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Preface

In this thesis we mainly study Harnack inequalities (in the sense of Wang [Wan97])

and their applications to transition semigroups associated with stochastic equa-

tions.

Among the stochastic equations we aim at, are finite dimensional stochastic

ordinary differential equations with irregular drifts (Chapter 4), infinite dimen-

sional (semi-) linear stochastic partial differential equations with Gaussian or

Lévy noise (Chapters 5, 6 and 7); multivalued stochastic differential equations in

finite dimension and multivalued stochastic evolution equations in Banach spaces

(Chapter 8). The applications of Harnack inequalities include the study of the

regularizing property (for instance, the strong Feller property), heat kernel esti-

mates, hyperboundedness etc. of the transition semigroups associated with the

stochastic equations.

The main method we used to establish Harnack inequalities is applying Hölder’s

inequality after a measure transformation. There are two aspects: transforma-

tion of measures on state spaces and measures on sample probability spaces of

the processes. The method of measure transformation on the probability spaces

is due to Arnaudon, Thalmaier and Wang[ATW06] in which they used a coupling

argument and a Girsanov transformation to study Harnack inequalities.

Two crucial ingredients of the method of Arnaudon et al. are the absolute

continuity and successful coupling of processes. To apply their method to es-

tablish Harnack inequalities for Ornstein-Uhlenbeck processes with Lévy noise,

we investigate the absolute continuity of Lévy processes in infinite dimension in

Chapter 2; to establish Harnack inequalities for stochastic differential equations

with general drift, we study the gluing of martingale solutions and its applications

to the coupling of stochastic differential equations in Chapter 3.

As a complement to Harnack inequalities, we study entropy cost and HWI in-

equalities for Ornstein-Uhlenbeck processes driven by Wiener processes in Chap-

ter 9.
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Chapter 0

Introduction

In this thesis, we mainly devote our study to the dimension free Harnack inequal-

ities (in the sense of Wang [Wan97]) for the transition semigroups of solution

processes to some stochastic equations. For various other Harnack inequalities

we refer to [LY86, CZ97, BL02, BK05, BBK06, SV07, Kas07, CK09] etc. and

references therein.

Wang’s Harnack inequality has been extensively studied, see [Wan04b, Wan06]

etc.. Here we first shortly review the related literatures.

Wang [Wan97] used a semigroup calculus to establish Harnack inequalities for

diffusion processes on Riemannian manifolds with curvature bounded below by a

constant. Aida and Kawabi [AK01, Kaw04, Kaw05] obtained Harnack inequalities

for some infinite dimensional diffusion processes by adding an ingredient called

martingale expansion. Röckner and Wang [RW03a] used the semigroup calculus

and also used the relative densities of shifted infinite divisible measures to set up

Harnack inequalities for generalized Mehler semigroup.

Recently, Arnaudon, Thalmaier and Wang [ATW06] introduced a new method

to establish Harnack inequalities. This method is a combination of a coupling

argument and the Girsanov transformation. It has been applied to establish

the Harnack inequalities for diffusion processes on Riemannian manifolds with

curvature unbounded below in [ATW06] and stochastic porous media equations

in infinite dimensional spaces in [Wan07] and singular stochastic equations on

Hilbert spaces in Da Prato et al. [DPRW09].

The main technique we will use to establish Harnack inequalities for the tran-

sition semigroups is applying Hölder’s inequality after a measure transformation.

There are two levels for the measure transformation: the measure transformation
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on the state spaces (image measure transformation) and the measure transforma-

tion on the sample spaces.

To explain the idea of measure transformation, let (E,E ) be a Polish space

and consider a stochastic process Xt starting from x ∈ E on a probability space

(Ω,F ,P) and taking values in E. Denote by µt the distribution of Xt on E. We

have two representations for the transition semigroup of Xt:

Ptf(x) =

∫
Ω

f(Xt) dP =

∫
E

f(y) dµt.

We can make a measure transformation for P on the probability space (Ω,F ,P)

or take the image measure transformation for µt on the state space (E,E ). The

details will become clear later.

We mention that the idea of the image measure transformation already ap-

peared in [RW03a], but the authors of [RW03a] didn’t apply the idea to simple

cases to obtain better results than what they proved in [RW03a]. The use of the

coupling technique and Girsanov transformation in [ATW06] realized the idea of

the measure transformation on probability spaces.

We use the image measure transformation to establish Harnack inequalities

for Gaussian Ornstein-Uhlenbeck semigroups: transition semigroups of Ornstein-

Uhlenbeck processes driven by Wiener processes in Chapter 5; fractional Ornstein-

Uhlenbeck semigroups and Ornstein-Uhlenbeck semigroups on Gaussian proba-

bility spaces in Chapter 6.

We also use the image measure transformation to consider Harnack inequali-

ties for the transition semigroups of Ornstein-Uhlenbeck processes driven by Lévy

processes in Chapter 7. But the idea can only be applied well to some special

cases (e.g. α-stable Ornstein-Uhlenbeck semigroups) when some estimates of the

relative densities are available. However, by considering measure transformations

on the (sample) probability spaces (via coupling method and Girsanov’s transfor-

mation), we obtain Harnack inequalities for Lévy Ornstein-Uhlenbeck semigroups

which are the same with results for the Gaussian case.

We apply the method of measure transformation on probability spaces to

study Harnack inequalities for finite dimensional stochastic differential equations

with general drift in Chpater 4; for multivalued stochastic ordinary differential

equations and multivalued stochastic evolution equations in Chapter 8.

To deal with the coupling problems for stochastic differential equations with

general drifts, we proved a gluing lemma in Chapter 3. We construct a martingale



Chapter 0. Introduction 3

solution for the sum of two second order differential operators separated by a

stopping time. This makes it possible for us to study Harnack inequalities for

stochastic differential equations without the assumptions of strong solutions which

are usually supposed to exist by the other authors.

To apply measure transformation on probability spaces for the study of Har-

nack inequalities for Lévy Ornstein-Uhlenbeck semigroups, we prove a Girsanov

theorem for Lévy processes in infinite dimensional spaces in Chapter 2. But we

go further to study the general problem of absolute continuity for Lévy processes

in Chapter 2 which is an infinite dimensional version of the lectures notes by Sato

[Sat00]. The results may be known to some experts.

The applications of Harnack inequalities are standard now. See [RW03a,

RW03b, Wan99, Wan01] for contractivity properties and functional inequalities;

[AK01, AZ02, Kaw05] for short time heat kernel estimates of infinite dimensional

diffusions; [DPRW09] for regularizing properties; [BGL01] for the transportation-

cost inequality; [BLQ97, GW01] for heat kernel estimates etc..

In this thesis, by applying the Harnack inequalities we proved, we correspond-

ingly obtain heat kernel estimates, regularizing properties and contractivity prop-

erties of the transition semigroups.

In the last Chapter (Chapter 9), as a complement to Harnack inequalities, we

study entropy cost and HWI inequalities for Ornstein-Uhlenbeck processes driven

by Wiener processes. We do not claim that the contents of this chapter is really

new. But it is interesting to regard this chapter as a first step to consider the

corresponding functional inequalities for Lévy case.

In the following, we explain the main contents and main results of this thesis

in more detail. For a simple introduction to Harnack inequalities we refer to

Section 4.1, where we especially calculate a Harnack inequality for the classical

Ornstein-Uhlenbeck processes on Euclidean space.

I Harnack Inequalities for Ornstein-Uhlenbeck Processes Driven

by Wiener Processes: Measure Transformation on the State Spaces

For simplicity, we first introduce Harnack inequalities for Ornstein-Uhlenbeck

processes driven by Wiener processes. This is the topic of Chapter 5.

Let H be a real separable Hilbert space with inner product 〈·, ·〉 and norm | · |.
Consider the following linear stochastic partial differential equation

dXt = AXt +B dWt, X0 = x ∈ H, (1)
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where A is the generator of some strongly continuous contraction semigroup

(St)t≥0 on H, B is a bounded linear operator on H, and (Wt)t≥0 is a cylindri-

cal Wiener process on H.

Set R = BB∗ and

Qt =

∫ t

0

SuRS
∗
u du, 0 ≤ t <∞. (2)

Fix T > 0. Assume that QT is of trace class. Then the solution of Equation

(1) exists on [0, T ]. Denote the transition semigroup of Xt by Pt. For every

bounded measurable function f on H, we have

Ptf(x) =

∫
H

f(Stx+ z)µt(dz), (3)

where x ∈ H, t ∈ [0, T ], and µt = N(0, Qt).

For each y ∈ H, by a change of variables we have∫
H

f(STx+ z)µT (dz) =

∫
H

f(STy + z)
dN(ST (x− y), QT )

dN(0, QT )
(z)µT (dz),

where we suppose that

ST (H) ⊂ Q
1/2
T (H). (4)

Define

ΓT = Q
−1/2
T ST .

Then ΓT is bounded. By applying the Cameron-Martin formula for Gaussian

measures on H and Hölder’s inequality, we can prove the following Harnack in-

equality

(PTf)α(x) ≤ exp

(
β

2
|ΓT (x− y)|2

)
PTf

α(y), (5)

where x, y ∈ H, α, β > 1 satisfying 1/α + 1/β = 1.

The constant exp
(
β
2
|ΓT (x− y)|2

)
in the Harnack inequality (5) is optimal and

new.

Let us look at a diagonal Ornstein-Uhlenbeck process.

Let {en}n≥1 be a complete orthonormal basis of the real separable Hilbert

space H. Assume that A and R commute. Then there exist two sequences of
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positive numbers δn, γn for n ≥ 1 such that

Aen = −δnen, Ren = γnen,

where δn ↑ ∞ as n ↑ ∞. Under some conditions on δn and γn (see Subsection

5.4.2 for details), from the inequality (5) we obtain

(Ptf)α(x) ≤ exp

(
∞∑
n=1

βδn〈x− y, en〉2

γn(e2tδn −1)

)
Ptf

α(y).

This inequality is stronger than the result in [RW03a] which states (suppose

that γn ≡ 1)

(Ptf)α(x) ≤ exp

(
βδ1|x− y|2

e2tδ1 −1

)
Ptf

α(y).

For more examples, we refer the reader to Section 5.4.

Now we explain how to estimate the quantity |ΓT (x− y)| in (5).

Consider the following deterministic linear control system on H for t ∈ [0, T ],

dxt = Axt dt+But dt (6)

with initial data x0 = y − x, where u is an H-valued square integrable function

on [0, T ].

By Theorem A.0.2 in Appendix A, under Assumption (4), there exists a con-

trol ut for the system (6) such that xT = 0. Moreover, we know |ΓT (x − y)|2 is

the minimal energy for driving the initial state x0 = y − x to 0 in time T (see

(A.4)):

|ΓT (x− y)|2 = inf

{∫ T

0

|us|2 : u ∈ L2([0, T ],H), x0 = y − x, xT = 0

}
. (7)

Hence by choosing any concrete control function u such that xT = 0, we

can obtain an upper estimate of the constant in the Harnack inequality. See

Subsection 5.2.2 for details. Especially, we can obtain the following inequality (8)

proved by Röckner and Wang [RW03a].

Let 〈·, ·〉0, | · |0 be the natural inner product and norm on R1/2(H) respectively

defined through |x|0 = |R−1/2x| for every x ∈ H. We further assume that

|Stx|0 ≤
√
ξ(t)−1 |x|0, x ∈ H, t ∈ [0, T ]
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for some function ξt satisfying a certain integrable condition. Then we have

(PTf)α(x) ≤ exp

(
β|x− y|20

2
∫ T

0
ξ(t) dt

)
PTf

α(y). (8)

We can apply these Harnack inequalities to study regularizing properties (such

as the strong Feller property), heat kernel bound and hyperboundedness etc. of

the Ornstein-Uhlenbeck semigroups. See Section 5.3 for details. Especially, we

can prove that the Harnack inequality (5) holds if and only if the semigroup is

strongly Feller.

In Chapter 5 (see Section 5.5), we also consider Harnack inequalities for the

perturbed Ornstein-Uhlenbeck processes driven by Wiener processes. There we

first consider Lipschitz perturbations, then perturbations by gradient of convex

potentials using the Moreau-Yosida approximation.

For simplicity we just introduce Lipschitz perturbations. Consider the follow-

ing semi-linear stochastic partial differential equation

dXt = AXtdt+ F (Xt)dt+ dWt, X0 = x ∈ H, (9)

where A : D(A) ⊂ H→ H is self-adjoint such that A−1 is of trace class and there

exists ω > 0 such that

〈Ax, x〉 ≤ −ω|x|2, x ∈ D(A);

F is Lipschitz continuous and dissipative

〈F (x)− F (y), x− y〉 ≤ 0, x, y ∈ H.

Then for every α, β > 1 satisfying 1/α + 1/β = 1, and for any x, y ∈ H,

f ∈ C +
b (H), we have the following Harnack inequality for the transition semigroup

Pt associated with the solution process Xt of the equation (9):

(Ptf)α(x) ≤ exp

(
ωβ|x− y|2

e2tω−1

)
Ptf

α(y). (10)

This result can be proved by approximation using the Harnack inequality (16)

for the finite dimensional stochastic differential equations. We refer to the work

by Da Prato et al. [DPRW09] for details of the approximation procedure. In

this thesis, aiming to show another strategy as a methodological complement, we
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provide a semigroup calculus to “prove” (10) which is not strictly justified.

II The Method of Measure Transformation on State Spaces for

Other Cases

Similarly, in Chapter 6, by using measure transformation on the state space

(image measure transformation), we establish Harnack inequalities for fractional

Ornstein-Uhlenbeck processes (see Section 6.1) and Ornstein-Uhlenbeck semi-

groups on Gaussian probability spaces (see Section 6.2).

We also use the image measure transformation to study Harnack inequalities

for Lévy driven Ornstein-Uhlenbeck processes (see Section 7.3), especially for α-

stable Ornstein-Uhlenbeck processes (see Subsection 7.3.2). By this method, we

also show an (implicit) Harnack inequalities hold for irreducible Markov Chains

(see Subsection 7.3.3).

The key point of the image measure transformation method for Harnack in-

equalities is the Radon-Nikodým derivative of a shift of the measure µ with respect

to the measure µ. For Gaussian Ornstein-Uhlenbeck semigroups, the measure µ is

Gaussian and we can apply the Cameron-Martin formula. For some other cases,

the Randon-Nikodým derivatives are not known. For instance, for Lévy Ornstein-

Uhlenbeck semigroups, the measure µ we need to deal with is an infinite divisible

measure. In this case, nothing is known about the Radon-Nikodým derivative of

µ with respect to its shift except some estimates for certain special cases. See

Section 7.3 for a more detailed discussion.

III Measure Transformations on Probability Spaces

As mentioned at the begging of Part I of this introduction, we can consider

measure transformations on the underlying probability spaces. We first introduce

the general idea shortly.

Let E be a polish space and x, y ∈ E. Fix T > 0. Consider two E-valued

stochastic processes X̃x
t and Xy

t on a filtered probability space (Ω,FT , (Ft)0≤t≤T )

starting from x, y respectively. Let P and Q be two probability measures on

(Ω,FT , (Ft)0≤t≤T ).

We suppose that

(1) The transition law of Xy
T under P is the same as the transition law of X̃x

t

under Q. That is, they have the same transition semigroup Pt:

Ptf(y) = EPf(Xy
t ) and Ptf(x) = EQf(X̃x

t )

for every bounded continuous function f on E.
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(2) Q is absolutely continuous with respect to P:

Q� P.

(3) The processes X̃x
t and Xy

t meet each other at the fixed time T > 0:

X̃x
T = Xy

T Q–a.s.

With the assumptions above, for every f ∈ C +
b (H) and α, β > 1 satisfying

1/α + 1/β = 1, by applying Hölder’s inequality, we have

PTf(x) = EQf(X̃x
T ) = EQf(Xy

T ) = EP
dQ

dP
f(Xy

T )

≤

[
EP

(
dQ

dP

)β]1/β

[EPf
α(Xy

T )]1/α

=

[
EP

(
dQ

dP

)β]1/β

[PTf
α(y)]1/α .

Hence we obtain the following Harnack inequality

(PTf)α(x) ≤

[
EP

(
dQ

dP

)β]α/β
PTf

α(y).

In applications, we can take X̃x
t as a drift transformation of Xy

t and choose

the drift properly to force the two processes X̃x
t and Xy

t to meet at time T . Under

some conditions, we can construct the measure Q from P by using the Girsanov

theorem and keep the transition law of the processes. This is the idea of the

method of the coupling and Girsanov’s transformation introduced by Arnaudon

et al. [ATW06] for Harnack inequalities. Hence, for preparation (and indepen-

dent interest), we investigate the absolute continuity of Lévy processes and the

existence of coupling in Chapter 2 and Chapter 3 respectively.

IV Absolute Continuity of Lévy Processes

In Chapter 2, we study the absolute continuity of Lévy processes in infinite

dimensional spaces.

Denote by D the Skorokhod space over the Hilbert space H. Let Xt be the

canonical process on D and F , (Ft)0≤t<∞ be the canonical filtrations on D.

Consider two probability measures P1 and P2 on (D,F , (Ft)0≤t<∞). We



Chapter 0. Introduction 9

assume that Xt is a Lévy process with characteristic triplet (bj, Rj, νj) under Pj
for j = 1, 2.

Fix any t ≥ 0. We denote the restriction of Pj to Ft by Ptj. We are interested

in the absolute continuity of Pt2 with respect to Pt1 and in the Radon-Nikodým

derivative etc..

Sato [Sat99, Sat00] studied such questions extensively for the case H = Rd.

We aim to write down an infinite dimensional version of the main results in

[Sat00]. One of the main results for the infinite dimensional case is presented

below.

Suppose that for some 0 < r < 1 we have

kr(ν1, ν2) <∞, R := R1 = R2, b21 ∈ H0 := R1/2(H),

where kr(ν1, ν2) is the Hellinger-Kakutani distance between ν1 and ν2, and

b21 = b2 − b1 −
∫
{|x|≤1}

x d(ν2 − ν1).

Then we prove that Pt2 is absolutely continuous with respect to Pt1.

We also study the Radon-Nikodým derivative of Pt2 with respect to Pt1 (see

Section 2.7 for details). A special case is the following Girsanov transformation

for Lévy process (see also [RR07]). We will use this result to study Harnack

inequalities for Ornstein-Uhlenbeck processes driven by Lévy processes.

Fix T > 0. Let (X(t))0≤t≤T be an H-valued Lévy process on a filtered prob-

ability space (Ω,F , (Ft)0≤t≤T ,P) with characteristic triplet (b, R, ν). Denote

by X ′(t) the Gaussian part of X(t). Then X ′(t) is an R-Wiener process. Let

(ψ(t))0≤t≤T be an H0-valued Ft-predictable process, independent of the jump

part X −X ′, and such that E ρX
′
(T ) = 1 with

ρX
′
(T ) = exp

(∫ T

0

〈ψ(s), dX ′(s)〉0 −
1

2

∫ T

0

|ψ(s)|20 ds
)
.

Then

X̃(t) := X(t)−
∫ t

0

ψ(s) ds, 0 ≤ t ≤ T

is also a Lévy process on (Ω,F , (Ft)0≤t≤T ) with the same characteristic triplet

(b, R, ν) under the new probability measure P̃ defined by

P̃ = ρX
′
(T )P.
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This result is easy to show. We only need to use the Girsanov theorem for

Wiener processes and use the independence of the three parts in the Lévy-Itô

decomposition. In fact, we first motivate and prove this result in Chapter 2. The

idea of the proof for the general case is the same.

V Gluing and Coupling

In Chapter 3 we prove a gluing lemma for martingales and studied its appli-

cations for couplings.

Set

L(a, b) := L(a(t, x), b(t, x)) :=
1

2

n∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
+

n∑
i=1

bi(t, x)
∂

∂xi
, (11)

where a(t, x) is a symmetric nonnegative definite real matrix and b(t, x) ∈ Rn

defined on [0,∞)×Rn.

Let L1 and L2 be two second order differential operators of the form (11) on

Rn. Let τ be a stopping time on Ω.

Assume that

(1) There exists a solution Px1 to the martingale problem for L1 up to τ ;

(2) For each ω ∈ Ω, there exists a solution P
τ(ω),Xτ(ω)(ω)

2 to the martingale

problem for L2 starting from (τ(ω), Xτ(ω)(ω));

(3) and some other conditions (see Theorem 3.1.5).

Define

Qω := δω ⊗ P
τ(ω),Xτ(ω)(ω)

2 1{τ<∞} + δω1{τ=∞}

for every ω ∈ Ω. Then Px1 ⊗τ Q is a solution to the martingale problem for

L = L11{t<τ} + L21{t≥τ}.

The proof is based on a result by Stroock and Varadhan [SV79, Theorem

6.1.2]. This gluing lemma generalizes a lemma by Chen and Li [CL89, Lemma

3.4]. Lemma 3.4 in [CL89] studies the gluing of martingale generators via the

diffusion coefficients. By the general gluing lemma we proved we can study the

gluing of martingale generators via the drifts.

We can use this result to study the existence of coupling and the weak existence

of solutions to coupled stochastic differential equations. For example, we have

the following result.
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Consider the following stochastic differential equations on R2d:{
dXt = σ(t,Xt)dWt + b(Xt)dt, X0 = x ∈ Rd,

dYt = σ(t, Yt)dWt + b(Yt)dt+ ξ(t,Xt, Yt)1{t<τ}dt, Y0 = y ∈ Rd,
(12)

where Wt is an Rd-valued Brownian motion. Suppose that there exists a weak

solution to (12) up to τ and there is a weak solution of the following equation{
dXt = σ(t,Xt)dWt + b(t,Xt)dt, Xs = x ∈ Rd,

dYt = σ(t, Yt)dWt + b(t, Yt)dt, Ys = y ∈ Rd

for every fixed (s, x, y) ∈ [0,∞)×Rd ×Rd. Then there exists a weak solution to

the equation (12) for all t ∈ [0,∞).

With the coupling results, we can study Harnack inequalities for stochastic

differential equations with unique weak solutions. This is natural but it is new.

VI Harnack Inequalities for Ornstein-Uhlenbeck Processes Driven

by Lévy Processes

Now we turn to the introduction of Harnack inequalities for Lévy driven

Ornstein-Uhlenbeck processes studied in Chapter 7. We use the measure trans-

formation on probability space.

Let (Zt)0≤t≤T be an H-valued Lévy process with characteristic triplet (b, R, ν)

on some filtered probability space (Ω,F , (Ft)0≤t≤T ,P).

Consider the following generalized Langevin stochastic differential equation

dXt = AXt dt+ dZt, X0 = x. (13)

We denote the transition semigroup of Xt by Pt.

Fix T > 0 and x, y ∈ H. Assume (4) holds. Consider{
dX̃t = AX̃t dt+ dZt −R1/2ut dt, X̃0 = x.

dYt = AYt dt+ dZt, Y0 = y.

Here u ∈ L2([0, T ];H) is a control of the system (6) such that xT = 0 and hence

it follows that X̃T = YT . By results from control theory (see Appendix A), the

control function u exist.

By Girsanov’s theorem, we construct a new probability measure Q on the

space (Ω,FT , (Ft)0≤t≤T ) such that Q is absolute continuous with respect to P
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and Z̃t := Zt − ut is also a Lévy process with characteristic triplet (b, R, ν), the

same characteristic triplet as that of Zt under P.

Now by using the procedure introduced in (III), we obtain

(PTf)α(y) ≤ exp

(
β

2

∫ T

0

|ut|2 dt
)
PTf

α(x) (14)

for every x, y ∈ H, f ∈ C +
b (H) and α, β > 1 satisfying 1/α + 1/β = 1.

By optimization Inequality (14) over all possible null control function u of

the system (6), and by noting the representation (7), we obtain the Harnack

inequality (5) for the Lévy Ornstein-Uhlenbeck semigroup associated with the

solution process of the equation (13).

Similar to the Gaussian case, by choosing any control function u (or applying

(14)), we also obtain an upper estimate of the coefficient in the Harnack inequality.

Especially, we also have (8) which generalizes the Harnack inequalities in Röckner

and Wang [RW03a] for the Lévy Ornstein-Uhlenbeck semigroups from α = 2 to

general order α > 1.

We refer to Section 7.5 for the applications of Harnack inequalities for Lévy

Ornstein-Uhlenbeck semigroups.

VII Harnack Inequalities for Stochastic Differential Equations

In Chapter 4 we consider Harnack inequalities for the following distorted

Brownian motion on Rd:

dXt = b(t,Xt) dt+ dWt, (15)

where Wt is a Wiener process on Rd, b(t, x) is a measurable function from [0,∞)×
Rd to Rd.

Let b be a continuous function satisfying the following linear growth condition

|b(t, x)| ≤ C(1 + |x|), x ∈ Rd, 0 ≤ t ≤ T

for some constant C > 0 and the following classical global monotonicity condition

〈x− y, b(t, x)− b(t, y)〉 ≤ K|x− y|2, x, y ∈ Rd, 0 ≤ t ≤ T

for some K ∈ R. then for the transition semigroup Pt associated with Xt, we



Chapter 0. Introduction 13

have the following well known result

(PTf)α(x) ≤ exp

(
βK|x− y|2

1− e−2KT

)
PTf

α(y). (16)

where x, y ∈ Rd, f ∈ C +
b (Rd) and T > 0.

The inequality (16) is essentially from [Wan97]. We can reproduce it by

coupling and Girsanov’s transformation.

We aim to go further and prove Harnack inequalities for Pt under general

conditions on b. Especially, we have the following result.

Assume that b(t, x) is of linear growth, the solution to equation (15) is weakly

unique and there exists a nonnegative increasing function g on [0,∞) such that

sup
|x−y|=r

1

r
〈b(x)− b(y), x− y〉 ≤ g(r).

Then

(PTf)α (x) ≤ exp

β
2

∫ T

0

[
g(|x− y|) +

ξt|x− y|∫ T
0
ξu du

]2

dt

PTf
α(y),

where ξt is any positive continuous function on [0, T ].

In Chapter 4 we also consider estimates of heat kernels of the transition semi-

group by applying Harnack inequalities.

VIII Harnack Inequalities for Multivalued Stochastic Equations

Now we introduce the contents of Chapter 8 which is devoted to the study the

Harnack inequalities for multivalued stochastic differential equations and multi-

valued stochastic evolution equations.

The motivation comes from the study of Harnack inequalities for perturba-

tions of Ornstein-Uhlenbeck processes driven by Wiener processes in Section 5.5.

If the perturbation is given by the sub-differential of some convex function, then

we come to the multivalued stochastic equations. Below we introduce Harnack

inequalities for general multivalued stochastic evolution equations and their ap-

plications.

Let V ⊂ H = H∗ ⊂ V∗ be an evolution triplet, where V is a real separable

and reflexive Banach space which is continuously and densely embedded into a

separable Hilbert space H.
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Consider the following multivalued stochastic evolution equation{
dXt ∈ −AXt dt+BXt dt+ σ(t) dWt,

X0 = x ∈ D(A),
(17)

where A is a multivalued maximal monotone operator∗ on H, B : V → V∗ is a

single valued operator from V to V∗, σ : R+ × Ω × H → H ⊗ H, and Wt is a

cylindrical Wiener process on H with respect to a complete filtered probability

space (Ω,F , (Ft)t≥0,P).

Assume (H1)–(H5) stated in Theorem 8.3.2. We mention here that (H4) says

that there exists γ > 0, ω ∈ R and q > 1 such that for every x, y ∈ V,

V〈x− y,Bx−By〉V∗ ≤ −γ|x− y|qV + ω|x− y|2H.

For simplicity, we assume in this introduction that σ is constant and q is strictly

greater than 2. We refer to Section 8.3 for details about these conditions.

With these conditions, Zhang [Zha07] proved that Equation (17) has a unique

solution Xt. Define Ptf(x) = EPf(Xt) for every f ∈ Bb(D(A)). Then Pt is a

Markov semigroup. Zhang [Zha07, Theorem 5.8] studied the existence, unique-

ness, and finiteness of the second moment of the the invariant measures µ asso-

ciated with the semigroup Pt. We can prove the following stronger concentration

property: ∫
D(A)

(
eθ|x|

q
H +|x|qV

)
µ(dx) <∞ (18)

for some θ > 0.

Assume in addition (i.e. Condition (8.33))

ζ2|x|2+r
σ · |x|q−2−r

H ≤ |x|qV, for all x ∈ V, t ≥ 0

for some ζ > 0 and r ≥ q − 4. Then

(PTf
α)(x) ≤ exp

(
β

2
Θ̃T |x− y|

2(4+r−q)
2+r

H

)
PTf

α(y),

for every T > 0, x, y ∈ D(A) and f ∈ B+
b (D(A)), where Θ̃T is some constant

only dependent on T, δ, γ, ω and ζ (see (8.37)).

An immediate consequence of the Harnack inequality (with r > q− 4) is that

∗We used the same symbol A which has been used to represent the generator of St and hope
that this will not cause any confusion.
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for every f in Lp(D(A), µ) with p > 1, Ptf is continuous on D(A).

We also apply the Harnack inequalities to get the following results.

(1) µ is fully supported by D(A).

(2) For every x ∈ D(A), t > 0, the transition densities pt(x, ·) of Pt (with

respect to µ) exist and for every α > 1

‖pt(x, ·)‖Lα(H,µ) ≤
[∫

D(A)

exp

(
−α

2
Θ̃t|x− y|

2(4+r−q)
2+r

H

)
µ(dy)

]−(α−1)/α

.

(3) Suppose K ≤ 0. Then Pt is ultrabounded. More precisely, we have

‖Pt‖2→∞ ≤ exp
(
c(1 + t−

q
q−2 )

)
for some constant c > 0. Hence, Pt is compact for large t > 0.

IX Entropy Cost and HWI Inequalities for Ornstein-Uhlenbeck

Processes Driven by Wiener Processes

We are also interested in other functional inequalities for stochastic equations,

especially for stochastic equations with Lévy noise. But it seems that this is not

easy. As a first step, we write down entropy cost inequalities and HWI inequalities

for Ornstein-Uhlenbeck processes driven by Wiener processes in Chapter 9. We

also write it as a complement to this thesis. The results maybe be well known

for experts.

We go back to consider Equation (1). We assume that A is a bounded self-

adjoint and nonnegative definite operator. Suppose that Q∞ is of trace class and

StR = RSt for all t ≥ 0. Denote by Pt the associated transition semigroup. Then

Pt is symmetric. We also assume that there exist M,ω > 0 such that for all t ≥ 0,

‖St‖ ≤M e−ωt .

Then we can prove the following entropy cost inequality

Entµ(Ptf) ≤ Mω

2(e2ωt−1)
W2(fµ, µ)2,

and HWI inequality

Entµ(f) ≤M
√
I(f)W2(fµ, µ)− Mω

2
W2(fµ, µ)2

for every t ≥ 0 and nonnegative bounded measurable function f on H with
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µ(f) = 1. For the definition of the entropy (“H”) Entµ, Wasserstein distance

W2(·, ·), and Fisher information I(·), we refer to Section 9.1.



Chapter 1

Preliminaries

This chapter is devoted to some preliminary material which will be used in this

thesis. In Section 1.1, we introduce some basic notations. In Section 1.2 we recall

Gaussian measures and the Cameron-Martin formula. In Section 1.3 we intro-

duce shortly Wiener processes and stochastic integrals with respect to Wiener

processes. In Section 1.4 we introduce Lévy processes and infinite divisible dis-

tributions, the Lévy-Itô decomposition, stochastic integral with respect to Lévy

processes and symmetric α-stable processes.

1.1 Some Basic Notations

Operators on Hilbert Spaces Let H be a real separable Hilbert space with

norm | · | and inner product 〈·, ·〉. Let T be a bounded linear operator on H. We

denote by T ∗ the adjoint operator of T .

T is called symmetric if 〈Tx, y〉 = 〈x, Ty〉 for every x and y in H and positive

definite if 〈Tx, x〉 ≥ 0 for every x ∈ H.

Let {ek}k≥1 be a complete orthonormal basis of H. Let T be a bounded

symmetric and positive operator on H. We call T a Hilbert-Schmidt operator if

∞∑
k=1

|Tek|2 < +∞.

We call T a trace class operator if

TrT :=
∞∑
k=1

〈Tek, ek〉 < +∞.
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It is clear that every trace class operator is a Hilbert-Shimidt operator. We call

TrT the trace of T .

Spaces of functions We introduce some basic spaces of functions.

As usual, we denote by C (H) the space of continuous functions on H, Cb(H)

the space of bounded continuous on H, C +
b (H) the space of positive bounded con-

tinuous functions on H. Similarly, we denote by B(H), Bb(H), B+
b (H) the spaces

of measurable, bounded measurable, positive bounded measurable functions on

H.

We denote by B(H) the Borel σ-algebra on H. Let µ be a probability measure

on (H,B(H)). For every p > 1, we denote by Lp(H, µ) the space of all measurable

functions f on H such that |f |p is integrable with respect to µ. For every f ∈
Lp(H, µ), we denote ‖f‖Lp(H,µ) = µ(|f |p)1/p. If there is no confusion, we also write

‖f‖p for ‖f‖Lp(H,µ).

Denote E (H) for the space of all exponential functions, that is

E (H) := Linear Span{Reϕh, Imϕh : h ∈ H, ϕh(x) := ei〈h,x〉, x ∈ H}.

For a self-adjoint operator (A,D(A)) on H, we denote EA(H) for the space of

all real parts of the functions
(
ei〈h,x〉

)
h∈D(A∗)

.

Derivatives For every ϕ ∈ E (H) and h ∈ H we denote the (weak-) derivative

of ϕ in the direction of h by Dhϕ. Recall that it is defined as usual by

Dhϕ(x) := lim
ε→0

1

ε
[ϕ(x+ εh)− ϕ(x)], x ∈ H.

For h = ek we simply denote it Dekϕ by Dkϕ(x) as the derivative of ϕ in the

direction of ek.

The gradient Dϕ is defined by

〈Dϕ, h〉 = Dhϕ, ϕ ∈ E (H), h ∈ H.

It can be shown that the linear mappings Dk and

D : E (H) ⊂ L2(H, µ)→ L2(H, µ,H), ϕ 7→ Dϕ,

are closable and we shall still denote the closures respectively by D and D.

Cameron-Martin Spaces Let Q be a trace class operator. It is well known

that there exists a complete orthonormal system {ek}k∈N on H and a sequence
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of numbers {λk}k∈N such that

Qek = λkek, λk ≥ 0, k ∈ N.

See Reed and Simon [RS80, Theorem VI.16 and Theorem VI.21], or Dunford and

Schwartz [DS88].

We define the square root of Q by

Q1/2x =
∞∑
k=1

√
λk〈x, ek〉ek, x ∈ H.

It is obvious that Q1/2 is a Hilbert-Schmidt operator. We call the range

H0 := Q1/2(H) of Q1/2 the Cameron-Martin space of H. This subspace is also

called the reproducing kernel space for the measure µ. We know H0 is densely

embedded in H but with measure zero: µ(H0) = 0 (see [DP06, Proposition 1.27]).

We are going to introduce a scalar product on H0. With this product, the

Cameron-Martin space become an Hilbert space. To do so, we first recall an

useful concept – pseudo inverse of linear operator. See [PR07, Appendix C] for

more details.

Pseudo inverse Let T be a linear bounded operator on H. It is not necessary

to be one-to-one and onto. Then KerT := {x : Tx = 0} is a closed subspace of

H. Denote by H1 the orthogonal complement of Ker(T ): H1 = Ker(T )⊥. The

subspace H1 of H is also closed. Denote the restriction of T on H1 by T1:

T1 = T |H1 : H1 → T1(H).

