
Communally Governed Transactions
among Collaborative and Decentralized Trading Agents

Avinanta Tarigan

Avinanta Tarigan
AG Rechnernetze und verteilte Systeme (RVS)
Technische Fakultät
Universität Bielefeld

email: avinanta@rvs.uni-bielefeld.de

Abdruck der genehmigten Dissertation
zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)
der Technischen Fakultät
der Universität Bielefeld
am 20. Juli 2007 vorgelegt von Avinanta Tarigan,
am 12. November 2007 verteidigt und genehmigt.

Gutachter:
Prof. Peter B. Ladkin, Ph.D., Universität Bielefeld
Prof. Harold Thimbleby, Ph.D., University of Swansea

Promotionauschuß:
Prof. Peter B. Ladkin, Ph.D., Universität Bielefeld
Prof. Harold Thimbleby, Ph.D., University of Swansea
Prof. Dr. Ipke Wachsmuth, Universität Bielefeld
Dr. Karsten Loer, R&D - Germanischer Lloyd AG

Gedruckt auf alterungsbeständigem Papier ISO 9706

Communally Governed Transactions among
Collaborative and Decentralized Trading Agents

Dissertation zur Erlangung des Grades eines Doktors der
Naturwissenchaften (Dr. rer. nat.)

der Technische Fakultät der Universität Bielefeld

vorgelegt von
Avinanta Tarigan

2007
(Tag der Disputation 12.11.2007)

c© 2007
Avinanta Tarigan

All Rights Reserved

to my mother, my wife, my son,
and to the loving memory of my father

untuk yang tercinta
istriku Hertati, anakku Rafie,

mamaku Isminarti,
dan Almarhum Papa

Tambin Tarigan

iii

iv

Acknowledgments

All praise are due to God the almighty, the most gracious and the most merciful.
Without His Consent this work would not come into real.

I started this work with tiny confidence it is a worthwhile research. The comple-
tion of this thesis is nothing more than tremendous support from the people whom
I would like to thank.

Firstly, I would like to express my grateful to my supervisor Prof. Peter B.
Ladkin, Ph.D. Without his comments, continuous support, and fruitful discussions,
this thesis would be another bunch of papers. Secondly, I would like thank Prof.
Harold Thimbleby, Ph.D., who were willing to allocate his time for being the second
reviewer of my thesis. Thirdly, I very much acknowledge Prof. Dr. Ipke Wachsmuth
and Dr. Karsten Loer for being the member of my Ph.D. committee. Furthermore,
I thank the Technische Fakultät for their support in the administration, foremost,
Prof. Dr. Jens Stoye and Anke Weinberger.

This work has been funded by a scholarship from TPSDP Project and Gu-
nadarma University. I thank them for giving me the opportunity to undertake
my Ph.D. I grateful to Prof. Dr. E.S. Margianti and Prof. Suryadi Harmanto,
S.Si., MM., as well as the big family of Gunadarma University for their unbelievable
support and understanding.

My family is the best thing that ever happens to me. I grateful to my mother
and my beloved wife Tathie for their continuous support, pray, and patience helping
me toward the finalization of my work. Of course, my son Rafie who energized me
with his funny smile. The fact that I have been leaving them in Indonesia for almost
three years, makes their patience and sacrifice absolutely unpaidable.

Last but not least, I would like to express my gratitude to all friends during my
stay in Bielefeld: the family of Wiryana, Abdurrouf, Terima, Nugroho, Mormann,
the RVS Guys: Heiko, Andreas, Mirco; and all Indonesian friendships in Bielefeld.

This page is dedicated to all beloved persons who have supported me directly
and indirectly.

v

vi

Statement

The work in this thesis is based on research carried out at the Networks and dis-
tributed System working group (AG RVS), Faculty of Technology, University of
Bielefeld. To the best of my knowledge, no part of this thesis has been submit-
ted elsewhere for any other degree or qualification and it’s all my own work unless
referenced to the contrary in the text.

vii

viii

Abstract

This thesis proposed a framework in completing transactions among decentralized
agents without the existence of trusted authority nor intermediate facilitator in facili-
tating the transactions. The framework consists of transaction concept and logic, set
of algorithms to accomplish transactions, and architecture that enable agents to gov-
ern and self-organize accounting, authentication, and authorization of transactions
for mutual benefit. The system of transaction is based on the concept of creation
and elimination of institutional facts as the fundament to develop the transaction
logic. Set of agents united in a trading community collectively accept set of arbi-
trary constructed assertion of facts establishing the presence of accounts of finances
of transacting agents. During transactions, those accounts are altered through set of
collaborative actions that agents perform specified by transaction algorithm. This
social-based accounting mechanism introduces a mechanism that enables agents to
collectively govern transactions in individual level. By considering reputation of the
seller as well as the ratio between potential risk and benefit of every transaction,
agents perform vote-based collective decision to authorize or not to authorize the
transaction. The feedback of each transaction is made public altering reputation of
the corresponding seller. The collective authorization mechanism establishes social
control to block possible bad behavior, to protect buyer from risky transaction, and
to induce good behavior. The result of simulation on this scheme shows how such
social control works. It filters bad behaving agents and preserves good behaving
agents. This condition is necessary to sustain trust within community and thus pre-
serves the collaboration. A chapter of this thesis presents set of protocols developed
from transaction algorithm that fulfills best-practice considerations. It successfully
applies distributed cryptography to devise mutual authentication problem and to
reduce communication cost as well as to eliminate scalability issue of original al-
gorithm. Finally, an application of the framework is exemplified: an architecture
of decentralized trading network that superimposes existing P2P networks allowing
Internet users to trade for their mutual benefit.

ix

x

Contents

Acknowledgments v

Statement vii

Abstract ix

1 Introduction 1
1.1 Preface . 1
1.2 Contributions . 3
1.3 Thesis Overview . 4

2 Backgrounds and Related Works 5
2.1 The System of Exchange . 5

2.1.1 Structures of Exchange . 6
2.1.2 Money . 7
2.1.3 Some Important Remarks . 8

2.2 Transactions in Distributed Systems 8
2.2.1 Authentication . 9
2.2.2 Authorization . 10
2.2.3 Accounting and Accountability 11
2.2.4 The Roles of TTP in Accomplishing Transactions 12

2.3 Transactions without Trusted Third Party 13
2.3.1 Ad-Hoc Protocols . 13
2.3.2 Completing Transactions with Collaboration 15

2.4 Trust in Computer Mediated Transactions 18
2.4.1 The Notion of Trust in Computer Security 18
2.4.2 Interpersonal Trust . 19
2.4.3 Interpersonal Trust in Computer Mediated Transactions . . . 19
2.4.4 Computational Trust . 23

2.5 Summary . 24

xi

3 Transaction Basics 25
3.1 Reformulating the Problem . 25
3.2 Establishing the Accounts with Institutional Fact 26
3.3 Transaction Concept and Its Logic 28

3.3.1 The Building Blocks . 28
3.3.2 Components of Transactions 32
3.3.3 Transaction Schemes . 33
3.3.4 Remarks . 35

3.4 Transaction Algorithm . 36
3.4.1 Agents and System Variables 37
3.4.2 Communication Channel . 39
3.4.3 Specifying Agent Actions in Completing Transaction 39
3.4.4 Steps to Complete the Transaction 43
3.4.5 Discussion . 49

3.5 Summary . 50

4 Collective Authorization and Social Control 53
4.1 Backgrounds . 53

4.1.1 Importance of Trust . 53
4.1.2 Social Control and Reputation 54
4.1.3 Design Goal . 55

4.2 Reputation System . 55
4.2.1 Notions of Trust and Reputation 55
4.2.2 How Reputation Changes . 56
4.2.3 Elements of Reputation System 56

4.3 The Design of Collective Authorization 59
4.3.1 Basic System Setup . 59
4.3.2 Community Decision Trust 60
4.3.3 Reputation Propagation and Concluding Reliability Trust . 61

4.4 Collective Authorization Algorithm in TLA+ 63
4.4.1 Re-Introduction . 63
4.4.2 Collective Authorization . 64
4.4.3 Rating Propagation . 65
4.4.4 Transaction Summary . 67

4.5 Summary . 68

5 Simulation on Collective Authorization 69
5.1 Underlying Concept of Simulation on Social Control 69

5.1.1 Background and Objective 69
5.1.2 Natural Selection . 70
5.1.3 Simulation Parameters . 71

xii

5.2 Simulator Program . 71
5.2.1 Simulator Parameters . 73
5.2.2 Display Graphs . 75

5.3 Running Simulation . 76
5.3.1 Parameter Setting . 76
5.3.2 Observed Phenomenon . 76

5.4 Experiments . 78
5.4.1 Parameters Sweeping . 78
5.4.2 Observation . 79
5.4.3 Presenting Results . 79

5.5 Discussion . 84
5.6 Summary . 85

6 The Design of the Protocol 87
6.1 The Scenario, Issues, and Intended Solution 87

6.1.1 The Scenario . 87
6.1.2 Issues and Intended Solutions 88

6.2 Bootstrapping, the Keys, and Memberships 90
6.2.1 Protocol Basics . 90
6.2.2 The Using of Distributed Cryptography 92
6.2.3 Anatomy of Institutional-Money and Institutional-Memberships 95
6.2.4 Bootstrapping . 96
6.2.5 Enrolling New Member . 98
6.2.6 The Expelling of a Member 100

6.3 Transaction Protocol . 103
6.3.1 Anatomy of Transaction Proposal 104
6.3.2 The Protocol . 105
6.3.3 Multiple Traders Transaction 110

6.4 Summary . 111

7 Application of the Framework 117
7.1 Introduction . 117

7.1.1 Objective . 117
7.1.2 Issues and Requirements . 117

7.2 The Architecture . 118
7.2.1 The Overlay Trading Network 118
7.2.2 Trading Program . 119
7.2.3 Integration . 121

7.3 The Work-flow . 121
7.3.1 General Work-flow . 121
7.3.2 Address Management . 123

xiii

7.3.3 Delivery Protocol . 124
7.4 Discussion . 125

7.4.1 Slight Review . 125
7.4.2 New Possibilities of Trading Scheme 126

7.5 Summary . 127

8 Conclusion and Future Works 129
8.1 General Conclusion . 129
8.2 Summary of Contributions . 130
8.3 Future Works . 131

Bibliography 133

A Transaction Algorithm in TLA+ 141

B Source of Simulation Program 155

xiv

List of Figures

1.1 The completion of digital transactions using TTP 2

2.1 Structures of Exchange . 6
2.2 Typical Transaction Stages . 9
2.3 The Trust Game . 20
2.4 The Change of Context Independent Trust in a Trust Game 21
2.5 Structures of Trust Relationship . 22

3.1 Creation and Elimination of Institutional Fact 29
3.2 State transition using Macro-Micro-Macro model 35
3.3 Illustration of Transaction Algorithm 41
3.4 Predicate Action Diagram of Transaction Algorithm 42

4.1 The Change of Trust and Reputation 57
4.2 Elements of Reputation System . 58
4.3 Summary of Completion of Transaction 68

5.1 Simulator User Interface . 74
5.2 The Four Conditions Observed During Simulation 77
5.3 Results from Parameter Sweeping on Collective Authorization Using

Beta Reputation . 80
5.4 Results from Parameter Sweeping on Recommender System Using Beta

Reputation . 80
5.5 Performance of Collective Authorization using Beta Reputation 81
5.6 Performance of Recommender System using Beta Reputation 81
5.7 Results from Parameter Sweeping on Collective Authorization Using

Simple Average . 82
5.8 Results from Parameter Sweeping on Recommender System Using Sim-

ple Average . 82
5.9 Performance of Collective Authorization using Simple Average 83
5.10 Performance of Recommender System using Simple Average 83

xv

6.1 Anatomy of the Assertions establishing Institutional-Facts 95
6.2 Community Bootstrapping . 97
6.3 Illustration of Algorithm in Enrolling a New Member 102
6.4 Illustration of Algorithm in Expelling a Member 102
6.5 Anatomy of a Transaction Proposal 104
6.6 Illustration of Transaction Protocol 106
6.7 How traders initiate and end the transaction 107
6.8 How Agents Collaborate in Receiving Proposal 108
6.9 How Agents Collaborate In Receiving Objection 109
6.10 How Agents Collaborate in Receiving Rating 110
6.11 Comparison of Communication Costs 115

7.1 Trading Network as Overlay Network for existing P2P Networks . . . 119
7.2 User-side Program and Delegation Program 120
7.3 Interactions among User-side Programs and Delegation Programs . . . 120
7.4 Integration of UP with existing P2P software 122
7.5 General Work-flow of Transactions . 123
7.6 Dynamic Address Resolution . 124
7.7 Authorized Delivery Protocol . 124
7.8 Illustration of Royalti Based Transactions 126

xvi

List of Tables

3.1 Records of Internal knowledge of agent 38
3.3 State Transitions (Part 1) . 43
3.4 State Transitions (Part II) . 44

4.1 State Transitions (Part III) . 66

5.1 Range of Possible Transaction Outcomes of each Behavior Type . . . 70
5.2 Average Generation of Encounters . 76

xvii

xviii

List of Algorithms

5.1 Simulation Algorithm . 72
6.1 Enrolling new member. Part 1 . 99
6.2 Enrolling new member. Part 2 . 100
6.3 The Expelling of a Member . 101
6.4 Transaction Protocol Part 1 . 111
6.5 Transaction Protocol Part 2 . 112
6.6 Transaction Protocol Part 3 . 113
6.7 Transaction Protocol Part 4 . 114

xix

xx

Abbreviation

TTP Trusted Third Party
CA Certification Authority
PKI Public Key Infrastructure
P2P Peer-to-Peer Network
CF Collaborative Filtering Systesm
CS Collaborative Sanctioning System
MNR Multiparty Non-Repudiation
UP User-side Program
DP Delegation Program

xxi

xxii

1

Chapter 1

Introduction

1.1 Preface

The decentralization nature of Internet opens many new spaces of research in finding
ways to conduct sustainable trading on the network. This research was started with
a wish to develop a framework in completing digital transactions that can be used
in decentralized system where trusted third parties (TTP) is absent or socially very
weak. The aim is to develop trading infrastructure for Internet based decentralized
system such as Peer-to-Peer (P2P) network.

In nowadays Internet Commerce, digital-transactions are performed using al-
gorithms that assume the existance of mutually trusted third party administering
the transactions. Figure 1.1 illustrates the ideal condition where Internet users
may perform digital transactions securely. Government agencies, e.g. Chamber of
Commerce, administers professional examination to examine trustworthiness and
bona fide of trading entities. The national ID program provides secure and effective
identification system of all citizens. Certification Authority (CA) issues or revokes
digital-certificates for the parties who receive authorization from the Government to
take part in Internet commerce. During transaction, transacting parties are mutu-
ally authenticated using trusted digital-certificates whilst bank and payment gate-
way are carrying out the accounting as well as financial settlement. Government is
responsible to monitor and control the trading parties through feedback mechanism
in order to maintain fair trading as well as trust, adhering sustainable transactions.

This illustration exposes duties of TTP to help traders in achieving transaction
objectives or in accomplishing properties that are necessary for a proper trading
infrastructure, namely, to establish trust in authentication, to provide accounting
and financial settlement services, as well as to authorize transactions sustaining trust
among transacting parties.

In certain circumstances things do not run ideally, however. In particular, the
are conditions where TTP is socially very weak or completely absent. For example,

2 Chapter 1. Introduction

Figure 1.1: The completion of digital transactions using TTP

how can one trust someone being certified by a government whom people does not
trust? How can one ensure that a digital-signature is authentic when the issuer
of correspondence digital-certificate is unknown or resides outside one’s jurisdiction
and control?

Some Internet applications, such as P2P file-sharing networks, simply avoid the
presence of TTP. Despite that lots of Internet users utilize P2P networks to exchange
and share their data, the system lacks from properties of proper trading infratruc-
ture. That is, the desired feature of being uncontrollable forbids the development
of P2P from free network to proper trading network on which P2P users are able to
trade their resources in adequate manner. Some of solutions surveyed in this thesis
are based on the idea of giving incentives, namely, to balance utilization of peers
with their contributions. But not to have proper trading activities that are close to
common trading activities in ideal condition.

To sum up, it is worthwhile to research methods that enable digital transac-
tions in decentralized network. Since the demand is considered to be high and the

1.2. Contributions 3

remaining research spaces in this area are still vacant.

1.2 Contributions

The main focus of thesis is to investigate ways to establish desired properties of
proper trading infrastructure in the decentralized system, namely, providing ac-
counting service, establishing authentication, as well as maintaining trust among
users without any assistance from TTP. The search leads the effort to develop scheme
that promotes collaboration in order to establish those properties. The first objec-
tive is to design transaction logic and algorithm as the ground work that will be
further developed to transaction protocol that is feasible to work in decentralized
system.

The contributions of this thesis which are considered beneficial for the research
in this area are:

à The formalization of transaction logic based on the concept of institutional
facts brought from the theory of the construction of social reality. The logic
provides the basis for the concept of the presence of accounts of finances, as
well as the basis to develop transaction algorithm that enables self-organized
accounting scheme.

à The design of collective authorization scheme reasoned by reputation that
establishes social control. The scheme allows agents to maintain trust by
promoting good behavior and discouraging bad behavior.

à The design of transaction protocols applying distributed cryptography in order
to establish group authentication as well as to accomplish secure transactions.

à In addition, the architecture of a trading infrastructure for P2P network, in
that proposed framework is applied, is presented in the final chapter. It ex-
emplifies the implementation of proposed framework in the real use.

Furthermore, part of the work described in this thesis is published in the following
paper:

[Tarigan, 2006] Tarigan, Avinanta. Towards Communal Governed Transactions
Among Decentralized Trading Agents. In Proceedings of The Second In-
ternational IEEE Workshop on Security Through Collaboration (SECOVAL)
2006, Conference on Security and Privacy in Communication Networks (SE-
CURECOMM 2006).

4 Chapter 1. Introduction

1.3 Thesis Overview

The following chapter reviews the relevant literatures and concepts providing back-
ground on which this thesis is developed. Some of the related works in the same
research area are also detailed here.

Chapter 3 develops the formalization of transaction logic. It shows how trans-
actions can be conducted without the existence of TTP. The transaction algorithm
developed from the logic is specified using Temporal Logic Action (TLA+) in order
to explicitely express collaborative actions.

The subsequent chapter develops collective authorization scheme with a wish to
accomplish social control within the system of agents. Here, the concept of trust
and reputation system is reviewed as well as community trust decision model as the
basis of the authorization. At the end, the algorithm is specified in detail using
TLA+ which completes the specification of transaction algorithm developed in the
previous chapter.

In oder to study how the collective authorization works, the followed chapter
presents a simulator in that collective algorithm is peformed on set of random data
representing trading environment. Some experiments are also conducted to study
behaviour of the system given predefined range of combinations of parameters. It is
regarded beneficial for considerations in the future implementation of the framework.

Chapter 6 takes the algorithm one step closer into reality by presenting set of
transaction protocols developed from original transaction algorithm introduced in
chapter 3. The protocol incorporates distributed cryptography to establish group
authentication as well as secure transactions. The achievement is that it signifi-
cantly reduces communication cost as well as demotes scability problem of original
transaction algorithm.

Chapter 7 adds the thesis with the design of a trading infrastructure applying the
proposed framework that enables P2P users to transact. The design solves several
issues raised because of the nature of P2P networks. It resolves the integration
problem with existing P2P architecture as well.

The final chapter summarizes contributions and the conclusion as well as outlines
potential future works emerged by the presence of this thesis.

5

Chapter 2

Backgrounds and Related

Works

This chapter presents the backgrounds on which the framework in thesis is devel-
oped. It begins by overviewing the structures of exchange that gives comprehensive
view of mechanisms of trading. The next part presents state of the art of online
transaction protocol by surveying several related works including Ad-Hoc proto-
cols and collaboration based protocols. Finally, the emerging use of the notions of
interpersonal trust in online environment is briefly reviewed.

2.1 The System of Exchange

The term transaction is mainly associated with economic activity in buying and
selling goods. The Merriam-Webster Dictionary [Webster, 2005] describes trans-
action as “a communicative action or activity involving two parties or things that
reciprocally affect or influence each other as an exchange or transfer of goods, ser-
vices, or funds”. The Wikipedia Online Encyclopedia [Wikipedia, 2005] describes
transaction as “a change in the status of the finances of two or more businesses
or individual”. Transaction consists of reciprocal actions in exchanging resources,
resulting the change of status of each individual involved in the transaction.

Coleman [Coleman, 1990, p132] explains general framework of exchange in social
system. The system of exchange consists of actors and resources or events. Re-
sources are usually associated with, but not restricted to, goods or physical objects,
and events with services by which the desired event occurs given the service.

Every actor has interest on set of resources as well as control over set of
resources. The system begins with the initial distributions of control of actors over
resources. Every actor pursues resources he interests to which might be under the
control of other actors. When actors meet each other and decide that the exchange

6 Chapter 2. Backgrounds and Related Works

(a) Barter (b) Promise to Pay (c) Promise of third party

(d) Ringtausch (e) Promise of Central Bank (f) Cashless System

Figure 2.1: Structures of Exchange [Coleman, 1990, p.122-125] resources {g + s},
promises {Pa ,Pb ,Pd}

of control of resources is best to satisfy them, then the transaction occurs. That
is, one actor gives his control of the resources to his transacting partner(s) and vice
versa. This reciprocal action is called exchange.

2.1.1 Structures of Exchange

Coleman describes the structures of exchange, presented in figure 2.1, which have
been practiced within social system. The oldest and known mechanism is so-called
Barter exchange initiated by two or more actors who coincidentally have interest
in each others’ resources. Figure 2.1(a) illustrates the barter exchange in that two
actors reciprocally exchange their control over the resources at the same time.

However, since the chance of a double coincidence of wants is likely rare to
occur, human beings developed mechanisms to break apart the halves of the double
coincidence of barter transaction. Figure 2.1(b) illustrates a mechanism in which
one actor gives his control of resource to his partner, but the partner delivers him
with a promise to pay. Here, one actor has interest to the resources of other actor,

2.1. The System of Exchange 7

but the corresponding actor does not have yet the reciprocal interest. The pay-back
takes place later when the debiting actor has interest on the resource of owning
actor.

The promise-to-pay mechanism can also be accomplished by three actors. For
example, A has interest on the resource belonged to C , but B wants what A has,
and C wants what A has. Figure 2.1(c) shows how to accomplish the transaction.
First, A gives B his word that A will pay for resource that B delivers to him. Next,
B hands over A′s word to C for the resources that C gives to B . And at the end,
C claims A’s promise to be exchanged with resources that C wants from A.

Figure 2.1(d) illustrates a more extended mechanism so-called Ringtausch. The
structure of promise-to-pay is extended that it forms a ring of exchange. In this ring
of exchange, the word of promise-to-pay is passed from one actor to another, to be
exchanged of resources, until it comes back to the one who issued it.

The extention from promise-to-pay mechanism is what has been conducted in
today’s transaction system. Figure 2.1(e) shows the cash system in which central
bank has important role as the single trusted third-party issuing promise-to-pay
token which is used as medium of exchange within the domain of the country where
the central bank is the authority of the economy system.

The modern way to transact is shown in figure 2.1(f) where trusted clearing
house performs exchange settlement process. In cashless system, bits of information
stored in the clearing house represent the financial status of the actors. When
actors perform transaction, the process is reported to the clearing house by which
their records are changed according to the amount of transactions.

2.1.2 Money

The promise-to-pay mechanism described above has been developed into the state
where medium of exchange known as money is used to represent the promise-to-pay
token issued by the government. At the beginning, people used valuable material
such as silver and gold which are known as commodity money. Here, the prices
were standardized to the value of the material used. However, people found that
it was difficult to trade using gold or silver due to the weight and the form. More-
over, the properties of the material such as pure gold can be very weak in certain
circumstances.

In order to accommodate this issues, the government, through central bank,
issued fiduciary money, tokens made from non-valuable but relative robust material,
such as metal or paper. In this monetary system, the total value of issued fiduciary
money should be the same as the total value of gold stored in the central bank. That
is, the gold stored is the guarantee of promise-to-pay by the central bank.

Nowday’s monetary system uses fiat money which is less than such promise. It
is declaration from the government that the currency is legal tender for all debts

8 Chapter 2. Backgrounds and Related Works

within the domain of the government. Thus, fiat money is accepted because gov-
ernment legalizes its presence and guarantees the continuity in using that money in
the domain of the government.

2.1.3 Some Important Remarks

Despite the limitation that the probability of double coincidence of wants is low, one
can take advantage of Barter exchange from its simplicity. Assuming the agreement
is already established and fair for both sides, then the transaction is relatively easy
to conduct. Accomplishing transaction requires only the transacting actors to be
involved in the exchange and no further actions or conditions should be concerned
after the completion. Hence, Barter exchange does not require that the actors knew
each other prior to transaction. That is, transaction can be instantly happened even
by strangers.

On the other hand, promises-to-pay inhibits interdependent relations among
actors. One actor depends on the word of other that he will pay back the debt.
It also introduces time lag between the investment, as the debiting actor hands over
his control over resources to the owing actor, and the completion of the transaction,
as the owing actor fulfill his promise. Indeed, this mechanism introduces the risk
and thus requires trust to be established before transaction takes place.

With respect to Barter exchange, one might find that the using of money as
medium of exchange exhibits the same properties of Barter exchange. Of course
actors can buy resources using money without previously knowing each other. In
fact, the lack of trust can also be eliminated, since one could previously examine
the goods before buying. However, one tends to forget the role of government that
guarantees the continuity in using the money. Thus, instantaneous transaction using
money is possible because there is underlying social and economic infrastructure,
which in this case is performed by government, that might be transparent to the
traders.

2.2 Transactions in Distributed Systems

Generally, the term electronic transactions is used to describe the actions in ex-
changing information among distributed and networked computers that affect each
other’s states. In order to reach the objective of particular transaction, these actions
are specified and regulated by set of protocols or algorithms.

Database transaction, for example, is the actions implicating the change of state
of the objects or records managed by a database server [Coulouris et al., 2001]. The
objective of the protocol is to ensure that all objects remain in consistent state given
multiple transactions or concurrency access. The two-phase-commit protocol is the
example of transaction algorithm used in database system. It brings the parties from

2.2. Transactions in Distributed Systems 9

Figure 2.2: Typical Transaction Stages

initial states of transaction to the synchronized final states: whether the requested
transaction is committed or aborted. Here, the database server is the central entity
that manages all transactions and connections made by database clients, as well as
performs access control to every objects stored in the database.

As exemplified in the description above, most of the transaction protocols in
distributed systems utilize central entity that administers transactions. It simplifies
the interactions needed to reach the objective of the transaction and helps in the
design of the system to eliminate particular constrains which can be solved utilizing
central entity. However, it introduces single point of failure such that the failure of
central entity in delivering its functions would affect the whole system.

Furthermore, conducting transaction over open and distributed network infras-
tructure raises some issues namely how to accomplish authentication, authorization,
as well as accountability. Figure 2.2 illustrates typical electronic transaction scheme
where authentication and authorization stages has to be done before the intended
transaction settlement can be carried out. Here, every important change in each
stage should be recorded using accounting mechanism to promote accountability.
The following descriptions sketch techniques in accomplishing authentication, au-
thorization, and accountability which have been used in digital transactions.

2.2.1 Authentication

One of the major problems in conducting transactions open and distributed com-
puter systems is the lack of message authenticity. Messages transmitted in open
network can be produced, manipulated, and reproduced by any node connected
to the network. Therefore, the authentication protocols are designed to establish
the properties of authenticity, integrity, and freshness of messages [Anderson, 2001].
Thus, the transaction of authentication brings communicating parties to the state
that every party believes that it talks with genuine one.

The modern authentication protocol incorporates cryptographic algorithms to

10 Chapter 2. Backgrounds and Related Works

establish security properties in which cryptographic keys are used to verify creden-
tials. The keying materials and credentials are stored and managed by central entity.
Here, the central entity is called trusted entity, thereby the parties should trust the
entity to administer the authentication sessions or to deliver the valid authentica-
tion related information. The failure of trusted entity would break the security of
the system. Therefore, one of the objective of the research in this area is to design
trustworthy system, the system that never fails in delivering its security functions.

Some of the authentication protocols which have been used in distributed system
are the Needham-Schroeder Protocol [Needham and Schroeder, 1978], the Kerberos
Protocol [Steiner et al., 1988], and their derivatives. These protocols require the exis-
tence of trusted entity to manage keys and to establish authentication session among
principals. The X.509 Public-Key Infrastructure framework, which was originated
from MIT Bachelor Thesis in 1978 [Kohnfelder, 1978], incorporates trusted-third-
party so-called Certification Authority to administer digital-certificates. Despite the
fact that some have criticized its implementation [Ellison and Schneier, 2000], the
X.509 digital-certificates have been widely used for authenticating web sites and
emails, as well as providing tools for legal infrastructure of Internet commerce.

2.2.2 Authorization

After authentication is established in which credentials are verified and validated, a
principal should determine into which states its system are allowed to engage given
access from authenticated party and particular circumstances; such as time and
location. That is, authorization is about the rules of what are allowed and what
are not allowed in the system. System policy defines these rules and access control
mechanism enforces them.

In security perspective, authorization is about capabilities or permissions for
the accessors, in accessing objects under authority of the system. The permission
structure is modeled in access control model such as Multi Level Security (MLS) used
in military information system, Discretionary Access Control (DAC) which have
been implemented in file system permission on UNIX operating system, and Role
Based Access Control (RBAC) which gives one more flexibility to express security
policy.

In a broader perspective, authorization is about all means in sustaining the
system behavior to conform with the system policy. In this context, system policy
concerns not only security policy, but also general policy such as business policy and
organization policy. For example, an online credit-card based payment system is
designed that it could only authorize transactions with worth under 1000 Euro for
silver member, or an SMTP server in an organization should reject incoming e-mail
whose size is over 50 Megabytes, etc.

In distributed systems, every party enforces the rules locally. However, in large

2.2. Transactions in Distributed Systems 11

systems these rules are so complex and dynamic that it should be managed by
the trusted entity. The parties retrieve authorization related information from the
trusted entity and use these information as parameters in deciding whether to au-
thorize or not to authorize the access.

Trust Management

Modern authorization and authentication for distributed systems requires general
framework which has more flexibility in expressing security policy. Trust Manage-
ment introduced by Blaze et al. [Blaze et al., 1996] offers an unified approach in
specifying and interpreting security policies, credentials, and relationships. In their
paper, Blaze et al. proposed the first Trust Management entitled with PolicyMaker
in which credentials and policies are referred to as assertions. These assertions
can be programmed in any programming languages from which flexibility is gained.
Moreover, compliance proofs, that all policies are satisfactory and compliance to
each other, can be conducted through repeated evaluation of those assertions. In
other words, the language enables policy verification using model checking. The
KeyNote [Blaze et al., 1999a] Trust Management was developed as enhancement
of PolicyMaker in which authors aims to include standardization of policy and to
design the framework that is easy to be integrated into applications.

Some other trust managements are Referee [Chu et al., 1997], Fidelis [Yao, 2003],
Cassandra [Becker and Sewell, 2004], RT [Li and Mitchell, 2003], and Sultan [Gran-
dison and Sloman, 2001]. Each trust management is designed to achieve special
features. Sultan, for example, is trust management specializing on reputation based
authorization. The policy language in Sultan is designed to include reputation in-
formation of each node according to managed reputation system.

Note that the Trust Management does not directly enforce those policies [Blaze
et al., 1999b]. It works like trusted reference for the whole network. Making sure
that every party complies with the global policy is still unanswered.

2.2.3 Accounting and Accountability

In digital transaction, accountability is about function and capability of the system
to record and track important changes caused by one’s action and use it as the proof.
It should answer at least the questions of who, what, and when, regarding the change.
In the implementation the recording function of accountability is implemented using
accounting system.

In the context of security, accountability is focused on all means in knowing,
recording, and proving who is responsible for an action causing the change in the
system. Accounting mechanism should able to record authentication and authoriza-
tion sessions, as well as any security related information regarding the change. Good

12 Chapter 2. Backgrounds and Related Works

accounting should promote the state of non-repudiation, that party whose action has
changed the system won’t be able to deny his action.

Nevertheless, accounting system is not to be used only for accountability in the
context of security. Accounting mechanism in database system is designed that one
should be able to store the audit trails of the transactions in order to have capability
to replay-back the transactions when the database crashes or inconsistent.

In e-commerce, accounting is mandatory in order to record changes of financial
status of the parties performing business transactions. Here, accounting system is
the core system providing centralized electronic accountancy system in distributed
system. Accounting agency is usually performed by the Bank or authorized payment
gateway.

An operating system provides accounting service for its applications. The ac-
counting information are stored in log files which are protected in order to maintain
their integrity. The Unix operating system, for example, provides so-called syslog
daemon to provide logging service to the other process. The logs are stored in
/var/log directory which is owned by the root. In networked systems, it is necessary
to store the accounting related information in an accounting server. The Internet
Service Provider (ISP), for example, uses Radius server to store all connections made
by the customers for billing and auditing purposes. In order to maintain integrity,
accounting database and log files are periodically backup-ed and digitally-signed
before being stored in the protected media.

2.2.4 The Roles of TTP in Accomplishing Transactions

Previous description gives a perspective of the roles of TTP is in completing the
transactions. The following passages describes common roles of TTP:

à Establishing Trust
Without doubt, trust is adherence of collaboration. TTP provides establish-
ment of trust in such way that TTP guarantees that the party whom it trusts
can also be trusted by other parties. Here, trust relations establishes in hier-
archical form where TTP is located at the root of the tree. Thus, by trusting
the root of trust, parties located in the leaves of the hierarchy are able to trust
each other.

à Guarantee Fairness
In an exchange, it is necessary to have final state where all transacting parties
get the resources according to the agreement. In order to simplify the mecha-
nism a TTP is incorporated in the system to facilitate the exchange. The role
of TTP is to re-balance unfairness for the party that hands over his resources
first [Nenadic, 2005]. For example, TTP collects resources from all parties,
verifies them, and ensures their deliverability to the destined parties.

2.3. Transactions without Trusted Third Party 13

à Enforce Non-Repudiation
Some transactions require the state where no party can deny the action it has
made. This property is called non-repudiation which in real life is performed
through legal witnesses or using signatures. Here, TTP witnesses important
actions being done in the transactions and performs its role as agency of ac-
countability. In the PKI, the TTP is performed by Certification Authority or
Validation Authority providing notary services to its customers.

à Legal Agency of Accountancy
Electronic payment systems needs centralized scheme to provide core business
transactions with legal accounting agency. TTP, which is usually performed by
the Bank, manages member’s accounts and responsible of all changes during
business transactions.

2.3 Transactions without Trusted Third Party

Previous description illustrated how important the TTP is in completing transac-
tions. This section, however, discusses and reviews some approaches in which the
usage of TTP can be reduced or eliminated. There are two identified approach,
first, is the use of ad-hoc protocol to solve specific problems. Second, is to promote
collaboration or coordination in communities to work together in order to deliver
the function of TTP.

2.3.1 Ad-Hoc Protocols

Ad-Hoc protocol is algorithm to solve specific transaction problem that does not
require long-term authentication or accountability. It is mostly designed for Ad-
Hoc network and has advantage that it can be used to complete instantaneous
transactions among strangers. Some of the protocol is able to maintain anonymity
whilst the parties carry out the transaction.

The analogy of Ad-Hoc protocol is Barter exchange. They are simple and can
solve instantaneous transaction, even among complete strangers. Yet, the drawback
remains, that sustainability of trust can not be achieved using the protocol. There-
fore, it can be implemented to solve only special transaction problem. The following
description reviews known Ad-Hoc protocols.

Gradual Releases Fair Exchange Protocols

Fair exchange protocol is the analogue of barter exchange conducted in online envi-
ronment. The purpose of fair exchange is to allow two or more parties to reciprocally
exchange their resources in such a way that every party gives the resource away if
and only if it receives wished resource in return.

14 Chapter 2. Backgrounds and Related Works

Some of fair exchange protocols are designed that they don’t need TTP to balance
unfairness. The typical mechanism of this protocol is that in every state one party
releases a chunk of his resource to whom he is exchanging and receives a chunk
of wished resource from his counterpart. This exchange is repeated in that all
parties gradually receive the resources. At the final state of the protocol, all parties
should receive the all chunks from that the complete exchanged resources can be
constructed. Here, both parties need no third party to facilitate the exchange.

