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Introduction

In this thesis we consider time dependent reaction diffusion systems that have mul-
tiple pulse or front solutions. We develop a new numerical method that decomposes
the solutions into their single pulses or fronts and in addition one computes the
speeds and the positions of the single pulses and fronts. We show that the method
is numerically feasible and prove stability results for the multiple pulse and front
solutions if the distance of the pulses or fronts is sufficiently large and they interact
only through their small tails.

The underlying nonlinear time dependent reaction diffusion system in one space
dimension for functions u(x,t) € R™ is of the form

U = Atgy + f(u), x€R,t>0, u(x,0)=uo(z), z€R, (1)

where the diffusion matrix A € R™™ is assumed to be positive definite and
f:R™ — R™ is assumed to be smooth.

Reaction diffusion equations describe dynamical processes in chemistry, physics and
biology. A prominent example is the class of equations that describe propagation
in nerve axons, see [15] or [18|.

Traveling waves (w, ¢) are solutions of the reaction diffusion equation (1) of the
form
u(z, 1) = w(r — ct), (2)

i.e. the solution has the profile w and moves with the velocity ¢ in space, see the
left picture of Figure 1 for an illustration.

Traveling waves describe natural, ubiquitous phenomena in excitable media. They
arise in a lot of natural applied phenomena within the nonlinear sciences, for in-
stance, population dynamics in mathematical biology, see [25], in chemical reac-
tions, cf. [38] or in the context of combustion, see [34].

On the mathematical side there is a well developed stability theory for traveling
waves, see [30], [38].
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Figure 1: Front moving in the Nagumo-equation, u; = u,, + u(l — u)(u — a) with
a = 0.25 and result of single freezing method applied to the front.

Consider a finite computational domain, traveling wave solutions will always
leave such a finite computational domain. If this domain is too small, the solution of
the parabolic equation (1) may leave the domain before the steady profile appears.
This problem was the main motivation behind the freezing method developed in
[5], [6]. Let us first briefly describe this method: The main idea is to separate the
shape dynamics from the dynamics of the position of the traveling wave. Let us
write the solution of (1) in the following form u(x,t) = v(x — g(t),t), where g(t)
denotes the position of the profile v at the time ¢. Inserting the ansatz into (1)
yields the following partial differential algebraic equation system (PDAE)

vy = Avge + pvg + f(),  v(-,0) = u, (3)
0=1(v,g), (4)

where u(t) = g:(t),9(0) = 0 and (4) denotes a phase condition defined by a func-
tional ¢(v, g). The extra phase condition is added to compensate the extra degree
of freedom introduced by the new variable g. In practice the choice of the phase
condition can be derived from minimization or orthogonality principles, see [5]. A
numerical solution v(x, t) of the Nagumo-equation (see Chapter 2) computed using
this method is displayed in the right picture of Figure 1 for the Nagumo-equation.
A traveling wave (w, c) is a stationary solution of the system (3) - (4) if the traveling
wave satisfies the phase condition (4). The freezing method computes a comoving
coordinate frame in which traveling waves become stationary. In fact, it is shown
in [36] and [37] that the traveling wave (w,c) becomes an asymptotically stable
steady state for the PDAE (3) - (4) if the linearization of (1) at the wave satisfies
certain conditions.
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This thesis deals with nonlinear time dependent reaction diffusion systems in
one space dimension that have multipulse or multifront solutions, i.e. solutions that
look like a superposition of several single waves traveling at different speeds, see
Figure 2. In order to have a general term we use the expression "multistructures"
to describe multifronts or multipulses.

w1 ‘ Wa wy ‘ Wa

1 | C2 C1 | C2

Figure 2: Multipulse and multifront

Recently the study of these interactions of pulses and fronts created a lot of
attention and there exist quite a few analytical, numerical and experimental stud-
ies, see e.g. [40], [31], [10], [11], [13], [41], [19], [26] and [32]. In these investigations
one finds different types of interaction called weak and strong interaction. In the
theoretical part of this thesis we consider the case of weak interaction. We investi-
gate the interaction of localized pulses or fronts when their distance is sufficiently
large and they interact only through their small tails, i.e. the pulses or fronts are
well separated in space during a certain interval of time. If the pulses or fronts are
close to each other we call the phenomenon strong interaction, see e.g. [26], they
interact strongly and may annihilate or reflect after collision. In the applications
of this thesis we consider both kinds of interactions.

In the following we give a more technical outline of the topics of this thesis. Let

us assume that the system (1) has several traveling waves w;, j = 1,..., N with dif-
ferent speeds ¢;, 7 = 1,...,N and assume that the left limits
lim, .o wj(x) := w; and the right limits lim, .. w;(x) := w; of the traveling

waves w; satisfy w;-r = w;,, for j =1,...,N — 1. Consequently, if we suitably
shift the traveling waves in space they fit together after summation and we obtain
a multistructure.

To handle such multistructure solutions, we develop a numerical method which
extends the freezing method to a ’"decompose and freeze method’” and furthermore
we provide an analysis for the case of weak interaction. If the multistructure so-
lutions travel at different speeds, the freezing method can freeze only one pulse
or front of the superposition. A typical example is shown in Figure 3. An initial

perturbation creates two pulses traveling in opposite directions. The right figure
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Figure 3: Double pulse in the V-component of the FitzZHugh-Nagumo-equation,
Vi=Veu+V—=3V3—R R =¢(V+a—bR),a=0.7b=08,¢=0.08 and result
of single freezing applied to the double pulse.

shows the result of the single freezing method applied to this double pulse. Again
the initial hump splits into two traveling components. It is shown in Figure 3 that
in this application the single freezing method can only freeze the right pulse, i.e.
the right pulse stabilizes and the left pulse leaves the computational domain.

The idea of the ’decompose and freeze method’ is to decompose the solution
of the Cauchy problem (1) into a finite superposition of single profiles v; that
asymptotically assume the shape of shifted single traveling waves. We assume the
decomposition of the solution of (1) to be of the form

Z (= g; (1), 1), (5)

where the new variables g; denote the time-dependent position of the patterns v;.
This idea goes back to [4].

We insert (5) into (1), substitute p; = g;;. Let u be given by (5), then u solves (1)
provided (vi,...,Un, g1, 9N, l1, - - -, py) solves the coupled PDAE system for
j=1,..., N of the form

Uyt :Avj7££+/J/jvj7£+Fj7‘(v17""UN’glﬂ"'7gN7Nj)7 UJ(O) :U?a (6)
9ie =t,  9;(0) = g7, (7)
0 =1; (v, g5)- (8)

For details on the computation of the nonlinear and nonlocal coupling term F}, we
refer to Chapter 1, in particular equation (1.15). It is important to note that the
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coupling term F; depends on all patterns vy, all positions g; and on the velocity p;.
Note that there are differences in the nonlinear term F; used in (6) when compared
with [4].

The decomposed system (6) - (8) uses a partition of unity and is not unique. Again
we add extra phase conditions (8) to make the solution of (6), (7) unique. We ex-
pect that the profiles v; converge towards shifted traveling waves and that the
superposition of the shifted traveling waves satisfies (1) in an asymptotic sense.

Assuming that the velocities are ordered according to ¢; < ... < ¢y, we intro-
duce the notion of joint asymptotic stability for the system (w;,¢;),j =1,..., N of
traveling waves in some exponentially weighted Sobolev space. The idea of using
exponentially weighted spaces is a common tool for handling stability problems on
the infinite axis, see e.g. [31], [40], [42], [21].

The main result of this thesis is a stability theorem for the PDAE system (6) -
(8) for the case of weak interaction of multistructures. If the traveling waves interact
only weakly, i.e. if ¢ < ... < g% and the minimal distance min;—; _n_1|gj+1 — 9;|
is sufficiently large, and if the initial functions v? are close enough to w; (up to a
shift), then there exists a solution (v;, g, it;) of the system of PDAEs (6) - (8) for
all times. Moreover, the profiles v; converge exponentially fast towards a suitable

shift of w; in the exponentially weighted space, see Theorem 1.13.

Figure 4 shows the result of a corresponding numerical computation obtained
from (6) - (8), when applied to the FitzHugh-Nagumo-system from Figure 3. The
frozen profiles V; in the comoving frames are displayed as functions of time. In the
moment of separation of the original hump, see Figure 3, small additional pulses
appear that vanish and the profiles V; stabilize very rapidly.

As a consequence of our theorem the superposition (5) of the shifted profiles
is a solution of (1) that converges as ¢ — oo to a superposition of the shifted
wave profiles in some exponentially weighted space (Corollary 1.15). Results of
this type has been proven for the case of multipulses in [40]. Note, however, that
the analytical approach taken in [40] uses explicit knowledge of the single waves
and does not directly lead to an implementable form. Our main concern here is
with stability and numerical solution of the extended PDAEs (6) - (8) rather than
the given system (1).

The main difficulty in the proof consists of the proper analysis of the nonlinear
and nonlocal coupling terms F; and the side constraints (8). Furthermore, we use
well known stability techniques like semigroup theory and the variation of constants
formula, see e.g. [17], [23]. Essentially we use spectral properties of and resolvent
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Figure 4: Splitting of the V' component into two pulses in the FitzHugh-Nagumo-
equations V; =V, +V — 2V = R R, =e(V +a—bR), a=0.7,b = 0.8, = 0.08,
evolution of left and right traveling pulses V; and V5.

estimates for the operators
Aju = Auge + cjue + D f (w;)u

which we obtain by linearizing (3) at the traveling wave w;. Another important
property is the fact that the eigenvalue zero of A;, which is always present, is re-
moved by the phase condition.

In Chapter 1 we present in detail the '"decompose and freeze method’ and we
introduce the notion of joint asymptotic stability. Based on these notions we for-
mulate the stability theorem which is the main theorem of this thesis (Theorem
1.13).

In Chapter 2 we demonstrate the '"decompose and freeze method’ on three exam-
ples of weak interactions: a multifront solution for the Nagumo-equation (2.8), a
multipulse solution for the FitzHugh-Nagumo-equations (2.10) - (2.11), and the
three component system (2.12) - (2.14) introduced in [32].

In Chapter 3 we prove the stability theorem. A particular difficulty arises from
the fact that the nonlinear and nonlocal PDAE system has to be linearized and
delicate estimates are needed that use the shape and location of the bump function
that occurs in the decomposition.

Chapter 4 contains more numerical computations. The reaction diffusion sys-
tems considered there are the Nagumo-equation (2.8) and the FitzHugh-Nagumo-
equations (2.10) - (2.11). Some of the examples show that the 'decompose and
freeze method’ gives also interesting results for the strong interaction case.
Appendix A contains more technical estimates for the nonlinear coupling terms.
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Moreover, Appendix A summarizes some functional analytic notions and results,
facts about exponential dichotomies and exponentially weighted spaces. Important
notation used in this thesis is listed in the Appendix B.

In summary, this thesis brings together the idea of separating the shape
dynamics from the underlying group dynamics with the stability analysis of multi-
pulse and multifront solutions of reaction diffusion systems. Our main result shows
feasibility of the decomposition method in the case of weak interaction and con-
tains the study of existence and stability of multiple pulse and front solutions if
the single traveling pulses or fronts are well separated in space during a certain
interval of time.
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Chapter 1

Stability of multifronts and
multipulses

We consider nonlinear time dependent reaction diffusion systems in one space di-
mension that have multipulse or multifront solutions, i.e. solutions that look like
a superposition of several waves.

To handle multipulse or multifront solutions, we develop a numerical method which
extends the freezing method for single traveling waves, see [5], to a "decompose and
freeze method’. The method separates the group dynamics from the shape dynam-
ics of the single pulses and fronts. The idea is to decompose the solution of the
Cauchy problem into a finite superposition of single profiles that asymptotically as-
sume the shape of suitably shifted single traveling waves. Each of the single waves
has its own moving coordinate frame. We derive a system of partial differential
algebraic equations (PDAESs) coupled by nonlinear and nonlocal terms.

We introduce the notion of joint asymptotic stability and present a stability theo-
rem for multipulse and multifront solutions which shows that the shifted traveling
waves are asymptotically stable solutions of the PDAE system. Furthermore, the
superposition of the profiles, when suitably shifted, converges towards the solution
of the parabolic system.

1.1 Decomposition of multifronts

Consider a parabolic system for a function u(z,t) € R™ on the real line
up = Atge + f(u), x€R >0, wu(z,0)=uy(z), z€R, (1.1)

where A € R"™™ is assumed to be positive definite and f : R” — R™ is assumed to
be sufficiently smooth.
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Assume that the system (1.1) has several traveling wave solutions (wj,c;),
j=1,...,N of the form

wj(z,t) =w;(v —cit), j=1,...,N (1.2)
traveling at different speeds ¢; with ¢; < ... < ¢y and with limiting behavior

w; = lim w;(€), w = lim w;(§). (1.3)

J §——00 J E—o0
We assume that the left and right limits of the single waves match in the sense that
w;-r:wj_ﬂ, j=1,...,N—1. (1.4)

Using this assumptions we want to patch these solutions together to multipulses and
multifronts. Recall that solutions of (1.1) that look like a superposition of several
possibly shifted waves traveling at different speeds are usually called multifronts
or multipulses depending on whether the limits at oo agree or disagree. To have
a general term we use the expression multistructures to describe multipulses or
multifronts. Figure 1.1 is an illustration of a multipulse and a multifront in the
case N =2, ¢; < 0 < ¢y satisfying the condition w;” = w, . Compare the Figure 2

in the Introduction, it has the same form, but in Figure 1.1 more details are given.

w1 Wa w1 n W2
W] = Wy
C1 C2 C1 C2
+ - + +
wyq Wy = Wy Wy Wy Wy

Figure 1.1: Multipulse and multifront

We consider the superposition

N
Wh(a,t) =Y aby(x — it — ky) (1.5)

j=1
for some k = (ki,...,ky) € RY, where we have subtracted left limits so that the

shifted profiles w;, defined by

0, j=1

w;7j227

(€)= wy(€) — @y, :{ (16)
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fit together upon summation, this is illustrated in Figure 1.2. Note that for some
¢ €Rands e {1,..., N} the superposition Zjvzl w; (&) can be equivalently written
as

N s—1 N
D i (€) =) (wi(€) —wi) +wi(€) + Y (wi(€) —wy). (1.7)
j=1 j=1 J=s+l1
Therefore, the superposition W* has the properties
N N N N
lim W"(x,t) = Zw;—Zw; =wy, lim Wk t) = Zw;r—ZwJ = w
T——00 = = T—00 P =
(1.8)
WO(z,t)
wi(x — ert) = Wi (z — ert) wa(x — cot)
C1 Ca

Figure 1.2: The modified profiles w;(z — ¢;t), c1 < 0 < ¢y

Remark 1.1. Notice that instead of the superposition W* we could also consider
the superposition

with
(1.9)

Again the w; fit together upon summation. This superposition Wk satisfies also

the properties lim,_, oo W¥(z,t) = wy,lim,_.o W¥*(x,t) = w);. Consequently, the

decomposition of the solution is not unique.
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We are interested in solutions wu(z,t) of (1.1) that asymptotically assume the
shape of W* for some k € RY. We follow an idea of [4] and we write the solution
u(z,t) of (1.1) in the following form

i@ —g;(t),1). (1.10)

HMZ

Here the function g; : R — R denotes the time-dependent position of the pattern
vj : Rx[0,00) — R™, (£,t) — v;(§,t). We develop a numerical method that
decomposes solutions of (1.1) into a finite superposition of functions v;(-,t), where
the functions v;(+,t) should approximate the shape of the shifted waves w; for large
times, we expect v;(-,t) to be constant outside a small region.

For the decomposition we use the idea of partition of unity. Let ¢ € C*(R,R)
be a positive bump function with its main mass located near zero.
We are interested in solutions of the form (1.10) and insert this into (1.1). We
suppress the arguments (z — g;(t),t) of v; and obtain

Uy = Z [Vt — Vjegit] = ZAU] ce + f(z k)
J=1 k=1
- 3 Av; p(- —g;(1) (N Uk)]
Z “ESN o a) kZ

o) (N e
+;Zg:190('—gk(t)) Z[f(k+ w) = floe+ k)])

N
= > ¢ — arlt = =
k=1
(1.11)
Note that the quotients
ez —g;(1))

I

ZIZ.CV:1 oz — gr(t))
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have non-vanishing denominators and form a time-dependent partition of unity.
We substitute { = x — ¢;(t) and p; = g¢;+ and obtain the following coupled
system for j=1,..., N, €R,t >0

V(€5 1) = Avjee(§,1) + v5e (€ D)y (8) + f(0(€, 1) + 0y )+

i o¢) [f (Z velE — gult) + gj<t>,t>)
o€ — grlt) + g,(1) L \imt (1.12)

M=

1

i

=Y f (k€ = get) + g5(8), ) + By
k=1

and the simple set of ODEs

gje = m;(t), j=1,...,N. (1.13)

Let uw be given by (1.10), then w is a solution of the parabolic system
u; = Augy, + f(u) provided the set v, 1, 95,7 = 1,..., N solves the system (1.12),
(1.13).

For simplicity of notation, we write v = (vy,...,on), ¢ = (91,---,9N),
= (p1,...,un) and we abbreviate the nonlinear terms in (1.12) as follows
Fj(v,9)(§,t) = f(v; (&) + wy) (1.14)
N
+Q7"(¢) [f (ka@iﬁ-”, ) Zf (voelel”, 6+ ) |, (1.15)
k=1
§
QRO = P =t (1.16)

Y (€l

Note 0 < Q7(§) < 1 forall { € R,j=1,...,N. The important point to note here
is that the nonlinear terms F}(v, g) couple the single functions vy, k =1,..., N in
a nonlocal fashion.

Remark 1.2. Note the difference in the nonlinear term F; used in (1.15) when
compared with [4]. The calculation in (1.11) is a modification to the calculation
in [4], Section 2. The numerical computations in Chapter 2 show that the modified
method works just as well as the method proposed in []].

The system will be completed by initial conditions for the functions v;, g;

v;(0) =2}, g;(0)=g), j=1,....N (1.17)
that satisfy u’(z) = Zjvzl v)(x — ¢),z € R, see [4]. Further we have to add

phase conditions that compensate the extra degrees of freedom introduced by the
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new variables p;. There are different possibilities for deriving appropriate phase
conditions, see [5]. We use the fixed phase condition, i.e. the v; should stay as
close as possible to given reference functions v;,j = 1,...,N. Consequently we
require the distance function d;(g) = ||v;(-,t) — 0;(- — g)||z2 to achieve its minimum
at g = 0 for all times. If we differentiate the distance with respect to g we obtain
the N different phase conditions

<Uj_@j7@j,£> :O, jzl,...,N, (118)
where (-, -) denotes the £, inner-product, i.e. (u,v) := [, u(&)Tv(£)d¢.
In summary, the coupled PDAE system (1.12), (1.13) together with (1.18) as
phase conditions and the initial conditions (1.17) has to be solved.
1.2 Notations and definitions - part 1

In this section we introduce some notations and definitions.

Given a norm || - ||, we define for s = (s1,...,sn)
lsll := e 15l
Let 0 < 7 < 0o, X Banach space, ||-||. norm, we define for a function w : [0,7] — X
[|ullZ = sup [Ju(®)]].. (1.19)
0<t<

We consider functions in the Banach spaces Lo(R, R™), H}(R, R™) and H?*(R, R™).
In the following we omit the spaces R, R™ and simply write Lo, H', H?.

We use exponentially weighted spaces and semigroup theory to handle stability
problems of the system (1.12), (1.13), (1.17), (1.18) on the infinite axis. Define for
b > 0 the weight function 6, by

e + et

; (1.20)

0,(§) = cosh(bg) =
Additionally we define weighted spaces together with weighted norms
Loy = {ulbyu € Lo}, ||ullz,, = ||6bul|c.,

HLb = {u|bpu € 7—[1}, [Jul 3o = ||Opu||3

and analogously

H2Y = {ulOyu € HY,  |ullpes = ||0sul|re-
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The norms satisfy the following estimates

lulle, <Hlulleyy  Mlullrn <|lullpre andJlulle < luflpe.. (1.21)

~

For abbreviation, we write w = (wy, ..., wx), W = (Wy,...,Wx),c = (C1,...,CN).
Let 0 >0 and u = (uy,...,u,) € (HY)YN r=(r,...;r8), A= (A1, ..., Ay) € RY
with u; € HY, j =1,..., N, we define the ball around zero with radius ¢ by

Boy(0) = {(u, 1, )« [[ullae + [Ir] + [N < 0, wj € HM,rj, 0 € Rj=1,... N}
) (1.22)
Let a € R,0 € [0,27) and define the punctured sector S,y C C by

S.o={s€C:|arg(s+a) <0,s+# —a}
and the open sector S, 9 C C by
Sao={s€C:|arg(s+a)| <0,s # —a}.
We recall the definition of a sectorial operator in a Banach space X, see Figure 1.3.

Definition 1.3 (sectorial operator in X). Let X be a Banach space and let A :
D(A) — X be a linear operator on X. A is called sectorial if

1. A is closed and densely defined,

2. there exists 0 € (5,7), M > 1,a € R such that the sector Sa79 1s contained in
the resolvent set p(A) and the following estimate holds

|(s] —A) , Vs € Sue.

<
|s +a

1.3 The main stability theorem and joint asymp-
totic stability

Before we formulate the main result of this chapter, we formulate assumptions on
the function f and on the traveling waves (w, c).

Hypothesis 1.4. Assume f € C*(R™,R™) and A > 0, i.e. (Av,v) > 0 for all
veER™v#£DO.



16 Chapter 1. Stability of multifronts and multipulses

Figure 1.3: Sectorial operator A with sector S,y C p(A)

Hypothesis 1.5. Let (w,c) be a set of traveling waves with w; € CZ,j =1,...,N
for the system (1.1) satisfying the conditions (1.2) - (1.4). Let v;,5 =1,..., N be
given reference functions with 0; —w; € H*,j = 1,..., N such that

0 = (wj —0j, Djg)- (1.23)

and
(wje,Dje) #0 Vj=1,...,N.

The assumption 0; — w; € H? means that w; — (0; + w;) € H? and that the
functions v; and w; have the same limiting behavior. Furthermore, for w;: € Lo
we conclude 0,¢ € Lo. In summary, it follows that the integral (1.23) exists.

Hypothesis 1.6. Let (w,c) be a set of traveling waves with w; € CZ,j =1,...,N
that satisfy for some constants Cy,n >0 and j =1,..., N the following estimates

1 < Ccp<...<cpn, (
|w; () = w/|| < Cpe™, €eRy (1.25
Jw;(€) —wy || < Cpe™, e R (

(

lw; e + llwjee ()Nl + llwyeee(©)Il < Cre™™l, € € R
wi =wg.,, k=1,...,N—-1 (1.28

Remark 1.7. Instead of exponential decay it is sufficient to have w; € C} and
w;(§) — w;«c as & — +oo for j = 1,...,N. Together with Hypothesis 1.9 below
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this will imply exponential decay (1.25) - (1.27), see Remark 3.19 following Lemma
3.18.

Since the functions w; for j = 1,..., N are traveling waves, they solve the
following stationary equation
0 = Awjge + cjwje + f(w;). (1.29)

The linearization of the right hand side of (1.29) at the traveling wave profile
(wy, ¢;) is given by
Aj?] = A’Uég + ijg + Cj?] (130)
with
Bj=c;il, Cj(§) = Df(w;(§))-

Note that C; converges as £ — £00 to
Jm C(6) = Df(wy) =: Cju.

Using Hypotheses 1.4 and 1.6 we obtain that there exist constants B,C' > 0 such
that for all £ € R,7 =1,..., N holds

1Bl < B, lIC;(9)ll < C. (1.31)

Let j € {1,..., N}, the function w;(-+¢), ¢ € R is also a solution of (1.29): We
insert w;(-+¢) into (1.29) and differentiate w.r.t. ¢ at ¢ = 0, then we conclude that
the function w;j¢ is in the null space of A;. The following eigenvalue and spectral
conditions are the main assumptions on the operator A;,j = 1,..., N to obtain a
stability result, compare e.g. [6], [40], [13]:

Hypothesis 1.8 (Eigenvalue condition). For j =1,..., N the function wj¢ spans
the null space of A; in Ly and the eigenvalue 0 of A; is algebraically simple. There
exists K > 0 such that for all j =1 ..., N there is no other isolated eigenvalue s of
the operators A; of finite multiplicity with Rs > —k.

Hypothesis 1.9 (Spectral condition). There exists o,k > 0 such that for s with
Rs > —FK the solutions X of the quadratic eigenvalue problems

det(NA+AB; +Cj 4 —sI) =0 (1.32)
for some j =1,... N satisfy: |R\ > 0.

The spectral condition 1.9 ensures that the essential spectrum o.ss(A;) is con-
tained in the left half plane, compare [36], Theorem 1.3 or [17], Chapter 5, Theorem
A.2. From Hypothesis 1.8 we obtain that the point spectrum of Aj,7 =1,..., N,
i.e. all isolated eigenvalues of finite multiplicity, except for the eigenvalue 0 have
real part less than —k < 0.

We impose some conditions on the bump function ¢:
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Hypothesis 1.10. There exist constants 0 < C,,, Cy, Cy1,Cg and 3 > 0 such that
the function ¢ € C*(R,R) satisfies

0<p@)<C, VEER, (1.33)
Coe I < p(¢) < Cre M, ¢ eR. (1.34)

and the derivative of the bump function satisfies
0/ (&)] < Cge K £ eR. (1.35)

A typical function ¢ that satisfies (1.33) - (1.35) is ¢(&) = sech(0¢) = =
for some small > 0. The numerical experiments (see Chapter 2) will show that
non-smooth bump functions such as (&) = e 7€l 3 > 0 work equally well.

We assume that the initial conditions satisfy ¢¥ < ... < ¢% and we denote the
minimal distance by G° = mingeqi . n_1y |ghy — 9h-

77777

Recall the elements @, in (1.9) and the coupled PDAE system (1.12), (1.13),
(1.17), (1.18) for j=1,...,N and t > 0, € R

vii(€: 1) =Avjee(E, 1) + (€, D ()+f(vg(€ t) + ;) + Q5 ()

-[f(Z ;f) Zf( (00 +a0) [, vi(6,0) =1,

- (1.36)

95:(t) =p;(t),  9;(0) = g, (1.37)
0 =(v;(t) — 05, 0z¢)- (1.38)

Before we present the main Stability Theorem 1.13, we introduce the following
definition of a solution of the coupled PDAE system (1.36) - (1.38). Note that this
is a modified version of the solution concept used in [23].