Then T1 is one-to-one. What is more, T (H) = T1(H). So we can define the pseudo

inverse T−1 of T by

T−1 : T (H)→ H1, x 7→ T−1
1 x

for every x ∈ T (H).

Remark 1.1.1. Equivalently, for every x ∈ T (H), the pseudo inverse T−1x can be

defined as the element in the hyperplane {y ∈ H : Ty = x} with minimal norm.

Intrinsic Distance Let Q be a trace class operator on H. Denote the pseudo

inverse of Q1/2 by Q−1/2. We define a scalar product on H0 by

〈x, y〉H0 :=
〈
Q−1/2x,Q−1/2y

〉
, x, y ∈ H0.
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Denote by | · |H0 the norm corresponding to the inner product. When there is no

confusion, we will simply write 〈·, ·〉0 and | · |0 for 〈·, ·〉H0 and | · |H0 .

Since H0 is dense in H, we can extend the mapping 〈·, y〉0 to the whole space

H for every fixed y ∈ H.

Remark 1.1.2. Equivalently, we also have

〈x, y〉H0 =
∞∑
k=1

〈x, ek〉〈y, ek〉
λk

1{λk>0},

where {ek}k∈N are the eigenvectors of Q with eigenvalues {λk}k∈N.

Now we can introduce an intrinsic distance on H by

ρ(x, y) =

|x− y|0 , if x− y ∈ H0;

∞, otherwise.
(1.1)

1.2 Absolute Continuity of Gaussian Measures

There are also lots of monographs on Gaussian measures. See, for example,

[Xia72, Kuo75, Bog98] etc.. What we will introduce is basic and can also be

found in the books by Da Prato and Zabczyk [DPZ92, DPZ02].

Definition 1.2.1. Letm ∈ H andQ be a trace class operator onH. A probability

measure µ on (H,B(H)) is called a Gaussian measure with meanm and covariance

Q if the Fourier transformation (characteristic function) µ̂ of µ

µ̂(u) = Eµ exp (i〈x, u〉) =

∫
H

exp (i〈x, u〉)µ(dx), u ∈ H

is given by

µ̂(u) = exp

(
〈m,u〉 − 1

2
〈Qu, u〉

)
, u ∈ H.

In this case, we will write µ = N(m,Q) or Nm,Q. When m = 0 we shall write NQ

instead of N0,Q for short.

It can be shown (see for example [PR07, Definition 2.1.1 and Theorem 2.1.2])

that µ is a Gaussian measure on (H,B(H)) if and only if every random variable

x′ : H→ R, u 7→ 〈x, u〉, h ∈ H
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has Gaussian law for every x ∈ H under µ.

We are interested at the absolute continuity of Gaussian measures. We first

recall some basic notations related to the absolute continuity of measures.

Let σ1, σ2 be two σ-finite measures on a general measure space (E,E ). If

σ2(A) = 0 for each A ∈ E with σ1(A) = 0, then we say σ2 is absolutely continuous

with respect to σ1. And we write it as σ2 � σ1.

If both σ1 � σ2 and σ2 � σ1, then we say σ1, σ2 are mutually absolutely

continuous or equivalent. And we denote it by σ1 ≈ σ2.

If there exists some A ∈ E such that σ1(A) = σ2(E \A) = 0, then we say σ1 is

orthogonal or singular to σ2 and denoted it by σ1⊥σ2. Obviously σ1⊥σ2 if and

only if σ2⊥σ1. So we shall also say σ1 and σ2 are orthogonal to each other.

When the measure σ2 is absolutely continuous with respect to the measure

σ1, the famous Radon-Nikodým theorem (see the book Halmos [Hal50]) asserts

that there exists a σ1-a.s determined E -measurable function f(x) such that

σ2(A) =

∫
A

f(x)σ1(dx) for every A ∈ E . (1.2)

We denote the relation (1.2) by f(x) = dσ2

dσ1
(x), and termed it as Radon-Nikodým

derivative or relative density of the measure σ2 with respect to the measure σ1.

The equivalence and perpendicularity of two Gaussian measures on a separable

Hilbert space H have been studied for a long time. The first result concerning

the equivalence or singularity of two Gaussian measures is essentially due to

Kakutani [Kak48]. We have the so called Feldman-Hájek [Fel58, Fel59, Háj58]

theorem which states that any two Gaussian measures on a Hilbert space are

either equivalent or orthogonal. There are some ways to prove it. For example,

it can be proved by using the “Hellinger-Kakutani distance” due to Hellinger

[Hel07] and Kakutani [Kak48]; the “method of entropy” due to Hájek [Háj58]

and Rozanov [Roz62]; and the “method of reproducing kernel” due to Kallianpur

and Oodaira [KO63].

Now one can find the introduction of the absolute continuity of two Gaussian

measures in many monographs, see for example, [Xia72, Var68, GS74, Kuo75,

DPZ92, Bog98] etc..

In this thesis, we will only need to use the following simple case: the absolute

continuity of Gaussian measures Nm,Q with respect to NQ.

To be intuitive, let us first show the formula in one-dimension. Let Nb,q and

N0,q be two the normal distributions on R with the same variance q and means b
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and 0 respectively. If q = 0, then Nb,q and N0,q are equivalent only when b = 0.

If q 6= 0, then Nb,q and N0,q are always equivalent and the derivative is given by

dNb,q

dN0,q

(x) =
(2πq)−1/2 exp

[
− (x−b)2

2q

]
(2πq)−1/2 exp

[
−x2

2q

]
= exp

[
2bx− b2

2q

]
= exp

[〈
q−1/2b, q−1/2x

〉
− 1

2

∣∣q−1/2b
∣∣2] .

(1.3)

Formally, the infinite dimensional version of the Cameron-Martin formula is

the formula (1.3) if we replace q−1/2 by Q−1/2.

The proof of the following Cameron-Martin formula can be found, for in-

stance, in [GS74, Chapter VII, Section 4, Theorem 1], or [Kuo75, Theorem 3.1]

or [DPZ92, Theorem 2.21].

Theorem 1.2.2. Let µ = N(m,Q) and ν = N(0, Q) on H be two Gaussian

measures on H.

(1) If m /∈ Q1/2(H), then µ and ν are singular.

(2) If m ∈ Q1/2(H), then µ and ν are equivalent and the Radon-Nikodým deriva-

tive of µ with respect to ν is given by

dµ

dν
(x) = exp

(
〈x,m〉0 −

1

2
|m|20

)
, for all x ∈ H.

Remark 1.2.3. One of the powerful tools in the study of absolute continuity of

Gaussian measures is the so called Kakutani distance of two measures which is

introduced in Kakutani [Kak48]. (As pointed out in Kakutani’s paper, Kakutani

distance is the same with the Hellinger integral introduced by Hellinger in his

thesis [Hel07]. So we shall call the distance by Hellinger-Kakutani distance.) We

will introduce these concepts in detail in Section 2.3 for the study of absolute

continuity of Lévy processes.

1.3 Wiener Processes and Stochastic Integrals

We will first recall the definition of standard Q-Wiener processes and stochastic

integrals with respect to standard Q-Wiener processes. Then we will introduce

cylindrical Q-Wiener processes and the stochastic integrals with respect to cylin-

drical Wiener process. We refer to [DPZ92, PR07] for more details.
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Definition 1.3.1. Suppose that Q is a trace class operator on a real separable

Hilbert space H. A family of H-valued random variables W = (Wt)0≤t≤T is called

a standard Q-Wiener process on [0, T ] if

(1) W0 = 0;

(2) W has continuous trajectories;

(3) W has independent increments, that is, the random variables

Wt1 ,Wt2−t1 , . . . ,Wtn −Wtn−1

are independent for all 0 ≤ t1 < t2 < · · · < tn ≤ T and all n ∈ N;

(4) The increments of W have Gaussian laws: Wt−Ws is Gaussian distributed

as N(t−s)Q for every 0 ≤ s ≤ t ≤ T .

Let {ek}k∈N be an orthonormal basis of H consisting of eigenvectors of Q, and

{λk}k∈N be the corresponding sequence of eigenvalues:

Qek = λkek, for all k ∈ N.

Then (Wt)0≤t≤T is a Q-Wiener process if and only if

Wt =
∞∑
k=1

√
λkβk(t)ek, 0 ≤ t ≤ T, (1.4)

where {βk}k∈N are independent real valued standard Brownian motions.

The proof of the representation (1.4) of Q-Wiener processes can be found in

[DPZ92, Proposition 4.1] or [PR07, Proposition 2.1.10] etc..

Let (Ω,F , (Ft)0≤t≤T ,P) be a filtered probability space. We call (Wt)0≤t≤T

a Q-Wiener process with respect to the filtration (Ft)0≤t≤T , if (Wt)0≤t≤T is a

Q-Wiener process satisfying the following conditions

(1) Wt is adapted to Ft for all 0 ≤ t ≤ T ;

(2) Wt −Ws is independent of Fs for all 0 ≤ s ≤ t ≤ T .

We say that a filtration (Ft)0≤t≤T , on a probability space (Ω,F ,P) is a normal

filtration if the following two usual conditions are satisfied.

(1) F0 (and hence every Ft for 0 ≤ t ≤ T ) contains all elements A ∈ F with

P(A) = 0.

(2) The filtration is right continuous: Ft = Ft+ := ∩s>tFs for every 0 ≤ t ≤ T .

It is easy to show that any Q-Wiener process is a Q-Wiener process with

respect to some normal filtration (see [PR07, Proposition 2.1.13]). In this thesis,
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if it is not explicitly stated, we will always assume that the filtration is normal.

Stochastic Integral

In this thesis we mainly concern the stochastic integrals of deterministic func-

tions with respect to Wiener processes. So we only introduce shortly this simple

case. For more on stochastic integrals, we refer to the book by Da Prato and

Zabczyk [DPZ92] or the lecture notes by Prévôt and Röckner [PR07].

Let (Wt)0≤t≤T , be an H-valued Q-Wiener process defined on a filtered proba-

bility space (Ω,F , (Ft)0≤t≤T ,P). Let (1.4) be a representation of (Wt)0≤t≤T .

Let U be another real separable Hilbert space. Denote by L(H,U) the space

of all linear bounded operators from H to U . Let Φ: [0, T ]→ L(U,H), t 7→ Φ(t)

be a deterministic function.

For every 0 ≤ t ≤ T , we define the stochastic integral of Φ(·) with respect to

the Wiener process W (·) by∫ t

0

Φs dWs :=
∞∑
k=1

∫ t

0

√
λkΦsek dβk(s) =

∞∑
k=1

∫ t

0

ΦsQ
1/2ek dβk(s). (1.5)

The generic term ∫ t

0

ΦsQ
1/2ek dβk(s)

in the series (1.5) is a U -valued Wiener integral defined by

∫ t

0

ΦsQ
1/2ek dβk(s) =

∞∑
l=1

(
∞∑
k=1

∫ t

0

〈ΦsQ
1/2ek, fl〉 dβk(s)

)
fl

where {fl}l∈N is a complete orthogonal normal basis of the Hilbert space U .

It is easy to check

E

∣∣∣∣∫ t

0

ΦsdWs

∣∣∣∣ =
∞∑
k=1

∫ t

0

|Φ(s)Q1/2ek|2 ds

=
∞∑
k=1

∫ t

0

〈(ΦsQ
1/2)∗Φ(s)Q1/2ek, ek〉 ds

=

∫ t

0

Tr
[
(ΦsQ

1/2)∗Φ(s)Q1/2
]
ds.
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Hence, the series (1.5) converges in L2(Ω,F , U) if and only if∫ t

0

Tr
(
ΦsQΦ∗s

)
ds <∞. (1.6)

In this case, we can show that the stochastic integral Gaussian random variable

with covariance (see [DPZ92, Theorem 5.2])

Qt :=

∫ t

0

ΦsQΦ∗s ds.

Cylindrical Q-Wiener Processes and Stochastic Integrals

Formally, in the definition of the stochastic integrals (1.5), the operator Q is

not necessary to be of trace class since we only need the condition (1.6) hold.

This leads us to introduce cylindrical Q-Wiener processes.

Let Q be a bounded, self-adjoint and nonnegative operator on U . Set U0 =

Q1/2(U). Let Ũ0 be an arbitrary Hilbert space such that U0 is embedded contin-

uously into Ũ0

J : (U0, | · |U0)→ (Ũ0, | · |fU0
)

and the embedding J is a Hilbert-Schmidt operator.

Now we define

Wt =
∞∑
k=1

βk(t)Jgk, 0 ≤ t ≤ T,

where {gk}k∈N is an orthogonal normal basis of U0 and {βk}k∈N is a family of

independent real Brownian motions.

Therefore (Wt)0≤t≤T defines a Q̃ := JJ∗-Wiener process on Ũ0 with Tr Q̃ <∞.

If TrQ =∞, then we will call the constructed process (Wt)0≤t≤T a cylindrical

Q-Wiener process on U . If Q = I, then we simply call it a cylindrical Wiener

process.

When there is no confusion, we will simply say Q-Wiener processes without

distinguishing whether it is the standard one and cylindrical one.

The cylindrical Q-Wiener processes are not uniquely defined but the stochastic

integrals with respect to cylindrical Q-Wiener processes are independent of the

choices of U1 and hence are well-defined.
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1.4 Lévy Processes

In this section, we introduce some preliminaries on Hilbert space valued Lévy pro-

cesses. See the books Bertoin [Ber96], K. Sato [Sat99], Applebaum [App04], and

Cont and Tankov [CT04] etc. for general introductions to Lévy processes in finite

dimension spaces. We refer to the monograph Peszat and Zabczyk [PZ07] and

bibliographies therein for the introduction of Lévy processes in infinite dimension.

1.4.1 Lévy Processes and Infinite Divisible Distributions

Let H be a real separable Hilbert space. A Lévy process is a time-homogeneous

Markov process with space homogeneity. We give the precise definition of Lévy

processes in the following.

Definition 1.4.1. Let (Xt)0≤t<∞ be an H-valued stochastic process defined on

a filtered probability space (Ω,F , (Ft)0≤t<∞,P). We call Xt a Lévy process if it

is an Ft-adapted, stochastically continuous process with independent stationary

increments. That is, Xt satisfies the following conditions.

(1) X0 = 0 P-a.s.

(2) Xt is adapted: Xt ∈ Ft for every t ≥ 0;

(3) Independent increments: Xt−Xs is independent of Fs for every 0 ≤ s ≤ t;

(4) Stationary increments: the distribution of Xt − Xs only depends on the

time interval t− s for every 0 ≤ s ≤ t;

(5) Stochastically continuous: for every s ≥ 0 and ε > 0,

lim
t→s
P(|Xt −Xs| > ε) = 0.

It can be proved (see [Sat99, Chap. 1] or [Pro90, Theorem 30]) that there is

a unique modification of each Lévy process such that every path of the process

is right continuous with left limits. Without loss of generality, we will assume in

this thesis that every Lévy process is right continuous with left limits.

Lévy processes are closely related to infinite divisible distributions (or mea-

sures).

Let µ and ν be two σ-finite measures on (H,B(H)), their convolution µ ∗ ν is

defined by

µ ∗ ν(A) =

∫
H

µ(A− x) ν(dx), A ∈ B(H).

A measure µ (or a random variable with distribution µ) is called infinitely divisible
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if for every n ∈ N, there exists a measure µn such that

µ = µ∗nn = µn ∗ µn ∗ · · · ∗ µn︸ ︷︷ ︸
n times

.

We will introduce a representation of the characteristic functions of infinitely

divisible distributions. We first recall the definition of Lévy measure.

Definition 1.4.2. We call a σ-finite measure ν on H a Lévy measure if it is

concentrated on H \ {0} and satisfies∫
H\{0}

(1 ∧ |z|2) ν(dx) <∞.

The following Lévy-Kintchine formula characterize the structure of infinite

divisible distributions.

Theorem 1.4.3. If µ is an infinite divisible distribution on H, then the charac-

teristic function of µ is given by

µ[exp(i〈u, x〉)] = exp[−λ(u)], for all u ∈ H

with

λ(u) = −i〈u, b〉+
1

2
〈Ru, u〉

+

∫
H

[
1− exp(i〈x, u〉) + i〈x, u〉1{|x|≤1}(x)

]
ν(dx),

(1.7)

where b ∈ H, R is a trace class operator on H, and ν is a Lévy measure on H.

Definition 1.4.4. We call λ the symbol or the characteristic exponent of the in-

finite divisible distribution µ and (b, R, ν) the characteristic triplet (or generating

triplet ) of µ.

Denote the law of Xt by µt. It is easy to see that µt+s = µt ∗µs for all t, s ≥ 0.

This follows that µt is an infinite divisible measure for every t > 0.

Remark 1.4.5. The distribution (µt)t≥0 is called a convolution semigroup, or an

infinite divisible family. Comparing with the concepts of skew convolution semi-

group in Remark 7.1.1.
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Define the transition semigroup by

Ptf(x) =

∫
H

f(x+ y)µt(dy), f ∈ C +
b (H).

By Kolmogorov’s theorem, there is a one-to-one correspondence between Lévy

processes and infinite divisible distributions. And it is easy to see that for each

t ≥ 0, the random variable Xt is infinitely divisible and

E exp(i〈Xt, u〉) = exp(−tη(u)), for all u ∈ H.

Here η : H 7→ C is the characteristic exponent of X1, that is,

η(u) = − logE exp(i〈X1, u〉), for all u ∈ H.

By the representation for infinite divisible distribution (see Theorem 1.4.3),

we have the following Lévy-Kintchine formula for lévy processes, which is a char-

acterization of Lévy processes.

Theorem 1.4.6. There exists a triplet (b, R, ν) such that for every u ∈ H,

η(u) = −i〈u, b〉+
1

2
〈Ru, u〉

+

∫
H

[
1− exp(i〈x, u〉) + i〈x, u〉1{|x|≤1}(x)

]
ν(dx),

(1.8)

where b is element in H, R is a trace class operator on H, and ν is a Lévy measure

on H.

Definition 1.4.7. We call η the Lévy symbol or the characteristic exponent of

the Lévy process Xt and (b, R, ν) the characteristic triplet (or generating triplet)

of Xt.

1.4.2 The Lévy-Itô Decomposition and Stochastic Inte-

grals

Corresponding to the three terms in the Lévy-Kintchine formula (1.8), every Lévy

process can be decomposed into three independent processes.

We first introduce Poisson random measure.

Definition 1.4.8. A Poisson random measure on (H,B(H)) with intensity mea-

sure ν is a family of random variables {N(B), B ∈ B(H)} on some probability
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space Ω
N : Ω×H→ Z+ := {0, 1, 2, . . .},

(ω,B) 7→ N(ω,B)

such that

(1) For almost all ω ∈ Ω, N(ω, ·) is an non-negative integer valued measure on

H;

(2) For each measurable set B ∈ B(H), N(·, B) = N(B) is a Poisson random

variable with parameter ν(B);

(3) For all disjoint measurable sets B1, B2, . . . , Bn in B(H) with n ∈ N, the

random variables N(B1), N(B2), . . . , N(Bn) are independent.

We define the corresponding compensated Poisson random measure by

Ñ(B) := N(B)− ν(B)

for all B ∈ B(H).

Let Xt be a Lévy process on H. The jump of Xt at time t is defined as

∆Xt = Xt −Xt−, where Xt− = lims↑tXs.

For every B ∈ B(H \ {0}), we count the number of jumps of Xt in B before

time t by

N(t, B) := ] {s ∈ [0, t) : ∆Xs ∈ B} .

It can be shown that N(dt, dx) is a Poisson random measure on [0,+∞)×H with

intensity measure dt × ν(dx). And the associated compensated Poisson random

measure of N(dt, dx) is given by

Ñ(dt, dx) = N(dt, dx)− dt× ν(dx).

Now we can state the famous Lévy-Itô decomposition of Lévy processes.

Proposition 1.4.9. Let Xt be a Lévy process on H with characteristic triplet

(b, R, ν). Then we have

Xt = bt+Wt +

∫ t

0

∫
{|x|≤1}

x Ñ(ds, dx) +

∫ t

0

∫
{|x|>1}

z N(ds, dx)

= bt+Wt +

∫
{|x|≤1}

z Ñ(t, dx) +

∫
{|x|>1}

z N(t, dx),

(1.9)

where Wt is a R-Wiener process on H and N is a Poisson random measure on
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[0,∞)× (H \ {0}) with intensity measure dt× ν.

For a proof, we refer to [AR05] for a general introduction to the Lévy-Itô

decomposition on separable Banach spaces.

1.4.3 Stochastic integral with respect to Lévy noise

We will only consider the stochastic integrals with respect to Lévy processes

when the integrand is just time-dependent. We refer to [App04, AR05, App06,

MR06, App07a] etc. for more details of stochastic integrals with respect to Lévy

processes.

Let F be a measurable function from [0,∞) to the space of all linear bounded

operators onH such that t 7→ |F (t)| is locally square integrable. Then the integral

of F with respect to Xt could be defined in the following via (1.9):

∫ t

0

F (s) dXs :=

∫ t

0

F (s)b ds+

∫ t

0

F (s) dWs

+

∫ t

0

∫
{|x|≤1}

F (s)x Ñ(ds, dx) +

∫ t

0

∫
{|x|>1}

F (s)xN(ds, dx).

Here, in the right hand side of the definition of integral above, the first and fourth

integrals are defined by the standard Bochner integrals; the second integrals are

stochastic integral with respect to Wiener process; and third integral is stochastic

integral with respect to Poisson random measure (refer to the literatures men-

tioned above).

We have the following assertion about the stochastic integrals.

Proposition 1.4.10. For every t ≥ 0, the integral
∫ t

0
F (s)dXs is infinitely divis-

ible and its characteristic exponent is given by

λt,F (u) :=

∫ t

0

η
(
F (s)∗u

)
ds, u ∈ H.

See Chojnowska-Michalik [Cho87, Corollary 2.1], Applebaum [App07b, Propo-

sition 2.1], or [PZ07, Corollary 4.1] for a proof.

The following corollary is an immediate consequence of Equation (1.8) and

Proposition 1.4.10.
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Corollary 1.4.11. For every t ≥ 0, the characteristic triplet (bt, Rt, νt) of the

integral
∫ t

0
F (s) dXs is given by

bt =

∫ t

0

F (s)b ds+

∫ t

0

∫
H\{0}

F (s)x
[
1B

(
F (s)x

)
− 1B(x)

]
ν(dx) ds;

Rt =

∫ t

0

F (s)RF (s)∗ ds;

νt(A) =

∫ t

0

v(F (s)−1A) ds, A ∈ B(H \ {0}),

where B = {x ∈ H : |x| ≤ 1}.

Remark 1.4.12. The conclusion of Corollary 1.4.11 is also stated in [App07b,

Corollary 2.1]. But note that there is a misprint therein:
[
1B

(
F (s)x

)
− 1B(x)

]
is written as

[
1B(x)− 1B

(
F (s)x

)]
in [App07b, Corollary 2.1].

Proof of Corollary 1.4.11. By applying Proposition 1.4.10 and note the Lévy-

Kintchine formula (1.8), for every u ∈ H, we have∫ t

0

η(F (s)∗u) ds

=− i
∫ t

0

〈b, F (s)∗u〉 ds+
1

2

∫ t

0

〈F (s)∗u,RF (s)∗u〉 ds

+

∫ t

0

∫
H\{0}

[
1− ei〈x,F (s)∗u〉+i 〈x, F (s)∗u〉 1B(x)

]
ν(dx) ds

=− i
〈
u,

∫ t

0

F (s)b ds

〉
+

1

2

〈
u,

(∫ t

0

F (s)RF (s)∗ ds

)
u

〉
+

∫ t

0

∫
H\{0}

[
1− ei〈F (s)x,u〉+i 〈F (s)x, u〉 1B(x)

]
ν(dx) ds.

Now we rewrite the last term of the equation above in the following way.

i

∫ t

0

∫
H\{0}

[〈F (s)x, u〉 1B(x)− 〈F (s)x, u〉 1B(F (s)x)] ν(dx) ds

+

∫ t

0

∫
H\{0}

[
1− ei〈F (s)x,u〉+i 〈F (s)x, u〉 1B(F (s)x)

]
ν(dx) ds

=i

〈∫ t

0

∫
H\{0}

F (s)x [1B(x)− 1B(F (s)x)] ν(dx) ds, u

〉
+

∫ t

0

∫
H\{0}

[
1− ei〈x,u〉+i 〈x, u〉 1B(x)

]
ν(F (s)−1dx) ds.
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Therefore, we have∫ t

0

η(F (s)∗u) ds

=− i
〈
u,

∫ t

0

F (s)b ds+

∫ t

0

∫
H\{0}

F (s)x [1B(F (s)x)− 1B(x)] ν(dx) ds

〉
+

1

2

〈
u,

(∫ t

0

F (s)RF (s)∗ ds

)
u

〉
+

∫ t

0

∫
H\{0}

[
1− ei〈x,u〉+i 〈x, u〉 1B(x)

]
ν(F (s)−1dx) ds.

This completes the proof.

1.4.4 Symmetric α-Stable Processes

We will shortly introduce a special Lévy processes – symmetric α-stable processes

on Rd. We refer to the monograph Samorodnitsky and Taqqu [ST94] for more

details.

We start with the introduction with symmetric α-stable random variable.

Definition 1.4.13. An Rd-valued random variable ζ is called a symmetric α-

stable random variable if

E exp(i〈u, ζ〉) = exp(−|u|α), u ∈ Rd

for some α ∈ (0, 2].

All α-stable random variables have densities. We denote the relative density

of the stable random variable ζ with respect to the Lebesgue measure on Rd by

p̂α(·):
P(ζ ∈ A) =

∫
A

p̂α(x) dx, A ∈ B(Rd).

But only for a few stable random variables the densities have closed forms.

For α 6= 2, the stable random variable have polynomial decay ([BG60, Theorem

2.1]):

p̂α(x) ∼ 1

|x|d+α
(|x| → +∞). (1.10)

Definition 1.4.14. An Rd-valued process (Xt)t≥0 is called a symmetric α-stable

(SαS) process if it is a Lévy process such that for all t ≥ 0, Xt is a symmetric
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α-stable random variable with

E exp(〈u,Xt〉) = exp(−t|u|α), u ∈ Rd.

Let us denote the transition density of Xt by p̂α(t, ·), and the transition density

of Xt starting from x by p̂α(t, x, ·). That is,

P(Xt ∈ A) =

∫
A

p̂α(t, x) dx, A ∈ B(Rd).

and

P(Xt ∈ A|X0 = x) =

∫
A

p̂α(t, x, y) dy, x ∈ Rd, A ∈ B(Rd).

Their connection is given by

p̂α(t, x, y) = p̂α(t, x− y), for all x, y ∈ Rd.

The transition density p̂α(t, x) of the process Xt has the following scaling

property.

Lemma 1.4.15. For every a > 0, we have

p̂α(t, x) = adp̂α(aαt, ax) (1.11)

Proof. For each u ∈ Rd,∫
Rd

ei〈x,u〉 p̂α(t, x) dx = exp(−t|u|α) = exp(−aαt|a−1u|α)

=

∫
Rd

ei〈x,a
−1u〉 p̂α(aαt, x) dx =

∫
Rd

ei〈a
−1x,u〉 p̂α(aαt, x) dx

=

∫
Rd

ei〈x,u〉 p̂α(aαt, ax)ad dx.

There is a natural relationship p̂α(1, x) = p̂α(x) between the transition density

of the process at time 1 and the density of stable random variable. Therefore, by

taking a = t−1/α in the scaling property (1.11), we can get

p̂α(t, x) = t−d/αp̂α(t−1/αx), x ∈ Rd, t ≥ 0.

Based on (1.10), Bogdan et al. [BSS03, Theorem 3.1] proved the following
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estimates of the transition density.

Lemma 1.4.16. For every x, y ∈ Rd with x 6= y and t > 0, there exists some

constant K > 0 such that

K−1

(
t

|x− y|d+α
∧ t−d/α

)
≤ p̂α(t, x, y) ≤ K

(
t

|x− y|d+α
∧ t−d/α

)



Chapter 2

Absolute Continuity of Lévy

Processes in Infinite Dimensional

Spaces

In this chapter we aim to generalize the main results in the lecture notes by Sato

[Sat00] to the infinite dimensional case. In Section 2.1 we introduce some basic

notations and the main problems. We refer to the summary of the structure of

this chapter at the end of Section 2.1.

The Girsanov theorem for Lévy processes studied in Section 2.2 will be used

in Subsection 7.4.1 to establish Harnack inequalities for Ornstein-Uhlenbeck pro-

cesses driven by Lévy processes.

2.1 Introduction

Let H be a separable Hilbert space with inner product 〈·, ·〉 and norm | · |. Denote

by D the Skorokhod space D([0,∞),H) over H. Recall that D consists of all

right continuous with left limits functions from [0,∞) to H. Denote by Xt the

canonical process on D defined by Xt(ω) = ω(t) for every path ω ∈ D and t ≥ 0.

Set

Ft = σ(Xs : 0 ≤ s ≤ t), t ≥ 0

and

F = σ(Xs : 0 ≤ s <∞).

Note that every Lévy process can be realized as a canonical process on the
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filtered Skorokhod space (D,F , (Ft)0≤t<∞) with some probability measure P. So

we will regard each Lévy process as a probability measure on the Skorokhod space

D and vise versa.

Now we consider two probability measures P1 and P2 on (D,F , (Ft)0≤t<∞).

Assume that the characteristic triplet of the canonical Lévy process Xt on D is

(bj, Rj, νj) under Pj for j = 1, 2. In other words, for j = 1, 2,

EPj exp(i〈u,Xt〉) = exp(−tηj(u)), u ∈ H,

where the characteristic symbol ηj is given by

ηj(u) = −i〈u, bj〉+
1

2
〈Rju, u〉

+

∫
H

[
1− exp(i〈u, x〉) + i〈u, x〉1{|x|≤1}(x)

]
νj(dx).

For every t ≥ 0, we denote the restriction of Pj on Ft by Ptj:

Ptj = Pj|Ft, j = 1, 2.

We are interested at the following problems.

(1) The necessary and sufficient conditions for the absolute continuity and or-

thogonality of Pt2 with respect to Pt1;

(2) The Radon-Nikodým derivative of Pt2 with respect to Pt1 in the case Pt2 �
Pt1;

(3) The Lebesgue decomposition of Pt2 with respect to Pt1;

(4) The Radon-Nikodým derivative of the absolute continuous part of Pt2 with

respect to Pt1.

For the finite dimensional case, the first two problems were solved by Sko-

rokhod [Sko57, Sko60], Kunita and Watanabe [KW67], Newman [New72, New73]

and treated and reformulated by Sato [Sat99, Chapter 6, Section 33]. And the

last two problems were treated explicitly first in [Sat00] for the finite dimensional

case. We refer to [Sat00] for more notes.

In this chapter, we are going to follow the line in Sato’s lecture notes [Sat00]

and formulate the main results therein for the infinite dimensional case.

The generalization may sounds trivial to some experts. For example, Jacod

and Shiryaev [JS87] studied the absolute continuity of general semi-martingales.

But it seems that maybe it is interesting to write down the results for Lévy
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processes directly. Moreover, as mentioned in [Sat00], the problems (3) and (4)

are new.

Now we describe the organization of this chapter.

We start with a Girsanov theorem for Lévy process in Section 2.2. Here

we consider a drift transforamtion of a Lévy process with characteristic triplet

(b1, R, ν1). We obtain another Lévy process with characteristic triplet (b2, R, ν2)

for the case ν2 = ν1 under a new probability measure. We just apply Girsanov’s

theorem for the Gaussian part of the Lévy process by using the independence of

the Gaussian part and the jump part of the Lévy process. We will generalize this

Girsanov theorem from the case ν1 = ν2 to the case when the Hellinger-Kakutani

distance of ν1 and ν2 is finite. It will turn out that the main idea of this chapter

is using the independence.

We introduce Hellinger-Kakutani inner product and distance of r-order (r ∈
(0, 1)) for any two σ-finite measures in Section 2.3. These concepts have first been

introduced by Hellinger [Hel07] and Kakutani [Kak48] for the order r = 1/2. They

are powerful tools in the study of absolute continuity of measures (see Remark

1.2.3 for bibliographic notes). We list here some related references: Brody [Bro71],

Newman [New72, New73], Memin and Shiryayev [MS85] etc.. We also refer to

[Sat00] and the references therein.

In Section 2.4 we introduce the non-singularity condition (2.2) for the absolute

continuity of two Lévy processes. See Theorem 2.4.1 and Corollary 2.4.5.

To prove Theorem 2.4.1, we need the corresponding results for the Gaussian

case which are proved in Section 2.5. The generalization of the non-singularity

condition from the finite dimensional case to the infinite dimensional case stems

from the Gaussian case.

Then we sketch the proof of Theorem 2.4.1 in Seciton 2.6. In Section 2.7, we

study the density of one Lévy process with respect to another.

We mention that some applications which is omitted on the density transfor-

mation can be done similar to [Sat00, Section 7].

2.2 Girsanov’s Theorem for Lévy Processes

We will prove a special Girsanov theorem for Lévy processes. It says that a drift

transformed Lévy process is still a Lévy process with the same distribution under

a new probability measure.
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Let H be a separable Hilbert space and R a trace class operator on H. We

denote the Cameron-Martin space of H by H0 = R1/2(H) and the inner product

of H0 by 〈·, ·〉0:

〈x, y〉0 =
〈
R−1/2x,R−1/2y

〉
, x, y ∈ H0.

We denote by | · |0 for the norm on H0 corresponding to the inner product 〈·, ·〉0.

The following Girsanov’s theorem for Wiener processes in infinite dimensional

spaces is due to Bensoussan [Ben71] and Kozlov [Koz78] (see also [DPZ92, The-

orem 10.14] for a proof).

Theorem 2.2.1. Let T > 0. Suppose that (W (t))0≤t≤T is an H-valued R-Wiener

process on some filtered probability space (Ω,F , (Ft)0≤t≤T ,P). Let ψ(·) be an

H0-valued Ft-predictable process such that

E ρW (T ) = 1

with

ρW (T ) = exp

(∫ T

0

〈ψ(s), dW (s)〉0 −
1

2

∫ T

0

|ψ(s)|20 ds
)
.

Then

W̃ (t) := W (t)−
∫ t

0

ψ(s) ds, 0 ≤ t ≤ T

is an R-Wiener process on (Ω,F ,Ft, 0 ≤ t ≤ T ) under a new probability measure

P̃ defined by

P̃|FT
= ρW (T )P.

With Theorem 2.2.1, we can prove the following Girsanov theorem for Lévy

process.

Theorem 2.2.2. Let T > 0. Suppose that (X(t))0≤t≤T is an H-valued Lévy pro-

cess on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P) with characteristic triplet

(b, R, ν). Denote by X ′(·) the Gaussian part of X(·). Let ψ(·) be an H0-valued

Ft-predictable process, independent of X(t)−X ′(t) such that

E ρX
′
(T ) = 1

with

ρX
′
(T ) = exp

(∫ T

0

〈ψ(s), dX ′(s)〉0 −
1

2

∫ t

0

|ψ(s)|20 ds
)
.

Then

X̃(t) := X(t)−
∫ t

0

ψ(s) ds, 0 ≤ t ≤ T
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is also a Lévy process on (Ω,F , (Ft)0≤t≤T ) with the same characteristic triplet

(b, R, ν) under a new probability measure P̃ defined by

P̃ = ρX
′
(T )P.