Earlier development of fair exchange protocol was concentrated on how to ex-
change secret [Blum, 1983, Okamoto and Ohta, 1994, Damgard, 1994]. In the first
stage of the protocol, each party computes and declares his commitment of his se-
cret using Zero-Knowledge-Proof protocol (ZN)1. Next, the secrets are exchanged
in turn-based mechanism. In every turn, each party verifies the chunk he receives
with the correspondent commitment. At the final state, every party should have the
complete set of verified chunks and thus the secrets can be constructed.

Okamoto and Ohta [Okamoto and Ohta, 1994] developed the application of the
gradual releases fair exchange protocol to solve the problem of exchanging digital-
signatures of the contract document. In this problem, one party is given opportunity
to cheat by not giving his signature after receiving his partner’s signature. Here,
the victim is the only one who is accountable for the contract document from which
the cheater might take advantage. By conducting the protocol, each party should
possess counterpart’s signature at the end of the protocol.

Nonetheless, Nenadic [Nenadic, 2005] pointed out that fair exchange protocols
that is based on gradual release of secret is impractical for real-life application. One
of the reason is the protocol requires large number of communication costs between
parties to conduct the ZN protocol. Moreover, it introduces opportunity to conduct
semantic or syntactic attack to reveal the secrets having sufficient information that
one already received during protocol run. That is, one stops the protocol after
revealing the complete information from incomplete information being exchanged.

Key Agreement Protocols

Symmetric cryptography allows two party to secretly exchange information over
public network. Yet, the problem of exchanging cryptographic keys over the network
has been the problem for security experts.

Diffie and Helmann [Society, 1999] were among the first who found the first
step towards key agreement protocol in that both parties are able to agree on a
key without utilizing TTP. Suppose A and B are the parties who want to exchange
information and need to agree on a symmetric key. First, A and B agree on a prime

1The Zero-Knowledge-Proof protocol is cryptographic protocol which enables one to prove to
other that he owns particular information without revealing it to others. For further reading on ZN
please see [Quisquater et al., 1989] [Goldwasser et al., 1989] [Ben-Or et al., 1990]

2.3. Transactions without Trusted Third Party 15

p and integer α ∈ Zp . Then, A chooses random integer ia such that 0 ≤ ia ≤ p − 2
and sends αia mod p to B . At the same time, B chooses random integer ib where
0 ≤ ib ≤ p − 2 and sends αib mod p to A. A computes Kab =

(
αib

)ia mod p and
B computes Kab =

(
αia

)ib mod p. That is, both parties end up having the same
Kab which is the symmetric key used to encrypt or decrypt information transmitted
between them.

Unfortunately, the simple Diffie-Helmann protocol suffers from man-in-the-
middle attack. That is, the malicious party could intercept the communication
and pretends that he is genuine party. Therefore, enhancement of Diffie-Helmann
protocol was developed, the so-called authenticated key agreement. The examples
of this protocol are Station-to-Station protocol (STS) [Diffie et al., 1992] and MTI
Key agreement protocol [Matsumoto et al., 1986].

Cocaine Auction Protocol

Cocaine Auction Protocol [Stajano and Anderson, 2000] is an auction protocol that
utilizes anonymous broadcast protocol to complete auction amongst anonymous par-
ties. The purpose is that the bidding process remains anonymous but at the end
seller is able to authenticate the winner of the bidding.

Let e and N be public key component of a public-key encryption algorithm.
Seller starts the auction by broadcasting components of public-key e and N . In
every round of the bidding, seller announces a raised price which will be answered
by bidder who commits to buy on that price by broadcasting exi (mod N), where xi

is nonce chosen arbitrarily by bidder bi in round i .
In the last round j where nobody answer the proposed price, the winner of the

bidding is the one who has answered on round j − 1 with exj−1 mod N . In order
to identify wj−1, the seller chooses a nonce y and performs a Diffie-Hellman Key
Exchange with the winner wj−1 by broadcasting the appointment encrypted under
the session key exj−1y (mod N). Thus, wj−1 is the only buyer who can compute this
key.

During protocol run, nobody can reveal xi from exi (mod N) except the seller
himself who has the correspondent private-key. Thus, anonymity of the bidder
can be protected. Stajano and Anderson named the protocol “Cocaine Auction
Protocol” because this is associated with typical problem exists amongst Cocaine
mafia, in which no dealer wants his identity to be revealed to others for their security
against law.

2.3.2 Completing Transactions with Collaboration

This description reviews some of the approach which promotes collaboration in the
absent of TTP. Most of the approaches utilize the Threshold Cryptography system

16 Chapter 2. Backgrounds and Related Works

in order to jointly replace the function of CA in the PKI. The t-out-of-n threshold
cryptography provides collective signaturing scheme which allows t peers out of n
peers to perform the signature. Thus, availability of the peers can be preserved
during the absence of n − t peers and the security of the secret can be protected
since the system needs at least t peers to reveal the secret.

The PGP’s Web of Trust

In contrary to PKI, the Pretty Good Privacy (PGP) promotes group authentica-
tion which does not rely on Certification Authority. Instead of having hierarchical
structures, the trust relations established in form of chain of trust. Each PGP user
certifies or digital-signs other’s certificate whom he knows or trusts establishing mesh
structure of certification. Through this structures a user x can search through the
chain to find out whether user y is trusted, e.g. belongs to the x chains of trust.
This process can be explained by the following example.

Let X << Y >> represents that X certifies PGP certificate of Y . A user
Bobby needs to communicate with Alice. In order to trust this certificate Bobby
should find chain which links his certificate to Alice’s certificate. Bobby obtains
Alice’s PGP certificates and finds out that Peter ,Petra,Mormann << Alice >>.
Next, he obtains all certificates of Alice’s certificate certifier and finds out that
Zara,Tabitha << Mormann >>. During the search, Bobby finds a final link that
Bobby ,Shara << Tabitha >>. Thus, he can trust Alice’s certificate from the chain:

Bobby << Tabitha >>→ Tabitha << Mormann >>→ Mormann << Alice >>

Group Authentication among Mobile Devices

Establishing authentication in decentralized network is difficult to accomplish since
the nodes come and go and anonymity should be place on the first priority. Nev-
ertheless, in order to conduct continuous relationships among peers in the sense of
transaction, authentication is the key. Quercia et al. [Quercia et al., 2004] propose
an authentication framework for decentralized network which offers unique identifi-
cation, off-line authentication, and non-repudiation, but still maintains anonymity.

The key to establish such framework lays on the extensive use of blind t-out-of-n
threshold signatures algorithm. During group bootstrapping, the members jointly
generate group public-key as well as n secrets using protocol proposed by [Boneh and
Franklin, 2001] and jointly certify each other’s public-key using t-out-of-n threshold
signatures. In order to prevent disposable pseudonyms, each prospective member
should run through 5-steps induction protocol from which he should get responses
from the quorum t members in form of his certificate as well as receiving his part of
secrets to be used in joint t-out-of-n signatures. Using this scheme, two member can

2.3. Transactions without Trusted Third Party 17

authenticate each other directly using their certificates without using online services
of TTP.

Incentive Based Accounting for P2P Network

“Free-riders” problem has been known as major problem in P2P system: peers that
consume other’s resources more than their fair share of a resource. In order to devise
this problem, some have developed solutions that are based on coordination among
peers. There are two approaches developed to overcome this issue [Androutsellis-
Theotokis and Spinellis, 2004]. The first is based on the reputation system that
consists of collaboration procedures that advises peers on the information of frequent
uploaders and free-riders. Based on the advisory every peer can select who can
download the files from it and who doesn’t. Eigentrust [Sepandar D. Kamvar, 2003,
Li et al., 2005] reputation system is one of the effort belongs to this approach.

The second approach is to develop mechanism that balances the traffic between
upload and download. However, there are very few that bases their solutions not to
use TTP. Some of them are Yu and Singh [Yu and Singh, 2003] and Vishnumurthy
et al. [Vishnumurthy et al., 2003]. Yu and Singh introduces model of dynamic
pricing and micro-payment system that based on referral system. Vishnumurthy et
al. develops an economic framework so-called Karma. It is based on coordination
protocol performed by set of peers called bank-set that keeps track of accountability
in the system. Each peer refer to the bank-set to authorize the request of resources
from others.

Token Based Accounting for P2P Network

There are very few system for decentralized system, i.e. P2P, designed to deliver
the function of accounting that close to day-to-day trading system. One of them is
proposed by Liebau et. al. [Liebau et al., 2004, 2005] which is based on coordination
among the peers. This system presumes that authentication is already setup, i.e. by
a CA or group authentication described above, and that reputation system is setup
and has been working to identify trustworthy peers.

The coordination system splits the community into a group of trusted peers, a
group of account holders, and the rest are the transacting peers. At the beginning
the trusted peers generates t-out-of-n threshold secrets in order to jointly sign the
tokens. The account holders manages all peers accounts which is propagated using
Distributed Hash Table (DHT). Both groups are composed from selected trustworthy
peers identified using reputation system.

In this system, a token holds the name of the owner as well as the account ID that
peer has in the account list. To obtain new tokens, the transacting peer locates one
of the trusted peer and send the collected foreign tokens which he already got during

18 Chapter 2. Backgrounds and Related Works

previous transactions. The trusted peer checks the tokens against the account of
transacting peer maintained by account holders. After the checking, the requested
trusted peer locates the other trusted peers in the group and sends the unsigned
new tokens. The quorum t-out-of-n of trusted peers jointly sign new tokens and
send them to transacting peer. The transacting peer combines all partial signatures
and thus new signed tokens are obtained.

In order to conduct the transactions, the peer who acts as service consumer signs
the token and sends it to the service provider peers. The service provider validates
the token against double spending through the account holders. After transaction,
the account of service consumer should decrease and one from service provider should
increase according to the token spent. The service provider can obtain the collected
tokens by performing the algorithm mentioned in the paragraph above.

2.4 Trust in Computer Mediated Transactions

2.4.1 The Notion of Trust in Computer Security

Internet, to which the world of online transactions is referred, weakens particular
properties that one finds in physical interactions. The clear example is the lack
of authentication which was discussed earlier. In this respect, information security
offers solutions to overcome these problems in which the objective is to establish
trust.

In the context of information security, trust refers to the establishment of security
properties in the system, namely authentication, secrecy, availability, as well as
non-repudiation. The establishment of these properties emerges trust infrastructure
allowing Internet users to conduct various applications. E-commerce, for example, is
considered to be the killer application of Internet that has high degree of dependency
on the trust infrastructure.

The Problem

Recently, the PKI has been supporting the establishment of trust infrastructure
for electronic transactions making Internet as considerably a safe place for doing
business. Nevertheless, it is not sufficient to completely substitute the all properties
that one finds in physical interaction. An Internet-shopper, for instance, can not
directly examine quality of the goods sold at an online-shop. Nor he can not judge
the performance and the after sale service of the shop, eventhough the online-shop’s
web server is secured using certified SSL and all e-papers are digitally-signed. It is
common that the Internet-shopper should pay the goods he buys in advance before
he finally receives them. Here, Internet-shopper is taking the risk that he might
receive bad quality of goods or poor after sale service.

2.4. Trust in Computer Mediated Transactions 19

Similarly, the fair exchange protocol provides a method to guarantee the deliver-
ability of exchanged resources. Though, it can not guarantee how long does it take
for a party to deliver it, or to make sure that one party does not cheat delivering
information which is contextually not worthy.

It is clear that conducting online transactions imposes the risk to the party who
should rely on other’s actions. One should be willing to trust his partner in order to
achieve mutual goal. Lack of trust presents obstacle as one might waste his time as
well as resources to build protection measures [Josang et al., 2005]. Thus, one of the
agenda in development of Internet trust infrastructure is to incorporate interpersonal
trust, the notion of trust found in social relationships, into the framework.

2.4.2 Interpersonal Trust

Trust is the notion that one often finds in engaging social relationships with oth-
ers. Trust is important for human beings that without one there exists no society.
Therefore, sociologists have been studying this notion quite extensively.

In the study of trust, the “first sociology”2 considers the role of trust as beneficial
for society as a whole. Misztal [Misztal, 1996], who reviewed sociological literatures
of trust, identified the first two functions of trust in this area, namely (i) trust as
having integrative function to bring social order in society and (ii) trust in playing
its role as reduction of complexity. However, the “first sociology” refuse the study
of trust to be reduced below the level of social system and thus fail to explain the
notion of trust in individual level [Buskens, 1999].

In a cooperation, it is common that one should trust by relying himself to other
in order to achieve mutual goal. Thus, unwillingness caused by distrust presents
obstacles in the cooperation. This kind of trust is the notion that one founds in
interpersonal relationships on which the “second sociology” emphasizes the expla-
nation of the third function of trust (iii) as lubricant for cooperation. This study of
trust is closely related with the investigation of trust in online transactions.

2.4.3 Interpersonal Trust in Computer Mediated Transactions

Consider the case of Internet shopping above, the lack of physical interaction places
the Internet-shopper in uncertainty, whether online-shop will perform accordingly to
what he expects. Moreover, it is possible that the both parties are not located under
the same jurisdiction of law. Hence, legal contract can not be established implying
that online-shopper has no control on online-shop. Presented with uncertainty and

2Sztompka [Stompzka, 1999] considers two mainstream of sociology: the first sociology focuses
on “social organisms” - the system as a whole, and the second sociology focuses on “human animals”
- the individuals, their relationships, and actions.

20 Chapter 2. Backgrounds and Related Works

uncontrollability, one needs trust [Stompzka, 1999] in that one actor takes risk to
rely the outcome of transaction on the performance of other actors.

Before deciding to proceed with transaction, Internet-shopper must consider the
risk of the transaction as well as his expectation that the online-shop will perform
accordingly. The more his expectation is, the more chance that Internet-shopper will
place trust. Conversely, the less the expectation is, the less chance that Internet-
shopper will place trust.

The Trust Game

Figure 2.3: The Trust Game

Both Internet-shopper and online-shop play the trust game in which Internet-
shopper plays as Trustor, who faces the trust dilemma, and the online-shop plays
as Trustee, who is the subject of trust. Figure 2.3 illustrates the trust game where
trustor has two choices; whether to place trust or not. When trustor does not place
trust then the game end in which nobody receives or gains anything. On the other
hand, when trustor decides to place trust, he opens the opportunity for the trustee
whether to honor or to abuse the trust.

If online-shop decides to honor the trust by performing the delivery of goods
and behaving as expected, then Internet-shopper will be happy and consequently
the degree of expectation towards the online-shop increases. In contrast, if online-
shop abuses the trust, then the Internet-shopper will be disappointed. This means
that online-shop ruins the trust towards him and thus the degree of expectation
decreases.

Evolution of Trust

McKnight and Chervany [Mcknight and Chervany, 1996] distinguish between context
independent trust and context dependent trust. Context independent trust is about
expectation that one has towards other. It is the degree of believe that someone
will perform something that one expects, or in other words expectation on trustee

2.4. Trust in Computer Mediated Transactions 21

reliability. Context dependent trust is about one’s action to rely to someone else;
the decision to trust and to take risk.

Figure 2.4: The Change of Context Independent Trust in a Trust Game

Figure 2.4 presents the evolution of context independent trust in a trust game.
In the beginning of the game, trustor has certain degree of trust towards trustee
which is used as considerations in the trust decision. Further, the actions of the
trustee implies consequences observed by trustor. This observation alters the degree
of context independent trust which will be used by trustor in the next game dealing
with the particular trustee. When the game is repeated, one can see the dynamic
of trust relation between a trustor and a trustee. After several transactions with
particular online-shop, Internet-shopper gathers some experiences from which he can
conclude the trustworthiness of online-shop.

Recommendation and Reputation System

In real life, it is seldom that one would take risk transacting with the stranger. How
can trustor conclude trustworthiness of trustee when trustor has no previous expe-
riences with the trustee. This is typical zero knowledge problem which one often
finds in conducting transactions over Internet. In order to tackle this problem, hu-
man beings had developed mechanism of recommendation in which trustor gathers
information from second hand referrals who have previous experiences with the par-
ticular trustee. These information are recommendations from others which supports
the trustor in making decision trust.

The mechanism of recommendation makes use transitivity property of trust. A
trustor trusts a trustee partly based on trust of other towards the trustee. Figure
2.53 shows the structures of trust relationship which some of them exhibits trust
transitivity. The direct trust is direct trust relationship between a trustor and a
trustee without any influence from other. The guarantee scheme introduces an in-
termediary who acts as guarantor for the trustee. The PKI, for example, establishes
CA as the root of trust providing guarantee to other that any digital-certificate is-
sued by the CA contain genuine public-key of the person mentioned in the certificate.

3Some of them are taken from Coleman [Coleman, 1990, p182]

22 Chapter 2. Backgrounds and Related Works

Figure 2.5: Structures of Trust Relationship

On the other hand, intermediary in recommendation scheme does not provide guar-
antee to the trustor. The intermediary only acts as second hand referral providing
advisory to the trustor from which trust relationship from the trustor to the trustee
can be initiated. The recommendations from all second hand referrals derives the
reputation of trustee. It represents what is generally being said about the trustee.

Today’s online-markets have been providing their users with the feedback and
rating system which is based on the mechanism of recommendation and reputation.
The system provides a centralized place where user can post their opinions about the
results of previous experiences with other users for communal security. The biggest
Internet auction site Ebay4, for example, provides its users with the qualitative
feedback and quantitative rating system in which those information are made public
to be used by users in supporting their decision to trust particular user. Here,
the whole ratings earned by each user are summed and computed by the system
to derive reputation of the particular user and presented with the symbols and
numbers. Instead of examining all qualitative feedbacks, a user is able to conclude
trustworthiness of other by assessing correspondent quantitative value of reputation
provided by system.

This system is well known as reputation system. It is based on quantitative
method to express opinions or ratings, rating aggregation, as well as method to
compute or derive reputation.

4http://www.ebay.com

2.4. Trust in Computer Mediated Transactions 23

2.4.4 Computational Trust

The effort to bring notion of trust in computer science came from Distributed Ar-
tificial Intelligent (DAI) area. Marsh [Marsh, 1994] is amongst the first who intro-
duced this notion to computer science. He developed set of formalization of trust
for DAI which is helpful to clarify the discussion of this notion and to develop com-
mon framework of trust. The formalization uses quantitative values of [−1,+1) to
express trust relation between two agents. It covers temporal considerations, i.e.
how trust is changing through time, as well as non-temporal considerations, such as
knowledge, importance, situational, and utility. The trusting decision is determined
with cooperation threshold which takes into account several parameters including
perceived risk and perceived competence as well as perceived degree of importance
to cooperate.

Since then, the research have been heavily focused on method of trust com-
putation for reputation systems in which trust is mostly perceived as probability.
Josang et. al. [Jøsang et al., 2005] conducted survey on trust and reputation sys-
tem for online service provision in which they identified six categories of reputation
computation engines:

à Average System
In this system, trustworthiness of trustee is expressed with numerical value
and computed using simple summation and average. Ebay reputation system
uses this simple model which is described by Resnick et al. [Resnick and
Zeckhauser, 2002].

à Discrete Model
In this model, trustworthiness of trustee is expressed using discrete value which
represents qualitative measure. Abdul-Rahman and Hailes [Abdul-Rahman
and Hailes, 2000], for example, use the range of discrete values from Very
Trustworthy, Trustworthy, Untrustworthy, to Very Untrustworthy. In order to
determine trustee reputation, trustor should use a lookup table in which the
level of trustworthiness of trustee is upgraded / downgraded according to the
rating from others.

à Bayesian Systems
This system takes binary ratings as input and computes reputation using
bayesian algorithm. The Beta reputation system [Ismail and Jøsang, 2002],
for example, counts all positive experiences as well as negative experiences
and uses Beta density functions to compute reputation scores.

à Belief Models
Belief model was proposed by Josang [Josang, 1999] in which the belief of an

24 Chapter 2. Backgrounds and Related Works

assertion, i.e. that agent x is trustworthy, is expressed with belief metrics
(b, d , u) where b, d , and u represent belief, disbelief, and uncertainty, respec-
tively. This model provides consensus operator to compute reputation. The
operator takes the two paths of belief and combines them into one belief.

à Fuzzy Models
This model incorporates fuzzy concept where trust and reputation is repre-
sented using membership functions which describe to what degree an agent
can be described. Manchala [Manchala, 1998] proposed this scheme followed
by Sabater and Sierra who proposed REGRET reputation system [Sabater and
Sierra, 2001].

à Flow Models
This system uses computation of trust and reputation based on transitive
iterations through weighted looped arbitrarily chains. Google PageRank [Page
et al., 1998] and Eigentrust [Sepandar D. Kamvar, 2003] reputation scheme for
Peer-to-Peer network fall into this model.

Despite the rapid development of the method for computating trust and reputation,
there are few, however, who study trust in the context of decision making as well as
the the impact of reputation system in the system of agents. One of them is [Jøsang
and Presti, 2004] who study decision trust in corelation with risk.

2.5 Summary

This chapter presented backgrounds and some works which are related with this
thesis. First, structures of exchange in social system are reviewed in which some of
important remarks are notified. Next, survey of mechanism to complete transactions
are presented focusing on those that minimalizes the use of TTP. The last section
discusses establishment of trust in computer mediated transactions. It gives the
understanding of the research and the trend in using interpersonal trust to socially
secure transactions.

25

Chapter 3

Transaction Basics

This chapter presents the development of system of accounts based on institutional
facts as well as corresponding accounting mechanism. It begins by discussing and
reformulating the problems in the respect of this research. Next, the concept of
institutional fact is discussed to introduce the possibility to develop system of ac-
counts. The next section presents transaction concept and its logic which is based
on creation and elimination of institutional facts. Finally, a transaction algorithm is
developed to show interactions and changes in the system in completing transactions.

3.1 Reformulating the Problem

Generally, people use money as medium of exchange in transactions. As mentioned
in previous chapter, money is accepted as medium exchange because government
legalizes its presence as well as guarantees the continuity of its use. The amount of
money that a person possesses in his account represents the state of finances of the
particular person.

During the transaction, money is physically being handed from one party to
the transacting partner implying the change of the states of finances of transacting
parties. The unique physical property of money circumvents the possibility for one
to spend the same coin in two or more events of transactions. It establishes an
accounting mechanism which is based on physical control.

The similar way applies also in electronic transactions. Transacting parties pos-
sess electronic accounts that are administered by the transaction server. The trans-
action server is under jurisdiction of trusted financial institution implying that the
bits of information stored under one’s account is regarded as the state of finances of
the particular person.

When transaction occurs, the server manages alteration of those bits. Thus,
the states of finances of transacting parties change. Here, overall structures of

26 Chapter 3. Transaction Basics

the electronic transaction system establishes centralized accounting mechanism for
transacting parties.

These illustrations show that in the system of transaction, an actor possesses an
account which represents his state of finances. These accounts are present because
of recognition of legal power of a trusted entity, e.g. the government in issuing the
money, or the financial institution in administering electronic accounts. An event
of transaction causes the change of states of finances of transacting parties that is
regulated using mechanism of accounting.

With respect to this research, the questions that arise are twofold: (i) how to
build the system of accounts representing states of finances of transacting parties in
that the accounts are presence and recognized without legal power of single trusted
entity, and (ii) how to develop accounting mechanism that regulates the change of
those accounts in the event of transaction.

To answer those questions, the search was started in investigating various col-
laboration schemes which have been developed socially by human being.

A so-called Arisan [Miguel et al., 2005, Dharmawan, 2002], for example, is In-
donesian informal savings club which exhibits an accounting mechanism based on
social actions. In this club, all members gather once every period and collect an
amount of money. A subset of members, who have their turn at the particular pe-
riod, receive the money. A session of savings ends when every member have got the
turn, and the new session starts with new set of random turns.

This social mechanism allows a member to “save” an amount of money to the
club and collects them on the assigned period. The interesting part is, that members
collectively witness who have received the money. Hence, everyone know who have
not received the turn and thus is able to determine who are next to receive. Collec-
tive actions in witnessing the events of transaction emerges a collective accounting
system. Here, part of the puzzle seems to have revealed, but how to socially present
the accounts is yet to find.

3.2 Establishing the Accounts with Institutional Fact

The presence of accounts as part of system of transaction developed in this thesis
is inspired by Searle’s theory on the Construction of Social Reality [Searle, 1995,
2005b,a]1. He explained how certain things emerge into reality as result of collective
intentionality of whose to make use of them. Money, for example, is precious for
those who share the intentionality that the piece of paper has economical value.
Thus, it makes the money to be used as medium of exchange. On the other hand,

1The use of Searle’s theory and the terminologies used in this chapter are arbitrary to be able to
design the transaction algorithm. There have been lots of discussions, critics, as well as comments
regarding the theory that can be found in [Smith and Searle, 2006, Smith, 2005].

3.2. Establishing the Accounts with Institutional Fact 27

the same piece of paper is worthless for those who don’t share the same intentionality.
In order to state the logical form of his theory, Searle proposed the formula of

statement:

”X count as Y in context of C”

which is known as count-as statement. To exemplify the formula, consider the
following statement:

“this piece of paper (X) counts as five euro-bill (Y) in Europe Union (C)”.

This statement is collectively accepted by citizens of all European countries that
are united in Europe Union. They share the same intentionality that that piece
of paper is money. Thus, it can be used as medium exchange within institution
of Europe Union. Searle entitled this with institutional fact. The fact that exists
relative to the context of institution and might not be the same in different context.
Hence, that piece of paper is regarded as five euro-bill only within Europe Union
and might not be used as money in Africa, for example.

The collective acceptance of a statement creating institutional fact enables the
deontic power2 of the fact. The fact that piece of paper in one’s wallet is five euro
bill enables one to pay dinner at restaurants in most of European countries. The
restaurant ought to accept it not only because the owner shares the intentionality
with his customer, but also that the socially constructed structures and the law on
which the restaurant resides say that it is obligation for him to accept that piece of
paper for the payment. The deontic power also enables the owner of the restaurant
to pay his employees with that piece of paper, etc. Searle stated that what applies
to money applies mutatis mutandis to marriage, property, government, and other
institutional facts.

In the ontology of social reality, being piece of paper is brute fact. As contrary
to Institutional fact, brute fact does not require the context of institution to occur.
In the example above, money is the function which is collectively assigned to that
piece of paper. Therefore, being emerged as money from a piece of paper is socially
real. That is, the institutional fact emerges the reality of the object which is stated
in the statement of the fact. Here, the collective acceptance of the fact gives those
objects the deontic power to be regarded and to function to as stated in the fact.
This inspiring work of Searle introduces a social scheme to answer the first question
discussed earlier, namely to collectively emerge the accounts of transacting parties
into reality.

To answer the second question consider the following illustration. There is a
village of a folk living together without government and written law. In order to

2“The powers that are constitutive of institutional facts are always matters of rights, duties,
obligations, commitments, authorizations, requirements, permissions and privileges”[Searle, 2005a]

28 Chapter 3. Transaction Basics

establish property relation between a man and his house, the folk uses simple social
recognition process. Collective acceptance of the statement “that house is property
of Mr. White” creates the institutional fact that establishes property relation of
that house to Mr. White. The deontic power gives Mr. White the right to use
that house as his private residence or to rent it to other person. In order to sell
the house to Mr. Black, White tells everyone in the folk that the house is sold
to Mr. Black. Everybody knows and accepts in the first place that owner of that
house is Mr. White. Therefore, the people allow this transaction to occur. That
is, they collectively reject the statement they have been accepted which eliminates
institutional fact establishing property relation of that house to Mr. White. At the
same time, the folk collectively accept the new statement “that house is property of
Mr. Black” creating institutional fact that establishes new relation property between
that house and Mr. Black. Here, the new institutional fact overrides the prior right
of ownership from Mr. White and transfer it to the new owner, Mr. Black.

This illustration shows that transaction can be carried out by collectively creating
and eliminating institutional facts. This idea is the basis for the developing the
transaction algorithm presented in this chapter.

3.3 Transaction Concept and Its Logic

Since the work of Searle, some authors [Jones and Sergot, 1996] [Artosi et al., 2004]
have developed the formal logic of institutional fact which concentrated on the es-
tablishment institutional fact and its deontic power. This section, however, develops
a simple logical notations of creation and elimination of institutional facts that helps
to explain the transaction concept. It shall not be the attempt to investigate Searle-
an institutional-fact-hood, but rather a proposal for algorithms to accomplish the
transaction.

The logical notations developed here is based largely on [Fagin et al., 1995] S5
knowledge system which is also used by [Artosi et al., 2004] in formulating mutual
belief in establishment of institutional fact. As companion to the explanation, figure
3.1 illustrates the creation and elimination of institutional fact among agents in a
community.

3.3.1 The Building Blocks

Community of Agents

A community, denoted with C , is an institution that consists of n agents interested in
conducting transaction with each other without the presence of trusted governor. An
agent in community C is not only autonomic entity, but also social entity. It bases

3.3. Transaction Concept and Its Logic 29

Figure 3.1: Creation and Elimination of Institutional Fact

its actions not only for the affair of itself but also for the affair of community, namely
participating in collective actions to complete transactions for mutual benefit.

Arbitrary Assertions p

According to Searle, Institutional fact is based on count-as assertion that is col-
lectively accepted by agents. The arbitrary assertion, denoted with f , is a triple
〈x , y , z 〉 that is to be read “this assertion has identification of x , y is arbitrary
relation property as which x is counted to be, and z is set of pair-attributes of x”.

Fundamental Axioms of Creation of Institutional Fact

Creation of institutional fact is based on acceptance of arbitrary assertion p. Modal
operator α is introduced to state “acceptance” of an assertion. Let 1 and 2 be two
of agents in community C . Using modal operator of acceptance, α1p states that
agent 1 accepts assertion p. Suppose agent 1 communicates his acceptance of p to
agent 2 implying that agent 2 knows α1p. Fagin et. al. denotes this with Kaα1p
that reads “agent 2 knows that agent 1 accept p”.

If agent 1 communicates α1p thorough agents, then everyone in community C
knows that α1p. This is denoted with the Fagin’s modal operator E such that
ECα1p that reads “every agent in community C knows that agent 1 accepts p”.

30 Chapter 3. Transaction Basics

The uppercase C as subscript in EC means every agent in C . ECα1p is true exactly
if everyone in community C knows α1p:

ECα1p ⇐⇒
∧

a ∈ C

Kaα1p

Consider that all agents in C accept p. They communicate their acceptance with
each other such that every agent knows that every agent in community C accept p:

EC∀i ∈ C : αip ⇐⇒
∧

a ∈ C

Ka∀i ∈ C : αip

It brings the community C to the state which is considerably sufficient for agents
to realize that they have collectively accepted p:

EC∀i ∈ C : αip =⇒ αCp (3.1)

αCp reads “community C collectively accept p”, or “p is collectively accepted by
community C”. This is the fundamental basis of the creation of the institutional
fact:

αCp ⇐⇒ �Cp (3.2)

where �Cp is to be read “it is institutional fact in community C that p”. That is,
an institutional fact is created if only if when all agents collectively accept the corre-
sponding assertion, and this acceptance is known by every agent in the community.

Note that in this proposed transaction algorithm, EC∀i ∈ C : αip is considerably
sufficient for agents to realize that collective acceptance has been reached. There
is no need to achieve common knowledge, which by Fagin et. al. is denoted with
CC sufficiently achieved from E k

C where k = {1, 2, ...}, since the unending loops to
achieve this is expensive.

Fundamental Axioms of Elimination of Institutional Fact

Elimination of institutional fact is accomplished more or less in the same way that
it was on its creation. Here, modal operator ϕ is introduced to state rejection of
institutional fact, such that ϕ1 �C p states that agent 1 rejects institutional fact
established from assertion p.

Consider that �Cp and agents in community want to eliminate �Cp to complete
a transaction, for example. To accomplish this, every agent rejects �Cp and let
others know its rejection:

EC∀i ∈ C : ϕi �C p ⇐⇒
∧

a ∈ C

Ka∀i ∈ C : ϕi �C p

3.3. Transaction Concept and Its Logic 31

that brings the community C to the state which is considerably sufficient for agents
to realize that they have collectively rejected �Cp:

EC∀i ∈ C : ϕi �C p =⇒ ϕC �C p (3.3)

Here, ϕC �C p reads “community C collectively reject that it is institutional fact in
community C that p”. Finally, basis for elimination of institutional fact is estab-
lished:

ϕC �C p ⇐⇒ ⊗Cp (3.4)

where ⊗Cp is to be read “it is no longer institutional fact in community C that p”.
To sum up, an institutional fact is eliminated if only if when all agents collectively
reject it and this rejection is known by every agent in the community C .

Fundamental Axioms of Approval of Transaction Proposal π

As illustrated by the case of Mr. White and Mr. Black, to conduct a transaction,
agents collectively accept set of assertions establishing new institutional facts, as
well as collectively reject set of already established institutional facts. In order
to accomplish this, transacting agents initiate transaction by communicating these
information to other agents in a transaction proposal. The transaction proposal,
denoted with π, is tuple 〈Pn ,Po〉 where Pn is set of proposed new assertions to be
accepted, and Po is set of institutional facts called to be rejected.

A modal operator λ is introduced to state approval of transaction proposal, such
that λ1π states that agent 1 approve π. If agent 1 communicates this approval to
others then every agent knows that agent 1 approve π (ECλ1π). If all agent approve
π and communicate their approval with each other then all agents know that they
have collectively approve π:

EC∀i ∈ C : λiπ =⇒ λCπ (3.5)

In the ideal condition, collective approval of π by community C should represent
the will of all agents in community. In certain condition or arrangement, however,
collective approval of π by number of m agents, where n

2 < m < n, may be suffi-
ciently recognized as collective approval of π by the majority of community:

EC∃≥m i ∈ C : λiπ =⇒ λCπ (3.6)

Here, ∃≥m i is the quantifier “there exists at least m i s such that”. In this respect,
condition represented in 3.6 superimposes condition in 3.5, such that the sum of all
agents in the community (n) is always greater or equal then the sum of agents (m)
which is arbitrary chosen to represent majority of community.

32 Chapter 3. Transaction Basics

The state when collective approval of transaction proposal π is reached is the
state when the corresponding transaction is allowed to occur. Thus, λCπ is defined
to be the establishment of the transaction it self, i.e. that agents collectively accept
all assertions in Pn and collective reject all institutional facts in Po :

λCπ
def
= ∀p ∈ Pn : αCp ∧ ∀q ∈ Po : ϕC q (3.7)

That is, if all agents (or majority of agents) approved a transaction proposal and
every agent in community know this approval, then it is assumed that transaction
had established at the same time that the proposal was approved. Thus, at this
state they have collectively accepted new assertions creating new institutional facts
as well as collectively rejected institutional facts contained in the proposal.

3.3.2 Components of Transactions

There are two types of assertions establishing two types institutional facts used in
the transactions. The first, is the institutional membership that is important to
establish recognition of membership of an agent in the community. The second is
Institutional-Money that establishes recognized medium exchange among agents in
the community. To ease the notation, assertions from the first type will be denoted
with p̂ (hat) and the second with p̃ (tilde). The following passages describe those
two in detail.

Institutional-Membership

Institutional-Membership is institutional fact establishing the member-
ship of an agent in community C . It is based on assertion p̂ =
〈idp̂ ,membership, {(agentid , b), (financestate, v)}〉. idp̂ is unique identification
of p̂, membership is semantically agreed term of “being a member” of a group or
community, and (agentid , b) is the attribute denoting identifier of the agent, which
in this example is b. The (financestate, v) attribute denotes the value of financial
status or state of finances of corresponding agent that is recognized by community.
This attribute is used only in the transaction scheme based on alteration of state
of finances which will be described later.

Collective acceptance of p̂ (αC p̂) creates an institutional-membership �C p̂ that
is the fact establishing idp̂ as recognition of membership of agent a in community C .
In order to ease the description, the corresponding agent is denoted using subscript.
Thus, institutional-membership of agent b ∈ C is denoted with �C p̂b and one of
agent s ∈ C with �C p̂s .

3.3. Transaction Concept and Its Logic 33

Institutional-Money

Institutional-Money is institutional fact establishing community money intended to
be used as general exchange medium in the trade. Institutional-Money, denoted
with �C p̃, is based on assertion p̃ = 〈idp̃ ,money , {(value, v) , (owner , idp̂)}〉. Here,
idp̃ is unique identifier of p̃, money is semantically agreed terms of being medium of
exchange, and (value, v) is the attribute establishing economical value of the money.
The (owner , idp̂) attribute establishes the owner of the money who is identified by
his institutional-membership idp̂ .

