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Preface

In this thesis we mainly study Harnack inequalities (in the sense of Wang [Wan97])
and their applications to transition semigroups associated with stochastic equa-
tions.

Among the stochastic equations we aim at, are finite dimensional stochastic
ordinary differential equations with irregular drifts (Chapter 4), infinite dimen-
sional (semi-) linear stochastic partial differential equations with Gaussian or
Lévy noise (Chapters 5, 6 and 7); multivalued stochastic differential equations in
finite dimension and multivalued stochastic evolution equations in Banach spaces
(Chapter 8). The applications of Harnack inequalities include the study of the
regularizing property (for instance, the strong Feller property), heat kernel esti-
mates, hyperboundedness etc. of the transition semigroups associated with the

stochastic equations.

The main method we used to establish Harnack inequalities is applying Holder’s
inequality after a measure transformation. There are two aspects: transforma-
tion of measures on state spaces and measures on sample probability spaces of
the processes. The method of measure transformation on the probability spaces
is due to Arnaudon, Thalmaier and Wang[ATWO06] in which they used a coupling
argument and a Girsanov transformation to study Harnack inequalities.

Two crucial ingredients of the method of Arnaudon et al. are the absolute
continuity and successful coupling of processes. To apply their method to es-
tablish Harnack inequalities for Ornstein-Uhlenbeck processes with Lévy noise,
we investigate the absolute continuity of Lévy processes in infinite dimension in
Chapter 2; to establish Harnack inequalities for stochastic differential equations
with general drift, we study the gluing of martingale solutions and its applications

to the coupling of stochastic differential equations in Chapter 3.

As a complement to Harnack inequalities, we study entropy cost and HWT in-
equalities for Ornstein-Uhlenbeck processes driven by Wiener processes in Chap-
ter 9.
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Chapter 0

Introduction

In this thesis, we mainly devote our study to the dimension free Harnack inequal-
ities (in the sense of Wang [Wan97]) for the transition semigroups of solution
processes to some stochastic equations. For various other Harnack inequalities
we refer to [LY86, CZ97, BL02, BK05, BBK06, SV07, Kas07, CK09] etc. and

references therein.

Wang’s Harnack inequality has been extensively studied, see [Wan04b, Wan06]

etc.. Here we first shortly review the related literatures.

Wang [Wan97] used a semigroup calculus to establish Harnack inequalities for
diffusion processes on Riemannian manifolds with curvature bounded below by a
constant. Aida and Kawabi [AKO01, Kaw04, Kaw05] obtained Harnack inequalities
for some infinite dimensional diffusion processes by adding an ingredient called
martingale expansion. Réckner and Wang [RW03a] used the semigroup calculus
and also used the relative densities of shifted infinite divisible measures to set up
Harnack inequalities for generalized Mehler semigroup.

Recently, Arnaudon, Thalmaier and Wang [ATWO06] introduced a new method
to establish Harnack inequalities. This method is a combination of a coupling
argument and the Girsanov transformation. It has been applied to establish
the Harnack inequalities for diffusion processes on Riemannian manifolds with
curvature unbounded below in [ATWO06] and stochastic porous media equations
in infinite dimensional spaces in [Wan07] and singular stochastic equations on
Hilbert spaces in Da Prato et al. [DPRW09].

The main technique we will use to establish Harnack inequalities for the tran-
sition semigroups is applying Holder’s inequality after a measure transformation.

There are two levels for the measure transformation: the measure transformation
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on the state spaces (image measure transformation) and the measure transforma-

tion on the sample spaces.

To explain the idea of measure transformation, let (£, &) be a Polish space
and consider a stochastic process X, starting from x € F on a probability space
(Q,.7,P) and taking values in E. Denote by p, the distribution of X; on E. We

have two representations for the transition semigroup of X;:

Pf(x) = /Q F(X,) dP = /E £(v) e

We can make a measure transformation for IP on the probability space (€,.%, P)
or take the image measure transformation for u; on the state space (F,&’). The

details will become clear later.

We mention that the idea of the image measure transformation already ap-
peared in [RW03a], but the authors of [RWO03a] didn’t apply the idea to simple
cases to obtain better results than what they proved in [RWO03a]. The use of the
coupling technique and Girsanov transformation in [ATWO06] realized the idea of
the measure transformation on probability spaces.

We use the image measure transformation to establish Harnack inequalities
for Gaussian Ornstein-Uhlenbeck semigroups: transition semigroups of Ornstein-
Uhlenbeck processes driven by Wiener processes in Chapter 5; fractional Ornstein-
Uhlenbeck semigroups and Ornstein-Uhlenbeck semigroups on Gaussian proba-

bility spaces in Chapter 6.

We also use the image measure transformation to consider Harnack inequali-
ties for the transition semigroups of Ornstein-Uhlenbeck processes driven by Lévy
processes in Chapter 7. But the idea can only be applied well to some special
cases (e.g. a-stable Ornstein-Uhlenbeck semigroups) when some estimates of the
relative densities are available. However, by considering measure transformations
on the (sample) probability spaces (via coupling method and Girsanov’s transfor-
mation), we obtain Harnack inequalities for Lévy Ornstein-Uhlenbeck semigroups
which are the same with results for the Gaussian case.

We apply the method of measure transformation on probability spaces to
study Harnack inequalities for finite dimensional stochastic differential equations
with general drift in Chpater 4; for multivalued stochastic ordinary differential
equations and multivalued stochastic evolution equations in Chapter 8.

To deal with the coupling problems for stochastic differential equations with
general drifts, we proved a gluing lemma in Chapter 3. We construct a martingale
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solution for the sum of two second order differential operators separated by a
stopping time. This makes it possible for us to study Harnack inequalities for
stochastic differential equations without the assumptions of strong solutions which

are usually supposed to exist by the other authors.

To apply measure transformation on probability spaces for the study of Har-
nack inequalities for Lévy Ornstein-Uhlenbeck semigroups, we prove a Girsanov
theorem for Lévy processes in infinite dimensional spaces in Chapter 2. But we
go further to study the general problem of absolute continuity for Lévy processes
in Chapter 2 which is an infinite dimensional version of the lectures notes by Sato
[Sat00]. The results may be known to some experts.

The applications of Harnack inequalities are standard now. See [RWO03a,
RWO03b, Wan99, Wan01] for contractivity properties and functional inequalities;
[AKO1, AZ02, Kaw05] for short time heat kernel estimates of infinite dimensional
diffusions; [DPRW09] for regularizing properties; [BGLO01] for the transportation-
cost inequality; [BLQ97, GWO01] for heat kernel estimates etc..

In this thesis, by applying the Harnack inequalities we proved, we correspond-
ingly obtain heat kernel estimates, regularizing properties and contractivity prop-
erties of the transition semigroups.

In the last Chapter (Chapter 9), as a complement to Harnack inequalities, we
study entropy cost and HWI inequalities for Ornstein-Uhlenbeck processes driven
by Wiener processes. We do not claim that the contents of this chapter is really
new. But it is interesting to regard this chapter as a first step to consider the

corresponding functional inequalities for Lévy case.

In the following, we explain the main contents and main results of this thesis
in more detail. For a simple introduction to Harnack inequalities we refer to
Section 4.1, where we especially calculate a Harnack inequality for the classical
Ornstein-Uhlenbeck processes on Euclidean space.

I Harnack Inequalities for Ornstein-Uhlenbeck Processes Driven
by Wiener Processes: Measure Transformation on the State Spaces

For simplicity, we first introduce Harnack inequalities for Ornstein-Uhlenbeck

processes driven by Wiener processes. This is the topic of Chapter 5.

Let H be a real separable Hilbert space with inner product (-, -) and norm |-|.

Consider the following linear stochastic partial differential equation

dXt = AXt + Bth, XO = c ]H, (1)
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where A is the generator of some strongly continuous contraction semigroup
(St)t>0 on H, B is a bounded linear operator on H, and (W;);>o is a cylindri-
cal Wiener process on H.

Set R = BB* and

t
Q= / SuRS; du, 0<t<o0. (2)
0

Fix T > 0. Assume that Q)7 is of trace class. Then the solution of Equation
(1) exists on [0,7]. Denote the transition semigroup of X; by P,. For every
bounded measurable function f on H, we have

Pof(x) = /H F(Su + 2) pa(d2), 3)

where z € H, ¢t € [0,T], and p; = N(0, Q).

For each y € H, by a change of variables we have

[ 58524 2 ur(a) = [ f(5ey+ 9 R IE ) ra),
where we suppose that
Sr(H) C Q7 (H). (4)

Define
FT - ;1/2 ST .

Then I'r is bounded. By applying the Cameron-Martin formula for Gaussian
measures on H and Holder’s inequality, we can prove the following Harnack in-
equality

(Prpy) < exp (GITete = )R ) Prso) )
where z,y € H, a, f > 1 satisfying 1/a+1/8 = 1.

The constant exp (§|FT(;1: — y)|?) in the Harnack inequality (5) is optimal and

new.

Let us look at a diagonal Ornstein-Uhlenbeck process.

Let {e,}n>1 be a complete orthonormal basis of the real separable Hilbert
space H. Assume that A and R commute. Then there exist two sequences of
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positive numbers d,,, v, for n > 1 such that
Aen = _6716717 Ren = Tn€n,

where 6, T oo as n T oo. Under some conditions on 4, and =, (see Subsection
5.4.2 for details), from the inequality (5) we obtain

(P.f)*(z) < exp (Z i ezw,;y’_e“ ) Pfo(y).

This inequality is stronger than the result in [RWO03a] which states (suppose
that v, = 1)

oyl
(PLf)*(x) < exp <%) P f*(y).

For more examples, we refer the reader to Section 5.4.

Now we explain how to estimate the quantity |I'r(x — y)| in (5).

Consider the following deterministic linear control system on H for ¢ € [0, 7],

with initial data xg = y — x, where u is an H-valued square integrable function
on [0, 7.

By Theorem A.0.2 in Appendix A, under Assumption (4), there exists a con-
trol u; for the system (6) such that z7 = 0. Moreover, we know |I'z(z — y)|? is
the minimal energy for driving the initial state o = y — x to 0 in time T (see

(A.4)):
ITr(x — 5)|? = inf {/0 lug|*: w € L*([0,T),H), 00 =y — x, 07 = 0} . (7)

Hence by choosing any concrete control function w such that xy = 0, we
can obtain an upper estimate of the constant in the Harnack inequality. See
Subsection 5.2.2 for details. Especially, we can obtain the following inequality (8)
proved by Rockner and Wang [RW03a].

Let (-,-)o, |- |o be the natural inner product and norm on R/?(H) respectively
defined through |z|o = |R~/2x| for every x € H. We further assume that

|Stx|0 < \% g(t)_l ‘l’|0, LS ]H, te [07T]



6 Chapter 0. Introduction

for some function &; satisfying a certain integrable condition. Then we have

o 6|l’ B y|(2] o
(Prf)*(z) < exp (—2 0 dt) Prf*(y). (8)

We can apply these Harnack inequalities to study regularizing properties (such
as the strong Feller property), heat kernel bound and hyperboundedness etc. of
the Ornstein-Uhlenbeck semigroups. See Section 5.3 for details. Especially, we
can prove that the Harnack inequality (5) holds if and only if the semigroup is
strongly Feller.

In Chapter 5 (see Section 5.5), we also consider Harnack inequalities for the
perturbed Ornstein-Uhlenbeck processes driven by Wiener processes. There we
first consider Lipschitz perturbations, then perturbations by gradient of convex

potentials using the Moreau-Yosida approximation.

For simplicity we just introduce Lipschitz perturbations. Consider the follow-
ing semi-linear stochastic partial differential equation

dXt — AXtdt + F(Xt)dt + th, X() =T G ]I—L (9)

where A: D(A) C H — H is self-adjoint such that A~ is of trace class and there
exists w > 0 such that

(Az,z) < —wleP’, @ € D(A);
I is Lipschitz continuous and dissipative

(F(r) = F(y),r—y) <0, =z,yel

Then for every «, 8 > 1 satisfying 1/a+ 1/ = 1, and for any x,y € H,
[ € &, (H), we have the following Harnack inequality for the transition semigroup

P, associated with the solution process X; of the equation (9):

«a CUB r—Y 2 «a
(Prf)*(z) < exp (%) P f*(y)- (10)

This result can be proved by approximation using the Harnack inequality (16)
for the finite dimensional stochastic differential equations. We refer to the work
by Da Prato et al. [DPRWO09] for details of the approximation procedure. In
this thesis, aiming to show another strategy as a methodological complement, we
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provide a semigroup calculus to “prove” (10) which is not strictly justified.

I The Method of Measure Transformation on State Spaces for
Other Cases

Similarly, in Chapter 6, by using measure transformation on the state space
(image measure transformation), we establish Harnack inequalities for fractional
Ornstein-Uhlenbeck processes (see Section 6.1) and Ornstein-Uhlenbeck semi-
groups on Gaussian probability spaces (see Section 6.2).

We also use the image measure transformation to study Harnack inequalities
for Lévy driven Ornstein-Uhlenbeck processes (see Section 7.3), especially for a-
stable Ornstein-Uhlenbeck processes (see Subsection 7.3.2). By this method, we
also show an (implicit) Harnack inequalities hold for irreducible Markov Chains
(see Subsection 7.3.3).

The key point of the image measure transformation method for Harnack in-
equalities is the Radon-Nikodym derivative of a shift of the measure p with respect
to the measure p. For Gaussian Ornstein-Uhlenbeck semigroups, the measure p is
Gaussian and we can apply the Cameron-Martin formula. For some other cases,
the Randon-Nikodym derivatives are not known. For instance, for Lévy Ornstein-
Uhlenbeck semigroups, the measure i we need to deal with is an infinite divisible
measure. In this case, nothing is known about the Radon-Nikodym derivative of
i with respect to its shift except some estimates for certain special cases. See

Section 7.3 for a more detailed discussion.

IIT Measure Transformations on Probability Spaces

As mentioned at the begging of Part I of this introduction, we can consider
measure transformations on the underlying probability spaces. We first introduce
the general idea shortly.

Let E be a polish space and z,y € E. Fix T' > 0. Consider two F-valued
stochastic processes X# and XY on a filtered probability space (€, Zr, (Z)o<i<r)
starting from z,y respectively. Let P and Q be two probability measures on
(€, Fr, (Fe)o<e<r)-

We suppose that

(1) The transition law of X7 under P is the same as the transition law of X
under Q. That is, they have the same transition semigroup F;:

Pif(y) =Epf(X}) and Pf(z) = Eqf(X})

for every bounded continuous function f on F.
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(2) Q is absolutely continuous with respect to P:

QKPP

(3) The processes X? and XY meet each other at the fixed time 7' > 0:

X7 =X} Q-as.

With the assumptions above, for every f € €, (H) and a, 3 > 1 satisfying
1/a+1/8 =1, by applying Hélder’s inequality, we have

Prf(z) = Eqf(X5) = Eqf(X4) = Ep S (X2)

dPp
r 31 1/8
< [Ee () | MEercxmre

B 3 1/8
e (5) | terien.

Hence we obtain the following Harnack inequality
d B

e ()
dp

In applications, we can take )Z'f as a drift transformation of X/ and choose

a/p

(Prf)*(z) < Prf*(y).

the drift properly to force the two processes )N(f and X/ to meet at time 7. Under
some conditions, we can construct the measure  from IP by using the Girsanov
theorem and keep the transition law of the processes. This is the idea of the
method of the coupling and Girsanov’s transformation introduced by Arnaudon
et al. [ATWO06] for Harnack inequalities. Hence, for preparation (and indepen-
dent interest), we investigate the absolute continuity of Lévy processes and the

existence of coupling in Chapter 2 and Chapter 3 respectively.

IV~ Absolute Continuity of Lévy Processes

In Chapter 2, we study the absolute continuity of Lévy processes in infinite
dimensional spaces.

Denote by D the Skorokhod space over the Hilbert space H. Let X; be the
canonical process on D and %, (%#;)o<t< be the canonical filtrations on D.

Consider two probability measures P; and Py on (D, .7, (%)o<i<oo). We
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assume that X, is a Lévy process with characteristic triplet (b;, R;, ;) under P;
for j =1,2.

Fix any ¢ > 0. We denote the restriction of P; to .%; by IP;. We are interested
in the absolute continuity of P4 with respect to P{ and in the Radon-Nikodym

derivative etc..

Sato [Sat99, Sat00] studied such questions extensively for the case H = R¢.
We aim to write down an infinite dimensional version of the main results in
[Sat00]. Ome of the main results for the infinite dimensional case is presented

below.

Suppose that for some 0 < r < 1 we have
kr(Vla 1/2) < 00, R =R, = RQ, by € Hy := Rl/Q(]H),

where k, (v, 12) is the Hellinger-Kakutani distance between 14 and vy, and
bQIIbQ—bl—/ .xd(Vg—Vl).
{lz|<1}

Then we prove that P% is absolutely continuous with respect to P?%.

We also study the Radon-Nikodym derivative of P4 with respect to P! (see
Section 2.7 for details). A special case is the following Girsanov transformation
for Lévy process (see also [RR0O7]). We will use this result to study Harnack

inequalities for Ornstein-Uhlenbeck processes driven by Lévy processes.

Fix T' > 0. Let (X (t))o<t<r be an H-valued Lévy process on a filtered prob-
ability space (2,.7,(%;)o<t<r, P) with characteristic triplet (b, R,v). Denote
by X'(t) the Gaussian part of X (¢). Then X'(¢) is an R-Wiener process. Let
(¥(t))o<i<r be an Hp-valued .Z-predictable process, independent of the jump
part X — X', and such that E pX'(T) = 1 with

= e ([ wnaxon - [ w6k ).

Then

() = X(t) - /Otws) ds, 0<t<T

is also a Lévy process on (,.7, (%;)o<i<r) with the same characteristic triplet

(b, R,v) under the new probability measure P defined by

P = pX (T)P.
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This result is easy to show. We only need to use the Girsanov theorem for
Wiener processes and use the independence of the three parts in the Lévy-Ito
decomposition. In fact, we first motivate and prove this result in Chapter 2. The

idea of the proof for the general case is the same.

V  Gluing and Coupling

In Chapter 3 we prove a gluing lemma for martingales and studied its appli-

cations for couplings.

Set

L(a,b) := L(a(t,z),b(t, z)) = % > aij(t,x)%axj +) bi(t,x)a%, (11)

ij=1 i=1

where a(t,z) is a symmetric nonnegative definite real matrix and b(¢t,z) € R™
defined on [0, 00) x R™.

Let Ly and Ly be two second order differential operators of the form (11) on
R™. Let 7 be a stopping time on ).

Assume that

(1) There exists a solution P{ to the martingale problem for L; up to 7;

(2) For each w € (2, there exists a solution P;(w)’XT(“)(w) to the martingale
problem for L, starting from (7(w), X7y (w));

(3) and some other conditions (see Theorem 3.1.5).

Define
Qw = 5w ® ]P;(W)yxf(w)(w)]l{T<oo} + 50)1{7:00}

for every w € 2. Then Py ®, Q is a solution to the martingale problem for

L = LI1gery + Lolgsqry.

The proof is based on a result by Stroock and Varadhan [SV79, Theorem
6.1.2]. This gluing lemma generalizes a lemma by Chen and Li [CL89, Lemma
3.4]. Lemma 3.4 in [CL89] studies the gluing of martingale generators via the
diffusion coefficients. By the general gluing lemma we proved we can study the
gluing of martingale generators via the drifts.

We can use this result to study the existence of coupling and the weak existence
of solutions to coupled stochastic differential equations. For example, we have
the following result.
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Consider the following stochastic differential equations on R?¢:

{ dX, = o(t, X,)dW; + b(X,)dt, Xy =z e RY, 12

dY, = o(t,Y,)dW, + b(Yy)dt + £(t, X4, Vi) Ly dt, Yy =y € RY,

where W, is an R?valued Brownian motion. Suppose that there exists a weak

solution to (12) up to 7 and there is a weak solution of the following equation

dX, = o(t, X,)dW, + b(t, X,)dt, X, =2z R
dY, = o(t,Y;)dW, + b(t,Y})dt, Y,=yecR?

for every fixed (s, z,y) € [0,00) x R x R Then there exists a weak solution to
the equation (12) for all ¢ € [0, c0).

With the coupling results, we can study Harnack inequalities for stochastic

differential equations with unique weak solutions. This is natural but it is new.

V1 Harnack Inequalities for Ornstein-Uhlenbeck Processes Driven
by Lévy Processes

Now we turn to the introduction of Harnack inequalities for Lévy driven
Ornstein-Uhlenbeck processes studied in Chapter 7. We use the measure trans-
formation on probability space.

Let (Z;)o<t<r be an H-valued Lévy process with characteristic triplet (b, R, v)
on some filtered probability space (2, . #, (:%)o<i<T, P).

Consider the following generalized Langevin stochastic differential equation
dXt = AXt dt + dZt, XO = X. (13)

We denote the transition semigroup of X; by P;.
Fix T'> 0 and x,y € H. Assume (4) holds. Consider

dX, = AX,dt + dZ, — R"*u, dt, X, = x.
dY, = AY, dt + dZ,, Y, =y.

Here u € L*([0,T); H) is a control of the system (6) such that z7 = 0 and hence

it follows that X; = Y7. By results from control theory (see Appendix A), the
control function u exist.

By Girsanov’s theorem, we construct a new probability measure Q on the
space (2, Zr, (Fi)o<t<r) such that @ is absolute continuous with respect to P
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and Z = Z; — uy is also a Lévy process with characteristic triplet (b, R, v), the
same characteristic triplet as that of Z; under P.

Now by using the procedure introduced in (III), we obtain

ey e (5 [l de) o) (14

for every z,y € H, f € 6, (H) and «, 8 > 1 satisfying 1/a+ 1/3 = 1.

By optimization Inequality (14) over all possible null control function u of
the system (6), and by noting the representation (7), we obtain the Harnack
inequality (5) for the Lévy Ornstein-Uhlenbeck semigroup associated with the
solution process of the equation (13).

Similar to the Gaussian case, by choosing any control function u (or applying
(14)), we also obtain an upper estimate of the coefficient in the Harnack inequality.
Especially, we also have (8) which generalizes the Harnack inequalities in Réckner
and Wang [RW03a| for the Lévy Ornstein-Uhlenbeck semigroups from a = 2 to
general order av > 1.

We refer to Section 7.5 for the applications of Harnack inequalities for Lévy
Ornstein-Uhlenbeck semigroups.

VII Harnack Inequalities for Stochastic Differential Equations

In Chapter 4 we consider Harnack inequalities for the following distorted

Brownian motion on R%:
dXt - b(t, Xt) dt + th, (15)

where W; is a Wiener process on RY, b(t, r) is a measurable function from [0, co) x
R? to R

Let b be a continuous function satisfying the following linear growth condition
b(t,z)| <C(1+z]), z€RY, 0<t<T
for some constant C' > 0 and the following classical global monotonicity condition
(€ —y,b(t,x) = b(t,y)) < Klr —y[>, z,yeR, 0<t<T

for some K € R. then for the transition semigroup P, associated with X;, we
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have the following well known result

(Prpye) < exp (S ) Prreo) (16)

where z,y € R?, f € 6,7 (RY) and T > 0.

The inequality (16) is essentially from [Wan97]. We can reproduce it by

coupling and Girsanov’s transformation.

We aim to go further and prove Harnack inequalities for P, under general

conditions on b. Especially, we have the following result.

Assume that b(t, z) is of linear growth, the solution to equation (15) is weakly

unique and there exists a nonnegative increasing function g on [0, co) such that

S () b)) < glr)

Then

. L
(o) @) < e | 5 | [m—mw% &t | Pestw)

where & is any positive continuous function on [0, 7.

In Chapter 4 we also consider estimates of heat kernels of the transition semi-
group by applying Harnack inequalities.

VIII Harnack Inequalities for Multivalued Stochastic Equations
Now we introduce the contents of Chapter 8 which is devoted to the study the

Harnack inequalities for multivalued stochastic differential equations and multi-

valued stochastic evolution equations.

The motivation comes from the study of Harnack inequalities for perturba-
tions of Ornstein-Uhlenbeck processes driven by Wiener processes in Section 5.5.
If the perturbation is given by the sub-differential of some convex function, then
we come to the multivalued stochastic equations. Below we introduce Harnack
inequalities for general multivalued stochastic evolution equations and their ap-

plications.

Let V.C H = H* C V* be an evolution triplet, where V is a real separable
and reflexive Banach space which is continuously and densely embedded into a
separable Hilbert space H.
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Consider the following multivalued stochastic evolution equation

. (17)

X(] =x c (A),

where A is a multivalued maximal monotone operator* on H, B: V — V* is a
single valued operator from V to V*, o0: RT" x Q x H — H® H, and W, is a
cylindrical Wiener process on H with respect to a complete filtered probability
space (£, .Z, (Ft)i>0, P).

Assume (H1)—-(H5) stated in Theorem 8.3.2. We mention here that (H4) says
that there exists v > 0, w € R and ¢ > 1 such that for every z,y € V,

v{z —y, Bx — By)y- < —7y|z — yl + wlz — y[fi.

For simplicity, we assume in this introduction that ¢ is constant and q is strictly

greater than 2. We refer to Section 8.3 for details about these conditions.

With these conditions, Zhang [Zha07] proved that Equation (17) has a unique
solution X;. Define P,f(z) = Epf(X;) for every f € %,(D(A)). Then P, is a
Markov semigroup. Zhang [Zha07, Theorem 5.8] studied the existence, unique-
ness, and finiteness of the second moment of the the invariant measures p asso-
ciated with the semigroup P,. We can prove the following stronger concentration
property:

/ (ee‘xh% +|x|%,> p(dr) < oo (18)

D(A)
for some 6 > 0.

Assume in addition (i.e. Condition (8.33))
CHla 2 2|8 < x|, forallz €V, t>0

for some ( > 0 and r > ¢ — 4. Then

2(4+r—q)

(Prf*)(a) < exp (58ele — sl ) Prs )

for every T > 0, 2,y € D(A) and f € B, (D(A)), where O is some constant
only dependent on 7', §,v,w and ¢ (see (8.37)).

An immediate consequence of the Harnack inequality (with r > ¢ — 4) is that

*We used the same symbol A which has been used to represent the generator of S; and hope
that this will not cause any confusion.
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for every f in LP(D(A), p) with p > 1, P,f is continuous on D(A).
We also apply the Harnack inequalities to get the following results.

(1) w is fully supported by D(A).
(2) For every x € D(A), t > 0, the transition densities p;(z,-) of P; (with
respect to ) exist and for every a > 1

2(4+7—q)

a~ 2+4r
/ exp (—59t|$ —yYlg > ) p(dy)
D(A)

e (2, )| Loy < {

:| —(a—1)/a

3) Suppose K < 0. Then P, is ultrabounded. More precisely, we have
pp p Y.
1P [0 < exp(c(l+t772))

for some constant ¢ > 0. Hence, P; is compact for large ¢t > 0.

IX  Entropy Cost and HWI Inequalities for Ornstein-Uhlenbeck
Processes Driven by Wiener Processes

We are also interested in other functional inequalities for stochastic equations,
especially for stochastic equations with Lévy noise. But it seems that this is not
easy. As a first step, we write down entropy cost inequalities and HWTI inequalities
for Ornstein-Uhlenbeck processes driven by Wiener processes in Chapter 9. We
also write it as a complement to this thesis. The results maybe be well known
for experts.

We go back to consider Equation (1). We assume that A is a bounded self-
adjoint and nonnegative definite operator. Suppose that (), is of trace class and
SiR = RS, for all t > 0. Denote by P, the associated transition semigroup. Then
P, is symmetric. We also assume that there exist M, w > 0 such that for all t > 0,

S]] < Me .

Then we can prove the following entropy cost inequality

Mw

Ent, (P f) < mw2(fﬂ7 1)%,

and HWI inequality

Eaty() < MyTUWa(fis ) = 5 Wl fs )

for every t > 0 and nonnegative bounded measurable function f on H with



16 Chapter 0. Introduction

u(f) = 1. For the definition of the entropy (“H”) Ent,, Wasserstein distance
Ws(+,-), and Fisher information I(-), we refer to Section 9.1.



Chapter 1

Preliminaries

This chapter is devoted to some preliminary material which will be used in this
thesis. In Section 1.1, we introduce some basic notations. In Section 1.2 we recall
Gaussian measures and the Cameron-Martin formula. In Section 1.3 we intro-
duce shortly Wiener processes and stochastic integrals with respect to Wiener
processes. In Section 1.4 we introduce Lévy processes and infinite divisible dis-
tributions, the Lévy-1to decomposition, stochastic integral with respect to Lévy

processes and symmetric a-stable processes.

1.1 Some Basic Notations

Operators on Hilbert Spaces Let H be a real separable Hilbert space with
norm |- | and inner product (-,-). Let 7" be a bounded linear operator on H. We
denote by T* the adjoint operator of T'.

T is called symmetric if (T'z,y) = (x, Ty) for every z and y in H and positive
definite if (T'x,z) > 0 for every x € H.

Let {er}r>1 be a complete orthonormal basis of H. Let 7" be a bounded
symmetric and positive operator on H. We call T" a Hilbert-Schmaidt operator if

Z |Ter* < +oo.
k=1
We call T a trace class operator if

TrT = Z(Tek, er) < +oo.
k=1
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It is clear that every trace class operator is a Hilbert-Shimidt operator. We call
TrT the trace of T.

Spaces of functions We introduce some basic spaces of functions.

As usual, we denote by %' (H) the space of continuous functions on H, %,(H)
the space of bounded continuous on H, %" (H) the space of positive bounded con-
tinuous functions on H. Similarly, we denote by %(H), 4,(H), 4, (H) the spaces
of measurable, bounded measurable, positive bounded measurable functions on

H.

We denote by B(HH) the Borel o-algebra on H. Let u be a probability measure
on (H, B(H)). For every p > 1, we denote by LP(H, i) the space of all measurable
functions f on H such that |f|? is integrable with respect to p. For every f €
LP(H, ), we denote || f || zom,y = (| f|P)!/P. If there is no confusion, we also write

£ 1lp for [[f1] o e

Denote & (H) for the space of all exponential functions, that is

&(H) := Linear Span{Reyy,, Imypy, : h € H, pp(z) := "™ 2 € H}.

For a self-adjoint operator (A, D(A)) on H, we denote &4(H) for the space of

all real parts of the functions (ei(h’x>)h€D(A*)-

Derivatives For every ¢ € &(H) and h € H we denote the (weak-) derivative
of ¢ in the direction of h by Djp. Recall that it is defined as usual by

Dyo(x) == ll_r% %[gp(m +¢eh) —p(z)], =€ H.

For h = e, we simply denote it D., ¢ by Dyp(z) as the derivative of ¢ in the
direction of ey.

The gradient Dy is defined by

(Do, h) = Dy, ¢ e &M), he.

It can be shown that the linear mappings Dj and
D:&(H) C L*(H,p) — L*(H, 1, H), ¢+ Do,

are closable and we shall still denote the closures respectively by D and D.

Cameron-Martin Spaces Let () be a trace class operator. It is well known
that there exists a complete orthonormal system {ej}reny on H and a sequence
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of numbers {\;}rew such that
Qer = \per, N >0, ke N.

See Reed and Simon [RS80, Theorem VI.16 and Theorem VI.21], or Dunford and
Schwartz [DS88].

We define the square root of ) by

QY% = Z Ve (z,ep)er, € H.
k=1

It is obvious that Q'/? is a Hilbert-Schmidt operator. We call the range
Hy := QY?(H) of Q'/? the Cameron-Martin space of H. This subspace is also
called the reproducing kernel space for the measure p. We know Hy is densely
embedded in H but with measure zero: u(Hg) = 0 (see [DP06, Proposition 1.27]).

We are going to introduce a scalar product on Hy. With this product, the
Cameron-Martin space become an Hilbert space. To do so, we first recall an
useful concept — pseudo inverse of linear operator. See [PR07, Appendix C] for
more details.

Pseudo inverse Let T' be a linear bounded operator on H. It is not necessary
to be one-to-one and onto. Then KerT := {z: Tx = 0} is a closed subspace of
H. Denote by H; the orthogonal complement of Ker(T): H; = Ker(T)*. The
subspace H; of H is also closed. Denote the restriction of 7" on H; by T;:

T1 = Tl]HIZ ]H1 — Tl(]H)

Then T3 is one-to-one. What is more, T'(H) = T3 (H). So we can define the pseudo
inverse T~! of T by
T%TH) - H, z~—1T 'z

for every x € T'(H).

Remark 1.1.1. Equivalently, for every x € T(H), the pseudo inverse T~ 'x can be
defined as the element in the hyperplane {y € H : T'y = 2} with minimal norm.

Intrinsic Distance Let () be a trace class operator on H. Denote the pseudo
inverse of Q2 by Q2. We define a scalar product on Hy by

(z,y)m, = (Q?2,Q7"?y), =z,ye H,.
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Denote by |- |g, the norm corresponding to the inner product. When there is no
confusion, we will simply write (-, )¢ and | - |o for (-, -)m, and | - |m,-

Since Hy is dense in H, we can extend the mapping (-, y)o to the whole space
H for every fixed y € H.

Remark 1.1.2. Equivalently, we also have

o0

<l‘, ek> <y> 6k>
<ZE, y>]H0 = § : >\k :ﬂ'{)‘k>0}v
k=1

where {eg }rew are the eigenvectors of @ with eigenvalues {A; }ren.

Now we can introduce an intrinsic distance on H by

lr —yl,, ifz—yeHyy

pz,y) = (1.1)

0, otherwise.

1.2 Absolute Continuity of Gaussian Measures

There are also lots of monographs on Gaussian measures. See, for example,
[Xia72, Kuo75, Bog98| etc.. What we will introduce is basic and can also be
found in the books by Da Prato and Zabczyk [DPZ92, DPZ02].

Definition 1.2.1. Let m € H and () be a trace class operator on H. A probability
measure g on (H, B(H)) is called a Gaussian measure with mean m and covariance

Q if the Fourier transformation (characteristic function) i of u

() = Bexp (e, ) = [ exp (i) o), u e H
is given by

i) = exp ((m,u> - %(Qu,u)) . uweH

In this case, we will write 4 = N(m, Q) or Ny, . When m = 0 we shall write Ng
instead of Ny ¢ for short.

It can be shown (see for example [PR0O7, Definition 2.1.1 and Theorem 2.1.2])
that p is a Gaussian measure on (H, B(H)) if and only if every random variable

" H—-R, uw (r,u), heH
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has Gaussian law for every x € H under pu.

We are interested at the absolute continuity of Gaussian measures. We first

recall some basic notations related to the absolute continuity of measures.

Let 01,09 be two o-finite measures on a general measure space (F,&). If
09(A) = 0 for each A € & with 01(A) = 0, then we say o3 is absolutely continuous
with respect to ;. And we write it as 09 < 07.

If both 0y < 09 and 09 < 0y, then we say 01,09 are mutually absolutely
continuous or equivalent. And we denote it by o1 ~ os.

If there exists some A € & such that o1(A) = 02(E\ A) = 0, then we say oy is
orthogonal or singular to os and denoted it by o1 Loy. Obviously oy Loy if and
only if o9 Loy. So we shall also say o, and o9 are orthogonal to each other.

When the measure oy is absolutely continuous with respect to the measure
o1, the famous Radon-Nikodym theorem (see the book Halmos [Hal50]) asserts
that there exists a o;-a.s determined &-measurable function f(z) such that

o9(A) = /Af(x) o1(dx) for every A € &. (1.2)

We denote the relation (1.2) by f(z) = %(QZ), and termed it as Radon-Nikodym

deriwative or relative density of the measure oy with respect to the measure oy.

The equivalence and perpendicularity of two Gaussian measures on a separable
Hilbert space H have been studied for a long time. The first result concerning
the equivalence or singularity of two Gaussian measures is essentially due to
Kakutani [Kak48]. We have the so called Feldman-Héjek [Fel58, Fel59, H4j58]
theorem which states that any two Gaussian measures on a Hilbert space are
either equivalent or orthogonal. There are some ways to prove it. For example,
it can be proved by using the “Hellinger-Kakutani distance” due to Hellinger
[Hel07] and Kakutani [Kak48]; the “method of entropy” due to Héjek [Ha;j58]
and Rozanov [Roz62]; and the “method of reproducing kernel” due to Kallianpur
and Oodaira [KO63].

Now one can find the introduction of the absolute continuity of two Gaussian
measures in many monographs, see for example, [Xia72, Var68, GS74, Kuo75,
DPZ92, Bog98| etc..

In this thesis, we will only need to use the following simple case: the absolute

continuity of Gaussian measures N,, o with respect to Ng.

To be intuitive, let us first show the formula in one-dimension. Let N, , and
No,q be two the normal distributions on R with the same variance ¢ and means b
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and 0 respectively. If ¢ = 0, then NN, , and Ny, are equivalent only when b = 0.
If ¢ # 0, then N, , and Ny, are always equivalent and the derivative is given by

— [ (x—b)2
dNp g, (2mq) =" exp __( 2q) ]
dN, N - x2
0,9 (2mq)~1/2 exp [—Q—q} (1.3)
20z — b*] . _ Ly 19,12
= exp {T = exp <q 12p ¢ 1/2x> —3 ‘q 1/2b} .

Formally, the infinite dimensional version of the Cameron-Martin formula is
the formula (1.3) if we replace ¢~'/2 by Q~'/2.

The proof of the following Cameron-Martin formula can be found, for in-
stance, in [GS74, Chapter VII, Section 4, Theorem 1], or [Kuo75, Theorem 3.1]
or [DPZ92, Theorem 2.21].

Theorem 1.2.2. Let 4 = N(m,Q) and v = N(0,Q) on H be two Gaussian
measures on IH.

(1) If m ¢ Q'Y2(H), then p and v are singular.
(2) Ifm € QY2(H), then ju and v are equivalent and the Radon-Nikodym deriva-
tive of p with respect to v is given by

Z—Z(az’) = exp ((:c,m)o - %]m\%) , forall x € H.
Remark 1.2.3. One of the powerful tools in the study of absolute continuity of
Gaussian measures is the so called Kakutani distance of two measures which is
introduced in Kakutani [Kak48]. (As pointed out in Kakutani’s paper, Kakutani
distance is the same with the Hellinger integral introduced by Hellinger in his
thesis [Hel07]. So we shall call the distance by Hellinger-Kakutani distance.) We
will introduce these concepts in detail in Section 2.3 for the study of absolute
continuity of Lévy processes.