Definition 1.11. Let b > 0,7 € (0, 00| be given. For j =1,... N let A; be secto-
rial operators in Loy, with D(A;) = H**, ; € Lan € R and
ki [0,7) x (HY")N x RN x R — Lap. Then (v,g,p) : [0,7) — (HY)N x RN x RN
is called a solution of the system
Uj,t(t) :Ajvj(t)+kj<t’v(t)ug(t)7ﬂj(t))7 Uj(o) :U? S Hva J=1...,N,
954(t) = (1), g;(0) = g,
nj = (¥, 0;(1))

in [0, 7) if the following conditions are satisfied for each j =1,... N:
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1 ki(v(s),9(4), 15(4)) £ [0,7) — Loy is continuous,

2. vj: [0,7) = H" is continuous, v;(t) € H*" fort € (0,7) and v;(0) = v,

3. gj is continuously differentiable in (0,7), g;.(t) = p;(t) fort € (0,7) and
9;(0) = g7,
4. pj is continuous in [0,7),

5. 0j4(t) € Loy exists and v;4(t) = Njv;(t) + k;(t,v(t), g(t), p;(t)) fort € (0,7),

6. (@Ej,vj(t» =n; for allt € [0, 7).
To characterize the long time behavior of the solution of the coupled PDAE
system (1.36) - (1.38) we give the following definition:

Definition 1.12 (Joint asymptotic stability). The waves (w,c) are called jointly

asymptotically stable with respect to the norm || -||;1s in the Banach space H?, if

for each € > 0 there exists G°,§ > 0 such that for each solution (v, g, 1) of (1.36)

- (1.38) with v;(-,0) € H**,j=1,...,N, ¢ < ... < g% and

(-, 0) = @[l + [|1(0) — ¢]| <6,
there exist phase shifts T, € R,j =1,..., N such that for all j =1,...,N
[0 (t) = jl[re + [ (8) — 5] +1g;(8) — et =g —=7j| < e VE=>0
and
10 (8) = Wjllrro + |1y (8) — ¢ + 1g5(t) — ¢t — g — 751 — 0 as t — oo.
We can now formulate the following main stability result:

Theorem 1.13 (Stability Theorem). Assume that Hypotheses 1.4 and 1.10 hold.

Let (w, ¢) be a set of traveling waves that satisfies Hypotheses 1.5, 1.6, 1.8 and 1.9.

Then the waves (w, ¢) are jointly asymptotically stable with respect to ||-||3.0. More

precisely, there exist b > 0 and G°,6 > 0 such that for (v°, ¢°) with

[0 — @] |p0 <6, (bje,v) —;) =0, j=1,....N
and
N<gh<...<gh, G <-4, j#i,

there ezists a unique solution (v(t),g(t), u(t)) of (1.36) - (1.38) on [0,00) and

the following exponential estimate is satisfied for some C,v,v > 0,7; € R and

j=1,...,N,t >0

. ,l, . GO

[10(8) =5l lsro + 19 () = cjt = g5 =751+ |y (1) — ¢ < Ce " ([[0° — @] [y +77F).

(1.39)
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Remark 1.14.

1. An important point to note here is that the estimates in the H"® norm are
stronger than in the Sobolev space H' norm. To obtain the estimate (1.39)
we have to assume that the differences of the initial functions and the shifted
traveling waves lie in the weighted space HP.

2. The proof will show how the constants b, v,~,C" depend on the parameters 3,n
and on the operator A, 7 =1,...,N.

The goal of this thesis is to show that the '"decompose and freeze method’ can be
implemented numerically and to show that the single profiles assume asymptotically
the shape of the suitably shifted traveling waves w;. We emphasize that the stability
theorem yields estimates for each component of the superposition W defined by
(1.5). As a by-product we obtain the result of the following corollary:

Corollary 1.15. Let the assumptions of Theorem 1.13 hold.

There exist b > 0 and G°,§ > 0 such that that u(t), given by (1.10), is a solution
of the PDE u; = Aug, + f(u) with initial data u(z,0) = u’(z) := Z;VZI V3 (x — g))
on [0,00) if (v°, ¢°) satisfies

00 = ||y <6, (D00 — 1)) =0, j=1,..., N

and
9B <gy<...<gy, G'<|g—gl, j#i

Furthermore, there exists T = (11, ...,7n5) € RY such that the following estimate is
satisfied for some C,v >0 andt >0

[u(t) = W (1)l < Ce ™ (|[o° = bllps + 7). (1.40)

Remark 1.16. A result of this type (1.40) for a multipulse consisting of two pulses
has been proven in [40], Theorem 4. The proof in [40] uses a decomposition that
requires explicit knowledge of the single waves w;. Therefore, it cannot be employed
directly for numerical computations. We emphasize that the PDAFE approach pro-
posed here aims at a system of equations which can be solved numerically and which
provides access to all single waves that form the multistructure by superposition.



Chapter 2

Numerical applications - Weak
interaction

We test the ’"decompose and freeze method’ on several well known examples which
possess multipulse and multifront solutions for the weak interaction case, where the
single pulses or fronts are well separated in space and interact only though their
small tails. We illustrate our results on the Nagumo-equation 20|, the FitzHugh-
Nagumo-equations [24], and the three component system introduced by [16].

We consider the case of a multipulse or multifront consisting of two profiles, i.e.
N = 2. We recall the coupled PDAE system (1.36) - (1.38) for the case N = 2 and
t >0, €R, we set dg := g, — g1 and obtain

v =Avige +oreim + fon) + m
w [f (014 va(- = dg)) = f(v1) = floa(- —dg) +@3)] . vi(0) =}, (2.1)
Vo =AvVs e + Vagpia + (Vg + 105 ) + m

 [f (- +dg) +va) = f(or1(- +dg)) — floa +w3)],  v2(0) = vy,
9ie =ty 9;(0)=gj, j=1.2
0 =(vj —0j,95¢), Jj=12

We solve the system (2.1) - (2.4) on a finite spatial computational domain
[—L, L] and use Neumann boundary conditions, i.e. vj¢(£L) = 0. Since we con-
sider the system (2.1) - (2.4) on a finite interval, we cannot expect the (v;, ;)
to converge towards the (w;, ¢;) how it was shown in the Stability Theorem 1.13.
Instead we assume that the (v, p1;) converge to an approximation (w; ,, ¢; ) which
solve the following system of stationary boundary value problems on the
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interval [—L, L]

0 :A(wj,I)éf + Cj,L(UA)j,L)g + f(wj,L + ﬁ]g_)
0 =R(j,(—L), w;,.(L)) (2.6)

for j = 1,..., N, where (2.6) denotes the boundary condition for the stationary
boundary value problem.

We proceed similarly to the numerical applications of [4] to solve (2.1) - (2.4).
We use the finite element package Comsol Multiphysics?® [1] with second order
elements in space. In time we apply a BDF method with the absolute tolerance
10~* and relative tolerance 1072.

0

In the examples below we will specify the initial values v, g?. The initial values

will be add up such that the multipulse or multifront starts with the initial function

u(z) = Zv;?(g; —g)), z€eR (2.7)

Jj=1

As reference functions 0; we use the initial functions v;). Recall that we have nonlo-
cal terms in the nonlinearity f. Therefore we will interpolate them inside the com-
putational domain [—L, L] and extrapolate them outside this interval with the con-
stant boundary values v;(£L). We use the bump function ¢(z) = 2=, 7 € R
with = 0.5. We will demonstrate that certain other bump functions may be used

as well and that the computation gives quite similar results.

2.1 The Nagumo-equation

One standard example of a traveling wave is the Nagumo-equation (cf. [20])
1
Up = Ugy +u(l —u)(u—a), u(z,t)ER, z€R, t>0, a€ <O, 5) . (2:8)

An explicit traveling wave solution uy(z,t) = wy(z — ¢1t) connecting w; = 0 and

w] =1 is given by

w@)= (1+e%) ", a=-v2 G _ a>

and a traveling wave solution uy(x,t) = wy(z — cot) connecting wy, = 1 and wy = 0
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is given by

In the following example we choose a = 0.25 and the computational domain [—L, L]
with L = 50. We set initial conditions ¢} = —50, gy = 50 and spatial step size
AE=0.1.

Figure 2.1 shows the superposition

ur(x,t) = vi(x — g1(t),t) + va(x — golt), t) (2.9)

together with the velocities pj,7 = 1,2 as a function of time. The darker shaded
domains show the intervals g;(¢) + [—-L, L], where v; contributes to the superpo-
sition. By a slight abuse of notation we will call ¢g; + [—L, L] the support of the
function v;. The lighter shaded domains of the superposition u;, indicate that ex-
trapolation with the boundary values of v; has been used. The single frozen profiles
vj,j = 1,2 are displayed in Figure 2.2.

—
---

X 0 100 0ot 0 20 40 60 80 100 120
t

Figure 2.1: Fronts moving in opposite directions in the Nagumo-equation, evolution
of superposition u; and velocities 1, s.

As a result we see that after a short time the frozen profiles v; stabilize and the
superposition uy, gets a broadening plateau moving with opposite velocities p; to
the left and to the right. The velocities u; converge after a short transient period.
In this computation we have used Neumann boundary conditions. A simulation
with Dirichlet boundary conditions, i.e. v(—L) = 0, v;(L) = 1, va(—L) = 0,
ve(L) = —1, yields almost identical results.
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Figure 2.2: Fronts moving in opposite directions in the Nagumo-equation, evolution
of frozen vy, vs.

Let u; be the numerical solution of the Nagumo-equation (2.8) on a sufficiently
large interval. We compare the superposition u; with the solution u;. The com-
parison in absolute values is displayed in the left picture of Figure 2.3 and in the
Lo-norm, i.e. dist = [|lug(,-,t) — w(-,t)||z,, as function of time is pictured in the
right picture. We see in the left picture that the two solutions almost agree ex-
cept for a small domain near the single fronts. The right picture shows that the
Lo-distance becomes constant which is caused by a single phase shift. As explained
in [4] the condition (w; — ¥;,0;¢)z, = 0 is not satisfied, but there exists §; € R
with (w;(- — 0;) — 0j,0j¢)c, = 0. The traveling waves (w,;(- — 9,), ¢;) satisfy the
assumption of the Stability Theorem 1.13, therefore we obtain the convergence

|[i;(- = 8;) —v; (-, )|, — 0, |cj — pi| — 0ast — oo.

0.6

0.5

0.4r

200 -100 0 100 0 20 40 60 80 100 120
X t

Figure 2.3: Evolution of the absolute-error and the Ls-error for a double front
moving in opposite directions in the Nagumo-equation.
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In order to investigate the influence of the chosen bump function ¢, we perform
the above numerical computations with two alternative bump functions
(&) = exp(—0.5[¢]) and @(€) = exp(—0.05£%), see Figure 2.4.

1
—_— ¥
¢
0.8 — %
0.61 1
0.4r ]
0.2r ]
0 |
-50 0 50

X

Figure 2.4: Different bump functions ¢(§) = sech(0.5¢), ¢(§) = exp(—0.5[£|) and
P(&) = exp(—0.05¢2).

Note that ¢ and ¢ do not satisfy all conditions of Hypothesis 1.10. The results
nearly agree with the ones pictured in Figures 2.1 and 2.2. Figure 2.5 compares
the evolution of the time derivatives of ||u||z, and ||| in a logarithmic scale for
the different bump functions. (In the following we omit the Lo-symbol and write
||ug|| instead of ||u||z,). All time derivatives decay exponentially fast and the rate
of decay is almost identical.
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Figure 2.5: Fronts moving in opposite direction in the Nagumo-equation: ||u,|
and ||u|| (logarithmic scale) for different bump functions ¢(&) = sech(0.5¢) (left),

2(€) = exp(—0.5[¢]) (right) and @(£) = exp(—0.05€?) (bottom).
2.2 FitzHugh-Nagumo-equations

As our second example choose the the well-known FitzHugh-Nagumo-equations,
see [15],

1
Vt=Vm+V—§V3—R, (2.10)
R, =~V +a—bR). (2.11)

The component V is called the activator and the component R is called the in-
hibitor. The FitzHugh-Nagumo-equations model nerve conduction. We use the
parameters a = 0.7,b = 0.8,y = 0.08 for which traveling multipulse solution exist,
see [24]. Note that in the inhibitor component the diffusion term is missing, i.e. the
FitzHugh-Nagumo-equations is a mixed parabolic-hyperbolic system, so the theory
does not apply.
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For the numerical computation we use the interval [—L, L] with L = 70, relative
tolerance 107% and absolute tolerance 2% 10~7. We set the initial data ¢{ = ¢J = 0,
the spatial step size A¢ = 0.2 and employ Neumann boundary conditions.

-=-fl2

6r

0 50 100 150

Figure 2.6: Splitting of a single pulse into a two-pulses in the FitzHugh-Nagumo-
equations, evolution of V;, and of the velocities pq; and ps.

Figure 2.6 shows the time evolution of the first component of the sum
ur, = (Vg, Rp)" defined by (2.9), and the evolution of the velocities u;,j = 1,2.
The initial profile of the component V, is shown in the figure, the one of the R,
component is given by the stationary value R = —0.62426. The initial pulse splits
into two pulses moving with opposite velocities p; and ps to the left and to the
right. As in Figure 2.1 the darker shaded domains show the supports g; + [—L, L]
of the profiles V; and V5 and the lighter shaded domains show the extrapolated
boundary values of V; and V5. The velocities converge very fast resulting in oppo-
site values p1; = —po and py converges to —0.8118.

In Figure 2.7, the frozen profiles V; in the comoving frame are displayed as
functions of time. We see that at the moment of separation small additional pulses
appear which decay and vanish in time. When these small pulses have decayed the
profiles Vj}, 7 = 1,2 rapidly become stationary.
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Figure 2.7: Splitting of the V; component into a two-pulses in the FitzHugh-
Nagumo-equations, evolution of the frozen pulses V; and V5.

5
10

ST

0 50 100 150 200 250 300 350
t

Figure 2.8: Splitting of a single pulse into a two-pulses in the FitzHugh-Nagumo-
equations: rates of decay ||(V;, Ry)"|| and ||| (logarithmic scale).

Figure 2.8 shows the rate of decay of the solution u;, and of the velocities p; in
a logarithmic scale. Although the time derivatives ||u|| := ||(V;, Rr)T|| and ||u]|
do not decay exponentially fast we conclude that the profiles v; = (V}, R;) and the
velocities p1; become stationary as we have already seen in Figure 2.7 and 2.6.
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Figure 2.9: Splitting of a single pulse into a two-pulses in the FitzHugh-Nagumo-
equations, difference of the the superposition uy = (Vz, Ry)T and the two-pulse
computed on a large domain.

In contrast to the Nagumo example above, the absolute value-distance and
Lo-distance between the superposition uy, = (Vz, Rr)?T and the solution of the
FitzHugh-Nagumo-equations (2.10) - (2.11) solved on a large domain grows and
a slight drift remains. The discussion in [4]| suggests that this behavior is caused
by the mixed-parabolic-hyperbolic character of system (2.10) - (2.11). If we add a
small diffusion term in (2.11), e.g. 0.01R,,, the system becomes parabolic.
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Figure 2.10: Splitting of a single pulse into a two-pulses in the FitzHugh-
Nagumo-equations with extra diffusion term, difference of the the superposition
ug = (V, Ry)T and the two-pulse computed on a large domain.

In Figure 2.10, the absolute value-distance and the Lo-distance between the
superposition uy, and the solution of the modified FitzHugh-Nagumo system (2.10)
- (2.11) is displayed. The solutions agree except for a single domain close to the
pulses and the Lo-distance becomes almost constant except for very small variation
caused by the numerical discretization.
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2.3 Three-component-system

As a third numerical example we consider the three-component system introduced
in [32] and [16]. This system is a paradigm model, because it supports a rich variety
of front, pulse and spot dynamics. There are extensive numerical simulations of this
system, see [26], [7]. In addition, there is a theory on its qualitative behavior based
on a singular perturbation analysis, see [11], [12]. We consider the three-component
system

U, = DyUsy + F(U) — K3V — kaZ + k1, (2.12)
7V = DyVie + U — V, (2.13)
07, = DyZue+U —Z (2.14)

in one space dimension. The system consists of the activator component U (x,t) and
the two inhibitor components V (z,t), Z(x,t) with (z,t) € RxR". The nonlinearity
is defined as F'(U) = AU — U? with A\ > 0. The diffusion coefficients Dy, Dy, Dy
are positive, the positive constants 7,6 denote the ratio of the characteristic times
of both inhibitors. The parameter x; has arbitrary sign and denotes the constant
source term, whereas k3, k4 are positive and denote the reaction rates.

2.3.1 Scaling of the three-component-system

We consider the case 7 = . The three-component-system (2.12) - (2.14) may be
interpreted as a modulated FitzHugh-Nagumo system coupled with a second in-
hibitor component. In [12] the system is scaled to obtain the singular perturbation
form, here we perform a different scaling that reveals similarities of this system to
the FitzHugh-Nagumo system (2.10) - (2.11):
Let F(U) = AU — U® with A = 35 and define

1
—K133 1 D D D
o = 1,%3 aﬁ: 1,%4 y = I{137b: 77:_?751:—‘/’52: Z‘
337Dy 337Dy K3 + K4 7Dy 33 TDy 7Dy

We introduce the following scaling

P Tt (07,2 (i S )
and obtain the system
Ui = Uss + 0 — 30° oV — 57, (2.15)
Vi = 61Vaz + 90U +va — bV, (2.16)

Zi = 6,Visz + U +va — ybZ. (2.17)
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For the sake of readability we suppress the tilde-symbols.

For the numerical computation we use the parameters a« = § = 0.5,
01 = 0.1,05 = 0.6 and a = 0.7,b = 0.8, = 0.08. We consider the finite inter-
val [—L, L] with L = 300 and spatial step size A = 0.5, fix the absolute tolerance
21077 and the relative tolerance 1079, use the initial data ¢¥ = ¢9 = 0 and impose
Neumann boundary conditions.

Figure 2.11 shows the time evolution of the components U, and V}, of the sum
ur, = (U, Vi, Zp)T defined by (2.9). Analogously, Figure 2.12 shows the time
evolution of the component Z; of the sum u;, = (U, Vy, Z L)T and the evolution of
the velocities pj,j = 1,2 as functions of time. The initial profile of the component
U is a little hump while the profiles of the V' and the Z components are initially
set to their stationary value V = Z = —0.62426. The initial pulse splits into a
two-pulse moving with opposite velocities p1 and puo to the left and to the right. As
in Figure 2.1 the darker shaded domains show the moving profiles and the lighter
shaded domains show the extrapolated boundary values.

Figure 2.11: Two pulses moving in opposite directions in the three-component-
system, evolution of Uy, and V.

The following Figures 2.13, 2.14 and 2.15 display the frozen profiles U;, V; and
Z; in their comoving frame as function of time. In Figure 2.12 we see at the mo-
ment of separation that for all profiles small additional pulses appear which travel
toward the boundary and decay. At the time around 450 this very small decay-
ing pulses have reached the boundary and disappear. Therefore, all the profiles
become stationary, also the the velocities converge very fast resulting in opposite
values (1 = —po.
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Figure 2.12: Two pulses moving in opposite directions in the three-component-
system, evolution of Z; and of the velocities p; and ps.
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Figure 2.13: Two pulses moving in opposite directions in the three-component-
system, evolution of the frozen pulses U; and Us,.
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150

X 200 0 t t o -200

Figure 2.14: Two pulses moving in opposite directions in the three-component-
system, evolution of the frozen pulses V; and V5.
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Figure 2.15: Two pulses moving in opposite directions in the three-component-
system, evolution of the frozen pulses Z; and Z,.



34 Chapter 2. Numerical applications - Weak interaction

As displayed in the left picture of Figure 2.16 we observe that on the logarithmic
scale the time derivatives ||u|| := ||(Uy, Vi, Z;)T|| and ||us]| of the solution decay to
some very small value in the initial phase. Remember that small additional pulses
appear and travel toward the boundary for a certain time, in this time interval
the time derivatives stay constant and after that period the time derivatives decay
again. Therefore, we see that the single profiles of the system (2.15) - (2.17)
obtained from the decompose and freeze method stabilize. In contrast, we consider
the solution w; := (U;, Vi, Z;)T of the system (2.15) - (2.17) solved on a large domain.
We see that the time derivative ||uy|| := |[(Us, Vis, Zi4)" || on the logarithmic scale
converges to a fixed positive value, compare the right picture of Figure 2.16.

5

10 | e
— 0 —
. —
10 |
04
10 |
5
10
10"
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1 0-15 i i i i
0 100 200 300 400 500 600 0 200 400 600 800

t t

Figure 2.16: Two pulses moving in opposite directions in the three-component-
system, rates of decay ||(Ut, Vi, Zi)T|| and ||ue|| (on logarithmic scale) (left), rates
of decay ||(Uy+, VitZir|| (on logarithmic scale) (right).
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Figure 2.17: Two pulses moving in opposite directions in the three-component-
system, difference of the the superposition u;, = (U, Vs, Z1)" and the two-pulse
computed on a large domain.

The left picture of Figure 2.17 shows the absolute value-distance of the su-
perposition uy = (Up,Vy, Zr)T and the solution v, := (U, V}, Z;)T of the three-
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component-system (2.12) - (2.14) solved on a large domain. The solutions agree
except for small regions. Again we see the influence of the small additional pulses
that travel toward the boundary. In the right picture of Figure 2.17 we consider
the Lo-difference of uy, = (U, Vy, Zp)" and v, := (U, V}, Z;)T. In the initial phase
the the L,-difference seems to become constant. There is a little jump in the
Lo-difference in the moment when the small additional pulses have reached the
boundary (¢ & 450). Finally the Lo-difference becomes almost constant, only some
small variations remain. We believe that these variations are due to interpolation
and boundary effects.
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Chapter 3

Proof of the main stability theorem

The proof of the Stability Theorem 1.13 falls naturally into four parts. First we
use the transformation u; = v; — vy, r;(t) = g;(t) — ¢t — g7, A\; = p; — ¢; and get
an equivalent formulation of the coupled system (1.36) - (1.38) which has zero as
a stable solution. It is then sufficient to consider this system and we restate the
Stability Theorem. In the next step we estimate the nonlinear coupling terms with
respect to exponentially weighted norms. Third we consider the corresponding lin-
ear decoupled system. Using semigroup theory, the variation of constants formula
we show resolvent estimates in the exponentially weighted spaces. In the last step
we apply the estimates of the nonlinear terms to the coupled system and show
existence, uniqueness and stability of the solution.

3.1 Transformation of nonlinear systems

We want to control small perturbations of the shifted traveling waves w;, the
velocities ¢; and the time-dependent position c;t + g;-) for j = 1,...,N. For this
reason we introduce new variables

uj:vj—wj,rj(t):gj(t)—cjt—g?,)\j:uj—cj, j:]_,‘..,N, tZO (31)

Using this transformation we get an equivalent formulation of (1.36) - (1.38),
namely

w;e(t) = Ay () + X (O wje + hy(tu(t), r(t), (1), u;(0) = o) — ;= ul,
3.9)
3.3)

3.4)

ri:(t) = Aj(t), 7;(0) =0,
0 = (¢ u;(t))

~—~~ /—~ /.0
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for j=1,...,N and t > 0, the argument £ is suppressed. Here A; is the lineariza-
tion defined by (1.30) and

hy(t,u(t), r(t), \j(t)) =Xj(t)ue(t) — f(wy) 4 fu;(t) +w;) — D f(w;)u;(t)

N
+Q t)+ct+g° f Z(uk+wk)( ()+ct+g t))
0 N 0
. Qg(t)+ct+g Zf- ((uk + wk)<.7l;§t)+ct+g ,t))

again the argument ¢ is suppressed. Using (1.29) we find that the equations (3.2)
and (1.36) are equivalent, since

Njui(t) + N (wje + hy(t,u(t), r(t), A;(t))
=(A+ ;I + Df(wy))(v(t) — ;) + (i (t) — cj)vje(t) — flw;) + f(v(t) +@5)

D)oy 0) — ) + Q4 [ <ka , >> S ICA)

We will show that zero is a jointly asymptotically stable solution of the PDAE
system (3.2) - (3.4). Using such a result, the transformation (3.1) and the assump-
tions on the set (w,c) of traveling waves in Hypotheses 1.5 and 1.6, we conclude
that (w, c) is a jointly asymptotically stable solution of the PDAE system (1.36) -
(1.38). Therefore, Stability Theorem 1.13 follows from:

Theorem 3.1. Let the assumptions of Theorem 1.13 hold.
Then zero is a jointly stable stationary solution of the PDAE system (3.2) - (3.4).
More precisely, there exists b > 0 and G°,6 > 0 such that for ¢° with

R<G<...<dgy G <lg—gl J#i
and for u® with

[0l < 0, (Dje,u) =0, j=1,...,N
there exists a unique solution (u(t),r(t), A(t)) of (3.2) - (3.4) on [0,00) which
satisfies the following exponential estimates for some C,v,v > 0,7; € R and

j=1,...,N,t>0

s (B)llpare + ry(t) = 5] + (X (D] < Ce (1] lprs + e7D). (3.5)
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To examine the nonlinear terms of the coupled nonlinear system (3.2) - (3.4)
we rewrite the system as

wja(t) = Aju;(t) + Aj(wye + E;(t,u()) + T5(8) + N;(t, u(t), r(t), (1)), (3.6)

raat) = Ag(0), (3.7)
0 = (Bje,u;(t)) (3.8)

for y =1,..., N with initial condition
ui(0) =uj, 75(0)=0, j=1...,N (3.9)

where we will explain the terms £, T}, N; term by term. Therefore we define for
j=1,..., N the operator G; : R"™ — R™ as

Gi(w) = f (Z ) =S (). (3.10)

Furthermore, for t € Ry, u: R x R — R¥™, r: Ry — RY and ¢ € R we define

A O
Gyt () = QG ( |u(g 0] ). (3.11)
Let the time-dependent function 7° : Ry — RY be given by r%(t) = ct + ¢°, then
we define the operators E;, Tj, N; for t € Ry, u: R — RY™ r: R — R" and \; € R
by

(N A -
ﬂ(t) = Gj(t>w77'0) (313)

and
N;(t,u,r, Ap) =f(u; +w;) = f(w;) — Df(wj)u; + Ajue
+ Gt u+w,r+1°) — Gt w,r°) — E;(t, u). (3.14)
Note that for £ € R the term E;(t,u)(§) is linear in u and equal to

Bt u)(6) = [Q?W [Df (Z wk@zi-*‘”)) - Df (wS@z;*g“))] us@zj““)] .

