiderations, COAST an be onsidered as a good reation algorithm in the sensedesribed at the beginning of this hapter.5.2 The Adoption of COAST to Di�usionThe aim of Chapter 3.4 was the modi�ation of COAST towards an e�ient algorithmfor the simulation of thermal motions of partiles. The starting point of COAST isthe Smoluhowski-equation [Smoluhowski, 1917℄, whih is a di�usion-model basedon two essential approximations. The �rst approximation is the strong frition limit,whih is a good approximation if the moment of inertia of the partiles is smallompared to the fores ating on the partiles. The other approximation is thatthe interations between the desribed substrates are onsidered as muh smallerthan the interations between the desribed substrates and their environment (ellompartments, water,...), whih results in a linear di�usion model. Obviously, thisseond approximation an always be applied if the onentration of the desribedsubstrates is low enough.A related problem to this is, how good is our knowledge about the ell struture.This is not a limitation of the algorithm but a problem of modeling itself. Theommon piture of the ell as a wet spae with some organelles and some �oatingenzymes is far from reality. Luby-Phelps et al. [1986℄ was able to show in experimentsusing ��uoresene reovery after photobleahing� (FRAP), that the struture of the108



5.2 The Adoption of COAST to Di�usionytoplasm has a deep impat on di�usion. It is a well known fat that di�usionoe�ients are usually measured for enzymes in vitro and so there is a big di�erenebetween these results and the real values in vivo and therefore the usability of thelisted in vitro values for simulations is very limited. Luby-Phelps also lari�ed that,on average, the visosity of the ytoplasm is four times as high as the one of water.Even more she found that the di�usibility of maromoleules is limited by their size.This is due to strutural barriers within the ytoplasm. There are three types of �l-aments, whih are made responsible for this: F-atin, mirotubules and intermediate�laments, and an assortment of aessory proteins that ross-link these �laments.They leave a pore size of about 300 to 400Å. Knowing the ellular struture it ispossible to formulate a fore�eld for the di�usion of the partiles so COAST wouldbe able to handle this problem, sine this is a question of input. However, so far ourknowledge in this area is very limited.The situation beomes even more ompliated if one onsiders that not only thesize of the di�using protein is responsible for the ytoplasmi di�usion oe�ient, butthe struture of that protein also has an e�et [Luby-Phelps, 2000℄. Hydrophobi do-mains and ionizable surfae groups in�uene the mobility of proteins signi�antly.This implies that the di�usion oe�ient is not a onstant, but rather depends onthe surroundings. Consequently one would have to model the whole ellular stru-ture as well. Again, with detailed information, I am onvined this an be done, butthe problem is the generation of reliable data. Luby-Phelbs points out that someinvestigators of ellular di�usion have ome to the onlusion that most enzymes areimmobilized by ellular struture, i.e., they are attahed to membranes or ytoskele-tal surfaes. In this ase one does not have to model di�usion for those enzymesanymore, but now the whereabouts of these enzymes beome important. One needsthe exat loalization within the ell. Even if the assumption of spatially �xed en-zymes annot be veri�ed, this demonstrates one of the basi dilemma modeling hasto get along with and this is �few information�.Aordingly, the Smoluhowski-equation annot possibly re�et all aspets of ther-mal motions in ells [Agutter et al., 1995℄, but is suitable in quite general senarios.On the other hand, it is quite likely that for many systems, the Smoluhowski-equation is the best di�usion model for whih simulations an be performed. Itshould be noted that if one does not use the �strong frition limit�, then one has toonsider double the number of dimensions, (these are positions and veloities), sothat, in a �rst approximation, the omputational osts are no longer proportional to
nd (strong frition limit) but proportional to n2d, where d is the number of dimensionsand n is the number of lattie points (or voxels) in eah diretion.Note that nonlinear di�usion orresponds to seond and higher order reations.Sine COAST allows one to treat all types of reations, a derivation of an algorithmfor nonlinear di�usion model from COAST an easily be done, where one an useanalogous estimations as presented here for the appliation of COAST to di�usion.109