1.3 Wiener Processes and Stochastic Integrals

We will first recall the definition of standard Q- Wiener processes and stochastic
integrals with respect to standard ()-Wiener processes. Then we will introduce
cylindrical Q- Wiener processes and the stochastic integrals with respect to cylin-
drical Wiener process. We refer to [DPZ92, PR07] for more details.
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Definition 1.3.1. Suppose that @) is a trace class operator on a real separable
Hilbert space H. A family of H-valued random variables W = (W})o<;< is called
a standard Q-Wiener process on [0, T] if

(1) Wy =0;

(2) W has continuous trajectories;

(3) W has independent increments, that is, the random variables

Wiy Wity oo o ;W = W

are independent for all 0 <t <ty <---<t, <T and all n € N;
(4) The increments of W have Gaussian laws: W; — W, is Gaussian distributed
as Ny_g)q for every 0 < s <t < T

Let {ex }rew be an orthonormal basis of H consisting of eigenvectors of @), and
{Ak }rew be the corresponding sequence of eigenvalues:

Qe = Mgeg, forall k€ IN.

Then (W)o<t<r is a @Q-Wiener process if and only if

We=> VMb(t)er, 0<t<T, (1.4)
k=1

where {0 }rew are independent real valued standard Brownian motions.

The proof of the representation (1.4) of Q-Wiener processes can be found in
[DPZ92, Proposition 4.1] or [PR0O7, Proposition 2.1.10] etc..

Let (2, %, (%)o<i<T, P) be a filtered probability space. We call (W;)o<i<r
a Q-Wiener process with respect to the filtration (%;)o<i<r, if (Wi)o<i<r is a
@-Wiener process satisfying the following conditions
(1) W, is adapted to %, for all 0 <t < T
(2) W, — Wy is independent of Z for all 0 < s <t <T.
We say that a filtration (.%;)o<i<r, on a probability space (2, %, P) is a normal
filtration if the following two usual conditions are satisfied.
(1) Fy (and hence every % for 0 < ¢ < T') contains all elements A € .# with
P(A) =0.
(2) The filtration is right continuous: .%#; = %, = Mg Fs forevery 0 <t < T.
It is easy to show that any (-Wiener process is a ()-Wiener process with
respect to some normal filtration (see [PRO7, Proposition 2.1.13]). In this thesis,
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if it is not explicitly stated, we will always assume that the filtration is normal.

Stochastic Integral

In this thesis we mainly concern the stochastic integrals of deterministic func-
tions with respect to Wiener processes. So we only introduce shortly this simple
case. For more on stochastic integrals, we refer to the book by Da Prato and
Zabczyk [DPZ92] or the lecture notes by Prévot and Rockner [PROT).

Let (W;)o<t<r, be an H-valued Q-Wiener process defined on a filtered proba-
bility space (2, . F, (%t )o<t<r, P). Let (1.4) be a representation of (W;)o<i<r.

Let U be another real separable Hilbert space. Denote by L(H,U) the space
of all linear bounded operators from H to U. Let ®: [0,T] — L(U, H), t — ®(t)

be a deterministic function.

For every 0 <t < T, we define the stochastic integral of ®(-) with respect to
the Wiener process W (-) by

P, dW, : Ve dBi(s ®,Q" e dBi(s). (15
ffoan=3 [ =>

The generic term

/ 0.0 e dB(s)

0

in the series (1.5) is a U-valued Wiener integral defined by

(Z/ QYer, fi) dPi(s )> Ji

where {f;}1en is a complete orthogonal normal basis of the Hilbert space U.

/ sQY ey, dBy(s
0

=1

It is easy to check

E

8 :Z/ 1B(5)Q2e4]? ds
—Z / ©,Q"2) 0 (5)Q e, e5) ds
_ / Te[(2.0Y2) @ (5)Q?] ds

0
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Hence, the series (1.5) converges in L*(Q,.%,U) if and only if

/t Tr(®,Q®}) ds < oc. (1.6)
0

In this case, we can show that the stochastic integral Gaussian random variable
with covariance (see [DPZ92, Theorem 5.2])

t
Q, = / ®,Qd" ds.
0

Cylindrical )-Wiener Processes and Stochastic Integrals

Formally, in the definition of the stochastic integrals (1.5), the operator @ is
not necessary to be of trace class since we only need the condition (1.6) hold.

This leads us to introduce cylindrical QQ-Wiener processes.

Let @ be a bounded, self-adjoint and nonnegative operator on U. Set Uy =
QY*(U). Let /Uvo be an arbitrary Hilbert space such that Uy is embedded contin-
uously into /Uvo

S (Uos |+ |og) = (Uo, |- I5)

and the embedding J is a Hilbert-Schmidt operator.

Now we define -
Wy => B(t)Jgr, 0<t<T,
k=1
where {gi}ren is an orthogonal normal basis of Uy and {f}ren is a family of

independent real Brownian motions.
Therefore (W3)o<i<r defines a @ = JJ*-Wiener process on /Uvo with Tr @ < 00.

If Tr @ = oo, then we will call the constructed process (W;)o<i<r & cylindrical
Q-Wiener process on U. If () = I, then we simply call it a cylindrical Wiener

process.

When there is no confusion, we will simply say Q-Wiener processes without
distinguishing whether it is the standard one and cylindrical one.

The cylindrical Q-Wiener processes are not uniquely defined but the stochastic
integrals with respect to cylindrical ()-Wiener processes are independent of the
choices of U; and hence are well-defined.
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1.4 Lévy Processes

In this section, we introduce some preliminaries on Hilbert space valued Lévy pro-
cesses. See the books Bertoin [Ber96], K. Sato [Sat99], Applebaum [App04], and
Cont and Tankov [CT04] etc. for general introductions to Lévy processes in finite
dimension spaces. We refer to the monograph Peszat and Zabczyk [PZ07] and
bibliographies therein for the introduction of Lévy processes in infinite dimension.

1.4.1 Lévy Processes and Infinite Divisible Distributions

Let H be a real separable Hilbert space. A Lévy process is a time-homogeneous
Markov process with space homogeneity. We give the precise definition of Lévy

processes in the following.

Definition 1.4.1. Let (X;)o<t<oo be an H-valued stochastic process defined on
a filtered probability space (€2, .Z, (Z)o<t<co, P). We call X; a Lévy process if it
is an .#;-adapted, stochastically continuous process with independent stationary
increments. That is, X; satisfies the following conditions.

(1) Xo=0 P-as.

(2) X, is adapted: X; € Z; for every t > 0;

(3) Independent increments: X; — X is independent of .Z; for every 0 < s < ¢;

(4) Stationary increments: the distribution of X; — X only depends on the
time interval ¢t — s for every 0 < s < 't;

(5) Stochastically continuous: for every s > 0 and € > 0,
lim P(| X, — X, > ¢) = 0.

It can be proved (see [Sat99, Chap. 1] or [Pro90, Theorem 30]) that there is
a unique modification of each Lévy process such that every path of the process
is right continuous with left limits. Without loss of generality, we will assume in

this thesis that every Lévy process is right continuous with left limits.

Lévy processes are closely related to infinite divisible distributions (or mea-

sures).

Let p and v be two o-finite measures on (H, B(H)), their convolution p* v is
defined by

g*y(A):/]H,u(A—a:)u(dx), Ae B(H).

A measure u (or a random variable with distribution p) is called infinitely divisible
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if for every n € IN, there exists a measure u, such that

— *no__
vV
n times

We will introduce a representation of the characteristic functions of infinitely

divisible distributions. We first recall the definition of Lévy measure.

Definition 1.4.2. We call a o-finite measure v on H a Lévy measure if it is
concentrated on H \ {0} and satisfies

/ (1A |2} v(dz) < oo.
H\{0}

The following Lévy-Kintchine formula characterize the structure of infinite

divisible distributions.

Theorem 1.4.3. If u is an infinite divisible distribution on H, then the charac-

teristic function of u is given by
plexp(i(u, x))] = exp[—A(w)], for all u e H
with

AMu) = —iu, b) + %(Ru, u)
(1.7)
—I—/}H [1— exp(i{z, ) + iz, u) Lz <1y (z)] v(d),

where b € H, R is a trace class operator on H, and v is a Lévy measure on H.

Definition 1.4.4. We call X the symbol or the characteristic exponent of the in-
finite divisible distribution p and (b, R, v) the characteristic triplet (or generating
triplet ) of p.

Denote the law of X; by p;. It is easy to see that ps.s = s * s for all £, s > 0.
This follows that p, is an infinite divisible measure for every t > 0.

Remark 1.4.5. The distribution (p);>0 is called a convolution semigroup, or an
infinite divisible family. Comparing with the concepts of skew convolution semi-
group in Remark 7.1.1.
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Define the transition semigroup by

Pf(x) = /}H flo+ ) mldy), | €€ (H),

By Kolmogorov’s theorem, there is a one-to-one correspondence between Lévy
processes and infinite divisible distributions. And it is easy to see that for each
t > 0, the random variable X; is infinitely divisible and

E exp(i(X¢, u)) = exp(—tn(u)), for all v e H.
Here n : H — C is the characteristic exponent of X, that is,

n(u) = —log Eexp(i(Xy,u)), forall ue H.

By the representation for infinite divisible distribution (see Theorem 1.4.3),
we have the following Lévy-Kintchine formula for 1évy processes, which is a char-

acterization of Lévy processes.

Theorem 1.4.6. There exists a triplet (b, R,v) such that for every u € H,
. 1
n(u) = —i{u,b) + §<Ru, u)

(1.8)
T /H [1— exp(ile, u)) + iz, udL o1y (2)] v(da),

where b is element in H, R s a trace class operator on H, and v is a Lévy measure
on H.

Definition 1.4.7. We call n the Lévy symbol or the characteristic exponent of
the Lévy process X; and (b, R, v) the characteristic triplet (or generating triplet)
Of Xt-

1.4.2 The Lévy-Ito Decomposition and Stochastic Inte-
grals

Corresponding to the three terms in the Lévy-Kintchine formula (1.8), every Lévy
process can be decomposed into three independent processes.

We first introduce Poisson random measure.

Definition 1.4.8. A Poisson random measure on (H, B(H)) with intensity mea-
sure v is a family of random variables {N(B), B € B(H)} on some probability
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space €2
N:QxH—-7Z,:={0,1,2,...},

(w,B) — N(w, B)
such that

(1) For almost all w € 2, N(w,-) is an non-negative integer valued measure on
H;

(2) For each measurable set B € B(H), N(-,B) = N(B) is a Poisson random
variable with parameter v(B);

(3) For all disjoint measurable sets By, By, ..., B, in B(H) with n € N, the
random variables N(B;), N(Bs), ..., N(B,) are independent.

We define the corresponding compensated Poisson random measure by

for all B € B(H).
Let X; be a Lévy process on H. The jump of X; at time ¢ is defined as
AXt = Xt — tha Where th = hmsﬁ XS'

For every B € B(H \ {0}), we count the number of jumps of X; in B before
time ¢ by
N(t,B) :=t{s €0,t): AX, € B}.

It can be shown that N(dt,dz) is a Poisson random measure on [0, +00) x H with
intensity measure dt x v(dz). And the associated compensated Poisson random
measure of N(dt,dx) is given by

N(dt,dz) = N(dt,dz) — dt x v(dx).

Now we can state the famous Lévy-Itdo decomposition of Lévy processes.

Proposition 1.4.9. Let X; be a Lévy process on H with characteristic triplet
(b, R,v). Then we have

t t
Xt:bt—l—Wt—i-// xN(ds,dx)+// z N(ds, dx)
0 J{fz|<1} 0 J{fz[>1}

:bt—l—Wt—ir/ zﬁ(t,dx)—l—/ 2z N(t,dz),
{lz|<1} {lz|>1}

(1.9)

where Wy is a R-Wiener process on H and N is a Poisson random measure on
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[0,00) x (H\ {0}) with intensity measure dt x v.

For a proof, we refer to [ARO5] for a general introduction to the Lévy-1to
decomposition on separable Banach spaces.

1.4.3 Stochastic integral with respect to Lévy noise

We will only consider the stochastic integrals with respect to Lévy processes
when the integrand is just time-dependent. We refer to [App04, AR05, App06,
MRO6, App07a] etc. for more details of stochastic integrals with respect to Lévy
processes.

Let F' be a measurable function from [0, co) to the space of all linear bounded
operators on H such that ¢t — |F(t)] is locally square integrable. Then the integral
of F' with respect to X; could be defined in the following via (1.9):

/Ot F(s)dX, := /Ot F(s)bds + /t F(s)dW,

+ /0 t /{ - F(Os)xﬁ(ds,dxH /0 t /{ ) N(ds,de)

Here, in the right hand side of the definition of integral above, the first and fourth
integrals are defined by the standard Bochner integrals; the second integrals are
stochastic integral with respect to Wiener process; and third integral is stochastic
integral with respect to Poisson random measure (refer to the literatures men-
tioned above).

We have the following assertion about the stochastic integrals.

Proposition 1.4.10. For every t > 0, the integral fot F(s)d Xy is infinitely divis-

wble and its characteristic exponent is given by

A r(w) ::/0 n(F(s)u)ds, weH.

See Chojnowska-Michalik [Cho87, Corollary 2.1], Applebaum [App07b, Propo-
sition 2.1], or [PZ07, Corollary 4.1] for a proof.

The following corollary is an immediate consequence of Equation (1.8) and
Proposition 1.4.10.
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Corollary 1.4.11. For every t > 0, the characteristic triplet (b, Ry, v;) of the
integral fo s)dX, is given by

by = /0 F(s)bds +/O /11{\{0} F(s)z[1p(F(s)z) — 15(z)] v(dz) ds;
R, = /tF(s)RF(s)* ds;

Ui(A) = /0 o(F(s)A)ds, A€ B(H\{0}),

where B = {x € H: |z| < 1}.

Remark 1.4.12. The conclusion of Corollary 1.4.11 is also stated in [App07b,
Corollary 2.1]. But note that there is a misprint therein: [15(F(s)z) — 1p(z)]
is written as [1p(z) — 15(F(s)z)] in [App07b, Corollary 2.1].

Proof of Corollary 1.4.11. By applying Proposition 1.4.10 and note the Lévy-
Kintchine formula (1.8), for every u € H, we have

/0 Cp(F(s)u) ds
=i [ popra ds g [ G RFG) ) b
/ [ o oy [ (o)) 15(0)] ) ds
:—z<u,/0 F(s )bds> ;<u (/OtF(s)RF(s)*ds) u>
4 /O t /H N PR 4 (F(s)2, u) Lp(2)] v(de) ds.
Now we rewrite the last term of the equation above in the following way.
/ /H o [(F(©)2.1) 16(@) = (F(5)e, ) 1p(F(5)e)] v(da)ds
; / /H oy [ (F (o) 25 (F(5)2)] vido) ds

</ /]H\{O} () — Lp(F(s)z)] v(dz) ds,u>

/ /]H\{O} "0 ti(w,u) Lp()] v(F(s)" dz) ds.



32 Chapter 1. Preliminaries

Therefore, we have

[ sy as
= <u, /Ot F(s)bds + /Ot /]H\{O} F(s)z [15(F(s)z) — 1p(2)] v(dx) d3>

L <u (/t F(s)RF(s)" ds) u>

2 0
t — "™ i (r u) 15(x)] v(F(s) 'dx)ds.
+ALW3» +i 2,u) Lp(e)] V(F(s) " da) d

This completes the proof. n

1.4.4 Symmetric a-Stable Processes

We will shortly introduce a special Lévy processes — symmetric a-stable processes
on R?%. We refer to the monograph Samorodnitsky and Taqqu [ST94] for more
details.

We start with the introduction with symmetric a-stable random variable.

Definition 1.4.13. An R%valued random variable ( is called a symmetric a-

stable random variable if
Bexp(i(u, ) = exp(~|ul"), ue R
for some a € (0, 2].

All a-stable random variables have densities. We denote the relative density
of the stable random variable ¢ with respect to the Lebesgue measure on R by
Pa(-):

P e A) = /Aﬁa(m) dr, A€ B(R%).

But only for a few stable random variables the densities have closed forms.
For v # 2, the stable random variable have polynomial decay ([BG60, Theorem

2.1]): X
Pa(z) ~ T2 (lz] — +o0). (1.10)

Definition 1.4.14. An R%valued process (X;)>o is called a symmetric a-stable
(SaS) process if it is a Lévy process such that for all ¢ > 0, X is a symmetric
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a-stable random variable with
Eexp((u, X;)) = exp(—t[u|®), u € R™

Let us denote the transition density of X; by p, (¢, ), and the transition density
of X, starting from x by p, (¢, x,-). That is,

P(X; € A) = /ﬁa(t,x) dr, A€ B(R%).
A

and

P(X; € Al Xo=12) = / Palt,r,y)dy, xR’ AcBRY.
A
Their connection is given by

Palt,z,y) = palt,x —y), forall z,y € R

The transition density p,(t,x) of the process X; has the following scaling
property.

Lemma 1.4.15. For every a > 0, we have
Palt, ) = a®pa(a®t, ax) (1.11)

Proof. For each u € R,
/ e po (t, ) do = exp(—t[u|*) = exp(—at|a” ul*)
R4
:/ eimalu) Pala®t,z)dr = / gifa o) Pala®t, x) dx
R4 R4
:/ '@ b (a°t, ax)al dx.
R4
[
There is a natural relationship p, (1, x) = p,(z) between the transition density

of the process at time 1 and the density of stable random variable. Therefore, by

taking a =t~/

in the scaling property (1.11), we can get
balt,z) =t ¥ p(t7Yz), xR t>0.

Based on (1.10), Bogdan et al. [BSS03, Theorem 3.1] proved the following
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estimates of the transition density.

Lemma 1.4.16. For every x,y € R with v # y and t > 0, there exists some
constant K > 0 such that

t t
-1 —d/a ~ —d/a
1 (G A7) St < 5 (s )



Chapter 2

Absolute Continuity of Lévy
Processes in Infinite Dimensional
Spaces

In this chapter we aim to generalize the main results in the lecture notes by Sato
[Sat00] to the infinite dimensional case. In Section 2.1 we introduce some basic
notations and the main problems. We refer to the summary of the structure of
this chapter at the end of Section 2.1.

The Girsanov theorem for Lévy processes studied in Section 2.2 will be used
in Subsection 7.4.1 to establish Harnack inequalities for Ornstein-Uhlenbeck pro-

cesses driven by Lévy processes.

2.1 Introduction

Let H be a separable Hilbert space with inner product (-, -) and norm |-|. Denote
by D the Skorokhod space D([0,00),H) over H. Recall that D consists of all
right continuous with left limits functions from [0, 00) to H. Denote by X; the
canonical process on D defined by X;(w) = w(t) for every path w € D and ¢ > 0.

Set
Fr=0(Xs:0<s<t), t>0

and
F =0(Xs:0<s<00).

Note that every Lévy process can be realized as a canonical process on the
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filtered Skorokhod space (D, .#, (% )o<i<oo) With some probability measure P. So
we will regard each Lévy process as a probability measure on the Skorokhod space
D and vise versa.

Now we consider two probability measures Py and Py on (D, .Z, (%) o<t<oo)-
Assume that the characteristic triplet of the canonical Lévy process X; on D is
(bj, Rj,v;) under P, for j = 1,2. In other words, for j = 1,2,

Ep, exp(i(u, X)) = exp(—tn;(u)), wvecH,

where the characteristic symbol n; is given by

n;i(u) = —ifu, b;) + %(Rju,u)

—l—/]H [1 — exp(i{u, z)) + i(u, 2) Lz <1y (z)] vj(dz).

For every t > 0, we denote the restriction of P; on .%#, by IP;:

P, =P;|.7, j=1,2

We are interested at the following problems.

(1) The necessary and sufficient conditions for the absolute continuity and or-
thogonality of P4 with respect to P¢;

(2) The Radon-Nikodym derivative of P} with respect to P} in the case P, <
Py;

(3) The Lebesgue decomposition of P4 with respect to P;

(4) The Radon-Nikodym derivative of the absolute continuous part of P! with
respect to PY.

For the finite dimensional case, the first two problems were solved by Sko-
rokhod [Sko57, Sko60], Kunita and Watanabe [KW67], Newman [New72, New73]
and treated and reformulated by Sato [Sat99, Chapter 6, Section 33]. And the
last two problems were treated explicitly first in [Sat00] for the finite dimensional
case. We refer to [Sat00] for more notes.

In this chapter, we are going to follow the line in Sato’s lecture notes [Sat00]
and formulate the main results therein for the infinite dimensional case.

The generalization may sounds trivial to some experts. For example, Jacod
and Shiryaev [JS87] studied the absolute continuity of general semi-martingales.
But it seems that maybe it is interesting to write down the results for Lévy
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processes directly. Moreover, as mentioned in [Sat00], the problems (3) and (4)

are new.
Now we describe the organization of this chapter.

We start with a Girsanov theorem for Lévy process in Section 2.2. Here
we consider a drift transforamtion of a Lévy process with characteristic triplet
(b1, R,v1). We obtain another Lévy process with characteristic triplet (by, R, /2)
for the case 15 = 1/, under a new probability measure. We just apply Girsanov’s
theorem for the Gaussian part of the Lévy process by using the independence of
the Gaussian part and the jump part of the Lévy process. We will generalize this
Girsanov theorem from the case 1y, = 15 to the case when the Hellinger-Kakutani
distance of v; and vy is finite. It will turn out that the main idea of this chapter

is using the independence.

We introduce Hellinger-Kakutani inner product and distance of r-order (r €
(0,1)) for any two o-finite measures in Section 2.3. These concepts have first been
introduced by Hellinger [Hel07] and Kakutani [Kak48] for the order r = 1/2. They
are powerful tools in the study of absolute continuity of measures (see Remark
1.2.3 for bibliographic notes). We list here some related references: Brody [Bro71],
Newman [New72, New73], Memin and Shiryayev [MS85] etc.. We also refer to

[Sat00] and the references therein.

In Section 2.4 we introduce the non-singularity condition (2.2) for the absolute

continuity of two Lévy processes. See Theorem 2.4.1 and Corollary 2.4.5.

To prove Theorem 2.4.1, we need the corresponding results for the Gaussian
case which are proved in Section 2.5. The generalization of the non-singularity
condition from the finite dimensional case to the infinite dimensional case stems

from the Gaussian case.

Then we sketch the proof of Theorem 2.4.1 in Seciton 2.6. In Section 2.7, we
study the density of one Lévy process with respect to another.

We mention that some applications which is omitted on the density transfor-

mation can be done similar to [Sat00, Section 7).

2.2 Girsanov’s Theorem for Lévy Processes

We will prove a special Girsanov theorem for Lévy processes. It says that a drift
transformed Lévy process is still a Lévy process with the same distribution under
a new probability measure.
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Let H be a separable Hilbert space and R a trace class operator on H. We
denote the Cameron-Martin space of H by Hy = RY?(H) and the inner product
of Hy by (-, )o:

(x,y)0 <R V2, R7Y2 >, x,y € Hy.

We denote by | - | for the norm on Hy corresponding to the inner product (-, -)o.

The following Girsanov’s theorem for Wiener processes in infinite dimensional
spaces is due to Bensoussan [Ben71] and Kozlov [Koz78] (see also [DPZ92, The-
orem 10.14] for a proof).

Theorem 2.2.1. Let T > 0. Suppose that (W (t))o<i<r is an H-valued R-Wiener
process on some filtered probability space (Q, F,(Ft)o<t<r, P). Let ¥(-) be an
Hy-valued F;-predictable process such that

with

Then

is an R-Wiener process on (2, F, %, 0 < t < T) under a new probability measure
P defined by
Pl = o (T)P.
With Theorem 2.2.1, we can prove the following Girsanov theorem for Lévy
process.

Theorem 2.2.2. Let T' > 0. Suppose that (X (t))o<i<r is an H-valued Lévy pro-
cess on a filtered probability space (0, F, (F)o<i<r, P) with characteristic triplet
(b, R,v). Denote by X'(-) the Gaussian part of X(-). Let 1(-) be an Hy-valued
Fi-predictable process, independent of X (t) — X'(t) such that

with

Then
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is also a Lévy process on (2, F,(F)o<i<r) with the same characteristic triplet
(b, R,v) under a new probability measure P defined by

P = X' (T)P.

Proof. Since (X (t))o<t<r is a Lévy process with characteristic triplet (b, R, v) on
H, the Fourier transformation of X; is given by

Ep exp(i(X (t),u)) = exp [t (u) — td2(vw)], u € H,

where for every u € H,
1
d1(u) = 5 (Bu, )

and

Yo(u) = —i{u, b) —{—/]H [1— exp(i{u, z)) + i(u, 2)Lijz<1y(z)] v(dz).

In other words, we have the following (Lévy-Ito) decomposition
X(t)=X"(t)+ X"(t) = X'(t) + (X(t) — X'(1)).

Here X'(t) is the Gaussian part of X (¢) with symbol ¥;; while X" (¢) is a drifted
jump process with symbol 5. These two processes, X'(t) and X" (¢), are inde-
pendent to each other.

For every 0 <t < T, we define

70 = ([ wisax - [ 1wisias).

0

Then we have
Plz =p~ ()P, 0<t<T.

By the Girsanov theorem for Wiener processes on Hilbert space (see Theorem
2.2.1), we know

t
X'(t) = X'(t) —/ Y(s)ds

0
is a still an R-Wiener process with respect to the new probability measure P.

Consequently, for all 0 < ¢ < T and all u € H, we have

E]PpX/ (t) exp(i{u, X'(t))) = Ep exp(i(u, X’(t))) = exp |-t (u)]. (2.1)
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Therefore, by the independence of X’ and X” and the equation (2.1) above, we
get

E exp( (u, X( )))
=Epp™’ (t) exp (i(u, X (1))

(i(
e () exp (i {u. X0 - [ (s) is))
) exp (
k

_Ep X < ) /w )ds + X" (t )>)
g (s [ (. 510)] Boeolite 01
—exp[ u) exp [ty (u)]

— exp [—t01 (u) — 0 (u)].

It follows that the characteristic symbol of X with respect to P is Y1 + ¥5, which
is the same with the characteristic symbol of X with respect to P. This fact
implies that X is also a Lévy process with characteristic triplet (b, R,v) under
the new probability measure P. O

Remark 2.2.3. Ren and Rockner [RRO7] considered also a similar Girsanov the-
orem by martingale methods.

2.3 Hellinger-Kakutani Theory

Let 01, 09 be two o-finite measures on a general measurable space (F,&). Con-
sider a o-finite measure o on (F, &) such that both o; and oy are absolute con-

tinuous with respect to o:

o1 <Ko and o0y <K o.

Note that the measure o does exist. For example, we can simply take o =

o1+ 02.

For ¢« = 1,2, we denote by f; = do;/do for the Radon-Nikodym derivative of

o; with respect to 0. We will fix one version of the derivative f; for + = 1, 2.

Definition 2.3.1. The Hellinger-Kakutani inner product H, (o1, 09) of o1 and oy
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of order r € (0, 1) is defined by

H,(01,09)(A) = /Affﬁ_rda, Aeé.

The Hellinger-Kakutani integral h,.(o1,09) is defined by as the total mass of
H,(0y,09) on E:
hr(Ul,Uz) = ]Hr(al,@)(E)-

Remark 2.3.2. Tt is easy to verify (see [Sat00, Remark 2.3, 2.4]) that the definition
of H,(01, 02) is independent of the choice of 0. Therefore, H, is well-defined. And
it is also easy to verify that for all r € (0,1),

H,(01,09) <101+ (1 —1)0s.

The following proposition shows that we can use Hellinger-Kakutani integral
and inner product to characterize the orthogonality of two measures. This ex-

plains why these two notions are useful.

Proposition 2.3.3. Two o-finite measures are orthogonal to each other if and
only if their Hellinger-Kakutani inner product (equivalently, Hellinger-Kakutani
integral) of some (and hence all) order in (0,1) is zero. That is, for any two
o-finite measures o1 and o3,

o1loy <— hr(01,0'2> =0<= IHT<O'1,O'2) =0

for some (and hence all) order r € (0,1).

See [Sat00, Remark 2.5] for a proof of Proposition 2.3.3. See also [DPZ92,
Proposition 2.19] for the case r = 1/2.

Now we continue to introduce the Hellinger-Kakutan: distance between two

o-finite measures.

Definition 2.3.4. For every r € (0, 1), define

]KT(O'hO'Q)(A):/ [Tfl‘i‘(l—T)fQ—fI 21—r} dO’, AE@Q
A
The total mass of K,.(0q,02) on E

kr(01702) = Kr(01702)(E)

is called the Hellinger-Kakutani distance between oy and os.
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Remark 2.3.5. As the definition of H, (01, 03) (see Remark 2.3.2), the definition of
K, (01, 02) is also independent of the choice of o. Moreover, we know K, (o1, 05)

is a o-finite measure.

We denote the weak convergence of measures by p, — p. The following

assertions are useful. See [Sat00, Lemma 2.21] for a proof.

Lemma 2.3.6 (Newman, 1973). Let pi,, pt,vp, v and w be finite measures on
(E,&). Fixr € (0,1). If p, — p, v — v, Hp(pin, vn) — 7 and inf, h.(pn, vy) >
hy(p,v), then H,(u,v) = 7.

The Kakutani distance k. (o1, 02) of two o-finite measures oy, 0 may be infi-
nite. The finiteness of k. (o1, 02) ensures the existence of some integrals we will

use.

Lemma 2.3.7. Let vy, 15 be two Lévy measures on a separable Hilbert space H.
If k.(v1,15) < oo for some r € (0,1), then

/ |z| d |11 — 1| < o0,
{l=|<1}

and
/ |x‘d’Vj—Hr(l/1,l/2)’ < 00, ]:1,2
{lzl<1}

Proof. 1t is similar to the proof in [New73, Proposition 4] (or [Sat00, Lemma
2.18]). We only need to extend the proof into the infinite dimension case which
is easy. ]

Remark 2.3.8. By [Sat00, Lemma 2.15], we know if k,.(0y,02) < oo for some
r € (0,1), then it holds for every r € (0, 1).

Remark 2.3.9. Let 09 = exp(g)o; for some measurable function g(x) satisfying
—00 < g(z) < oo on E. Then k,(01,0,) < oo for some r € (0, 1) if and only if

/ g*doy +/ exp(g)doy +/ do < o0.
{lgl<1} {o>1} {g<-1}

See [Sat00, Remark 2.16] and the proof of [Sat00, Lemma 2.15]
We will need the following concept.

Definition 2.3.10. Define

doy doy

C’U(al):{er:%>0}, CU(JQ):{er:%>O}.
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We call C,(01) (resp. Cy(09)) the carrier of oy (resp. o2) relative to . Sometimes
we simply write C(o;) for Cy(0;) for j =1, 2.

2.4 Conditions for Absolute Continuity of Lévy

Processes

The following theorem is an infinite dimensional version of Sato [Sat00, Theorem

AL

Theorem 2.4.1. Let (X;,Py) and (X;,P2) be two H-valued Lévy processes on
(D, .7, (F:)i>0) with characteristic triplets (by, Ry, v1) and (be, Re, v2) respectively.

(1) Suppose that the following non-singularity conditions are satisfied for some
re(0,1)

ko(vi,1n) <00, R:=Ry=R,y by €Hy:=RZM), (22)

where

b21 = bg — b1 — / {Ed(VQ - Vl). (23)
{lz[<1}
Then for everyt >0 and r € (0,1),
H, (P}, P) = exp(—t®,) PL, (2.4)

where .
¢, = 57“(1 — 1) |ban [ + ki (v1, 1),
and P, is the probability measure under which X; is a Lévy process with

characteristic triplet (b, R, H,(v1,12)). Here

bT:Tbl—F(l—’f’)bQ—/ xd]Kr(Vl,l/g).

{lz[<1}
(2) If (2.2) is not satisfied, then we have
H,. (P}, P3) = 0

for allt >0 and r € (0,1).

Remark 2.4.2. (1) By Remark 2.3.8, the finiteness of k, (v, v5) does not depend
on the choice of r € (0,1).
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(2) By Lemma 2.3.7, the integral in (2.3) is well-defined, and hence by; is well-
defined.
(3) By Remark 2.3.2, H, (v, 1) is a Lévy measure.

Remark 2.4.3. To go from the finite dimensional case to the infinite dimensional
case, we use the Cameron-Martin space R'/?(IH) in the non-singularity condition
(2.2) instead of the range R(H) used in [Sat00, Theorem A] for the finite di-
mensional case. In Section 2.8, we show that if H is infinite dimensional, then

R(H) # RY?(H).
Remark 2.4.4. Suppose that
/ rvj(dr) <oo, j=1,2.
H
Then by the Lévy-1tdo decomposition, we can write for j = 1,2,

X, = tb; + WY/ +/
{le|<1}

=t {bj—/ xyj(dx)] +W3+/ xﬁ(t,dx)Jr/ x N(t,dz).
{lel<1) {lel<1) H

Here N (t,dz) is the Poisson random measure associated with X; and N (¢, dz) is

eN(t, dz) + / x N(t,dx)

{l=[>1}

the compensated random measure of N(t,dx).

Then we see by; is the difference of the “drifts”:
b21 = [bg — / $V2(d$):| — |:b1 — / ZIZI/l(dJ]>:| .
{lz[<1} {lz[<1}

From Theorem 2.4.1, we have the following corollaries which correspond to
[Sat00, Corollaries 3.6-3.15] for the finite dimensional case.

Corollary 2.4.5. (1) Fizt > 0. P} and P} are not mutually singular iff con-
dition (2.2) is satisfied. In other words, P} LY iff condition (2.2) is not
satisfied.

(2) If Pt LPY for some t > 0, then P, LPL for all t > 0.
(3) Fizt > 0. If P} and PL are not mutually singular, then

v [C(11)°] < oo, 1 [C(n)] < oo
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and
P}, [C’(]Ptl)} = eXp[—tl/2<C(V1)c>], P! [C’(]Pg)} = exp[—tul(C’(Vg)c)}.

(4) Fizt > 0. PL < P} iff vy < vy and (2.2) are both satisfied.
(5) If Pt < P} for somet >0, then PL < P for allt > 0.
(6) Fizt>0. P! =P, iff vy = vp and (2.2) are both satisfied.
(7) If Pt ~ P for somet >0, then Pt ~ PL for all t > 0.
(8) If v1 = vy, then either P, =~ PY for all t > 0 or P, LPL for all t > 0.
(9) If Py # Py, then P{LPE.
(10) Suppose that Pt and Ph are not mutually singular for some t > 0. Then
the following are true.
(a) If vi(H) < oo, then vo(H) < o0o;
(0) If [qaj<1y l2ln1(dz) < 00 and vi(H) = oo, then [, oy x| ra(dz) < oo
and ve(H) = oo;
(c) If f{lr\gl} |z| v1(dx) = o0, then f{\xlsl} || va(dx) = 0.

2.5 Gaussian Case

In this section we prove Theorem 2.4.1 first for the Gaussian case. This section
corresponds to Sato [Sat00, Section 5] where finite dimensional Gaussian case is
treated. We will use Theorem 2.5.1 to prove Theorem 2.4.1 in the next section.
We utilize Girsanov’s theorem for Wiener processes in infinite dimensional space
and the Cameron-Martin formula for Gaussian measures.

Theorem 2.5.1. Suppose that (X, P1) and (X, Py) are two Lévy processes on
(D, #, (F)i>0) with characteristic triplets (b1, Ry,0) and (by, Ra,0) respectively.
For any fixed t > 0, we have the following statements.

(1) The dichotomy holds: either P4 ~ P} or P} LPL;
(2) P! ~ P, if and only if the following non-singularity conditions are satisfied

R:= Ry =Ry, by :=by— b € Hy:= RY*(H). (2.5)
(3) If P, ~PL, then for any 0 <r <1,

H, (P!, PY) = exp(—tT, )P, (2.6)
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where 1
\I’r = 57”(1 — T) |b21|(2)7

and P, is the probability measure under which (X;)i>o is a Lévy process
with characteristic (b., R,0) . Here b, is given by

br = rb1 + (1 - ’I")bg. (27)
(4) If P, ~ P, then
L exp(U) (2.5)
— =ex .
dP! !

with t
Ur = (bar, Xt — thy)o — 5 |521|(2)-

Proof. (1) We prove that if (2.5) holds, then P} ~ P and (2.8) holds.

Let W} = X, — sb; for 0 < s < t. Obviously (W})o<s<; is a R-Wiener process
on (D, %, (%5)o<s<t; Pt). Define a new probability measure Q; on .%#; by setting

Q: = exp(U)P}] 7. (2.9)
Then by Girsanov’s theorem (refer to Theorem 2.2.1), we see
Wsl—Sbgl:XS—Sbl—Sbm:XS—SbQ, OSSSt

is a R-Wiener process on (D, %, (Fs)o<s<t, Q). That is, X; is a (be, R, 0)-Lévy
process under Q;. So, Q; coincides with P%. Hence from (2.9), we see P < P!
and (2.8) holds. Now P! < P} also follows immediately from (2.9). Therefore
we have P! ~ P,

(2) We prove that if the non-singularity condition (2.5) is not satisfied, then
P! LPL. Condition (2.5) does not hold if (a) Ry # Ry or (b) Ry = Ry but by ¢ Hp.

(2.a) To prove the implication from R; # Ry to P{ L%, one method is to use
the arguments in [Sat00, Step 2 of the Proof Theorem 4.1].

Since Ry # Ry, there exist zp € H such that (zq, Riz0) # (20, R220). Let
X;° = (20, Xy). Then (X;°,P!) is a Lévy process on R with characteristic triplet
(b7, R;°,0) for j = 1,2, where b2° = (20,0;), R;® = (20, Rj20). The idea of the
proof is to show that IP; concentrate on the paths with quadratic variation bjo for
j=1,2.
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It can be verified that

n

2
Z <Xl§§/n - X(zigq)t/n) — Rt

k=1

in probability IP; for each 7 = 1,2 as n — 00. Define for j =1, 2,

n' 9
Aj=qwe: Z(Xzfg/n'_X(Zlgq)t/n') — Rt, asn—oo;.
k=1

Then P1(A;) = 1 and Py(Az) = 1. But obviously, A; is disjoint with As, hence
we have P;(Ay) = 0. This proves that Pt LPL.