Remark 3.2. The idea of rewriting the system to control the nonlinear terms
is similar to [40]. In the next section we show "quadratic estimates” for these
nonlinear terms with respect to exponentially weighted norms, i.e. we show that
these terms can be estimates by the variables u,r, A and decay exponentially in time
and in the minimal distance GO of the initial data ¢°.
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3.2 Properties of the nonlinear operators 7, N;, F;

Some of the more technical estimates for the operators N;, E;, T} for j =1,..., N
will be deferred to the Appendix A, Section A.4 and Section A.5. In particular, we
show "quadratic estimates" for the nonlinear terms in the coupled system (3.6) -
(3.8). For related estimates in a simpler context see [17|, Theorem 5.1.1. and [30].
Additionally we will show that the nonlinear terms are locally Lipschitz in all
components and locally Lipschitz in time.

In the following we denote generic constants by C,C > 0.

3.2.1 Estimates of spatial terms

Lemma 3.3. Assume that Hypotheses 1.4, 1.6, 1.10 hold.
Let q := min(% min{ﬂz 1<j <N, 1§k§N—1,k7éj})

4 2|2¢j—cp—cpy1l

Then there exists constant Cp > 0 such that for all b with 0 < b < min(% % %ﬁ)
there exists ’yT > 0 such that the following estimate is satisfied for all j = N,
t >0 and g°

Ty, < Crerte e, (3.15)

Proof. Let ¢t > 0and j =1,...,N. Note f(wji) =0for j =1,...,N and recall
4. = ¢ from (1.15). We decompose Tj into two parts

T30l =I1Q5™" [f (Z ) Zf(wz )] s

k=1
N

<C <||Q§Hg0 [f (Z wk(-ztfgo)) — J(wy)
k=1

F21QS f (w) ||c2,b> =L+

I#j

||£2,b

From Hypothesis 1.6, Lemma A.12 (with © = 0) and Lemma A.10 (with r = g = 0)
we conclude that there exists v > 0 such that the following estimates are satisfied

N
I =)1Q7™ [ (Z (45 > f(wj)] 17,, < Cee?

k=1
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and

0 0
B =300 f (w5 ) 11,
1]

C 0 C 0
=0 (f (wi")) = £wi)) 112,
7
0 2
gCZ/ (chﬂio (5)6—77\&3&9 eb|€> d¢
15 7R !
SC’@_”te—”GO.
Note, we use w; for 5;”90 < 0 and w;" for gfj”g" > 0. |

Lemma 3.4. Assume that Hypotheses 1.4, 1.6, 1.10 hold.

L . 1 . C —c . . .
Let q := mm(z,mm{m i 1<j<N, 1<k<N-— 1,k7£]}) and let
0<0< .

Then there exist constants Ciy, Cy > 0 such that for all b with 0 < b < min(ﬂ?—q, g, 7)

there exists yn > 0 such that the following estimate is satisfied for all ¢° with
G > 120 and for all j =1,...,N,t >0 and (u,7,\) € B,u(0) with ||u||xe <1

[N (8,7, ALy SO (Il + [ullpe A1) + Cue I ] [ful 00
+ CnelNIT 7] |em e (1 4 |[u |00 (3.16)

Proof. Let j € {1,...,N}, t > 0. Define r°(¢t) = ct + ¢°. We consider the
operator IV

NG (t,w,r, Al s,
<I[f(uj +wj) — f(w;) = Df(w)ugll ey, + 1 Njwiellc,,
+ 1G5t u+ 1w, 1) = Gi(t,w,7°) — Byt u)|c,,
+ |Gt u+ @, +1°) — Gi(t,u+ UA),TO)HL;“.

We estimate each term separately:

1 (uj +w;) + flw;) — Df(wy)ullz,, =I| /0 (Df(wj + Tuz) — Df(w;)) uidr||c,,

<Cllullp.,

[Nt ell 2o, < O]l 000-
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Note that G,(t,u + w,r°)(§) — G;(t,w,7°)(€) for £ € R is equal to

1 N
/ [Q;t+g Df (Z o +Tuk>(€Ct+g ))
0 k=1

=D ((w + 7)) | water™)]”ar

Therefore we obtain

16, (kw4 1,1 = Gyt 0.1) — Bt )2,
0 t+g0 2
<cmax2/ o () (€57 € 100(6)) .

Using Lemma A.8 (with r = 0), the Sobolev Imbedding estimate (A.5) and (1.21)
we conclude for s € {1,..., N}

/{R<Q§t+g ()]s (€5 Y (655707 |6 (€ )>2d§

ct+g 2
<Cllus(5 I [ (@7*9 (Ol Ei;ﬂ i

c 0
<Clus B / e (€550 |20 (€510 2l sup | Q549" (el
£eR
<Cllullos.

From Hypothesis 1.10 and Lemma A.6 (with ¢ = 0) we conclude that for £ € R
holds

()] (S0 e(657") = Sl w(e ) |
S el6 ) T el
G fo (g et >|dh||r”

Zk 1¢(§Ct+g )Zk; 1P ( T+Ct+g)

T h G DI e

Zk . gO(fCH_H_g )
<CeCIMQe " (6)||r]].

Q1 (€) — QU ()] =

Further follows from Lemma A.8 and Lemma A.10 (with ¢ = 0) and from Lemma
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A.12 that there exists 7 > 0 such that the following estimate is satisfied
||Gj(t> u+w,r+ TO) - Gj(tv U+ w, TO)HLQ,I)

(n( e ) f(Zwkww(-zé”o))_f<Uj+wj)

k=1

4| ( r+ct+g i QctJrg > Zf ( w4 w) (< cttg )> [

I#j

Qe [f (iw + wk><-;;“+~"0>> —f (iw + m)(-;@*ﬂ%)
3 () = 5 () e

f (i(uk + wk)(-23+go>> — [(u; +wj)
k=1

QS f ((n+ w5 ch,b)

1%

HEQ,b

||£2,b

<Cellrlr| <||Q;f+g°

N
0 0 0
+C (Z 1957 (") = w57 e,

k=1
N 0 0 0
F3O (i) ) e
k=1

SC’eé”T”HTH <||u||H1,b +e e 4 ||u||H1,be_7te_7Go> ,

since we obtain as in the proof of Lemma 3.3 and from Lemma A.8 and Lemma
A.10 (with r =g = 0)

1@ f ((w+wn)(55) 112,

I#j

<301 (f (u+w)(57)) = Fwi)) |12,
l#j

o 2
<CZ /( Qet+e’ )—n\éff“’ eb|§|> d¢

I#7
<t ()£ gy (€21 —bleg” | blel (2
HQ )0u(&;7 )" e Pdg

<Ce~ 7te G +C||u||£2yb
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and from Lemma A.8 and Lemma A.10 (with ¢ = 0)

0 0
||Q§+ct+g <u (Z;rcwg ) — uk(_ztjfrg )) ||%2,b

< Q5 (g7 = wnle' ) BN
1
< / / Q15" g (170" ) Il 2 e |

<C// ||u ghr+ct+g) (ghr+ct+g )||2 |Qr+ct+g —b\ﬁ;““‘g +b|§\|| dhd§|\r|\2
56[}?
<M g | o I7] 1 (3.17)

and analogously
TTC 0 TTC C 0
197" (") — w57 ) 12,
// HQr+ct+g ( hr+ct+g ) b‘£|||2dhdf‘|')“‘|2

<C’// |€*n\£}"“t+g ‘+b|5‘|2dhd§||r||2
<CeClrllg=1te =G |p| 2. (3.18)

It is worth pointing out that in the estimates (3.15), (3.16) of the lemmas
above vr,vn depend on b, in particular, yp,ynv — 0 as b — mln(Hq, 51 5 2 ).
If b is sufficiently small yr, vy can be estimated by a constant, compare Remark
A.14. Therefore, the estimates (3.15), (3.16) are satisfied for all sufficiently small
b. In particular, the estimates are true for b = 0, i.e. dealing with these nonlinear
part can be handled as usually. To handle the nonlinear term Fj;,j = 1,..., N
and show quadratic estimates it is important that b > 0. The estimates work for
exponentially weighted functions.

Lemma 3.5. Assume that Hypotheses 1.4, 1.6, 1.10 hold.
mm{&' 1<j<N, 1<k<N-1 k;«éj})

2|2¢j—cp—cpy1l

Let q :== min(4,
Then there exists a constant C'g > 0 such that for all b with 0 < b < mln( 0, 1+2q)
there exists v > 0 such that the following estimate is satisfied for all ¢°,

j=1,...,N,t >0 and u = (uy,...,un) with up € Lop,k=1,...,N

1Bt u)ll2y,, < Coe e Jul| 2y, (3.19)
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Furthermore, there exists a constant C, > 0 such that for all0 < b < mln( 0, 1+2q)
and ¢°, uw = (uy, ..., uy) withuy € Loy, k=1,...,N and forallj=1,...,N,t >0
the following estimate is satisfied

1E; (1wl < Cellulle, - (3.20)
Proof. Let t > 0. Let j € {1,..., N} and b > 0. We estimate

‘|Ej(t7u)H£2,b

M N
<C i [1Q5 (Z ) D (w5 | 05 e,

1<s<N
- N :
ct+g ct+g Ct—l—g
<O max 110; (Z ) Df (w.(5)
ct+
b|| b(sgg) (Ct-l—g )H
Oy (-5 ) .
N g

<C o, sup Q57 (¢ [ (Z“” (€ > Dy (wi(el >)] e

1<s<N ¢ER —

o5 e

Let dy(t) = (cr — ¢;)t + gi — gj. We estimate the term

A= 1105 ¢ [Df (Zm it )))—Df(ws(f—ds(t)))] ]

k=1

for all £ € R.
Note that the quotient

©(&)
Sl (€ — di(t))

is always positive and satisfies Q?H'go (&) < 1. Furthermore, using Hypothesis 1.10
the quotient is estimated by

Qe =

Qo+ () < (fﬂ?( e gl ~ e+l ~di (1)
k 0

for some k € {1,..., N}.
Using Hypothesis 1.4 on the nonlinearity f and Hypothesis 1.6 on the bounded trav-

eling waves w; we conclude that [Df (Z,]fvzl wg (€ — dk(t))> — Df (ws(€ — ds(t)))
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is bounded.

Using this argument and that QCHg is bounded we conclude that A, is bounded

for the case b = 0 and (3.20) follows for b = 0. Showing that the estimate
(3.19) is valid for all 0 < b < min(33, {24-) we conclude that (3.20) holds for

» T+2g
all 0 < b < Hlll’l(lﬁa 11% ).

We proceed for the case b > 0 by considering different cases for 1 < s < N.

Deﬁneq::min(min{%i;—i‘j%ﬂ: 1<j<N, 2§S§N,5—17éj}7i)~

Casel: s—1>7j,j=1,...,N—2
From the definition of ¢ we obtain

Cs — Cs—1 — q|2¢; — o1 —¢5| >0
and this clearly forces that there exists T,(¢") € R with

Go_1 — 90 +4|29) — 901 — g2 = (cs — com1 — q|2¢; — cs1 — ¢|) Tu(g”)

such that for all ¢t > T,(¢")

91— 99 +a|29] — g1 — 93] < (s — com1 — q|2¢; — o1 — ) 2.

This implies (1 + q)d,— ()<(1—q) s(t) for all t > T,(g°).
Case la: Let t > T,(g°). We estimate A, on the subintervals

I = (—00,0], I = [0, %ds_l(t)],lg _ [%ds_l(t),ds_l(t)],

Iy = [ds1(t), (1 + q)ds1(t)], Is = [(1 + q)ds-1(2), (1 — q)ds(t)],
Is = [(1 — q)ds(t), ds(t)], Ir = [ds(t), o0)

which form a partition of R. We use the assumptions on the nonlinearity, on the
weight or on the time dependent partition of unity to estimate A, the term used
are indicated in Figure 3.1.

From Hypotheses 1.4, 1.6, 1.10 and (A.13) we obtain the following estimates:
Consider the case £ € I;. We estimate A, using as noted above that QCHQ (€) and

[Df (Zkzl (€ — di(t ))) — Df (w,(€ — dy(t)))] are bounded:

As < Ce—b§+b£—bds(t) _ Ce—bds(t) _ Ce—b(cs—cj)tefb(ggfg?) < Cve—'yte—'yGo (321)
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Il ]é ]3 ]4 ]5 ]6 I7

Figure 3.1: Decomposition of R for ¢ > 0.

for some v > 0 which depends on b. In the following the arguments will not be
repeated and we obtain similarly for £ € I:

A, < Cebbtbebis(t) < (rp=bds(t)+bds1(6).
For € € I3:
As < Ceb§+bf*bd5(ﬂ*,@f*ﬁf«#ﬁds_1(t) < Cefbds(t)+bd.s—1(t)'
For € € Iy:
A, < O bé—BE+BE—Fds—1(t) < O e(—B+b+ab)ds—1(t) < Cle(—38+7b)ds—1(t)
Recall equation (1.7), for £ € I; we obtain the estimate if s # N:

AséllDf<Z( (€)= ) + (€ + 3 (€l w,;>>

k<s k>s
— Dy (€5 et

<CelerheT (ZHw (€)= wf 1+ o5 —w;||>

k<s k>s
< (' bEFbE—bds(t) (Z e né+ndi(t) | Z enén%@))
k<s k>s

SCEHEbEbda(t) (gmnetndsna(t) | né—ndesa (1)
<O (BHIE=Md1(®) | bra-2-m)ds(®))

For £ € I5 and s = N the last sum is empty:
A, < Obetbe=bds(t)=nttnds1(t) < (Crp(b+a(b—m)ds1(t),
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For € € Ig:

A, < CebEHbebds()—BE—BEH8ds(1) < Cpb—Bra(-2420))ds(t) < (p(~B+a(~20+28))ds (1),

For ¢ € I7:
A, < Clebebetbds()=BEHBE—ds(t) < (e (b=B)ds(t) (3.22)

Case 1b: T,(¢°) > 0, i.e. (14 q)ds_1(t) > (1 — q)ds(t) for all 0 < ¢ < T,(g°).
Case 1bi: (1 + q)ds_1(t) < d,(t) for all 0 < t < T,(g°), see Figure 3.2.

Qj

1 —
sds—q d; ds
ds—l d;L—l

Figure 3.2: Positions of the different rays over time, where dif = di(1 £ ¢)(0), k =
s —1,s and = marks the point d,_1(1+ ¢)(T.(¢°)) = ds(1 — q)(Ts(g°)). (Note d; (t)
could also cross d,_1(t) or 3d,_1(t) for 0 <t < Ti(g°).)

The estimate of A, for all ¢ € R,0 <t < T,(¢°) can be handled in much the same
way as above. We estimate Ay on the subintervals Iy,..., 14,
Is := [(1 + q)ds_1(t),ds(t)], I; which form a partition of R and I;, i = 1,...,4,7
are defined and estimated as above. For € € I we use (1 —q)d,(t) < (1+ q)ds_1(2)
and estimate:

A, < CebEtbebds(t)—BE—BE+Ads(1) < (1(b—B+a(~20+28))ds (1),

Case 1bii: Again we conclude from the definition of ¢ that there exists
0 < Tis(¢°) < Ti(g") such that (1 + ¢)ds_1(t) < ds(t) holds for all
Tis(g%) <t < Ty(¢°) and (1 4 q)ds_1(t) > dg(t) for all 0 < ¢ < Ty4(g"), see
Figure 3.3.

For T} 4(¢°) < t < Ti(g°) we proceed as in case 1bi.

The estimate of A, for all £ € R,0 < ¢ < T;4(¢") can be handled in much the
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dy diy

Figure 3.3: Position of the different rays over time, where di> := di.(1 £ ¢)(0),
k = s —1,s and x marks the point d,_1(1 + q)(Ts(g%)) = ds(1 — q)(Ts(g°)) and *
the point dy_1(1 + ¢)(T1.5(¢°)) = ds(T1.5(g°)). (Note ds_1(t) could also cross d (1)
for 0 <t < Ti(g°).)

same way as above. We estimate the term A, on the subintervals Iy,..., I,
I; = [(1 + q)ds—1(t),00) which form a partition of R and [;, i = 1,...,4 are
defined as above. For ¢ € I; we use ds(t) < (14 q)ds—1(t) and estimate:

AS < Cebé-*b{‘i’bds(t)fﬁf‘i’ﬁgfﬂds(t) < Ce(bfﬁ)ds(t).

Case 2: s—1=35,7=1,...,N—1:
We estimate Ag on the following subintervals

1

I = (=00,00. 1y = 0, (5~ ). (0. Fs = [(5 — da(0), (1~ ) (1),

Is = [(1 = q)ds(t), do()], Iz = [ds(t), 00)

which form a partition of R for Eﬂl t > 0. The term A, is estimated for £ € Iy, I, I7
as in the second case. For £ € I, we obtain:

Ay < et = Cem2abds (1),

For ¢ € I5 we get similar to above for s # N:
A, <ClelEtbe—bds(t) (67776 + en&ndsﬂ(t))
<C (eeén—q(zbw))ds(t) 1 €<b+q<72bfn>>ds<t>)
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and for s = N vanishes the last term:
A, SCEFHED0) (o=18) < O (e(—%n—q(%—n))ds(t)) ,
Case 3: s < j,j=2,...,N. This case may be handled in much the same way.

Case 4: s=7,2<j< N -1
In this case A; can be shortly written as

A, =11Q5 (&) | Df <Z wk(£;§§+go)) - Df(wj(ﬁ))] It

Let 0 < e < % We estimate Ag on each of the following intervals

I = (=00, di 1 (8] T = 1), (5+e)ds 1 ()] I = (501 8), (5 +e)dsa (0],

I =[5+ dya(t), dya (], T = [dyn (1), 00)

which form a partition of R for ¢ > 0. Again we use either the assumptions on the
nonlinearity term or on the time dependent partition of unity to estimate A,, see
Figure 3.4.

Loy Q| f Q; Q;

[1 [2 [3 [4 15

Figure 3.4: Decomposition of R for ¢ > 0.

From Hypotheses 1.4, 1.6 and 1.10 we obtain the estimates:
For € € I;:
A, < C'ePE—PE+Bd;—1(t) — (1pfdj—1(t)

For € € I5:
A, < Ce2Pe=Pdj—1(t) < (1p2eBdj-1(t)
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For € € I5:

A, <[|IDf (Z( W€ —wd) +wi () + D (we(€) ;Z)) — Df(w; )|

k<j k>j
<c (zuw (€89 ]+ 3 () w,;u)
k<g k>j
<C (Z e metndi(t) | Z €n£—ndk(t)>
k<j k>j

<C (€—n§+ndj71(t) + 677€—ndj+1(t))

<C < eyndj-1(t) 4 e(—%+6)ndj+1(t)> .

For € € I:
A, < 06—255+5dj+1(t) < Ce—%ﬁdjﬂ(t).

For ¢ € I:
A, < Qe PHFE—Fdin () — Cre=Pdin(t),

For s = j = 1 we divide R into I3, I4, I5, where I, I5 are defined as before and
I3 is changed into

13 = (—OO7 (1

5+ (D).

We estimate for £ € I:

A, <Ce7’§ nda(t <Ce +€)nd2(t)_

For s = 5 = N we divide R into Iy, I, I3, where I, I are define as before and I3 is
changed into

=1

5 + €)dN_1(t), OO)

We estimate for £ € I5:

A, < CeMé+ndn— 1(t) < C’e e)ndn-1(t)

Remark 3.6. Note that, for instance, the estimate (3.21) of the term As in the
proof of the lemma above in the subspace (—oo, 0] needs the condition b > 0, other-
wise the term Ag can only be estimated by a constant. In particular for s —1 < j
Figure 3.1 shows the domains where the condition b > 0 is needed. For s+ 1 > j
it turns out that the Figure 3.1 is nearly reflected.
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We will not get an exponentially decay in time and in the minimal distance G° for
b = 0, since neither the assumptions on ¢ nor on the traveling waves (w,c) give
exponentially decay in time. Note that vg in (3.19) tends to zero as b tends to zero.
Similarly to yr,yn in the estimates (3.15), (3.16). In addition, vg tends to zero

as b tends to min(3 03, T4sa)-

Remark 3.7. Assume that the bump function ¢ satisfies instead of (1.34) of Hy-
pothesis 1.10 the weaker condition

Coe—ﬁolfl < S0(5) < Ole—ﬁllf\ VéE e R

with some positive constants Cy < Cy and 1 < [(y. For the case s —1 > 7 we get
difficulties to show the estimate (3.19): Consider the interval I; = [ds(t),00), we
cannot derive an estimate like (3.22) of the term As .

Furthermore, we need Lipschitz estimates of the nonlinear terms. Lipschitz
estimates in the parameters u,r and A are obviously satisfied for the nonlinear
terms T3, E;,5 = 1,..., N. For the nonlinear term /N; we obtain:

Lemma 3.8. Assume that Hypotheses 1.4, 1.6, 1.10 hold.

R : 1 : c —c . . .
Let q = mln(z,mm{m. 1<j <N, 1§k§N—1,k7éj}) and let
0=>0.

Then there exists constants C,, C,, > 0 such that for allb with 0 < b < min(%ﬁ, %)

there exists 7, > 0 such that the following estimate is satisfied for all ¢ with
GY > 120 and for all (u,r,\), (v, g, 1) € B,p(0) with [|ullrs, |[v|[10 < 1 and for
allj=1,...,N,t >0
[ING(E,w,m, Aj) = Nj(E v, 9, 1) |2
<C (max([[o]|ps, [[ullye) s = A+ max([As], 5 )][v; = usllpee)
+ CeCrnmaxIrlLlgl gy — | |10
+ CrpeCr U [ — g macx(|[ul o, [0, €7 e ) max(1, ||, []g]])
+ Cpe @D - — g1 mase(|[ul[pens, [0 lpere e~ e max(1, [|r]], ||g]])-

(3.23)

Proof. Let j € {1,...,N}, ¢t > 0. Define 7°(t) = ct + ¢°. Since

[[N;(t,w,r, Ag) = N;(t, v, 9, 15)| s
<|[f (s +wi) = f(v; +wi)lle,, + 1D f(wi)(u; —vj)llc,,
+Ej(t,w — )2y, + [[Nuje — pivielles,
+ |Gt u+w, 7 +1°) — Gi(t, v+, g+ 1)z,
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we use (A.19) and estimate each term separately:
f (g +w;) = Fvj + wi)lle,, + 1D (w))(w; = v5)lle,, < Clluy —vjlle,,
From Lemma 3.5 we conclude
1E;(t w—=0)llz,, < Clluj = vjlle,,

Furthermore we estimate

[[Njuge = 15056l 0y <IN e = vielleoy + 1N — 5] vl 2oy
<IN HTug = vl 4 1N = gl max([[ul[zs, [[0]]50).

Using Hypothesis 1.10 and Lemma A.6 we conclude for £ € R

()] (T (el ") = Ty el )
S (e D el )
Zk;ﬁj fo ’QO ngrhr g)+ct+g° )’dh

|@“WW@—@?M¢@M=

< gtcttgO griet+e’ i =l
Zk 190(5 )Zk 1¥ ( )
Z Jo 19/ (MmO
ol Q" (©)llg 7l
Z (£g+ct+g )
k=1
~ r4c 0
<Cefmalirllllol) ret+o” (e)] 17 — g (3.24)

We consider

Gt u+ o, 7 +1°) — Gi(t, v+, g+ 1)z,
=||G;(t,u+w,r+1°) = G;(t, v+, 7 +7°)||g,,
+ IG5t v+, +17) = Gt v+, g+ 1) ||e,,
=J1+ Jo

and estimate ecach term separately. We use Lemma A.8 (with ¢ = 0,2 = 0) and
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obtain

N N
r+ct+g° r ke r te
i <Oyt [ (Z w 1) (1 ) (Z Ok + ) (" >>] 22
k=1 k=1

Lol S [ (4w Ceo)) = f (@4 w)C)] e,

=1

r4ci r4c r4ci — TJ.FCtJrgO
<CZ (/ Q7 (6) (i — vie) (€77 ) By (€77 )™M |+b'£'||2df)

SC’@C”THHu -]

N

We proceed similarly to Lemma 3.4. It follows from (3.24), Hypothesis 1.6 and
Lemma A.8 - A.12 that there exists v > 0 such that the following estimate holds

N
Jy <C (H ( r+ct+g QJg+ct+gO> [f <Z<Uk n w[f)(‘zjct—&-go)) 4 w)

||Cz,b
k=1
(=@ Q) 3 (o w) (5 e,
I#j
N N 0
sl [ (z o+ i) (9 >> g (z@kmk)(-w >)] e
k=1 k=1

Qg (f(vz+w ) —f(<vl+wl><-,g;“+g°>))||/;2,b)

N
<||Q§+Ct+g0 [f (Z vy, + Wy, T+Ct+g )) — f(vj +wy)

HIQ S (o) (744 Hm) I = gljeC =i
I#3

SC ||£2,b

N
0 0 0
+ 0@ (el ) = () e,
k=1

N
0
DI AR CT b BT el >)\|,;2,b]

<CeCmaxlrblgl| |- — g max(1, ||r||,]|g]])
 (||v] 0 + € e + [[v]|pp0e e TEY), (3.25)

where the last estimate will be explained term by term. For the first term we obtain
from (3.24), (3.17), (3.18) and from Lemma A.8, Lemma A.10 (with h = 0,9 = 0)
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and Lemma A.12

N
1Q; " | f [ (Z vk + Wy, T+Ct+g )) — f(vj +wy)

||£2,b
k=1
N N o
_ ||Qr+ct+g [ (Z vp —|-UJ r+ct+g )) _ f (Z(Uk’ +wk)(zlfj+9 ))
k=1 k=1
+f (Z kW )('ﬁgo)> — Sl +wi)| llea
k=1

<N jr|] (Jfollyens + e ")

N
+llQy e+ [f (Z(Uk: + wk)('ff‘qo)) — f (v + wy)

||£2,b
k=1
<CeClrl|]] (||u\|H1,b + e*vte%(’)
N
7‘ C C 0 -~ C 0
@ - a5 [f (Z(vmwk)(-k@*g >) ~ fy +w)| ey
k=1
. N
+1Q5 |1 [ (Z e+ W) (55 )) — i+ wi)| lleas
1
<M max(||r]], 1) (HUHHM 4 eMe1C ||v||H1,be*vte*vG"> . (3.26)

Using Lemma A.8, Lemma A.10 (with A = 0, g = 0)we obtain as in the proof
of Lemma 3.3

IS f (o +w) (57 |1,

I#j

<30 (f ((w+ w)()) = fwi)) 12,

]
2
/( 7‘+ct+g (&)e n|£l+d+q | b&l) dé

<y
r+ct+g° r+ct+gY r4ct+g%\ — T.‘FCt‘mo
+/ ||Qj+ t+g (§>U(§l]+ t+g )Qb(fl]ﬂ_ t+g )6 bl&;; eb|§||2d§}
R

I#j
<Xl g=te=G" | CeQé”’“”IIUII%Z,b. (3.27)

The last two terms in (3.25) are estimated as in (3.17), (3.18). |
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3.2.2 Time dependent estimates

In order to apply the local existence theorem (see Lemma 3.24) we show that the
operators F;,T;, N;,7 = 1,..., N are locally Lipschitz in time. The proofs are
similar to the proofs in Section 3.2.1, therefore we give only the main steps.