Collective acceptance of p̃ by community C (αC p̃) creates �C p̃ that is the fact
establishing idp̃ as community money as well as the ownership relation of idp̃ to the
owner-agent with corresponding institutional-membership is idp̂ .

3.3.3 Transaction Schemes

In this system, transaction is defined as :

Definition 3.1: Transaction is an exchange of trading objects between two or more
agents causing changes in states of finances of transacting agents, that are established
from institutional facts, all at once and consistently.

The word “consistently” in above definition means that how much buyer pays should
be as much as how much seller gets. Or in transaction conducted by three agents,
how much the buyer pays should be the sum of how much the seller gets and how
much the broker gets. Note that the system of transaction presented in this thesis
assumes that any agreement between transacting agents is already established before
they initiate the transaction.

This section presents (but not limited to) two schemes which can be carried out
using the transaction system that base on creation and elimination of institutional
facts. The first is based on the exchange of Institutional-Money and the second is
based on the alteration of states of finances of transacting agents.

Transaction based on Exchange of Institutional-Money

This type of transaction needs two types of institutional fact: Institutional-
Money and institutional-Membership. A transaction consists of the elimination of
institutional-ownership establishing the ownership of the money to the buyer, and
the creation of new institutional-ownership establishing the ownership of the money
to the new owner the seller.

Consider that b ∈ C (membership idp̂b
is established from �C p̂b) wants to buy

goods from s ∈ C (membership idp̂s
is established from �C p̂s) with the price of 100.

Currently, b possesses money idp̃ with value of 100 that is established from �C p̃

34 Chapter 3. Transaction Basics

based on assertion p̃ =
〈
idp̃ ,money ,

{(
value, 100

)
,
(
owner , idp̂b

)}〉
. Note that the

owner of the money as stated in the fact is b.
Both transacting agents initiate transaction by proposing a

transaction proposal π containing proposed new assertion p̃ ′ =〈
idp̃ ,money ,

{(
value, 100

)
,
(
owner , idp̂s

)}〉
that shall establish new ownership

of the same money to agent s, as well as Institutional-Money called to be rejected
�C p̃, such that π = 〈{p̃ ′} , {�C p̃}〉. In order to complete transaction, each agent
approve π and communicate this approval to reach λCπ. In reaching λCπ, by
definition every agent knows that they have accepted p̃ ′ establishing �C p̃ ′ and
rejected �C p̃ establishing ⊗C p̃. This can be formulated with:

λC

〈{
p̃ ′

}
, {�C p̃}

〉
≡ αC p̃ ′ ∧ ϕC �C p̃

=⇒ �C p̃ ′ ∧ ⊗C p̃

After the transaction, community recognizes that idp̃ is no longer property of b as
result of collective rejection of �C p̃ (which yields ⊗C p̃), and that idp̃ is property of
s as result of �C p̃ ′. That is, they have collectively transferred the money previously
owned by buyer to the seller.

Transaction based on Altering States of Finances

Unlike its counterpart, this scheme needs only one type of institutional fact, namely
institutional-membership. Here, the state of finances or financial status of an
agent can be attached directly as an attribute in the corresponding institutional-
membership. Transaction is completed by eliminating institutional-memberships
of both transacting agents and creating new institutional-memberships containing
altered states of finances.

Consider the same agents b and s who want to conduct transaction such
that b should pay s as much as the value of val . Currently, institutional-
membership of b is �C p̂b established from collective acceptance of asser-
tion p̂b = 〈idp̂b

,membership, {(agentid , b), (financestate, vb)}〉, and institutional-
membership of s is �C p̂s established from collective acceptance of assertion p̂s =
〈idp̂s ,membership, {(agentid , s), (financestate, vs)}〉.

Firstly, transacting agents b and s agree on the new assertions
p̂ ′b = 〈idp̂b

,membership, {(agentid , b), (financestate, v ′b)}〉 and p̂ ′s =
〈idp̂s ,membership, {(agentid , s), (financestate, v ′s)}〉 which will be their new
institutional-membership containing altered states of finances. Here, the value
of states of finances in the new assertions are respectively v ′b = vb − val and
v ′s = vs + val .

Both agents initiate transaction by proposing a transaction proposal π =
〈Pn ,Po〉 such that Pn = {p̂ ′b , p̂ ′s} and Po = {�C p̂b ,�C p̂s}. In order to accom-

3.3. Transaction Concept and Its Logic 35

plish transaction, each agent approves π and communicate his approval to others
such that λCπ is reached. Upon reaching λCπ agents know that the correspond-
ing transaction, proposed from π, occurs. Thus, agents have collectively “transfer”
a value of val from agent b to agent s. Again, using logical notations previously
described, this can be formulated with:

λC

〈{
p̂ ′b , p̂

′
s

}
, {�C p̂b ,�C p̂s}

〉
≡ αp̂ ′b ∧ αC p̂ ′s ∧ ϕC �C p̂b ∧ ϕC �C p̂s

=⇒ �C p̂ ′b ∧ �C p̂ ′s ∧ ⊗C p̂b ∧ ⊗C p̂s

3.3.4 Remarks

Coleman’s model of macro-micro-macro state transition in social system [Coleman,
1990] helps to understand how the change happened in macro level is the result of
changes or combined actions in individual level. Figure 3.2 illustrates state transition
of the system during a transaction:

Figure 3.2: State transition using Macro-Micro-Macro model

à (macro→micro) institutional facts created in community level have deontic
power that allow agents in individual level to use object or statement that is
stated in the fact

à (micro→micro) exchanges or trading are allowed and happened among agents
empowered by institutional facts

36 Chapter 3. Transaction Basics

à (micro→macro) transaction is initiated by proposing transaction proposal to
the community level, in which, agents approve transaction proposal implying
collectively rejection of institutional facts and collectively acceptance of new
statements establishing institutional facts

à thus, in macro level, the approval of transaction alters the synchronized knowl-
edge of agents about the list of actual institutional facts

Proposed transaction scheme above shows that collective actions implying state
transition of the system are done in decentralized manner such that the facilitation
and mediation by trusted third party is not necessary. Thus, this transaction concept
enables the presence of financial accounts as well as the system of accounting of those
accounts for completing the transaction among decentralized agents.

3.4 Transaction Algorithm

Transaction concept and its logic presented in the previous section delineate more
on the establishment of accounts of finances and accomplishment of transactions
in logical form, but less in detailed actions of agents. This section takes one step
further by presenting transaction algorithm applying the transaction concept.

The work in this section concentrates on specifying actions of agents from initi-
ating transaction to the collective actions in completing initiated transaction, as well
as showing corresponding changes in system variables caused by actions. The design
goal is to have transaction algorithm which is based on the fundamental axioms of
transactions described in the previous section.

Furthermore, this algorithm is intended to be generic for all possible schemes of
transaction which is based on creation and elimination of institutional facts. Thus,
it does not explicitely show the context of the transactions, e.g. the content of
assertions or the relation of institutional facts with transacting agents, and most
importantly it does not specify the reason for approval or refusal of transaction
proposal in respect of specific transaction scheme. Nevertheless, there is function
in the algorithm, entitled with isPropValid , is there to be the place for specific
transaction schemes, e.g. to prevent double spending attempt in the transaction
scheme based on exchange of institutional-money.

Transaction algorithm is specified in Lamport’s Temporal Logic of Actions
(TLA+)[Lamport, 2003, 2001]3. Here, the use of TLA+ allows the specification
to explicitely show the actions of agents as well as the change of system variables. A

3Brief knowledge of TLA+ is necessary to be able to understand this specification. Nevertheless
the narrative description in this section attempts to minimize the need of mastering of TLA+ before
one is able to read and understand provided specification. TLA+ related materials can be found
at Lamport’s site or at TLA+ page at RVS’s site.

3.4. Transaction Algorithm 37

TLA+ specification assumes a state machine in which a state transition is occurred
when a state predicate or an action is true given certain pre-condition. An Predicate
Action Diagram (PAD) [Lamport, 1995], which is basically a state-machine, of cor-
responding specification is presented in figure 3.4 on page 42 to aid the explanation.
As companion to the diagram, table 3.3 on page 43 and table 3.4 on page 44 provide
detailed description of state transitions in the PAD showing the change of system
variables. The complete specification can be found in the appendix A.

3.4.1 Agents and System Variables

Generally, a system consists of objects which engage and constitute system behavior.
Behavior is sequence of states and a state is a snapshot of the value of system
variables.

The system of communal governed transaction consists of agents who communi-
cate through passing messages to engage in collaboration to complete transactions.
Every agent has internal knowledge that is changed by agent’s own action specified
by algorithm, e.g. upon receiving certain message from other agent. Thus, internal
knowledge of all agents constitute the system variable.

In the specification, an agent is represented with its internal knowledge. Denoted
with agent , agent’s internal knowledge is defined as several records which in TLA is
specified as follows:

TypeAgent ∆=
∧ agent ∈ [community

→ [ifacts : {f ∈ p assertions : true},
msgfifo : Seq(p messages),
experience : [community

→ [sum good : Nat ,
sum bad : Nat]],

proposals : [p proposals
→ [proposed : boolean ,

decided : boolean ,

rated : boolean ,

sum approved : Nat ,
sum notapproved : Nat]]

]
]

Additionally, the details of these records are explained in table 3.1.
Using this art of definition, it is easy to refer to a record of certain agent. For

example, agent [a].proposals[π].decided refers to the status of community decision

38 Chapter 3. Transaction Basics

Record Type Description

ifacts subset of p assertions Set of actual institutional facts known by

agent. It is defined as subset of all possible

assertions p assertions. If community

approve a transaction proposal containing

assertions to be accepted Pn and institutional

facts to be rejected Po , every agent alters his

ifacts such that Po is subtracted from ifacts

and Pn is added to ifacts. Thus, ifacts always

contains actual institutional facts

msgfifo sequence of p messages Buffer of sequence of messages received by an

agents from communication channel. Agent

checks the messages received in the buffer an

act accordingly. If a message received has

corresponding action then agent subtract the

message from the buffer after the action is

completed.

proposals p proposal →
proposed : Boolean
decided : Boolean

rated : Boolean
sum approved : Natural

sum notapproved : Natural

Set of records containing statuses of all

possible proposals known by agent. proposed

indicates whether the proposal is currently

being proposed. decided indicates whether

community has decided to approve the

particular proposal. rated indicates whether

approved proposal (transaction) is already

rated. sum approved and sum notapproved ,

respectively, count statements of approval and

refusal during the completion of transaction.

experience community →
sum good : Natural
sum bad : Natural

Set of reputation records of all agents in

community based on rating / experiences

resulted from past transactions with the

particular agent. Since the transaction

algorithm uses Beta reputation as example, it

contains sum good to count good experiences

and sum bad to count bad experiences with

particular agent.

Table 3.1: Records of Internal knowledge of agent

toward proposal π ∈ p proposals which is known by agent a ∈ community . Here,
community is denoted deliberately with community , instead of C as it was in pre-
vious section, in order to provide clearness in the specification.

In this definition, institutional facts are contained in a record entitled with ifacts.
Provided with transaction schemes presented in previous section, one can bear in

3.4. Transaction Algorithm 39

mind that agents memorize assertions known to be collectively accepted establish-
ing institutional facts, and forget assertions of institutional facts that have been
collectively rejected. In the algorithm, to memorize an assertion means to add the
assertion into the ifacts and to forget the assertion means to subtract that assertion
out of ifacts. Thus, ifacts is set of actual institutional facts known by agent.

3.4.2 Communication Channel

Communication channel is modeled as buffer entitled with msgfifo. It is a sequence
containing messages that is transmitted among agents to accomplish the transaction.
An agent sends a message by appending the message to the recipient’s msgfifo.
The Broadcast action presented below is an example of action in that set of agents
senders ⊆ community send message msg to any other agents in the community .

Broadcast(senders, msg) ∆=
∧ senders ∈ subset community
∧msg ∈ p messages
∧ agent ′ = [agent except ![∀ s ∈ community : s /∈ senders] =

[@ except !.msgfifo =
Append(@.msgfifo, msgStruct [senders, msg])]]

The agent ′ (variable - prime) is TLA way in denoting state function which assigns
a value to a variable in the next state. As specified by Broadcast action, the value
of the records in variable agent ′ are assigned with the same value of those at the
current state except the value of msgfifo of all agent s ∈ community and s /∈ senders
which are appended with msg .

3.4.3 Specifying Agent Actions in Completing Transaction

The specification begins with

Spec ∆= InitAgent ∧2[Next]agent

where Spec denotes the specification of the system, InitAgent is the initial action
to assign initial value of variable agent , and Next is the action done in every state
step of the system. This specification means that InitAgent occurs only once at the
first state of the system, and Next occurs in every state of the system behavior.
Notation � is temporal logic operator for “always” such that �Next asserts that
Next is always true in every step of system behavior. � [Next]agent means that every
step of Next , which is always true, either changes variable agent to its next value or
leaves it unchanged. This is the way of TLA to express continues system behavior.

40 Chapter 3. Transaction Basics

Next is defined as follows:

Next ∆=
∨ Encounter
∨ ReceiveProposalApprove
∨ ReceiveProposalRefuse
∨ ReceiveStatementApproval
∨ ReceiveStatementRefusal
∨ ReceiveStatementUndetermined
∨ ProcCommunityApproval
∨ ProcCommunityRefusal
∨ ProcRatingGood
∨ ProcRatingBad
∨ ReceiveRatingGood
∨ ReceiveRatingBad
∨ ReceiveRatingUndetermined

Since Next is always true, every action stated in the definition of Next is true
or enabled in every state of the system behavior if only if the condition specified in
the corresponding action is fulfilled. The exception is for Encounter in which no pre
condition is specified.

The concept of encounter, denoted by Encounter , is introduced to establish the
event where two agents buyer and seller meet and propose a transaction proposals
to the community. It is the initiator of transaction that shall be the result of join
intention and agreement between the two agents4. Encounter is specified as:

Encounter ∆=
∧ 〈buyer , seller〉

[choose 〈x , y〉 ∈ community2 : x 6= y]
∧ 〈Po , Pn〉

[choose 〈O , N 〉 ∈ (subset p assertions)2 :
∧O ⊆ agent [buyer].ifacts
∧ ∀ x ∈ O : x /∈ N
∧ ∀ x ∈ N : x /∈ O]

∧ lgratio [choose x ∈ Real : x > 0]
∧ Propose(buyer , seller , Po , Pn , lgratio)

4Since that this thesis is not about intelligent agents, algorithm presented here does not concern
about self intention or join intention in transacting or trading.

3.4. Transaction Algorithm 41

which says: encountered buyer and seller , two agents selected from community ,
propose set of assertions Pn to be collectively accepted by community as well as
call for rejection of another set of assertions Po which at that state are accepted as
institutional facts by the community. Parameter lgratio is not discussed here as it
is subject for the next chapter.

As previously mentioned, TLA specification assumes state machine. Figure 3.4
shows a state machine that illustrates how transaction is completed after it was

Figure 3.3: Illustration of Transaction Algorithm

initiated by Encounter at state S0. Additionally, figure 3.3 illustrates agent actions
according to transaction algorithm.

The state machine contains divergent arrows structures, e.g.
S0 → {S1[s],S1[b],S2[a]R,S2[a]A} and convergent arrows structures, e.g.
{S5[s],S5[b],S5[a]} → S6A to show system state transition that consists of
changes in agent level, and states of set of agents that constitute the system
state, respectively. A state named with “[]” bracket represents the state of agent
who is stated in the bracket, e.g. S5[s] is state of agent s. Conversely, the state
entitled without the bracket represents the state where all agents have synchronized
internal knowledge. The diagram encompasses the states of agent b, s, and a
(a ∈ Community , a /∈ {buyer , seller}) which respectively represent buyer , seller ,
and other agent in the community who collaborate to accomplish transaction.

To simplify the explanation and to be more focus on the completion of the
transaction itself, nodes in the diagram refers only to the states of internal knowl-
edge agent [i].proposals, agent [i].ifacts, and agent [i].experience, but not the com-
munication channel agent [i].msgfifo. Therefore, some of the actions, such as,
ReceiveStatementUndetermined and ReceiveRatingUndetermined are not discussed
and self explanatory.

Furthermore, actions ProcRatingGood , ProcRatingBad ,
ReceiveRatingRatingGood , ReceiveRatingBad , ProcRatingGood , ProcRatingBad ,

42 Chapter 3. Transaction Basics

Approved Refused

GoodBad

GoodBad

Encounter

Proposing Transaction
(Broadcast the Proposal)

Receiving Proposal
Make Decision

Broadcast Statement

Receiving Statements

Concluding
Community Approval

Trustee Action
Trustor Rating

Receiving Rating

End

Description

S0

S1[b]S1[s]

S7GS7B

S2[a]A S2[a]R

S3[b]AS3[b]RS3[s]AS3[s]R S3[a]AS3[a]R

S4[b]A S4[b]RS4[s]A S4[s]RS4[a]A S4[a]R

S5[b]G S5[b]B

S7R

S6[a]GS6[s]GS6[a]BS6[s]B

Encounter

Propose

ReceiveProposalApprove
ReceiveProposalRefuse

ReceiveStatementApproval
ReceiveStatementRefusal

ProcCommunityApproval
ProcCommunityRefusal

ProcRatingGood
ProcRatingBad

ReceiveRatingGood
ReceiveRatingBad

End

Action Predicates

Node entitled with :
[b] indicates state of agent buyer
[s] indicates state of agent seller
[a] indicates state of any other agents

Figure 3.4: Predicate Action Diagram of Transaction Algorithm

3.4. Transaction Algorithm 43

State Transition Pre Condition Action / Description Post Condition

S0 → S1[b]

S0 → S1[s]

b = buyer

s = seler

agent[{b,s}].proposals[π].

proposed=FALSE

decided=FALSE

rated=FALSE

sum approved=0

sum notapproved=0

agent[{b,s}].ifacts

Propose

Encountered buyer and seller
propose transaction proposal
π to the rest of community,
they mark their knowledge of
p.proposed as true and counts
their acceptance (2) in sum
approved.

agent[{b,s}].proposals[π]

proposed=TRUE

<decided>

<rated>

sum approved=2

<sum notapproved>

agent[{b,s}].<ifacts>

S0 → S2[a]A

a ∈ Community

a /∈ {buyer , seller}

agent[a].proposals[π].

proposed=FALSE

decided=FALSE

rated=FALSE

sum approved=0

sum notapproved=0

agent[a].ifacts

ReceiveProposalApprove

Agent receives transaction
proposal π from buyer and
seller, and decides to approve.
He adds 3 in sum approved
(buyer, seller, and himself),
mark proposed as true, and
broadcasts his decision

agent[a].proposals[π]

proposed=TRUE

<decided>

<rated>

sum approved+=3

<sum notapproved>

agent[a].<ifacts>

S0 → S2[a]R

a ∈ Community

a /∈ {buyer , seller}

agent[a].proposals[π].

proposed=FALSE

decided=FALSE

rated=FALSE

sum approved=0

sum notapproved=0

agent[a].ifacts

ReceiveProposalRefuse

Agent receives transaction
proposal π from buyer and
seller, and decides to refuse
it. He adds 2 in sum
approved (buyer, seller)
and 1 in sum notapproved
(himself), marks proposed
as true, and broadcasts his
decision

agent[a].proposals[π]

proposed=TRUE

<decided>

<rated>

sum approved+=2

sum notapproved+=1

agent[a].<ifacts>

The < > bracket indicates that the value of variable in the bracket does not change in post condition
The += has the same semantic as increment by operator += used in C language

Table 3.3: State Transitions (Part 1)

and function trustDecision, which correspond to S5s, S6s, and S7s, are not discussed
here as they are subjects of and defined in the next chapter. Thus, explanation in
this chapter assumes function trustDecision always returns true.

3.4.4 Steps to Complete the Transaction

The following discussions explain steps to complete transaction by means of state
transitions and corresponding actions aided by state machine in figure 3.4. A sum-
mary of variable changes by each action are presented in table 3.3 and 3.4. These
descriptions do not show the algorithm in TLA specification explicitely, but rather
series of state transitions. Complete specification is presented in appendix A.

This chapter discusses steps up to S4. Since S5,S6 are the subject of the next
chapter.

So Initial State
This is the initial state of a transaction where buyer and seller meet through
the trigger by Encounter . They select institutional facts that should be col-
lectively rejected Po and new assertions that shall be collectively accepted

44 Chapter 3. Transaction Basics

State Transition Pre Condition Action / Description Post Condition

S1[s] → S3[s]A

S1[b] → S3[b]A

S2[a]R → S3[a]A

S2[a]A → S3[a]A

a, b, s ∈ Community

a /∈ {b, s}

agent[{a,b,s}].proposals[π].

proposed=TRUE

decided=FALSE

rated=FALSE

(sum approved +

sum notapproved)<|agent|
agent[{a,b,s}].ifacts

ReceiveStatementApproval

Agent receives a statement of
approval from other agent and
marks this by adding 1 in
sum approved

agent[{a,b,s}].proposals[π].

<proposed>

<decided>

<rated>

sum approved+=1

<sum
notapproved>

agent[{a,b,s}].<ifacts>

S1[s] → S3[s]R

S1[b] → S3[b]R

S2[a]R → S3[a]R

S2[a]A → S3[a]R

a, b, s ∈ Community

a /∈ {b, s}

agent[{a,b,s}].proposals[π].

proposed=TRUE

decided=FALSE

rated=FALSE

(sum approved +

sum notapproved)<|agent|
agent[{a,b,s}].ifacts

ReceiveStatementRefusal

Agent receives a statement of
refusal from other agent and
marks this by adding 1 in
sum notapproved

agent[{a,b,s}].proposals[π].

<proposed>

<decided>

<rated>

<sum approved>

sum
notapproved+=1

agent[{a,b,s}].<ifacts>

S3[s]A → S4[s]A

S3[s]R → S4[s]A

S3[b]A → S4[b]A

S3[b]R → S4[b]A

S3[a]A → S4[a]A

S3[a]R → S4[a]A

a, b, s ∈ Community

a /∈ {b, s}

agent[{a,b,s}].proposals[π].

proposed=TRUE

decided=FALSE

rated=FALSE

(sum approved +

sum notapproved)=|agent|
sum approved≥

(|agent| × mt)

agent[{a,b,s}].ifacts

ProcCommunityApproval

Agent finds a condition where
statements counters indicate
that all agents have stated
their statement and there are
sufficient approvals that de-
termines community approval
on the proposal π. Agent up-
dates his knowledge on cur-
rently accepted institutional
fact according to record Po

and Pn stated in proposal π.

agent[{a,b,s}].proposals[π].
proposed=FALSE
decided=TRUE
<rated>
sum approved=0
sum notapproved=0

agent[{a,b,s}].ifacts=
agent[{a,b,s}].ifacts
\ π.Po∪ π.Pn

S3[s]A → S4[s]R

S3[s]R → S4[s]R

S3[b]A → S4[b]R

S3[b]R → S4[b]R

S3[a]A → S4[a]R

S3[a]R → S4[a]R

a, b, s ∈ Community

a /∈ {b, s}

agent[{a,b,s}].proposals[π].

proposed=TRUE

decided=FALSE

rated=FALSE

(sum approved +

sum notapproved)=|agent|
sum approved<

(|agent| × mt)

agent[{a,b,s}].ifacts

ProcCommunityRefusal

Agent finds a condition where
statements counters indicate
that all agents have stated
their statement but there are
insufficient approvals that de-
termines community refusal
on the proposal π. It re-
sets the state of proposal p on
his knowledge such that the
records of p are the same on
those at state S0

agent[{a,b,s}].proposals[π].

proposed=FALSE

<decided>

<rated>

sum approved=0

sum notapproved=0

agent[{a,b,s}].<ifacts>

The < > bracket indicates that the value of variable in the bracket does not change in post condition
The += operator has the same semantic as “increment by” operator += used in C language

Table 3.4: State Transitions (Part II)

Pn , to be included in a transaction proposal π. At this stage, communi-
cation buffer msgfifo of every agent is assumed to be empty and records
of the status of transaction proposals in the knowledge of every agent are

3.4. Transaction Algorithm 45

set to default (proposed = FALSE , decided = FALSE , rated = FALSE ,
sum approved = 0, and sum notapproved = 0). Furthermore, agents’ knowl-
edge of actual list of institutional facts ifacts are synchronized such that
agent [a].ifacts = agent [b].ifacts for all agent a and b that are members of
the community.

Remark 3.1: Given this pre-conditions, there is no other action stated in the Next
that is enabled or true in this particular state, except Encounter. As previously
discussed, Encounter is always true in every step of system behavior because �Next
asserts Next to be always true and Encounter is defined to be enabled without full
filling any pre-condition. Thus, the transaction is initiated only from Encounter.

S0 → {S1[s],S1[b]} Propose
After the encounter, buyer and seller initiate action Propose. Message msg
containing the proposal π is broadcasted to the rest of community by append-
ing msg in buffer msgfifo of each agent. Both transacting agents change the
status of proposal π in their knowledge: proposed = TRUE indicating that
the proposal π is currently being proposed and sum approved = 2 indicating
two agents who already approved the proposal, namely buyer and seller .

During the next step, each agent a, where a ∈ Community and a /∈ {buyer , seller}
finds message containing proposal π in the msgfifo. Agent a verifies whether π is
valid using function isPropValid , and makes trust decision according using function
trustDecision which in this chapter is assumed to be true.

S0 → S2[a]A ReceiveProposalApprove
Action ReceiveProposalApprove, implying this particular state transition, is
enabled if agent a ∈ Community , a /∈ {buyer , seller} finds message contain-
ing proposal π in the first sequence of msgfifo, and both isPropValid and
trustDecision are TRUE . Agent a alters his knowledge on proposal π such
that proposed = TRUE indicating that the proposal is currently being pro-
posed, and sum approved is increased by 3 because as far as agent a concerns,
there are 3 agents (buyer ,seller , and a himself) who approve the proposal in
this state. Agent a broadcast the statement of approval to the rest of commu-
nity including buyer and seller and deletes the message he just received from
msgfifo.

S0 → S2[a]R ReceiveProposalRefuse
Action ReceiveProposalApprove, causing this particular state transition, is
enabled if agent a ∈ Community , a /∈ {buyer , seller} finds message contain-
ing proposal π in the first sequence of msgfifo and either isPropValid and
trustDecision is FALSE . Agent a alters his knowledge on proposal π such

46 Chapter 3. Transaction Basics

that proposed = TRUE indicating that proposal is currently being proposed,
sum approved is increased by 2 indicating the two approvals from proposing
agents (buyer ,seller), and sum notapproved is increased by 1 indicating a’s
refusal. Agent a broadcast his refusal statement to the rest of community
including buyer and seller and subtracts the message he just received out of
msgfifo.

Remark 3.2: Suppose one agent receive a proposal. From the definition of
ReceiveProposalApprove, one might notice that both isPropValid and trustDecision
must be TRUE in order this action to be enabled. Conversely, should one
of isPropValid and trustDecision is FALSE or both of them are FALSE,
then ReceiveProposalRefuse is enabled. Since ¬(isPropValid ∧ trustDecision) =
¬isPropValid ∨ ¬trustDecision, in this particular step, ReceiveProposalApprove or
ReceiveProposalRefuse are mutual exclusive for an agent, such that one agent can
only engage once either ReceiveProposalApprove or ReceiveProposalRefuse. If i be
the sum of agents who act ReceiveProposalApprove and j be the sum of agents who
act ReceiveProposalRefuse, then total agents in community n is i + j + 2, where 2
represents buyer and seller .

Upon receiving approval or refusal statement from others, agent pops the message
from the buffer msgfifo one by one and counts the statement in the statement coun-
ters. The state machine presented figure 3.4 shows that there are circular arrow
structures representing loops in receiving the statements.

{S2[a]A | S2[a]R | S3[a]A | S3[a]R} → S3[a]A ReceiveStatementApproval (
a

)
Action ReceiveStatementApproval , which causes this particular state transi-
tion, is enabled if an agent a ∈ Community , a /∈ {buyer , seller} finds message
in the first sequence msgfifo containing statement of approval (status = accept)
of proposal π ∈ p proposals, and status proposed of proposal π is TRUE (that
π is being proposed at S2[a]A or S2[a]R). Agent increment sum approved
by one which indicates that there is one acceptance received, and deletes the
corresponding message from the buffer.

{S1[s] | S3[s]A | S3[s]R} → S3[s]A ReceiveStatementApproval
The same conditions and actions apply for agent seller as described in

a
.

{S1[b] | S3[b]A | S3[b]R} → S3[b]A ReceiveStatementApproval
The same conditions and actions apply for agent buyer as described in

a
.

{S2[a]A | S2[a]R | S3[a]A | S3[a]R} → S3[a]R ReceiveStatementRefusal (
`

)
Action ReceiveStatementRefusal , which implies this particular state transition,
is enabled if an agent a ∈ Community , a /∈ {buyer , seller} finds message in

3.4. Transaction Algorithm 47

the first sequence msgfifo containing statement of refusal (status 6= approve)
of proposal π ∈ p proposals, and status proposed of proposal π is TRUE (that
π is being proposed at S2[a]A or S2[a]R). Agent increment sum notapproved
by one which indicates that there is one received, and deletes the corresponding
message from the buffer.

{S1[s] | S3[s]A | S3[s]R} → S3[s]R ReceiveStatementRefusal
The same conditions and actions apply for agent s as described in

`
.

{S1[b] | S3[b]A | S3[b]R} → S3[b]R ReceiveStatementRefusal
The same conditions and actions apply for agent b as described in

`
.

After receiving all statements toward proposal π, an agent can determine whether
π is collectively approved or refused by the community. As stated by axioms 3.5
and 3.6, if the sum of approval (sum approved) is equal or greater than number
of majority of agents, of which the threshold is determined by constant m, then
community has approved the transaction from proposal π, and thus transaction
occurs. Conversely, community refuses the proposal, and hence transaction does
not occur.

Remark 3.3: In this particular stage, every agent should know the synchro-
nized values of sum approved and of sum notapproved. To proof this, let n
be total agents in community, i be the sum of agents who broadcast approvals
(ReceiveProposalApprove), and j be the sum of agents who broadcast refusals
(ReceiveProposalRefuse), such that i + j + 2 = n (2 is for buyer and seller who
already state their approval by proposing the transaction).

From definition of Propose, both buyer and seller in S1[b] and S1[s], have
sum approved = 2 and sum notapproved = 0. After receiving all statements
from i + j agents, both buyer and seller have sum approved = 2 + i and
sum notapproved = j . Thus, sum approved + sum notapproved = 2 + i + j =
total agents.

From pre-condition in S0 and definition of ReceiveProposalApprove, at the S2[a]A
the i agents have sum approved = 3 and sum notapproved = 2. After receiving all
approval statements from i−1 agents (1 represents him self) and j refusal statements
from j agents, each agent in this set has sum approved = 3 + (i − 1) = 2 + i and
sum notapproved = j .

From pre-condition in S0 and definition of ReceiveProposalRefuse, at the S2[a]R
the j agents have sum approved = 2 and sum notapproved = 1. After receiving
all approval statements from i agents and refusal statements from j − 1 agents
(1 represents him self), each agent in this set has sum approved = 2 + i and
sum notapproved = 1 + (j − 1) = j .

48 Chapter 3. Transaction Basics

Thus, at the end of this stage where all agents have received all statements from
i + j agents, they have the same values of sum approved and sum notapproved,
where sum approved + sum notapproved = 2 + i + j = n.

{S3[a]R | S3[a]A} → S4[a]A ProcCommunityApproval (†)
This action is enabled if agent a ∈ Community , a /∈ {buyer , seller} finds in
his internal knowledge that all agents have given their statements towards
proposal π ∈ p proposals (indicated with sum approved + sum notapproved=
total agents in the community), and there are sufficient approval for π from
the majority of community (indicated with sum approved is greater or equal
than [total agents × mt], where 0.5 ≤ mt ≤ 1 - mt is majority thresh-
old). Agent alters his knowledge about the list of actual institutional fact
such that ifacts ′ = ifacts \ π.Po ∪ π.Pn as well as statuses of π to the fol-
lowing values:decided = TRUE , sum approved = 0, sum notapproved = 0,
proposed = FALSE .

{S3[s]R | S3[s]A} → S4[s]A ProcCommunityApproval
The same conditions and actions apply for agent s as described in †.

{S3[b]R | S3[b]A} → S4[b]A ProcCommunityApproval
The same conditions and actions apply for agent b as described in †.

{S3[a]R | S3[a]A} → S4[a]R ProcCommunityRefusal (‡)
This action is enabled if agent a ∈ Community , a /∈ {buyer , seller} finds in
his internal knowledge that all agents have given their statements towards
proposal π ∈ p proposals (indicated with sum approved + sum notapproved=
total agents in the community), and there are insufficient approval for π from
the majority of community (indicated with sum approved is less than [to-
tal agents × mt], where 0.5 ≤ mt ≤ 1 - mt is majority threshold). Agent
alters his knowledge about statuses of π to the default values as follows:
proposed = FALSE ,decided = FALSE , rated = FALSE , sum approved = 0,
sum notapproved = 0. Since proposal is refused, there are no change to the
list of actual institutional facts. Thus ifacts stays no change.

{S3[s]R | S3[s]A} → S4[s]R ProcCommunityRefusal
The same conditions and actions apply for agent s as described in ‡.

{S3[b]R | S3[b]A} → S4[b]R ProcCommunityRefusal
The same conditions and actions apply for agent b as described in ‡.

Here, community approval of transaction means that community collectively accept
each assertion in proposed Pn and collectively reject each institutional fact stated

3.4. Transaction Algorithm 49

in Po . This implies the alteration of actual list of institutional facts ifacts of each
agent.

Conversely, no action is done to alter ifacts and thus ifacts of each agent does
not change. Moreover, the statuses of π is roll-backed to the initial value by
ProcCommunityRefusal . Thus, presumably that only one transaction proposal is
processed at a time, the values of system variables at S6R is equal to those at S0.

Remark 3.4: In this last stage of the completion of transaction, every agent should
have the same conclusion. Let n be total agents in community and mt be the threshold
of majority. The definition of ProcCommunityApproval state that this particular
action is enabled when sum approved ≥ (n × mt). Conversely, the definition of
ProcCommunityRefusal states is enabled when sum approved < (n × mt). Thus
ProcCommunityApproval and ProcCommunityRefusal are mutual exclusive for an
agent in this stage. Since both actions are mutual exclusive for an agent, and that all
agents have synchronized value of sum approved and sum notapproved in the pre
condition, then obviously all agents reach at the same conclusion: whether proposal
π is collectively approved or not, and act accordingly.

3.4.5 Discussion

As stated in the beginning of the section, the transaction algorithm should fulfill
fundamental axioms presented previous section. Let’s review some remarks that
were previously discussed:

à Remark 3.1 discussed that at the beginning all agents have synchronized knowl-
edge, and that the transaction is initiated only through Encounter . By invok-
ing Propose, transacting agents broadcast transaction proposal to other agents,
say the collaborators. Here, it is assumed that by proposing transaction pro-
posal, the transacting agents have already approved the proposal.

à Remark 3.2 discussed that each collaborator can only either approve or refuse
the transaction proposal but not both. Each count the approval and the refusal
and broadcast the statements to the rest of community including transacting
agents.

à Remark 3.3 discussed all agents have synchronized knowledge of the approval
and refusal statuses of proposed transaction after receiving all statements in
this stage.

à Remark 3.4 showed that since all agents have synchronized knowledge
of the approval and refusal statuses of proposed transaction, and since
ProcCommunityApproval and ProcCommunityRefusal are mutual exclusive for

50 Chapter 3. Transaction Basics

an agent, all agents reached at the same conclusion, the determination whether
proposal is collectively approved or refused, but not both.

Consider following statements to state that the algorithm fulfill fundamental axioms:

à Since π is broadcasted among agents then each agent knows the Po and the
Pn contained in π.

à Agent knowledge of actual institutional fact is modeled as a set ifacts which
is subset of all possible assertions p assertions

à The previously reviewed remarks showed that algorithm leads the agents to
know each other statements of approval/refusal of transaction proposal π, such
that EC∀≥m i ∈ C : λiπ ⇐⇒ ∀a ∈ C : ∀≥m i ∈ C : λiπ is fulfilled. Note
that at the end of letting-everyone-know stage, all agents have synchronized
knowledge of statuses of π.