Another method is to use the finite dimensional result directly. Indeed, if
Ry # R,, then there exists some finite dimensional subspace H,, of H such that
Ri|ln, # Ralm,. Therefore, by [Sat00, Theorem A], P} and P} are orthogonal
when they are confined on D([0,00),H,). This implies P} LP, on the whole
space D.

(2.b) Suppose Ry = R, but by ¢ Hy. Note that for j = 1,2, X, —tb; is a R-
Wiener process under IPE-. Hence the random variable X, is Gaussian distributed
with mean tb; and variance R under P! for j = 1,2: PLo X' = N(tb;, R). By
Theorem 1.2.2, the Gaussian measures N (tby, R) and N (tbe, R) are orthogonal to
each other since by; ¢ Hy. Therefore, there exists a set A € B(H) such that

P!o X, '(A) =0, PLoX;'(A) =1

Denote A = X; '(A) € .Z,. Then we have Pt(A) = 0, P,(A) = 1. This proves
P! 1P

(3) Suppose P! ~ P%. Then the conditions (2.5) are satisfied. By Item (2) of
Theorem 2.5.1, we know by € Hy. Therefore

br—bl:Tb1+(1—7’)b2—b1:(1—7’)b21E]H().

By Item (2) of Theorem 2.5.1 again, we get P! ~ PL. Then the Radon-Nikodym
derivative of PL with respect to P} is given by

dP? t
P =exp ((br — by, Xy — thy)o — B by — bl|g)

t
=exp (1= 7)o X = 0o = 501 ).
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Consequently, we have
t t d]Pg o t t
H, (P}, P;) = apt P = exp((l - T)U(t))]Pl
1
t
= exp ((1 = 7){bar, Xi = thi)o — 5 (1= 7) Ibmlﬁ) P}
—exp (G112 = (1) ) P2

t
= exp <—§r(1 —r) |b21|§) P!

N | =+

2.6 Proof of Theorem 2.4.1

We follow the proof in [Sat00, Section 5] (see also [New73]) to prove Theorem
2.4.1.

For every fixed t > 0, let D, = D([0,t], H) be the space of all right continuous
with left limits functions from [0,¢] to H. We still denote

Fsi=0(X,:0<u<s), se€]0,t].

By N(du, dx) we denote the Poisson random measure on [0, ¢] x H associated with
X;. That is, N(G) is the number of s € (0,¢] such that (s, AX;) € G for each
G e B((O,t] X ]H) Here we use AX, to denote the jump of X, at time s:

AX (w) = Xs(w) — Xs—(w), we Dy

For every 0 < r < 1, let v, = H,.(11,15) and for every 0 < s <t, 0 <e <1
and 0 < r < 1, we define

Y.s = / z (N(du, dz) — v,(dz)du) +/ x N(du,dx)
(0,s]x{e<|z|<1}

(0,8]x{|z|>1}

and
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If k,(v1,15) < 00, then by Lemma 2.3.7, we can take the limit € — 0 to obtain

Yos :=1limY,, = )A(jﬁ + s/ rdv; —v,), j=12,
€l0 H

where X j,s is the pure jump part of X; under P;:

)A(j,s = lim z (N(du, dz) — v;(dz)du) + / x N(du, dz).

el0 J(0,s]x {e<|z|<1} (0,8]x {|z|>1}

Now we define
ZO,S = Xs - }/0,57 ?e,s = ZE,S - ZO,S = }/E),S - Yve,s'

We denote by
t

. —
gj? QO]a 5]7 R0]7 Qs,j

the distribution of
}/;,sa YE),saZa,s; ZO,sa Ya,s

under P; on (ID;,.%,) respectively. We also denote by Qf , the distribution of Yz
under P! given in Theorem 2.4.1.

The following lemma is an infinite dimensional version of the lemmas in [Sat00,
Section 5).
Lemma 2.6.1. For every r € (0,1), ¢ € (0,1) and j = 1,2, the following
equalities hold.
(1) PY=QL,* RL;.
(2) HT(IPth IP%) - ]HT’(QE,D QE,Q) *« H, (Rs 1 Rt )
(3)
H,( 2’1, Q:_Z) = exp (—t/ dIK, (v, ]/2)) QZ’T. (2.10)
{l|>e}
(4) Assume that k,(v1,12) < 00.

(a’) IPt QO]*RBJ_ : *QSJ*RBJ
(b)

]HT(IP’i,]PtQ) H, (Qo 17@02) « H (R617R62)
H, ( 1 )*]H (Qa 1,Q52) *]Hr(Rf),pRé,Q) (2.11)
H, (Q517Q52) * IH,. ( 1*R 17Q2,2*Ré,2>

Proof of Theorem 2.4.1. (1) We first show P4 LP} if condition (2.2) is not satis-
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fied, that is, if one of the following conditions holds

(1) k’T(I/l, I/Q) = Q.
(ll) kr(Vla 1/2) < oo and R 7é Rs.
(111) kr(l/la 1/2) < oo and R = Ry and bgl ¢ ]Ho.

Assume that (i) holds. Then the proof of P4 LP! is the same with Step 1 of
the proof of Theorem A in [Sat00].

Assume (ii) or (iii) holds. From k,(v1,12) < oo, we know the characteristic
triplet of the process X; under Rf ; for j = 1,2 is given by (l;jr, R;,0) with

bjr :==0b; — / rd(v; —vy).
{lel<1}

If (b) or (c) holds, then we can obtain h,(Rj ,, R ,) = 0 by applying Theorem
2.5.1. Now h,.(IP}, P%) = 0 follows from the first identity in (2.11) of Lemma 2.6.1.

(2) Suppose that the condition (2.2) holds, we prove (2.4). We can just follow
the line in Step 4 of the proof of Theorem A in [Sat00, Section 5]. Similar to the
proof in [Sat00] (apply Lemma 2.3.6), we need to show H,.(QL, * Rj;, QLo * R 5)
tends to exp(—t®,) as € goes to 0. By (2.10) of Lemma 2.6.1 and Theorem 2.5.1
(see (2.6)), we have

H,( 2,1 * Rg,h Qiz * R6,2)
=H,.( 2,17 22) * ]HT(RB,D Ré,2)

— {exp <—t /{|m|>6} dIK,.(vy, 1/2)> QZ’T} * {exp (—%tr(l — r)\bm\g) Rﬁ} :

where R! corresponds to the Lévy process with characteristic triplet (b,, R, 0) (i.e.
a Gaussian process). Here by (2.7),

b»,‘:’l“z)lr—f—(]_—’l“)l;gr

:rb1+(1—r)b2—/ x dK,(v1,11).

{le|<1}

Here we have used the following fact

rmn—v)+ (1 —=r) (e —v) =1+ (1 =1 — 1,

=rvy+ (1 —r)vy — H.(v1,1n) = K,.
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As ¢ | 0, the measure Q, goes to Qf, with triplet (0,1,,0). The proof is
completed by noting that Qf, * R}, = P} with triplet (b, R, ;). O

2.7 Density of Lévy Processes

For any two o-finite measures o; and o9, we denote the continuous part and the
singular part in the Lebesgue decomposition of o, with respect to o, by 03¢ and
o5 respectively.

V.
Take v = 11 + vy. For j = 1,2, choose the version f; := d—J satisfying
v

fi=>0 and fi+fo=1 v-as. onH.

Set
C:{f1>0andf2>0}, C1={f1:1andf2:O},
Co={fi=0and f, =1}, Cy = C1 U .
Then
Vi =1evn, vy =1g,vs = Leyls.
and 22 has the following version
n
@ - fg/fl on C,
din 0 on Cj.
Define
log (f2/f1)  on C; N g(z)  onC;
g(z) = and g(x) =
— 00 on Cs, 0 on Cj.

As in Section 2.6, we denote by N(du,dz) the random measure associated
with X;. For every t > 0, set

A ={N((0,t] x C3) =0} = {AX, ¢ Cs for all s € (0,t]}.

The following theorem is an infinite dimensional version of [Sat00, Theorem
BJ.
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Theorem 2.7.1. Suppose that P, and P4 are not mutually singular. Then

(1)

(2)

(3)

(4)

For every 0 < t < oo, the Lebesque decomposition of PL with respect to P!
s given by
(IP;)&C = lethga (IPtQ)S = jllD\AtIPé'

Consider

V, = lim S gax,) / (%) _1)uy(dz) | . (2.12)

e—0 (s,AX5)€(0,¢]x{|z|>e} {|z|>e}

Then the right hand side of (2.12) exists P1—a.s. and the convergence is
uniform on any bounded time interval Py—a.s.
Let b € Hy. Define

t
Ut = <b7 X1;>0 - §|b|g + ‘/;57

where X, is the Gauss component of the process (X, P1). It is a Wiener
process with covariance R. Then Uy s, under Py, a real valued Lévy process

with characteristic triplet (by, Ry, vy) given by

1 v
by = =5 1bl6 +/]H [1+ g(2)Lg<1y — @] va(da),
Ry = |b|(2)7

vo(A) = /H 14[g(x) m(dz), A€ B {0}).

The processes (U)o and (N((0,t] x C3)) +>o are independent under Py.
Moreover,

Py(At) = exp [—tr1(Cy)]  and  Pao(Ay) = exp [—tra(Cy)].

Choose b = by,. Then the Radon-Nikodym derivative of (PL)* with respect
to P! is given by

d(IP3)™
dP!

= exXp [—tVQ(Cg) + Ut] ]]'At'

Let @ be the probability measure on (D,.%) for which (X, Q) is the Lévy

process with characteristic triplet (by — f{|x‘<1} xdvy, R,v3°). Then

(P5)™ = exp [—11(C2)] Q"
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Proof. We only need to follow the proof in [Sat00, Section 6] with some slight
modifications. m

2.8 Appendix: R(H) # RY?(H)

This section is a continuation of Remark 2.4.3. For the finite dimensional case,
we have R'/?2(RY) = R(R?). But for infinite dimensional case, we shall show

R(H) c RY*(H) but R(H) # RY2(H).

Obviously R(H) = RY2(RY?(H)) C RY?(H) holds. Let {e;}r>1 be a series
of eigenvectors which consists of an complete orthogonal normal basis of H with

corresponding eigenvalues { Ay }x>1.
We first show RY2(RY) ¢ R(R?). For any x = (11,m9,...,74) € R?, take
Yy = (yla Y2, - 7yd) with

Tk

yk = \//\_k’

0, otherwise.

if \p > 0;

Then
d
Ry = Z Ve, = Z 1Ak>0)\k €k = Z AkYker =
=1

Now we assume H = 2. We show that R'/2(H) is a real subset of R(IH). Take
r =Y, v/Agep. Since the operator R is of trace class, we see z € H. But

RY?g = Z \/)\_k<x, e)er = Z Aeer ¢ R(H
k k

Otherwise if there exist some y € H such that Ry = RY2?z, then it must be
y =1 ¢ H. This is contradict with the fact y € H.






Chapter 3
Gluing and Coupling

In this chapter we prove a gluing lemma (Lemma 3.1.5) and study its applications.
In this lemma we show a martingale solution for operators of the form L1y +
Loly>7y, where Ly, Ly are second order differential operators and 7 is a stopping

time.

The organization is as follows. In Section 3.1, we first recall some basic no-
tations and [SV79, Lemma 6.1.1] and [SV79, Theorem 6.1.2] on which the proof
of the gluing lemma is based. Then we state the gluing lemma. The proof of
the lemma is given in Section 3.2. In Section 3.3, we apply the gluing lemma to
study the existence of coupling and the existence of weak solutions to coupled

stochastic differential equations.

Chen and Li [CL89, Lemma 3.4] (see Corollary 3.3.2) studies the gluing the
martingale generators via the diffusion coefficients. Our study is stimulated by
their statement and hints about the proof noted there. By the general gluing
lemma, it is possible to study the gluing of martingale generators via drifts.

3.1 Gluing Lemma

Let © = C(]0,00),R™) be the space of all continuous trajectories from [0, c0)
into R". For each w € Q and ¢ € [0,00), denote the position of w at time ¢ by
Xi(w) = X(t,w) =w; € R". For any 0 <t; <ty < o0, set

,///él =0(Xs: t1 <5< ty).
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Here we use the convention that we understand s < ty as s < ty if t, = 0co. We
will also use the following simplified notation:

My = ///,50, M =M, and A = //C?o.

Let S, represent the space of all n x n nonnegative definite real matrix. For
any measurable functions a(t,z) € S,, and b(t,z) € R™ defined on [0,00) x R",
let

L(a,b) := L(a(t,x),b Z a;;(t, x) 150 8:6] +Zb (t,z) 8?51' (3.1)

z] 1 i=1

Definition 3.1.1. Fix any (s,z) € [0,00) x R™. A solution to the martingale
problem for L := L(a,b) starting from (s,z) is a probability measure P** on
(Q, ) such that

P Xy =2,0<t<s)=1 (3.2)

and for every f € 65°(R?), a compact supported smooth function on R¢,

t
M= f(X;) — / Lf(X,)du
0
is a P**-martingale after time s.

Sometimes we have not the solution for all time. So the following solution
concept is useful.

Definition 3.1.2. Fix any (s,z) € [0,00) x R™. A solution to the martingale
problem for L up to a stopping time 7 starting from (s, x) is a probability measure
P** on (2, .#) such that (3.2) holds and there exist some stopping time sequence
T, T 7 such that for each n > 1, the stopped process MtJj\Tn is a P**-martingale.

For convenience, we will denote simply P* for P%*.

The following lemma and theorem are from Stroock and Varadhan [SV79,
Lemma 6.1.1] and [SV79, Theorem 6.1.2] respectively.

Lemma 3.1.3. Let s > 0 be given and suppose that P is a probability measure
n (Q,.#°). If n € C([0,s],RY) and P(z, = n,) = 1, then there is a unique
probability measure 6, @5 P on (Q, A) such that

0y @s Py =1n;,0 <t <s)=1
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and
0, @s P(A) =P(A), forall Ae .Z°.

Theorem 3.1.4. Let 7 be a finite stopping time on ). Suppose that w — Q, is
a mapping of 0 into probability measures on (S, #) such that

(1) w— Qu(A) is A -measurable for all A € A,

(2) Qu(z(1(w), ) =2(r(w),w)) =1 for allw € Q.
Given a probability measure P on (Q, .4 ), there is a unique probability measure
P®, Q. on (0, A ) such that P @,y Q. equals P on (Q, #;) and {6, @) Qu}
is a r.c.p.d. (regular conditional probability distribution) of P @,y Q.|.#;.

In particular, suppose that T > s and that 6 : [s,00) x Q — C is a right-
continuous, progressively measurable function after time s such that 0(t) is P @, (.
Q.-integrable for all t > s, (0(t N 1), 4, P) is a martingale after time s, and
O(t) — Ot A1), M,Q,) * is a martingale after time s for each w € Q. Then
(0(t), A, P ®-y Q.) is a martingale after time s.

By applying Theorem 3.1.4 ([SV79, Theorem 6.1.2]), we will prove the follow-
ing gluing lemma in Section 3.2.

Lemma 3.1.5 (Gluing Lemma). Let Ly and Ly be two second order differential
operators as (3.1) on R™. Let T be a stopping time on Q and define

L= L1jery + Lolgsqy.

Assume

(1) There exists a solution P to the martingale problem for Ly up to T;
(2) For each w € ), there exists a solution ]P;(w)’XT<“>(w)

lem for Ly starting from (T(w), X (w));

to the martingale prob-

(8) There exists a sequence of stopping time T, such that 7, T T as n — oo, the
following two conditions are satisfied for each w € Q.
(a) )
nh—>nc}o Lf(Xs)ds=0. (3.3)

tATh
(b) For every f € 65°(R"), / L1 f(Xs) ds is bounded and
0

tATH

lim Lif(X,)ds = / o Lif(X,)ds. (3.4)
0

n—oo 0

*In [SV79, Theorem 6.1.2], it is written as (6(t) —0(t A 7(w)), 44, Q). This is not true. We
shouldn’t fix the w in 7(-). See [SV79, Theorem 1.2.10].
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Define
Qu =0, ® IP;(W)’XT(“)(w)]l{T<OO} + 0ul{r=oc}, for every w € Q.
Then P{ @, Q is a solution to the martingale problem for L.

In Section 3.3 we apply this lemma to the existence of couplings and weak

solutions of stochastic differential equations.

Remark 3.1.6. It might be possible to consider the gluing of martingales corre-
sponding to Lévy operators. To this aim, we only need to consider the general-
ization of [SV79, Theorem 6.1.2] to the Lévy case.

3.2 Proof of the Gluing Lemma

For each f € €5°(R"™) and t > 0, define

6, = f(X,) /0 LF(X,)ds,
b = F(X) — /0 LX) ds,

wtzf(Xt)—/o Lo f(X,) ds.

We first prepare three lemmas. The first lemma show the relationship of 6,
with ¢; and 1 respectively. The theorem will follow the last two lemmas directly
by applying Theorem 3.1.4.

Lemma 3.2.1. For everyt >0 and w € €2, we have

97&/\7’ = (bt/\T (35)

and

Oy — Oinr = 1t — Yinr (3-6)
Proof. For every t > 0 and each n € IN, we know
et/\Tn = ¢tATn' (37)

So, to prove (3.5) we only need to show that as n goes to infinity, the limits of
the left and right hand sides of the equation (3.7) are 6;,, and ¢, respectively.
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By the continuity of the path X; and the fact f € €5°(R") and the assumption
(3.4), we have

tATh
lim ¢(t A 7,) = lim f(Xinr,) — lim Lif(Xs)ds
n—oo n—oo n—oo 0
tAT
3.8
= f(Xt/\T) - / L1f<Xs) ds ( )
0
=o(tNT).
On the other hand, by (3.3), we know
nlLI{olo [Ht/\T - et/\Tn]
tAT
= lim f(Xt/\T) - f(Xt/\Tn) + / Lf(Xs) d3:|
oo tATy
=0.
That is,
hm Qt/\Tn = Qt/\T (39)
(3.5) follows from (3.8) and (3.9).
Now we come to the proof of (3.6). First, it is easy to see
<0t - Qt/\r):ﬂ-{t<7} =0= (¢t - ¢tAT)1{t<T}
and
t
(6~ buiry = [ LI dst i
t
= / Ly f(Xs) dslysry = (Ve — Yinr) Ljgzny-
Hence
Op — Onr = (0 — Ounr ) Lppary + (01 — Oppr)Lginry
= (Yt — Yinr ) Lgery + (Ve — Vine) Lpsry = Y — Yiar
]

Lemma 3.2.2. (0yr,, #;,Py) is a martingale.

Proof. By (3.5), to prove 6,5, is a martingale, we only need to show that ¢, is

a martingale.
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Since PP7 is a solution to the martingale problem for L, up to 7, we know
(dinr,, My, PT) is a martingale. Therefore, for any 0 < s < ¢, the following
equality holds

E(gbt/\TnL%s) = qbs/\’rn-

By assumption (3.3), let n — oo and apply the bounded convergence of condi-
tional expectation, we obtain

E(¢t/\7’|%s) = gb(s N 7—)'

This proves that ¢, is a martingale. O

Lemma 3.2.3. (0, — Oy, #;, Q) is a martingale for each w € Q.

Proof. Fix an arbitrary path wy € Q. We set tq := 7(wp) and X;,(wp) = xo. For
any fixed constants 0 < t; < t,, we need to prove

EQMO <9t2 - 6t2/\7|‘%t1> = etl - etl/\’r‘ (310)

If ty = oo, then @), = d,,.- That is, the measure is concentrated on the path
wo. In this case, Equality (3.10) is trivial since we have

9t - et/\r - gt - Qt/\to - et - Ht/\oo =0.

In the following we shall assume ¢, < co and we will prove (3.10) in the following
three cases: (CASE ].) to <t < to; (CASE 2) t1 <ty < to; (CASE 3) 11 <ty < tp.

CASE 1. Assume ty < t; < t5. By (3.6), we only need to show

EQWO (th - 1/}t2/\7'|‘%t1> = wtl - ¢t1Ar~

In other words, we need to show for any A € .#;,,
Qwo (wb - Zbt2/\7’7 A) = Qwo <¢t1 - 2/}tl/\ra A) (311)

Since PY* is a solution to the martingale problem for L,, we know 4 is
a PY" martingale. Therefore we see 15, is a martingale by [SV79, Corollary
1.2.7]. Hence, ¢y — . is also a martingale.

The martingale property of ¢, — 15, implies that for any tq < t; < t5 and
Ae . at

Py (Y1, = Yiznrs A) = P (g, = Piynr, A). (3.12)
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Note that it is enough to prove (3.11) for the case when A = A; x Ay with
Al S ,ﬂto and AQ S e%tlo.

Quo (V1 — Yianrs A) = 0y @ PP (P, — Ppnr, Ay X Ay)
= G (A1) X P (41, — Piynr, Ag)
= 0y (A1) X PP (g, — Wi nr, Ao)
= 0y @ P (W, — Wi, Ay X As)
= Quo (Y1, — Yrinr, A).

This proves (3.11).

CASE 2. Assume t; < tg < t5. By the fact 4, C .#,, and a property of
conditional expectation, we have

EQWO (Qtz - 9752/\7|'%tl) = EQWO (EQWO (¢t2 - 77ZJ152/\7'|'%150) |'%tl)

= E%0 (¢4, — thionr |41,
= EQwO (61‘/0 - eto/\f"%tl) .

Hence, (3.10) is reduced to prove
E®0 (0, — Oynr|My,) = O, — O pr (3.13)
This is true since we have
Quy (O — Otonrs A) = 0= Quy (01, — Opynrs A).
for any A € ;. In fact, for any t < ¢y, we know

Quo (0 — Oipr, A) = 0y @ P (0, — Oypr, A)
= 0w (A) - (0 — Oenr(on))
= 0w (A) - (0 — Oy,
= 0wy (A) - (6 — 61)
=0.

Here we have used the fact that, 7 = 7(w) = to-P5"*°-a.s. when confined on A.

CASE 3. Assume t; < t3 < ty. As in the proof in CASE 2, for any A € 4,
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and t > 0, we have

Qwo (etz - 9t2/\7’7 A) = 0 - Qwo (0t1 - 9t1/\T7 A)

]

Proof of Lemma 3.1.5. We need to show that 6, is a martingale on (0, 4, PT ®.,
Q). According to Theorem 3.1.4 (i.e. [SV79, Theorem 6.1.2]), it suffices to prove
the following two statements.

(a) (Oinr, A, P7) is a martingale.

(b) (0; — Oupr, A, Q) is a martingale for each w € Q.
But they are the conclusions of Lemma 3.2.2 and Lemma 3.2.3 respectively. [

3.3 Coupling

In this section, we apply the Gluing Lemma 3.1.5 to the existence of couplings
and the weak existence of coupled stochastic differential equations.

Now we suppose 2 = C([0,00), R??). Denote Z;(w) = w; = (X;(w), Yi(w)) €
R? x R? for each w € Q. For i = 1,2, let a;(t,z): [0,00) x R? — S; and
bi(t,z): [0,00) x RY — R? be measurable functions. Let c(t,z,y) be a d x d
matrix valued measurable function defined on [0, 00) x R% x R

Set

otz y) = (Cal(t, x) c(t,x,y))  b(hay) = (bl(t,x)) .

*(tvxay) a2(t7y) b2(t7y)

Suppose the martingale problems for L(a;(t,x),bi(t,x)) and L(as(t, z),ba(t, x))
are well-posed. We denote the solutions respectively by P4 and IPY.

If P™¥ is a solution of the martingale problem for L(a(t,x,y),b(t,z,y)), then
P™Y is a coupling of P¥ and PY. That is, the marginal distribution of P*¥ are
exactly PY and PPY.

Besides function ¢(t,z,y) introduced above, we will consider the following
functions. Let o(t,x) € S; be measurable real matrix defined on [0, 00) x R?. Let
b(t,x), £(t,z,y) be R? valued measurable functions defined on [0,00) x R¢ and
[0,00) x R? x R? respectively. We assume that a, b, € all are locally bounded.

The following lemma is proved in [CL89, Theorem 3.1].
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Lemma 3.3.1. Suppose that the martingale problem for the basic coupling L(a,b)
with

t t,r)* t t,y)* b(t
a’(t7x7y) = O-( ’x)o-( ’x)* O-( 7$)O-< 7y)* Y b(t7x7y) = ( "CL‘) Y
ot,y)o(t,z)* olt.y)o(t,y) b(t, )
1s locally well-posed. If we denote the solution by P*Y, then we have
Xe=Y, t>71, P™-as. on{r < oo}

Here 7 is the coupling time of the marginal processes X;,Y; of Zy, i.e.

7 :=1inf{t: X; =Y}

The lemma above describes a fundamental property of basic coupling. In-
tuitively, basic coupling ensures the marginal processes move together after the
coupling time. Refer to Figure 3.1. For this reason, basic coupling is also called
march coupling. For more details we refer to the books by Chen [Che04, Che05].

'Coupling Time
= >

Figure 3.1: March Coupling

Applying Lemma 3.1.5, we get the following corollary which is stated by Chen
and Li [CL89, Lemma 3.4] with hints for the proof.

Corollary 3.3.2. Let PTY be a solution to the martingale problem for L(ay,b)
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with

(ot a)oltay  cltay) ()
al“’““””‘( eft,z.9)" a<t,y>a<t,y>*)’ bt ,9) (b(m))' (314

T(w),Z(1(w))

up to some stopping time 7. For every w € €1, let P, , be a solution to

the martingale problem for the basic coupling operator in Lemma 3.5.1 starting
from (1(w), Z(1(w))). Define Q, for each w € 2 as in Lemma 3.1.5. Then

R= IPT’y ®r Q

is a solution to the martingale problem for L(ag,b) with

’ ’ +a(t, 2)o(t,y) Lo

a?(ta €, y) = *
C(tvxay) :H-[O,T) O'(t y)a(t y)*
+0(t,9)o(t,0) L) o

and the drift b unchanged as in (3.14).

Remark 3.3.3. A typical use of this fact is the following. First we obtain successful
coupling (the marginal processes meet) by choosing c(t, z,y) properly. Then the
marginal processes will move together after the coupling time.

Similar to Corollary 3.3.2, we can can obtain coupling by choosing proper
drift.

Corollary 3.3.4. Let PTY be a solution to the martingale problem for L(a,b)

with
ot z,y) = (O’(z, x)o(t, ) ait,x)a(t,y) > |

hiltz,y) = (b(t Y) —|—§ t T y)

T(w),Z

up to some stopping time 7. For every w € €1, let IP, “) be a solution to the

martingale problem for the basic coupling operator in Lemma 3.5.1 starting from
(T(w), Z(1(w))). Define Q, for each w € Q as in Lemma 3.1.5. Then

R=PI"®,Q
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is a solution to the martingale problem for L(a,by) with

B b(t, )
bo(t, x,y) = <b(lf, y) + &(t, x,y)ﬂ{r<t}>

and the diffusion coefficient a unchanged.

By the relationship between martingale solution and weak solution of stochas-
tic differential equation (see [KS91]), we can restate Corollary 3.3.4 in the follow-
ing ways.

Corollary 3.3.5. Consider the following stochastic differential equations on R*?

{ dX, = o(t, X;) dW, + b(t, X,)dt, Xy =z e RY, (3.15)

d}/}, = O—(ta }/t) th + b(t7 }/l-f)dt + f(ta Xt7 K)Zﬂ-{t<T}dt7 }/[-) =Y S Rd?

where Wy is an R¥-valued Brownian motion. Suppose that there exists a weak
solution to (3.15) up to 7. Assume further that there is a weak solution for all

t > s to the following equation

dX, = o(t, X,)dW, + b(t, X,)dt, X, =7 € R?,
{ ¢ = olt, Xe) dW: +b(1, Xi) (3.16)

dY; = o(t,Y;) dW, +b(t,Y,)dt, Y, =7 R,

for every fized (s, (%,7)) € [0,00) x R? x RY. Then there exists a weak solution
to the equation (3.15) for all time.

Corollary 3.3.6. Consider the following stochastic differential equation on R*?

d () = ot X0, v aw, + blt, X¢) dt, (3.17)
th b(tai/;/) + f(taXh}/t)ﬂ{t<T}

with Xo = x,Yy = y, where W, is an R?*?-valued Wiener process, o(t,z,y) is
a 2d x 2d measurable nonnegative definite matriz. Suppose there exists a weak
solution to (3.17) up to T and there is a weak solution for all t > s for the

following equation

X b(t, X3)
d =o(t, X, Y;) dW, dt
(Y;) U( y <Aty t) t"— (b(t,m)) ;

with X, = z,Y; = y for any (s,%,9)) € [0,00) x R? x RY. Then there exists a
weak solution to the equation (3.17) for all time.






Chapter 4

Harnack Inequalities for
Stochastic Differential Equations

In this chapter, we show Harnack inequalities for stochastic differential equations
and their applications.

In Section 4.1, we introduce Wang’s Harnack inequalities ([Wan97]) in which
we are interested in this thesis by a simple example. We also refer to a survey
paper Wang [Wan06]. In Section 4.2, we recall some known results concerning
Harnack inequalities for stochastic differential equations on Euclidean spaces by
applying the known results for diffusions on manifolds from [Wan97, ATWO06].

We aim to consider Harnack inequalities for stochastic differential equations
with more general drifts by the method of coupling and Girsanov’s transformation.
This method has been introduced by Arnaudon et al. [ATWO06] to establish
Harnack inequalities for diffusions on manifolds with curvature unbounded below.
Coupling methods and Girsanov’s transformations are classical tools. For the
introduction of coupling methods, see [Lin02, Tho00, Che05] et al.; for Girsanov’s
theorem, see [KS91, IW81, SV79, RY99] etc..

We establish Harnack inequalities for stochastic differential equations in two
frameworks in Section 4.3 and Section 4.4 respectively. We first prove Harnack
inequalities with two kinds of abstract assumptions in these two frameworks.
The first framework is easier to understand and the second framework involves
an approximation procedure. Then we apply these two frameworks to study
some concrete examples. In Section 4.5, we consider the classical monotonicity
condition under the first framework. In Section 4.6, we assume the stochastic
differential equation has linear growth drift and satisfies some regular condition

in the second framework.
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The method of coupling and Girsanov’s transformation doesn’t work well for
stochastic differential equations driven by general continuous martingales or pure
jump processes. We explain the reasons in Section 4.8.

4.1 Introduction to Harnack Inequalities

We demonstrate Harnack inequalities in the sense of Wang [Wan97| for simple
Ornstein-Uhlenbeck processes on Euclidean space R by direct computations. For
the classical Harnack inequalities, we refer to a survey paper by Kassmann[Kas07]
and references therein.

Denote by %, (R?) the set of all nonnegative bounded and continuous function

on R%, and | - | the Euclidean norm on R%.
Example 4.1.1. Consider the following Ornstein-Uhlenbeck process
dXt = —/{Xtdt ‘l— th7 (41)

where k € R is a constant and W, is a standard Brownian motion on R?.

For every initial condition X, = x, the solution of the stochastic differential
equation (4.1) can be written down explicitly as (see for example, [TW81, KS91])

t
X, =xe ™ +/ e~ =9 qw,. (4.2)
0
Let
/j’t = N(07 Ut2)7
where

o 1 —exp(—2kt)
%= 2K ’

t>0.

The formula (4.2) allows us to read that for each ¢ > 0, X; is Gaussian

2

% and variance o7, i.e.

distributed with mean xe
X, ~ N (ze™™, 07).
Let P, be the transition semigroup associated with X;. It can be expressed as

P f(x) = ” flze™ +2)du(2), x € R fe€ G (RY.
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We shall prove that for every ¢ > 0,a, 3 > 1 satisfying 1/a + 1/ = 1 and
f €6, (RY),z,y € RY, we have

Py < o () )

Proof. Note that

2
pe(dz) = (2mo?) =% exp <—ﬁ) dz.

2
20;

By using a change of variable then applying Holder’s inequality, we can get

b f(z)

= [ flze™ + 2) du(2)

Rd

2]

:(27mt2)7d/2 f(xe™ + 2) exp (——2) dz
R4 20

—(2r0?) " [ flge "+ 2 exp (—

t
_ —Kt 2
st et ),

R4 2Jt2

=(2r0?) ™" | flye ™ + 2)-

= [ flye
R4

=exp (—
<exp (—

R4

—2kt . 2_271€t - 2
S E ALY
t

e — y? — 2z — y, 2)

4 ) exp (— = ) d2)

Sl e —y,2)

- = I yP flye ™™ 4+ 2)exp [ ———5—2L ) duy(2)
20_t2 R Yy p 2 Lot

o
72nt|l.

Y ([ e+ <z>)1/a
20_2 R Yy Lot

t

(foon P an) ™

—2kt 2 —2kt 2
) () e ()

207 207

-1 —2kt 2 o
(6 )620-? |£17 y| > (Ptfa(y))l/
_ e—2/~ct|x y|2 N 1/a

(4.3)
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]

Remark 4.1.2. We refer to Chapter 5 for more discussions on Harnack inequalities
for Ornstein-Uhlenbeck processes.

From the Harnack inequality (4.3), we see what kinds of inequality we are
interested at. Let X; be a general diffusion process on R? and denote the corre-
sponding semigroup by P;, we are looking for inequalities of the following form

(P.f)*(x) < CPf*(y) (4.4)

forall t > 0, a > 1, z,y € R? and f € 4,7 (RY), where C is some constant
depending on t, o, x,y but independent of function f.

One point of this inequality is that we communicate the action of the power «
with the action of the semigroup on the function f. To be clear, we can compare
the Wang-type Harnack inequality (4.4) with the following celebrated Li-Yau type
Harnack inequality (see Li and Yau [LY86]) which communicate the time:

Pf(z) < (Pusf(y)) (HTS) “ exp (a|x4_3 o * 4(3/€—81))

for any s,¢t >0, a > 1 and f € €}(RY).

Another remarkable feature of this inequality is that it is dimension-free. It
is important since dimension is no longer available if the state space is infinite
dimensional.

4.2 Harnack Inequalities: Known Results

Harnack inequalities were studied for diffusion processes on Riemannian manifold
with curvature bounded and unbounded below in [Wan97] and [ATWO06] respec-
tively. We introduce their results and show what is specially known for diffusions
on Euclidean spaces.

Let M be a d-dimensional connected complete Riemannian manifold with
convex (or empty) boundary. Consider L = A + Z for some C*-vector field Z on
M such that the curvature is bounded below, i.e.

Ric(X,X) — (VxZ,X) > -K|X|?, Xe€TM (4.5)

for some constant K € R. Then the diffusion process generated by L is non-
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explosive and the corresponding semigroup P, satisfies the following gradient es-
timation
VPl <PV, t>0,f €% (M) (4.6)

Wang [Wan97] (see also [Wan04b]) was able to integrate (4.6) along a geodesic
and establish the following Harnack inequality: for every ¢t > 0, «, 3 > 1 satisfying
l/a+1/8=1,z,y € M, and f € 6,7 (R?), the following inequality holds

(Pufye) < oo (P o) (4.7

where p is the distance function on M. When K = 0 the right hand side of (4.7)
is understood as the limit and (4.7) becomes

Py < e () g (45)

Inequality (4.7) is the best case one can expect under the curvature condition
(4.5). Indeed, it is proved in [Wan04a] (see more equivalent statements there) that

the curvature condtion (4.5) and the Harnack inequality (4.7) are equivalent.

Since we concentrate on the stochastic differential equations on R?, we need
to understand what we have shown for the special case when the manifold M is
reduced to an Euclidean space.

Consider the case when M = R? and Z = b-V with b € ¢'(R?). For

0
1=1,...,d, we denote 0; = EP and the Jacobian matrix of b by J = (9;b;)axa,

Proposition 4.2.1. Let M = R? and Z = b -V with b € € (RY). Then the
curvature condition (4.5) is equivalent with each of the following conditions

(1) For all £ € €Y (RY) with || = 1, we have (€, J€) < K. That is,

d
Z i&;0;bi < K. (4.9)
ij=1
(2) Global weak monotonicity condition:
(x —y,b(z) = b(y)) < K|z —y|*>, forall z,y € R (4.10)

Proof. Since the Euclidean space is flat, the curvature condition (4.5) is simply

(VxZ, X) <K, |X|=1.
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This is true since for every X = 2?21 &0;, we have
d d
(VxZ,X) = <VX (Z bii?i) ,X> = (Vx(bid), X)
i=1 i=1
d d
= (X(0:)0; + bV x0;, X) = > Xbi(0;, X)
i=1 i=1
d d d d
= Xb; <ai, Zgjaj> =Y &Xbi= > &&0bi.
i=1 i=1 i=1 ij=1
This proves the equivalence between (4.5) and (4.9).

Now we prove that (4.9) implies (4.10).

We will need to use the following Hadamard’s formula: for any z,y € RY,
1=1,...,d, we have

d 1
) = bl) = Yoy =) [ Obtrat (1 =ryar. (@D

The proof of the formula (4.11) is obvious. We only need to apply the fundamental
theorem of calculus to the function r — b;(rx + (1 — r)y) for r € [0, 1].

By (4.9) and the Hardamard’s formula (4.11), we have

d

(. —y,b(z) —b(y)) = Z(% - yz)(bz(‘r) - bi(y))

i=1

d 1
=Y i)~ ) [ O+ (1= )
ij=1 0
<Kl|x —yl*
Hence the global monotonicity condition (4.10) holds.

It remains to show that the monotonicity condition (4.10) implies (4.9).

By the very definition of derivative, for any ¢ > 0, there exists a 6 := J(¢)
such that for all 7 satisfying |n| < 0, we have

b +n) = b(z) = Jn| __
ul T
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Hence
(n, Jn — (b(z +n) = b(x))) < elnl*. (4.12)

Now for every £ € R, || = 1, choosing € R? such that || < § and n = |n|¢.
Take y = x + 1, then deduce from (4.10) we get

(n,b(x +n) — bz)) < Kn?,

Therefore, we have

(i) _ o 0T — (0 + 1) — b)) )
[nl? [nl?
Substitute (4.12) into (4.13) we get
(€, JE) < K +e.
By the arbitrariness of ¢ > 0, (4.9) follows immediately. O

Now we introduce Harnack inequalities proved in [ATWO06] for diffusions on

manifolds with curvature unbounded below.

