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List of Symbols

Some of the symbols most frequently used in this work are listed in the following. Note
that the list is not exhaustive as several terms, such as some symbols used only for
explaining a certain theoretical part, have been deliberately omitted.

e v: number of samples of the training set
e D: dimension of the original data space

e d: dimension of the embedded space.

x: input vector

y: output vector

m: number of prototypes in clustering algorithms

e W: reconstruction weights in LLE

n: number of neighbors in LLE

u: reference vector in SOM

e N x N: dimension of the two-dimensional grid

r;: node in the grid linked with u;

m: orthonormal vector in PCA

e t: number of neighbors in neighborhood preservation and trustworthiness.

A: regularization term in LLE.
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1 Introduction

Breast cancer is the most common form of cancer in females worldwide, with a high
incidence especially in Europe and North America. Albeit scientific research has con-
tributed to reducing the mortality rate from this disease considerably in recent decades,
many of its aspects such as causes and contributing factors remain unknown. Nowadays,
technological progress offers new opportunities for studying the mechanisms involved
with breast cancer.

However, the complexity of such mechanisms involves the monitoring of many va-
riables and parameters, resulting in high-dimensional multivariate data, i. e. many
measurements of one or more quantities are acquired from one or more sources and
recorded as an ordered string of variables. Multivariate data in breast cancer comprise
three categories, namely image, molecular and clinical data.

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and DNA mi-
croarrays are two novel instruments for the study of breast cancer that provide image
and molecular multivariate data, respectively.

One indicator for a malignant tumor is the change in the tissue vascularity. To visualize
these changes, DCE-MRI represents a powerful imaging technique for tumor detection
and diagnosis that records both temporal and spatial information. The DCE-MRI tech-
nique involves the imaging of a region of interest immediately before and repeatedly
after the administration of a paramagnetic contrast agent, resulting in a temporal se-
quence of high-resolution images or volumes. Each pixel or voxel is associated with
a time-series of signal intensity values, whose kinetics provides information about the
vascular structure of the tissue. In turn, the analysis of the time-series can allow the
physicians not only to detect suspect lesions, but also the possibility to discriminate
between benign and malignant tissue.

The genesis of cancer begins when the DNA of a normal cell changes, or "mutates”,
making normal cells grow uncontrollably. These changes need to be analyzed and DNA
microarrays can be particularly useful for this purpose. DNA microarrays are a major
tool in genome analysis that have opened a new era of unprecedented opportunity
for uncovering the molecular basis of cancer, thereby possibly shedding light on its
development mechanism and evolution. D NA microarrays can be used to develop a new
taxonomy of cancer, including major insights into the genesis, progression, prognosis,
and response to therapy on the basis of gene expression profiles. DNA microarrays
measures the expression levels of numerous genes, often thousands at a time.

To extract useful information from DCE-MRI and microarray measurements, the hu-
man user has to explore high-dimensional data structures, in which meaningful interre-
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lationships among variables might be hidden by the large amount of data. Therefore,
automatic tools that facilitate the data exploration are strongly desired.

11 Scope and goals

The scope of this PhD thesis is the application and improvement of computational tech-
niques based on dimensional data reduction for the visual exploration of DCE-MRI and
D NA microarray data in breast cancer. Algorithms for dimensional data reduction aim
to compute low-dimensional projections of high-dimensional data while best preserving
the data topology. In this work several algorithms for dimensional data reduction are
used to project the experimental multi-dimensional data sets (DCE-MRI and microar-
ray) into a two-dimensional space for the visual exploration of the similarities between
single items. Indeed, similar items in the high-dimensional space are expected to be
mapped to neighboring points in the projected space. Therefore, from the visualization
of the embedding one can infer information concerning the similarity between items in
the high-dimensional data.

1.2 Outline of the manuscript

The manuscript comprises nine chapters. The DCE-MRI and microarray technologies
along with the corresponding experimental data sets analyzed in this work are summa-
rized in chapters 2 and 3 respectively; chapter 4 introduces the principles of information
visualization and some established methods for the visual exploration of DCE-MRI and
microarray data; chapter 5 gives an introduction to dimensional reduction and the al-
gorithms used in this work; chapter 6 illustrates the results from the DCE-MRI breast
cancer data analysis; chapter 7 introduces two proposed modifications of the LLE algo-
rithm, an algorithm for dimensional reduction that is largely used in this work; chapter
8 discusses the results obtained from the microarray data analysis; chapter 9 regards the
conclusions.




2 Theory of Magnetic Resonance Imaging

This chapter introduces the basic theory of magnetic resonance imaging (MRI), an ima-
ging technique used extensively in medical settings to produce high-quality images of
interior parts of the human body. The principles of MRI are introduced from section
2.1 to section 2.3. The content of these sections is, to great extent, based on (Webb,
1996), (Wehrli et al., 1988), (Twellmann, 2005), and (Brown and Semelka, 1999).

In the second part (section 2.4) the principles of dynamic contrast enhanced magnetic
resonance imaging (DCE-MRI) applied to breast cancer are introduced. The understand-
ing of the basic principles of DCE-MRI is fundamental to comprehending the DCE-MRI
data analysis explained in chapter 6. The DCE-MRI data investigated in this work are
introduced in section 2.4.1.

2.1 Production of Net Magnetization

Magnetic resonance imaging (MRI) has demonstrated to be a valuable diagnostic in-
strument for the treatment of various disorders, including brain diseases, spinal illness,
angiography and tumors.

The physical phenomenon of magnetic resonance (MR) is based upon the interaction
between an external magnetic field and a nucleus that possesses spin. As an example
consider the 'H nucleus, consisting of a single proton. The 'H nucleus is the most
abundant isotope for hydrogen. Its choice is motivated by its very high sensitivity to
the applied magnetic field and its abundance in the human body. The quantum theory
predicts for 'H a spin-quantum number of m = 3.

Concurrent with the spinning there is a local magnetic field. A nucleus with spin can
be described, according to the semi-classical approach, by a vector having an axis of
rotation with a definite orientation and magnitude to this axis. The associated magnetic
field is parallel to the axis of rotation for the nucleus. This orientation of the nuclear
spin and the changes induced due to the experimental manipulations that the nucleus
undergoes when excited by an external magnetic field provide the basis for the MR
signal.

Consider an arbitrary volume of tissue containing protons possessing randomly orien-
tated spins in all directions with respect to the semi-classical approach. Performing a
vector addition of these spin vectors produces zero sum, i. e. no net magnetization
is observed in the tissue. If the tissue is placed inside a magnetic field By, the indi-
vidual protons begin to rotate about the magnetic field. The frequency of precession
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Figure 2.1: (Left) Zeeman diagram. In the absence of a magnetic field, a collection of
protons will have the configuration of = components equal in energy so that
there is no preferential alignment between the spin up and spin down orien-
tations. In the presence of a magnetic field By, the spin up orientation (par-
allel to By) is of lower energy and its configuration will contain more protons
than the higher energy, spin down configuration. The higher number of spins
in the lower energy level means that the vector sum of spins will be nonzero
and the tissue will become magnetized with a value M, known as net mag-
netization as displayed by a vector in the z-direction (right) according to the
semi-classical approach.

is proportional to the strength of the magnetic field and is expressed by the Larmor
equation:
w0:750/27r, (21)

where wy is the Larmor frequency in MHz, By is the magnetic field strength in tesla (T)
that the proton experiences, and v (s=! T1) is a particle-specific constant known as the
gyromagnetic ratio.

By convention, By is defined to be oriented in the z direction of the coordinate
system. In the semi-classical approach, the motion of each proton is then described
within an unique set of z, y, z coordinates. The x and y coordinates vary with time
as the proton precesses, but the z component, the one parallel to By, is constant with
time.

In the directions perpendicular to By there is still no net magnetization. However, in
the direction parallel to By, there is a constant, nonzero interaction between the proton
and By, known as the Zeeman effect. In a quantum theoretical approach, the result of
the Zeeman interaction is that spins in the two orientations, parallel (also known as spin
up) and antiparallel (spin down), have different energies (Fig. 2.1). This energy difference

AF is proportional to By:
ap =180 2.2)
2




2.2 T1/T2 relaxation times
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Figure 2.2: Effect of a 90° rf pulse. 1) The rf pulse broadcast at the frequency wy can be
treated as an additional magnetic field P; oriented perpendicular to By. 2)
The protons absorb the applied energy and M rotates perpendicular to both
By and P;. 3) After switching P; off, a return of M to its equilibrium state
will be observed as the protons release their energy.

where h is Plank's constant. The ratio between the concentration of spins (N

pin-up
and Nspin—down) in the two energy levels is governed by the Boltzmann distribution
N
spin-up _ e~AB/KT 2.3)
Nspin-down

where k is Boltzmann's constant. Because of the different number of protons in the two
energy levels at room temperature, the tissue will become magnetized in the presence
of By with a value My, known as the net magnetization (Fig. 2.1 right). The orientation
of this net magnetization will be in the same direction as By and will be constant with
time. This configuration has the lowest energy and is the arrangement to which the
protons will naturally try to return following any perturbation such as energy absorption.
The manipulation of this induced magnetization M, is the source of measurable signal
for all the MR experiments.

2.2 T1/T2 relaxation times

The simplest manipulation of M involves the application of a short burst, or radio
frequency (rf) pulse. If a 90° pulse P; having the Larmor frequency wy is applied to a
sample perpendicular to the z-axis, there will be a coupling between the rf pulse and
M, so that energy can be transferred to the protons. Because of absorption of the rf
energy of frequency wy, My will rotate in the zy-plane (m, = 0). After some time, the
protons release their energy and the magnetization returns to its equilibrium value (Fig.
2.2). This return of magnetization follows an exponential growth process with time ¢
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Tissue Type T1(By = 1.5T) | T2By = 1.57)
Fat ~ 260 ms ~ 85 ms
Muscle ~ 860 ms ~ 45 ms
White matter of the brain ~ 780 ms ~ 90 ms
Gray matter of the brain ~ 920 ms ~ 100 ms

Table 2.1: T1 and T2 of several tissue types.

M. (t) = My {1 — exp <—%>] : (2.4)

where T1 is the time required for M., to return to 63% of its original value following an
excitation pulse. T1 is also known as the spin-lattice relaxation time. This term refers to
the fact that the excited proton ("spin") transfers its energy to its surroundings (“lattice")
rather than to another spin. This energy no longer contributes to spin excitation.

The second observable effect of the application of P; is the dephasing of the net
magnetization. Absorption of energy from P, causes M to rotate into the zy-plane.
This effect gradually disappears once P is turned off and the return of the transverse
net magnetization M, to zero is described by

t
M, = Mgy, eXp <_ﬁ> , (2.5)

where M,,,, is the magnetization in the zy-plane immediately following the excitation
pulse, and the time constant T2* depends on three factors:

1/T25 = 1/T2 4 1/T20 + 1/T2us. (2.6)

The time T2, known as the spin-spin relaxation time or transverse relaxation time, is the
time required for M,,, to decay to 37% of its initial value. T2, denotes the dephasing
time due to the finite degree of inhomogeneity of By and T2),¢ is the dephasing time
due to the magnetic susceptibility differences between different adjacent tissue types.
By the application of a 180° rf pulse, the effects of the B, inhomogeneity and magnetic
susceptibility differences can be eliminated, so that T2* is well approximated by T2.

The T1 and T2 times are biological parameters that are tissue dependent (see table
2.1) and can therefore be used to discriminate among different tissue types in the human
body.

The application of an rf pulse to a tissue segment produces a time-varying magnetic
flux that induces a current in an rf coil. This current acts as a sine function which
decays over time as a consequence of the dephasing of the spins. The temporal signal
can be converted from a function of time to a function of frequency by the inverse
Fourier transform. The frequency spectrum typically exhibits one peak at the resonance
frequency wy (see Fig. 2.3).

10
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Figure 2.3: The transverse magnetization rotating about the z-axis can be measured by
placing a rf coil around the z-axis. The current induced in the coil by the
time-varying magnetic flux represents a decaying sine wave that in the fre-
quency domain exhibits a single peak at the Larmor frequency wy.

2.3 Principles of Magnetic Resonance Imaging

The principles on how to obtain an MR image from the signal induced by the manipu-
lation of My are outlined in this section.

2.3.1 Spatial Decomposition of MR Signals

According to section 2.2, the frequency of the energy that a proton absorbs depends
on the magnetic field that it experiences. Therefore, the application of a spatially de-
pendent magnetic field gradient G causes a resonance frequency that depends on the
spatial coordinates of the spin. MRI uses this dependence to localize the protons to
different regions of space.

In presence of a magnetic field gradient G, the frequency w; of the energy absorbed
by a proton located at position r; is given by

This formula represents the extension of eq. (2.1). In case, with the above gradient
is switched on, a further rf pulse having a certain central frequency is applied, only a
narrow region of tissue perpendicular to the gradient will absorb the rf energy. The
central frequency of the pulse determines the position of the excited region when a
selection gradient is present. Different slice positions are achieved by changing the
central frequency. To obtain image information, nuclear magnetic resonance (NMR)
spectra are recorded for varying directions of G.

Three magnetic field gradients G,, G, G, placed orthogonally to one another, are
required to encode information in three dimensions. The gradients need to be applied
in an appropriate temporal order as illustrated in Fig. 2.4. A magnetic field gradient
(for example G.), simultaneously applied with a 90°-pulse, excites the spins situated in
a slide perpendicular to the magnetic field gradient. After turning off these two signals,
the other two magnetic field gradients (in this case G, and G,) are broadcast and the

1M
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Figure 2.4: (a) The magnetic fields G,;, G,, G, are generated by a current passing
through appropriately designed coils. The 90°-pulse is generated by an ad-
ditional coil (in this example the bird cage coil in red). (b) An appropriate
90°-pulse together with a particular magnetic field gradient (in this case G.)
excite only the spins that are located in a certain slice perpendicular to the
gradient. The spatial resolution in the plane is determined by the magnetic
field gradient obtained by the linear combination of the remaining gradients
(in this case G, and G,).

current induced in the RF coil is recorded. This is used to reconstruct the image of the
particular slide.

In practice, an MR image is obtained by more complex pulse sequences such as the
spin echo sequence, which is the one most commonly used. This sequence comprises
two rf pulses, the 90° pulse is generated each TR seconds (repetition time), creating the
detectable magnetization, and the 180° pulse that refocuses it at TE (echo time). The
selection of TE and TR determines the resulting image contrast.

12
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2.3.2 T1/T2-Weighted Imaging Sequences

The pixel intensity I(z,y) of an MR image obtained by a spin echo sequence is governed

by
I(z,y) o< p(z,y) [1 — exp <—¥>] exp (—%) (2.8)

T1-weighting  T2-weighting

where p(z,y) denotes the proton density. The TE and TR times module the contributions
of T1 and T2 to the pixel intensity, thereby affecting the final MR image. If TR is much
larger than all values of T1 relative to the tissue of a certain region of interest (ROI),
the sensitivity of the pixel intensity to the T1 relaxation is reduced as the T1-weighting
term converges to one. The obtained image is termed T2-weighted image. The same
effect for T2 can be obtained by setting TE to a value that is considerably lower than all
values of T2 relative to tissue of a given ROI. The resulting image is named T7-weighted
image.

In general, in T1-weighted images, tissues that have short T1 relaxation times (such
as fat) are characterized by bright signal. Tissues with long T1 relaxation times (such
as cysts, cerebrospinal fluid and edema) appear as dark signal. In T2-weighted images,
tissues that have long T2 relaxation times (such as fluids) appear bright.

It is also possible to eliminate the contributions of both T1 and T2. In such a case
the pixel intensity depends only on the proton density p(z,y) and the obtained image
is named proton density image.

2.3.3 Multispectral Magnetic Resonance Imaging

Multispectral magnetic resonance imaging consists in acquiring a sequence of two- or
three-dimensional MR images from the same ROl and each image of the sequence is
generated with a different T1/T2-weighting. In order to guarantee the correct registra-
tion of the images, the patient is supposed not to move during the acquisition time.
As a result, each spatial position in the ROl is associated with a vector of intensity va-
lues, each obtained with different settings of T1 and T2. Multispectral images allow the
discrimination of different tissue types and are used to distinguish gray matter, white
matter or cerebrospinal fluid from pathological structures such as multiple sclerosis or
carcinoma in the brain.

2.3.4 Contrast agents

The contrast between certain tissue types can be enhanced by contrast agents (CA),
i. e. intravenous injected fluids that alter the relaxation times. After the administration,
the CA molecules rapidly mix with the blood and their concentration increases within
tissue with high vascularity or affinity to the CA molecules, thereby leading to a signal

13
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enhancement. The analysis of the CA concentration over time is useful for extracting
physiological parameters that characterize the tissue locally.

Paramagnetic contrast agents such as gadolinium based chelate (Gd-DTPA) shorten the
time T1. Tissue that accumulates CA rapidly is displayed with increased brightness in
T1-weighted images, which in turn can be recorded faster by virtue of the shortened T1
value.

In contrast to the paramagnetic contrast agent, superparamagnetic CA shorten the
T2 and T2* values that are typically accumulated in healthy tissue. Therefore, healthy
tissue appears with suppressed brightness in T2-weighted spin echo sequences, while
the tumor signal intensity does not change significantly.

2.3.5 Multislice and 3D Imaging

A crucial aspect of MR imaging is the time needed for the acquisition of a single MR
image. The acquisition time largely depends on the desired resolution and the repetition
time TR. Thus, there exists a trade-off between the acquisition time and the image
resolution. In general, the resolution should be as high as possible in order to allow for
the exploration of small anatomical structures and minimize the partial volume effect.
This describes the fact that the signal measured for each voxel arises from the entire
tissue within a small three-dimensional cuboid, and in turn different tissue types might
be combined together. The higher the resolution, the smaller the voxel and the lower
the partial volume effect.

On the other hand, depending on the region of the body to be imaged, the image
resolution is limited by the acquisition time. For instance the imaging of the abdomen
has to be conducted within one breath-hold (5 to 25 seconds) in order to avoid motion
artifacts.

To accelerate the image acquisition, several techniques have been proposed. In a
single slice sequence, only the relaxation of spins located in a single plane determined by
the slice selective gradient are recorded. However, MRI allows to simultaneously record
the relaxation of spins in several parallel slices (multislice imaging). Instead of affecting
only spins with a resonance frequency in the range of vy £ Avpyise, in multislice
imaging, spins with a resonance frequency in one of the n non-overlapping frequency
bands [Vpuise, £ AVpuiselr --v [Vpuisen £ Avpuise] are affected in quick succession and the
T1 relaxation of the spins in the corresponding n slices is measured simultaneously. The
maximum number of slices that can be examined simultaneously is limited by the ratio
TR/TE. In addition, the slices have to be placed with a sufficient spatial distance to each
other in order to avoid partial excitation of the spins in adjacent slices.

Whereas the multislice imaging technique acquires the image of a three-dimensional
volume as a sequence of one or more tomographic slices, thereby possibly leading to a
temporal shift between slices, 'real’ three-dimensional images can be recorded by more
sophisticated techniques such as the three-dimensional fast low-angle-shot (3D flash)
sequence.

14
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2.4 Dynamic Contrast-Enhanced Magnetic Resonance Imaging
(DCE-MRI)

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) consists in repea-
tedly imaging a region of interest (ROI) (in this work the female breast) over time in
order to monitor the dynamic of an injected paramagnetic contrast agent in the tissue.

As a result, a temporal sequence of m MR 2D-images or 3D-volumes is recorded.
Typically, this temporal sequence is composed of at least one precontrast image or vo-
lume, recorded before the administration of the contrast agent, and several postcontrast
images or volumes, recorded after the administration of the contrast agent. Each pixel
p(z,y) or voxel p(z,y,z) can be connected with a time-series s, = (sp1, Sp2, ---Spm) Of
m intensity values, where sp; denotes the signal intensity of the pixel (or voxel) p in the
i-th image (or volume). This time-series can be interpreted as a time-point belonging
to a signal space R™ (see Fig. 2.5).

The temporal course of the signal intensity values is affected by the concentration
of contrast agent within the respective tissue. Specifically, high-vascularized tissue
will absorb more contrast agent, resulting in a signal enhancement. By contrast, low-
vascularized tissue will be characterized by negligible or absent signal enhancement as
a consequence of the low quantity of absorbed contrast agent.

The analysis of the time-series can thus allow medical experts to discriminate between
different tissue types, including potential breast tumor lesions. Indeed, the latter are
commonly characterized by highly-vascularized levels of tissue, and, consequently, they
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Figure 2.5: Given a sequence of m volumes in DCE-MRI, each voxel p(z,y,z) can be
associated with a time-series of m signal intensity values. This time-series
can be regarded as a data point in R™.
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2 Theory of Magnetic Resonance Imaging

Figure 2.6: Three 2D-sections taken from a sequence of DCE-MRI 3D-volumes of a fe-
male breast. The volumes involved are the precontrast, the first and fifth
postcontrast ones. The breast has a tumor lesion that is magnified. Prior
to the injection of the contrast agent, the lesion appears dark (pre image)
One can see (post 1 image) that the signal intensity relative to the lesion
tissue enhances as a consequence of the absorption of the contrast agent.
The enhancement is even stronger after some time (post 5 image).

are supposed to enhance after the administration of the contrast agent (see Fig 2.6).

In addition, the analysis of the time-series can allow medical experts to discrimi-
nate between benign and malignant tumor lesions. In fact, according to (Heywang-
Kébrunner and Beck, 1996) and (Brown et al., 2000), benign and malignant lesions are
expected to differ with respect to the observed uptake characteristics of the contrast
agent as schematically shown in Fig. 2.7. Specifically, malignant tumors are supposed
to be highly vascularized. For this reason the processes of absorption (wash-in) and
wash-out of the contrast agent into the lesion are expected to be significantly fast. By
contrast, benign tumors are usually less vascularized and this leads in general to a slow
wash-in followed by a modest wash-out of the contrast agent.

DCE-MRI in breast cancer has demonstrated high sensitivity, with values of 93-100%
(Brown et al., 2000). Moreover, 17-34% of breast cancers that are visible on DCE-
MRI are not detected on mammography (Weatherall et al., 2001). In addition, the
anatomic extent of lesions can be more accurately defined with MRI compared with
mammography (98% vs 55%) (Esserman et al., 1999). However, the differentiation of
benign from malignant lesions in DCE-MRI can be difficult, with the result that many
studies reported specificities ranging from 37% to 97% (Kelcz et al., 2002).

Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) has proved to
be a particularly valuable multivariate intramodular imaging technique in the diagnosis
of breast cancer for young women (Brown et al., 2000), whose breast tissue is par-
ticularly dense. Indeed, in the case of the latter, a standard technique such as x-ray
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Figure 2.7: Model-based contrast agent characteristics in DCE-MRI of benign and ma-
lignant breast tumor tissue. The contrast agent is injected at time ¢». The
malignant curve is characterized by a fast wash-in and wash-out phases by
virtue of the highly vascularized tissue. The tissue of benign lesions is typi-
cally less vascularized and the corresponding contrast characteristics exhibit
a slower wash-in. The wash-out phase is often not visible (as in figure) be-
cause it takes place after the time point ¢,,.

mammography can fail to detect abnormal breast lesions (Rankin, 2000). By contrast,
DCE-MRI has demonstrated considerable potential for detection and monitoring of ab-
normalities in young women (Brown et al., 2000). In this regard, several studies (Brown
et al., 2000; Kriege et al., 2001) have been conducted in recent years in order to test
the efficacy of DCE-MRI as a screening technique for young women at high risk of de-
veloping breast cancer (e. g. women with a strong family history of breast cancer or
with mutation in one of the breast cancer (BRCA) genes).