Proof. Since (X(t))0≤t≤T is a Lévy process with characteristic triplet (b, R, ν) on

H, the Fourier transformation of Xt is given by

EP exp(i〈X(t), u〉) = exp [−tϑ1(u)− tϑ2(u)] , u ∈ H,

where for every u ∈ H,

ϑ1(u) =
1

2
〈Ru, u〉

and

ϑ2(u) = −i〈u, b〉+

∫
H

[
1− exp(i〈u, x〉) + i〈u, x〉1{|x|≤1}(x)

]
ν(dx).

In other words, we have the following (Lévy-Itô) decomposition

X(t) = X ′(t) +X ′′(t) = X ′(t) + (X(t)−X ′(t)).

Here X ′(t) is the Gaussian part of X(t) with symbol ϑ1; while X ′′(t) is a drifted

jump process with symbol ϑ2. These two processes, X ′(t) and X ′′(t), are inde-

pendent to each other.

For every 0 ≤ t ≤ T , we define

ρX
′
(t) = exp

(∫ t

0

〈ψ(s), dX ′(s)〉0 −
1

2

∫ t

0

|ψ(s)|20 ds
)
.

Then we have

P̃|Ft = ρX
′
(t)P, 0 ≤ t ≤ T.

By the Girsanov theorem for Wiener processes on Hilbert space (see Theorem

2.2.1), we know

X̃ ′(t) = X ′(t)−
∫ t

0

ψ(s) ds

is a still an R-Wiener process with respect to the new probability measure P̃.

Consequently, for all 0 ≤ t ≤ T and all u ∈ H, we have

EPρ
X′(t) exp(i〈u, X̃ ′(t)〉) = EeP exp(i〈u, X̃ ′(t)〉) = exp [−tϑ1(u)] . (2.1)
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Therefore, by the independence of X ′ and X ′′ and the equation (2.1) above, we

get

EeP exp
(
i〈u, X̃(t)〉

)
=EPρ

X′(t) exp
(
i〈u, X̃(t)〉

)
=EPρ

X′(t) exp

(
i

〈
u,X(t)−

∫ t

0

ψ(s) ds

〉)
=EPρ

X′(t) exp

(
i

〈
u,X ′(t)−

∫ t

0

ψ(s) ds+X ′′(t)

〉)
=EPρ

X′(t) exp
[
i
〈
u, X̃ ′(t)

〉]
· EP exp

(
i〈u,X ′′(t)〉

)
= exp [−tϑ1(u)] · exp [−tϑ2(u)]

= exp [−tϑ1(u)− tϑ2(u)] .

It follows that the characteristic symbol of X̃ with respect to P̃ is ϑ1 + ϑ2, which

is the same with the characteristic symbol of X with respect to P. This fact

implies that X̃ is also a Lévy process with characteristic triplet (b, R, ν) under

the new probability measure P̃.

Remark 2.2.3. Ren and Röckner [RR07] considered also a similar Girsanov the-

orem by martingale methods.

2.3 Hellinger-Kakutani Theory

Let σ1, σ2 be two σ-finite measures on a general measurable space (E,E ). Con-

sider a σ-finite measure σ on (E,E ) such that both σ1 and σ2 are absolute con-

tinuous with respect to σ:

σ1 � σ and σ2 � σ.

Note that the measure σ does exist. For example, we can simply take σ =

σ1 + σ2.

For i = 1, 2, we denote by fi = dσi/dσ for the Radon-Nikodým derivative of

σi with respect to σ. We will fix one version of the derivative fi for i = 1, 2.

Definition 2.3.1. The Hellinger-Kakutani inner product Hr(σ1, σ2) of σ1 and σ2
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of order r ∈ (0, 1) is defined by

Hr(σ1, σ2)(A) =

∫
A

f r1f
1−r
2 dσ, A ∈ E .

The Hellinger-Kakutani integral hr(σ1, σ2) is defined by as the total mass of

Hr(σ1, σ2) on E:

hr(σ1, σ2) = Hr(σ1, σ2)(E).

Remark 2.3.2. It is easy to verify (see [Sat00, Remark 2.3, 2.4]) that the definition

of Hr(σ1, σ2) is independent of the choice of σ. Therefore, Hr is well-defined. And

it is also easy to verify that for all r ∈ (0, 1),

Hr(σ1, σ2) ≤ rσ1 + (1− r)σ2.

The following proposition shows that we can use Hellinger-Kakutani integral

and inner product to characterize the orthogonality of two measures. This ex-

plains why these two notions are useful.

Proposition 2.3.3. Two σ-finite measures are orthogonal to each other if and

only if their Hellinger-Kakutani inner product (equivalently, Hellinger-Kakutani

integral) of some (and hence all) order in (0,1) is zero. That is, for any two

σ-finite measures σ1 and σ2,

σ1⊥σ2 ⇐⇒ hr(σ1, σ2) = 0⇐⇒ Hr(σ1, σ2) = 0

for some (and hence all) order r ∈ (0, 1).

See [Sat00, Remark 2.5] for a proof of Proposition 2.3.3. See also [DPZ92,

Proposition 2.19] for the case r = 1/2.

Now we continue to introduce the Hellinger-Kakutani distance between two

σ-finite measures.

Definition 2.3.4. For every r ∈ (0, 1), define

Kr(σ1, σ2)(A) =

∫
A

[
rf1 + (1− r)f2 − f r1f 1−r

2

]
dσ, A ∈ E .

The total mass of Kr(σ1, σ2) on E

kr(σ1, σ2) = Kr(σ1, σ2)(E)

is called the Hellinger-Kakutani distance between σ1 and σ2.
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Remark 2.3.5. As the definition of Hr(σ1, σ2) (see Remark 2.3.2), the definition of

Kr(σ1, σ2) is also independent of the choice of σ. Moreover, we know Kr(σ1, σ2)

is a σ-finite measure.

We denote the weak convergence of measures by µn → µ. The following

assertions are useful. See [Sat00, Lemma 2.21] for a proof.

Lemma 2.3.6 (Newman, 1973). Let µn, µ, νn, ν and π be finite measures on

(E,E ). Fix r ∈ (0, 1). If µn → µ, νn → ν, Hr(µn, νn)→ π and infn hr(µn, νn) ≥
hr(µ, ν), then Hr(µ, ν) = π.

The Kakutani distance kr(σ1, σ2) of two σ-finite measures σ1, σ2 may be infi-

nite. The finiteness of kr(σ1, σ2) ensures the existence of some integrals we will

use.

Lemma 2.3.7. Let ν1, ν2 be two Lévy measures on a separable Hilbert space H.

If kr(ν1, ν2) <∞ for some r ∈ (0, 1), then∫
{|x|≤1}

|x| d |ν1 − ν2| <∞,

and ∫
{|x|≤1}

|x| d |νj −Hr(ν1, ν2)| <∞, j = 1, 2.

Proof. It is similar to the proof in [New73, Proposition 4] (or [Sat00, Lemma

2.18]). We only need to extend the proof into the infinite dimension case which

is easy.

Remark 2.3.8. By [Sat00, Lemma 2.15], we know if kr(σ1, σ2) < ∞ for some

r ∈ (0, 1), then it holds for every r ∈ (0, 1).

Remark 2.3.9. Let σ2 = exp(g)σ1 for some measurable function g(x) satisfying

−∞ ≤ g(x) <∞ on E. Then kr(σ1, σ2) <∞ for some r ∈ (0, 1) if and only if∫
{|g|≤1}

g2dσ1 +

∫
{g>1}

exp(g)dσ1 +

∫
{g<−1}

dσ <∞.

See [Sat00, Remark 2.16] and the proof of [Sat00, Lemma 2.15]

We will need the following concept.

Definition 2.3.10. Define

Cσ(σ1) =

{
x ∈ E :

dσ1

dσ
> 0

}
, Cσ(σ2) =

{
x ∈ E :

dσ2

dσ
> 0

}
.



2.4. Conditions for Absolute Continuity of Lévy Processes 43

We call Cσ(σ1) (resp. Cσ(σ2)) the carrier of σ1 (resp. σ2) relative to σ. Sometimes

we simply write C(σj) for Cσ(σj) for j = 1, 2.

2.4 Conditions for Absolute Continuity of Lévy

Processes

The following theorem is an infinite dimensional version of Sato [Sat00, Theorem

A].

Theorem 2.4.1. Let (Xt,P1) and (Xt,P2) be two H-valued Lévy processes on

(D,F , (Ft)t≥0) with characteristic triplets (b1, R1, ν1) and (b2, R2, ν2) respectively.

(1) Suppose that the following non-singularity conditions are satisfied for some

r ∈ (0, 1)

kr(ν1, ν2) <∞, R := R1 = R2, b21 ∈ H0 := R1/2(H), (2.2)

where

b21 = b2 − b1 −
∫
{|x|≤1}

x d(ν2 − ν1). (2.3)

Then for every t > 0 and r ∈ (0, 1),

Hr(P
t
1,P

t
2) = exp(−tΦr)P

t
r, (2.4)

where

Φr =
1

2
r(1− r)|b21|20 + kr(ν1, ν2),

and Pr is the probability measure under which Xt is a Lévy process with

characteristic triplet (br, R,Hr(ν1, ν2)). Here

br = rb1 + (1− r)b2 −
∫
{|x|≤1}

x dKr(ν1, ν2).

(2) If (2.2) is not satisfied, then we have

Hr(P
t
1,P

t
2) = 0

for all t > 0 and r ∈ (0, 1).

Remark 2.4.2. (1) By Remark 2.3.8, the finiteness of kr(ν1, ν2) does not depend

on the choice of r ∈ (0, 1).



44 Chapter 2. Absolute Continuity of Lévy Processes

(2) By Lemma 2.3.7, the integral in (2.3) is well-defined, and hence b21 is well-

defined.

(3) By Remark 2.3.2, Hr(ν1, ν2) is a Lévy measure.

Remark 2.4.3. To go from the finite dimensional case to the infinite dimensional

case, we use the Cameron-Martin space R1/2(H) in the non-singularity condition

(2.2) instead of the range R(H) used in [Sat00, Theorem A] for the finite di-

mensional case. In Section 2.8, we show that if H is infinite dimensional, then

R(H) 6= R1/2(H).

Remark 2.4.4. Suppose that∫
H

x νj(dx) <∞, j = 1, 2.

Then by the Lévy-Itô decomposition, we can write for j = 1, 2,

Xt = tbj +W j
t +

∫
{|x|≤1}

xÑ(t, dx) +

∫
{|x|>1}

xN(t, dx)

= t

[
bj −

∫
{|x|≤1}

x νj(dx)

]
+W j

t +

∫
{|x|≤1}

xÑ(t, dx) +

∫
H

xN(t, dx).

Here N(t, dx) is the Poisson random measure associated with Xt and Ñ(t, dx) is

the compensated random measure of N(t, dx).

Then we see b21 is the difference of the “drifts”:

b21 =

[
b2 −

∫
{|x|≤1}

x ν2(dx)

]
−
[
b1 −

∫
{|x|≤1}

x ν1(dx)

]
.

From Theorem 2.4.1, we have the following corollaries which correspond to

[Sat00, Corollaries 3.6-3.15] for the finite dimensional case.

Corollary 2.4.5. (1) Fix t > 0. Pt1 and Pt2 are not mutually singular iff con-

dition (2.2) is satisfied. In other words, Pt1⊥Pt2 iff condition (2.2) is not

satisfied.

(2) If Pt1⊥Pt2 for some t > 0, then Pt1⊥Pt2 for all t > 0.

(3) Fix t > 0. If Pt1 and Pt2 are not mutually singular, then

ν2

[
C(ν1)c

]
<∞, ν1

[
C(ν2)c

]
<∞
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and

Pt2
[
C(Pt1)

]
= exp

[
−tν2(C(ν1)c)

]
, Pt1

[
C(Pt2)

]
= exp

[
−tν1(C(ν2)c)

]
.

(4) Fix t > 0. Pt2 � Pt1 iff ν2 � ν1 and (2.2) are both satisfied.

(5) If Pt2 � Pt1 for some t > 0, then Pt2 � Pt1 for all t > 0.

(6) Fix t > 0. Pt1 ≈ Pt2 iff ν1 ≈ ν2 and (2.2) are both satisfied.

(7) If Pt1 ≈ Pt2 for some t > 0, then Pt1 ≈ Pt2 for all t > 0.

(8) If ν1 ≈ ν2, then either Pt1 ≈ Pt2 for all t > 0 or Pt1⊥Pt2 for all t > 0.

(9) If P1 6= P2, then Pt1⊥Pt2.

(10) Suppose that Pt1 and Pt2 are not mutually singular for some t > 0. Then

the following are true.

(a) If ν1(H) <∞, then ν2(H) <∞;

(b) If
∫
{|x|≤1} |x| ν1(dx) <∞ and ν1(H) =∞, then

∫
{|x|≤1} |x| ν2(dx) <∞

and ν2(H) =∞;

(c) If
∫
{|x|≤1} |x| ν1(dx) =∞, then

∫
{|x|≤1} |x| ν2(dx) =∞.

2.5 Gaussian Case

In this section we prove Theorem 2.4.1 first for the Gaussian case. This section

corresponds to Sato [Sat00, Section 5] where finite dimensional Gaussian case is

treated. We will use Theorem 2.5.1 to prove Theorem 2.4.1 in the next section.

We utilize Girsanov’s theorem for Wiener processes in infinite dimensional space

and the Cameron-Martin formula for Gaussian measures.

Theorem 2.5.1. Suppose that (Xt,P1) and (Xt,P2) are two Lévy processes on

(D,F , (Ft)t≥0) with characteristic triplets (b1, R1, 0) and (b2, R2, 0) respectively.

For any fixed t > 0, we have the following statements.

(1) The dichotomy holds: either Pt2 ≈ Pt1 or Pt1⊥Pt2;

(2) Pt1 ≈ Pt2 if and only if the following non-singularity conditions are satisfied

R := R1 = R2, b21 := b2 − b1 ∈ H0 := R1/2(H). (2.5)

(3) If Pt1 ≈ Pt2, then for any 0 < r < 1,

Hr(P
t
1,P

t
2) = exp(−tΨr)P

t
r, (2.6)
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where

Ψr =
1

2
r(1− r) |b21|20 ,

and Pr is the probability measure under which (Xt)t≥0 is a Lévy process

with characteristic (br, R, 0) . Here br is given by

br = rb1 + (1− r)b2. (2.7)

(4) If Pt1 ≈ Pt2, then
dPt2
dPt1

= exp(Ut) (2.8)

with

Ut = 〈b21, Xt − tb1〉0 −
t

2
|b21|20 .

Proof. (1) We prove that if (2.5) holds, then Pt1 ≈ Pt2 and (2.8) holds.

Let W 1
s = Xs− sb1 for 0 ≤ s ≤ t. Obviously (W 1

s )0≤s≤t is a R-Wiener process

on (D,Ft, (Fs)0≤s≤t,P
t
1). Define a new probability measure Qt on Ft by setting

Qt = exp(Ut)P
t
1|Ft . (2.9)

Then by Girsanov’s theorem (refer to Theorem 2.2.1), we see

W 1
s − sb21 = Xs − sb1 − sb21 = Xs − sb2, 0 ≤ s ≤ t

is a R-Wiener process on (D,Ft, (Fs)0≤s≤t,Qt). That is, Xt is a (b2, R, 0)-Lévy

process under Qt. So, Qt coincides with Pt2. Hence from (2.9), we see Pt2 � Pt1

and (2.8) holds. Now Pt1 � Pt2 also follows immediately from (2.9). Therefore

we have Pt1 ≈ Pt2.

(2) We prove that if the non-singularity condition (2.5) is not satisfied, then

Pt1⊥Pt2. Condition (2.5) does not hold if (a) R1 6= R2 or (b) R1 = R2 but b21 /∈ H0.

(2.a) To prove the implication from R1 6= R2 to Pt1⊥Pt2, one method is to use

the arguments in [Sat00, Step 2 of the Proof Theorem 4.1].

Since R1 6= R2, there exist z0 ∈ H such that 〈z0, R1z0〉 6= 〈z0, R2z0〉. Let

Xz0
t = 〈z0, Xt〉. Then (Xz0

t ,P
t
j) is a Lévy process on R with characteristic triplet

(bz0j , R
z0
j , 0) for j = 1, 2, where bz0j = 〈z0, bj〉, Rz0

j = 〈z0, Rjz0〉. The idea of the

proof is to show that Pj concentrate on the paths with quadratic variation bz0j for

j = 1, 2.
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It can be verified that

n∑
k=1

(
Xz0
kt/n −X

z0
(k−1)t/n

)2

→ Rz0
j t

in probability Pj for each j = 1, 2 as n→∞. Define for j = 1, 2,

Λj =

{
ω ∈ Ω:

n′∑
k=1

(
Xz0
kt/n′ −X

z0
(k−1)t/n′

)2

→ Rz0
j t, as n→∞

}
.

Then P1(Λ1) = 1 and P2(Λ2) = 1. But obviously, Λ1 is disjoint with Λ2, hence

we have P1(Λ2) = 0. This proves that Pt1⊥Pt2.

Another method is to use the finite dimensional result directly. Indeed, if

R1 6= R2, then there exists some finite dimensional subspace Hn of H such that

R1|Hn 6= R2|Hn . Therefore, by [Sat00, Theorem A], Pt1 and Pt2 are orthogonal

when they are confined on D([0,∞),Hn). This implies Pt1⊥Pt2 on the whole

space D.

(2.b) Suppose R1 = R2 but b21 /∈ H0. Note that for j = 1, 2, Xt − tbj is a R-

Wiener process under Ptj. Hence the random variable Xt is Gaussian distributed

with mean tbj and variance R under Ptj for j = 1, 2: Ptj ◦ X−1
t = N(tbj, R). By

Theorem 1.2.2, the Gaussian measures N(tb1, R) and N(tb2, R) are orthogonal to

each other since b21 /∈ H0. Therefore, there exists a set A ∈ B(H) such that

Pt1 ◦X−1
t (A) = 0, Pt2 ◦X−1

t (A) = 1.

Denote Ã = X−1
t (A) ∈ Ft. Then we have Pt1(Ã) = 0, Pt2(Ã) = 1. This proves

Pt1⊥Pt2.

(3) Suppose Pt1 ≈ Pt2. Then the conditions (2.5) are satisfied. By Item (2) of

Theorem 2.5.1, we know b21 ∈ H0. Therefore

br − b1 = rb1 + (1− r)b2 − b1 = (1− r)b21 ∈ H0.

By Item (2) of Theorem 2.5.1 again, we get Pt1 ≈ Ptr. Then the Radon-Nikodým

derivative of Ptr with respect to Pt1 is given by

dPtr
dPt1

= exp

(
〈br − b1, Xt − tb1〉0 −

t

2
|br − b1|20

)
= exp

(
(1− r)〈b21, Xt − tb1〉0 −

t

2
(1− r)2 |b21|20

)
.
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Consequently, we have

Hr(P
t
1,P

t
2) =

(
dPt2
dPt1

)1−r

Pt1 = exp
(
(1− r)U(t)

)
Pt1

= exp

(
(1− r)〈b21, Xt − tb1〉0 −

t

2
(1− r) |b21|20

)
Pt1

= exp

(
t

2

[
(1− r)2 − (1− r)

]
|b21|20

)
Ptr

= exp

(
− t

2
r(1− r) |b21|20

)
Ptr.

2.6 Proof of Theorem 2.4.1

We follow the proof in [Sat00, Section 5] (see also [New73]) to prove Theorem

2.4.1.

For every fixed t > 0, let Dt = D([0, t],H) be the space of all right continuous

with left limits functions from [0, t] to H. We still denote

Fs := σ(Xu : 0 ≤ u ≤ s), s ∈ [0, t].

By N(du, dx) we denote the Poisson random measure on [0, t]×H associated with

Xt. That is, N(G) is the number of s ∈ (0, t] such that (s,∆Xs) ∈ G for each

G ∈ B
(
(0, t]×H

)
. Here we use ∆Xs to denote the jump of Xs at time s:

∆Xs(ω) := Xs(ω)−Xs−(ω), ω ∈ Dt.

For every 0 < r < 1, let νr = Hr(ν1, ν2) and for every 0 ≤ s ≤ t, 0 < ε < 1

and 0 < r < 1, we define

Yε,s =

∫
(0,s]×{ε<|x|≤1}

x
(
N(du, dx)− νr(dx)du

)
+

∫
(0,s]×{|x|>1}

xN(du, dx)

and

Zε,s = Xs − Yε,s.
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If kr(ν1, ν2) <∞, then by Lemma 2.3.7, we can take the limit ε→ 0 to obtain

Y0,s := lim
ε↓0

Yε,s = X̂j,s + s

∫
H

x d(νj − νr), j = 1, 2,

where X̂j,s is the pure jump part of Xt under Pj:

X̂j,s = lim
ε↓0

∫
(0,s]×{ε<|x|≤1}

x
(
N(du, dx)− νj(dx)du

)
+

∫
(0,s]×{|x|>1}

xN(du, dx).

Now we define

Z0,s = Xs − Y0,s, Y ε,s = Zε,s − Z0,s = Y0,s − Yε,s.

We denote by

Qtε,j, Q
t
0,j, R

t
ε,j, R

t
0,j, Q

t

ε,j

the distribution of

Yε,s, Y0,s, Zε,s, Z0,s, Y ε,s

under Pj on (Dt,Ft) respectively. We also denote by Qtε,r the distribution of Yε,s
under Ptr given in Theorem 2.4.1.

The following lemma is an infinite dimensional version of the lemmas in [Sat00,

Section 5].

Lemma 2.6.1. For every r ∈ (0, 1), ε ∈ (0, 1) and j = 1, 2, the following

equalities hold.

(1) Ptj = Qtε,j ∗Rt
ε,j.

(2) Hr(P
t
1,P

t
2) = Hr(Q

t
ε,1,Q

t
ε,2) ∗Hr(R

t
ε,1, R

t
ε,2).

(3)

Hr(Q
t
ε,1,Q

t
ε,2) = exp

(
−t
∫
{|x|>ε}

dKr(ν1, ν2)

)
Qtε,r. (2.10)

(4) Assume that kr(ν1, ν2) <∞.

(a) Ptj = Qt0,j ∗Rt
0,j = Qtε,j ∗Q

t

ε,j ∗Rt
0,j.

(b)

Hr(P
t
1,P

t
2) = Hr(Q

t
0,1,Q

t
0,2) ∗Hr(R

t
0,1, R

t
0,2)

= Hr(Q
t
ε,1,Q

t
ε,2) ∗Hr(Q

t

ε,1,Q
t

ε,2) ∗Hr(R
t
0,1, R

t
0,2)

= Hr(Q
t

ε,1,Q
t

ε,2) ∗Hr(Q
t
ε,1 ∗Rt

0,1,Q
t
ε,2 ∗Rt

0,2)

(2.11)

Proof of Theorem 2.4.1. (1) We first show Pt2⊥Pt1 if condition (2.2) is not satis-
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fied, that is, if one of the following conditions holds

(i) kr(ν1, ν2) =∞.

(ii) kr(ν1, ν2) <∞ and R1 6= R2.

(iii) kr(ν1, ν2) <∞ and R1 = R2 and b21 /∈ H0.

Assume that (i) holds. Then the proof of Pt2⊥Pt1 is the same with Step 1 of

the proof of Theorem A in [Sat00].

Assume (ii) or (iii) holds. From kr(ν1, ν2) < ∞, we know the characteristic

triplet of the process Xt under Rt
0,j for j = 1, 2 is given by (b̃jr, Rj, 0) with

b̃jr := bj −
∫
{|x|≤1}

x d(νj − νr).

If (b) or (c) holds, then we can obtain hr(R
t
0,1, R

t
0,2) = 0 by applying Theorem

2.5.1. Now hr(P
t
1,P

t
2) = 0 follows from the first identity in (2.11) of Lemma 2.6.1.

(2) Suppose that the condition (2.2) holds, we prove (2.4). We can just follow

the line in Step 4 of the proof of Theorem A in [Sat00, Section 5]. Similar to the

proof in [Sat00] (apply Lemma 2.3.6), we need to show Hr(Q
t
ε,1 ∗Rt

0,1,Q
t
ε,2 ∗Rt

0,2)

tends to exp(−tΦr) as ε goes to 0. By (2.10) of Lemma 2.6.1 and Theorem 2.5.1

(see (2.6)), we have

Hr(Q
t
ε,1 ∗Rt

0,1,Q
t
ε,2 ∗Rt

0,2)

=Hr(Q
t
ε,1,Q

t
ε,2) ∗Hr(R

t
0,1, R

t
0,2)

=

[
exp

(
−t
∫
{|x|>ε}

dKr(ν1, ν2)

)
Qtε,r

]
∗
[
exp

(
−1

2
tr(1− r)|b21|20

)
Rt
r

]
,

where Rt
r corresponds to the Lévy process with characteristic triplet (br, R, 0) (i.e.

a Gaussian process). Here by (2.7),

br = rb̃1r + (1− r)b̃2r

= r

(
b1 −

∫
{|x|≤1}

x d(ν1 − νr)
)

+ (1− r)
(
b2 −

∫
{|x|≤1}

x d(ν2 − νr)
)

= rb1 + (1− r)b2 −
∫
{|x|≤1}

x dKr(ν1, ν1).

Here we have used the following fact

r(ν1 − νr) + (1− r)(ν2 − νr) = rν1 + (1− r)ν2 − νr
= rν1 + (1− r)ν2 −Hr(ν1, ν2) = Kr.
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As ε ↓ 0, the measure Qtε,r goes to Qt0,r with triplet (0, νr, 0). The proof is

completed by noting that Qt0,r ∗Rt
r = Ptr with triplet (br, R, νr).

2.7 Density of Lévy Processes

For any two σ-finite measures σ1 and σ2, we denote the continuous part and the

singular part in the Lebesgue decomposition of σ2 with respect to σ1 by σac
2 and

σs
2 respectively.

Take ν = ν1 + ν2. For j = 1, 2, choose the version fj :=
dνj
dν

satisfying

fj ≥ 0 and f1 + f2 = 1 ν–a.s. on H.

Set

C = {f1 > 0 and f2 > 0}, C1 = {f1 = 1 and f2 = 0},
C2 = {f1 = 0 and f2 = 1}, C3 = C1 ∪ C2.

Then

νac
2 = 1Cν2, νs

2 = 1C2ν2 = 1C3ν2.

and
dνac

2

dν1

has the following version

dνac
2

dν1

=

f2/f1 on C;

0 on C3.

Define

g(x) =

{
log (f2/f1) on C;

−∞ on C3,
and g̃(x) =

{
g(x) on C;

0 on C3.

As in Section 2.6, we denote by N(du, dx) the random measure associated

with Xt. For every t > 0, set

Λt = {N
(
(0, t]× C3

)
= 0} = {∆Xs /∈ C3 for all s ∈ (0, t]}.

The following theorem is an infinite dimensional version of [Sat00, Theorem

B].
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Theorem 2.7.1. Suppose that Pt1 and Pt2 are not mutually singular. Then

(1) For every 0 < t < ∞, the Lebesgue decomposition of Pt2 with respect to Pt1
is given by

(Pt2)ac = 1ΛtP
t
2, (Pt2)s = 1D\ΛtP

t
2.

(2) Consider

Vt := lim
ε→0

 ∑
(s,∆Xs)∈(0,t]×{|x|>ε}

g̃(∆Xs)− t
∫
{|x|>ε}

(eg(x)−1)ν1(dx)

 . (2.12)

Then the right hand side of (2.12) exists P1–a.s. and the convergence is

uniform on any bounded time interval P1–a.s.

(3) Let b ∈ H0. Define

Ut = 〈b,X ′t〉0 −
t

2
|b|20 + Vt,

where X ′t is the Gauss component of the process (Xt,P1). It is a Wiener

process with covariance R. Then Ut is, under P1, a real valued Lévy process

with characteristic triplet (bU , RU , νU) given by

bU = −1

2
|b|20 +

∫
H

[
1 + g(x)1{|g(x)|≤1} − eg(x)

]
ν1(dx),

RU = |b|20,

νU(A) =

∫
H

1A [g(x)] ν1(dx), A ∈ B(H \ {0}).

The processes (Ut)t≥0 and (N((0, t]× C3)) t≥0 are independent under P1.

Moreover,

P1(Λt) = exp [−tν1(C1)] and P2(Λt) = exp [−tν2(C2)] .

(4) Choose b = b21. Then the Radon-Nikodým derivative of (Pt2)ac with respect

to Pt1 is given by

d(Pt2)ac

dPt1
= exp [−tν2(C2) + Ut] 1Λt .

Let Q be the probability measure on (D,F ) for which (Xt,Q) is the Lévy

process with characteristic triplet (b2 −
∫
{|x|<1} x dν

s
2, R, ν

ac
2 ). Then

(Pt2)ac = exp [−tν2(C2)]Qt.
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Proof. We only need to follow the proof in [Sat00, Section 6] with some slight

modifications.

2.8 Appendix: R(H) 6= R1/2(H)

This section is a continuation of Remark 2.4.3. For the finite dimensional case,

we have R1/2(Rd) = R(Rd). But for infinite dimensional case, we shall show

R(H) ⊂ R1/2(H) but R(H) 6= R1/2(H).

Obviously R(H) = R1/2(R1/2(H)) ⊂ R1/2(H) holds. Let {ek}k≥1 be a series

of eigenvectors which consists of an complete orthogonal normal basis of H with

corresponding eigenvalues {λk}k≥1.

We first show R1/2(Rd) ⊂ R(Rd). For any x = (x1, x2, . . . , xd) ∈ Rd, take

y = (y1, y2, . . . , yd) with

yk =


xk√
λk
, if λk > 0;

0, otherwise.

Then

R1/2x =
d∑

k=1

√
λkxkek =

d∑
k=1

1λk>0λk
xk√
λk
ek =

d∑
k=1

λkykek = Ry.

Now we assume H = l2. We show that R1/2(H) is a real subset of R(H). Take

x =
∑

k

√
λkek. Since the operator R is of trace class, we see x ∈ H. But

R1/2x =
∑
k

√
λk〈x, ek〉ek =

∑
k

λkek /∈ R(H).

Otherwise if there exist some y ∈ H such that Ry = R1/2x, then it must be

y ≡ 1 /∈ H. This is contradict with the fact y ∈ H.





Chapter 3

Gluing and Coupling

In this chapter we prove a gluing lemma (Lemma 3.1.5) and study its applications.

In this lemma we show a martingale solution for operators of the form L11{t<τ}+

L21{t≥τ}, where L1, L2 are second order differential operators and τ is a stopping

time.

The organization is as follows. In Section 3.1, we first recall some basic no-

tations and [SV79, Lemma 6.1.1] and [SV79, Theorem 6.1.2] on which the proof

of the gluing lemma is based. Then we state the gluing lemma. The proof of

the lemma is given in Section 3.2. In Section 3.3, we apply the gluing lemma to

study the existence of coupling and the existence of weak solutions to coupled

stochastic differential equations.

Chen and Li [CL89, Lemma 3.4] (see Corollary 3.3.2) studies the gluing the

martingale generators via the diffusion coefficients. Our study is stimulated by

their statement and hints about the proof noted there. By the general gluing

lemma, it is possible to study the gluing of martingale generators via drifts.

3.1 Gluing Lemma

Let Ω = C([0,∞),Rn) be the space of all continuous trajectories from [0,∞)

into Rn. For each ω ∈ Ω and t ∈ [0,∞), denote the position of ω at time t by

Xt(ω) = X(t, ω) = ωt ∈ Rn. For any 0 ≤ t1 < t2 ≤ ∞, set

M t1
t2 = σ(Xs : t1 ≤ s ≤ t2).
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Here we use the convention that we understand s ≤ t2 as s < t2 if t2 = ∞. We

will also use the following simplified notation:

Mt := M 0
t , M t := M t

∞, and M := M 0
∞.

Let Sn represent the space of all n × n nonnegative definite real matrix. For

any measurable functions a(t, x) ∈ Sn and b(t, x) ∈ Rn defined on [0,∞) × Rn,

let

L(a, b) := L(a(t, x), b(t, x)) :=
1

2

n∑
i,j=1

aij(t, x)
∂2

∂xi∂xj
+

n∑
i=1

bi(t, x)
∂

∂xi
. (3.1)

Definition 3.1.1. Fix any (s, x) ∈ [0,∞) × Rn. A solution to the martingale

problem for L := L(a, b) starting from (s, x) is a probability measure Ps,x on

(Ω,M ) such that

Ps,x(Xt = x, 0 ≤ t ≤ s) = 1 (3.2)

and for every f ∈ C∞0 (Rd), a compact supported smooth function on Rd,

M f
t := f(Xt)−

∫ t

0

Lf(Xu) du

is a Ps,x-martingale after time s.

Sometimes we have not the solution for all time. So the following solution

concept is useful.

Definition 3.1.2. Fix any (s, x) ∈ [0,∞) × Rn. A solution to the martingale

problem for L up to a stopping time τ starting from (s, x) is a probability measure

Ps,x on (Ω,M ) such that (3.2) holds and there exist some stopping time sequence

τn ↑ τ such that for each n ≥ 1, the stopped process M f
t∧τn is a Ps,x-martingale.

For convenience, we will denote simply Px for P0,x.

The following lemma and theorem are from Stroock and Varadhan [SV79,

Lemma 6.1.1] and [SV79, Theorem 6.1.2] respectively.

Lemma 3.1.3. Let s ≥ 0 be given and suppose that P is a probability measure

on (Ω,M s). If η ∈ C([0, s],Rd) and P(xs = ηs) = 1, then there is a unique

probability measure δη ⊗s P on (Ω,M ) such that

δη ⊗s P(xt = ηt, 0 ≤ t ≤ s) = 1
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and

δη ⊗s P(A) = P(A), for all A ∈M s.

Theorem 3.1.4. Let τ be a finite stopping time on Ω. Suppose that ω → Qω is

a mapping of Ω into probability measures on (Ω,M ) such that

(1) ω → Qω(A) is Mτ -measurable for all A ∈M ,

(2) Qω(x(τ(ω), ·) = x(τ(ω), ω)) = 1 for all ω ∈ Ω.

Given a probability measure P on (Ω,M ), there is a unique probability measure

P⊗τ(·)Q· on (Ω,M ) such that P⊗τ(·)Q· equals P on (Ω,Mτ ) and {δω ⊗τ(ω)Qω}
is a r.c.p.d. (regular conditional probability distribution) of P⊗τ(·) Q·|Mτ .

In particular, suppose that τ ≥ s and that θ : [s,∞) × Ω → C is a right-

continuous, progressively measurable function after time s such that θ(t) is P⊗τ(·)

Q·-integrable for all t ≥ s, (θ(t ∧ τ),Mt,P) is a martingale after time s, and

(θ(t) − θ(t ∧ τ),Mt,Qω) ∗ is a martingale after time s for each ω ∈ Ω. Then

(θ(t),Mt,P⊗τ(·) Q·) is a martingale after time s.

By applying Theorem 3.1.4 ([SV79, Theorem 6.1.2]), we will prove the follow-

ing gluing lemma in Section 3.2.

Lemma 3.1.5 (Gluing Lemma). Let L1 and L2 be two second order differential

operators as (3.1) on Rn. Let τ be a stopping time on Ω and define

L = L11{t<τ} + L21{t≥τ}.

Assume

(1) There exists a solution Px1 to the martingale problem for L1 up to τ ;

(2) For each ω ∈ Ω, there exists a solution P
τ(ω),Xτ(ω)(ω)

2 to the martingale prob-

lem for L2 starting from (τ(ω), Xτ(ω)(ω));

(3) There exists a sequence of stopping time τn such that τn ↑ τ as n→∞, the

following two conditions are satisfied for each ω ∈ Ω.