Theorem 4.2.2. Denote by po(z) := p(o,x) the distance of x from a fixed point
0. Suppose that

inf{Ric(X, X) : X € T,M,|X| =1} > —C(1 + po(x)?), (4.14a)
sup{(VxZ,X): X € T,M,|X| =1} < C(1 + po(x)), (4.14b)
(Z,Vpo(x)) < C(1+ po(x)). (4.14c)

Assume additionally the corresponding process is non-explosive. Then for any
€ (0, 1] there exists a constant c(e) > 0 such that

(Pef)*(x) < exp(N(t, o, @, y,€)) P f* ().
where N(t, o, x,y,¢€) is

c(e)a?(a+1)*

L (1 + p(z,y)*)p(x,y)
alea+p(z,y)? a—1 )
22—Na—1i 2 (1+ po()?).
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Again, consider the case M = R? and Z = b-V for some b € €1 (R?). Then the
curvature and growth conditions (4.14b) and (4.14c) are reduced to the following

conditions

(z,b(t,r)) < C(1+ |z*)

for some constant C > 0.

4.3 Harnack Inequality: Framework I

Fix T > 0. Let b(t,x) be an R?valued Borel measurable function defined on
[0, 7] x RY. We aim to study Harnack inequality for the transition semigroup P

associated with the following stochastic differential equation:
dX; = dW, + b(t, Xy)dt (4.15)

for t € [0, 7], where (W})o<i<r is standard Brownian motion on R¢,
We turn to consider the following coupled stochastic differential equations on
Rd
{ dXt = th + b(t, Xt)dt - Ut(Xt, n)dt, X() =, (416&)
dY; = dW, + b(t, Yy)dt, Yo =uy. (4.16b)

for t € [0,T], where U;(x,y) is an R%valued Borel measurable functions defined
on [0,T] x R% x R%.
For every 0 <t < T, set

¢ 1
Nt = / <Us; dWs> a’nd Rt = €exp (Nt - é[N]t) :
0

We will need the following assumption.

Assumption 4.3.1. We assume

(1) The equation (4.16) have a weak solution. That is, there exist processes
(X+, Yy, Wi)o<t<r on some filtered probability space (Q,. %, (%)o<t<r, P)
satisfying equation (4.16).

(2) For every starting point, the solution to the equation (4.15) is unique in
law.

(3) (Ri)o<t<r is a F-martingale with respect to P.
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(4) XT = YT; P-a.s..

Remark 4.3.2. (1) In applications, we can use the results in Section 3.3 for
existence of the weak solution of (4.16).
(2) Item (3) of Assumption 4.3.1 holds if the following Novikov’s condition

E exp <%[N]T> < o0 (4.17)

hold.
With Assumption 4.3.1, we have the following result.
Lemma 4.3.3. Let Assumption 4.3.1 hold. Then

(Prf)*(x)
< [Ee o (Goam - | TIUS(XS,Y;)]?dsH(al)/q pp O

holds for every z,y € RY, f € 6,7 (R?), and o, B, p, q > 1 satisfying 1/a+1/5 =1
and 1/p+1/q=1.

Proof. Define a new probability measure @ on (2, %#7) by setting Q = RrP. By

Girsanov’s theorem,
. t
Wt::Wt—/Ust, OStST
0

is also a standard Brownian motion on (€2, %7, Q). In terms of this new Brownian

motion Wt, we can rewrite the equation (4.16) into the following form

dX, = dW, + b(t, X,) dt, X, = 1, (4.19a)
dY, = dW, + b(t, Yy) dt + Uy(X,, V), Yo=y. (4.19b)

Therefore, (X3, Wt) is also a weak solution to stochastic differential equation
(4.15) with starting point z. By the uniqueness assumption, we have Prf(z) =
Eqf(Xr).

Note the fact that Prf(y) = Epf(Yr) and X7 = Y7 almost surely, by applying
Holder’s inequality, we get

Prf(z) = Eqf(Xr) = Eqf(Yr) = EpRr f(Y7)

< (EPR:[,{) 1/ (]E]Pfa(YT))l/a _ (EpRéz) 1/ (Prf°(y)) (4.20)

1/
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Since (Ry)o<i<r is a F-martingale with respect to P, we have

Ep R’
=Ep exp (ﬁNT — %ﬁ[N ]T)
—Ep exp (6NT — %pﬁQ[N ]T) exp (%ﬁ(ﬁp - N ]T) (4.21)

1/q

< [EP exp (pﬁNT - %pWUV]T)} " |:]EIP exp (%ﬁQ(ﬂp - 1)[N]T):|
= [Beess (G- vy )]

By substituting the estimate (4.21) above into (4.20), we can get (4.3.3) and
finish the proof. [

4.4 Harnack Inequality: Framework 11

As in Section 4.3, we fix a constant T' > 0, and let b(¢,x) be an R%valued Borel
measurable function defined on [0,7] x RY. We aim to study Harnack inequal-
ity for the transition semigroup FP; corresponding to the stochastic differential

equation (4.15) with irregular drift.

This time, we turn to consider a approximation of the stochastic differential
equation (4.16).

Denote by I the d-dimensional identity matrix. For every ¢ > 0, set

1 ((\/2 “e+ A (V2—¢e-— \/E)I) | (422

g

T2\ (V2= eI (V2—e+ o)
Let us consider the following stochastic differential equation on R2%:
dZ, = o°dW, +b(t, Z,) dt, Zy =z € R*, (4.23)

where W, € R? x R% is a 2d-dimensional Brownian motion, and

b(t,z) = b(t,x,y) = (b(t,w)bévy()t,x,yv , Zy=z= (i) € R? x RY.
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Here the drift 7 is an R?valued measurable function which maybe dependent on
€.

For every 0 < t < T, let Wu and Wgﬂg be the two d-dimensional marginal

processes of W;:

W, = (g”) € RY x R%.

Denote
W, = (Wl’t> = o W,.
W2,t
Then
Wie= 3 (VI=2 + VO + (VI — VEIT,)
Lmt_%QV2—5—¢UWQH4¢2—5+¢UWQQ

Let (X;,Y:) € RY x R be the marginal processes of Z;.

Now we can rewrite (4.23) as

dXt = dWl,t + b(t, Xt>dt - ')/(t, Xt7 Y;)dt, X() =x, (424&)

for0<t<T.
For every t € [0, T, set

' 1
Ny = / (Vs, dWas), Ry =exp (Nt - §[N]t) ,
0

We will work under the following abstract assumption.

Assumption 4.4.1. We assume

(1) For every starting point, the equation (4.23) has a weak solution. That is,
there exist couple processes (Z;, Wt)ogtST on some filtered probability space
(Q, Z, (F)o<i<r, P) satisfying the equation (4.23).

(2) For every starting point, the weak solution to equation (4.15) is weak unique.

(3) (Ri)o<i<r is a .Z-martingale with respect to P.

(4) For a distance p on R?, we have

n—oo

hmP(MXpHJE%):Q (4.25)
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With these assumptions, we can prove the following lemma.

Lemma 4.4.2. Suppose Assumption 4.4.1 holds. Then

. o 1 T , (a—1)/q )
U%f)(w)S}ﬁgg%{EpeMD(ﬁﬂdﬁp—l)[:I%Jck)} Prf(y).
(4.26)

holds for every z,y € RY, f € €,"(R?) and a, 3,p,q > 1 satisfying 1/a+1/5 =1
and 1/p+1/q=1.

Proof. Define a new probability measure on (2,.%r) by setting Q = RyP. Then
by Girsanov’s theorem,

. t
Wl,t = Wl,t — / ’}/tdt, te [O, T]
0

is a Wiener process on (2, Zr, Q). Now we can rewrite the equation (4.24a) into
the following form

dX, = dWy, + b(t, X;)dt, Xo=x. (4.27)

We see (X, WM) on (2, .Zr, Q) is also a weak solution to the stochastic differential
equation (4.15). Therefore, by the weak uniqueness, we have Prf(z) = Eqf(X7).

Without loss of generality, we can assume that f is a bounded nonnegative
function on R? such that

[f(x) = f(y)| < Lip(f)p(z,y).

for some constant Lip(f). With this, we have

Prf(z) = Eqf(Xr)
- EQf(XT)ﬂ{p(XT,YT)s%} + EQf(XT)]l{p(XT,YT»%}
< Eq[f(Yr) + (f(Xr) — f(YT))}ﬂ{p(XT,YT)g%}

#1f1 ({0t ) > 2 1)

< Eqf(v) + 1Lin() + <P ({pxr. v > 11).

n

(4.28)

Note that we also have Prf(y) = Epf(Y7). Therefore, by applying Holder’s
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inequality, we have

1/o

Eqf(Yr) = EpRrf(Yr) < Ep(R5)""Ep (f°(Yr))

) O (4.29)
= Bp (R2)" (Prfo(y) "

Since (Ry)icor) is a Fp-martingale with respect to P, we have (similar to
(4.21))

1 T 1/q
Ep RS, < {E exp (gﬁqu— y [ m%)} | (4.30)
0

Now substitute (4.29) and (4.30) into (4.28), we get

Prf(z) < []EP exp (%ﬁQ(ﬁp -1) /OT 75| ds)} o (PTfa(y))l/a (4.31)

+ = Lip(f) + /P ({MXT’YT) g l}) |

n

We can get (4.26) and finish the proof by letting ¢ — 0 and n — oo in (4.31)
and noting the assumption (4.25). O

4.5 Global Monotonicity Condition

In this section, we apply the framework in Section 4.3 to the classical Global
monotonicity condition. In this way we see that we can obtain the known Harnack
inequalities for stochastic differential equations on Euclidean spaces (see Section
4.2).

Let b be a continuous function satisfying the following linear growth condition
b(t, )| < C(1+z]), z€RY, 0<t<T
for some constant C' > 0 and the following global monotonicity condition
(x —y,b(t,x) —b(t,y)) < K|z —y|?, z,yeR*®, 0<t<T. (4.32)
for some K € R. We take

X, Y,
Uy(X4, V) = &lo — y||Xt—Yt|]l{t<r},
t— 1t
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where & > 0 is a deterministic continuous positive function on [0, 7] satisfying

T
/ Ece B ds > 1. (4.33)
0

We first prepare two lemmas to check Assumption 4.3.1.

Lemma 4.5.1. [tems (1) and (2) of Assumption (4.3.1) hold.

Proof. With the global monotonicity condition (4.32), we see Equation (4.16a)
has a unique weak solution for all time. On the other hand, for every fixed
s €10,T], #,5 € R4, the following equation

dX; = dW, +b(t, X;)dt, X,=7i¢cR%
dY, = dW, +b(t,Y,)dt, Y,=75€ R

has a weak solution for ¢ € [s, T].

Since b is continuous and Uy is also continuous before the coupling time 7, by
[IW81, Chapter IV, Theorem 2.3] we know Equation (4.16) has a weak solution

up to 7.

Now, by the results in Section 3.3, we know Equation (4.16) has a weak
solution on [0, 7. O

In the following, we prove that the the two marginal processes meet at time
T. Figure 4.5 explains the idea.

Lemma 4.5.2. We have Xt = Yy P-a.s.

Proof. We only need to prove that X; and Y; shall meet each other before the
fixed time T since X; and Y; will move together after the coupling time. That is
we need to show 7 < T

It is easy to see that

XY,
d(X, —Y,) = (b(t,XJ —b(t, ;) — &lw — y|ﬁﬂ{t<7}) dt, t<r.

By (4.32), we have
dlX; = Y| < K[|X; = Yi|dt — &l —yldt, t<T.

Hence
d| X, — Y| e Kt < &lr — v e Kt <1
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Coupling Time

X =Y,

T T

Figure 4.1: Coupling Before Fixed Time

Thus, if T < 7 then

T
0<|Xp—Yr|e ™ < |z —y (1 —/ Ee ks ds> <0.
0

This contradiction implies that 7" > 7 and hence X; = Yr. O

By we can apply Lemma 4.3.3 to prove the following theorem.

Theorem 4.5.3. Let (4.32) holds. Then

(Pepye) < esp (TSI ) Prg) (1.31)

holds for every T > 0, x,y € R%, f € €, (R?) and o, 8 > 1 satisfying 1/a+1/3 =
1.

Proof. Since Uy is bounded, Item (3) of Assumption 4.3.1 holds automatically by
applying Novikov’s condition (see (4.17))

(2)). With Lemma 4.5.1 and 4.5.2, we know Assumption 4.3.1 hold.

By (4.18) we get

ey < [Bees (oo [T -pea)| mpw, ws)
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where p > 1.
Let p — 1 in (4.35) and note that (o« — 1)( — 1) = 1 we can obtain

a ﬁ —yl «
pepye) <o (T [ eas) g, (4.36)
Now take
- 0<t<T (4.37)
S&=—7F——— 0<t<T :
fO e—2Ks (g
Then
dt fo KS —2K5> ds B 1 B 2K (4 38)
ft T T oks g. ] — e—2KT" '
f o—2Ks ds) NG ds
Substitute (4.38) into (4.36), we can get (4.34) and complete the proof. O

Remark 4.5.4. Let & be any function satisfy (4.33). Then by Holder’s inequality

we have
T 2 T T
1< (/ fse’Ks ds) g/ ffds/ e 2K (g,
0 0 0
Therefore,
T
1 2K
2
ds > = .
/0 £ ds = fOTe_2K5 ds 1 — e 2KT
. 2K . .. T +2 .
This means that ————— is the minimum of fo &:ds over all choices of &

1 _ o 2KT
satisfying (4.33). Hence the function & in (4.37) is optimal under all possible
choices of &;.

4.6 Linear Growth Condition

We work in the framework introduced in Section 4.4. We take the distance
function p(z,y) to be the Euclidean distance: p(z,y) = |z —y| for every x,y € R4

Fix T > 0. Let b: [0,7] x R? — R? be a measurable function satisfying the

following conditions.

Assumption 4.6.1. (1) There exist some constant C' > 0 such that

lb(t, )| < C(1+z]), 0<t<T, ve€R™ (4.39)



4.6. Linear Growth Condition 83

(2) There exists a nonnegative function g on [0, 00) such that

|ISL;|p_T %(b(t, x) = b(t,y),r—y) < g(r). (4.40)
Remark 4.6.2. (1) The linear growth condition (4.39) is used to ensure the ex-
istence of weak solution the equation. We do not need the continuous of

the drift.

(2) We use Condition (4.40) to get a better estimate of the constant in the
Harnack inequality we will prove. Condition (4.40) is also used in [PWO6,
Hypothesis 3.1 iv.]. This condition generalizes substantially the standard
condition that ¢g(r) = cr for some ¢ > 0, which implies the uniqueness
and regularity of strong solutions of the associated stochastic differential
equations. If b is uniformly continuous on R¢, we can take g as the modulus
of continuity of b, i.e. g(r) = supy,_, <, sup [b(x) — b(y)|.

We will apply Lemma 4.4.2 to prove the following result.

Theorem 4.6.3. Suppose that (4.39), (4.40) hold and the solution to Equation
(4.15) is weak unique. For every T > 0, z,y € R, f € €,"(RY) and o, > 1
satisfying 1/a + 1/ = 1, the following inequality holds

o 5] 4 &z —y i a
Prfy (@) < e 5 [ [m—mwm at | Prfoty). (a4

Remark 4.6.4. The weak uniqueness of solution to equation (4.15) can be implied
from proper choice of g in (4.40). See for example [FZ05].

To prove Theorem 4.6.3, we first take a concrete v in Lemma 4.4.2 and then
check Assumption 4.4.1.

Let n € N. We take ¢ = 1 for (4.22) and set

X, Y, "
(0.X0 ) = | { Ty e X0 — (0.7
e(d—1) Gle—yl| X =Y
sty — : Lx-vijsop (442
Xy ey Ty e (4.42)

for the drift in the stochastic differential equation (4.23).

Lemma 4.6.5. ltems (1) and (2) of Assumption 4.4.1 hold.
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Proof. Since 7 is of linear growth, by [KS91, Proposition 3.6], we know Equation
(4.23) have a weak solution. Hence Item (1) of Assumption 4.4.1 holds.

Item (2) of Assumption 4.4.1 follows from [KS91, Corollary 3.5.16]. O

We will use the formulae (2.8)—(2.10) in [CL89]. For convenience, we summa-
rize them into the following lemma.

Lemma 4.6.6. Let L = L(a(t,z,y),b(t,x,y)) be a second order differential op-
erator of the form (3.1) with

— a’1<t7x) C(t,l’,y) T _ bl(t,x)
) = (C*(tmy) aa(t,y)> - oy (bz(t,y)) '

Denote p(x,y) = |x — y| and

A(t,z,y) = a1 (t, x) + as(t, y) — 2¢(t, z,y),
B(t,x,y) = bi(t,z) — ba(t,y),

A\(t,l‘,y) - <I - y,A(t,l‘,y)(l‘ - y>>7 x 7é Y,
— B E(t,x,y)
A(t,x,y) - |x—y|2 :

B\(tax7y) = <x - y,B(:E,y)>
Then for every x # y,

TeA(t, 2, y) — A(t,z,y) + 2B(t, 2,y)

bt = 2p(.9)

Lemma 4.6.7. For all t € [0,T],

1X: =Yy < Ve(wr — wsy )+%\/<|$ ﬁzds)

where ]
Sult) = sup{s € [0.1]: [X, ~ Vil < 3}, 1€ [0,7]

Here we use the convention sup ) = 0.

Proof. Note that for every t € [0,T],

Wie— Wy, = \/E(Wu — W2,t)-
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Let’s denote

Note that

€( E\* I I—e¢
A52—0'<O')—(I_€ I >

Applying I[t6’s formula and Lemma 4.6.6 directly, we have

|z — yl& e(d — 1)

[Teds | TR wi] i<

d| X, — Y| < Vedw; — dt. (4.43)

By integrating Equation (4.43) over [6,(%),t], we obtain (note that the last
term disappears)

where
fa
O(t,n) = | X5, = Youin| — 2 —
fo 5s
If §,,(t) = 0, then
t
£sds Esds
6(tm) = X~ ol — o — s B 5L — jo (1.4
Jo &ds Jy &ds
1
If 6,(t) > 0, then | X5, ) — Y5, )| = —. Therefore,
1 yEsds 1
ot,n) = — — |z - f5 <= (4.46)
n fo §s "
Hence from (4.45) and (4.46) we see
T
1 sd
ot,m) < 4 v (| — g3 %)
n Jo &sds
[

Lemma 4.6.8. .
lim P (|XT —Yr| > —) =0.
n—oo n
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Proof. Applying Lemma 4.6.7 to the case t =T, we have
1

[Xr = Yr| < VE(or = ws, ) + 5

Since € = 2, | X7 — Yy| > L implies

W — W, (1) = N — 1.

Hence )
P (‘XT — YT’ > —) <P ((.UT — w(;n(T) >n— 1)
n
: < —
(n—12 = (n—-1)
as n — 00. The last inequality follows from Doob’s martingale inequality. O]

Lemma 4.6.9. For allt € [0,T],
lim | X; =Y < |z —yl
Proof. By Lemma 4.6.7, we see for all t € [0, 7],

1 1
|Xt—ﬁ|§ﬁwt+|$_y|+ﬁ'

Now Theorem 4.6.3 is easy to show.

Proof of Theorem 4.6.3. With Lemma 4.6.5, Lemma 4.6.8 and Lemma 4.6.9, we
can apply Lemma 4.4.2 and Inequality (4.26) to get (4.41). O

4.7 Heat Kernel Estimates

Consider the stochastic differential equation (4.15) with time independent drift
b. Suppose that b(x) = DV (zx) for some C*-function V on R?. Set u(dz) =
exp(V(z))dx. Let P; be the transition semigroup associated with (4.15). Then
P, is symmetric with respect to p. Denote by pi(x,y) the transition kernel of P
with respect to . We aim to estimate p; by using the measures of balls.

Harnack inequalities is an important tool in the study of heat kernel estimates.
In the following we apply Wang’s Harnack inequality to estimate the heat kernel.
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This kinds of applications has been used in [BLQ97, GW01, ATWO06] etc. for
diffusion semigroups on manifolds.

We first summarize the application of (Wang’s) Harnack inequality to heat
kernel estimate by the following lemma. We remind the reader that the generator
of the semigroup we consider has the form %A—l—DV, while the operator considered
in [BLQ97, GWO01, ATWO06] etc. is of the form A 4 Z for some Laplace operator
A and C'-operator Z on manifolds. Hence there is a slight change.

Lemma 4.7.1. Suppose that for every t > 0, x,y € RY, f € €, (RY) and
1 < a < 2 the following inequality holds

(P.f)*(x) < exp(C(t, o, [ — y])) P.f(y), (4.47)
where C(t, o, -) is a positive increasing function. Then
exp(l%;C(t,l%,\/Q_t) —1—5%“1) = — y|?
P <_ 25t )
V(Bo(V2D) (B, (v/2D))

pe(z,y) <

holds for every § > 1,t >0, and x,y € R%.
Proof. Let p =2 > 1. Taking power p to both sides of (4.47) we get

(Pef)*(x) < (Pof*)"(y) exp(pC (¢, o, |2 — y]) (4.48)

for every ¢t > 0 and z,y € R

LetT>O,x€Rd,q:ﬁ. Set
CJr—yP

f t<T.
2(T — qt)’ org

n(t,y) =

Multiplying both sides of (4.48) by exp (n(t, y)) and then taking integral with
respect to p(dy) we can obtain

(P (2) / exp(—pC(t, |z — y) exp(n(t,y)) u(dy)
R (4.49)

< [ Py @ esp(att.) udy),

By an integral-maximum principle (see [BLQ97, Proposition 13] or [GWO01,



88 Chapter 4. Harnack Inequalities for Stochastic Differential Equations

(2.9)]), and note the invariance of P, with respect to p, we can get the following
estimate of the right hand side of (4.49):

/]Rd(Pth‘)p(y) eXp(n(t’y)) p(dy) S/

R

-/ F(y) exp (—‘w;Ty‘Q) p(dy).

d P, f*(y) exp(n(0,y)) pu(dy)
(4.50)

For the left side of (4.49), confine the integral on the ball B,(r) := {y €
R?: |z —y| < r}, we can get

| exp(=pCita.le =) expln(t. ) utdy (4.51)
> [ e (a0t = s ) wla (4.52)
=exp (—pC(t, a,r) — m) 1(B(r)). (4.53)

Hence, by combining (4.49), (4.50) and (4.51) we obtain

exp (pC(t, a,T) + 2(Tr—iqt))
) (4.54)

p1(Ba(r)
/Rd f*(y) exp <—%> pu(dy).

(Ptf)2<x) <

For any bounded positive continuous function g on H, we take

f(z) = g(y) exp (lx;Tyl )
in (4.54), we get

U}Rd exp (%) 9W)pe(z,y) u(dy)] 2

) | i

(4.55)

Let5>1,T:%,q:%s,r:\/§. Thenpzl%;,oz:f—f&andT—qt:
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=1t Now we can deduce from (4.55) to get

Es(x,t) := /}de?(x,y) exp (lm gtyﬁ) p(dy)

_ exp (pC(t, C(,T‘) + 2(Tr—iqt)>
< B0)) (4.56)

exp (1%;50(@ 537 + ﬁ)

1(By(r))

By the estimate (4.56) and the following universal bound (see Grigor'yan
(Gri97, (3.4)])

t t [z —yf?
< _ _ _
(e, y) < \/E5 (x 2) E;s <y, 2) exp ( 551 )

we can finish the proof. m

Assume the assumptions in Theorem 4.6.3 holds. Then we have Harnack
inequality (4.41). Hence we can get the following corollary immediately by Lemma

4.7.1.

Corollary 4.7.2. Assume for the drift b the conditions in Theorem 4.6.3 and the
assumptions at the begging of this section . Then for everyd > 1,t > 0, x,y € R?

we have
exp(%é(t,f—fé, 2t) —|—5%41> |m—y|2
pt(%?J) < exp <_W> )
V(B (VEE) (B, (V21)
where

4.8 Some Problems in Applying Girsanov’s The-

orem

Maybe one want to try the coupling and Girsanov transformation method to
study Harnack inequalities for stochastic differential equations driven by general
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continuous martingale or pure jump Lévy processes. Unfortunately, this does
not work in general. One of the essential point of the Girsanov transformation
we used is that the distribution of the drift transformed process under the new
probability measure must be the same with the original process under the original

probability measure. In the following, we explain the reasons.

Continuous Martingale Case

The following Girsanov theorem for continuous martingale is well known. See,
for example, [RY99].

Theorem 4.8.1. Let M be a continuous martingale, and

1
Zt:exp (Mt—§[M]t),0§t<OO

be a positive uniform integrable martingale. Let Q = [ ZdP. If N is a con-
tinuous P martingale, then Ny = N, — [N, M];, 0 < t < 00 is a continuous Q

martingale, and [N]® = [N],, for 0 < t < cc.

The Girsanov theorem 4.8.1 states that Nt, the drift transformed NV, is still a
martingale (under the new probability measure @), and the quadratic variations
of N; and Nt are the same. But it does not ensure that the distribution of Nt under
Q is the same with the distribution of N; under P. It is the case only in some
special situation. For example, if N, is a Brownian motion, then by applying
Lévy’s characterization of Brownian motions, we know Nt is still a Brownian

motion. And hence their distributions coincide.

Pure Jump Lévy Processes

We first recall a Girsanov theorem for pure jump processes.

Let (2,7, (%1)o<t<o, P) be a filtered probability space and N(dt, dz) a Pois-
son random measure on {2 X R with Lévy measure v. Suppose that the Lévy

/ 12| |v|(dz) < oo.
{lz|>1}

The compensated measure of N(dt,dz) is given by

measure satisfies

N(dt,dz) = N(dt,dz) — v(dz)dt.
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The following result is from [?S05, Lemma 1.33]. See also [JS87, Chap III,
Theorems 3.24 and 5.19], [Cha99, Lemma 3.1 and Theorem 3.2] and [Sit05] etc..

Theorem 4.8.2. Let §(s,x) <1 be a process such that

(1) :exp{/ot/Rlog(l—Q(s,z)) N(ds, dz)
+/Ot/R [log(1—6(s,2)) +6(s, 2)] N(ds,dz)}

exists for 0 <t < T. Define a measure Q on Fr by Q = p(T)P. Assume that
IE]p(p(T)) = 1. Then Q is a probability measure on Fr and if we define the
random measure NQ(dt,dz) by

N®(dt,dz) = N(dt, dz) + 0(t, 2) v(dz)dt,

//Ndsdz //Hsz (d2)d

is a Q-local martingale for all A € B(R \ {0})

then

We claim that the distribution of N (dt,dz) under P is not the same with the
distribution of NQ(dt,dz) = N(dt,dz) + 0(t, z)v(dz)dt. under Q.

The explain follows. First we note that

NO(dt, dz) + v(dz)dt = [N(dt,dz) + 0(t, z)v(dz)dt] + v(dz)dt
= N(dt,dz) + 0(t, z)v(dz)dt.

Suppose that our claim is not true. Then the distribution of N(dt,dz) =
N(dt,dz) + v(dz)dt under P is the same with the distribution of NQ(dt, dz) +
v(dz)dt under Q. This will not happen. We know N(dt,dz) is integer valued.
But NQ(dt, dz) + v(dz)dt = N(dt,dz) + 0(t, z)v(dz)dt will not take integer value

in general.

Remark 4.8.3. With some special transformation (not drift transformation), we
could get process with the same distribution. See [BGJ87, Bic02]






Chapter 5

Harnack Inequalities for
Ornstein-Uhlenbeck Processes
Driven by Wiener Processes

We first give a general introduction to Ornstein-Uhlenbeck processes in Section
5.1. Then we show Harnack inequalities for Ornstein-Uhlenbeck processes driven
by Wiener processes in Section 5.2.

In Section 5.3 we consider some properties equivalent to Harnack inequalities.
For example, we show that the Harnack inequality for the Gaussian Ornstein-
Uhlenbeck semigroup P, holds if and only if the semigroup P, is strongly Feller.

In Section 5.4, we show some examples of Harnack inequalities, especially the
Harnack inequalities for diagonal Ornstein-Uhlenbeck processes from which we
can see clearly why our result is better than the one in [RWO03a].

In Section 5.5, we consider Harnack inequalities for Ornstein-Uhlenbeck pro-
cesses with perturbations driven by Wiener processes. We first consider Lipschitz
perturbations. Then we consider gradient systems by approximation. We men-
tion here that there is an independent work by Da Prato et al. [DPRWO09]. They
considered the perturbation of Ornstein-Uhlenbeck processes with singular drifts.

But the spirit is similar.

Section 5.6 is an appendix. We show another proof of the main Harnack
inequality by finite dimensional approximation in Subsection 5.6.1. It is especially
interesting for readers who only care for the finite dimension case. In Subsection
5.6.2 we show a Mehler formula. It is introduced partially for the motivation of
the generalized Mehler semigroups which will be introduced in Section 7.1.
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5.1 Ornstein-Uhlenbeck Processes

The story start from Brownian motion. In 1827, the England botanist Robert
Brown observed the zigzag path of pollen grains suspended in water under the lens
of the microscope. In 1905, Einstein explained the mechanics of the movement.
Roughly speaking, if at time ¢ the Brownian particle is at position x, then after
arbitrary time At, the particle will appear at x+ ¢, where ¢ is a Gaussian random
variable and independent of the starting position x and time ¢.

But this theory neglects the viscosity of the medium. Langevin initiated the
study and Ornstein and Uhlenbeck [OU30] developed a new theory for Brownian
motion. In the following, we just simply introduce it. We refer to the lovely book
by Nelson [Nel01] for the dynamical theory of Brownian motion.

Let X; denote the velocity of a Brownian particle at time ¢. Let (W;);>o be
a one-dimensional standard Brownian motion and x > 0 measures the viscosity.
By the second law of Newton and by choosing appropriate units, % means the
acceleration of the particle which may be interpreted as the force experienced by
the particle. This force is the sum of a systematic viscous force and a stochastic
force. Since the viscous force is proportional to the particle’s velocity X; and

directed opposite to its velocity, so we can suppose the viscous force is given by

—kX;. The stochastic force is modeled by the white noise %. Therefore, we
have
dX; dW,
— = —kX; + —. 1
dt ST (5.1)
We rewrite it into the following Langevin equation
dXt = —HXt dt + th (52)

Let Xo = 2 € R be the initial data. Then the solution to (5.2) is given by
(see the books [IW81, KS91, DPZ92] etc.)

t
X, =e "y / e =9 qy, (5.3)
0

Clearly, X, is random perturbation of the exponential function. The process (5.3)

is called Ornstein-Uhlenbeck process or simply OU processes.
Figure 5.1 in the following indicates the composition of the process X;.

We can consider more general form of Ornstein-Uhlenbeck processes. The

dg{t can be fractional Brownian

drift maybe general linear function, and the noise
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Ornstein-Uhlenbeck process (blue curve)

t
X = e My +/ e =5) gy,
xo 0

deterministic process (black curve) ez

Figure 5.1: Ornstein-Uhlenbeck Process

motion noise, Lévy noise etc..

One of the main general Ornstein-Uhlenbeck type processes which we will

consider in this thesis is the generalized Langevin equation
dXt = AXt + dZt, Xt =T (54)

on some Hilbert space H. Here (Z;):>0 is a Lévy process, and A is the infinitesimal

generator of some strong continuous contraction semigroup (S;)¢>o.

The mild solution of (5.4) can be written down in terms of stochastic convo-
lution as

t
Xt = StiL' + / Stfs dZS (55)
0

See [PZ07, Section 9.2] or [App06, Section 4].

The Ornstein-Uhlenbeck process defined in (5.5) generalize the classical one
in the following two ways: Firstly, we are working in a infinite dimensional space;

and secondly, the noise is a general Lévy process.

Ornstein-Uhlenbeck processes are better reference processes in infinite dimen-
sional analysis than infinite dimensional Brownian motions (or Lévy processes).
One of the main reason is that Ornstein-Uhlenbeck processes, in contrast to an

infinite dimensional Brownian motion (or more generally Lévy process), can have
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invariant measures. Another point is that the presence of the linear drifts can
have smoothing effects.

Bibliographic Notes on Ornstein-Uhlenbeck Processes The topic re-
lated to Ornstein-Uhlenbeck type processes has attracted many people to study
for a long time. See Ornstein-Uhlenbeck [OU30] and Kolmogorov [Kol34] etc. for
the finite dimensional Gaussian case. See Ito [[t684b, 1t684a] (or [It687, Pages
589-616]), Dawson [Daw75], Da Prato et al. [DPIT82], Chow [Cho87], and the
books by Da Prato and Zabczyk [DPZ92, DPZ02], Zabczyk [Zab99] and Da Prato
[DP04, DP06] for the infinite dimensional Gaussian case.

The case driven by general Lévy processes were first studied by Wolfe [Wol82]
in the scalar case: where A is a positive constant. Sato and Yamazoto [SY83,
SY84] generalized this to the multidimensional case where A is a matrix all of
whose eigenvalues have positive real parts. Chojnowska-Michalik [CM85, Cho87]
considered the generalization to infinite dimension. We also mention a series of
papers by Applebaum [App06, App07b, App07a| etc., the monograph by Zabczyk
and Peszat [PZ07] for the study of Ornstein-Uhlenbeck type processes in infinite
dimensional space with Lévy noise.

We refer also to Page 139 for the bibliographic notes on generalized Mehler
semigroup which is closely related to the Ornstein-Uhlenbeck processes driven by
Lévy processes.

5.2 Harnack Inequalities

In this section, we first show a main theorem directly in Subsection 5.2.1 by
transformation of measures on the state spaces. Then we turn to estimate ||T'7||
in Subsection 5.2.2 by a result from control theory. By the estimates we can
get some corollaries from the main theorem on Harnack inequalities. Especially
we can get the Harnack inequalities for Gaussian Ornstein-Uhlenbeck semigroup
proved by Rockner and Wang [RW03a].

5.2.1 Main Theorem

Let H be a real separable Hilbert space with inner product (-,-) and norm | - |.
Let A be the generator of a strongly continuous contraction semigroup (St):>o on
H, and B a linear bounded operator on H.
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Consider the following linear stochastic partial differential equation on H
dX; = AXy + BdW,, Xo=xz¢€H, (5.6)

where (W});>0 is a cylindrical Wiener process on H.

Set
R = BB*.

Fix T"> 0. Forany 0 <t < T, set

t
Q, = / S.RS: du.
0

In control theory, this operator @ is called controllability operator. See [Zab08§]
or Appendix A.

We will need the following assumption.

Assumption 5.2.1. We assume that the operator () is of trace-class. That is,
T
/ Tr(S,RS;) du < oo. (5.7)
0

With (5.7), the mild solution to the stochastic equation (5.6) on time interval
(0,77 is given by (see [DPZ92, Theorem 5.4])

t
Xt = St.fC —|—/ St,SB dWs, 0 <t< T.
0

This solution is also the unique weak solution of (5.6). See [DPZ92] for details.

Remark 5.2.2. (1) The operator R = BB* is not necessary to be of trace class
for (5.7). For instance, the choice of B = I is allowed if A™! is of trace
class.

(2) If Qr is of trace class for some 7" > 0, then obviously @ is of trace class for
every 0 <t <T.

The stochastic integral
t
Wa(t) :/ S, BdW. 0<t<T
0

is called stochastic convolution. By the introduction in Section 1.3, we know
W4(t) is Gaussian distributed mean 0 and covariance (Q;. See also [DPZ92, The-



98 Chapter 5. Harnack Inequalities for OU Processes Driven by Wiener Processes

orem 5.2].

Hence the Ornstein-Uhlenbeck process X; is also Gaussian distributed with
mean S;x and covariance @y, i.e. X; ~ N(Suz, Q).

For every 0 <t < T, we denote

e = N(0, Q).

Then the transition semigroup associated with the Ornstein-Uhlenbeck process
X, is given by

Pf(x) = Bf(X,) = /H f(S+ 2 mldz), feE @),  (58)

We call the semigroup P, as Ornstein- Uhlenbeck semigroup. If A = 0, then the
semigroup is the classical heat semigroup. See [DPZ02] for the detailed discussions
of heat semigroup and Ornstein-Uhlenbeck semigroup.

The central result of this chapter is the following Harnack inequality for the
Gaussian Ornstein-Uhlenbeck semigroup P, defined in (5.8). The proof of this
result is in the same spirit of the proof of the Harnack inequality (4.3) for the
simple Ornstein-Uhlenbeck process (4.1) in Example 4.1.1

Theorem 5.2.3. Let T > 0 and x,y € H. Assume that the operator Qr is of
trace class and

Sr(z —y) € Qy*(H). (5.9)
Then for every o, 3 > 1 satisfying 1/a+ 1/ = 1, we have

(Pea) <o (S0t =) Pes (o). (5.10)
for every f € €, (H). Here 'y = Q;1/2ST.

Proof. Since (5.9) holds, by Theorem 1.2.2 we know N (Srxz —y), Qr) is absolute
continuous with respect to N (0, Q7). Moreover, we have

dN(ST(.I‘ - y), QT)
dN(OvQT)

—exp (<QT”25T<x ~),Q7%) — 107 Sl - y>|2)

()

according the Cameron-Martin formula.



5.2. Harnack Inequalities 99

Using a change of variable and the formula above, and applying Hoélder’s
inequality we have

Prf(z)
= [ #sry+ TR E az)
Z/]Hf(STy +2):

- (<Q;1/QST@ “uharts) - %'Q?/QST(Q/’ - y)l2> ir(dz)
<exp (_%|FT($ — y)!2) (/}H F(Sry + Z)NT(dZ))l/a,
( /}H exp(B(Qr"*Sr(x ~ y), Q;1/2z>>uT<dz>) )

—exp (230 = ) (P )

]

The following theorem is an immediate consequence of the theorem above.

Theorem 5.2.4. Suppose that the following null controllability condition
1/2
Sr(H) € QY (H) (5.11)

hold. Then the Harnack inequality (5.10) holds for all x,y € H. If we further
assume (5.11) holds for all T > 0, then the Harnack inequality (5.10) holds also
for all T > 0.

Remark 5.2.5. (1) With the assumption (5.11), the operator I'y = Q;1/2ST is
defined on the whole space H. Hence I'r is a bounded operator on H by
the closed graph theorem (see [Yos80]).