2.41 DCE-MRI Data Set of this Work

The DCE-MRI data set investigated in this work was provided by the City Center Hospi-
tal of the Munich University. This study considers images data from seven women with
malignant breast tumors and seven women with benign lesions, 14 tumor cases in total.

The data of each patient comprises six three-dimensional (m = 6) volumes of the
full breast acquired with a temporal resolution of 110 s. The first volume was acquired
before the bolus injection of a paramagnetic contrast agent, thereafter followed by the
remaining five measurements. The imaging process was performed with a 1,5 T system
(Magneton Vision, Siemens, Erlangen, Germany) equipped with a dedicated surface coil
to enable simultaneous imaging of both breasts. First, transversal images were acquired
with a STIR (short tau inversion recovery) sequence (TR= 5600 ms, TE= 60 ms, FA= 90°,
Tl= 150 ms, matrix size of 256 x 256 pixels, slice thickness 4mm), then a dynamic T1
weighted gradient echo sequence (3D FLASH) was performed (TR= 12 ms, TE= 5 ms,
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2 Theory of Magnetic Resonance Imaging

case ID Histologic Type Size
malignant cases

M1 ductal carcinoma 207
M2 scirrhous carcinoma 68
M3 DCIS (ductal carcinoma in situ) 49
M4 status post mastectomy, multilocullar recurrent duc. carc. 743
M5 ductal papillomatosis, transition into papillary carc. 169
M6 ductal carcinoma 284

benign cases

B1 fibroadenoma 169
B2 fibrous mastopathy 497
B3 scar 26
B4 lymph node 113
B5 granuloma with signs of inflammation 929
B6 chronic mastitis 25

Table 2.2: The tumors of the 12-cases data set.

FA= 25°) in transversal slice orientation with a matrix size of 256 x 256 pixels and an
effective slice thickness of 4 mm.

The tumor lesions were manually marked out by an experienced radiologist using a
cursor on a screening device. The classification of each lesion was histologically proven
by a surgical biopsy. In order to validate the diagnosis, all patients were also included
in a clinical follow-up for more than one year.

The size (number of voxels) of the 14 marked out lesions along with their histological
characterization are shown in table 2.2 and table 2.3. The tumors are listed in two
different tables because the cases M7 and B7 have been made available much later than
the 12 cases listed in table 2.2. For this reason two different data sets are considered
in this work: a 12-cases data set given by the tumors in table 2.2, and a 14-cases data

case ID Lesion Classification Size
malignant case

M7 DCIS (ductal carcinoma in situ) 163
benign case

B7 scar 10

Table 2.3: The 2 new tumor cases with their histological type.
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2.5 Summary

Data set  # Benign Points # Malignant Points Total size
12-cases 1520 929 2449
14-cases 1683 939 2622

Table 2.4: The two data sets analyzed in this work.

set given by all the lesions. Both data sets are summarized in table 2.4. Most of all the
work presented in this thesis regards the analysis of the 12-cases data set. In particular,
it is analyzed in chapter 6 and chapter 7. By contrast, the 14-cases data set is analyzed
only in section 6.4.

2.5 Summary

In this chapter, the magnetic resonance imaging (MRI) and dynamic contrast enhanced
magnetic resonance imaging (DCE-MRI) techniques have been introduced. MRI is
a non ionizing imaging technique that allows for the acquisition of two- and three-
dimensional images with high spatial resolution and excellent soft-tissue contrast. The
MRI signal arises from the spin-lattice and spin-spin relaxation time of hydrogen nuclei
in a static magnetic field after being excited by a sequence of electromagnetic pulses
at the resonance frequency of hydrogen. The spatial information is encoded as a sig-
nal by superimposing three orthogonal magnetic field gradients that lead to a spatially
dependent resonance frequency and phase of hydrogen nuclei. The signal is measured
as a current that is induced in a tuner receiver coil due to the time varying flux caused
by the relaxing nuclei. Finally, this signal is converted into image information by the
inverse Fourier transform.

The DCE-MRI technique involves the MR imaging of a region of interest prior to the
injection of a contrast agent and repeatedly thereafter, resulting in a temporal sequence
of 2D-images or 3D-volumes. DCE-MRI has demonstrated promising potential for the
screening of young women at high risk of breast cancer.

The chapter is concluded by presenting the DCE-MRI data investigated in this work.
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3 Introduction to Microarray Technology

This chapter introduces the principles of the microarray technology. For more infor-
mation see (Kambhampati, 2004; Schena, 2000) The microarray data analyzed in this
study are described in section 3.3. At the end of the chapter, a glossary with some
terms typical of the microarray technology is included.

3.1 DNA Microarrays

D NA microarrays offer the latest technological advancement for multi-gene detection
and diagnostics. This novel technology, which started to appear during the second half
of the 1990s, has historically evolved from the initial experimental reports published in
the mid 1970s, which indicated that labeled nucleic acids could be used to monitor the
expression of nucleic acid molecules attached to a solid support. However, it was not
until 1995 that the first article describing the application of D NA microarray technology
to expression analysis was published in the scientific literature by Patrick Brown and his
colleagues at Stanford University (Schena et al., 1995).

Scientists use DNA microarrays to measure the expression levels of large numbers of
genes simultaneously. In addition, DNA microarrays are also used for DNA sequence
analysis, immunology, genotyping and diagnostics. Moreover, the flexibility and high
throughput capabilities of microarrays hold tremendous potential for pathogen detec-
tion, identification, and genotyping in molecular diagnostic laboratories.

Microarray technology has also become a major tool for the investigation of cancer, as
indicated by the rapidly increasing number of publications describing DNA microarray
analysis of cancers since 2000 (Ochs and Godwin, 2003). One of the first studies cor-
relating gene expression profiles with tumor classification is (Golub et al., 1999). Gene
expression pattern analysis have been used for classifying breast tumors in (Perou et al.,
2000; Sorlie et al., 2001).

3.2 Microarray Principles

DNA microarrays are typically composed of DNA "probes" that are bound to a solid
substrate such as glass, plastic or silicon chip forming an array. Each identified sequence
gene on the substrate corresponds to a fragment of genomic DNA, complementary DNA
(cDNA), polymerase chain reaction (PCR) products or chemically synthesized oligonu-
cleotides and represents a single gene.
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3 Introduction to Microarray Technology

Usually a single DNA microarray slide/chip may contain thousands of spots, each
representing a single gene and collectively the entire genome of an organism.

3.2.1 Types of microarray

A schematic diagram of the two most commonly used D NA microarray formats to date,
the glass D NA microarrays and high-density oligonucleotides microarrays (often referred
to as a "chip"), are shown in Fig 3.1 and Fig. 3.2, respectively.

Glass DNA microarray was the first type of DNA microarray technology developed. It
is produced by using a robotic device, which deposits (spots) a nanoliter of DNA (50-
150 pm in diameter) onto a coated microscope glass slide surface in serial order with
a distance of approximately 200-250 um from each other, one spot-one gene. These
moderate sized glass cDNA microarrays also bears about 10.000 spots or more on an
area of 3.6 cm?.

In situ (on chip) oligonucleotides array format (Fig. 3.2) is a sophisticated platform
of microarray technology which is manufactured by using the technology of in situ
chemical synthesis. This type of technology has also been employed to manufacture
so-called GeneChips which refer to its high density oligonucleotide based DNA arrays.
Presently, the commercial versions of Affymetrix GeneChips hold up to 500,000 spots
in a 1.28 cm? chip area, and due to such very high information content, they are find-
ing widespread use in the hybridization-based detection and analysis of mutations and
polymorphisms, such as single nucleotide polymorphisms or disease-relevant mutations

Up to 20000

OOOO 0O | oosoism
OCOQO
Sle e &0
(O

Figure 3.1: Glass complementary DNA (cDNA) microarray. This picture is taken from
(Gundogdu and Elmi, 2005).
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Figure 3.2: lllustration of a DNA GeneChip (Affymetrix). The picture is taken from (Gun-
dogdu and Elmi, 2005).

analysis ("genotyping"), as well as a wide range of other applications such as gene ex-
pression studies, to mention a few.

3.2.2 Principles of D NA Microarray Experiments

A typical microarray experiment comprises four major steps that are illustrated in Fig.
3.3

1. Target preparation and labeling
2. Hybridization
3. Washing

4. Image acquisition and data analysis

Target preparation Initially, the sample preparation starts by extracting RNA contain-
ing messenger RNA (MRNA) from two cell cultures (treated cells and control cells, also
termed test sample and control sample, respectively) whose expression levels need to
be compared. This step is crucial, simply because the overall success of any microarray
experiment depends on the quality of the RNA.

The sample mRNA extracted from the test and control samples are then separately
converted into complementary DNA (cD NA) using a reverse-transcriptase enzyme. This
step also requires a short primer to initiate cDNA synthesis. On this stage, DNA from
the control sample are labeled with a green dye (Cy3), whereas DNA from the test
sample are labeled with a red dye (Cy5).

Hybridization Hybridization is the process of joining two complementary strands of
DNA to form a double-stranded molecule. Here, the labeled cDNA (Sample and Con-
trol) are mixed together, and then purified to remove contaminants such as primers,
unincorporated nucleotides, cellular proteins, lipids, and carbohydrates.
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3 Introduction to Microarray Technology

After purification, the mixed labeled cD NA is competitively hybridized against dena-
tured PCR product or cDNA molecules spotted on a glass slide. Ideally, each molecule
in the labeled cDNA will only bind to its appropriate complementary target sequence
on the immobilized array.

Washing The slides are washed after hybridization, first to remove any labeled cD NA
that did not hybridize on the array, and secondly to increase stringency of the expe-
riment to reduce cross hybridization. The latter is achieved by either increasing the
temperature or lowering the ionic strength of the buffers.

Image acquisition and data analysis This is the final step of microarray experiments.
The aim is to produce an image of the surface of the hybridized array. Here the slide

Target preparation and array hybridization

Treated Cells Control Cells:

l DNA or RNA is l
isolated from both
R samples, A4
transformed and ALY
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mized
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Figure 3.3: Microarray experimental principles. The picture is from (Gundogdu and
Elmi, 2005).

24



3.3 Microarray Data sets of this Work

Data set Number of Patients (v) Number of Genes for each Patient (D)
70-genes 78 70

231-genes 78 231

5223-genes 78 5223

Table 3.1: The three microarray data sets analyzed in this work.

is dried and placed into a laser scanner to determine how much labeled cDNA (probe)
is bound to each target spot. Laser excitation of the incorporated targets yields an
emission with characteristic spectra, which is measured using a confocal laser micro-
scope. Classically, microarray software often uses red spots on the microarray to repre-
sent genes upregulated compared to the control sample, green to represent those genes
that are downregulated in the test sample, and black to represent those genes of equal
abundance in both test and control samples. An example of an image obtained in this
way is shown in Fig. 4.4.

3.3 Microarray Data sets of this Work

The microarray data analyzed in this work were acquired from 78 patients suffering
from breast cancer. 44 patients have continued to be disease-free after a period of five
years, while 35 patients developed metastases within five years. The former patients
are treated as benign cases, while the latter represent malignant cases. Starting from
a set of 24482 genes, relevant genes suspected to be connected with metastases were
progressively filtered in groups of 5223, 231 and 70 genes by van't Veer et al. (van't
Veer et al., 2002), resulting in three data sets that are listed in table 3.1. These data sets
represent a two-class problem and are analyzed in this work in terms of differentiation
between the benign and malignant cases.

Glossary

RNA A nucleic acid found in all living cells. Plays a role in transferring information from
D NA to the protein-forming system of the cell.

Messenger RNA (mRNA) Single stranded RNA molecule that specifies the amino acid
sequence of one or more polypeptide chains.

Complementary DNA (cDNA) DNA that is synthesized from a messenger RNA tem-
plate, the single-stranded form is often used as a probe in physical mapping to
locate the gene or can be cloned in the double stranded form. Viral reverse tran-
scriptase can be used to synthesize D NA that is complementary to RNA (for exam-
ple an isolated mMRNA).
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Polymer Chain Reaction (PCR) The first practical system for in vitro amplification of
DNA and as such one of the most important recent developments in molecular
biology.

Oligonucleotide Linear sequence of up to 20 nucleotides joined by phosphodiester
bonds. Above this length the term polynucleotide begins to be used.
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4 Information Visualization

This chapter provides an introduction to the concept of information visualization for
the visual exploration of multidimensional data. After giving a general overview on this
topic in section 4.1 and section 4.2, some examples of information visualization systems
for the exploration of DCE-MRI and microarray data are presented in section 4.3.

41 Introduction to Information Visualization

This section is based on the content of (Keim, 1992) and (Spence, 2001).

Nowadays, the modern instruments in information technology make it possible to
store massive amounts of data. The data is typically automatically recorded via sen-
sors and monitoring systems. Usually, as many parameters are recorded, the data is
high-dimensional. However, the high dimensionality of the data hampers the extraction
of valuable information from that data. In particular, it is almost impossible for a hu-
man user to explore exhaustively large data sets containing even millions of data items
without the support of computer-based techniques for data exploration. The computer-
based data exploration may be accomplished by methods from statistics and machine
learning, thereby providing numerical results.

Techniques for information visualization are also a powerful instrument for the ana-
lysis of large high-dimensional data sets. The main purpose of information visualization
is to present the data in some visual form, in order to allow the human user to gain
insight into that data (Spence, 2001). Visual data exploration has several advantages
over statistics and machine learning techniques (Keim, 1992):

e it can easily deal with highly inhomogeneous and noisy data

e it is intuitive and does not require understanding of complex mathematics or sta-
tistical algorithms

e it presents data directly to human eye, whose extremely high capability of pattern
recognition is still superior to other analytical techniques (Li, 2004)

4.2 Data Dimensionality

A real-world data set typically consists of a large number of records, each consisting
of a large number of variables or attributes. The number of these variables, that is
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often referred to as the dimensionality of the data, influences strongly the difficulty of
representing the data set in an interactive display.

If each record is characterized by one, two or three variables, the data is referred to
as univariate, bivariate or trivariate, respectively. For all these types of data the task of
visualization is relatively straightforward as the records can be represented as points in
a one-, two- or three-dimensional scatter plot.

When the number of variables exceeds three, the data is said to be multivariate.
In this case the data visualization is more challenging since the attributes can not
be mapped directly to a scatter plot. Therefore, more sophisticated visualization ap-
proaches are required. Many approaches have been proposed for this purpose but an
exhaustive list is out of the scope of this work. Some of these techniques are described
in chapter 3 in (Spence, 2001).

The DCE-MRI and microarray data sets analyzed in this work, that are described in
section 2.4.1 and section 3.3 respectively, are multivariate data.

The records of the DCE-MRI data sets are given by the voxels of the marked tumor
lesions and each voxel is characterized by six attributes, i. e. a time-series of six signal
intensity values, and, in turn, the DCE-MRI data set is six-dimensional.

A record in the microarray data set corresponds to a patient. Each patient is cha-
racterized by a series of genes. In particular, there are three kinds of gene series for
each patient, a gene series with 70 genes, a gene series with 231 genes and a gene
series with 5223 genes. It follows that there are three data sets that are 70-, 231- and
5223-dimensional, respectively.

The approach to their visual exploration adopted in this work is based on dimensional
reduction. Specifically, algorithms for dimensional reduction are used to compute low-
dimensional projections of the multivariate data sets. The visualization of the low-
dimensional projections can allow the human user to gain insight with regard to the
similarity between the data records in the data sets. Indeed, records characterized by
similar attributes are expected to be mapped to neighboring data points in the projected
space. An introduction to algorithms for dimensional data reduction is given in chapter
5.

4.3 Visual exploration of multivariate breast cancer data

In this section, some established techniques for the visual representation of informa-
tion extracted from breast DCE-MRI and microarray data are presented. In this work,
only the technique shown in section 4.3.2 is employed and compared with one of the
techniques proposed in the experimental part (see section 6.3).
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Figure 41: Example of the image of a female breast obtained by MIP. At each voxel
position the signal intensity corresponds to the maximal component of the
correlate time-series.

4.3.1 Maximum Intensity Projection (MIP) in DCE-MRI

Maximum Intensity Projection, or MIP, is used to detect highly vascularized structures
in DCE-MRI images or volumes from a single patient. The MIP produces a single image
or volume in which the highest intensity value among the components of the respective
time-series is depicted at each pixel or voxel.

For example, given a sequence of m 3D volumes, each voxel p(z,y, z) can be con-
nected with a time-series s, = (sp1, Sp2,...Spm) Of m intensity values (see Fig. 2.5).
MIP applied to the entire sequence produces one volume in which the signal intensity
sp(MIP) of each voxel p(z,y, z) is given by:

sp(MIP) = max[sp1, Sp2; -.-Spm]-

The MIP image highlights the spatial distribution of enhancing lesions for surgery treat-
ment planning (lacconi et al., 2005). An image obtained by MIP is shown in Fig. 4.1.

The MIP technique represents a conceptually simple approach to the visualization
of multivariate DCE-MRI data. However, this technique does not provide information
about the dynamic of the time-series. It may occur that the maximal components of
two time-series are equal but the dynamic of the time-series is completely different,
for example suppose they are characterized by the two behaviors shown in Fig. 2.7.
The voxels related to these time-series would have the same signal intensity in the MIP
image. Therefore, the different dynamic of the time-series would not be visualized and,
in turn, in this case the MIP technique does not prove useful for the discrimination
between benign and malignant lesions.

4.3.2 Three Time Point Method (3TP) in DCE-MRI

The three-time-points (3TP) method (Degani et al., 1997) is a model-based technique
used in DCE-MRI data analysis that characterizes the dynamic of the time-series by
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analyzing the changes in the signal intensity at three selected time points ¢, t; and t2
along the contrast characteristic. The volumes related to these particular time points
are one pre-contrast, one early post-contrast and one late post-contrast volumes.

The wash-in and wash-out phases related to a certain voxel with spatial coordinate
p(z,y, z) are evaluated from the three signal intensity values I(t), Ip(t1), Ip(t2) and
visually represented in terms of color intensity iy, and color hue hy, respectively (Wein-
stein et al., 1999).

The wash-in is estimated from the first two time points and is coded as color intensity
as follows:

ip = Ip(t1) — Ip(to) 41)
t1 — 1o

The wash-out is estimated from the values of the two post-contrast intensities I, (¢1),

I (t2) and coded by color hues according to one of the three patterns:

blue : if Ip(t2) > Ip(t1) A [Ip(te) — Ip(t1)] > olp(t1)
hp = ¢ green: if [Ih(t2) — Ip(t1)| < olp(t1)
red: if I(t2) < Ip(t1) A |Ip(t2) — Ip(t1)| > olp(t1)

The parameter o regulates the tolerance for the comparison of I,(t1) and I(t2). Typi-
cally it is set to 0.1, i. e. only a signal change of a at least 10% of the value of I(¢1) is
considered to be indicative of the presence or absence of a significant wash-out phase.
The color hue blue denotes a slow wash-out, indicating benign behavior. Moderate
wash-out is encoded as green, indicating a suspect case. Malignant behavior is encoded
as red and is characterized by a fast wash-out. The three patterns of the wash-out cha-
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Figure 4.2: (a) Pattern estimation of the contrast agent characteristic. (b) Color map of
3TP. This map allows the user to interpret each pair of values (i, hp) in terms
of microvessel permeability and extracellular volume fraction. This picture is
taken from (Weinstein et al., 1999).
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racteristics are shown in Fig. 4.2 left. Two of these curves (the benign and malignant
ones) are explained in section 2.4 and visualized in Fig. 2.7.

By a calibration map (Fig. 4.2 right) based on modeling tracer kinetics adapted for
MRI (Tofts and Kermode, 1991), the color intensity and color hue of each voxel are
related to two pathophysiological features: microvascular permeability (K'"**), which is
equal to the microcapillary surface area times permeability, and the extracellular volume
fraction (v.), which determines the volume fraction accessible to the contrast agent
(Degani et al., 1997). The calibration map is divided into three regions. Tissue with
high K" and low v, is indicative of benign tissue and is visualized in blue. A high
value of v, and a low value of K% are indicative of malignant tissue and encoded as

ital view

Axia view

Coronal view

Figure 4.3: Example of a tumor lesion visualized according to the 3TP color scheme.
The lesion was manually segmented by a physician from a sequence of DCE-
MRI volumes. The presence of the colors red, green and blue reveals the
heterogeneity of the tumor tissue. A magnification of the lesion can be seen
in Fig. 6.20 (lesion M5).
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red. These two regions are separated by a green region that characterizes tissue with
intermediate values of v, and K'rans,

The three time-points (to, ¢1, t2) are chosen by an iterative process aiming at reaching
a calibration map in which the K — ¢, plane is divided into three approximately
equal areas, one for each color (Degani et al., 1997).

An example of lesion colored by 3TP is shown in three different sections (axial, sagital
and coronal views) in Fig. 4.3. Although this lesion was pathologically classified as
malignant, one can see that it also comprises blue and green parts, thereby revealing
the presence of local regions with benign and suspect dynamic characteristics.

4.3.3 Visualization of Microarray Data

One of the most widely used techniques for the analysis of microarray gene-expression
data is hierarchical clustering (Quackenbush, 2001).

Hierarchical clustering is an agglomerative approach in which single gene expression
profiles are joined to form clusters such that those within each cluster are more closely
related to one another than gene expression profiles assigned to different clusters. The
clusters are further joined until the process has been carried to completion, forming a
single hierarchical tree (Quackenbush, 2001). The term hierarchical clustering is men-
tioned also in section 5.3. Hierarchical clustering has the advantage that it is simple and
the result can be easily visualized (Eisen and Brown, 1999).

The process of hierarchical clustering proceeds in a simple manner. First, the pairwise
distance matrix among all the genes to be clustered is calculated. Second, the distance
matrix is searched for the two most similar genes or clusters; initially each cluster con-
sists of a single gene. This is the first stage in the clustering process. If several pairs
have the same separation distance, a predetermined rule is used to decide between
alternatives. Third, the two selected clusters are merged to produce a new cluster that
now contains at least two objects. Fourth, the distances are calculated between this
new cluster and all other clusters. There is no need to calculate all distances as only
those involving the new cluster have changed. Last, steps 2—4 are repeated until all
objects are in one cluster (Quackenbush, 2001).

