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Introduction 2

1 Introduction
Let k be an algebraically closed field. Auslander and Reiten considered the
module category of a finite-dimensional k-algebra A and introduced an associated
translation quiver Γ, today called the Auslander-Reiten quiver. A component
of such an Auslander-Reiten quiver containing neither projectives nor injectives
which is of the following shape is called a stable tube:

◦ ◦ ◦

◦ ◦

◦ ◦ ◦

◦ ◦ ◦

◦ ◦

◦ ◦ ◦
...

...
. . .

. . .
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where the left and right dashed lines are identified and the picture continues
infinitely in the upper direction. The number of points in each row of this picture
is then called the rank of the tube.

If A is connected, hereditary and representation infinite, Γ consists of the pre-
projective, the preinjective and infinitely many regular components. The latter
are either all of type ZA∞ or all of them are stable tubes. In the first case A is
called wild hereditary, in the latter case it is called tame hereditary. One reason
why these names are used, is that only in the tame cases we can recover the
module category from Γ in the following sense. To any translation quiver Γ we
can associate a category, called its mesh category, only depending on k and Γ.
The mesh category of the regular components of the Auslander-Reiten quiver of
a tame hereditary algebra A is equivalent to the category of regular modules of
A. This does not hold in any of the wild cases.

However, in the wild cases the module category of A can admit extension-
closed, full, exact subcategories closed under direct summands which have stable
tubes as Auslander-Reiten quivers. We will call such subcategories stable pseudo-
tubes. These stable pseudo-tubes are called standard, if they are equivalent to
the mesh categories of their Auslander-Reiten quivers. The examples which we
exhibit will be standard.

In section 2 we will give first examples of them arising from embeddings of
tame categories into wild ones or arising from tilting tame categories to wild
ones, where in both cases the images of the tubes will be pseudo-tubes. After
that we will give a criterion (theorem 2.13) to determine whether a subcategory
is a pseudo-tube of rank n which only depends on finding n modules in the sub-
category with certain properties. With the help of this theorem we can prove
that each standard stable pseudo-tube of rank n contains exactly 2n − 1 stan-
dard stable pseudo-tubes (2.16) and we can prove that a representation X with
End(X) = k and Ext1(X,X) = k always lies in a pseudo-tube (2.19).



Introduction 3

In the last section we will focus on representations of wild star quivers with
subspace orientation. These are quivers of the shape:

1,l1

1,l1−1 1,l1−2 . . . 1,1

2,l2−1 2,l2−2 . . . 2,1

...

t,lt−1 t,lt−2 . . . t,1

oooooo

oooooo

oooooo

{{wwwwwwwwww

ssggggggg

ccGGGGGGGGGG

for some numbers l1, . . . , lt > 1 which we call the lengths of arms.
We will deal with concrete examples of star quivers with arms of length

(2, 3, n) for n > 5 and subspace orientation. For these we will examine the
representations whose dimension at the unique sink of the quiver is less or equal
than 3 and determine which of them are preprojective, regular and preinjective.
For this classification we will define embeddings of the representations of star
quivers with arms of lengths (2, 3, n) into the category of representations of star
quivers with arm lengths (2, 3, n+ 1). We will then prove that these embeddings
map regular representations to regular representations (3.9). These embeddings
are of interest, because the classification of representations of smaller star quivers
provides us information on the representations of larger star quivers. After estab-
lishing the classification we obtain new examples of pseudo-tubes. The star quiver
with arms of lengths (2, 3, 6) is tame and possesses tubes, which are mapped to
pseudo-tubes under the embeddings into larger star quivers. However we will find
more than these examples of pseudo-tubes. The additional pseudo-tubes are of
interest, because with their help we will answer two questions posed in [Ker92].
For wild acyclic quivers Kerner introduced the notion of exceptional components
which are regular components of the Auslander-Reiten quiver and he defined the
following two invariants for each exceptional component.

Let C be an exceptional component. Then C has the following shape:

◦ ◦ X ◦ ◦

◦ ◦ X(2) ◦

◦ ◦ ◦ X(3) ◦

...
...

...

. . . . . .??����� ��????? ??����� ��????? ??���� ��???? ??����� ��?????
��????? ??����� ��????? ??����� ��???? ??��� ��???? ??�����

oo_ _ _ _ _oo_ _ _ _ _oo_ _ _ _ _oo_ _ _ _ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _ _oo_ _ _ _ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _ _

This picture continues infinitely in the left, right and upper direction. The module
X does not admit self-extensions. Let l > 1 be the smallest number such that
Ext1(X(l), X(l)) 6= 0. Define

s := min{m ≥ l|Hom(X, τmX) 6= 0,Hom(X, τm+1X) = 0}.
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Then Kerner asked whether for each component s = l always holds. We
will give an example where this is not the case. In this example there is a
representation whose support is a representation finite subquiver, which answers
the second question of [Ker92].

We will follow the conventions of [ASS06].
I thank all members of the representation theory group in Bielefeld. Espe-

cially, I thank my supervisor, Claus Michael Ringel, for giving me the advice and
freedom I needed to write this thesis. I would also like to thank my family for
their support during my education.
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1.1 Overview of Statements

Let A be a finite-dimensional, connected algebra over k. Let S = {S1, . . . , Sn}
be orthogonal bricks with finite-dimensional Ext-spaces. For each d ≥ 0 let
Fd(S) be the full subcategory of all left A-modules M admitting a filtration
0 = M0 ⊆ M1 ⊆ · · · ⊆ Md = M with all factors Mi/Mi−1 ∈ add(S). Let
F(S) =

⋃
d≥0Fd(S).

Lemma 2.8. The category F(S) is an abelian category closed under extensions
and the set S is the set of all simple objects of F(S).

Lemma 2.9. There is a bound for the length of local objects in Fd(S).

For d ∈ N and i = 1, . . . , n define Pd,i to be the longest local object in Fd(S)
with top Si.

Lemma 2.12. The objects Pd,i are projective in Fd(S) and Fd(S) is equivalent
to mod End(

⊕n
i=1 Pd,i).

Theorem 2.13. Let C be a full, exact subcategory of Amod closed under exten-
sions and direct summands. Then the following are equivalent:

1. There are X1, . . . , Xn ∈ C orthogonal bricks with

Ext1(Xi, Xj) ∼=


k if i = j + 1
k if i = 1 and j = n
0 else

and C = F(X1, . . . , Xn).

2. The Auslander-Reiten quiver of the category C is a standard stable tube of
rank n.

Theorem 2.15. Let C be a full, exact subcategory of Amod closed under ex-
tensions and direct summands. Assume the Auslander-Reiten quiver Γ of C is a
stable tube of rank n. Then the following are equivalent:

1. The categories C and the mesh category of Γ are equivalent.

2. The stable pseudo-tube C is standard.

Proposition 2.16. Let C be a standard stable pseudo-tube of rank n ≥ 1 and

1 ≤ r ≤ n. Then there are precisely
(
n
r

)
standard stable pseudo-tubes of rank

r contined in C.

Let A be a connected, wild, hereditary algebra with quadratic form q.

Lemma 2.17. Three equivalent conditions for a standard wing.
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Lemma 2.18. Let X be a quasi-simple regular brick such that [m]X is a brick
for some m > 0, too. Then we have dim Ext1(τm−1X,X) = 1− q(dim[m]X).

Proposition 2.19. Let X be a regular brick with q(dimX) = 0. Then X lies in
a pseudo-tube which contains the wing of X.

For t > 2 let li > 1 for i = 1, . . . , t and let Tl1,...,lt be the star star quiver with t
arms which are of length l1, . . . , lt with subspace orientation. For this quiver call
the Coxeter transformation C, the Auslander-Reiten shift τ and the quadratic
form q. Let g be the g-duality (see definition 3.1).

Lemma 3.2. Let d ∈ ZTl1,...,lt
0 . Then q(d) = q(g(d)).

Lemma 3.4. dim τM = C(dimM)

Lemma 3.5. gCg = C−1

Proposition 3.6. If Tl1,...,lt is representation infinite, g induces a bijection be-
tween the dimension vectors of indecomposable preprojectives and the dimension
vectors of indecomposable preinjectives which do not have coordinate 0 at the
unique sink of Tl1,...,lt.

Lemma 3.8. Regular components admit representations M with q(dimM) ≤ 0.

Lemma 3.9. Let Q,Q′ be wild acyclic quivers with quadratic forms qQ, qQ′. Let
F : repkQ −→ repkQ

′ be a faithful and exact functor mapping indecomposables
to indecomposables, such that qQ(dimM) = qQ′(dimF (M)) for all M ∈ repkQ.
Then for any regular indecomposable representation M of Q the representation
F (M) is regular.

Proposition 3.11. For n > 5 let M be a preprojective representation of Tn,3,2.
Then dimM∗ ≤ dim(τ−M)∗, where ∗ is the unique sink of Tn,3,2.

For d ∈ N0 let Rd(Tl1,...,lt) be the indecomposable regular objects with a d-
dimensional vector space at the unique sink. For the definition of the functors
Fi : repk Tn,3,2 −→ repk Tn+1,3,2 see definition 3.10. For the definition of an
exceptional component and its invariants s and l see definition 3.14.

Lemma 3.13. For d = 1, 2, 3 and n > d+ 4 we have
n⋃
i=0

Fi(Rd(Tn,3,2)) = Rd(Tn+1,3,2).

Lemma 3.15. The Auslander-Reiten quiver of the path algebra of T7,3,2 has an
exceptional component with s = 7 and l = 4.

Lemma 3.16. The Auslander-Reiten quiver of the path algebra of T7,3,2 has an
exceptional component which contains a quasi-simple module whose support is
representation finite.
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2 Pseudo-Tubes

2.1 Definitions

We assume all algebras to be connected. The Auslander-Reiten quiver of a module
category of finite-dimensional algebras is a famous tool in representation theory
which is explained in detail in [ARS97]. The existence of Auslander-Reiten se-
quences in subcategories of a module category has been treated in [AS81], the
definition of the Auslander-Reiten quiver of a Krull-Remak-Schmidt category
with exact sequences can be found in [Rin84]. We will follow the conventions of
the latter.

The following definitions are taken from sections 2.2 and 2.3 in [Rin84].

Definition 2.1. Let C be a Krull-Remak-Schmidt category with an object X. A
source map for X is a map f : X −→ Y satisfying:

• f is not split mono.

• for any f ′ : X −→ Y ′, not split mono, there is a morphism g : Y −→ Y ′

with f ′ = gf and

• for g ∈ End(Y ) with gf = f , we have that g is an automorphism.

A morphism with the dual properties is called a sink map.

For indecomposable objectsX, Y in a Krull-Remak-Schmidt category C we de-
note by rad(X, Y ) the set of non-invertible morphisms. For objects X =

⊕t
i=1Xi

and Y =
⊕s

i=1 Yi with Xi and Yi indecomposable any map f :
⊕t

i=1Xi −→⊕s
i=1 Yi can be witten as (fij) with fij ∈ Hom(Xi, Yj). Then f is defined to lie

in rad(X, Y ), if each fij lies in rad(Xi, Yj).
Now we can define the radical square of C. A morphism f : X −→ Y is

in rad2(X, Y ), if there is an object M and morphisms g ∈ rad(X,M) and h ∈
rad(M,Y ) with f = hg. Then let

Irr(X, Y ) = rad(X, Y )/ rad2(X, Y )

as End(Y )-End(X)-bimodule.
Let C be an additive, full, exact subcategory of a module category. We want

to define the Auslander-Reiten quiver of C. The underlying quiver will be ∆(C)
the quiver which has as vertices the isomorphism classes [X] of indecomposable
objects X and dimk Irr(X, Y ) arrows from [X] to [Y ]. For this quiver we will
additionally define a translation. For this we need:

Definition 2.2. Let C be an additive, full, exact subcategory of a module cate-
gory. Then an Auslander-Reiten sequence in C is a short exact sequence

0 −→ A −→ B −→ C −→ 0,

such that the map A −→ B is a source map and B −→ C is a sink map.
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By a remark on page 61 in [Rin84] we know that if we have an Auslander-
Reiten sequence as above, A and C are indecomposable and [A] is uniquely de-
termined by [C] and vice versa. Define ∆′(C) ⊆ ∆(C) to be the full subquiver of
isomorphism classes of objects C for which we have an Auslander-Reiten sequence

0 −→ A −→ B −→ C −→ 0.

Then define τ : ∆′0(C) −→ ∆0(C) by τ([C]) = [A]. By abuse of notation we will
also write τ(C) = A.

Definition 2.3. A stable tube of rank n is a component of an Auslander-Reiten
quiver of the shape ZA∞/τn:

X1 X2 X3

◦ ◦

◦ ◦ ◦

Xn−1 Xn X1

◦ ◦

◦ ◦ ◦

...
...

??����� ��????? ??����� ��?????
��????? ??����� ��????? ??�����

??����� ��????? ??����� ��?????
��????? ??����� ��????? ??�����

τ
oo_ _ _ _

τ
oo_ _ _ _

τ
oo_ _ _ _

τ
oo_ _ _ _

τ
oo_ _ _ _ _

τ
oo_ _ _ _ __ _ _ oo_ _ _

τ
oo_ _ _ _ _

τ
oo_ _ _ _ _

τ
oo_ _ _ _ _

τ
oo_ _ _ _ _

�
�
�
�
�

�
�
�

�
�
�
�
�

�
�
�

where the left and right dashed lines are identified. The set {X1, . . . , Xn} is the
mouth of the tube.