(2) By [DPZ02, Theorem B.2.2], if (5.11) holds for all T > 0, then Q;Q(IH) is
invariant with respect to 7' > 0. Especially if (), exists, then
Q/*(H) = Q*(H), T>0.

Remark 5.2.6. In Section 7.4, we will prove a Harnack inequality for Lévy driven
Ornstein-Uhlenbeck processes (See (7.32)). It has the same form as (5.10) prove
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in this section. For the Lévy case, the covariance operator R of the Gaussian part
of the Lévy process is supposed to be of trace class in this thesis. But it is not
necessary since we can also consider the “cylindrical Lévy processes”. Refer to

Theorem 7.4.11 for a Harnack inequality for the stochastic heat equation.

5.2.2 Estimates of ||I'7||

We can estimate the quantity |T'r(z—y)|? in (5.10) according its physical meaning
in control theory which we will describe in the following (see details in Appendix
A).

Consider the following deterministic linear control system
dry = Azydt + Bugdt, xg=x, t €[0,7] (5.12)

on H, where u; is an H-valued square integrable function on [0, T7.

By Theorem A.0.2, if Spx € Q;/ 2(]H), then there exists a control function wu,
for the system (5.12) such that z = 0. What is more, |Trz|* is the minimal
energy for driving = to 0 (see Equation(A.4)). That is,

T
ITpz|? = inf {/ lus|*ds: u € L*([0,t], H), 2p = O} : (5.13)
0

From (5.13), we can get an upper estimate of |;z|* by choosing any concrete

control function w;.

We will use the following simple fact for some explicit controls.

Lemma 5.2.7. Fiz T > 0. If Sp(H) C RY?(H), then
S,(H) ¢ RY*(H) (5.14)
holds for every t € [0,T].

Proof. By Theorem A.0.1, we know the inclusion of Sy(H) in RY?(IH) implies
that there exist some constant C' > 0 such that

|RY?z| < C'|Srz]
Therefore for every t € [0,7] and x € H, we have

|RY2z| < C'|Srz| = C |Sr_iSex| < C || Sr—| - |Sex|
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Hence the inclusion (5.14) holds by Theorem A.0.1. O

In what follows, we simply suppose that B is symmetric and B = RY2. As
usual, we denote by | - |o for the canonical norm on the Cameron-Martin space
RY2(H) defined by |z|o = |R™/2z| for every x € R/ (H).

Proposition 5.2.8. Fiz T > 0. Assume that Qr is of trace class and
Sp(H) ¢ RY2(H). (5.15)
Let & be a positive continuous function on [0,T] satisfying

T
/ |S,x|2 €2 dt < oo, for all z € H.
0

Then the null controllability condition
1/2
SrH C Q47 (H) (5.16)

are satisfied and the following estimate holds

1 T 1/2
Il < o (/ |st:c|3§fdt) | (5.17)
0 t

Proof. Consider the following control system

dxy = Az dt + RV, dt,
{ o ' (5.18)
Top =2,
for t € [0,7]. The solution of (5.18) is given by
t
Ty = Six +/ S, RY*usds, te [0,T7. (5.19)
0

By the formula (5.19), it is easy to see that the control

&

—ng dtR_1/2Stx, te[0,7]
0 t

u(t) =

transfers the system from zy = z to 7 = 0. Hence the system (5.18) is null
controllable. This implies that the null controllability condition (5.16) holds by
Theorem A.0.3.
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Moreover, by (5.13), we know

T
Il < [ fufas.
0

Hence we have the estimate (5.17). O

From Proposition 5.2.8, we have the following corollary.

Corollary 5.2.9. Assume the assumptions in Proposition 5.2.8 and

|Stl’|0 < \/g(t)_l |I|0, S IH, t e [O,T]

Then ]
ITp|| < ———. (5.20)
Jy €y dt
Remark 5.2.10. (1) For the special case R = I, the condition (5.15) automati-
cally hold.

(2) If we take & = 1 in Proposition 5.2.8, then we can get [DPZ92, Corollary
9.22]. If we take R = I additionally, we get [DPZ92, Corollary 9.23].

(3) These estimates of ||I'r|| are also useful in the study of regularizing prop-
erties of the transition semigroup corresponding to semi-linear stochastic
equations. See [DPZ92, Section 9.4] and [CMG95] etc.. Indeed, in Sub-
section 7.5 we will use ||I;|| to study of the strong Feller property of the
Ornstein-Uhlenbeck transition semigroup .

5.2.3 Estimates of Harnack Inequality

From Theorem 5.2.3 and Proposition 5.2.8 we can get the following corollary
immediately.

Corollary 5.2.11. Fiz T > 0. Let & be a positive continuous function on [0, T].
Suppose that Qr is of trace class and Sp(H) C RY?(H). Assume further that

T
/ |Syx |5 &2 dt < oo, for all x € H.
0

Then the following inequality

B[S —y)lZ €2 dt
Q(foT & dt)z

(Prf)*(z) < exp ( ) Prf*(y) (5.21)
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holds for every x,y € H, o, 3 > 1 with 1/a+ 1/ =1, and f € €, (H).

From Theorem 5.2.3 and Corollary 5.2.9 we can get the following corollary.

Corollary 5.2.12. Assume the assumptions in Corollary 5.2.11 and

|Stl’|0 S \/g(t)_l |I|0, T € IH, t e [O,T]

Then the following inequality

« ﬁ|$ - y|(2) o
(Prf)*(z) <exp (W) Prf(y) (5.22)

holds for every x,y € H, a, 3 > 1 with 1/a +1/8 =1, and f € €, (H).

Remark 5.2.13. (1) Corollary 5.2.12 covers (with a slight difference of the con-
ditions) a result in [RWO03a] which is recalled in the following for the conve-
nience of comparison. Let B = RY?. Suppose that the following assump-
tions holds.

(a) S,R(H) c R'?(H) holds for every ¢ > 0.
(b) There is a strictly positive h; € C[0, 00) such that

|StRl’|0 < v/ hl(t)|Rl’|0, x € IH, t>0,

(c¢) Other conditions: Item (1) and Item (2) of Assumption 7.2.1.
With these assumptions, Rockner and Wang [RW03a] proved the following
Harnack inequality for (5.8)(See Theorem 7.2.2 for details ):

(Pef)*(z) < exp 2(a—1) fot hi(s)~' ds P f(y)

for every a > 0, z,y € H, ¢t > 0 and each f € 6, (H).

(2) But we assume a slightly stronger condition: Sp(H) c RY?(H) than the
condition S;R(H) C RY?(H) assumed in [RW03a]. However, we do not
assume Item (1) and Item (2) of Assumption 7.2.1 which are required in
[RW03a].

Remark 5.2.14. There are three methods in our hands to establish Harnack
inequality: semigroup calculus, image measure transformation and Girsanov’s

transformation methods. In Chapter 7 we shall introduce these three methods.
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Rockner and Wang [RW03a] mainly used the semigroup calculus method. The im-
age measure transformation is also used in [RW03a]. But the authors of [RW03a]
didn’t apply the method to the Gaussian case and didn’t realize that this method

can obtain optimal inequality.

5.3 Properties Equivalent to Harnack Inequali-

ties
We first recall the strong Feller property of a transition semigroup.

Definition 5.3.1. Let P,, t > 0, be a transition semigroup. P, is called strongly
Feller if for every bounded measurable function ¢ on H, P, is continuous for
every t > 0. That is, P,(%,(H)) C %,(H).

Da Prato, Rockner and Wang [DPRW09, Proposition 4.1] proved that ev-
ery Markov transition semigroup has strong Feller property automatically if the
Harnack inequality hold. We include the result in the following for convenience.

Proposition 5.3.2. Let E be a topological space and P a Markov operator on
By(E). Assume that for every o > 1 there ezists a continuous function 1, on
E x E satisfying no(x,x) =0 for all x € E and

(Pf)*(z) < ") P fo(y)

forallz,y € E, f € B (E). Then P is strongly Feller.
Furthermore, for any o-finite measure p on (E,B(F)) such that

/EPfdusc/Efdu

for all f € B, (E) and some fized constant C > 0, P uniquely extends to LP(E, )
with PLP(E, u) C C(E) for any p > 1.

Now we can prove the following result.

Theorem 5.3.3. Assume that for every t > 0, Qy is of trace class. Then the
following statements are equivalent to each other.

(1) The null controllability condition holds: S;(H) C Qtl/Q(]H) for allt > 0.
(2) The system (5.12) is null controllable over each time interval [0,t], t > 0.
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(3) The Harnack inequality (5.10) with bounded T'y holds for all o > 1, t > 0,
z,y € H and f € €,(H).
(4) There exist some constant C(t,a) > 0 such that

(Pif)"(z) < exp(C(t, @)z — y|*) Prf*(y)

holds for alla« > 1,t >0, z,y € H and f € 6,(H).
(5) The Ornstein-Uhlenbeck transition semigroup P, fort > 0 is strongly Feller.
That is P,(%,(H)) C 6,(H) for every ¢t > 0.
We assume further that Qs is of trace class. Hence there exists an invariant mea-
sure . Then the statements (1)—(5) above are also equivalent with the following
two statements
(6) For every p > 1, P,(LP(H, p)) C € (H).
(7) For every p > 1, P,(LP(H,p)) C € (H).

Proof. The equivalence (1)< (2) follows from Theorem A.0.2. By Theorem 5.2.3,
we know (1)=-(3). From (3) we obtain (4) immediately since the operator T
is bounded. (4)=-(5) follows from Proposition 5.3.2 (see also Subsection 7.5).
The implication (5)=-(1) is well known (See Da Prato and Zabzyck [DPZ92,
Subsection 9.4.1] or Zabzyck [Zab81]. In fact, it is proved there that (1)< (5)).

Suppose that Q) is of trace class. (4)=-(6) follows from Proposition 5.3.2.
(1)=(7) come from [DPFZ02, Theorem 2.1] (See also the book Da Prato and
Zabczyk [DPZ02]). On the other hand, it is clear that (6)=(5) and (7)=(5). O

Remark 5.3.4. We refer to [MS02, Theorem 2.1] for the following two more equiva-
lent statements of the strong Feller property of the Ornstein-Uhlenbeck transition
semigroup F;:

(1) P, is bw strongly Feller.

(2) P, is bw ultra strongly Feller.

Here “bw” refers to “bounded weak”. See [MS02, Section 1] for the definitions of

bw and bw-ultra strongly Feller.

Remark 5.3.5. (1) We get a new proof of the well known fact that (1)=-(5) via
Harnack inequality.

(2) Da Prato et al. [DPFZ02, Theorem 2.4] (see also [DPZ02, Theorem 10.3.6])
states that for every f € L'(H, ), P;f may fail to be continuous in infinite
dimension. (But the author are not clear about their proof.)

Remark 5.3.6. The strong Feller property means that the Ornstein-Uhlenbeck
semigroup has a smoothing property. For the heat semigroup, the condition
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(5.11) does not hold if the Hilbert space H is infinite dimensional. In fact, the
heat semigroup is regular only in the directions of the Cameron-Martin space
Q'?(H). See [DP06, Proposition 8.4]. This explains one reason for why we prefer
to use Ornstein-Uhlenbeck processes in infinite dimensional spaces as reference

processes.

Remark 5.3.7. In Section 7.5, we will consider the estimates concerning the strong
Feller property.

5.4 Examples of Harnack Inequalities

We work in the framework of the previous section. We show Harnack inequal-
ities for some quite simple examples and general diagonal Ornstein-Uhlenbeck

processes in the first and second subsections respectively.

5.4.1 Simple Cases

In the first example we deal with a degenerate finite dimensional stochastic dif-
ferential equation. In the second and third examples, we deal with two special
cases: B =1 and A = —1/21 respectively.

Example 5.4.1. Let H = R?, and

() 0-(0)

Then we have R = BB* = B and for every t > 0,

10 . (1t
i (1), sans- (1 1),
K 1w t 22
= [ S.RS;du= du = :
Qt /0 w /0<u u2> B <t2/2 t3/3>

It is obvious that for every ¢ > 0, the determinant of Q); det@; > 0. Hence
@Q): is non-degenerate and the null controllability condition (5.11) is fulfilled. Let

and hence

r = (v1,22)", y = (y1,92)" € R2. We have (for example, with the help of
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mathematical software like MAPLE)

Dz —y)]? = |Q; 2Su(x — y)?
=4[t oy —y)* + 3t (w1 — y1) (w2 — y2) + 3t (22 — 12)7)].

Now we have the following Harnack inequality by Theorem 5.2.3
(Pf)*(x) < exp(Cy) P f*(y)
with
Cy =28t (w1 — n)* + 3t (x1 — 1) (w2 — 2) + 3t (22 — )7,
for every f € €,"(R?), x,y € R? ¢ > 0, and «, 3 > 1 satisfying 1/a+1/3 = 1.

Example 5.4.2. Assume that B = [ and (—A)~! is of trace class. Then
RY2(H) = H and hence S;(H) C H for every ¢t > 0. Moreover, it is easy to
see that @), is of trace class for every t > 0.

Let {ex }rew be the system of eigenvectors of (—A)~! corresponding with eigen-
values { g trew. Set w = infren(1/Ax). For every 2 € H and t > 0 we have

|Stx|2 _ Ze_z/)"“t@,ek) < e—2wt |J}|2
kelN

Applying Corollary 5.2.11 with £(t) = e !, we get

for every f € ¢,"(H), z,y € H, t > 0 and «, 8 > 1 satisfying 1/a +1/3 = 1.

Example 5.4.3. Let A = —1/21. Suppose that R = BB* is of trace class. For
every t > 0, we have

Sy=e*? and Q= (1—e "R

Hence
Ft _ t—l/QSt — (1 o eft)fl/Q eft/Q R71/27 t Z 0.
It is clear that the operator @), is of trace class for every ¢ > 0.

The transition semigroup is the classical Ornstein-Uhlenbeck semigroup given
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by
P f(z) = /]H Fe 2z + 2) u(dz),

forz € H,t > 0 and f € ¢, (H), where u; = N(0,Q;).

Let 2,y € H such that + —y € Hy = RY?(H). Then obviously we have
Si(z—y) € Qtl/2(H) for every t > 0. Now by Theorem 5.2.3 we have the following
Harnack inequality

(Pf)*(z) <exp (g \(1 — e—t)—1/2 o t/2 R_l/Q(:L' _ y)‘z) Pfy)

o ﬁ‘x _y‘g a
= eXp (2(et——1)> Pif*(y),

(5.23)

for every f € €,"(H), t > 0, and «, 8 > 1 satisfying 1/a+1/3 = 1.

Remark 5.4.4. By the notation of the intrinsic distance p on H (see (1.1)), we
can rewrite (5.23) for every z,y € H:

Be ' p(x,y)? o
m) Pif*(y).

Remark 5.4.5. See also Kusuoka [Kus92, the proof of Lemma 6.12, page 270] for
the case a = [ = 2.

(Pf)*(z) < exp (

5.4.2 Diagonal Ornstein-Uhlenbeck Processes

In the following we consider general diagonal Ornstein-Uhlenbeck processes. It
is the important case when the operator A is self-adjoint and commutes with
R. The last two examples in the previous subsection are also diagonal Ornstein-
Uhlenbeck processes.

Let {e,}n>1 be a complete orthonormal basis of the real separable Hilbert
space H. Assume that there exist sequences of positive numbers 9,,, 7, for n € IN,
such that

Ae, = —dpe, and Re, = V,en, (5.24)

where 9, T oo as n T co. By direct calculation, we can get the following proposi-
tion. See also [DPZ92, Section 9.5] or [DPZ02, Example 6.2.11].

Proposition 5.4.6. Suppose that (5.24) hold. Then
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(1) The operator Q;, t > 0, is of trace class if and only if

i % < oo, (5.25)

1 In

(2) The null controllability condition S,(H) C Qi/Q(]H) holds for every t > 0 if
and only if

20,,
sup <oo, t>0,nel (5.26)

neN Tn (62t6n _1)

Proof. (1) For every t > 0, n € N, we have

t t
Qten = / Sy Re, du = Tn / 62UA e, du
0 0

2u v 1 2 te
j— e n d p— e n .
/Yn/ €n U—'25 ( )'n

That is,

Qe = ;Tn(l — e Wnl)e, . (5.27)

Therefore, @, is of trace class for every t > 0 if and only the condition (5.25)
holds.

(2) From (5.27) we know

20y,

1 .
Qt 6n - ’}/n(l _ efQ(Snt) en

for each t > 0 and n € IN. Therefore

20
2 -1 2tA -1 —2tén _ n
Ften = Qt e e, = Qt e €n = —%(e%én 1) en-

Consequently, for every z € H,

> L 26,(2,e,)?
s 9 _ 9 2 n\<; En
Tz = (Tyz,2) = n§:1<rt€m en)(2, €n)" = ;:1: Yo (€200n —1)

By Theorem A.0.3, the null controllability condition is equivalent to
20,

T[> =Sy < 20, neN.
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Example 5.4.7. Assume Conditions (5.24), (5.25) and (5.26). By Theorem 5.2.3,
the following inequality holds

(P (@) < exp (Z b ) P (5:29

for every f € €, (H), t >0, z,y € H, and a, 3 > 1 satisfying 1/a+1/8 = 1.

Remark 5.4.8. Suppose that v, = 1. The result in [RW03a] shows

(Pf)(z) < exp (%—__f') P (y). (5.29)

Comparing Inequalities (5.28) with (5.29), we see (5.29) is a “first-order” approx-
imation of (5.10).
Now we consider a special case of Example 5.4.7.

Example 5.4.9. Suppose that for each n € N, 6, = n’ and ~,, = n~7 with some
9,7 > 0 satisfying
o+v>1. (5.30)

Then it is obvious that Condition (5.25) holds. Moreover, with (5.30), the null
controllability condition (5.11) also holds since

20,
T2 = sup ——" <
| T]| rSLlelnI\)I Yo (€200 —1) o0

for every ¢ > 0. Therefore, by (5.28), the following Harnack inequality

ﬁn6+'y
(P.f)*(x) < exp (Z —m (T — y,en>2> P f*(y) (5.31)

holds for every t > 0, z,y € H, a, 3 > 1 satisfying 1/a+1/3 = 1 and f € €, (H).

Example 5.4.10. Consider H = L?(0,7). Let A be the Laplace operator on
(0,7) with Dirichlet boundary and R = I. Then we have 6 = 2 and v = 0.
Therefore, by (5.31), the following Harnack inequality

> 2

(Pf)"(a) < exp (Z @y, >) P ()

n=1

holds for every ¢ > 0, z,y € H, , 3 > 1 satisfying 1/a+1/3 = 1 and f € €," (H).
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5.5 Perturbations

5.5.1 Lipschitz Perturbation
We assume in this subsection the following assumptions.

Assumption 5.5.1. We assume

(1) A: D(A) C H — H is self-adjoint and there exists w > 0 such that
(Az,z) < —wl|z|*, x € D(A);

(2) A7!is of trace class;
(3) F is Lipschitz continuous and dissipative

(F(x) - F(y),z—y) <0, z,yeH
We consider the following semi-linear stochastic partial differential equation

With Assumption (5.5.1), the equation (5.32) has a unique mild solution (see
[DPZ02, Theorem 7.3.5]) given by

t t
Xt = St.f + / St—sF(Xs) ds + / St—s dWs,
0 0

where S, = !4, ¢ > 0 is the semigroup generated by A.

Set
Pif(r) =Ef(X:), f€GH).

It can be proved that there is a unique invariant measure v for P, (see [DPZ02,
Theorem 11.2.3].) Therefore, the semigroup P; can be extended to be a strongly
continuous semigroup of contraction on LP(H,v) for p > 1 (similar to the proof
of [DPZ02, Theorem 10.1.5]).

With Assumption 5.5.1, we have the following Harnack inequality for P,.

Theorem 5.5.2. Let Assumption 5.5.1 holds. Then

(Fif)*(x) < exp (w@fw—__f'z) Pf*(y) (5.33)
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for every x,y € H, f € 6,7 (H), and o, 8 > 1 satisfying 1/a+1/5 = 1.

There are several methods to prove this theorem.

Note that the function z — G(z) := Az + F(z) satisfies the following mono-

tonicity condition
<G(l’) - G(Z/),Q? - y> < —w\x - y‘27 T,y € ]Ha

therefore, we can prove Theorem 5.5.2 using the coupling and Girsanov transfor-

mation similar to the proof of (4.34) for the finite dimensional case.

We can also consider the finite dimensional approximation. The procedure
follows. We project the equation (5.32) on the finite dimensional space. Then the
drift of the corresponding finite dimensional stochastic differential equation is also
monotone. Hence we get a Harnack inequality for finite dimensional stochastic
differential equation (see (4.34)). By the dimension free property of the Harnack
inequality, we can get (5.33) by taking limit. We refer the interested author to a
recent paper by Da Prato et al. [DPRWO09] for details of the approximation.

In the following, we carry out another “proof” by using semigroup calculus.
This method was first introduced in [Wan07]. However, we are not able to justify
the strictness of the proof. The difficulties come from the domain problem of the
semigroup. The reason that we insist to show this method is that we want to
present another strategy as a complement of this thesis.

We first introduce some notations and a gradient estimate.

Denote by L the infinitesimal generator of P, on L,(H,v). By [DPZ02, The-
orem 11.2.14], we know L is the closure of the following differential operator (we
still denote it by L)

Lf(r) = STD* (@) + {r, ADf(2)) + {F(x), Df), =€ H
for every f € &4(H). That is, &4(H) is a core for L.

We will use the following gradient estimation.

Lemma 5.5.3. For every f € D(L), we have

IDPf(x)] < BIDf(x)|, =€ (5.34)
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Proof. First, we consider the approximation of F' by

F.(x) = / N F(etr + y)N%A—l(eQEA —1(dy),
H
for every ¢ > 0. Then we have
(DP; f(x),h) = E(Df(X®(t,x), X.(t,z))h), x, heH, (5.35)

where X¢(¢,z) and Pf are defined as X and P, with F' replaced by F..
Note that (refer to the proof of [DPZ02, Proposition 11.2.13])

| XE(t,x)| <e ™, t>0.
Therefore, by (5.35), we see
(DP f(x), k)] < e ™ PIDf(X"(t,2))| - |hl.
Hence, since the inequality above holds for arbitrary h, we get
|DP; f(z)] < e " P IDf(X(t,2))|.
Therefore, letting ¢ tend to 0 we can get (5.34) since it is easy to see that
Pff(x) — Pf(z) ase — 0. O

Now we come to show a “proof” of Theorem 5.5.2 by semigroup calculus.

“Proof” of Theorem 5.5.2. We suppose there is a dense subset & of &,(H) such
that & is stable under the action of L and P,. *

For any f € &, ® € €*(R), we have

1

LO(f) = 5@ (HIDS + ¥(f)LS.

Let v : [0,¢] — H be defined by

W) =a+ly—a) = (- D+ Ty

It is the minimal geodesic connecting x and y.

*The existence of this subset is the only reason that we are not able to justify the proof.
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Let h be a positive continuous function on [0, ¢] Taking

by h(r)eerdr
fot h(r)e=wrdr’

g(s) : s € [0,t].

It is the speed function satifying g(0) = 0, ¢g(t) = 1. Define for any s € [0, t],

n(s) =v(gs),

and
¢(s) = log P s(Ps f)*(ns)-
Note that we have
n(0) ==z, nt) =y,

then we get

¢(0) = Pf*(x), o(t) = (Bf)" ().

By using the gradient estimate (5.34), we have

Proa(Pof) ) ()

= — P L(P.f)*(ns) + Pi—s [a(Po f)* ' LP f(ns)] + (DP—s(Psf)*(ns), 7 (s))

=~ PP LR ) + SO PP

+ Py [a(Pof)* LPs f ()] + (DPs(Psf)*(ns), 7 (5))

:_fﬁ%;ﬂfg{uaﬂaﬂpgﬂ%mﬂ+(DBsﬂlﬂ%m%ﬂ@»

ala—1)

<= MO p (R DRAP ] + € W) PelD )

— 1) /|DP,f]\? e DP,
R DR )

Note the following simple facts: for any number a,b € R with a < 0,

b\* v b
ax2+bx:a<x+—) - — < ——

2a 4a 4a’
we have - o )‘2
d a e’ (s
—d(s) <
ds 2(a—1)
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Now integrate both sides of the inequality above from 0 to ¢, we have

log(P.f)*(y) — log P f*(z) = ¢(t) — ¢(0) < L) /Ot e?C= I if () *ds

~2(a—1
Inserting
' o / Y= t'h(s)eiws
1) =g () = 155
_ h(s)e * .
fot h(s)e—ws ds<y )

(Pif)*(y) _ aly —af? e [y h*(s)ds
Pifo(z) = 2(a—1) < t g
Jo h(s)ews ds)

log

Hence we have

Ble —y/? Jo 1*(s)ds | (5.36)

> (o)

(P f)*(z) < Puf*(y) exp

Take h(s) = e=9 in (5.36), we can get (5.33). O

5.5.2 Gradient Systems

We assume in this subsection the following conditions.

Assumption 5.5.4. We assume

(1) A: D(A) C H— H is a self-adjoint operator and there exists a w > 0 such
that
(Az,x) < —w|z|?>, for all x € D(A).

(2) A~!is of trace class on H.

(3) U: H — (—o0,+00] is a convex lower semi-continuous function such that

Z = / e V@) yy(dr) < 0.
H

where p = N(0,—1A7").
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We consider a perturbation of Ornstein-Uhlenbeck processes as in the previous
section but with F' replaced by the sub-differential of some convex function —U
on H. That is, we consider a stochastic differential inclusion of the form:

where (W})o<t<r is a cylindrical Wiener process in H and U is the sub-differential
of U defined for every x € H as

oU(x)={ye H: U(x+h) > U(z) + (y,h),for all h € H}.

Set K = {U < 4+o00}. Note that OU(z) is a non-empty closed convex set for
every x € K. If U is Fréchet differentiable on H, then OU is the gradient DU.

Consider the following Moreau-Yosida approximation U, of U
. 1 2
U.(z) = inf U(y)—i—Z—\x—y\ cyeHy, zeH, >0
€

For every € > 0, U, enjoys the following properties:
(1) For every x € H,

lim U, (z) = U(z), lliI(l) DU.(xz) = DU (z).

e—0

(2) Us. is convex, differentiable and DU. is Lipschitz-continuous.
Since DU is Lipschitz-continuous, there exists a unique strong solution X7 (z)
of
dX; = AX;dt+ DU.(X;)dt, X§==x.

Denote the transition semigroup of X7 by Pf. Zambotti [Zam06, Theorem
2.1 and Proposition 3.2] proved the following results on convergence (we include
here only parts of the original result).

Theorem 5.5.5. Assume u(K) > 0. Then
(1) There exists a semigroup Py, t > 0 on €,(H) such that for every f € €, (H),
re K, andt >0,
lim Pt £(2) = P, (@).

(2) For all v € K there is a Markov process Xy, t > 0, defined on a probability
space (2, P,) with state space K and transition semigroup Py, t > 0, such
that P,(Xo = z) = 1.
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(3) Forall fi,....fm € 6(H),0<t; <...<t, andzx € K,

lim [[1(X5) - fn(X5) = B [f1(Xe) -+ (X))

Remark 5.5.6. It is not known whether the limiting process of X solves the equa-
tion (5.37). It is the case only with additional information on U. For example, if
the following condition hold

[ 1+ )1+ 180 @) o) < o
H
where i = 1/7 - exp(—2U) du. We refer to [DPR02, Section 9] for details (note

that there is an erratum [DPR09] to [DPR02]).

For the semigroup P, defined in Theorem 5.5.5, we have the following Harnack
inequality.

Theorem 5.5.7. For every x,y € H, f € €,'(H), and o, > 1 satisfying
1/a+1/8 =1, the following inequality holds

T e Ll (5.39)

Proof. Note that DU, is dissipative (see Lemma 5.5.9 which is appended at the
end of this section), we can apply Theorem 5.5.2 to Pf and get the following
Harnack inequality

Y Wﬁ r—y ? e ro
i) < e (“ZEZE) EE ) (5.30)
Therefore, we can finish the proof by letting ¢ tend to 0 in (5.39). O

Remark 5.5.8. We need to point out here that our work here is independent of the
recent work by Da Prato et al. [DPRWO09]. The spirit is the same. We use Yosida
approximation and the result for Ornstein-Uhlenbeck process with Lipschitz per-
turbation. To some extend, our work is covered by theirs. The singular equations
considered in [DPRWO09] is a direct generalization of the sub-differential inclu-
sion. We will consider Harnack inequalities for general multivalued stochastic
differential equations and stochastic evolution equations in Chapter 8.

Appendix We append here the following simple fact which is used in the
proof above.
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Lemma 5.5.9. Let U be a €' convex function on a real separable Hilbert space
H. Then —DU 1s dissipative, that is,

(DU(z) — DU(y),x —y) >0, =z,y€H.
Proof. Since U is convex, for every A € (0,1) and z,y € H, we have
Uz + (1= N)y) < AU(2) + (1 = MU (y).

Hence we get
UMz —y) +y) —Uy)

. < U@) - UGy). (5.40)
Let A goes to 0 in (5.40) we obtain

(DU(y),z —y) < U(x) = Uly). (5.41)
Similarly, we have

(DU(x),y —x) <U(y) = U(). (5.42)
Now we can complete the proof by adding (5.41) and (5.42). O

5.6 Appendix

5.6.1 Finite Dimensional Approximation

This section is a complement mainly for the readers who are interested at finite
dimensional case and who want to have a look of the proof by simple calculus.

We aim to re-prove the Harnack inequality (5.10) for the Gaussian Ornstein-
Uhlenbeck transition semigroup (with some additional condition) in Hilbert space
by finite dimension approximation.

Finite Dimensional Case Consider the following stochastic differential equa-

tion on R™

dX, = AX dt + BdW,, X, =z, (5.43)

where A and R are n x n matrices on R" and W, is a Wiener process on R?. Let
Sy = exp(tA) for each t > 0. Then the adjoint operator of S; is S} = exp(tA*).
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The solution to the equation (5.43) is given by
t
Xt = Stflj +/ St,SB dWs
0
Set R = BB* and .
Q= / SuRS; du, t>0.
0

Denote p; = N(0,Qy). It is clear that the distribution of fot Sy_sdWy is p; and
hence the distribution of X; is N(Syx, ;). Hence the associated transition semi-
group of X is given by

Pif(z)= [ f(Sw+y)m(dy), zeR? feE (R

Rn
For simplicity we assume the following assumption.

Assumption 5.6.1. The covariance matrix (); is non-degenerate.

With Assumption 5.6.1, the determinant of (); is positive and hence for any
a € R", the Gaussian measure N(a, Q) is absolute continuous with respect to

the Lebesgue measure on R". Moreover, we have

dN(a, Q) 1 1,
T(:c) = Br) 2 (et 0172 exp (—5 (Q;'(z —a),z — a>) . (5.49)

Now we have the following explicit formula for the transition semigroup P, which
is due to Kolmogorov ([Kol34])

1
(2%)”/2(det Qt)1/2 R

Pf(z) = f(Sex + 2) exp (—% Q' z>) d-.

Thanks for this explicit formula, we can prove the following Harnack inequality
easily.

Proposition 5.6.2. Assume that Q; is non-degenerate for every t > 0. Let
~1/2
Ft = St. Then

(7)) < e (5 e = ) P ) (5.45)

holds for everyt > 0, z,y € R, f € €, (R?) and , B > 1 satisfying 1/a+1/3 =
1.
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Proof. From (5.44) we know N (S;(z —y), @Q;) is absolute continuous with respect
to N(0,Q;) and the Radon-Nykodym derivative is given by

AN (Si(z — y), Q)
dN(()? Qt)

I 2 _
(2) = exp (—5 Q7 sa—y)| + (@2 Sile - y>>) .
By a change of variable and the formula above we have

PI@ = [ f(Si+2) (a2)

dN(S5i(z —y), Q)

dN(0,Q,) pe(dz)

= " f(Sy + 2)
:/}Rd f(Swy + 2) exp (<Qt_12, Si(z—y)) — % ’Q;1/2St($ - ?/)‘2> e (dz).

Applying Holder’s inequality, we have

Pif(z) <exp (—%]Ft(x — y)|2> </Rd (S + ) ut(dz))l/a

(/Rd exp[3(Q; 'z, Si(x — ym)l/ﬁ

—exo (D320 = o)) ()

]

Infinite Dimensional Case Now we come back to the infinite dimensional
settings. Consider the following linear stochastic partial differential equation on
a real separable Hilbert space H,

where A is the generator of some strongly continuous contraction semigroup
(St)t>0 on H, B is a bounded linear operator on H, and (W;);>o is a cylindri-
cal Wiener process on H.

Set R=BB*. Fix T > 0. Forany 0 <t <T, set

t
Q, = / S.RS: du.
0

We suppose that Qr is of trace-class and non-degenerate. Now we prove Theorem
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5.10 by using Proposition 5.6.2.

Let {e,}nen be an orthogonal normal basis of H. For each n € IN, denote by
P, the orthogonal projector on the span of {ej,es,...,e,}. In other words, the
projection mapping P is defined by

n
Pox = Z(x,ek>ek r € H.
k=1
Consider the following finite dimensional stochastic differential equation

dX" = AW X, + B™ aw™

on P,(H), where A™ =P, A B™ =P,B, and Wt(n) =P, W, for every 0 <t <
T.

Let S := exp(tAM), R®™ = BM(BM)* and
T

T
W= / ST RM S dy
0

for every ¢t > 0. Then we have Sgl) =P, St and ng}) =PQr.

We know Q(Tn ) is non-degenerate since ()7 is so. Therefore, by Proposition
5.6.2, we have the following Harnack inequality for the transition semigroup of
X® which is equal to P := PPy

(P 709 (@) < exp(5 [0 (2 — )P P () (),

where f™ =P, f, 2 =Pz, y™ = P,y and ™ — (oWy-1/2gm
Y Y T T T

Let n goes to infinity, we can finish the proof.

5.6.2 Representations of Ornstein-Uhlenbeck Semigroups

We consider the Ornstein-Uhlenbeck transition semigroup introduced in Section
5.2. Assume that @, is of trace class for all £ > 0. Recall that the semigroup is
given by

Bﬂwzéﬂ&mwwwm7x€Ht2Qf€%®)

Here p; = N (0, Q).
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If S,(H) ¢ Q;*(H) for all ¢ > 0, then Ns,».0, < Ng,. By Cameron-Martin
formula, we get

/ fy)d(t, z,y) p(dy)
where
dNStI,Qt

d(t,z,y) = NG

(y) = exp (<th Q; Py — %||th||2) :

If Q is of trace class, then the transition semigroup P, has an invariant
measure /1 = Ng. . Assume that S;(H) C Q)*(H) for all t. Then we also have
S,(H) C QX (H) since Q,*(H) = ééQ(]H) for all t > 0 (see [DPZ02, Appendix
B.1]). This leads us to the following formula

/f k(t,z,y) p(dy)

where

dNg,
—_— =d(? _—

See [DPZ02, Equation (10.3.7)] for the tedious formula for k(t,z,y).
Chojnowska-Michalik and Goldys [CMG96, Section 3, Theorem 1] obtained

the following Mehler formula by using the second quantization,

P, = /]H f (Sta: + QU1 - Q2510251002 Qy) pldy). (5.47)

See also in the book Da Prato and Zabczyk [DPZ02, Section 10.4].

Remark 5.6.3. Formula (5.47) is a generalization of the classical Mehler formula.

Recall that for one dimensional Ornstein-Uhlenbeck process
t
X, =ze ™ —i—e“t/ e " dWs,
0
we have the following classical Mehler semigroup
= / fle ™™z + V1 — e 28ty) y(dy). (5.48)
R

Here 7y is the standard Gaussian measure on R.

Here we aim to show another Mehler formula, from which we can also get
(5.47) for the Ornstein-Uhlenbeck semigroup by direct calculation.

First we show a proposition.
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Proposition 5.6.4. Let i be a Gaussian measure with covariance Q. Then for
every bounded operator S, the covariance of po S~ is SQS*.

Proof. For every h,k € H, we have

/}H (hy 2) e, ) 0 S~ (da) = /}H (h, Sz} (k, Sz) j(dz)

- /IH (S*h, 2)(S*k, z) p(dz) = (QS*h, S*k) = (SQS*h, k).

]

Now we come to a representation of the Ornstein-Uhlenbeck transition semi-
group.
Proposition 5.6.5. For every f € ¢,(H),t >0,z € H

Rse) = [ 75+ Q%) utdy) (5.49)
H
Proof. Let T' = Qi/Q =72 By Proposition 5.6.4, we have

/H F(Su + Ty) p(dy) = /H F(Sux + ) po T (dy)

:/ f(Six +y) Nrg..r-(dy)
H
= [ (51 -+ 9) No,dy
H
= P f(z).
O
Remark 5.6.6. Note the following relation

for all t > 0, we can verify that chx/f\/ 1— <1x/>25t éézSt*, in the Mehler formula
(5.47), is a square root of Q;. Therefore, we can reproduce (5.47) by applying
Proposition 5.6.5.

Remark 5.6.7. The formula (5.50) can be obtained from the following relationship
between ); and S; by letting s — oo

Qi + S1QsS; = Quys, 5,6 > 0. (5.51)
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We can compute (5.51) directly as shown in the following. For every s,t > 0,
t+s t t+s
Qirs = / SuRS; du = / Sy RS, du + / Sy RS du
0 0 t

t+s s
t 0

= Qt + St/ StJruRS; dqu = Qt + SthS:
0



Chapter 6

Harnack Inequalities for
Ornstein-Uhlenbeck Semigroups:
Two Other Gaussian Cases

In the previous chapter, we have considered Harnack inequalities for Ornstein-
Uhlenbeck processes driven by Wiener processes. In this chapter, we study Har-
nack inequalities for other Gaussian Ornstein-Uhlenbeck semigroups. We still use
the Cameron-Martin formula to establish Harnack inequalities.

In Section 6.1, we show Harnack inequalities for the “formal” transition semi-
group of fractional Orntein-Uhlenbeck processes. In Section 6.2, we establish Har-
nack inequalities for Ornstein-Uhlenbeck semigroups on general Gaussian proba-
bility spaces.