Two examples of hierarchical clustering applied to microarray data are shown in Fig.
4.4. All the samples are assembled into a single tree in which each sample corresponds
to one leaf. Conventionally, all the leaves are shown at the same level of the drawing.
The ordering of the leaves is arbitrary, as is their horizontal position. The heights of the
internal nodes may be arbitrary, or may be related to the metric information used to
form the clustering.
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Figure 4.4: (A) Unsupervised hierarchical clustering of 38 samples. (B) Unsupervised
hierarchical clustering of 32 samples. The data are displayed as a hierarchi-
cal cluster where rows represent genes and columns represent experimental
samples. Colored pixels capture the magnitude of the response for any gene,
where shades of red and green represent induction and repression, respec-
tively, relative to the median for each gene. Black pixels reflect no change
from the median and gray pixels represent missing data. The pictures were
taken from (Liang et al., 2005).
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5 Dimensional Reduction

This chapter introduces the theory of dimensional reduction and is composed of five
parts. The first part (section 5.1) introduces the general idea of dimensional reduction
and mentions the two principal categories of algorithms for dimensional reduction,
namely (a) vector quantization and clustering techniques and (b) dimensional data re-
duction techniques. The latter are described in section 5.2 together with two algorithm
used in this work, principal component analysis (PCA) and locally linear embedding
(LLE). Section 5.3 introduces the concepts of vector quantization and clustering and
describes a further algorithm used in this work, self-organizing maps (SOM). Section
5.4 shows the quantitative measurements that are used in this work for the evaluation
of the low-dimensional projections. Finally, some properties of high-dimensional data
are introduced in section 5.5.

51 Introduction to Data and Dimensional Reduction

With the increased abilities for automated data collection made possible by modern
technology, the size of data collections in real-world applications has been growing in
recent years. As a result, many real-world data comprise sets of records characterized
by many variables, the number of which determines the dimension of the data (see also
section 4.2). Typically, the data is said to be multivariate when the data dimension is
larger than three. Let D denote the data dimension and v denote the number of records
(also termed data points, items or entities) of a multivariate data set.

In many practical applications, multivariate data in R” usually have a true (or intrinsic)
dimensionality much lower than D. This fact is intuitively illustrated in Fig. 51, where
a data set with D = 3 and v = 4 is visualized. All the points have the same value of the
z-coordinate. In other words there is no variance in the z direction. The points differ
from each other only with respect to the z and y coordinates. It follows that this data
set has an intrinsic dimensionality equal to two.

Another example is given by the synthetic face data set taken from (Tenenbaum et al.,
2001). It comprises 698 images of 64 x64 pixels that were obtained by varying the angles
of rotation of a synthetic face from up to down and from left to right. This data set can
be treated as a set of 698 data points in a 64 x 64-dimensional data space. Because t his
data space is obtained by varying two angles of rotation, i. e. two degrees of freedom,
one can expect that the data set possesses an intrinsic dimensionality much smaller than
that of the data space. The data set is projected onto two dimensions using Isomap, an
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Figure 5.1: Simple data set with dimension D = 3 and number of points v = 4. The
coordinates of the points do not vary along the z-axis but only along the
z-axis and y-axis. Therefore, the intrinsic dimension of the data set is two.

algorithm for nonlinear dimensional reduction (Tenenbaum et al., 2000), and the result
is visualized in Fig. 5.2. Here the images are plotted as points in a two-dimensional
space. One can see that the projected points form a smooth plane which is highly
correlated with the face rotation. Specifically, the rotation from left to right of the face
is mapped along the horizontal axis, while the rotation from up to down is mapped
along the vertical axis. It is evident that the data set is intrinsically two-dimensional
although it is embedded in the 64 x 64 data space. This is equivalent to saying that the
changes induced in the images by the rotations are highly correlated and described by
two variables.

In general, it may hence be sensible to map high-dimensional data into a lower-
dimensional space in order to eliminate redundant relationships between variables.
Consider a data set of v data points {x}, = {xi,x2,....,x,} lying in a D-dimensional
space R” and forming some distribution. The goal is to approximate the unknown
distribution spanned by the data points in R” such that data points produced in a
lower-dimensional space by some dimensional reduction process are "close" (in some
well-defined sense) to data points from the generating distribution (Cherkassky and
Mulier, 1998). For this purpose there exist two types of methods:

e Dimensional reduction techniques These algorithms are used to find low-dimen-
sional representations of high-dimensional data. Each data point is mapped to
a point in a lower-dimensional space while the global statistical information is
preserved as much as possible. In general, given a set of v data points {x}, =
{x1,%2, ...., X, } in D-dimensional space R”, algorithms for dimensional reduction
aim at mapping the data to a d-dimensional space R?, where d < D,

G(x) : RP — R? (5.1)
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Up-down pose

Left-right pose

Figure 5.2: Set of 698 images (each with 64 x 64 pixels) of a rotating face projected
into a two-dimensional space. Some points are visualized together with the
corresponding images. One can see that the rotation of the face spans a
two-dimensional structure in the 64 x 64 image space by virtue of the two
degrees of freedom, the left-right and up-down rotation movements. The
face dataset was taken from (Tenenbaum et al., 2001).

producing a low-dimensional encoding y; = G(x;) for each input vector x;.

e Vector quantization and clustering Here, the objective is to approximate the
distribution of a given D-dimensional data set {x}, using m reference vectors
(also called prototypes) {u},, = {ui,us,...,uy}, where typically m < v.

One can distinguish between vector quantization (VQ) and clustering. VQ me-
thods aim to minimize a well-defined approximation (quantization) error when
the number of prototypes m is fixed a priori. Clustering methods have a more
vague objective of finding interesting non-overlapping grouping of data points.
Each group or cluster should contain similar data points and data points from dif-
ferent groups should not be similar. Often clustering algorithms also represent
each group by a reference vector, and such methods have a strong similarity to
VaQ.
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5.2 Dimensional Data Reduction

The goal of dimensional reduction is to obtain a compact, accurate representation of
the data that reduces or eliminates drastically redundant components (Hinton and Se-
jnowski, 1999). At the same time, the reduction of the number of dimensions should
not result in loss of information relevant to the task at hand. Thus, there is a trade-off
between the advantages of the reduced dimensionality and the loss of information due
to dimensional reduction.

The most important applications of dimensional data reduction can be divided into
three groups (Verbeek, 2004):

e Visualization of high-dimensional data for explorative data analysis. Reducing
the dimension of the data to two or three dimensions enables the user to plot the
data on a computer screen. This can allow to extract the relevant information in
the data and detect dominant relationships between variables.

e Data compression. Using fewer dimensions to express the data allows for a more
compact data storage and data transmission using less bandwidth.

e Increasing efficiency and performance of subsequent steps of data analysis.
Dimensional data reduction can increase the efficiency of operation and training
of automatic classifiers and regression functions, which typically have an execution
time and training time at least linear with the number of dimensions of the data.

In addition, a lower number of dimensions may increase the performances of the
system. This effect, which may appear counter-intuitive, can be explained by the
curse of dimensionality (Bellmann, 1961). This refers to the fact that the number
of data points required to estimate a data distribution grows exponentially with
the dimensionality of the data. Consequently, the data distribution of a certain
number of data points in a low-dimensional space may be estimated more reliably
that the distribution of the same number of points in a high-dimensional space.

In this work the methods for dimensional reduction are exclusively used for the first
purpose, the visual exploration of high-dimensional data.

The algorithms for dimensional data reduction can be divided into linear and nonlinear
ones. Linear methods attempt to reveal linear combination of variables best approxi-
mating the original data structure. The classical linear techniques are Principal Compo-
nent Analysis (PCA) (Jollife, 1986) and Multi-Dimensional Scaling (MDS) (Kruskal and
Wish, 1978). PCA finds a low-dimensional embedding of the data points that best pre-
serves their variance as measured in the high-dimensional input space. Classical MDS
finds an embedding that preserves the inter-point distances and is equivalent to PCA
when those distances are Euclidean (Tenenbaum et al., 2000).

Methods for nonlinear data reduction have received growing attention in the litera-
ture in recent years. They are able to reveal nonlinear relationships between variables
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in a high dimensional data set. Besides traditional techniques such as nonlinear MDS
(Kruskal, 1964) and Sammon's nonlinear mapping (Sammon, 1969), several new al-
gorithms for nonlinear dimensional reduction have recently been published, including
Locally Linear Embedding (LLE) (Roweis and Saul, 2000), Isomap (Tenenbaum et al.,
2000), Curvilinear Component Analysis (CCA) (Demartines and Herault, 1997), Curvi-
linear Distance Analysis (CDA) (Lee et al., 2000), Distance-preserving Projection (Yang,
2004), Hessian Eigenmaps (Donoho and Grimes, 2003), Laplacian Eigenmaps (Belkin
and Niyogi, 2003) and charting (Brand, 2002).

Some of these methods can be divided into local and global approaches. Local ap-
proaches (e. g. LLE, Laplacian Eigenmaps) attempt to preserve the local geometry of the
data. Specifically, they seek to map nearby points on the manifold to nearby points in
the low-dimensional representation. Global approaches (e. g. Isomap) attempt to pre-
serve geometry at all scales, mapping nearby points on the manifold to nearby points in
low-dimensional space, and faraway points to faraway points.

The principal advantages of the global approach are that it tends to give a more
faithful representation of the data's global structure, and that its metric-preserving pro-
perties are better understood theoretically. The local approaches have two principal
advantages: (1) computational efficiency as they involve only sparse matrix computa-
tions which may yield a polynomial speed-up; (2) representational capacity: they may
give useful results on a broader range of manifolds, whose local geometry is close to
Euclidean, but whose global geometry may be not (de Silva and Tenenbaum, 2002).

In this work two algorithm for dimensional reduction are employed for visual data
exploration of DCE-MRI and microarray data sets, namely LLE and PCA.

The choice of employing PCA is motivated by the fact that this is a well established
linear technique that has been employed in a broad range of different applications. In
addition, its application is straightforward as the PCA algorithm does not require any
parameter to be set.

The LLE is a recently proposed algorithm able to handle nonlinear data structures and
is characterized by some attractive properties such that uniqueness of the solution, low
number of input parameters and of preservation of the data topology in the projected
space. These properties, in particular the latter one, make LLE interesting for the pur-
pose of visual data exploration. In addition, the applications of the LLE algorithm in
real-world domains are still relatively few. LLE has already successfully been applied to
microarray data (Chao and Lihui, 2004), membrane protein data (Wang et al., 2005),
and human face data analysis (Zhang et al., 2004b; Graf and Wichmann, 2002; Zhang
et al., 2004a).

The PCA and LLE algorithms are described in the following two sections.

5.2.1 Principal Component Analysis (PCA)

This description of the PCA algorithm is based on the content of (Bishop, 1995). Imagi-
ne having v vectors {x}, in a D-dimensional space. The goal is to map such vectors to
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a d-dimensional space, where d < D. Without loss of generality, a generic vector x can
be represented by a linear combination of D orthonormal vectors {m}p

D
X = Zijj (52)
7=1

where explicit expressions for the coefficients z; are given by

zj = m?x. (5.3)

Now only a subset d < D of the basis vectors {m}p are retained, so that only d coeffi-
cients {z}4 are used. The remaining coefficients are replaced by constants {b}p_4 so
that the vector x is approximated by the expression

d D D
X = Zijj + Z bjmj =7+ Z bjmj. (5.4)
=1 j=d+1 j=d+1

This represents a form of dimensionality reduction since the vector x is approximated
by the d-dimensional vector z. If one considers the whole data set, one wishes to find
the basis vectors {m}p and the coefficients {b} p_4) such that the vectors {z}, give the
best approximation to the original vectors {x},. The error in the vector x introduced by

XA 2D data set
€

>
>

X1

Figure 5.3: Schematic illustration of a two-dimensional data set along with the two prin-
cipal components e; and ey. The directions of these eigenvectors are those
along which the variance of the cluster is maximal. The one-dimensional
projection of the data set is obtained by first subtracting off the mean x,
and then projecting onto e;.
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the dimensional reduction is given by

D
X—%= Y (z—b)m (5.5)
j=d+1

One considers as best approximation the one which minimizes the sum of the squares
of the errors over the whole data set. Hence, one minimizes

1 v 1 v D
Ed:§Z|\xn—in|\2:§Z > (2 b)) (5.6)
n=1 n=1 j=d+1

If one sets the derivative of E; with respect to b; to zero one finds
1 v
— — mlx
bj_zzlzgl_mjx (5.7)
n=

where one has defined the mean vector % to be

_ 1¢
X—;;XZ. (5.8)

Using eq. (5.3) and (5.7) one can write E,; as
1 D v 1 D
5 SN {ml(x — %)} = 5 > m]Sm;, (5.9)
j=d+1i=1 j=d+1

where ¥ is the covariance matrix of the set of vectors {x}, and is given by
=) (x—%)(xi—%)7. (5.10)
=1

One can demonstrate that the minimum of E; occurs when vectors {m}p are equal to
the eigenvectors of the covariance matrix X.

Finally, the d dimensional projection y; of the input data point x; is obtained by pro-
jecting (x; —X) along those eigenvectors e; (i = 1, .., d) (also called principal components)
corresponding to the d largest eigenvalues of X, i. e.

yi = [(xi = %) -e1,(x; —X) - e2,..., (x; — X) - €q]. (511)

The PCA technique is illustrated schematically in Fig. 5.3 for the case of a two-dimensional
data set.
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5.2.2 Locally Linear Embedding (LLE)

This section describes the Locally Linear Embedding (LLE) algorithm and the content is
based on the information contained in (Lawrence and Roweis, 2003). The LLE algorithm
recovers global nonlinear structure from locally linear fits. The LLE algorithm, summa-
rized in Fig. 5.4, is based on simple geometric intuitions. LLE assumes that each data
point and its neighbors lie on a locally linear patch and then applies the patch in a low
space to generate a neighbor-preserving embedding. Suppose the input data consists
of v real-valued vectors {x},, each of dimensionality D, sampled from some underlying
manifold. The LLE algorithm is composed of three steps:

Step 1

Provided that there is sufficient data (such that the manifold is well-sampled), one ex-
pects each data point and its neighbors to lie on or close to a locally linear patch of

o o)
@]
(@] (@)
o © o 1. Select neighbors
(@] Xi. o
O @ (@] o
— % o °
2. Reconstruct with °
linear weights
O
-/ o _ ©

Yk
o 3. Map to embedded
coordinates

Figure 5.4: Schema of the three steps of LLE.
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the manifold, i. e. the relationships between neighbors are locally linear. The first step
consists in calculating the n nearest neighbors of each data point x;.

Step 2

The local geometry of these patches is characterized by linear coefficients that recon-
struct each data point from its neighbors. Reconstruction errors are measured by the

cost function ) .
== Z |XZ' - Z Winj|2 (51 2)
i=1 j=1

which adds up the squared distances between all the data points and their reconstru-
ctions. The weight W;; summarizes the contribution of the jth neighbor to the recon-
struction of x;. To compute the weights, one minimizes the cost function ¥ (W) subject
to two constraints: first, that each data point x; is reconstructed only from its n neigh-
bors, enforcing W;; = 0 if x; does not belong to the set of neighbors of x;; second,
that the rows of the weights matrix sum to one: >, , W;; = 1. The optimal weights
are found by solving a least-squares problem. With the given constraints, eq. (5.12)
can be simplified to a linear system and the weights can be computed in closed form as

follows:
Z|xl ZWXJF wakojk (513)

In the second identity, the term
Cir. = (xi — x5) - (xi — x) (514)

is the local covariance matrix. The weights which minimize the error function of eq.
(512) are given by:

n C—l
k=1 k
Wy = k=l ke

I,me{l,.,n}. (5.15)
In some cases, for example if the number of neighbors is greater than the input dimen-
sion (n > D), it arises that the matrix C is singular or nearly singular and the solution
of eq. (56.13) is not unique. In this case the matrix C must be conditioned by adding a
small multiple of the identity matrix (Lawrence and Roweis, 2003):

where T is defined as T
LCINNS (517)
n

The term A is a regularization term set by the user and its value must be much smaller
than 1.

The constrained weights that minimize the reconstruction errors obey an important
symmetry: for any particular data point, they are invariant to rotations, rescalings, and
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translations of that data point and its neighbors. By symmetry, it follows that the recon-
struction weights characterize geometric properties of each neighborhood. Note that
the invariance to translations is specifically enforced by the sum-to-one constraint on
the rows of the weight matrix.

Suppose the data lie on or near a smooth nonlinear manifold of lower dimensionality
d < D. To a good approximation then, there exists a linear mapping, consisting of a
translation, rotation and rescaling, that maps the high-dimensional coordinates of each
neighborhood to global internal coordinates on the manifold.

By design, the reconstruction weights {W;}, reflect intrinsic geometric properties
of the data that are invariant to exactly such transformations. Therefore, one expects
their characterization of local geometry in the original data space to be equally valid
for local patches on the manifold. In particular, the same weights {W;;}(j = 1,..n)
that reconstruct x; in D dimensions should also reconstruct its embedded manifold
coordinates in d dimensions. LLE constructs a neighborhood-preserving mapping based
on the above idea.

Step 3

In the final step of the algorithm, each high-dimensional data point x; is mapped to
a low-dimensional vector y; representing global internal coordinates on the manifold.
This is done by choosing d-dimensional coordinates {y}, to minimize the embedding
cost function

d(y) = Z lyi — ZWz‘jyg‘lz- (518)
i—1 =1

This cost function, like the previous one, is based on locally linear reconstruction er-
rors, but here the weights W;; are fixed while optimizing the coordinates {y},. The
embedding cost in eq. (5.18) defines a quadratic form in the vectors {y}. Subject to the
constraints 1 3™ | y;yT = I and 37 | y; = 0, the solution of this quadratic function is
given by the bottom d + 1 eigenvectors of the sparse matrix

S=I-W)I(1-wW). (519)

These eigenvectors are associated with the d + 1 smallest eigenvalues of S. The bottom
eigenvector is related to the smallest eigenvalue whose value is closest to zero. This
eigenvector is the unit vector with all equal components and is discarded. Let E be the
v x d matrix of the eigenvectors of matrix S associated with the d smallest eigenvalues
(excluding the smallest one). The projection y; of the data point x; is given by the ith
line of matrix E.

5.3 Vector Quantization and Clustering

The problem of clustering is that of dividing a data set into a number of groups, called
clusters, based on some measure of similarity (Cherkassky and Mulier, 1998). The goal is
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to find a set of clusters such that samples within a cluster are more similar than samples
from different clusters.

Cluster analysis differs from vector quantization design in that the similarity measure
for clustering is chosen subjectively based on its ability to create meaningful clusters.
The clusters can be organized hierarchically and described in terms of a hierarchical tree
structure, or they can be purely partitional (Cherkassky and Mulier, 1998). Hierarchical
clustering, that has already been mentioned in section 4.3.3, can be either agglomera-
tive (bottom up) or divisive (top down). An agglomerative hierarchical method initially
regards each sample as one cluster and gradually merges these clusters into larger clus-
ters until all samples are in a single cluster (the root node in the hierarchical cluster
tree). A divisive hierarchical method starts with a single cluster containing all the data
and recursively splits clusters into subclusters. Partitional methods can be further classi-
fied into two groups, namely hard and soft clustering. In hard clustering, each sample is
assigned to one and only one cluster. In soft clustering, each sample is associated with
several clusters with certain probabilities.

There exist many clustering algorithms and an exhaustive list is out of the scope of
this work. A comprehensive survey on clustering algorithms can be found in (Xu and
Wunsch, 2005).

Vector quantization algorithms assign a set of data points into m clusters by minimi-
zing a certain error function. The sum of squared errors in one of the most widely used
criteria. Suppose one has a set of v data points {x}, and one wants to organize them
into m clusters {C1, ...,Cy}. The squared error criterion is defined as (Xu and Wunsch,
2005)

J(X,0) =)0 wijllx; — wil]? (5.20)

i=1 j=1

where Y denotes a partition matrix in which each element is

“_{ 1 iinGCj
ij —

m
0 otherwise. with ZU” =195

=1

u; (ith reference vector) denotes the mean vector of the ith cluster and U is the refer-
ence vector matrix.

The K-means algorithm is the best-known squared error-based algorithms for vector
quantization (Forgy, 1965). In this work, the Self-Organizing maps (SOM) algorithm
(Kohonen, 2000), a very popular neural network-based vector quantization technique,
is employed. The rationale for this choice is that SOM is particularly suitable for the
exploratory visualization of multivariate data (Simild, 2005). For an overview about
methods for the visualization of SOM data see (Vesanto, 1999). The principal steps of
the SOM algorithm are introduced in the following section.
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5.3.1 Self-Organizing Map (SOM)

The objective of self-organizing maps (SOM) is to represent high-dimensional data {x},
with a set of reference vectors {u},, where each reference vector u; is linked with a
node r; in a typically two-dimensional grid. The grid can be chosen to be rectangular,
hexagonal or even irregular. Each data point x; is mapped to the node related to its
nearest reference vector. A particularly important property of SOM is to preserve the
topology of the data space, i. e. close points in the original space are mapped onto
nearby nodes in the grid (Yin, 2002).

In each learning step, an input vector x; is selected and its nearest reference vector
u; is identified by evaluating

i = argmin{||u; — x;|*}. (5.21)

J
The node in the grid linked to u; is called winner node and is denoted by r;. Let
N; denote the reference vector u; and its nearest reference vectors, determined with
respect to the grid topology. Specifically, the nodes of the nearest reference vectors are

the closest to r; in the low-dimensional grid (see Fig. 5.5) The reference vector u; and
its neighbors are then updated using the following formula:

uk(t + 1) = uk(t) + hzk(t> [Xi — uk], k € N;. (5.22)

Data space ROD o o o © ©

Figure 5.5: The data set (group of white points) {x}, is approximated by a set of refe-
rence vectors (gray points) {u},,, where m = N x N. Each reference vector
u; is connected with a node r; in the SOM grid. During the training phase,
for each data point x;, the nearest reference vector u; and its topological
neighbors according to the SOM grid are moved towards x;, as described by
eq. (56.22).
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where ¢t = 0,1,2,... is an integer coordinate which represents the number of the cur-
rent iteration in the training process. The total number of iterations is set by the user.
The function h;(t) acts as a neighborhood function on the grid. For the solution to
converge, it is necessary that h;; — 0 when ¢t — oo. In the literature, h; is frequently
defined in terms of the Gaussian function,

i |7 — ]| ‘
hik(t) = a(t)exp o) ) k € N; (5.23)

where r; and r;, denote the nodes relative to the reference vectors u; and u;. The
function «(t) is the learning rate factor, and the parameter o(t) defines the width of the
neighborhood function. Both «(t) and o(t) are monotonically decreasing functions of
time.

5.4 Evaluation of the Dimensional Reductions

This section illustrates the numerical quantities that are used in this work for the quan-
titative evaluation of the dimensional reductions obtained using the PCA, SOM and
LLE algorithms. In particular, the dimensional reductions obtained by PCA and LLE are
quantitatively evaluated by the measurements from section 5.4.1 to section 5.4.4, while
the SOM projection is evaluated by an ROC curve analysis (section 5.4.5).

5.41 Fisher Criterion

The following part is based on the content of (Bishop, 1995). The Fisher criterion
quantifies the compactness and the distance between two clusters in a two-dimensional
space. In this work, the DCE-MRI and microarrays data sets (both are two-classes
data sets) are projected onto a two-dimensional space for visual data exploration and
the Fisher criterion is employed to quantify the separation between the benign and
malignant clusters.

Consider a problem in which there are v, points of class C; and vy points of class Cs.
Let m; and m, be the mean vectors of the two classes, i. e.