Lemma 3.9. Assume that Hypotheses 1.4, 1.6, 1.10 hold.
! mm{ﬂ- 1<j<N, 1§k§N—1,k7éj}). Let

10 2|2¢j—cp—cry1] °

Let ¢ = min(
0<6<o0. )
Then there exist constants Cz,Cy > 0 such that for all |s —t| < 4,t,s > 0,
j=1,...,N and for all b with 0 < b < min(33, - L 1) and ¢° with G° > 4B6 the
following estimate is satisfied

1T5(t) = T5()l| 5, < Cpe Tt — 5.

Proof. Let j € {1,...,N}, t,s > 0,|t — s| < 0. We estimate the difference
T;(s) — T;(t) with the help of Hypothesis 1.6, Lemma A.6, A.10 and A.12 (with

j
r=0,9g=cs—ct,u=0):

1Ty (8) = T(5) I
<[l [f <Zwk<“+g ) (Z )] [y

k=1

QS 7 (7)) = f (w5) e

=1

] [ ct+g cs+g } ( <ZN: cs+g > ZN:JC <wl(_2:;+g0>>> [

§Ceé|t_5‘|t — sl
[

Lemma 3.10. Assume that Hypotheses 1.4, 1.6, 1.10 hold.

P : 1 : C —c X . .
Let q = mln(z,mm{m. 1§j§N,1§k§N—1,k7ﬁj}). Let
0>0.

Then there exist constants C’E,C’ > 0 such that for all |t — h| < 6,t,h > 0,
j=1,....N and for all b with 0 < b < mln( =0, 1+2q) and ¢° with G° > 12B§ and
for all w = (uy,...,un) with ug(t) € Lo,k = 1,..., N the following estimate is
satisfied

125t u(t)) = Bj(h u(h))lle,, <Cpllult) —u(h)llc,
+ Cpe et — hfmax(|u(t)l] ., [1u(h)£a)-
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Proof. Let j € {1,...,N},t,h > 0,|t — h| <. We estimate
|1 E5(t, u(t)) — Ej(h, u(h))|z,,

N
<O max 1107 [Df (Zwk«zz*g%) Df (w5 >)]

k=1

o (s = (1) e

+C max [|Q5 [Df (Zw (9 ) — Df (ws(.§§+g°))] w0 )

1<s<N

[Df <Z (ot ) - Df (ws<-z?+g“>)] (5 B e
=1 + Is.
The first term [ is estimated analogously to Lemma 3.5 and we obtain
I < Cllu(t) — u(h)l|c,,-
With the help of Lemma A.6, A.8, A.10 we obtain for the second term

Y (Zwk (che?) ) (i (e )

1

1<s<N

I, < C max <||Q0t+g

= Df (wa(57) + D (w5 ) |5 B e,

i e I |

-<u5(§§+g h) — uy( ch+g h) ) Hﬁzb)
(@ - ) [Df (fjw () >—Df (ws<-§2‘+go>)]

h 0
(5 1))

< CeCl M |u(h)|| s |t — Bl

Lemma 3.11. Assume that Hypotheses 1.4, 1.6, 1.10 hold.
Let ¢ = min(s min{M: 1<j <N, 1§k§N—1,k7éj}). Let

4 2|2¢cj—cp—cpy1l
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0,0>0.
Then there exist some constants Cg, Cy > 0 such that for all |t —s| < d,t,s > 0,

j 1,...,N and for all b with 0 < b < min(l—:[q?q,% ) and ¢° with

G® > 12(B6 + o) and for all (u(t),r(t), (1)), (u(s),7(s),A(s)) € B,s(0) with
u)||le < 1, [[o®)]|70 < 1 the following estimate is satisfied

NG (8, u(t), r(8), A (1) — Nj(s,uls), r(s), Aj(8)l| s
< O eCnmaxlir@ILIr O] 1y (s) — w(t)]| 0
+Cx (max(1, |A;(0)] [A;(s) Dy () = w;(s)[ |
A (8) = Aj(s)| max([|u@) 30, [[uls)][500)
+C e Cn s r OO max (1, [[r(@)|], [ () (|r(t) = r(s)|| + [t = s])
* (1 + max(|[u(t)[pee, [[u(s)][ps))-

Proof. Letj € {l,...,N}, t,5s >0, |t—s| < 4. Define 7°(t) = ct +¢°. We estimate

|IN; (8 u(t), m(t), A (1)) — Nj(s, uls), r(s), Aj())l] 2.,
<|[f(uy () +wy) = fu;(s) +wy)lle,, + D f(w;)(w;(t) —u;(s))]le,,
F A O use(t) = Aj(s)ue(s)l| ey, + 1G5t 0, 7°) = Gy(s,0,7°) ||y,
+[1E;(t, ult) — Ej(s, u(s))]|cs,
+ |Gt u+w,r +7 0 — Gj(s,u—i—w,r—i—ro)HLz’b.

Again we use (A.19) and estimate each term separately. From Lemma 3.9, 3.10 we
conclude

|1 (i (8) + w;) = fui(s) +wy)lle,,
+[D S (w;) (u (8) = ui ()| 2o < Cllug (t) = ()],

1A (W)uje(t) = Aj(8)usie(s)]] s,
<IN O ug (8) = w5 (s)l2e + 12 (1) = Aj(s) | max([[u() [0, [[uls)|lpre),

and



3.2 Properties of the nonlinear operators T, N;, E;
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G (t,,7°) = Gy(5. 0,7 |2y, + 1B CE u(®)) — Ey(s,u(s))l|cay
T (0) = T5(9)llesy + 1 E5(t,u(®)) = Ey(s, u(s))
<O (|t — 5| + |t — s| max(||u(t) |, ., [1u()]|,,)) + Cllut)

Furthermore, we estimate the difference

||G(t,u+w,r +70%) — Gj(s,u+w,r +r0)||52,b

N
< ||Q +ct+g
k=1

N

=1

N
T Ci 0 A~ T Ci 0
+|’Qj(t)+ e [f (Z(Uk +wk)('k§'t)+ e 73)>

k=1

N
£ )
<Z uk + wk 7‘ s)+cs+g ,S))
=1

+Zf (e +we) (7 ) e,

k=1
:le -+ IQ.

. Qr (s)4cs+g°
J

We estimate I; with the help of Lemma A.8 (with r =r(t),g =0,h

I, <CeCmaxr@ILr O [g,(4) — u(s)||s.

S0t w5 0) 4 i f (4w (577 5)

= u(8)] 2,

N
! (Du’f i) (T f>> - (Zwk ) ()
k=1

] ||E2,b

)

)
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Furthermore, we infer from Hypothesis 1.6, Lemma A.6 - A.12

N
[2 <|| ( r(t)+ct+g Qj( +cs+g > [f (Z m +wk +ct+g ,S))

k=1

N

- Zf < w + wy) (10T ))] 12

0 N
]It f [ (Z g + 1y (T ,s)>

k=1
N 0
N r(s)+cs+

_f (Z(uk + wk)(kg : I 7S)>] ||E2,b

k=1

N
(s CcS 0 T Ci 0
+ HQ]-( Jreste Z [f ((Ul + wl)(‘lj(t)Jr e 78))

=1

—f (w5 9) e,
SCGC’max(\t—s\7||r(t)||7||r(s)\|) max (1, ||r(®)|], ||7(s)]])
* ([t = s[ +|lr(@) = r() D ([us)[ree +1).

The final estimate is a consequence of (3.26), (3.27), the estimate

|Q§(t)+ct+g (f) . Q;(s)-i-cs-i-g (5))|
<CeCmat=shlir®IIr@D QIO ()14 — | 4 ||r(t) — r(s)|]),

and of the following estimate obtain with the help of Lemma A.8, A.10 (with
r=r(s), g=ct—cs+r(t))
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N
A s Ci 0
ot (s i,

k=1

—%(XN%+WXJ”mﬂ,0]WM

k=1

N
(s CS 0 T Ci 0
HIQ ST (- wn) (7 5)

=1
T(s CcS 0
—f(@u+uwcg>**”,s0]ubﬁ

+CS+gO b|€‘ _b‘gkjs)+cs+h(r(t) r(s)+ct—cs +g ||

gCZ sup (Hukg )HLQZ,SHP\Q

- T‘( )+es+h(r(t)— r(s)+ct—cs)+g0
gy e qu&w—m&n+w—sn

< oAt~ ] + ¢ L+ o)
]
Let ¢ = min(i,min{M: 1<j <N, 1§l{:§N—17k7éj}) and

2|2¢j—cp—cpy1]

by == mln( =0, 1+2q)

For 0 < b < b; we define the b-dependent constant v; := min(vyz, yn,7,) and for
0 < b < by we define the b-dependent constant 7 := min(vy,7yg) obtained from
Lemma 3.3 - 3.8. Recall that v; and v tend to zero as b tends to b;. Furthermore
~1 tends to some positive constant as b tends to zero, but v tends to zero if b tends
to zero. Therefore it will be important to fix a small b greater than zero in the
proof of the Stability Theorem 3.1.

3.3 The linear inhomogeneous decoupled system

Before we consider the nonlinear inhomogeneous coupled system (3.6) - (3.8) and
apply the nonlinearity estimates in Section 3.2 above, we analyze the decoupled
linear system for j =1,..., N

uj,t = AjUj + /\jU)j}ﬁ —+ ]Cj, (328)
7"]'715 = )\ja (329)
0 = (056, uj) (3.30)

with k’j € C([O, T), [,va).
We will make use of bilinear forms and projectors to derive a reduced projected
decoupled system.



62 Chapter 3. Proof of the main stability theorem

Define the bilinear form a; : H' x H* = R,j=1,...,N by

a;(u, v) Z/R—Us(OTAvs(f) +u(€)" (Bjue(€) + C;(€)v(€))ds.

For u,v;¢ € H',j =1,..., N we estimate
|a;(0¢, u)| < Col|ullp
for some C, > 0. Let u € H?, then we obtain for j =1,..., N

a;j (e, u) = (Vj¢, Aju).

Using Hypothesis 1.5 we conclude that there exists some C,,, > 0 such that for
j=1,..., N the following estimate is satisfied

|<@j7§7wj,5>_1| < Cv,w' (331)
The projector Pj,j =1,..., N onto f)jl,g along w; ¢ is given by
Pju = u— wje(Oj¢, wie) ™ (0, u). (3.32)

From (3.31) and from the Cauchy-Schwarz Theorem, [39], Theorem V.1.2, we con-
clude that the projectors P;,j =1,..., N are bounded: Let ||u||, be bounded, we
obtain the estimate

1Pjulls <[lull« + Couwllwjel|«[{0¢, u)]
<|ulls + Cowllw; el l][0ell callull 2, < Cllull (3.33)

with Cp := 14 Cypl|we||4]|0¢||c, and * = Loy if w; € HY, x = HYP if w; € H?®
and x = H>" if w; € H>. Note that we conclude w;¢ € H*? and Cp is independent
of b for 0 < b < 7 from (1.27), the estimates (A.9), (A.10) and the calculation

/R(enlégb<€))2d£ < /[R(enl£|+bl£)2d£ < % < %

The next lemma gives an equivalent formulation of the system (3.28) - (3.30).

The result is proven as in 36|, Lemma 1.17.

Lemma 3.12. Let k; € C([0,7),Lap),j =
Then (u,r,\) is a solution of (3.28) - (3.30
with consistent initial conditions

..., N and assume that (3.31) holds.

L
) forj=1,..., N on the interval (0, )

u) € HY (bje,ul) = 0,7;(0)=r) €R,j=1,....N
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if and only if w = (uy,...,uy) is a solution of the PDEs
Ujt = .P](AJUJ + k?j), UJ(O) = U? € Hl’b N R(.PJ% (334)

A= (A1,..., AN) satisfies on [0,7)

Aj(t) = — (016, w56) ™ (a (V6,5 (8)) + (D6, K5 (1)) (3.35)
and r = (ry,...,rn) satisfies on [0, T)
ri(t) = /t Aj(s)ds + 1. (3.36)

Proof. We know that (3.29) together with the initial conditions r;(0) = 0,5 =
1,..., N is equivalent to (3.36).

Using (3.28) and differentiating (3.30) with respect to time, we obtain (3.35). From
(3.35) and (3.28) we get the differential equation (3.34).

Conversely, let u; be a solution of (3.34) with initial condition u} € H"* N R(P;).
This implies u; € R(P;), thus (3.30) holds. By a calculation using (3.34), (3.35)
and the definition of P; we obtain (3.28). [

Recall the linear inhomogeneous equation (3.34). Analogous to the non-weighted

case, we want to apply the variation of constants formula to obtain a formula for
the solution u;(t),j =1,...,N:
We consider the operator Ap; := PjAjr(p,) on the exponentially weighted subspace
R(P;) N Ly for 7 =1,..., N. In the next sections we show that this operator is
sectorial in this exponentially weighted subspace, therefore we can solve equation
(3.34) with the help of the variation of constants formula via

t
u;(t) = erituf +/ Aril=9) P.k.(s)ds,
0

compare Section 3.5. The solution operator e*7i* on R(P;) N Lap for j=1,...,N
is defined with the help of the resolvent (sI — Ap;)~! as the Dunford integral,
see [17],

Lo ]
et = /F et(sI — Ap;)~lds, V>0, (3.37)

where I' is a contour in p(Ap;) with args — 6 as [s| — oo for some 0 € (7, 7).
We use semigroup theory to show the resolvent estimates on R(P;) N Lyp. We
have to prove that A; p is sectorial for all j = 1,..., N, we use common tools like
in [17], [36]. The main difficulty we have to handle are the exponentially weighted
spaces.
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3.4 Sectorial operators in Ly, N R(P))

To shorten notation in most of the proofs of this section we suppress the index j.
Before we specify a lemma which gives the solution of the system (3.28) - (3.30), we
have to consider the resolvent operator for P;A; on R(FP;)N Ly, and show resolvent
estimates for each j =1,..., N.

We begin by proving resolvent estimates for the operator A;,j = 1,...,N. The
proof of the following lemma is deferred to the Appendix A.6.

Lemma 3.13. Assume that Hypotheses 1.4, 1.6 hold. For j =1,..., N there exist
constants ¢ € (5,m), Ka, Cr > 0 such that v; = Ry(Aj)k; = (sI — A;)"'k; satisfies
the following estimates for all s € Sy with |s| > K¢g

[s%[[v3l[Z, + Is] vl 30 < Crllk;|IZ,- (3.38)
For s in a compact set Sc C p(A;) we have a uniform estimate

o511 < Crllksl|z,- (3.39)

Assume further k; = (sI — A;j)v; € H' then is for each s € Sy with |s| > K¢ the
following estimate satisfied

[P llvj 13 + 1sllvsl 3z < Crll |l (3.40)

The following lemma shows that the estimates in Lemma 3.13 are also true for
slightly weighted spaces.

Lemma 3.14. Assume that Hypotheses 1.4, 1.6 hold.
There exists by, K¢ > 0,Cq, ¢ € (5,m) such that u; = Ry(Aj)k; = (sI—A;) "'k, j =
1,..., N satisfies the following estimates for all 0 < b by,7 = 1,...,N and
s € Sy with |s| > K¢

[s*usl[Z,, + IslllwilFoe < Collkillz, ,-
For s in a compact set Sc C p(A;) we have a uniform estimate

sl lre < Callkjllz,,-

If, in addition, k; = (sI — Aj)u; € H'?, then for each s € Soc with |s| > K¢ is the
following estimate satisfied

[slllujllzae < Callk;llpe.
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Proof. The case b = 0 is treated in Lemma 3.13. 3
Let by := min(1, 2@(\4??27”14“), QCR(B}F5HAH)) and 0 < b < by. Define v := Gyu, k :=
Oyk. We consider the equation u = Ry(A)k = (sI — A)~'k, which is equivalent to

0= (sI — A)u — k. We consider the right hand side in the weighted space Ly,

(s = Ayu = kl|z,,, = [|06((s] = A)u = k)|,
= HSU — QbA(Gb)*lv — kH£2
=||(s = A)v — Ryv — IEHL;Q,

where

va - B0b<9b_1)§v + AH{,(Qb_I)&’U + 2A¢9b(0b_1)50§.
The derivative of Ryv with respect to € for v € H? has the form

(Ryv)e =B(0s)e (6, ')ev + BO,(0, ) ecv + BO(0, ") cve
+ A(0p)e (0, ") ecv + A0y (0, ') ecev + 3A0, (0, ) ecve
+ 2A(0,)¢(0, ) eve + 2A05(0, ) cvee.

Using (A.6) - (A.12) and (1.31) we estimate for v € H!

[1Ryvllc, <Bbl[0]lc, + [[Al[36|[vlle, + [|All26]vel
<b(B + (30 + 2)[[A[D[v] s < 0B + 5[[A|D[v] ]2,

and further for v € H?,

|(Rov)ellze <bB(1+4b)|[v]lsr + [|A][b(140" + 110 + 2)|[v] |32
<b(5B + 27[| Al [v] ]2

and thus
| Ryv||32 <bV2(5B + 27||A|])|[v] 2.

We apply Lemma 3.13 to v and k + Ryv and obtain that there exist constants
¢ € (5,m),Kqg,Cr > 0 such that for each s € Sy with [s| > K¢ the following
estimate is satisfied

[s1?[[vl|Z, + Isllvll <Crllk + Rovl[Z,
<2CR||k[[Z, + 2CR(b(B + 5][Al])*|Jv] 3.

It follows

[s?[[0llZ, + (Ko — 2Cr0*(B + 5| A)?)[[v]lF < 2Ck||kIZ,
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and
sPlullZ,, = IsPlvl2, < 2CxIIkIZ, = 2CxIlkE, .
Furthermore,
VIslllvlba < v/Crllk + Rivlle, < v/Cr (I1kl]c. + b(B + 5111 [ollbo

and we obtain

" (Flles +5(B + 51410 ol )

VO 1, + YCRUB SUAID,
ol Vi

<

or equivalently

VCORb(B + 5||A]) VCR, 7
1-— o]l < |1E| .,
VEe 5|
Thus follows
KoC ~
sl |20, = |s] [Jo]20 < G-R E||?
KqoC
= = 2||k||%2’b'

(vVKe — VCrb(B +5[|A]]))
For s in a compact set Sc C p(A) we have a uniform estimate
[oll¢ < CrllEll, + Crb(B + 5| Al 0]l

It follows

Cr ~
1 < — k
Iolbe < —g55 raman Il

and therefore we obtain
Cr
1— C’Rb(B + 5||4]])

_ Cr 1K)
T 1= Crb(B + 5||A[)"

[ullpe =[ollnr < 1Kl

Let k € H. Again we apply Lemma 3.13 to v and k 4+ Ryv and obtain that there
exist constants ¢ € (5,m), Kg,Cr > 0 such that for each s € Sy with [s| > K¢
holds

sl [0l + Is| [[vlle < Crllk + Ryvll3
< 2Cg|IKl[5 + 2CR(bV2(58 + 27| Al])* |03
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or equivalently written
[sP10ll30 + (Ke = 2CR(0V2(5B + 27||Al|)*)||vll5 < 2C||El[30-
Thus follows
[s%1ullgas = 1sPlloll3n < 2CRIIK|IF) = 2CR[ k| .

The next lemma can be proven in the same way as [36], Lemma 1.20 without
exponentially weighted norms.

Lemma 3.15. Letb >0, k; € Lop,j =1,...,N, s € C and let (3.31) be satisfied.
Then (u, \) € (H**)N x RN is a solution of

(sI = Ajuj —wieh; = Pik;, (3.41)
<’IA}j7£, Uj> =0 (342)

forj=1,...,Nifand only ifu = (uy,...,un) withu, € H**NR(P;),k=1,...,N
15 a solution of the resolvent equation

(sI = PjAj)u; = Pik; (3.43)
fori=1,....N and A = (\1,..., \y) € RY satisfies

A= —(Dj¢, wje) " a; (0, u5). (3.44)

Remark 3.16. If s # 0 and u € H*? is a solution of (3.43), then we conclude that
u € R(P;). Let s =0 and u; € H*" be a solution of (3.43), then also @; := Pju;
solves (3.43) and @; € H** N R(P;).

To obtain resolvent estimates for the projected PDAE system (3.34), (3.35) and
in particular for the operator Ap,;, we have to consider the system (3.43), (3.44).
In the next part of this section we show resolvent estimates in different domains of
C for the system (3.41), (3.42) which is equivalent to (3.43), (3.44) by the lemma
above. For these estimates we make use of these resolvent estimates in Lemma 3.14
for the operators A;,j =1,..., N in exponentially weighted norms.

Let k be given by the eigenvalue Condition 1.8 and the spectral Condition 1.9,
let
Kg > 0, € (5,7) be defined as in Lemma 3.14 and let 0 < ¢ < K. We de-
fine the subsets

Q. ={seCl||s| <e,Rs > —RK},

QKG = {S S Cl e < |S| < Kg,@%s > —/_i},
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G

UE

Figure 3.5: Sections Qg ., 2, 2. CC

Qoo = {s € C| |s| > Kg, |arg(s)| < (},

see Figure 3.5.

To obtain some resolvent estimates in ., Qg , Qs we use Lemma 3.15 and
Lemma 3.14 and consider the system (3.41), (3.42) instead of (3.43), (3.44). Note
that the idea of proving resolvent estimates in domains like €2, Qg,, Qs is well
known, cf. [3|, [36]. The difference here is to prove the resolvent estimates for
slightly weighted norms.

Lemma 3.17. Assume that Hypotheses 1.4, 1.5, 1.6, 1.8, 1.9 hold.

There exists by > 0 and a constant C4 > 0 such that for all j = 1,..., N,
0 < b < min(by, ) and for each s € Q. U Qo there exists a solution (u,\)
of (3.41), (3.42) for which the following estimates are satisfied

gl + [N ] < CA”ijLZb for s € Qg

and
s [Jusl[Z,, + Isllugl 7 + N1 < CallkyllZ,,  fors € Q.

If k;j € H*®, the following estimate holds
|s| |wjl|pee + [N| < Callkjllzae  as s € Q.

Proof. The proof is similar to [36], Lemma 1.21. If we define u = (sI —A) ™'k then
we conclude from Lemma 3.14 and Hypotheses 1.8, 1.9 that there exist by > 0 and
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constants K¢, Cq > 0,¢ € (5, m) such that we obtain for each 0 < b < min(%, by)
and s € C, the following estimate

[sP?[[ullZ,, + 5] lull3s < Collkl[Z,,- (3.45)
and for s in the compact set Cx, C C we have a uniform estimate
|ullroe < Cal|kll,,- (3.46)

Let s € p(A), we obtain a solution of (3.41) by taking the part weA to the right
hand side and conclude
u = Ry(A)(Pk + we)).

We use equation (3.42) and get
A= —(0¢, Ry(Mwe) ™ (be, Ry(A) Pk)

and
u = HR4(A\)Pk,

where H denotes the projector defined by
Hw = w — Ry(A)we(vg, Rs(A)we) ™ (0g, w).
Further we conclude from Hypothesis 1.8
(Og, we) = (Vg, Rs(A) (swe — Awe)) = s(0¢, Rs(A)we)
and consequently we obtain
(e, Ro(Mwe)| ™" = |s] {0, we)| ™" < [5]Cou
As we have seen above, for each s € €}, the following estimates are satisfied

\/C \/C_
Tﬁukugw | Rs(A) k|30 < Y25

Using (1.21) we estimate for z € Ly,

HRS(A)kHﬁz,b < HkH£2,b‘

5]

1H 2|2y, <l2lles, + 1Rs(A)well e, | (B, Ro(A)we) ™| [{Dg, 2)]
<I[2llza, + [[Rs(M)wel 2,151 Co 0] | 2o 2]

SHZHﬁz,b + v CGHw§|’52,va,wH@§||E2||ZH£2
SCHHZHL:“
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for some Cgx > 0 and thus

Cuv/CeCp

lullz,, = [[HR(A)PElz,, < Cul[Rs(M)PE|[z,, < ]

1Kl 22

Using Rs(Mwe = s 'we we obtain ||Rs(A)we|lpne = |s|7!|6pwe|lrp.  From
b < min(1,%), Hypothesis 1.6 and (A.9) follows [(6,)¢(£)(6,)71(§)] < 1 for all
¢ € R and ||Rs(A)we||p0 < Cyls|™! for some Cy > 0. Consequently we obtain for
z € H'" the estimate

15 2o <[l2llpne + || Rs(Mwelloe | (Be, Ro(A)we) | (e, 2)|
<[zl 4[| Rs(A)wel [0 ]| Co | [Oel 22| 2]
<I[2ll#10 + CaCowllVel 5|2 2
<Chull2|l31

for some C'y > 0 and thus

CuvCeCp

Vsl

lullyrs = [[HRs(A) PE[[0.0 < C[[Rs(A) PE|[30.0 < [1Flls,

It remains to estimate A:
A =[(0e, Ra(Aywe) ™| [(De, Ro(A) PE)]
§|S|Ov,w||@€||£2||RS(A)Pk||£Q,b
<Cywl|V¢|lc: vV CaCrllkllc, -

Assume further k € H%*. Again we use the results of Lemma 3.14 and obtain

CuCeCp

5]

lullzere = |[HRs(A) PE[300 < Crl[Rs(A) PE[[3p0 < 1Kl

For s in a compact set S¢ C p(A), i.e. |s| < C, we estimate the operator H by

1 Hwlle <[[wllps + [ Ro(A)we] ] (B, Ro(A)we) ™| (e, w)]
<l[w[lyrs + Collwell e, ,[8[Cowl Vel o] [w]] 2,
<Chrlw|lys

for some Cy > 0 and therefore we conclude

lullyos = [[HRo(A) PRl < Cul|[Rs(A) PE[00 < CuCoCpllk]|c,,



3.4 Sectorial operators in Lq), N R(F;) 71

and

Al =[(0¢, Rs(A)we) ™| [(D¢, Rs(A) Pk)|
<I8|Col| Ve 2, || Rs(A) PE]| £,
<CCy 0| l|Ve|2,CaCpl|k| 2y, -

It remains to prove the resolvent estimate for the system (3.41), (3.42) in the
domain Q.. The first part of the proof is similar to [36], Lemma 1.22.

Lemma 3.18. Assume that Hypotheses 1.4, 1.5, 1.6, 1.8, 1.9 hold.