Let C be an abelian category. An full, exact subcategory P which is closed
under extensions and direct summands is called a stable pseudo-tube of rank
n ≥ 1 provided P possesses an Auslander-Reiten quiver which is a tube of rank
n. In addition P is called standard, if the mouth of the tube consists of pairwise
orthogonal bricks (i.e. for i 6= j we have Hom(Xi, Xj) = 0 and End(Xi) ∼= k).

We will later prove a criterion, when a subcategory is a standard stable tube
(see theorem 2.13), but first let us look at some examples. There are examples of
pseudo-tubes which are the images of tubes under embedding or tilting functors.

Example 2.4. Let Q be the four subspace quiver:

1 2 3 4

0
$$JJJJJJJJ

��////

������

zztttttttt

and let Q′ be the five subspace quiver:

1 2 3 4 5

0
''OOOOOOOOOOO

��?????

�� �������

wwooooooooooo

Then we can define a functor F from repkQ to repkQ
′ mapping a representation
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V1 V2 V3 V4

V0

$$JJJJJJ

��///
�����
zztttttt

to

V1 V2 V3 V4 0

V0
''OOOOOOOOO

��????
�� ������

0wwoooooooooo

and mapping morphisms analogously. The quiver Q is of extended Dynkin type
D̃4 and hence the Auslander-Reiten quiver of repkQ admits stable tubes. For
example, there is a stable tube of rank 2. We denote its objects by dimension
vectors.

1100
1

0011
1

1100
1

1111
2

1111
2

1122
3

2211
3

1122
3

...

??����� ��????? ??����� ��?????

��????? ??����� ��????? ??�����

oo_ _ _ _ _ _oo_ _ _ _ _ _

oo_ _ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _ _oo_ _ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

The objects isomorphic to the vertices of this tube form a full, exact, extension-
closed subcategory of repkQ. This tube is mapped to a full, exact, extension-
closed subcategory T of repkQ

′. The Auslander-Reiten quiver of T then is:

11000
1

00110
1

11000
1

11110
2

11110
2

11220
3

22110
3

11220
3

...

??����� ��????? ??����� ��?????

��????? ??����� ��????? ??�����

oo_ _ _ _ _oo_ _ _ _ _

oo_ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _oo_ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

Hence T is a pseudo-tube.

With the example in mind we can now prove that one regular module can lie
in many pseudo-tubes.

Lemma 2.5. For n ∈ N there is a wild algebra with an indecomposable module
lying in n different pseudo-tubes.
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Proof. Without loss of generality we can assume n > 1. Define Q to be the
n + 3-subspace quiver, i.e. there are vertices 0, 1, . . . , n + 3 and arrows from
each vertex 1, . . . , n+ 3 to the vertex 0. Up to isomorphism there is exactly one
representation M of dimension vector v with v0 = v1 = v2 = 1 and all other
entries 0. This representation M lies in n pseudo-tubes of rank 2. To see this fix
a number i = 3, . . . , n + 2. There is exactly one representation M ′ of dimension
vector v′ with v′0 = v′i = v′i+1 = 1 and all other entries 0. The representations M
and M ′ both lie in the mouth of a pseudo-tube as we have seen in the example
above. Since for each i we get a different M ′ the module M lies in n pseudo-
tubes. Then the path algebra of Q fulfills the assertion of the lemma, because its
module category is equivalent to the repkQ.

Of course this example can be generalized to other embeddings of tame quivers
in wild quivers, easily. We want to look at another example where a tame category
is tilted to a wild category.

Example 2.6. In [Rin80], starting on page 220 there is a detailed construction
of the Auslander-Reiten quiver Γ of the following quiver Q with relations.

Q : 1

23

4

5

678

910

ddJJJJJJJJ

�������

oo

zztttttttt

�������
oooooo

__?????

oo _ _ _ _ _ _ _ _ _ _ _ _ _ _

The dashed line indicates a commutativity relation for the two paths from 1 to
9. Let A be the path algebra of Q modulo the ideal generated by this relation.
There is a component C containing the following slice:
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22
12 1

2222
1

11
01 0

1111
0

11
00 0

0000
0

01
00 0

0000
0

11
01 1

1111
1

11
11 1

2222
1

11
11 1

1222
1

11
11 1

1122
1

11
11 1

1112
1

11
11 1

1111
0

??���

??���

??���

��???

��???

��???

��???

��???

//

Let T be the sum of the modules of this slice. We claim that T is a tilting module,
that is projdimT ≤ 1, Ext1(T, T ) = 0 and T has as many nonisomorphic direct
summands as the quiver Q has vertices. The last statement is obviously true.

The extension property follows with the help of the Auslander-Reiten formula
(see theorem IV.2.13 of [ASS06]):

Ext1(T, T ) ∼= Hom(T, τT ).

The latter is 0 because C is a standard component and there are no maps from
a module to a proper predecessor.

The projective dimension of a module M is less or equal to 1, if and only if
there are no non-zero maps from the indecomposable injectives to τM by state-
ment (1) on page 74 in [Rin84]. There are exactly ten indecomposable injectives.
For the eight injectives in the preinjective component it is clear that they do not
map to τT , because there are no maps from the preinjective component to C.
The two indecomposable injectives in the component C are proper successors of
the summands of τT and since the component C is standard, there are no maps
from these injectives to τT .
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Hence T is a tilting module and there is a full subcategory

G := {M |Ext1(T,M) = 0} ⊆ Amod .

By the Brenner-Butler theorem (see theorem VI.3.8 of [ASS06]) there is a full,
faithful and exact functor with an extension-closed image:

HomAmod(T,−) : G −→ mod End(T )op.

The category mod End(T )op is equivalent to the category of representations of
the wild quiver Q′:

◦

◦ ◦ ◦ ◦ ◦

◦

◦◦◦

oooooooo

oooo

�������

oo
__?????

This follows from theorem II.3.7 in [ASS06] and its proof. We will now look for
pseudo-tubes of repkQ

′ coming from repkQ. There are three tubes of rank n > 1
which do not admit maps to C in Γ, namely:

• G1:

11
00 2

1122
1

01
00 1

0112
1

11
00 2

1122
1

12
00 3

1234
2

12
00 3

1234
2

13
00 4

1346
3

23
00 5

2356
3

13
00 4

1346
3

...

??��� ��??? ??��� ��???

��??? ??��� ��??? ??���

oo_ _ _ _ _oo_ _ _ _ _

oo_ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _oo_ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

• G2:

11
00 1

0111
0

01
00 1

0011
1

00
00 1

1112
1

11
00 1

0111
0

12
00 2

0122
1

01
00 2

1123
2

11
00 2

1223
1

12
00 3

1234
2

12
00 3

1234
2

12
00 3

1234
2

12
00 3

1234
2

...

??��� ��??? ??��� ��??? ??��� ��???

��??? ??��� ��??? ??��� ��??? ??���

oo_ _ _ _ _oo_ _ _ _ _oo_ _ _ _ _

oo_ _ _ _ _oo_ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _oo_ _ _ _ _oo_ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
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• G3:

00
00 1

0111
1

00
00 0

0011
0

11
00 1

0001
1

01
00 1

1111
0

00
00 1

0111
1

00
00 1

0122
1

11
00 1

0012
1

12
00 2

1112
1

01
00 2

1222
1

01
00 2

1233
1

11
00 2

0123
2

12
00 2

1123
1

12
00 3

1223
2

01
00 2

1233
1

12
00 3

1234
2

12
00 3

1234
2

12
00 3

1234
2

12
00 3

1234
2

...

??�� ��?? ??�� ��?? ??�� ��?? ??�� ��??

��?? ??�� ��?? ??�� ��?? ??�� ��?? ??��

??�� ��?? ??�� ��?? ??�� ��?? ??�� ��??

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _

oo_ _ _ _oo_ _ _ _oo_ _ _ __ _ oo_ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _

oo_ _ _ _oo_ _ _ _oo_ _ _ __ _ oo_ _

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

By the Auslander-Reiten formula G1, G2 and G3 are contained in G, because
there are no maps from these tubes to the component C. Hence by the Brenner-
Butler theorem the images of G1, G2 and G3 are pseudo-tubes with the follow-
ing Auslander-Reiten quivers. For this calculation we only need to compute
Hom(T,X) for X on the mouth of a tube. The other dimension vectors can then
be calculated using the Auslander-Reiten sequences in the pseudo-tube.

• G′1:

32211
42
210

22110
31
211

32211
42
210

54321
73
421

54321
73
421

76431
10,4
632

86532
11,5
632

76431
10,4
632

...

??���� ��???? ??���� ��????

��???? ??���� ��???? ??����

oooo_ _ _ _ _

oo_ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _oo_ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

Here the dashed arrows are the Auslander-Reiten shift of the pseudo-tube.
The dotted arrow is the Auslander-Reiten shift of the pseudo-tube and of
the whole module category repkQ

′

• G′2:

22111
31
210

11100
21
111

21110
21
100

22111
31
210

33211
52
321

32210
42
211

43221
52
310

54321
73
421

54321
73
421

54321
73
421

54321
73
421

...

??���� ��???? ??���� ��???? ??���� ��????

��???? ??���� ��???? ??���� ��???? ??����

oooooo_ _ _ _ _

oooo_ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _oo_ _ _ _ _oo_ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

Again the dotted arrows are the Auslander-Reiten shift in the pseudo-tube
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and in repkQ
′.

• G′3:

11000
11
000

11100
10
100

11110
21
110

21111
31
211

11000
11
000

22100
21
100

22210
31
210

32221
52
321

32111
42
211

43211
52
311

33210
42
210

43321
62
421

43221
63
321

43211
52
311

54321
73
421

54321
73
421

54321
73
421

54321
73
421

...

??��� ��??? ??��� ��??? ??��� ��??? ??��� ��???

��??? ??��� ��??? ??��� ��??? ??��� ��??? ??���

??��� ��??? ??��� ��??? ??��� ��??? ??��� ��???

oo_ _ _ _oooooo

oo_ _ _ _oooo_ _ oo_ _

oo_ _ _ _oo_ _ _ _oooo_ _ _ _

oo_ _ _ _oo_ _ _ _oo_ _ _ __ _ oo_ _

�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�

Again the dotted arrows are the Auslander-Reiten shift in the pseudo-tube
and in repkQ

′.

Here apparently the mouth of each tube is mapped to the same component of
the Auslander-Reiten quiver of Q′. This is not the case when we consider the
Ext-functor belonging to T .

There is a full subcategory

F := {M |Hom(T,M) = 0} ⊆ Amod .

By the Brenner-Butler theorem there is a full, faithful and exact functor with an
extension-closed image:

Ext1
Amod(T,−) : F −→ mod End(T )op.

Again we will not work in mod End(T )op, but in the equivalent category repkQ
′.

In Γ there are three tubes of rank n > 1 which do not admit maps from C,
namely:

• F1:

21
23 0

3221
0

21
13 0

2211
1

21
23 0

3221
0

42
36 0

5432
1

42
36 0

5432
1

63
49 0

7643
2

63
59 0

8653
1

63
49 0

7643
2

...

??��� ��??? ??��� ��???

��??? ??��� ��??? ??���

oo_ _ _ _ _oo_ _ _ _ _

oo_ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _oo_ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
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• F2:

11
12 0

2111
1

10
12 0

2211
0

21
12 0

1110
0

11
12 0

2111
1

21
24 0

4322
1

31
24 0

3321
0

32
24 0

3221
1

42
36 0

5432
1

42
36 0

5432
1

42
36 0

5432
1

42
36 0

5432
1

...

??��� ��??? ??��� ��??? ??��� ��???

��??? ??��� ��??? ??��� ��??? ??���

oo_ _ _ _ _oo_ _ _ _ _oo_ _ _ _ _

oo_ _ _ _ _oo_ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _oo_ _ _ _ _oo_ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

• F3:

10
11 0

1111
1

11
12 0

1111
0

10
01 0

1000
0

11
11 0

1100
0

00
01 0

1110
0

10
11 0

1111
1

21
23 0

2222
1

21
13 0

2111
0

21
12 0

2100
0

11
12 0

2210
0

10
12 0

2221
1

21
24 0

3332
1

31
24 0

3222
1

32
24 0

3211
0

21
13 0

3210
0

21
23 0

3321
1

21
24 0

3332
1

31
25 0

4332
1

42
35 0

4322
1

32
25 0

4321
0

31
24 0

4321
1

32
35 0

4432
1

42
36 0

5432
1

42
36 0

5432
1

42
36 0

5432
1

42
36 0

5432
1

42
36 0

5432
1

42
36 0

5432
1

...

??��� ��??? ??��� ��??? ??��� ��??? ??��� ��??? ??��� ��???

��??? ??��� ��??? ??��� ��??? ??��� ��??? ??��� ��??? ??���

??��� ��??? ??��� ��??? ??��� ��??? ??��� ��??? ??��� ��???

��??? ??��� ��??? ??��� ��??? ??��� ��??? ??��� ��??? ??���

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ __ _ oo_ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ __ _ oo_ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _

�
�
�
�

�
�
�
�

�

�

�
�
�
�

�
�
�
�

�

�

These tubes are mapped to pseudo-tubes by Ext1(T,−), which have the fol-
lowing Auslander-Reiten quivers. Again we denote the Auslander-Reiten shift by
a dotted arrow, if it is also the Auslander-Reiten shift of repkQ

′.

• F ′1:

22110
32
321

32211
31
321

22110
32
321

54321
63
642

54321
63
642

86532
94
963

76431
95
963

86532
94
963

...