1 .
m; = - Z X, 1 =1,2. (5.24)
keC;

Let j be the vector that can best separate the two clusters. It is defined as
j o< Sy (me — my) (5.25)

where S;;} is the total within-class covariance matrix which is given by

Sw = Z (x; —my)(x; — m1)T + Z (x; — mo)(x; — mg)T. (5.26)

x€Cy x€Co
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JT

projected clusters
along the vector

normal to theone —————= X/
that is given by m; )
the Fisher discriminat

Figure 5.6: The clusters C; and C; are projected along j7. The vector j is defined in eq.
(5.25). By computing the means and variances of the projected clusters as
shown in eq. (5.27) and (5.28), respectively, one can compute the value of
the Fisher criterion by eq. (5.29).

Eq. (5.25) is known as Fisher's linear discrimant.
Considering the projections of the two clusters along jT (see Fig. 5.6), their mean
and variance are respectively given by

m; = j m;, i =1,2 and (5.27)
ol = > ("xp —mi)? i =1,2. (5.28)
x€eC;

Finally, the Fisher criterion F} 5 between the two clusters is defined as (Bishop, 1995):
(mg —my)?
Flog=——"%5%——-" 5.29
1,2 o ( )
The larger the value of F} 5, the less the two clusters overlap. This is desirable as C;
and Cs typically represent data of different entities that a computer should distinguish
as much as possible.

5.4.2 Stress

Stress quantifies the overall deviation between the distances (i.e. the extent to which
they differ) in the original and dimensionally reduced space (Hjaltason and Samet,
2003). Let x; and x2 be two data points and y; and y» their projection in the em-
bedding space; their distance in the original and in the embedding space are indicated
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by d(x1,x2) and d(y1,y2), respectively. Stress is typically defined in terms of variance as

D 1o (0(¥1,¥2) — d(x1,%2))?
le,XQ d(x17X2)2

Note that the scales of the original and embedded spaces need to be equal. The value
of ST lies between zero and one. The lower the value of stress, the better the distances
among data points are preserved in the embedding, i. e. the process of dimensional
reduction is more accurate.

ST = (5.30)

5.4.3 Neighborhood Preservation

Neighborhood Preservation (NP) quantifies the average percentage of neighbors in the
original space which are preserved after the dimensional reduction. It is defined as

NP(t) = %Zpt(xi) (5.31)
=1

where p,(x;) is the percentage of the ¢-nearest neighbors of point x; in the original
space which are preserved in the low-dimensional space. For example, if only 25% of
its t-nearest neighbors are preserved in the embedding, then p,(x;) will equal 0.25. The
value of NP lies between zero and one. A high value of NP (close to one) denotes a
good preservation of the local relations between data points in the low-dimensional
space and this is therefore desirable.

5.4.4 Trustworthiness

The trustworthiness measure has been proposed in (Kaski et al., 2003) and also em-
ployed in (Venna and Kaski, 2005). It quantifies how trustworthy is a projection of
a high-dimensional data set onto a low-dimensional space, specifically a projection
is trustworthy if the set of the ¢ nearest neighbors of each data point in the low-
dimensional space are also close-by in the original space.

More formally, the trustworthiness measure M is defined as (Venna and Kaski, 2005)

MO =1 s > S )~ 1), (532

i=1 jeUy(i)

where r(i, j) is the rank of the data point j in the ordering according to the distance
from i in the original data space, and U, (i) denotes the set of those data points that are
among the t-nearest neighbors of the data point i in the low-dimensional space but not
in the original space. The maximal value that trustworthiness can take is equal to one.
The closer M (t) is to one, the better the low-dimensional space describes the original
data.
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5.4.5 Receiver Operating Characteristics (ROC)

Receiver operating characteristic (ROC) graphs are a useful technique for visualizing
and comparing the performance of different classifiers (Fawcett, 2004). Their usage is
very common in medical decision making (Hanley and McNeil, 1982). ROC analysis
has appeared to offer more robust evaluation of the relative performance of different
classifier than traditional comparison of relative errors. Rather than considering raw
errors, ROC analysis decomposes performance into true and false positive rates (Webb
and Ting, 2005).

Note that in this work the ROC analysis is not used to compare the performances
of different classifiers, but to evaluate the overlap between the benign and malignant
clusters (of DCE-MRI data) in the projected space obtained by PCA, SOM and LLE, as
described in section 6.2.2, second approach.

The principles of the ROC curve are explained considering a two class problem (classes
P (positive) and N (negative)). To evaluate classifiers performance by ROC, first a set of
samples in a test data set has to be labeled by a human user according to a certain
property, i. .e. each sample is labeled as belonging to either class P or class N. For
example, in this work the samples are the time-series associated with each voxel (DCE-
MRI data) and the patients characterized by a sequence of gene expressions (microarray
data) These time-series are labeled as benign or malignant if they belong to a benign or
malignant lesion, respectively (see section 6.2.2.2), In the microarray data, the patients
are labeled as benign or malignant according to the absence or presence of metastasis.

This set of samples together with their labels are called the gold standard. Next,
each of these samples is labeled by an automatic classifier and the ROC analysis of the
classifier performance is based on observation of four types of outcome:

True Positives (TP) : number of positive samples (according to the gold standard) that
are correctly classified as positive

False Positives (FP) : number of negative samples (according to the gold standard)
that are wrongly classified as positive

True Negatives (TN) : number of negative samples (according to the gold standard)
that are correctly classified as negative

False Negatives (FN) : number of positive samples (according to the gold standard)
are wrongly classified as negative.

These four quantities can be used to compute four indices useful for comparing the
classifier performance.

Sensitivity (SE) or True-Positive-Fraction (TPF) : percentage of positive samples among
all positive samples that were correctly labeled as positive by the classifier

TP
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Specificity (SP) : percentage of negative samples among all negative samples that were
correctly labeled as negative by the classifier

TN
SP= ———.
TN+ FP
False-Positive-Fraction (FPF) : percentage of negative samples among all negative
samples that were wrongly labeled as positive by the classifier

FP TN

R = TN = TN

1—SP.

Positive-Predictive-Value (PPV) : ratio of the number of positive samples labeled cor-
rectly as positive by the classifier and the total number of samples classified as
positive

TP
TP + FP

PPV =

The classifier typically classifies the samples according to a certain decision rule that
depends on a parameter t.. Each (SE,SP) pair is function of ¢, and, in turn, different
values of ¢. produce different (SE,SP) pairs.

5.4.51 ROC Graph

This section is based on the content of (Fawcett, 2004). The ROC graph is obtained by
plotting SE on the y-axis (vertical) and 1—SP (horizontal) on the z-axis. An ROC curve
depicts relative trade-offs between benefits (SE) and costs (1—SP) (Fawcett, 2004). A
ROC graph with five classifiers labeled A through E is shown in Fig. 5.7.

There are several important points in ROC space. The point (0,0) represents the
strategy of never issuing a positive classification; such a classifier labels correctly all the
negative samples as negative (1—SP= 0) but labels erroneously all the positive samples
as negative (SE= 0).

The point (0,1) represents the perfect classification. All the positive samples are cor-
rectly classified as positive (SE= 1) and no negative samples are classified as positive
(1-SP=0).

Informally, one point in ROC space is better than an other if it is located towards
the northwest (SE is higher or (1—SP) is lower or both) of the first one. In Fig. 5.7,
classifier A has better performance than classifier B. Classifiers appearing on the left-
hand side of an ROC graph, near the z-axis, may be thought of as "conservative": they
make positive classifications only with strong evidence so they make few false positive
errors, but often they have low SE values as well. Classifiers on the upper right-hand
side of an ROC graph may be thought of as "liberal": they make positive classifications
with weak evidence so they classify nearly all positives correctly, but classifies many
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Figure 5.7: An ROC graph with five points.

negatives wrongly (Fawcett, 2004). In Fig. 5.7, classifier A is more conservative than
classifier B and classifier D is more liberal than classifier C.

If the tuning parameter t. of the decision rule of a classifier changes continuously,
plotting all the corresponding pairs (SE, 1—SP) typically results in an arc-shaped curve
like the one shown in Fig. 5.7.

5.4.5.2 Random Performance

The classifiers along the diagonal y = z are those that randomly guess a class (like the
point D in Fig. 5.7). For example, if a classifier randomly guesses the positive class 50%
or 70% of the time, it can be expected to get 50% or 70% of the positives correct but
its false positive rate will increase to 50% or 70%, yielding the point (0.5, 0.5) or (0.7,
0.7) in ROC space. Any classifier appearing under the diagonal y = = performs worse
than random guessing. Therefore, the classifiers usually appear in the upper left triangle
(Fawcett, 2004). However, notice that any classifier that produces a point in the lower
right triangle can be negated (i. e. its true positive classifications become false negative
mistakes and its false positives become true negatives) to produce a point in the upper
left triangle.

5.5 Properties of High-Dimensional Spaces

In this section some properties of high-dimensional data spaces are introduced. This
section provides a theoretical background to the microarray data analysis carried out in
chapter 8.

The introduced properties of high-dimensional spaces are somewhat unexpected as
they are counter-intuitive when compared to what happens in two or three dimensions.
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The following section is based on the content of (Verleysen, 2003) (for more information
see also (Verleysen and Francois, 2005)) where two key questions in the analysis of
high-dimensional data are addressed:

e what is the limit between low and high-dimensional spaces?

e what is the number of points required for learning in high-dimensional spaces?

5.5.1 Limit between low and high-dimensional spaces

Textbooks and scientific articles illustrate methods and other data analysis tools on
one-, two- or three-dimensional examples, and measure their performances on higher-
dimensional problems for which no representation is possible. It is also widely accepted
that most real-world problems are high-dimensional. But where is the limit between
low- and high-dimensional data?

To answer this question, let us take a few examples of concepts that are intuitive
in dimensions up to three and expandable to higher ones. The dimension where our
intuitive view is not valid anymore is the answer to our question. Consider the volume
of a sphere in dimension d. This volume is given by

/2
V(d) = ¢ !

where r is the radius. Looking at the graph of V(d) when r = 1 (Fig. 5.8) leads to the
surprising observation that the volume rapidly decreases towards zero when d increases.
Our intuitive view of the volume of a sphere is thus misleading in high dimensions.

Volume
©

Figure 5.8: Volume of the sphere with r = 1 versus the dimension of the space.
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Figure 5.9: Ratio between the volume of a sphere and the volume of a cube (the length
of an edge of the cube equals the diameter of the sphere) versus the dimen-
sion of the space.

One should compare this volume to a value that seems "natural" to humans. One
way to do this is to plot the ratio between the volume of a sphere and the volume of
a cube having edge equal to the diameter of the sphere. This ratio is shown in Fig.
5.9. Having in mind a segment, a circle and a sphere in one, two and three dimensions,
respectively, in Fig. 5.9 one can see that the ratio will decrease with the dimension of
the sphere. What is more surprising is that this ratio is below 10% when the dimension
is lower than 5.

Another way to consider this problem is to plot the ratio between the volume of a
sphere with radius 0.9 and a sphere with radius 1, versus the dimension (Fig. 5.10).
Obviously, this ratio is equal to 0.9 raised to the power of d. The values plotted in Fig.
5.10 mean that 90% of the volume of a sphere in dimension greater than 20 is contained
in the spherical shell whose thickness is 10% of the initial radius.

Another comment concerns Gaussian functions in high dimensions. Intuitively, Gaus-
sian functions are used for their local properties: most of the integral of the function
is contained in a limited volume around its center. It is well known that 90% of the
samples of a normalized scalar Gaussian distribution are statistically distributed in the
interval [-1.65, 1.65]. What is less obvious is that this percentage rapidly decreases to O
with respect to the dimension of the space. In Fig. 5.11 the percentage of samples of
a Gaussian distribution falling in the sphere of radius 1.65, versus the dimension of the
space is shown. In dimension 10 this percentage is below 1%. In other words, when
the dimension increases, most of the volume of a Gaussian function is contained in the
tails instead of being located near the center, in total disagreement with the commonly
accepted view of locality.

More than geometrical properties, these four examples show that data even uni-
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Ratio

Figure 510: Ratio between the volume of a sphere with radius 0.9 and the volume of a
sphere with radius 1, versus the dimension of the space.

formly distributed concentrate in unexpected parts of high-dimensional spaces and that
function considered as local are not local anymore in high dimensions.

5.5.2 Number of learning points in high-dimensional settings

The discussion about the problems related to high dimensions is also intended to point
out the necessity for a growing number of samples when the dimension increases. It
is difficult to tackle the problem of finding the number of samples required to reach a
predefined level of precision in approximation tasks. The reason is that results tackling
level of approximation tasks are usually rather theoretical ones, derived from asymptotic
developments where the number of samples tends to infinity.

Intuitively, the number of samples should increase exponentially with the dimension
of the space. If 100 learning points are necessary to obtain one defined precision in
a two-dimensional scalar function approximation problem, the same level of precision
would require 10¢ learning points in a d-dimensional space. As an example, Silverman
(Silverman, 1986) addressed the problem of finding the required number of samples for
a specific problem in the context of the approximation of a Gaussian distribution with
fixed Gaussian kernels. Silverman's results are summarized in Fig. 5.12. Silverman's
results can be approximated by (Comon et al., 1994)

log,o N(d) ~ 0.6(d — 0.25). (5.34)

At this point the reader might think that one never has enough samples in high dimen-
sions. Consider indeed a problem where 10 samples would be required in dimension
1 and 100 in dimension 2 (imagine a segment and a square approximated by 10 and
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Figure 5.11: Percentage of samples from a Gaussian distribution falling in the sphere of
radius 1.65, versus the dimension of the space.

100 samples, respectively). This would mean that 10?° would be required in dimension
20. This is obviously impossible in real-world problems while dimensions much greater
than 20 are common.

Fortunately, it appears that real-world problems do not suffer so severely from the
"curse of dimensionality" problem, as in most situations data are located near a manifold
of dimension lower than d. This fact is also mentioned at the beginning of chapter 6.

5.5.3 Concentration of measure phenomenon

While this is not directly related to the two questions introduced at the beginning of
this section, the concentration of measure phenomenon is another surprising result in
high-dimensional spaces which is more related to data analysis. This phenomenon in
the case of Gaussian distributions (with standard deviation equal to 1) is illustrated in
Fig. 5.13. For several dimensions of the space (1, 2, 3, 5, 10 and 20), the figure shows
the probability density function (pdf) of finding a point drawn according to a Gaussian
distribution, at distance r from the center of that distribution. In dimension 1, this pdf
is a monotonically decreasing function. In dimension 2, it has a bell shape with a peak
around 1, that illustrates the fact that there are more points at distance 1 from the center
than at distance 0.2 or 2. When the dimension increases, the bell shape remains, but is
shifted to the right. In dimension 20 the percentage of data lying at a distance of less
than 2 from the center is so low that it cannot be seen at the scale of the figure, despite
the fact that the standard deviation of the Gaussian distribution is 1. This means that
the distances between all points and the center of the distribution are concentrated in
a small interval. Relative differences between these distances vanish. Therefore, these
distances become less and less discriminative when the dimension increases and this is
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Number of samples

Figure 512: Number of samples required to approximate a Gaussian distribution with
fixed Gaussian kernels, with an approximation error of about 10% (accord-
ing to (Comon et al., 1994)) versus the dimension of the space.

relevant for data analysis.

The above discussion issues that, under soft conditions on the distribution of samples
(uniform distribution is thus not required), the variance of any measure -distance, norm-
remains fixed while its average increases with the dimension of the space.

The concentration of norm phenomenon is more precisely detailed in several ma-
thematical works. In (Demartines, 1994) it was shown that for random vectors with
independent and identically distributed components, the mean of their Euclidean norm
increases as the square root of the dimension of the space, while the variance of their
norm does not increase. He concludes that if the dimension is high, all vectors are
normalized, as the error resulting from taking the mean of their norm instead of their
actual norm becomes negligible.

Independently of Demartines' results, in (Beyer et al., 1999) it was proved that when
the dimension increases, the relative difference between the largest and smallest norm
in a dataset converges to zero in probability. The relative difference is the difference be-
tween the largest and smallest norms, divided by the smallest one. The result is valid for
arbitrary distance measures, under mild conditions on the distribution. Beyer concludes
that, in a nearest neighbor search context, all the points converge to approximately the
same distance from the query point. Thus, the notion of nearest neighbor becomes less
intuitive in high-dimensional spaces.

Other metrics may be used in high-dimensional data analysis in place of the Eu-
clidean distance. One of these metrics is based on the Minkowski norm. Given two
D-dimensional vectors x,q, their distance according to the Minkowski metric is de-
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fined as

D ’
(=, 9)llp = (Z |2 — q#’) : (5.35)
i=1
where p is the order of the metric. When p = 2 this distance equals the Euclidean metric.
In (Aggarwal et al., 2001) it is suggests to use in general p < 2. On the other hand,
in (Francois et al., 2005) it was shown the optimal distance to be used for neighbor
search also depends on the type of noise on the data. For example, fractional norms
are preferable in the case of colored noise, but if Gaussian noise is assumed, then the
Euclidean metric is more robust to than the fractional one.
In this work the Minkowski metric is utilized in section 8.4.
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6 DCE-MRI Data Analysis

In this section the experimental results concerning the analysis of DCE-MRI data using
techniques of unsupervised dimensional reduction are detailed. The data set analyzed
in this chapter is the 12-cases data set (see table 2.4) with the exception of section 6.4,
where the 14-cases data set is analyzed.

These data sets contain time-series belonging to benign and malignant lesions. From
the medical point of view, a vital question is how the benign and malignant signals
differ. The answer to this question involves the comparison of tumors from different
patients. This is however a demanding task for the human observer because of the
multi-dimensional nature of the data. Computer-assisted techniques supporting the
human observer in the exploration of DCE-MRI data are therefore desirable.

Several computed-based approaches to the analysis of DCE-MRI data have been pro-
posed in recent years. They regard tumor classification (Gilhuijs et al., 1998; Lucht
et al., 2001b; Abdolmaleki et al., 2001; Knowles et al., 2000; Degenhard et al., 2002;
Arbach et al., 2004), tumor detection (Subramanian et al., 2004), tissue characterization
(Twellmann et al., 2005) and tissue segmentation (Lucht et al., 2001a). However, all
these approaches allow the human observer to analyze one sole tumor lesion at a time,
while radiologists, in order to investigate the structural differences between benign and
malignant tumors, also need techniques allowing for the exploration of DCE-MRI data
from a set of different patients simultaneously. But a simultaneous exploration of several
tumor lesions in the anatomical space is infeasible as subject to inter- and intra-observer
variability (Orel and Schnall, 2001), and the visualization of the entire signal space with
conventional techniques is not possible since the signal dimension exceeds three.

In this work, to explore the DCE-MRI data, the set of the time-series is projected
into a lower-dimensional space, whose visualization may allow the human observer to
discern patterns and regularities in the multi-dimensional data. In particular the signal
distributions of different tumor types can be visualized, thereby allowing for a multi-
case analysis.

This chapter is divided into four parts. The first part describes the application of LLE
on the DCE-MRI data set for visual data exploration. The data is reduced down to two
dimension by LLE with different values of its input parameters (n and A), whose effects
on the output projection are analyzed. The two-dimensional projected spaces obtained
by LLE are visualized by a scatter plot with customized colors for the exploration of the
degree of similarity between benign and malignant tumors.

The performances of LLE are compared with those of PCA and SOM in the second
part of the chapter. Here the structural properties of the algorithms are mentioned, as

59



6 DCE-MRI Data Analysis

07 T T T T T T T T T T 08 T T T T
LLE NSI A=0.001-0.096
071

0.6
0.5
04r

03 l

0.2

%81 LLE NSI A=0.026

) o
i @
T T

Fisher Criterion F

Fisher Criterion F

)
)
T

o
P
T

01r

0 L L L L L L L L L L 0 ! L L L L L L L L
[ 5 10 15 20 25 30 35 40 45 50 55 [ 5 10 15 20 25 30 35 40 45 50 55

Number of neighbors n Number of neighbors n

Figure 6.1: (Left) Plot of F' of the two-dimensional projections of the DCE-MRI dataset
with (NSI) and without normalized time-series (SI) computed by LLE with n
between 5 and 50 and A = 0.026. (Right) Plots with error bars that represent
the variance induced on F' by A varying.

well as their advantages and shortcomings.

The third part of the chapter illustrates the customized color visualization of tumor
lesions by LLE. This is done by projecting the DCE-MRI data set into a 3D space by LLE
and encoding the new 3D coordinates within the RGB color space. As a result, a tumor
lesion can be visualized by customized colors that describe the dynamic of the contrast
agent. The images obtained by LLE are compared with those obtained by the Three-
Time Point method (3TP), which is the state-of-the-art technique for the customized
visualization of breast tumor lesions in DCE-MRI (see section 4.3.2).

The fourth and last part of the chapter describes the usage of the 2D projection
obtained by LLE for the histological characterization of the breast lesions. Specifically,
the scatter plot is visualized with colors encoding the histologic families of the tumors.
This can be of use for investigating the degree of similarity of different families and for
characterizing histologically new tumor cases.

6.1 Visual exploration of DCE-MRI data by LLE

In this section the DCE-MRI dataset is explored by projecting it onto a two-dimensional
space by LLE and by visualizing the new coordinates in a scatter plot.

This section is organized into three parts. In the first part the LLE algorithm is applied
to both the original and normalized DCE-MRI data set with different values of its input
parameters n and A. The obtained projections are evaluated in terms of separation
between the benign and malignant cluster by the Fisher criterion F' (section 5.4.1). Four
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projections of the original DCE-MRI data and four projections of the normalized data
are also visualized in a scatter plot, in which mapped time-series of benign (malignant)
tumors are visualized in green (red).

In the second part the projections obtained by LLE applied to the original DCE-MRI
data are evaluated using three further quantities, namely stress (ST) (section 5.4.2),
neighborhood preservation (NP) (section 5.4.3) and trustworthiness (section 5.4.4).

In the third and last part of this section the visualization of the LLE embedding is
expanded to include information regarding the wash-in phase of the time-series.

6.1.1 Effects on the Projections of Varying the LLE Inputs

In this section, the effects on the LLE projections of varying both input parameters
of LLE, the number of neighbors n and the correction term A, are investigated. The
dimension of the input space equals 6 and therefore A is required when n > 6 (see eq.
(517) in section 5.2.2). The different projections are evaluated with the Fisher criterion
F. The higher the value of F, the less the clusters overlap.

This analysis is conducted on two different data, the 12-cases DCE-MRI dataset and
the same dataset with time-series scaled to [0,1], i. e. each time-series is scaled to the
range [0,1]. Thereafter they will also be called as original and normalized DCE-MRI data
set, respectively.

At first, only the variations of one parameter are taken into account. Specifically, n is
varied between 5 and 50 and A is fixed to 0.026, a value set empirically. The plot of
the respective Fisher values are visualized in Fig. 6.1 left. The SI (signal intensity) and
NSI (normalized signal intensity) curves do not differ significantly for n < 30, while for
n > 30 the Sl curve is the predominant one with quite stable values of F', while the NSI
curve exhibits lower and quite changeable values of F.

Now the variations of both input parameters are taken into account. Specifically, for
each n, the value of A is varied from 0.001 to 0.096 (21 values with interval 0.005) and
the standard deviation induced to F' is visualized as an error bar. The curves obtained
for the DCE-MRI data with and without time-series normalization are shown in Fig. 6.1
right. Also in this case the LLE projections of the original DCE-MRI data achieve the
highest values of F for n > 30. It follows that the normalization of the time-series leads
to a loss of information that, in turn, causes the benign and malignant clusters to be
less separated in the projections.