6.1 Harnack Inequalities for Fractional Orntein-

Uhlenbeck Processes

Stochastic (partial) differential equations driven by fractional Brownian motions
have met great interest during the last years. We refer to the monograph by
Biagini et al. [BOSWO04]| for topics related to fractional Brownian motion. For
linear stochastic equations in Hilbert spaces with a fractional Brownian motion,
we refer to Pasik-Ducan et al. [PDDMO06] and references therein.

We first shortly introduce fractional Brownian motions and stochastic inte-
grals with respect to fractional Brownian motions. Then we introduce fractional
Ornstein-Uhlenbeck semigroups and Harnack inequalities for the semigroups.
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6.1.1 Fractional Brownian Motions and Stochastic Inte-

grals
Real Fractional Brownian Motions Case

Definition 6.1.1. A real fractional Brownian motion (8 (t))o<i<r with Hurst

parameter H € (0,1) is a centered Gaussian process with covariance

6(t,5) = % (2 1 21 | sPH)

where
I'(2 —2H)cos(mH)

Vi = = H = 2m)

For every H € (0,1) and 0 < s <t < T, define
t—s)f2 (1 1 1 t
Ku(t, s) :¢F S HH- S H+-1-"),
where F(+,-,-, ) is the Gauss hyper-geometric function.

Then we have the following representation for fractional Brownian motion

Ht):/otKH(t,u)dﬂ(u), 0<s<T,

where (3(u))o<i<r, is a standard real valued Brownian motion.

Let H be a real separable Hilbert space. We shall describe the stochastic
integral of deterministic H-valued function with respect to a real valued fractional
Brownian motion. It is similar to the integral with respect to Wiener process
introduced in Section 1.3.

Denote by & the space of all H-valued step functions on [0,7]. Let ¢ € &

with
n—1
= Z l‘i:ﬂ'[tiyti+1) (t)
=1

where x; e H,1=1,2,....n—1land 0=t <...<t, =T withn € IN.
Define .
/ ot dB (1) = 3 (B (ti11) — B (1) (6.1)
=1
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It follows that )

T *
E / O (1) 3™ (1) = | At 90100 (6.2)
where
T
* a
A o) = oOKn(T.0)+ [ (90 = o) G2 (ut) du, 0<¢<T.

By the isometry (6.2), we can extend the stochastic integral (6.1) from the func-
tion ¢ € & to the function ¢ € &. Here & is the completion of & with the inner
product

(& 0)m = (Mg &, Hag V) 2(011,80
for every ¢, € &.

Cylindrical Fractional Brownian motions Case

Now we are going to introduce the cylindrical fractional Brownian motions on a
Hilbert space. A usual way is to define it similarly as the definition of cylindrical

Wiener processes. We use the following method which is short.

Definition 6.1.2. Let (2,.%,P) be a complete probability space. A cylindrical
process (WH .): QOx [0, T]xH — Ron (2, #,P) is called a (standard) cylindrical

fractional Brownian motion with Hurst parameter H € (0,1) if

(1) For every x € H, = # 0, (WH(.), Z) is a real valued fractional Brownian

) ‘:E
motion with Hurst parameter H.
(2) For every 0 <t < T, (WH(t),-) is linear. That is,

(WH(t), px + qy) = p(W (1), 2) + (W (t),y), P-as.
for every p,q € R and =,y € H.

Let {e, }nen be a complete orthogonal normal basis of H. For every n € IN, let
BH() = (WH(.), e,). Then {8, }nen is an independent sequence of real fractional
Brownian motion with Hurst parameter H.

Definition 6.1.3. For every 0 < ¢t < T, let ®(¢) be a linear bounded operator on
H and define ¢, (t) = ®(t)e, for n € N. Suppose that ¢,, € &. Then we define

| ewmante =3 [“o.wasti (63
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provided the infinite series on the right hand side of (6.3) converges in L*((2).

The following proposition is from [PDDMO06, Proposition 11.3, Remark 11.4].

Proposition 6.1.4. Let

Qe = /OT A () () dt.

If QHT{@ is a trace class operator on H, then the stochastic integral (6.3) is a

well-defined centered Gaussian H-valued random variable with covariance Q%D.

6.1.2 Fractional Ornstein-Uhlenbeck Processes and Har-

nack Inequalities

Consider the following linear stochastic partial differential equation on H
dX; = AX;dt + BdW}" (6.4)

with Xy = x and t € [0,T], where B is a bounded linear operator on H, A is the
generator of some strongly continuous semigroup (S;)o<i<7 on H, (WH)oci<r is
an H-valued cylindrical fractional Brownian motion with Hurst parameter H €
(0,1).
Define T
Ol — / 8, B(H;S.B) " du.
0

By Proposition 6.1.4, if QI is of trace class, i.e., if
T
TrQF = / Tr(A7; SuBB* Sy Ay) du < oo.
0
then the stochastic equation (6.4) has a mild solution
t
X, = Stx—i—/ S, BawWl 0<t<T.
0

We call it fractional Ornstein-Uhlenbeck process.

Note that X; is Gaussian distributed as pf := N(0,QH). Similar to (5.8),
the representation of the transition semigroups for Ornstein-Uhlenbeck processes
driven by Wiener processes, we can formally define the “transition semigroup” of
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fractional Ornstein-Uhlenbeck process by

pie = [ (St y) dull ()

for every f € €,(H).

By applying the Cameron-Martin formula (see Theorem 1.2.2), we have the
following Harnack inequality which is similar to (5.10) for Ornstein-Uhlenbeck
processes driven by Wiener processes. The proof is also similar to the proof of
Theorem 5.10.

Theorem 6.1.5. Let T > 0. Assume that the operator QY is of trace class. Let
x,y € H such that Sp(x —y) € (QF)Y2(H). Then

(Prf (o) < oxp (510G = ) Prs*(o) (65)

for every f € €, (H), and every o, > 1 satisfying 1/a + 1/ = 1. Here
H H\~1/2
I'p = (QT) St.

Remark 6.1.6. Similar to the treatment in Chapter 5 on the Harnack inequalities
for Ornstein-Uhlenbeck processes driven by Wiener processes, we can consider the
estimates of [|[T¥|| as in Subsection 5.2.2; and hence we can get estimates of the
Harnack inequalities for fractional Ornstein-Uhlenbeck processes as in Subsection
5.2.2. We can also study examples as in Section 5.4.

6.2 Harnack Inequalities for Ornstein-Uhlenbeck

Semigroups on (GGaussian Probability Spaces

We first recall the definition of Gaussian probability spaces, numerical model
for Gaussian probability spaces and the Cameron-Martin theorem on Gaussian
probability spaces in Subsection 6.2.1; Then we introduce Ornstein-Uhlenbeck
semigroups and Harnack inequalities for them in Section 6.2.2.

We refer to the books [Mal97, HY97, HY00, Nua06] for more detailed back-
ground on Gaussian probability spaces and Ornstein-Uhlenbeck semigroups.
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6.2.1 Gaussian Probability Spaces and Numerical Models
Gaussian Probability Spaces

Definition 6.2.1. Let (Q,.#, 1) be a complete probability space and H a real
separable Hilbert space. Suppose that 7 = {W),: h € H} is a family of Gaussian
random variables such that for all h,g € H

EW,) =0 and E(W,W,) = (h,g)n. (6.6)
Then we call (Q,.%, u; H) a Gaussian probability space.

There are some typical Gaussian probability spaces. For example, abstract
Wiener spaces, white noise spaces. In the following we just recall the classical

Wiener space.

Example 6.2.2. Let W = Cy([0,1], R?) be the space of R%valued continuous
functions on [0, 1] with initial value 0. Equipped with the uniform norm [Jw|| =
SUPsepo,1) [w(t)|ge for every w € W, the path space W turns into a separable
Banach space.

Let 1 be a Wiener measure on W and % the p-completion of the Borel o-
algebra of W. Set H := L?[0,1]. For every h € H, define a mapping W), on W
by

Wh(w):/o h(t)dw(t), weW

according the usual stochastic integrals with respect to Wiener processes. Then
H = {Wy: h € H} is a family of Gaussian random variables satisfying the
conditions in (6.6). Hence (92, %, u; H) is Gaussian probability space.

The mapping J : H — W, h + h(-) = Jo h(s)ds for 0 <t < 11is a continuous
linear injective. Then H = J(H) is the Cameron-Martin space of W. We call

(W, .Z, u; H) the classical Wiener space. .

Assumption 6.2.3 (Irreducible Assumption). In this section, we will always
assume that every Gaussian probability space is irreducible. That is, # = o(.Z°U
), where Z° = o{W),,h € H} and .4 is the set of all p-zero sets.

Numerical Models and The Cameron-Martin Theorem

Denote by
v(du) = (2m) Y2 exp(—u?/2) du
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the standard Gaussian measure on (R, B(R)), where B(R) is the Borel o-algebra
of R.

For every h € R, define W),(x) = ha for all x € R. Tt is obvious that {W}, h €
R} is a family of Gaussian random variables satisfying (6.6). So (R, B(R),~;R)
is a one-dimensional Gaussian probability space.

Let H,, be the Hermite polynomial on R defined as

dTL
H,(u) = (—1)"e*/? Ol—e_“2/27 ueR, nelN.
un

It is well known that {(n!)~'/2H,,: n € IN} consists of an orthogonal normal basis
of L*(R, ).

Now let us consider (R>, B> ,~v*°), which is the infinite product space of

R, B(R . For any nonnegative integer sequence A = {\;},cn, denote
( Y y g ger seq i}jen

A=Y N, A =T,

J

A, ={NeR™: [\ =n}, A={NeR™: |\ <o}
For any A € A, define

Hy(z) = HHAJ. (z;), = ={z;} € R™.

Then {(A\!)~2H,: X\ € A} is an orthogonal normal basis of L2(R>®, B> y>).
Let IL,, = Span{H,: A € A,;}. Then we see

L*(R™,B,7*) = (P L.
n=0
Fixing an orthogonal normal basis {h;};en of H, we see H 2 [?, where
= {{l;}: Zl? < oo}
J

Define
T:Q—-R>* Tw= {Whj (W) }jen-

Then T is .# /B> measurable and v = p o T~

We call the Gaussian probability space (R*, B>, v>°;1?) a numerical model of
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(Q, .7, ).
Define

L= () I’Q.F,p), and L'"= | L"(Q.Z,p)

1<p<oo 1<p<oo

respectively by projective limit and inductive limit.

For any 1 < p < o0, ¢ € LP(R*>®, B>, %), set Tip(w) = ¢(Tw).

6.2.2 Ornstein-Uhlenbeck Semigroups

Let (Q, .7, u; H) be a Gaussian probability space. Fix an orthogonal normal basis
{h;}jew on H. For any A € A, set

Hy\(w) = H Hy, (W, (w)).

Then {(A)"Y/2H,: X € A} consists of an orthogonal normal basis of L%($,.%Z, ).
Denote Lo = R and L, the space spanned by {}NI x: A€ AL} Then we have

LX(Q,7, 1) = PL..
n=0

Denote by J,, the orthogonal projection from L*(Q, %, ) to L,.

Definition 6.2.4. We call
Poi=Y ¢y 20
n=0

the Ornstein-Uhlenbeck semigroup on L*(2, %, u).

Remark 6.2.5. It is possible to study the following semigroup which is a slight
generalization of the Ornstein-Uhlenbeck semigroup defined by P, = > pnJ;,
for ¢ > 0 and some reasonable real sequence p = {p,}.

The following proposition is from [HY00, Chapter 2, Proposition 3.4].

Proposition 6.2.6. Let PR™ be the Ornstein-Uhlenbeck semigroup on the nu-
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merical model (R, B>, ~v*>;1?). Then

(P N)@) = | fle o+ V1—ez)7™(dz) (6.7)

]R/OO
for every t >0, x € R® and f € L*(R>, B®,7>).

Since the definition of Ornstein-Uhlenbeck semigroup does not dependent on
the choice of the basis of H (it is called intrinsic property in the literatures, see for
instance [Mal97]) , the Mehler formula (6.7) for Ornstein-Uhlenbeck semigroup
on the numerical model can be regarded as an equivalent definition of Ornstein-
Uhlenbeck semigroup on the general Gaussian probability space.

For Ornstein-Uhlenbeck semigroup on general Gaussian probability space, we

have the following Mehler formula. We refer to a proof in Nualart [Nua06, Section
1.4].

Proposition 6.2.7. For each f € L*(Q, .Z, i), there exist some B>/ B-measurable
function ¢y : R® — R such that f =0T := (T, f)oT. Then for everyw € Q
and t > 0, the Ornstein-Uhlenbeck semigroup on L*(Q, R, 1) can be written as

PA@) = [ T5 (e T4 VT=e T ()
= Yr(e " Tw+ V1 — e 22) v (dz).

R

Now we have the following connection between the Ornstein-Uhlenbeck semi-
groups on general Gaussian probability spaces and the corresponding semigroups
on numerical models.

Proposition 6.2.8. Let P, be the Ornstein-Uhlenbeck semigroup on the Gaussian
probability space (0, .F, u; H) and let PR™ be corresponding Ornstein-Uhlenbeck

semigroup on the numerical model (R>, B>, v*°;1?). Then for every t > 0
P=T.,oP} oT .
Proof. For any f € L*(Q), we have
T, o PR~ o T f(w) = PR o (171 f)(Tw)
= / T (e Tw + V1 — e=22) u(dz) = Pf(w).
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Remark 6.2.9. Proposition 6.2.7 is in a slight different form with the one in Nu-
alart [Nua06, Section 1.4]. Proposition 6.2.8 is summarized by the author.

6.2.3 Harnack Inequalities and Examples

We first recall the Cameron-Martin theorem on Gaussian probability spaces.

By using the mapping
T, : LY (R™,B®,~>) — L'T(Q, .7, n)
we can define a shift operator on L'*(Q,.#, u) by
on =T, 0Ty o0 7', hel.

Here 7 is the shift operator of functionals on R.

We have the following the Cameron-Martin theorem. We refer to [HY00,
Theorem 2.5] for a proof.

Theorem 6.2.10. Define an exponential functional by
Lo
&(h) = exp(W), — §|h\]H), for every h € H.
Then &(h) € L~ and
pP—1.
1&(h)||, < exp TW , 1<p<oo.

Moreover, for every f € L'*, we have

E(onf) = E(&(h)f), heH.

Now we can prove a Harnack inequality for the Ornstein-Uhlenbeck semi-
groups on the numerical model.

Theorem 6.2.11. Let PE™ be the Ornstein-Uhlenbeck semigroup for numerical
model. For any x,y € R*®, we define

2z —ylp, ifz—yecl’
p(e,y) = .
~+00, otherwise.
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Then for any x,y € R*, t > 0, a, B > 1 satisfying 1/a+ 1/8 = 1, and for any
nonnegative f € L*(R%, B®,v>) we have

© i\ ﬁp x,y 2 > ra
(PE1)7(0) < exp (A0 ) B 1),
Proof. We only need to consider the case z — y € [?. For simplicity, we set

et 1

- V1—e 2 - Vet —1

O

PR7flx)= [ fleT'a+V1—e2y)y>(dz)

]ROO

= [ i (e vimem e S ey
= | flety+VI—e %)

R
2

o
] e e R
1/
< { ey +Vi—ez) vm(dZ)} -
]ROO

2 1/8
{/w exp (ﬁat<z,x — Yz — %u - y|lz) 7°°(dz)}

= exp (VEHTIEIR (o oy

]

Following from Theorem 6.2.11, we have the following Harnack inequality for
the Ornstein-Uhlenbeck semigroup on a general Gaussian probability space.

Theorem 6.2.12. Let P; be the Ornstein-Uhlenbeck semigroup on L*(2,.F, ).
For any wy,ws € S, we define

|TC¢J1 — TWle, if Twl — TWQ S lz,
plwr,ws) = )
~+00, otherwise.

Then for any wi,ws € Q, t >0, o, 8 > 1 satisfying 1/a+ 1/ =1, and for any
nonnegative f € L*(Q, F, 1) we have

(Puf)on) < xp (22 ) R
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Example 6.2.13 (Harnack Inequality for Ornstein-Uhlenbeck Semigroup on
Classical Wiener Space). We continue with Example 6.2.2. Consider the Ornstein-

Uhlenbeck semigroup P; on the classical Wiener space (W, %, u; H).

Recall that the Cameron-Martin space H consists of all absolutely continuous
function A : [0,1] — R? with a square integrable derivative. The inner product
of H is defined by

1
<h1, h’2>lﬁ = / hl(S)hQ(S) dS, ]’Ll, hg c H.
0
The intrinsic distance p on (W,.Z u; ﬂ) is defined by

(wl—wQ,wl—wQ)l/Z, if w1 — W2 Eﬁ
p(wlva) = .
0, otherwise

for all wy, wy, € W.

Then for any wy,wy € W, t > 0, o, > 1 satisfying 1/a 4+ 1/8 = 1, and for
any nonnegative f € 6,"(W) we have

(Puf) ) < oxp (2520 (),

By using semigroup calculus, Shao [Sha07] also studied the Harnack inequal-
ities for the Ornstein-Uhlenbeck semigroups on Wiener spaces.



Chapter 7

Harnack Inequalities for
Ornstein-Uhlenbeck Processes

Driven by Lévy Processes

In this chapter, we devote our studies to Harnack inequalities for Ornstein-
Uhlenbeck processes with Lévy noise. There are three methods available to prove
Harnack inequalities: semigroup calculus, measure transformations on the state
spaces and measure transformations on the probability spaces. Rockner and Wang
[RW03a] used the first two methods and obtained some Harnack inequalities for
generalized Mehler semigroups which are naturally associated with Lévy driven
Ornstein-Uhlenbeck processes. We present their methods and results in Sections
7.2 and 7.3 respectively. By the first method, only second order Harnack inequal-
ities were able to be obtained. While Harnack inequalities established by the
second method are not explicit in general.

In Section 7.3, we apply the measure transformation on the state space for
Lévy Ornstein-Uhlenbeck semigroups more concretely. We also use this method
to establish Harnack inequalities for a-stable Ornstein-Uhlenbeck process and
Markov Chains.

In Section 7.4, by using coupling and Girsanov’s transformation, we show
Harnack inequalities for Ornstein-Uhlenbeck processes with Lévy noise. The in-

equalities we prove are more general and sharper than the ones proved in [RW03a]

In Section 7.5 we consider the applications of Harnack inequalities. We mainly
study regularizing properties, heat kernel bounds and hyperboundedness of the
Lévy Ornstein-Uhlenbeck semigroup.
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7.1 Lévy Driven Ornstein-Uhlenbeck Processes

Let H be a real separable Hilbert space with inner product (-,-) and norm | - |.
Let R be a trace class operator on H. In this chapter, as before, we always use
the notation Hy = RY2(H) for the Cameron-Martin space of H, (-,-)o and |- |o

for the natural inner product and norm on Hy respectively (refer to Section 1.1).

Fix T' > 0. Consider the following generalized Langevin equation on [0, 7]
dXt = AXt + dZt, X(] = Ec IH, (71)

where Z, is a Lévy process with characteristic triplet (b, R,v), and A is the in-

finitesimal generator of a strongly continuous contraction semigroup (S;);>0 on
H.

The mild (unique weak) solution of the stochastic differential equation (7.1)
is given by (see for example [Cho87, App06] etc.)

t
Xt = Stl’ + / St—s dZS (72)
0

We call this process the Lévy driven Ornstein-Uhlenbeck process.

The associated transition semigroup of X, is given by

Pf(x) = /}H F(Suz +y) pe(dy) (7.3)

for every x € H and f € %,(IH), where p, is the law of f(f S,_sdZ,.

By Propositions 1.4.10, we know g, is infinitely divisible. Let A be the char-
acteristic symbol of Z;. Then the Fourier transform of p, is given by

fuu(u) = exp {— /0 t A(S*u) dr} . well (7.4)

Denote by (b, Q, 1) for the characteristic triplet of ;. By Corollary 1.4.11,
we have

t t
b, = / S,bdr + / dT‘/ S,x {:ﬂ-{|m|§1} (er) — ]l{|m|§1}(l’)} dx, (7.5)
0 0 H\ {0}

t
Q: = /0 S,RS" dr, (7.6)
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t
v = / voS tdr. (7.7)
0

For a family of probability measures (1;);>0 on H, the semigroup of the form
(7.3) is called a generalized Mehler semigroup associated with S; and p,. It can be
proved that (see for instance [Les01]) the generalized Mehler semigroup become

a Markov semigroup if and only if

lj’ert(f):Mt*(/JJSOS;lg)’ 57t207 fG]H

Remark 7.1.1. The semigroup with the following property fis1s = pe * (j1s 0 S; ),
for every s,t > 0 is called skew convolution semigroup. This is a generalization
the so called convolution semigroup (the case when T; = I) corresponding with
Lévy process. See the details of convolution semigroup in Page 27.

Under some slight condition, there is a natural one to one corresponding be-
tween generalized Mehler semigroup with Markov property and the transition
semigroup of Lévy driven Ornstein-Uhlenbeck processes. See [Les01] and refer-

ences therein for details.

Bibliographic Notes on Generalized Mehler Semigroup Mehler semigroup
is named after Mehler [Meh66]. Generalized mehler semigroup has been studied
extensively by Rockner and his collaborators in a series papers [BR95, BRS96,
FROO, LesO1, LR0O2, Meh66]. See also the papers by Dawson and/or Li et al.
[DLSS04, DL06, Li06] etc. for the relation of generalized Mehler semigroup with
branching processes. We refer also to Page 96 for the bibliographic notes on
Ornstein-Uhlenbeck processes with Gaussian or Lévy noise.

7.2 Semigroup Calculus Approach

We work under the framework in Section 7.1 and consider the Lévy Ornstein-
Uhlenbeck semigroup P; defined in (7.3).

In [RW03a], the following assumptions are used to establish Harnack inequal-

ities.

Assumption 7.2.1. (1) P, has an invariant probability measure;
(2) There exists {x,},>1 C H consisting of eigenvectors of A* and separating
the points of H;
(3) For every t > 0, S;R(H) C RY?(H) holds and there is a strictly positive
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hy € C0,00) such that
|StRl'|0 S \/ hl(t)|R$|07 x € IH, t Z 0.

Under Assumptions 7.2.1, Réckner and Wang [RWO03a] proved the following
theorem on Harnack inequalities. Recall that we denote by p the intrinsic distance
on H induced by R.

Theorem 7.2.2. Assume Assumption 7.2.1 holds. Then

P () < exp | —28W° )Pt? 7.8
(P f)(x) < p(fohl(s)_lds f(y) (7.8)

holds for every x,y € H, t > 0 and f € ¢,"(H). In particular, for the diffusion

case, i.e., when v =0,

Bp*(x,y)
2 f; hi(s)~tds

(Pef)" () < exp ( ) B f(y). (7.9)

holds for every a, 3 > 1 with 1/a+ 1/ =1.

The approach used in [RWO03a] to prove Theorem 7.2.2 is semigroup calculus.
In the following we just sketch the idea of the proof.

When v = 0, the generator is a diffusion operator. Then by chain rule, we
can take derivative of the following function

s log Py (Psf)*(xs) (7.10)

with respect to s. Here z, for s € [0,¢] is a geodesic connecting x and y on H.

When v # 0, the generator of the semigroup P; has the following form
1
o f(x) =(Df(x),b+ Ax) + ETr(RDQf(x))

" / @t y) — F(2) — (DF@), ) Lgson ()] v(dy).
H\{0}

for regular enough function f.

This generator &7 is not a diffusion operator and hence the chain rule doesn’t
work. But Rockner and Wang still can get an estimate of the derivative of the
function (7.10) for the special case @ = 2. They used the following explicit
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formula for the square field operator

7. i= (e P-21e0 1) = 5 (w01 DA +

2 m

[f(~)—f(-+y)}2V(dy)) (7.11)

for regular enough function f (see [LR02, Propostion 4.1] for details).

From (7.11), it is obvious to see that I'(f, f) > %(RDf, Df). Therefore, the
Lévy case is reduced to the Gaussian case. So it is also clear why the exponent of
the coefficient in the Harnack inequality (7.8) is independent of the Lévy measure
v.

In the spirit of semigroup calculus, one may try to use the martingale ex-
pansion method to calculate the derivatives. This method is used by Kawabi
[Kaw04, Kaw05] for diffusions. In the following we point out the difficulty of this
method for the jump case.

Let f be a function in some nice class. Consider

H(T’l,rQ,r;}) : (O7t) X <O7t> X (07t) - Cb<H>7
(r1,72,13) = Py (Prery )™ (@0y)-
By the martingale expansion method, it is not hard to calculate
OH O0H OH
ory’ Ory’  Ors

Let G(s) = H(s, s, s) for s € [0,t]. We want to calculate G'(s). For the diffusion
case we have

3
G <S) = Z or (7’1, r2ar3>‘r1=r2:r3:s~
i=1 ¢

But it is hard to prove the chain rule above for the jump case.

7.3 Approach by Using Measure Transforma-

tion on State Spaces

7.3.1 Main Theorem for Harnack Inequality

We still work under the framework introduced in Section 7.1 and consider the
Lévy Ornstein-Uhlenbeck semigroup (7.3).



142 Chapter 7. Harnack Inequalities for Lévy Driven OU Processes

For the Gaussian case (i.e. v = 0), we know g, is a Gaussian measure. By
using the Cameron-Martin formula for Gaussian measures, we proved a Harnack
inequality (5.10).

For the Lévy case (ie. v # 0), we still can use this method of measure
transformation on state spaces if we know the Radon-Nikodym derivative of the
infinite divisible measure with respect to its shifts. But unfortunately, there are
only a few results on the densities. There are some sufficient conditions for the

absolute continuity, “but formulae for the densities are not given, because none
have been found (Gikhman and Skorokhod [GS66, Section 6, Page 121]).”

For convenience, let us denote by D(m, R,v) the infinite divisible measure
with characteristic triplet (m, R,v) on (H, B). That is,

—

D(m,R,v) = exp{i(u,m> — %(Ru,w

_ /}H [1 = exp(i{z, u)) + i, )T aiey ()] v(da).

If D(v, R,v) is absolute continuous with respect to D(0, R,v), then we will
denote the Radon-Nikodym derivative of D(~, R, v) with respect to D(0, R, v) by

p<77 R7 v, )
dD(v, R, v)

W(ﬂf) =p(v, R, v, ).

In terms of p(v, R, v, -), we have the following results on the absolute continuity
and Radon-Nikodym derivative of D(b + ~, R, v) with respect to D(b, R,v) for
every b € H.

Proposition 7.3.1. Suppose that D(v, R,v) is absolutely continuous with re-
spect to D(0, R,v). Then D(b+ v, R,v) is absolutely continuous with respect to
D(b, R,v) and the Radon-Nikodym derivative is given by p(vy, R,v,- —b).

Proof. For every A € B(H), we have

D(b+fy,R,V)(A):/]H]lA(lU)D(b+%RaV)(d$)
_ /}HﬂA(:p) (D(y, R,v) = D(b,0,0)) (dz)
:/H/H]lA(Hy)D(%R,u)(das)D(b,O,O)(dy)

— /]H]lA(I +b) D(7, R, v)(dx)
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[
T

La(z + b)p(, R,v, ) D(0, R, v)(dx)

La(z)p(7y, R,v,x — b) D(b, R, v)(dx).

Now we can state the following Harnack inequality.

Theorem 7.3.2. Let x,y € H. Suppose that the infinite divisible measure
D(Si(z — y),Q, 14) is absolute continuous with respect to the infinite divisible
measure D(0,Qy,vy). If there exists a f > 1 and t > 0 such that

(I)t,/@(x - y) = ||p(St(m - y):Qta Vi, - — bt)HLﬁ(]H,Mt) < 00,

(Pf)*(x) < Pupla —y)*Pf*(y), f €% (H), (7.12)

Proof. By the representation (7.3) of the Ornstein-Uhlenbeck semigroup, we have

v) = /}H F(Siw+ 2) pu(d2)
— /]Hf(Sty + 2)p(Se(x —y), Qr, Vi, 2 — by) pe(d2)

< ( [ s+ ut<dz>) " ( [ plsita = 0).Qurnz - b»%(dz)) "
— (P ) Bl — ).

This proves (7.12). O

Remark 7.3.3. [RWO03a, Theorem 1.5] which is in terms of the Radon-Nikodym
derivative n(z,-):
dpg 0 05}
Ntd Six (2).
2
where for any x € H, 6, is the shift operator y — z + y for any y € H. In

n(x, z) ==

Theorem 7.3.2, we note the fact that u; is an infinite divisible measure and we
base our theorem on the Radon-Nikodym derivative p(v, R, v, ).
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7.3.2 Harnack Inequalities for a-Stable Ornstein-Uhlen-
beck Processes

Finite Dimensional a-Stable Ornstein-Uhlenbeck Processes

Let us consider the following stochastic differential equation

XOZ.TGRd,

where Z; is a symmetric a-stable process with index a € (0,2), and A > 0 is a

constant.

The mild solution of (7.13) is given by
t
X, =eMzr +/ A gz, >0,
0

Denote the transition density of X; by p,(t,z,y). It has the following connec-
tion with p(-, -, ) (the transition density of Sa.S process) and p,(-) (the density
of a-stable random variable).

Proposition 7.3.4. For every a € (0,2) and t > 0, the transition density of X,

s given by

1_ea>\t \
pa(t,x,y)zpa< ” ,e‘tx,y)

) y—e Mg

:pa 1—eaAt l/a
(55)

Proof. We only need to note that by Proposition 1.4.10, the characteristic expo-
nent of fot M=t q7., is given by

t
— log]EeXp{i <§,/ Mut) dZu>}
0

—at

! I—e
_ Au—t) @ du = |l
/0 | MV du = ¢ )

for every ¢ € R? [

In terms of the transition density p,(t, z,y), we can get the following Harnack
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inequality for the transition semigroup P, of the a-stable Ornstein-Uhlenbeck
process X;.

Theorem 7.3.5. For allt >0, p,q > 1 with 1/p+1/q =1, and f € €, (R?),
the following inequality holds

mpre | [ () ] R

Proof.

Ptf($) = R f(Z)pa(t, Z, Z) dz

_ f(z)f%pa(t,y,z) -

R4 Pall, Yy,
< { /]R PEpalty,2) dz] " { /R d (% )qpa - dz] 1/q
— [P )] { [ (M)qm(t’yyz) dz] v

Pal(t,y, 2)

By using the estimate (1.4.16) of p, (¢, z,y) and the relation (1.4.15) between
Palt, z,y) and P, (t, z,y) we have the following corollary.

Corollary 7.3.6. For everyt >0, p,q >0 with 1/p+1/q=1. Let
oAt y— z| q(d+a)
! re \ | e Mz — 2] * -
)\t q(d+a)
7241 le™ My — 2| b
Cy = K™ / N o X, _ o|d/a dz,
re \ e — 2] [e My — 2|

t
C :K2q+1/ - dz,
’ ra | @My — 2|4/«

where
1— e—a)\t

t, ;=
a\

Let C*/1 = min{C}, Cy, C3}. Then
(Puf)P(x) < CRfP(y)

holds for every f € €, (R?).
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Infinite Diagonal a-stable Ornstein-Uhlenbeck Processes

Let {e, }»>1 be an orthogonal normal basis on H. Let A be an self-adjoint operator
on H with eigenvalue —\; (j > 1) and associated eigenvector e;. That is, we
assume

Ae; = =)Njej, j>1.

Suppose that Z; is an a-Stable process on H. For every 7 > 1, set th =
(Zy,e;). We suppose that there exist some 6; > 0 such that

F o€ — o-t0:€l°

forall £ € R and 5 > 1.

Consider the following equation

X(]:.Z'E]H

For any j > 1, denote by X/ = (X;,¢;) and o] = (x,¢;). Then the equation
(7.14) is equivalent with the following system of equations on R:

dX] = AX}dt + dz}
: . (7.15)
X} =2a) ¢ H.

The transition density of th is given by

Ph(t, 27, y7) = paltl, e 2 ), (7.16)
where oy
o 0F(1 —e Y )

* Oé)\j

Denote by H,, := Span{ej, ey, -+ ,e,} the n-dimensional subspace of H. Let

the projection of X, z, Z; to H, be X\™, 2™, Z™ respectively. Then the transi-
tion density of Xt(") on H, is

p (2™, y™) = [ [ rit. 27, ) H (el ).
=1 =1

By Theorem 7.3.5, we have the following result for the transition semigroup
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Pt(n) of Xt(n) on the subspace H,,.

Lemma 7.3.7. For every t > 0, 2™ y™ € H,, f € %, (H,), and p,q > 0
satisfying 1/p + 1/q = 1, the following inequality holds

p/q

(n) (n) a
n « ta 9 n
(P fyp(a) < / po (L2 2) N gy 2yaz| P gy,
Rt \ pi (t, Y™, 2)

By taking limit n — oo in Lemma 7.3.7, we can obtain the following Harnack

inequality for the transition semigroup P; of X;.

Theorem 7.3.8. For every t >0, z,y € H, f € ¢,"(H), and p,q > 0 satisfying
1/p+1/q =1, the following inequality holds

/
p - P ™ )\ SR
(P f)P(x) §nh_{£lo " W o (Y™, 2) dz P.f(y).

7.3.3 Harnack Inequalities for Markov Chains

Let (X})i>0 be a homogeneous Markov chain (see, for instance, Norris [Nor98] for
the background) with discrete state space IN. For every ¢ > 0, i,j € IN, denote
by

pi(1,J) =P( Xy =37 | Xs=1), >0
the transition probability from state ¢ to state j in time ¢. The transition semi-
group of X, is defined by

Pf(i) =) pi(i. k) f(k), i€,

kelN

for every bounded measurable function f defined on IN.

We have the following result on Harnack inequality for Markov chain.

Theorem 7.3.9. Assume the Markov chain is irreducible. That is, there exists
some ty > 0 such that for all t > to and every states i,j € N, pi(i,5) > 0. Then

; 8 a/B
(P)° () < (Z (M) ptu,k)) PG), ijEN  (1A7)

e\l k)
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for every t > to, a, B > 1 with 1/a+ 1/ = 1, and every positive function f
defined on IN.

Proof.
PG = Sni R0 = 3 k) )
kelN kelN £\
) i, k ¢} . 1/8 . 1/a
< (,;% (2) pm,k)) (%f"‘(@m(ﬂd)
k:) 1/8

1 g 1/«
= (Z (gé ) pt(j,k>> (PfoG)) "

Sy
~—

]

Especially, let (X,,)nen be a discrete time Markov chain on a finite state space
S = {1,2,...,l}. Denote by P = (pij)lxz for the one-step transition matrix,
where
pij =P(Xp1 =4 | X,=1), nel

Denote the (i, j)-element of P" by pg-l). We know p"”

i; 18 the n-step transition

probability from state ¢ to state j:
pl(';) =P(Xotm =J | Xon =1)
for every m € IN.
By Theorem 7.3.9, we have the following Harnack inequality for X,,.

Corollary 7.3.10. Suppose that for every i,j € S, we have p;; > 0 Then

o/

L/ pn\”
(Pnf)a(z) < Z (qu;k) Pjk Pnfa(j)v n e INaiaj €S (718)

holds for everyn € N, o, f > 1 with 1/ac+ 1/ = 1, and every positive function
f defined on S.

Example 7.3.11. Let P = (pij)le with p;; = 1/1. Then by Corollary 7.3.10, for
every n € N, a, 3 > 1 with 1/a+ 1/8 = 1, and every function f defined on S,

we have,

(Puf)(i) < Pof(j), i,5=1,2,...1
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7.4 Method of Coupling and Girsanov’s Trans-

formation

7.4.1 Harnack Inequalities: Using a Control Drift
Recall that our object is the following Ornstein-Uhlenbeck processes
aY, = AY,dt + dZ;, (7.19)

where A is the generator of a strongly continuous semigroup (Sy)o<i<7, (Z¢)o<t<T
is an H-valued Lévy process on a filtered probability space (2,.%, (#)o<i<r, P)
with characteristic triplet (b, R, v).

Denote by P, for the transition semigroup of the solution process associated
with the stochastic equation (7.19). We first prove the following Harnack inequal-
ity for P;.

Lemma 7.4.1. Let T' > 0 and x,y € H. Suppose that there is a control v €
L3([0,T],H) of the following deterministic control system

dx, = Az, dt + RY?~, dt,
{ ! ! B (7.20)
To=Y— &,
such that x7 = 0. Then
/6 T
(Prpye) < oo (5 [ 1) Prsvo) (7.21)
0

for every function f € 6,"(H) and a, 3 > 0 satisfying 1/a+ 1/ = 1.

Proof. Denote by (W;)o<i<r the Gaussian part of the Lévy process Z;. It is known
that (W;)o<t<r is an R-Wiener process. Set

Ve = RI/Q% € Hy, forevery0<t<T.

Define . .
1
pi = exp (/ (A, AW )o — 5/ Hu|3du) , 0<t<T.
0 0

It is clear that (p;)o<i<7 is a F-martingale with respect to P since v is square
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integrable. Hence, we can define a new probability measure @ on Zr by

Q= prP.

Now by the Girsanov theorem for Lévy processes (Theorem 2.2.2), we know
the following drifted transformed process

t
0

is also a Lévy process with characteristic triplet (b, R, v) with respect to Q.

We know the Ornstein-Uhlenbeck process
t
Y;y = Sty + / Stfu dZu
0

solves Equation (7.19) with initial data Yy = y € H. Hence for f € €,"(H), we
have
Pif(y) = Epf(Yy). (7.23)

Now we are going to make a drift transformation of
t
Ve =Sa+ [ Si.dz.
0

which solves Equation (7.19) with initial data Y = 2 € H.

Let us consider another Ornstein-Uhlenbeck process

t
0

on (Q,.Z,(F)o<i<r, Q). Obviously we have

Fif(z) = Egf(X))- (7.25)
It is easy to see that X[ is a drift transformation of Y,*:
t
X/ =YY" - / St—uYudu, , 0<t<T. (7.26)
0

From this fact we get the the following relation between the processes X} and
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v
X:=YY—n, 0<t<T. (7.27)

The proof of (7.27) is easy. First, we solve the equation (7.20) and get

¢
ry = Sy —x) + / StV du. (7.28)
0

Then we substitute (7.22) into (7.24) and use the fact (7.28), we see

t t
Xf = Stilf -+ / Stfu dZu — / Stfu:)/u du
0 0

t
= Stl"l—/ St—u dZu —$t+5t(y—l')
0

It follows from (7.27) and the fact that zr = 0, we know X7 = Y.