à According to their definitions, ProcCommunityApproval and
ProcCommunityRefusal are mutual exclusive for an agent to act. Since
at this stage agents know the same statuses of π then agents determine the
same conclusion for π. This fulfills EC∀≥m i ∈ C : λiπ =⇒ λCπ (axiom 3.6
which superimposes axiom 3.5).

à According to definition of ProcCommunityApproval when majority of agents
approve the proposal then each agent updates ifacts such that ifacts ′ =
ifacts\Po ∪ Pn . According to definition of ProcCommunityRefusal , when
approvals do not sufficient to represents majority of agents then ifacts
do not change such that ifacts ′ = ifacts. That is, the definition of
ProcCommunityApproval fulfills the definition of λCπ (equation 3.7). �

Transaction Cost and Scalability

Additionally, the transaction algorithm presented here requires agents to perform
broadcast approval / refusal statements in order to complete transaction. This makes
communication cost relative high. One transaction requires n2 − 2n message trans-
missions. Indeed, this scheme is not considerably efficient to be used in practice.
In addition, the transaction algorithm assumes that agents are capable to maintain
and synchronize list of accepted institutional-facts. This would be scalability issue
as the community grows. Therefore, chapter 6 will present transaction protocols de-
veloped from the algorithm utilizing distributed cryptography. The system reduces
communication cost as well as eliminates the scalability problem.

3.5. Summary 51

3.5 Summary

This chapter delivered answers of two questions stated in the beginning of the chap-
ter, namely to build system of accounts which is based on the institutional facts, and
to design accounting mechanism that based on the developed system of accounts.

Fundamentals axioms of creation and elimination of institutional facts were pre-
sented to establish the system of accounts. Fundamental axioms of approval of
transaction proposal was also presented intended to be the bridge of system ac-
counts to the establishment of the accounting mechanism which is based on it.

Transaction based on alteration of states of finances and transaction based on
exchange of money, were presented to exemplify schemes of transactions that can
be applied using developed transaction system.

The last part of the chapter presented generic transaction algorithm specified in
TLA+ to capture as well as to express actions of agents in initiating transaction
and the collaboration actions to complete it. An predicate action diagram of corre-
sponding specification was presented to aid explanation of the algorithm. At last,
the algorithm is proven to fulfill fundamental axioms presented in the beginning of
the chapter.

52 Chapter 3. Transaction Basics

53

Chapter 4

Collective Authorization and

Social Control

Mechanism to complete transaction presented in previous chapter introduces a mech-
anism that enables community to govern transactions occured in individual level.
This chapter takes advantage this in developing collective authorization scheme that
enables agents to collectively approve or forbid transactions reasoned by agent’s rep-
utation.

This chapter begins by presenting the backgrounds providing the reason and
the notions behind the concept. Next, vote based collective authorization scheme
is presented in which reputation of the seller as well as transaction profile signify
community decisions. The subsequent section presents collective authorization al-
gorithm that completes the specification of algorithm presented in previous chapter.

4.1 Backgrounds

4.1.1 Importance of Trust

The essential concept of the framework of communally governed transactions is col-
laboration as part of self-organization. Without collaboration, community would
not be able to deliver its function in completing transactions. Therefore, it is im-
portant to maintain factors that sustains the collaboration. Some of those factors
are altruism, voluntarism, and trust. The first two are the matter of how useful and
important the community is to its members. They belong to the puzzle which is not
discussed here.

Trust has been known to be the magnitude ingredients in establishing and adher-
ing collaboration [Luhmann, 1979] [Buskens, 1999] [Stompzka, 1999]. In the context
of online trading, to where proposed framework is aimed, the perturbation of trust
can be caused from disappointment in receiving unwanted outcome of transaction.

54 Chapter 4. Collective Authorization and Social Control

Unwanted outcome means that buyer perceives that seller had delivered bad quality
of goods or services. In other words, the buyer had made a transaction with the
seller who performed improperly in the transaction.

If this happens frequently then distrust is began to spread. It might cause the
turbulence of collaboration. Hence, a mechanism should be designed in the frame-
work that emerges a way in preventing possible unwanted outcomes i.e. preventing
buyer to meet improper seller. Since no authority exists in the system to perform
this function, the design should form a self-control mechanism to filter bad behavior
and thus encouraging good behavior among agents

4.1.2 Social Control and Reputation

Social control is social mechanism that regulates individual behavior in a social
system to conform with local rules or norms. The implementation of social control
is often seen in traditional society where norms are significantly influential and hence
strongly enforced. Contrary to the formal law, social control is exercised collectively
by local people, not by the government.

The example of social control is neighborhood watch, a collective effort in con-
ducting security control around the village or neighborhood. It is mainly self-
managed by local people and received minor influence from the government. The
objective is not only that the village would become secure but also that any kind
of behavior which might violate local norms such as adultery or gambling can be
prevented. This kind of collective action reveals social filtering mechanism in
which people collectively filter possible behaviors which might violate the norms.

Another form of social control is social punishment or social sanction. Those
who have violated the norms are collectively punished or sanctioned. The imple-
mentation of punishment varies from isolation, discrimination, social shaming e.g.
processioned through the village, to the exclusion from society. Provided with those
examples, others learn that it is bad to violate the norms. Thus, it encourages good
behavior among the people.

Human beings have developed the concept of trust and reputation. Should one
face dilemma whether to place trust, one collects for information about the subject of
trust by which one can learn and conclude his reputation. Given subject’s reputation
as well as the risk, one has more complete information to be able to decide whether
to place trust or not.

The use of reputation in every decision trust emerges social filtering mecha-
nism. This mechanism limits one’s behavior based on his reputation. Those who
have high reputation are likely to receive trust more often than those who don’t.
In this respect, it emerges social sanctioning mechanism. That is, persons who
have bad reputation are seldom being trusted for any kind of interactions and thus
collectively isolated from the society.

4.2. Reputation System 55

4.1.3 Design Goal

Based on the description above, the goal of the design presented in this chapter is to
develop mechanism that enable social control. The mechanism should be embedded
into the proposed framework that enables the agents to collectively filter possible
unwanted outcome of transactions that involve dishonest sellers. Here, agents takes
seller reputation as input to the filter in order to collectively decide whether to
approve or to forbid the transaction, i.e. to trust the seller or not. This mechanism
emerges collective authorization service which is also protective measure for the
buyers against sellers with bad reputation.

4.2 Reputation System

To provide common understanding of the reputation system, it is important to
comprehendly discuss reputation system as decision support system in online com-
munities.

4.2.1 Notions of Trust and Reputation

Recalling the the game of trust discussed in chapter 2, the person who faces trust
dilemma is denoted with trustor, and the person who is going to be trusted is denoted
with trustee. In trading community, trustor is identic with the buyer who pays an
amount of money to the seller, the trustee, who is expected to deliver goods or
services.

The nature of trading in online environment introduces time lag between the
payment and the outcome. One is unable to know the quality of goods or services in
advance. Hence, trustor has to make decision to rely his investment on the reliability
of trustee. This decision requires certain level of confidence that that trustee will
deliver resources as expected in return to the payment. This level of confidence
can be reached when trustor has sufficient and complete information about trustee’s
behavior from which he can conclude reliability of trustee.

The following definitions are crystallized from [Gambetta, 1988] [Jøsang et al.,
2005] who describe the notions of trust and reputation in online communities.

Definition 4.1: Reliability trust is subjective probability by which trustor expects
trustee to perform intended action on which trustor’s welfare depends.

Reliability trust is usually derived from personal experiences which in many situa-
tions are considered as incomplete, unless trustor knows trustee very well. In order
to have near complete information, trustor gathers information from others. This
information exhibits others’ opinions about the trustee: their recommendations.

Definition 4.2: Recommendation is what other say about someone or something.

56 Chapter 4. Collective Authorization and Social Control

Recommender is the third person who gives his opinion about the trustee. Hence,
recommendation is a second hand trust referrals. Information gathered from all
possible recommender concludes trustee’s reputation.

Definition 4.3: Reputation is what is generally being said about someone or some-
thing.

Reputation represents the whole opinion from the community towards trustworthi-
ness of trustee. That is, it represents a state and the wholeness. Its difference with
recommendations is that recommendation represents the process of informing rather
than state.

Provided with trustee’s reputation, trustor evaluates reliability trust of trustee
in order to make a final decision to place trust.

Definition 4.4: Decision trust is the extent to which trustor is willing to put his
welfare on trustee’s authority despite of negative consequences trustor might receive.

That is, after deriving reputation from trustee, trustor considers the risk he might
suffer when he places the trust and trustee abuses the trust, as well as the advantage
that trustor might gain when he places the trust and trustee honors it.

4.2.2 How Reputation Changes

How trust and reputation evolves ? Figure 4.1 presents typical change of trust
in individual level and the change of reputation in societal level. Here, trust and
reputation represent the state of trustworthiness of a trustee as seen from individuals
and from societal level as a whole, respectively.

Trust or reputation of trustee is used as parameter in decision trust. Positive
decision opens an opportunity for trustee to act and conversely negative decision
blocks it. Given opportunity to act, trustee performs according to his behavior from
which trustor receives consequences. Observing the consequences, trustor updates
his level of trust towards the trustee. Negative consequence should lower the level
of trust and conversely positive consequence should raise the level of trust. When
trustor makes his opinion known to the community, then the propagation changes
trustee’s reputation in the community.

4.2.3 Elements of Reputation System

A reputation system as decision trust support system has three elements: how rep-
utation is propagated, how reputation is expressed and computed, and how decision
trust is made based on the reputation. Figure 4.2 illustrates elements of reputation
system.

4.2. Reputation System 57

(a) Trust change in Individual

(b) Reputation Change

Figure 4.1: The Change of Trust and Reputation

Reputation propagation

Recommendation is the natural way known in everyday life to conclude reliability
trust of the trustee. Josang et. al. [Jøsang et al., 2005] entitled the collaboration
system which utilizes recommendation to filter potential bad behavior with Collab-
oration Filtering System (CF). It is presumed in this system that everyone have
different trusting behavior. Different taste of trust means that it is natural when
one puts his personal experience in higher weight in the consideration.

In CF, propagation of reputation is commonly initiated by the trustor by
querying anyone who have previous experience with the trustee to gather their rec-
ommendations.

CF’s counter-part, a so-called Collaboration Sanctioning System (CS), on the
other hand, presumes that everyone has the same ’taste’ of trust and everyone tells
his opinion to anyone else about experience with the trustee. This opinion is called
rating which is communicated by trustor after consequences is received and observed.

According to Josang et. al. the nature of CS is suitable to be used in centralized
system where trusted third party arranges the collection and the presentation of the
rating, whereas CF is suitable for decentralized system in which such entity does
not exist. One can make hybrid system utilizing both advantages, though.

58 Chapter 4. Collective Authorization and Social Control

Figure 4.2: Elements of Reputation System

Method to compute reputation

Rating or recommendation can be presented and computed in several ways. The
main goal is to compute a posteriori reputation from a priori ratings, opinions, or
recommendations. As explained in chapter 2, there are known trust computation
methods that have been studied, e.g. simple average, Bayesian system, and discrete
system.

Simple average method takes numerical scores from trustee’s ratings from which
the sum are divided by the number of experiences. Bayesian counterpart takes
binary input in that 1 represents good experience and 0 represents bad experi-
ence from which trustor computes reputation of trustee using Bayesian algorithm.
In discrete system, opinion or rating of trustee is expressed with discrete values
e.g. (Very Good, Good,Average, Bad, Very Bad). Although the expression is
very natural, in certain circumstances, it is difficult to make decision trust when
risk should be taken into account.

Method to reason decision trust

Given reputation state of trustee, one should have method to assess the parameter
and to decide whether to place trust or not. In discrete system and simple average,
for example, one can set a threshold value from which one decides to place trust.
When trustee’s reputation is above the threshold, one places trust, whereas the value
is below the threshold, trustee does not earn trust.

Other methods take the value of forthcoming risk and benefit as parameters in
decision trust. Josang and Presti [Jøsang and Presti, 2004] as well as Coleman [Cole-
man, 1990] formulate methods to deal with decision trust that take those parameters
into account. Both are based on rational comparison between ratio of potential ben-
efit for the trustor when trustee honors the trust, and potential loss or risk when
trustee misplaces the trust.

4.3. The Design of Collective Authorization 59

4.3 The Design of Collective Authorization

There are two options that can be implemented in sustaining trust within commu-
nity. The first is to employ decentralized recommendation system in which decision
trust is made in ad-hoc manner by the trustor himself. Provided with propagated
trustee’s reputation, trustor enables to make decision trust independently based on
his own will and considerations. The system forms decision support system for the
agents. This scheme is not new and has been implemented in most of virtual com-
munities. The effectiveness of this system is questionable, since the trustor is allowed
to make any decision that might allow untrustworthy trustee to have transaction.

The second option is more interesting to study: a mechanism that enables com-
munity to make collective decision trust based on trustee reputation. It allows com-
munity to govern and secure transactions in the individual level. In other words,
community can collectively authorize or not authorize a transaction based on seller’s
reputation.

4.3.1 Basic System Setup

Recalling transaction algorithm presented in the previous chapter. First an en-
counter occurs between buyer and seller who propose transaction proposal to the
community. Each agent express his positive or negative statement of proposal ap-
proval based on certain reasons e.g. validity of transaction proposal. If positive
statements are satisfactory in representing the majority of community, then trans-
action proposal is approved and thus transaction proceeds.

Collective authorization is embedded into the framework by introducing seller
reputation in the reasoning. Positive statement from an agent represents partial
decision trust from the whole collective decision trust. When majority of agents
express positive statement regarding the transaction then majority of community
trusts the seller to conduct the transaction and thus the transaction is collectively
authorized. Conversely, when the seller receives less than adequate positive state-
ments, then the seller is not trusted to do the transaction, e.g. transaction is aborted
or collectively not authorized. In this scheme, collaborative agents in the community
act as a intermediate trustor for the buyer. Hence, in this setting:

1. Buyer is the requester for community decision trust

2. Seller acts as trustee who also requests for community decision trust

3. Other agents act as intermediate trustor on behalf of the buyer

If a transaction is collectively authorized or approved, then transaction occurs. After
delivery of trading objects, buyer assesses the outcome of transaction and makes his

60 Chapter 4. Collective Authorization and Social Control

opinion or rating of the outcome of transaction known to community. Based on this
information community alters seller’s reputation in their knowledge.

Essentially, the design of collective authorization is distribution of decision trust
to the community. It forms collaboration filtering scheme to prevent possible un-
wanted outcome. It also forms collaboration sanctioning scheme, in which commu-
nity is able to block transaction proposal involving seller with bad reputation.

Following sections shall go further into detail how partial decision trust are made
as well as how ratings are propagated.

4.3.2 Community Decision Trust

Every transaction entails forthcoming risk as well as benefit, the transaction profile
that buyer perceives. Hence, the challenge in the design of collective decision trust
is how each partial decision trust captures transaction profile. To decide trust based
on predefined threshold value shall not capture what buyer perceives as transaction
profile.

Coleman’s model of decision trust is based on rational decision making. It cap-
tures potential risk and potential gain from a transaction. Let ρ ∈ [0, 1] be opinion
of the trustor toward probability that trustee will honor the trust (reliability trust
of trustee), L ∈ R be potential loss or risk of the transaction when trustee misplaces
the trust, G ∈ R be potential gain of the transaction when trustee honors the trust,
and LG = L

G is the loss to gain ratio. Decision trust is based on rational thinking
such that trustor will place trust when potential gain of the transaction given prob-
ability that trustee will honors G×ρ is greater than potential loss of the transaction
given probability that trustee will misplace the trust L× (1− ρ). Formally:

Decision Trust =


Place Trust if ρ

1−ρ > LG
No Trust if ρ

1−ρ < LG
Indifferent if ρ

1−ρ = LG
(4.1)

Coleman’s decision trust model is able to capture the ratio of potential risk and
gain of the transaction as well as trustee reputation. Therefore, in every transac-
tion proposal, buyer shall inform the transaction profile LG value to be used by
intermediate trustors as parameter for their partial decision trust.

Let ρ ∈ Ω = C × C × [0, 1] be opinions of all agents in community C towards
reliability trust of another. Let Ωs ⊂ Ω be set of opinions of all agents about
probability that agent s ∈ C will honor the trust, ρas ∈ Ωs be agent a opinion
about agent s, and LG ∈ R is loss to gain ratio that the buyer expects from the
output of a trading or a transaction. Function PTrust : Ω×R → {1, 0} is introduced
to express partial decision trust by an agent, where 1 represents “Place Trust” and
0 represents “No Trust”. Partial decision trust by agent a of transaction involving

4.3. The Design of Collective Authorization 61

agent s as seller in which the buyer perceives loss to gain ratio value LG , is based
on the following condition:

PTrust(ρas ,LG) =

{
1 if ρas

1−ρas
> LG

0 if ρas

1−ρas
≤ LG

(4.2)

Community decision trust is the product of all partial decisions. It can be the
result of long and complex consensus or it can be as simple as the result of sim-
ple voting that is employed here utilizing transaction approval and refusal scheme
presented in previous chapter.

Thus, community decision trust Trust : Ωn × R → {1, 0} on a transaction in
which s is the seller and the buyer perceives transaction profile as LG , is based on
the following condition:

Trust(Ωs ,LG) =

{
1 if

∑
a ∈ C PTrust(ρas ,LG) ≥ m

0 if
∑

a ∈ C PTrust(ρas ,LG) < m
(4.3)

As specified before, m is number of agents which is satisfactory to represent ma-
jority of community. The domain of function Trust is binary value {0, 1} which in
this respect 1 represents “Transaction is collectively Authorized”, and 0 represents
“Transaction is not collectively authorized”.

4.3.3 Reputation Propagation and Concluding Reliability Trust

Coleman’s model of decision trust considers the probability of behavior of trustee
in a transaction. The value of probability, in this respect, is subjective opinion of
the trustor towards reliability of the trustee. It is derived from personal experiences
as well as what other say about the trustee: his reputation. Here, there are two
important components in the scheme, namely (i) way to propagate recommendations
or ratings, and (ii) method how to conclude or to compute the probability value from
reputation.

To achieve reasonable performance, collective decision trust should happen im-
mediately. Inevitably, there is no space to interact in advance for exchanging or
querying recommendations or opinions. Hence, ratings of an outcome of transaction
should be made known to public after transaction completes, in particular after the
buyer receives goods or services from the seller. The received ratings alters agent’s
opinion about trustworthiness of seller.

How agent’s opinion is altered depends on the method used to compute rep-
utation. Previously, there were discussion about methods to compute reputation,
for example, Simple average, Bayesian system, and Discrete system. These method
can be employed into the framework as long as it can be perceived as “probability”

62 Chapter 4. Collective Authorization and Social Control

{0, 1}. The simplest method is to directly use percentage scheme. For example, let
r be the value of trustee’s reputation and rmax be the maximum value of reputation
in particular system. The probability that trustee will honor the trust is r

rmax × 100
percent.

Using this point of view, it is relative easy to conclude the reliability trust of
trustee using method such as simple average or weighted values. Even in discrete
system, the values of 〈Very Good, Good ,Average,Bad,Very Bad〉 can be converted
to 〈1, 0.75, 0.5, 0.25, 0〉 counterparts. So when one consider that trustee has Good
reputation then his opinion on the probability that trustee will honor the trust is
75% or 0.75.

Note that this method is simplification of translation from one system to another.
Additionally, the study of semantic translation between computational should be
conducted. Nevertheless, it is beyond the discussion in this thesis.

The Beta Reputation

Algorithm presented in this chapter employs Beta reputation system proposed by
[Ismail and Jøsang, 2002]. The reason to use Beta reputation is merely example. It
is simple and the output of computation is presented as probability. Thus, it can
be easily embedded into collective decision trust scheme. Nevertheless, any other
methods can also be employed in the system under specific considerations using the
translation method previously discussed in 4.3.3.

In Beta reputation system, rating from outcome of transactions as perceived
by the rater is expressed as binary values; 0 for bad result and 1 for good result.
Rating is propagated by the buyer after he receives outcome from the seller to the
rest of community. Each agent who receives this rating updates his knowledge about
reputation of the particular seller represented in tuple 〈sum good , sum bad〉 where
sum good is the sum of good results and sum bad is sum of bad results.

Beta reputation system concludes the expectation or probability that a trustee
or seller will honor the trust with:

ρ =
sum good + 1

sum good + sum bad + 2
(4.4)

Using Beta reputation, an agent simply maintains the sum good and sum bad
values of all agents in community accumulated from his own experiences as well as
ratings received from others. The next section will explain collective authorization
algorithm employing Beta reputation in detail.

4.4. Collective Authorization Algorithm in TLA+ 63

4.4 Collective Authorization Algorithm in TLA+

4.4.1 Re-Introduction

Some of the materials in this discussion refer to the transaction algorithm as pre-
sented in previous chapter. The following part of state machine recalls collective
approval and refusal of a transaction proposal:

Approved Refused

GoodBad

GoodBad

Encounter

Proposing Transaction
(Broadcast the Proposal)

Receiving Proposal
Make Decision

Broadcast Statement

Receiving Statements

Concluding
Community Approval

Trustee Action
Trustor Rating

Receiving Rating

End

Description

S0

S1[b]S1[s]

S7GS7B

S2[a]A S2[a]R

S3[b]AS3[b]RS3[s]AS3[s]R S3[a]AS3[a]R

S4[b]A S4[b]RS4[s]A S4[s]RS4[a]A S4[a]R

S5[b]G S5[b]B

S7R

S6[a]GS6[s]GS6[a]BS6[s]B

Encounter

Propose

ReceiveProposalApprove
ReceiveProposalRefuse

ReceiveStatementApproval
ReceiveStatementRefusal

ProcCommunityApproval
ProcCommunityRefusal

ProcRatingGood
ProcRatingBad

ReceiveRatingGood
ReceiveRatingBad

End

Action Predicates

In receiving a transaction proposal, an agent decides whether he approves
or refuses a transaction proposal determined by ReceiveProposalApprove and
ReceiveProposalRefuse. The statements of approval and refusal are made public
from which each agent counts statements of others. At the end, all agents are in the
same state in that they know whether agents approves or refuses transaction based
on predefined threshold representing majority. In the algorithm, this is determined
by ProcCommunityApproval and ProcCommunityRefusal .

In this respect, the reason to approve or refuse the proposal is merely based
on validity of the proposal. This chapter advances this scheme further by incor-
porating partial trust decision (eq 4.2) in the reasoning of ReceiveProposalApprove
and ReceiveProposalRefuse. In this perspective, the semantic of the words Approve,
Refuse, Approval , Refusal are perceived as Place Trust , No Trust , Authorized , and
Unauthorized , respectively.

Reputation Storage

Beta reputation considers the sum of good experiences as well as the sum of bad
experiences. Recall table 3.1 showing records of internal knowledge of agent. An
agent stores reputation of all agents in the following record:

experience = community → (sum good , sum bad)

Both sum good and sum bad are integer greater or equal than zero. In TLA,
they are defined as Naturals. These two values will be altered when agent receives

64 Chapter 4. Collective Authorization and Social Control

rating of outcome of transaction and will be used in the partial decision trust when
a transaction proposal is received.

4.4.2 Collective Authorization

In a transaction proposal, buyer and seller put information about transaction loss
to gain ratio named with lgratio ∈ R. In receiving transaction proposal, agent
takes lgratio as well as seller reputation in the reasoning of his partial deci-
sion trust which in the algorithm is determined with ReceiveProposalApprove and
ReceiveProposalRefuse.

As remainder the following descriptions are taken from previous chapter:

S0 → S2[a]A ReceiveProposalApprove
Action ReceiveProposalApprove is enabled if an agent receives a message con-
taining a proposal, and both isPropValid and trustDecision are TRUE

S0 → S2[a]R ReceiveProposalRefuse
Action ReceiveProposalApprove is enabled an agent receives a message con-
taining a proposal, and either isPropValid and trustDecision is FALSE

Discussion in this chapter assumes that isPropValid is always true which im-
plies approval and refusal is based merely on the result of function trustDecision.
That is, if trustDecision is true then ReceiveProposalApprove is enabled whereas if
trustDecision is false then ReceiveProposalRefuse is enabled, but not both on the
same transaction proposal.

Function trustDecision : R× Z2 → B reasons partial decision trust of a transac-
tion proposal involving particular seller. In TLA, trustDecision is defined as:

trustDecision ∆=
[lg ∈ Real ,
sum good ∈ Nat ,
sum bad ∈ Nat

7→ let ρ
∆=

(sum good + 1)/(sum good + sum bad + 2)
in (if ρ > (1− ρ) ∗ lg

then true

else false)
]

This function uses Beta reputation (equation 4.4) to compute reliability trust of
seller from which the result is used to determine partial decision trust as specified
in equation 4.2.

4.4. Collective Authorization Algorithm in TLA+ 65

In the protocol run, an agent approves the transaction proposal if he, as part
of intermediate trustors, decides to place trust (trustDecision=TRUE) on the seller
to conduct proposed transaction. Conversely, he refuses the transaction proposal.
Each intermediate trustor broadcast the statement containing his part of decision
trust to the rest of community. After receiving all statements, an agent is able
to determine whether community decides to collectively place trust on the seller
and thus authorizes the proposed transaction, or not to place trust on the seller
and thus does not authorize proposed transaction. As previously discussed, this is
determined by ProcCommunityApproval and ProcCommunityRefusal based on the
majority voting. Thus, this step is in accordance with equation 4.3.

4.4.3 Rating Propagation

The following discussion refers to the table 4.1 as well as following part of predicate
action diagram:

Approved Refused

GoodBad

GoodBad

Encounter

Proposing Transaction
(Broadcast the Proposal)

Receiving Proposal
Make Decision

Broadcast Statement

Receiving Statements

Concluding
Community Approval

Trustee Action
Trustor Rating

Receiving Rating

End

Description

S0

S1[b]S1[s]

S7GS7B

S2[a]A S2[a]R

S3[b]AS3[b]RS3[s]AS3[s]R S3[a]AS3[a]R

S4[b]A S4[b]RS4[s]A S4[s]RS4[a]A S4[a]R

S5[b]G S5[b]B

S7R

S6[a]GS6[s]GS6[a]BS6[s]B

Encounter

Propose

ReceiveProposalApprove
ReceiveProposalRefuse

ReceiveStatementApproval
ReceiveStatementRefusal

ProcCommunityApproval
ProcCommunityRefusal

ProcRatingGood
ProcRatingBad

ReceiveRatingGood
ReceiveRatingBad

End

Action Predicates

Consider that transaction is authorized or approved (S4[s]A, S4[a]A, S4[b]A).
Buyer and seller are permitted to conduct the trading or the exchange. Seller de-
livers trading objects or services to the buyer (or does opposite action if seller is
untrustworthy) followed by buyer assessment on the outcome of transaction. Buyer
sets the rating of the outcome of transaction consists of two possibilities. If the
buyer satisfies with the outcome, then he gives good rating (1). On the contrary,
if the outcome of the transaction is not satisfactory, then he gives bad rating (0).
This rating is broadcasted to the rest of community. In the algorithm this action is
determined by ProcRatingGood and ProcRatingBad .

S4[b]A → S5[b]G ProcRatingGood
Action ProcRatingGood , implying this particular state transition, is enabled
if an agent finds a proposal π that is already approved (π.decided = TRUE),

66 Chapter 4. Collective Authorization and Social Control

State Transition Pre Condition Action / Description Post Condition

S4[b]A → S5[b]G

b ∈ Community

agent[b].proposals[π].

proposed=FALSE

decided=TRUE

rated=FALSE

buyer=b

rateTransResult [π]=Good

agent[b].experience[π.seller]

sum good

sum bad

ProcRatingGood

Agent finds completed
transaction from proposal π
in which he was the buyer,
he has not rate the trans-
action, and the outcome of
transaction is considered to
be good. Agent updates his
knowledge about reputation
of the seller π.seller, marks
π as rated, and broadcast
his statement to other.

agent[b].proposals[π].

<proposed>

<decided>

rated=TRUE

agent[b].experience[π.seller]

sum good+=1

<sum bad>

S4[b]A → S5[b]B

b ∈ Community

agent[b].proposals[π].

proposed=FALSE

decided=TRUE

rated=FALSE

buyer=b

rateTransResult [π]=Bad

agent[b].experience[π.seller]

sum good

sum bad

ProcRatingBad

Agent finds completed
transaction from proposal
π in which he was the
buyer, he has not rate
the transaction, and the
outcome of transaction is
considered to be bad. Agent
updates his knowledge about
reputation of the seller
π.seller, marks π as rated,
and broadcast his statement
to other.

agent[b].proposals[π].

<proposed>

<decided>

rated=TRUE

agent[b].experience[π.seller]

<sum good>

sum bad+=1

S4[s]A → S6[s]G

S4[a]A → S6[a]G

a, s ∈ Community

a 6= s

agent[{a,s}].proposals[π].

proposed=FALSE

decided=TRUE

rated=FALSE

agent[a|s].experience[π.seller]

sum good

sum bad

ReceiveRatingGood

Agent receives Good rating
from buyer b regarding the
outcome of transaction that
was proposed with proposal
π. Agent marks π as rated
and alters seller reputation
in his knowledge by adding
one to the sum good

agent[{a,s}].proposals[π].

<proposed>

<decided>

rated=TRUE

agent[b].experience[π.seller]

sum good+=1

<sum bad>

S4[s]A → S6[s]B

S4[a]A → S6[a]B

a, s ∈ Community

a 6= s

agent[{a,s}].proposals[π].

proposed=FALSE

decided=TRUE

rated=FALSE

agent[a|s].experience[π.seller]

sum good

sum bad

ReceiveRatingBad

Agent receives Bad rating
from buyer b regarding the
outcome of transaction that
was proposed with proposal
π. Agent marks π as rated
and alters seller reputation
in his knowledge by adding
one to the sum good

agent[{a,s}].proposals[π].

<proposed>

<decided>

rated=TRUE

agent[b].experience[π.seller]

<sum good>

sum bad+=1

Description
The < > bracket indicates that the value of variable in the bracket does not change in post condition
The += operator has the same semantic as “increment by” operator += used in C language
Irrelevant variables are not presented.

Table 4.1: State Transitions (Part III)

not yet rated (π.rated = FALSE), he was buyer in the proposal (π.buyer = a),
and he finds that in this transaction the seller delivered good outcome
(rateTransResult = good). Agent alters his knowledge that he had good expe-
rience with particular seller by adding 1 to the expirience[π.seller].sum good
and marks the proposal as rated. Finally, he broadcast the rating to the rest

4.4. Collective Authorization Algorithm in TLA+ 67

of community.

S4[b]A → S5[b]B ProcRatingBad
This action is enabled if an agent finds a proposal π that is already approved
(π.decided = TRUE), not yet rated (π.rated = FALSE), he was buyer in
the proposal (π.buyer = a), and he finds that in this transaction the seller
delivered bad outcome (rateTransResult = bad). Agent alters his knowl-
edge that he had bad experience with particular seller by adding 1 to the
expirience[π.seller].sum bad and marks the proposal as rated. Finally, he
broadcast the rating to the rest of community.

Note that the algorithm does not determine whether outcome of transaction is good
or bad. Function rateTransResult : p proposal → {good , bad} is there to arbitrary
express the result of buyer judgment of the outcome of transaction which should be
good or bad, but not both.

Further, each agent a ∈ C , a 6= b receives rating from the buyer b and al-
ters his knowledge accordingly. This is determined by ReceiveRatingGood and
ReceiveRatingBad .

S4[a|s]A → S6[a|s]G ReceiveRatingGood
This action is enabled if an agent finds a message in the first sequence msgfifo
containing rating information stating good outcome of a transaction (originally
from proposal π and π.decided = TRUE) that is not yet rated (π.rated =
FALSE). Agent alters his knowledge that the buyer had good experience with
particular seller by adding 1 to the expirience[π.seller].sum good and marks
the proposal as rated.

S4[a|s]A → S6[a|s]B ReceiveRatingBad
This action is enabled if an agent a ∈ Community finds a message in the
first sequence msgfifo containing rating information stating bad outcome of
a transaction (originally from proposal π and π.decided = TRUE) that
is not yet rated (π.rated = FALSE). Agent alters his knowledge that
the buyer had bad experience with particular seller by adding 1 to the
expirience[π.seller].sum bad and marks the proposal as rated.

In this stage of transaction, all agents should have altered their knowledge about s’s
reputation according to the rating that buyer has given.

4.4.4 Transaction Summary

Figure 4.3 illustrates the summary of transaction steps according the the transac-
tion algorithm. First, encounter (S0) between buyer and seller occurs followed by

68 Chapter 4. Collective Authorization and Social Control

Figure 4.3: Summary of Completion of Transaction

proposing transaction proposal (S1). Agents collectively decide whether to approve
the proposal or to refuse it (S2 → S3 → S4). As discussed in previous chapter, when
the proposal is refused, system variables are “roll-backed” so that S7R is the same
as S0. On the other hand, if the proposal is approved then transaction “commits”
and transacting agents are allowed to trade. If the outcome is good then buyer
broadcast good rating (S5G) from which others alters their knowledge (S6G) that
brings overall system state to S7G . In contrast, if bad rating is broadcasted (S5B)
and received by other (S6B) then it bring the system to the state S7B .

4.5 Summary

This chapter presents a mechanism of collective authorization with desire to let
agents self-organize collective filtering to prevent risky transactions to occur. The
collective decision is based on reputation of seller as well as risk to gain ratio of indi-
vidual transaction. Reputation of the seller is altered when the buyer lets other know
his opinion of completed transaction. The final section of this chapter presents an
algorithm of collective authorization which is embedded into transaction algorithm
that was previously presented in chapter 3.

69

Chapter 5

Simulation on Collective

Authorization

Chapter 4 presented collective authorization that is designed with a wish that social
control can be established. This chapter studies the scheme further using simula-
tion. First, it introduces the underlying idea of the simulation system as well as
develops simulation algorithm. The subsequent section describes the utilization of
simulator in conducting set of experiments to study how the system evolve in per-
forming collective authorization under various initial conditions. Finally, the results
of experiment are presented and discussed.

5.1 Underlying Concept of Simulation on Social Control

5.1.1 Background and Objective

The work in this thesis can be roughly devided into two parts. The first part is
the design of transaction algorithm to accomplish transaction among decentralized
trading agents. The second part is to develop collective authorization reasoned by
reputation to establish social control and to maintain trust as well. This chapter is
about the study of the last mentioned part. Since proposed framework has not been
implemented in real world, it is important to know in advance how social control is
established and under which conditions it works.

Simulation is a method to understand the model [Gilbert and Troitzsch, 1999].
By applying collective authorization algorithm on sets of simulated data, behavior of
the system can be observed and studied. Here, simulation environment are utilized
to conduct series of experiments under arbitrary parameters.

The objective of this simulation is twofold (i) as a preliminary study of how social
control works on the system of agents applying collective authorization algorithm,
and (ii) to take advantage of simulator to conduct experiments to observe how system

70 Chapter 5. Simulation on Collective Authorization

Behavior Type Possible Outcome
Honest 80-100
Fair 40-80

Unpredictable 0-100
Dishonest 0-40

Table 5.1: Range of Possible Transaction Outcomes of each Behavior Type

might evolve from arbitrary initial conditions to the desire state - trust.
Collective authorization algorithm uses voting scheme to achieve collective deci-

sion trust as well as broadcast rating in order to propagate trust information. This
scheme differs from known methods that are used in distributed recommendation
system or by centralized rating provider. Based on this background, recommenda-
tion system is also incorporated into the simulator for the purpose of comparison.

5.1.2 Natural Selection

In order to observe evolution of the system, simulation mimics natural selection
process. Every agent possesses an amount of energy, the fitness, from which the
existence of the agent in social engagement is fueled. At each encounter with a
buyer, the fitness of seller decreases by a constant predefined value. If transaction
is authorized, then seller receives an incentive that increases his fitness by a number
of predefined value. Conversely, seller gets nothing to increase his fitness. Latter,
if an agent runs out of fitness, he can not engage in social interaction. That is, he
dies.