The values of standard deviation due to A changing are overall comparable in both
curves and are quite stable with respect to n.

Four two-dimensional projections related to the graphs of Fig 6.1 left are visualized
by scatter plots in Fig. 6.2 (original DCE-MRI data) and Fig. 6.3 (DCE-MRI with nor-
malized time-series). Points that are the projections of time-series belonging to benign
(malignant) tumors are visualized in green (red) and they will thereafter be named be-
nign (malignant) points. In Fig. 6.2 the best separation between benign and malignant
points can be observed for n > 30, in agreement with the SI curve in Fig. 6.1 left, where
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Figure 6.2: Four LLE mappings of the original DCE-MRI data. The projection obtained
with n = 10 exhibits a poor cluster separation. The cluster separation is
slightly more observable with n = 20. The mappings obtained with n = 30
and n = 40 exhibit the best cluster separation. In particular, in these cases
the benign points are localized in the upper part of the projections and the
lower part contains only malignant points.

the largest values of F are achieved for n > 20. In particular in the projections obtained
with n = 30 and n = 40, two distinct regions are observable. In one of these only
malignant points are present, in the other there are both benign and malignant points.
Overall, the benign and malignant clusters are far less separated in the projections of
the normalized DCE-MRI data that are visualized in Fig. 6.3. This is also in agreement
with the facts that the respective values of F' are lower than the ones computed for the
original DCE-MRI dataset (Fig. 6.1 left).

62



6.1 Visual exploration of DCE-MRI data by LLE

03

LLE on normalized DCE-MRI data
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Figure 6.3: Four LLE mappings of the DCE-MRI data with each time-series scaled to
[0,1]. In the projection obtained with n = 9, the cluster separation is very
poor, while it is more observable in the remaining three projections. How-
ever, in all cases the cluster separations are worser than those in Fig. 6.2, in
agreement with the curves in Fig. 6.1 left, i. e. lower values of F' correspond

to lower separation between the clusters.

6.1.2 Further Evaluation of the projections of the original DCE-MRI data

In this section, the projections providing overall the largest values of F, i. e. the pro-
jections obtained by LLE applied to the original DCE-MRI data, are further analyzed. In
particular the respective LLE embeddings are further evaluated in terms of stress (sec-
tion 5.4.2), neighborhood preservation (section 5.4.3) (NP) and trustworthiness (sec-
tion 5.4.4). In particular, each value of trustworthiness and NP is the average of 16
values computed for t between 5 and 20. In this way the preservation of both the local
(neighborhood preservation and trustworthiness) and global (stress) data structure of
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Figure 6.4: Curves of the trustworthiness, Fisher criterion, stress and neighborhood
preservation related to the LLE embeddings of the DCE-MRI data.

the original data into the low-dimensional projection is quantified.

The plots of the quantities computed for n between 5 and 50 are visualized in Fig.
6.4. All the curves exhibit two different behaviors, i. e. the values are quite changeable
with n < 20, and are far more stable with n > 20. In addition, with n > 20 the
curves of the trustworthiness, Fisher criterion and neighborhood preservation achieve
their maximal values (i. e. the best performances), while the stress curve exhibits its
lowest values (i. e. the best performances). It is evident that the best embeddings, i. e.
the embeddings in which structural properties of the original DCE-MRI data are best
preserved, are those obtained with n > 20. According to the graphs, these embeddings
(with n > 20) exhibit comparable characteristics, neglecting the small fluctuations of
the curves. Two examples of these embeddings (computed with n = 30 and n = 40) are
visualized in Fig. 6.2.

6.1.3 Visualization of the LLE Projection with expanded Information

In this section the goal is to investigate how correlated the low-dimensional coordinates
and the dynamic characteristics of the time-series are. For this purpose the LLE embed-
ding is visualized including further information, namely the wash-in characteristic of the
time-series (see section 2.4). Specifically, the size of each point is proportional to the
difference between the signal intensity values at the first post-contrast and pre-contrast
of the respective time-series. It was found empirically that a particularly evident cor-
relation between them is observable in the 2D projection obtained with n = 25. This
projection is shown in Fig. 6.5. One can observe that the dimension of the points
grows steadily along the direction of the blue arrow. At the same time, the biggest
points are malignant ones, while the smallest ones are benign, in accordance with the
model-based characteristics of benign and malignant tumors as described in Fig. 2.7. It
appears thus evident a correlation between the wash-in characteristic and the degree of
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Figure 6.5: Two-dimensional reduction of the twelve-tumors data set obtained by LLE
with n = 25 and A = 0.026. The point size is proportional to the pre-contrast
intensity of the mapped time-series. The blue arrow gives the gradient of the
point size. Four points chosen along this direction are correlated with their
respective time-series. These time-series are characterized by progressively
larger intensities of wash-in.

malignancy of the tissue. The blue arrow seems to determine a direction for a gradient
of malignancy, i .e. the time-series of the points mapped along that direction exhibit
progressively stronger malignant behaviors (growing wash-in). This fact is evidenced by
the visualization of the time-series of four representative points in the scatter plot (Fig.
6.5).

By virtue of the evident correlation between the coordinates in this LLE embedding
and the wash-in, the value n = 25 is adopted as an optimal one for later experiments in
this chapter.

6.2 Visual exploration of the DCE-MRI Data by SOM, PCA and
LLE

So far the LLE algorithm has been employed to explore the signal dynamic of the DCE-
MRI dataset. In this section the PCA and SOM algorithms are also used for the same
purpose and their performances are compared with those of LLE. PCA and SOM are
two of the most frequently used algorithms for the analysis of high-dimensional data
and have been resumed in section 5.2.1 and section 5.3.1, respectively.

This section is organized into two parts. The first part regards the optimization of
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dimension of the 2D-grid of SOM. In the second part the performances of SOM, PCA
and LLE applied to the DCE-MRI dataset are compared, while discussing the advantages
and shortcomings of each algorithm. The second part also includes four examples of
mappings of single tumor lesions.

6.2.1 Selection of the optimal dimension of the SOM grid

The SOM requires the setting of several parameters. Most of the values adopted in
this work are those employed in (Nattkemper and A., 2005), where the same DCE-MRI
dataset is processed by SOM in order to produce a customized color visualization of
the lesions. Specifically, the learning rate factor a(t) is decreased linearly from an initial
value equal to N to a final value equal to 0.2 - N; the number of iterations of the SOM
algorithm is set equal to 103 - N2.

In this work only the dimension of the two-dimensional grid (that equals the number
of reference vectors u) is tuned. In particular, as a squared grid of dimension N x N is
utilized, the parameter to optimize is N. For this purpose the SOM algorithm is exe-
cuted with different values of N (5 < N < 25) and the corresponding SOM projections
are evaluated in terms of average quantization error (AQE) and topology preservation
(TP).

AQE quantifies how accurately the trained reference vectors approximate the data
set. This measure is defined as the sum of the distances between each data point x;
and its nearest reference vector u;, normalized by the total number of data points:

1 v
E=- i — Ul|. |
AQ ,U;IX ui| ©.1)

The less AQE, the more accurately the distribution of the reference vectors approximates
the distribution of the DCE-MRI data set. Note that the symbolism used for eq. (6.1)
may be misleading, as the reader may think the number of reference vector is v because
the index i is also used for the reference vector u;. In reality, their number is N x N and
it can happen that more than one point have the same nearest reference vector.

The topology preservation measure describes how well SOM describes the topology
of the data set, i. e. the relations between neighboring data points. TP can be calculated
by (Kiviluoto, 1996):

18

1 if the first and second nearest reference
where p(x;) = vectors of x; are not next to each other
0 otherwise.

TP is also an error function and the lower its value, the better the topology of the data
is preserved in the SOM grid. In conclusion, the dimension N of the grid should be
chosen in such a way to minimize the values of AVQ and TP.
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6.2.2 Comparison of the performances of PCA, SOM and LLE

The comparison of the performances of SOM, PCA and LLE is performed by quantifying
to which extend benign and malignant data are separated when projected in the respec-
tive projected spaces. Of course, the best result arises when the benign and malignant
clusters are best separated, which would mean the particular algorithm is best capable
of distinguishing between benign and malignant time-series.

Two different approaches are used to carry on the comparison. The approaches share
the idea that each data point y; in the projected space is given a label p; that depends on
its K nearest neighbors. Each label provides information regarding the overlap between
benign and malignant cluster in the neighborhood given by the K nearest neighbors.
The analysis of all the labels quantifies the global overlap between the benign and
malignant cluster in the projected space.

Note that the approaches differ when applied to the PCA and LLE on the one hand,
and to SOM on the other hand. This is due to the fact that the projections obtained by
PCA and LLE are intrinsically different from the projections obtained by SOM. Specifi-
cally, in the PCA and LLE projections each input point x; is mapped to an output point
y; and each of them is visualized in a scatter-plot. By contrast, in the SOM projection
each x; is mapped to a node r; on a two-dimensional grid and the number of nodes
(N x N) is lower than the number of input vectors v, which means that more than one
point are mapped to the same node. As a result, the SOM projection depicts the data
distribution by a schematic grid in which the single points {y}, are not visible.

6.2.2.1 Approach 1 based on data density estimation

With regard to the LLE and PCA projections, each point y; is assigned a label p;(K), a
real value that is computed as follows: let y; be the mapping of a point x; belonging to
a malignant (benign) lesion. This means y; is regarded as malignant (benign) point and
belongs to the malignant cluster. Consider now the K nearest neighbors of y; (K=7
for instance) and how many are malignant (benign) (suppose there are four malignant
(benign) neighbors). The label p;(K) is given by the percentage of malignant (benign)
points among the K-nearest neighbors (in this case it is p;(7) =4/7 = 0.57, i. e. 57% of
the 7-nearest neighbors of y; belong to its same class). This approach is also illustrated
in Fig. 6.6 left.

The label p;(K) is computed in a different way in the case of the SOM mapping. In
this case, each point y; is given by the coordinates of the node r; in the grid. This node
is linked to the reference vector u;, that is the closest reference vector to x; (see section
5.31). The methodology for computing p;(K) is the following: at first the reference
vector u; is given a label that equals the percentage of the predominant class among its
K-nearest neighbors. For instance, let K be seven as in Fig. 6.6 right, and suppose four
neighbors belong to the malignant cluster and three to the benign one. This means the
points of the malignant cluster form the majority of the seven nearest neighbors of u;
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Point labeling in PCA, LLE Point labeling in SOM
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Figure 6.6: This figure illustrates how the label p;(K) is computed in the PCA, LLE (left)
and SOM (right) projections according to the first approach. Let K = 7.
On the left it is shown a portion of LLE (or PCA) embedding. Point y; (the
projection of x;) of class B has four neighbors belonging to class B and three
to class A. This means that 57% of the seven-nearest neighbors of y; belong
to its same class. It follows that p;(7) = 0.57. The labeling of the points in
SOM is shown on the right. Point y; has u; as respective reference vector.
Of the seven nearest neighbors of u;, three belong (43%) to class A and four
(57%) to class B. The latter percentage is the largest one, thus the label of
u; equals 0.57. Point y; is given the same label of u;, that is p;(7)=0.57.

(57% malignant and 43%). The reference vector u; is thus assigned a label that equals

0.57 and, in turn, the point y; is then assigned the same label of u;, i. e. p;(K) = 0.57.

To summarize, y; is assigned the label of the respective reference vector u; that is given

by the percentage of points the points belonging to the predominant class, as computed

among the K-nearest neighbors of u;. This methodology is illustrated in Fig. 6.6 right.
Finally, for all three algorithms, the clusters separation p(K) is given by

p(K) = %Zm(K) (6.3)

where 0 < p(K) < 1. The closer p(K) is to one, the more the benign and malignant
clusters are separated from each other in the projected space. Conversely, values of
p(K) close to zero signify that the benign and malignant clusters largely overlap.

6.2.2.2 Approach 2 based on an ROC curve

The other approach adopted for evaluating the cluster overlap is also based on the K-
nearest neighbor search and is quite similar to the first approach. However, the second
approach differs in the fact that each point y; is labeled as either benign or malignant.
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Figure 6.7: This figure illustrates how the label p;(K) is computed in the PCA, LLE (left)
and SOM (right) projections in the second approach. Let K be equal to
7. On the left it is shown a portion of LLE (or PCA) embedding. Point y;
(the projection of x;) of class B has four neighbors belonging to class B and
three to class A. This means that the majority of its seven-nearest neighbors
belong to class B. It follows that p;(7) =class B. The labeling of the points in
SOM is shown on the right. Point y; has u; as respective reference vector.
The majority of the seven nearest neighbors of u; belong to class B and, in
turn, itis labeled as belonging to class B. As a result y; is labeled in the same
way, i. e. p;(7)=class B.

In other words, p; is a real value in the first approach and a boolean value in the second
approach.

Also in the second approach, the labeling process is different in the PCA, LLE and
SOM projections.

In the LLE and PCA projections, if the majority of the K nearest neighbors of y; are
malignant (benign), then y; will be labeled as malignant (benign) (see Fig. 6.7 left).

In the SOM projection each pointy; is given the same label of the correlated reference
vector u;. The reference vector u; is labeled as malignant (benign) if the majority of its
K nearest neighbors are malignant (benign) (see Fig. 6.7 right).

After labeling all the data points {y}, it is possible to compute the percentage of
malignant points correctly classified (true positive fraction or TPF) and the percentage
of benign points wrongly classified (false positive fraction or FPF) (see section 5.4.5). If
this calculation is performed with respect to different values of K, one obtains a set of
(TPF,FPF) values, one for each value of K, that can be plotted in an ROC curve. (section
5.4.5). The values of TPF and FPF equal the sensitivity (SE) and 1— specificity (SP),
respectively.
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6 DCE-MRI Data Analysis

6.2.3 Results

In this section the obtained results of the comparison are shown and evaluated. At
first, the optimization of the dimension of the SOM grid is discussed. Next, the two-
dimensional projections obtained by PCA, LLE and SOM are visualized and the perfor-
mances of the algorithms are evaluated and compared in terms of separation between
benign and malignant clusters in the projected spaces. Finally, for a single case study,
the points of single lesions are highlighted in the low-dimensional mappings, whereby
each lesion can be compared with all the remaining ones simultaneously.

6.2.3.1 Dimension of the SOM grid

Concerning the dimension of the SOM grid, the values of N between 3 and 25 are
investigated. The respective values of AQE and TP are plotted in Fig. 6.8. Here one
can observe that both quantities progressively decrease as N increases, but, at the same
time, their values, in first approximation, can be regarded as constant for N > 15. Thus,
any value of N within the range comprises between 15 and 25 appears a reasonable
choice with regard to the values of AQE and TP. On the other hand, a larger value of
N leads to a higher number of empty nodes, i. e. nodes whose reference vectors are
without mapped data points. In general, their presence is not desirable, as it is symptom
of overfitting of the data by SOM. Finally, the value N = 19 is chosen as it provides a
good trade-off between low values of AQE and TP and low number of empty nodes.

Topology Preservation
5
T

°
S
T

0.2

Figure 6.8: Topology preservation (TP) and average quantization error (AQE) calculated
for different dimensions of the grid. The grid has dimension N x N. Note
that with N > 15 values of both TP and AQE are minimal and undergo
negligible variations.
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Figure 6.9: Visualization of the PCA and LLE projections of the DCE-MRI dataset. Two
examples of benign and malignant time-series along with their respective
projections are also shown. Two distinct regions are clearly observable. The
upper region contains only malignant points. The lower region contains
both benign and malignant points. The latter are scarcely visible because
the clusters overlap.

6.2.3.2 Visualization of the projections obtained by PCA, SOM and LLE

The two-dimensional projections of the DCE-MRI data set obtained by PCA and LLE
are visualized in Fig. 6.9. The color scheme encodes the labels (benign/malignant) of
the tumors to which the respective time-series belong. Both mappings show qualitative
agreement, in particular concerning the benign cluster, which in both cases is localized
in the lower part of the scatter plot. In addition, the benign cluster overlaps with many
malignant data points, suggesting that many of them exhibit benign characteristics.
This is in agreement with the clinical experience of physicians, i. e. malignant tumor
lesions can be highly heterogeneous, in particular can include large benign regions,
while benign lesions are typically more homogeneous (Kelcz et al., 2002). In particular,
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the latter statement is confirmed by the higher compactness of the benign cluster as
compared to the malignant one.

The SOM mapping of the DCE-MRI data is shown in Fig. 6.10. A node is visualized
in red (green) if the majority of the mapped points to it is malignant (benign). The
brighter the color, the larger the majority. One can observe that red nodes are mainly
located in the upper right part of the grid, while the majority of the green nodes are
located in the bottom left part. This suggests that benign and malignant data points
are mainly located in different regions of the DCE-MRI data space, although various

Figure 6.10: Visualization of the DCE-MRI data by a 19 x 19 SOM grid. Each refer-
ence vector is plotted inside the respective node. The color of each node
describes the labels of the points mapped into it. Specifically, if the major-
ity of the points are malignant (benign), then the node is visualized in red
(green). The brighter the color, the larger is the number of points belonging
to this majority.
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malignant points are mapped close to benign ones, as evidenced by some red/dark-red
nodes located in the bottom left part of the grid, close to green nodes. This analysis is
in substantial agreement with the PCA and LLE projections, i. e. two different regions
can be seen in all the projections, a region with only malignant points, and a region
with both benign and malignant points. Each node r; in the SOM grid contains the plot
of the corresponding reference vector u;. One can observe that the values of the signal
intensity increases from left to right and from up to down. In addition, the curves on
the right half of the grid (mostly red nodes) exhibit a wash-out phase (a decrease in the
signal intensity that is typical of malignant tissue) that decreases until vanishing from
up to down. By contrast, the curves on the green nodes on the left part of the grid

ISR LR
PiitIIilililaliaile

Figure 6.11: Alternative visualization of the DCE-MRI data set by a 19 x 19 SOM grid.
The area of the node is proportional to the number of both benign and
malignant points mapped to it, while the colors are the same as those in
Fig. 6.10.
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Figure 6.12: Cluster separation p computed for different values of K. SOM clearly shows
the best performance (psom = 0.676)) in terms of separation between the
benign and malignant clusters. psom is the closest value to the one com-
puted over the original DCE-MRI data set (ppce.mn = 0.680)). SOM can
also be interpreted as the algorithm which best preserves the salient infor-
mation contained in the original space, that is the differentiation between
benign and malignant data. The other values of average clusters separation
are ppca = 0.635 and p e = 0.655.

typically do not exhibit any wash-out phase, resembling the typical benign curve of Fig.
2.7.

An alternative visualization of the SOM grid is presented in Fig. 6.11. The colors are
the same as those in Fig. 6.10. What is different is that each node is visualized as a
circle whose area is proportional to the number of points mapped onto the node itself.

6.2.3.3 Comparison of the performance of the algorithms

The next phase of this study consists in comparing the performances of PCA, SOM
and LLE in terms of best separation between the benign and malignant clusters in the
respective projected spaces. As described in section 6.2.2, two different approaches are
adopted for this purpose.

In the first approach, the values of p (eq. (6.3)) are computed for values of K between
20 and 39. The results are shown in the box plot in Fig. 6.12. A box has lines at the
lower quartile, median, and upper quartile values computed over all the values of K,
while the whiskers are lines extending from each end of the box to show the extent
of the rest of the values. The SOM mapping provides the best separation between the
benign and malignant clusters (psom = 0.676). At the same time, LLE presents higher
average value of p than PCA (p.: = 0.655, peca = 0.635). This is in agreement with
the scatter plots in Fig. 6.8, where one can observe that the benign cluster in the LLE
projection is more compact and localized as compared to the one in the PCA projection
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Figure 6.13: Pseudo-ROC curve of the the (TPF, FPF) values obtained for K varying
between 3 and 39. LLE shows superior performance as compared to PCA in
terms of both TPF and FPF as the LLE values of TPF and FPF are respectively
higher and lower than the PCA ones. SOM significantly outperforms LLE
with regard to TPF (i. e. the SOM values of TPF are higher). On the other
hand, the lowest FPF (or equivalently the highest SP) is obtained by LLE.
This is particularly valuable as DCE-MRI can suffer from high values of FPF
(or equivalently low values of SP).

and, as a results, the clusters are less separated. In Fig. 6.12 it is also shown the
box of p calculated in the original DCE-MRI data space (ppcemm = 0.680). This value
quantifies the separation between benign and malignant data in the original space, that
is the salient information one wants to preserve as much as possible in the dimensional
reduced space. The closer a value of p related to a certain algorithm is to ppcemni, the
better the particular algorithm can preserve this salient information. In this case SOM
is thus the algorithm which best preserves this information.

In the second approach the comparison of the performances of PCA, LLE and SOM
is conducted by computing pair of values (TPF, FPF) for values of K between 3 and
39. With respect to the terminology of section 5.4.5, the malignant class is the positive
class, while the benign class is the negative class. It follows that TPF is the fraction
of malignant points correctly labeled and FPF is the fraction of benign points wrongly
labeled according to the K-nearest neighbor rule. The values of TPF and FPF are plotted
in a pseudo-ROC curve shown in Fig. 6.13. The LLE algorithm clearly outperforms PCA
in terms of both TPF and FPF. Indeed, LLE provides higher values of TPF (i. e. the
malignant points y; with the majority of their K-nearest neighbors that are malignant
are less numerous in the LLE embedding than in the PCA embedding) and lower values
of FPF (i. e. the benign points y; whose majority of their K-nearest neighbors are
malignant are more numerous in the LLE embedding than in the PCA embedding). One
can also observe that the largest values of TPF are achieved by SOM. Yet, SOM is also
characterized by the largest values of false positive fraction. To summarize, the lowest
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Mapping of tumors M1 and M2. M1 appears to be largely heterogeneous,
as its data points are scattered over all the embeddings. M2, by contrast,
appears more homogeneous, as its data points are relatively clustered and
localized near other malignant points.

fraction of benign data points classified as malignant is obtained using LLE, and SOM
allows to obtain the highest true positive fraction. DCE-MRI is known to provide high
sensitivity (SE=TPF) (Brown et al., 2000) and possibly low specificity (Kelcz et al., 2002)
(FPF =1—SP) (which is not desirable). Therefore, an algorithm (in this case LLE) which
provides higher specificity (or equivalently lower FPF) is particularly appealing. For this
reason, from a medical point of view, the performance obtained by LLE is regarded as
the best one.
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Figure 6.15: Mappings of benign lesion 1 and benign lesion 2 by PCA, SOM and LLE,
respectively. In the PCA and LLE projections, the points of both lesions are
localized in the lower left part, close to the other benign data points.

6.2.3.4 Analysis of Single Lesions

The low-dimensional mappings can also be used to analyze single tumor lesions. Speci-
fically, the projections of Fig. 6.9 and Fig. 6.11 are visualized highlighting the mapping
of the time-series of a single lesion at a time. The visualization of the points of a single
tumor lesion allows the user to qualitatively analyze its signal dynamics in relation to all
the other lesions contained in the data set simultaneously.

The mappings of tumors M1 and M2 in the PCA and LLE projections are visualized
in black in Fig. 6.14. The mappings of each tumor in the PCA and LLE projections are
qualitatively similar. The points of M1 are scattered over large parts of the embeddings,
thereby revealing a high degree of heterogeneity in the respective DCE-MRI time-series.