Then there exist by, > 0 and some constant C, > 0 such that for all 0 < b < bs
the system (3.41), (3.42) possesses a unique solution (u,\) for s € B.(0) which
satisfies the following estimate for 7 =1,..., N

[lusllrre +[A5] < Cellksll s, (3.47)
Proof. Let j € {1,...,N} and z; = (uj,u;¢). We transform (3.41), (3.42) to

Lj(S)Zj :Rj — q)j)\j (348)
0 :<\Ijj7 Zj>a (349)

where

0 I
Li(s)z = zje = Mj(, )z, M(€.5) = (Al(sI—Cj(f)) —AlB])’

o 0 o 0 (Ve
(o) - (1) o= (%)

Using Hypothesis 1.9 and [33|, Lemma 2.27 we conclude that lime_ 1 M;(§, s) is
hyperbolic for all s € C with s > —k. An application of Corollary A.2 shows that
the operator L;(s) has an exponential dichotomy on Ry with data (K;E, ozjc, 7r]i) It
remains so show the solvability of (3.48), (3.49) for s = 0. A regular perturbation
argument, [9], Theorem 9.3, yields the solvability for s € B.(0) for small £ > 0.
Let 0 <b < %min(af,j =1,...,N) =:bs.

From now on we suppress j in the proof.

Let s = 0. From (A.3) we obtain that the solutions on R* of (3.48) are given by

2 = 5(-,0)2°% + sF(R— dN),

where S is the solution operator of (A.1),

0

s (9)(€) = / G, 2)g(x) dr, sH(g)(€) = /OWG@,x)g(x) du

—00
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and the Green’s function G is defined by (A.2).
(),  £=20

(€, £<0
the phase condition (3.49) and z~(0) = 2%(0) € M(7=(0)) N R(7*(0)) holds. In
operator form this is equivalent to

The function z(&) = is a solution of (3.48), (3.49) if z solves

T(z%, 2%, \) = (g) , (3.50)

where 7' : R™ x R™ x R — R?>™ x R s given by

I -1 X
= (9 A 5)
with
5 =s*()(0) — 5 (@)(0),
o= / (E)TS(E,0)de. A= / ()T S (€, 0)de.
== [ weTs @@ - [ wers @)
and

p=s"(R)(0) = s~ (R)(0),

s== [ wers w©d - [ v

—00

It remains to show that T is injective, i.e. the equation T'(2%~, 2%% X) = 0 implies
(297, 2% \) = 0.

Let T'(z%7, 2%, X) = 0, we construct z = (u, ug) with z(£) = S(-,0)2%% + s (—DN)
for £& > 0. Then z is a bounded solution of

ze — M(0)z = —®N, (VU,z) =0.
The equation ze — M(0)z = —®\ is equivalent to
Auge + Bug + Cu+ Awe = 0.
Using the Hypothesis 1.8 we conclude A = 0 and u = ew, for some e € R.

The conditions (Up¢, wie) # 0,k =1 ..., N and (¥,z) = 0 give e = 0. So we
have A = 0,u = 0 and therefore z = 0 and z%* = 0. It follows that T is injective
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and invertible. Therefore, there exists a solution of (3.50) which is estimated for
R e Egyb by

711+ 14 = 17 (5) 1 Crllel + 1)
for some Cr > 0. We have to estimate ||p||, ||d|| and use (A.4):

1ol =lls™(R)(0) = s (R)(0)]] < IR,

for some C, > 0 and for some C5 > 0 we obtain

18] <\|/ ds|r+u/ R)(€)de]|

<] 250001187 (R £a(—00.0] + W] 220,000 1[5 (R)] £310,00)
<Cs|[¥||£,||R]|z,-

In summary, we get for some Cy > 0
"I+ 122+ A < Col| Rz

Finally we have to estimate z*. We estimate 2z~ for £ < 0, 2% is handled similarly.
Since 2%~ € N(7~(0)) we obtain the estimates

0
15(-,0)27 (12, ,(co) = / e ][S(£,0)2"|[2d¢

—00

< / e 2)[S (€, 0)(1 — m (0))2%|[2de

—00

0
(K—)Q/ 62(a*—b)§||20,—||2dx

(K207 )21 ]
2(a=—=b) — 3a~

IN

IA




74 Chapter 3. Proof of the main stability theorem

and
5™ (R — ®N)|IZ, (o)

<t [ e[ e () - 2] do)idg

—00 —00

<k [ ([ T T R) — o dede
/ e / o lé=al gy / e~ 16771 R(z) — B(2)\||? da dé
/ / el =™ IE=al|| R(z) — B(x)A||? dar dE
/ / (2-a7)lg=al el | R(z) — P(x)A||? da dE
(

2b\w| 2 T
s(&_)(a__%)/w 1R(2) — BN d de

o

2(K™)

S—————([Blla, + |®]]£,,[A])-

So we obtain for some C > 0 the following estimate
2]l 20 + 1A < Chl|R] |2,

Since z = (u,ug) and |(6y)¢(6y) | is bounded by (A.9), we conclude that some
C. > 0 exists such that (3.47) is satisfied.

Note that C. can be chosen independently of j by taking the maximum over a finite
number of constants. |

Remark 3.19. Using the fact that w;(§) — wj-E as & — +oo and w; € CE(R)
we conclude as in the proof of Lemma 3.18 above that the operator L;(0) has an
exponential dichotomy on Ry with some data (Ki % ,W]i)

Let j € {1,...,N}, note that the functions wje, wjee are bounded. The function
(wje,wjee) is a bounded solution of L;j(0)z; =0 on Ry. Therefore we obtain that

constants 1, Cy, > 0 ewist such that the following estimate is satisfied:
lwie ()] + ||wsge(€)]] < Cpe™™! VE € R
with n = min{a;-t]j =1,...,N}. Furthermore, the estimates (1.25) - (1.26) result

from the estimates

00 13
wy(€) — w || < /g lwge(lldr — and  |juwy(€) —w]|| < / ()|

—00
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It remains to show the sectorial estimates:

Lemma 3.20. Assume that Hypotheses 1.4, 1.5, 1.6, 1.8, 1.9 hold.

Let j € {1,...,N} and k; € Loy There exists by > 0 and furthermore there exist
some Cy > 0 and a sector S,9 C p(Apy) for alll = 1,...,N and 0 < a <
min(Keq, k), 0 € (5, 7) with the following properties: The solution

= (sI = PjAj) T Piky, uy € R(Py), Ny = —(0jewse) " aj(0je,uy)
satisfies the following estimates

C Cs

ujl|c,, < killzay,  wllme < ——==llkjl|c, 3.51
ujille,, 5t ||| leowr  lellrae \/MH illza (3.51)
fOTallSGS'a,g,0<Oé§a,0§b<b4.
If, in addition k; € H'?, then the following estimate holds
Cs
e < killp10. 3.52
sl < =l Vsl (3.52)

Proof. Using Lemma 3.15 we find that the system (3.43), (3.44) is equivalent
o (3.41), (3.42) and we apply Lemma 3.17, 3.18. Therefore there exist by :=
min(by, b3, 2) and C' := max(C.,C4). Let 0 < b < by, 0 < a < min(k, Kg),
0<a<a. Let j€{l,..., N}, again we suppress j in the proof.

Let s € Q. UQg,, ie. |s| < Kg, and s # —a. We get

. . 2Kq
ullz,, <Cklz,, < Cm“ 225
in an analogous fashion
. . V2Kg
[ullpe <ClIkllz,, < C——=—="=|IFllc,,-
Vs + «af
For s € Q, i.e. |s| > K¢ we obtain
Ve W C
|ullz,, < 5] —klle,, < 5T |H/€H.cgb

/V ’ kH£2b — / O ||kH[-"21)

[lullpe <



76 Chapter 3. Proof of the main stability theorem

For k € H'“" we obtain again estimates for the sectors: Let s € Q. U Qp,, i.e.
|s| < Kg, and s # —a. We get

. 2Kg
<O
||u||7'(117 = |S+CY|

[0

Let s € Q, 1. |s| > Kg. We obtain

2V C

|s +

[lullppe < [|K[[30-

As shown in Figure 3.6 we can choose 0 < a < min(Kg, %),0 € (3,7),0 < ¢ such
that a sector S, 9 C p(Ag) for all k =1,..., N and some Cs > 0 exist such that for
all 0 < a < a the estimates (3.51), (3.52) are satisfied. [

Figure 3.6: Sector gaﬂ C C together with the sections (g, Q20,2 CC

Let j € {1,...,N}, t > 0. Recall the operator e**i’ is defined using the
Dunford integral, see [17],

. 1 s _
At %/Fe YT — Apy)~'ds, V>0, (3.53)
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where I' is a contour in p(Ap;) with args — %6 as [s| — oo for some 0 € (7, 7).
Let us now mention an important consequence of the last lemma: The essential
estimates of the operator e*rit, j =1,... N:

Theorem 3.21. Assume that Hypotheses 1.4, 1.5, 1.6, 1.8, 1.9 hold.
Then there exist by > 0, K > 1, > 0 such that for all 0 < b < by,7 =1,..., N,
k; € Loy the following exponential estimates are satisfied

, _ . b1
€827 Pkl |y, < Kem || Pikjllea,e 179" Pikjllps < Ke 72| Piky|| .,
If in addition k; € H'®, then the following estimate holds
AR Pyl < K| Pyl

Further holds
\le2P3t Pik; — Pikjllppe — 0 ast — 07 (3.54)

Proof. Let C be some positive constant. Let j € {1,..., N}, again we suppress j
in the proof.
Let 0 < b < by, where by > 0 is chosen as in Lemma 3.20. Further let a, 6 be chosen
as in Lemma 3.20. We know that the estimates (3.51), (3.52) hold for s € S, 4 with
Ci>0and 0 < <a.
Let 0 < a < a. Let I' be a path around the eigenvalues of Ap with s < 0
for all s € I'." We choose I' to be the sum of two rays ¢; and ¢ with ¢;(\) =
—p—A|cosO|+iAsin b, ga(\) = —p—A| cos @] —iAsinf for A € [0,00), 0 < p < a—a,
see Figure 3.7. We can move I' to I' — « such that it is also a path around the
eigenvalues of PA and the integral defined in (3.53) does not change.

Let * € {Lay, H'*}. We get

1
e Pk, :||f/65t(sI—PA)_1Pkds||*
21 Jp
=H—./ ¢ (sT — PA)~ Phds]|,
I'-a

=||=— / e~ (s — a)I — PA) "' Pkds||,
r

—at
‘ / ] 11((s — a)T — PA)""Pk]|.|ds].
2 Jr

Note s—a # 0 and u = (s—a) ' P(k+Au), hence u = ((s—a)[—PA) ™' Pk € R(P).
Using Lemma 3.20 we obtain

C —at st O —at q
|ePMPE||, < < HPkH*/ e |]ds| = e—HPkH*/|€—|\dq].
2 rls| 2m rldl

<

The last integral is bounded since Rg < 0 and |¢|~! is bounded.
Further we conclude
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Figure 3.7: T - path of integration

Cfe—oat |est| Ce—ozt / |eq‘
Pk ds| = Pk 17 g,
o H H£2,b . ‘S|’ | 271_\/%“ H[:Z,b . \/H| C]’

HePAthHH1,b S

again the last integral is bounded.

The proof of last claim is missing. From Lemma A.5 we obtain that H?? is
dense in Ly;. For this reason there exists for k € H"* some h € H*" sufficiently
close to k, that is why we only have to show the estimate (3.54) for h € H?*®, since

|27 Pk — P|lyo <[[e*""(Pk — Ph)[lye + || Ph — Ph] [y
+ ||Ph - Pk”'Hl,b.

We only estimate the second term for h € H*®, which implies PAPh € Ly,
We follow an idea of [17], Theorem 1.3.4. and use the Gauss integral theorem, [27],
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Theorem 5.4:
1
A Ph— Phlbas =l [ el(sT = PAY" = 571 Phds]es
r
1 est 1
:||— —(SI— PA) PAPhdSHHLb

1 st
oS / (6T — PAY""PAPhds] |0

I'-a S

C e(s—at
<or o e IPAP,

aly/ls]

<Ct% e ds| ||PAPh
< [ IPAPL,
Ctz |ed]|
|ds| [|PAPh]|c,,
r[gl/ldl
Similarly to above the last integral is bounded. ]

Let 7 € {1,...,N}. We proceed with the main result of this section which
states that the operators Ap; = PjA; : H** NR(P;) — Loy NR(P;)j=1,..., N,
are sectorial:

Theorem 3.22. Assume that Hypotheses 1.4, 1.5, 1.6, 1.8, 1.9 hold.
There exist by > 0 such that for all0 < b < by and j € {1,...,N} the operator
Ap; is sectorial in Lo N R(P;).

Proof. Let 0 < b < by, where b, is chosen as in Theorem 3.21. Let C' > 0 be some
generic constant and j € {1,..., N}.

First step: H** NR(FP;) is dense in Lo N R(F)).

Using Lemma A.5 we know that H* is dense in Ly;. Let u € Lo, N'R;(P;). From
Lemma A.5 we conclude that there exists u, € H** with [|u, — ul|z,, — 0 as
n — oo. From Hypothesis 1.6 and the estimates in the Appendix A.3 we infer
w; e € H**. Therefore Pju, € H** N R(P;) and lim,,_., Pju, = u, since

|1 Pyun = ullz,, = ||Pj(un = wllz,, < Cpllun —ulle,, =0 as n—oo.

Second step: PjA; is closed in Lo, N R(FP;):
Let u, € H** N R(P;),n € N converge to u € Loy N R(P;) and PjAju, to
v EﬁgbﬂR(P) We show u € H*® and PjAju = v:
For s € S, holds by the resolvent estimates for the domains €., Qk, and Q

[P 1lun = uml[z,, + || [[un = tml [0 < ClI(ST = Pihy) (un = um)|Iz,,
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Since the term on the right side converges to zero follows u,, is a Cauchy sequence
in H'"* and u,, — @ in H"* as n — oo as well as @ = u.

We obtain 0, ¢ € Lo from Hypotheses 1.5, 1.6. We use the assumption P;jAju,
converges to v € Lo N R(P;), further we conclude P;Bju,s — P;jBjue and
P;Cju,, — P;Cju as n — oo from above. We derive

N 1/~
Aupge = Piljuy, — PiBjung — PiCiuy + w;j (06, wj6) " (D), Attnge)
N 1A
— v — PiBjug — PiCiu+ w;j (0, wje) ™ (0j¢e, Aug)

as n — 00, hence up¢e — U in Lop as n — 0o and U = uge, u € H>*b as well as
PiNju =v.

Third step: S,p C p(Ap;) and the resolvent estimate holds:
The resolvent estimate (3.51) is given by Lemma 3.20.
The operator Rs(Ap,;) exists in 5'(1,9, since sI —Apj is in this sector by the resolvent
estimate in Theorem 3.21 and Lemma 3.20 injective, thus invertible.
R (Ap;) is bounded and continuous, since for every k € Ly, N R(P;) there exists
M > 0 such that for all s € S, the estimates (3.45), (3.46) and (3.47) give

[Rs(Apj)kllz,, < MI|K]lz, -

3.5 The solution operator

Recall the decoupled projected system (3.34) - (3.36). Using the resolvent esti-
mates of the section above we are able to solve this system with the help of the
variation of constants formula.

Let L be sectorial in a Banach space X and R\ < —x for all A € o(L). Let
U be a nonempty open subset of X. Let T € (0,00]. Let F': [0,T) x U — X be
locally Lipschitz. i.e. for every ¢ € [0,7") and u € U there exists C,§ > 0 such that

[[F(t1,u1) — F(ta, up)|[x < CO([ty — tof + [Jur — ual|v)

whenever t1,ty € [0,T),ur,us € U and |t; — t| + ||u; — ul|ly < 0 for i =1, 2.
We use [23], Chapter 6.4 to obtain an equivalent formulation of the solution of a
single PDE of the form u/(t) = Lu(t) + F(t,u(t)):

Definition 3.23. For 7 € (0,7] let S(7) denote the collection of u € C([0,7),U)
such that u'(t) exists, u(t) € D(L) and v'(t) = Lu(t) + F(t,u(t)) ¥t € (0, 7).

Note that this definition is in agreement with 23], Definition 6.4. An important
consequence is the following variation of constants formula, see [23|, Lemma 6.4.3.
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Lemma 3.24. Suppose 7 € (0,T]. Then u € S(7) if and only if u € C([0,7),U)
and

u(t) = eHu(0) + /Ot el F (s u(s))ds Yt e[0,7). (3.55)

Let 0 < b < by, where by > 0 is chosen as in Theorem 3.21. We apply the lemma
above to the decoupled system (3.34) - (3.36) and set X = (Xi,...,Xn),U =
(Ui, ...,Uy), where X; = Loy, NR(P;),U; = HY* N R(P;) for j = 1,...,N. To
utilize the lemma we have to show that for g; : [0,7) — Lo, NR(P;) locally Lips-
chitz the term f(f errilt=9)g.(s)ds is continuous and in HY* N R(P;)).

Lemma 3.25. Let T € (0.00], 0 < b < by and j € {1,...,N}. Assume
gj 1 [0,T) — Lop NR(P;) is locally Lipschitz. For 0 <t <T define

¢
Gj(t):/o eAij(t_S)gj(s)ds

Then G; € C([0,7), H"* NR(P;)) for T € (0,T].

Proof. The proof is similar to the proof of [17], Lemma 3.2.1, but uses weighted
norms. Let j € {1,..., N}. To shorten notation in this proof we suppress j. Let
g(s) =0 for s < 0. Define for small p > 0

t—p
Glt) = [ e glspas

with G,(t) =0 for 0 <t < p.

Let t € [0,7). Using assumption g(s) € R(P) for s € [0,t] we infer that the
operator A7) maps into R(P), G,(t) € R(P) and also G(t) € R(P).

We apply Theorem 3.21 and obtain G(t) eHYWfor 0 <t <T:

t
1G®) o < / €279 g ()] lprods

t —at s)
< [ ot
te—as
< sup [lg(s)llc / s
se[0,t] o Vs

N3
<= sup |[g(s)|[c,,-
s€[0,t]
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Similarly we obtain G,(t) € H** for 0 <t < 7. We show that G is continuous by
estimating ||G(t) — G,(t)|[yae and [|G,(t + h) — G,(t)||re.
First step: Let 0 <t < 711,71 < 7. We apply Theorem 3.21 and obtain

t
1G(8) — G(0)] s < / A7) ()| lprods
t—p

P e—as

< sup |[g(s)llc —=ds.
SE[t—p,t] a0 0 \/g

This integral tends to 0 for p — 01 uniformly in 0 <t < 7q:
p ,—as 1 ap ,—s 2 Vap
/ © _ds :—/ € _ds= —/ e " du
o Vs Valdy Vs Val
2 / 2 2
<— e—Witu3) dy,
\/5\/ B3 (0)

2 V200 2 .
= T rdrdf = — 1 — e—2a0),
7a /0 /0 e " rdr \/a\/w( e )
Second step: Let h > 0 be small and 0 <t <t + h < t;, we obtain:

G, (¢ + ) = Gol)llrro

p h+t—p
<Jl(h — 1) / AP g()ds o + | / NP9 () s 0
0 t—p

t—p h+p e—as
<=1 [ gsdslhas+ s lgllen, [ s
0 ] b VS

s€[t—p,t+h—p

We conclude from Theorem 3.21 that the first part becomes small for h — 0, the
second part becomes small using the argument above. [

To obtain stability estimates like (1.39), we estimate the solution w;(t),
j=1,..., N of the system (3.28) - (3.30) with respect to an exponentially weighted
norm in time. Therefore we define for u : [0,7) — X and v > 0,t € [0, 7)

ullewx = e fu(t)]]x, (3.56)

where X € {£5;, H"*}. Furthermore, compare Definition 1.19, we define the supre-
mum over the time interval [0,¢] by

HUHZ,X ‘= Ssup ||uHs,V,X- (357)

0<s<t

Consider the system (3.28) - (3.30) with appropriate initial conditions. Using the
equivalence from Lemma 3.12 and the solution operator e’ri for j = 1,..., N, the
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above lemma will show that we can determine the unique solution of the system
(3.28) - (3.30).

Lemma 3.26. Assume that Hypotheses 1.4, 1.5, 1.6, 1.8, 1.9 hold. Let 0 < T < 00
and 0 < b <by. Forj=1,....N letk;:[0,7) — Loy be locally Lipschitz, assume
u;(0) = ul € HYY NR(P;), r) € R.

Then the following PDAFE

Uje = AjUj + /\jwj,g + k?j, U (0) = U,?, (358)
rie = Ay, ri(0) =1, (3.59)
0 = (Oj¢ uy) (3.60)
for 7 =1,..., N has a unique solution (u¢,7,\°) on [0,7), namely
t
uj(t) = eAPvf'tu? +/ Arit=9) Pk (s)ds, (3.61)
0
t
ot = / Xo(s)ds + 19, (3.62)
0
XN(t) = —(0j6,wi6) " (aj (05, u5(1)) + (D6, k5(1))),  t€[0,7). (3.63)

The following estimate is satisfied for allO <t <7,j=1,....N,0<v < a:

200KV
\/— ] V,C,Qb

e |lu§(t) [l < Kllullrae +

Proof. From Lemma 3.12 we conclude that solving the system (3.58) - (3.60) is
equivalent to solving the system (3.34) - (3.36). Hence we apply Lemma 3.24 to the
equation (3.34) with L = (Ly,....,Ly), F = (Fi,...,Fx), where
L; = P\, : H**NR(P;) — L2pNR(P;) and F;(t,u(t)) := Pjk;(t) forj =1,...,N.
Usmg Theorem 3.21 and Lemma 3.25 we obtain that u;,j = 1,..., N defined by
(3.55) is in C([0,7), H"* N R(P;)). Tt follows from Lemma 3.24 applied to (3.58)
that the conditions 2., 5. and 6. of Definition 1.11 are satisfied. Since a; and k;
are continuous for j = 1,..., N, conditions 1., 3. and 4. are also satisfied.

Let j € {1,...,N},t € [0,7), 0 < v < a. From Theorem 3.21 we obtain the
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following estimate

t
us(Ollss <e s s + [ APty 5 sds
t e(ufa)(tfs)
(v— a)s

<K \|u0HH1b+cPK/ sl e,

CrlVm e
\/O./— v,Lop"

< uflhas + O | el (5 e,

<K || s +

For the nonlinear terms F;,j = 1,..., N in the PDAE system (3.6) - (3.9) we
need b > 0, otherwise we cannot use the estimates of the operator Fj,
j = 1,...,N in Section 3.2. Recall b; is the upper bound for b calculated in
Section 3.2. Furthermore, recall Lemma 3.10, the operator E;(s,u(s)) is continu-
ous in time for given § > 0, 0 < b < by and G° > 126B. Therefore, we assume
6 <1, in the following define GY ; = 12B.

Lemma 3.27. Assume that Hypotheses 1.4, 1.5, 1.6, 1.8, 1.9, 1.10 hold. Let
0 <7 <o0,0<b<min(by,by), 0>0and G°>GY,. Forj=1,... N let
kj - [0,7) — Loy be locally Lipschitz, assume u;(0) = u) € HYY NR(P)).

Let (u,r, \) be a solution of the system

uj(t) = eAijtu? +/0 ehrit=s) p. (l;; (s) + E;(s,u(s)))ds, (3.64)

mw:AAmMa (3.65)

Nj(t) = —(Dy.¢, wie) " (aj (e, us(t) + (Bye, ki () + Bt u(t))), t€[0,7).

Let G be sufficiently large, i.e. /oo — v — CPKCE\/Tre_“’GO > 0 is satisfied. Then
u satisfies for t € [0,7), 0 < v < « the following estimate

CrK /7

Jao 1 ,.,)-
(3.67)

CpKC
wawé( PKCpy

K|[u°]30,
/a_V_CPKCE\/—e 7G0>( Hu||H b+
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Proof. The system (3.64) - (3.66) can equivalently be written as
uj(t) = uj(t) + uj(t),
t
us(t) = eAijtug +/ Arit=9) Pk (s)ds,
0

uf(t) = /0 APt Py (B (s, ut(s) + uP(s)))ds,

ri(t) = i Aj(s)ds,

Aj(t) = A5 (t) + A (1),

X5(t) = — (D6, wie) " (aj (D1, uS(8)) + (e, ks (1)),
(t)

N(t) = — (¢, wje) ™~ aj (D¢, uf (1) + (Dj¢, Ej(t, uP(t) +us(t)))), te[0,7).

Let 0 <v<a,je{l,...,N},t €[0,7). We obtain from Theorem 3.21, Lemma
3.26 and Lemma 3.5 the estimates

CrlVm e
\/— v,Lo 0

t
A </ e[| Py(By(s, ut(s) + uP ()|l ods

e |u§(t)llpae <Ko +

6(1/ a)(t—s)
<Ok / €| B;(s,u(s) + 1P (5))|| a5

t v )(t )

vs — 0 €
e e U (3l + 1) s
=

CPKCE\/EG_’YG CPKCE\/_ 77Go P
< \/m H HyHlb T H HyHlb

Let G° be so large that v/a — v — CPKCE\/Ee_VGO > () is satisfied, then

CPKCE\/_Gi

<CpKCg

e AL
and
CPKCE\/_ CPK\/_
lull e < (14 =R T ) (Kl + )

Now we can give an equivalent formulation of the coupled PDAE system (3.6)
- (3.8) using the variation of constants formula. We apply the lemmas above and
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set kj(t) == T;(t) + N,(t,u(t), r(t), \;j(t)) + E;(t,u(t)). Recall that we have shown
in Section 3.2 that the operator 7}, N;, E; are continuous and Lipschitz for given
0,6 >0and 0 < b < by, G > 12(B5 + p). W.lo.g. we assume J, 0 < 1 and define
G® = 12(B + 1). Furthermore, recall the Definition (1.22) of the ball B, around
zero with radius p.

Lemma 3.28. Assume that Hypotheses 1.4, 1.5, 1.6, 1.8, 1.9, 1.10 hold. Let
0<b<min(by,by),0<0,6<1,G">G2 and 0 <v < a.

For j=1,...,N assume u;(0) = u € H'"* N R(F;), r} € R.