(a)

lim
n→∞

∫ τ

τn

Lf(Xs) ds = 0. (3.3)

(b) For every f ∈ C∞0 (Rn),

∫ t∧τn

0

L1f(Xs) ds is bounded and

lim
n→∞

∫ t∧τn

0

L1f(Xs) ds =

∫ t∧τ

0

L1f(Xs) ds. (3.4)

∗In [SV79, Theorem 6.1.2], it is written as (θ(t)− θ(t∧ τ(ω)),Mt,Qω). This is not true. We
shouldn’t fix the ω in τ(·). See [SV79, Theorem 1.2.10].



58 Chapter 3. Gluing and Coupling

Define

Qω := δω ⊗ P
τ(ω),Xτ(ω)(ω)

2 1{τ<∞} + δω1{τ=∞}, for every ω ∈ Ω.

Then Px1 ⊗τ Q is a solution to the martingale problem for L.

In Section 3.3 we apply this lemma to the existence of couplings and weak

solutions of stochastic differential equations.

Remark 3.1.6. It might be possible to consider the gluing of martingales corre-

sponding to Lévy operators. To this aim, we only need to consider the general-

ization of [SV79, Theorem 6.1.2] to the Lévy case.

3.2 Proof of the Gluing Lemma

For each f ∈ C∞0 (Rn) and t ≥ 0, define

θt = f(Xt)−
∫ t

0

Lf(Xs) ds,

φt = f(Xt)−
∫ t

0

L1f(Xs) ds,

ψt = f(Xt)−
∫ t

0

L2f(Xs) ds.

We first prepare three lemmas. The first lemma show the relationship of θt
with φt and ψt respectively. The theorem will follow the last two lemmas directly

by applying Theorem 3.1.4.

Lemma 3.2.1. For every t ≥ 0 and ω ∈ Ω, we have

θt∧τ = φt∧τ (3.5)

and

θt − θt∧τ = ψt − ψt∧τ . (3.6)

Proof. For every t ≥ 0 and each n ∈ N, we know

θt∧τn = φt∧τn . (3.7)

So, to prove (3.5) we only need to show that as n goes to infinity, the limits of

the left and right hand sides of the equation (3.7) are θt∧τ and φt∧τ respectively.
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By the continuity of the path Xt and the fact f ∈ C∞0 (Rn) and the assumption

(3.4), we have

lim
n→∞

φ(t ∧ τn) = lim
n→∞

f(Xt∧τn)− lim
n→∞

∫ t∧τn

0

L1f(Xs) ds

= f(Xt∧τ )−
∫ t∧τ

0

L1f(Xs) ds

= φ(t ∧ τ).

(3.8)

On the other hand, by (3.3), we know

lim
n→∞

[θt∧τ − θt∧τn ]

= lim
n→∞

[
f(Xt∧τ )− f(Xt∧τn) +

∫ t∧τ

t∧τn
Lf(Xs) ds

]
=0.

That is,

lim
n→∞

θt∧τn = θt∧τ (3.9)

(3.5) follows from (3.8) and (3.9).

Now we come to the proof of (3.6). First, it is easy to see

(θt − θt∧τ )1{t<τ} = 0 = (ψt − ψt∧τ )1{t<τ}

and

(θt − θt∧τ )1{t≥τ} =

∫ t

τ

Lf(Xs) ds1{t≥τ}

=

∫ t

τ

L2f(Xs) ds1{t≥τ} = (ψt − ψt∧τ )1{t≥τ}.

Hence

θt − θt∧τ = (θt − θt∧τ )1{t<τ} + (θt − θt∧τ )1{t≥τ}
= (ψt − ψt∧τ )1{t<τ} + (ψt − ψt∧τ )1{t≥τ} = ψt − ψt∧τ .

Lemma 3.2.2. (θt∧τ ,Mt,P
x
1) is a martingale.

Proof. By (3.5), to prove θt∧τ is a martingale, we only need to show that φt∧τ is

a martingale.
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Since Px1 is a solution to the martingale problem for L1 up to τ , we know

(φt∧τn ,Mt,P
x
1) is a martingale. Therefore, for any 0 ≤ s < t, the following

equality holds

E(φt∧τn|Ms) = φs∧τn .

By assumption (3.3), let n → ∞ and apply the bounded convergence of condi-

tional expectation, we obtain

E(φt∧τ |Ms) = φ(s ∧ τ).

This proves that φt∧τ is a martingale.

Lemma 3.2.3. (θt − θt∧τ ,Mt,Qω) is a martingale for each ω ∈ Ω.

Proof. Fix an arbitrary path ω0 ∈ Ω. We set t0 := τ(ω0) and Xt0(ω0) = x0. For

any fixed constants 0 ≤ t1 ≤ t2, we need to prove

EQω0 (θt2 − θt2∧τ |Mt1) = θt1 − θt1∧τ . (3.10)

If t0 =∞, then Qω0 = δω0 . That is, the measure is concentrated on the path

ω0. In this case, Equality (3.10) is trivial since we have

θt − θt∧τ = θt − θt∧t0 = θt − θt∧∞ = 0.

In the following we shall assume t0 <∞ and we will prove (3.10) in the following

three cases: (Case 1) t0 ≤ t1 < t2; (Case 2) t1 < t0 ≤ t2; (Case 3) t1 < t2 < t0.

Case 1. Assume t0 ≤ t1 < t2. By (3.6), we only need to show

EQω0 (ψt2 − ψt2∧τ |Mt1) = ψt1 − ψt1∧τ .

In other words, we need to show for any A ∈Mt1 ,

Qω0(ψt2 − ψt2∧τ , A) = Qω0(ψt1 − ψt1∧τ , A) (3.11)

Since Pt0,x0

2 is a solution to the martingale problem for L2, we know ψt is

a Pt0,x0

2 martingale. Therefore we see ψt∧τ is a martingale by [SV79, Corollary

1.2.7]. Hence, ψt − ψt∧τ is also a martingale.

The martingale property of ψt − ψt∧τ implies that for any t0 ≤ t1 < t2 and

A ∈M t0

P
t0,x0

2 (ψt2 − ψt2∧τ , A) = P
t0,x0

2 (ψt1 − ψt1∧τ , A). (3.12)
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Note that it is enough to prove (3.11) for the case when A = A1 × A2 with

A1 ∈Mt0 and A2 ∈M t0
t1 .

Qω0(ψt2 − ψt2∧τ , A) = δω0 ⊗ P
t0,x0

2 (ψt2 − ψt2∧τ , A1 × A2)

= δω0(A1)× Pt0,x0

2 (ψt2 − ψt2∧τ , A2)

= δω0(A1)× Pt0,x0

2 (ψt1 − ψt1∧τ , A2)

= δω0 ⊗ P
t0,x0

2 (ψt1 − ψt1∧τ , A1 × A2)

= Qω0(ψt1 − ψt1∧τ , A).

This proves (3.11).

Case 2. Assume t1 < t0 ≤ t2. By the fact Mt1 ⊂ Mt0 and a property of

conditional expectation, we have

EQω0 (θt2 − θt2∧τ |Mt1) = EQω0

(
EQω0 (ψt2 − ψt2∧τ |Mt0) |Mt1

)
= EQω0 (ψt0 − ψt0∧τ |Mt1)

= EQω0 (θt0 − θt0∧τ |Mt1) .

Hence, (3.10) is reduced to prove

EQω0 (θt0 − θt0∧τ |Mt1) = θt1 − θt1∧τ . (3.13)

This is true since we have

Qω0(θt0 − θt0∧τ , A) = 0 = Qω0(θt1 − θt1∧τ , A).

for any A ∈Mt1 . In fact, for any t ≤ t0, we know

Qω0(θt − θt∧τ , A) = δω0 ⊗ P
t0,x0

2 (θt − θt∧τ , A)

= δω0(A) · (θt − θt∧τ(ω0))

= δω0(A) · (θt − θt∧t0)
= δω0(A) · (θt − θt)
= 0.

Here we have used the fact that, τ = τ(ω0) = t0-Pt0,x0

2 -a.s. when confined on A.

Case 3. Assume t1 < t2 < t0. As in the proof in Case 2, for any A ∈Mt1
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and t ≥ 0, we have

Qω0(θt2 − θt2∧τ , A) = 0 = Qω0(θt1 − θt1∧τ , A).

Proof of Lemma 3.1.5. We need to show that θt is a martingale on (Ω,M ,Px1 ⊗τ
Q). According to Theorem 3.1.4 (i.e. [SV79, Theorem 6.1.2]), it suffices to prove

the following two statements.

(a) (θt∧τ ,Mt,P
x
1) is a martingale.

(b) (θt − θt∧τ ,Mt,Qω) is a martingale for each ω ∈ Ω.

But they are the conclusions of Lemma 3.2.2 and Lemma 3.2.3 respectively.

3.3 Coupling

In this section, we apply the Gluing Lemma 3.1.5 to the existence of couplings

and the weak existence of coupled stochastic differential equations.

Now we suppose Ω = C([0,∞),R2d). Denote Zt(ω) = ωt = (Xt(ω), Yt(ω)) ∈
Rd × Rd for each ω ∈ Ω. For i = 1, 2, let ai(t, x) : [0,∞) × Rd → Sd and

bi(t, x) : [0,∞) × Rd → Rd be measurable functions. Let c(t, x, y) be a d × d

matrix valued measurable function defined on [0,∞)×Rd ×Rd.

Set

a(t, x, y) =

(
a1(t, x) c(t, x, y)

c∗(t, x, y) a2(t, y)

)
, b(t, x, y) =

(
b1(t, x)

b2(t, y)

)
.

Suppose the martingale problems for L(a1(t, x), b1(t, x)) and L(a2(t, x),b2(t, x))

are well-posed. We denote the solutions respectively by Px1 and Py2.

If Px,y is a solution of the martingale problem for L(a(t, x, y), b(t, x, y)), then

Px,y is a coupling of Px1 and Py2. That is, the marginal distribution of Px,y are

exactly Px1 and Py2.

Besides function c(t, x, y) introduced above, we will consider the following

functions. Let σ(t, x) ∈ Sd be measurable real matrix defined on [0,∞)×Rd. Let

b(t, x), ξ(t, x, y) be Rd valued measurable functions defined on [0,∞) × Rd and

[0,∞)×Rd ×Rd respectively. We assume that a, b, ξ all are locally bounded.

The following lemma is proved in [CL89, Theorem 3.1].
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Lemma 3.3.1. Suppose that the martingale problem for the basic coupling L(a, b)

with

a(t, x, y) =

(
σ(t, x)σ(t, x)∗ σ(t, x)σ(t, y)∗

σ(t, y)σ(t, x)∗ σ(t, y)σ(t, y)∗

)
, b(t, x, y) =

(
b(t, x)

b(t, y)

)
,

is locally well-posed. If we denote the solution by Px,y, then we have

Xt = Yt, t ≥ τ, Px,y–a.s. on {τ <∞}.

Here τ is the coupling time of the marginal processes Xt, Yt of Zt, i.e.

τ := inf{t : Xt = Yt}.

The lemma above describes a fundamental property of basic coupling. In-

tuitively, basic coupling ensures the marginal processes move together after the

coupling time. Refer to Figure 3.1. For this reason, basic coupling is also called

march coupling. For more details we refer to the books by Chen [Che04, Che05].

x

y

τ

Xt

Yt

Xt = Yt

Coupling Time

Figure 3.1: March Coupling

Applying Lemma 3.1.5, we get the following corollary which is stated by Chen

and Li [CL89, Lemma 3.4] with hints for the proof.

Corollary 3.3.2. Let Px,y1 be a solution to the martingale problem for L(a1, b)
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with

a1(t, x, y) =

(
σ(t, x)σ(t, x)∗ c(t, x, y)

c(t, x, y)∗ σ(t, y)σ(t, y)∗

)
, b(t, x, y) =

(
b(t, x)

b(t, y)

)
. (3.14)

up to some stopping time τ . For every ω ∈ Ω, let P
τ(ω),Z(τ(ω))
2 , be a solution to

the martingale problem for the basic coupling operator in Lemma 3.3.1 starting

from (τ(ω), Z(τ(ω))). Define Qω for each ω ∈ Ω as in Lemma 3.1.5. Then

R = P
x,y
1 ⊗τ Q

is a solution to the martingale problem for L(a2, b) with

a2(t, x, y) =


σ(t, x)σ(t, x)∗

(
c(t, x, y)1[0,τ)

+ σ(t, x)σ(t, y)∗1[τ,∞)

)
(
c(t, x, y)∗1[0,τ)

+ σ(t, y)σ(t, x)∗1[τ,∞)

)
σ(t, y)σ(t, y)∗


and the drift b unchanged as in (3.14).

Remark 3.3.3. A typical use of this fact is the following. First we obtain successful

coupling (the marginal processes meet) by choosing c(t, x, y) properly. Then the

marginal processes will move together after the coupling time.

Similar to Corollary 3.3.2, we can can obtain coupling by choosing proper

drift.

Corollary 3.3.4. Let Px,y1 be a solution to the martingale problem for L(a, b1)

with

a(t, x, y) =

(
σ(t, x)σ(t, x)∗ σ(t, x)σ(t, y)∗

σ(t, y)σ(t, x)∗ σ(t, y)σ(t, y)∗

)
,

b1(t, x, y) =

(
b(t, x)

b(t, y) + ξ(t, x, y)

)
.

up to some stopping time τ . For every ω ∈ Ω, let P
τ(ω),Z(τ(ω))
2 be a solution to the

martingale problem for the basic coupling operator in Lemma 3.3.1 starting from

(τ(ω), Z(τ(ω))). Define Qω for each ω ∈ Ω as in Lemma 3.1.5. Then

R = P
x,y
1 ⊗τ Q
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is a solution to the martingale problem for L(a, b2) with

b2(t, x, y) =

(
b(t, x)

b(t, y) + ξ(t, x, y)1{τ<t}

)

and the diffusion coefficient a unchanged.

By the relationship between martingale solution and weak solution of stochas-

tic differential equation (see [KS91]), we can restate Corollary 3.3.4 in the follow-

ing ways.

Corollary 3.3.5. Consider the following stochastic differential equations on R2d{
dXt = σ(t,Xt) dWt + b(t,Xt)dt, X0 = x ∈ Rd,

dYt = σ(t, Yt) dWt + b(t, Yt)dt+ ξ(t,Xt, Yt)1{t<τ}dt, Y0 = y ∈ Rd,
(3.15)

where Wt is an Rd-valued Brownian motion. Suppose that there exists a weak

solution to (3.15) up to τ . Assume further that there is a weak solution for all

t ≥ s to the following equation{
dXt = σ(t,Xt) dWt + b(t,Xt)dt, Xs = x̃ ∈ Rd,

dYt = σ(t, Yt) dWt + b(t, Yt)dt, Ys = ỹ ∈ Rd,
(3.16)

for every fixed (s, (x̃, ỹ)) ∈ [0,∞) × Rd × Rd. Then there exists a weak solution

to the equation (3.15) for all time.

Corollary 3.3.6. Consider the following stochastic differential equation on R2d

d

(
Xt

Yt

)
= σ(t,Xt, Yt) dWt +

(
b(t,Xt)

b(t, Yt) + ξ(t,Xt, Yt)1{t<τ}

)
dt, (3.17)

with X0 = x, Y0 = y, where Wt is an R2d-valued Wiener process, σ(t, x, y) is

a 2d × 2d measurable nonnegative definite matrix. Suppose there exists a weak

solution to (3.17) up to τ and there is a weak solution for all t ≥ s for the

following equation

d

(
Xt

Yt

)
= σ(t,Xt, Yt) dWt +

(
b(t,Xt)

b(t, Yt)

)
dt,

with Xs = x, Ys = y for any (s, x̃, ỹ)) ∈ [0,∞) × Rd × Rd. Then there exists a

weak solution to the equation (3.17) for all time.





Chapter 4

Harnack Inequalities for

Stochastic Differential Equations

In this chapter, we show Harnack inequalities for stochastic differential equations

and their applications.

In Section 4.1, we introduce Wang’s Harnack inequalities ([Wan97]) in which

we are interested in this thesis by a simple example. We also refer to a survey

paper Wang [Wan06]. In Section 4.2, we recall some known results concerning

Harnack inequalities for stochastic differential equations on Euclidean spaces by

applying the known results for diffusions on manifolds from [Wan97, ATW06].

We aim to consider Harnack inequalities for stochastic differential equations

with more general drifts by the method of coupling and Girsanov’s transformation.

This method has been introduced by Arnaudon et al. [ATW06] to establish

Harnack inequalities for diffusions on manifolds with curvature unbounded below.

Coupling methods and Girsanov’s transformations are classical tools. For the

introduction of coupling methods, see [Lin02, Tho00, Che05] et al.; for Girsanov’s

theorem, see [KS91, IW81, SV79, RY99] etc..

We establish Harnack inequalities for stochastic differential equations in two

frameworks in Section 4.3 and Section 4.4 respectively. We first prove Harnack

inequalities with two kinds of abstract assumptions in these two frameworks.

The first framework is easier to understand and the second framework involves

an approximation procedure. Then we apply these two frameworks to study

some concrete examples. In Section 4.5, we consider the classical monotonicity

condition under the first framework. In Section 4.6, we assume the stochastic

differential equation has linear growth drift and satisfies some regular condition

in the second framework.
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The method of coupling and Girsanov’s transformation doesn’t work well for

stochastic differential equations driven by general continuous martingales or pure

jump processes. We explain the reasons in Section 4.8.

4.1 Introduction to Harnack Inequalities

We demonstrate Harnack inequalities in the sense of Wang [Wan97] for simple

Ornstein-Uhlenbeck processes on Euclidean space Rd by direct computations. For

the classical Harnack inequalities, we refer to a survey paper by Kassmann[Kas07]

and references therein.

Denote by C +
b (Rd) the set of all nonnegative bounded and continuous function

on Rd, and | · | the Euclidean norm on Rd.

Example 4.1.1. Consider the following Ornstein-Uhlenbeck process

dXt = −κXtdt+ dWt, (4.1)

where κ ∈ R is a constant and Wt is a standard Brownian motion on Rd.

For every initial condition X0 = x, the solution of the stochastic differential

equation (4.1) can be written down explicitly as (see for example, [IW81, KS91])

Xt = x e−κt +

∫ t

0

e−κ(t−s) dWs. (4.2)

Let

µt = N(0, σ2
t ),

where

σ2
t =

1− exp(−2κt)

2κ
, t ≥ 0.

The formula (4.2) allows us to read that for each t ≥ 0, Xt is Gaussian

distributed with mean x e−κt and variance σ2
t , i.e.

Xt ∼ N
(
x e−κt, σ2

t

)
.

Let Pt be the transition semigroup associated with Xt. It can be expressed as

Ptf(x) =

∫
Rd
f(xe−κt + z) dµt(z), x ∈ Rd, f ∈ Cb(R

d).
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We shall prove that for every t > 0, α, β > 1 satisfying 1/α + 1/β = 1 and

f ∈ C +
b (Rd), x, y ∈ Rd, we have

(Ptf)α(x) ≤ exp

(
βκ|x− y|2

e2κt−1

)
Ptf

α(y). (4.3)

Proof. Note that

µt(dz) = (2πσ2
t )
−d/2 exp

(
−|z|

2

2σ2
t

)
dz.

By using a change of variable then applying Hölder’s inequality, we can get

Ptf(x)

=

∫
Rd
f(xe−κt + z) dµt(z)

=
(
2πσ2

t

)−d/2 ∫
Rd
f(xe−κt + z) exp

(
−|z|

2

2σ2
t

)
dz

=
(
2πσ2

t

)−d/2 ∫
Rd
f(ye−κt + z) exp

(
−|(y − x)e−κt + z|2

2σ2
t

)
dz

=
(
2πσ2

t

)−d/2 ∫
Rd
f(ye−κt + z)·

exp

(
−e−2κt|x− y|2 − 2e−κt〈x− y, z〉+ |z|2

2σ2
t

)
dz

=

∫
Rd
f(ye−κt + z) exp

(
−e−2κt|x− y|2 − 2e−κt〈x− y, z〉

2σ2
t

)
dµt(z)

= exp

(
−e−2κt|x− y|2

2σ2
t

)∫
Rd
f(ye−κt + z) exp

(
e−κt〈x− y, z〉

σ2
t

)
dµt(z)

≤ exp

(
−e−2κt|x− y|2

2σ2
t

)(∫
Rd
fα(ye−κt + z)dµt(z)

)1/α

·
(∫

Rd
exp

[
βe−κt〈z, x− y〉

σ2
t

]
dµt(z)

)1/β

= exp

(
−e−2κt|x− y|2

2σ2
t

)(
Ptf

α(y)
)1/α

exp

(
βe−2κt|x− y|2

2σ2
t

)
= exp

(
(β − 1)e−2κt|x− y|2

2σ2
t

)(
Ptf

α(y)
)1/α

= exp

(
e−2κt|x− y|2

2(α− 1)σ2
t

)(
Ptf

α(y)
)1/α

= exp

(
κ|x− y|2

(α− 1)(e2κt−1)

)(
Ptf

α(y)
)1/α

.
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Remark 4.1.2. We refer to Chapter 5 for more discussions on Harnack inequalities

for Ornstein-Uhlenbeck processes.

From the Harnack inequality (4.3), we see what kinds of inequality we are

interested at. Let Xt be a general diffusion process on Rd and denote the corre-

sponding semigroup by Pt, we are looking for inequalities of the following form

(Ptf)α(x) ≤ CPtf
α(y) (4.4)

for all t > 0, α > 1, x, y ∈ Rd, and f ∈ C +
b (Rd), where C is some constant

depending on t, α, x, y but independent of function f .

One point of this inequality is that we communicate the action of the power α

with the action of the semigroup on the function f . To be clear, we can compare

the Wang-type Harnack inequality (4.4) with the following celebrated Li-Yau type

Harnack inequality (see Li and Yau [LY86]) which communicate the time:

Ptf(x) ≤
(
Pt+sf(y)

)(t+ s

t

)αs/2
exp

(
α|x− y|2

4s
+

ακs

4(α− 1)

)
for any s, t > 0, α > 1 and f ∈ C 1

b (Rd).

Another remarkable feature of this inequality is that it is dimension-free. It

is important since dimension is no longer available if the state space is infinite

dimensional.

4.2 Harnack Inequalities: Known Results

Harnack inequalities were studied for diffusion processes on Riemannian manifold

with curvature bounded and unbounded below in [Wan97] and [ATW06] respec-

tively. We introduce their results and show what is specially known for diffusions

on Euclidean spaces.

Let M be a d-dimensional connected complete Riemannian manifold with

convex (or empty) boundary. Consider L = ∆ +Z for some C1-vector field Z on

M such that the curvature is bounded below, i.e.

Ric(X,X)− 〈∇XZ,X〉 ≥ −K|X|2, X ∈ TM (4.5)

for some constant K ∈ R. Then the diffusion process generated by L is non-
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explosive and the corresponding semigroup Pt satisfies the following gradient es-

timation

|∇Ptf | ≤ eKtPt|∇f |, t > 0, f ∈ C 1
b (M). (4.6)

Wang [Wan97] (see also [Wan04b]) was able to integrate (4.6) along a geodesic

and establish the following Harnack inequality: for every t > 0, α, β > 1 satisfying

1/α + 1/β = 1, x, y ∈M , and f ∈ C +
b (Rd), the following inequality holds

(Ptf)α(x) ≤ exp

(
βKρ(x, y)2

2(1− e−2Kt)

)
Ptf

α(y), (4.7)

where ρ is the distance function on M . When K = 0 the right hand side of (4.7)

is understood as the limit and (4.7) becomes

(Ptf)α(x) ≤ exp

(
β|x− y|2

4t

)
Ptf

α(y). (4.8)

Inequality (4.7) is the best case one can expect under the curvature condition

(4.5). Indeed, it is proved in [Wan04a] (see more equivalent statements there) that

the curvature condtion (4.5) and the Harnack inequality (4.7) are equivalent.

Since we concentrate on the stochastic differential equations on Rd, we need

to understand what we have shown for the special case when the manifold M is

reduced to an Euclidean space.

Consider the case when M = Rd and Z = b · ∇ with b ∈ C 1(Rd). For

i = 1, . . . , d, we denote ∂i =
∂

∂xi
, and the Jacobian matrix of b by J = (∂jbi)d×d,

Proposition 4.2.1. Let M = Rd and Z = b · ∇ with b ∈ C 1(Rd). Then the

curvature condition (4.5) is equivalent with each of the following conditions

(1) For all ξ ∈ C 1(Rd) with |ξ| = 1, we have 〈ξ, Jξ〉 ≤ K. That is,

d∑
i,j=1

ξiξj∂jbi ≤ K. (4.9)

(2) Global weak monotonicity condition:

〈x− y, b(x)− b(y)〉 ≤ K|x− y|2, for all x, y ∈ Rd. (4.10)

Proof. Since the Euclidean space is flat, the curvature condition (4.5) is simply

〈∇XZ,X〉 ≤ K, |X| = 1.
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This is true since for every X =
∑d

i=1 ξi∂i, we have

〈∇XZ,X〉 =

〈
∇X

(
d∑
i=1

bi∂i

)
, X

〉
=

d∑
i=1

〈∇X(bi∂i), X〉

=
d∑
i=1

〈X(bi)∂i + bi∇X∂i, X〉 =
d∑
i=1

Xbi〈∂i, X〉

=
d∑
i=1

Xbi

〈
∂i,

d∑
i=1

ξj∂j

〉
=

d∑
i=1

ξiXbi =
d∑

i,j=1

ξiξj∂jbi.

This proves the equivalence between (4.5) and (4.9).

Now we prove that (4.9) implies (4.10).

We will need to use the following Hadamard’s formula: for any x, y ∈ Rd,

i = 1, . . . , d, we have

bi(x)− bi(y) =
d∑
j=1

(xj − yj)
∫ 1

0

∂jbi(rx+ (1− r)y) dr. (4.11)

The proof of the formula (4.11) is obvious. We only need to apply the fundamental

theorem of calculus to the function r 7→ bi(rx+ (1− r)y) for r ∈ [0, 1].

By (4.9) and the Hardamard’s formula (4.11), we have

〈x− y, b(x)− b(y)〉 =
d∑
i=1

(xi − yi)
(
bi(x)− bi(y)

)
=

d∑
i,j=1

(xi − yi)(xj − yj)
∫ 1

0

∂jbi
(
rx+ (1− r)y

)
dr

≤K|x− y|2.

Hence the global monotonicity condition (4.10) holds.

It remains to show that the monotonicity condition (4.10) implies (4.9).

By the very definition of derivative, for any ε > 0, there exists a δ := δ(ε)

such that for all η satisfying |η| < δ, we have

|b(x+ η)− b(x)− Jη|
|η|

≤ ε.
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Hence

〈η, Jη − (b(x+ η)− b(x))〉 ≤ ε|η|2. (4.12)

Now for every ξ ∈ Rd, |ξ| = 1, choosing η ∈ Rd such that |η| < δ and η = |η|ξ.
Take y = x+ η, then deduce from (4.10) we get

〈η, b(x+ η)− b(x)〉 ≤ K|η|2,

Therefore, we have

〈η, Jη〉
|η|2

≤ K +
〈η, Jη − (b(x+ η)− b(x))〉

|η|2
. (4.13)

Substitute (4.12) into (4.13) we get

〈ξ, Jξ〉 ≤ K + ε.

By the arbitrariness of ε > 0, (4.9) follows immediately.

Now we introduce Harnack inequalities proved in [ATW06] for diffusions on

manifolds with curvature unbounded below.

Theorem 4.2.2. Denote by ρ0(x) := ρ(o, x) the distance of x from a fixed point

o. Suppose that

inf{Ric(X,X) : X ∈ TxM, |X| = 1} ≥ −C(1 + ρ0(x)2), (4.14a)

sup{〈∇XZ,X〉 : X ∈ TxM, |X| = 1} ≤ C(1 + ρ0(x)), (4.14b)

〈Z,∇ρo(x)〉 ≤ C(1 + ρ0(x)). (4.14c)

Assume additionally the corresponding process is non-explosive. Then for any

ε ∈ (0, 1] there exists a constant c(ε) > 0 such that

(Ptf)α(x) ≤ exp(N(t, α, x, y, ε))Ptf
α(y).

where N(t, α, x, y, ε) is

c(ε)α2(α + 1)2

(α− 1)3
(1 + ρ(x, y)2)ρ(x, y)2

+
α(εα + 1)ρ(x, y)2

2(2− ε)(α− 1)t
+
α− 1

2

(
1 + ρo(x)2

)
.
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Again, consider the case M = Rd and Z = b·∇ for some b ∈ C 1(Rd). Then the

curvature and growth conditions (4.14b) and (4.14c) are reduced to the following

conditions

〈x− y, b(t, x)− b(t, y)〉 ≤ C(1 + |x|+ |y|)|x− y|2,

〈x, b(t, x)〉 ≤ C(1 + |x|2)

for some constant C > 0.

4.3 Harnack Inequality: Framework I

Fix T > 0. Let b(t, x) be an Rd-valued Borel measurable function defined on

[0, T ]×Rd. We aim to study Harnack inequality for the transition semigroup Pt
associated with the following stochastic differential equation:

dXt = dWt + b(t,Xt)dt (4.15)

for t ∈ [0, T ], where (Wt)0≤t≤T is standard Brownian motion on Rd,

We turn to consider the following coupled stochastic differential equations on

Rd {
dXt = dWt + b(t,Xt)dt− Ut(Xt, Yt)dt, X0 = x, (4.16a)

dYt = dWt + b(t, Yt)dt, Y0 = y. (4.16b)

for t ∈ [0, T ], where Ut(x, y) is an Rd-valued Borel measurable functions defined

on [0, T ]×Rd ×Rd.

For every 0 ≤ t ≤ T , set

Nt =

∫ t

0

〈Us, dWs〉 and Rt = exp

(
Nt −

1

2
[N ]t

)
.

We will need the following assumption.

Assumption 4.3.1. We assume

(1) The equation (4.16) have a weak solution. That is, there exist processes

(Xt, Yt,Wt)0≤t≤T on some filtered probability space (Ω,F , (Ft)0≤t≤T ,P)

satisfying equation (4.16).

(2) For every starting point, the solution to the equation (4.15) is unique in

law.

(3) (Rt)0≤t≤T is a Ft-martingale with respect to P.



4.3. Harnack Inequality: Framework I 75

(4) XT = YT , P-a.s..

Remark 4.3.2. (1) In applications, we can use the results in Section 3.3 for

existence of the weak solution of (4.16).

(2) Item (3) of Assumption 4.3.1 holds if the following Novikov’s condition

E exp

(
1

2
[N ]T

)
<∞ (4.17)

hold.

With Assumption 4.3.1, we have the following result.

Lemma 4.3.3. Let Assumption 4.3.1 hold. Then

(PTf)α(x)

≤
[
EP exp

(
1

2
βq(βp− 1)

∫ T

0

|Us(Xs, Ys)|2 ds
)](α−1)/q

PTf
α(y)

(4.18)

holds for every x, y ∈ Rd, f ∈ C +
b (Rd), and α, β, p, q > 1 satisfying 1/α+1/β = 1

and 1/p+ 1/q = 1.

Proof. Define a new probability measure Q on (Ω,FT ) by setting Q = RTP. By

Girsanov’s theorem,

W̃t := Wt −
∫ t

0

Us ds, 0 ≤ t ≤ T

is also a standard Brownian motion on (Ω,FT ,Q). In terms of this new Brownian

motion W̃t, we can rewrite the equation (4.16) into the following form{
dXt = dW̃t + b(t,Xt) dt, X0 = x, (4.19a)

dYt = dW̃t + b(t, Yt) dt+ Ut(Xt, Yt), Y0 = y. (4.19b)

Therefore, (Xt, W̃t) is also a weak solution to stochastic differential equation

(4.15) with starting point x. By the uniqueness assumption, we have PTf(x) =

EQf(XT ).

Note the fact that PTf(y) = EPf(YT ) and XT = YT almost surely, by applying

Hölder’s inequality, we get

PTf(x) = EQf(XT ) = EQf(YT ) = EPRTf(YT )

≤
(
EPR

β
T

)1/β(
EPf

α(YT )
)1/α

=
(
EPR

β
T

)1/β(
PTf

α(y)
)1/α

.
(4.20)
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Since (Rt)0≤t≤T is a Ft-martingale with respect to P, we have

EPR
β
T

=EP exp

(
βNT −

1

2
β[N ]T

)
=EP exp

(
βNT −

1

2
pβ2[N ]T

)
exp

(
1

2
β(βp− 1)[N ]T

)
≤
[
EP exp

(
pβNT −

1

2
p2β2[N ]T

)]1/p

·
[
EP exp

(
1

2
βq(βp− 1)[N ]T

)]1/q

=

[
EP exp

(
1

2
βq(βp− 1)[N ]T

)]1/q

.

(4.21)

By substituting the estimate (4.21) above into (4.20), we can get (4.3.3) and

finish the proof.

4.4 Harnack Inequality: Framework II

As in Section 4.3, we fix a constant T > 0, and let b(t, x) be an Rd-valued Borel

measurable function defined on [0, T ] × Rd. We aim to study Harnack inequal-

ity for the transition semigroup Pt corresponding to the stochastic differential

equation (4.15) with irregular drift.

This time, we turn to consider a approximation of the stochastic differential

equation (4.16).

Denote by I the d-dimensional identity matrix. For every ε > 0, set

σε =
1

2

(
(
√

2− ε+
√
ε)I (

√
2− ε−

√
ε)I

(
√

2− ε−
√
ε)I (

√
2− ε+

√
ε)I

)
. (4.22)

Let us consider the following stochastic differential equation on R2d:

dZt = σεdW t + b(t, Zt) dt, Z0 = z ∈ R2d, (4.23)

where Wt ∈ Rd ×Rd is a 2d-dimensional Brownian motion, and

b(t, z) = b(t, x, y) =

(
b(t, x)− γ(t, x, y)

b(t, y)

)
, Z0 = z =

(
x

y

)
∈ Rd ×Rd.
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Here the drift γ is an Rd-valued measurable function which maybe dependent on

ε.

For every 0 ≤ t ≤ T , let W 1,t and W 2,t be the two d-dimensional marginal

processes of Wt:

Wt =
(
W 1,t

W 2,t

)
∈ Rd ×Rd.

Denote

Wt =

(
W1,t

W2,t

)
= σεWt.

Then

W1,t =
1

2

(
(
√

2− ε+
√
ε)W 1,t + (

√
2− ε−

√
ε)W 2,t

)
,

W2,t =
1

2

(
(
√

2− ε−
√
ε)W 1,t + (

√
2− ε+

√
ε)W 2,t

)
.

Let (Xt, Yt) ∈ Rd ×Rd be the marginal processes of Zt.

Now we can rewrite (4.23) as{
dXt = dW1,t + b(t,Xt)dt− γ(t,Xt, Yt)dt, X0 = x, (4.24a)

dYt = dW2,t + b(t, Yt)dt, Y0 = y, (4.24b)

for 0 ≤ t ≤ T .

For every t ∈ [0, T ], set

Nt =

∫ t

0

〈γs, dW2,s〉, Rt = exp

(
Nt −

1

2
[N ]t

)
.

We will work under the following abstract assumption.