??���� ��???? ??���� ��????

��???? ??���� ��???? ??����

oo_ _ _ _ _oo_ _ _ _ _

oo_ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _oo_ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
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• F ′2:

22111
21
210

11100
21
221

21110
21
211

22111
21
210

33211
42
431

32210
42
432

43221
42
421

54321
63
642

54321
63
642

54321
63
642

54321
63
642

...

??���� ��???? ??���� ��???? ??���� ��????

��???? ??���� ��???? ??���� ��???? ??����

oo_ _ _ _ _oo_ _ _ _ _oo

oo_ _ _ _ _oo_ _ _ _ __ _ _ oo_ _ _

oo_ _ _ _ _oo_ _ _ _ _oo_ _ _ _ _

�
�
�
�
�
�

�
�
�

�
�
�
�
�
�

�
�
�

• F ′3:

11111
21
211

10000
11
110

11000
10
111

11100
11
100

11110
10
110

11111
21
211

21111
32
321

21000
21
221

22100
21
211

22210
21
210

22221
31
321

32221
42
431

32111
42
432

32100
32
321

33210
31
321

33321
42
421

32221
42
431

43221
52
542

43211
53
532

43210
42
431

44321
52
532

43321
53
531

54321
63
642

54321
63
642

54321
63
642

54321
63
642

54321
63
642

54321
63
642

...

??�� ��?? ??�� ��?? ??�� ��?? ??�� ��?? ??�� ��??

��?? ??�� ��?? ??�� ��?? ??�� ��?? ??�� ��?? ??��

??�� ��?? ??�� ��?? ??�� ��?? ??�� ��?? ??�� ��??

��?? ??�� ��?? ??�� ��?? ??�� ��?? ??�� ��?? ??��

oo_ _ _ _oooo_ _ _ _oooo

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ oo_ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ __ _ oo_ _

oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _oo_ _ _ _

�
�
�
�
�

�
�
�
�
�

�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�

Hence the mouth of each of these pseudo-tubes has representations from precisely
two different components of the Auslander-Reiten quiver of repkQ

′.

2.2 A Criterion for Standard Stable Pseudo-Tubes

Let A be a finite-dimensional algebra over k. We will prove a criterion when
a subcategory of Amod is a pseudo-tube. For this we will need some results
from [Rin76]. Let S = {S1, . . . , Sn} be orthogonal bricks with finite-dimensional
Ext-spaces, that is there exists a number E, such that for all i and j we have
dim Ext1(Si, Sj) ≤ E. Let add(S) be the full subcategory of objects which are
finite direct sums of objects in S.
Definition 2.7. For each d ≥ 0 let Fd(S) be the full subcategory of all left
A-modules M admitting a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Md = M

with all factors Mi/Mi−1 ∈ add(S). Let

F(S) =
⋃
d≥0

Fd(S).
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The category F(S) consists of all A-module admitting a filtration whose quo-
tients are in the set S. We will now investigate this category further. It was
shown in [Rin76], section 1.2 that this category is abelian:

Lemma 2.8. Let S be as above. Then F(S) is an abelian category closed under
extensions and the set S is the set of all simple objects of F(S).

We will need a more precise description of this category. For this we need the
following lemmas and definitions.

Lemma 2.9. Let S be as above and M be a local object in Fd(S). Then the
length l of M in the category F(S) is bounded, namely

l ≤ (nE + 1)d−1.

Proof. First we will show that F(S) is a length category. For this we need the
theorem of Jordan-Hölder in its formulation in [Ben98], theorem 1.1.4 for the
category F(S): Let N be an object in F(S) with two series of subjects in the
category F(S):

0 = N0 ⊆ N1 ⊆ · · · ⊆ Ns = N

0 = N ′0 ⊆ N ′1 ⊆ · · · ⊆ N ′s′ = N

Then these series may be refined to two series of equal length:

0 = L0 ⊆ L1 ⊆ · · · ⊆ Lt = N

0 = L′0 ⊆ L′1 ⊆ · · · ⊆ L′t = N

such that the factors Li/Li−1 are a permutation of the factors L′j/L′j−1. The
statement in [Ben98] is formulated for the whole module category, but the same
proof works for our statement for the subcategory as well, when one uses the fact
that finite sums and intersections of subobjects in F(S) give rise to objects in
F(S). Now using the fact that for an object N in F(S) we can refine its filtration

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nd = N

with Ni/Ni−1 ∈ add(S) to a finite composition series of N we obtain that each
object has a well defined length. Denote the length of N in the subcategory
by |N |. It is then easy to show by induction that for a short exact sequence
0→ N ′ → N → N ′′ → 0 we have |N | = |N ′|+ |N ′′|

Next we prove that for a module N in F(S) and a module Si ∈ S we have

dim Ext1(N,Si) ≤ E|N |.

We proceed by induction on |N |. For |N | = 1 the module N is in S and the claim
follows from the definition of E. So assume |N | > 1. Then there is a submodule
Sj ⊆ N in S and |N/Sj| = |N | − 1 and by induction we can assume that

dim Ext1(N/Sj, Si) ≤ E(|N | − 1)
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Applying Hom(−, Si) to the sequence

0 −→ Sj −→ N −→ N/Sj −→ 0

we get a long exact sequence containing

Ext1(N/Sj, Si) −→ Ext1(N,Si) −→ Ext1(Sj, Si).

The claim then follows from:

dim Ext1(N,Si) ≤ dim Ext1(N/Sj, Si) + dim Ext1(Sj, Si)

≤ E(|N | − 1) + E ≤ E|N |

Now we can prove the lemma. Let M be a local object in Fd(S) which is
not in Fd−1(S). We will proceed by induction on d. If d = 1 the object M is in
add(S). Since M is local, it is indecomposable and hence already simple. This
proves the assertion. Now assume d > 1. Then there is a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Md = M

with Mi/Mi−1 ∈ add(S). Note that Md−1 is the unique maximal subobject of M
and M/M1 is a local object in Fd−1(S). Hence we can assume by induction that
|M/M1| ≤ (nE + 1)d−2. We have a short exact sequence

0 −→M1 −→M −→M/M1 −→ 0.

Applying Hom(−, Si) to this yields a long exact sequence:

0 −→ Hom(M/M1, Si) −→ Hom(M,Si) −→ Hom(M1, Si) −→ Ext1(M/M1, Si)

for any i. The first map is not only injective but also surjective. To see this
assume f to be a nonzero homomorphism from M to Si. Since Si is simple in
the category F(S), the map f is surjective. Hence M/ ker f is isomorphic to Si.
Then ker f is a maximal subobject ofM and hence the unique one, namelyMd−1.
SinceM1 ⊆Md−1 = ker f we get that f mapsM1 to 0 and thus f factors through
M/M1. This proves the surjectivity.

Then the next map in the long exact Ext-sequence is 0 and we get that

dim Hom(M1, Si) ≤ dim Ext1(M/M1, Si).

As M1 is semisimple dim Hom(M1, Si) is the number of summands in M1 isomor-
phic to Si and hence

|M1| =
n∑
i=1

dim Hom(M1, Si) ≤
n∑
i=1

dim Ext1(M/M1, Si) ≤ nE|M/M1|.
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By induction hypothesis we have |M/M1| ≤ (nE + 1)d−2 and thus

|M1| ≤ nE(nE + 1)d−2.

Because of the above short exact sequence we now get

|M | = |M1|+ |M/M1| ≤ nE(nE + 1)d−2 + (nE + 1)d−2 = (nE + 1)d−1.

This proves our lemma.

Definition 2.10. Define radM to be the intersection of all maximal subobjects
of M in the category Fd(S). Then we define topM to be M/ radM .

Note that radM is the same as the radical of M in the category F(S), but
may differ from the usual radical which is the intersection of all submodules of
M in the whole module category. With this definition we are ready to determine
the indecomposable projective objects in Fd(S).

Definition 2.11. Let S be as above. Then for d ∈ N and i = 1, . . . , n define Pd,i
to be the longest local object in Fd(S) with topPd,i = Si. This has to exist by
the last lemma. Then define Pd =

⊕n
i=1 Pd,i.

Lemma 2.12. Let S be as above. Then for arbitrary i and d the object Pd,i
is projective in Fd(S) and Fd(S) is equivalent to the category of right End(Pd)-
modules.

Proof. For a simple object Si we will prove the existence of a projective cover
in Fd(S) by induction on d. For d = 1 all objects in the category are already
projective and there is nothing to show. Assume that we have d > 1. According
to lemma 2.9 among the local objects which have S1 as top in Fd(S) we have
chosen one of maximal length, namely Pd,1. We will prove that for any j a short
exact sequence of the form

0 −→ Sj −→M −→ Pd,1 −→ 0

in Fd(S) splits. Without loss of generality we can assume that Sj is a subobject
of M and call π the canonical projection onto M/Sj.

First we will show that Sj does not lie in radM . Assume the contrary:
Sj ⊆ radM . Then π(radM) = (radM)/Sj and we have

M/Sj

(radM)/Sj
∼= M/(radM)

is semisimple. SinceM/Sj is local, this quotient is already simple, but this implies
thatM is local. This way we have constructed a local module in Fd(S) of greater
length than Pd,1 ∼= M/Sj, a contradiction. Hence we know that Sj * radM .
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By the definition of the radical we now know that there is a maximal subobject
M ′ of M with Sj * M ′. Since Sj is simple, we get that M = Sj ⊕M ′, that is
our sequence splits.

We have just shown that there are no non-split short exact sequences starting
in a simple object and ending in Pd,1. By induction on the length of an object
this statement does not only hold for simples but for all objects in Fd(S). That
is why the objects Pd,1 are projective. Analogously, all Pd,i are projective and
Pd =

⊕n
i=1 Pd,i is projective in Fd(S).

Next we will prove that the functor

HomFd(S)(Pd,−) : Fd(S) −→ mod EndFd(S)(Pd)

is an equivalence. It is clear, that this functor is k-linear. It suffices to show that
it is dense and fully faithful.

Claim 1. The functor HomFd(S)(Pd,−) is faithful.

First we need to prove that for any objectM of Fd(S) there is a natural num-
ber m such that there is an epimorphism Pm

d −→ M . This follows by induction
on |M |. If M is simple, by definition of Pd there is a summand of Pd with top
ismorphic to M . If |M | > 1 we can write M as extension of two shorter objects
and get the assertion using the horseshoe lemma and induction.

Now we can prove faithfulness. Let f : M −→ N be a morphism in Fd(S). We
know that there is an epimorphism ε : Pm

d −→M . Assume that Hom(Pd, f) = 0,
then also

0 = Hom(Pm
d , f) : Hom(Pm

d ,M) −→ Hom(Pm
d , N).

Hence
0 = Hom(Pm

d , f)(ε) = f ◦ ε

and since ε is an epimorphism we get that f = 0. This proves claim 1.
To prove that Hom(Pd,−) is full and dense we will first investigate its behavior

with respect to projectives. First note that according to [ASS06], lemma I.5.3(b)
in mod End(Pd) every projective module is a direct sum of summands of End(Pd).
So we need to determine the indecomposable summands of End(Pd).

Claim 2. There is a decomposition of right End(Pd)-modules

End(Pd) =
n⊕
i=1

Hom(Pd, Pd,i)

where the summands on the right hand side are indecomposable.

It is clear that this composition exists. We need to prove that the summands
are indecomposable. For this we will to investigate End(Pd,i) further for all i.
The following facts in this paragraph are analogues to [ASS06], lemma I.4.8(b).
The ring End(Pd,i) is local. If it was not, there would be a pair of idempotents e



Pseudo-Tubes 21

and (id−e) (see [ASS06], lemma I.4.6(d)) and then Pd,i = im e⊕ im(id−e) would
be a nontrivial decomposition of a local module, a contradiction. Then we get
according to [ASS06], lemma I.4.6(c), if the sum of two elements of End(Pd,i) is
the identity, one of these elements has to be invertible.

For a given i let ι : Pd,i −→ Pd and π : Pd −→ Pd,i be the canonical inclusion
and projection, respectively. Assume that we have a decomposition of right
End(Pd)-modules Hom(Pd, Pd,i) = X ⊕ Y . Then there are x ∈ X and y ∈ Y ,
such that π = x+ y. In End(Pd,i) we now have

id = πι = (x+ y)ι = xι+ yι

Now we can assume without loss of generality that xι is invertible. We then get

X 3 x(ι(xι)−1π) = (xι)(xι)−1π = π,

because X is a right End(Pd)-module. Now if we have f ∈ Hom(Pd, Pd,i) arbi-
trary, then

X 3 π(ιf) = (πι)f = f.

This implies that Y = 0 and hence Hom(Pd, Pd,i) is indecomposable. This proves
claim 2.

Now, trivially the indecomposable summands of End(Pd) lie in the image of
the functor Hom(Pd,−). Since the functor is compatible with finite direct sums,
for all projectives there is an isomorphic object in the image. Next we will prove
fullness of the functor restricted to the projectives.

Claim 3. For i = 1, . . . , n and M ∈ Fd(S) the map

Hom(Pd,i,M) −→ HomEnd(Pd)(Hom(Pd, Pd,i),Hom(Pd,M))

is surjective.