5 Disussion and ConlusionHowever, in this ase, one annot use onstant time steps; one has to ompute theappropriate length of suh time steps for every simulation step (analogously to thereation version of COAST). As a result, the runtime would be nearly doubled andan appliation of parallel omputing to suh an algorithm for nonlinear di�usion ismuh more di�ult and less e�ient than for COAST. Hene, the appliation ofnonlinear di�usion models will not likely be possible in the generi ase.For the urrent simulation, a disrete version of the Smoluhowski-equation wasused, so that the thermal motions of partiles were identi�ed with jumps betweenadjaent lattie points (or analogously volume elements). This disrete di�usionmodel obviously looks quite di�erent than the Langevin-equation, from whih thedi�usion model was originally derived. Thus, to ahieve that the disrete di�usionmodel an be used as an adequate desription of the thermal motion of partiles,the onditions were imposed that the �rst (expetation) and the seond moment(variane) as well as the �ux of partiles of the disrete di�usion model is, up to
α · 100 % (α ∈ [0, 1]), in agreement with the values of of the Langevin-equation. Theserequirements led to a large part of the onditions for the disretization parameters.The other riteria were derived from the onstraint that the transition probabilitiesmust have positive values and that in every time step the hanges of partile numbersat eah lattie point must be small- at least on average.A disrete di�usion model allows a very natural interpretation of thermal motionin terms of hemial reations, by identifying transitions between adjaent lattiepoints as reation hannels. Due to the linearity of the di�usion model, all transitionsorrespond to �rst-order reations.The orrespondene between disrete di�usion model and hemial reation sys-tems makes it very natural to adapt an algorithm for the simulation of hemialreation systems to the needs of a disrete di�usion model. In this thesis, this adap-tion proess was performed for the COntrollable Approximative STohasti reation-algorithm (COAST).One important feature of COAST is its usage of three di�erent levels of model-ing: for small partile numbers an exat stohasti model, for intermediate partilenumbers an approximative stohasti model by Gaussian distributions, and for largepartile numbers deterministi reation kinetis. Thereby, the riteria for the appli-ation of the di�erent modeling levels are, as all errors due to used approximation,formulated dependently from one single error ontrol parameter α ∈ [0, 1], whihhelps one to easily �nd an optimal balane between auray and omputationale�ieny for eah individual system.This formulation dependently from a single ontrol parameter is, in general, alsoused in the adaption of COAST to linear di�usion � with the exeption that oneriterion inludes a seond parameter R, whih re�ets the spatial resolution of themodel. Howerver, the value of this seond parameter is also very easy to hoose, sothat the simple ontrollability of COAST is also given here.To test COAST, simulations of one-dimensional di�usion without external and with110



5.3 Combining Reation and Di�usion Algorithmslinear external fore were performed. In both ases, the deviations of the COAST-results from the exat values were always in the range of purely statistial errors,suggesting that COAST works pretty aurate for these models.On the other hand, COAST showed a muh more advantageous runtime behaviorfor intermediate and large partile numbers as ompared to random walk-simulations:The runtime of COAST was asymptotially independent from the partile number,whereas the runtime of random walk-simulations is asymptotially proportional to thenumber of partiles. Only for very small partile numbers, random walk-simulationsare faster than COAST. However, in this range, COAST is also quite fast, so thatthis disadvantage of COAST is not really problemati.To further support the redibility of COAST, the esape rates of partiles from aloal potential minimum (metastable state) over a potential barrier were omputedfrom COAST-simulations and ompared with the preditions from the well-knownKramers-theory [Kramers, 1940℄. The essential statement of the Kramers-theory isthat the logarithm of the esape rate is, up to a onstant term, given by U‡