Assumption 4.4.1. We assume

(1) For every starting point, the equation (4.23) has a weak solution. That is,

there exist couple processes (Zt,Wt)0≤t≤T on some filtered probability space

(Ω,F , (Ft)0≤t≤T ,P) satisfying the equation (4.23).

(2) For every starting point, the weak solution to equation (4.15) is weak unique.

(3) (Rt)0≤t≤T is a Ft-martingale with respect to P.

(4) For a distance ρ on Rd, we have

lim
n→∞

P

(
ρ(XT , YT ) ≥ 1

n

)
= 0. (4.25)



78 Chapter 4. Harnack Inequalities for Stochastic Differential Equations

With these assumptions, we can prove the following lemma.

Lemma 4.4.2. Suppose Assumption 4.4.1 holds. Then

(PTf)α(x) ≤ lim
n↑∞

lim
ε↓0

[
EP exp

(
1

2
βq(βp− 1)

∫ T

0

|γs|2 ds
)](α−1)/q

PTf
α(y).

(4.26)

holds for every x, y ∈ Rd, f ∈ C +
b (Rd) and α, β, p, q > 1 satisfying 1/α+ 1/β = 1

and 1/p+ 1/q = 1.

Proof. Define a new probability measure on (Ω,FT ) by setting Q = RTP. Then

by Girsanov’s theorem,

W̃1,t := W1,t −
∫ t

0

γtdt, t ∈ [0, T ]

is a Wiener process on (Ω,FT ,Q). Now we can rewrite the equation (4.24a) into

the following form

dXt = dW̃1,t + b(t,Xt)dt, X0 = x. (4.27)

We see (Xt, W̃1,t) on (Ω,FT ,Q) is also a weak solution to the stochastic differential

equation (4.15). Therefore, by the weak uniqueness, we have PTf(x) = EQf(XT ).

Without loss of generality, we can assume that f is a bounded nonnegative

function on Rd such that

|f(x)− f(y)| ≤ Lip(f)ρ(x, y).

for some constant Lip(f). With this, we have

PTf(x) = EQf(XT )

= EQf(XT )1{ρ(XT ,YT )≤ 1
n
} + EQf(XT )1{ρ(XT ,YT )> 1

n
}

≤ EQ
[
f(YT ) +

(
f(XT )− f(YT )

)]
1{ρ(XT ,YT )≤ 1

n
}

+ ‖f‖∞P
({

ρ(XT , YT ) >
1

n

})
≤ EQf(YT ) +

1

n
Lip(f) + ‖f‖∞P

({
ρ(XT , YT ) >

1

n

})
.

(4.28)

Note that we also have PTf(y) = EPf(YT ). Therefore, by applying Hölder’s
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inequality, we have

EQf(YT ) = EPRTf(YT ) ≤ EP
(
Rβ
T

)1/β
EP
(
fα(YT )

)1/α

= EP
(
Rβ
T

)1/β(
PTf

α(y)
)1/α

.
(4.29)

Since (Rt)t∈[0,T ] is a Ft-martingale with respect to P, we have (similar to

(4.21))

EPR
β
T ≤

[
EP exp

(
1

2
βq(βp− 1)

∫ T

0

|γs|2 ds
)]1/q

. (4.30)

Now substitute (4.29) and (4.30) into (4.28), we get

PTf(x) ≤
[
EP exp

(
1

2
βq(βp− 1)

∫ T

0

|γs|2 ds
)]1/(qβ) (

PTf
α(y)

)1/α

+
1

n
Lip(f) + ‖f‖∞P

({
ρ(XT , YT ) >

1

n

})
.

(4.31)

We can get (4.26) and finish the proof by letting ε→ 0 and n→∞ in (4.31)

and noting the assumption (4.25).

4.5 Global Monotonicity Condition

In this section, we apply the framework in Section 4.3 to the classical Global

monotonicity condition. In this way we see that we can obtain the known Harnack

inequalities for stochastic differential equations on Euclidean spaces (see Section

4.2).

Let b be a continuous function satisfying the following linear growth condition

|b(t, x)| ≤ C(1 + |x|), x ∈ Rd, 0 ≤ t ≤ T

for some constant C > 0 and the following global monotonicity condition

〈x− y, b(t, x)− b(t, y)〉 ≤ K|x− y|2, x, y ∈ Rd, 0 ≤ t ≤ T. (4.32)

for some K ∈ R. We take

Ut(Xt, Yt) := ξt|x− y|
Xt − Yt
|Xt − Yt|

1{t<τ},
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where ξt > 0 is a deterministic continuous positive function on [0, T ] satisfying∫ T

0

ξs e−Ks ds ≥ 1. (4.33)

We first prepare two lemmas to check Assumption 4.3.1.

Lemma 4.5.1. Items (1) and (2) of Assumption (4.3.1) hold.

Proof. With the global monotonicity condition (4.32), we see Equation (4.16a)

has a unique weak solution for all time. On the other hand, for every fixed

s ∈ [0, T ], x̃, ỹ ∈ Rd, the following equation{
dXt = dWt + b(t,Xt) dt, Xs = x̃ ∈ Rd,

dYt = dWt + b(t, Yt) dt, Ys = ỹ ∈ Rd.

has a weak solution for t ∈ [s, T ].

Since b is continuous and Ut is also continuous before the coupling time τ , by

[IW81, Chapter IV, Theorem 2.3] we know Equation (4.16) has a weak solution

up to τ .

Now, by the results in Section 3.3, we know Equation (4.16) has a weak

solution on [0, T ].

In the following, we prove that the the two marginal processes meet at time

T . Figure 4.5 explains the idea.

Lemma 4.5.2. We have XT = YT P-a.s.

Proof. We only need to prove that Xt and Yt shall meet each other before the

fixed time T since Xt and Yt will move together after the coupling time. That is

we need to show τ ≤ T .

It is easy to see that

d(Xt − Yt) =

(
b(t,Xt)− b(t, Yt)− ξt|x− y|

Xt − Yt
|Xt − Yt|

1{t<τ}

)
dt, t < τ.

By (4.32), we have

d|Xt − Yt| ≤ K|Xt − Yt| dt− ξt|x− y| dt, t < τ.

Hence

d|Xt − Yt| e−Kt ≤ ξt|x− y| e−Kt, t < τ.
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x

y

τ T

Xt

Yt

Xt = Yt

Coupling Time

Figure 4.1: Coupling Before Fixed Time

Thus, if T < τ then

0 < |XT − YT | e−KT ≤ |x− y|
(

1−
∫ T

0

ξs e−Ks ds

)
≤ 0.

This contradiction implies that T ≥ τ and hence XT = YT .

By we can apply Lemma 4.3.3 to prove the following theorem.

Theorem 4.5.3. Let (4.32) holds. Then

(PTf)α(x) ≤ exp

(
βK|x− y|2

1− e−2KT

)
PTf

α(y) (4.34)

holds for every T > 0, x, y ∈ Rd, f ∈ C +
b (Rd) and α, β > 1 satisfying 1/α+1/β =

1.

Proof. Since Ut is bounded, Item (3) of Assumption 4.3.1 holds automatically by

applying Novikov’s condition (see (4.17))

(2)). With Lemma 4.5.1 and 4.5.2, we know Assumption 4.3.1 hold.

By (4.18) we get

(PTf)α(x) ≤
[
EP exp

(
1

2
β(βp− 1)

∫ T

0

|x− y|2ξ2
s ds

)]α−1

PTf
α(y), (4.35)
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where p > 1.

Let p→ 1 in (4.35) and note that (α− 1)(β − 1) = 1 we can obtain

(PTf)α(x) ≤ exp

(
β|x− y|2

2

∫ T

0

ξ2
s ds

)
PTf

α(y), (4.36)

Now take

ξt =
e−Kt∫ T

0
e−2Ks ds

, 0 ≤ t ≤ T. (4.37)

Then ∫ T

0

ξ2
t dt =

∫ T
0

(
eKs e−2Ks

)2
ds(∫ T

0
e−2Ks ds

)2 =
1∫ T

0
e−2Ks ds

=
2K

1− e−2KT
. (4.38)

Substitute (4.38) into (4.36), we can get (4.34) and complete the proof.

Remark 4.5.4. Let ξt be any function satisfy (4.33). Then by Hölder’s inequality

we have

1 ≤
(∫ T

0

ξs e−Ks ds

)2

≤
∫ T

0

ξ2
s ds

∫ T

0

e−2Ks ds.

Therefore, ∫ T

0

ξ2
s ds ≥

1∫ T
0

e−2Ks ds
=

2K

1− e−2KT
.

This means that
2K

1− e−2KT
is the minimum of

∫ T
0
ξ2
s ds over all choices of ξt

satisfying (4.33). Hence the function ξt in (4.37) is optimal under all possible

choices of ξt.

4.6 Linear Growth Condition

We work in the framework introduced in Section 4.4. We take the distance

function ρ(x, y) to be the Euclidean distance: ρ(x, y) = |x−y| for every x, y ∈ Rd.

Fix T > 0. Let b : [0, T ] × Rd → Rd be a measurable function satisfying the

following conditions.

Assumption 4.6.1. (1) There exist some constant C > 0 such that

|b(t, x)| ≤ C(1 + |x|), 0 ≤ t ≤ T, x ∈ Rd. (4.39)
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(2) There exists a nonnegative function g on [0,∞) such that

sup
|x−y|=r

1

r
〈b(t, x)− b(t, y), x− y〉 ≤ g(r). (4.40)

Remark 4.6.2. (1) The linear growth condition (4.39) is used to ensure the ex-

istence of weak solution the equation. We do not need the continuous of

the drift.

(2) We use Condition (4.40) to get a better estimate of the constant in the

Harnack inequality we will prove. Condition (4.40) is also used in [PW06,

Hypothesis 3.1 iv.]. This condition generalizes substantially the standard

condition that g(r) = cr for some c > 0, which implies the uniqueness

and regularity of strong solutions of the associated stochastic differential

equations. If b is uniformly continuous on Rd, we can take g as the modulus

of continuity of b, i.e. g(r) = sup|x−y|≤r sup |b(x)− b(y)|.

We will apply Lemma 4.4.2 to prove the following result.

Theorem 4.6.3. Suppose that (4.39), (4.40) hold and the solution to Equation

(4.15) is weak unique. For every T > 0, x, y ∈ Rd, f ∈ C +
b (Rd) and α, β > 1

satisfying 1/α + 1/β = 1, the following inequality holds

(PTf)α (x) ≤ exp

β
2

∫ T

0

[
g(|x− y|) +

ξt|x− y|∫ T
0
ξu du

]2

dt

PTf
α(y). (4.41)

Remark 4.6.4. The weak uniqueness of solution to equation (4.15) can be implied

from proper choice of g in (4.40). See for example [FZ05].

To prove Theorem 4.6.3, we first take a concrete γ in Lemma 4.4.2 and then

check Assumption 4.4.1.

Let n ∈ N. We take ε = 1
n4 for (4.22) and set

γ(t,Xt, Yt) =

[〈
Xt − Yt
|Xt − Yt|

, b(t,Xt)− b(t, Yt)
〉+

− ε(d− 1)

|Xt − Yt|
1{|Xt−Yt|≥ 1

n2 } −
ξs|x− y|∫ T

0
ξs ds

]
· Xt − Yt
|Xt − Yt|

1{|Xt−Yt|>0} (4.42)

for the drift in the stochastic differential equation (4.23).

Lemma 4.6.5. Items (1) and (2) of Assumption 4.4.1 hold.
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Proof. Since γ is of linear growth, by [KS91, Proposition 3.6], we know Equation

(4.23) have a weak solution. Hence Item (1) of Assumption 4.4.1 holds.

Item (2) of Assumption 4.4.1 follows from [KS91, Corollary 3.5.16].

We will use the formulae (2.8)–(2.10) in [CL89]. For convenience, we summa-

rize them into the following lemma.

Lemma 4.6.6. Let L = L(a(t, x, y), b(t, x, y)) be a second order differential op-

erator of the form (3.1) with

a(t, x, y) =

(
a1(t, x) c(t, x, y)

c∗(t, x, y) a2(t, y)

)
, b(t, x, y) =

(
b1(t, x)

b2(t, y)

)
.

Denote ρ(x, y) = |x− y| and

A(t, x, y) = a1(t, x) + a2(t, y)− 2c(t, x, y),

B(t, x, y) = b1(t, x)− b2(t, y),

Â(t, x, y) = 〈x− y, A(t, x, y)(x− y)〉, x 6= y,

A(t, x, y) =
Â(t, x, y)

|x− y|2
.

B̂(t, x, y) = 〈x− y,B(x, y)〉.

Then for every x 6= y,

Lρ(x, y) =
TrA(t, x, y)− A(t, x, y) + 2B̂(t, x, y)

2ρ(x, y)
.

Lemma 4.6.7. For all t ∈ [0, T ],

|Xt − Yt| ≤
√
ε(ωt − ωδn(t)) +

1

n2
∨

(
|x− y|

∫ T
t
ξs ds∫ T

0
ξs ds

)
,

where

δn(t) = sup{s ∈ [0, t] : |Xs − Ys| <
1

n2
}, t ∈ [0, T ].

Here we use the convention sup ∅ = 0.

Proof. Note that for every t ∈ [0, T ],

W1,t −W2,t =
√
ε(W 1,t −W 2,t).
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Let’s denote

ωt :=

〈
Xt − Yt
|Xt − Yt|

,W 1,t −W 2,t

〉
.

Note that

Aε := σε(σε)∗ =

(
I I− ε

I− ε I

)
.

Applying Itô’s formula and Lemma 4.6.6 directly, we have

d|Xt − Yt| ≤
√
εdωt −

|x− y|ξt∫ T
0
ξsds

+
ε(d− 1)

|Xt − Yt|
1{|Xt−Yt|< 1

n2 }dt. (4.43)

By integrating Equation (4.43) over [δn(t), t], we obtain (note that the last

term disappears)

|Xt − Yt| ≤
√
ε(ωt − ωδn(t)) + Θ(t, n). (4.44)

where

Θ(t, n) := |Xδn(t) − Yδn(t)| − |x− y|

∫ t
δn(t)

ξsds∫ T
0
ξsds

.

If δn(t) = 0, then

Θ(t, n) = |X0 − Y0| − |x− y|
∫ t

0
ξsds∫ T

0
ξsds

= |x− y|
∫ T
t
ξsds∫ T

0
ξsds

. (4.45)

If δn(t) > 0, then |Xδn(t) − Yδn(t)| =
1

n2
. Therefore,

Θ(t, n) =
1

n2
− |x− y|

∫ t
δn(t)

ξsds∫ T
0
ξsds

≤ 1

n2
. (4.46)

Hence from (4.45) and (4.46) we see

Θ(t, n) ≤ 1

n2
∨

(
|x− y|

∫ T
t
ξsds∫ T

0
ξsds

)
.

Lemma 4.6.8.

lim
n→∞

P

(
|XT − YT | >

1

n

)
= 0.
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Proof. Applying Lemma 4.6.7 to the case t = T , we have

|XT − YT | ≤
√
ε(ωT − ωδn(T )) +

1

n2
.

Since ε = 1
n4 , |XT − YT | > 1

n
implies

ωT − ωδn(T ) ≥ n− 1.

Hence

P

(
|XT − YT | >

1

n

)
≤P (ωT − ωδn(T ) ≥ n− 1)

≤
4E sups∈[0,T ] |ωs|2

(n− 1)2
≤ 16E|ωT |2

(n− 1)2
→ 0.

as n→∞. The last inequality follows from Doob’s martingale inequality.

Lemma 4.6.9. For all t ∈ [0, T ],

lim
n→∞

|Xt − Yt| ≤ |x− y|.

Proof. By Lemma 4.6.7, we see for all t ∈ [0, T ],

|Xt − Yt| ≤
1

n2
ωt + |x− y|+ 1

n2
.

Now Theorem 4.6.3 is easy to show.

Proof of Theorem 4.6.3. With Lemma 4.6.5, Lemma 4.6.8 and Lemma 4.6.9, we

can apply Lemma 4.4.2 and Inequality (4.26) to get (4.41).

4.7 Heat Kernel Estimates

Consider the stochastic differential equation (4.15) with time independent drift

b. Suppose that b(x) = DV (x) for some C2-function V on Rd. Set µ(dx) =

exp(V (x)) dx. Let Pt be the transition semigroup associated with (4.15). Then

Pt is symmetric with respect to µ. Denote by pt(x, y) the transition kernel of Pt
with respect to µ. We aim to estimate pt by using the measures of balls.

Harnack inequalities is an important tool in the study of heat kernel estimates.

In the following we apply Wang’s Harnack inequality to estimate the heat kernel.
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This kinds of applications has been used in [BLQ97, GW01, ATW06] etc. for

diffusion semigroups on manifolds.

We first summarize the application of (Wang’s) Harnack inequality to heat

kernel estimate by the following lemma. We remind the reader that the generator

of the semigroup we consider has the form 1
2
∆+DV , while the operator considered

in [BLQ97, GW01, ATW06] etc. is of the form ∆ +Z for some Laplace operator

∆ and C1-operator Z on manifolds. Hence there is a slight change.

Lemma 4.7.1. Suppose that for every t > 0, x, y ∈ Rd, f ∈ C +
b (Rd) and

1 < α < 2 the following inequality holds

(Ptf)α(x) ≤ exp
(
C(t, α, |x− y|)

)
Ptf

α(y), (4.47)

where C(t, α, ·) is a positive increasing function. Then

pt(x, y) ≤
exp

(
1+δ
δ
C
(
t, 2δ

1+δ
,
√

2t
)

+ 4
δ−1

)
√
µ
(
Bx(
√

2t)
)
µ
(
By(
√

2t)
) exp

(
−|x− y|

2

2δt

)

holds for every δ > 1, t > 0, and x, y ∈ Rd.

Proof. Let p = 2
α
> 1. Taking power p to both sides of (4.47) we get

(Ptf)2(x) ≤ (Ptf
α)p(y) exp

(
pC(t, α, |x− y|)

)
(4.48)

for every t > 0 and x, y ∈ Rd.

Let T > 0, x ∈ Rd, q = p
4(p−1)

. Set

η(t, y) = − |x− y|
2

2(T − qt)
, for qt < T.

Multiplying both sides of (4.48) by exp
(
η(t, y)

)
and then taking integral with

respect to µ(dy) we can obtain

(Ptf)2(x)

∫
Rd

exp
(
−pC(t, α, |x− y|)

)
exp
(
η(t, y)

)
µ(dy)

≤
∫
Rd

(Ptf
α)p(y) exp

(
η(t, y)

)
µ(dy).

(4.49)

By an integral-maximum principle (see [BLQ97, Proposition 13] or [GW01,
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(2.9)]), and note the invariance of Pt with respect to µ, we can get the following

estimate of the right hand side of (4.49):∫
Rd

(Ptf
α)p(y) exp

(
η(t, y)

)
µ(dy) ≤

∫
Rd
Ptf

2(y) exp
(
η(0, y)

)
µ(dy)

=

∫
Rd
f 2(y) exp

(
−|x− y|

2

2T

)
µ(dy).

(4.50)

For the left side of (4.49), confine the integral on the ball Bx(r) := {y ∈
Rd : |x− y| ≤ r}, we can get∫

Rd
exp
(
−pC(t, α, |x− y|)

)
exp
(
η(t, y)

)
µ(dy) (4.51)

≥
∫
Bx(r)

exp

(
−pC(t, α, r)− r2

2(T − qt)

)
µ(dy) (4.52)

= exp

(
−pC(t, α, r)− r2

2(T − qt)

)
µ
(
Bx(r)

)
. (4.53)

Hence, by combining (4.49), (4.50) and (4.51) we obtain

(Ptf)2(x) ≤
exp

(
pC(t, α, r) + r2

2(T−qt)

)
µ
(
Bx(r)

) ×∫
Rd
f 2(y) exp

(
−|x− y|

2

2T

)
µ(dy).

(4.54)

For any bounded positive continuous function g on H, we take

f(x) = g(y) exp

(
|x− y|2

4T

)
in (4.54), we get [∫

Rd
exp

(
|x− y|2

4T

)
g(y)pt(x, y)µ(dy)

]2

≤
exp

(
pC(t, α, r) + r2

2(T−qt)

)
µ
(
Bx(r)

) ∫
Rd
g2(y)µ(dy).

(4.55)

Let δ > 1, T = δt
2

, q = 1+δ
4

, r =
√

2t. Then p = 1+δ
δ

, α = 2δ
1+δ

and T − qt =
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δ−1
4
t. Now we can deduce from (4.55) to get

Eδ(x, t) :=

∫
Rd
p2
t (x, y) exp

(
|x− y|2

δt

)
µ(dy)

≤
exp

(
pC(t, α, r) + r2

2(T−qt)

)
µ
(
Bx(r)

)
=

exp

(
1+δ
δ
C
(
t, 2δ

1+δ
,
√

2t
)

+ 4
δ−1

)
µ
(
Bx(r)

) .

(4.56)

By the estimate (4.56) and the following universal bound (see Grigor′yan

[Gri97, (3.4)])

pt(x, y) ≤

√
Eδ

(
x,
t

2

)
Eδ

(
y,
t

2

)
exp

(
−|x− y|

2

2δt

)
,

we can finish the proof.

Assume the assumptions in Theorem 4.6.3 holds. Then we have Harnack

inequality (4.41). Hence we can get the following corollary immediately by Lemma

4.7.1.

Corollary 4.7.2. Assume for the drift b the conditions in Theorem 4.6.3 and the

assumptions at the begging of this section . Then for every δ > 1, t > 0, x, y ∈ Rd

we have

pt(x, y) ≤
exp

(
1+δ
δ
C̃
(
t, 2δ

1+δ
,
√

2t
)

+ 4
δ−1

)
√
µ
(
Bx(
√

2t)
)
µ
(
By(
√

2t)
) exp

(
−|x− y|

2

2δt

)
,

where

C̃(t, α, r) =
α

2(α− 1)

∫ t

0

[
g(r) +

rξs∫ s
0
ξu du

]2

ds.

4.8 Some Problems in Applying Girsanov’s The-

orem

Maybe one want to try the coupling and Girsanov transformation method to

study Harnack inequalities for stochastic differential equations driven by general
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continuous martingale or pure jump Lévy processes. Unfortunately, this does

not work in general. One of the essential point of the Girsanov transformation

we used is that the distribution of the drift transformed process under the new

probability measure must be the same with the original process under the original

probability measure. In the following, we explain the reasons.

Continuous Martingale Case

The following Girsanov theorem for continuous martingale is well known. See,

for example, [RY99].

Theorem 4.8.1. Let M be a continuous martingale, and

Zt = exp

(
Mt −

1

2
[M ]t

)
, 0 ≤ t <∞

be a positive uniform integrable martingale. Let Q =
∫
Z∞dP. If N is a con-

tinuous P martingale, then Ñt ≡ Nt − [N,M ]t, 0 ≤ t < ∞ is a continuous Q

martingale, and [Ñ ]Qt = [N ]t, for 0 ≤ t <∞.

The Girsanov theorem 4.8.1 states that Ñt, the drift transformed Nt, is still a

martingale (under the new probability measure Q), and the quadratic variations

of Nt and Ñt are the same. But it does not ensure that the distribution of Ñt under

Q is the same with the distribution of Nt under P. It is the case only in some

special situation. For example, if Nt is a Brownian motion, then by applying

Lévy’s characterization of Brownian motions, we know Ñt is still a Brownian

motion. And hence their distributions coincide.

Pure Jump Lévy Processes

We first recall a Girsanov theorem for pure jump processes.

Let (Ω,F , (Ft)0≤t<∞,P) be a filtered probability space and N(dt, dz) a Pois-

son random measure on Ω × R with Lévy measure ν. Suppose that the Lévy

measure satisfies ∫
{|z|>1}

|z| |ν|(dz) <∞.

The compensated measure of N(dt, dx) is given by

Ñ(dt, dz) = N(dt, dz)− ν(dz)dt.
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The following result is from [ØS05, Lemma 1.33]. See also [JS87, Chap III,

Theorems 3.24 and 5.19], [Cha99, Lemma 3.1 and Theorem 3.2] and [Sit05] etc..

Theorem 4.8.2. Let θ(s, x) ≤ 1 be a process such that

ρ(t) = exp

{∫ t

0

∫
R

log
(
1− θ(s, z)

)
Ñ(ds, dz)

+

∫ t

0

∫
R

[
log
(
1− θ(s, z)

)
+ θ(s, z)

]
Ñ(ds, dz)

}
exists for 0 ≤ t ≤ T . Define a measure Q on FT by Q = ρ(T )P. Assume that

EP
(
ρ(T )

)
= 1. Then Q is a probability measure on FT and if we define the

random measure ÑQ(dt, dz) by

ÑQ(dt, dz) = Ñ(dt, dz) + θ(t, z) ν(dz)dt,

then ∫ t

0

∫
A

Ñ(ds, dz) +

∫ t

0

∫
A

θ(s, z) ν(dz)ds

is a Q-local martingale for all A ∈ B(R \ {0})

We claim that the distribution of Ñ(dt, dz) under P is not the same with the

distribution of ÑQ(dt, dz) = Ñ(dt, dz) + θ(t, z)ν(dz)dt. under Q.

The explain follows. First we note that

ÑQ(dt, dz) + ν(dz)dt = [Ñ(dt, dz) + θ(t, z)ν(dz)dt] + ν(dz)dt

= N(dt, dz) + θ(t, z)ν(dz)dt.

Suppose that our claim is not true. Then the distribution of N(dt, dz) =

Ñ(dt, dz) + ν(dz)dt under P is the same with the distribution of ÑQ(dt, dz) +

ν(dz)dt under Q. This will not happen. We know N(dt, dz) is integer valued.

But ÑQ(dt, dz) + ν(dz)dt = N(dt, dz) + θ(t, z)ν(dz)dt will not take integer value

in general.

Remark 4.8.3. With some special transformation (not drift transformation), we

could get process with the same distribution. See [BGJ87, Bic02]





Chapter 5

Harnack Inequalities for

Ornstein-Uhlenbeck Processes

Driven by Wiener Processes

We first give a general introduction to Ornstein-Uhlenbeck processes in Section

5.1. Then we show Harnack inequalities for Ornstein-Uhlenbeck processes driven

by Wiener processes in Section 5.2.

In Section 5.3 we consider some properties equivalent to Harnack inequalities.

For example, we show that the Harnack inequality for the Gaussian Ornstein-

Uhlenbeck semigroup Pt holds if and only if the semigroup Pt is strongly Feller.

In Section 5.4, we show some examples of Harnack inequalities, especially the

Harnack inequalities for diagonal Ornstein-Uhlenbeck processes from which we

can see clearly why our result is better than the one in [RW03a].

In Section 5.5, we consider Harnack inequalities for Ornstein-Uhlenbeck pro-

cesses with perturbations driven by Wiener processes. We first consider Lipschitz

perturbations. Then we consider gradient systems by approximation. We men-

tion here that there is an independent work by Da Prato et al. [DPRW09]. They

considered the perturbation of Ornstein-Uhlenbeck processes with singular drifts.

But the spirit is similar.

Section 5.6 is an appendix. We show another proof of the main Harnack

inequality by finite dimensional approximation in Subsection 5.6.1. It is especially

interesting for readers who only care for the finite dimension case. In Subsection

5.6.2 we show a Mehler formula. It is introduced partially for the motivation of

the generalized Mehler semigroups which will be introduced in Section 7.1.
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5.1 Ornstein-Uhlenbeck Processes

The story start from Brownian motion. In 1827, the England botanist Robert

Brown observed the zigzag path of pollen grains suspended in water under the lens

of the microscope. In 1905, Einstein explained the mechanics of the movement.

Roughly speaking, if at time t the Brownian particle is at position x, then after

arbitrary time ∆t, the particle will appear at x+ε, where ε is a Gaussian random

variable and independent of the starting position x and time t.

But this theory neglects the viscosity of the medium. Langevin initiated the

study and Ornstein and Uhlenbeck [OU30] developed a new theory for Brownian

motion. In the following, we just simply introduce it. We refer to the lovely book

by Nelson [Nel01] for the dynamical theory of Brownian motion.

Let Xt denote the velocity of a Brownian particle at time t. Let (Wt)t≥0 be

a one-dimensional standard Brownian motion and κ > 0 measures the viscosity.

By the second law of Newton and by choosing appropriate units, dXt
dt

means the

acceleration of the particle which may be interpreted as the force experienced by

the particle. This force is the sum of a systematic viscous force and a stochastic

force. Since the viscous force is proportional to the particle’s velocity Xt and

directed opposite to its velocity, so we can suppose the viscous force is given by

−κXt. The stochastic force is modeled by the white noise dWt

dt
. Therefore, we

have
dXt

dt
= −κXt +

dWt

dt
. (5.1)

We rewrite it into the following Langevin equation

dXt = −κXt dt+ dWt. (5.2)

Let X0 = x ∈ R be the initial data. Then the solution to (5.2) is given by

(see the books [IW81, KS91, DPZ92] etc.)

Xt = e−κt x+

∫ t

0

e−κ(t−s) dWs (5.3)

Clearly, Xt is random perturbation of the exponential function. The process (5.3)

is called Ornstein-Uhlenbeck process or simply OU processes.

Figure 5.1 in the following indicates the composition of the process Xt.

We can consider more general form of Ornstein-Uhlenbeck processes. The

drift maybe general linear function, and the noise dWt

dt
can be fractional Brownian
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o

x0

random perturbation (red curve)
∫ t

0
e−κ(t−s)dWs

Ornstein-Uhlenbeck process (blue curve)

Xt = e−κtx0 +

∫ t

0
e−κ(t−s)dWs

deterministic process (black curve) e−κtx0

Figure 5.1: Ornstein-Uhlenbeck Process

motion noise, Lévy noise etc..

One of the main general Ornstein-Uhlenbeck type processes which we will

consider in this thesis is the generalized Langevin equation

dXt = AXt + dZt, Xt = x (5.4)

on some Hilbert spaceH. Here (Zt)t≥0 is a Lévy process, and A is the infinitesimal

generator of some strong continuous contraction semigroup (St)t≥0.

The mild solution of (5.4) can be written down in terms of stochastic convo-

lution as

Xt = Stx+

∫ t

0

St−s dZs. (5.5)

See [PZ07, Section 9.2] or [App06, Section 4].

The Ornstein-Uhlenbeck process defined in (5.5) generalize the classical one

in the following two ways: Firstly, we are working in a infinite dimensional space;

and secondly, the noise is a general Lévy process.

Ornstein-Uhlenbeck processes are better reference processes in infinite dimen-

sional analysis than infinite dimensional Brownian motions (or Lévy processes).

One of the main reason is that Ornstein-Uhlenbeck processes, in contrast to an

infinite dimensional Brownian motion (or more generally Lévy process), can have
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invariant measures. Another point is that the presence of the linear drifts can

have smoothing effects.

Bibliographic Notes on Ornstein-Uhlenbeck Processes The topic re-

lated to Ornstein-Uhlenbeck type processes has attracted many people to study

for a long time. See Ornstein-Uhlenbeck [OU30] and Kolmogorov [Kol34] etc. for

the finite dimensional Gaussian case. See Ito [Itô84b, Itô84a] (or [Itô87, Pages

589-616]), Dawson [Daw75], Da Prato et al. [DPIT82], Chow [Cho87], and the

books by Da Prato and Zabczyk [DPZ92, DPZ02], Zabczyk [Zab99] and Da Prato

[DP04, DP06] for the infinite dimensional Gaussian case.

The case driven by general Lévy processes were first studied by Wolfe [Wol82]

in the scalar case: where A is a positive constant. Sato and Yamazoto [SY83,

SY84] generalized this to the multidimensional case where A is a matrix all of

whose eigenvalues have positive real parts. Chojnowska-Michalik [CM85, Cho87]

considered the generalization to infinite dimension. We also mention a series of

papers by Applebaum [App06, App07b, App07a] etc., the monograph by Zabczyk

and Peszat [PZ07] for the study of Ornstein-Uhlenbeck type processes in infinite

dimensional space with Lévy noise.

We refer also to Page 139 for the bibliographic notes on generalized Mehler

semigroup which is closely related to the Ornstein-Uhlenbeck processes driven by

Lévy processes.

5.2 Harnack Inequalities

In this section, we first show a main theorem directly in Subsection 5.2.1 by

transformation of measures on the state spaces. Then we turn to estimate ‖ΓT‖
in Subsection 5.2.2 by a result from control theory. By the estimates we can

get some corollaries from the main theorem on Harnack inequalities. Especially

we can get the Harnack inequalities for Gaussian Ornstein-Uhlenbeck semigroup

proved by Röckner and Wang [RW03a].

5.2.1 Main Theorem

Let H be a real separable Hilbert space with inner product 〈·, ·〉 and norm | · |.
Let A be the generator of a strongly continuous contraction semigroup (St)t≥0 on

H, and B a linear bounded operator on H.
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Consider the following linear stochastic partial differential equation on H

dXt = AXt +BdWt, X0 = x ∈ H, (5.6)

where (Wt)t≥0 is a cylindrical Wiener process on H.

Set

R = BB∗.

Fix T > 0. For any 0 ≤ t ≤ T , set

Qt =

∫ t

0

SuRS
∗
u du.

In control theory, this operator Qt is called controllability operator . See [Zab08]

or Appendix A.

We will need the following assumption.

Assumption 5.2.1. We assume that the operator QT is of trace-class. That is,∫ T

0

Tr(SuRS
∗
u) du <∞. (5.7)

With (5.7), the mild solution to the stochastic equation (5.6) on time interval

[0, T ] is given by (see [DPZ92, Theorem 5.4])

Xt = Stx+

∫ t

0

St−sB dWs, 0 ≤ t ≤ T.

This solution is also the unique weak solution of (5.6). See [DPZ92] for details.

Remark 5.2.2. (1) The operator R = BB∗ is not necessary to be of trace class

for (5.7). For instance, the choice of B = I is allowed if A−1 is of trace

class.

(2) If QT is of trace class for some T > 0, then obviously Qt is of trace class for

every 0 ≤ t ≤ T .

The stochastic integral

WA(t) =

∫ t

0

St−sB dWs, 0 ≤ t ≤ T

is called stochastic convolution. By the introduction in Section 1.3, we know

WA(t) is Gaussian distributed mean 0 and covariance Qt. See also [DPZ92, The-
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orem 5.2].

Hence the Ornstein-Uhlenbeck process Xt is also Gaussian distributed with

mean Stx and covariance Qt, i.e. Xt ∼ N(Stx,Qt).

For every 0 ≤ t ≤ T , we denote

µt = N(0, Qt).

Then the transition semigroup associated with the Ornstein-Uhlenbeck process

Xt is given by

Ptf(x) = Ef(Xt) =

∫
H

f(Stx+ z)µt(dz), f ∈ C +
b (H). (5.8)

We call the semigroup Pt as Ornstein-Uhlenbeck semigroup. If A = 0, then the

semigroup is the classical heat semigroup. See [DPZ02] for the detailed discussions

of heat semigroup and Ornstein-Uhlenbeck semigroup.

The central result of this chapter is the following Harnack inequality for the

Gaussian Ornstein-Uhlenbeck semigroup Pt defined in (5.8). The proof of this

result is in the same spirit of the proof of the Harnack inequality (4.3) for the

simple Ornstein-Uhlenbeck process (4.1) in Example 4.1.1

Theorem 5.2.3. Let T > 0 and x, y ∈ H. Assume that the operator QT is of

trace class and

ST (x− y) ∈ Q1/2
T (H). (5.9)

Then for every α, β > 1 satisfying 1/α + 1/β = 1, we have

(PTf)α(x) ≤ exp

(
β

2
|ΓT (x− y)|2

)
PTf

α(y), (5.10)

for every f ∈ C +
b (H). Here ΓT = Q

−1/2
T ST .