Again let ι : Pd,i −→ Pd and π : Pd −→ Pd,i be the canonical inclu-
sion and the canonical projection, respectively. We will show that each φ ∈
HomEnd(Pd)(Hom(Pd, Pd,i),Hom(Pd,M)) has as preimage the morphism φ(π)ι ∈
Hom(Pd,i,M). To prove this we need to check that

φ = Hom(Pd, φ(π)ι)

holds. For any g ∈ Hom(Pd, Pd,i) we have:

Hom(Pd, φ(π)ι)(g) = (φ(π)ι)g = φ(π)(ιg) = φ(π(ιg)) = φ((πι)g) = φ(g).

This proves claim 3.

Claim 4. The functor HomFd(S)(Pd,−) is dense.
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Let C be a right End(Pd)-module. Then there is a projective resolution of C.
We already know that the projectives and the homomorphisms between them can
be chosen to lie in the image of our functor. So there is a morphism f : P −→ P ′

between projectives in Fd(S), such that we have a projective resolution of C:

Hom(Pd, P ) −→ Hom(Pd, P
′) −→ C −→ 0

Now define M to be the cokernel of f . Then C ∼= Hom(Pd,M) follows, because
Hom(Pd,−) is exact. This proves denseness.

Claim 5. The functor HomFd(S)(Pd,−) is full.

We have already seen it is dense so let M and M̃ be objects in Fd(S) and
f : Hom(Pd,M) −→ Hom(Pd, M̃) be a morphism. As we have already shown
there are natural numbers m,m′, m̃, m̃′, such that there are projective resolutions
of M and M̃ :

Pm′

d
// Pm
d

// M // 0

P em′
d

// P em
d

//
M̃

// 0

When we apply Hom(Pd,−) to these sequences we obtain again projective reso-
lutions:

Hom(Pd, P
m′

d ) // Hom(Pd, P
m
d ) // Hom(Pd,M) //

f
��

0

Hom(Pd, P
em′
d ) // Hom(Pd, P

em
d ) // Hom(Pd, M̃) // 0

For these projective resolutions there are maps which make the following diagram
commute:

Hom(Pd, P
m′

d ) //

��

Hom(Pd, P
m
d ) //

��

Hom(Pd,M) //

f
��

0

Hom(Pd, P
em′
d ) // Hom(Pd, P

em
d ) // Hom(Pd, M̃) // 0

As these new maps have projective domains they are in the image of the functor
Hom(Pd,−) as we have seen above. Hence there is a diagram

Pm′

d
//

g′

��

Pm
d

//

g

��

M // 0

P em′
d

// P em
d

//
M̃

// 0
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in Fd(S), where g and g′ are mapped to the above maps. This diagram commutes,
because Hom(Pd,−) is faithful. Then there is a morphism h in Fd(S) making the
diagram

Pm′

d
//

g′

��

Pm
d

//

g

��

M //

h

��

0

P em′
d

// P em
d

//
M̃

// 0

commutative. Then h is mapped to f , because the functor Hom(Pd,−) is exact
and the map f is uniquely determined by the above diagram. This proves claim
5.

Now we have shown the functor is dense, full and faithful, so it is an equiva-
lence of categories.

With this lemma we can now prove the following theorem which is the main
tool to check that a subcategory is a pseudo-tube.

Theorem 2.13. Let C be a full, exact subcategory of Amod closed under exten-
sions and direct summands. Then the following are equivalent:

1. There are X1, . . . , Xn ∈ C orthogonal bricks with

Ext1(Xi, Xj) ∼=


k if i = j + 1
k if i = 1 and j = n
0 else

and C = F(X1, . . . , Xn).

2. The Auslander-Reiten quiver of the category C is a standard stable tube of
rank n.

Proof. We will first show that 1 implies 2. Assume that 1 holds. Then we know
that

F(X1, . . . , Xn) =
⋃
d

Fd(X1, . . . , Xn)

and each Fd(X1, . . . , Xn) is equivalent to mod End(Pd) by lemma 2.12. We will
now investigate this category.

For d ≥ 2 we have that End(Pd) is isomorphic to the path algebra of a
cycle of length n modulo the ideal generated by all paths of length d. This
follows from theorem II.3.7 in [ASS06] and its proof using the set of idempotents
corresponding to the decomposition of Pd in its definition. This path algebra is a
so called Nakayama algebra by proposition V.3.8 in [ASS06] and its Auslander-
Reiten quiver is known (see theorem V.4.1 of [ASS06]):
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Y1 Y2 Y3

∗ ∗

∗ ∗ ∗

Yn−1 Yn Y1

∗ ∗
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where the left and right dashed lines have to be identified. Note that all mod-
ules in mod End(Pd) are uniserial and in the Auslander-Reiten quiver the bottom
Y1, . . . , Yn contains the simple objects. The row above contains the indecompos-
ables of length 2 and so on. The top row contains the indecomposable projectives
which are the indecomposables of length d. We will now use the isomorphism of
algebras inducing an isomorphism of the Auslander-Reiten quivers of the algebras
which leads to the Auslander-Reiten quiver of Fd(X1, . . . , Xn):

X1 X2 X3

P2,2 P2,3

P3,2 P3,3 P3,4

Xn−1 Xn X1

P2,n P2,1

P3,n P3,1 P3,2

Pd,1 Pd,2 Pd,3

Pd−1,1 Pd−1,2

Pd,n−1 Pd,n Pd,1

Pd−1,n−1 Pd−1,n

...
...
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where the left hand side and the right hand side have to be identified. The
bottom row has to contain the simples X1, . . . , Xn and the fact that they appear
in this order is implied by the dimensions of their Ext-spaces. The row above
has to contain all indecomposables of length 2. Since all indecomposables in
Fd(X1, . . . , Xn) are uniserial these are precisely the indecomposable projectives
in F2(X1, . . . , Xn), namely P2,1, . . . , P2,n. Their positions with respect to the
bottom line follow from the fact that Hom(P2,i, Xj) = 0 for i 6= j. The arrows
are residue classes of inclusions and projections, because the Hom spaces are at
most one dimensional and therefore generated by any nonzero map. Similarly, one
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obtains the indecomposables in the higher rows of the Auslander-Reiten quiver
and the arrows are residue classes of inclusions and projections, too.

Claim. The Auslander-Reiten quiver of F(X1, . . . , Xn) is the union of Auslander-
Reiten quivers of Fd(X1, . . . , Xn) for all d.

Since all sink and source maps are inclusions and projections any source or
sink map in Fd−1(X1, . . . , Xn) is again a source or sink map in Fd(X1, . . . , Xn),
respectively and any Auslander-Reiten sequence in Fd−1(X1, . . . , Xn) is again an
Auslander-Reiten sequence in Fd(X1, . . . , Xn). To obtain the Auslander-Reiten
quiver of F(X1, . . . , Xn) we need to determine its Auslander-Reiten sequences.
For an Auslander-Reiten sequence

0 −→ A −→ B −→ C −→ 0,

in F(X1, . . . , Xn) there is a d such that the sequence is in Fd(X1, . . . , Xn). We
need to prove that the map f : A −→ B is a source map in Fd(X1, . . . , Xn). The
three properties of the definition of a source map all follow from the fact that
Fd(X1, . . . , Xn) is a full subcategory of F(X1, . . . , Xn). The proof that the map
B −→ C is a sink map is dual. Conversely, we need to show that an Auslander-
Reiten sequence

0 −→ A −→ B −→ C −→ 0,

in Fd(X1, . . . , Xn) is an Auslander-Reiten sequence in F(X1, . . . , Xn). Since
exactness is clear, we are left to show that f : A −→ B is a source map in
F(X1, . . . , Xn). Again the proof that the map B −→ C is a sink map is dual.
The first and last property of the definition of a source map are again implied
by the fullness of Fd(X1, . . . , Xn) in F(X1, . . . , Xn). For the second property
fix an f ′ : A −→ B′ not a split mono. Then there is a d′ ≥ d such that f ′ is
in Fd′(X1, . . . , Xn). By the above remark f is a source map in Fd′(X1, . . . , Xn)
and we get a map g in Fd′(X1, . . . , Xn) with f ′ = gf . This g of course is in
F(X1, . . . , Xn) as well and we have shown our assertion. This proves that the
Auslander-Reiten quiver of F(X1, . . . , Xn) is just the union of the Auslander-
Reiten quivers of Fd(X1, . . . , Xn) for all d which is the following tube:

X1 X2 X3

P2,2 P2,3

P3,2 P3,3 P3,4

Xn−1 Xn X1

P2,n P2,1

P3,n P3,1 P3,2

...
...
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This proves our claim and hence it proves assertion 2 of the theorem.
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Now we will prove the converse implication. Assume that 2 holds. Then we
will name the orthogonal bricks on the mouth of the tubes X1, . . . , Xn. Let us
first show that C = F(X1, . . . , Xn).

Fix an object M in the category C. As C is closed under extensions, we can
assume that M is indecomposable. Then the isomorphism class of M appears
in the Auslander-Reiten quiver of C in the layer d. If d = 1, the object M is
simple and obviously in Fd(X1, . . . , Xn). If d > 1, the object M appears as
summand of the middle term of an Auslander-Reiten sequence with end terms
in the d − 1-st layer of the Auslander-Reiten quiver. Then by induction we can
assume that these end terms are in Fd(X1, . . . , Xn) and as this category is closed
under extensions and direct summands M has to lie in it as well.

Now take an arbitrary object M ∈ Fd(X1, . . . , Xn). We know by definition
that there is an add(X1, . . . , Xn)-filtration ofX which can be refined to a filtration

0 = M0 ⊆M1 ⊆ · · · ⊆Mt = M

with Xi/Xi−1 being isomorphic to a module in {X1, . . . , Xn}. The assertion that
M ∈ C then follows by induction on t.

It is clear that dim Ext1(Xi, τXi) ≥ 1, because we have the Auslander-Reiten
sequences which are non split. To see that there are not more extensions between
the Xi assume we have a non split short exact sequence

0 −→ Xi −→ X −→ Xj −→ 0.

Then we will show that it is isomorphic to the Auslander-Reiten sequence

0 −→ Xi −→M −→ τ−Xi −→ 0

starting in Xi. As the first map of an Auslander-Reiten sequence is a source map
there is a commutative diagram

0 // Xi
// M

��

// τ−Xi
// 0

0 // Xi
// X // Xj

// 0

Then there is an induced map f making the following diagram commute

0 // Xi
// M

��

// τ−Xi
//

f
��

0

0 // Xi
// X // Xj

// 0

This map f is a map between simple objects in F(X1, . . . , Xn). Hence it is
just the multiplication by a scalar, which implies that all non split extensions
between the Xi are just multiples of Auslander-Reiten sequences. This finishes
the proof.
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2.3 Pseudo-Tubes in Pseudo-Tubes

We will exhibit all standard stable pseudo-tubes of smaller rank in a standard
stable pseudo-tube. To do this we will prove that a standard stable pseudo-tube
is equivalent to the mesh category of its Auslander-Reiten quiver. This will help
us, because then a standard stable pseudo-tube is equivalent to the mesh category
of the Auslander-Reiten quiver of any standard stable pseudo-tube of the same
rank. Then we can restrict to one special pseudo-tube, which will already be a
tube, and prove the result for this tube. First we will need the mesh category
of a component of an Auslander-Reiten quiver. The definition is a simplified
dual version of the definition in section 2.1 of [Rin84]. We will only need the
simplified version, because we do not take into account the possibility of multiple
arrows. We dualize, because the composition of morphisms in [Rin84] is dual to
our composition.

Definition 2.14. Let C be a component of an Auslander-Reiten quiver. For
simplicity we will assume that C has no multiple arrows.

The copath category kC has by definition as objects formal direct sums of the
vertices of C and as morphisms from x ∈ C0 to y ∈ C0 all k-linear combinations
of copaths from x to y in C. Here a copath is a path in the opposite quiver.
For simplicity we will denote the arrows in the quiver and its opposite by the
same symbol. The composition of morphisms is induced by the concatenation of
copaths.

For each non-projective point x we have a mesh

τx x

y1

y2

...

yn

α1

??��������� α2

77oooooo

αn
��?????????

β1

��?????????

β2 ''OOOOOOO

βn

??���������

ending in x. For this x we can define the mesh element:

mx =
n∑
i=1

βiαi

which is a morphism of the copath category. Denote by MC the ideal generated
by all mesh elements mx.

The mesh category is the quotient category kC/MC .

Let A be a finite-dimensional algebra.

Theorem 2.15. Let C be a full, exact subcategory of Amod closed under ex-
tensions and direct summands. Assume the Auslander-Reiten quiver Γ of C is a
stable tube of rank n. Then the following are equivalent:
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1. The categories C and the mesh category of Γ are equivalent.

2. The stable pseudo-tube C is standard.

Proof. The proof is inspired by the proof of lemma 3.1.2 in [Rin84]. We will show
that C is equivalent to the mesh category of its Auslander-Reiten quiver, if C is
standard. First observe that by theorem 2.13 and its proof we know, that Γ is of
the shape:

P1,1 P1,2 P1,3

P2,2 P2,3

P3,2 P3,3 P3,4

P1,n−1 P1,n P1,1

P2,n P2,1

P3,n P3,1 P3,2

...
...

i1,1

??�����

u2,2
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i1,2

??�����

u2,3

��?????

u3,2

��?????

i2,2

??�����

u3,3

��?????

i2,3
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i1,n−1
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u2,n

��?????

i1,n
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where we can choose all objects and maps in such a way, that the maps i∗,∗ are
inclusions and the maps u∗,∗ are projections. Define an additive functor F from
the mesh category to C as follows: A point of Γ is mapped to the correspond-
ing indecomposable representation we have chosen. An irreducible map us,t is
mapped to us,t and an irreducible map is,t is mapped to (−1)sis,t. The sign is
needed, because without it F would not be well-defined. That is because the
mesh elements which were factored out in the mesh category are the sum of two
copaths which belong to a square which we assumed to be commutative by the
choice of i∗,∗ and u∗,∗. It is clear that F is dense, because all indecomposables lie
in the image of F . Analogously, F is full, because all irreducible maps lie in the
image.