kB T
, where

U ‡ is the height of the potential barrier. From the COAST-simulations (α = 0.05),a value for U ‡ was obtained, whih oinided with the orret value up to 1.9 %.Thus, the result was muh better than expeted by the hoie of the error ontrolparameter α.Throughout this thesis, all onsiderations were restrited to a one-dimensionalmodel. This restrition was used to simplify the notation. An appliation of thepresented methods to higher dimensions is analogously possible. However, one hasto take into onsideration that the omputational osts (of di�usion and of reation-di�usion models) are, as mentioned above, are proportional to nd. Although thepower of modern omputers is rapidly inreasing, a full 3D-desription of suh om-plex systems as biologial ells is not possible in the generi ase.5.3 Combining Reation and Di�usion Algorithms
Initialisationof time: t0 := 0 t0 := t0 +�tt0 < tsimt0 = tsimFor all substratessuessively: di�usionin [t0; t0 +�t[ For all lattie pointssuessively: reationsin [t0; t0 +�t[start end

Figure 5.1: Sheme of the module for reation-di�usion systems. The keywords `reation'and 'di�usion' mean the appliation of an arbitrary algorithm for reation- ordi�usion models. tsim is the duration of the whole simulation.As mentioned in the introdution, it an be very helpful to onsider reation anddi�usion in the same time interval suessively, beause this allows the subdivision111



5 Disussion and Conlusionof the system in independent subunits: For di�usion, the di�erent substrates an betreated independently, whereas for reations the di�erent lattie points are indepen-dent. Hene, one an use the algorithm illustrated in Figure 5.1.To avoid errors aused by the suessive treatment of reations and di�usion, onehas to use suitable onditioned probabilities. Analogously, to the treatment of thedi�erent diretions of thermal motions in COAST (f. Figure 3.8), one has to use thereation probabilities under the ondition that the partiles do not jump from onelattie point to an adjaent point in the same time interval. This orretion an, ina �rst approximation, be performed by replaing the reation onstants c [Gillespie,1977℄ by
c̃ :=







c
1−QA(i)

, for A→ P,
c

(1−QA(i)) (1−QB(i))
for A + B → P,

c
(1−QA(i)

)2 , for 2 A→ P ,where QS(i) := qS(i + 1|i) + qS(i − 1|i) is the total transition probability of thesubstrate S at a lattie-point i and P an arbitrary produt.A ruial point to note here, is the hoie of an appropriate value ∆t for the lengthof a time step in whih di�usion and reations an be treated suessively. A possiblehoie would be to ompute the times (f. Equation (3.57)):
∆tdiff := min{ τ̃A

2
| A ∈ S

}

= min{α kB T γA

f2
max(A)

, α (∆x)2

4 DA (1+α)
| A ∈ S

} (5.1)and ∆treac in whih all transition or reation probabilities respetively are smallerthan α and to de�ne
∆t := min{∆tdiff , ∆treac } . (5.2)In this ase, one an easily show that all errors due to the suessive treatment ofthermal motions and reations are of the order O(α2), so that the algorithm willwork quite aurately. But, on the other hand, if at any point the reation rate ofa single reation hannel or the di�usion rate of a single substrate is very large, onewould use this small ∆t for all transitions and reations so that the algorithm willwork very ine�iently. As a onsequene, the hoie of ∆t presented here is onlysuitable for reation-di�usion systems with similar reation and di�usion rates.5.4 Final ConlusionsIn the last setion, I presented a method to ombine COAST and its appliationto linear di�usion to an algorithm for the stohasti simulation of reation-di�usionmodels. Thereby, the ruial step is an appropriate hoie of the time step ∆t inwhih thermal motions and reations an be omputed suessively.In this thesis, I de�ned ∆t as the time span, in whih all hanges of probabilitiesfor reations and transitions are smaller than α. In this ase, one an easily show that112