Proof. Since (5.9) holds, by Theorem 1.2.2 we know N(STx− y), QT ) is absolute

continuous with respect to N(0, QT ). Moreover, we have

dN
(
ST (x− y), QT

)
dN(0, QT )

(z)

= exp

(
〈Q−1/2

T ST (x− y), Q
−1/2
T z〉 − 1

2
|Q−1/2

T ST (x− y)|2
)

according the Cameron-Martin formula.
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Using a change of variable and the formula above, and applying Hölder’s

inequality we have

PTf(x)

=

∫
H

f(STx+ z)µT (dz)

=

∫
H

f(STy + z)
dN(ST (x− y), QT )

dN(0, QT )
µT (dz)

=

∫
H

f(STy + z)·

exp

(〈
Q
−1/2
T ST (x− y), Q

−1/2
T z

〉
− 1

2
|Q−1/2

T ST (x− y)|2
)
µT (dz)

≤ exp

(
−1

2
|ΓT (x− y)|2

)(∫
H

fα(STy + z)µT (dz)

)1/α

·(∫
H

exp(β〈Q−1/2
T ST (x− y), Q

−1/2
T z〉)µT (dz)

)1/β

= exp

(
β − 1

2
|ΓT (x− y)|2

)
(PTf

α(y))1/α .

The following theorem is an immediate consequence of the theorem above.

Theorem 5.2.4. Suppose that the following null controllability condition

ST (H) ⊂ Q
1/2
T (H) (5.11)

hold. Then the Harnack inequality (5.10) holds for all x, y ∈ H. If we further

assume (5.11) holds for all T > 0, then the Harnack inequality (5.10) holds also

for all T ≥ 0.

Remark 5.2.5. (1) With the assumption (5.11), the operator ΓT = Q
−1/2
T ST is

defined on the whole space H. Hence ΓT is a bounded operator on H by

the closed graph theorem (see [Yos80]).

(2) By [DPZ02, Theorem B.2.2], if (5.11) holds for all T > 0, then Q
1/2
T (H) is

invariant with respect to T > 0. Especially if Q∞ exists, then

Q
1/2
T (H) = Q1/2

∞ (H), T > 0.

Remark 5.2.6. In Section 7.4, we will prove a Harnack inequality for Lévy driven

Ornstein-Uhlenbeck processes (See (7.32)). It has the same form as (5.10) prove
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in this section. For the Lévy case, the covariance operator R of the Gaussian part

of the Lévy process is supposed to be of trace class in this thesis. But it is not

necessary since we can also consider the “cylindrical Lévy processes”. Refer to

Theorem 7.4.11 for a Harnack inequality for the stochastic heat equation.

5.2.2 Estimates of ‖ΓT‖

We can estimate the quantity |ΓT (x−y)|2 in (5.10) according its physical meaning

in control theory which we will describe in the following (see details in Appendix

A).

Consider the following deterministic linear control system

dxt = Axt dt+But dt, x0 = x, t ∈ [0, T ] (5.12)

on H, where ut is an H-valued square integrable function on [0, T ].

By Theorem A.0.2, if STx ∈ Q1/2
T (H), then there exists a control function ut

for the system (5.12) such that xT = 0. What is more, |ΓTx|2 is the minimal

energy for driving x to 0 (see Equation(A.4)). That is,

|ΓTx|2 = inf

{∫ T

0

|us|2 ds : u ∈ L2([0, t],H), xT = 0

}
. (5.13)

From (5.13), we can get an upper estimate of |Γtx|2 by choosing any concrete

control function ut.

We will use the following simple fact for some explicit controls.

Lemma 5.2.7. Fix T > 0. If ST (H) ⊂ R1/2(H), then

St(H) ⊂ R1/2(H) (5.14)

holds for every t ∈ [0, T ].

Proof. By Theorem A.0.1, we know the inclusion of ST (H) in R1/2(H) implies

that there exist some constant C > 0 such that

|R1/2x| ≤ C |STx|

Therefore for every t ∈ [0, T ] and x ∈ H, we have

|R1/2x| ≤ C |STx| = C |ST−tStx| ≤ C ‖ST−t‖ · |Stx|
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Hence the inclusion (5.14) holds by Theorem A.0.1.

In what follows, we simply suppose that B is symmetric and B = R1/2. As

usual, we denote by | · |0 for the canonical norm on the Cameron-Martin space

R1/2(H) defined by |x|0 = |R−1/2x| for every x ∈ R12/(H).

Proposition 5.2.8. Fix T > 0. Assume that QT is of trace class and

ST (H) ⊂ R1/2(H). (5.15)

Let ξt be a positive continuous function on [0, T ] satisfying∫ T

0

|Stx|20 ξ2
t dt <∞, for all x ∈ H.

Then the null controllability condition

STH ⊂ Q
1/2
T (H) (5.16)

are satisfied and the following estimate holds

‖ΓT‖ ≤
1∫ T

0
ξt dt

(∫ T

0

|Stx|20 ξ2
t dt

)1/2

. (5.17)

Proof. Consider the following control system{
dxt = Axt dt+R1/2ut dt,

x0 = x,
(5.18)

for t ∈ [0, T ]. The solution of (5.18) is given by

xt = Stx+

∫ t

0

St−sR
1/2us ds, t ∈ [0, T ]. (5.19)

By the formula (5.19), it is easy to see that the control

u(t) = − ξt∫ T
0
ξt dt

R−1/2Stx, t ∈ [0, T ]

transfers the system from x0 = x to xT = 0. Hence the system (5.18) is null

controllable. This implies that the null controllability condition (5.16) holds by

Theorem A.0.3.
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Moreover, by (5.13), we know

‖ΓT‖ ≤
∫ T

0

|us|2 ds.

Hence we have the estimate (5.17).

From Proposition 5.2.8, we have the following corollary.

Corollary 5.2.9. Assume the assumptions in Proposition 5.2.8 and

|Stx|0 ≤
√
ξ(t)−1 |x|0, x ∈ H, t ∈ [0, T ].

Then

‖ΓT‖ ≤
1∫ T

0
ξ(t) dt

. (5.20)

Remark 5.2.10. (1) For the special case R = I, the condition (5.15) automati-

cally hold.

(2) If we take ξt ≡ 1 in Proposition 5.2.8, then we can get [DPZ92, Corollary

9.22]. If we take R = I additionally, we get [DPZ92, Corollary 9.23].

(3) These estimates of ‖ΓT‖ are also useful in the study of regularizing prop-

erties of the transition semigroup corresponding to semi-linear stochastic

equations. See [DPZ92, Section 9.4] and [CMG95] etc.. Indeed, in Sub-

section 7.5 we will use ‖Γt‖ to study of the strong Feller property of the

Ornstein-Uhlenbeck transition semigroup .

5.2.3 Estimates of Harnack Inequality

From Theorem 5.2.3 and Proposition 5.2.8 we can get the following corollary

immediately.

Corollary 5.2.11. Fix T > 0. Let ξt be a positive continuous function on [0, T ].

Suppose that QT is of trace class and ST (H) ⊂ R1/2(H). Assume further that∫ T

0

|Stx|20 ξ2
t dt <∞, for all x ∈ H.

Then the following inequality

(PTf)α(x) ≤ exp

(
β
∫ T

0
|St(x− y)|20 ξ2

t dt

2
(∫ T

0
ξt dt

)2

)
PTf

α(y) (5.21)
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holds for every x, y ∈ H, α, β > 1 with 1/α + 1/β = 1, and f ∈ C +
b (H).

From Theorem 5.2.3 and Corollary 5.2.9 we can get the following corollary.

Corollary 5.2.12. Assume the assumptions in Corollary 5.2.11 and

|Stx|0 ≤
√
ξ(t)−1 |x|0, x ∈ H, t ∈ [0, T ].

Then the following inequality

(PTf)α(x) ≤ exp

(
β|x− y|20

2
∫ T

0
ξ(t) dt

)
PTf

α(y) (5.22)

holds for every x, y ∈ H, α, β > 1 with 1/α + 1/β = 1, and f ∈ C +
b (H).

Remark 5.2.13. (1) Corollary 5.2.12 covers (with a slight difference of the con-

ditions) a result in [RW03a] which is recalled in the following for the conve-

nience of comparison. Let B = R1/2. Suppose that the following assump-

tions holds.

(a) StR(H) ⊂ R1/2(H) holds for every t > 0.

(b) There is a strictly positive h1 ∈ C[0,∞) such that

|StRx|0 ≤
√
h1(t)|Rx|0, x ∈ H, t ≥ 0,

(c) Other conditions: Item (1) and Item (2) of Assumption 7.2.1.

With these assumptions, Röckner and Wang [RW03a] proved the following

Harnack inequality for (5.8)(See Theorem 7.2.2 for details ):

(Ptf)α(x) ≤ exp

[
αρ(x, y)

2(α− 1)
∫ t

0
h1(s)−1 ds

]
Ptf

α(y)

for every α > 0, x, y ∈ H, t > 0 and each f ∈ C +
b (H).

(2) But we assume a slightly stronger condition: ST (H) ⊂ R1/2(H) than the

condition STR(H) ⊂ R1/2(H) assumed in [RW03a]. However, we do not

assume Item (1) and Item (2) of Assumption 7.2.1 which are required in

[RW03a].

Remark 5.2.14. There are three methods in our hands to establish Harnack

inequality: semigroup calculus, image measure transformation and Girsanov’s

transformation methods. In Chapter 7 we shall introduce these three methods.
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Röckner and Wang [RW03a] mainly used the semigroup calculus method. The im-

age measure transformation is also used in [RW03a]. But the authors of [RW03a]

didn’t apply the method to the Gaussian case and didn’t realize that this method

can obtain optimal inequality.

5.3 Properties Equivalent to Harnack Inequali-

ties

We first recall the strong Feller property of a transition semigroup.

Definition 5.3.1. Let Pt, t ≥ 0, be a transition semigroup. Pt is called strongly

Feller if for every bounded measurable function ϕ on H, Ptϕ is continuous for

every t > 0. That is, Pt
(
Bb(H)

)
⊂ Cb(H).

Da Prato, Röckner and Wang [DPRW09, Proposition 4.1] proved that ev-

ery Markov transition semigroup has strong Feller property automatically if the

Harnack inequality hold. We include the result in the following for convenience.

Proposition 5.3.2. Let E be a topological space and P a Markov operator on

Bb(E). Assume that for every α > 1 there exists a continuous function ηα on

E × E satisfying ηα(x, x) = 0 for all x ∈ E and

(Pf)α(x) ≤ eηα(x,y) Pfα(y)

for all x, y ∈ E, f ∈ B+
b (E). Then P is strongly Feller.

Furthermore, for any σ-finite measure µ on (E,B(E)) such that∫
E

Pf dµ ≤ C

∫
E

f dµ

for all f ∈ B+
b (E) and some fixed constant C > 0, P uniquely extends to Lp(E, µ)

with PLp(E, µ) ⊂ C(E) for any p > 1.

Now we can prove the following result.

Theorem 5.3.3. Assume that for every t ≥ 0, Qt is of trace class. Then the

following statements are equivalent to each other.

(1) The null controllability condition holds: St(H) ⊂ Q
1/2
t (H) for all t ≥ 0.

(2) The system (5.12) is null controllable over each time interval [0, t], t ≥ 0.
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(3) The Harnack inequality (5.10) with bounded Γt holds for all α > 1, t ≥ 0,

x, y ∈ H and f ∈ Cb(H).

(4) There exist some constant C(t, α) > 0 such that

(Ptf)α(x) ≤ exp(C(t, α)|x− y|2)Ptf
α(y)

holds for all α > 1, t ≥ 0, x, y ∈ H and f ∈ Cb(H).

(5) The Ornstein-Uhlenbeck transition semigroup Pt for t ≥ 0 is strongly Feller.

That is Pt
(
Bb(H)

)
⊂ Cb(H) for every t ≥ 0.

We assume further that Q∞ is of trace class. Hence there exists an invariant mea-

sure µ. Then the statements (1)–(5) above are also equivalent with the following

two statements

(6) For every p > 1, Pt
(
Lp(H, µ)

)
⊂ C (H).

(7) For every p > 1, Pt
(
Lp(H, µ)

)
⊂ C∞(H).

Proof. The equivalence (1)⇔(2) follows from Theorem A.0.2. By Theorem 5.2.3,

we know (1)⇒(3). From (3) we obtain (4) immediately since the operator Γt
is bounded. (4)⇒(5) follows from Proposition 5.3.2 (see also Subsection 7.5).

The implication (5)⇒(1) is well known (See Da Prato and Zabzyck [DPZ92,

Subsection 9.4.1] or Zabzyck [Zab81]. In fact, it is proved there that (1)⇔(5)).

Suppose that Q∞ is of trace class. (4)⇒(6) follows from Proposition 5.3.2.

(1)⇒(7) come from [DPFZ02, Theorem 2.1] (See also the book Da Prato and

Zabczyk [DPZ02]). On the other hand, it is clear that (6)⇒(5) and (7)⇒(5).

Remark 5.3.4. We refer to [MS02, Theorem 2.1] for the following two more equiva-

lent statements of the strong Feller property of the Ornstein-Uhlenbeck transition

semigroup Pt:

(1) Pt is bw strongly Feller.

(2) Pt is bw ultra strongly Feller.

Here “bw” refers to “bounded weak”. See [MS02, Section 1] for the definitions of

bw and bw-ultra strongly Feller.

Remark 5.3.5. (1) We get a new proof of the well known fact that (1)⇒(5) via

Harnack inequality.

(2) Da Prato et al. [DPFZ02, Theorem 2.4] (see also [DPZ02, Theorem 10.3.6])

states that for every f ∈ L1(H, µ), Ptf may fail to be continuous in infinite

dimension. (But the author are not clear about their proof.)

Remark 5.3.6. The strong Feller property means that the Ornstein-Uhlenbeck

semigroup has a smoothing property. For the heat semigroup, the condition
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(5.11) does not hold if the Hilbert space H is infinite dimensional. In fact, the

heat semigroup is regular only in the directions of the Cameron-Martin space

Q1/2(H). See [DP06, Proposition 8.4]. This explains one reason for why we prefer

to use Ornstein-Uhlenbeck processes in infinite dimensional spaces as reference

processes.

Remark 5.3.7. In Section 7.5, we will consider the estimates concerning the strong

Feller property.

5.4 Examples of Harnack Inequalities

We work in the framework of the previous section. We show Harnack inequal-

ities for some quite simple examples and general diagonal Ornstein-Uhlenbeck

processes in the first and second subsections respectively.

5.4.1 Simple Cases

In the first example we deal with a degenerate finite dimensional stochastic dif-

ferential equation. In the second and third examples, we deal with two special

cases: B = I and A = −1/2I respectively.

Example 5.4.1. Let H = R2, and

A =

(
0 0

1 0

)
, B =

(
1 0

0 0

)
.

Then we have R = BB∗ = B and for every t ≥ 0,

St = etA =

(
1 0

t 1

)
, StRS

∗
t =

(
1 t

t t2

)
,

and hence

Qt =

∫ t

0

SuRS
∗
u du =

∫ t

0

(
1 u

u u2

)
du =

(
t t2/2

t2/2 t3/3

)
.

It is obvious that for every t > 0, the determinant of Qt detQt > 0. Hence

Qt is non-degenerate and the null controllability condition (5.11) is fulfilled. Let

x = (x1, x2)tr, y = (y1, y2)tr ∈ R2. We have (for example, with the help of
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mathematical software like Maple)

|Γt(x− y)|2 = |Q−1/2
t St(x− y)|2

= 4 · [t−1(x1 − y1)2 + 3t−2(x1 − y1)(x2 − y2) + 3t−3(x2 − y2)2].

Now we have the following Harnack inequality by Theorem 5.2.3

(Ptf)α(x) ≤ exp(Ct)Ptf
α(y)

with

Ct := 2β[t−1(x1 − y1)2 + 3t−2(x1 − y1)(x2 − y2) + 3t−3(x2 − y2)2],

for every f ∈ C +
b (R2), x, y ∈ R2, t > 0, and α, β > 1 satisfying 1/α + 1/β = 1.

Example 5.4.2. Assume that B = I and (−A)−1 is of trace class. Then

R1/2(H) = H and hence St(H) ⊂ H for every t ≥ 0. Moreover, it is easy to

see that Qt is of trace class for every t ≥ 0.

Let {ek}k∈N be the system of eigenvectors of (−A)−1 corresponding with eigen-

values {λk}k∈N. Set ω = infk∈N(1/λk). For every x ∈ H and t ≥ 0 we have

|Stx|2 =
∑
k∈N

e−2/λkt〈x, ek〉 ≤ e−2ωt |x|2.

Applying Corollary 5.2.11 with ξ(t) = e−ωt, we get

(Ptf)α(x) ≤ exp

(
βω|x− y|2

e2ωt−1

)
Ptf

α(y)

for every f ∈ C +
b (H), x, y ∈ H, t ≥ 0 and α, β > 1 satisfying 1/α + 1/β = 1.

Example 5.4.3. Let A = −1/2I. Suppose that R = BB∗ is of trace class. For

every t ≥ 0, we have

St = e−t/2 and Qt = (1− e−t)R.

Hence

Γt = Q
−1/2
t St = (1− e−t)−1/2 e−t/2R−1/2, t ≥ 0.

It is clear that the operator Qt is of trace class for every t > 0.

The transition semigroup is the classical Ornstein-Uhlenbeck semigroup given
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by

Ptf(x) =

∫
H

f(e−1/2 x+ z)µt(dz),

for x ∈ H, t ≥ 0 and f ∈ C +
b (H), where µt = N(0, Qt).

Let x, y ∈ H such that x − y ∈ H0 = R1/2(H). Then obviously we have

St(x−y) ∈ Q1/2
t (H) for every t > 0. Now by Theorem 5.2.3 we have the following

Harnack inequality

(Ptf)α(x) ≤ exp

(
β

2

∣∣(1− e−t)−1/2 e−t/2R−1/2(x− y)
∣∣2)Ptfα(y)

= exp

(
β|x− y|20
2(et−1)

)
Ptf

α(y),

(5.23)

for every f ∈ C +
b (H), t > 0, and α, β > 1 satisfying 1/α + 1/β = 1.

Remark 5.4.4. By the notation of the intrinsic distance ρ on H (see (1.1)), we

can rewrite (5.23) for every x, y ∈ H:

(Ptf)α(x) ≤ exp

(
β e−t ρ(x, y)2

2(1− e−t)

)
Ptf

α(y).

Remark 5.4.5. See also Kusuoka [Kus92, the proof of Lemma 6.12, page 270] for

the case α = β = 2.

5.4.2 Diagonal Ornstein-Uhlenbeck Processes

In the following we consider general diagonal Ornstein-Uhlenbeck processes. It

is the important case when the operator A is self-adjoint and commutes with

R. The last two examples in the previous subsection are also diagonal Ornstein-

Uhlenbeck processes.

Let {en}n≥1 be a complete orthonormal basis of the real separable Hilbert

space H. Assume that there exist sequences of positive numbers δn, γn for n ∈ N,

such that

Aen = −δnen and Ren = γnen, (5.24)

where δn ↑ ∞ as n ↑ ∞. By direct calculation, we can get the following proposi-

tion. See also [DPZ92, Section 9.5] or [DPZ02, Example 6.2.11].

Proposition 5.4.6. Suppose that (5.24) hold. Then



5.4. Examples of Harnack Inequalities 109

(1) The operator Qt, t > 0, is of trace class if and only if

∞∑
n=1

δn
γn

<∞. (5.25)

(2) The null controllability condition St(H) ⊂ Q
1/2
t (H) holds for every t > 0 if

and only if

sup
n∈N

2δn
γn(e2tδn −1)

<∞, t > 0, n ∈ N. (5.26)

Proof. (1) For every t > 0, n ∈ N, we have

Qten =

∫ t

0

S2uRen du = γn

∫ t

0

e2uA en du

= γn

∫ t

0

e−2uδn en du =
γn
2δn

(1− e−2δnt)en.

That is,

Qten =
γn
2δn

(1− e−2δnt)en. (5.27)

Therefore, Qt is of trace class for every t > 0 if and only the condition (5.25)

holds.

(2) From (5.27) we know

Q−1
t en =

2δn
γn(1− e−2δnt)

en

for each t > 0 and n ∈ N. Therefore

Γ2
t en = Q−1

t e2tA en = Q−1
t e−2tδn en =

2δn
γn(e2tδn −1)

en.

Consequently, for every z ∈ H,

|Γtz|2 = 〈Γ2
t z, z〉 =

∞∑
n=1

〈Γ2
t en, en〉〈z, en〉2 =

∞∑
n=1

2δn〈z, en〉2

γn(e2tδn −1)
.

By Theorem A.0.3, the null controllability condition is equivalent to

‖Γt‖2 = sup
n∈N

2δn
γn(e2tδn −1)

<∞, t ≥ 0, n ∈ N.
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Example 5.4.7. Assume Conditions (5.24), (5.25) and (5.26). By Theorem 5.2.3,

the following inequality holds

(Ptf)α(x) ≤ exp

(
∞∑
n=1

βδn〈x− y, en〉2

γn(e2tδn −1)

)
Ptf

α(y) (5.28)

for every f ∈ C +
b (H), t > 0, x, y ∈ H, and α, β > 1 satisfying 1/α + 1/β = 1.

Remark 5.4.8. Suppose that γn ≡ 1. The result in [RW03a] shows

(Ptf)α(x) ≤ exp

(
βδ1|x− y|2

e2tδ1 −1

)
Ptf

α(y). (5.29)

Comparing Inequalities (5.28) with (5.29), we see (5.29) is a “first-order” approx-

imation of (5.10).

Now we consider a special case of Example 5.4.7.

Example 5.4.9. Suppose that for each n ∈ N, δn = nδ and γn = n−γ with some

δ, γ > 0 satisfying

δ + γ > 1. (5.30)

Then it is obvious that Condition (5.25) holds. Moreover, with (5.30), the null

controllability condition (5.11) also holds since

‖Γt‖2 = sup
n∈N

2δn
γn(e2tδn −1)

<∞

for every t > 0. Therefore, by (5.28), the following Harnack inequality

(Ptf)α(x) ≤ exp

(
∞∑
n=1

βnδ+γ

e2tnδ −1
〈x− y, en〉2

)
Ptf

α(y) (5.31)

holds for every t > 0, x, y ∈ H, α, β > 1 satisfying 1/α+1/β = 1 and f ∈ C +
b (H).

Example 5.4.10. Consider H = L2(0, π). Let A be the Laplace operator on

(0, π) with Dirichlet boundary and R = I. Then we have δ = 2 and γ = 0.

Therefore, by (5.31), the following Harnack inequality

(Ptf)α(x) ≤ exp

(
∞∑
n=1

βn2

e2tn2 −1
〈x− y, en〉2

)
Ptf

α(y)

holds for every t > 0, x, y ∈ H, α, β > 1 satisfying 1/α+1/β = 1 and f ∈ C +
b (H).
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5.5 Perturbations

5.5.1 Lipschitz Perturbation

We assume in this subsection the following assumptions.

Assumption 5.5.1. We assume

(1) A : D(A) ⊂ H→ H is self-adjoint and there exists ω > 0 such that

〈Ax, x〉 ≤ −ω|x|2, x ∈ D(A);

(2) A−1 is of trace class;

(3) F is Lipschitz continuous and dissipative

〈F (x)− F (y), x− y〉 ≤ 0, x, y ∈ H.

We consider the following semi-linear stochastic partial differential equation

dXt = AXtdt+ F (Xt)dt+ dWt, X0 = x ∈ H. (5.32)

With Assumption (5.5.1), the equation (5.32) has a unique mild solution (see

[DPZ02, Theorem 7.3.5]) given by

Xt = Stx+

∫ t

0

St−sF (Xs) ds+

∫ t

0

St−s dWs,

where St = etA, t ≥ 0 is the semigroup generated by A.

Set

Ptf(x) = Ef(Xt), f ∈ Cb(H).

It can be proved that there is a unique invariant measure ν for Pt (see [DPZ02,

Theorem 11.2.3].) Therefore, the semigroup Pt can be extended to be a strongly

continuous semigroup of contraction on Lp(H, ν) for p > 1 (similar to the proof

of [DPZ02, Theorem 10.1.5]).

With Assumption 5.5.1, we have the following Harnack inequality for Pt.

Theorem 5.5.2. Let Assumption 5.5.1 holds. Then

(Ptf)α(x) ≤ exp

(
ωβ|x− y|2

e2tω−1

)
Ptf

α(y) (5.33)
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for every x, y ∈ H, f ∈ C +
b (H), and α, β > 1 satisfying 1/α + 1/β = 1.

There are several methods to prove this theorem.

Note that the function x 7→ G(x) := Ax + F (x) satisfies the following mono-

tonicity condition

〈G(x)−G(y), x− y〉 ≤ −ω|x− y|2, x, y ∈ H,

therefore, we can prove Theorem 5.5.2 using the coupling and Girsanov transfor-

mation similar to the proof of (4.34) for the finite dimensional case.

We can also consider the finite dimensional approximation. The procedure

follows. We project the equation (5.32) on the finite dimensional space. Then the

drift of the corresponding finite dimensional stochastic differential equation is also

monotone. Hence we get a Harnack inequality for finite dimensional stochastic

differential equation (see (4.34)). By the dimension free property of the Harnack

inequality, we can get (5.33) by taking limit. We refer the interested author to a

recent paper by Da Prato et al. [DPRW09] for details of the approximation.

In the following, we carry out another “proof” by using semigroup calculus.

This method was first introduced in [Wan07]. However, we are not able to justify

the strictness of the proof. The difficulties come from the domain problem of the

semigroup. The reason that we insist to show this method is that we want to

present another strategy as a complement of this thesis.

We first introduce some notations and a gradient estimate.

Denote by L the infinitesimal generator of Pt on Lp(H, ν). By [DPZ02, The-

orem 11.2.14], we know L is the closure of the following differential operator (we

still denote it by L)

Lf(x) :=
1

2
Tr[D2f(x)] + 〈x,ADf(x)〉+ 〈F (x), Df〉, x ∈ H

for every f ∈ EA(H). That is, EA(H) is a core for L.

We will use the following gradient estimation.

Lemma 5.5.3. For every f ∈ D(L), we have

|DPtf(x)| ≤ e−ωt Pt|Df(x)|, x ∈ H. (5.34)
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Proof. First, we consider the approximation of F by

Fε(x) =

∫
H

eεA
∗
F (eεA x+ y)N 1

2
A−1(e2εA−1)(dy),

for every ε > 0. Then we have

〈DP ε
t f(x), h〉 = E〈Df(Xε(t, x), Xε

x(t, x))h〉, x, h ∈ H, (5.35)

where Xε(t, x) and P ε
t are defined as X and Pt with F replaced by Fε.

Note that (refer to the proof of [DPZ02, Proposition 11.2.13])

|Xε
x(t, x)| ≤ e−ωt, t ≥ 0.

Therefore, by (5.35), we see

|〈DP ε
t f(x), h〉| ≤ e−ωt P ε

t |Df(Xε(t, x))| · |h|.

Hence, since the inequality above holds for arbitrary h, we get

|DP ε
t f(x)| ≤ e−ωt P ε

t |Df(Xε(t, x))|.

Therefore, letting ε tend to 0 we can get (5.34) since it is easy to see that

P ε
t f(x)→ Ptf(x) as ε→ 0.

Now we come to show a “proof” of Theorem 5.5.2 by semigroup calculus.

“Proof” of Theorem 5.5.2. We suppose there is a dense subset E of Cb(H) such

that E is stable under the action of L and Pt.
∗

For any f ∈ E , Φ ∈ C 2(R), we have

LΦ(f) =
1

2
Φ′′(f)|Df |2 + Φ′(f)Lf.

Let γ : [0, t]→ H be defined by

γ(s) = x+
s

t
(y − x) = (1− s

t
)x+

s

t
y.

It is the minimal geodesic connecting x and y.

∗The existence of this subset is the only reason that we are not able to justify the proof.
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Let h be a positive continuous function on [0, t] Taking

g(s) :=
t
∫ s

0
h(r) e−ωr dr∫ t

0
h(r) e−ωr dr

, s ∈ [0, t].

It is the speed function satifying g(0) = 0, g(t) = 1. Define for any s ∈ [0, t],

η(s) = γ(gs),

and

φ(s) = logPt−s(Psf)α(ηs).

Note that we have

η(0) = x, η(t) = y,

then we get

φ(0) = Ptf
α(x), φ(t) = (Ptf)α(y).

By using the gradient estimate (5.34), we have

Pt−s(Psf)α(ηs)
d

ds
φ(s)

=− Pt−sL(Psf)α(ηs) + Pt−s
[
α(Psf)α−1LPsf(ηs)

]
+
〈
DPt−s(Psf)α(ηs), η

′(s)
〉

=− Pt−s
[
α(Psf)α−1LPsf(ηs) +

α(α− 1)

2
(Psf)α−2|DPsf |2(ηs)

]
+ Pt−s

[
α(Psf)α−1LPsf(ηs)

]
+
〈
DPt−s(Psf)α(ηs), η

′(s)
〉

=− α(α− 1)

2
Pt−s

[
(Psf)α−2|DPsf |2(ηs)

]
+
〈
DPt−s(Psf)α(ηs), η

′(s)
〉

≤− α(α− 1)

2
Pt−s

[
(Psf)α−2|DPsf |2(ηs)

]
+ e(s−t)ω |η′(s)| · Pt−s|D(Psf)α|

=Pt−s

{
|Psf |α

[
− α(α− 1)

2

(
|DPsf |
|Psf |

)2

+ α e(s−t)ω |η′(s)| · |DPsf |
|Psf |

]}

Note the following simple facts: for any number a, b ∈ R with a < 0,

ax2 + bx = a

(
x+

b

2a

)2

− b2

4a
≤ − b

2

4a
,

we have
d

ds
φ(s) ≤ α e2(s−t)ω |η′(s)|2

2(α− 1)
.
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Now integrate both sides of the inequality above from 0 to t, we have

log(Ptf)α(y)− logPtf
α(x) = φ(t)− φ(0) ≤ α

2(α− 1)

∫ t

0

e2(s−t)ω |η′(s)|2ds

Inserting

η′(s) = γ′(g(s))g′(s) =
y − x
t
· t · h(s) e−ωs∫ t

0
h(s) e−ωs ds

=
h(s) e−ωs∫ t

0
h(s) e−ωs ds

(y − x),

we see

log
(Ptf)α(y)

Ptfα(x)
≤ α|y − x|2

2(α− 1)

e−2ωt
∫ t

0
h2(s)ds(∫ t

0
h(s) e−ωs ds

)2 .

Hence we have

(Ptf)α(x) ≤ Ptf
α(y) exp

β|x− y|22

∫ t
0
h2(s)ds(∫ t

0
h(s) e(t−s)ω ds

)2

 . (5.36)

Take h(s) = e(t−s)ω in (5.36), we can get (5.33).

5.5.2 Gradient Systems

We assume in this subsection the following conditions.

Assumption 5.5.4. We assume

(1) A : D(A) ⊂ H→ H is a self-adjoint operator and there exists a ω > 0 such

that

〈Ax, x〉 ≤ −ω|x|2, for all x ∈ D(A).

(2) A−1 is of trace class on H.

(3) U : H→ (−∞,+∞] is a convex lower semi-continuous function such that

Z :=

∫
H

e−2U(x) µ(dx) <∞.

where µ = N(0,−1
2
A−1).
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We consider a perturbation of Ornstein-Uhlenbeck processes as in the previous

section but with F replaced by the sub-differential of some convex function −U
on H. That is, we consider a stochastic differential inclusion of the form:

dXt ∈ AXt dt− ∂U(Xt) dt+ dWt, X0 = x ∈ H, (5.37)

where (Wt)0≤t≤T is a cylindrical Wiener process inH and ∂U is the sub-differential

of U defined for every x ∈ H as

∂U(x) = {y ∈ H : U(x+ h) ≥ U(x) + 〈y, h〉, for all h ∈ H}.

Set K = {U < +∞}. Note that ∂U(x) is a non-empty closed convex set for

every x ∈ K. If U is Fréchet differentiable on H, then ∂U is the gradient DU .

Consider the following Moreau-Yosida approximation Uε of U

Uε(x) = inf

{
U(y) +

1

2ε
|x− y|2 : y ∈ H

}
, x ∈ H, ε > 0.

For every ε > 0, Uε enjoys the following properties:

(1) For every x ∈ H,

lim
ε→0

Uε(x) = U(x), lim
ε→0

DUε(x) = DU(x).

(2) Uε is convex, differentiable and DUε is Lipschitz-continuous.

Since DUε is Lipschitz-continuous, there exists a unique strong solution Xε
t (x)

of

dXε
t = AXε

t dt+DUε(X
ε
t ) dt, Xε

0 = x.

Denote the transition semigroup of Xε
t by P ε

t . Zambotti [Zam06, Theorem

2.1 and Proposition 3.2] proved the following results on convergence (we include

here only parts of the original result).

Theorem 5.5.5. Assume µ(K) > 0. Then

(1) There exists a semigroup Pt, t ≥ 0 on Cb(H) such that for every f ∈ C +
b (H),

x ∈ K, and t ≥ 0,

lim
ε→0

P ε
t f(x) = Ptf(x).

(2) For all x ∈ K there is a Markov process Xt, t ≥ 0, defined on a probability

space (Ω,Px) with state space K and transition semigroup Pt, t ≥ 0, such

that Px(X0 = x) = 1.
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(3) For all f1, . . . , fm ∈ Cb(H), 0 ≤ t1 ≤ . . . ≤ tm and x ∈ K,

lim
ε→0

Ex
[
f1(Xε

t1
) · · · fm(Xε

tm) = Ex
[
f1(Xt1) · · · fm(Xtm)

]
.

Remark 5.5.6. It is not known whether the limiting process of Xε
t solves the equa-

tion (5.37). It is the case only with additional information on U . For example, if

the following condition hold∫
H

(1 + |x|2)(1 + |∂0U(x)|) µ̃(dx) <∞,

where µ̃ = 1/Z · exp(−2U) dµ. We refer to [DPR02, Section 9] for details (note

that there is an erratum [DPR09] to [DPR02]).

For the semigroup Pt defined in Theorem 5.5.5, we have the following Harnack

inequality.

Theorem 5.5.7. For every x, y ∈ H, f ∈ C +
b (H), and α, β > 1 satisfying

1/α + 1/β = 1, the following inequality holds

(Ptf)α(x) ≤ exp

(
ωβ|x− y|2

e2tω−1

)
Ptf

α(y). (5.38)

Proof. Note that DUε is dissipative (see Lemma 5.5.9 which is appended at the

end of this section), we can apply Theorem 5.5.2 to P ε
t and get the following

Harnack inequality

(P ε
t f)α(x) ≤ exp

(
ωβ|x− y|2

e2tω−1

)
P ε
t f

α(y). (5.39)

Therefore, we can finish the proof by letting ε tend to 0 in (5.39).

Remark 5.5.8. We need to point out here that our work here is independent of the

recent work by Da Prato et al. [DPRW09]. The spirit is the same. We use Yosida

approximation and the result for Ornstein-Uhlenbeck process with Lipschitz per-

turbation. To some extend, our work is covered by theirs. The singular equations

considered in [DPRW09] is a direct generalization of the sub-differential inclu-

sion. We will consider Harnack inequalities for general multivalued stochastic

differential equations and stochastic evolution equations in Chapter 8.