What remains to be shown is that F is faithful. If we have a copath in Γ it is
equivalent to 0 or to a multiple of a copath of the form

is−l−1+m,t+m . . . is−l,t+1is−l−1,tus−l,t . . . us−1,tus,t

for some l,m, s, t with respect to the equivalence relation generated by the mesh
elements. We call a copath standard, if it is of the above form. The standard
copaths generate the Hom-spaces between indecomposables in the mesh category.
To prove that F is faithful, let d, d′ = 1, . . . , n and t, t′ be natural numbers. Then
Hom(Pd,t, Pd′,t′) is generated by standard copaths fl where l denotes the number
of coarrows u∗,∗ contained in fl. Then im(F (fl)) = Pd−l,t. If we have a non-zero
morphism in the mesh category f =

∑
l λlfl, where l runs over a finite set of

natural numbers and λl ∈ k, there is a minimal m such that λm 6= 0. Then

im

(
F

(∑
l 6=m

λlfl

))
( Pd−m,t = im(F (fm)).
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Hence the image of F (f) cannot be 0. This proves faithfulness.
We have shown that F is a full, faithfull and dense functor. Hence it is an

equivalence of categories.
The other implication of the theorem is clear, because in the mesh category

of ZA∞/τn the mouth of the tube consists of orthogonal bricks.

A pseudo-tube can contain smaller ones as we will see now.

Proposition 2.16. Let C be a standard stable pseudo-tube of rank n ≥ 1 and

1 ≤ r ≤ n. Then there are precisely
(
n
r

)
standard stable pseudo-tubes of rank

r contined in C. Hence there are precisely 2n − 1 standard stable pseudo-tubes of
arbitrary rank contained in C.

Proof. According to theorem 2.15 we know that a standard stable pseudo-tube of
rank n is equivalent to the mesh category of its Auslander-Reiten quiver. Theorem
XIII.2.5 of [SS07] tells us that the Auslander-Reiten quiver of the category of
representations of the quiver Ã1n:

0 1 2 . . . n− 1 noo oo oo oo oott

contains a standard stable tube of rank n. In the following picture we will denote
the isomorphism classes of indecomposables by their dimension vectors.

10...01 010...0 0010...0

110...01 0110...0

110...011 1110...01 01110...0

0...0100 0...010 10...01

0...0110 10...011

0...01110 10...0111 110...011

...
...
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To prove the assertion we will exhibit all standard stable pseudo-tubes of rank
r contained in the category T corresponding to this tube. This suffices because
both categories are equivalent to the mesh category of the same Auslander-Reiten
quiver. Note that the n lowest rows of this Auslander-Reiten quiver contain bricks
and that all bricks are contained in these rows as well. There are precisely n bricks
in this tube admitting self-extensions. These are the modules in the n-th row of
the tube having dimension vector d which is the vector with all entries being 1.
Since this argument holds for any pseudo-tube, we must have that any pseudo-
tube P of rank r contained in T admits exactly r bricks with self-extensions and
these are in the r-th row of the Auslander-Reiten quiver of P .

We claim that there is a bijection between the set of pseudo-tubes of rank r
and subsets with r elements of N := {1, 2, . . . , n}. For 0 < i < n let us denote
the simple representation corresponding to i by Xi and let Xn be the unique
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indecomposable representation of dimensionvector 10 . . . 01. Then for 0 < i ≤ n
and m > 0 there is a unique object Xi(m) in T with socle Xi and length m. This
object is the codomain of the composition of precisely m − 1 inclusions in the
above tube starting with the simple object Xi.

Now we will define a map f mapping a subset S := {n1 < · · · < nr} of N to
a pseudo-tube in the following way: The objects

Xn1(n2 − n1), . . . , Xnr−1(nr − nr−1), Xnr(n+ n1 − nr)

are bricks, because they lie in the lowest n rows of the tube. We want to apply
theorem 2.13 to show that

F(Xn1(n2 − n1), . . . , Xnr−1(nr − nr−1), Xnr(n+ n1 − nr))

is a pseudo-tube. The bricks are orthogonal, because the supports of their di-
mensionvectors are pairwise disjoint. To see that the dimensions of Ext-spaces
are as required by theorem 2.13 we can use the dimension vectors, too or use the
Auslander-Reiten formula. Now define

f(S) = F(Xn1(n2 − n1), . . . , Xnr−1(nr − nr−1), Xnr(n+ n1 − nr)).

To see that f is a bijection we will construct its inverse g. Let P be a pseudo-
tube with modules Y1, . . . , Yr on the mouth. Then denote the socle of Yi by soc(Yi)
when we consider Y as object of T . This socle will be some Xni

. Then map P
to {n1, . . . , nr}. This set consists of r different numbers, because otherwise some
Yi would be a submodule of some Yj for i 6= j.

By definition it is clear that gf is the identity. Now let us prove that fg is
the identity, too. Let P be a pseudo-tube with modules Y1, . . . , Yr on the mouth.
Then the sum of dimension vectors of all Yi is d, because in the r-th row of the
Auslander-Reiten quiver of P we have bricks with self-extensions. These need to
have dimension vector d as we have seen before. The pseudo-tube is then mapped
to {n1 < · · · < nr} via g. We need to show that

Xn1(n2 − n1) = Y1, . . . , Xnr−1(nr − nr−1) = Yn−1, Xnr(n+ n1 − nr) = Yr.

It suffices to show the first equality, the others follow analogously. By definition,
soc(Y1) = Xn1 = soc(Xn1(n2 − n1)) holds and thus these two modules lie on the
same ray in the tube. If Y1 was of longer length then Xn1 , then the modules Y1, Y2

would not be orthogonal, a contradiction. Analogously, if Y1 was of shorter length,
then Y1, Y2 would have no extensions. Hence the maps f and g are inverses.

2.4 Standard Wings in Regular Components

We will introduce the notion of standard wings which are subquivers of Auslander-
Reiten quivers. For a wild hereditary algebra A, for example the path algebra
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of a wild acyclic quiver, some examples of pseudo-tubes contain standard wings
which are also standard wings in regular components of the Auslander-Reiten
quiver of A. To find these examples we will look for standard wings in regular
components. We will follow the notation of [Ker92], section 1.

Let C be a regular component of the Auslander-Reiten quiver of A. Then C
has the following shape:

◦ ◦ X ◦ ◦

◦ [2]X X(2) ◦

◦ [3]X ◦ X(3) ◦

[4]X ◦ ◦ X(4)

[5]X ◦ ◦ ◦ X(5)

...
...

...

. . .

. . .

. . .

. . .
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This picture continues infinitely in the left, right and upper direction. The mod-
ules in the bottom τ -orbit are called quasi-simple. Once we fix a quasi-simple
module X for each i > 1 we will denote by X(i) and [i]X the modules indicated
in the above picture and we define X = X(1) = [1]X. Note that for any i we
have [i]X = τ i−1(X(i)).

Then for a regular module Y there is a number i and a quasi-simple regular
module X, such that Y = [i]X. We define the wing W (Y ) to be the mesh
complete full subquiver of C defined to contain the vertices τ r([s]X) for 1 ≤ s ≤ i
and 0 ≤ r ≤ i− s. For example the wing of [3]X is:

τX X

[2]X

τ 2X

τ [2]X

[3]X
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τ
oo_ _ _

The following lemma is a part of proposition 1.1 in [Ker92].

Lemma 2.17. For a quasi-simple regular module X and m > 1 the following
conditions are equivalent:

• X(m) is a brick.

• X(m− 1) is a brick without self-extensions.

• X(1), X(2)/X(1), . . . , X(m)/X(m−1) are pairwise orthogonal bricks with-
out self-extensions.
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If X satisfies the above conditions we will call W (X(m)) a standard wing.
Let Q be a wild acyclic quiver. Let q denote the corresponding quadratic

form. Let τ denote the AR-translate of the category repkQ

Lemma 2.18. Let X be a quasi-simple regular brick such that [m]X is a brick
for some m > 0, too. Then we have dim Ext1(τm−1X,X) = 1− q(dim[m]X).

Proof. The case m = 1 is clear, assume m > 1. By the above lemma we have that
the wingW ([m]X) is standard. Hence X, τX, . . . , τm−1X are pairwise orthogonal
bricks without self-extensions. Observe that by lemma 2.2 in [Rin76] we have:

q(dim[m]X) = q(
m−1∑
i=0

dim τ iX)

=
m−1∑
i,j=0

(dim Hom(τ iX, τ jX)− dim Ext1(τ iX, τ jX))

By the Auslander-Reiten-formula the dimensions of the Ext-spaces can be re-
placed by the dimensions of Hom-spaces as follows:

q(dim[m]X) =
m−1∑
i,j=0

(dim Hom(τ iX, τ jX)− dim Hom(τ jX, τ i+1X))

=
m−1∑
i,j=0

dim Hom(τ iX, τ jX)−
m−1∑
i,j=0

dim Hom(τ iX, τ j+1X)

=
m−1∑
i=0

dim Hom(τ iX,X)−
m−1∑
i=0

dim Hom(τ iX, τmX)

By lemma 2.17 we have that the τ iX are orthogonal. Hence,

q(dim[m]X) = dim Hom(X,X)− dim Hom(X, τmX).

Applying the Auslander-Reiten-formula again now yields:

q(dim[m]X) = 1− dim Ext1(τm−1X,X)

This proves the assertion.
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Now we can prove a proposition which says that for certain bricks we have
pseudo-tubes.

Proposition 2.19. Let X be a regular brick with q(dimX) = 0. Then X lies in
a pseudo-tube which contains W (X).

Proof. The brick X lies in a regular component. Denote by Y, τY, . . . , τm−1Y
the quasi-simple modules in the wing W (X). Then we can apply lemma 2.18
and obtain that dim Ext1(τm−1Y, Y ) = 1. By the Auslander-Reiten-formula and
orthogonality we conclude that

Ext1(τ iY, τ jY ) ∼=


k if j = i+ 1
k if i = m− 1 and j = 0
0 else

Hence we can apply theorem 2.13 and obtain that F(Y, τY, . . . , τm−1Y ) is a
pseudo-tube containing W (X).
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3 Certain Star Quivers

3.1 g-Duality for Star Quivers

Let Q be an acyclic quiver. Let K0(repkQ) be the Grothendieck group of repkQ.
Then there is an isomorphism dim : K0(repkQ) −→ ZQ0 which maps the simples
on the canonical basis of ZQ0 (see [ASS06], theorem III.3.5).

For t > 2 let li > 1 for i = 1, . . . , t and let Tl1,...,lt be the star star quiver with
t arms which are of length l1, . . . , lt with subspace orientation:

1,l1

1,l1−1 1,l1−2 . . . 1,1

2,l2−1 2,l2−2 . . . 2,1

...

t,lt−1 t,lt−2 . . . t,1

oooooo

oooooo

oooooo

{{wwwwwwwwww

ssggggggg

ccGGGGGGGGGG

To the quiver we associate the quadratic form q : ZTl1,...,lt
0 × ZTl1,...,lt

0 −→ Z:

q


d1,l1−1 d1,l1−2 . . . d11

n d2,l2−1 d2,l2−2 . . . d21
...

dl,lt−1 dl,lt−2 . . . dt1


= n2 +

t∑
i=1

li−1∑
j=1

d2
ij −

t∑
i=1

(
ndi,li−1 +

li−2∑
j=1

dijdi,j+1

)

Definition 3.1. Let g : ZTl1,...,lt
0 −→ ZTl1,...,lt

0 be the linear map mapping vectors
as follows:

g


d1,l1−1 d1,l1−2 . . . d11

n d2,l2−1 d2,l2−2 . . . d21
...

dl,lt−1 dl,lt−2 . . . dt1

 =


d′1,l1−1 d′1,l1−2 . . . d′11

n d′2,l2−1 d′2,l2−2 . . . d′21
...

d′l,lt−1 d′l,lt−2 . . . d′t1


with d′i,j = n−di,li−j. We will call g the g-duality, because it will help us to classify
the preinjective representations when we have classified the preprojectives.

Lemma 3.2. Let d ∈ ZTl1,...,lt
0 . Then q(d) = q(g(d)).

Proof. Let

d =


d1,l1−1 d1,l1−2 . . . d11

n d2,l2−1 d2,l2−2 . . . d21
...

dt,lt−1 dl,lt−2 . . . dt1
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Then we can calculate the quadratic form:

q(g(d)) = n2 +
t∑
i=1

li−1∑
j=1

(n− dij)2 −
t∑
i=1

(
n(n− di1) +

li−2∑
j=1

(n− dij)(n− di,j+1)

)

= n2 +
t∑
i=1

li−1∑
j=1

(n2 − 2ndij + d2
ij)

−
t∑
i=1

(
n2 − ndi1 +

li−2∑
j=1

(n2 − ndij − ndi,j+1 + dijdi,j+1)

)

= n2 +
t∑
i=1

li−1∑
j=1

(−2ndij + d2
ij)−

t∑
i=1

(
−ndi1 +

li−2∑
j=1

(−ndij − ndi,j+1 + dijdi,j+1)

)

= n2 +
t∑
i=1

li−1∑
j=1

d2
ij −

t∑
i=1

(
ndi,li−1 +

li−2∑
j=1

dijdi,j+1

)
= q(d)

This proves the lemma.