Intuitively, the procedure above means that by pulling down each trajectory
of Y, with quantity fot St—uYu du, we get X and it meets VY at time T. The
main idea is shown in Figure 7.1.

By Holder’s inequality we get

Prf(z) = Eqf(X7) = Eppr f(Y7)
< (Eepl) " (Epfo (YD)
— (Eppl) " (Prf(y)"".

Y (7.29)

We can calculate the moment of pg: explicitly.

T /8 T
Eept = Eresp {0 [ GudWio~ 5 [ e
0 0

= —52 D B[ s p 7.30
= eXp 9 |7u‘0du_§ h/u|0du ( : )
0 0

B T
e

Substitute the moment of p worked out in (7.30) into (7.29), we obtain the
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0 ot T t
thy = Sty + / St—u dZu
0

Figure 7.1: Coupling by Drift Transformation

following inequality

pep @) <o (3 [ i) P

The proof is finished by noting that |y;|o = || for every t € [0, T7. O

Remark 7.4.2. In the proof we use an explicit deterministic drift transformation
for the process Y; to obtain coupling. This is due to the linearity of the stochastic
partial differential equation. Therefore we can use Girsanov’s transformation
which only involves the Gaussian part. If the drift is dependent on the jump
part, we cannot apply this method. The reason is explained in Section 4.8.
For nonlinear stochastic equations with jumps and Gaussian part, even for one
dimensional stochastic differential equations, we are not able to find a proper
drift which is independent of the jumps. So we are not able to prove Harnack

inequalities use this method.

Remark 7.4.3. 1t is possible to consider Harnack inequalities for time-dependent

Ornstein-Uhlenbeck processes (see [Kn&09] and references therein) similarly.
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7.4.2 Harnack Inequalities: Optimization Over All Drifts

We will deduce from Lemma 7.4.1 a theorem by taking infimum over all null

control drifts.

As in Chapter 5, we use the following notation
t
= / SuRS:du, Ty:=Q, "5,
0

for0<t<T.

Theorem 7.4.4. Let T > 0 and x,y € H. Suppose that
1/2
Sr(y — ) € QY*(H). (7.31)
Then 5
(Prf (@) < oxp (5I0r( = ) ) Prf) (7.32)

holds for every f € €,"(H) and o, 8 > 1 satisfying 1/a+1/3 = 1.

Proof. We first note that (see Appendix A or [Zab08], [DPZ92, Appendix B]
etc.) that condition (7.31) hold if and only if the control system (7.20) is null
controllable. That is, there exists an H-valued square integrable function ~,on
[0, 7] such that yr = 0.

Moreover, |T'y(x — y)|? is the minimal energy for driving  — y to 0:
T
ITr(z — y)|* = inf {/ V)% v € L*([0, T], H), yr = O} : (7.33)
0

By Lemma 7.4.1 we have inequality (7.21). The proof is completed by tak-
ing infimum over all possible choices of the control « for (7.21) and using the
expression (7.33). O

Remark 7.4.5. We have proved the Harnack inequality (7.32) for the Gaussian
case (See Proposition 5.2.3) by using the Cameron-Martin formula. For the Gauss
Ornstein-Uhlenbeck semigroup, the inequality (7.32) is optimal.

We have the following corollary.

Corollary 7.4.6. Let T > 0. Suppose that

Sr(H) C QY2 (H). (7.34)
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Then
(Prf)*(x) < exp (—|rT<:c - y>|2) Pri*(y). (7.35)

holds for every z,y € H, f € 6,"(H) and a, 3 > 0 satisfying 1/a+ 1/ = 1.

7.4.3 Estimates of the Harnack Inequalities

The coefficient of the Harnack inequality (7.32) is simple but not so direct to
compute. However, by taking any explicit choice of the control 7, for the control
system (7.20), we can get an upper bound estimation of |I';(x—y)| via the minimal
energy representation (7.33). We refer to Subsection 5.2.2 for some estimates on
|Cr||. In this way (or using Lemma 7.4.1 directly) we can get an explicit Harnack
inequality.

The control +; naturally determines the behavior of the system x;. In the
following we are going to consider the controls such that the system behave in
the following ways:

(1) There is some positive continuous function & on [0, 7] such that

o, fot &udu .
T = <1 —foT y du) Si(y —x), telo,T]. (7.36)
(2) t
= (1 - T) (y—x), tel0,T]. (7.37)

Note that the first choice (7.36) is a time-scaling of the following simple case

w=(1=L)sy—a), teT1)
(1-7)

By taking the first choice we can obtain the following corollary.

Corollary 7.4.7. Let T > 0 be a fized constant. Suppose that Sp(H) C RY?(H).
Let € be a continuous positive function on [0,T]. Assume

T
/ |Suz]2 €2 du < oo for all x € H.
0

Then .
B [y 1Sulz —y)[5 &0 du

2(foT Eu du)2

(Prf)*(z) < eXp< )PTf“(y) (7.38)
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holds for every x,y € H, f € €,"(H) and a, 3 > 1 with 1/a+1/3 = 1.

Proof. Take
_ §u
= RV2S,(x —y) = we0,7].
(z —y) e du [0, 7]
It is obvious that -, is a null control of the system (7.20) by noting the formula
(7.28). Then we can finish the proof by applying Lemma 7.4.1. O

From Corollary 7.4.7 we have the following assertions if we assume further the
estimates on ||.S;|| for t € [0, 7.

Corollary 7.4.8. Assume the assumptions in Corollary 7.4.7 and

|Suzlo < VE(u)~txlo, x€H, uel0,T].
Then
Blz —yl3
2 Jy &(u)du
holds for every x,y € H, f € ¢,"(H), and o, 3 > 1 with 1/a+ 1/ = 1.

(Prf)*(z) <exp ( ) Prf*(y). (7.39)

Remark 7.4.9. (1) Similar to the corollaries on Harnack inequality in Subsec-
tion 5.2.2, we can get more inequalities by using the estimates on ||I'z||.
(2) The inequality (7.39) generalizes a Harnack inequality in [RW03a], where
merely the case @ = 2 was proved. See Theorem 7.2.2 for the result in
[RWO03a]. Note that we used a condition which is slightly stronger. We
refer to Item (2) of Remark 5.2.13 for the explanation of the difference.

By taking the second choice for the control which corresponds to (7.37) we
have the following corollary. The point of this corollary is that the coefficient
in the Harnack inequality is direct in terms of the operator A instead of the
semigroup S;.

Corollary 7.4.10. Let z,y € H. Assume that v —y € Hy and A(x — y) € Hp.
For anyT >0, a > 0,8 > 0 satisfying 1/a+1/3 =1, f € €, (H), we have

(4o

2

(Prf)*(x) <exp (g/o dt> Prf*(y). (7.40)

0
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Proof. Let
Ty = (1 — %) (y—=x), tel0,T].

Then x7 = 0 and y; solves the null controllable problem (7.20) by setting

t t
/ Rl/nysds:xt—(y—x)—/ Az ds
0 0

for all ¢ € [0, 7.

Now

=2 | (3 -1) a1 -

By applying Lemma 7.4.1 we can prove the inequality (7.40). [

7.4.4 Examples

Consider the following stochastic heat equation with Lévy noise

where A is the Laplacian on (0, 1) with Dirichlet boundary condition, and Z; is

a Lévy process on (an extension of) L?((0,1); dz) with symbol

A= +1¢)?, ¢eH

where ¢ € (0,2) is fixed.

The stochastic heat equation (7.41) was studied in [LR04, Section 8]. It was
shown there that the equation (7.41) has a solution in the sense of [LR04, Theorem
7.3] (see [LRO4, Corollary 8.2]).

Denote the transition semigroup of X; by ;. We have the following theorem
on Harnack inequality for P;. It is a generalization of [RW03a, Theorem 4.1] (see
also [Wan04b, Section 7.3.3]) which only stated the case for a = 2.

Theorem 7.4.11. For allt >0, a > 0,5 > 0 satisfying 1/a+1/ =1, z,y € H
and f € 6,"(H), we have

(Pf)*(x) < exp (%) P (y). (7.42)
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Proof. The eigenvalues of A on L*((0,1)) are A\, = —k*12, k > 1, each with mul-
tiplicity one. Hence we know the eigenvalues of e/® are e_tkzﬂz, k > 1. Therefore,
we have || e/ || < e ™ for every ¢ > 0.

Note that we can modify the proof of Lemma 7.4.1 such that it also works
for the (cylindrical) Lévy process Z;. Hence we can use Corollary 7.4.8 for the

stochastic heat equation. O

7.5 Applications of the Harnack Inequalities

7.5.1 Regularizing Property

Let P, be the transition semigroup (7.3) of the Lévy driven Ornstein-Uhlenbeck
processes (7.2) introduced in Section 7.1.

Recall that a transition semigroup F; is called strongly Feller if for every t > 0

and every bounded measurable function f on H, P, f is a continuous function on
H.

For the Gaussian case (i.e. v = 0), we have shown several equivalent state-
ments for the strong Feller property of the semigroup in Theorem 5.3.3. In par-
ticular, we know the following statements are equivalent: (i) The semigroup F;,
t > 0, is strongly Feller. (ii) The Harnack inequality (5.10) holds for all ¢ > 0,
xz,y € Hand f € 6,(H). (iii) The following null controllability condition holds

S,(H) c Q/*(H), t>0. (7.43)

For the Lévy case, the null controllability condition (7.43) still implies the
strong Feller property of the transition semigroup. This result was proved by
Rockner and Wang [RW03a, Corollary 1.2] (see also [Wan04b, Corollary 7.3.14]).
They used the above mentioned result on strong Feller property for Gaussian
Ornstein-Uhlenbeck semigroup.

Now according Da Prato et al. [DPRWO09, Proposition 4.1] (see Proposition
5.3.2 in this thesis), we can apply Harnack inequality to prove a property stronger
than the strong Feller property.

Theorem 7.5.1. Let p be the invariant measure of P;. Suppose Sy(H) C Qtl/2(]l-l)
for some t > 0. Then for every p > 1, P,(LP(H, p)) C ¢ (H).

In the following, we will prove some estimate on the strong Feller property by
using coupling method and Girsanov’s theorem.
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In stead of the strong Feller property, we would like to state the results for a
generalization of the concept of strongly Feller property. This concept is also stud-
ied in [DPZ92, Subsection 11.2.3] for Gaussian Ornstein-Uhlenbeck semigroup.

Definition 7.5.2. A transition semigroup P, is strongly Feller at a moment tq >
0, if for every t > ¢, and bounded measurable function f on H, P, f is continuous.

We first prove a Lemma.

Lemma 7.5.3. Assume that for some T > 0 and fixed x,y € H,
Sr(z —y) € Q°(H).

Then for every f € %,(H), we have

(1)
|Prf(x) = Prfy)| < |[flloV/Crmu—y exp(Cry 0y /2), (7.44)

where || f|loo is the supremum norm of the function f, and

T
Clrny = / iy dus,
0

and 7y 1s a null control of the system (7.20) such that yr = 0.
(2)
|Prf(z) = Prf(y)| < [|fllee Tr(z —y)|exp(|Tr(z — y)[?/2).  (7.45)

Proof. The second statement is a direct consequence of the first one by taking
infimum over all choice of null control v of the system (7.20) and using the

representation (7.33). So we only need to prove (7.44).

Following the line in the proof of Lemma 7.4.1, we know

Prf(z) = Epprf(X7) and  Prf(y) = Epf(Y7)

T 1 [T
pr = exp </ (Yur AWa)o — 5/ Tl d“)
0 0

Then we have

|Prf(x) — Prf(y)| = [Epf(prXT) — EIPf(YIZ“/N
= Ep|(pr — DY) < | fllocEr|pr — 1.

where

with 5 = RY/?y.

(7.46)
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By (7.30), we know EppF = exp(Cr. ,—,). Using the elementary inequality
e"—1 <re" forall r > 0, we have

(Eelor — 1))* <Ep(pr — 1)* = Epp} — 1
:exp(OT,’y,:c—y> —1< CT,'y,z—y eXp(CT,'y,z—y)'
The proof is completed by substitute the estimate above into (7.46). O

Now we can state the following theorem on the strong Feller property at a

moment.

Theorem 7.5.4. Assume that there exist a to > 0 such that
S,(H) C Q;*(H), for all t > t,.
Then P, is strongly Feller at moment ty. Moreover, we have the following estimate

1Pof(2) = Pof ()] < 1 flloo ITe( = y)| exp(ITe(z — y)[*/2).
forallx,y e H, t >ty and f € B,(H).

Remark 7.5.5. By (7.44) we can get explicit estimates of |P,f(x) — P,f(y)| by
choosing explicit null controls for the system (7.20).

7.5.2 Heat Kernel Bounds

We assume in this section that the Ornstein-Uhlenbeck processes are defined on
[0,00). We will apply the Harnack inequalities obtained in the previous sections
to study norm bounds of the transition density.

We will need the following assumption.

Assumption 7.5.6. P, has an invariant probability measure pu.

This assumption holds if the following conditions are satisfied (see [FROO,
Theorem 3.1]):

(1) supyq Tr @ < 00;

2) )
/0 dr/]H(l/\ 1Sz 2) v(dz) < oo,
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(3) boo = limy_.oo (b") + b)) exists in H, where for any ¢ > 0,

t
bV = / S,.bdr,
0

b2 = /0 Cr /}H Sz (15(Su2) — 15(x)) v(dz),

where B = {x € H: |z| < 1}.

In this case the invariant measure is an infinite divisible measure with char-

acteristic triplet (beo, Qoo, Voo ). Here vy, is given by
(0.)
Voo :/ vo S tdr.
0

The following lemma is from [RWO03a, Lemma 2.2]. We include the proof here
for completeness.

Lemma 7.5.7. Let E be a Polish space and & the Borel o-algebra of E. Let P,
be a transition semigroup on (F,&) with invariant measure p. If there exists a

constant o > 1 and a measurable function ®(x,y) : E x E — (0,00) such that

[P f|% () < @, y) ] f1%(y) (7.47)

for every x,y € E and bounded measurable function f on E. Then the semigroup

P, has a transition density p,(x,y) with respect to ju.

Moreover, the transition density p,(x,y) satisfies the following estimate

e (2, )l o () < (/}H ;gyy)))—l/a (7.48)

(0%

for any x € E, where 3 = :
a—1

Proof. Denote by Pi(x,-), x € E, the transition probability measure correspond-
ing to F;. That is,

-Pt(x7A):-Pt]]-A(x)7 QZGE, AE%(J(E)

We first show that P;(z,-) is absolutely continuous with respect to u. Let



7.5. Applications of the Harnack Inequalities 161

A € By(E) with u(A) = 0. Inequality (7.47) implies
(P1a)%(z) < PLa(y)®(z,y).

Hence by integrating both sides of the inequality above with respect to u we can
get

(P ) [ g}% < [ Piats) uldy) = ) =0

Therefore P;(x, A) = P14(x) = 0. This proves that P;(x,-) is absolutely contin-
uous with respect to p.

By (7.47), for every bounded measurable function f on E, we have

1
®(z,y)

| f]* () < P[f]*(y)

Integrate the inequality above with respect to p(dy), we obtain

d
ey ;(—yy)) < 1.

Hence we have

p(dy) >_1/“_

) o = [ FOPG ) = P <151 (| 4

Then the estimate (7.48) follows from the inequality above. O

Let P, denotes the Lévy driven Ornstein-Uhlenbeck transition semigroup. By
applying Theorem 7.4.4 and Lemma 7.5.7 we can obtain the following norm bound
for the transition density of the Lévy driven Ornstein-Uhlenbeck transition semi-

group.

Corollary 7.5.8. Assume that S;(H) C Qiﬂ(H) holds for every t > 0. Then
P, is strongly Feller. Hence Py(x,dy) has a density p,(x,y) with respect to .
Moreover,

-1/«

s
e Mooy < | [ exv (=5I0e =) i
holds for every x € H, o, > 0 satisfying 1/a+ 1/ = 1.

By Corollary 7.4.7 and Lemma 7.5.7, we have the following result.
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Corollary 7.5.9. Suppose that S;(H) C RY2(H) holds for all t € [0, +0c0). Then
P, is strongly Feller. Hence Py(x,dy) has a density p(zx,y) with respect to .

Moreover,

—1/a
T
Su(z —y))2&2d
e s < | [ exp S I5de — Dl

holds for every x € H, o, 5 > 0 satisfying 1/a+ 1/ = 1, and for every positive

continuous function & on [0, t].

p(dy) (7.49)

Especially, if

|Sulo < VE(u)alo,  we[0,T],

-1/«
. N

Remark 7.5.10. In [RWO03a, Corallary 1.2], only the case a = = 2 was studied.

then

7.5.3 Hyperboundedness

Let u be a probabilistic measure on (H, B(H)). Let p,q € (0,00). The operator
norm of a linear bounded operator T' from LP(H, 1) to L(H, p) is defined by

1T llp—g = sup{lITfllg: I 1l = 1}-

We say that T is hyperbounded if ||T'||,—, < 0o for some 1 < p < ¢ < o0.

If the operator T is contractive on L'(H, ), then by the Riesz-Thorin inter-
polation theorem (see for example, [Dav89, Page 3]), T is hyperbounded if and
only if [|T||2—4 < o0.

Hyperboundedness is a useful concept. For example, for a strongly continuous
symmetric diffusion semigroup of contraction, we can deduce a defective Loga-
rithmic Sobolev inequality from the hyperboundedness of the semigroup. We
refer to [Wan04b| and references therein for more information.

In the following, we are going to consider the hyperboundedness of the Lévy
driven Ornstein-Uhlenbeck semigroup defined by (7.3). We assume that the in-
variant measure of P, exist and denote it by u.

For completeness, we first recall two assertions from [RW03a]. The following
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proposition is essentially from [RW03a, Theorem 1.5].

Proposition 7.5.11. Consider the situation of Theorem 7.3.2. If there exists a
e > 0 such that

ctp.e) = | ( /| %(x_y)_a#(dy))(Hg)ﬂ(m

then
||PtHOt'—>(1+€)O< S C<t7 67 8)1/(1+€)a- (750)

Proof. The proof of (7.50) is the same as in the proof of [RW03a, Theorem 1.5].
We include it in the following. For every f € L*(H, ), by (7.12), we have

(Pf)* () < Py p(x —y)* Pf(y), (7.51)

Suppose u(|f|*) = 1 and integrate both sides of (7.51) with respect to u(dy), we
have

P f(x) /H Doz —y) " uldy) < 1.
Hence

—(1+4¢)
| P f|* ) (2) < (/]H Oy gz —y) ™ u(dy)) '

By integrating the inequality above with respect to p(dz), (7.50) follows imme-
diately. O]

We will work with the following null controllability condition
Si(H) € Q. (H) (7.52)
for some t > 0. The following proposition is from [RW03a, Proposition 1.6].

Proposition 7.5.12. Consider the situation of Theorem 7.3.2. If (7.52) and
C(t, 5,0) < 0o hold for somet >0 and § € (1,00], then Ps is compact on L*()
for every s > t.

Proof. By (7.12), for every f with || f|lo = 1, we have

—(1+4¢)
IPAI20+9) () < ( [ st y>-w<dy>) .
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If C(t,3,0) < oo, then {P.f: ||f|la < 1} is uniformly integrable in L*(H, p).
Moreover, by Corollary 7.5.8, we know F; has a density with respect to u, hence
by [GWO02, Lemma 3.1], it follows that P; is compact in LP(H, ) for s > t. O

Similar to Propositions 7.5.11 and 7.5.12, by using Harnack inequality (7.35),
we can state the following assertion.

Proposition 7.5.13. Assume (7.52) hold for somet > 0. Let o, 3 > 1 satisfying
1/a+1/6 =1. If there exist some € > 0 such that

C(t,B,e) = /

H

[ /}H exp (—glrt(x - y)IQ) u(dy)} o p(dz) < oo,  (7.53)

then
=~ 1
HPt||a—>(1+5)a < C(t, 0, g) a(l+e)

Especially if 6’(75,6,0) < 00 for some t > 0, then Py is compact on L*(H, p)
for every s > t.

By (7.52), we know I'; = Q;l/ZSt is a bounded operator on H and there exist
some C(t) > 0 such that (refer to Subsection 5.2.2)

T < +/C(t), t>0. (7.54)
We will use the assumption (7.54) to study the integrability condition (7.53).

Proposition 7.5.14. Assume (7.54). Let r(x) be a positive measurable function
on H. Suppose that for some ¢ >0 andt > 0,

1 B(l+¢) )
e (7 ) e <o

where B,(x) = {x € H: |z| < r} for any x € H and r > 0. Then (7.53) hold.
Especially, it is the case if

/ p(dz) o
B (B, (x))] "

for some r > 0.
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/ { [ ex (—g\mx - y)‘z) ) (dy)] e
S/IH [/Br(z)(z) exp (—gC(t)r(x)Q) u(dy)] o u(dz)

Proof.

In the following, we intend to look at the integrability condition (7.53) by
using the structure of pu. Recall that p is an infinite divisible measure with
characteristic triplet (bso, Reo, Voo). Refer to Subsection 7.5.2 for the structure of

L.
We denote by uM, u® for the infinite divisible measure with characteristic

triplet (bso, Roo, 0) and (0,0, v ) respectively. That is, ) = N(bso, Rs) is a

Gaussian measure and p?) = D(0,0, v4,) is an infinite divisible measure with

—

1) (1) = /}H (1 — exp(i(z ) + iz W Leny (2)] vo(d2).

By the well known Fernique’s Theorem (see for example, [DPZ92, Proposition
2.16]), there exist some § > 0 such that

/Hexp(5|x|2) p(dz) < oo. (7.55)

In fact we can take any 0 € (0,0g, ) with

1 1

p. = inf — = -
R0 = Neoto) 2\ || Roo

Here 0(Ry) is the spectrum of R.
From the integrability of ™) and p(® we can get the integrability of u easily.

Lemma 7.5.15. Assume that

/]Hexp (6]z[%) p®(dz) < cc. (7.56)
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/ exp (g|x\2) p(dr) < oo
H
Proof.

[ e (gw) udr) = [ [ exp (§|x+y|2) u () 4 (dy)

< [ exp(blal + 1) ntcr) ) at)
— [ exp@lef) (o) [ exp(olyl?) i (d)
H H

< Q.

Then

]

Now we can prove the following theorem on the hyperboundedness of the
semigroup F;.

Theorem 7.5.16. Assume (7.52), (7.54) and (7.56). Then || P||p—qq) < 0o hold
o(p—1)
2C(t) -

for everyp>1,t>0 and q(t) =

Proof. Let f € LP(H, ) with || f|l, = 1. By Theorem 7.4.4, we have

(PufY? () exp (— To y>|2) < Bf7(y) (7.5

_r
2(p—1)
for every x,y € H and t > 0.

By using (7.54) we see

Te( —y)I* < CO)e —yl* < 20) (|2 + [y[*).

Therefore, we can deduce from the inequality (7.57) to get

rp e (<22 1o 4 1uP) ) < o)

By integrating both sides of the inequality above with respect to u(dy) over the
ball By(0) :={z € H: |z| < 1}, we can obtain

rp@es (< (1) ) u(Bi0) < wn)
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Note that p is an invariant measure of P, we have
—1 pC(t)
(PP (@) < [1(B(0))] " exp (pj(l FlaP)).

Taking power % and then integrating with respect to pu(dx) for both sides of the

inequality above, we get

exp (q(t)C’(t) (1+ |x|2)) p(dx)

p—1

exp <g(1 + |x|2)> u(dz)

1P < [u(Ba(0))] /

H

= lu(Bu(0)] " [

H
< 0.

This finishes the proof. O






Chapter 8

Harnack Inequalities for
Multivalued Stochastic Equations

The gradient system considered in Subsection 5.5.2 inspires us to consider Har-
nack inequalities for the transition semigroups associated with general multival-
ued stochastic equations.

Recently, multivalued stochastic equations have attracted the interest of many
researchers. For historic notes and more information about multivalued stochas-
tic differential equations we refer to Krée [Kré82], Cépa [Cép94, Cép95, Cépas|,
Bensoussan and Rascanu [BR97|, Cépa and Lépingle [CL97] and [ZhaO7] etc..

In this chapter, we first give a general introduction to multivalued maximal
monotone operators in Section 8.1. Then we study Harnack inequalities for mul-

tivalued stochastic differential equations in finite dimension in Section 8.2.

We devote the remaining sections to multivalued stochastic evolution equa-
tions in Banach spaces. In Section 8.3 we recall the existence and uniqueness
theorem for the evolution equations due to Zhang [Zha07]. Zhang [Zha07, The-
orem 5.8] has proved finiteness second moment of the invariant measure of the
transition semigroup associated with evolution equations. In Section 8.4 we prove

stronger concentration properties of the invariant measure.

We study Harnack inequalities in Section 8.5 and their applications in Sec-
tion 8.6 for the transition semigroups associated with evolution equation. In
particular, we prove the invariant measure is fully supported on the domain of
the underlying multivalued maximal monotone operator; and we also prove the
strong Feller property, the hyperboundedness, ultraboundedness and compactness

for the transition semigroup.



170 Chapter 8. Harnack Inequalities for Multivalued Stochastic Equations

8.1 Multivalued Maximal Monotone Operator

Denote by 2" for the set of all subsets of H. Let A: HH — 2 be a set-valued
operator®. Define the domain of A by

D(A) ={x € H: Az # 0}.
The multivalued operator A can be characterized by its graph defined by
Gr(A) ={(z,y) e Hx H: z € H,y € Ax}.
Definition 8.1.1. (1) A multivalued operator A on H is called monotone if
(1 —y1, 22 —y2) =2 0, for all (z1,y1), (22, y2) € Gr(A).

(2) A monotone operator A is called mazimal monotone if it must be (z1,y;) €
Gr(A) for any (z1,y1) € H x H satisfying the following property:

(1 — @9, y1 —y2) >0, for all (z3,y2) € Gr(A).

That is, A is maximal monotone if Gr(A) is not contained in the graph of

any other monotone operator.

The following is a fundamental example of a maximal monotone operator.

Example 8.1.2. Let U: H — (—o00, o0] be a lower semi-continuous convex func-
tion on H such that its domain

DU)={zxeH: U(z) < oo}

is not empty.

We define the sub-differential of U by
oU(z)={yeH: U(x) <U(2) + (y,x — 2), z € H}.
Then we see QU is a maximal monotone operator on H.

We refer the reader to Brézis [Bré73| for more details of maximal monotone

operators. We only note in the following some properties about D(A) since it

*We used A to denote the generator of S; in the previous chapters. We use A here for
convenience.
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will be the state space of solutions of the multivalued stochastic equations we will

consider. We know D(A) is a closed and convex subset of H. It is a complete
and separable metric space under the norm | - |g.

8.2 Harnack Inequalities for Multivalued Sto-

chastic Differential Equations

Consider the following multivalued stochastic differential equation

dX, + AX,dt > b(X,)dt + o(X,) dW,, Xo =z € D(A), (8.1)

where A is a maximal monotone operator on R? with D(A)° # 0, W, is a
Wiener process on a filtered probability space (Q,.Z, (%)i0, P), b: R? — R?
and o: R* — R? x R? are continuous.

We first formulate the definition of the solution of the multivalued stochastic
differential equation (8.1)

Definition 8.2.1. A pair of continuous #-adapted process (X, K) is called a
solution of (8.1) if

(1) XO =T c (A), Xt € (A), ]P—a.s.;
(2) Xo =0 and K is of locally finite variation;
(3) X; is a solution of the following stochastic differential equation

dXt = b(Xt) dt + U(Xt) th — th, 0 S t < oo

with initial condition Xy = x;
(4) For every continuous .#-adapted function (p,q) with (p:,¢:) € Gr(A) for
all t > 0, the measure

<Xt — D¢, th — dt> Z 0, P-a.s..
The following proposition will play a basic role.

Proposition 8.2.2. Let A be a multivalued mazimal monotone operator and

(X, K), (X',K") be continous functions with X, X" € D(A), K, K' be of finite
variation. Let (p,q) be contiuous functions satisfying

(pe, q¢) € Gr(A) for all t > 0.
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If
<Xt — pta th — Qt dt) Z O and <X£ — pta dK; — Qt dt> Z 0,

then
(X; — X, dK, — dK!) > 0.

We consider the multivalued stochastic differential equation (8.1) with the

following assumption.

Assumption 8.2.3. (1) o = I is the unit operator on R¢;
(2) There exist some K € R such that for all z,y € R,

(x —y,b(z) = by)) < wlz —yl*. (8.2)

Then by [RWZ08, Thorem 2.8], the solution X; exists. The associated transi-

tion semigroup is given by
Pif(x) =Epf(X)), t20, f€B(R).

We will use the coupling method and Girsanov transformation to study the
Harnack inequalities for P,. We note that Ren et. al. [RWZ08] used this method
and apply it to study the ergodicity of multivalued stochastic differential equa-

tions.

Theorem 8.2.4. Suppose Assumption 8.2.3 hold. Then

(Prpy) < e (B0 P (83)

holds for every x,y € D(A), T >0, f € 6,7 (D(A)) and o, 8 > 1 with 1/a+1/3 =
1.

Proof. We turn to consider the following coupled multivalued stochastic differen-
tial equation

Xy =Y,
| Xy — Y
dY, + AY,dt > dW, + b(Y}) dt, (8.4b)

dXt + AXt dt > th + b(Xt) dt — gt’.f — y’ ]]-{t<7'} dt, (84&)

with initial data Xy = z and Yy = y, where W, is a Wiener process on a filtered
probability space (€2, . #, (%#;)i>0, P), 7 is the coupling time of X; and Y; defined
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by 7 = inf{t > 0: |X; — Y;| = 0}, and & is a deterministic positive continuous

T
/ e ds > 1.
0

Note that for any u,v € R?\ {0} we have

function satisfying

U ) 1
m — o] = el ||v|u [v|v + |v|v — \u|v|
1 2
< 2|v| |lu —v| = —lu— v
|ul[v] |ul
We see the function
R? x R 3 (u,v) i
lu — vl

is bounded and locally Lipschitz off the diagonal R¢ x R¢.

Hence by [RWZ08, Thorem 2.8], we know the equation (8.4) has a solution
up to the coupling time 7. That is, there exist continuous processes (X, K) and
(Y, K) up to 7 satisfying

X, -,
dX, = dW, 4+ b(X,) dt — dK, — &z — mﬁ
t— 1t

dY, = dW, + b(Y;) dt — dK,, (8.5b)

]]-{t<7'} dt, (85&)

for t < 7 with initial values Xy = x and Y, = y. But it is clear that the solution
to Equation (8.4b) (or (8.5b) equivalently) can be extended to all time ¢ > 0

which is still denoted by (Y, K). Then the solution of (8.4a) (or (8.5a)) can be
defined in the following way:

Xy =Y, Kp:= f(t

for all ¢t > 7.

First applying It6’s formula to /| X; — Y;|? + ¢ and then letting € | 0, by
using the assumption (8.2) and Proposition 8.2.2 we can obtain for all t < 7

X =Y Xt—Y2>
—,0(Xy) —b(Ys) — &l — Yyl ) di
‘Xt_YH ( t) ( t) ft’ y”Xt_Yz;,’

X =Y, ~
—( o, dK; —dKy ) dt

<\Xt—Yt|’ t >
<w|X; = Y| dt — &z — y[dt.

d| X, =Y §<
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Therefore,
d(| Xy =Y, e™) < —&lv —yle ' dt, t<T.

If T < 7, then by integrating both sides of the inequality above from 0 to T

we get
T
0< |XT — YT| e_‘"T S ’JI — y’ (1 — / ft e_“’t dt) S 0.
0

This contradiction implies that T > 7 and hence we must have

Xr =Y. (8.6)

As in Section 4.3, for every 0 <t < T, set

tAT
Xy =Y, >
N, = v — oyt WLy,

and

o (29 10

It is obvious that E(Ry) = 1. So we can define a new probability measure Q
on (92,.Zr) by setting Q|z, = RrP.

By Girsanov’s theorem, we know

Xs_}/s

t
W,=W,— | &lr—y|l ==
t t /O€|3j y||Xs_Y*S|

Ti<ryds
for ¢ € [0,7] is still a Wiener process on (Q, Zr, (% )o<i<r, Q). Therefore, on
the new probability space (Q,.Zr, (%)o<i<T, Q), the process X; also solves the

equation
dXt + AXtdt = th + b(Xt) dt, XO =X.

By the uniqueness of the solution of the equation, we obtain Prf(z) =
Eqf(Xr). Combining (8.6) with the obvious fact Prf(y) = Epf(Yr), and us-
ing Holder’s inequality, we have

Prf(z) = BEqf(Xr) = Eqf(Yr) = EpRr f(Yr)

< (EPR@UB (]EJPfa(YT))l/a = (]EIPRg“)l/B (Prf(y)) 0

1/

Since (Ry)tepo,r] is a Fp-martingale with respect to IP, we have (refer to (4.21))
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e < [meesp (ouip— v )]

where p, ¢ > 1 satisfying 1/p+1/q = 1.
Note that .
N =y [ @t
0

we can deduce from (8.8) by by letting p go to 1 to obtain

1 T
Ep R} < exp (55(6 —1)|z — yl2/0 & dt) :

Substitute (8.9) into (8.7) we have

2

(Prefy (o) < o (2L e is) Prf*(o)

Now we can get (8.3) by taking

175

(8.9)

(8.10)

(8.11)

]

Remark 8.2.5. From the calculation in Remark 4.5.4 we see the choice of (8.11)

is optimal.

Remark 8.2.6. (1) We can study Harnack inequalities for multivalued stochastic

differential equations with more general drift as we have done in Chapter 4.

(2) We can also apply the Harnack inequalities we obtained for multivalued

stochastic differential equations to study the strong Feller property, hyper-

boundedness etc. of the transition semigroup associated with the multival-

ued stochastic differential equations. Refer to the procedure in Subsection

8.6.

8.3 Multivalued Stochastic Evolution Equations

Let V be a separable and reflexive Banach space which is continuously and densely

embedded in a separable Hilbert space H. Then we have an evolution triplet
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(V,H, V*) satisfying
VcH=H" cV"

where V* is the dual space of V and we identify H with its own dual H*.

Denote by |- |v, |- |u, | - |v+ the norms in V, H and V* respectively; by (-, - )u
the inner product in H, and v(-,-)y+ the dual relation between V and V*. In
particular, if v € V and h € H, then

v(v, h)y+ = (v, h)@.

Let W, be a cylindrical Wiener process on H with respect to a filtered prob-
ability space (2, .7, (%)i>0, P).

Let A be a multivalued maximal monotone operator on H and B a single
valued operator from V to V*; and ¢ a operator from R, x 2 x H to H® H.

We consider the following multivalued stochastic evolution equation

Xo =0 ¢ DO, (8.12)

{ dX, € —AX,dt + BX, dt + o(t, X,) dW,,
Before we explain the meaning of a solution to the equation (8.12), we intro-
duce two sets:

(1) Y7(H): the set of all H-valued functions of finite variation on [0, 7.
(2) @/ the space of all [u, K] such that u € C([0,T]; D(A)), K € ¥7(H) with
K(0) =0, and for all z,y € C([0,T], H) satisfying [2(t),y(t)] € Gr(A), the

measure

(u(t) —a(t), dK(t) — y(t) dt)u = 0.
Definition 8.3.1. A pair of .%;-adapted random processes (X, K;) is called a
solution of Equation (8.12) if
(1) [X(-,w), K(-,w)] € < for almost all w € Q;
(2) For some ¢ > 1, X(-,w) € LI(]0,T]; V) for almost all w € Q;
(3) It holds that

¢ ¢

Xt:XO_Kt+/ BX5d8+/ U(S,Xs)dws,
0 0

for all ¢ € [0, T] almost surely.

For the existence and uniqueness of the equation (8.12), we have the following
theorem which is due to Zhang [Zha07, Theorem 4.6].
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Theorem 8.3.2. Assume the following conditions.

(H1) 0 € D(A)°, where D(A)° denotes the interior of D(A);
(H2) B is hemicontinuous: for every x,y,z € V,

0,1] 5 € = vy(x, B(y + €z))v~ is continuous;

(H3) For every z,y € V,
v({z —y, Bx — By)y- < 0;

(H4) There exists v >0, w € R and ¢ > 1 such that for every x,y € V,
v(z =y, Br — By)y- < —7lz — y[{ + wlz — yli; (8.13)
(H5) There exists a C > 0 such that for every xz € V,

|Bz|y- < C(1+ |z|&),

where q is the same as in (8.13);

(H6) Let M be the set of all progressively measurable sets with respect to .
Assume o is M x B(H)/B(H ® H) measurable and there exists a positive
constant C, such that for all (t,w) € Ry x Q and z,y € H,

Ha(t,w,x) - U<t7way)H1H®]H < CU|$ - y|]H7
lo(t,w, 2)lmen < Co(1 + |z[n).

Then there exists a unique solution to equation (8.12) in the sense of Definition
8.5.1.
Remark 8.3.3. The following notes are remarked in [Zha07, Remark 3.1].

(1) Condition (H1) can be replaced by D(A)° # (.

(2) Condition (H2) and (H3) implies that B is demicontinuous [Zei90, Proposi-
tion 2.6.4]. That is, if v, converges strongly to v in V, then Bv,, converges
to Bv in V*. In particular, B is strongly measurable.

By Zhang [Zha07, Theorem 5.5], the process X; is a Markov process.
We recall here the following proposition which will play an important role.

We refer to Zhang [Zha07, Proposition 3.3] for a proof.

Proposition 8.3.4. Let [u, K], [i, K| € o/p. Then the measure

(u(t) —a(t), dK (t) — dK (t))m > 0.



178 Chapter 8. Harnack Inequalities for Multivalued Stochastic Equations
8.4 Concentration of Invariant Measures

Suppose that Conditions (H1)-(H6) hold. By Theorem 8.3.2, the equation (8.12)

has a unique solution X;. Define

Fif(z) = Ep f(Xy)

for every f € %,(D(A)). Let o is deterministic and time independent. Then P
is a Markov semigroup (see [Zha07, Theorem 5.5]).

Zhang [Zha(07, Theorem 5.8] has studied the the existence, uniqueness of the
invariant measures associated with P;. He also proved that the invariant measure
1 satisfies

p(|zf) < oo

Here we aim to study stronger concentration property for the invariant measures.