Appendix We append here the following simple fact which is used in the

proof above.
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Lemma 5.5.9. Let U be a C 1 convex function on a real separable Hilbert space

H. Then −DU is dissipative, that is,

〈DU(x)−DU(y), x− y〉 ≥ 0, x, y ∈ H.

Proof. Since U is convex, for every λ ∈ (0, 1) and x, y ∈ H, we have

U(λx+ (1− λ)y) ≤ λU(x) + (1− λ)U(y).

Hence we get
U(λ(x− y) + y)− U(y)

λ
≤ U(x)− U(y). (5.40)

Let λ goes to 0 in (5.40) we obtain

〈DU(y), x− y〉 ≤ U(x)− U(y). (5.41)

Similarly, we have

〈DU(x), y − x〉 ≤ U(y)− U(x). (5.42)

Now we can complete the proof by adding (5.41) and (5.42).

5.6 Appendix

5.6.1 Finite Dimensional Approximation

This section is a complement mainly for the readers who are interested at finite

dimensional case and who want to have a look of the proof by simple calculus.

We aim to re-prove the Harnack inequality (5.10) for the Gaussian Ornstein-

Uhlenbeck transition semigroup (with some additional condition) in Hilbert space

by finite dimension approximation.

Finite Dimensional Case Consider the following stochastic differential equa-

tion on Rn

dXt = AX dt+B dWt, X0 = x, (5.43)

where A and R are n× n matrices on Rn and Wt is a Wiener process on Rd. Let

St = exp(tA) for each t ≥ 0. Then the adjoint operator of St is S∗t = exp(tA∗).
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The solution to the equation (5.43) is given by

Xt = Stx+

∫ t

0

St−sB dWs.

Set R = BB∗ and

Qt =

∫ t

0

SuRS
∗
u du, t ≥ 0.

Denote µt = N(0, Qt). It is clear that the distribution of
∫ t

0
St−sdWs is µt and

hence the distribution of Xt is N(Stx,Qt). Hence the associated transition semi-

group of Xt is given by

Ptf(x) =

∫
Rn
f(Stx+ y)µt(dy), x ∈ Rd, f ∈ C +

b (Rn).

For simplicity we assume the following assumption.

Assumption 5.6.1. The covariance matrix Qt is non-degenerate.

With Assumption 5.6.1, the determinant of Qt is positive and hence for any

a ∈ Rn, the Gaussian measure N(a,Qt) is absolute continuous with respect to

the Lebesgue measure on Rn. Moreover, we have

dN(a,Qt)

dx
(x) =

1

(2π)n/2(detQt)1/2
exp

(
−1

2

〈
Q−1
t (x− a), x− a

〉)
. (5.44)

Now we have the following explicit formula for the transition semigroup Pt which

is due to Kolmogorov ([Kol34])

Ptf(x) =
1

(2π)n/2(detQt)1/2

∫
Rn
f(Stx+ z) exp

(
−1

2

〈
Q−1
t z, z

〉)
dz.

Thanks for this explicit formula, we can prove the following Harnack inequality

easily.

Proposition 5.6.2. Assume that Qt is non-degenerate for every t > 0. Let

Γt = Q
−1/2
t St. Then

(Ptf)α(x) ≤ exp

(
β

2
|Γt(x− y)|2

)
Ptf

α(y) (5.45)

holds for every t > 0, x, y ∈ Rd, f ∈ C +
b (Rd) and α, β > 1 satisfying 1/α+1/β =

1.
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Proof. From (5.44) we know N(St(x− y), Qt) is absolute continuous with respect

to N(0, Qt) and the Radon-Nykodým derivative is given by

dN(St(x− y), Qt)

dN(0, Qt)
(z) = exp

(
−1

2

∣∣∣Q−1/2
t St(x− y)

∣∣∣2 +
〈
Q−1
t z, St(x− y)

〉)
.

By a change of variable and the formula above we have

Ptf(x) =

∫
Rd
f(Stx+ z)µt(dz)

=

∫
Rd
f(Sty + z)

dN(St(x− y), Qt)

dN(0, Qt)
µt(dz)

=

∫
Rd
f(Sty + z) exp

(〈
Q−1
t z, St(x− y)

〉
− 1

2

∣∣∣Q−1/2
t St(x− y)

∣∣∣2) µt(dz).

Applying Hölder’s inequality, we have

Ptf(x) ≤ exp

(
−1

2
|Γt(x− y)|2

)(∫
Rd
fα(Sty + z)µt(dz)

)1/α

(∫
Rd

exp
[
β
〈
Q−1
t z, St(x− y)

〉])1/β

= exp

(
β − 1

2
|Γt(x− y)|2

)(
Ptf

α(y)
)1/α

Infinite Dimensional Case Now we come back to the infinite dimensional

settings. Consider the following linear stochastic partial differential equation on

a real separable Hilbert space H,

dXt = AXt +BdWt, X0 = x ∈ H. (5.46)

where A is the generator of some strongly continuous contraction semigroup

(St)t≥0 on H, B is a bounded linear operator on H, and (Wt)t≥0 is a cylindri-

cal Wiener process on H.

Set R = BB∗. Fix T > 0. For any 0 ≤ t ≤ T , set

Qt =

∫ t

0

SuRS
∗
u du.

We suppose that QT is of trace-class and non-degenerate. Now we prove Theorem
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5.10 by using Proposition 5.6.2.

Let {en}n∈N be an orthogonal normal basis of H. For each n ∈ N, denote by

Pn the orthogonal projector on the span of {e1, e2, . . . , en}. In other words, the

projection mapping P is defined by

Pnx =
n∑
k=1

〈x, ek〉ek x ∈ H.

Consider the following finite dimensional stochastic differential equation

dX
(n)
t = A(n)Xt +B(n) dW

(n)
t

on Pn(H), where A(n) = PnA, B(n) = PnB, and W
(n)
t = PnWt for every 0 ≤ t ≤

T .

Let S
(n)
T := exp(tA(n)), R(n) = B(n)(B(n))∗ and

Q
(n)
T :=

∫ T

0

S(n)
u R(n)S(n)

u du

for every t ≥ 0. Then we have S
(n)
T = PnST and Q

(n)
T = PQT .

We know Q
(n)
T is non-degenerate since QT is so. Therefore, by Proposition

5.6.2, we have the following Harnack inequality for the transition semigroup of

X(n) which is equal to P
(n)
T := PPT :

(P
(n)
T f (n))α(x(n)) ≤ exp(

β

2
|Γ(n)
T (x− y)|2)P

(n)
T (f (n))α(y(n)),

where f (n) = Pnf , x(n) = Pnx, y(n) = Pny and Γ
(n)
T = (Q

(n)
T )−1/2S

(n)
T .

Let n goes to infinity, we can finish the proof.

5.6.2 Representations of Ornstein-Uhlenbeck Semigroups

We consider the Ornstein-Uhlenbeck transition semigroup introduced in Section

5.2. Assume that Qt is of trace class for all t ≥ 0. Recall that the semigroup is

given by

Ptf(x) =

∫
H

f(Stx+ y)µt(dy), x ∈ H, t ≥ 0, f ∈ Cb(H).

Here µt = N(0, Qt).
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If St(H) ⊂ Q
1/2
t (H) for all t > 0, then NStx,Qt � NQt . By Cameron-Martin

formula, we get

Ptf(x) =

∫
H

f(y)d(t, x, y)µt(dy)

where

d(t, x, y) =
dNStx,Qt

dNQt

(y) = exp

(
〈Γtx,Q−1/2

t y〉 − 1

2
‖Γtx‖2

)
.

If Q∞ is of trace class, then the transition semigroup Pt has an invariant

measure µ = NQ∞ . Assume that St(H) ⊂ Q
1/2
t (H) for all t. Then we also have

St(H) ⊂ Q
1/2
∞ (H) since Q

1/2
t (H) = Q

1/2
∞ (H) for all t > 0 (see [DPZ02, Appendix

B.1]). This leads us to the following formula

Ptf(x) =

∫
H

f(y)k(t, x, y)µ(dy)

where

k(t, x, y) =
dNStx,Qt

dNQ∞

(y) = d(t, x, y)
dNQt

dNQ∞
.

See [DPZ02, Equation (10.3.7)] for the tedious formula for k(t, x, y).

Chojnowska-Michalik and Goldys [CMG96, Section 3, Theorem 1] obtained

the following Mehler formula by using the second quantization,

Pt =

∫
H

f

(
Stx+Q1/2

∞

√
1−Q1/2

∞ StQ∞S∗tQ
−1/2
∞ Q−1/2

∞ y

)
µ(dy). (5.47)

See also in the book Da Prato and Zabczyk [DPZ02, Section 10.4].

Remark 5.6.3. Formula (5.47) is a generalization of the classical Mehler formula.

Recall that for one dimensional Ornstein-Uhlenbeck process

Xt = x e−κt + e−κt
∫ t

0

e−κs dWs,

we have the following classical Mehler semigroup

Ptf(x) =

∫
R

f(e−κt x+
√

1− e−2κty) γ(dy). (5.48)

Here γ is the standard Gaussian measure on R.

Here we aim to show another Mehler formula, from which we can also get

(5.47) for the Ornstein-Uhlenbeck semigroup by direct calculation.

First we show a proposition.
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Proposition 5.6.4. Let µ be a Gaussian measure with covariance Q. Then for

every bounded operator S, the covariance of µ ◦ S−1 is SQS∗.

Proof. For every h, k ∈ H, we have∫
H

〈h, x〉〈k, x〉µ ◦ S−1(dx) =

∫
H

〈h, Sx〉〈k, Sx〉µ(dx)

=

∫
H

〈S∗h, x〉〈S∗k, x〉µ(dx) = 〈QS∗h, S∗k〉 = 〈SQS∗h, k〉.

Now we come to a representation of the Ornstein-Uhlenbeck transition semi-

group.

Proposition 5.6.5. For every f ∈ Cb(H), t ≥ 0, x ∈ H

Ptf(x) =

∫
H

f(Stx+Q
1/2
t Q−1/2

∞ y)µ(dy). (5.49)

Proof. Let T = Q
1/2
t Q

−1/2
∞ . By Proposition 5.6.4, we have∫

H

f(Stx+ Ty)µ(dy) =

∫
H

f(Stx+ y)µ ◦ T−1(dy)

=

∫
H

f(Stx+ y)NTQ∞T ∗(dy)

=

∫
H

f(Stx+ y)NQt(dy)

= Ptf(x).

Remark 5.6.6. Note the following relation

Qt = Q∞ − StQ∞S∗t (5.50)

for all t ≥ 0, we can verify that Q
1/2
∞

√
1−Q1/2

∞ StQ
1/2
∞ S∗t , in the Mehler formula

(5.47), is a square root of Qt. Therefore, we can reproduce (5.47) by applying

Proposition 5.6.5.

Remark 5.6.7. The formula (5.50) can be obtained from the following relationship

between Qt and St by letting s→∞

Qt + StQsS
∗
t = Qt+s, s, t ≥ 0. (5.51)
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We can compute (5.51) directly as shown in the following. For every s, t ≥ 0,

Qt+s =

∫ t+s

0

SuRS
∗
u du =

∫ t

0

SuRS
∗
u du+

∫ t+s

t

SuRS
∗
u du

= Qt +

∫ t+s

t

SuRS
∗
u du = Qt +

∫ s

0

St+uRS
∗
t+u du

= Qt + St

∫ s

0

St+uRS
∗
u duS

∗
t = Qt + StQsS

∗
t .



Chapter 6

Harnack Inequalities for

Ornstein-Uhlenbeck Semigroups:

Two Other Gaussian Cases

In the previous chapter, we have considered Harnack inequalities for Ornstein-

Uhlenbeck processes driven by Wiener processes. In this chapter, we study Har-

nack inequalities for other Gaussian Ornstein-Uhlenbeck semigroups. We still use

the Cameron-Martin formula to establish Harnack inequalities.

In Section 6.1, we show Harnack inequalities for the “formal” transition semi-

group of fractional Orntein-Uhlenbeck processes. In Section 6.2, we establish Har-

nack inequalities for Ornstein-Uhlenbeck semigroups on general Gaussian proba-

bility spaces.

6.1 Harnack Inequalities for Fractional Orntein-

Uhlenbeck Processes

Stochastic (partial) differential equations driven by fractional Brownian motions

have met great interest during the last years. We refer to the monograph by

Biagini et al. [BØSW04] for topics related to fractional Brownian motion. For

linear stochastic equations in Hilbert spaces with a fractional Brownian motion,

we refer to Pasik-Ducan et al. [PDDM06] and references therein.

We first shortly introduce fractional Brownian motions and stochastic inte-

grals with respect to fractional Brownian motions. Then we introduce fractional

Ornstein-Uhlenbeck semigroups and Harnack inequalities for the semigroups.
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6.1.1 Fractional Brownian Motions and Stochastic Inte-

grals

Real Fractional Brownian Motions Case

Definition 6.1.1. A real fractional Brownian motion (βH(t))0≤t≤T with Hurst

parameter H ∈ (0, 1) is a centered Gaussian process with covariance

φ(t, s) =
VH
2

(
t2H + s2H − |t− s|2H

)
where

VH =
Γ(2− 2H) cos(πH)

πH(1− 2H)
.

For every H ∈ (0, 1) and 0 ≤ s ≤ t ≤ T , define

KH(t, s) =
(t− s)H− 1

2

Γ(H + 1
2
)
F

(
1

2
−H,H − 1

2
, H +

1

2
, 1− t

s

)
,

where F (·, ·, ·, ·) is the Gauss hyper-geometric function.

Then we have the following representation for fractional Brownian motion

βH(t) =

∫ t

0

KH(t, u) dβ(u), 0 ≤ s ≤ T,

where (β(u))0≤t≤T , is a standard real valued Brownian motion.

Let H be a real separable Hilbert space. We shall describe the stochastic

integral of deterministic H-valued function with respect to a real valued fractional

Brownian motion. It is similar to the integral with respect to Wiener process

introduced in Section 1.3.

Denote by E the space of all H-valued step functions on [0, T ]. Let φ ∈ E

with

φ(t) =
n−1∑
i=1

xi1[ti,ti+1)(t),

where xi ∈ H, i = 1, 2, . . . , n− 1 and 0 = t1 < . . . < tn = T with n ∈ N.

Define ∫ T

0

φ(t) dβH(t) =
n−1∑
i=1

xi
(
βHi (ti+1)− βH(ti)

)
. (6.1)
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It follows that

E

∣∣∣∣∫ T

0

φH(t) dβH(t)

∣∣∣∣2 = |K *
H φ|2L2([0,T ],H), (6.2)

where

K *
H φ(t) = φ(t)KH(T, t) +

∫ T

t

(
φ(u)− φ(t)

)∂KH

∂u
(u, t) du, 0 ≤ t ≤ T.

By the isometry (6.2), we can extend the stochastic integral (6.1) from the func-

tion φ ∈ E to the function φ ∈ Ē . Here Ē is the completion of E with the inner

product

〈φ, ψ〉H := 〈K *
H φ,K *

H ψ〉L2([0,T ],H)

for every φ, ψ ∈ E .

Cylindrical Fractional Brownian motions Case

Now we are going to introduce the cylindrical fractional Brownian motions on a

Hilbert space. A usual way is to define it similarly as the definition of cylindrical

Wiener processes. We use the following method which is short.

Definition 6.1.2. Let (Ω,F ,P) be a complete probability space. A cylindrical

process 〈WH , ·〉 : Ω×[0, T ]×H→ R on (Ω,F ,P) is called a (standard) cylindrical

fractional Brownian motion with Hurst parameter H ∈ (0, 1) if

(1) For every x ∈ H, x 6= 0, 〈WH(·), x|x|〉 is a real valued fractional Brownian

motion with Hurst parameter H.

(2) For every 0 ≤ t ≤ T , 〈WH(t), ·〉 is linear. That is,

〈WH(t), px+ qy〉 = p〈WH(t), x〉+ q〈WH(t), y〉, P–a.s.

for every p, q ∈ R and x, y ∈ H.

Let {en}n∈N be a complete orthogonal normal basis of H. For every n ∈ N, let

βHn (·) = 〈WH(·), en〉. Then {βn}n∈N is an independent sequence of real fractional

Brownian motion with Hurst parameter H.

Definition 6.1.3. For every 0 ≤ t ≤ T , let Φ(t) be a linear bounded operator on

H and define φn(t) = Φ(t)en for n ∈ N. Suppose that φn ∈ Ē . Then we define∫ T

0

Φ(t) dWH(t) =
∞∑
n=1

∫ T

0

φn(t) dβHn (t) (6.3)
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provided the infinite series on the right hand side of (6.3) converges in L2(Ω).

The following proposition is from [PDDM06, Proposition 11.3, Remark 11.4].

Proposition 6.1.4. Let

QHT,Φ =

∫ T

0

K ∗
HΦ(t)

(
K ∗
HΦ(t)

)∗
dt.

If QHT,Φ is a trace class operator on H, then the stochastic integral (6.3) is a

well-defined centered Gaussian H-valued random variable with covariance QHT,Φ.

6.1.2 Fractional Ornstein-Uhlenbeck Processes and Har-

nack Inequalities

Consider the following linear stochastic partial differential equation on H

dXt = AXtdt+BdWH
t (6.4)

with X0 = x and t ∈ [0, T ], where B is a bounded linear operator on H, A is the

generator of some strongly continuous semigroup (St)0≤t≤T on H, (WH
t )0≤t≤T is

an H-valued cylindrical fractional Brownian motion with Hurst parameter H ∈
(0, 1).

Define

QH
T =

∫ T

0

K ∗
HSuB

(
K ∗
HSuB

)∗
du.

By Proposition 6.1.4, if QH
T is of trace class, i.e., if

TrQH
T =

∫ T

0

Tr
(
K ∗
HSuBB

∗S∗uKH

)
du <∞.

then the stochastic equation (6.4) has a mild solution

Xt = Stx+

∫ t

0

St−sB dWH
s , 0 ≤ t ≤ T.

We call it fractional Ornstein-Uhlenbeck process.

Note that Xt is Gaussian distributed as µHt := N(0, QH
T ). Similar to (5.8),

the representation of the transition semigroups for Ornstein-Uhlenbeck processes

driven by Wiener processes, we can formally define the “transition semigroup” of
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fractional Ornstein-Uhlenbeck process by

Ptf(x) =

∫ t

0

f(Stx+ y) dµHt (y),

for every f ∈ Cb(H).

By applying the Cameron-Martin formula (see Theorem 1.2.2), we have the

following Harnack inequality which is similar to (5.10) for Ornstein-Uhlenbeck

processes driven by Wiener processes. The proof is also similar to the proof of

Theorem 5.10.

Theorem 6.1.5. Let T > 0. Assume that the operator QH
T is of trace class. Let

x, y ∈ H such that ST (x− y) ∈ (QH
T )1/2(H). Then

(PTf)α(x) ≤ exp

(
β

2
|ΓHT (x− y)|2

)
PTf

α(y), (6.5)

for every f ∈ C +
b (H), and every α, β > 1 satisfying 1/α + 1/β = 1. Here

ΓHT =
(
QH
T

)−1/2
ST .

Remark 6.1.6. Similar to the treatment in Chapter 5 on the Harnack inequalities

for Ornstein-Uhlenbeck processes driven by Wiener processes, we can consider the

estimates of ‖ΓHT ‖ as in Subsection 5.2.2; and hence we can get estimates of the

Harnack inequalities for fractional Ornstein-Uhlenbeck processes as in Subsection

5.2.2. We can also study examples as in Section 5.4.

6.2 Harnack Inequalities for Ornstein-Uhlenbeck

Semigroups on Gaussian Probability Spaces

We first recall the definition of Gaussian probability spaces, numerical model

for Gaussian probability spaces and the Cameron-Martin theorem on Gaussian

probability spaces in Subsection 6.2.1; Then we introduce Ornstein-Uhlenbeck

semigroups and Harnack inequalities for them in Section 6.2.2.

We refer to the books [Mal97, HY97, HY00, Nua06] for more detailed back-

ground on Gaussian probability spaces and Ornstein-Uhlenbeck semigroups.
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6.2.1 Gaussian Probability Spaces and Numerical Models

Gaussian Probability Spaces

Definition 6.2.1. Let (Ω,F , µ) be a complete probability space and H a real

separable Hilbert space. Suppose that H = {Wh : h ∈ H} is a family of Gaussian

random variables such that for all h, g ∈ H

E(Wh) = 0 and E(WhWg) = 〈h, g〉H. (6.6)

Then we call (Ω,F , µ;H) a Gaussian probability space.

There are some typical Gaussian probability spaces. For example, abstract

Wiener spaces, white noise spaces. In the following we just recall the classical

Wiener space.

Example 6.2.2. Let W = C0([0, 1],Rd) be the space of Rd-valued continuous

functions on [0, 1] with initial value 0. Equipped with the uniform norm ‖w‖∞ :=

supt∈[0,1] |w(t)|Rd for every w ∈ W, the path space W turns into a separable

Banach space.

Let µ be a Wiener measure on W and F the µ-completion of the Borel σ-

algebra of W. Set H := L2[0, 1]. For every h ∈ H, define a mapping Wh on W

by

Wh(w) =

∫ 1

0

h(t) dw(t), w ∈W

according the usual stochastic integrals with respect to Wiener processes. Then

H = {Wh : h ∈ H} is a family of Gaussian random variables satisfying the

conditions in (6.6). Hence (Ω,F , µ;H) is Gaussian probability space.

The mapping J : H→W, h 7→ h̃(·) =
∫ ·

0
h(s) ds for 0 ≤ t ≤ 1 is a continuous

linear injective. Then H̃ = J(H) is the Cameron-Martin space of W. We call

(W,F , µ; H̃) the classical Wiener space. .

Assumption 6.2.3 (Irreducible Assumption). In this section, we will always

assume that every Gaussian probability space is irreducible. That is, F = σ(F 0∪
N ), where F 0 = σ{Wh, h ∈ H} and N is the set of all µ-zero sets.

Numerical Models and The Cameron-Martin Theorem

Denote by

γ(du) = (2π)−1/2 exp(−u2/2) du
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the standard Gaussian measure on (R,B(R)), where B(R) is the Borel σ-algebra

of R.

For every h ∈ R, define Wh(x) = hx for all x ∈ R. It is obvious that {Wh, h ∈
R} is a family of Gaussian random variables satisfying (6.6). So (R,B(R), γ;R)

is a one-dimensional Gaussian probability space.

Let Hn be the Hermite polynomial on R defined as

Hn(u) = (−1)n eu
2/2 dn

dun
e−u

2/2, u ∈ R, n ∈ N.

It is well known that {(n!)−1/2Hn : n ∈ N} consists of an orthogonal normal basis

of L2(R, γ).

Now let us consider (R∞,B∞, γ∞), which is the infinite product space of

(R,B(R), γ). For any nonnegative integer sequence λ = {λj}j∈N, denote

|λ| =
∑
j

λj, λ! =
∏
j

(λj!),

Λn = {λ ∈ R∞ : |λ| = n}, Λ = {λ ∈ R∞ : |λ| <∞}.

For any λ ∈ Λ, define

Hλ(x) =
∏
j

Hλj(xj), x = {xj} ∈ R∞.

Then {(λ!)−1/2Hλ : λ ∈ Λ} is an orthogonal normal basis of L2(R∞,B∞, γ∞).

Let Ln = Span{Hλ : λ ∈ Λn}. Then we see

L2(R∞,B∞, γ∞) =
∞⊕
n=0

Ln.

Fixing an orthogonal normal basis {hj}j∈N of H, we see H ∼= l2, where

l2 :=
{
{lj} :

∑
j

l2j <∞
}
.

Define

T : Ω→ R∞, Tω = {Whj(ω)}j∈N.

Then T is F/B∞ measurable and γ∞ = µ ◦ T−1.

We call the Gaussian probability space (R∞,B∞, γ∞; l2) a numerical model of
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(Ω,F , µ).

Define

L∞− =
⋂

1<p<∞

Lp(Ω,F , µ), and L1+ =
⋃

1<p<∞

Lp(Ω,F , µ)

respectively by projective limit and inductive limit.

For any 1 ≤ p ≤ ∞, φ ∈ Lp(R∞,B∞, γ∞), set T∗φ(ω) = φ(Tω).

6.2.2 Ornstein-Uhlenbeck Semigroups

Let (Ω,F , µ;H) be a Gaussian probability space. Fix an orthogonal normal basis

{hj}j∈N on H. For any λ ∈ Λ, set

H̃λ(ω) =
∞∏
j=1

Hλj(Whj(ω)).

Then {(λ!)−1/2H̃λ : λ ∈ Λ} consists of an orthogonal normal basis of L2(Ω,F , µ).

Denote L̃0 = R and L̃n the space spanned by {H̃λ : λ ∈ Λn}. Then we have

L2(Ω,F , µ) =
∞⊕
n=0

L̃n.

Denote by Jn the orthogonal projection from L2(Ω,F , µ) to L̃n.

Definition 6.2.4. We call

Pt :=
∞∑
n=0

e−nt Jn, t ≥ 0

the Ornstein-Uhlenbeck semigroup on L2(Ω,F , µ).

Remark 6.2.5. It is possible to study the following semigroup which is a slight

generalization of the Ornstein-Uhlenbeck semigroup defined by Pt =
∑∞

n=0 ρnJn
for t ≥ 0 and some reasonable real sequence ρ = {ρn}.

The following proposition is from [HY00, Chapter 2, Proposition 3.4].

Proposition 6.2.6. Let PR
∞

be the Ornstein-Uhlenbeck semigroup on the nu-
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merical model (R∞,B∞, γ∞; l2). Then

(PR
∞

t f)(x) =

∫
R∞

f(e−t x+
√

1− e−2t z) γ∞(dz) (6.7)

for every t > 0, x ∈ R∞ and f ∈ L2(R∞,B∞, γ∞).

Since the definition of Ornstein-Uhlenbeck semigroup does not dependent on

the choice of the basis of H (it is called intrinsic property in the literatures, see for

instance [Mal97]) , the Mehler formula (6.7) for Ornstein-Uhlenbeck semigroup

on the numerical model can be regarded as an equivalent definition of Ornstein-

Uhlenbeck semigroup on the general Gaussian probability space.

For Ornstein-Uhlenbeck semigroup on general Gaussian probability space, we

have the following Mehler formula. We refer to a proof in Nualart [Nua06, Section

1.4].

Proposition 6.2.7. For each f ∈ L2(Ω,F , µ), there exist some B∞/B-measurable

function ψf : R∞ → R such that f = ψf ◦T := (T−1
∗ f)◦T . Then for every ω ∈ Ω

and t ≥ 0, the Ornstein-Uhlenbeck semigroup on L2(Ω,R, µ) can be written as

Ptf(ω) =

∫
Ω

T−1
∗ f(e−t Tω +

√
1− e−2tTω′)µ(dω′)

=

∫
R∞

ψf (e
−t Tω +

√
1− e−2tz) γ∞(dz).

Now we have the following connection between the Ornstein-Uhlenbeck semi-

groups on general Gaussian probability spaces and the corresponding semigroups

on numerical models.

Proposition 6.2.8. Let Pt be the Ornstein-Uhlenbeck semigroup on the Gaussian

probability space (Ω,F , µ;H) and let PR
∞

t be corresponding Ornstein-Uhlenbeck

semigroup on the numerical model (R∞,B∞, γ∞; l2). Then for every t ≥ 0

Pt = T∗ ◦ PR
∞

t ◦ T−1
∗ .

Proof. For any f ∈ L2(Ω), we have

T∗ ◦ PR
∞

t ◦ T−1
∗ f(ω) = PR

∞

t ◦ (T−1
∗ f)(Tω)

=

∫
R∞

T−1
∗ f(e−t Tω +

√
1− e−2tz)µ(dz) = Ptf(ω).
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Remark 6.2.9. Proposition 6.2.7 is in a slight different form with the one in Nu-

alart [Nua06, Section 1.4]. Proposition 6.2.8 is summarized by the author.

6.2.3 Harnack Inequalities and Examples

We first recall the Cameron-Martin theorem on Gaussian probability spaces.

By using the mapping

T∗ : L1+(R∞,B∞, γ∞)→ L1+(Ω,F , µ)

we can define a shift operator on L1+(Ω,F , µ) by

%h = T∗ ◦ τJ(h) ◦ T−1
∗ , h ∈ H.

Here τ is the shift operator of functionals on R∞.

We have the following the Cameron-Martin theorem. We refer to [HY00,

Theorem 2.5] for a proof.

Theorem 6.2.10. Define an exponential functional by

E (h) = exp(Wh −
1

2
|h|2H), for every h ∈ H.

Then E (h) ∈ L∞− and

‖E (h)‖p ≤ exp

(
p− 1

2
|h|2
)
, 1 < p <∞.

Moreover, for every f ∈ L1+, we have

E(%hf) = E(E (h)f), h ∈ H.

Now we can prove a Harnack inequality for the Ornstein-Uhlenbeck semi-

groups on the numerical model.

Theorem 6.2.11. Let PR
∞

t be the Ornstein-Uhlenbeck semigroup for numerical

model. For any x, y ∈ R∞, we define

ρ(x, y) =

|x− y|l2 , if x− y ∈ l2;

+∞, otherwise.
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Then for any x, y ∈ R∞, t ≥ 0, α, β > 1 satisfying 1/α + 1/β = 1, and for any

nonnegative f ∈ L2(R∞,B∞, γ∞) we have

(PR
∞

t f)α(x) ≤ exp

(
βρ(x, y)2

2(e2t−1)

)
PR

∞

t fα(y).

Proof. We only need to consider the case x− y ∈ l2. For simplicity, we set

σt =
e−t√

1− e−2t
=

1√
e2t−1

.

PR
∞

t f(x) =

∫
R∞

f(e−t x+
√

1− e−2ty) γ∞(dz)

=

∫
R∞

f

(
e−t y +

√
1− e−2t

[
z +

e−t(x− y)√
1− e−2t

])
γ∞(dz)

=

∫
R∞

f(e−t y +
√

1− e−2tz)·

exp

(
σt〈z, x− y〉l2 −

σ2
t

2
|x− y|l2

)
γ∞(dz)

≤
[∫

R∞
fα(e−t y +

√
1− e−2tz) γ∞(dz)

]1/α

·[∫
R∞

exp

(
βσt〈z, x− y〉l2 −

βσ2
t

2
|x− y|l2

)
γ∞(dz)

]1/β

= exp

(
(β − 1)σ2

t |x− y|l2
2

)
(PR

∞

t fα)1/α(y).

Following from Theorem 6.2.11, we have the following Harnack inequality for

the Ornstein-Uhlenbeck semigroup on a general Gaussian probability space.

Theorem 6.2.12. Let Pt be the Ornstein-Uhlenbeck semigroup on L2(Ω,F , µ).

For any ω1, ω2 ∈ Ω, we define

ρ(ω1, ω2) :=

|Tω1 − Tω2|l2 , if Tω1 − Tω2 ∈ l2;

+∞, otherwise.

Then for any ω1, ω2 ∈ Ω, t ≥ 0, α, β > 1 satisfying 1/α + 1/β = 1, and for any

nonnegative f ∈ L2(Ω,F , µ) we have

(Ptf)α(ω1) ≤ exp

(
βρ(ω1, ω2)2

2(e2t−1)

)
Ptf

α(ω2).
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Example 6.2.13 (Harnack Inequality for Ornstein-Uhlenbeck Semigroup on

Classical Wiener Space). We continue with Example 6.2.2. Consider the Ornstein-

Uhlenbeck semigroup Pt on the classical Wiener space (W,F , µ; H̃).

Recall that the Cameron-Martin space H̃ consists of all absolutely continuous

function h : [0, 1] → Rd with a square integrable derivative. The inner product

of H̃ is defined by

〈h1, h2〉eH :=

∫ 1

0

ḣ1(s)ḣ2(s) ds, h1, h2 ∈ H̃.

The intrinsic distance ρ on (W,F , µ; H̃) is defined by

ρ(w1, w2) :=

〈w1 − w2, w1 − w2〉1/2, if w1 − w2 ∈ H̃
∞, otherwise

for all w1, w2 ∈W.

Then for any w1, w2 ∈ W, t ≥ 0, α, β > 1 satisfying 1/α + 1/β = 1, and for

any nonnegative f ∈ C +
b (W) we have

(Ptf)α(w1) ≤ exp

(
βρ(w1, w2)2

2(e2t−1)

)
Ptf

α(w2).

By using semigroup calculus, Shao [Sha07] also studied the Harnack inequal-

ities for the Ornstein-Uhlenbeck semigroups on Wiener spaces.



Chapter 7

Harnack Inequalities for

Ornstein-Uhlenbeck Processes

Driven by Lévy Processes

In this chapter, we devote our studies to Harnack inequalities for Ornstein-

Uhlenbeck processes with Lévy noise. There are three methods available to prove

Harnack inequalities: semigroup calculus, measure transformations on the state

spaces and measure transformations on the probability spaces. Röckner and Wang

[RW03a] used the first two methods and obtained some Harnack inequalities for

generalized Mehler semigroups which are naturally associated with Lévy driven

Ornstein-Uhlenbeck processes. We present their methods and results in Sections

7.2 and 7.3 respectively. By the first method, only second order Harnack inequal-

ities were able to be obtained. While Harnack inequalities established by the

second method are not explicit in general.

In Section 7.3, we apply the measure transformation on the state space for

Lévy Ornstein-Uhlenbeck semigroups more concretely. We also use this method

to establish Harnack inequalities for α-stable Ornstein-Uhlenbeck process and

Markov Chains.

In Section 7.4, by using coupling and Girsanov’s transformation, we show

Harnack inequalities for Ornstein-Uhlenbeck processes with Lévy noise. The in-

equalities we prove are more general and sharper than the ones proved in [RW03a]

In Section 7.5 we consider the applications of Harnack inequalities. We mainly

study regularizing properties, heat kernel bounds and hyperboundedness of the

Lévy Ornstein-Uhlenbeck semigroup.
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7.1 Lévy Driven Ornstein-Uhlenbeck Processes

Let H be a real separable Hilbert space with inner product 〈·, ·〉 and norm | · |.
Let R be a trace class operator on H. In this chapter, as before, we always use

the notation H0 = R1/2(H) for the Cameron-Martin space of H, 〈·, ·〉0 and | · |0
for the natural inner product and norm on H0 respectively (refer to Section 1.1).

Fix T > 0. Consider the following generalized Langevin equation on [0, T ]

dXt = AXt + dZt, X0 = x ∈ H, (7.1)

where Zt is a Lévy process with characteristic triplet (b, R, ν), and A is the in-

finitesimal generator of a strongly continuous contraction semigroup (St)t≥0 on

H.

The mild (unique weak) solution of the stochastic differential equation (7.1)

is given by (see for example [Cho87, App06] etc.)

Xt = Stx+

∫ t

0

St−s dZs. (7.2)

We call this process the Lévy driven Ornstein-Uhlenbeck process.