Definition 3.3. For the quiver Tl1,...,lt there is the Coxeter transformation C :

ZTl1,...,lt
0 −→ ZTl1,...,lt

0 as defined in [ASS06], p.271 which is in this special case the
composition of maps

(st,1 ◦ · · · ◦ st,lt−1) ◦ · · · ◦ (s1,1 ◦ · · · ◦ s1,l1−1) ◦ s1,l1

where for any vertex a the map sa : ZTl1,...,lt
0 −→ ZTl1,...,lt

0 only changes the coor-
dinate da of a vector at the vertex a by replacing it by

−da +
∑

db

where the sum is taken over all vertices b adjacent to a.

Note that all these maps sa are involutions and hence

C−1 = s1,l1 ◦ (s1,l1−1 ◦ · · · ◦ s1,1) ◦ · · · ◦ (st,lt−1 ◦ · · · ◦ st,1)

The Coxeter transformation will be used to calculate the Auslander-Reiten shift
τ in repk Tl1,...,lt with the help of lemmas VII.5.8(a) and VII.5.9(b) of [ASS06]:

Lemma 3.4. Let M be an indecomposable representation of Tl1,...,lt such that
C(dimM) has only non-negative coordinates. Then dim τM = C(dimM).

Lemma 3.5. Let C be the Coxeter transformation of Tl1,...,lt. Then

gCg = C−1.
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Proof. It is easily checked that the inverse of g is g. So instead of proving the
equation in the lemma we will prove that

Cg = gC−1

holds. The dimension vectors of the indecomposable projectives of Tl1,...,lt form
a basis of ZTl1,...,lt

0 . Hence it suffices to show that this basis is mapped to the
same vectors by Cg and gC−1, respectively. We start with the dimension vector
corresponding to the simple projective and compute

C−1


0 0 . . . 0 0

1 0 0 . . . 0 0
...

0 0 . . . 0 0

 =


1 0 . . . 0 0

(t− 1) 1 0 . . . 0 0
...

1 0 . . . 0 0


and

gC−1


0 0 . . . 0 0

1 0 0 . . . 0 0
...

0 0 . . . 0 0

 =


t− 1 t− 1 . . . t− 1 t− 2

t− 1 t− 1 t− 1 . . . t− 1 t− 2
...

t− 1 t− 1 . . . t− 1 t− 2

 .

On the other hand:

g


0 0 . . . 0 0

1 0 0 . . . 0 0
...

0 0 . . . 0 0

 =


1 1 . . . 1 1

1 1 1 . . . 1 1
...

1 1 . . . 1 1


and

Cg


0 0 . . . 0 0

1 0 0 . . . 0 0
...

0 0 . . . 0 0

 =


t− 1 t− 1 . . . t− 1 t− 2

t− 1 t− 1 t− 1 . . . t− 1 t− 2
...

t− 1 t− 1 . . . t− 1 t− 2

 .

This proves that the first basis vector is mapped on the same vector by gC−1 and
Cg.

Next we consider the dimension vector with i ones in the upper arm for
i = 1, . . . , l1 − 2.

C−1


i︷ ︸︸ ︷

1 . . . 1 0 . . . 0
1 0 0 . . . 0

...
0 0 . . . 0

 =


i+1︷ ︸︸ ︷

1 . . . 1 0 . . . 0
t− 1 1 0 . . . 0

...
1 0 . . . 0
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and

gC−1


i︷ ︸︸ ︷

1 . . . 1 0 . . . 0
1 0 0 . . . 0

...
0 0 . . . 0

 =


l1−i−2︷ ︸︸ ︷

t− 1 . . . t− 1 t− 2 . . . t− 2
t− 1 t− 1 . . . t− 1 t− 2

...
t− 1 . . . t− 1 t− 2

 .

On the other hand:

g


i︷ ︸︸ ︷

1 . . . 1 0 . . . 0
1 0 0 . . . 0

...
0 0 . . . 0

 =


l1−i−1︷ ︸︸ ︷
1 . . . 1 0 . . . 0

1 1 1 . . . 1
...

1 1 . . . 1


and

Cg


i︷ ︸︸ ︷

1 . . . 1 0 . . . 0
1 0 0 . . . 0

...
0 0 . . . 0

 =


l1−i−2︷ ︸︸ ︷

t− 1 . . . t− 1 t− 2 . . . t− 2
t− 1 t− 1 . . . t− 1 t− 2

...
t− 1 . . . t− 1 t− 2

 .

This proves that these basis vectors are mapped on the same vector by gC−1 and
Cg.

Now we calculate the image of the dimension vector of the projective corre-
sponding to the last vertex in the upper arm.

C−1


1 1 . . . 1 1

1 0 0 . . . 0 0
...

0 0 . . . 0 0

 =


0 0 . . . 0 0

t− 2 1 0 . . . 0 0
...

1 0 . . . 0 0


and

gC−1


1 1 . . . 1 1

1 0 0 . . . 0 0
...

0 0 . . . 0 0

 =


t− 2 t− 2 . . . t− 2 t− 2

t− 2 t− 2 t− 2 . . . t− 2 t− 3
...

t− 2 t− 2 . . . t− 2 t− 3

 .

On the other hand:

g


1 1 . . . 1 1

1 0 0 . . . 0 0
...

0 0 . . . 0 0

 =


0 0 . . . 0 0

1 1 1 . . . 1 1
...

1 1 . . . 1 1
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and

Cg


1 1 . . . 1 1

1 0 0 . . . 0 0
...

0 0 . . . 0 0

 =


t− 2 t− 2 . . . t− 2 t− 2

t− 2 t− 2 t− 2 . . . t− 2 t− 3
...

t− 2 t− 2 . . . t− 2 t− 3

 .

This proves that all basis vectors of projectives corresponding to vertices in the
upper arm are mapped on the same vector by gC−1 and Cg. For the projectives
corresponding to vertices in the other arms of Tl1,...,lt the calculation is similar.
Hence all projectives are mapped to the same objects by Cg and gC−1. This
proves our lemma.

Proposition 3.6. Assume that Tl1,...,lt is representation infinite. Then g induces
a bijection between the dimension vectors of indecomposable preprojectives and the
dimension vectors of indecomposable preinjectives which do not have coordinate
0 at the unique sink of Tl1,...,lt.

Proof. Let d be the dimension vector of an indecomposable preprojective rep-
resentation. There is a natural number n such that we can apply the Coxeter
transformation n times and obtain a dimension vector p of an indecomposable pro-
jective representation, that is p = Cnd. Without loss of generality we can assume
that p is the dimension vector of an indecomposable projective corresponding to
a vertex in the upper arm of the quiver. Hence there is an i = 0, . . . , l1 − 1 with

p =


i︷ ︸︸ ︷

1 . . . 1 0 . . . 0
1 0 0 . . . 0

...
0 0 . . . 0


and we thus have

g(p) =


l1−i−1︷ ︸︸ ︷
1 . . . 1 0 . . . 0

1 1 1 . . . 1
...

1 1 . . . 1

 .

We claim that this is preinjective. It is easily checked that indeed C−ig(p) is the
dimension vector of an indecomposable injective. With lemma 3.5 we can now
conclude:

C−ig(p) = C−igCn(d) = C−iC−ng(d) = C−i−ng(d).

Hence g(d) is the dimension vector of an indecomposable preinjective.
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Since the map g is its own inverse, it is clear that the restriction of g on dimen-
sion vectors of indecomposable preprojectives is an injective map. To see that it
is surjective one needs to show that the dimension vectors d of indecomposable
preinjectives which do not have coordinate 0 at the unique sink are mapped to
indecomposable preprojectives. This calculation is similar to the one above. We
can apply C−1 several times and get the image of a projective indecomposable.
This will be on the same C-orbit as the image of the dimension vector d. This
proves the proposition.

Example 3.7. Let Q be the quiver T5,2,5. We can knit the preprojective compo-
nent of its Auslander-Reiten quiver which can be found in the appendix. There
the representations are denoted by their dimension vectors and this component
continues infinitely to the right. Dually we can knit the preinjective component
which is also in the appendix. Again we denote the representations by their di-
mension vectors and this component continues infinitely to the left. The dashed
line separates the dimension vectors which lie in the image of the preprojective
ones under the map g from those which do not lie in the image. On the right
hand side of the dashed line there are those dimension vectors with 0 at the sink.

We can now directly read off that the projective dimension vector

p =

 1 1 0 0
1 0

0 0 0 0


is mapped by g to

g(p) =

 1 1 0 0
1 1

1 1 1 1


and

Cg(p) =

 2 1 1 1
2 1

2 2 2 1

 .

We can also read off

C−1(p) =

 1 1 1 0
2 1

1 0 0 0


and then see that gC−1(p) = Cg(p).

3.2 A Criterion for Regularity

We will determine for certain dimension vectors of indecomposable representa-
tions of star quivers whether they are preprojective, regular or preinjective. For
this will establish a criterion in this section. Let Q be a wild acyclic quiver.
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Lemma 3.8. Let C be a regular component of the Auslander-Reiten quiver of
repkQ. Then C contains a representation M with q(dimM) ≤ 0.

Proof. Let M be quasi-simple in C. Then for any n the component C contains
the following wing:

τn−1M τn−2M τn−3M

[2]τn−2M [2]τn−3M

[3]τn−3M

[n− 1]τM

[n]M

[n− 1]M

[n− 2]τM

τM M

[2]M
??����� ��????? ??����� ��?????

??����� ��?????

��????? ??�����

??����� ��?????

??������ ��??????

oo_ _ _ _ _oo_ _ _oo_ _ _

oo_ _

oo_ _

Observe that

q(dim[n]M) = q(
n−1∑
i=0

dim τ iM)

=
n−1∑
i,j=0

(dim Hom(τ iM, τ jM)− dim Ext1(τ iM, τ jM))

holds, because of lemma 2.2 in [Rin76]. By the Auslander-Reiten formula (theo-
rem IV.2.13 in [ASS06]) the dimensions of the Ext-spaces can be replaced by the
dimensions of Hom-spaces as follows:

q(dim[n]M) =
n−1∑
i,j=0

(dim Hom(τ iM, τ jM)− dim Hom(τ jM, τ i+1M))

=
n−1∑
i,j=0

dim Hom(τ iM, τ jM)−
n−1∑
i,j=0

dim Hom(τ iM, τ j+1M)

=
n−1∑
i=0

dim Hom(τ iM,M)−
n−1∑
i=0

dim Hom(τ iM, τnM)

By lemma 1.4 in [Ker92] which is due to Baer and Kerner the first sum tends to
some finite constant for n approaching ∞, whereas the second sum tends to ∞.
Hence limn→∞ q(dim[n]M) = −∞. This proves the assertion.
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Let Q,Q′ be wild acyclic quivers and let qQ, qQ′ denote the corresponding
quadratic forms.

Lemma 3.9. Let F : repkQ −→ repkQ
′ be a faithful and exact functor mapping

indecomposables to indecomposables, such that

qQ(dimM) = qQ′(dimF (M))

for all M ∈ repkQ. Then for any regular indecomposable representation M of Q
the representation F (M) is regular.

Proof. Let M be a regular indecomposable representation of Q. By Kac’s The-
orem qQ(dimM) ≤ 1 (see theorem in §1.10 of [Kac83] and lemma 2.1(b) of
[Kac80]). If qQ(dimM) ≤ 0, then qQ′(dimF (M)) ≤ 0 and hence F (M) is regu-
lar, because according to lemma VIII.2.7 in [ASS06] we have qQ′(dimN) = 1 for
an indecomposable preprojective or preinjective N .

Now assume that qQ(dimM) = 1. First we treat the case that M is quasi-
simple. By lemma 3.8 there is an integer i > 1 such that qQ(dim[i]M) ≤ 0. Then
we have a short exact sequence of regular representations:

0 // [i− 1]τM // [i]M // M // 0

Applying F to this sequence we obtain a short exact sequence in repkQ
′:

0 // F ([i− 1]τM) // F ([i]M) // F (M) // 0

whose middle term is regular, because qQ′(dimF ([i]M)) ≤ 0. Since there is an
epimorphism from a regular object to F (M) and there are no morphisms from
regular representations to preprojective representations by corollary VIII.2.6 of
[ASS06], F (M) cannot be preprojective. Dually it cannot be preinjective and has
to be regular.

Now assume that qQ(dimM) = 1 and M is not quasi-simple. In this case
there is a non-zero map from a regular quasi-simple to M . By the previous
arguments this regular quasi-simple representation is mapped to a regular rep-
resentation via F . Since F is faithful, there is is a non-zero map from a regular
representation to F (M). Dually there is a non-zero map from F (M) to a regular
representation. Hence F (M) is regular.

3.3 Star Quivers with Arms of Length n, 3 and 2

Let n > 2 and Tn,3,2 be the star star quiver with three arms which are of length
n, 3, 2 with subspace orientation. We will denote it by:

n

n−1 n−2 . . . 1

2′ 1′

1′′

oooooo

oo��������

oo__?????
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We are interested in this particular family, because it contains an extended
Dynkin quiver, namely T6,3,2 which is of type Ẽ8. We know that the category
repk T6,3,2 admits tubes and we will see that their images under certain embed-
dings into repk Tn,3,2 for n > 6 will result in pseudo-tubes.