In the simulation, there are four types of agents arbitrarily set to exhibit their
behaviors as seller in transaction, namely, Honest, Unpredictable, Fair, and Dis-
honest. Each of the behavior type represents set of possible outcomes of transaction
from which seller of the corresponding type produces in having a transaction. Ac-
cording to their assigned names, Honest produces good outcome. On the other hand,
Unpredictable, Fair, and Dishonest produce unpredictable outcome, fair outcome,
and bad outcome, respectively. Table 5.1 lists possible outcomes from each behavior
types expressed in numerical value from 0 to 100. Moreover, this simulation assumes
that buyer is always honest in giving the rating. Thus, the outcome of transaction
is automatically set as the rating of the transaction itself.

The scheme of collective authorization promotes states that good behaving agents
are likely authorized to do transaction, and conversely bad behaving agents are un-
likely authorized to do transaction. By incorporating natural selection in the simu-
lation, one could observe how population of each behavior types of agents evolves.
The dynamics of populations are used as indicator for measuring how the algorithm
works under various conditions. As mentioned in previous chapter, turbulence of co-

5.2. Simulator Program 71

operation can be the result of frequently unwanted outcomes performed by dishonest
agents. Thus, one looks for conditions of the system where dishonests are socially
filtered implying population of Dishonests as well as Unpredictables are reduced as
soon as possible, but Honests are still preserved. This property is defined in this
simulation study as sustainability of trust.

5.1.3 Simulation Parameters

In collective authorization algorithm, partial decision trust is essentially made using
two parameters: the loss to gain ratio (LG) which is a measure of risk and gain of
transaction and expectation that the seller will behave accordingly in the transaction
(ρ).

Distribution of ρ among agents represents the level of trust in community. It
pictures how agents trust one another. Low values in the distribution of ρ represent
low level of trust. High values in the distribution of ρ represent high level of trust
among agents. Distribution of ρ change as transactions were conducted and ratings
were aggregated.

Loss to gain ratio LG represents transaction profile in respect to risk and ben-
efit. Transaction profile explains type of goods or services being exchanged in the
community. Generally, trading community exists from agents which have the same
interest, e.g. MP3 trading community or Computer Hardware trading community.
In this perspective, each community has a transaction profile. Buying MP3, for
example, is kind of transaction that relatively has the same level of loss and benefit,
hence LG is around 1. On the other hand, trading expensive goods such as high-end
laptops or providing financial service such as loan is considered to be risky, hence,
the value of LG is high. The example for low LG transaction would be buying
lottery. For lottery fans, buying lottery ticket would have LG value less than 1. For
them lottery ticket is cheap and has high potential profit.

The simulation in this chapter concerns with initial distribution of ρ as well
as transaction profile LG to be used as main parameter in the simulation. Initial
distribution of ρ represents initial level of trust when community if formed. LG
represents what type of good or services being exchanged in the community. Here,
every combination of parameter is simulated to see which combination maintains
the property of trust in the simulated system.

5.2 Simulator Program

Simulator is programmed using NetLogo version 3.1.3, a popular programmable
modeling environment developed by [Wilensky, 1999, Wilensky and Stroup, 1999].
NetLogo is an environment for simulating natural and social phenomena which is
derivative from previous successor StarLogo. Being written in Java enables NetLogo

72 Chapter 5. Simulation on Collective Authorization

Algorithm 5.1 Simulation Algorithm
1: loop
2: make agents move randomly
3: for every agent do
4: if agent find other agent in the near then
5: decide randomly who is the buyer b and seller s
6: buyer asks other agents to make partial decision trust based on LG
7: for every queried agent a do
8: let ρas be opinion of a towards s
9: if ρas

1−ρas
> LG then

10: a approves proposed transaction
11: else
12: a refuses proposed transaction
13: end if
14: end for
15: if total agents who agree ≥ vote threshold then
16: transaction proceeds !
17: let s’s fitness increases by predefined incentives value
18: s gives the outcome randomly from his predefined space of out-

come
19: b rates the outcome and broadcast the rating to others
20: for every agent a who receives the rating do
21: agent a updated his opinion about s
22: end for
23: else
24: transaction does not proceed
25: end if
26: end if
27: let the fitness of s decreases by predefined amount of energy used in en-

counter
28: if fitness ≤ 0 then
29: agent dies
30: end if
31: end for
32: end loop

5.2. Simulator Program 73

to be run on any platform that Java supports. Furthermore, writing simulation
program in NetLogo is relatively easy, since social environment a’la NetLogo is
ready to be used.

NetLogo incorporates a function so-called Behavior Space. It is an integrated
tools to be used in performing set of experiments on a model. It runs the model
several times using predefined space of parameters settings which enables one to ex-
plore various behavior of the model from the combination of the parameters settings.
This function will be used to conduct parameter sweeping on the model presented
in the next section to see various behavior of the system.

In NetLogo, agents are modeled as moving turtles on a two dimensional area. The
random movement of the turtles on the area allows the simulator to imitate random
encounters. Two agents coincidentally in the near of each other are subjected for
encounter of transaction. Algorithm 5.1 describes the simulation algorithm. In
addition, the complete source code of the simulator program is documented in the
appendix B.

5.2.1 Simulator Parameters

Figure 5.1 pictures user interface of the simulator. There are sliders, switches, and
buttons allowing the user to set specific parameters in the simulation. It also has
set of graphs displaying the dynamic of variables observed during simulation.

As previously discussed, the main parameters in the simulation are:

1. Initial distribution of ρ represented in [0, 1]. This parameter is set to determine
the level of trust at the genesis of community.

2. LG ratio, real [0, 10]. The constant LG - Loss to Gain ratio values which is
arbitrarily set to determine the transaction profile in the community.

Initial distribution of ρ and LG can be arbitrarily set on specific values or can be
set randomly using switches below the sliders to imitate random initial level of trust
or random transaction profile in each transaction.

In connection with the simulation environment itself, there are other parameters
that can be set using sliders and switches:

1. Vote threshold real [0, 100]. Threshold value used in the voting to represent
majority of agents.

2. Number of agents in each population of agents.

3. Natural selection related parameters: Initial fitness of each agent, the amount
of energy used in every encounter, and the energy agent receives when agent
is trusted to do transaction

74 Chapter 5. Simulation on Collective Authorization

Figure 5.1: Simulator User Interface showing simulation on the collective authoriza-
tion using random initial ρ and random LG in every encounter

5.2. Simulator Program 75

4. Ratings parameter, incentive for good (value that is added to sum good) and
sanction for bad (value that is added to sum bad) used in the Beta reputation.
Note that this parameter is only used for trial experiments.

5. Threshold value to determine whether an outcome is good (1) or bad (0).

The simulator is programmed that it can simulate two different algorithm on the
same set of data for comparison purposes. These algorithms are:

1. The ’Vote+Broadcast ’ scheme which is the algorithm of collective authoriza-
tion. Agents vote for community decision trust and the buyer broadcast the
rating of transaction based on the outcome of transaction.

2. The ’Recommender ’ scheme which is common recommendation algorithm. The
buyer makes decision trust alone using Coleman’s trust decision model (eq 4.1
on page 60) that is based on LG and reliability trust of seller derived from all
recommendations.

In addition, two rating or recommendation computation method are incorporated
in the simulator, namely, Average and Beta Reputation. These two methods are
used to conclude reliability trust.

5.2.2 Display Graphs

In order to observe important variable change, three main displays of graphs are
incorporated:

1. Reputation graph shows change of average value of distribution of ρ (reputa-
tion) towards each behavior types.

2. Fitness graph shows the change of average value of the fitness of each behavior
types

3. Population graph shows the change of populations on each behavior types.
This display is the most important graph which illustrates the natural selection
process during simulation.

Reputation and fitness graphs display the variable: average value from all agents,
or the values from one of randomly selected agents. Additionally, the encounter
hit graph displays percentage of agents that are subjected for encounter on each
movement. Next to it, trust decision monitor graph is used to monitor trust decision
conducted by every agent given parameters ρ and LG . The red area shows “No
Trust” and green area shows “Trust”.

76 Chapter 5. Simulation on Collective Authorization

Recommendation Vote+Broadcast
Average 5096 251

Beta Reputation 6046 248

Table 5.2: Average Generation of Encounters until the system reaches a state where
trust is assumed to be sustainable (Population of dishonests are very low but pop-
ulation of honest are still preserved)

5.3 Running Simulation

5.3.1 Parameter Setting

Preliminary runs are conducted to observe behaviors of the system under different set
of parameter values. Based on the result, an optimal values of simulator parameters
are gathered and used thorough experiments, namely:

à Community is composed of 600 agents in which there are 150 agents from each
behavior population. This composition of population along with the fixed size
of two dimensional area on which agents move establishes approximately 64-75
% encounters per-random-movement.

à Initial fitness of every agent is set to 50

à Energy used which decreases fitness in every transaction is set to 0.5, whilst
the incentive value which increases fitness is set to 1.

à Incentive for good and Sanction for bad are set to 1 according to the Beta
reputation. Afterall, they are used only on trial runs.

These values are concluded after several trial runs of simulation in which the values
of initial distribution of ρ and LG ratio are set to random.

The next step is to run 100 simulation in which simulator parameters are set ac-
cording to the values explained above, and system parameters - initial distribution
of ρ and LG ratio, are set to random. Table 5.2 presents average generation of en-
counters in which system reaches a state where population of the dishonests are very
low and the population of honest are still preserved. These values are used during
experiments to determine the state at which the value composition of populations
are observed.

5.3.2 Observed Phenomenon

During simulation, there are conditions and trends that are observed in the evolution
of population of agents. The following are classification those conditions, namely:

5.3. Running Simulation 77

(a) Condition 1. All Agents are Extinct (b) Condition 2. All Agents are Preserved

(c) Condition 3. Dishonests are Vanished, Others
are Preserved

(d) Condition 4. Honests are Preserved. Dishon-
ests are Extinct. Others might be Extinct.

Figure 5.2: The Four Conditions Observed During Simulation. These are the exam-
ple of graphs showing the four conditions of populations of agents applying collective
authorization (subfigures a,d) as well as recommender system (subfigures c,d)

78 Chapter 5. Simulation on Collective Authorization

Condition 1 Agents from any behavior type are extinct. At the end of simu-
lation session, the typical composition of populations are: Honests<10 %,
Dishonests<10%, Fairs<10%, Unpredictables<10%. Figure 5.2(a) shows the
example of the graph showing how populations of each behavior type are de-
creased. This condition represents insufficient number of authorized transac-
tions allowing agents to receive incentive in order to gain the fitness. That is,
the level initial trust among agents as community is formed is insufficient to
cope with the high risk transactions.

Condition 2 Agents from any behavior type are extant. Figure 5.2(b) pictures the
example of population graphs showing that all agents are preserved even at
the state where number of encounters generation is considered to be too high.
In this context, the algorithm is failed to filter bad behaving agents.

Condition 3 Honest, Fair, and Unpredictable agents are extant, but Dishonest are
extinct. The typical composition of population in this state are: Honests>95%,
Dishonests<5%, Fairs 80-100%, Unpredictables 80-100%. Figure 5.2(c) pic-
tures the example of population graphs showing this condition. The rests of
the runs after snapshot indicates stabilizes trends of population of the Honest,
Fairs, and Unpredictables.

Condition 4 Honests are extant, dishonests are extinct, and both Fair and Un-
predictables tend to be extinct. The typical composition of population is
Honest>95%, Dishonest<10%, Fair<30%, Unpredictable<30%. Figure 5.2(d)
pictures the example of population graphs showing this condition.

These four conditions measure how successful collective authorization algorithm in
filtering bad behaving agents and at the same time providing space for good behaving
agents to continue to trade. They are used in determining result of experiments
described in the next section.

5.4 Experiments

5.4.1 Parameters Sweeping

NetLogo has a feature so-called Behavior Space which allows one to explore the
model’s “space” of possible behaviors and determine which combinations of param-
eter cause the behaviors of interest. This is done by varying parameters according
to defined set of values.

Particularly, those parameters are initial distribution of ρ - initial trust level of
community, and LG ratio - the type of goods or service being exchanged in the
community. The objective is to understand the possible effects of every combination

5.4. Experiments 79

of both parameters in the system. The result is intended to be used as consideration
in implementing the framework in the future.

In this experiments, parameters sweeping is conducted by varying initial distri-
bution of ρ using interval 0.05, starting from 0.05 - representing low initial trust, to
1.0 - representing high initial trust. The LG is varied starting from 0.3 - represent-
ing low risk and high potential benefit transactions, to 10.0 - representing high risk
transactions, using interval 0.3. Whilst other simulator parameters stay constant.
These combinations requires 500 simulation runs. In addition, each 500-runs is re-
peated 5 times on different set of random encounter generations to see consistency
of the results.

The experiments are also done for simple average and Beta reputation in order
to observe the influence of reputation computation method used in the algorithm.
Furthermore, experiment applying the same technique is also conducted on recom-
mender system for comparison purposes.

Being written in Java gives NetLogo its multiplatform capability. However, it has
drawback on the performance. Running one run of simulation takes approximately
1-2 hours on Pentium IV 2.3 Ghz 1Gb RAM machine running Linux. Therefore,
experiments are splited up to be run on several machines. In order to make sure
that the machines delivers the same set of random process, each runs uses the same
random-seed. It guarantees that the pseudo-random generators on each simulation
begins with the same starting state and runs the same random behavior.

5.4.2 Observation

Observation is focused on populations of agents from each behavior type. The
interest is laid on the composition of population at or after the r th encounter. The
value of r is determined using approximation of the result from preliminary run
presented on table 5.2 on page 76. Here, the r th encounter is considered to be the
step where the algorithm should “successfully vanish” the dishonests.

In simulation on Recommender system, the snapshot is taken at the r = 7000,
and at r = 350 for Vote+Broadcast algorithm. Data on each snapshot is categorized
according to the four conditions previously described. Furthermore, the step of
encounter generation at which dishonests are extinct on each run is also noted to
understand the performance of the system.

5.4.3 Presenting Results

Overall results of experiment are drawn on graphs presented in figures 5.3 - 5.10.
Graphs on figure 5.3, 5.4, 5.7, and 5.8 present classification of each population
composition snapshoted from the r th encounter in parameter sweeping. The red dots
indicates condition 1 where all agents are extinct. The yellow indicates condition

80 Chapter 5. Simulation on Collective Authorization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

L/G Ratio

Results from Parameter Sweeping
Snapshoted from the 350th Encounter

Method : Vote + Broadcast Rating. Trust Metrics : Beta. Vote Thres : 75%

Condition 1
Condition 3

Condition 4
x/(1+x) Boundary

Figure 5.3: Results from Parameter Sweeping on Collective Authorization Using
Beta Reputation. Each point represents snapshot of population from the 350th

encounters. Each point is colored according to the four conditions. Red, Yellow,
Green, and Blue points represent in respective manner, condition 1, 2, 3, and 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

L/G Ratio

Results from Parameter Sweeping
Snapshoted from the 7000th encounters

Method : Recommendation. Trust Metrics : Beta Reputation

Condition 1
Condition 2

Condition 3
Condition 4

1/(1+x) Boundary

Figure 5.4: Results from Parameter Sweeping on Recommender System Using Beta
Reputation. Each point represents snapshot of population from the 7000th encoun-
ters. Each point is colored according to the four conditions. Red, Yellow, Green,
and Blue points represent in respective manner, condition 1, 2, 3, and 4.

5.4. Experiments 81

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

L/G Ratio

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

Method : Vote + Broadcast. Metric : Beta Encounter

 0 2 4 6 8 10

L/G Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1
In

iti
al

 D
is

tr
ib

ut
io

n
of

 p

Figure 5.5: Performance of Collective Authorization using Beta Reputation. The
Graphs shows time needed by agents applying this algorithm to vanish the Dishon-
ests. One point in the graph shows how many encounter is required until dishonest
become extinct.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

L/G Ratio

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

Method : Recommendation. Metric : Beta Encounter

 0 2 4 6 8 10

L/G Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

Figure 5.6: Performance of Recommender System using Beta Reputation. The
Graphs shows time needed by agents applying this algorithm to vanish the Dishon-
ests. One point in the graph shows how many encounter is required until dishonest
become extinct.

82 Chapter 5. Simulation on Collective Authorization

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

L/G Ratio

Results from Parameter Sweeping
Snapshoted from the 350th Encounter

Method : Vote + Broadcast Rating. Trust Metrics : Average. Vote Thres : 75%

Condition 1
Condition 3

Condition 4
x/(1+x) Boundary

Figure 5.7: Results from Parameter Sweeping on Collective Authorization Using
Simple Average. Each point represented snapshot of population from the 350th

encounters. Each point is colored according to the four conditions. Red, Yellow,
Green, and Blue points represent in respective manner, condition 1, 2, 3, and 4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

L/G Ratio

Results from Parameter Sweeping
Snapshoted from the 7000th encounters

Method : Recommendation. Trust Metrics : Average

Condition 1
Condition 3

Condition 4
x/(1+x) Boundary

Figure 5.8: Results from Parameter Sweeping on Recommender System Using Simple
Average. Each point represented snapshot of population from the 7000th encounters.
Each point is colored according to the four conditions. Red, Yellow, Green, and Blue
points represent in respective manner, condition 1, 2, 3, and 4.

5.4. Experiments 83

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

L/G Ratio

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

Method : Vote + Broadcast. Metric : Average Encounter

 0 2 4 6 8 10

L/G Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1
In

iti
al

 D
is

tr
ib

ut
io

n
of

 p

Figure 5.9: Performance of Collective Authorization using Simple Average. The
Graphs shows time needed by agents applying this algorithm to vanish the Dishon-
ests. One point in the graph shows how many encounter is required until dishonest
become extinct.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

L/G Ratio

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

Method : Recommendation. Metric : Average Encounter

 0 2 4 6 8 10

L/G Ratio

 0

 0.2

 0.4

 0.6

 0.8

 1

In
iti

al
 D

is
tr

ib
ut

io
n

of
 p

Figure 5.10: Performance of Recommender System using Simple Average. The
Graphs shows time needed by agents applying this algorithm to vanish the Dishon-
ests. One point in the graph shows how many encounter is required until dishonest
become extinct.

84 Chapter 5. Simulation on Collective Authorization

2 where agents are preserved. Green, and blue dots indicate condition 3, and 4
respectively. Additionally, a curve initial distribution ρ = LG

1+LG is drawn as helper
line in interpretation of the graph. This curve separates area of go and no-go in the
rational decision trust. Above the curves are the area of go for decision trust and
under the curve is the area of no-go. The line itself defines the indifferent decision
trust where ρ

1−ρ = LG .
Figure 5.5, 5.6, 5.9, and 5.10 show the performance of algorithms at each pa-

rameter combination. Performance is assumed to be amount of time needed by
algorithm to vanish the dishonests. Thus, each dot in the graph is the measure of
encounter generation at which dishonest become extinct. In the graph, the value of
encounter generation is represented by palette of colors. Additionally, all data in
each graph are interpolated from which gradual colors in the graphs are generated.
It advances visualization of the graph for the shake of esthetic.

5.5 Discussion

The result presented in figure 5.3, 5.4, 5.7, and 5.8 show that at any combination of
initial distribution of ρ and LG , which are under the helper curve, brings the system
into the state where condition 1 is reached. It shows that the level of initial trust is
insufficient to cope with the risk of transactions. Having this condition, agents do
not have any chance to transact and gain their reputation. That explains why at
the end all agents are extinct.

In this respect, performance graphs show that the time for algorithm to vanish
the Dishonests varies approximately 50 to 1000 encounters generations. In this area,
no pattern exhibited by the graph due to the way the simulator generates encounter
which is randomized movement of turtles on an area. The less turtles exists, the less
chance that turtles meet each other. This circumstance applies to all experiments
which run Recommender system and Vote+Broadcast scheme using any trust metric.

On the other hand, any combination parameter values above the curve affects
the system in slightly different ways. The use of Recommender system, for instance,
brings system to the states where condition 2, 3, and 4 are reached. Figure 5.4 and
5.8 show that the system reaches the state where condition 4 occur as the value of
LG ratio gets higher. Conversely, when LG ratio gets lower the system reaches the
state of condition 3. In other circumstances, the system exhibits condition 2 when
the value of LG is small and initial ρ is high. In fact, it shows the common aspect
in rational decision trust, that the more risky the transaction is, the more trust one
needs.

One might notice in Recommender system, that simple average slightly outper-
form Beta reputation. This is confirmed by Liang and Shi [Liang and Shi, 2005] who
performed evaluation of several trust metrics, but not by Schlosser et. al. [Schlosser

5.6. Summary 85

et al., 2004] who did the evaluation with different approach. The reason is that
Recommender system incorporated in this simulation counts the whole recommen-
dations. Different models of Recommender System count opinions only from subset
of agents.

Moreover, Liang and Schlosser measured performance of trust metrics by observ-
ing dynamics of the reputation, not the emergent property of the system which is
done in this simulation. Nevertheless, since this thesis does not concern about the
trust metrics performance in depth, the performance issues in Recommender system
affected by different trust metrics are not discussed here.

The interesting part of the result is that performance of Vote+Broadcast scheme
surpasses Recommender system. The time for the Vote+Broadcasting scheme to
exterminate the Dishonests is lots faster than Recommender system. Moreover,
the Recommender system exhibits linear degradation of performance as the value
of initial ρ gets higher and LG gets lower. On the contrary, the results exhibited
by Vote+Broadcast scheme demonstrates that distribution of the performance are
steady for any value of initial ρ and LG .

Nevertheless, the simulation shows limitation of Vote+Broadcast scheme. The
system reaches the state of condition 2 as LG ratio gets higher although it is above
the helper curve. In fact, using Beta reputation scheme, the maximum LG ratio
which system can handle is approximately 5.6. This value is taken in condition that
initial trust level of the community is the highest. On the other hand, simulations
that use of simple average show that the maximum value of LG than system can
handle is 6.

Conclusively, graphs presented here show approximate operating range of col-
lective authorization which can be used as considerations in the future works. One
should avoid the area that exhibited red or yellow dots and try to stay on blue or
green. Consider that a group of people want to set up MP3 trading community in
which transaction risk is assumed to have LG = 1. They should be sure that the
initial trust level among them is at least 0.6.

5.6 Summary

This chapter presents the result of simulation on collective authorization. It demon-
strates how social control works in that the system is able to detain Dishonests
more effectively rather then normal Recommender system. Nevertheless, the study
shows that collective authorization scheme has limitation. It can be used by the
community with relative low-risk trading profile. This chapter also reveals approx-
imation of operating range of the collective authorization. It is regarded to be the
considerations in the future implementation of proposed framework.

86 Chapter 5. Simulation on Collective Authorization

87

Chapter 6

The Design of the Protocol

This chapter investigates the requirements and issues in the implementation of the
transaction algorithm presented in previous chapters and delivers best-practice de-
sign of the transaction protocol. The first section draws the scenario and reveals
issues which might arise during implementation. The discussion leads to the design
of a set of protocols utilizing distributed public-key crytography to devise mutual
authentication problem. The subsequent section describes the protocols concerned
with infrastructure of the transaction: community establishment, key management,
as well as the memberships. The third section specifies the transaction protocol
which is the extention of the transaction mechanism proposed in previous chapters
in which some arbitrary modifications are implemented for the shake of feasibility
in practice. This chapter ends with the summary and discussion.

6.1 The Scenario, Issues, and Intended Solution

6.1.1 The Scenario

Consider a P2P trading community C consists of n agents1 who conduct trading
among them without the existence authority of server to facilitate transactions.
Community grows when new member joins in and shrinks when existing member
leaves or being convicted by community for some reason. A public network facilitates
communication among agents where address resolution is already established. Here,
agents are assumed to be reliable but not always reachable. That is, every message
transmitted through the network is guaranteed to be received by destined agent.
These assumptions is arbitrarily taken to allow higher level of abstraction of the
protocol.

The developed protocol assumes that community seed is already established by a

1The notion of agent is used instead of peer in order to have similarity in explanation and to
avoid confusion

88 Chapter 6. The Design of the Protocol

mutually trusted agents so-called the pioneers, through discussions in mailing-lists,
blogs network, or even from offline meetings. In this stage, the pioneers already
agree on set of initial institutional facts establishing membership and community
money. They also agree on the distribution of community money to the agents.

In the establishment of community, agents perform bootstrapping protocol ex-
plained in section 6.2.4. Since the community is semi-closed system, new member
can join in with two possibilities: either by being recommended by one of the mem-
bers, or by selling his resources to the one of the member consequently receiving the
corresponding institutional-money and membership. The latter enforces the new
member to invest his goods or services to the community and thus encourages him
to continue to trade within the community. The protocol that deals with enrolling
new member is described in section 6.2.5.

In particular case where majority of agents agree that an agent should be con-
victed, or when an agent resigns from the community, agents perform expelling
member protocol illustrated in section 6.2.6.

Each agent in the community has roles to trade as buyer or as seller as well as
to perform his obligation in collaborative actions to complete transactions. Trans-
actions are conducted by performing transaction protocol explained in section 6.3.

6.1.2 Issues and Intended Solutions

Since agents utilizes public network the first issue that arises is authentication. How
agents can verify whether received message is genuine. Digital signature has been
known to devise such problem by providing a mechanism to authenticate the source
of message utilizing public-key cryptography. However, digital signature requires
key administration by which property of so-called key-trust, the trust in the context
of network security, is established. One believes that a key belongs to someone when
the key administrator, the Certification Authority, certifies the binding between the
owner and the key which is known as digital certificate. Here, CA establishes the
hierarchy trust model which simplifies the introduction of members’ public-keys. In
contrast to this, the aim of the design is to avoid the use of such service. This leaves
the key-trust and key-management issues open.

Furthermore, there should be a way to justify that an assertion is collectively
accepted as institutional-fact. The mechanism should prevent a state where agents
deny those institutional-facts, as it might lead to the dispute or distrust. This
property, entitled with “Multiparty Non-Repudiation” (MNR), can be established,
for example, by generating agent’s digital signature of an assertion to signify agent’s
acceptance on particular assertion. Here, signatures of all agents justify that an
assertion is institutional fact. However, this solution is impractical since attaching
all signatures would require more space and verification would require computation
time as community expands.

6.1. The Scenario, Issues, and Intended Solution 89

The protocol should also prevent double-spending of institutional-money. In
particular, the protocol should devise how agents justify that an assertion is no longer
accepted as institutional fact. The thinkable solution is to maintain communally
signed list of eliminated institutional facts (LEI). In analogy to PKI, this list is
called Certificates Revocation List (CRL) maintained by CA. Still, this solution is
also impractical because content synchronization as well as mutual signing would be
too costly to be collectively performed by agents. Moreover, it limits the performance
of the system since a number of transactions can be completed on a window of
collaboration in altering and signing the LEI.

Despite the non-existence of TTP implies that solution could not be as simple
as when TTP facilitates the transaction, the protocol design should maintain prac-
ticability in its implementation. Therefore, the following illustration is proposed to
solve those issues.

à Distributed cryptography offers a solution to achieve MNR. Agents gen-
erate community-keys of which the private-key component is splitted and
shared among agents. Agents use shared community private-key to gener-
ate partial-signature of the assertion. All partial-signatures can be computed
into community-signature of the particular assertion. Not only that it sim-
plifies signature verification procedure, but this method also distributes the
authority of the community key among agents. Using this scheme, every agent
gets an equal role in the community signature. The detailed discussion of dis-
tributed cryptography and the achievement of MNR is discussed in the next
section.

à Using distributed cryptography, community signature on an assertion signifies
that the assertion is institutional fact. Since MNR is achieved, no agent can
deny that the assertion is institutional fact. This implies that institutional-
money and institutional-memberships are the count-as assertions which have
community signature attached.

à To devise key-trust problem, public-key of an agent is incorporated as an at-
tribute in his institutional-membership. Since community signature is attached
on it, institutional-memberships represents certified binding between agent-id
with his public-key. In analogy to key-trust established in PKI, agents perform
the function of CA in collective manner. Marchesini and Smith [Marchesini
and Smith, 2002] introduced this as “Virtual Hierarchies” in distributing key-
trust on several intermediate CAs.

à In order to prevent double spending, an institutional-money should has serial
number incremented during each transaction. Using this scheme, who stated as
owner in an institutional-money that has highest serial number is the current

90 Chapter 6. The Design of the Protocol

owner of that particular money. Since distributed cryptography requires all
agents to perform community signature generation, double-spending attempt
can be countered by the owner of the institutional-money.

à As previously mentioned, the protocol assumes that community seed is already
established by a mutually trusted agents so-called the pioneers who are able
to authenticate each other using their public-keys. Agents can either use PGP,
Key Exchange algorithm [Blum, 1983], or any other media to exchange their
public-keys. The pioneers, denoted with Ψ where Ψ ⊆ C , is assumed never
leave community. The existence of pioneers are intended to solve the problem
of trust in the establishment of community as well as the community private-
key redistribution problem. That is, they are the anchor of both key-trust
and the real trust in the community. Despite that all agents have equality to
play any role in the transaction, yet the assumption of the pioneers should
sociologically make sense.

6.2 Bootstrapping, the Keys, and Memberships

6.2.1 Protocol Basics

Public-key cryptography or asymmetric cryptography is used heavily to provide
authentication as well as non-repudiation. Therefore some notations related to it
have to defined before its use. Protocol descriptions in this chapter use ai (with
index) for denotating an agent in community C that consists of n agents {a1...an}.
In some parts of description, ab and as denotate the transacting agents, the buyer
and the seller. Objects related to an agent are identified directly with the index of
the agent. For example ki denotes public-key of agent ai .

Notations for Cryptographic Operations

Each agent ai ∈ C has private and public-key pairs denoted with k−1
i and ki , respec-

tively. In order to achieve authentication of message msg , agent ai the message using
his private-key. This process produces agent ai ’s digital-signature of msg denoted
sigimsg which is the result of:

sigimsg = encrypt
(
k−1
i , hash(msg)

)
where hash is any one-way-hash function that produces “finger-print” of message
and encrypt is the encryption function of a cryptography algorithm. Let decrypt
be decryption function of corresponding encrypt , signature sigimsg can be verified

6.2. Bootstrapping, the Keys, and Memberships 91

only using corresponding public-key ki :

sigverification(ki ,msg , sigimsg) =

{
valid if hash(msg) = decrypt(ki , sigimsg)

not valid otherwise

Any message transmitted between agents should be signed by the sender(s) by
attaching its / their signature(s) in the message as well as other information which
is essential in the authentication process. In order to simplify the notation, message
msg signed by agent ai is denoted with {msg}i where

{msg}i = 〈msg , {p̂i}C , sigimsg〉

{p̂i}C is institutional-membership of agent ai containing ai ’s public-key ki .
Public-key contained in the institutional-membership is important for signature ver-
ification. One can verify that signed message msg is genuine from agent ai by
comparing the hash of received message msg with the result of the decryption of
sigimsg using ai ’s public-key ki contained in {p̂i}C . The detailed explanations of
institutional-membership and the community signature are discussed in the next
section.

There are events in the system, where two or more agents agree on a message.
Together, they sign that message and attach their signatures as well as institutional-
memberships. Consider agents ab and as agree on message msg and together they
sign that message denoted with {msg}b,s such that

{msg}b,s = 〈msg , {{p̂b}C , {p̂s}C } , {sigbmsg , sigsmsg}〉

Using the same way to express the signaturing, set of agents {ai ...aj } sign message
msg is denoted with {msg}i ...j such that

{msg}i ...j =
〈
msg ,

{
{p̂i}C ... {p̂j }C

}
, {sigimsg ...sigjmsg}

〉
Notations for Communicating Agents

This chapter uses two standard communication operators: send denoted with “7→”
and broadcast denoted with “→↗↘ ”. Agent ab sends signed message msg to agent as

is expressed with:

ab 7→ as : {msg}b

Agent ab sends signed message msg to set of agent {ai ...aj } is expressed with:

ab 7→ {ai ...aj } : {msg}b

92 Chapter 6. The Design of the Protocol

Using assumption that the first agent collects the signatures and sends the mes-
sage to the receiver, a set of agents {ai ...aj } sign message msg and send it to agent
as is expressed with:

{ai ...aj } 7→ as : {msg}i ...j

Using the same way, a set of agents {ai ...aj } sign message msg and send it to set of
agents {ak ...al} is expressed with

{ai ...aj } 7→ {ak ...al} : {msg}i ...j

Agent ab signs and broadcasts message msg to the community C is expressed
with:

ab→↗↘C :{msg}b

Using the same assumption, that the first agent collects the signatures and sends
the message to the receivers, a set of agents {ab , as} sign message msg and broadcast
it to the community C is expressed with

{ab , as}→↗↘C : {msg}b,s

The reason that broadcast operator is not defined as action of multiple sending is
that the availability multicast channel allowing agent to take advantage by sending
the message only once through that multicast channel instead of having repeatly
send the message to every agent in the community.

6.2.2 The Using of Distributed Cryptography

Some Background

Since it was introduced by Shamir [Shamir, 1979], distributed cryptography has
been receiving great interests. Instead of one-sender-one-receiver performed in tra-
ditional cryptography, distributed cryptography considers many to one or one to
many sender/receiver in the system [Desmedt, 1998]. The idea is to distribute the
authority of the secret or private-key to group of stakeholder. The cryptography
operation in which the shared private-key is required must be performed by those
stakeholder. In this scheme, entitled with n-out-of-n, all stakeholder are respon-
sible to any result of cryptography operations (encryption, decryption, signature
generation) involving the shared private-key.

In respect to the proposed protocol, the generation of community digital-
signature of an assertion requires all agents to be involved using his part of shared
community private-key. Here, community signature of an assertion signifies that
assertion is accepted by all agents. Since no community signature can be generated

6.2. Bootstrapping, the Keys, and Memberships 93

without involvement of all agents, the system achieves MultiParty Non-Repudiation
(MNR).

In the development, the so-called threshold cryptography was developed to allow
m-out-of-n stakeholder to perform the cryptography operation. Here, the presence
of m stakeholder is sufficient to perform intended cryptography operation. Mainly,
this scheme is used to achieve fault tolerant in distributed system. Transaction
protocol proposed in this thesis utilizes n-out-of-n distributed cryptography. Not
only due to simplicity of the protocol, but the property of the key enables agents to
prevent double spending attempt.

Notations of Community Signaturing

Community C has private and public-key pairs, denoted with k−1
C and kC respec-

tively, in which community private-key k−1
C is splitted in a way that every agent

ai ∈ C possesses partial community private-key k−1
C :i . The algorithm allows an agent

to generate partial community signature of message msg denoted with psigC :imsg ,
such that

psigC :imsg = encrypt
(
k−1
C :i , hash(msg)

)
The complete community signature sigCmsg of message msg is constructed from

all partial signatures such that,

sigCm = sigconstruct

 ⋃
ai ∈ C

{psigC :imsg}


where sigconstruct is a function which takes all partial signatures as input and
produces complete community signature. Here, the system uses standard signa-
ture verification process in which community public-key kC is used. Here, com-
munity signature sigCmsg on message msg is valid when hash(msg) is equal to
decrypt(kC , sigCmsg).

In order to capture distributed cryptography operation, basic notations explained
earlier in this section is extended. Agent ai partially signs message msg using his
part of shared community private-key k−1

C :i is denoted with {msg}C :i where

{msg}C :i = 〈msg , psigC :imsg〉

Consequently, a set of agents {ai ...aj } ⊂ C sign message msg using their part of
shared community private-key k−1

C :i ...k
−1
C :j is denoted with {msg}C :i ...j where

{msg}C :i ...j = 〈msg , {psigC :imsg ...sigC :jmsg}〉

94 Chapter 6. The Design of the Protocol

RSA based Distributed Cryptography and the Property of Community-
Key

This protocol utilizes n-out-of-n distributed RSA public-key scheme [Malkin et al.,
1999, Boneh and Franklin, 2001] in which private-key component is splitted in addi-
tive form and distributed among signature participants. This system allows agents
to perform simple signing and simple signature verification as well. Furthermore, the
protocol takes advantage from simple partial-keys management in order to establish
community key regeneration in the event of membership’s change.

Let k−1
C = 〈dC ,NC 〉 and kC = 〈eC ,NC 〉 be community private-key and public-

key pairs in RSA system where dC is private-key component of k−1
C . Pick n random

integers dC :i satisfying that

dC =
n∑

i=1

dC :i

Every dC :i is given under authority by agent ai . Here, the structure of shared
community private-key held by agent ai is denoted with k−1

C :i where k−1
C :i = 〈dC :i ,NC 〉.