77



6 DCE-MRI Data Analysis

20 T T T T T T T T T M 20 T T T T T T T T T M
L] e o o e o °
181 . q 181
[ 2] o o °
161 . 4 161
° ° o o . °
U- © ® ° ° ° 14f ° °
o o ° o o ° ° °
12 e ° ° ° L] 12 e o 00O
e o o ° [ ] e o o ° [ e o 0
10 ® ° ° 10 ° °
° ° ° ° [ ° ° °
sk @ ° ° e o ° ° 8 [ o @ -
° ° o o ° ° ° ° [
6 e o o o ° e o o 6 o e o 0 0o o -
o o . . ° ° o 0
ak e ° ° ° o o ° 4 e o o
° ° °
2F o ° o o ° ° ° 2 ° [
. o o0 00000 0 o . o ° eecec @
% 2 4 6 8 10 12 14 16 18 20 % 2 4 6 8 10 12 14 16 18 20
o— Bl . B2
. ) ° o0 [ ) . e o o o o ° °
18 [ X ] [ 18 ®© e °
[} ° e o 0 o (] ° o o o o
16 o ° 6- @ o o °
[ ] o o 00 o (] L) e o o o
1U- @ ° [ ] ° U @ o o o e o o
° ° [ N ) ° e o o ° o ° °
12 @ ® @ e 00 Qo 12f © © o o o o o o
[ ] (] ° o o o o o o .
0- @ ° o o 0- @ o o ° ° o °
[ ) [ ] [ ] ® o o o o o o e o o °
st @ ° ° s o e e 0o o 0 0 0 o o
° e o e o ° o o e o o o °
6- ® @ o o 6F ® © o o o o e o o o
[ ] ° e e 0o 0 0 o o o 0 o o
i @ 4ar @ o .o o o ° °
[ ) ° ° e o o °
zf. [ ] L 2 o e o o o o o °
(X X KN N IR I} ) e o 0 0 0 o e o o o o o o o °
0 . . . . . . . 0 . . . .
0 2 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20

Figure 6.16: Mappings of malignant lesion 1, malignant lesion 2, benign lesion 1 and
benign lesion 2 by SOM.

By contrast, the points of M2 are more clustered and almost not overlapping with
benign points.

The mappings of two benign tumors, namely B1 and B2, in the PCA and LLE projec-
tions are visualized in Fig. 6.15. Also in this case the mapping of a single tumor in the
PCA projection is qualitatively similar to the respective mapping in the LLE projection.
The mappings of both B1 and B2 are localized in the lower part of the display.

The mappings of tumors M1, M2, B1 and B2 in the SOM grid are visualized in Fig.
6.16. The nodes visualized are only those to which points from a particular lesion are
mapped. The area of the node reflects the number of mapped data points restricted to
that particular tumor lesion. The colors of the nodes are the same as those in Fig. 611,
i. e. the colors reflect the SOM training over the entire DCE-MRI data set. In this way
it is possible to evaluate the signal dynamic of a single tumor lesion with respect to the
signals of the other lesions from the data set.
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The data points of M2 are mainly mapped in the right part of the grid (red nodes),
while, by contrast, points from M1 are mapped to nodes on both sides of the grid.
These mappings are in agreement with those visualized in Fig. 6.14, i. e. tumor M1
appears quite heterogeneous, while tumor M2 is more homogeneous. With regard to
the benign lesions B1 and B2, their respective time-series are principally mapped to
green nodes localized in the left-bottom part of the grid. This is consistent with the
PCA and LLE projections, where the data points of B1 and B2 are mapped close to the
data points from the other benign lesions.

6.2.4 Discussion

The LLE algorithm projects the DCE-MRI data onto a two-dimensional space in which
the benign and malignant data show a higher degree of separability than in the PCA
embedding. On the other hand, SOM quantitatively outperforms LLE in this regard, al-
though the two algorithm yield two structurally different visualization modalities which
make a quantitative comparison somewhat questionable. The choice between SOM
and LLE depends on the task at hand since the algorithms have different characteristics.

The SOM output is a two-dimensional grid that depicts symbolically the data distri-
bution. This data representation gives an idea about the cluster separation but does
not allow for the comparison of single data points. The usage of a grid has the advan-
tage that the node coloring solves the problem of points overlapping (i. e. points in
the high-dimensional space may be highly overlapping in the low-dimensional space,
thereby hampering the visual analysis), that is common in the LLE projections (Simila,
2005). In addition, the SOM algorithm can also summarize massive data sets. How-
ever, it has several input parameters to be set which make its tune phase more difficult.
Furthermore, the SOM output is somewhat abstract (the data points are not visualized
directly) and its interpretation requires some knowledge on how the SOM algorithm
works.

The LLE algorithm produces a more intuitive output in which all the points are visu-
alized, allowing for a comparison between pair of points. The algorithm has one or two
input (depending on the data set dimension) parameters. On the other hand it can not
be applied to large data sets. Indeed, let v be the number of points in the data set, the
LLE algorithm constructs a v x v matrix, and this can be computationally prohibitive for
many systems if v is in the order of several thousands (for instance 5000).

6.3 Color Visualization of Breast Lesions and Comparison with
3TP

In this section the LLE coordinates are used for the visualization of single tumor le-
sions. Specifically, the DCE-MRI dataset is projected onto three dimensions by LLE, and
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Figure 6.17: Scheme of the tumor visualization with customized colors utilizing LLE

the three coordinates obtained for each time-series are encoded within the RGB color
scheme in order to visualize the tumor lesions with customized colors (see Fig 6.17).

These colors describe the dynamic of the contrast agent within the tissue. The infor-
mation of the time-series is thus compacted in one single image and this allows for a fast
analysis of the dynamic of the injected contrast agent, thereby providing information
on the vascularization of the tumor tissue.

The proposed LLE-based approach is compared with the three-time point method
(3TP), which actually is considered the state-of-the-art for the color visualization of
breast tumor lesions in DCE-MRI (see section 4.3.2). The three time-points taken into
account are those of the pre-contrast, the first post-contrast and the fifth post-contrast
volumes.

6.3.1 Results

The correlation between the 3TP and LLE color mapping is shown in Fig. 6.18 and Fig.
6.19. In Fig. 618, the 2D LLE embedding (in fact the same as shown in Fig. 6.5) is
plotted with colors given by the 3TP method, i. e. the color of each point is determined
by the 3TP method applied to the corresponding time-series. One can observe that
most of the time-series are mapped by LLE in agreement with the 3TP analysis. In fact,
three different clusters (red, green and blue points) can be easily detected, suggesting
that there exists a relationship between the LLE coordinates and the 3TP colors and, in
turn, the LLE coordinates reflect pathophysiological features of the tissue. Points with
slow wash-out (blue points) are localized in the upper part of Fig. 6.18, while points
related to faster wash-out (red points) are progressively mapped to the lower region.
The marker of each point specifies whether the corresponding time-series belongs to a
benign or a malignant lesion. One can see that all points belonging to benign tumors are
clustered by LLE only in the upper part of the figure. In the lower region there are some
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Figure 6.18: 2D Embedding coordinates from the LLE algorithm. Colors correspond to
those obtained by the 3TP method considering the corresponding time-
series in the DCE-MRI data space. Most of the benign points are localized
in the upper part, in agreement with the 3TP analysis (encoded by the blue
color according to 3TP). The majority of the points with moderate wash-out
(suspicious behavior) are approximately in the central region of the map-
ping (encoded by the green color according to 3TP). Most of the points
showing fast wash-out (malignant behavior) are localized in the lower part
of the picture (encoded by the red color according to 3TP). Some points
classified as benign by 3TP are instead mapped close to data points be-
longing to malignant lesions using LLE (blue points in the lower part of
the mapping). One contrast characteristics is shown and one can see it is
characterized by an untypical wash-out phase due to patient motion.

malignant points with blue color, i. e. according to the 3TP method they are labeled as
benign. Conversely, the LLE algorithm maps them to the malignant part. By showing
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Figure 6.19: 2D LLE embedding with colors determined by the coordinates of the 3D
LLE embedding. The marker of each point gives information about the
color that such point has with respect the 3TP method.

one related contrast characteristics, one can observe that such points are characterized
by an anomalous wash-out phase. The plot shows a clear wash-out behavior, however
followed by a signal increase. This was caused by a slight movement of the patient
during the acqusition of the sequence of MR volumes and was not noticed before. In
this case, 3TP fails to interpret these time-series characteristics, confirming a limitation
of the method that has already been mentioned in (Kelcz et al., 2002); in contrast, LLE is
able to detect such abnormalities by virtue of taking into account the entire time-series
and not only three components.

In Fig. 6.19 the 2D LLE coordinates with the correlated colors given by the 3D LLE
embedding are shown. The marker of each point reflects the labeling scheme of the
3TP method: star-shaped points are blue in 3TP; round-shaped points are green in
3TP and plus-shaped ones correspond to red points in 3TP. According to LLE, points
characterized by slow wash-out (blue points in 3TP) are encoded as green, green-yellow.
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Figure 6.20: Color visualization of the tumor lesions using 3TP and LLE. Overall, the
images obtained by LLE are consistent with those obtained by 3TP. In par-
ticular, the colors of the images of M1, M5 and M6 obtained by LLE are
strongly correlated with the colors obtained by 3TP. Three time-series are
also visualized, one for each tumor M2, M5 and Mé6. The visualized time-
series of M5 is encoded as blue (benign) by 3TP but as blue by LLE (which
means malignant according to the mapping in Fig. 6.19). This time-series
is characterized by an anomalous wash-out probably due to patient mo-
tion. This anomalous behavior is interpreted correctly by LLE and wrongly
by 3TP. Specifically, 3TP does not detect a wash-out phase because it takes
into account only the first, second and sixth time-points along the time-
series. LLE, by contrast, processes the entire time-series and is therefore
able to classify it as malignant.

M1 I\/I“2 M3

The green points in the 3TP method are encoded by LLE as dark-green, orange. Most
of the points with a fast wash-out (red color in 3TP) are then mapped with red and blue
hues. In particular, in LLE the blue points are those presenting an anomalous wash-out
phase as described above.

The images of the 12 lesions obtained by 3TP and LLE are shown in Fig. 6.20 (ma-
lignant cases) and Fig. 6.21 (benign cases). Both methods generally exhibit qualitative
agreement, and results show that benign tumors are largely homogeneous (low colow
variation), while the malignant ones show a higher degree of heterogeneity (high color
variation), in agreement with the experience of radiologists (Furman-Haran et al., 2001).
In addition, a strong correlation between the variance of the colors for both methods is
observed. In particular, the images of M1, M5 and M6, and of B1, B2 and B3 are parti-
cularly consistent. By observing the images of B4 and B6 in Fig. 6.21, one can see that
some voxels are mapped as malignant by 3TP (red hue). The respective images obtained
by LLE are in contrast more homogeneous, thereby showing higher specificity. This is
particularly valuable, since the DCE-MRI technique is known to present high sensitivity,
but possibly low values of specifity (as low as 30%) (Su et al., 2003).
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Figure 6.21: Color visualization obtained by LLE and 3TP of the benign lesions. Accor-
ding to 3TP, the benign lesions have some red voxels (i. e. tissue with ma-
lignant properties) which by contrast are visualized in green by LLE (which
means benign according to the mapping in Fig. 6.19). The visualization of
two time-series of tumors B4 and B6 shows that the absorption of contrast
agent is very limited and thus the vascularity, which is an indicator of the
degree of malignancy, of the respective tissue is low. This validated the LLE
color scheme.

6.4 Histologic characterization of the breast lesions

In this section the information contained in the LLE embedding is expanded in or-
der to characterize the tumor lesions histologically. Specifically, both the label (be-
nign/malignant) and the histologic characterization of the lesions are encoded in the
LLE embedding visualization. The color of a data point denotes the histological family
of the respective lesion while its shape encodes the label. The experiment is carried out
on the 14-cases data set composed of the tumors listed in table 2.2. and table 2.3.

6.4.1 Experiments

The dataset contains three pairs of tumors of the same histologic type, namely M1-Mé
(ductal carcinoma), M3-M7 (ductal carcinoma in situ) and B3-B7 (scar). One wants
to investigate whether the projections of the time-series of the tumors of each pair
considered alone are located close-by in the two-dimensional space. If this turned out
to be the case, then the two tumors of that particular pair would possess similar time-
series.

For this purpose each of the tumors is left out at a time to generate a training dataset
of the time-series of 13 tumors. This training set is reduced down to two dimensions
by LLE with n = 25. Next, the time-series of the left-out tumor are mapped to the pro-
jected space by using the two-dimensional coordinates of the training dataset computed
previously. This method is described in Fig. 6.22. In other words, the two-dimensional
projections of the time-series of the left-out tumor are computed without recomputing
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Figure 6.22: Schema of the procedure of work. The training set (time-series of 13 tu-
mors) denoted by {x} is projected onto two dimensional vectors {y} by
LLE. The time-series {z} of the new case are projected onto two dimen-
sions in the following way: (a) identify the n nearest neighbors of z; among
the training vectors {x}; (b) compute the weights {IW}; (c) the projection
of z; is given by k; = Y%, Wjy;, where the sum is performed over the n
projected points correlated to the n neighbors of z;.

the LLE embedding, that is, the LLE projection of the 13 tumors is generalized as de-
scribed in section 6.1 of (Lawrence and Roweis, 2003) in order to analyze a new tumor
case.

6.4.2 Results

Here the mappings of the tumors of the same histologic type are analyzed and dis-
cussed. The mapped tumor (termed as new case in Fig. 6.22) is visualized in white,
while the black points denote the points of the tumor from the training set and of the
same histologic type of the new case. The clusters related to these two tumors are
highlighted by traced ellipses. Furthermore, three representative time-series along with
their projections are visualized for both tumors.

The mappings of the tumors M1-M6 (ductal carcinoma) are visualized in Fig. 6.23.
Their clusters largely overlap, thereby suggesting their respective time-series exhibit
similar signal dynamic. The visualization of three time-series for each tumor confirms
this fact. In this case tumors of the same histologic type are thus mapped to the same
part of the embedding.

The mappings of the tumors M3-M7 (ductal carcinoma in situ (DCIS)) are visualized
in Fig. 6.24. The mapping of M3 lies on the opposite side of where the points of M7
are. Therefore, these lesions appear to differ with respect to the dynamic of the contrast
agent. The visualization of three representative time-series show that those of M3 are
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Figure 6.23: Visualization of the mappings of tumors M1 (top) and M6 (bottom). In
both cases the clusters of M1 and M6 largely overlap, thereby suggesting
a high degree of similarity with respect to the DCE-MRI time-series. In
addition, three couples of points are correlated with the respective time-
series, whose visualization confirms their similarity.

characterized by a higher signal intensity. This agrees with results documented in the
literature (Tan, 2001), i. e. breast DCIS lesions can be heterogeneous.

The mappings of the tumors B3-B7 (scar) are shown in Fig. 6.25. The clusters related
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Figure 6.24: Visualization of the mappings of tumors M3 (top) and M7 (bottom). In
both cases the clusters are located in different region of the projected
space. Thus, tumors M3 and M7 exhibit different time-series behaviors,
as confirmed by the visualization of three of them.

to the two tumors do not overlap, thereby revealing a certain degree of divergence
among the respective time-series. The visualization of three time-series for each tumor
shows that the time-series of B3 are characterized by larger values of signal intensity.

If one imagines that the histologic family of the initially left out tumor is not known,

87



6 DCE-MRI Data Analysis

* Mapped B3 scar

* Mapped B7 scar
. s
-0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

-0.08

Figure 6.25: Visualization of the mappings of tumors B3 (top) and B7 (bottom). Like
in Fig. 6.24, the clusters do not overlap in both mappings. This means
the two tumors are different with respect to the time-series dynamic. The
visualization of three time-series for each tumor evinces that those of B3
exhibit the largest values of signal intensity.

only in the cases of tumors M1-M6 one can infer their histologic family from the obser-
vation of the visualized LLE projection. Let M1 be a tumor one wants to characterize
histologically, i. e. one supposes its histologic family is not known. If the points of M1
are projected into the LLE embedding of the 13 remaining tumors, one can note its
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points are localized close to those of M6, which is a ductal carcinoma. One could thus
speculate that also M1 is a ductal carcinoma, as it actually is. This is true also if one
considers M6 as the tumor one wants to characterize histologically instead of M1.

However, this procedure is not valid for tumors M3-M7-B3-B7. Indeed, their map-
pings may lead to draw misleading conclusions, as the points of tumors of the same
histologic type are mapped to different regions in the LLE projection. In other words,
there is not a unique way to histologically characterize the tumors M3-M7-B3-B7 from
the observation of the respective LLE projections because the M3 (B3) cluster does not
overlap with the M7 (B7) one and vice versa.

Note that the visual comparison of some histologic families in the display may prove
difficult because of other overlapping clusters. In this case clusters that are not easily
visible can be put in the foreground by clicking on the correlated text on the legend.

6.5 Conclusions of this Chapter

This chapter describes the analysis of DCE-MRI data based on LLE. This analysis can be
divided into three parts, namely comparison between benign and malignant time-series,
tumor visualization with customized colors and histologic characterization of tumors. In
the first part the performance of LLE algorithm has also been compared with those of
SOM and PCA.

The LLE algorithm has proved to be a powerful instrument for the visual exploration
of DCE-MRI data having time-series of different tumors, as it allows to visualize the
signal dynamic of all time-series in a single scatter plot. This makes it possible to detect
similarities and relationships between the time-series.

The LLE algorithm has also proved useful for the visualization of tumor lesions with
customized colors as it yields images that are comparable with those obtained by 3TP.
The advantage is that the LLE approach is, in contrast to the 3TP, model-free. Con-
sequently, the usage of LLE is not constrained by the existence of a model and the
algorithm can in principle be used for the color visualization of other organ diseases,
such as liver cancer, for which it is very difficult to model the dynamic of an injected
contrast agent.
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7 Modifications of LLE

This chapter illustrates two modifications of the LLE algorithm. These two modifications
regard the first step (neighbor search) and second step (weight computation) of LLE,
respectively (see section 5.2.2 for the explanation of these steps). These modifications
attempt to overcome two possible weaknesses of LLE.

The first weakness regards the fact that the n nearest neighbors are typically computed
according to the Euclidean distance. In section 7.1 it is explained that this fact can lead
to some problems if n is high. The proposed variation of LLE for solving these problems
consists in using the geodesic distance instead of the Euclidean metric.

The second weakness is that LLE has, in addition to n, a further input parameter (A),
that is required to compute the weights W, in case n > D (see eq. (5.17)). The value of
A can influence the LLE output and therefore needs to be tuned accurately. The second
variation of LLE represents an innovative manner of computing the weights W with the
advantage that the parameter A is not required any longer. This variation is explained
in section 7.2.

71 ISOLLE: LLE with Geodesic Distance

The LLE algorithm assumes linearity in the local area centered on each data point. Each
area is mathematically characterized by a set of coefficients (weights) that correlate the
particular data point with its n nearest neighbors. The aggregation of all areas can be
intuitively thought as an assemblage of linear patches which approximates the nonlinear
data structure. The high-dimensional data is then projected into a lower-dimensional
space while preserving the weights between neighboring data points (see also section
5.2.2).

The number of neighbors n strongly influences the accuracy of the linear approxima-
tion of the nonlinear data structure. Intuitively, supposing the data is sufficiently dense,
the smaller n, the smaller the area, the more faithful is the linear approximation. This is
similar to considering a 2D curve approximated by a set of joined segments: the shorter
the segments, the more faithful is the linear approximation of the curve.

However, the value of n must be sufficiently high, otherwise the local areas may
become too small and, in turn, disjoint. This is equivalent to saying that the graph
constructed by connecting each point x; with its n nearest neighbors is disjoint (see Fig.
7. left). Disjoint areas can be obtained especially when the data is sparse or spread
among multiple clusters. In case the areas are disjoint, LLE can fail to detect the global
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Figure 7.1: Given a data set with eight points, if n = 3 (left), the graph constructed by
connecting each point with its n nearest neighbors is disjoint. In such a case
LLE would fail to detect the global structure of the data with detrimental
effects on the dimensional reduction (Polito and Perona, 2001). With n = 4
(right) the graph is joint.

structure of the data (Polito and Perona, 2001), thereby resulting in an unsatisfying di-
mensional reduction. To address this problem, in (Vlachos et al., 2002) it is proposed to
search for the n/2 nearest and n/2 farthest neighbors of each data point. Another ap-
proach is given in (Hadid and Pietikdinen, 2003), where the authors suggest to connect
the disjoint manifold or interpolating the embeddings of some samples.

In general, for larger values of n the linear areas are more likely to overlap. This is
equivalent to saying that the graph of the neighboring points is more likely to be joint
(see Fig. 7.1 right). The number of neighbors n therefore needs to be sufficiently high
to satisfy this condition.

On the other hand, as the neighbors search is typically conducted using the Euclidean
distance, this may lead to the condition that a data point will have neighbors which are
instead very distant with regard to the intrinsic geometry of the data. More intuitively,
one can imagine this fact as a short circuit (see Fig. 7.2). The presence of short circuits
is undesirable, as they can cause LLE to misinterpret the real data structure.

To address the above outlined problems occurring to LLE when employed with a
high number of neighbors n, the usage of LLE with geodesic distance is proposed.
More specifically, the n nearest neighbors are searched with respect to the geodesic
distance. The combination of LLE and geodesic distance is termed as ISOLLE. This
geodesic distance has already been employed in other methods for nonlinear dimen-
sional data reduction such as Isomap (Tenenbaum et al., 2000), Curvilinear Distance
Analysis (Lee et al., 2000) and Self-organizing Maps (Wu and Takatsuka, 2005). The
geodesic distance between two data points can be intuitively thought as their distance
along the contour of an object (see Fig. 7.2 right). For instance, consider the distance
between Paris and New York. Their geodesic distance is the distance along the cur-
vature of the Earth. Their Euclidean distance instead is the length of the straight line
connecting the two cities which is below the level of the ground. Points faraway from
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Figure 7.2: The short circuit induced by Euclidean distance is shown on the left. In case
the number of neighbors n is set to a relatively high value, the two points
in the figure may be treated as neighbors, although they belong to opposite
parts of the horseshoe. This may cause LLE to fail to detect the real global
structure of the data. The benefits of the geodesic distance are shown on
the right. In this case the two points are not neighbors, as they are faraway
according to the geodesic distance.

each other, as measured by the geodesic distance, may appear deceptively close in the
high-dimensional input space as measured by the Euclidean distance.

In this section it is shown that the employment of the geodesic distance can lower
the probability to create short circuits during the neighbors search, thereby allowing for
a more accurate dimensional reduction. The comparison of the performances of ISOLLE
and LLE is conducted by analyzing two data sets. The first is a synthetic data set, namely
a three-dimensional swissroll (see Fig. 7.3), which was also used in (Tenenbaum et al.,
2000) and (Roweis and Saul, 2000). The second data set is the DCE-MRI data set with
12 tumor cases that has already been analyzed in chapter 6. The number of points of
the datasets along with their data dimension are displayed in table 7.1.