Definition 3.10. For i = 1, . . . n let Fi : repk Tn,3,2 −→ repk Tn+1,3,2 be the
functor defined on objects by

Vn

Vn−1 . . . V1

V2′ V1′

V1′′

7→ Vn

Vn−1 . . . Vi Vi . . . V1

V2′ V1′

V1′′

oooo

oo
��������

oo
__??????

idoooooo oo oo

oo
��������

oo
__??????

A morphism (fa)a∈Tn,3,2
0

is mapped in the same way, namely the map fi appears
twice, whereas the other maps stay the same.

Let F0 : repk Tn,3,2 −→ repk Tn+1,3,2 be the functor adding the zero vector
space at the end of the longest arm and keeping the other vector spaces fixed.
On morphisms the functor F0 adds the zero map at the new vertex.

It is straight forward to check that the functors Fi fulfill the conditions of
lemma 3.9 and thus map regular representations to regular representations.

To check that a representation is preprojective the next proposition will be
an important tool.

Proposition 3.11. For n > 5 let M be a preprojective representation of Tn,3,2.
Then dimMn ≤ dim(τ−M)n.

Proof. The proof is inspired by [BB83]. Let f be the function mapping a rep-
resentation to the dimension of the vector space at the unique sink, that is
f(M) = dimMn. This function is obviously additive on exact sequences. Hence
for a mesh

τX X

Y1

Y2

...

Ys

??��������
77ooooo

��????????

��????????

''OOOOOO

??��������

we have that

f(X) + f(τX) =
s∑
i=1

f(Yi).
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Fix t ≥ 0 an integer. We can now define a dimension vector d[t], which has at
a vertex a the coordinate f(τ−tP (a)), where P (a) is the projective cover of the
simple representation corresponding to a.

Direct computation as in section 4 of [BB83] shows that d[t + 1] = C(d[t]),
where C is the Coxeter transformation.

Knitting the preprojective component of the Auslander-Reiten quiver of the
category repk Tn,3,2 directly yields that

d[0] =

(
1...1

111
1

)
.

Let

r =

(
1...10

110
0

)
.

Then we also have d[1] = d[0] + r.
By induction and linearity of C it follows that

d[t+ 1] = d[t] + Ct(r)

and we are left to show that Ct(r) never has negative entries. This follows from
the fact that there is a regular representation of T6,3,2 with dimension vector(

11110
110
0

)
.

This is mapped to a regular representation with dimension vector r by the functor
(F2)

n−6 by lemma 3.9. Hence the Coxeter-orbit of r contains only non-negative
vectors. This proves the proposition.

Definition 3.12. For Q a star let P(Q),R(Q), I(Q) denote the preprojective,
regular and preinjective indecomposable objects in repkQ, respectively. For d ∈
N0 let Pd(Q),Rd(Q), Id(Q) be the corresponding indecomposable objects with a
d-dimensional vector space at the unique sink.

Lemma 3.13. With the notation above, we obtain:

• For n > 5 we have
n⋃
i=0

Fi(R1(Tn,3,2)) = R1(Tn+1,3,2).

• For n > 6 we have
n⋃
i=0

Fi(R2(Tn,3,2)) = R2(Tn+1,3,2).
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• For n > 7 we have
n⋃
i=0

Fi(R3(Tn,3,2)) = R3(Tn+1,3,2).

Proof. By lemma 3.9 we obtain that for d = 1, 2, 3 we have Fi(Rd(Tn,3,2)) ⊆
Rd(Tn+1,3,2). This implies that

⋃n
i=0 Fi(Rd(Tn,3,2)) ⊆ Rd(Tn+1,3,2). Note that to

prove this inclusion we did not need any assumption on n. To prove the inclusion
of the opposite direction we need to classify the preinjective and preprojective
indecomposables in the first step.

For n > 5 the dimension vectors of representations in P1 can be found in the
appendix. They are always at the beginning of a τ -orbit, because the function
mapping a representation to the dimension of the vector space at the unique sink
is increasing in the direction of τ− by proposition 3.11. In the appendix one sees
that there are exactly n + 10 different dimension vectors of representations of
P1. By Kac’s Theorem (theorem in §1.10 of [Kac83]) there are precisely n + 10
isomorphism classes in P1. Using the g-dual we get that there are precisely n+10
isomorphism classes in I1

It holds that

R1(Tn+1,3,2) = R1(Tn+1,3,2) ∩ repk Tn+1,3,2

= R1(Tn+1,3,2) ∩
n⋃
i=0

Fi(repk Tn,3,2)

= R1(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(P1(Tn,3,2)) ∪
n⋃
i=0

Fi(R1(Tn,3,2)) ∪
n⋃
i=0

Fi(I1(Tn,3,2))

)

=

(
R1(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(P1(Tn,3,2))

))

∪

(
R1(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(R1(Tn,3,2))

))

∪

(
R1(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(I1(Tn,3,2))

))
.

Hence it suffices to show that(
R1(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(P1(Tn,3,2))

))
,

(
R1(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(R1(Tn,3,2))

))
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and (
R1(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(I1(Tn,3,2))

))
are contained in

⋃n
i=0 Fi(R1(Tn,3,2)). For the second class this is clear. For the

first class this can be checked using the list in the appendix. Each representation
is mapped to exactly two different representations by the functors Fi for i =
0, . . . , n. For example an indecomposable representationM with dimension vector(

11000
100
0

)

is mapped to objects with dimension vector

dim(F0(M)) = dim(F1(M)) = dim(F2(M)) = dim(F3(M)) =

(
110000

100
0

)

and

dim(F4(M)) = dim(F5(M)) = dim(F6(M)) =

(
111000

100
0

)
.

In each of these cases the images are preprojective. Calculating all images of
objects in P1 under Fi yields that there are exactly four isomorphism classes in(

R1(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(P1(Tn,3,2))

))
.

They have dimension vectors:(
10...0

110
1

)
,

(
110...0

111
0

)
,

(
1110...0

100
1

)
,

(
11110...0

110
0

)
.

All of these four isomorphism classes are also in the class F0(R1(Tn,3,2)). This
is clear, because according to lemma XIII.2.22 in [SS07] there are quasi-simple
regular representation of T6,3,2 with dimension vectors:(

10000
110
1

)
,

(
11000

111
0

)
,

(
11100

100
1

)
,

(
11110

110
0

)
.

Using the g-dual we get the same result for the preinjectives, so the first assertion
of the lemma is proven.

For n > 6 the dimension vectors of representations in P2 can be found in the
appendix. They are always proper successors of objects in P1, because the func-
tion mapping a representation to the dimension of the vector space at the unique
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sink is increasing in the direction of τ− by proposition 3.11. In the appendix one
sees that there are exactly n + 10 different dimension vectors of representations
of P2. By Kac’s Theorem (theorem in §1.10 of [Kac83]) there are precisely n+10
isomorphism classes in P2. Using the g-dual we get that there are precisely n+10
isomorphism classes in I2

Analogously to the first case, it suffices to show that(
R2(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(P2(Tn,3,2))

))
,

(
R2(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(R2(Tn,3,2))

))
and (

R2(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(I2(Tn,3,2))

))
are contained in

⋃n
i=0 Fi(R2(Tn,3,2)). For the second class this is clear. For the

first class this can be checked using the list in the appendix. Each representation
is mapped to exactly three different representations by the functors Fi for i =
0, . . . , n. Calculating all images of objects in P2 under Fi yields that there are
exactly fourteen isomorphism classes in(

R2(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(P2(Tn,3,2))

))
.

They have dimension vectors:(
21110...0

211
1

)
,

(
221110...0

210
1

)
,

(
21...10

210
1

)
,

(
21...1

210
1

)
,

(
110...0

221
1

)
,

(
2110...0

211
1

)
,

(
22110...0

210
1

)
,(

210...0
221
1

)
,

(
2210...0

211
1

)
,

(
22210...0

210
1

)
,(

111110...0
211
1

)
,

(
2111110...0

210
1

)
,

(
211110...0

211
1

)
,

(
2211110...0

210
1

)
.

All of these fourteen isomorphism classes are also in the class
⋃n
i=0 Fi(R2(Tn,3,2)),

because for T7,3,2 there are regular objects with dimension vectors:(
211000

211
1

)
,

(
221100

210
1

)
,

(
211111

210
1

)
,
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(
211111

210
1

)
,

(
110000

221
1

)
,

(
211000

211
1

)
,

(
221100

210
1

)
,

(
210000

221
1

)
,

(
221000

211
1

)
,

(
222100

210
1

)
,

(
111110

211
1

)
,

(
211111

210
1

)
,

(
211110

211
1

)
,

(
221111

210
1

)
.

To see that these are regular, it suffices to check that the function mapping
each representation to the dimension at the unique sink is neither increasing nor
decreasing along the τ -orbits of these representations. Hence, the first class is
contained in

⋃n
i=0 Fi(R2(Tn,3,2)). Using the g-dual we get the same result for the

preinjectives, so the second assertion of the lemma is proven.
For n > 7 the dimension vectors of representations in P3 can be found in the

appendix. They are always proper successors of objects in P2, because the func-
tion mapping a representation to the dimension of the vector space at the unique
sink is increasing in the direction of τ− by proposition 3.11. In the appendix one
sees that there are exactly n+ 5 different dimension vectors of representations of
P3. By Kac’s Theorem (theorem in §1.10 of [Kac83]) there are precisely n + 5
isomorphism classes in P3. Using the g-dual we get that there are precisely n+ 5
isomorphism classes in I3

Analogously to the first case, it suffices to show that(
R3(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(P3(Tn,3,2))

))
,

(
R3(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(R3(Tn,3,2))

))
and (

R3(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(I3(Tn,3,2))

))
are contained in

⋃n
i=0 Fi(R3(Tn,3,2)). For the second class this is clear. For the

first class this can be checked using the list in the appendix. Each representation
is mapped to exactly four different representations by the functors Fi for i =
0, . . . , n. Calculating all images of objects in P2 under Fi yields that there are
exactly 2n+ 5 isomorphism classes in(

R3(Tn+1,3,2) ∩

(
n⋃
i=0

Fi(P3(Tn,3,2))

))
.
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They have dimension vectors:(
2110...0

321
2

)
,

(
32110...0

321
1

)
,

(
222110...0

321
1

)
,

(
22111110...0

321
1

)
,

(
2221110...0

321
1

)
,

(
22111110...0

211
1

)
, . . . ,

(
221...10

321
1

)
,

(
221...1

321
1

)
,(

2210...0
321
2

)
,

(
32210...0

321
1

)
,

(
222210...0

321
1

)
,

(
22211110...0

321
1

)
,(

322110...0
321
1

)
,

(
3221110...0

321
1

)
,(

321110...0
321
1

)
, . . . ,

(
321...100

321
1

)
,

(
321...10

321
1

)
,(

321...1
321
1

)
,

(
3210...0

321
2

)
,

(
33210...0

321
1

)
,

(
322210...0

321
1

)
,

(
32211110...0

321
1

)
.

All of these 2n+ 5 isomorphism classes are also in the class
⋃n
i=0 Fi(R3(Tn,3,2)),

because for T8,3,2 there are regular objects with dimension vectors:(
2110000

321
2

)
,

(
3211000

321
1

)
,

(
2221100

321
1

)
,

(
2211111

321
1

)
,

(
2221110

321
1

)
,

(
2211111

211
1

)
,(

2210000
321
2

)
,

(
3221000

321
1

)
,

(
2222100

321
1

)
,

(
2221111

321
1

)
,(

3221100
321
1

)
,

(
3221110

321
1

)
,(

3211100
321
1

)
,

(
3211111

321
1

)
,(

3211111
321
1

)
,

(
3210000

321
2

)
,

(
3321000

321
1

)
,

(
3221000

321
1

)
,

(
3221111

321
1

)
.

To see that these are regular, it suffices to check that the function mapping
each representation to the dimension at the unique sink is neither increasing nor
decreasing along the τ -orbits of these representations. Hence, the first class is
contained in

⋃n
i=0 Fi(R3(Tn,3,2)). Using the g-dual we get the same result for the

preinjectives, so the third assertion of the lemma is proven.
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With the lemma we can find new examples of pseudo-tubes, because if we have
found a pseudo-tube in repk Tn,3,2 for n > 5 their images under any of the Fi are
again pseudo-tubes and for the tame category repk T6,3,2 we know all standard
stable pseudo-tubes by using the classification of lemma XII.2.22 of [SS07] and
proposition 2.16.

The bounds in the lemma cannot be improved. This is clear for the first
assertion, because for n = 5 the left hand side of the equality is empty, whereas
the right hand side is not.

To see that the second assertion does not hold for n = 6 observe that there is
an indecomposable regular representation M of T7,3,2 with dimension vector:(

221100
210
1

)

and there are indecomposable preprojective representations M1, M2 and M3 of
T6,3,2 with:

dimM1 =

(
21100

210
1

)

dimM2 =

(
22100

210
1

)

dimM3 =

(
22110

210
1

)
.

Obviously, we have that

F0(M3) = F1(M3) = F3(M2) = F5(M1) = F6(M1) = M

and M does not have any other preimages in repk T6,3,2 under the functors Fi.
To see that the third assertion does not hold for n = 7 observe that there is

an indecomposable regular representation M of T8,3,2 with dimension vector:(
3211000

321
1

)

and there are indecomposable preprojective representations M1, M2 and M3 of
T7,3,2 with:

dimM1 =

(
321100

321
1

)

dimM2 =

(
321000

321
1

)
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dimM3 =

(
211000

321
1

)
.