This additive splitting method allows agent i to encrypt integer z ∈ Z using his
partial community private-key k−1

C :i :

encrypt
(
k−1
C :i , z

)
= z dC :i (mod NC)

where NC is the modulus component of the community key. One might notice that
the above operation is a standard RSA encryption operation in which the modulus
operation keeps the dC :i secret. Thus, the complete encryption of z is constructed
with

encrypt
(
k−1
C , z

)
=

n∏
i=1

encrypt
(
k−1
C :i , z

)
(mod NC)

which is equal to
z dC = z dC :1+...+dC :n (mod NC)

Let ζ be the result of encryption above, the decryption can be performed directly
using community public-key component eC such that

z = ζeC (mod NC)

Combined with one-way-hash function, the distributed cryptography scheme can
be used to generate partial-signatures as well as the complete community signature
of a message msg where z = hash(m). This partial signature scheme enables sim-
ple shared community-key management. The system works with any structure of
splitting values as long as the sum of dC :i is equal to dC .

The fundamental problem in using such method is how to generate and to split

6.2. Bootstrapping, the Keys, and Memberships 95

the community private-key dC in which no agent or any entity whatsoever knows
original value of dC . Fortunately, Boneh et al. has developed method to generate
RSA keys distributively such that the resulting private-key is splitted in additive
form, and that no agents learns others’ shared community private-key. Thus, this
method is suitable to be used to generate community-key which is done only once
when community is established.

6.2.3 Anatomy of Institutional-Money and Institutional-

Memberships

(a) Institutional-Membership

(b) Institutional-Money

Figure 6.1: Anatomy of the Assertions establishing Institutional-Facts

96 Chapter 6. The Design of the Protocol

In this framework, institutional-facts are arbitrary assertions which are accepted
by the community. One recognizes that an assertion is institutional-fact by verifying
community signature on the assertion using community public-key. There are two
types of assertions established institutional-facts used in the framework, namely
institutional-membership which signifies that an agent is member of the community,
and institutional-money that functions as generally accepted medium of exchange
within community. Figure 6.1 presents pictorial explanation of the two assertion
types.

Essentially, the structure of count-as assertions in this chapter is similar to
those explained in chapter 3 with slight modification to meet requirement of the
transaction protocol. Assertion constructing institutional fact that establishes
the membership of agent ab (institutional-membership) is denoted with p̂b where
p̂b = 〈idp̂b

,membership,C , {agentid = ab , publickey = kb , otherinfo}〉. It contains
identification of the agent valued in agentid , the public-key of the agent in publickey ,
and any other information regarding to the agent stated in otherinfo. If community
accepts the assertion, then community signature on the assertion is attached. There-
fore, institutional-membership created from assertion p̂b is denoted with {p̂b}C .
Since community signature signifies the acceptance of all agents, the semantic of
{}C is equal to the modal operator �C presented in chapter 3.

Assertion establishing institutional-money is denoted with p̃ where p̃ =
〈idp̃ ,money ,C , {serial = sp̃ , value = val , owner = b}〉. The idp̃ is unique number
assignment of assertion in community C and serial attribute is the serial of to iden-
tify recentness of the assertion. It will be used to prevent double spending as well as
to identify the last owner of the particular money. Furthermore, economical value
of the money is stored in value attribute. The agent who owns it is stated in owner
attribute.

If community accepts the assertion, then community signature on the assertion
is attached. Therefore, institutional-money established from assertion p̃ is denoted
with {p̃}C .

In the real implementation, one might assign unique integer in the field id of
assertion. Strictly speaking, the unique number valued in id is what should be named
institutional-money or institutional-membership as it stated in Searle’s formula “x
counts as y in context of c”. Since the framework proposed in this thesis is the
result of engineering of those notions, the description does not take this matter
into account and shall simply consider the whole assertion as institutional-money or
institutional-membership.

6.2.4 Bootstrapping

Bootstrapping consists of stages which the pioneers perform at the establishment
of community. As explained earlier, the assumption taken is that the pioneers are

6.2. Bootstrapping, the Keys, and Memberships 97

mutually trusted agents know each other public-key and thus are capable to au-
thenticate one another. Figure 6.2 illustrates bootstrapping stages discussed in the

Figure 6.2: Community Bootstrapping

following descriptions:

Stage 1. Communal-key generation. Agents perform the Distributed RSA key
Generation Protocol proposed by Boneh et. al. At the end of the protocol
each agent ai ∈ C possess partial community private-key k−1

C :i and commu-
nity public-key kC . Using this protocol community private-key is splitted in
additive form as explained in the previous section.

Stage 2. Generation of institutional-memberships. Agent per-
forms the generation of institutional-membership for each agent.
For all agent ai ∈ C broadcast membership proposal p̂i =
〈idp̂i ,membership,C , {agentid = ai , publickey = ki , otherinfo = addinfo}〉:

(∀ai ∈ C) ai→↗↘C : {{p̂i}C :i}i

Upon receiving the message, each agent aj ∈ C , aj 6= ai verifies the signature,
the id, as well as the public-key stated in the proposal and gives his partial
signature on the proposal to be broadcast to the rest of agents:

(∀aj ∈ C , aj 6= ai) aj→↗↘C :
{
{p̂j }C :j

}
j

Each agent in the community constructs the complete community signature
of the proposal by which institutional-membership of agent ai denoted with

98 Chapter 6. The Design of the Protocol

{p̂i}C emerges. Agent keeps the list of the institutional-memberships to be
used later in communication and verification.

Stage 3. Generation of Institutional-money. Agents perform the gen-
eration of institutional-money for each agent according to the
agreement. Each institutional-money is based on assertion p̃i =
〈idp̃i ,money ,C , {serial = 0, value = val , owner = ai}〉 which is broadcasted
by the future owner of the money, agent ai ∈ C , to other agents:

(∀ai ∈ C) ai→↗↘C : {{p̃i}C :i}i

Upon receiving the message, each agent aj ∈ C , aj 6= ai verifies the signature
and the information contained in the proposal and checks it against the agree-
ment. Agent aj gives his partial signature on the proposal and sends it back
to agent ai :

aj 7→ ai :
{
{p̃i}C :j

}
j

Agent ai who receives all partial signature of p̃i constructs complete commu-
nity signature of the proposal implying that the idp̃i is collectively accepted
to be institutional-money denoted with {p̃i}C . Note that serial is equal to 0
(zero) since the first owner of idp̃i is ai .

At the end of this stage, every agent ai is recognized to be the member of community
C given institutional-membership {p̂i}C . During the protocol run in stage 2, every
agent learns institutional-membership of others. They keeps the list of institutional-
memberships (or at least list of hash of institutional-memberships) for verification
purposes. In contrast to this, every agent must keep his own institutional-money
since no agent learn it from the protocol.

As explained before, agents who perform bootstrapping protocol are the pioneers
Ψ. The first set of shared community key that were generated at the first stage
of the bootstrapping protocol are kept by the pioneers. This set, denoted with{
κ−1

C :1...κ
−1
C :n

}
, will be used by the pioneers to re-share the community private-key

in the event of the expelling of a member.

6.2.5 Enrolling New Member

As community grows, there is occasion when new candidate wants to join the com-
munity. Enrollment can be done either with recommendation from existing member
or the new member sells goods or services to existing member to receive institutional-
money. The audition process of new candidate is not the issues discussed here, since
this chapter focuses on the technical details. Particularly, how shared communal
private-key can be re-shared in such way that the new member receives his shared

6.2. Bootstrapping, the Keys, and Memberships 99

Algorithm 6.1 Enrolling new member. Part 1
à Before :

õ Community C consists of n agents {a1...an}
õ The structure of community private-key

{
k−1
C :1...k

−1
C :n

}
constructed from

{〈dC :1,NC 〉 ... 〈dC :n ,NC 〉} satisfying dC =
∑n

i=1 dC :i . Each agent ai ∈ C
holds k−1

C :i

õ The new candidate an ′ assumed to know community public-key kC

à After :

õ New community structure C ′ consists of n ′agents {a1...an , an ′}, where
n ′ = n + 1

õ New structure of community private-key
{
k ′−1

C :1...k
′−1
C :n ′

}
constructed

from {〈d ′C :1,NC 〉 ... 〈d ′C :n ,NC 〉} satisfying dC =
∑n

i=1 d ′C :i . Each agent
ai ∈ C ′ holds k ′−1

C :i

õ Institutional-memberships for an ′ : {p̂n ′}C

Assume that communication channels are private and agents perform the protocol
correctly.

1. Each agent ai ∈ C chooses set of n ′ random positive integers
{
δi
1...δ

i
n ′

}
satis-

fying δi
1 + ...+ δi

n ′ = dC :i and sends each of them to other agents including the
new candidate:(

∀ai , aj ∈ C ′ | ai 6= aj | ai 6= an ′
)

: ai 7→ aj :
{
δi
j

}
i

and keeps the δi
i for himself for next step.

2. Upon receiving all integers sent in step 1, each agent aj ∈ C ′ including the
new candidate constructs new d ′C :j such that

d ′C :j = δ1
j + ... + δn

j

At the end of this phase, new structure of partial community keys is{
k ′−1

C ′:1...k
′−1
C ′:n ′

}
constructed from

{
〈d ′C :1,NC 〉 ...

〈
d ′C :n ′ ,NC

〉}

100 Chapter 6. The Design of the Protocol

Algorithm 6.2 Enrolling new member. Part 2

3. The candidate an ′ constructs an assertion p̂n ′ which contains his public-key,
partially signs it with his shared communal private-key k ′−1

C ′:n ′ and proposes it
to the community

an ′→↗↘C : {{p̂n ′}C ′:n ′}n ′

4. Upon receiving the proposal, each agent ai ∈ C ′, ai 6= an ′ partially signs p̂n ′

using his new k ′C :i and broadcast it to the community

(∀ai ∈ C ′|ai 6= an ′) : ai→↗↘C ’: {{p̂n ′}C :i}i

by which all agent can learn the institutional-membership of an ′ , namely
{p̂n ′}C , to be appended in their database.

From this state, all agents work with new set shared community keys{
k ′−1

C :1...k
′−1
C :n ′

}
.

communal private-key and without revealing the community private-key.
Algorithm 6.1 followed by second part in 6.2 illustrated in figure 6.3, demonstrate

how agents collaborate to re-share the structure of community private-key such
that all members, including the new one, receive new part of shared community
private-key to work with. Despite of its simplicity, the algorithm keeps community
private-key k−1

C secret and allows no agent learn new shared community key of others.
After having new structure of shared community private-key, the new agent proposes
assertion for his institutional-membership to be used later in the transaction. This
protocol maintains the value of private-key component of community private-key dC

which is proved as follows:

Proposition 6.1: Protocol 6.1 (step 1 & 2) causes state transition that maintains
the value of community-key dC

Proof: By definition, dC =
∑n

i=1 dC :i . In step 1, dC :i is splitted such that dC :i =∑n ′

j=1 δi
j , and thus dC =

∑n
i=1

∑n ′

j=1 δi
j . Let d ′C be the value of dC after transition

where d ′C =
∑n ′

j=1 d ′C :j . By definition of step 2, d ′C :j =
∑n

i=1 δi
j and thus d ′C =∑n ′

j=1

∑n
i=1 δi

j . It can be concluded that d ′C = dC . �

6.2.6 The Expelling of a Member

When an agent leaves community for some reasons, shared community private-key
losses one of its part which had been hold by agent who leaves. Therefore, there
should be a way to restructure it. This is the occasion where the pioneers who
assumed never leave the community play their important part.

6.2. Bootstrapping, the Keys, and Memberships 101

Algorithm 6.3 The Expelling of a Member
à Before

õ n agents in community C : {a1...an} in which there are set of pioneers
agents Ψ ⊆ C where ν is the sum of pioneers ν = |Ψ| , ν < n

õ set of current shared community private-key
{
k−1
C :1...k

−1
C :n

}
õ set of the first shared community private-key

{
κ1

C :1...κ
1
C :ν

}
õ agent who will be convicted av ∈ C where av /∈ Ψ

à After

õ new community structure : C ′ = C \ {av} and n ′ = n − 1

õ set of new shared community private-key structure
{
k ′−1

C :1...k
′−1
C :n ′

}
Let

{
d1
C :1...d

1
C :ν

}
be private component of

{
κ−1

C :1...κ
−1
C :ν

}
such that d1

C = d1
C :1 + ...+

d1
C :ν where d1

C is community RSA private-key component of κ−1
C .

1. Each agent ai ∈ Ψ chooses n ′ random positive integers
{
δi
1...δ

i
n ′

}
such that

δi
1 + ... + δi

n ′ = d1
C :i , and sends each of them to other agents(

∀ai , aj ∈ Ψ× C ′, aj 6= ai

)
: ai 7→ aj : δi

j

and keeps δi
i for himself.

2. Upon receiving the integers sent in step 1, each agent aj ∈ C ′ constructs his
new shared communal private-key component d ′C :j such that d ′C :j = δ1

j + ...+
δj
j + ...+ δν

j . Hence, each agent aj ∈ C ′ has new shared communal private-key

k ′−1
C :j =

〈
d ′C :j ,NC

〉
. From this state, agents use the new structure of shared

community key
{
k ′−1

C :1...k
′−1
C :n ′

}
.

3. Each agent aj ∈ C ′ purges av ’s institutional-memberships {p̂v}C from his
knowledge.

102 Chapter 6. The Design of the Protocol

Figure 6.3: Illustration of Algorithm in Enrolling a New Member

Figure 6.4: Illustration of Algorithm in Expelling a Member

Algorithm 6.3 that is illustrated in figure 6.4 demonstrates restructuring process
of shared communal private-key. It takes advantage of the pioneers who hold the first
structure of shared community private-key

{
κ−1

C :1...κ
−1
C :n

}
. Basically, the algorithm

is simple, each pioneer divides his part of κ−1
C and distributes them to the rest of

n ′ agents in the community, where n ′ = n − 1. At the end of the process the new
structure of shared community private-key is formed with which agents work from
this point.

Given the proof of algorithm in enrolling new member (proof 1) , the value
of private component of shared community private-key in any state of the system
should be equal to the value of d1

C from the first structure of shared community-
key

{
κ−1

C :1...κ
−1
C :n

}
. Algorithm of expelling the member is derivativ of algorithm

of enrolling new member resharing the first dC to all members that are left in
community. Hence, the value of d ′C (after transition) is equal to d1

C as well as dC

6.3. Transaction Protocol 103

(before transition).
The two resharing protocols (Enrolling New Member and The Expelling of a

Member) keep the value of dC as constant in any state of the system eventhough
structures of shared community private-key are changed during these transitions. It
delivers advantage to the system such that communty signature verification can be
done without altering community public-key kC .

6.3 Transaction Protocol

Recalling the design issues and intended solution addressed before, here are specific
objectives to be achieved by the transaction protocol:

1. Achieving authentication and Multiparty Non-Repudiation

2. Preventing double spending

3. Achieving m-out-of-n majority

4. Reducing communication cost of original transaction algorithm

As explained in earlier section, the use of digital signatures, distributed cryp-
tography, and virtual hierarchy establishes authentication and Multiparty Non-
Repudiation. Double spending can be prevented by incrementing serial field in the
institutional-money during every transaction in order to identify the recentness of
the institutional-money. Hence, the real owner of the institutional-money can make
a rejection statement during the transaction along with the proofs of the possession
of particular money.

Preventing double spending can also be achieved by collaborately maintaining
the list of eliminated or revoked institutional-money. Earlier design of the protocol
[Tarigan, 2006] employs revocation list. It was found that it is costly to maintain
the community signed revocation list. In the event of transaction, all agents should
broadcast his partial signature to others signifying his acceptance of the revocation
list. With this, all agents can learn community signature on the revocation list.
Hence, the cost would be equal to the cost of algorithm presented in chapter 3.

Furthermore, it is difficult to handle multiple transactions at one time, since
agents can only work on one revocation list at a time. The thinkable solution to
handle multiple transactions with revocation list is to have window of transactions in
which multiple transaction proposals are “buffered” and finished after certain time.
However, further research lead to the design proposed in this chapter in which no
revocation list is necessary.

Threshold cryptography, a variant of distributed cryptography, offers a solution
how to achieve m-of-n majority in the community signature such that m agents,

104 Chapter 6. The Design of the Protocol

where m < n, can collaborate to construct community signature on a message.
This algorithm is designed mainly to achieve robustness of the system solving non-
reliable communication infrastructure or non-reliable agents. However, the protocol
does not employ this algorithm to achieve m-of-n majority signature. Since, double
spending prevention requires all agents to be present and to check proposals against
their currently owned institutional-money. To solve m-of-n majority, trading agents
perform so-called majority objection to the minorities. This will be explained later
in detail.

The following descriptions offers the known best-practice solution to these issues.
It starts by explaining the anatomy of transaction proposal.

6.3.1 Anatomy of Transaction Proposal

Figure 6.5: Anatomy of a Transaction Proposal

Refer to the transaction algorithm presented in chapter 3, traders initiate a
transaction by sending transaction proposal π = 〈Pn ,Po〉 to the community. The
structure of transaction proposal is extended in this chapter to meet requirement of
transaction protocol. Figure 6.5 presents pictorial view of a transaction proposal in
which several components are attached and signed by both traders, the buyer and
the seller. Formal description of transaction proposal π is:

π =
〈
idπ, ab , as ,LG , {p̃z}C ,

{
p̃ ′z

}
C :b,s

, {rtπ}C :b,s

〉

6.3. Transaction Protocol 105

where idπ is unique id of the proposal which is also the id of the transaction, ab and
as are buyer-id and seller-id respectively, LG is the loss-gain ratio arbitrarily given
by buyer, {p̃z}C is institutional-money belongs to ab to be exchanged with goods or
services from as , p̃ ′z is proposed assertion for overriding institutional-money {p̃z}C ,
and rtπ = {idπ, ab , aC } is rating-ticket for this transaction to be used later in rating
propagation. Note that {p̃z}C and {p̃ ′z}C :b,s represent the elements of transaction
proposal Pn and Po .

If p̃z = 〈idp̃z ,money ,C , {serial = s, value = v , owner = ab}〉 is the current as-
sertion of exchanged institutional-money then the proposed assertion should be
p̃ ′z = 〈idp̃z ,money ,C , {serial = s + 1, value = v , owner = as}〉. In the new asser-
tion, identification of current owner ab is replaced with new one as , the values of
value and idp̃z should be equal to the originals, and the serial value is incremented
by one. Both traders should give their partial community signatures on the assertion
as well as on the rating ticket for which they shall be denoted with {p̃ ′z}C :b,s and
{rtπ}C :b,s respectively.

To simplify protocol explanation, it is configured that, after buyer and seller
agree on the transaction, the buyer is the responsible to construct the proposal and
gives it to the seller to be verified, completed, and signed. Seller gives back the
proposal to be signed by buyer and the buyer broadcast the transaction proposal to
the community. Here, the complete transaction proposal is denoted with {π}b,s for
which it is signed by both traders signifying that both traders agree on π.

6.3.2 The Protocol

Protocol description is presented in form of flowchart and algorithm. Flowchart gives
pictorial view to describe the basic idea and protocol description in algorithm delivers
detailed actions. Figure 6.7 draws a flowchart to demonstrate of how traders initiate
the transaction by broadcasting proposal to the community, how traders perform
some consequence actions upon receiving replies, and finalize the transaction. Figure
6.8, 6.9, and 6.10 illustrate three flowcharts of actions performed by collaborators
upon receiving different requests from the traders. Detailed steps of the protocol
are presented partly, for formating purposes, in algorithm 6.4, 6.5, 6.6, and 6.7.

Transaction protocol starts with the assumption that the traders have already
established agreement to have a transaction. Step 1 and 2 presented in algorithm
6.4 shows how traders construct transaction proposal π and broadcast it to the
community. Step 3 presented in algorithm 6.5, describes how collaborating agent
should accept or reject the proposal. The three main conditions should be fulfilled
by a proposal are (i) proposal and signatures validity, (ii) not a double spending
attempt, and (iii) seller can be trusted given loss gain ratio provided by buyer and
what agent beliefs about the trustworthiness of seller. Upon receiving acceptance or
rejection, traders perform what specified in the step 4 presented in algorithm 6.6.

106 Chapter 6. The Design of the Protocol

Figure 6.6: Illustration of Transaction Protocol

If all collaborators accept the proposal then traders attain all partial community
signatures and thus transaction is committed. Traders finalize it by constructing
new institutional-money and rating ticket. On the contrary, traders perform step
4b presented in algorithm 6.6 that basically states that traders check whether the
majority m of n agents accept the proposal and none of the reason state that the
proposal is a double spending attempt. If this condition applies, then traders may
do the objection to the the minorities who have rejected the proposal with the
proofs that majorities accept the proposal by presenting signatures signifying their
acceptance. Based on the concept that majority wins, the minorities ought to accept
the proposal and reply the objection with their partial signatures of the proposal
and thus transaction commits. Algorithm 6.7 illustrates detailed action performed
by minorities upon receiving the objection as well as action performed by traders in
finalizing their transaction.

6.3. Transaction Protocol 107

Figure 6.7: How traders initiate and end the transaction

108 Chapter 6. The Design of the Protocol

Figure 6.8: How Agents Collaborate in Receiving Proposal

6.3. Transaction Protocol 109

Figure 6.9: How Agents Collaborate In Receiving Objection

110 Chapter 6. The Design of the Protocol

Figure 6.10: How Agents Collaborate in Receiving Rating

6.3.3 Multiple Traders Transaction

There are occasions that more than two traders should involve in a transaction. For
example, a file distributor, who has high capacity bandwidth, sells a file, made by
a producer, to the buyer. In this transaction, buyer pays the price of the media to
the file distributor and the distributor pays license which is part of the sold price to
the producer.

In order to cover this scheme, the protocol can be enhanced by a slight modifi-
cation to the proposal. Let ab , as , ap be the buyer, seller, and the producer respec-
tively who want to make a transaction in which ab pays the media with institutional-
money{p̃x}C to the seller and seller pays the royalty with institutional-money {p̃y}C .
The proposal constructed would be:

π =
〈
idπ, (ab , as , ap) ,LG ,

(
{p̃x}C , {p̃y}C

)
,
({

p̃ ′x
}

C :b,s,p
,
{
p̃ ′y

}
C :b,s,p

)
, {rtπ}C :b,s,p

〉
Without being explicitely told the roles of each traders, the collaborators learn

the role of each agent in the proposal by comparing proposed new assertion with
the institutional-money. And thus making the transaction simple because there is
no significant difference between conventional two traders transaction with multiple

6.4. Summary 111

Algorithm 6.4 Transaction Protocol Part 1
Before

à institutional-facts {p̃z}C , where
p̃z = 〈idp̃z ,money ,C , {serial = s, value = v , owner = ab}〉 stating
institutional-money idp̃z belongs to agent ab

à agent as sells his goods to ab in exchange for institutional-money idp̃z , and
agent ab determines the loss to gain ratio expressed in LG

After

à Transaction is Commited :
{p̃z}C is overrided with {p̃ ′z}C which states that idp̃z belongs to agent as

or

à Transaction is Aborted

1. The transacting agents, ab and as , constructs transaction proposal π proposal

π =
〈
idφ, ab , as ,LG , {p̃z}C ,

{
p̃ ′z

}
C :b,s

, {rtπ}C :b,s

〉
Here, p̃ ′z =

〈
idp0

z
,money ,C , {serial = s + 1, value = v , owner = as}

〉
is asser-

tion of new institutional-money and rtπ is the rating ticket.

2. Transacting agents sign and broadcast the proposal to other agents

{ab , as}→↗↘C : {π}b,s

traders transaction.

6.4 Summary

This chapter has presented an implementation scenario of the framework in P2P
file trading community and analysis of the issues which derives the requirements of
protocol. Based on the requirement, this chapter proposes a design of P2P proto-
col based on the scheme presented in previous chapters which utilizes distributed
cryptography algorithm. Based on the descriptions above, the protocol achieves the
following items:

1. Authentication
All messages transmitted should signed and verified using community public-
key as the anchor.

112 Chapter 6. The Design of the Protocol

Algorithm 6.5 Transaction Protocol Part 2

3. Upon receiving the proposal π, each agent ai ∈ C , ai 6= ab , ai 6= as examines
it to judge :

(a) proposal validity: whether construction is valid and the signatures are
correct and verified against their institutional-membership and commu-
nity public-key kC

(b) whether this proposal is double spending attempt:

i. whether ai indicates that {p̃z}C belongs to him (having the same id
but the serial field stated in ai ’s money is greater than it’s in {p̃z}C
)

ii. whether ai indicates that ab is also having transaction with him using
the same institutional-money {p̃z}C

(c) as trustworthiness; given LG from the proposal and as reputation be-
lieved by agent ai

If both examination is succeeded then agent constructs his part of community
partial signature on p̃ ′z as well as rtπ, and sends them back to the seller and
buyer:

ai 7→ {ab , as} :
{
idφ,

{
p̃ ′z

}
C :i

, {rtπ}C :i

}
i

agent ai remembers the rtπ on his temporary memory until ab informes the
rating of π or rtπ is timeout.

On the contrary, agent ai replies with rejection reason
reason ∈ {not valid ,not trusted , double spending} :

ai 7→ {ab , as} : {idφ, reason, proof }i

When the reason of rejection is double spending , ai attaches his institutional-
money (which has serial number greater than ab ’s) in field of proof .

2. Multi-party Non-Repudiation
The utilization of distributed cryptography allows agent to perform partial
community signing on assertion by which community signature on assertion
signifies that the assertion is accepted as institutional-fact.

3. Authorization
Based on the arbitrary loss gain ratio of particular transaction provided by
buyer and the trustworthiness of the seller believed by collaborators, autho-
rization is performed collectively using the concept of majority wins.

4. m of n majority

6.4. Summary 113

Algorithm 6.6 Transaction Protocol Part 3

4. Having all replies, transacting agents perform approval checking as follows :

(a) If all agents approve the transaction proposal, then the complete com-
munity signature can be computed from all collected partial signatures
and thus the new institutional-fact {p̃ ′z}C and community-signed rating
ticket {rtπ}C can be constructed. In this state, transaction with id idπ is
committed or completed. Before rating ticket timeout, agent ab broad-
casts the rating of completed transaction along with the rating ticket to
other:

ab→↗↘C : {idπ, rating , {rtπ}C }i
every agent ai ∈ C who still remembers rtπ on his temporary memory
checks the received rating and updates his knowledge towards reputation
of agent as . Protocol stops.

(b) On the contrary, if there are rejections then transacting agents check:

i. if none of the reason of rejection is double spending and the sum of
approving agents are more or equal than majority, then transacting
agents send objection to the minorities along with the proof. Let
c̄ ⊂ C be all agents who approve π and ć = C \ c̄ be all agents who
reject π, transacting agents construct oφ as an objection for π such
that oπ = 〈π, γ〉 where γ =

⋃
aj ∈ c̄ {psigC :j p̃ ′z}. Transacting agent

broadcast this objection to the minorities ć:

{ab , as} 7→ ć : {oφπ}b,s

ii. else, transaction is aborted. Protocol stops.

If certain conditions applies, the use of simple objection scheme and the con-
cept that the majority wins enables traders to collect all n partial community
signatures and complete the transaction.

5. Double spending prevention
Since partial signing scheme requires all n agents to contribute in a community
signature, collaborator, who owns the recent institutional-money proposed in
the proposal or collaborator who is having uncommitted transaction using the
same institutional-money, can vote down the proposal. Thus, double spending
can be prevented.

6. Accounting
The protocol allows accounting mechanism of institutional-money to be
achieved similar to the physical based accounting of money in the real world.

114 Chapter 6. The Design of the Protocol

Algorithm 6.7 Transaction Protocol Part 4

5. Upon receiving objection, each agent ai ∈ ć checks whether all partial signa-
tures from all agents are valid and the sum of majorities is sufficient according
to the agreement. Agent also checks whether the objection is the second at-
tempt for double spending. If all conditions satisfied then agent ai constructs
community partial signature on p̃ ′z as well as rtπ, and sends them back to
the seller and buyer as it is obligatory for him to follow what majorities had
decided:

ai 7→ {ab , as} :
{
idφ,

{
p̃ ′z

}
C :i

, {rtπ}C :i

}
i

On the contrary, agent ai replies with rejection reason
reason ∈ {not valid , double spending} :

ai 7→ {ab , as} : {idπ, reason, proof }i

6. Receiving replies:

(a) if all replies from the minorities are the approval of the transaction, then
the complete community signature can be computed and thus the new
institutional-fact {p̃ ′z}C and rating ticket {rtπ}C can be constructed. In
this state, transaction with id idπ is approved and committed. Before
rating ticket timeout, agent ab broadcasts his opinion of the completed
transaction along with the rating ticket:

ab→↗↘C : {{rtπ}C , rating , }i

every agent ai ∈ C who still remembers the rtπ on his temporary memory
verifies the signatures, checks the validity of the rating, and updates his
knowledge towards reputation of agent as .

(b) else, transaction is aborted.

Each agent keeps institutional-money on his own. In the event of transaction,
the money can be verified using community signature as well as validated
during double spending prevention embedded in the protocol.

7. Scalability
Instead of using and maintaining list of institutional-facts, proposed protocol
allows an agent to keep only his institutional-money and list of agents in the
community. Moreover, collaborators do not need to maintain session of trans-
action, for example to wait for the protocol to be committed or aborted. That
is, collaborators serve only request and react based on the conditions illus-
trated in above description. The only thing collaborators need to maintain is

6.4. Summary 115

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 2 4 6 8 10

N
um

be
r

of
 T

ra
ns

m
is

si
on

 p
er

 T
ra

ns
ac

tio
n

Number of Agents

Comparison of Communication Cost

Original Scheme Protocol Max. Protocol Min.

Figure 6.11: Comparison of Communication Cost between Original Transaction Al-
gorithm and the Developed Transaction Protocol

the rating ticket which is expired after certain period of times. This eliminates
the scalability problem of original transaction algorithm.

8. Reduced communication cost
Consider broadcasting a message is equal to n − 1 times sending message to
every agent, the protocol needs minimal of 3n − 1 and maximal of 3(n +
m)− 1 message transmissions per transaction. This is significant reducement
from n2 − 2n message transmission from original scheme. Figure 6.11 shows
comparison graph of communication costs between original scheme and the
protocol proposed in this chapter.

These achievements are regarded to be the best-practice solution for the framework
to make feasible and plausible implementation in the future. The next chapter shows
how transaction protocol developed in this chapter can be applied in P2P file-sharing
network as trading infrastructure for their users.

116 Chapter 6. The Design of the Protocol

117

Chapter 7

Application of the Framework

This chapter finalizes the thesis by presenting an architecture of implementation of
proposed framework that provides trading infrastructure for existing P2P networks.
It is the attempt to drag the framework into more realistic implementation. First,
the objective and requirements of the system are presented to identify challenges and
obstacles in designing desired application. Then, a section presents the architecture
of the trading system as well as the integration with existing P2P systems. The next
sections demonstrates the work-flow of the trading and an algorithm designed to
solve problems previously discussed. This chapter ends with a section that discusses
the design of the trading system and elaborates possible applications and business
opportunities given the implementation of the framework.

7.1 Introduction

7.1.1 Objective

The P2P networks have been associated with free content distribution and unreg-
ulated network. Despite the fact that P2P network has distinctive advantages and
wide range of utilization, these properties detains the development of P2P network
toward the stage where sustainable trading or economical transactions can be con-
ducted on the network. This chapter presents the application of the framework
proposed in this thesis that enables sustainable economical transactions within ex-
isting P2P networks.

7.1.2 Issues and Requirements

In the design of the P2P transaction enabler system, there are several requirements
should be fulfilled addressed because of certain characteristics of P2P Network sig-
nificantly affect the implementation of the framework, namely:

118 Chapter 7. Application of the Framework

Availability

The P2P network is well known to be the decentralized network in which peers are
not always available to provide the services. Although today’s Internet network
services are becoming more affordable and reliable, most P2P users join the network
on the need basis.
In the proposed framework, the completion of transaction requires all peers to be
available for collaboration. Although nowadays network infrastructures, such as
Jabber1 messaging, ensure the reliability of message transport, the absence of the
peers would create delay in the completion of transactions. This might become the
drawback for the network. Inevitably, the architecture should allow agents to be
virtually available for collaboration.

Address Management

How can an agent find other agent in the network. This problem arises since most
of P2P networks use pseudo-names as identifier. Pseudo-names are cheap, reusable
and can be used by any Internet users connected in the particular network. More-
over, most Internet Service Providers (ISPs) use dynamic IP address assignment or
Network Address Translator (NAT). It makes difficult to determine source address
of agent solely using IP address. In this respect, the architecture should support
address management and address resolution scheme to overcome the problem of
pseudo-name based P2P addressing.

Integration with Existing P2P Network

Every P2P network has its distinctive applications and features. For example, eDon-
key and BitTorrent network provide widely used file sharing infrastructure. Internet
users can take advantage from PeerCast and P2PTV network to provide multicast
network for multimedia content such as movie or TV. Considering the wide-used and
powerful application of the existing P2P networks, the architecture of this trading
system should enable integration with existing P2P network and software.

7.2 The Architecture

7.2.1 The Overlay Trading Network

The trading network is designed as an overlay network which is superimposed on
top of existing P2P networks. It provides trading infrastructure for P2P users who
are member of the trading network. As shown by figure 7.1, the trading network
and P2P networks are overlay networks which run upon Internet protocol. Here,

1http://www.jabber.org

7.2. The Architecture 119

Figure 7.1: Trading Network as Overlay Network for existing P2P Networks

P2P networks provide functionality and features as they were designed for. The
trading network utilizes the P2P networks as search and delivery infrastructure for
the traders. With this design, traders are able to exchange any content type on
which certain P2P network provides.

7.2.2 Trading Program

In order to cope with the requirement of availability and address management, the
trading system incorporates two types of program in the family. The so-called User-
side Program (UP) and Delegation Program (DP). The UP resides in the user’s
computer performing complete functionality of trading agent in community as well
as collaboration related tasks to complete transaction. DP, on the other hand, is
web-service program arbitrarily hosted by the agent in the reliable public web-server.
DP performs subset of functionality of UP as well as address management tasks that
is explained later. An agent in trading community needs both UP and DP to conduct
trading.

The trading network utilizes two application protocols, namely HTTP and Jab-
ber. DP, as explained earlier, is web-service program hosted public web-server that
has fixed URL address and uses HTTP as application protocol. UP runs on the
user’s computer that might be connected to the Internet with dynamically assigned
address through the firewall. Therefore, the Jabber protocol, for example, is suitable
to be used as communication protocol between UPs. Figure 7.2 and 7.3 illustrate
the anatomy of UP and DP, as well as interactions between them.

The idea in using the two programs are the following :

120 Chapter 7. Application of the Framework

Figure 7.2: User-side Program and Delegation Program

Figure 7.3: Interactions among User-side Programs and Delegation Programs

7.3. The Work-flow 121

à Delegation of Collaborative Tasks
Assume that public web servers are always available and supported by reli-
able network infrastructure, UP delegates its collaborative functionality to the
DP when UP is not available. The tasks delegated to DP are (i) to perform
partial decision trust upon request from traders, and (ii) to receive rating or
feedback from others and update the rating database accordingly. That is,
DP is backup peer when user goes off-line. Any update happened on DP dur-
ing unavailability of UP is synchronized when UP becomes available. During
database synchronization, UP updates also its current Jabber address or IP
address to the DP for address resolving mechanism.

à Dynamic Address Resolving Mechanism
Institutional-Memberships, by which agent authenticate others, contains the
URL of DP which is the first place for an agent to reach the DP of queried
agent. DP, which stores the Jabber address of the UP during last database
synchronization, provides agent with UP’s addresses. Thus, any change of UP
addresses can be learned by all agents in the network.

The next section describes the functionality of both UP and DP further as well as
the trading protocol utilizing both programs.

7.2.3 Integration

The P2P protocol used in inter-peers communication is specially design to carry out
the service on which the network provides. Therefore, the integration of trading
network with P2P network should not include the modification of existing protocol
and should be transparent to the peers.