Any solution (u,r,\) of the PDAE system

wia(t) =Ajui(t) + Nj(Hwse + Tj(t) + Nj(t,u(t), r(t), (1)) + Ej(t,ult)), ui(0) = uj
(3.68)

ria(t) =X(t),  r5(0) =17, (3.69)
0 =(bje,u;(t)) (3.70)

on [0,7) for 5 =1,...,N with (u(t),r(t),\(t)) € B,p(0) for all 0 <t < 7 satisfies

uy(t) =etratug +/0 AratIP(Ty(s) + Ny(s, u(s),7(s), Aj(s)) + Ej(s, u(s)))ds,
(3.71)

ri(t) = / Aj(s)ds, (3.72)

Aj(t) = = (06, wj.6) " aj (056, u5(t))
— (D¢, wje) (056, Ty () + Nyt u(t), r(t), A () + Ej(t,u(t))).  (3.73)

Conversely, if u; : [0,7) — HY, Xj,r; : [0,7) — R are continuous for j =1,..., N,
(u(t),r(t), A(t)) € Byp(0) for all 0 <t < 7 and if (3.71) - (3.73) holds on [0, 7),
then (u,r, \) is a solution of (3.68) - (3.70) on [0, 7).

Fiz 0 < b < min(by, by). Choose G° such that in addition ‘/0‘7 > CPKCEﬁe_'VGO
holds, then u(t) with t € [0,7) satisfies the following estimate for some K,, K,>0

lulll 00 < Kolld®llroo + KT + N (yur A; (3.74)

v,Lop*

Proof. To prove the first part of this lemma we apply Definition 1.11 and Lemma
3.26 with k;(t) = T;(t) + N;(t, u(t), r(t), A;(t)) + E;(t,u(t)) for j =1 ...,N. Let
(u,r,A) € Byp(0) and 0 < 6 < 1. We conclude from Lemma 3.9, 3.10 and 3.11 that
the functions T}, N;, EJ; are continuous in time for j = 1,..., N, hence there exists
a constant C’Q > 0, where C’Q depends on the size of g, and it holds for all s, > 0
with |t — s| < § the following estimate

i (8) = K3 ()l 20 <Coe®l =1 (| = 5] +[[r(t) = r(s)]]
HIA®) = M)+ [Ju(t) = uls)[lrs) -
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We obtain that k; is locally Lipschitz in time for all j = 1,..., N and the claim
follows from Lemma 3.26.

Conversely, we know from Lemma 3.12 that solving the given system
(3.68) - (3.70) is equivalent to solving the system (3.34) - (3.36) for
kij(t) = T;(t) + N;j(t,u(t),r(t), ;j(t)). Thus we apply Lemma 3.24 with
L = (Ly,...,Ly), F = (F,...,Fy), where L; := Ap,; and
Fi(t,u(t)) :== P(T;(t)+N;(t,u(t), r(t), \j(t)+E,(t,u(t)))) for j =1,..., N. Hence
we know if (u,r, A) is a solution of (3.71) - (3.73) then u; is a solution of (3.68)
and Lemma 3.12 yields that (u,r,\) is a solution of (3.68) - (3.70).

Fix 0 < b < min(by,by). Let G satisfy \/Céj > CpKCpy/me 7% Applying
Lemma 3.27 we obtain the following estimate

20K /7 CrK /7
[lull} 200 <(1+ ﬁ) K[|y + ﬁHT +NCour, Mg, | -
(3.75)
[ |

Remark 3.29. Note that the equivalence statement is satisfied for all 0 < b <
min(by, by), in particular for b = 0. Only the estimate (3.74) needs the assumption
0<b< min(bl, b4>

3.6 Notations and definitions - part 2

In this section we give useful definitions and notations that will be needed to handle
the difficulties in the proof of the Stability Theorem 3.1 introduced by the expo-
nentially weighted norms.

Let b > 0,7 > 0 be given parameters. Furthermore, let the functions
(u(t),r(t), \(t)) = (u1(t), ..., un(t),ri(t), ..., rn(t), A\ (t), ..., An(t)) be given with
w; ¢ [0,7) — HY, r; 2 [0,7) — RN :[0,7) — R,j = 1,...,N. Note that
(u(t), r(t)\(t)) behave differently, therefore we attach in the following proofs dif-
ferent weights to (u(t),r(t), A(t)). Let wy,ws > 0 be weights, where w; has to be
large to handle the influence of A(¢) and wy has to be small to show that r(¢) is
bounded. Furthermore, we multiply the u(t) and A(¢) with e”* for v > 0 to prove
the exponentially decay in time as stated in (3.5).

Let 0 <t < 7, then we define the weighted norm expression for (u(t),r(t), \(t)) =

(i (t), o un (), 11 (t), o (), M (E), - An(t)) by
10 7, Ml o wrere = € wnl[u(®)l e + wollr (0] + e[IA@]]

and for (u(t),7(t), A (1) = (wi(t), ..., un(t),r1(t), .., rx(t), A;(£)) by
107, A ltaon wp e = € wr[u(®)] [ + wal [r ()] + e |A;(1)].
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We define by

nghwmv,b(ua r, )‘> - {(Ua g, M) :Os<ltlp ||(U —U,g—rp— /\)||t7w17uJ2,V,H1*b < 67
<t<t1

vi(t) € H g;(t), ui(t) € RI=1,...,N}

the ball of radius § in the weighted norm around (u(t), r(t), A(¢)).
It is convenient to introduce the following abbreviations, we define for
w:[0,7) = HY N:[0,7) = R, r €R,t >0, compare Definition (3.56),

[l e = wie”[[u(®)|lrre, Aoy = €e”[AT)]  and  |rly, = wslr|. (3.76)
Furthermore, for o > 0 we define the Ball B, around zero with radius g by

By, ={p € R:|ul <o}

3.7 Local existence and uniqueness

Before we proceed with the proof of the Stability Theorem 3.1 we make use of
Lemma 3.28 to show a local existence and uniqueness result. The proof of Theorem
3.30 has some similarities to [17|, Theorem 3.3.3. and |36, Lemma 1.27.

Recall the parameter b; > 0 as defined in Section 3.2 and by > 0 given by Theorem
3.21.

Theorem 3.30. Assume that Hypotheses 1.4, 1.5, 1.6, 1.8, 1.9, 1.10 hold.

Let 0 < b < min(by,by). Then there exist weights v > 0,w; > 1,0 < wy < 1 such
that for any 0 < o < w, there exist constants G°, 01,71 > 0 with the following
property:

For any consistent initial values u’ = (uf,... u}),u) € H'Y N R(P)),
j=1.. N with |[u’llye < o1, " = (r),...,r%) with [|[r°]] < & and ¢° with

199 — g0l > G°,j # i we have the following existence results:

i) There exists a unique solution A2 € Cy([0,00), B2 ) of the consistency condi-
4 J 16
on

Nj() = = (D6, wie) ™ (a; (B, ) + (B, Ny (w1, A (O) + T () + B4 (-, ul)))
(3.77)
forj=1,...,N.
(i1) The system (3.68) - (3.70) has a unique solution (u,r,\) on [0,7) with

1087, Mo irrs < 0Vt € [0,7). (3.78)
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Proof. Fix 0 < b < min(by, b4) and let 0 < v < min(a, 7).
First take 0 < wy < 1 with #2 < % and than choose w; > 1 such that

w1 > 8Cy(Cy + |[0e]| 2, (5Cael™ + CL)), (3.79)
wy > QCU,w (Cv + ||@j75‘|£2 (SCT + 3CN€CTN + Ce)) , (380)

L (3.81)
w1 w2. .

Consider an arbitrary ¢ with 0 < ¢ < w,.
Then let G2 = 12(B 4+ 1). Choose G° > G? such that

-nG°
s <o (3.82)

%)

Choose 0 < 01 < W%H) and find o < ﬁ, since K > 1.

Define B% = C([0,00), [—1%, 5]). The task is now to show the solvability of
the consistency equation (3.77) for u® with u) € H"* N R(P;),j = 1,...,N and
[u”ll30 < 01 and r® € RY with [[7°]] < 2. We use the Banach fixed point
Theorem, [14], Theorem 9.2.1 and solve (3.77).

For j =1,..., N we define the operator [; : B2 — Cy([0, 00),R) by
L)) = = (B, wie) (a5 (D16, 1) + (056, Tj(t) + Nj(t, u, 1%, 4 (1)) + E; (¢, u”)))
Let \;() € E’%. From (1.21) and Lemma 3.3 - 3.5 we obtain for ¢ > 0 the estimate

LX) (8)] <06, wj.6) ™" s (06, u5) + (0.6, Tj () + Ny(£,u®, 10, X (8)) + E;(t, uP))]
<Co (Col[u[[pr + D76l 22| T5(8) + Nj(t,u®, 7%, Xi(8)) + B, u0)|lz,)
ch,w(CvHuoHHlvb

+ 1195l 2 (Cre " + Cl[u®] B + vl lrno Mg (2)]
+ eI [0 [0 + CoveC¥ 101 (1 + ([0 [p10)

+ Cel[u][5¢1.0)
2

0 o 0
<Chuw | Co— ; Cr—
<Cu (Cogl + lslles (O

- 2 2 2 2
=2 0 0 0 0 0
Cne N5t .-
Towe T (64w% T 1280 T 6dutn T 4@) * 8w1>>

Cy . N
< 8(;) e (CU + ||Uj,£H£2 (801*4—301\76%\[ + Ce))
1

0
<.
16
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Furthermore, using Lemma 3.9 - 3.11 we conclude that {;(\;)() is continuous in ¢.

Therefore, lj(B.) C Be. For t > 0 we estimate the difference

£
16

|1 (ps) (8) = 1 (A) (2)]
< (D6, w56) " 05l 2ol NG (8,0, 70 N (1)) — NGt u®,r°, ps (0)]] s
N 0 0
< Cv,w||vj7§||£20n8_m|)‘j(t) —pi(t)] < 1_6|)‘j(t) — ()]

Hence the function /() is contracting and has a fixed point A? €B

sl

Choose 11 > 0 such small that the following conditions are satisfied

e’ < 2,

~ T1 1
CPK <5CN€CN + CT + Ce) / e(yia)s—dS < —
0

~ T1 1
CpK <5Cnec” + Ce) / Vs s < =
0

From Theorem 3.21 we obtain for all j =1,... N, 0<t <7

14 i 1 vT Q
et (errit — I)u2||H1,b < ||€AP’]tU?||'H1,b +e 1||U?||H1,b < (K +2)p < o (3.83)

Wi

We define the weighted ball around (u®,r% \°(+)) by

B = {(u,r,\) € C([0,71),(H"")N x RN x R") :u; € R(P}),j =1,..., N,

0
sup [|(uw—u’,r —r% X\ — )‘O)Ht,wl,wz,uﬂl’b < 5}
0<t<m1

and the weighted ball around (u®, 7%, X)(-)) for j =1,..., N by

B; = {(u,r, \;) € C([0,7),(H*)N x RN x R) : u; € R(P;}),j=1,..., N,

sup ||(u—u®r — TO,)\j — )\?)

0
||t,w1,w2,V,H17b < 5}
0<t<Tm1
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Using the above assumption on the parameter 7, and [[u’|[zp0 < 01, N} (t) < %
we conclude that ||(w, 7, \j)||;w, wswre < 0 holds for (u,r,A) € B and 0 <t < 7,
since
||<u7 r, )‘j)Ht,wl,wQ,u,Hl»b SH(U - uO’ r—= TO’ )‘j - )\?)||W1,WQ,V,H1’b
+wn[ull[e” + ([ |ws + [[A°(2)]]e”
0 w10 ow2 4%
<= R < § _=Te & vm
=27 80" T o 16°
<p.
We use again the Banach fixed point Theorem to show that the system (3.68)
- (3.70) has a unique solution (u,r,A) on [0,77). We define the function H for
(u,r,\) € B,0 <t <7 by
Hl(u, r, )\1)(75)
H(u,r, A)(t) = :
HN(U, r, )\N)(t)

and for (u,r, \;) € B; the functions H,(u,r,A;)(t) by

erritul + [ err I P (B(s,ui(s)) + Ty(s) + N(s, u(s), r(s), Ai(s))) ds
fg Aj(s)ds + 19
—(0j.6, wj6) " (@ (D56, u5(t)) + (0j6, Byt u(t)) + Ty(t) + N(t,u(t), r(t), (1))

We need estimates of the operators N;,7;,5 = 1,...,N for (u,r,\;) in B;.
From Lemma 3.3 we obtain for ¢t € [0,7), j = 1,..., N the following estimate

e”t||Tj(t)||£27b §C’Te(”_71)te_7100 < C’Te_“GO. (3.84)

Using Lemma 3.4 we estimate the expression N;(t,u(t),r(t), \;(t)) for t € [0,71),
j=1,....N

e IN; (8, u(t), r(t), Ay (0)]| 2o,

<Cy Ot LT A o o e
< o

: <||U(t)||w7b + A (0] +
(u7 r; )‘j)||t,w1,w2,y,’)-{1’b ( Q Q ge—’ylG())

+

POl | w1e™ " [[r(O)lloe™"
_l_
W9 W9 Wa

—t+to+—+o+
Wi Wi Wo %)

2 ~
= (3 * _) ﬁcNeCN“(“? r, )‘j)Ht,whwz,V,Hl’b' (385)

Wwg /) W1
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Combined with (3.84) this gives the following estimate

T+ Ny w7, M) e s, <(Cr+ 5Cne)o. (3.86)

We use the estimates in Lemma 3.8 and we find that the following difference

N;(t,u(t),r(t), \j(t) — N;(t,v(t),g(t),pu;(t)) for t > 0, j = 1,...,N and
(w7, Ao wnwrire <05 |[(6 7 M)ty wn e < 0 can be estimated by

e |IN; (£, u(t), r(£), A (1) — Nj(t, v(t), g(t), i (1)l

Cneén max(||r(¢)[|,[1g(®)]])
< W H(u —-uv,r—4g, )‘j - /’Lj)|’t,w1,w2yl/77'f1’b

(masx(| [ty e, 1[0 () ||y ) + max(|A; ()], 15 (£)]) + 1

— GO\ W1
+max(||u||t,u,7-l1vb7 ||U||t,u,H1vb7 € néG )QTQ maX(L ||T(t)||’ ||g(t)||>

-1 GO

max(1, ||r(t)]], ||g(t)|\))

+max(|[u(t)|u, g, [[0()] |y 200)

- C,elr

(= v,7 = g, \j = 1) ton st

-1 GO -1 GO
) (29+1+max(£,“’le )+ & )
Wo Wo Wo

5 ~
<O = .7 = 9.3 = 1) nsri- (3.87)

Let t € [0,71) and j € {1,...,N}. We use these estimates, Lemma 3.5, Theorem
3.21, (3.83) and the fact that )\?(t),j = 1,...,N is a solution of the consistency
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equation (3.77) such that we obtain for (u,r, \;) € B,

||Hj(uar>)\) (U T )‘O)Htwlwnglb

" (v—a)(t—s)
<6y ]| (APt — Iyl lpin + nCpkK / =I5
N5, u(5), 7(5), Ai(5)lleas + 15 (5, u(s)] 2s,)dls
Tl / $)ds| + 7] = (¢, wye) ™ ay (05,05 (1))
(e N5t ut), (1), A (1)) + Ty(2) + Byt u(£))) — A2(H)

<ewnl|(e"" = I)uf|lys

CKTlVaS Cp + 5Cxnely + O,
+P/ \/TS (T+ NE + )Q)

+w20/0 e ds 4 €' |(Dje, wye) | |aj (D), u;(t) — u)|]

+ (D16, wie) T (B, N, ult), (1), A (1) — N;(t,u”, 0, A5(2))))|
+ (D¢, wj,5>_1|<@j,sa Ej(t,u(t)) — Ej(t, u))]

0 o
<=+ CPK/
4 0

+ e”th,vaHuj( ) — I

ds(ch +5Cxp + Coo) + i‘)

+C’UwH/UJEH£2 C € nH( )\ )\O)lewgu'Hlb
+ e CouCe !Ing||c2||U( ) — uOI|Hw
30 . 0 0
<2 4 Cyu(Cy + (C. +5C, elle,)— < £
5+ Con(C t (Co+ 50, igellen) 5 < 5

Taking the supremum over all t € [0,77) and j =1,..., N gives

sup ||H<u TA) (u T )‘0>||tw1w21/7'{1 <
0<t<m1

NCRNIS)

From Lemma 3.9 - 3.11 and Lemma 3.25 we obtain that H,(u,r, A;)(t) is con-
tinuous in ¢.

Let ¢t € [0,71), we use the estimate (3.87), from the following computation we
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see that H;,7 =1,..., N are contractive

[[Hj(w, 7, Aj) — Hj(0, G, 115)|or ot

<eton [ 110D BB () = ()
T Ny(s, u(s),7(5), Ag (5)) = Ny(5, v, 9(5), ()l )
+wﬂ/‘ ()ds| + €105, w5) ] (laz(Bre, us(8) — ;1))

+ (05,6, E5(t,ult) — v(t)) + Nj(t,ult), r(t), A;(t) — N;(t, v(t), g(2), 3 (1))
t e(ufa)(tfs)
§w1CPK/O ﬁeys(OeHU(S) = 0(s)||2,
+ ||Nj(8’ U(S), T(S)7 AJ(S» - Nj(87 U(S)v g(S), p“j(s))“ﬁz,bds
+wom max [X;(s) — (s)] + e Couw(Col 1 (8) = v; (1) a0

+ ||@jg||52(0 [lu(t) = v()][p
NG (8 alt), r(8), A (1) = Nyt v(), 9(8), p5()lls,))

0<t<m

(1/ a)s
<C’pK/ ds(5C, e’ +C’) sup ||(u, 7, A) = (v, G, 1)t 0y awn w21

+ waT SUP H(um Aj) = (v, G5 1)t s wm it
0<t<m1

1 A N
v W_IC”’“’<CU + ||Uj,§||ﬁ2 (507160” + Oe))“(uv T, /\) - (Uv g, M)Ht,whwmu,?{l*b

1 1

u+ﬁ+nmrn CRA)] |
1

<5 sup (w7, A) = (U, 95 1)ty om0
0<t<m

By taking the supremum over all ¢ € [0,77) and j =1,..., N we obtain

sSup HH(U r, )‘) (vagau)Ht,wLwQ,V,Hl’b

0<t<m1

< = sup [(u,r, N) = (0, 9, 1)t o wper0-

A) € B, especially
) for all t € [0, 7).
.70) on [0, 7).

]

By the Banach fixed point theorem exists a fixed point (u,r,
(u,m,A) € By, .,.,4(0) and therefore (u(t),r(t), A(t)) € Bis(
Using Lemma 3.28 we conclude that (u,r, A) solves (3.68) - (3
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Remark 3.31. Note that the existence and uniqueness result (3.30) holds also
for b = 0 if we choose v < min(«a, ) in the proof. Therefore, the existence and
uniqueness result is satisfied in a small time-dependent subspace interval for all
small b-dependent exponentially weighted spaces, including the case b = 0. For the
long time analysis we require 0 < b < min(by,by) and 0 < v < min(a, ).

3.8 Proof of the Stability Theorem 3.1

With all the technical preparation at hand we proceed with the proof of Theorem
3.1. This final step has similarities to the analysis of single traveling waves in [17],
Theorem 5.1.1, but is considerably more involved.
Proof.

Step 1: Fix 0 < b < min(by, by), where b; is defined in Section 3.2 and b, is
given by Theorem 3.21. Choose v, wy,wy as in Theorem 3.30 and select p such that
0 < ¢ < wy and the following condition is satisfied

(3.88)

Then there exist constants 71, 01, GY > 0 such that for any consistent initial values
o= (W), u}),u) € HY NR(P), j = 1,...,N with [[u’]lys < 01, 70 =
(rf,...,ry) with [[7°]] < 2 and ¢° with |g} — ¢/| > G°,j # i the following
existence results hold:

(i) There exists a unique solution X} € Cy([0, 00), B ) of the consistency condi-
tion

Nj() = —(0s6, w5.6) ™ (ay (B¢, uf) + (Dze, Ny (w1, N C) + T3 () + B (,uf)))
forj=1,...,N.
(ii) The system (3.68) - (3.70) has a unique solution (u,r, \) on [0, ;) with

[ (s 7, M|t oy e < 0 VEE[0,71).

Let

01
< —). 3.89
02 < max(or, ) (3.89)

Using the existence results we conclude that for any consistent initial condition

o= (], u}), u) € HY N R(P),j = 1,...,N with [[u'l]p0 < 0o

0 =(0,...,0), and ¢° with |¢) — g7| > G°,j # i the following holds:
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From (ii) we obtain that the system (3.68) - (3.70) has a unique solution (u, 7, \)
on [0,71) with
I (e, 7, M|t oy it < 0 VE€[0,71). (3.90)

Increase G° such that in addition the following holds:

—-71GO
S <o (3.91)
2
CpKCpy/me 1 < 0‘2_ - (3.92)
Cop o[V | £, Cre ™M < %, (3.93)
f(l,C’Twle_“’lGO S % (394)

We define

Too = sup{7 > 0 : There exists a unique solution (u,r, \) of (3.68) — (3.70)
on [0,7) with sup ||(w, 7, A)||tw; wewrre < 0}
0<

<t<t

We prove 7., = 00. Assume 7, < 00, i.e. there exists a unique solution (u, 7, \)

of (3.68) - (3.70) on [0,7) with

(e, 7, WD, oy e < 0 (3.95)

for all 0 < T < 7. Note from Theorem 3.30 we conclude 7o, > 77.

Step 2: Let 7 € [0,7). Assume (u,r, ) is a solution of (3.68) - (3.70) on
[0,7). Assume for 0 < 7 < 7,

sup ||(U, r, /\) | |t,w1,WQ,v,H1’b < 01 (396)

0<t<r

with p; from Step 1.
Then we claim that the following estimate holds

150
SUp |[](t, 7, A) [y coprrr < —ot (3.97)

0<t<r 16
The system (3.68) - (3.70) has an equivalent formulation (3.71) - (3.73), com-
pare Lemma 3.28. We need an estimate of the operator N;,7 = 1,..., N. Using
Lemma 3.4 and (3.91) we estimate the terms N;(¢, u(t),r(t), \;(t) for ¢ € [0,7],
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j=1,...,N
eyt”Nj(tv u(t>’ T(t)v Aj(t))HEQ,b

<ONeéN|\r(t)\| [[(u, 7, /\j)||t7w1,w2,y,H1’b
< n

- <|IU(t)||Hw + 120+

_ 0 _ 0
[rlle, | @267 |Ir(O)llope™
%) %) %)

~ )\ —’ylGO
SCN(?CN H(u,'f'7 ])Ht,u)l,wg,I/,HLb (ﬂ + 01 + ﬂ + 01 + 01€ >
Wi w1 %) W2

2\ o1 ¢
< (3 + UJ—Q) W_loN6 N||(u7rw >‘j)||t,w1,wz,u,H1’b'

From the conditions on the weights given in Theorem 3.30, (3.88), (3.89), (3.92)
- (3.94), (3.74), Lemma 3.3 and Lemma 3.5 we obtain for t € [0,7), j=1,..., N

e""wn]|u; (1)l <Ky [[6||3o + K[| Ty + N (wm, M) g,
<w1 K, ||[u0| |31 + K, Crw e 1E

~ 2 ~
+ KI/<3 + _)QICN(ECNH(u’ T, )‘)Ht

w2 wl:“JQ:Vle’b

[
4 )

8

t oo
IOl < al [ (61l < walltr VI s [
0 0

W9 H(U,T‘, )‘)Ht wa,v,HLb
< 7||(U, Ty A)Hil,wg,u,ﬁl»b = 1g1 = )

N O] <Coo (Col e + (106

EzHTj + Nj<'> u,r, AJ’)Htﬂ/,ﬁzb

+ Cel|Oj el o l[ulltwcs)
<Couo Collulli et + 19¢l 2, Cre
43+ ) 2O el (0 VI
+ Cel|j el 2o [ull i rr0)
<) 7, VI, (G (BCe + Co) 5l

~ _ 0
+ Cv7w||vj,§| |£QCT€ mé

o
<

wi,w2,

1
§§||(u,7’, )‘)Ht v/HL:b +
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Summaring the terms and using (3.96) we obtain the estimate (3.97).

Step 3: Define

Soo = SUP{s € [0, 7o0) || (s 7, M|ty wpwrir <01 VO <t < s}

Then 7o, = S 1S satisfied.

Assume S5, < To. From the continuity of the solution (u,r,\) in [0, so] we
obtain the estimate |[(u, 7, A)||tw; wowrie < 01 for all 0 <t < so. We infer from
Step 2 that even |[(u, 7, A)||t oy woprie < 1201 is satisfied for 0 < t < s.. Further-
more, we conclude from the continuity of the solution (u,r,\) in
[0,70) D [0, 550] that there exists € > 0 such that even ||(u, 7, A1) wowrrt < 01
holds for 0 <t < s, +¢, which is a contradiction to the definition of s.,. Therefore,

Too — Soo-

Step 4: Since 7., > 7 we conclude 7‘00—%7‘1 > (0. By definition of 7, and Step 3
there exists a unique solution (u,r,A) of (3.68) - (3.70) on [0,7 — i7m) with
Sup0§t<‘roof%n H(u7 T, )\)Ht,WL(.dQ,V,Hl’b < 01
Consider 7 := 7o — 171, we conclude ||u(7)||x1e < o1 and ||r(7)[| < 2. We apply
Theorem 3.30 with initial data u(7) and r(7) and obtain a solution on [7,7 + 71).
Gluing the solutions together we obtain a unique solution (u,r, ) of (3.68) - (3.70)
on [0, 7o + 371) with SUPO<t <ot dry (8 7 Aoy wprn < 00
This is a contradiction to the definition of 7,,. Therefore, we conclude that
there exists a solution (u,r,A) of (3.68) - (3.70) on [0,00) with
SUPp<t<oo [[(u, 7, A)

t,wi wa,v,HLb < Q-

Step 5: Similar to the above arguments we estimate for ¢t > 0
H<u7 T, )‘) ’ |t7w1,w2,V,H1’b

- - 92 -
<1 K| [u0| |31 + Ky Crwie M + K, (3 + —)oCne™ || (u, 7, M|

Wy w1 ,wa v, HLb

[1(u, m, VI

LD il g, Cre

w2
+7anmmwwwb+am<@

w1

S ||(u”]"7)\)||i wo .. s
+(5CNeN + Co)l|0j¢ll s Lz M

o N _ 0 7
<1 KU |pre + (w1 + Col|9jl|2,) Cre™ M + 1_6||(u, 7y Mo, o i

Taking the supremum over [0, t] we obtain for all t > 0

16 ) A )
18,7, My e < @ Clbs + (R + Colliel ) Cre ),

wi,w2 7V7H17
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Choosing C := % max(w; K, KVCTw1+CU,w| |0¢]|z,,Cr) gives the stability estimate

nl ) s + e wallr @)+ MO < Ce ([l + ).

Therefore 7; := [~ A;(s)ds is finite, we estimate r;(t) —7; for j =1,...,N

|Tj(t) - Tj| < / H)\(S)Hds < / ée_VS(HuOHHLb + e—%GO)dS
t

<

~+

T Qe

e ([l + e D).