Obviously, we have that

F0(M1) = F1(M1) = F2(M1) = F4(M2) = F7(M3) = M

and M does not have any other preimages in repk T6,3,2 under the functors Fi.
The fact that for n = 6 the second assertion does not hold is of interest,

because in the category repk T7,3,2 there is a standard stable pseudo-tube which
helps us to answer two questions posed by Kerner in [Ker92] on exceptional
components. For this we first will repeat some definitions from [Ker92].

Let A be a finite-dimensional wild hereditary algebra. Let C be a regular
component of the Auslander-Reiten quiver Γ of C containing a brick without
self-extensions. According to lemma 2.17 there is a quasi-simple module X in C
which is a brick without self-extensions.

Definition 3.14. Let l > 1 be the smallest number such that Ext1(X(l), X(l)) 6=
0. The component C is called exceptional if there is a number m > l such that
Hom(X, τmX) = 0. In this case define

s := min{m ≥ l|Hom(X, τmX) 6= 0,Hom(X, τm+1X) = 0}.

Kerner asks whether s = l always holds. This is not the case as we will see
now.

Lemma 3.15. The Auslander-Reiten quiver of the path algebra of T7,3,2 has an
exceptional component with s = 7 and l = 4.

Proof. Let X be the indecomposable representation of T7,3,2 with dimension vec-
tor

dimX =

(
221000

321
2

)
.

This exists and is uniquely determined by Kac’s Theorem (see [Kac83]). Then X
lies on a τ -orbit with representations with dimension vectors:

dim τX =

(
321111

321
1

)
, dim τ 2X =

(
211110

321
2

)
,

dim τ 3X =

(
222211

321
1

)
, dim τ 4X =

(
222110

210
1

)
,

dim τ 5X =

(
221100

211
1

)
, dim τ 6X =

(
211000

221
1

)
,
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dim τ 7X =

(
221111

321
2

)
.

Since the function mapping a representation to the dimension of the vector space
at the unique sink is neither increasing nor decreasing along this τ -orbit these
modules have to be regular by proposition 3.11 and its dual. They are even quasi-
simple, because it is impossible to write τ 6X as middle term of an Auslander-
Reiten sequence. This can be checked by proving that its dimension vector is
not the sum of two dimension vectors where one is the Coxeter transform of the
other.

Now we will show that this component is exceptional. The component con-
taining X contains the wing W ([4]τ 3X):

211000
221
1

221100
211
1

222110
210
1

222211
321
1

432100
432
2

443210
421
2

444321
531
2

654210
642
3

665421
742
3

876421
963
4

??���� ��???? ??���� ��???? ??���� ��????

??���� ��???? ??���� ��????

??���� ��????

oo_ _ _ _ _ _oo_ _ _ _ _ _oo_ _ _ _ _ _

oo_ _ _ _ _ _oo_ _ _ _ _ _

oo_ _ _ _ _ _

Direct calculation shows:

q(dim[3]τ 4X) = q

(
654210

642
3

)
= 1.

Hence [3]τ 4X is uniquely determined by its dimension vector by Kac’s Theorem.
There is an indecomposable representation M of T5,3,2 with dimension vector

dimM =

(
5421

642
3

)

which is a brick without self-extensions, because T5,3,2 is representation finite.
Thus [3]τ 4X = F0(F5(M)) is a brick without self-extensions, too. Then by lemma
2.17 the above wing is standard and [4]τ 3X is a brick. Hence by lemma 2.2 in
[Rin76] we have:

0 = q(dim[4]τ 3X) = dim Hom([4]τ 3X, [4]τ 3X)− dim Ext1([4]τ 3X, [4]τ 3X)
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= 1− dim Ext1([4]τ 3X, [4]τ 3X).

Thus [4]τ 3X admits self-extensions and the invariant l = 4 for the component.
To check that the component is exceptional and to calculate s we need to

calculate Hom(X, τ iX) for i = 1, . . . , 8. By lemma 2.17 we have that

Hom(X, τ iX) = 0

for i = 1, . . . , 3. To see that Hom(X, τ iX) 6= 0 for i = 4, . . . , 7 we can use the fact
that the support of X is contained in T5,3,2 which is representation finite. For
i = 4, . . . , 7 we have a nonzero morphism from the representation X restricted
to T5,3,2 to the representation τ iX restricted to T5,3,2. This morphism induces a
nonzero morphism in repk T7,3,2. Now we are left to show that Hom(X, τ 8X) = 0
which provides that the component is exceptional and s = 7. We use a similar
trick as in the four cases before, but apply it to τ−X instead ofX. We use that the
support of τ−X is T5,3,2 to calculate Hom(τ−X, τ 7X) = 0. Then Hom(X, τ 8X) =
0 follows from corollary IV.2.15 in [ASS06]. This finishes the proof.

To pose and answer the second question in [Ker92] we need to adjust the
example in the proof to fit with Kerner’s notation for the following reason: With
the notation of the proof Kerner proves that there is an exact sequence

0 −→ X −→ τ sX −→ I −→ 0

with I indecomposable injective. This I corresponds to a vertex which is 3 in
our case. Kerner assumes that this vertex is a source. To do this he applies
Bernstein-Gelfand-Ponomarev reflections. In the case of the component in our
proof this changes the quiver to:

7

6 5 4 3 2 1

2′ 1′

1′′

////oooooo

oo��������

oo__?????

The representation X does not change and its support is T4,3,2. This quiver is
representation finite. Kerner asks on page 201 in [Ker92], whether this is possible.
With the example above we now have shown:

Lemma 3.16. The Auslander-Reiten quiver of the path algebra of T7,3,2 has an
exceptional component which contains a quasi-simple module whose support is
representation finite.
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4 Appendix
The preprojective component of the Auslander-Reiten quiver of T5,2,5:

0000
10
0000

1000
10
0000

1100
10
0000

1110
10
0000

1111
10
0000

0000
11
0000

0000
10
1000

0000
10
1100

0000
10
1110

0000
10
1111

1000
21
1000

1100
21
1000

1110
21
1000

1111
21
1000

0000
11
1000

1000
10
1000

1000
21
1100

1000
21
1110

1000
21
1111

1000
11
0000

2100
31
2100

2110
31
2100

2111
31
2100

1000
21
2100

1100
21
1100

2100
31
2110

2100
31
2111

2100
21
1000

3210
52
3210

3211
52
3210

2110
31
2110

3210
52
3211

. . .

. . .

??���

??���

??���

??���

��???

��???

��???

��???

//

��???

��???

��???

��???

??���

??���

??���

//

??���

??���

??���

??���

??���

��???

��???

��???

��???

//

��???

��???

��???

��???

??���

??���

??���

//

??���

??���

??���

??���

��???

��???

��???

//

��???

//

??���

??���

//

��???

��???

??���
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The preinjective component of the Auslander-Reiten quiver of T5,2,5:

. . .

. . .

1111
21
2221

0000
11
1111

2221
21
1111

1111
11
0000

3221
32
3321

2111
21
2221

1000
11
1111

1000
00
0000

2211
21
2211

3321
32
3221

2221
21
2111

1111
11
1000

0000
00
1000

3321
32
3321

2211
21
2221

1100
11
1111

1100
00
0000

0100
00
0000

1110
11
1110

2221
21
2211

1111
11
1100

0000
00
1100

0000
00
0100

2221
21
2221

1110
11
1111

1110
00
0000

0110
00
0000

0010
00
0000

1111
10
1111

1111
11
1110

0000
00
1110

0000
00
0110

0000
00
0010

1111
11
1111

1111
00
0000

0111
00
0000

0011
00
0000

0001
00
0000

0000
01
0000

0000
00
1111

0000
00
0111

0000
00
0011

0000
00
0001

??���

��???

��???

??���

��???

??���

??���

??���

??���

��???

��???

��???

��???

��???

��???

��???

??���

??���

??���

//

??���

??���

??���

??���

??���

��???

��???

��???

��???

//

��???

��???

��???

��???

??���

??���

??���

//

??���

??���

??���

??���

??���

��???

��???

��???

��???

//

��???

��???

��???

��???

??���

??���

??���

//

??���

??���

??���

??���

??���

��???

��???

��???

��???

//

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

?
?

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�
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The preprojective τ -orbits of T6,3,2 start with the following dimension vectors:

•

(
00000

100
0

) (
10000

210
1

) (
21000

321
1

) (
32100

421
2

)
. . .

•

(
00000

100
1

) (
10000

110
0

) (
11000

211
1

) (
21100

210
1

) (
22110

321
1

) (
32211

421
2

)
. . .

•

(
00000

110
0

) (
10000

211
1

) (
21000

210
1

) (
22100

321
1

) (
32210

421
2

)
. . .

•

(
00000

111
0

) (
10000

100
1

) (
11000

110
0

) (
11100

211
1

) (
21110

210
1

) (
22111

321
1

)
(

21100
321
2

) (
32110

321
1

) (
33211

421
2

)
. . .

•

(
10000

100
0

) (
11000

210
1

) (
21100

321
1

) (
32110

421
2

)
. . .

•

(
11000

100
0

) (
11100

210
1

) (
21110

321
1

) (
32111

421
2

)
. . .

•

(
11100

100
0

) (
11110

210
1

) (
21111

321
1

) (
21000

321
2

) (
32100

321
1

) (
33210

421
2

)
. . .

•

(
11110

100
0

) (
11111

210
1

) (
10000

221
1

) (
21000

211
1

) (
22100

210
1

) (
22210

321
1

)
(

32221
421
2

)
. . .

•

(
11111

100
0

) (
00000

110
1

) (
10000

111
0

) (
11000

100
1

) (
11100

110
0

) (
11110

211
1

)
(

21111
210
1

) (
11000

221
1

) (
21100

211
1

) (
22110

210
1

) (
22211

321
1

) (
21110

321
2

)
(

32111
321
1

) (
22100

321
2

) (
32210

321
1

) (
33221

421
2

)
. . .
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The preprojective τ -orbits of T7,3,2 start with:

•

(
000000

100
0

) (
100000

210
1

) (
210000

321
1

) (
321000

421
2

)
. . .

•

(
000000

100
1

) (
100000

110
0

) (
110000

211
1

) (
211000

210
1

) (
221100

321
1

) (
322110

421
2

)
. . .

•

(
000000

110
0

) (
100000

211
1

) (
210000

210
1

) (
221000

321
1

) (
322100

421
2

)
. . .

•

(
000000

111
0

) (
100000

100
1

) (
110000

110
0

) (
111000

211
1

) (
211100

210
1

) (
221110

321
1

)
(

322111
421
2

)
. . .

•

(
100000

100
0

) (
110000

210
1

) (
211000

321
1

) (
321100

421
2

)
. . .

•

(
110000

100
0

) (
111000

210
1

) (
211100

321
1

) (
321110

421
2

)
. . .

•

(
111000

100
0

) (
111100

210
1

) (
211110

321
1

) (
321111

421
2

)
. . .

•

(
111100

100
0

) (
111110

210
1

) (
211111

321
1

) (
210000

321
2

) (
321000

321
1

) (
332100

421
2

)
. . .

•

(
111110

100
0

) (
111111

210
1

) (
100000

221
1

) (
210000

211
1

) (
221000

210
1

) (
222100

321
1

)
(

322210
421
2

)
. . .

•

(
111111

100
0

) (
000000

110
1

) (
100000

111
0

) (
110000

100
1

) (
111000

110
0

) (
111100

211
1

)
(

211110
210
1

) (
221111

321
1

) (
211000

321
2

) (
321100

321
1

) (
332110

421
2

)
. . .



Appendix 59

The preprojective τ -orbits of Tn,3,2 for n > 7 start with:

•

(
0...0

100
0

) (
10...0

210
1

) (
210...0

321
1

) (
3210...0

421
2

)
. . .

•

(
0...0

100
1

) (
10...0

110
0

) (
110...0

211
1

) (
2110...0

210
1

) (
22110...0

321
1

) (
322110...0

421
2

)
. . .

•

(
0...0

110
0

) (
10...0

211
1

) (
210...0

210
1

) (
2210...0

321
1

) (
32210...0

421
2

)
. . .

•

(
0...0

111
0

) (
10...0

100
1

) (
110...0

110
0

) (
1110...0

211
1

) (
21110...0

210
1

) (
221110...0

321
1

)
(

3221110...0
421
2

)
. . .

•

(
10...0

100
0

) (
110...0

210
1

) (
2110...0

321
1

) (
32110...0

421
2

)
. . .

...

•

(
1...1000

100
0

) (
1...100

210
1

) (
21...10

321
1

) (
321...1

421
2

)
. . .

•

(
1...100

100
0

) (
1...10

210
1

) (
21...1

321
1

) (
210...0

321
2

) (
3210...0

321
1

) (
33210...0

421
2

)
. . .

•

(
1...10

100
0

) (
1...1

210
1

) (
10...0

221
1

) (
210...0

211
1

) (
2210...0

210
1

) (
22210...0

321
1

)
(

322210...0
421
2

)
. . .

•

(
111111

100
0

) (
0...0

110
1

) (
10...0

111
0

) (
110...0

100
1

) (
1110...0

110
0

) (
11110...0

211
1

)
(

211110...0
210
1

) (
2211110...0

321
1

) (
32211110...0

421
2

)
. . .