Figure 7.4 presents the integration of UP into existing P2P software. Here, UP
controls the information which are fed to the Access Control List (ACL) of each peer.
The ACL module in each peer orders the access to the individual resource or service
which the peer provides. The seller or the service provider process the request for
download or service delivery from the peer with whom seller had transaction before.
After request verification the UP feeds the access control information to the P2P
software to authorize download session or service utilization from the correspondent
peer. The complete work-flow will be discussed in the next section.

7.3 The Work-flow

7.3.1 General Work-flow

The typical P2P network provides distributed facility for the users to advertise
their resources being offered to the network. The users connects into the network

122 Chapter 7. Application of the Framework

Figure 7.4: Integration of UP with existing P2P software

with ID and the IP address of the peer and the Distributed Hash Table (DHT)
algorithm provides the network with peer locating and resource searching functions.
Typically, user search for shared resources with the name or the peer which shares
these resources.

Figure 7.5 illustrates general work-flow of the trading system. First, P2P users
search the files or resources in the P2P network. The resources being offered in the
trading network is tagged with special tags to identify the trading network, the ID
of the resource being offered, as well as ID of the seller.

The next step is to contact the selling agent to confirm his offering and deal-
ing the price which is done in the trading network. After price agreement, both
agents completes the payment using protocol which is proposed in previous chap-
ters. Upon receiving the transaction receipt, the buyer requests for download or
service usage from the seller after authenticate him first to the seller using his ID
and the transaction receipt. Note that these steps were conducted in the trading
network.

Upon receiving request, the seller’s UP feeds transaction information to the ACL
module of P2P program which opens authorized session to the buyer to download

7.3. The Work-flow 123

Figure 7.5: General Work-flow of Transactions

the resources or to use the services. Finally, after receiving the resources from the
seller, buyer gives his feedback to the trading network resulting the change of seller
reputation.

7.3.2 Address Management

One of the important issues in the design is address management. As mentioned
before, the peer tends to have dynamically assigned address when the node is con-
nected to the network. The space of ID in the P2P network is not protected and
authenticated, which means that everyone can use the same ID when it is not occu-
pied. The trading network, however, requires that an agent has specific ID because
the intention to sustain the trading resources and the trust among the agents.

To solve this problem, the architecture incorporates Delegation Program (DP)
which is hosted in the public web-server and therefore has fixed address in form
of URL (Unified Resources Location). The URL of the DP is contained in the
Institutional-Membership of the agent. Recall the description of the protocol in
previous section, the Institutional-Membership is maintained by all agents in the
community. Hence, DP is the fixed location where agents resolve each other’s ad-
dresses.

Figure 7.6 illustrates the address or ID resolving process. Consider an agent
ab intends to contact agent as in the network for resource retrieval ab has bought
from as . First, ab retrieves as ’s Institutional-Membership from his database to get
as ’s DP URL. Assume that as is on-line and logs into the trading network as well

124 Chapter 7. Application of the Framework

Figure 7.6: Dynamic Address Resolution

as the P2P network with his UP and P2P software respectively. as ’s UP updates
his present IDs and IP addresses to his DP. Thus, ab ’s UP can learn the present
assigned IDs and addresses of as ’s UP by contacting as ’s DP.

7.3.3 Delivery Protocol

After transaction or payment is completed, it is time for the buyer to ask for resources
or services that he paid for. Figure 7.7 illustrates the protocol by which authorized
delivery can be done using a normal P2P network. The protocol encompass two
phases, first is request for delivery and authentication which is done in trading
network using buyer’s UP and DP as well as seller’s UP, and second is the delivery
itself which is done in particular P2P network.

Assume that transaction or payment is completed and buyer got his ticket for
what his paid. First, buyer UP requests and authenticates himself to the seller UP
by presenting the ticket signed With his public-key. Seller UP verifies the signed
request and requests for buyer’s IDs and addresses to the buyer DP which seller
trusts. Having the IDs, seller UP inserts the correspond buyer’s ID into P2P node
ACL which opens authorization for the buyer to grab the deliverables. At the same
time, seller UP acknowledges the authentication and send the requested resources
along with its location or address in P2P network. Buyer starts to download or use
the exchanged resources from seller P2P node after authorized of having the right
ID or address.

Validating buyer’s ID from buyer’s DP is important to tackle reply attack which
can be launched by any peers in the network, since peers can join the network using
any pseudo-name which is still available to use.

7.4. Discussion 125

His IDs are

Find Requested A in
Authenticated,

Authorized, Here is A

Here is my Ticket for A

Buyer UP Buyer DP

P2P Network

Trading Network

authenticate Me
What are His ID ?

Request for A in ...

Seller UP

Buyer P2P Node Seller P2P Node

Figure 7.7: Authorized Delivery Protocol

7.4 Discussion

7.4.1 Slight Review

The application architecture presented in previous sections demonstrates how the
framework can be implemented and integrated into existing P2P network. The trad-
ing network is designed as overlay network which runs on top of Jabber messaging
network as well as HTTP protocol, exploiting their features and advantages.

The use of User-side Program (UP) and Delegation Program (DP) in the system
enables dynamic address/ID resolution mechanism and increasing the availability
of agent in the network. Using this scheme, agents can easily join any available
Jabber network, - or any overlay and reliable messaging transport network, using
any available pseudo-names long as they can communicate each other using the
network. Here, DP is also responsible for delegating the UP when UP is not available
for collaboration. Thus, the problem the availability of the network can be solved
with this mechanism.

The design of the UP as ACL module for the existing P2P software enable
authorized delivery of resources being exchanged in the network. The agents takes
advantage dynamic address / ID resolution to get each others’ addresses or IDs with
which they join P2P networks. Resolved ID and addresses are used in the ACL
module to authorize download or usage request from the network. Thus, it creates

126 Chapter 7. Application of the Framework

Figure 7.8: Illustration of Royalti Based Transactions

layer of authentication across P2P networks.

7.4.2 New Possibilities of Trading Scheme

Proposed architecture opens some possibilities to conduct various schemes of trading.
For example:

à The framework enables the completion of multiple traders transaction which
offers open accountability for the traders. Cooperation can be setup between
distributors and producers to deliver the resources using royalti scheme. For
example, musician is able to let the music he produces to be distributed by the
set of distributors who have better bandwidth without loosing the accountabil-
ity. Figure 7.8 illustrates how payment, from buyer to distributor, and royalti,
from distributor to producer, can be completed in one transaction. In this
illustration, trust on the three traders can be made differently according to
the context of each roles in the trading.

à Currency exchange. Since transaction is based on exchanging community
money, agent who has high reputation could establish money exchanger ser-
vices for others. The particular agent sells “real money” to others in return
of institutional-money. Moreover, agent can perform loan service by buying
signed promise from other in return of institutional-money.

7.5. Summary 127

7.5 Summary

This chapter presented an example of application of the proposed framework, namely
the trading infrastructure for existing P2P file-sharing networks. It demonstrates
that the application can be integrated seamlessly into existing system by developing
overlay trading network for P2P users. It also solves some problems that arise due to
the nature of decentralized network. At the end some of thinkable trading schemes
are discussed to give the picture of new possibilites that can be ellaborated due to
the deployment of proposed architecture.

128 Chapter 7. Application of the Framework

129

Chapter 8

Conclusion and Future Works

“We can-we must-choose what kind of cyberspace we want and what
freedoms we will guarantee. These choices are all about architecture:
about what kind of code will govern cyberspace, and who will control

it” (Lawrence Lessig, 1999)

8.1 General Conclusion

The uncontrollability nature of cyberspace challenges research communities to de-
velop algorithms to secure digital-transactions and to enhance the controllability of
the network. Chapter 2 is the reminder, that us, computer scientists, consciously
or not-consciously had imitated social interactions into the development of those
algorithms. Ad-Hoc approaches is representation of Barter exchange that solves
specific, instantaneous, and non-continuous transactions happening everyday. The
single authority model imitates government-to-people relationships resulting con-
trollable digital-transactions systems found in today’s E-commerce. The third one
is the attempt to mimic people-to-people relationships in which control is performed
not by the government, but by people, from people, and for people.

This thesis had proposed a novel framework that belongs to the third attempt:
the development of algorithms and architecture that enable decentralized agents to
collaborate in self-managing electronic transactions, without assuming trusted third
party administering the transaction. The framework comprises the transaction al-
gorithm that promotes collaboration to complete transactions, as well as collective
authorization scheme that establishes social control for mutual security. The de-
velopment of the framework is perfected by proposing a transaction protocol based
on original transaction algorithm in which distributed cryptography is successfully
applied to achieve mutual authentication as well as to meet best-practice require-
ments.

130 Chapter 8. Conclusion and Future Works

8.2 Summary of Contributions

Chapter 3 formalizes collaborative actions in the creation and elimination of
institutional-facts as the basis transactions. Collective acceptance of arbitrary count-
as assertions creates the social-reality of accounts of finances of trading agents. The
process of collective acceptance gives deontic power to the social-object and its at-
tributes as stated in the assertion. Transaction is conducted by collectively altering
those assertions, in order to change financial statuses of transacting agents. Here,
transaction logic infers developed transaction algorithm that specifies actions of
agents in completing transactions.

Chapter 4 develops an algorithm so-called collective authorization that is em-
bedded into the transaction algorithm presented in chapter 3. The objective is to
establish social control allowing agents to collectively filter possible bad outcome
of transactions performed by dishonest agents. Continual disappointments resulted
from such outcomes might lead to perturbation of trust that disturb the sustainabil-
ity of collaboration and cooperation on which this framework heavily relies. In this
scheme, each agent rates the outcome of every transaction he just had and broad-
casts the concluded rating from which others can learn more about trustworthiness
of particular selling agent. Community authorization is performed by agents using
majority based voting. Each vote is reasoned by seller reputation as well as expected
loss and gain of the transaction. The algorithm enables agents as a whole to govern
transactions in individual level. Hence, this is regarded to be significant contribu-
tion since known approaches of authorization in decentralized systems allow only
local decision which can not guarantee that such decision comply with system-wide
policy.

In order to study how it works, communal authorization scheme is studied us-
ing simulation presented in chapter 5. The objective of this simulation study is to
have preliminary views of how the algorithm works as well as to identify its limi-
tations. The simulation shows that the algorithm allows agents to learn to identify
dishonest agents and prohibit them to conduct transaction. Since the idea of natu-
ral selection is incorporated into simulation algorithm, it demonstrates that trading
behavior of dishonest agents are socially limited and thus decreases their population
in community. Here, good behavior is promoted, bad behavior is discouraged, and
thus perturbation of trust can be avoided. Furthermore, the results from parameter
sweeping experiment yield a narrow working range of collective authorization. This
result is regarded useful in future implementation of the framework.

Chapter 6 contributes set of transaction protocols that are developed based on
original transaction algorithm. It successfully applies distributed cryptography sys-
tem into the protocol to establish group authentication as well as so-called Multi-
party Non-Repudiation. It consists of bootstrapping protocol performed during

8.3. Future Works 131

establishment of community, community-key re-sharing protocols performed during
the enrollment or expelling of member of community, as well as the transaction
protocol itself. The achievement of the development in this chapter is that the
protocol significantly reduces communication cost per-transaction compared to that
from original transaction algorithm, solves the problem of scalability, and thus meets
best-practice requirements.

Additionally, chapter 7 exemplifies an application of the framework. A trad-
ing infrastructure for P2P file-sharing networks is designed to enable P2P users to
conduct sustainable transactions. The software architecture covers integration tech-
nique with existing P2P systems, as well as, designing web-service based delegation
program to increase the availability of agents for collaboration. Furthermore, ad-
dress resolving protocol and authorized-file-delivery protocol are developed to cope
with practical problems of P2P. Finally, some new possibilities of applications are
also discussed in this chapter.

8.3 Future Works

This thesis conveys the research into the state where decentralized trading agents are
able to establish the system of communally governed transactions as well as delivers
the result of preliminary study on the implementation. The ultimate milestone
would be to implement the framework into a real world as a system that is usable
by Internet users. Therefore, further research should be conducted to understand
more about the behavior of the system, to study the acceptance of the concept by
real users, and to be more certain that the architecture delivers trustworthy design.
Some of the works that should be completed to achieve intended milestone are the
following:

1. In depth analysis of possible attacks
The most dangerous attack on a system would be from the insiders. The pro-
posed protocol assumes that agents are trustworthy in the collaboration. This
assumption is taken considering that agents are able to learn to identify un
trustworthy agents as well as to self-organize punishment through the collec-
tive authorization protocol. However, as it is shown in chapter 5, the learning
process needs certain amount of time. Therefore, further in-depth attack anal-
ysis should be performed to study all possible attacks. The results would be
used to refine and enhance the protocol.

2. Formal verification of the protocol
The work in thesis had incorporated informal proof of some part of algorithm.
Nevertheless, formal verification of the whole protocol should be done in or-
der to be sufficiently certain that the whole architecture delivers trustworthy

132 Chapter 8. Conclusion and Future Works

services as intended. In this work, some security properties should be verified
using the right tools. BAN Logic Abadi et al. [1996], for example, provides
framework to formally proof authentication property of the protocol. The
TLA+ hierarchical proof and TLC model checker can be used to verify the
correctness of the protocol. The result is taken as considerations in revising
the protocol.

3. Study on Collective Authorization
Collective authorization in this thesis takes Beta reputation and simple average
as method to compute trust. Further study on using other trust computation
method is necessary to understand the influence of those methods in the sys-
tem. This work should include not only simulation of the system, but also
the study and analysis using Evolutionary Game Theory in order to see how
system would evolve in the long run. In connection with Coleman’s model of
decision trust, other variables such as temptation to abuse trust, that is based
on LG ratio, should be also incorporated in the analysis.

4. Economic Model
Establishment of commerce in P2P opens research spaces in developing and
analyzing economy model that can be applied in this environment. The result
from this area is beneficial for this research to look for modified scheme or even
new scheme of transaction that is considered best-fit in the P2P environment.
Furthermore, socially constructed trading network such as proposed in this
thesis is mainly endorsed by community instead of world of business. Never-
theless, their involvement would be the catalisator of the use of the trading
network. Thus, one of the objective in this area is to find business models and
opportunities that attract business entities to involve in setting-up the trading
infrastructure for mutual benefit.

BIBLIOGRAPHY 133

Bibliography

Martin Abadi, Michael Burrows, and Roger Needham. A logic of authentication,
from proceedings of the royal society, volume 426, number 1871, 1989. In William
Stallings, Practical Cryptography for Data Internetworks, IEEE Computer Society
Press. 1996. URL citeseer.nj.nec.com/burrows90logic.html.

Alfarez Abdul-Rahman and Stephen Hailes. Supporting trust in virtual commu-
nities. In 33rd Hawaii International Conference on System Sciences-Volume 6,
January 2000.

Ross J. Anderson. Security Engineering: a guide to building dependable distributed
system. John Wiley & Sons Inc., 2001.

Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-to-peer
content distribution technologies. ACM Comput. Surv., 36(4):335–371, 2004. ISSN
0360-0300. doi: http://doi.acm.org/10.1145/1041680.1041681.

Alberto Artosi, Antonio Rotolo, and Silvia Vida. On the logical nature of count-as
conditionals. In C. Cevenini, editor, The Law and Electronic Agents: Proceedings
of the LEA 04 workshop, pages 9–34, 2004. URL http://www.lea-online.net/

publications/01countas.pdf.

Moritz Y. Becker and Peter Sewell. Cassandra: Flexible trust management, applied
to electronic health records. In CSFW ’04: Proceedings of the 17th IEEE workshop
on Computer Security Foundations, page 139, Washington, DC, USA, 2004. IEEE
Computer Society. ISBN 0-7695-2169-X. doi: http://dx.doi.org/10.1109/CSFW.
2004.7.

M. Ben-Or, O. Goldreich, S. Micali, and R.L. Rivest. A fair protocol for signing con-
tracts. Information Theory, IEEE Transactions on, 36(1):40–46, Jan. 1990. doi:
10.1109/18.50372. URL http://ieeexplore.ieee.org/Xplore/url=/iel1/18/

1841/00050372.pdf.

M. Blaze, J. Feigenbaum, and J. Lacy. Decentralized trust management. In Security
and Privacy, 1996. Proceedings., 1996 IEEE Symposium on, pages 164–173, 6-8
May 1996. doi: 10.1109/SECPRI.1996.502679.

citeseer.nj.nec.com/burrows90logic.html
http://www.lea-online.net/publications/01countas.pdf
http://www.lea-online.net/publications/01countas.pdf
http://ieeexplore.ieee.org/Xplore/url=/iel1/18/1841/00050372.pdf
http://ieeexplore.ieee.org/Xplore/url=/iel1/18/1841/00050372.pdf

134 BIBLIOGRAPHY

M. Blaze, J. Feigenbaum, and J. Ioannidis. Rfc 2704 - the keynote trust-management
system version 2. Network Working Group, 1999a. URL http://www.faqs.org/

rfcs/rfc2704.html.

Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D. Keromytis. The role
of trust management in distributed systems security. pages 185–210, 1999b. URL
http://www.cs.yale.edu/homes/jf/BFIK-SIP.pdf.

Manuel Blum. How to exchange (secret) keys. ACM Trans. Comput. Syst., 1(2):
175–193, 1983. ISSN 0734-2071. doi: http://doi.acm.org/10.1145/357360.357368.

Dan Boneh and Matthew Franklin. Efficient generation of shared RSA keys. Journal
of the ACM (JACM), 48(4):702–722, 2001. ISSN 0004-5411. doi: http://doi.acm.
org/10.1145/502090.502094.

Vincent Willem Buskens. Social Networks and Trust. PhD thesis, Interuniversity
Center for Social Science Theory and Methodology, 1999.

Yang-Hua Chu, Joan Feigenbaum, Brian LaMacchia, Paul Resnick, and Martin
Strauss. Referee: trust management for web applications. World Wide Web
J., 2(3):127–139, 1997. ISSN 1085-2301.

James Samuel Coleman. Foundations of Social Theory. The Belknap Press of Har-
vard University Press, 1990.

George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems. Concept
and Design, volume Third Edition. Addison Wesley, 2001.

Ivan Bjerre Damgard. Practical and provably secure release of a secret and exchange
of signatures. In EUROCRYPT ’93: Workshop on the theory and application of
cryptographic techniques on Advances in cryptology, pages 200–217, Secaucus, NJ,
USA, 1994. Springer-Verlag New York, Inc. ISBN 3-540-57600-2.

Yvo Desmedt. Some recent research aspects of threshold cryptography. In ISW
’97: Proceedings of the First International Workshop on Information Security,
pages 158–173, London, UK, 1998. Springer-Verlag. ISBN 3-540-64382-6. URL
http://www.cs.fsu.edu/~desmedt/ISW97.pdf.

Leni Dharmawan. Dynamics of Local Capacity and Village Governance: Find-
ings from the Second Indonesian Local Level Institutions Study. Central Java
Report., 09 2002. URL http://siteresources.worldbank.org/INTINDONESIA/

Resources/Social/Central+Java+Report+090802.pdf. Report for World Bank.

Whitfield Diffie, Paul C. Van Oorschot, and Michael J. Wiener. Authentication and
authenticated key exchanges. Des. Codes Cryptography, 2(2):107–125, 1992. ISSN
0925-1022. doi: http://dx.doi.org/10.1007/BF00124891.

http://www.faqs.org/rfcs/rfc2704.html
http://www.faqs.org/rfcs/rfc2704.html
http://www.cs.yale.edu/homes/jf/BFIK-SIP.pdf
http://www.cs.fsu.edu/~desmedt/ISW97.pdf
http://siteresources.worldbank.org/INTINDONESIA/Resources/ Social/Central+Java+Report+090802.pdf
http://siteresources.worldbank.org/INTINDONESIA/Resources/ Social/Central+Java+Report+090802.pdf

BIBLIOGRAPHY 135

Carl Ellison and Bruce Schneier. Ten risks of PKI: What you’re not being told about
public-key infrastructure. Computer Security Journal, 16(1):1–7, ???? 2000. ISSN
0277-0865. URL http://www.schneier.com/paper-pki.pdf.

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. Reasoning
about Knowledge. The MIT Press, 1995.

Diego Gambetta. Can We Trust Trust?, chapter 13, pages 213–237. Basil Black-
well, 1988. URL citeseer.ifi.unizh.ch/gambetta88can.html. Reprinted in
electronic edition from Department of Sociology, University of Oxford, chapter
13, pp. 213-237”.

G. Nigel Gilbert and Klaus G. Troitzsch. Simulation for the Social Scientist. Taylor
& Francis, Inc., Bristol, PA, USA, 1999. ISBN 0335197450.

S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive
proof systems. SIAM J. Comput., 18(1):186–208, 1989. ISSN 0097-5397. doi:
http://dx.doi.org/10.1137/0218012.

Tyrone Grandison and Morris Sloman. Sultan - a language for trust specification
and analysis. In he 8th Annual Workshop HP OpenView University Association
(HP-OVUA), 2001.

Roslan Ismail and Audun Jøsang. The Beta Reputation System. In Proceedings of
the 15th Bled Conference on Electronic Commerce, 2002.

A. Jones and M. Sergot. A formal characterization of institutionalized power. Jour-
nal of the IGPL, 4(3):429–445, 1996. URL http://citeseer.ist.psu.edu/

jones96formal.html.

Audun Josang. Trust-based decision making for electronic transactions. In L. Yn-
gstrin and T. Svensson, editors, Proceedings of the 4th Nordic Workshop on Secure
Computer Systems (NORDSEC’99). Stockholm University, Sweden, 1999.

Audun Jøsang and Stéphane Lo Presti. Analysing the relationship between risk and
trust. In Proceedings of Second International Conference on Trust Management
(iTrust 2004) LNCS 2995, pages 135–145, 2004.

Audun Jøsang, Roslan Ismail, and Colin Boyd. A Survey of Trust and Reputation
Systems for Online Service Provision. Decision Support Systems, 2005.

Audun Josang, Claudia Keser, and Theo Dimitrakos. Can we manage trust. In
Third International Conference, iTrust 2005, Paris, France, 2005. URL http:

//sky.fit.qut.edu.au/~josang/papers/JKD2005-iTrust.pdf.

http://www.schneier.com/paper-pki.pdf
citeseer.ifi.unizh.ch/gambetta88can.html
http://citeseer.ist.psu.edu/jones96formal.html
http://citeseer.ist.psu.edu/jones96formal.html
http://sky.fit.qut.edu.au/~josang/papers/JKD2005-iTrust.pdf
http://sky.fit.qut.edu.au/~josang/papers/JKD2005-iTrust.pdf

136 BIBLIOGRAPHY

Loren M Kohnfelder. Towards a practical public-key cryptosystem. Bachelor Thesis
of Massachusetts Institute of Technology, Dept. of Electrical Engineering and
Computer Science, 1978. URL http://dspace.mit.edu/handle/1721.1/15993.

Leslie Lamport. The TLA homepage, 11 2001. URL http://research.microsoft.

com/users/lamport/tla/tla.html.

Leslie Lamport. Specifying Systems. Addison-Wesley, 2003.

Leslie Lamport. Tla in pictures. IEEE Trans. Softw. Eng., 21(9):768–775, 1995.
ISSN 0098-5589. doi: http://dx.doi.org/10.1109/32.464544.

Kenli Li, Yan He, Xiaoling Liu, and Ying Wang. Security-driven scheduling algo-
rithms based on eigentrust in grid. In Parallel and Distributed Computing, Ap-
plications and Technologies, 2005. PDCAT 2005. Sixth International Conference
on, pages 1068–1072, 05-08 Dec. 2005. doi: 10.1109/PDCAT.2005.212.

Ninghui Li and John C. Mitchell. Rt: A role-based trust-management framework. In
The Third DARPA Information Survivability Conference and Exposition DISCEX
III, 2003. URL http://crypto.stanford.edu/ninghui/papers/rt_discex03.

pdf.

Zhengqiang Liang and Weisong Shi. Performance evaluation of rating aggregation
algorithms in reputation systems. In Collaborative Computing: Networking, Ap-
plications and Worksharing, 2005 International Conference on, page 10pp., 19-21
Dec. 2005. doi: 10.1109/COLCOM.2005.1651235.

Nicolas Liebau, Vasilios Darlagiannis, Andreas Mauthe, and Ralf Steinmetz. A
Token-based Accounting Scheme for P2P-Systems. Technical Report TR-2004-
05, Technische Universitaet Darmstadt, January 2004. URL http://www.kom.

e-technik.tu-darmstadt.de/publications/abstracts/LDMS04-1.html.

Nicolas Liebau, Vasilios Darlagiannis, Andreas Mauthe, and Ralf Steinmetz. Token-
based Accounting for P2P-Systems. In Proceeding of Kommunikation in Verteil-
ten Systemen KiVS 2005, pages 16–28, February 2005. URL http://www.kom.

e-technik.tu-darmstadt.de/publications/abstracts/LDMS05-1.html. (Re-
ceived Best Paper Award).

Niklas Luhmann. Trust and Power. Wiley, Chichester, 1979.

Michael Malkin, Thomas Wu, and Dan Boneh. Experimenting with Shared Gener-
ation of RSA keys. In Proceedings of the Internet Society’s 1999 Symposium on
Network and Distributed System Security (SNDSS), 1999.

http://dspace.mit.edu/handle/1721.1/15993
http://research.microsoft.com/users/lamport/tla/tla.html
http://research.microsoft.com/users/lamport/tla/tla.html
http://crypto.stanford.edu/ninghui/papers/rt_discex03.pdf
http://crypto.stanford.edu/ninghui/papers/rt_discex03.pdf
http://www.kom.e-technik.tu-darmstadt.de/publications/abstracts/LDMS04-1.html
http://www.kom.e-technik.tu-darmstadt.de/publications/abstracts/LDMS04-1.html
http://www.kom.e-technik.tu-darmstadt.de/publications/abstracts/LDMS05-1.html
http://www.kom.e-technik.tu-darmstadt.de/publications/abstracts/LDMS05-1.html

BIBLIOGRAPHY 137

Daniel W. Manchala. Trust metrics, models and protocols for electronic commerce
transactions. In ICDCS ’98: Proceedings of the The 18th International Conference
on Distributed Computing Systems, page 312, Washington, DC, USA, 1998. IEEE
Computer Society. ISBN 0-8186-8292-2.

John C. Marchesini and Sean W. Smith. Virtual Hierarchies - An Architecture
for Building and Maintaining Efficient and Resilient Trust Chains. Technical Re-
port TR2002-416, Dartmouth College, Computer Science, Hanover, NH, February
2002. URL ftp://ftp.cs.dartmouth.edu/TR/TR2002-416.ps.Z.

Stephen Paul Marsh. Formalising Trust as a Computational Concept. PhD thesis,
Department of Computing Science and Mathematics, University of Stirling, 1994.

T. Matsumoto, Y. Takashima, and H. Imai. On seeking smart public-key distribution
systems. Transactions of the IECE (Japan), 69:99–106, 1986.

D. Harrison Mcknight and Norman L. Chervany. The meaning of trust. Technical
report, Carlson School of Management, University of Minnesota, 1996.

Edward Miguel, Paul Gertler, and David I. Levine. Did Industrialization Destroy
Social Capital in Indonesia?, 06 2005. URL http://faculty.haas.berkeley.

edu/gertler/working_papers/sk-indonesia_07jun02.pdf. p.5,6,27.

Barbara A. Misztal. Trust in Modern Societies. Polity Press, 1996.

Roger M. Needham and Michael D. Schroeder. Using encryption for authentication
in large networks of computers. Commun. ACM, 21(12):993–999, 1978. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/359657.359659.

Aleksandra Nenadic. A Security Solution for Fair Exchange and Non-Repudiation
in E-Commerce. PhD thesis, Faculty of Engineering and Physical Sciences, Uni-
versity of Manchester, July 2005. URL http://www.cs.man.ac.uk/~nenadic/

publications/Thesis.pdf.

Tatsuaki Okamoto and Kazuo Ohta. How to simultaneously exchange secrets by
general assumptions. In CCS ’94: Proceedings of the 2nd ACM Conference on
Computer and communications security, pages 184–192, New York, NY, USA,
1994. ACM Press. ISBN 0-89791-732-4. doi: http://doi.acm.org/10.1145/191177.
191221.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: Bringing order to the web. Technical report, Stanford Digital Li-
brary Technologies Project, 1998. URL citeseer.nj.nec.com/page98pagerank.

html.

ftp://ftp.cs.dartmouth.edu/TR/TR2002-416.ps.Z
http://faculty.haas.berkeley.edu/gertler/working_papers/sk-indonesia_07jun02.pdf
http://faculty.haas.berkeley.edu/gertler/working_papers/sk-indonesia_07jun02.pdf
http://www.cs.man.ac.uk/~nenadic/publications/Thesis.pdf
http://www.cs.man.ac.uk/~nenadic/publications/Thesis.pdf
citeseer.nj.nec.com/page98pagerank.html
citeseer.nj.nec.com/page98pagerank.html

138 BIBLIOGRAPHY

Daniele Quercia, Stephen Hailes, and Licia Capra. Tata: Towards anony-
mous trusted authentication. In The 4th International Conference on Trust
Management (ITrust), 2004. URL http://www.cs.ucl.ac.uk/staff/l.capra/

publications/querciaTATA06.pdf.

Jean-Jacques Quisquater, Louis Guillou, Marie Annick, and Tom Berson. How to
explain zero-knowledge protocols to your children. In CRYPTO ’89: Proceedings
on Advances in cryptology, pages 628–631, New York, NY, USA, 1989. Springer-
Verlag New York, Inc. ISBN 0-387-97317-6.

Paul Resnick and Richard Zeckhauser. Trust among strangers in internet trans-
actions: Empirical analysis of ebay’s reputation system. The Economics of the
Internet and E-Commerce, volume 11 of Advances in Applied Microeconomics.
Elsevier Science, 2002.

Jordi Sabater and Carles Sierra. Regret: reputation in gregarious societies. In
AGENTS ’01: Proceedings of the fifth international conference on Autonomous
agents, pages 194–195, New York, NY, USA, 2001. ACM Press. ISBN 1-58113-
326-X. doi: http://doi.acm.org/10.1145/375735.376110.

Andreas Schlosser, Marco Voss, and Lars Bruckner. Comparing and evaluating met-
rics for reputation systems by simulation. A Workshop on Reputation in Agent
Societies as part of 2004 IEEE/WIC/ACM International Joint Conference on In-
telligent Agent, 2004. URL http://www.ito.tu-darmstadt.de/publs/pdf/pdf/

SchlosserEtAl-ComparingReputationMetricsBySimulation-RAS2004.pdf.

John R. Searle. The Construction of Social Reality. The Free Press, 1995.

John R. Searle. Social ontology and political power, 10 2005a. URL http://www.

law.berkeley.edu/centers/kadish/searle.pdf.

John R. Searle. Social ontology: Some basic principles, 10 2005b. URL http://

ist-socrates.berkeley.edu/~jsearle/AnthropologicalTheoryFNLversion.

doc.

Hector Garcia-Molina Sepandar D. Kamvar, Mario T. Schlosser. The eigentrust
algorithm for reputation management in p2p networks. In In Proceedings of the
Twelfth International World Wide Web Conference, 2003.

Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. ISSN
0001-0782. doi: http://doi.acm.org/10.1145/359168.359176.

Barry Smith. From speech acts to social reality, 10 2005. URL http://ontology.

buffalo.edu/smith/articles/SearleIntro.pdf.

http://www.cs.ucl.ac.uk/staff/l.capra/publications/querciaTATA06.pdf
http://www.cs.ucl.ac.uk/staff/l.capra/publications/querciaTATA06.pdf
http://www.ito.tu-darmstadt.de/publs/pdf/pdf/SchlosserEtAl-ComparingReputationMetricsBySimulation-RAS2004.pdf
http://www.ito.tu-darmstadt.de/publs/pdf/pdf/SchlosserEtAl-ComparingReputationMetricsBySimulation-RAS2004.pdf
http://www.law.berkeley.edu/centers/kadish/searle.pdf
http://www.law.berkeley.edu/centers/kadish/searle.pdf
http://ist-socrates.berkeley.edu/~jsearle/AnthropologicalTheoryFNLversion.doc
http://ist-socrates.berkeley.edu/~jsearle/AnthropologicalTheoryFNLversion.doc
http://ist-socrates.berkeley.edu/~jsearle/AnthropologicalTheoryFNLversion.doc
http://ontology.buffalo.edu/smith/articles/SearleIntro.pdf
http://ontology.buffalo.edu/smith/articles/SearleIntro.pdf

BIBLIOGRAPHY 139

Barry Smith and John Searle. The construction of social reality: An exchange, 10
2006. URL http://ontology.buffalo.edu/smith/articles/dksearle.htm.

The Internet Society. Diffie-hellman key agreement method.
http://tools.ietf.org/html/rfc2631, June 1999. URL http://tools.ietf.

org/html/rfc2631.

Frank Stajano and Ross J. Anderson. The cocaine auction protocol: On the power of
anonymous broadcast. In IH ’99: Proceedings of the Third International Workshop
on Information Hiding, pages 434–447, London, UK, 2000. Springer-Verlag. ISBN
3-540-67182-X.

Jennifer G. Steiner, Clifford Neuman, and Jeffrey I. Schiller. Kerberos: An authenti-
cation service for open network systems. In USENIX Association, editor, USENIX
Conference Proceedings (Dallas, TX, USA), pages 191–202, Berkeley, CA, USA,
Winter 1988. USENIX Association. URL http://www.cs.utah.edu/~{}retrac/

cs6961/kerberos88.ps.gz.

Piotr Stompzka. Trust: A Sociological Theory. Cambridge University Press, 1999.

Avinanta Tarigan. Towards communally governed transactions among decentralized
trading agents. In Second International IEEE Workshop on the Value of Security
through Collaboration (SECOVAL 2006), 2006.

Vivek Vishnumurthy, Sangeeth Chandrakumar, and Emin Gun Sirer. Karma: A se-
cure economic framework for p2p resource sharing. In Workshop on the Economics
of Peer-to-Peer Systems, 2003. URL http://www.cs.cornell.edu/people/egs/

papers/karma.pdf.

Merriam Webster. Merriam-webster online dictionary on definition of transaction,
08 2005. URL http://www.webster.com/cgi-bin/dictionary/transaction.

Wikipedia. Financial transaction, 09 2005. URL http://en.wikipedia.org/wiki/

Financial_transaction.

Uri Wilensky. Netlogo itself. Center for Connected Learning and Computer-
Based Modeling, Northwestern University. Evanston, IL., 1999. URL http:

//ccl.northwestern.edu/netlogo/.

Uri Wilensky and Walter M. Stroup. Hubnet. Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, IL., 1999. URL
http://ccl.northwestern.edu/netlogo/hubnet.html.