Theorem 8.4.1. Assume that (H1)-(H6) holds with ¢ > 2 and o deterministic
and independent of time. Assume further that V is compactly embedded in H. If
q = 2, then suppose in addition that o is uniformly bounded and  w < vy, where
A is the constant such that |- |g < A| - |v. Then there exist an invariant measure

associated with P, in the sense that
/ P, f(x) p(dx) / flz)p(dz), fe€ By(D(A)).
D(A)

Moreover,
/ |z|3 p(dr) < oo. (8.14)
D(A)

If o is always uniformly bounded, then for every q > 2, there exist some 6 > 0
such that

/ ok 1u(dz) < oo. (8.15)
D(A)

Proof. (1) The existence of the invariant measures has been proved in [Zha07,
Theorem 5.8 (i)] for the case ¢ > 2. The extension to the case ¢ = 2 is not hard.
We skip the proof here since the main technical can be found below.

(2) From (H3) we know for all z € V,

v(z, Bx)y- < —v|z]% + wlz|f + v{z, BO)y-. (8.16)
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If g =2, then
wlzlf < Mwlzly <)zl (8.17)
If ¢ > 2, then by Young’s inequality,

M‘”),p/ , (8.18)

2 2 2e? g
wlzly < Awlzly < 7’35‘\/ + pep

hold for every € > 0, where p' satisfying 1/p' +2/q = 1.

Use the estimate (8.17) and (8.18) in (8.16) for ¢ = 2 and ¢ > 2 (by taking

e small enough in this case) respectively, we know there are constants Cy,~" > 0
such that

v{z, Bx)y- < Cy — 29/|z|% + v{z, BO)y-. (8.19)

By Young’s inequality again, we know for any € > 0,

v{z, BO)y« < |z|y - |BO

g4 1
- < —|z|L + —|BO%.., 8.20
AVA q|xlv+p€p’ A% ( )

where p = q_il.

Therefore, we can deduce from (8.19) and (8.20) by taking £ small enough to
get
v{z, Bx)y- < Cy —+|z|% (8.21)

for some constant Cy,~" > 0.

Now we fix a y in the set A0. Let (X3, Y;) be the solution to the multivalued
stochastic evolution equation (8.12). By definition, we have

(X(t) —0,dK(t) —ydt) >0, (8.22)

By It6’s formula, using (8.21) and (8.22) and Young’s inequality again, we
can obtain

1
§d|Xt|%{

1
S — V<Xt; BXt>V* dt — <Xt7 th>]H dt + §||O-||%-I®IH dt + <Xt, O'th> (8 23)
<(C3 =Y IXOR) dt + |ylw - [Xelw dt + (X, 0dW)

<(Cy— ZIX @) dt + Xy, 0dWWs),

where C3,Cy > 0 are some constants.
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In the calculation of (8.23) we also used Young’s inequality to get control for
lo(@)|lmxm < Co(1 + |z|n) if ¢ is strictly greater than 2. If ¢ = 2, we use the
assumption that ¢ uniformly bounded.

Therefore, by (8.23), we get

1
1
/ %]E“f|Xs|%, ds < Cit 5 (|=lf — E* | Xal3) - (8.24)
0

Consequently we have

1
1
| Pl i@yds < < e+ jal.
0

Hence we have p(| - |[/) < oco. This proves (8.14).
(3) For every 6 > 0, by (8.23) we have
d ?IXtlf

1 _
:§9QI|XJ§{ 2Nl g X, 3

1 1 q 1 — q— 2 -
3 (3oaen) (Soallie? + S32NIE) a0 KR (52

1 o a

=5 0al X[t * Ml (d] X[ + 20q]0 fram | Xolf dt + (4 — 2)|0[fom dt)
1 o

<0 Xl " (Cs =V IX (DI + 20ql0 fiom] Xilfy) dt + dM,

for some constant C's > 0 and some local martingale M;.

Since |+ |g < A| - |v, for small enough 6, we have

q 1 _ q !
AP < SO N (G- TIXOR ) v ade (320

For convenience, let us focus at the drift of the right hand of (8.26).

By the fact |- |g < A| - |v and Young’s inequality,

1 _ /
oaly? (- Jxcn )

1 _ 1 "o _ 8.27
<5005 |XilE? = S0 EAIX (W -1l 520

<Cfy — '7H|Xt|]2}1(q_1)
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for some constant Cg,v” > 0.

Now let o
2(q— 6
G = {|Xt]H(q Y 21+7}.

Note that on G¢, both | X; ﬂq_l) and e/l are bounded. Therefore
<C6 - VII‘Xtﬁ{(q_l)) of Xl
=—7" (!Xt!%(ql) - %) eI Xli
< — AN, — (|Xt|]2H(‘11) _ %> Xl 1 (8.28)

S _ ,y// 69|Xt|]% _i_,y// e@lXt‘g_I ILGC _ /y// (lXt|§_I(q_1) - gﬁ) eelXtH%_I :[I.GC
Y

<C; — ’7// 69|Xt\]‘f{
for some constant C7 > 0.

Therefore, from (8.27) and (8.28), we can get an estimate of the drift of the
right hand side of (8.26). Consequently, from (8.26), we see

d Xl < <C7 - eelxth%) dt + dM, (8.29)

By integrating the inequality (8.29) from 0 to n, we get
Pl < ol O — 7/’/ Xl ds + M. (8.30)
0

Then we take expectation for both side of (8.30) with respect to P°, we get

Ec/Xelh < 14 Con — ’Y”/ 8o P, i ds. (8.31)
0
It follows that
oy < C1 1 51 8.32
/fm(e )—7—’_”,)//’ n=4 ( )

where

1 n
/,cn:—/ 0oPsds, n>1.
nJo

Note that p is the weak limit of p, (refer to the proof of [Zha07, 5.8]), we can
deduce from (8.32) to get u(e’I'ir) < oo. This proves (8.15). O
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8.5 Harnack Inequalities

In the following we assume conditions (H1)-(H5) in Theorem 8.3.2 and instead
of (H6) we suppose that

(H6') o:[0,00) x 2 — H ® H be a nondegenerate Hilbert-Schmidt operator
uniformly bounded in time t € [0, 00) and w € €.

For every x € H, define

12| ylm if = oy for some y € H,
xr =
" 00, otherwise.

The distance associated with | - |,, is called the intrinsic distance induced by
oy. We refer to Page 19 for more details.

By Theorem 8.3.2, the equation (8.12) has a unique solution and we define
P, f(x) = Epf(X;) for every f € %,(D(A)). We are going to prove the following
Harnack inequality for the semigroup F;.

Theorem 8.5.1. Assume (H1)-(H5) and (H6'). Suppose that there exists some
nonnegative constant r > q — 4, and some strictly positive continuous function (;
on [0,00) such that

o)t || < x|y, forallz eV, t>0 (8.33)

(247

holds on Q2. Then for every T > 0, z,y € D(A), o, 5 > 1 satisfying 1/a+1/ =1

and f € 6,7 (D(A)), the following inequality holds

2(4+r—q)

(Prf*)(a) < oxp (G0rle — sl ) Prf ) (8.31)

where

e s <fOT th eféwt dt) 2+r
@T = ®(T7 57 Y, W, Ct) =40 2 v T 2 (835)
<f0 ¢ e—owt dt)
with

s=1- 1 (8.36)

4

Assume the diffusion coefficient o is independent of (t,w) and the function ¢,
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in (8.33) is taken as constant . Then O is simplified as

4+r

Op = 45y T Wl (1 — e )] T (8.37)

Proof. We divide the proof into six steps since it is quite long. We outline the
main procedure of the proof of (8.34) in the first step and then realize the idea
in the next four steps. The simplification from (8.35) to (8.37) is obtained in the
last step.

(1) Main Idea.

Consider the following coupled multivalued stochastic evolution equation

dY, € —AY; dt + BY, dt + o(t) dW, (8.38b)

with initial conditions Xg = =z € D(A), Yy = y € D(A), and the drift U; in
(8.38a) is of the following form

_ m(Xe =Y

U =122t Y
X - Y

Li<ry, (8.39)

where the stopping time 7 in (8.39) is the coupling time of X; and Y; defined by
T=inf{t > 0: X; =Y},

the power ¢ in (8.39) is a constant in (0, 1) (see (8.36)) and 7, is a deterministic
function on [0,00). Both § and 7, in (8.39) will be specified later such that the

following two crucial conditions

XT = YT a.s. (840)
and T 2‘ |2
Un Xt_Y;fU

E et ey dt) < oo, 8.41

Pexp(/o 21X, — v ) >~ 541

are satisfied.

By (8.41) we know

t 1 t
R, = exp (/ (aslUs,dWS>—§/ |031US|12Hds), t€[0,T]
0 0

is a martingale on (Q, Zr, (% )o<i<r, P). Therefore, we can define a new proba-
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bility measure Q on (2, Fr, (F)o<i<r) by setting Q| .z, = RrP.

By Girsanov’s theorem,

- t
W, .= W, —/ as_lUst
0

is still a cylindrical Wiener process on (2, Zr, (%)o<t<r, Q). Hence Equation

(8.38a) can be rewritten in the following way
dX, € —AX,dt + BX, dt + o(t) dW,

with initial condition Xy = z.

By the uniqueness of the solution, the transition law of (X)o7 under Q
is the same with the transition law of (Y})¢cpo,r) under P. So by the fact (8.40)

which will be verified, we have
Prf(z) = Eqf(Xr) = Eqf(Yr) = EpRf(Y7). (8.42)

Note that we also have Prf(y) = Epf(Yr), therefore by applying Holder’s in-
equality to (8.42), we can get

(Prf)*(x) < (BpRE) Prfo(y). (8.43)

Then we can finish the proof by an additional estimate of ]EPR?F.
(2) Existence of the solution of the coupled equation (8.38).

Note that the function
u—v
(w0, 0) = s
u— vy
satisfies the monotone condition off the diagonal (see Appendix of [Wan07]).

Therefore we can apply Theorem 8.3.2 and see that the coupled equation (8.38)
has a solution up to the coupling time 7. So there exists continuous processes
(X, K) € o, and (Y, K) € /p,, such that for all ¢ < 7,

t t t
Xi=oz—K; + / BX,ds+ / o(s)dW, — / Usds, (8.44a)
0 0 0

¢ ¢
Yi=y— K+ / BY,ds + / o(s) dWs. (8.44b)
0 0

On the other hand, it is obvious that the solution of Equation (8.38b) (or
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equivalently, Equation (8.44b)) can be extended to be a solution for all time

[0,00). Let (Y3, K)i>0 solves Equation (8.38b). Now we can also solve Equation
(8.38a) (or (8.44a)) by defining X; =Y;, K;= K, for all t > 7.

(3) Verify (8.40).

Apply 1td’s formula (see [KR79] (or [KRO7]), [PRO7], or Zhang [Zha07, The-
orem A.1] ete.) to v/|X; — Yi[4 + € and then let £ | 0, by using condition (H4)

we have for t < 7

d X, — Y5 < — (X, - Y, dK, — dK,)y dt
+ (_7|Xt - Yt|%/ + W|Xt — Yt|]2H - 77t|Xt -Y 1%{_6) dt.

By Proposition 8.3.4, for all ¢ < 7 we have
d|X; = Yilfy < (91X = Vil + wl Xy = Vil — el Xo — Yi[37°) dt.
Then
d(|X; = Yilfe ™) < —e™ (7| Xy = Yil¥ + el Xe — V3 %{_5) dt. (8.45)

Hence by (8.45) we get

d (lXt . }/t’%{ e—wt)(s/Q
) iy 0/2-1 W _
Sﬁ(’Xt—YH]QHe t) / -(—e tm!Xt—Yt'?H‘S) dt (8.46)
)
=—3 e 3wt n; dt.
We take
)
m = VG e 2% (8.47)
with . s
/19T _ 20~ |‘T - y|]H

- foT (oot dt

Then it must be T' > 7. Otherwise, if T' < 7, then by taking integral from 0 to T’
for both sides of the inequality (8.46), we can obtain

s 5 (T s,
Xy — Yp[he 2T < |z —yl% — 5/ e 2¥ n, dt. (8.48)
0

By (8.47) the right hand side of (8.48) equals to 0. So we can conclude X1 = Yr
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from (8.48). But this is contradict with the assumption that 7' < 7. Therefore,
it must be T" > 7 and hence Xp = Y.

(4) Verify (8.41).
From (8.45) and the assumption (8.33) we can get for all ¢t < 7

d(|1X; = Yi|he ™)’
= (1 X, — Yil§ Wt) (\Xt Yi[g e ")
< —dye X, — ViV X, — Vi dt (8.49)
| X — Y32
|Xt -y, ]2H+7'—2(6—1)—q

<_ 7C2 —dwt dt.

Let
q

0=1-— )
4+r

Then
24r—2(0—-1)—qg=0(2+r).

Hence, from (8.49) we see

Cwt\® st | Xt — YZ o
[ X — Yy

According to (8.47), we have (? = m e_‘w

By integrating both sides of the 1nequahty (8.50) from 0 to T', we get (note
that XT = YT)
&y [Tl Xe =Y

2 dt < |o -yl
92 Jo X, — Vi !

By Holder’s inequality, we have

T ,2
X,
/ nt| t |O’t dt
o |Xi—
_2 r
T 2X -V, 241 2+ T 247
< ( / —m\ L dt) ( / n? dt)
o | Xi—Yilp 0
192 Qi Cw +r
< (ﬁw—yﬁf) 192“ </ (Fe dt)

46 ir
—(57)" 7% \x—y\f;’"(/ G o dt) |
0
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Note that

192 _ 45_2"1: B yl%{(S
T — T 29
<f0 Ct e—&ut dt)
we obtain - )
/ 77t |Xt }/t O'z dt
o |Xi—
(f 2 o~ dwt dt) pEe
t 45
<457 () T A & —yly
(fOT gt eiéwt dt) (851)
2(347) <f0 t2 ot dt) 2+r 2(4+r—q)
—45 T2r —2+, 5 |x_y|]H2+r .

(5 Gromer at)

It is clear now that (8.41) holds.
(5) Estimate of ERS.
By the martingale property of Ry (with respect to P), we see (refer to (4.21))

T 2X |
EeR%)/8 — R @/ Mdt
( P T) ]PeXp(2 0 |Xt }/;|25

We can get (8.34) by using the estimate (8.51).
(6) Suppose that o is independent of (t,w). And we take (; in (8.33) as a

constant (. Then we can simplify ©7 as follows.

T 5w o
2(3+T ) <C2 fo o—dwt dt) pEs
@ — 6 2+4r T 2Fr 5

(s emter ar)

45 2(23;-:) 2irgfﬁ [(5w)_1(1 _e—éwT)]_gi:

_dtr
:45—17*2*“(% [w‘l(l — e“s“’T)} = O

Remark 8.5.2. Our proof is similar to the proof of [Wan07, Theorem 1.1].

Remark 8.5.3. We refer to [Wan07, Corollary 1.3] for sufficient conditions for
(8.33).
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8.6 Applications of Harnack Inequalities

We apply (8.34) to study the strong Feller property, full support of the invari-
ant measure, heat kernel bound and hyperboundedness etc. properties of the
semigroup F;.

Zhang [Zha07, Corollary 5.3] studied Feller property of P,. We can prove
strong Feller property (and even more) for P, under additional conditions.

Theorem 8.6.1. Assume (H1)-(H5), (H6') and (8.33) with ¢ < 4+1r. Then for
every f in LP(D(A), u) with p > 1, P.f is continuous on D(A). In particular,
the semigroup P, is strongly Feller. Moreover, the following estimate holds

4+4r—q 2(4+r—gq)

24 ]' 2+7r
P G) = P < 118l = wexp (300 ol ). (852

for every t >0, z,y € D(A) and f € B,(D(A)).

Proof. The first statement follows directly from the Harnack inequality (8.34)
and Proposition 5.3.2. Now we prove the estimate (8.52).

Use the notation in the proof of Theorem 8.5.1 and we prove (8.52) for fixed
T > 0. By (8.42), we see

|Prf(z) — Prf(y)|l = |Eqf(Xr) — Epf(Yr)| = |EpRr f(X1) — Ep f(X7)|
= Ep|f(X7)(1 = Rr)| < | fllocEp[1 — Rel.

(8.53)
It is clear
(Ep|l — Rp|)* < Ep(1 — Ry)? = EpRZ — 1. (8.54)
By (7.30), we know
2(4+r—q)
Ep R} = exp (@T\x =yl ) : (8.55)

Using the elementary inequality
e"—1<re"  forall r>0,

we can deduce from (8.54) and (8.55) to get

2 2(44+r—q)
(]EIPH - RTl) <exp <@T’$ —ylg ) 1
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2(44r—q) 2(4+r—q)
<Orlr —ylg ¥ -exp <@T|x —ylg > )

Substitute the estimate above into (8.53) we can obtain (8.52). O

Remark 8.6.2. The strong Feller property can also be observed immediately by
the dominated convergence theorem:

y—x y—x

From now on, we assume that ¢ is independent of (¢,w). In this case, P, is a
Markov semigroup (see [Zha07, Theorem 5.5]) and the Harnack inequality (8.34)
holds for ©r in place of O7.

We also assume that the invariant measure, denote by u, of the semigroup P,
exist. See Subsection 8.4 for the study of the concentration property the invariant

measure.

Theorem 8.6.3. Assume (H1)-(H5), (H6') and (8.33). Then

(1) The invariant measure p is fully supported on D(A).

(2) For every x € D(A), t > 0, the transition density p;(x,-) (with respect to
w) exist and for every a > 1

2(4+r—q)

o 247
e Mz < | [ e (=58~ sl ™ ) ula)

D(A)

:| —(a—1)/a

(3) Suppose K < 0.
(1) If g =2 and \w < vy, where X is the constant such that |- g < A - |v,
then P; is hyperbounded .
(i) If ¢ > 2, then P, is ultrabounded. More precisely, there exist some
constant ¢ > 0 such that

[Pillaoo < exp(e(1 4t 72)). (8.56)

Consequently, P, is compact for large t > 0 for both cases.

Proof. (1) If supp u # D(A), then there exists some xy € D(A), r > 0, such that

(B (x0)) = 0, where B,(z9) ={y € D(A): |y — zo| <1}
Applying (8.34) to the function 15, (,,) for a = 2 and ¢t > 0, we have

2(4+r—q)

(Pt o)) exp (Bl sl ™ " ) < Blneln) (857
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Hence, by integrating both sides of (8.57) with respect to u(dy), we can obtain

D(A)

~ 2(4+r—q)
(P @) [ oxn (<8ude ol T ) (i
<P, (o)) = 115, () = 0.

This implies Pi(xo, B, (z9)) = 0 for all t > 0. Therefore,
P(|| X (zo) — xo|lp <r)=0, t>0, (8.58)
where X;(z() denotes the solution to (8.12) with X, (zo) = 0.
Since X, is continuous on H, by letting ¢ — 0 in (8.58), we have

P (|| Xo(xo) — xollu < ) = 0.

But obviously this is impossible. So it must be supp u = D(A).

(2) It follows immediately from the Harnack inequality (8.34) and Lemma
7.5.7.

(3) Since K <0, for any t > 0, we know

K

1
=
1 — e 9Kt = §¢

Therefore, by Theorem 8.5.1, there exist some constant Cg such that for every
xz,y € D(A) and t >0,

2(4+r—q)

(PufPayexp [~V ) < p gy, (8.59)

t2tr

where f € L*(D(A), p) with u(f?) =1.

By integrating the both sides of (8.59) with respect to u(dy) over By(0) =

{z € D(A): |z|g < 1}, we obtain for every x € D(A) and ¢ > 0,

2(44r—q)

1 ox 08(1+|23'|]H> 24T
1(B1(0)) P o

(8.60)

(Pif)?(x) <

(i) If ¢ = 2, then by taking square and integration with respect to u(dz) for
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both sides of the equation (8.60), and using Theorem 8.4.1, we have

4 1 Cs(1 4 |2|n)’
/D(A)(Ptf) (I) M(dI) < m/ﬂ{e){p (T) M(dl’) < o0

for ¢ > 0 big enough. This proves ||P;||2—4 < oo for sufficiently big ¢ > 0. That
is, P, is hyperbounded.

11) Assume q > 2. en the mnequalit . mmplies
(i) A 2. Th he i lity (8.26) impli
deelthl?{ < (09 _ ’7”’|X(t)|]2H(q_1) e@‘Xt|](II{> dt + dM; (8‘61)

for some constant Cy, 6,~"” > 0.

Let g(t) be the solution to the following equation

o 20a=1) 2(g—1)
dg(t)z(Cg—v o~ g(1)[log g(1)] )dt

with g(0) = e/l*lir,

By the comparison theorem, we have
Ee/Xt@lh < g(¢) < exp <C’g(1 + tfq%?)> (8.62)

for some constant Cy > 0. By inequality (8.60) we have

HPtfHoo = Hpt/2pt/2fHoo < Cip sup Eexp

ze€D(A)

C 2(44r—q)
[— Xopolr) | } (8.63)

to+r
for some constants Cq, C11 > 0.
By using Young’s inequality, we see

Cll 2(44r—q) P
Cro sup Bexp || Xipo(2)|, 2 | <e- | Xioly +et 72 (8.64)

44,77'»

z€D(A) t2+r

for arbitrary € > 0. By considering small enough ¢ > 0, it follows from the

inequality (8.64) above and (8.62) and (8.63) we can obtain (8.56). This proves
that P, is ultrabounded.

Since P, has transition density with respect to u, we know P, is compact in

L*(D(A), u) for large t > 0 for these two cases (¢ = 2 or ¢ > 2) by [GWO02,
Lemma 3.1]. O
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Remark 8.6.4. We refer to [Zha07, Section 6.2] for an example of multivalued
stochastic evolution equation satisfying the conditions we used.



Chapter 9

Functional Inequalities for
Ornstein-Uhlenbeck Processes

In the previous chapters, we have concentrated on dimension free Harnack in-

equalities. It is also interesting to look at other functional inequalities.

Various functional inequalities, for instance, Poincaré and log-Sobolev inequal-
ities (see [CM87, DPZ02, RWO03a] etc.), have been well studied for Ornstein-
Uhlenbeck processes driven by Wiener processes. For stochastic processes related
to Lévy noise, only a few functional inequalities are known. We only know, for ex-
ample, Poincaré inequalities were obtained under a strong condition on the Lévy
measure in [RW03a]; and (modified) log-Sobolev inequalities etc. were considered

in [Wu00, CM02, GI08, GI09] etc..

This chapter is on entropy cost and HWI inequalities. These functional in-
equalities have attracted the interest of many people recently. See the monograph
Villani [Vil09] and the bibliography therein for more details.

We prove entropy cost and HWI inequalities for Gaussian Ornstein-Uhlenbeck
semigroups. They are not new for experts. But it may be considered as a com-
plement of this thesis and a first step to these functional inequalities for Lévy

driven Ornstein-Uhlenbeck processes.

9.1 Entropy Cost and HWI Inequalities

Let H be a real separable Hilbert space with inner product (-,-) and norm | - |.
We assume that R is a bounded self-adjoint and nonnegative definite operator
on H and A generates on H a strongly continuous semigroup S;. Consider the
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following linear partial differential equation
dX, = AX,dt + R'?dw,, X, ==, (9.1)

where W, is a standard cylindrical Wiener process on H.

Suppose that
Assumption 9.1.1. (1)
Qo = / Sy RS udu
0

is of trace class.
(2) For all ¢ Z 0, StR = RSt
(3) There exist M,w > 0 such that for all ¢ > 0,

S| < Me ", (9.2)

We will denote
aft) = M?e "' t>0.

By item (1) of Assumption 9.1.1, the equation (9.1) has a mild solution
t
X, = Sz + / S,_oRV2dW,, t>0.
0

The process X; is Gaussian and Markov with transition semigroup

Bif(x) = Ef(X),

where f is a bounded measurable function on H. Moreover, by item (1) of
Assumption 9.1.1, we know the semigroup P, has an invariant measure p =
N(0,Qw). See [DPZ92].

By item (2) of Assumption 9.1.1, the semigroup P, is symmetric. We refer to
[CMGO02| for more characterization of the symmetry of P;.

We will establish entropy cost and HWI inequalities for P;. First let us intro-
duce these concepts.

Let v; and v, be two probability measures on (H, B(H)). A coupling of vy and
v is a probability measure 7 on (H x H, B(H) x B(H)) such that the marginal
distributions of 7w are 14 and v, respectively. That is,

(A x H) =11(A), w(Hx B) = 1»(B).
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for every A, B € B(H).

Now we can introduce the following useful Wasserstein distance between the

probability measures 1, and vs.

Definition 9.1.2. The Wasserstein distance between two probability measures

v1 and vy on (H, B(H)) is defined by

WSAORY)

Wa(u,v) = int { /| XHp(x,yfw(dx,dy)}l/Q,

where € (u,v) is the space of all couplings of v, and vy, and p is the intrinsic
distance on H defined by (see (1.1)):

[z —ylo=|R"*(x—y)l, ifr—yeH=R"H)

pl,y) = .
00, otherwise.

Wasserstein distance describes the cost of transporting v;-distributed mass to

vo-distributed mass. Hence this distance is also called transportation cost.

Definition 9.1.3. Let vy, 5 be two probability measures on (H, B(H)) with v, =
fri.
(1) The entropy of f with respect to vy is defined by

H(va|v1) = Ent,, (f) = vi(flog f) = vi(flog f) — vi(f)logvi(f).

(2) The Fisher information (or Fisher-Donsker-Varadhan information) of f is
defined as

I(f) = 4 ({RD/f, D\/F)).

The main results of this chapter are the following theorem. The entropy cost
inequality (9.3) deals with the connection between entropy and transportation
cost. The HWI inequality inequality (9.4) relates three quantities, i.e. entropy,
transportation cost and Fisher information. Here “H” stands for the entropy,
“W?” for the Wasserstein distance, and “I” for the Fisher information.We need
to mention that Shao [Sha07] also considered these two inequalities for classical
Ornstein-Uhlenbeck semigroups on Wiener spaces.

Theorem 9.1.4. Suppose Assumption 9.1.1 holds and 1 = N(0,Qs). Then for
every t > 0, and nonnegative f € B(H) with u(f) =1, we have



196 Chapter 9. Functional Inequalities for Ornstein-Uhlenbeck Processes

(1) entropy cost inequality

M
(2) HWI inequality
Bt (/) < MVITWalfin ) = o Wal ). (94

We will prove these two inequalities in the next two sections respectively.

9.2 Proof of Entropy Cost Inequality

We will need to use the following estimation by assumption (9.2)

Lemma 9.2.1. For every ¢ € &4(H) and x,y € H, we have
(RY2DPyp)(x)]* < a(t) P(|R2Dgl*) () (9.5)

and for every s € [0, ]

=

(DPJlog Pr_sp,y — o) < p(x,y)a'?(s) [P|R'*D(log P,_¢)[’] (9.6)

Proof. The estimate (9.5) is from [DPZ02, Equation (10.5.18)]. The proof of (9.6)
is similar to [RW03a, (2.5)]):

(DP,log Pi_sp,y — )

= inf DP,log P,_sp, RY?2
eyt S )

<p(z,y) [|[R"*DP,(log P,_s¢)|’]
<pl,y)a'/?(s) [P|R*D(log Pr_y) ] .

1/2

]

We introduce some facts related to the transition semigroup P;. We refer to
[DP04] for the proof.

The transition semigroup P, can be uniquely extended to be strongly contin-
uous semigroup of contractions on LP(H, u) for any p > 1. We denote by L, the
infinitesimal generator of P, in LP(H, ) and D(L,) its domain. It is easy to verify
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that &4(H) is stable under the action of P, and L. Moreover, we know is &4 (H)
dense in LP(H, u). Hence &4(H) is a core for L,

Fix p = 2. For every ¢ € &4(H), we have

(Lap® — 2¢Layp)) = (RDy, Dy).

N | —

L(p, ) =

We call I'(+, ) the square field operator.

For any function ® with continuous second order derivatives, we have

Ly®(p) = @'(0) Lo + @"(9)L (0, ). (9.7)
For fixed t > 0 and f € &4(H), consider the function

s — U(s) = Py(®(P—sf)), se€l0,]

By the chain rule formula (9.7), for any s € [0, t] we see

\II/(S> = PS[L2(I)<Ptfsf) - (I)/<Ptfsf>L2Ptfsf]
= Py[®"(P—s)T(Pi=s f)]-

To prove (9.3), we first prove the following lemma.

Lemma 9.2.2. For any t > 0, x,y € H, and nonnegative bounded measurable

function f on H, we have

p(x,y)?

4 fot a(r)~tdr

Pylog f(y) <log Pif(x) +
Proof. We prove it following the line of [BGLO1]. Define

”y(s):xjt;(y—x): <1—§)x+§y, s € [0,t].

Take . oy
g(s) = M s €[0,¢].

fota(r)—ldr ’

Then g(s) is a speed function such that g(0) = 0 and ¢(t) = ¢.

Without loss of generality, we assume f € &4(H) and f is strictly positive.
Set

¢(s) = Pslog P_s f (7 (g(s))) for every s € [0,1]..
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By (9.8) and using the estimate in (9.6) we have

§(5) == Py |[R2Dlog P f[7 (3 o(51) + LN DP 0w P fa().y )
<= P|R"*Dlog P f| (7 (4(s)))

+ #’5)0;/2(5> [P, |RY*Dlog P, f|” (v (9(s)))] *p(, v)
LI a(s)p(z,y)* _ pz,y)*

N 4¢2 4a(s) (f(f a(r)*ldr)?

The proof is completed by integrating the inequality above with respect to s
over [0, t]. O

Now we can prove the entropy cost inequality.
Proof of (9.3). Replacing f by P,f in Lemma 9.2.2 we obtain

plz,y)?
Plog P, f(y) <log Py f(x) + 4f0ta(r)*1 o (9.9)

First integrate the inequality (9.9) above with respect to a coupling measure of
wu(dx) and f(y)u(dy), by using the invariance of P, with respect to p and then
making infimum over all couplings of u(dz) and f(y)u(dy), we get the following
inequality

WQ(f,U 1)

p(fPlog P f) < pu(log Pt f) + 4 [ a(r)tdr
0

(9.10)

By Jensen’s inequality and the invariance of the measure p with respect to
P, we see

p(log Por f) < log (P f) = log pu(f) = 0. (9.11)

Moreover, by using the symmetry of P, with respect to the invariant measure
1, we know

pu(fPlog Puf) = p(Fif log P f) = Ent,(P.f). (9.12)
Hence from the facts (9.11) and (9.12), we deduce from (9.10) to get

Wo(fp, 1)

Ent, (P f) < m
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9.3 Proof of HWI Inequality

Proof of Theorem (9.4). Without loss of generality, we can assume f € &4(H)
and that f is bounded below by a strictly positive constant.

Since the semigroup P, is symmetric with respect to u, we know

H H H

for every F,G € D(Ly). Using these facts, we have

d

" ds (/]H(Psf) (log P f) du)
2 sf:|

:_[;Ub%ﬁO%PJW+gf P.f

1

— /}H [Lo(Pof log Pof) — (LaP.f) (log Pyf) — (P.f) (Lalog P.f)] du

= /}H D(P,f,log P f) du

= / (R'?DP,f, R"*Dlog P,f) du
H

Hence
MMﬂZAfMﬂm
L
= —/0 7 (/H(Psf) (log P f) du) ds + Ent,(P.f)
Z/t/ (RV?DP,f, R"*Dlog P,f) dpds + Ent, (P, f)

I/QDP 2
//|R gl dpds + Ent,(P.f).

(9.13)

By the fact that P, is a Markov kernel, we have, for any measurable function
F and G,

(P,G)*> < P, (%2) P,F. (9.14)

Applying the inequality (9.14) and using the estimate (9.5), we can obtain

|R1/2DPSf|2 < a(s) (PJRV’Df])" < a(s) (PJRW%W> P.f. (9.15)
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Therefore, by substituting the estimate (9.15) into (9.13), and applying the en-
tropy cost inequality (9.3), we have

Ent,(f) < (/Ota(r) dr) I(f) + Ent,(P.f)
< ( /O () dr) 1) + mwmmz (9.16)

w
2M (e>t —1)

_ M(1 —6*2"”)[(]‘3)4_

2w

Wa(fu, 11)°.

The proof will be completed by minimizing the right side of the above inequality.
The minimizing procedure is explained in the following.

Denote a = I(f), b= [Wa(fu, p))%

M(1 — e~20 w

n(t) = ——, — aund §(t) = oM (2t 1)

We need to minimize h(t) := an(t) + b&(t)~*. Solve the equation h/(t) = 0 we

obtain
\/%[1 —e M = w.

Consequently, we have

Therefore



Appendix A

Controllability of Infinite
Dimensional Linear System

This appendix is based on the book by Zabczyk [Zab08, Part IV, Chapter 2].
See also the books by Da Prato and Zabczyk [DPZ92, Appendix B] or [DPZ02,
Appendix BJ.

We briefly introduce the comparison of the images of linear operators, and

some basic results on null controllability of linear control system.

Let H be a real separable Hilbert space with inner product (-, -) and norm |-|.
Let T} and T be two linear and bounded operators onH.

The following theorem can be found, for example, [Zab08, Part IV, Theorem
2.2] or [DPZ92, Proposition B.1].

Theorem A.0.1. The inclusion T\ (H) C To(H) holds if and only if there exists
a constant ¢ > 0 such that [T} x| < c|T5z| for every x € H.

Consider the following linear control system on H

da, = Ay, dt + Bu, dt,
{ T Yt Uy (A.l)

To =T € ]H7
where A is the generator of a semigroup of operators S; for ¢ > 0 on H, B is

a linear bounded operator on H, and u(-) is a H-valued Bochner integrable (see
[PRO7, Appendix A]) function on [0, ¢] for every ¢t > 0.

A weak solution of the control equation (A.1) is given by

¢
xy = Sy + / Si_sBusds, t>0. (A.2)
0
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For every t > 0, the variable z; denotes the state of the system in H, the
variable u; represent a control, strategy or input of the system .

We say that a control u transfers a state x to a state y at the time T > 0 if
xrp = y with initial condition x¢o = x. We also say that the state x can be steered

to state y at time T or that the state y is reachable or attainable from x at time
T.

We are especially interested at the case when the state is transferred to state
0 at some fixed time T > 0.

Define .
Qrz = / S;BB*Sfxdt, x € H. (A.3)
0

We call Qr as controllability operator.

For every z € H, the function u: u — S, BB*S, x is continuous on [0, 7] and
the Bochner integral in (A.3) is well defined. Moreover, it is obvious that the
operator Q)7 is linear, continuous, self-adjoint and positive definite.

The following theorem is a special case of [Zab08, Part IV, Theorem 2.3].

Theorem A.0.2. (1) There exists a strategy u(-) which is square (Bochner)
integrable on [0, T] transferring state x to 0 in time T if and only if

Sra € Q% (H).

(2) Among the strategies transferring state x to 0 in time T, there exists ex-
actly one strategy u(-) which minimizes the functional Jr(u) = fOT lu(s)|*ds.
Moreover,

Jr(t) = |Dpz|?, (A.4)
where I'r = Q;1/2ST.

(3) If Srx € Qr(H), then the strategy u(-) is given by

iy = —B*Sh_,Q7'Srx te€|0,T)].

We say that the system (A.1) is null controllable in time T if arbitrary state
x € H can be transferred to 0 in time 7. Jp(u) is the energy for driving = to 0
under the control u.

By Theorem A.0.2, we have the following characterizations ([Zab08, Part IV,
Theorem 2.6)).

Theorem A.0.3. The following conditions are equivalent to each other.
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(1) Control system (A.1) is null controllable in time T' > 0.
(2) There exists a constant ¢ > 0 such that for all z € H

T
/ B S a2 dt > o|St af?.
0

(8) The image of St is included in the image of QIT/2 :

Sy(H) € Q7*(H). (A.5)
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curvature condition, 70
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entropy cost inequality, 194

Fisher information, 193

Fisher-Donsker-Varadhan information,
see Fisher information

fractional Brownian motion, 126
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Gaussian probability space, 130
generalized Langevin equation, 95
generalized Mehler semigroup, 139
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Girsanov theorem
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for Wiener process, 38
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Notations

aVb

set of positive integer numbers {1,2,3,...}.

the larger of numbers a and b in R.

= f V0, the positive part of f.

are conjugate number 1/a+1/8 = 1.

all n x n symmetric nonnegative definite real matrix.

d-dimensional Fuclidean space.

real separable Hilbert space.

the usual inner product on R or H.

the norm on H corresponding with respect to (-, ).

the Cameron-Martin space

an inner product on Hy (See Page 19).

the norm corresponding with (-, )¢ on Hy.

= {y € H: |x — y| <r}, ball with radius r and center x.

the Borel o-algebra on H.

the space of bounded measurable functions on H.

the space of bounded measurable functions on H.

the space of positive bounded measurable functions on H.
the space of continuous functions on H.

the space of bounded continuous functions on H.

the space of n-th continuously differentiable functions on H.
the space of positive bounded and continuous functions on H.
the space of smooth functions on H.

the space of compact supported smooth functions on H.

= (S lf1P dp)"? for p > 1.

= inf{C > 0: |f(z)| < Calmost every}.

the space of measurable functions on H such that || f||, < oo.
evolution triple.

adjoint operator of linear bounded operator T
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Q2 square root of Q).

T-1 pseudo inverse of 7T'.

A generator of S; (a multivalued operator in Chapter 8)
Sy Co-semigroup on H.

Qy = f(f Su RS} du, controllability operator.

I, =, '%s,.

09 K 01 04 is absolutely continuous with respect to .

oy loy 09 is singular (orthogonal) to ;.

09 X 0 09 is equivalent with o;.

dosy/doy the Radon-Nikodym derivative of oo with respect to .

o the absolute continuous part of measure o.

lop the singular part of measure o.

il Fourier transformation of measure p.

Ep expectation with respect to measure P.

N(m,Q) Gaussian measure with mean m and covariance Q).
(b, R,v) characteristic triplet of some Lévy process

or infinite divisible measure

with drift b, covariance R and Lévy measure v.
D(b,R,v) infinite divisible measure with characteristic triplet (b, R, ).
W, standard or cylindrical Wiener processes.
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