5.4 Final Conlusionsthe errors are of the order of O(α2). On the other hand, one fast reation hannelis, thus, su�ient to use very small time steps for all reation hannels and all tran-sitions, so that this de�nition of ∆t an only be good if the ourring probabilitiesare not too inhomogeneous. For general systems, one has to look for better hoies.To justify suh hoies, however many test simulations will be neessary, so that adisussion of these hoies is beyond the view of the present study.COAST is the �rst hybrid algorithm, to my knowledge, that spans three di�erentregimes of modeling and, therefore, the whole spetrum of ourring partile amountsin the most e�ient way. All other algorithms (f. Table 3.3) only onsider smalland large partile numbers. COAST is the only algorithm designed for strongly�utuating systems overing a large variety of moleular abundanes, whih are likelyto our in signal transdution pathways. Sine intermediate partile numbers arethe most ommon senario, the idea of using a Gaussian distribution and reduingthe amount of random numbers is new in this sienti� �eld. So far the most e�ientstohasti algorithms in this area are derivatives of the τ -leap method. Here severalreations are allowed to take plae in one time step, but these are alulated bybinomial or Poisson-distributions; therefore for every reation ourring one randomnumber is used. COAST uses only one random number in a time step for one reation,this results in an enormous ut down of omputational e�ort.COAST, as an hybrid algorithm, has harateristis of deterministi and stohastiapproahes (f. Table 2.4). Small volumes have the resulting e�et that noise beomessigni�antly important (f. Setion 2.3.1). COAST pays respet to that, beause adereasing volume makes it more likely the stohasti Σ-regime is ativated.This is the most important advantage of COAST referring to implementation andusability. COAST is the only algorithm so far, that uses an intuitive error ontrolparameter α. Other algorithms (f. Setion 2.4.2 and Table 3.3) like the hybridmethods of Kiehl et al. [2004℄ or Haseltine [2002℄ demand a diret intervention by theuser to divide reations in �slow� and �fast� reations. Kiehl is treating reations withlow reation probabilities by the Next Reation Method and �fast� reations (reationswith high reation probabilities) by a deterministi approah, while Haseltine usesthe First Reation Method for the �slow� reations. Nevertheless, the user is the oneto do a �xed separation. If one of the reation hannels hanges during the proessfrom �slow� to �fast� there is now way to hange the setting.Therefore an automati division of the reation hannels in every time step is su-perior. The Maximum Time Step Method [Puhalka and Kierzek, 2004℄ is an examplefor these group of algorithms. It uses the Next Reation Method for single reationsand a tau-leap method for faster reations. Puhalka uses three parameters r, n and
κ. Only κ whih is the maximal time step, has an intuitive meaning. The other twovalues are supposed to be seleted �empirially�. On the other hand COAST is onlyusing one parameter α (for di�usion a spatial resolution is needed) that is de�ningthe auray of the results. This value de�ned by the user is in diret manner de�n-113



5 Disussion and Conlusioning the maximal allowed divergene between the experimental results and the exatvalues.In the experiments performed, COAST was able to show that its performane andauray is even better than expeted by the set error parameter α. COAST wasdesigned to be fast, therefore one has to make a ompromise presented in the form ofthe allowed error parameter. The runtime experiments were able to show that evena small α-value has a deeply positive impat on the speed of the alulations.COAST worked well for reation and di�usion problems. A next developing stepwould be a omprehensive model ombining the appliation of COAST to reationand to di�usion to model reation-di�usion systems in one dimension.Finally, I would like to address a topi that is a ruial aspet for modeling hemialproesses within ellular strutures. In the literature it is known as maromoleularrowding, moleular rowding and also as maromoleular on�nement [Chebotarevaet al., 2004℄. However, it is more aurately termed as the �exluded volume e�et�.Biohemial proesses in living systems our in media ontaining high onentrationsof maromoleules (50-400 mg/ml) [Ellis and Minton, 2003℄. The present moleulesare paked in suh a way that they do not leave enough spae for other moleules oftheir kind. This exluded volume is lost for these moleules. The theoretial aspetsof exluded volume on hemial reations has been disussed by Hall et al., Winzoret al. and others [Hall and Minton, 2003, Winzor and Wills, 1995℄. Crowding has aomplex e�et on the rate of biohemial reations. Simply put, as the ativity of aspei� partile in a rowded environment is inreased, the di�usibility is redued, andthe probability of two partiles meeting and reating dereases. Of ourse, the overallresult of these opposing fators depends on the nature of eah reation [Chebotarevaet al., 2004℄.So far we know the exluded volume e�et annot be negleted, even though theonsequenes are still the topi of present studies. Therefore, the only way to ur-rently model the exluded volume e�et is to model single moleules with a distintvolume and shape, whih is omputationally very ine�ient.As mentioned before, COAST was originally designed for diluted environments.Nevertheless, if a better understanding of the ellular proesses is known, a betteralgorithm based on COAST an be developed. To date, however, the urrent degreeof understanding is still not enough.I would like to �nish with a itation by Luby-Phelps [2000℄:�The potential impat of atual intraellular onditions on the kinetis, meha-nisms, and regulation of metabolism make it imperative to reexamine ontinuumdesriptions of ellular biohemistry that have been extrapolated from redutionistexperiments arried out in dilute solution.�Modeling relies on aurate information. Mathematial models an only be devel-oped on the base of reliable data. So far there is still a big leak of details on exatellular struture and the interations between all the parts of a ell. Only with114