In summary, for j = 1,..., N exist C,v > 0, 7; € R such that the following estimate
is satisfied

—Vv _ 0
[y @)llzas + s (0) = 73] + X (0] < Ce™ ([ lpas + ).
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Chapter 4

Numerical applications - Strong
interaction

We proceed with more numerical applications of the "decompose and freeze method’.
We consider multipulse or multifront solutions, where the single traveling pulses or
fronts interact strongly.

4.1 Multipulse of multifront consisting of two com-
ponents

We consider the case N = 2 and the system (2.1) - (2.4) given in Chapter 2 and
proceed analogously to Chapter 2. We test our method again on the standard
example, the Nagumo-equation (2.8) with the parameter a = 0.25. The examples
presented here have also been considered in [4].

Again we choose as a bump function ¢ = sech(3¢) with 5 = 0.5, Neumann bound-
ary conditions and the finite computational domain [—L, L] with L = 50.

4.1.1 Fronts moving in the same direction in the Nagumo-
equation

The first numerical example shows two fronts moving in the same same direction.
As displayed in Figure 4.1, after collision of the fronts the multifront becomes a
single front moving in the same direction. Though N is larger than necessary,
i.e. the number of components in the 'decompose and freeze ansatz’ is larger
than the components that constitute the solution, the method creates no problems
and gives reasonable results. Both velocities p; converge to the same value ¢,
the single frozen profiles v;,j = 1,2, displayed in Figure 4.2, become stationary
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and the superposition u; becomes a single traveling front moving with velocity
p1 = p2 = ¢ to the left. The positions g;(t),j = 1,2 tend to ¢t + K; with some
constants Kj,j = 1,2.

157

— 1
=== M

0.5f,

-50 X -1 ‘ : ‘ ‘
0 -100 0 50 100 150 200

—a
=0

50 100 150 200

Figure 4.1: Fronts moving in the same directions in the Nagumo-equation, evolution
of superposition uy, the velocities py, 1o and the positions g1, go.

In numerical tests we observe that asymptotically the traveling wave solution
w(z,t) = w(r — ¢&t) of the Nagumo-equation (2.8) is given by
w(z,t) = zi(x — at — K1) + 29(x — &t — Ky) with constants K;, Ky and
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0.2 06
0.15
£ ~ 0.4
> 0.1 >

0.05 0.2

200 200

Figure 4.2: Fronts moving in the same directions in the Nagumo-equation, evolution
of frozen vy, vs.

vj(-,t) = 2;(-),7 = 1,2. The z;,j = 1,2 satisfy the system
¥
o+ (- — Ko+ K)
# (f(w0r(-+ K1) — f(z1) = fo(- + K1) — 21) + a))

_ ¥
0=Azo¢e +Ci2oe+ f(zo+a)+
v T Ome b0t o R

# (f(wi(- + K2)) — f(w01(- + K2) — 22) — f(22 +a)).

x10°

0 :AZL& + 512‘1,5 + f(21> +

12r

10r

err

Soo -100 0 100 0 50 100 150 200
X t

Figure 4.3: Evolution of the absolute-error and the Ls-error for fronts moving in
the same directions in the Nagumo-equation.

In Figure 4.3 we show the comparison of uy,, defined by (2.9), with the solution
w; of the Nagumo-equation (2.8) for an sufficiently large interval in absolute values
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and in the Lo-norm as functions of time. We see that the error gets asymptotically
constant and the two solutions agree except for a small domain.

4.1.2 Collision of two traveling waves in the Nagumo-equa-
tion

Another very interesting example of strongly interacting pulses or fronts is the
annihilation of two traveling fronts.

Again Figure 4.4 and Figure 4.5 shows the superposition (2.9) consisting of the
moving profiles v; together with the velocities p;,7 = 1,2 and the positions g;,
j = 1,2 as functions of time. We start with a downward hat function and obtain
as a result that the two profiles v; annihilate each other. Although the solution of
(2.8) is constant after collision, the single profiles remain fronts. The two single
frozen profiles v;, j = 1, 2 displayed in Figure 4.6 become stationary. The velocities
1 and the position g; converge after a short transient period towards zero.

5r

—
--- M2

0 50 100 150

Figure 4.4: Annihilating fronts in the Nagumo-equation, evolution of superposition
ur, the velocities py, ps.



4.1 Multipulse of multifront consisting of two components 105

50¢

—n
--92

% 50 100 150
t

Figure 4.5: Annihilating fronts in the Nagumo-equation, evolution of the positions
91, 92-

150

Figure 4.6: Annihilating fronts moving in the Nagumo-equation, evolution of frozen
V1, V3.

Numerically we observe that the solution u(z, t) of the Nagumo-equation (2.8) is
asymptotically given by u(x,t) = 1 = z;(x)+22(z), because v;(-, t) — z;(-), 7 =1, 2.
The z;,5 = 1,2 satisfy the system

0 =Azjee + f(z) — % (f(z)+ f(1—2)),j=1,2.

Figure 4.7 compares the superposition u; with the solution wu; of the Nagumo-
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equation (2.8) for an sufficiently large interval in absolute values and in the Lo-
norm as functions of time. In the moment of strong interaction the error, which
was before constant because of a phase shift, tends to zero.

150
0.2

100
0.15

- -

0.1

50
0.05

0 L
-200 -100 0 % 100 0 50 ) 100 150

Figure 4.7: Evolution of the absolute-error and the Lo-error for the annihilation of
two fronts in the Nagumo-equation.

4.2 Multipulse or multifront consisting of three com-
ponents

We consider the case of a multipulse or multifront consisting of three profiles, i.e.
N is equal to 3.
We recall the coupled PDAE system (1.36) - (1.38) for the case N = 3 and
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t>0,eR

'
p+e(-—g2+ag)+e(—gs+ )
«[f (1402 — g2+ g1) +vs(- —gs +g1)) — f(v1) = fva(- — g2+ 1) + 103
—f(vs(vs(- — g3+ g1) +03)],  01(0) =17, (4.1)

- 2
Vo =AvUg e + Vogpia + f(ve + Wy ) +
T e 2ot ol —gi+g2) + (- — g3+ g2)

«[f(01(- — g1+ g2) +va+us(- — g3+ g2)) — f(ui(- — g1 + g2)) — f(v2 + w3)
—f(vs(- — g3+ ¢g2) + 1173_)} . 0(0) = vy, (4.2)

_ @
U3y =Avsee + Usepis + f(us + W5 ) +
! DR ot ol —gi+g3) +o(-— g2+ g3)

#[f (v1(- — g1+ g3) +v2(- — g2+ g3) +v3) — f(vi(- — g1 + g3))
—fva(- = g2+ g3) + 0y ) — flus +wy)],  w3(0) = vy, (4.3)
gie =15, 9;(0) =gj, =123,
0 =(v; — 0;,05¢), Jj=1,2,3.

V1 =Av1ge + V1 + f(v1) +

Note that the argument ¢ is suppressed.

4.2.1 Three interacting traveling waves in the Nagumo-equation

Again we consider the standard numerical example, the Nagumo-equation (2.8)
with parameter a = 0.25 and Neumann boundary conditions on the computational
domain [—50, 50].

We are interested in the sum

un(2,t) = vi(x — g1 (0),8) + 0ol — go(t). 1) + vala — gs(),8)  (4.6)

for t > 0. Figure 4.8 shows this sum uy, as functions of time together with the ve-
locities pj,7 = 1,...,3 and the time-dependent positions g;,j = 1,...,3, similarly
to Figure 2.1.
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Figure 4.8: Multifront in the Nagumo-equation, evolution of superposition uy,the
velocities i1, 1o, 13 and the positions g1, go, gs3.

The initial profile turns into one traveling front, where the profiles v, and v3
annihilate each other. After a transient time, the single frozen profiles become
stationary, see Figure 4.9. As a consequence of the annihilation of profiles vy and
v3, the velocities po and 3 tend to zero and the velocity p; tends to some ¢;. The
positions g, and g3 tend to the same constant K5, whereas the position g; tends to
¢t + K for some constant K.
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Figure 4.9: Multifront in the Nagumo-equation, evolution of frozen profiles vy, vg,
V3.

We compare the superposition u;, and the solution wu; of the Nagumo-equation
(2.8) on a large interval. Figure 4.10 shows that the two resulting fronts agree
except for a small domain. Further the Lo-distance gets asymptotically constant
caused by the single phase shift.

We obtain analogous results, see Figure 4.11, if we start with similar initial
functions u° given by the sum of some initial profiles U? and the initial positions
g?, compare (2.7). These initial profiles could be defined on larger intervals and
have different slopes.
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Figure 4.10: Evolution of the absolute-error and the Lo-error for the annihilation
of three fronts in the Nagumo-equation.

Figure 4.11: Multifront in the Nagumo-equation.
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4.3 Open problems in case of collision

We test our method on a collision case in the FitzHugh-Nagumo-equations (2.10)
- (2.11) for the case N = 2, i.e. for our numerical computations we consider the
system (2.1) - (2.4) on the interval [—L, L] with L = 70. We choose the relative
tolerance 107°, the absolute tolerance 2 * 107°, the spatial step size A¢ = 0.2 and
we impose Neumann boundary conditions.

We start with the traveling pulses computed in the FitzHugh-Nagumo example
in Chapter 2, Section 2.2 and interchange the g; to use them as new initial positions
g;). The pulses move towards each other and the frozen profiles seems to stabilize
in the initial phase. In contrast to the Nagumo collision example the velocities
tend to infinity in the moment of collision and the pulses of the profiles V; become
rapidly constant, see Figure 4.12 and Figure 4.13.

4
1% 10
0
_1,
-2t
-3t |— Lll
--H,
4 . . . . . )
0 20 40 60 80 100 120

Figure 4.12: Collision of two pulses in the FitzHugh-Nagumo-equations, evolution
of V1 and of the velocities py and ps.

Figure 4.13: Collision of two pulses of the V;, component in the FitzHugh-Nagumo-
equations, evolution of the frozen pulses Vi and V5.

Note that in the moment of collision the profiles Vi, V5, Ry, Ry become constant
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in space and hence V¢, Vo, Ri¢, Ry approach zero. For the calculation of p;
the phase condition gives the following terms j1;(0;¢,v;¢). Therefore, the problem
becomes ill-posed and the p; explode. A deeper analysis of this kind of problem is
still ahead.

Note the difference to the Nagumo collision case, where we have considered two
colliding fronts. There v ¢, v2¢ do not approach zero and the terms yt; (0, ¢, v,¢) do
not create problems for the calculation of py, . The fact that we consider here a
multipulse creates the above discussed ill-posed problem.

This example shows that there are still open problems for this method. Cur-
rently, the Stability Theorem 1.13 is proven only for weakly interacting pulses or
fronts. But we hope that it will be possible to extend it to strongly interacting
pulses or fronts in a reasonable way in order to be able to apply our method to
more complicated phenomena.



Appendix A

Auxiliary results

A.1 Exponential dichotomies

This section contains a brief summary of exponential dichotomies. For a deeper

discussion of this topic we refer the reader to [8], [28] and [30].

Definition A.1. The linear differential operator

Lz=z2—Mz, ¢€JCRM:J—RY

(A.1)

with solution operator S(&,x) has an exponential dichotomy on the interval J
with data (K, o, m) if there exists a bound K > 0, a rate « > 0 and a projector

valued function ©: J 2 & — w(§) such that

S(& x)m(x) = 7(£)S(E, v)

holds and that the Green’s function

S(& x)m(x), {>u,

= {—S(é,x)(f (@), €<

satisfies the exponential estimate
IG(&,2)|| < Ke™ ol ¢ ae
Using the definition of G the solution of
Lz=r, &£eJ, 2z(&) =z,

is given by

2(&) = 5(&,80)zg, + 54(r)(§),
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where s;(r)(§) = [, G(&, z)r(z)dz. From [35], Lemma 3.10 we conclude that there
exists some (5 > 0 such that the following estimate is satisfied

s + llss(9)lle. < Cillglle,, VE €T, (A.4)

The operator L given by (A.1) has exponential dichotomies on R_ and on R,
if the boundary matrices My = lim¢_4 o M(§) are hyperbolic. For the proof we
refer to [35], Corollary 3.8 and |2|, Lemma 2.1.

Corollary A.2. Let L be given by (A.1). Let M € C(R,RY). The following limits
exist

§—+oo

and the matrices My are hyperbolic. Let X3 be the stable subspace of My and X
be the unstable subspace of M. .

Then L has an exponential dichotomy on R_ and an exponential dichotomy on R,
and the projectors satisfy

lim (I —7_(§))=FE", lim(n.(§))=FE",

§——o0 §—o0

where B denotes the projector onto X" and E° the projector onto X. If the
number of stable and unstable eigenvalues of My is equal to m, we obtain

dimN(7_(0)) = dimR(E*) and dimR(74(0)) = dimR(E?).

A.2 Functional analytic notions and results

In this section we recall the notion of the resolvent set and the spectrum of an
operator T': D(T') C X — X. Further we present some functional analytic results.

Definition A.3 (Resolvent and spectrum). Let X be a Banach space and
T:X 2D(T) — X be a linear operator. Let Tx = N\ — T, \ € C.

1. The operator Ry = (A —T)~ with domain D(R)) is called the resolvent of
T at the point X. The mapping R(\) = Ry is called the resolvent function
of T.

2. The resolvent set p(T) contains all points X € C for which the following
holds:

o R(\) ewists,

e R(\) is continuous,
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e D(R(N)) = R(T)) is dense in X.
3. The complement of the resolvent set o(T) = C\ p(T) is called the spec-
trum. It is divided in two subsets o(T') = 0ess(T) U 0, (T), where the point
spectrum o, (T) contains all isolated eigenvalues of finite multiplicity and

Oess(T) = o(T) \ ot (T) is called the essential spectrum.

The following functional analytic result is called Sobolev Imbedding theorem,
see, for instance, [29], Theorem 6.91.

Theorem A.4 (The Sobolev Imbedding Theorem). Let s > 3. Then
HS([Rm) C Cb([Rm)

Moreover, this imbedding is continuous, i.e., there is a constant C such that

(A.5)

[lullee <

for every u € H*(R™).

A.3 The weighted spaces Ly, H'* and H?>*

The definition of the weighted spaces Lo;, H'* and H® for b > 0 is given in
Chapter 1, Section 1.2 with weight function

0p(&) = %(6b§ +e7%) = cosh(b¢), V¢ eER.

It follows

2

0;1(5) = m = Sech(bf), \V/g €R.

For the resolvent estimate in Chapter 3, Section 3.4 we need estimates of prod-
ucts of the functions 6y, (6,)~' and its derivatives. We calculate

(6, )¢ (&) = —b sech(b) tanh(bE), (6, 1)ec(€) = —bsech(b€)(1 — 2 tanh?(bE)),
(6, Meee (&) = bPsech(b€) tanh(b¢) (5 — 6 tanh*(bE)),
(0y)e(€) = bsinh(bE),  (Op)ee(€) = b cosh(bE)
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and estimate

106(6) (65 )¢ (€)] = [btanh(bg)| < b, (A.6)
106(€) (05 )ee(§)| = | — b + 20° tanh(b€)| < 30°, (A7)
106(€) (05 ece (§)] = [b° tanh(b¢)(5 — 6 tanh?(b¢))| < 1187, (A.8)
[(05)¢(£)0, ' (€)] = |btanh(be)| < b, (A.9)
[(0)ec(£)0, (§)] = b, (A.10)
[(05)(£)(6; ) (€)] = [b* tanh?®(b¢)| < 0%, (A.11)
[(05)(€)(0; )ee(§)] = | — b tanh(b¢) + 2b° tanh? (bg)| < 3b°. (A.12)

The density of the space H*? is classical for the case b = 0 (see [29], Corollary
6.72). Since we could not find a proper reference for the case b > 0 we prove it
here for completeness.

Lemma A.5. Let b > 0. H*" is dense in Loy,

Proof. For b = 0 apply [29], Corollary 6.72: C° is dense in ‘H? and in £,. From
H? C L, follows the claim.

Let b > 0 and v € £>*. From above and 0,u € L5 we conclude that there exist
i, € H?* with ||@, — Oyul|z, — 0 as n — oo. Define u,, = (0y) 4, € H*®. We
obtain for n — oo

wn = ullz,, = 106tn — Opul| 2, = [|06(65) "t — Oyul| 2, = |[@n — Opul|z, — 0.

A.4 Estimates of the bump function

The next two sections present some preliminary estimates of the operators Tj, N;, I;
for y =1,..., N in Chapter 3, Section 3.2.

Lemma A.6. Assume that Hypothesis 1.10 holds.
Then there exist constants C,C' > 0 such that for all j,k € {1,..., N}, t > 0,§ € R,
h € [0,1] and r,g € RN the following estimate is satisfied

fo | / §T+h(g r)+ct+g° )|dh

C max(||g][,|Ir]])
(£r+ct+g ) S Ce '
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Proof. In the following we use C' to denote a generic constant. Let ¢ > 0, h € [0, 1].
Let di.(t) = (cx — ¢j)t + g — g? + e — 7 and di(t) = di(t) + h(gx — g; — 1 + 1)
We estimate the term

_ Lo l¢'(€ = di))ldn
(& — di(t))

on three different subintervals that form a partition of R.
Let £ > di(t) + 4max(||r]l, ||g]|). We use Hypothesis 1.10 and estimate

I:

1
I< C/ e~ BE=di (1) gpePE-di®) < sup ePhlor—gitri—ril < Cetfmax(lirilllgll)
0 hel0,1]

Let di(t) — 4max([[r[], [[g]]) < & < di(t) + 4 max({[r[], ]]g]])-
1
I< C/ e BlE=di ()] g1, oBlE—dr (t)] < B max(Ir(l.llgll)
0

Let € < dg(t) — 4max(||r]l, ||g|]). As for the first term we obtain

I < C sup ePMon—gitri—rsl < cefamax((Irilllgl),
helo,1]

Remark A.7. In the following proofs we estimate the terms Q;HHQO (&) given by
(1.16) for j =1,...,N and r = (ry,...,rn),7; € R,j = 1,...,N bounded. Let

ke{l,...,N}. We conclude from Hypothesis 1.10

! 2 (&) #(¢) CL -slel+aiggsr ")
Q,t+ 9 &) = o < e < e kj ) (A.13)
! 25:1 Sp(gk?r I ) so(ész +g ) Co

Lemma A.8. Assume that Hypotheses 1.6 and 1.10 hold.

Given 3 > 0,0 > 0 there exist constants C,C > 0 such that the following estimate
holds for all 0 < b < 3, r,g € RY with ||r]|,|lg9]] < o, h € [0,1], G > 12p,
Joke{l,...,N} andt >0

ct+r+go+h(gfr)
GHlel—bies, |

< CeCmax(llglllIrll) (A.14)

ct4r+g°
sup Q5 (€)
£eR

Proof. In the following we use C' to denote a generic constant. Let ¢t > 0,h € [0, 1].
Define di(t) = (cx — ¢j)t + re —rj + gy — g5, di(t) = di(t) + 4max([|r[], [|g]]),
di(t) = d(t) —4max(||r[|, [|gl]), d};(t) = di(t) + h(gr — g; — i +7;). Note dy(t) > 0
for all ¢ > 0, since dy(t) > (cx, — ¢;)t — 20+ G° — 40 > G° — Go.
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The case b = 0 is clear since Q;’Tt””o <1 Let 0 <b< B Thecasek = jis
obvious. Assume k > j.
We estimate the term

ct+r+g° —bleé—dP
I = th-i- +g (€)€b\§| blE—dy (t)]

on six different subintervals which form a partition of R. We use Hypotheses 1.6
0

and 1.10, 0 < Q§t+r+g <1, (A.13) and b < 3 and obtain the estimates:

For & > d(t):

[ < Qe PEHBE—Ddi(t)+h6—be+bdi(t) < Crgabmax(llr(lllgll) o(b—B)di(t)

I < ClePE—BE+BAL(+0E-blE—dp ()] < (rpA(26+6) max(|lrl].lg]]) o (b= B)di (t).

From the choice of G° we conclude that the interval 3dj:(t) < & < di(t) exists, since

~ 1

di(t) = 5di(t) = 59 = g7 + i =15 = hlgx = g; = i+ 1)) — dmax({|r|l, llg])

— N0 =

> 5G* = 6max({|r[], lg]])-

We estimate:
[ < (e B BE+Bd (D) +betbe bl (1) < rpABmax(|[rllllgl) 0 (A.15)
For 0 < & < Sdp(t):
I < Cebetbe=bdi(t) < 00,
For ¢ <0:

I < Ol bEFbE—bdi(?) < Cetomax(lirll.llgll) g —bdi(t)

Assume k < 7.
Again we estimate the term [ on six different subintervals which form a partition
0
of R, use Hypotheses 1.6 and 1.10, 0 < Q;HHQ <1, (A.13) and b < 3 and obtain
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the estimates:
For £ > 0:

[ < CebEberbdi(t) < rpabmax(|irllllgl) bdn ().

For 1dp(t) <€ <0:

2

From the choice of G we obtain that the interval d,(t) < ¢ <
estimate:

1d}(t) exists and

[ < CePErBE—Pdi(t)=be=be+bdii (1) < (1 ABmax(lirllllgll). (A.16)

For dk(t) S f S Jk(t):
1< O Pe+BE= By (t)—bE—blg—dji (1)] < Cet2A+b) max(lir|l.llgll) o (—b+B)dk (t)

For dj,(t) < € < di(t):
[ < CePEBE+Ban()—be—ble=bdl ()] < (rpabmax(|irllgll) o(~b+B)di(r).

For & < dj(t):
[ < QPP -be+e-bil(t) < Crptomaxill gl o(~0+O)dr(t)

Remark A.9. If we replace the condition (1.34) in Hypothesis 1.10 by the weaker
condition

p(€) < Cre™* VEZ0  and  p(€) < Gt VE<O

for some Cy,C.,., 5,5, > 0, we run into problems with the estimate (A.14) for
By # Br. More precisely, the estimate (A.15) (for k > j) will only hold for B, < [3,,
but the estimate (A.16) (for k < j) will instead only hold for B, > [3.

Lemma A.10. Assume that Hypotheses 1.6 and 1.10 hold.

Given n > 0,q = 4,g > 0 there exist constants C,C' > 0 such that for all
0<b< m1n(1+q, 25, 277) there exist v > 0 such that the following estimate holds
for all ;g € RN with ||7|,]lg|| < 0, G® > 40, 0 < h <1, j,k€{l,...,N} with
k+#jandt>0

ct+r+g° (g) blg|— U\&CHTH o= T>\|

sup | Q¢ CeCmax(lglhlirl) g =7tp=1C° (A.17)

£eR

Qe+ 5)eb|f\—n|sz§*”9°+h<9*”| e, < CeCmaxtlglllirlbg=rte=1G" (A.18)
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Proof. In the following we use C' to denote a generic constant. For ¢ > 0, h € [0, 1]
let di(t) = (cr —c;)t +re — 15+ g — g7, di(t) = di(t) + h(gr — g; — 71 + 7). Note
that di(t) > G° — dmax(||r|], ||g]]) = 0.

Assume k > j. The case k < j is treated analogously (see proof of Lemma A.8).
We estimate the term

J Q§t+r+g° (f)eblﬁ\—n\ﬁ—dﬁ(t)l

on four different subintervals which form a partition of R. We use Hypotheses

1.6, 1.10, (A.13), 0 < Q™" < 1 and 0 < b < min(;2L, 18, In). The proof is

very similar to the proof above but now 7 instead of b. We obtain the following

estimates:
For £ <0:

J < betng—ndi(t) < yo—ndi(t)
<Ol k=)t =R =33) g=n(ri—r;+h(gk—g;—Tr+75))

Sc’e_”](ck_cj)te_nGO e2nmax({[r|l,[|gll))

The term J is estimated on the other intervals very similarly.
For 0 < & < (1 — q)dh(t):

J < Cebetne—ndi(t) < Op((l=ab—amdi (),
For the interval (1 — q)d!(t) <& < (1+ q)di(t):
J <O eHEBEHBlE=du®)

< OB max(Iirll gl o (b(1-0)~B(1—a)+aB)d (1
< CeABmax(lirlllal) o (—ba—5+2a8)d (1)

For £ > (1 + q)dj(t):

J <CebemEtndi(t) < o1 (b(+a)—an)di(t)

Further we have to estimate the following integral for all ¢t > 0

=7z,

0 (1—q)d(t) (1+q)d (t) o0
<C / J2dE + / J2dE + / J2dE + / J2d¢
—o0 0 (1-q)dp(t) (1+g)d} (1)

=L+ 1, + I3+ 14
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For i =1,...,4 we obtain estimates for the integrals I;:

0
L <C / e~ 2+ 20=20di(®) g < G0 < oo,

> ~2(n—0b) i
(1—q)dp (t)
I <C/ E 62b§+2n§—2nd2(t)d§< Lez((l—lﬁb—qn)dﬁ(t).
- Jo ~ 2(n+0)
(1+q)dl(t)
I3 <C 206 =206+26(6~du (D] g¢

(1—q)d(t)

<O samax(iillil) 200000 +aB)d 0

L<c [ ewemermdoge < peuro-man ¢ € aeara-amdio),
(L+a)d2 (1) 2(n —b) U

A.5 Estimates of nonlinearities

In this section we prove some estimates of the bump function and the nonlinearities
together in weighted norms.

Lemma A.11. Assume g € C'(R™,R™). Given ¢ > 0.
Then there exist constants C,,C, > 0 such that for all b > 0,2, € R and
u,v € HY with ||ul|ye, [|v]|me < o the following estimates are satisfied

[lg(u(€)) = g(v(@)I] < Col|u(€) = v(@)l| (A.19)
l9(u(€)) = g(v(@))I] < Colllullas + ollrers). (A.20)

Proof. Consider ||g(u(£)) — g(v(x))|| with £,z € R and u,v € H“Y, where
[|w|]3¢6, ||v][716 < 0. This term is estimated by

lg(u(€)) — g(v(=))| S/O 1Dg(u(€) + 7(v(x) = u()ldr|[u(§) — v(z)[l.
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Using (1.21) we conclude ||ul|zr < [|ullmie < o, [|v]lza < [J0]|lgie < 0, thus we
estimate the term Dg(u(§) + 7(v(z) — u(€))) for 7 € [0, 1] by a constant C', which
depends on the size of p.

Furthermore we use the Sobolev Imbedding Theorem A .4, in particular (A.5), and
(1.21) to estimate ||[u(§) — v(x)||

lu(€) = v(@)I| < llullss + [[0llse < Clfullie +110lla) < C(l[ullpgro + [[0]lers).

for some C > 0. u

Lemma A.12. Assume that Hypotheses 1.4, 1.6, 1.10 hold.