Both data sets are reduced to two dimensions for different values of the number
of neighbors n. The dimensional reduction of the swissroll is evaluated qualitatively,
while the analysis of the DCE-MRI data set requires a statistical approach because of
the complexity of the data. In addition, in the final part the running times of LLE and
ISOLLE are also compared.

Table 7.1: Data sets analyzed by LLE and ISOLLE.

Data set Number of points v | Dimension D
Swissroll 1000 3
12-cases DCE-MRI data 2449 6
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Figure 7.3: Three-dimensional swissroll composed of 1000 points. Its dimensional re-
duction onto two dimensions should ideally result in a rectangle. The reason
for this fact is intuitive if one thinks that a swissroll can be obtained by fold-
ing a sheet of paper. If you unfold the swissroll, in the same way you roll
out a sleeping bag, then you get the sheet of paper, i e. a two-dimensional
structure.

711 The ISOLLE algorithm

The ISOLLE algorithm differs from LLE only in the first step, i.e. the neighbors search.
More specifically, ISOLLE computes the n nearest neighbors of each data point accord-
ing to the geodesic distance. For this purpose a small variation of Dijkstra's algorithm
(Dijkstra, 1959) is employed. Given a graph where each node is a data point, this al-
gorithm computes the shortest paths from a particular node to all remaining nodes. In
this work the computation is restricted to the n shortest paths, i. e. for each node only
the n nearest points according to the geodesic distance are computed. An animated
example of Dijkstra's algorithm can be seen at (Pemmaraju and Skiena, 2003).

°
XDb
(p=2)
e Xa Xd® —
Xc
°

Figure 7.4: Construction of the neighborhood graph for a data set of four points. The
graph is obtained by connecting each point with its p-nearest neighbors (p =
2) according to the Euclidean distance. The weight of each edge is given by
the Euclidean distance between the two respective points.
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Figure 7.5: Scheme of Dijkstra's algorithm. (a) The algorithm begins by initializing any
vertex in the graph (vertex x,, for example) with a permanent label with the
value of 0, and all other vertices with a temporary label with the value of 0.
(b) The algorithm then proceeds to select the least cost edge connecting a
vertex with a permanent label (currently vertex x,) to a vertex with a tempo-
rary label (vertex x;, for example). Vertex x;'s label is then updated from a
temporary to a permanent label. Vertex x;'s value is then determined by the
addition of the cost of the edge with vertex x,'s value. (c) The next step is
to find the next least cost edge extending to a vertex with a temporary label
from either vertex x,, or vertex x; (vertex x., for example), change vertex x.'s
label to permanent, and determine its distance to vertex x,. This process is
repeated until the labels of n vertices in the graph are permanent.

The process of finding the geodesic neighbors is composed of two phases. The first
phase consists in constructing a weighted graph G over the data set where neighboring
data points are connected. In principle, any similarity measure dr can be adopted
to determine neighboring relations, and probably the Euclidean distance is the most
common choice. Two points are neighbors if they are closer than a fixed distance ¢
(s-graph), or one is the ¢ nearest point of the other (¢-graph). These relations between
neighbors are represented by edges of weights dr(X;, X;) (Tenenbaum et al., 2000).
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An example of graph construction is shown in Fig. 7.4.

In the second phase the n nearest neighbors of each data point are found according
to the geodesic distance computed by Dijkstra's algorithm. This algorithm begins at a
specific node (source vertex) and extends outward within the graph until all the vertices
have been reached (in this work only the n nearest nodes). Dijkstra's algorithm cre-
ates labels associated with vertices. These labels represent the distance (cost) from the
source vertex to that particular vertex. Within the graph, there exist two kinds of labels:
temporary and permanent. The temporary labels are given to vertices that have not
been reached. The value given to these temporary labels can vary. Permanent labels are
given to vertices that have been reached and their distance (cost) to the source vertex
is known. The value given to these labels is the distance (cost) of that vertex to the
source vertex, that is equal to the geodesic distance. For any given vertex, there must
be a permanent label or a temporary label, but not both. An example of computation
of geodesic distance is shown in Fig. 7.5.

Both steps of the neighbor search according to the geodesic distance are detailed as
follows:

Construct the neighborhood graph: define the graph G over all data points by con-
necting points x; and x; if (as measured by dg(x;,x;)) they are closer than ¢ (e-
graph), or if x; is one of the ¢ nearest neighbors of x; (¢-graph). Set edge lengths
equal to dg(x;,x;).

Compute n nearest points with Dijkstra's algorithm: given a graph
G=(V,E) where V is a set of vertices and E a set of edges, Dijkstra algorithm keeps
two sets of vertices:

S —the set of vertices whose shortest paths from the source vertex have already
been determined. These vertices have a permanent label

V—S —the remaining vertices. These have a temporary label
The other data structures needed are:

xo —initial beginning vertex (source vertex)
N —number of vertices in G

D —array of estimates of shortest path to x.
The basic mode of operation of Dijkstra's algorithm is:

1 S={X0}

2 Fori=1to N
DIil=E[xo,i]
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3 Fori=1Tto N -1
Choose a vertex w in V-S such that D[w] is minimum
Addwto S
For each vertex v in V-S

Dlvl=min(D[v], D[wl+E[w,V])

The construction of the graph G requires a further parameter (¢ or ¢) to be set by the
user. In (Tenenbaum et al., 2000) it is pointed out that the scale-invariant parameter
q is typically easier to set than ¢, but may yield misleading results when the local di-
mensionality varies across the data set. A sensible way to set this parameter can be to
choose the minimal value such that all the pairwise geodesic distances are finite.

71.2 Procedure of Work

The difference between LLE and ISOLLE are illustrated by considering the three-dimen-
sional swissroll. At first, the graphs obtained by connecting each data point with its
n neighbors by an edge are visualized. This is done for different values of n. The n
nearest neighbors are computed with respect to the Euclidean distance in LLE and the
geodesic distance in ISOLLE. The visualization of the graphs makes it possible to check
for the possible presence of short circuits induced by the Euclidean metric. The effects
of these short circuits are then evaluated qualitatively by visualizing the respective two-
dimensional projections, i. e. the projections of the swissroll obtained by LLE and
ISOLLE for those particular values of n.

The DCE-MRI data set is reduced down to two dimensions by both LLE and ISOLLE for
n varying between 5 and 40. The evaluation of the dimensional reduction of the DCE-
MRI data set requires a statistical analysis, as the output can not be predicted a priori
because of the complexity and multi-dimensional nature of the data, and consequently
it is not possible to visually evaluate the accuracy of the low-dimensional projection.
For this reason the quality of the DCE-MRI projections is evaluated by means of two
numerical quantities, namely neighborhood preservation (NP) (section 5.4.3) with¢ =5
and stress (ST) (section 5.4.2).

Prior to the computation of the value of stress, both the original and embedded coor-
dinates are scaled to [0,1] in order to allow for a correct comparison between different
embeddings.

The neighborhood graphs of the two data sets for computing the geodesic distances
are e-graphs with the values of ¢ fixed to the minimal possible value such that all the
pairwise distances are finite, which is equivalent to saying that the neighborhood graph
is joint. The values empirically found for each data set are: e(swissroll)=5; e(DCE-MRI
data)=90.
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71.3 Results

This section begins with the analysis of the swissroll data set. The DCE-MRI data set
is analyzed in the second part. In the final part the LLE and ISOLLE algorithms are
compared in terms of running time.

In Fig. 7.6 one can see six graphs obtained by connecting each point of the swissroll
with its n nearest neighbors for n = 6, n = 15, and n = 40. These neighbors were
computed with respect to the Euclidean and geodesic distance. Note that the graphs
are three-dimensional but are visualized in section in order to make the short circuits
more visible.

Already with n = 15, the graph obtained with the Euclidean distance has many short
circuits. With n = 40 the number of short circuits increases considerably. By contrast,
the graphs obtained with the geodesic distance do not present short circuit effects,
even when the number of neighbors n equals 40. This shows that the usage of the
geodesic distance can drastically reduce the number of short circuits. This means that
the neighbor search conducted in LLE with n = 15 or n = 40 is afflicted by many short
circuits. Conversely, the neighbor search conducted in ISOLLE does not suffer from this
problem, irrespective of n.

. Euclidean distancen=6 _ Euclidean distance n=15 Euclidean distance n=40

Short
circuits

Short
circults

Geodesic distance n=6 Geodesic distancen=15 Geodesic distance n=40

s s s
" " "

8| 8| i 8|

o o J o

3 3 3
- - -
I b 0 s W w B b 0 s W ® L

Figure 7.6: Neighbors graphs of the swissroll data set obtained according to the Eu-
clidean and geodesic distances. In the Euclidean graph with n = 15 there
are already short circuits. Their number considerably increases with n = 40.
Conversely, in all the geodesic graphs there are no short circuits. Note that
the three-dimensional swissroll is shown in section in order to ease the de-
tection of the short circuits.
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. LLE n=6 ISOLLE n=6

Figure 7.7: Two-dimensional reductions of the swissroll data set obtained by LLE and
ISOLLE for n given in Fig. 7.6. While LLE fails to preserve the structure of
the swissroll with n > 15, ISOLLE yields a good projection of the data in
all cases. The arrows show where the original structure of the swissroll is
preserved wrongly.

Possible effects of these short circuits on the two-dimensional projection of the swiss-
roll data set can be seen in Fig. 7.7. Here it is clear that LLE fails to preserve the global
structure of the data with n = 15 and in particular n = 40, as in both cases the darkest
points are mapped close to brighter points. On the contrary, ISOLLE can correctly
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7 Modifications of LLE

unfold the swissroll in all three cases, and the structure of the data is clearly preserved.
In particular, the ISOLLE projection is also accurate with n = 40, while the respective
LLE projection results completely incorrect.

The evaluation of the dimensional reduction of the DCE-MRI data set is conducted by
taking into account the neighborhood preservation and stress measures. Their average
values along with the respective variances computed with respect to n between 5 and
40 are displayed in table 7.2.

The projections by ISOLLE result better with respect to both quantities. Indeed, the
average ST value is lower than the one by LLE, suggesting that ISOLLE better preserves
the metric of the tumor data. The higher value of the average NP by ISOLLE gives evi-
dence that this algorithm also leads to a better preservation of the topology of the data.
Two scatter plots of the DCE-MRI breast data embeddings obtained by LLE and ISOLLE
with n = 20 are shown in Fig. 7.8. Interestingly, the benign cluster in the projection ob-
tained by ISOLLE appears more localized and compact than in the projection obtained
by LLE. Moreover, benign and malignant data exhibit a larger overlap in the projection
obtained by LLE. This indicates that ISOLLE can better separate benign from malignant
data and this is of considerable value from the medical point of view.

Finally, the performances of LLE and ISOLLE are compared in terms of running time.
Both algorithms were performed with different n on a Pentium IV 2.8 GHz. The re-
spective values of running times are shown in table 7.3. The ISOLLE algorithm involves
a larger computation time and the divergence of speed becomes more marked as n
increases. The higher computational time of ISOLLE is somewhat expected as the algo-
rithm requires a further step as compared to LLE, i. e. the construction of the neighbor-
hood graph over all data points (see Fig. 7.4).

71.4 Discussion

In general, the usage of ISOLLE should be preferred to LLE in particular when n needs
to be relatively high (for example in case of sparse or clustered data) and in turn short
circuits are more likely to occur. One way to determine if a certain data set requires a
relatively high value of n is to perform an analysis of the smallest eigenvalues of matrix
S from eq. (5.19). Specifically, in standard conditions matrix S has only one eigenvalue
close to zero. However, if n is so small that the linear areas are disjoint, then matrix S
will have more than one close-to-zero eigenvalue (Polito and Perona, 2001). Therefore,
the minimum n for which S has only one eigenvalue close to O can be taken into account

Table 7.2: Average and variance values of stress (ST) and neighborhood preservation(NP)
computed for the DCE-MRI data set.
ST(LLE) ST(ISOLLE) NP(LLE) NP(ISOLLE)
0.4544+0.034 | 0.337 +0.025 | 0.081+0.001 | 0.115 + 0.002
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Figure 7.8: Two scatter plots of the two-dimensional embeddings of the DCE-MRI breast
data set obtained by LLE and ISOLLE. In both cases n equals 20. Note that
the benign and malignant clusters overlap less in the ISOLLE embedding. In
particular, here the benign cluster is more compact and localized.

in order to evaluate which algorithm is more suited for the analysis of the data.

71.5 Conclusions concerning ISOLLE

In section 7.1 a new approach to the neighbor search in LLE based on the geodesic
distance is proposed. Its usage can reduce the number of short circuits considerably,
thereby improving the preservation of the data structure. This is shown by investigating
the neighbors graphs obtained by LLE and ISOLLE on a synthetic three-dimensional
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Table 7.3: Table of the running times in seconds.

n Swissroll DCE-MRI

LLE ISOLLE LLE ISOLLE
10 0.20 2.66 1.26 16.55
20 0.23 6.32 1.39 39.24
30 0.27 11.25 1.62 69.31
40 0.30 17.29 1.75 106.37

swissroll. The ISOLLE graphs do not exhibit short circuits, even when the number of
neighbors is high. By contrast, the standard neighbors search with Euclidean distance in
LLE causes many short circuits. As a consequence, ISOLLE can detect the intrinsic two-
dimensional structure of the swissroll with both small and large values of the number of
neighbors n. Conversely, LLE fails to unfold the swissroll with n > 15.

Regarding the dimensional reduction of the DCE-MRI data set, the results clearly
show that ISOLLE significantly outperforms LLE in terms of both stress and neighbor-
hood preservation.

Experiments concerning the running times revealed that ISOLLE is slower than LLE
and this becomes more noticeable as n increases.

In conclusion, ISOLLE exhibits a superior ability to project the investigated data sets
into a two-dimensional space while preserving the original data structure but at the cost
of a larger running time.

7.2 Distance-Weighted LLE (DWLLE)

The LLE algorithm is typically described as having one input parameter, the number of
neighbors n. Actually, this is not completely correct. Indeed, a second parameter, the
regularization term A, is required in case n > D (see eq. (5.17)). In the literature this
term is rarely mentioned and in (Lawrence and Roweis, 2003) is generically suggested
to set its value much lower than 1. In practice, this parameter can significantly affect
the final result. Three two-dimensional projections of the three-dimensional S-manifold
data set visualized in Fig. 712 are shown in Fig. 7.9. These projections are obtained by
LLE with n = 26 and A varying between 0.031 and 0.056. Despite the fact that the A
varies within a very small range, the respective two-dimensional projections appear very
different. In particular, only the projection obtained with A = 0.041 reflects faithfully
the original data structure of the S-manifold while the other two are wrong. This shows
clearly that A can considerably affect the LLE projection.

It is obvious that getting rid of A would have immediate utility to the LLE user.
Specifically, an alternative version of the LLE algorithm that does not require A even
with n > D and, at the same time, yields results consistent with those obtained by
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A=0.056
oosl M= 26

Figure 7.9: Three projections of the S-manifold of Fig. 7.12 obtained by LLE with n = 26
and different values of A. One can observe that apparently small changes
in A lead to extremely different results. In particular only the projection
relative to A = 0.041 is accurate while the other ones do not reflect the
original structure of the S-manifold.

standard LLE would be desirable.

In this section a modification of the LLE algorithm, termed Distance-Weighted LLE
(DWLLE) is introduced. The main characteristic of DWLLE is that it does not require
the parameter A. Indeed, DWLLE computes the weights IV between neighboring data
points without a linear system and, in turn, A is not needed any longer. The basic
idea of DWLLE is to assign the largest weights to the closest neighbors of a certain
data point. The closer the neighbor, the larger its weight. This approach is based on
the fact that in LLE each data point x; is approximated by the sum of its n neighbors
multiplied by the respective linear weights (see eq. (5.12)). These linear weights are
computed by eq. (5.15). In DWLLE, the closest neighbors are forced to have the largest
weights. In this way, the closest neighbors neighbors play the major role in the data
point approximation. The closer a neighbor x; is to the data point x;, the larger will be
the linear weight W;;.

An experimental justification for DWLLE is shown in Fig. 710. The plots visualize the
average weights computed for the swissroll data set by standard LLE versus the ranking
of the neighbors. Specifically, the weights correlating each point x; with its n-closest
neighbor have been averaged over the whole data set. The result is the average value
of the weight between a point and its n-nearest neighbor. Four different plots of the
average weights versus the neighbor ranking are visualized in Fig. 7.10. They refer to
the 5-, 10-, 20- and 30-nearest neighbors, respectively. In all four cases the closest
neighbors have, on average, the largest weights as computed by eq. (5.15), i. e. the
closest neighbors have the most predominant contribution to the point approximation,
that is the basic principle behind DWLLE. This principle is illustrated in Fig. 7.11.

The DWLLE algorithm is introduced in the next section. Then, the data and expe-
riments conducted to compare LLE and DWLLE are explained in section 7.2.2. This
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Figure 7.10: The average values of the weights computed by standard LLE are plotted
versus the neighbor ranking. The graphs refer to the swissroll data set and
were obtained with different values of n. The weights were computed for
values of A between 0.001 and 0.096. The variance values are visualized
as error bars but are negligible in all cases. In all plots the closest neighbors
have the largest weights, providing justification for the DWLLE approach.

section is followed by the results and the conclusions.

7.21 The DWLLE Algorithm

The DWLLE algorithm is based on a novel approach for computing of the weights W,
whose advantage over standard LLE is not to require the regularization term A when
n > D. As already stated before, in LLE each data point x; is approximated by the
weighted sum of its n nearest neighbors. The weights are computed in eq. (5.12) such
that the error function ¥(W) is minimized. The DWLLE algorithm assigns the largest
weights to neighbors that are closest to x; (Fig. 711). In this way each x; is mainly
approximated by the closest among the n neighbors. The weight W;; between two
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Figure 711: The DWLLE algorithm consists in assigning the largest weights to the closest
neighbors. In this figure, a data point x; having three neighbors x;, x;, and
x. is shown. The distance between x; and its neighbors are denoted by s;;,
sir and s;,, respectively. x; (x.) is the closest (farthest) neighbor and, in
turn, the respective weight W;; (W;.) will be the largest (smallest) one.

neighboring points x; and x; can then be computed as follows:

Vvl'jzl/\/|XZ’—Xj|. (71)

Here, the value of W;; is taken inversely proportional to the root of the Euclidean dis-
tance between x; and x;. In this way the closest points will have the largest weights.

The function of eq. 7.1 does not represent the unique possibility. In principle, any
other function showing a monotonic decrease for the weights with increasing distance
can be adopted.

7.2.2 Data and Experiments

The DWLLE is compared with the standard LLE by considering two three-dimensional
synthetic data sets (D = 3), a swissroll and a S-manifold (both with v = 1000) that are
visualized in Fig. 712, and a real-world data set, the 12-cases DCE-MRI data set (D = 6,
v = 2449). From section 6.1.1 it is known that LLE computes accurate embeddings of
the 12-cases DCE-MRI data sets only for n > 20, that means the regularization term A
is required as n > D = 6 (recall eq.(5.17)).

The three data sets are projected onto a two-dimensional space by DWLLE and stan-
dard LLE. The quality of the obtained projections is evaluated by the neighborhood
preservation NP (see section 5.4.3). In particular, each value of NP is the average of 16
values computed for t between 5 and 20.

7.2.3 Results

The S-manifold and swissroll data sets and their two-dimensional projections obtained
by standard LLE and DWLLE are shown in Fig. 712. The input parameters (A and n
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Figure 712: The data sets used in this study are shown on the left, while their two-
dimensional projections obtained by LLE and DWLLE are shown in the
middle and on the right, respectively. Considerably, for both data sets the
DWLLE algorithm yields results that are qualitatively comparable with the
LLE ones. In particular, the order of the colors in the original data sets is
maintained in the projections, and this gives evidence that the topology of
the data is preserved.

for LLE, n for DWLLE) are tuned by maximizing NP. All the projections exhibit a good
preservation of the data topology, as the order of the colors is maintained. The DWLLE
applied on the synthetic data sets thus provides results that are qualitatively comparable
with those obtained by standard LLE.

Several two-dimensional projections of the DCE-MRI data set obtained by DWLLE
with different values of n are shown in Fig. 7.13. In all the projections, the benign and
malignant clusters largely overlap and a cluster separation can hardly be observed. Com-
pared to the dimensional reductions obtained by LLE (see Fig. 6.2), the one obtained by
DWLLE on the DCE-MRI data are inferior in terms of cluster separation. This is probably
due to the higher dimensionality of the DCE-MRI data set. In particular, the DWLLE
works sufficiently well on the two synthetic data sets, that are three-dimensional, and
the weights computed by DWLLE approximate the ones obtained by LLE quite accu-
rately. This approximation becomes worse when the input data dimension increases as
in the case of the DCE-MRI data that is six-dimensional.

The next step of the analysis consists in investigating how the number of neighbors
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Figure 713: Three two-dimensional projections of the DCE-MRI data set obtained by
DWLLE. In all three cases the benign and malignant clusters largely over-
lap. The projections computed by standard LLE are clearly superior (see for
instance Fig. 6.5).

n does affect the performances of DWLLE as compared to the LLE ones. The values of
NP are computed for the projections computed by LLE (with n between 5 and 40 and
A between 0.001 and 0.096 (21 values of A)) and DWLLE (n between 5 and 40).

The plots relative to the swissroll data set are shown in Fig. 7.14, where the error bars
represent the variance of NP due to A. The performances of the DWLLE are comparable
with the LLE ones for n < 24. With n > 24 the error induced by the DWLLE, which is
due to the computation of suboptimal linear weights, is likely to be higher than the LLE
one and, in turn, NP decreases. The value of the variance is very low, thus A does not
influence considerably the two-dimensional projection obtained by LLE.

The plots relative to the S-manifold are shown in Fig. 715. The LLE plot shows
that the LLE output changes strongly with n and A varying. In particular, the variance
relative to A is not negligible. By contrast, the curve relative to DWLLE is very stable
with respect to n and is comparable with the best values of the LLE plot.

The curves concerning the DCE-MRI data are shown in Fig. 7.16. The performances of
DWLLE are comparable with the LLE ones for n < 13. The LLE curve is characterized by
larger values for n > 13 and, at the same time, the variance induced by A is very small.
The plotted curves do not differ significantly and this may suggest that the visualization
of the two-dimensional projections obtained by LLE and DWLLE should be not too
different. In reality, the projections appear very different, as shown in Fig. 6.2 (LLE
projections) and Fig. 713 (DWLLE projections). In particular, the DWLLE projections
are far less informative with regard to the comparison between benign and malignant
time-series.

7.2.4 Discussion and Conclusions

The DWLLE algorithm is based on a modification of the LLE algorithm. Both algorithms
comprise three steps and the first and third steps are the same. By contrast, the second
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Figure 7.14: Plots of the neighborhood preservation versus n between 5 and 40 com-
puted for the swissroll data set. The error bars in the LLE curve represent
the variance of NP induced by A varying between 0.001 and 0.096. The
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to the S-manifold. The LLE curve is very instable and this means the 2D
projection of the S-manifold depends considerably on the values of n and
A. By contrast, the DWLLE curve is quite stable with respect to n.

step is different. Specifically, in DWLLE the weight between two neighboring points
depends only on their distance. The value of the weight is inversely proportional to the
distance between the points. This approach has the advantage over the LLE one that
the parameter A is not required.
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Figure 7.16: Plots of the neighborhood preservation over n between 5 and 40 for the
DCE-MRI data set. The variance of the LLE curve induced by A varying is
very small. Overall, the values of the DWLLE curve are lower than the LLE
ones.