Walt Yao. Fidelis: A policy-driven trust management framework. In iTrust, Lecture
Notes in Computer Science, pages 301–317. Springer, 2003. URL http://link.

springer.de/link/service/series/0558/bibs/2692/26920301.htm.

http://ontology.buffalo.edu/smith/articles/dksearle.htm
http://tools.ietf.org/html/rfc2631
http://tools.ietf.org/html/rfc2631
http://www.cs.utah.edu/~{}retrac/cs6961/kerberos88.ps.gz
http://www.cs.utah.edu/~{}retrac/cs6961/kerberos88.ps.gz
http://www.cs.cornell.edu/people/egs/papers/karma.pdf
http://www.cs.cornell.edu/people/egs/papers/karma.pdf
http://www.webster.com/cgi-bin/dictionary/transaction
http://en.wikipedia.org/wiki/Financial_transaction
http://en.wikipedia.org/wiki/Financial_transaction
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/hubnet.html
http://link.springer.de/link/service/series/0558/bibs/2692/26920301.htm
http://link.springer.de/link/service/series/0558/bibs/2692/26920301.htm

140 BIBLIOGRAPHY

Bin Yu and Munindar P. Singh. Incentive mechanisms for peer-to-peer systems.
Agents and Peer-to-Peer Computing, Second International Workshop, pages 77–
88, 2003. URL http://citeseer.ist.psu.edu/647427.html.

http://citeseer.ist.psu.edu/647427.html

141

Appendix A

Transaction Algorithm in TLA+

module CGTSystem
Specification / abstraction of the algorithm of

Communal Governed Transactions Among Decentralized Trading Agents

Avinanta Tarigan

AG Rechnernetze und verteilte Systeme

Technische Fakultaet −Universitaet Bielefeld

Last Updated : 8 June 2007

This specification describes governed transaction by distributed and decentralized trading agents

where no mediator or authority exists to facilitate transactions. System behaviour which emerge

through individual action are the accountability of so-called institutional-facts and the communal

authorization for proposed transaction. Individual trust decision which emerges communal autho-

rization is based on the rational trust decision (Coleman) and trust information is calculated from

propagated binary report from each conducted transaction using Beta algorithm. Assumption taken

in this specification is that the communication channel is reliable.

extends

Naturals, Reals, Sequences, FiniteSets

constants

community , Set of agents

m, Majority Threshold 0.5 ≤ m ≤ 1

p assertions, Set of Possible assertions to be proposed

p messages, Set of Possible Exchanges Messages

init ifacts, Initial Institutional Facts

propose, Identifier for message containing proposal

statement , Identifier for message containing statement

approve, Identifier for approving proposal

noapprove, Identifier for not approving proposal

rating , Identifier for message containing rating

good , Identifier for good results

bad , Identifier for bad result

142 Chapter A. Transaction Algorithm in TLA+

p proposals, Set of possible proposal

init good exp, Initial good experience

init bad exp Initial bad experience

variables

agent , Agents variables

buyer , seller , One of buyer and seller ∈ community used to create encounter

lgratio, Loss to Gain Ratio

Po , Set of instituional facts ∈ p assertions to be eliminated

Pn Set of assertions to be proposed as institutional-facts

Definition of agent’s variable which holds internal memory of agents

TypeAgent ∆=
∧ agent ∈ [community

→ [ifacts : {f ∈ p assertions : true},
msgfifo : Seq(p messages),
experience : [community

→ [sum good : Nat ,
sum bad : Nat]],

proposals : [p proposals
→ [proposed : boolean ,

decided : boolean ,

rated : boolean ,

sum approved : Nat ,
sum notapproved : Nat]]

]
]

Variables Definition

TypeInvariant ∆=
∧ buyer ∈ community
∧ seller ∈ community
∧ buyer 6= seller
∧m ∈ Real
∧ Po ∈ subset p assertions
∧ Pn ∈ subset p assertions
∧ TypeAgent

143

Variabel initialization

InitAgent ∆=
∧ agent ∈ [community

→ [ifacts : init ifacts,
msgfifo : 〈〉,
experience : [community

→ [sum good : init good exp,

sum bad : init bad exp]],
proposals : [p proposals

→ [proposed : false,

decided : false,

rated : false,

sum approved : 0,

sum notapproved : 0]]
]

]

Function to construct record of a message to be sent

msgStruct ∆=
[thesenders ∈ subset community ,

thebody ∈ p messages
7→ [senders : thesenders,

body : thebody] ∈ p messages
]

Function to simplify the construction of a proposal

propStruct ∆=
[thebuyer , theseller ∈ community ,

o facts, n asserts ∈ subset p assertions,
lg ∈ Real

7→ [id : propose,

buyer : thebuyer ,

seller : theseller ,

Po : o facts,
Pn : n asserts,
lgratio : lg] ∈ p proposals

]

Function to simplify the construction of a statement

statStruct ∆=

144 Chapter A. Transaction Algorithm in TLA+

[astatus ∈ {approve, noapprove},
theproposal ∈ p proposals

7→ [id : statement ,
status : astatus,
proposal : theproposal]

]

Function to simplify the construction of a report

repStruct ∆=
[π ∈ p proposals,
r ∈ {good , bad}

7→ [id : rating ,

proposal : π,

result : r]
]

Function to check if a proposal valid

isPropValid ∆=
[π ∈ p proposals,
facts ∈ subset p assertions

7→ if ∧ π.buyer ∈ community
∧ π.seller ∈ community
∧ π.Po ∈ subset facts
∧ π.Pn ∈ subset p assertions

then true

else false

]

An Example of Action in Broadcasting a Message msg from

subset of agents in senders

Broadcast(senders, msg) ∆=
∧ senders ∈ subset community
∧msg ∈ p messages
∧ agent ′ = [agent except ![∀ s ∈ community : s /∈ senders] =

[@ except !.msgfifo =
Append(@.msgfifo, msgStruct [senders, msg])]]

Rational trust decision based on Coleman

The probability ρ is derived from experience of

the agents towards particular selling agent

which in this specification is computed using Beta reputation

145

trustDecision ∆=
[lg ∈ Real ,
sum good ∈ Nat ,
sum bad ∈ Nat

7→ let ρ
∆=

(sum good + 1)/(sum good + sum bad + 2)
in (if ρ > (1− ρ) ∗ lg

then true

else false)
]

Agent actions in receiving a proposal

It begins by checking whether a message in the communication stack.

If the message received is a proposal then agent check the proposal

and decides whether or not to approve it, marks the proposal in

its knowledge, broadcast its statement to others, and wait for

other’s statement

ReceiveProposalApprove determines approval of an agent on a proposal p

It adds its own statement as well as that of proposing agents (3)

in sum approved

It is assumed that by proposing proposals, proposing agents already

approve their proposal

ReceiveProposalApprove ∆=
∃ a ∈ community :
(∧ Len(agent [a].msgfifo) > 0
∧Head(agent [a].msgfifo).body .id = propose
∧ let π

∆= Head(agent [a].msgfifo).body in

(∧ isPropValid [π, agent [a].ifacts]
∧ trustDecision[π.lgratio,

agent [a].experience[π.seller].sum good ,

agent [a].experience[π.seller].sum bad]
∧ agent ′ = [agent except

![a] = [@ except

!.proposals[π].sum approved =
@.proposals[π].sum approved + 3,

!.proposals[π].proposed = true,

!.proposals[π].decided = false,

146 Chapter A. Transaction Algorithm in TLA+

!.proposals[π].rated = false,

!.msgfifo = Tail(@.msgfifo)],
![∀ r ∈ community : r 6= a] =

[@ except

!.msgfifo = Append(@.msgfifo,

msgStruct [{a}, statStruct [approve, π]])]]
))

ReceiveProposalRefuse determines refusal of an agent on a proposal p

It adds its own statement on sum notapproved (1)

and adds statement of the two proposing agents to sum approved (2)

It is assumed that by proposing proposals, proposing agents already

approve their proposal

ReceiveProposalRefuse ∆=
∃ a ∈ community :
(∧ Len(agent [a].msgfifo) > 0
∧Head(agent [a].msgfifo).body .id = propose
∧ let π

∆= Head(agent [a].msgfifo).body in

((∨ isPropValid [π, agent [a].ifacts] = false

∨ trustDecision[π.lgratio,

agent [a].experience[π.seller].sum good ,

agent [a].experience[π.seller].sum bad] = false)
∧ agent ′ = [agent except

![a] = [@ except

!.proposals[π].sum approved =
@.proposals[π].sum approved + 2,

!.proposals[π].sum approved =
@.proposals[π].sum notapproved + 1,

!.proposals[π].proposed = true,

!.proposals[π].decided = false,

!.proposals[π].rated = false,

!.msgfifo = Tail(@.msgfifo)],
![∀ r ∈ community : r 6= a] =

[@ except

!.msgfifo = Append(@.msgfifo,

msgStruct [{a}, statStruct [noapprove, π]])]]))

ReceiveStatementApproval determines action that agent does on receiving

a statement from other regarding the approval of proposal p

This particular agent adds one count of the approval of p in .sum approved

147

ReceiveStatementApproval ∆=
∃ a ∈ community :
(∧ Len(agent [a].msgfifo) > 0
∧Head(agent [a].msgfifo).body .id = statement
∧ let s ∆= Head(agent [a].msgfifo).body in

(∧ agent [a].proposals[s.proposal].proposed
∧ s.status = approve
∧ agent ′ = [agent except

![a] = [@ except

!.proposals[s.proposal].sum approved =
@.proposals[s.proposal].sum approved + 1,

!.msgfifo = Tail(@.msgfifo)]]

)
)

ReceiveStatementApproval determines action that agent does on receiving

a statement from other regarding the refusal of proposal p

This particular agent adds one count of the refusal of p in .sum notapproved

ReceiveStatementRefusal ∆=
∃ a ∈ community :
(∧ Len(agent [a].msgfifo) > 0
∧Head(agent [a].msgfifo).body .id = statement
∧ let s ∆= Head(agent [a].msgfifo).body in

(∧ agent [a].proposals[s.proposal].proposed
∧ s.status 6= approve
∧ agent ′ = [agent except

![a] = [@ except

!.proposals[s.proposal].sum notapproved =
@.proposals[s.proposal].sum notapproved + 1,

!.msgfifo = Tail(@.msgfifo)]]
)

)

ReceiveStatementUndetermined determines action that agent does on receiving

a statement from other but the proposal is not yet received by particular agent

This particular agent moves the message to the end of msgfifo while waiting

for the proposal itself

This is precaution of unsyncronization of communication channel

ReceiveStatementUndetermined ∆=

148 Chapter A. Transaction Algorithm in TLA+

∃ a ∈ community :
(∧ Len(agent [a].msgfifo) > 0
∧Head(agent [a].msgfifo).body .id = statement
∧ let s ∆= Head(agent [a].msgfifo).body in

(∧ agent [a].proposals[s.proposal].proposed = true

∧ agent ′ = [agent except

![a] = [@ except

!.msgfifo =
Tail(@.msgfifo) ◦ 〈Head(@.msgfifo)〉]]

)
)

ReceiveRatingGood determines action that agent does on receiving

a “Good” rating from transacting agent regarding past approved transaction

This particular agent adds count the rating for seller agent in

experience[selleragent].sum good

ReceiveRatingGood ∆=
∃ a ∈ community :
(∧ Len(Head(agent [a].msgfifo)) > 0
∧Head(agent [a].msgfifo).body .id = rating
∧ let msg ∆= Head(agent [a].msgfifo.body)in

(∧ agent [a].proposals[msg .proposal].rated = false

∧ agent [a].proposals[msg .proposal].decided = true

∧ agent [a].proposals[msg .proposal].proposed = false

∧msg .result = good
∧ agent ′ = [agent except ![a] = [@ except

!.proposals[msg .proposal].rated = true,

!.experience[msg .proposal .seller].sum good =
@.experience[msg .proposal .seller].sum good + 1,

!.msgfifo = Tail(@.msgfifo)]]
)

)

ReceiveRatingBad determines action that agent does on receiving

a “Bad” rating from transacting agent regarding past approved transaction

This particular agent adds count the rating for seller agent in

experience[selleragent].sum bad

ReceiveRatingBad ∆=
∃ a ∈ community :

149

(∧ Len(Head(agent [a].msgfifo)) > 0
∧Head(agent [a].msgfifo).body .id = rating
∧ let msg ∆= Head(agent [a].msgfifo.body)in

(∧ agent [a].proposals[msg .proposal].rated = false

∧ agent [a].proposals[msg .proposal].decided = true

∧ agent [a].proposals[msg .proposal].proposed = false

∧ agent ′ = [agent except ![a] = [@ except

!.proposals[msg .proposal].rated = true,

!.experience[msg .proposal .seller].sum bad =
@.experience[msg .proposal .seller].sum bad + 1,

!.msgfifo = Tail(@.msgfifo)]]
)

)

ReceiveRatingUndetemined determines action that agent does on receiving

a rating from other but the corresponding proposal does not receive

as approved by community yet

This particular agent moves the message to the end of msgfifo while waiting

for the proposal itself to be approved

This is precaution of unsyncronization of communication channel

ReceiveRatingUndetermined ∆=
∃ a ∈ community :
(∧ Len(Head(agent [a].msgfifo)) > 0
∧Head(agent [a].msgfifo).body .id = rating
∧ let msg ∆= Head(agent [a].msgfifo.body)in

((∨ agent [a].proposals[msg .proposal].rated = true

∨ agent [a].proposals[msg .proposal].decided = false

∨ agent [a].proposals[msg .proposal].proposed = true)
∧ agent ′ = [agent except

![a] = [@ except

!.msgfifo =
Tail(@.msgfifo) ◦ 〈Head(@.msgfifo)〉]]

)
)

ProcCommunityApproval determines action that agent does when the proposal p

is considered to be approved by community

ifacts is the list of actual institutional facts

operation ifacts ′ = ifacts − π.Po + π.Pn is what agent

does to accept each new assertions in π.Pn

150 Chapter A. Transaction Algorithm in TLA+

and to reject each institutional facts in π.Po

ProcCommunityApproval ∆=
∃ a, π ∈ community × p proposals :
(∧ agent [a].proposals[π].proposed = true

∧ agent [a].proposals[π].decided = false

∧ agent [a].proposals[π].sum approved +
agent [a].proposals[π].sum notapproved = Cardinality(community)

∧ agent [a].proposals[π].sum approved ≥ (Cardinality(community) ∗m)
∧ agent ′ = [agent except

![a] = [@ except

!.ifacts =
union {(@.ifacts \π.Po), π.Pn},

!.proposals[π].proposed = false,

!.proposals[π].decided = true,

!.proposals[π].sum approved = 0,

!.proposals[π].sum notapproved = 0]])

ProcCommunityRefusal determines action that agent does when the proposal p

is considered to be refused by community

ProcCommunityRefusal ∆=
∃ a, π ∈ community × p proposals :

(∧ agent [a].proposals[π].proposed = true

∧ agent [a].proposals[π].decided = false

∧ agent [a].proposals[π].sum approved +
agent [a].proposals[π].sum notapproved = Cardinality(community)

∧ agent [a].proposals[π].sum approved < Cardinality(community) ∗m
∧ agent ′ = [agent except

![a] = [@ except

!.proposals[π].rated = false,

!.proposals[π].proposed = false,

!.proposals[π].decided = false,

!.proposals[π].sum approved = 0,

!.proposals[π].sum notapproved = 0]])

rateTransResult determines a judgement of agent of approved proposal

(or transaction) p

rateTransResult ∆=
[π ∈ p proposals

7→ choose x ∈ {bad , good} : true]

151

ProcRatingGood determines action that buying agent does to rate

approved proposal/ transaction as GOOD

It broadcast to all agent about his opinion /rating

ProcRatingGood ∆=
∃ a, π ∈ community × p proposals :
(∧ agent [a].proposals[π].decided = true

∧ agent [a].proposals[π].rated = false

∧ π.buyer = a
∧ rateTransResult [π] = good
∧ agent ′ = [agent

except ![∀ r ∈ community : r 6= a] =
[@ except

!.msgfifo = Append(@.msgfifo,

msgStruct [{a}, repStruct [π, good]])],
![a] =

[@ except

!.proposals[π].rated = true,

!.experience[π.seller].sum good =
@.experience[π.seller].sum good + 1]]

)

ProcRatingBad determines action that buying agent does to rate

approved proposal/ transaction as BAD

It broadcast to all agent about his opinion /rating

ProcRatingBad ∆=
∃ a, π ∈ community × p proposals :
(∧ agent [a].proposals[π].decided = true

∧ agent [a].proposals[π].rated = false

∧ π.buyer = a
∧ rateTransResult [π] = bad
∧ agent ′ = [agent

except ![∀ r ∈ community : r 6= a] =
[@ except

!.msgfifo = Append(@.msgfifo,

msgStruct [{a}, repStruct [π, bad]])],
![a] =

[@ except

!.proposals[π].rated = true,

!.experience[π.seller].sum bad =

152 Chapter A. Transaction Algorithm in TLA+

@.experience[π.seller].sum bad + 1]]

)

Propose determines action from proposing agents (thbuyer and theseller) to :

1. Construct the proposal p

2. Broadcast the proposal p to all user except them

3. Mark the proposal p in thebuyer ’s and theseller ’s internal knowledges

as approved by 2 agents (themself)

Propose(thebuyer , theseller , O , N , lg) ∆=
∧ thebuyer ∈ community
∧ theseller ∈ community
∧ let π

∆= propStruct [thebuyer , theseller , O , N , lg]in
(∧ agent ′ = [agent

except ![∀ a ∈ community : a /∈ {thebuyer , theseller}] =
[@ except

!.msgfifo =
Append(@.msgfifo, msgStruct [{thebuyer , theseller}, π])],

![{thebuyer , theseller}] =
[@ except

!.proposals[π].sum approved =
@.proposals[π].sum approved + 2,

!.proposals[π].proposed = true,

!.proposals[π].decided = false,

!.proposals[π].rated = false]])

Encounter is the event in which two agents meet and want to conduct

transaction by proposing new assertion which will override

their old institutional-facts when they are accepted by

community

Encounter ∆=
∧ 〈buyer , seller〉

[choose 〈x , y〉 ∈ community2 : x 6= y]
∧ 〈Po , Pn〉

[choose 〈O , N 〉 ∈ (subset p assertions)2 :
∧O ⊆ agent [buyer].ifacts
∧ ∀ x ∈ O : x /∈ N
∧ ∀ x ∈ N : x /∈ O]

∧ lgratio [choose x ∈ Real : x > 0]

153

∧ Propose(buyer , seller , Po , Pn , lgratio)

Next is action predicate that “always” enabled /true

due to 2 always operator

In a state of a Next , there might be an action predicate

which is enabled or true according to the pre-condition

The action changes the system variable agent which represents

composition of internal knowledge of all agents

Next ∆=
∨ Encounter
∨ ReceiveProposalApprove
∨ ReceiveProposalRefuse
∨ ReceiveStatementApproval
∨ ReceiveStatementRefusal
∨ ReceiveStatementUndetermined
∨ ProcCommunityApproval
∨ ProcCommunityRefusal
∨ ProcRatingGood
∨ ProcRatingBad
∨ ReceiveRatingGood
∨ ReceiveRatingBad
∨ ReceiveRatingUndetermined

Spec ∆= InitAgent ∧2[Next]agent

theorem Spec =⇒ 2TypeInvariant

154 Chapter A. Transaction Algorithm in TLA+

155

Appendix B

Source of Simulation Program

;; Defining Local Agents Variables
turtles-own [

message?
behaviourid ;; Determine behaviour of agent
badopinions ;; Beta Rep
goodopinions ;; Beta Rep
fitness ;; Fitness of agent
rangeoutcome ;; Possible range of outcome based on predefined behavior
theID ;; ID
seller-turtle ;; Variable to store the id of seller turtle
diestatus ;; Determine the life state
opinions ;; Avg Rep and Beta Rep
dumpforeach ;; Internal purpose
encountered ;; To determine whether an agent has transaction
falseNegative ;; To Deterime falseNegative
falsePositive ;; To Deterime falsePositive
asSeller ;; To Deterime Seller

;; Defining Global Variabels
]
globals [

totalagents
tick
tagents
listagents
runnumber
diehonest
diefair
dieunpredictable
diedishonest
minturtle
ex1
ex2
ex3
ex4
ecRate

]

;; ---------- START SETUP -----------------
to setup
ct
cp
clear-all-plots
set ecRate 0
set totalagents Honest + Dishonest + Fair + Unpredictable
set listagents n-values totalagents [? + 0]

156 Chapter B. Source of Simulation Program

set tick 0
set tagents 0
set minturtle 5
set diehonest 300000
set diefair 300000
set dieunpredictable 300000
set diedishonest 300000

;; Begin Creating the Agents

cct Honest [;; Honest Agents behaviourid 1
set diestatus false
set theID tagents
set tagents tagents + 1
set message? false
setxy random-xcor random-ycor
set behaviourid 1
set color blue
set fitness InitialFitness
set goodopinions n-values totalagents [InitialReputation * 5]
set badopinions n-values totalagents [(1 - InitialReputation) * 5]
set rangeoutcome n-values 31 [? + 70]
set encountered False
set falsePositive False
set falseNegative False
set asSeller False

]
cct Fair [;; Fair Agents behaviourid 2
set diestatus false
set theID tagents
set tagents tagents + 1
set message? false
setxy random-xcor random-ycor
set behaviourid 2
set color green
set fitness InitialFitness
set goodopinions n-values totalagents [InitialReputation * 5]
set badopinions n-values totalagents [(1 - InitialReputation) * 5]
set rangeoutcome n-values 31 [? + 40]
set encountered False
set falsePositive False
set falseNegative False
set asSeller False

]
cct Unpredictable [;; Unpredictable Agents behaviourid 3
set diestatus false
set theID tagents
set tagents tagents + 1
set message? false
setxy random-xcor random-ycor
set behaviourid 3
set color brown
set fitness InitialFitness
set goodopinions n-values totalagents [InitialReputation * 5]
set badopinions n-values totalagents [(1 - InitialReputation) * 5]
set rangeoutcome n-values 100 [? + 0]
set encountered False
set falsePositive False
set falseNegative False
set asSeller False

]
cct Dishonest [;; DisHonest Agents behaviourid 4
set diestatus false

157

set theID tagents
set tagents tagents + 1
set message? false
setxy random-xcor random-ycor
set behaviourid 4
set color red
set fitness InitialFitness
set goodopinions n-values totalagents [InitialReputation * 5]
set badopinions n-values totalagents [(1 - InitialReputation) * 5]
set rangeoutcome n-values 40 [? + 1]
set encountered False
set falsePositive False
set falseNegative False
set asSeller False

]
ask turtles [
set opinions n-values totalagents [0]
ifelse RepMethod = "AVERAGE" [

ifelse RandomInitialRep = True [
set opinions n-values totalagents [random-float(1)]

][
set opinions n-values totalagents [InitialReputation]

]
][
set dumpforeach n-values totalagents [? + 0]
without-interruption [
if RandomInitialRep = True [

foreach n-values totalagents [?] [
set goodopinions replace-item ? goodopinions random 2
set badopinions replace-item ? badopinions random 2]]

foreach n-values totalagents [?] [
let i ?
let g item i goodopinions
let b item i badopinions
let P ((g + 1) / (g + b + 2))
set opinions replace-item i opinions P]

]
set size 1
]]

set ex1 one-of turtles with [behaviourid = 1]
set ex2 one-of turtles with [behaviourid = 2]
set ex3 one-of turtles with [behaviourid = 3]
set ex4 one-of turtles with [behaviourid = 4]

end
;; ------------ END SETUP --------------------

;; ------------ START LOOP -------------------
;; loop the simulation process
to goSimulate
no-display
set tick tick + 1
every 0.1 [

ask turtles [moverandomly] ;; Ask turtles to move randomly
ask turtles [

set encountered False
set falsePositive False
set falseNegative False
set asSeller False
if diestatus = false
[ifelse DecMethod = "RECOMMENDATION"

[tranRecommendation]
[tranVote]

]
if fitness < 1 [set diestatus true] ;; Ask turtles to die if lacks of fitness

]
]
if PlotPopulation [do-plots-population]

158 Chapter B. Source of Simulation Program

if PlotAVGReputation [
ifelse RepPlotMethod = "AVERAGE"

[do-plots-avgreputation]
[do-plots-samplereputation]

]
if PlotFitness [

ifelse FitPlotMethod = "AVERAGE"
[do-plots-avgfitness]
[do-plots-samplefitness]

]
do-plots-encounterhit
do-plots-errorrate
display
;; do-measure-all

end
;; ------------- END LOOP --------------------

to do-measure-all
if ((count turtles with [behaviourid = 1 and diestatus = False])

< minturtle) and diehonest = 400
[set diehonest tick]

if ((count turtles with [behaviourid = 2 and diestatus = False])
< minturtle) and diehonest = 400

[set diefair tick]
if ((count turtles with [behaviourid = 3 and diestatus = False])

< minturtle) and diehonest = 400
[set dieunpredictable tick]

if ((count turtles with [behaviourid = 4 and diestatus = False])
< minturtle) and diehonest = 400

[set diedishonest tick]
end

to do-plots-errorrate
let sellers count turtles with [asSeller = True]
let FPositive 0
let FNegative 0
if sellers > 0 [

set FPositive ((count turtles with [FalsePositive = True] / sellers) * 100)
set FNegative ((count turtles with [FalseNegative = True] / sellers) * 100)

]

set-current-plot "Error Rate"
set-current-plot-pen "FPositive"
plot FPositive
set-current-plot-pen "FNegative"
plot FNegative

end

to do-plots-encounterhit
let encounters (count turtles with [encountered = True] /

count turtles with [diestatus = False]) * 100
set-current-plot "EncounterHit"
plot encounters
set ecRate ecRate + encounters

end

;; ------------- START PLOT POPULATION GRAPH -----------
to do-plots-population
set-current-plot "Population"
set-current-plot-pen "Honest"
plot count turtles with [behaviourid = 1 and diestatus = false]
set-current-plot-pen "Fair"
plot count turtles with [behaviourid = 2 and diestatus = false]
set-current-plot-pen "Unpredictable"
plot count turtles with [behaviourid = 3 and diestatus = false]

159

set-current-plot-pen "Dishonest"
plot count turtles with [behaviourid = 4 and diestatus = false]

end
;;

to do-plots-samplereputation
set-current-plot "Reputation"
set-current-plot-pen "Honest"
plot mean opinions-of ex1
set-current-plot-pen "Fair"
plot mean opinions-of ex2
set-current-plot-pen "Unpredictable"
plot mean opinions-of ex3
set-current-plot-pen "Dishonest"
plot mean opinions-of ex4

end

to do-plots-avgreputation
set-current-plot "Reputation"
set-current-plot-pen "Honest"
plot mean values-from turtles with [behaviourid = 1] [mean opinions]
set-current-plot-pen "Fair"
plot mean values-from turtles with [behaviourid = 2] [mean opinions]
set-current-plot-pen "Unpredictable"
plot mean values-from turtles with [behaviourid = 3] [mean opinions]
set-current-plot-pen "Dishonest"
plot mean values-from turtles with [behaviourid = 4] [mean opinions]

end

to do-plots-samplefitness
set-current-plot "Fitness"
set-current-plot-pen "Honest"
plot fitness-of ex1
set-current-plot-pen "Fair"
plot fitness-of ex2
set-current-plot-pen "Unpredictable"
plot fitness-of ex3
set-current-plot-pen "Dishonest"
plot fitness-of ex4

end

to do-plots-avgfitness
set-current-plot "Fitness"
set-current-plot-pen "Honest"
plot mean values-from turtles with [behaviourid = 1] [fitness]
set-current-plot-pen "Fair"
plot mean values-from turtles with [behaviourid = 2] [fitness]
set-current-plot-pen "Unpredictable"
plot mean values-from turtles with [behaviourid = 3] [fitness]
set-current-plot-pen "Dishonest"
plot mean values-from turtles with [behaviourid = 4] [fitness]

end

;; ------------ START MOVE -------------------
;; to make turtle moves randomly
to moverandomly
fd random 4
rt random-float 40
lt random-float 40

end
;; ------------ END MOVE ----------------------

160 Chapter B. Source of Simulation Program

;; ------------- START TRANSACTING -------------------
;; to make turtle transacts with closest neighbour
to tranVote
set seller-turtle one-of other-turtles-here ; get the nearest turtle in the area
if (seller-turtle != nobody and

diestatus = false and diestatus-of seller-turtle = false) [
set encountered True
set encountered-of seller-turtle (True)
set fitness-of seller-turtle (fitness-of seller-turtle - EnergyUsed)
set asSeller-of seller-turtle (True)
let LG 0
ifelse RandomLG = true
[set LG random-float(8)]
[set LG LGRatio]

let Vote 0
let P 0
let PLeft 0
let PRight 0
foreach n-values totalagents [?] [
let pos ?
if pos != theID [
set P item pos opinions-of seller-turtle
set PLeft (P)
set PRight ((1 - P) * LG)
ifelse PLeft > PRight
[set Vote (Vote + 1)
if PlotDecision = True [

set-current-plot "TrustDecision"
set-current-plot-pen "Trust"
plotxy LG P

]
]
[
if PlotDecision = True [
set-current-plot "TrustDecision"
set-current-plot-pen "NoTrust"
plotxy LG P
]

]
]

]
ifelse Vote >= ((VoteThreshold + 1) / 100 * TotalAgents)
[

ifelse DecMethod = "VOTE+BROADCAST"
[goTransactingBroadcast]
[goTransacting]

][
let l length(rangeoutcome-of seller-turtle)
let posl random(l)
let payoff item posl rangeoutcome-of seller-turtle
if payoff >= GoodOutcomeThres [

set falsePositive-of seller-turtle (True)
]

]
]

end
;; ------------- END TRANSACTING ---------------------

to tranRecommendation
set seller-turtle one-of other-turtles-here ; get the nearest turtle in the area
if (seller-turtle != nobody and

diestatus = false and diestatus-of seller-turtle = false) [
set fitness-of seller-turtle (fitness-of seller-turtle - EnergyUsed)
set encountered True
set encountered-of seller-turtle (True)
set asSeller-of seller-turtle (True)

161

let LG 0
ifelse RandomLG = true
[set LG random-float(8)]
[set LG LGRatio]

let P 0
ifelse RepMethod = "BETA" [

let g sum goodopinions-of seller-turtle
let b sum badopinions-of seller-turtle
set P ((g + 1) / (g + b + 2))

][
set P (sum opinions-of seller-turtle) / (totalagents - 1)

]
let PLeft (P)
let PRight ((1 - P) * LG)
ifelse PLeft > PRight

[
ifelse DecMethod = "VOTE+BROADCAST"

[goTransactingBroadcast]
[goTransacting]

if PlotDecision = True [
set-current-plot "TrustDecision"
set-current-plot-pen "Trust"
plotxy LG P

]
][
let l length(rangeoutcome-of seller-turtle)
let posl random(l)
let payoff item posl rangeoutcome-of seller-turtle
if payoff >= GoodOutcomeThres [

set falsePositive-of seller-turtle (True)
]
if PlotDecision = True [
set-current-plot "TrustDecision"
set-current-plot-pen "NoTrust"
plotxy LG P

]
]

]
end

;; -------------- IF VOTED OK THEN TRANSACTING ---------
to goTransacting
set fitness-of seller-turtle (fitness-of seller-turtle + IncentiveFactor)
let l length(rangeoutcome-of seller-turtle)
let posl random(l)
let payoff item posl rangeoutcome-of seller-turtle
if payoff < GoodOutcomeThres [

set falseNegative-of seller-turtle (True)
]
ifelse RepMethod = "BETA" [

let currentgood item theID goodopinions-of seller-turtle
let currentbad item theID badopinions-of seller-turtle
ifelse payoff >= GoodOutcomeThres

[set currentgood currentgood + IncentiveForGood]
[set currentbad currentbad + SanctionForBad]

let P ((currentgood + 1) / (currentgood + currentbad + 2))
set goodopinions-of seller-turtle

replace-item theID goodopinions-of seller-turtle currentgood
set badopinions-of seller-turtle

replace-item theID badopinions-of seller-turtle currentbad
set opinions-of seller-turtle (replace-item theID opinions-of seller-turtle P)

][
let currentopinion item theID opinions-of seller-turtle
let newopinion 0
ifelse payoff > GoodOutcomeThres
[set newopinion ((currentopinion + (payoff / 100)) / 2)]
[set newopinion ((currentopinion + (payoff / 100)) / 2)]

162 Chapter B. Source of Simulation Program

set opinions-of seller-turtle replace-item theID opinions-of seller-turtle newopinion
]

end
;; ------------- END goTransacting ---------------------

to goTransactingBroadcast
set fitness-of seller-turtle (fitness-of seller-turtle + IncentiveFactor)
let l length(rangeoutcome-of seller-turtle)
let posl random(l)
let payoff item posl rangeoutcome-of seller-turtle
if payoff < GoodOutcomeThres [

set falseNegative-of seller-turtle (True)
]
foreach n-values totalagents [?]
[if ? != theID-of seller-turtle [

ifelse RepMethod = "BETA" [
let currentgood item ? goodopinions-of seller-turtle
let currentbad item ? badopinions-of seller-turtle
ifelse payoff >= GoodOutcomeThres

[set currentgood currentgood + IncentiveForGood]
[set currentbad currentbad + SanctionForBad]

let P ((currentgood + 1) / (currentgood + currentbad + 2))
set goodopinions-of seller-turtle

replace-item ? goodopinions-of seller-turtle currentgood
set badopinions-of seller-turtle

replace-item ? badopinions-of seller-turtle currentbad
set opinions-of seller-turtle (replace-item ? opinions-of seller-turtle P)

][
let currentopinion item ? opinions-of seller-turtle
let newopinion ((currentopinion + (payoff / 100)) / 2)
set opinions-of seller-turtle replace-item ? opinions-of

seller-turtle newopinion
]

]
]

end

	Acknowledgments
	Statement
	Abstract
	1 Introduction
	1.1 Preface
	1.2 Contributions
	1.3 Thesis Overview

	2 Backgrounds and Related Works
	2.1 The System of Exchange
	2.1.1 Structures of Exchange
	2.1.2 Money
	2.1.3 Some Important Remarks

	2.2 Transactions in Distributed Systems
	2.2.1 Authentication
	2.2.2 Authorization
	2.2.3 Accounting and Accountability
	2.2.4 The Roles of TTP in Accomplishing Transactions

	2.3 Transactions without Trusted Third Party
	2.3.1 Ad-Hoc Protocols
	2.3.2 Completing Transactions with Collaboration

	2.4 Trust in Computer Mediated Transactions
	2.4.1 The Notion of Trust in Computer Security
	2.4.2 Interpersonal Trust
	2.4.3 Interpersonal Trust in Computer Mediated Transactions
	2.4.4 Computational Trust

	2.5 Summary

	3 Transaction Basics
	3.1 Reformulating the Problem
	3.2 Establishing the Accounts with Institutional Fact
	3.3 Transaction Concept and Its Logic
	3.3.1 The Building Blocks
	3.3.2 Components of Transactions
	3.3.3 Transaction Schemes
	3.3.4 Remarks

	3.4 Transaction Algorithm
	3.4.1 Agents and System Variables
	3.4.2 Communication Channel
	3.4.3 Specifying Agent Actions in Completing Transaction
	3.4.4 Steps to Complete the Transaction
	3.4.5 Discussion

	3.5 Summary

	4 Collective Authorization and Social Control
	4.1 Backgrounds
	4.1.1 Importance of Trust
	4.1.2 Social Control and Reputation
	4.1.3 Design Goal

	4.2 Reputation System
	4.2.1 Notions of Trust and Reputation
	4.2.2 How Reputation Changes
	4.2.3 Elements of Reputation System

	4.3 The Design of Collective Authorization
	4.3.1 Basic System Setup
	4.3.2 Community Decision Trust
	4.3.3 Reputation Propagation and Concluding Reliability Trust

	4.4 Collective Authorization Algorithm in TLA+
	4.4.1 Re-Introduction
	4.4.2 Collective Authorization
	4.4.3 Rating Propagation
	4.4.4 Transaction Summary

	4.5 Summary

	5 Simulation on Collective Authorization
	5.1 Underlying Concept of Simulation on Social Control
	5.1.1 Background and Objective
	5.1.2 Natural Selection
	5.1.3 Simulation Parameters

	5.2 Simulator Program
	5.2.1 Simulator Parameters
	5.2.2 Display Graphs

	5.3 Running Simulation
	5.3.1 Parameter Setting
	5.3.2 Observed Phenomenon

	5.4 Experiments
	5.4.1 Parameters Sweeping
	5.4.2 Observation
	5.4.3 Presenting Results

	5.5 Discussion
	5.6 Summary

	6 The Design of the Protocol
	6.1 The Scenario, Issues, and Intended Solution
	6.1.1 The Scenario
	6.1.2 Issues and Intended Solutions

	6.2 Bootstrapping, the Keys, and Memberships
	6.2.1 Protocol Basics
	6.2.2 The Using of Distributed Cryptography
	6.2.3 Anatomy of Institutional-Money and Institutional-Memberships
	6.2.4 Bootstrapping
	6.2.5 Enrolling New Member
	6.2.6 The Expelling of a Member

	6.3 Transaction Protocol
	6.3.1 Anatomy of Transaction Proposal
	6.3.2 The Protocol
	6.3.3 Multiple Traders Transaction

	6.4 Summary

	7 Application of the Framework
	7.1 Introduction
	7.1.1 Objective
	7.1.2 Issues and Requirements

	7.2 The Architecture
	7.2.1 The Overlay Trading Network
	7.2.2 Trading Program
	7.2.3 Integration

	7.3 The Work-flow
	7.3.1 General Work-flow
	7.3.2 Address Management
	7.3.3 Delivery Protocol

	7.4 Discussion
	7.4.1 Slight Review
	7.4.2 New Possibilities of Trading Scheme

	7.5 Summary

	8 Conclusion and Future Works
	8.1 General Conclusion
	8.2 Summary of Contributions
	8.3 Future Works

	Bibliography
	A Transaction Algorithm in TLA+
	B Source of Simulation Program