. : 1 : c —C . . . .
Let q := mln(z,mm{m c1<j<N, 1<k<N-1k %]}) Given
0<o<1l
Then there exist constant C' > 0 such that for all 0 < b < min(%ﬁ, %n, %) there
exists v > 0 such that the following estimate is satisfied for all u = (uq,...,uy)

with ||w||lpe < 0,l=1,...,N and for allj=1,...,N, t >0

[l

||Q§Hg0 [f (Z(Uk + wk)('itjﬂo)) — flug +wy)

k=1

<C (e—vte—vG‘J [l sy + e—vte—vG°||u||H1,b) . (A.21)

Remark A.13. In the applications in Section 3.2 of the lemma above we choose a
bounded parameter 0 < o <1 and obtain a constant C' > 0 in the estimate (A.21)
that is independent of o, compare the proof of Lemma A.11.

Remark A.14. Note that in this lemma and in the lemma A.10 above v depends on

the size of b and tends to zero as b tends to min(%ﬁ, %n,%qq) for

(;:Immimm{mfigtﬂ:1§jgN;1§k§N—Lk¢jb.zfmsa
g = min(%,min{M' 1<j<N, 1§k:§N—1,k7éj}) and let

212¢cj—cp—cry1|

0 < b < min(34, sitq)s then the constant v > 0 in the estimates (A.17), (A.18)
and (A.21) can be chosen independently of b.

Proof. The proof is based on the concept of [4], Theorem 4.2.
In the following we use C' to denote a generic constant.
Let t > 0,5 =1,...,N. In the following j is fixed. We write I for the value of

N

=] f (jg:(uk+1ﬂk)(z?yo)) — fluj +wj)llz,,

k=1
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We partition R into subintervals, on each of these subintervals we use either the
0

smallness of f or of Q‘;Hg to estimate I.

For0<q<q = }l sufficiently small we define

di(t) = (cr— )t +gp — g5, dig (t) = (1 q)d(t).

Note dy(t) < dpi1(t) and dj (t) < di 4 (t) for all t > 0 and k = 1,..., N. Further
holds d,(t) = djt(t) =0 for all ¢ > 0. Let ¢ > 0 then there exist ¢ > 0 such that
holds

e Cdk(t) — e—C(Ck-—Cj)te—C(gg—g?) < e—fte—fGO for k > j, (A.22)
S (t) — pClen—ei)t C(oi=9)) < o=Cte=CG"  for | < ]. (A.23)

Case 1: We consider t-values for which the numbers dy,(t), di(t) are ordered as
follows

—oo<df <dy<dy <dy <..<d <dj1<d; ;<0

<dj, <djg <df, <. <dy<dy<df <oo. (A.24)

For N > 3 consider the relations d; (t) < d;_,(t) for k < j—1 and d;/ (t) < d; ()
for k£ > j 4+ 1 which are equivalent to

Gk — Gesr + 4129 — ) — gia| < (o1 — n — q|2¢; — ¢ — a1

For every k there exist gu; such that the term on the right side is greater than
zero, ¢z has to satisfy
< Ck41 — Ck ‘

12¢; — ¢ — Cpt]

42,k
We introduce Ty(g") by
9n — Gher +4129) — 9 — gl = (e — e — q12¢5 — e — ) Ti(9”).

and define ¢ := min(qy, %QQ) with

QQ::min{’266k+;k_czk B 1<j<N, 1§k:§N—1,k7éj}>
7 - Ck+1

then the relation (A.24) holds for all ¢ > T'(¢°) = maxy.; Tx(¢°).
For all t > T'(¢g") we partition R as in (A.24) and use on each of these subintervals

either the conditions on f or on the bump function ¢ to estimate I as indicated in
Figure A.1.
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di_(T(g")) di(T(¢%) 0 d,(T(g%) i (T(9"))
d;_(T(g")) dj1(T(9°))

Figure A.1: Decomposition of R for ¢ > T'(¢°).

Throughout the proof we estimate the term

M;(€) = Q5 (92l (Z(Uk + ) (€ — dk(t))> — [ ((uj +wy) (&) |[P65(€)-
Note that the quotient
Qgt+go (5) Qp(é)

TSN e — ()

is always positive and less than one. Furthermore, using (A.13) (with r = 0) the
quotient can be estimated by

ctrg® e(£) 1 pie+le—d(0)
Q) < e < e (A.25)

forall k € {1,...,N}.
Using f(w;") = 0,1 =1,..., N and Hypothesis 1.4 we conclude that there exists a
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Lipschitz constant L > 0 such that

f <Z(Uk + 1) (€ — dk:(t))> |

k=1

=[1F D un(€ = di(®)) + D wi(€ — di(t)) +Zw;§> — flw)l

<L Y S wn(€ = de(@)]] + LI D wi(€ = di(t)) = Y wy —w)']]
§L||Zuk(§—dk(t))’|
+ LI Y (wi(€ = di(t) = wi) + Y (wi(€ = di(t)) = wy)|l- (A.26)

From the Sobolev imbedding estimate (A.5) we conclude that the first term is
always bounded

||Zuk§ dk(t) ||<Z||Uk:||oo<c||u||ﬂl<C||U||H1b

k=1

The second term is also bounded by some constants, since the traveling waves w;
are bounded functions. To obtain better estimates we can choose [ appropriately
on each subinterval of the partition (A.24).

We obtain

i1 il dr ()
[<C M;(€)de + M, (€)de + M;(€)d
(/ )de Z/d )de ;/m (6)de

j—2 l+1(t) d.+1(t) N i (t)
+Z/d j(g)d5+/d M;(&)dé + ) / M;(€)dg

=1 (0 ; 1(8) l=j+1 d; (t)

N df (1) N-1 o rdy (1) o0
3 [ Twgder Y [ e+ [ e
I=j+1 dl(t) l:j+1 d?_(t) d;(t)

7—1 7j—1
="+ I+ I +Z[§’>— +I°
N =1 N =1 N_i:l
oD D T Y A N A o

I=j+1 l=j+1 I=j+1



126 Chapter A. Auxiliary results

To estimate the u; components in the weighted space H'* we use Lemma A.8.
Let 1 < j < N. From Hypotheses 1.4, 1.6, 1.10, Theorem A.4 and (A.20) we obtain
the estimates:

adn N
I’ S/_ Q5 (IS (Z(Uk + W) (§ — dk(t))) — flwy)
+

As noted above we estimate

Q7+ ( Hf< (ug + W) (€ — di(t )))—f(wl)

£ (u;(§) +w; (§))I*05(6)

gcc2;f+g°<f>2 (HZuk )P %'ﬁwuzwks it Zw K M').

For the first part we use Lemma A.8 (with 7 = g = 0) and obtain

N

Qi (€)% k(€ — di(1)][Pe®E

k=1

< CQH (¢)? Z (€ — di(£)]12€®€10,(& — () (0p(€ — di(2)))

< O  ax Huk(§ di ()| 20, (€ — dk(t))2|Q§t+g‘)(@eb\slfb\sfdk(t)l’2

.....

-----
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For the second part we use the estimates in Hypothesis 1.6 and Q;Hgo (2 <1

df (t) N
" <C E e21(E=dk(0) o2VIEl e 4 ||U||i
> 2.b

T k=1
df (1)
<o [ e i,
1 2((n—b)g—b)d (¢ 2
=¢ (277 - 2be (DR 4 ||u||£2,b
SC’ (162((77—b)q—b)d1(t) + ||u||%2 b)
n :
<C (162((77_b)q_b)(01—Cj)t62((?7—b)q—b)(g?—gjo.) 4 ||”||%2b)
Ui :
1
<C (—6_7t6_700 + Hu||%2b> ,
77 ,

for some 7y > 0 (Note, using the assumption b < i we conclude (7 —b)g —b > 0).
Forl € {1,...,j — 1} we estimate:

We use (A.22) and (A.23). As noted above the f-terms in M;(§) are bounded by
C'max(1, ||u||1.) for some positive constant. Furthermore we use the assumptions
on the bump function ¢ in Hypothesis 1.10 and obtain

dy(t) ¢(£>262b\§|

1= <C max(1, |[ul[0) / i
l i@ P& —di(t))?
dy(t)
S
d;f (t)

Here we estimate €27 by the maximal value in the given interval, then the integral
is found to be

280t acs-bya-vae) < L 2(-s-ba-bp)i)

2(8+b) 20

Note ((—3 —b)g —b+ 3) > 0, since ¢ < § and b < 36. In the following the
arguments used will not be repeated.
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Forle{l,...,j—1}

(1) p(&)2e2Kl
I?~ <Cmax(1, ||u 1,b/ (p—dﬁ
i Wldbe) ) Se—amr

d; (t)
s
di(t)
1
<C'max(1,||ul \Hl,b)mez((—2ﬁ+b)q+ﬁ—b)dl(t)

<Cmax(1, ||u] ‘Hl’b)562((—2ﬁ3+b)Q+ﬁ—b)dl(t)’

for i € {1,...,7 — 2} we use (A.26) and obtain:

flg_S dl(t ||f<zuk+wk§ dk()))_f(w;r)

[/

£ (u;(§) + wi ()6 (£)dg

Z |wi (€ — di(t)) — wyr |[e?lde

k=

4 —112.2bl¢] 2
Z |lwi(€ = di(t)) — wy [[7e™dE + [[ul[,,

C () g=i11
df (1)
—c /l+1 Y e nled®) =206 g
d (1) =1
df, ) N
+/ Z (E=dr(t)) =268 g 4 ||UH%2,I;>
(t k=Il+1

| /\

(t)
/l+1 e" 2T MEd (D) 4 o=WEME—dia () ge 4 |y||2 >
2,b
dy (t

C ( albn)-byit)

1
< 2(—b—bg+nq)d;11(t) 2 )
1 (gb+gqn—b)d, 1 b—bg+nq)d
<C % 2(gbt+an—b)di(t) | Ee 2(—b—bg+nq)di41(t HUHLI“ :
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diq(t) i1
reo( [T llunle - (o) - g e
i—1(t) k=1

J

N
+ > ||wk(§—dk(t>>—w;|l262b'£> d§+||u||%2,b)

k=j+1
dyp, (t) I
di (1) g
d;+1(t) i m(E—dy(t)) ,2bl¢] || H2
+/ M=) 2Vl de 4| |7
-1 g=jt1 .
d;+1(t) dj;l(t)
» / -2y () 2l g / 2Edi1 (D)  2IEl g 4 ]y |2
- 2.b
a7 40 1
1 1
<C (_62(—b+bq+nq)dj1(t) + i1 (t)
200+ ) 2n =)

1 2(b—bg—nq)d; 1 —2nd;
+—— ¢ q—nq) .7+1(t) - 277dj+1(t) 2
D) EECEDN Fllullz,,
SC i62(7b+bq+77Q)dj71(t) + 16277dj,1(t)
2n n
L oo-bgnaasn) . L o—2na50 00 2
+2776 +77€ +||u\|£2’b ,

forie{j+1,...,N}:

di(t) (€)%l

I' <Cmax(1, ||u||'H1b)/ L
| ar ) (€~ dift))?
di(t)
<C'max(1, ||u||H1b)/ e2(~206-+8d1 (1)) o266 ¢
4 (t)
1
<Cmax(1, ||ul |H1,b)mez((zﬁ—b)q—mb)dl(t)

<Cmax(1, ||ul |H17b)%62((2B—b)q—ﬁ+b)dl(t)7
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forle{j+1,....N}:

AW p(g)2e2el

2+ <Cmax(l, ||u\|H1,b)/ @t
| am P& —di(1))?
d ()
<C'max(1, ||u||H1b)/ 2(B+D)E=PA (1)) =25 ¢
di(t)
1

<C'max(1, ||ul |H1,b)672ﬁdz(t) me%(ﬁw)qﬂ»)dl ()
<Cmax(1, |ful Im,b)%e%(ﬁ%mb6>dl<t>,

forle{j+1,...,N —1} we use (A.26) and obtain:

diq (b) N
1 <C / I¥; (Zwk + 1) (€ - dk<t>>> ~ flwy)

(1) N
+ /d D llwn(€ = di(t)) — wi [P dé + |IU|I%M)

di () ! di, () N
<C / G_QU(f—dk(t))ezbfd§+/ e2(E=dk(1) o26¢ ge 4 HUH%
— 2,b
A O N— d;f (t) k=I+1
dpyq () diyq(t)
<C / e—2n(6—dz(t))€2b€d€_{_/ 62n(£—dz+1(t))e2b£d5+ ||UH%
i (1) i (1) o
1 1
<O | ——_@b+2bg=2mq)di(t) 4 = (2b—2bg—2nq)ds+1(t) 2
- (2(77 —)" T2 +0)” Fllullz,,
1 1
<C (Ee(2b+2bq2nq)dz(t) + %€(2b72bq72nq)dz+1(t) + HUH%H>
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and finally, we get
N
I° <C ||f D (g + ) (€ — dk@))) — f(wy)

+
dy (t) 1

k=
+ f(w]) = fu;(€) + wi ()65 (€)dé

o N
<C / > [Jwk(€ = di(t)) — wy[|?e*d€ + IIUII%M>
A (t) ey
o N
<C / Ze 2n(§—dk(t))€2bfd£+ HUH%H>
i (t) ’

B
Il

1

<c /’ e~ E=dn () 2 g | ||y |2,
i (t)
1

<C (—( — b) ¢ (2b+2bg—2nq)d (t) + ||u||£2b)

<C ( e2(btba—ng)dn(t) | ||u||2 ) .
U

For j = 1, the estimate of I has fewer terms

dy (t) N o pdi(t) N o pdf(t)
I <C M d M d M d
< (/w (6) G;/d;m (€) “;/dk@ (6)de

N-1 d,;rl(t) oo
S /d My (€)dg + M1<£>d£)

2 dif (t) a5 (1)

N N N-1
=T+ Y LY+ BN+ LF+Ie
k=2 k=2 k=2

LY ke{2,...,N}, IIT)ke{2,...,N — 1}, and I° are estimated as before
and for I¢ we obtain

~) N
16gc(/’ e 0) W%m+umu”)
0 k=2

dy (1)
/ (&) 206l g 4 |[ul |2,
<C ( 1 (26—2bg—2nq)d2(t) + !

—2nda (¢
— )+
20 +0) 20— ””“ﬂ)

1
e2(b=ba—na)da(t) nef2nd2 + Hqulz b) '
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For j = N the estimate of I has also fewer terms

di(t) N-1 edi (t)
I<C ( My (€)de + Z/ My (€)dé + > | My (€)de
k

e — Jayt
N-2 dk+1(t) oo

+ M d€ + M d
;/dk(t) N (§)dg / 1(t) ~n(§) §>

N-1 N-1
= 1b+21;—+21,§—+21,§—+19
k=1 k=1 k=1

The terms I°, I}~ I}k € {1,...,N =1}, I}" k € {1,..., N — 2} are treated as
before and for ¢ we have:

N-1

e <C ( / - =260 €l g (L] [2 )
= 2,b
17\f—1(t) k=1

2,
N—1 (t)

IN

1 1
<O —— (—2b4+2bg+2nq)d N —1 (1) = 2ndn-—i(t) 2
- (2(n+b)e TR * Il
<C (%62(b+blI+TIQ)dN1(t) + %6271611\11(’5) + ||u’|%2b) )

Case 2: T(¢°) > 0. For at least one s we have Ty(¢g") > 0 and the ordering in
(A.24) is not satisfied. Since T,(¢°) < T'(g°), there may be mixed cases.
Note djf (t) < djf,,(t) for all k € {1,...,N —1},k # j,t > 0. To estimate I we
have to show estimates for the integrals

B ()
jk;:/ My(6)de, kef{l,... N1} k#]
d

x ()

and for I°, I]1 15 I]2_1, I ]]1:1, ]fjfl, I¢, the last integrals are estimated as above.
Also the integrals J; can be estimated as above if T;(¢%) < 0.

Assume the case df (t) > d_,(t) for s > j+ 1 and for 0 < ¢ < T,(¢°). The case
d;(t) < di,(t) for s < j—1is treated analogously. Consequently it is sufficient
to show estimates for the interval J;.

Case 2a: df (t) < dyi1(t) for 0 <t < Ti(g°), see Figure A.2 for an illustration.



A.5 Estimates of nonlinearities 133

d:+1(0) ds+1(0)

d;(0)

Figure A.2: Decomposition of R for the set 0 < ¢ < T,(g°), x marks the point where
d (Ti(9") = doy (Ts(g°)).

We estimate the integral J; for 0 < t < Ty(¢°) (note df(t) > d,(¢) for all
0<t<Tig")

d5+1(t) dj+1(t)
Jo / M, (€)de + / M ()de < I'F, + 12,
d

j(t) ds+1(t)
<C max(L, |[u]|g.) o XD 0)
< el

+ Cmax(1, |lu] |H1,b>%e%wwmw—mdsmo,

]2+

where I and I}, are defined and estimated as above.

Case 2b: Using the definition of ¢ we conclude analogously to above that there
exists 0 < TH(g%) < Ty(¢°) such that df(t) < dyyq(t) for T(g°) <t < Ty(¢°) and
di(t) > dey1(t) for 0 <t < Tl(g%), see Figure A.3 for an illustration.

For Ty(¢°) < t < T(g") we proceed analogously to Case 2a to estimate the
integral J;. Furthermore, we estimate the integral J, for 0 < ¢ < T(¢") (note
di(t) > deyi(t) for all 0 <t < T1(g"))

Js < Iszil <C'max(1, ||u||H1’b)%€Q(ﬁQ+bq—ﬁ+b)dS+1(t)j

where 17} is defined and estimated as above.
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d341(0)

Figure A.3: Decomposition of R for the set 0 <t < T,(g°), x marks the point where
dH(Ts(¢9")) = d 1 (Ts(¢°)) and * marks the point where df (T} (¢°)) = ds+1 (T3 (¢"))-

A.6 Proof of resolvent estimates in Lemma 3.13

It remains to prove Lemma 3.13.

Proof. We begin with the first estimate. A similar proof for symmetric matrices
A can be found in [35|, Lemma 2.27 or [22]|, Lemma 2.1 and for bounded intervals
in [3], Lemma 2.4.

Let 7 € {1,..., N}. To shorten notation we suppress j in the proof.

We prove the first estimate (3.38). Consider

sv—Av=F
which is equivalent to .
sv — Avge = Bug + Cv + k. (A.27)
We take the L5 inner product with v and obtain

s(v,v) — (v, Avee) = (v, Bug) + (v, Cv) + (v, k). (A.28)
Using —(v, Avee) = (ve, Auvg) gives

s]|v||%2 + (ve, Ave) = (v, Bug) + (v, Cv) + (v, k).
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From the assumptions v € Ly and A positive definit we obtain
R(ve, Ave) > a(ve, ve) for some a > 0.
Consequently we estimate the real part of the equation by

Rs||vllz, + allvellz, <Bllvlle, |lvelle, + Cllollz, + [l k], (A.29)

For o > 0 the following estimate is satisfied

a’o? V?

+— (A.30)

ab < .
2 202

From this and (A.29) we conclude

2

_ Y ~ -
Rslvllz, + allvellz, <B(llollz, + 5zllvellz,) + ClIVIIZ, + [vlle K]l e,

1
202
or equivalently

a _g? _ 1 o
Rs||v|[Z, + §||U»5||i2 SB?HUH%Q + (B@ - §)||U§H%2

+ CllIz, + 1]l .l Kl .-

With o2 > éB and f(l = B"; + C follows
o a a ~ ~
Rllollz, + 5 Mol + Sel 3, < Slleli2, + Kallel, + el ol 1Fll

and therefore a
Rs|[ol[Z, + §HUH%1 < K| |0llZ, + vl 2,1k 2, (A.31)

Wlth KQ = Kl + %.
Further we estimate the absolute value of the imaginary part of (A.28). Let
21 i= Rug, 20 := Sve. We obtain

@ e ww

[S(slvllz, + (ve, Ave))| = [Ss|[vllz, — (22, Az1) + (21, Az)

s Ivllz, — (22, A1) — (21, Az)]
s Ivllz, = 1(z2, Az1)| = [(z1, Aza)]
s/ Ivllz, = 21All 122l .21 L,

sl llvllz, — 2I[All TlvelIZ,.

VvV IV IV IV

Therefore we conclude

[Ss] [[0lz, <Bl[vl|z.llvsllra + Cllvllz, + [vlle |lkll2, + o], (A.32)
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=3 > —Rs Js > Rs
K
K,
Rs > Ts
\Kl
Rs > —Js
K.
Ky 2
—2GQs > —Rs —3s > Rs

8a

Figure A.4: Sections in the proof of lemma 3.13.

where & = 2||A]|.

We consider the areas Rs > [Js], 0 < Rs < |Fs| and [Rs| < &[Ss| with Rs < 0
separately, see Figure A.4.

First case fts > |Ss| and |s| > 12K, =: K.
We obtain
|| Rs

0<Rs < |s| <V2Rs, Ko< L < —.
<|s| < N

It follows from (A.31), rewritten as

- & -
(Rs — Ko)|[v][Z, + §|IUH311 < |[ollz, 1l 2.,

and from (A.30) with o2 = 2‘\‘%

N
oz, + 15 11Hllz,:

s a s
e ollz, + Sl <

22 T 42

Therefore we obtain

|| a V2 -
~lollz, + vl < Hllklﬁz-

42
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To obtain an estimate for s in the second and third area we multiply (A.32)

with X, add equation (A.31) and estimate

a a - -
=S| [[v]lZ, + Rslollz, + ||v|IH1 4~ Blfolle.lvlle + (3=C + K)ol

a ~
+ (7 Dlvllealk]lc.

Using (A.30) we conclude A B||lle|[vll < BE(0?|0|[2, + S|[v]|2:). Choose
o > 0 such that o > 1B, then we conclude

_ a ) i )

4—~|JS| 10l1Z, + Rsllvllz, + <ol <Kz, + Kallvlleo|lkllc.,  (A.33)
where K3 = C—i—KQ—i— 02 K, = S+1

Second case 0 < s < |\ss| and |s| > S?df(g =: Ko.
From (A.33) we conclude
(A.34)

a - a - -
(1z/981 = K3)ol[Z, + gHUH?{l <Ko |vl], [|K]] 2, -

Further we have

0< |Ss| < < V2| Ky <
9 < ol < VAISs|, Ky < 20 < O

Therefore we get

]‘ 7112
+ﬁ\|k|!52).

2
vl|z,
Sl
With 02 = =28 follows
als| , a, o, _ KXav?2
(Y —+ —||v 1 — k’
ol + Gl < S e,
Third case Rs < 0, |Rs| < &|Js| and [s] > &512_\/% =: Kj.
Using (A.33) we obtain

o - - - O
gllvillin < Kallvllelklle, < Ka(S vz,

- a - -
(5\68\ [Rs| = Ks)l|ollz, + gllolln <Kallolle, Iz, (A.35)

Since 0 < |Ss| < |s] < V2|,

a Q a Q

a
= 5]

4o
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and furthermore from K. 3 < % we obtain

o |s|||v] 7 +g|\ 130 < Kallv]|z,||E| <f~((—02|\ Ir T |1k[1Z,)
16\/_d5 'U[:Q 8 U'Hl_ 4U£2 Lo > 4 2 vﬁg 20.2 La):
With ¢% = 16\'%'24(3 follows
a s @, . _ 8V2aK} -
@ Xl [2, < 2L Ey
bl ol + Sl < 2L

For the proof of the second estimate (3.39) we can proceed analogous to the
proof of [3], Theorem 3.1.

The last estimate (3.40) is a consequence of (3.38). Note keH.
We denote by C; = D?f(w;)wj¢. Using Hypotheses 1.4 and 1.6 we obtain that
there exist some constant C, > 0 such that for all ¢ € R,7 =1,..., N holds

1G5l < Ce.
We consider again the equation (A.27) and differentiate it with respect to &
sz—Az=sz—Az§§—Bz§—C’z:C~'v+/~§§
with z = ve. We apply the estimate (3.38) and obtain
sPllvellZ, + Il oellZa < 2CR(C2AIZ, + [FZ0).
If we again use (3.38) follows

[P (el [, +HII1Z,) + Is|([vel 3 + [I]1Z,)
< 2CRCE| Iz, + 2CklIEllF0 + CrIIEIZ,

and

Cr
|s[?
Ch

< (Qéczﬁ + 3CR)W~€H$11~
G

[sI?[[0ll3r + Isl [[o]|7 < 2CRC2[1kIIZ, + 3Ck Ikl



Appendix B

Notation

A>0 For A € R™™ holds w” Aw > 0 for all w € R™,w # 0
D(P) Domain of definition of the operator P
N(P) Null space or kernel of the operator P
R(P) Image space of the operator P
I|P|lx—y Norm of the bounded operator P : X — Y
HPHXHY _ sup ||P(ZE>||Y

2€D(P),x#£0 ||| x

o(P) Spectrum of the operator P
p(P) Resolvent set of the operator P
C(X,Y) Space of continuous operators from X to Y
CHX,Y) Space of k-times continuous differentiable operators from X to Y
Let K € {R,C}.
Co(R, K™) Space of the continuous bounded functions from R to K™
CF(R, K™) Space of functions with continuous, bounded derivatives
ul) = % f up to order k equipped with the norm:
k k
[ullk := Y ]l = > sup [ (€]

j=0 j=0 ¢<K
Co(R, K™) Space of functions from R to K™ with bounded support
Cs° (R, K™) Space of infinitely differentiable functions from R to K™ with com-

pact support
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L,(R,K™) Lebesgue measurable functions from R to K™ with
lul| 2, rxm) < 00, where
ey s = ([ Il(@IPdE) P, 1<p < o0
R
Loo(R,K™) Lebesgue measurable functions from R to K™ with
||u|| o (v xm) < 00, where
[[fl 2oy = esssup [fu]
HE (R, K™) Space of Sobolev functions u € Lo(R,K™), which possess
Lo(R, K™)-integrable derivatives up to k equipped with the norm:
k k
[l ety = O 1|7, gom)) ' = (/Z |9 (€)][2de)'/?
=0 5 =0
0y Function 6,(&) := cosh(b¢) for b > 0
Lop(R,K™) Functions u from R to K™ with d,u € Lo(R,K™) equipped with the
norm:
lulles s = 1B5u(E) )
HMP(R,K™)  Functions u from R to K with f,u € H*(R, K") equipped with the
norm:
HUHHM([R,[Km) = ||96U||H’€([R,u<n)
Ug, Uy Partial derivatives of a function u(¢,t)

(u,v)

L5(R, K™) inner-product,

() = / a(€) o(€)de
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