The DWLLE algorithm provides similar results to the LLE ones when applied to two
synthetic data sets, a swillroll and a S-manifold. While the dimensional reduction of
the swissroll obtained by LLE is not much influenced by A, A influences considerably
the projection of the S-manifold. Thus, the employment of DWLLE on the S-manifold
is particularly sensible.

DWLLE exhibits poor performances when applied to the DCE-MRI data set. Indeed,
the visualization of the projected spaces results in highly overlapping benign and ma-
lignant clusters and, at the same time, the values of neighborhood preservation relative
to DWLLE are overall lower than the ones relative to the LLE projections.

7.3 Conclusions of this chapter

The LLE algorithm presents desirable properties such as nonlinear data reduction and
uniqueness of the computed solution, but there are cases in which its application may
lead to misleading results. One possible source of problems is the usage of the Euclidean
distance for the neighbor search. This metric is the standard choice for this purpose.
In section 7.1 it is shown that the Euclidean distance can produce short circuits, i. e.
faraway points may appear deceptively close. Short-circuits can cause LLE to compute
wrong dimensional reductions. To address this problem, in section 7.1 the usage of
the geodesic distance (ISOLLE) as alternative metric is proposed, and its efficacy is
demonstrated on two data sets, a swissroll and the 12-cases DCE-MRI data set.
Another possible source of problems in LLE may be to set not properly the value of
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A. This parameter is required only when n > D in order to guarantee the unicity of
the LLE solution. In section 7.2 it is introduced one example of data set, namely the
S-manifold, whose dimensional reduction is strongly dependent on the value of A. The
DWLLE algorithm is introduced as an alternative to LLE and has the advantage of not
requiring A for the computation of the dimensional reduction. The performances of the
LLE and DWLLE algorithms are compared taking into account a swissroll, an S-manifold
and the 12-cases DCE-MRI data set and the DWLLE algorithm works particularly well
on the S-manifold data set.
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8 Analysis of Microarray Data in Breast
Cancer

This chapter illustrates the analysis conducted by PCA (section 5.2.1) and LLE (section
5.2.2) of the breast cancer microarray data described in section 3.3. The analysis is
divided into two parts. The first part is described in section 8.3 and concerns the
application of PCA and LLE. In particular, LLE is employed with three different metrics,
the dot-product, the Euclidean metric and the geodesic distance. The second part of
the analysis consists in investigating the usage of the LLE algorithm with the Minkowski
metric (see eq. (5.35)). This part is described in section 8.4.

8.1 Target of the Analysis

The visualization of microarray data is typically based on hierarchical clustering algo-
rithms (see section 4.3.3). The purpose of the current analysis is to visually explore the
microarray data using algorithms for dimensional reduction.

The microarray data sets analyzed in this work represent a two-class problem (pa-
tients with and without metastases that are also seen as malignant and benign cases,
respectively) and the essential information is how different these classes are expressed
by the data. In particular, the knowledge of this information might shed light on how
determinant the considered genes are to the development of metastases.

In order to explore the degree of similarity between the classes, the microarray data
sets are projected onto a two-dimensional space and visualized with customized colors
encoding the class labels (benign and malignant). The gene series of each patient is
represented as a point in the display, and the closeness of any pair of points reflects the
similarity of the corresponding gene-series.

8.2 Experiments

The set of D genes of each patient is treated as a D-dimensional data point. It follows
that the three data sets are composed of 78 data points whose dimension is 70, 231
and 5223, respectively.

The data sets are projected onto a two-dimensional space by PCA and LLE. The LLE
has already been applied for microarray data analysis in (Chao and Lihui, 2004), al-
though here the main purpose was automatic classification and not visual data explo-
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ration. In LLE it is important to set the number of neighbors n properly. The values
of n that are investigated in this study vary between 5 and 60. The metric with re-
spect to which the neighbors are found also plays an important role. The Euclidean
distance is probably the most common used metric. However, it has been concluded
in (Aggarwal et al., 2001) that the Euclidean metric may not be an optimal choice in
high-dimensional spaces as it may prove to be poorly discriminative. For this reason
two other metrics, the dot-product and the geodesic distance, are investigated. The
dot-product is often used as a similarity measure between different gene expressions,
and the geodesic distance has been proposed as a metric for LLE in section 7.1. All the
metrics are applied to both the original and the normalized data scaled to [0,1].

The low-dimensional projections are quantitatively evaluated firstly in terms of sepa-
ration between the clusters of the patients with and without metastases by the Fisher
criterion F' (section 5.4.1), secondly by the trustworthiness (section 5.4.4). In particular,
each value of trustworthiness is the average of 16 values computed for ¢t between 5 and
20.

In section 8.4 the LLE algorithm is employed with a further metric, the Minkowski
metric. This is an alternative metric for the analysis of high-dimensional spaces. This
metric requires a parameter, the order p, to be set (see eq. (5.35)). With p = 2 the
Minkowski metric reduces to the Euclidean metrics. The Minkowski metric is applied
with both p < 2 and p > 2 in order to investigate how sensitive the neighbor search
(and consequently the LLE output) is to the value of p. The quality of the corresponding
dimensional reductions are evaluated by the Fisher criterion F.

8.3 Use of LLE with Different Metrics

The values of F' and trustworthiness related to the projections obtained by LLE of the
three data sets are plotted versus n for different metrics in Fig. 8.1. One can observe
that, in general, the values of F' decrease progressively with the number of genes in-
creasing. The largest separation between the benign and malignant classes is achieved
in the two-dimensional projection of the 70-genes data set while the worst separation
is observable in the projection of the 5223-genes data set. The decrease of F' indicates
that the points of the benign and malignant classes are harder to be separated in the
projected space when the number of genes increases. This is probably correlated with
the growing dimension of the data space. Indeed, the dimension of the data space in-
creases from 70 to 5223 while the number of patients (i. e. the number of data points)
does not change. As a consequence, the data space becomes more and more sparse
and, in turn, the structures of the classes may appear more confused to LLE. This fact
may appear more clear by recalling the so-called curse of dimensionality effect (see sec-
tion 5.5.2). This refers to the fact that the number of data points required to estimate
a data distribution with a certain error grows exponentially with the dimension of the
data space. In the current case, the dimension of the data space increases but not the
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Figure 8.1: Plots of the values of the Fisher criterion F' (left) and trustworthiness (right)
related to the projections of the three data sets obtained by LLE with varying
n and different metrics. In each plot the corresponding value computed for
the projection obtained by PCA is also visualized.

number of data points and, as a consequence, one can expect that the error estimation
of the data distribution increases.

Overall, the best separation between the classes (i. e. the highest values of F) is
achieved for n > 30. The Euclidean and dot-product metrics provide similar results with
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Figure 8.2: Scatter plots of six projections obtained by PCA (left) and LLE (right) of the
microarray datasets. The latter projections are obtained by LLE employed
with those values of n that provide the maximal values of F in Fig. 8.1.

and without data normalization and the corresponding curves are quite stable with
respect to n. By contrast, the curves related to the geodesic distances are characterized
by a different behavior that can be observed in all three data sets. More specifically,
the values of both F and trustworthiness are lower than those related to the two other
metrics for n < 30. This may be explained by recalling the fact that the neighbors
computed according to the geodesic distance are not searched in all directions in the
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8.3 Use of LLE with Different Metrics

data space as in the case of the Euclidean distance and dot-product, but are searched
along a contour that is the contour of the data set in the data space (see Fig. 7.2
for the sake of clarity). Therefore, the configuration of the neighboring graphs (i. e.
the graphs obtained by linking each point to its n nearest neighbor) obtained with
the geodesic distance are probably completely different from those obtained with the
Euclidean distance and dot-product, and it may happen that the graphs obtained with
the geodesic distance best approximate the data structure only for n. > 30.

Overall, the curves of F' and trustworthiness are in substantial agreement, as they
exhibit similar behaviors and the relations between the curves of the three metrics are
similar. For instance, the red curves (related to LLE with dot-product) in Fig. 8.1(e) and
Fig. 8.1(f) are in both cases the predominant ones.

In Fig. 8.1 the values of the Fisher criterion F and trustworthiness related to the
projections obtained by PCA are also visualized. Note that in all plots, except for the
plot in Fig. 8.1(f), the values of the PCA projections are comparable with the best values
obtained by LLE.

Note that in Fig. 8.1(e) and Fig. 8.1(f) only four curves are visible instead of six.
Specifically, the curves related to the Euclidean distance (black curve) and geodesic
distance (pink curve) can not be seen as they overlap with the Euclidean distance norm
(green curve) and geodesic norm (sky-blue curve) respectively. Thus, in the case of the
5223-genes data set the normalization of the data has no influence on LLE performed
with the Euclidean and geodesic distances.

The projections obtained by LLE that provide the highest values of F' are shown in
Fig. 8.2 (right), along with the projections obtained by PCA (left). The points of patients
with (without) metastasis are visualized in red (green). The PCA projections reveal that
the microarray data are intrinsically one-dimensional as the data variance along the
second principal component (y-axis) is small as compared with the one along the largest
eigenvalue (z-axis). The metastases / non metastases classes are easy to be recognized
and quite well separated in the PCA projections of the 70- (Fig. 8.2(a)) and 231-genes
(Fig. 8.2(c)) data sets. Yet, the classes lie more close-by in the PCA projection of the
5223-genes dataset (8.2(e)). By contrast, the benign and malignant classes are easier
to be recognized in the LLE projections in all cases (Fig. 8.2(b)-(d)-(f)). It is particularly
interesting the fact that the two classes are separated also in the projection of the 5223
genes dataset.

Despite the fact that these values of F are similar, the visualization of the correspond-
ing projections results in visually different patterns. In particular, the points in the LLE
projections appear more scattered than in the PCA ones. This is due to the presence
of an outlier, which is indicated by an arrow, in all the three PCA projections (see Fig.
8.2). The same points are also visualized in the corresponding LLE plots and surprisingly
they do not appear to be outliers, i. e. they are mapped close to the remaining points.
This may be explained by the fact that LLE aims to preserve the neighboring interrela-
tionships more than the interpoint distances and one can presume the outlier point is
mapped by LLE close to its neighbors without preserving their distances.
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8 Analysis of Microarray Data in Breast Cancer

In conclusion, the performances of PCA are statistically comparable with the best
ones of LLE On the other hand, in the LLE projections the points are more scattered
and this might ease the visual exploration of the data.

8.4 Use of LLE with Minkowski metric

The microarray data set is composed of a relatively low number v of patients and a
large series of D genes for each patient. In this work the data sets are interpreted as a
D-dimensional data space with v data points, i. e. a high-dimensional data space with
relatively few points. In the analysis of microarray data it is important to know that
high-dimensional spaces can have counter-intuitive geometrical properties (see section
5.5). One of these properties concerns the fact that the concept of nearest neighbor is
less intuitive in high-dimensional spaces. In particular, the Euclidean distance may not
be the most appropriate choice for nearest neighbor search in high-dimensional data as
this metric may become less discriminative.

An alternative metric for the analysis of high-dimensional spaces is the Minkowski
norm, which is defined in section 5.5.3. In the current section the Minkowski metric
is used for the neighbor search in LLE. The value of the order p is set to values both
lower and higher than two in order to investigate to which extent this value affects
the neighbor search and whether there are some changes that can be correlated with
the increase in the dimension of the data space. In these experiments the number of
neighbors n is varied from 5 to 60.
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Figure 8.3: Plots of Fisher values obtained with different orders p of Minkowski metric
on the 70-genes data set. The curves obtained with p < 2 are shown on the
left, while those obtained with p > 2 are shown on the right. In both figures
the values of p seem not to affect the curves.
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Figure 8.4: Plots of Fisher values obtained with different orders p of Minkowski metric.
The microarray dataset is 231-dimensional. The plots in (c) and (d) are the
enlargements of the curves plotted in (a) and (b) respectively.

Several curves of Fisher values related to the 70-dimensional dataset are visualized in
Fig. 8.3 that refer to the curves obtained with p < 2 (left) and p > 2 (right) respectively.

In both graphs the curves are quite changeable with respect to n. A dependence
on the value of p is not observable and a predominant curve is not present. It follows
that the value of p does not seem to affect the final dimensional reduction of the 70-
dimensional data set. It is interesting to note that the largest values of F are obtained
with n > 40 and p > 2.

The curves of the Fisher criterion F related to the 231-dimensional dataset are shown
in Fig. 8.4. Fig. 8.4 (a) and (b) contain the curves related to p < 2 and p > 2 respectively
plotted with the same scale of Fig. 8.3. Fig. 8.4 (c) and (d) represent the enlargements
of the two previous figures and allow to observe the curves more in detail. From the
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Figure 8.5: Plots of Fisher values obtained for different orders (p < 2 left and p > 2
right) of Minkowski metric. The microarray dataset is 5223-dimensional.
The curves in (a) and (b) are magnified in (c) and (d) respectively.

observation of Fig. 8.4 (a)-(b) one can deduce that the value of p has a low influence on
the neighbor search, as all the the curves appear quite similar. It is however interesting
to observe that the curves in Fig. 8.4 (d) (enlargement of the curves p > 2) tend to cross
less as compared with the curves in Fig. 8.3 (b) (curves p > 2 related to the 70-genes
data set). This suggests that the value of p seems to have more influence, although
little, on the neighbor search of LLE applied to the 231-genes data set.

The curves related to the 5223-dimensional dataset are shown in Fig. 8.5. As above,
in Fig.8.5 (a)-(b) the curves are plotted with the same scale of Fig. 8.3, and in Fig.
8.5 (c)-(d) the corresponding enlargements are visualized. Also in this case the curves
plotted in Fig. 8.5 (a)-(b) appear quite similar and the changes induced by p are very
small. Particularly interesting is to observe Fig. 8.5 (d), i. e. the enlargement of the
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curves obtained with p > 2. Indeed, all the curves exhibit larger values of F' than the
ones of the curve obtained with p = 2. Moreover, the larger p, the larger the values of F,
i. e. a dependency between the curves and p can be observed. The values of p therefore
seem to affect more the final projection of the 5223-dimensional dataset as compared
to the 70- and 231-dimensional datasets. The values of p might gain influence as the
dimension of the dataset increases, in particular the values p > 2. This is somewhat
surprising as in (Hinneburg et al., 2000) it is stated the nearest neighbor search with
the Minkowski metric when p > 2 are meaningless in high-dimensional spaces. In these
experiments the values p > 2 influence more the final dimensional reduction and this
becomes more evident as the data dimension increases.

8.5 Discussion

The PCA and LLE algorithms are employed for the visual exploration of microarray data.
The PCA algorithm provides results that are statistically comparable this the best ob-
tained by LLE. On the other hand, the visualization of the PCA and LLE projections
results in different patterns. In the LLE projections the points are quite uniformly scat-
tered and the benign and malignant clusters are clearly visible for all data sets. In the
PCA projections the clusters appears elongated along the z-axis also because of the
presence of an outlier which hampers the visual analysis of the data sets. In addition,
the benign and malignant clusters are not well separated in the PCA projection of the
5223-genes data set.

The visualization of microarray data using algorithms for dimensional data reduction
can prove useful for the comparison of gene series from different patients. This informa-
tion can also be extracted by hierarchical clustering algorithms, but they do not provide
indication of the degree of similarity between single gene sequences. On the contrary,
this information is contained in the PCA and LLE projections as distance between the
points.

Furthermore, the visualization of the clusters with customized colors encoding the
class labels can reveal how different the clusters are with respect to a particular set of
genes, This may contribute to determine the role of a set of gene in the development
of metastasis.
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9 Summary, Conclusions and Outlook

The aim of this PhD thesis was to investigate the potential of algorithms for dimensional
reduction for the visual exploration of multivariate data in breast cancer. In multivariate
data, each entity is characterized by a feature vector comprising many attributes, where
"many" is typically any number greater than three. In this work, two types of multi-
variate data were explored, namely dynamic contrast enhanced magnetic resonance
imaging (DCE-MRI) data and microarray data.

In the DCE-MRI data, an entity is represented by a time-series connected with a
certain voxel and the number of attributes is given by the number of MR volumes
recorded. In the microarray data, an entity is given by a patient that is characterized
by the expression values of a series of genes. Both the experimental data sets were
acquired from female patients with benign and malignant breast lesions. Detecting the
interrelationships between the many variables characterizing the benign and malignant
patients is of vital interest to physicians but it is also a challenging task because of the
multi-dimensional nature of the data.

In this work, methods for dimensional reduction were used for visual exploration of
the data sets with regard to the investigation of the degree of similarity of data related
to benign and malignant tumors. In this context, each entity contained in the data
sets was treated as a data point in a multidimensional data space, whose dimension
equals the number of attributes characterizing the entity itself. Entities with similar
attributes are neighboring data points in this data space. Algorithms for dimensional
data reduction can help to reveal these relationships by projecting the data space onto
a two- or three-dimensional space while best preserving the information contained.
In turn, the visualization of the projected space can provide insight into the similarity
among entities.

9.1 Summary

An algorithm particularly suited for visualizing similarities between entities in high-
dimensional data is locally linear embedding (LLE), as it aims to compute low-di-
mensional projections of high-dimensional data while best preserving the local data
geometry. Specifically, neighboring data points in the high-dimensional data space are
projected by LLE onto neighboring data points in a lower-dimensional space, i. e. the
interrelationships between neighboring data points in the high-dimensional data space
are maintained in the lower-dimensional space. Because of this appealing property, the
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LLE algorithm was the method for dimensional data reduction most used in this work.
The LLE algorithm was employed to explore the similarity among DCE-MRI time-
series of benign and malignant tumors. The results obtained by LLE were compared
with those obtained by self-organizing maps (SOM) and principal component analysis
(PCA), that are two of the most widely utilized techniques for dimensional reduction.
The LLE algorithm demonstrated superior capability, as compared to PCA, to extract
essential information from the DCE-MRI data set. On the other hand, PCA does not
require any input parameter, while LLE has one input parameter (in some cases two
input parameters) that must be tuned. According to the statistical analysis, the SOM
algorithm outperformed LLE in terms of separation between benign and malignant time-
series. However, the SOM has several parameters that must be set and this can be
extremely time-consuming for the human user and can cause the results to vary strongly.
Since LLE provided good results on the DCE-MRI data, the LLE algorithm was in-
vestigated more in detail. In particular, two modifications of the LLE algorithm were
developed to overcome two shortcomings that can limit its performance. The first mod-
ification, termed as ISOLLE, consisted in using LLE with the geodesic distance instead of
the Euclidean metric. It was shown that this allows for a better preservation of the data
structure in the dimensionally reduced space. This was validated on both synthetic data
and the DCE-MRI data set. The second modification, termed as DWLLE, introduced
an innovative approach to the weight computation that allows the elimination of one
input parameter of LLE, the regularization term A. The results obtained by DWLLE on
synthetic data were very promising and consistent with those obtained by standard LLE.
The analysis of the microarray data set in terms of discrimination between gene ex-
pression relative to benign and malignant breast tumors was conducted using PCA and
LLE. LLE was performed with several metrics, including the Minkowski metric with dif-
ferent orders as the order to the Minkowski metric can play a major role when the
dimension of the data space is considerably high, as in the case of the microarray data.
In all the experiments, the LLE algorithm was applied for different values of the input
parameters and the quality of the respective projections was evaluated accurately using
more than one quantity.

9.2 Conclusions

The LLE algorithm has shown considerable potential for the visual exploration of mul-
tivariate data in the biomedical domain. The dimensional reduction of the data and its
visualization allows the user to explore the similarity among different entities charac-
terized by possibly numerous attributes. Revealing pattern in the data provides infor-
mation on the interrelationships between these attributes, thereby allowing the human
user to gain understanding from the data.

Depending on the task at hand, the visualization of the dimensional-reduced data can
be integrated with supplemental information, typically labels, characterizing the enti-
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ties. For instance this information can be encoded in terms of color or shape patterns.

In chapter 6, the dimensional reduction of the DCE-MRI data set was visualized using
three different color schemes. The encoding of the class labels (benign / malignant)
on the display as color pattern provides information on how good the adopted DCE-
MRI protocol can help distinguish between benign and malignant lesions, and this can
represent a feedback for technicians and physicians.

The second color scheme consisted in visualizing the entire experimental DCE-MRI
data set while highlighting the points from a single particular tumor lesion. In this
way the signal dynamic related to this tumor lesion can be compared with the time-
series from several different lesions simultaneously, thereby allowing for a multi-case
comparison. The comparison of different lesions can provide precious information to
physicians. This task, however, might prove difficult if the comparison is performed
directly by taking into account the MR volumes because of the multi-dimensional nature
of the data. It is thus beneficial to physicians to represent the dynamic of many different
time-series into a single display.

Concerning the third color scheme, the histological labels of the tumors were encoded
as color information in order to permit physicians to compare the signal dynamic of
different histologic families of breast tumors.

Besides proving useful for the visual exploration of the degree of similarity of time-
series from different tumor lesions, LLE has shown considerable potential for visualizing
the breast lesions with customized colors reflecting the temporal course of the time-
series. The colors of the tumor visualizations relative to LLE were consistent with those
obtained by the model-based three-time-point method (3TP), with the advantage that
in LLE, a model of the contrast agent dynamic is not required and, in turn, the LLE
approach may in principle also be applied to data concerning tumors of other organs,
such as liver, for which it is very difficult to model the dynamic of the processes involved.
Algorithms for dimensional reduction may be an alternative to model-based techniques,
such as the 3TP, when the number of different clinical cases in the experimental data
set is sufficiently high, such that the algorithms can learn meaningful behaviors from the
data (e. g. typical benign and malignant time-series), thereby compensating for the lack
of a model.

9.3 Outlook

There are two problems that afflict LLE, which restricts its field of application. The first
problem is that the algorithm can not handle data sets with more than a certain number
(in the order of 10%) of data points because of the excessive computer memory required.
This problem is mentioned also in section 6.5, where a possible solution is discussed.
The second problem that afflicts LLE, but more in general all the algorithms for dimen-
sional data reduction, may occur when the data dimension is very high and the number
of samples relatively low. Provided these conditions, the data space is very sparse and
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it may be difficult for LLE to detect a global structure in the data. To face this problem,
in the framework of this PhD it was proposed to pre-process the data by the discrete
wavelet transform (DWT) (Daubechies, 1991) in order to reduce the dimension of the
data space. The DWT enables the assessment of localized and scale-dependent infor-
mation in signals by a set of features (Mallat and Zhong, 1992). DWT computes for
each data point a set of descriptive features whose number is much lower than the data
dimension. In turn, the DWT feature space is more dense and applying LLE to this space
may improve the detection of a global structure. This approach was successfully applied
to explore a data set of brain tumor images (Varini et al., 2006). This might serve as an
example for the use of hybrid methods including LLE.

In this work only the first two coordinates discovered by LLE were visualized, i. e.
these coordinates were derived from the two smallest eigenvector of matrix S (eq.
(519)). In (Lawrence and Roweis, 2003) it is stated that clusters that overlap in the first
two dimensions are typically separated in others. It would be interesting to investigate
if this is also valid for the case of the DCE-MRI and microarray data sets analyzed in this
work.
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