5.4 Final Conlusionsbetter knowledge, more bakground information, and maybe a better approah onellular kinetis, an modeling approah reality.However, COAST provides a new and signi�ant step toward that goal.
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A Numerial solution of hemial di�erential equationsHere the solutions of the di�erential equations for basi hemial reations are de-rived. A,B,C and D are substrates. k and l are the deterministi veloity onstants.To simplify the writing in the equations S = [S], whih means that all speie-symbolsharaterize onentrations, and S0 is the initial onentration of a substrate.A.1 Bimoleular Reation; One Speie
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A.3 Bimoleular Reation; Two Speies (Part 1)A.3 Bimoleular Reation; Two Speies (Part 1)
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A Numerial solution of hemial di�erential equationsA.4 Bimoleular Reation; Two Speies (Part 2)
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A.4 Bimoleular Reation; Two Speies (Part 2)if t=0 ⇒ A = A0
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A Numerial solution of hemial di�erential equationsA.5 Bimoleular Reation; Two Speies (Part 3)
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B Belousov-Zhabotinsky ReationThis appendix inludes details on the Belousov-Zhabotinsky reation presented in Figure 4.5.B.1 The Composition� 0.50M sodiumbromate solution (NaBrO3)� 1.50M maloni aid (HOOCCH2COOH)� 5.00M sulphuri(VI) aid (H2SO4)� 0.30M sodiumbromide solution (NaBr)� 0.01M ferroin solutionB.2 Reation SystemI. 2Br− + BrO3
− + 3H+ + 3H2Mal → 3HBrMal + 3H2OII. BrO−

3 + 4 ferroin2+ + H2Mal + 5H+ → 4 ferriin3+ + HBrMal + 3H2OIII. 4 ferriin3+ + HBrMal + 2H2O → 4 ferroin2+ + HCOOH + 2CO2 + 5H+ + Br−IV. 3BrO−
3 + 5H2Mal + 3H+ → 3HBrMal + 2HCOOH + 4CO2 + 5H2OTable B.1: The hemial reations desribing the osillating system leading towardFigure 4.5

BrO3
− (bromate); H2Mal (maloni aid); HBrMal (bromomaloniaid); Br− (bromide); CO2 (arbondioxyde); H2O (water)
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B.3 Chemial Strutures of Ferroin and Brome Maloni AidB.3 Chemial Strutures of Ferroin and BromeMaloni Aid

Figure B.1: On the left one an see the red iron(II)-1,10-phenanthroline omplex
[Fe(C12H8N2)3]

2+ and on the right side bromomaloni aid.
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C.1 URL-List of Cellular SimulatorsC.1 URL-List of Cellular SimulatorsSimulator URLSmartCell http://smartell.embl.de/NEURON www.neuron.yale.eduGEPASI http://www.gepasi.org/StohSim www.anat.am.a.uk/ ompell/StohSim.htmlMesoRD http://mesord.soureforge.net/MCell www.mell.nl.salk.edu/GENESIS www.genesis-sim.org/GENESIS/VirtualCell www.nram.uh.edu/Table C.1: Internet Representation of mentioned Simulators
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