The associated transition semigroup of Xt is given by

Ptf(x) =

∫
H

f(Stx+ y)µt(dy) (7.3)

for every x ∈ H and f ∈ Cb(H), where µt is the law of
∫ t

0
St−s dZs.

By Propositions 1.4.10, we know µt is infinitely divisible. Let λ be the char-

acteristic symbol of Zt. Then the Fourier transform of µt is given by

µ̂t(u) = exp

{
−
∫ t

0

λ(S∗ru) dr

}
, u ∈ H, (7.4)

Denote by (bt, Qt, νt) for the characteristic triplet of µt. By Corollary 1.4.11,

we have

bt =

∫ t

0

Srb dr +

∫ t

0

dr

∫
H\{0}

Srx
{
1{|x|≤1} (Srx)− 1{|x|≤1}(x)

}
dx, (7.5)

Qt =

∫ t

0

SrRS
∗
r dr, (7.6)
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νt =

∫ t

0

ν ◦ S−1
r dr. (7.7)

For a family of probability measures (µt)t≥0 on H, the semigroup of the form

(7.3) is called a generalized Mehler semigroup associated with St and µt. It can be

proved that (see for instance [Les01]) the generalized Mehler semigroup become

a Markov semigroup if and only if

µs+t(ξ) = µt ∗ (µs ◦ S−1
t ξ), s, t ≥ 0, ξ ∈ H.

Remark 7.1.1. The semigroup with the following property µs+t = µt ∗ (µs ◦ S−1
t ),

for every s, t ≥ 0 is called skew convolution semigroup. This is a generalization

the so called convolution semigroup (the case when Tt ≡ I) corresponding with

Lévy process. See the details of convolution semigroup in Page 27.

Under some slight condition, there is a natural one to one corresponding be-

tween generalized Mehler semigroup with Markov property and the transition

semigroup of Lévy driven Ornstein-Uhlenbeck processes. See [Les01] and refer-

ences therein for details.

Bibliographic Notes on Generalized Mehler Semigroup Mehler semigroup

is named after Mehler [Meh66]. Generalized mehler semigroup has been studied

extensively by Röckner and his collaborators in a series papers [BR95, BRS96,

FR00, Les01, LR02, Meh66]. See also the papers by Dawson and/or Li et al.

[DLSS04, DL06, Li06] etc. for the relation of generalized Mehler semigroup with

branching processes. We refer also to Page 96 for the bibliographic notes on

Ornstein-Uhlenbeck processes with Gaussian or Lévy noise.

7.2 Semigroup Calculus Approach

We work under the framework in Section 7.1 and consider the Lévy Ornstein-

Uhlenbeck semigroup Pt defined in (7.3).

In [RW03a], the following assumptions are used to establish Harnack inequal-

ities.

Assumption 7.2.1. (1) Pt has an invariant probability measure;

(2) There exists {xn}n≥1 ⊂ H consisting of eigenvectors of A∗ and separating

the points of H;

(3) For every t ≥ 0, StR(H) ⊂ R1/2(H) holds and there is a strictly positive
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h1 ∈ C[0,∞) such that

|StRx|0 ≤
√
h1(t)|Rx|0, x ∈ H, t ≥ 0.

Under Assumptions 7.2.1, Röckner and Wang [RW03a] proved the following

theorem on Harnack inequalities. Recall that we denote by ρ the intrinsic distance

on H induced by R.

Theorem 7.2.2. Assume Assumption 7.2.1 holds. Then

(Ptf)2(x) ≤ exp

(
ρ(x, y)2∫ t

0
h1(s)−1 ds

)
Ptf

2(y) (7.8)

holds for every x, y ∈ H, t > 0 and f ∈ C +
b (H). In particular, for the diffusion

case, i.e., when ν = 0,

(Ptf)α (x) ≤ exp

(
βρ2(x, y)

2
∫ t

0
h1(s)−1 ds

)
Ptf

α(y). (7.9)

holds for every α, β > 1 with 1/α + 1/β = 1.

The approach used in [RW03a] to prove Theorem 7.2.2 is semigroup calculus.

In the following we just sketch the idea of the proof.

When ν = 0, the generator is a diffusion operator. Then by chain rule, we

can take derivative of the following function

s 7→ logPt−s(Psf)α(xs) (7.10)

with respect to s. Here xs for s ∈ [0, t] is a geodesic connecting x and y on H.

When ν 6= 0, the generator of the semigroup Pt has the following form

A f(x) = 〈Df(x), b+ Ax〉+
1

2
Tr(RD2f(x))

+

∫
H\{0}

[f(x+ y)− f(x)− 〈Df(x), y〉1{|x|>1}(y)] ν(dy).

for regular enough function f .

This generator A is not a diffusion operator and hence the chain rule doesn’t

work. But Röckner and Wang still can get an estimate of the derivative of the

function (7.10) for the special case α = 2. They used the following explicit
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formula for the square field operator

Γ(f, f) :=
1

2
(A f 2−2fA f) =

1

2

(
〈RDf,Df〉+

∫
H

[f(·)−f(·+y)]2ν(dy)

)
(7.11)

for regular enough function f (see [LR02, Propostion 4.1] for details).

From (7.11), it is obvious to see that Γ(f, f) ≥ 1
2
〈RDf,Df〉. Therefore, the

Lévy case is reduced to the Gaussian case. So it is also clear why the exponent of

the coefficient in the Harnack inequality (7.8) is independent of the Lévy measure

ν.

In the spirit of semigroup calculus, one may try to use the martingale ex-

pansion method to calculate the derivatives. This method is used by Kawabi

[Kaw04, Kaw05] for diffusions. In the following we point out the difficulty of this

method for the jump case.

Let f be a function in some nice class. Consider

H(r1, r2, r3) : (0, t)× (0, t)× (0, t)→ Cb(H),

(r1, r2, r3) 7→ Pr1(Pt−r2f)α(xr3).

By the martingale expansion method, it is not hard to calculate

∂H

∂r1

,
∂H

∂r2

,
∂H

∂r3

.

Let G(s) = H(s, s, s) for s ∈ [0, t]. We want to calculate G′(s). For the diffusion

case we have

G′(s) =
3∑
i=1

∂H

∂ri
(r1, r2, r3)|r1=r2=r3=s.

But it is hard to prove the chain rule above for the jump case.

7.3 Approach by Using Measure Transforma-

tion on State Spaces

7.3.1 Main Theorem for Harnack Inequality

We still work under the framework introduced in Section 7.1 and consider the

Lévy Ornstein-Uhlenbeck semigroup (7.3).
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For the Gaussian case (i.e. ν = 0), we know µt is a Gaussian measure. By

using the Cameron-Martin formula for Gaussian measures, we proved a Harnack

inequality (5.10).

For the Lévy case (i.e. ν 6= 0), we still can use this method of measure

transformation on state spaces if we know the Radon-Nikodým derivative of the

infinite divisible measure with respect to its shifts. But unfortunately, there are

only a few results on the densities. There are some sufficient conditions for the

absolute continuity, “but formulae for the densities are not given, because none

have been found (Gikhman and Skorokhod [GS66, Section 6, Page 121]).”

For convenience, let us denote by D(m,R, ν) the infinite divisible measure

with characteristic triplet (m,R, ν) on (H,B). That is,

̂D(m,R, ν) = exp
{
i〈u,m〉 − 1

2
〈Ru, u〉

−
∫
H

[
1− exp(i〈x, u〉) + i〈x, u〉1{|x|≤1}(x)

]
ν(dx).

}
If D(γ,R, ν) is absolute continuous with respect to D(0, R, ν), then we will

denote the Radon-Nikodým derivative of D(γ,R, ν) with respect to D(0, R, ν) by

p(γ,R, ν, ·):
dD(γ,R, ν)

dD(0, R, ν)
(x) = p(γ,R, ν, x).

In terms of p(γ,R, ν, ·), we have the following results on the absolute continuity

and Radon-Nikodým derivative of D(b + γ,R, ν) with respect to D(b, R, ν) for

every b ∈ H.

Proposition 7.3.1. Suppose that D(γ,R, ν) is absolutely continuous with re-

spect to D(0, R, ν). Then D(b + γ,R, ν) is absolutely continuous with respect to

D(b, R, ν) and the Radon-Nikodým derivative is given by p(γ,R, ν, · − b).

Proof. For every A ∈ B(H), we have

D(b+ γ,R, ν)(A) =

∫
H

1A(x)D(b+ γ,R, ν)(dx)

=

∫
H

1A(x)
(
D(γ,R, ν) ∗D(b, 0, 0)

)
(dx)

=

∫
H

∫
H

1A(x+ y)D(γ,R, ν)(dx)D(b, 0, 0)(dy)

=

∫
H

1A(x+ b)D(γ,R, ν)(dx)
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=

∫
H

1A(x+ b)p(γ,R, ν, x)D(0, R, ν)(dx)

=

∫
H

1A(x)p(γ,R, ν, x− b)D(b, R, ν)(dx).

Now we can state the following Harnack inequality.

Theorem 7.3.2. Let x, y ∈ H. Suppose that the infinite divisible measure

D(St(x − y), Qt, νt) is absolute continuous with respect to the infinite divisible

measure D(0, Qt, νt). If there exists a β > 1 and t > 0 such that

Φt,β(x− y) := ‖p(St(x− y), Qt, νt, · − bt)‖Lβ(H,µt) <∞,

then

(Ptf)α(x) ≤ Φt,β(x− y)αPtf
α(y), f ∈ C +

b (H), (7.12)

where α = β
β−1

.

Proof. By the representation (7.3) of the Ornstein-Uhlenbeck semigroup, we have

Ptf(x) =

∫
H

f(Stx+ z)µt(dz)

=

∫
H

f(Sty + z)p(St(x− y), Qt, νt, z − bt)µt(dz)

≤
(∫

H

fα(Sty + z)µt(dz)

)1/α(∫
H

p(St(x− y), Qt, νt, z − bt)βµt(dz)

)1/β

=
(
Ptf

α(y)
)1/α

Φt,β(x− y).

This proves (7.12).

Remark 7.3.3. [RW03a, Theorem 1.5] which is in terms of the Radon-Nikodým

derivative ηt(x, ·):

ηt(x, z) :=
dµt ◦ θ−1

Stx

dµt
(z).

where for any x ∈ H, θx is the shift operator y 7→ x + y for any y ∈ H. In

Theorem 7.3.2, we note the fact that µt is an infinite divisible measure and we

base our theorem on the Radon-Nikodým derivative p(γ,R, ν, ·).
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7.3.2 Harnack Inequalities for α-Stable Ornstein-Uhlen-

beck Processes

Finite Dimensional α-Stable Ornstein-Uhlenbeck Processes

Let us consider the following stochastic differential equation{
dXt = −λXt dt+ dZt,

X0 = x ∈ Rd,
(7.13)

where Zt is a symmetric α-stable process with index α ∈ (0, 2), and λ > 0 is a

constant.

The mild solution of (7.13) is given by

Xt = e−λt x+

∫ t

0

eλ(u−t) dZu, t ≥ 0.

Denote the transition density of Xt by pα(t, x, y). It has the following connec-

tion with p̂α(·, ·, ·) (the transition density of SαS process) and p̂α(·) (the density

of α-stable random variable).

Proposition 7.3.4. For every α ∈ (0, 2) and t > 0, the transition density of Xt

is given by

pα(t, x, y) =p̂α

(
1− eαλt

αλ
, e−λt x, y

)

=p̂α

 y − e−λt x(
1−eαλt

αλ

)1/α

 .

Proof. We only need to note that by Proposition 1.4.10, the characteristic expo-

nent of
∫ t

0
eλ(u−t) dZu is given by

− logE exp
{
i

〈
ξ,

∫ t

0

eλ(u−t) dZu

〉}
=

∫ t

0

| eλ(u−t) ξ|α du = |ξ|α · 1− e−αλt

αλ

for every ξ ∈ Rd

In terms of the transition density pα(t, x, y), we can get the following Harnack
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inequality for the transition semigroup Pt of the α-stable Ornstein-Uhlenbeck

process Xt.

Theorem 7.3.5. For all t > 0, p, q > 1 with 1/p + 1/q = 1, and f ∈ C +
b (Rd),

the following inequality holds

(Ptf)p(x) ≤
[∫

Rd

(
pα(t, x, z)

pα(t, y, z)

)q
pα(t, y, z) dz

]p/q
Ptf

p(y).

Proof.

Ptf(x) =

∫
Rd
f(z)pα(t, x, z) dz

=

∫
Rd
f(z)

pα(t, x, z)

pα(t, y, z)
pα(t, y, z) dz

≤
[∫

Rd
fp(z)pα(t, y, z) dz

]1/p [∫
Rd

(
pα(t, x, z)

pα(t, y, z)

)q
pα(t, y, z) dz

]1/q

= [Ptf
p(y)]1/p

[∫
Rd

(
pα(t, x, z)

pα(t, y, z)

)q
pα(t, y, z) dz

]1/q

.

By using the estimate (1.4.16) of p̂α(t, x, y) and the relation (1.4.15) between

pα(t, x, y) and p̂α(t, x, y) we have the following corollary.

Corollary 7.3.6. For every t > 0, p, q > 0 with 1/p+ 1/q = 1. Let

C1 = K2q+1

∫
Rd

(
| e−λt y − z|
| e−λt x− z|

)q(d+α)

t−d/α∗ dz,

C2 = K2q+1

∫
Rd

(
| e−λt y − z|
| e−λt x− z|

)q(d+α)
t∗

| e−λt y − z|d/α
dz,

C3 = K2q+1

∫
Rd

t∗
| e−λt y − z|d/α

dz,

where

t∗ :=
1− e−αλt

αλ
.

Let Cα/q = min{C1, C2, C3}. Then

(Ptf)p(x) ≤ CPtf
p(y)

holds for every f ∈ C +
b (Rd).
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Infinite Diagonal α-stable Ornstein-Uhlenbeck Processes

Let {en}n≥1 be an orthogonal normal basis onH. Let A be an self-adjoint operator

on H with eigenvalue −λj (j ≥ 1) and associated eigenvector ej. That is, we

assume

Aej = −λjej, j ≥ 1.

Suppose that Zt is an α-Stable process on H. For every j ≥ 1, set Zj
t =

〈Zt, ej〉. We suppose that there exist some θj > 0 such that

E eiξZ
j
t = e−t|θjξ|

α

for all ξ ∈ R and j ≥ 1.

Consider the following equation{
dXt = AXtdt+ dZt,

X0 = x ∈ H.
(7.14)

For any j ≥ 1, denote by Xj
t = 〈Xt, ej〉 and xjt = 〈x, ej〉. Then the equation

(7.14) is equivalent with the following system of equations on R:{
dXj

t = AXj
t dt+ dZj

t

Xj
0 = xj ∈ H.

(7.15)

The transition density of Xj
t is given by

pjα(t, xj, yj) = p̂α(tj∗, e
−λjt xj, yj), (7.16)

where

tj∗ :=
θαj (1− e−αλjt)

αλj
.

Denote by Hn := Span{e1, e2, · · · , en} the n-dimensional subspace of H. Let

the projection of Xt, x, Zt to Hn be X
(n)
t , x(n), Z

(n)
t respectively. Then the transi-

tion density of X
(n)
t on Hn is

p(n)
α (t, x(n), y(n)) =

n∏
j=1

pjα(t, xj, yj) =
n∏
j=1

p̂α(tj∗, e
−λjt xj, yj).

By Theorem 7.3.5, we have the following result for the transition semigroup



7.3. Approach by Using Measure Transformation on State Spaces 147

P
(n)
t of X

(n)
t on the subspace Hn.

Lemma 7.3.7. For every t > 0, x(n), y(n) ∈ Hn, f ∈ C +
b (Hn), and p, q > 0

satisfying 1/p+ 1/q = 1, the following inequality holds

(P
(n)
t f)p(x(n)) ≤

[∫
Rd

(
p

(n)
α (t, x(n), z)

p
(n)
α (t, y(n), z)

)q

p(n)
α (t, y(n), z) dz

]p/q
P

(n)
t fp(y(n)).

By taking limit n→∞ in Lemma 7.3.7, we can obtain the following Harnack

inequality for the transition semigroup Pt of Xt.

Theorem 7.3.8. For every t > 0, x, y ∈ H, f ∈ C +
b (H), and p, q > 0 satisfying

1/p+ 1/q = 1, the following inequality holds

(Ptf)p(x) ≤ lim
n→∞

[∫
Rd

(
p

(n)
α (t, x(n), z)

p
(n)
α (t, y(n), z)

)q

p(n)
α (t, y(n), z) dz

]p/q
Ptf

p(y).

7.3.3 Harnack Inequalities for Markov Chains

Let (Xt)t≥0 be a homogeneous Markov chain (see, for instance, Norris [Nor98] for

the background) with discrete state space N. For every t ≥ 0, i, j ∈ N, denote

by

pt(i, j) = P(Xs+t = j | Xs = i), s ≥ 0

the transition probability from state i to state j in time t. The transition semi-

group of Xt is defined by

Ptf(i) =
∑
k∈N

pt(i, k)f(k), i ∈ N,

for every bounded measurable function f defined on N.

We have the following result on Harnack inequality for Markov chain.

Theorem 7.3.9. Assume the Markov chain is irreducible. That is, there exists

some t0 ≥ 0 such that for all t ≥ t0 and every states i, j ∈ N, pt(i, j) > 0. Then

(
Ptf
)α

(i) ≤

(∑
k∈N

(
pt(i, k)

pt(j, k)

)β
pt(j, k)

)α/β

Ptf
α(j), i, j ∈ N (7.17)
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for every t ≥ t0, α, β > 1 with 1/α + 1/β = 1, and every positive function f

defined on N.

Proof.

Ptf(i) =
∑
k∈N

pt(i, k)f(k) =
∑
k∈N

pt(i, k)

pt(j, k)
pt(j, k)f(k)

≤

(∑
k∈N

(
pt(i, k)

pt(j, k)

)β
pt(j, k)

)1/β (∑
k∈N

fα(k)pt(j, k)

)1/α

=

(∑
k∈N

(
pt(i, k)

pt(j, k)

)β
pt(j, k)

)1/β (
Ptf

α(j)
)1/α

.

Especially, let (Xn)n∈N be a discrete time Markov chain on a finite state space

S = {1, 2, . . . , l}. Denote by P =
(
pij
)
l×l for the one-step transition matrix,

where

pij = P(Xn+1 = j | Xn = i), n ∈ N.

Denote the (i, j)-element of P n by p
(n)
ij . We know p

(n)
ij is the n-step transition

probability from state i to state j:

p
(n)
ij = P(Xn+m = j | Xm = i)

for every m ∈ N.

By Theorem 7.3.9, we have the following Harnack inequality for Xn.

Corollary 7.3.10. Suppose that for every i, j ∈ S, we have pij > 0 Then

(
Pnf

)α
(i) ≤

 l∑
k=1

(
P n
i,k

P n
j,k

)β

pj,k

α/β

Pnf
α(j), n ∈ N, i, j ∈ S (7.18)

holds for every n ∈ N, α, β > 1 with 1/α + 1/β = 1, and every positive function

f defined on S.

Example 7.3.11. Let P =
(
pij
)
l×l with pij = 1/l. Then by Corollary 7.3.10, for

every n ∈ N, α, β > 1 with 1/α + 1/β = 1, and every function f defined on S,

we have,

(Pnf)α(i) ≤ Pnf
α(j), i, j = 1, 2, . . . l.
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7.4 Method of Coupling and Girsanov’s Trans-

formation

7.4.1 Harnack Inequalities: Using a Control Drift

Recall that our object is the following Ornstein-Uhlenbeck processes

dYt = AYtdt+ dZt, (7.19)

where A is the generator of a strongly continuous semigroup (St)0≤t≤T , (Zt)0≤t≤T

is an H-valued Lévy process on a filtered probability space (Ω,F , (Ft)0≤t≤T ,P)

with characteristic triplet (b, R, ν).

Denote by Pt for the transition semigroup of the solution process associated

with the stochastic equation (7.19). We first prove the following Harnack inequal-

ity for Pt.

Lemma 7.4.1. Let T > 0 and x, y ∈ H. Suppose that there is a control γ ∈
L2([0, T ],H) of the following deterministic control system{

dxt = Axt dt+R1/2γt dt,

x0 = y − x,
(7.20)

such that xT = 0. Then

(PTf)α(x) ≤ exp

(
β

2

∫ T

0

|γu|2 du
)
PTf

α(y). (7.21)

for every function f ∈ C +
b (H) and α, β > 0 satisfying 1/α + 1/β = 1.

Proof. Denote by (Wt)0≤t≤T the Gaussian part of the Lévy process Zt. It is known

that (Wt)0≤t≤T is an R-Wiener process. Set

γ̃t = R1/2γt ∈ H0, for every 0 ≤ t ≤ T.

Define

ρt = exp

(∫ t

0

〈γ̃u, dWu〉0 −
1

2

∫ t

0

|γ̃u|20 du
)
, 0 ≤ t ≤ T.

It is clear that (ρt)0≤t≤T is a Ft-martingale with respect to P since γ is square
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integrable. Hence, we can define a new probability measure Q̃ on FT by

Q̃ = ρTP.

Now by the Girsanov theorem for Lévy processes (Theorem 2.2.2), we know

the following drifted transformed process

Z̃t := Zt −
∫ t

0

γ̃u du, 0 ≤ t ≤ T (7.22)

is also a Lévy process with characteristic triplet (b, R, ν) with respect to Q̃.

We know the Ornstein-Uhlenbeck process

Y y
t = Sty +

∫ t

0

St−u dZu

solves Equation (7.19) with initial data Y y
0 = y ∈ H. Hence for f ∈ C +

b (H), we

have

Ptf(y) = EPf(Y y
t ). (7.23)

Now we are going to make a drift transformation of

Y x
t = Stx+

∫ t

0

St−u dZu,

which solves Equation (7.19) with initial data Y x
0 = x ∈ H.

Let us consider another Ornstein-Uhlenbeck process

Xx
t = Stx+

∫ t

0

St−u dZ̃u (7.24)

on (Ω,F , (Ft)0≤t≤T , Q̃). Obviously we have

Ptf(x) = EeQf(Xx
t ). (7.25)

It is easy to see that Xx
t is a drift transformation of Y x

t :

Xx
t = Y x

t −
∫ t

0

St−uγ̃u du, , 0 ≤ t ≤ T. (7.26)

From this fact we get the the following relation between the processes Xx
t and
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Y y
t :

Xx
t = Y y

t − xt, 0 ≤ t ≤ T. (7.27)

The proof of (7.27) is easy. First, we solve the equation (7.20) and get

xt = St(y − x) +

∫ t

0

St−uγ̃u du. (7.28)

Then we substitute (7.22) into (7.24) and use the fact (7.28), we see

Xx
t = Stx+

∫ t

0

St−u dZu −
∫ t

0

St−uγ̃u du

= Stx+

∫ t

0

St−u dZu − xt + St(y − x)

= Sty +

∫ t

0

St−u dZu − xt

= Y y
t − xt.

It follows from (7.27) and the fact that xT = 0, we know Xx
T = Y y

T .

Intuitively, the procedure above means that by pulling down each trajectory

of Y x
t with quantity

∫ t
0
St−uγ̃u du, we get Xx

t and it meets Y y
t at time T . The

main idea is shown in Figure 7.1.

By Hölder’s inequality we get

PTf(x) = EeQf(Xx
T ) = EPρTf(Y y

T )

≤
(
EPρ

β
T

)1/β(
EPf

α(Y y
T )
)1/α

=
(
EPρ

β
T

)1/β(
PTf(y)

)1/α
.

(7.29)

We can calculate the moment of ρβT explicitly.

EPρ
β
T = EP exp

{
β

∫ T

0

〈γ̃u, dWu〉0 −
β

2

∫ T

0

|γ̃u|20 du
}

= exp

{
β2

2

∫ T

0

|γ̃u|20 du−
β

2

∫ T

0

|γ̃u|20 du
}

= exp

{
β(β − 1)

2

∫ T

0

|γ̃u|20 du
}
.

(7.30)

Substitute the moment of ρβT worked out in (7.30) into (7.29), we obtain the
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Y x
t := Stx+

∫ t

0
St−u dZu

Y y
t := Sty +

∫ t

0
St−u dZu

Xx
t := Stx+

∫ t

0
St−u dZ̃u = Y x

t −
∫ t

0
St−uγ̃u du = Y y

t − xt

o t

H

y

x

T

Figure 7.1: Coupling by Drift Transformation

following inequality

(PTf)α(x) ≤ exp

(
β

2

∫ T

0

|γ̃u|20 du
)
PTf

α(y).

The proof is finished by noting that |γ̃t|0 = |γt| for every t ∈ [0, T ].

Remark 7.4.2. In the proof we use an explicit deterministic drift transformation

for the process Yt to obtain coupling. This is due to the linearity of the stochastic

partial differential equation. Therefore we can use Girsanov’s transformation

which only involves the Gaussian part. If the drift is dependent on the jump

part, we cannot apply this method. The reason is explained in Section 4.8.

For nonlinear stochastic equations with jumps and Gaussian part, even for one

dimensional stochastic differential equations, we are not able to find a proper

drift which is independent of the jumps. So we are not able to prove Harnack

inequalities use this method.

Remark 7.4.3. It is possible to consider Harnack inequalities for time-dependent

Ornstein-Uhlenbeck processes (see [Knä09] and references therein) similarly.
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7.4.2 Harnack Inequalities: Optimization Over All Drifts

We will deduce from Lemma 7.4.1 a theorem by taking infimum over all null

control drifts.

As in Chapter 5, we use the following notation

Qt :=

∫ t

0

SuRS
∗
u du, Γt := Q

−1/2
t St

for 0 ≤ t ≤ T .

Theorem 7.4.4. Let T > 0 and x, y ∈ H. Suppose that

ST (y − x) ∈ Q1/2
T (H). (7.31)

Then

(PTf)α(x) ≤ exp

(
β

2
|ΓT (x− y)|2

)
PTf

α(y). (7.32)

holds for every f ∈ C +
b (H) and α, β > 1 satisfying 1/α + 1/β = 1.

Proof. We first note that (see Appendix A or [Zab08], [DPZ92, Appendix B]

etc.) that condition (7.31) hold if and only if the control system (7.20) is null

controllable. That is, there exists an H-valued square integrable function γton

[0, T ] such that yT = 0.

Moreover, |Γt(x− y)|2 is the minimal energy for driving x− y to 0:

|ΓT (x− y)|2 = inf

{∫ T

0

|γs|2 : γ ∈ L2([0, T ],H), yT = 0

}
. (7.33)

By Lemma 7.4.1 we have inequality (7.21). The proof is completed by tak-

ing infimum over all possible choices of the control γ for (7.21) and using the

expression (7.33).

Remark 7.4.5. We have proved the Harnack inequality (7.32) for the Gaussian

case (See Proposition 5.2.3) by using the Cameron-Martin formula. For the Gauss

Ornstein-Uhlenbeck semigroup, the inequality (7.32) is optimal.

We have the following corollary.

Corollary 7.4.6. Let T > 0. Suppose that

ST (H) ⊂ Q
1/2
T (H). (7.34)
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Then

(PTf)α(x) ≤ exp

(
β

2
|ΓT (x− y)|2

)
PTf

α(y). (7.35)

holds for every x, y ∈ H, f ∈ C +
b (H) and α, β > 0 satisfying 1/α + 1/β = 1.

7.4.3 Estimates of the Harnack Inequalities

The coefficient of the Harnack inequality (7.32) is simple but not so direct to

compute. However, by taking any explicit choice of the control γt for the control

system (7.20), we can get an upper bound estimation of |Γt(x−y)| via the minimal

energy representation (7.33). We refer to Subsection 5.2.2 for some estimates on

‖ΓT‖. In this way (or using Lemma 7.4.1 directly) we can get an explicit Harnack

inequality.

The control γt naturally determines the behavior of the system xt. In the

following we are going to consider the controls such that the system behave in

the following ways:

(1) There is some positive continuous function ξt on [0, T ] such that

xt =

(
1−

∫ t
0
ξu du∫ T

0
ξu du

)
St(y − x), t ∈ [0, T ]. (7.36)

(2)

yt =

(
1− t

T

)
(y − x), t ∈ [0, T ]. (7.37)

Note that the first choice (7.36) is a time-scaling of the following simple case

yt =

(
1− t

T

)
St(y − x), t ∈ [0, T ].

By taking the first choice we can obtain the following corollary.

Corollary 7.4.7. Let T > 0 be a fixed constant. Suppose that ST (H) ⊂ R1/2(H).

Let ξ be a continuous positive function on [0, T ]. Assume∫ T

0

|Sux|20 ξ2
u du <∞ for all x ∈ H.

Then

(PTf)α(x) ≤ exp

(
β
∫ T

0
|Su(x− y)|20 ξ2

u du

2
(∫ T

0
ξu du

)2

)
PTf

α(y) (7.38)
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holds for every x, y ∈ H, f ∈ C +
b (H) and α, β > 1 with 1/α + 1/β = 1.

Proof. Take

γu = R−1/2Su(x− y) · ξu∫ T
0
ξu du

, u ∈ [0, T ].

It is obvious that γu is a null control of the system (7.20) by noting the formula

(7.28). Then we can finish the proof by applying Lemma 7.4.1.

From Corollary 7.4.7 we have the following assertions if we assume further the

estimates on ‖St‖ for t ∈ [0, T ].

Corollary 7.4.8. Assume the assumptions in Corollary 7.4.7 and

|Suz|0 ≤
√
ξ(u)−1 |x|0, x ∈ H, u ∈ [0, T ].

Then

(PTf)α(x) ≤ exp

(
β|x− y|20

2
∫ T

0
ξ(u) du

)
PTf

α(y). (7.39)

holds for every x, y ∈ H, f ∈ C +
b (H), and α, β > 1 with 1/α + 1/β = 1.

Remark 7.4.9. (1) Similar to the corollaries on Harnack inequality in Subsec-

tion 5.2.2, we can get more inequalities by using the estimates on ‖ΓT‖.
(2) The inequality (7.39) generalizes a Harnack inequality in [RW03a], where

merely the case α = 2 was proved. See Theorem 7.2.2 for the result in

[RW03a]. Note that we used a condition which is slightly stronger. We

refer to Item (2) of Remark 5.2.13 for the explanation of the difference.

By taking the second choice for the control which corresponds to (7.37) we

have the following corollary. The point of this corollary is that the coefficient

in the Harnack inequality is direct in terms of the operator A instead of the

semigroup St.

Corollary 7.4.10. Let x, y ∈ H. Assume that x − y ∈ H0 and A(x − y) ∈ H0.

For any T > 0, α > 0, β > 0 satisfying 1/α + 1/β = 1, f ∈ C +
b (H), we have

(PTf)α(x) ≤ exp

(
β

2

∫ T

0

∣∣∣∣[( t

T
− 1

)
A− 1

T
I

]
(x− y)

∣∣∣∣2
0

dt

)
PTf

α(y). (7.40)
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Proof. Let

xt =

(
1− t

T

)
(y − x), t ∈ [0, T ].

Then xT = 0 and yt solves the null controllable problem (7.20) by setting∫ t

0

R1/2γs ds = xt − (y − x)−
∫ t

0

Axs ds

for all t ∈ [0, T ].

Now

γt = R−1/2

[(
t

T
− 1

)
A− 1

T
I

]
(y − x).

By applying Lemma 7.4.1 we can prove the inequality (7.40).

7.4.4 Examples

Consider the following stochastic heat equation with Lévy noise

dXt = ∆Xtdt+ dZt (7.41)

where ∆ is the Laplacian on (0, 1) with Dirichlet boundary condition, and Zt is

a Lévy process on (an extension of) L2((0, 1); dx) with symbol

λ(ξ) = |ξ|δ + |ξ|2, ξ ∈ H

where δ ∈ (0, 2) is fixed.

The stochastic heat equation (7.41) was studied in [LR04, Section 8]. It was

shown there that the equation (7.41) has a solution in the sense of [LR04, Theorem

7.3] (see [LR04, Corollary 8.2]).

Denote the transition semigroup of Xt by Pt. We have the following theorem

on Harnack inequality for Pt. It is a generalization of [RW03a, Theorem 4.1] (see

also [Wan04b, Section 7.3.3]) which only stated the case for α = 2.

Theorem 7.4.11. For all t > 0, α > 0, β > 0 satisfying 1/α+ 1/β = 1, x, y ∈ H
and f ∈ C +

b (H), we have

(Ptf)α(x) ≤ exp

(
βπ2|x− y|2

2(eπ2t−1)

)
Ptf

α(y). (7.42)
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Proof. The eigenvalues of ∆ on L2((0, 1)) are λk = −k2π2, k ≥ 1, each with mul-

tiplicity one. Hence we know the eigenvalues of et∆ are e−tk
2π2

, k ≥ 1. Therefore,

we have ‖ et∆ ‖ ≤ e−π
2t for every t ≥ 0.

Note that we can modify the proof of Lemma 7.4.1 such that it also works

for the (cylindrical) Lévy process Zt. Hence we can use Corollary 7.4.8 for the

stochastic heat equation.

7.5 Applications of the Harnack Inequalities

7.5.1 Regularizing Property

Let Pt be the transition semigroup (7.3) of the Lévy driven Ornstein-Uhlenbeck

processes (7.2) introduced in Section 7.1.

Recall that a transition semigroup Pt is called strongly Feller if for every t ≥ 0

and every bounded measurable function f on H, Ptf is a continuous function on

H.

For the Gaussian case (i.e. ν = 0), we have shown several equivalent state-

ments for the strong Feller property of the semigroup in Theorem 5.3.3. In par-

ticular, we know the following statements are equivalent: (i) The semigroup Pt,

t ≥ 0, is strongly Feller. (ii) The Harnack inequality (5.10) holds for all t ≥ 0,

x, y ∈ H and f ∈ Cb(H). (iii) The following null controllability condition holds

St(H) ⊂ Q
1/2
t (H), t ≥ 0. (7.43)

For the Lévy case, the null controllability condition (7.43) still implies the

strong Feller property of the transition semigroup. This result was proved by

Röckner and Wang [RW03a, Corollary 1.2] (see also [Wan04b, Corollary 7.3.14]).

They used the above mentioned result on strong Feller property for Gaussian

Ornstein-Uhlenbeck semigroup.

Now according Da Prato et al. [DPRW09, Proposition 4.1] (see Proposition

5.3.2 in this thesis), we can apply Harnack inequality to prove a property stronger

than the strong Feller property.

Theorem 7.5.1. Let µ be the invariant measure of Pt. Suppose St(H) ⊂ Q
1/2
t (H)

for some t > 0. Then for every p > 1, Pt(L
p
(
H,µ)

)
⊂ C (H).

In the following, we will prove some estimate on the strong Feller property by

using coupling method and Girsanov’s theorem.



158 Chapter 7. Harnack Inequalities for Lévy Driven OU Processes

In stead of the strong Feller property, we would like to state the results for a

generalization of the concept of strongly Feller property. This concept is also stud-

ied in [DPZ92, Subsection 11.2.3] for Gaussian Ornstein-Uhlenbeck semigroup.

Definition 7.5.2. A transition semigroup Pt is strongly Feller at a moment t0 >

0, if for every t ≥ t0 and bounded measurable function f on H, Ptf is continuous.

We first prove a Lemma.

Lemma 7.5.3. Assume that for some T ≥ 0 and fixed x, y ∈ H,

ST (x− y) ∈ Q1/2
T (H).

Then for every f ∈ Bb(H), we have

(1)

|PTf(x)− PTf(y)| ≤ ‖f‖∞
√
CT,γ,x−y exp(CT,γ,x−y/2), (7.44)

where ‖f‖∞ is the supremum norm of the function f , and

CT,γ,x−y =

∫ T

0

|γu|2 du,

and γt is a null control of the system (7.20) such that yT = 0.

(2)

|PTf(x)− PTf(y)| ≤ ‖f‖∞ |ΓT (x− y)| exp(|ΓT (x− y)|2/2). (7.45)

Proof. The second statement is a direct consequence of the first one by taking

infimum over all choice of null control γ of the system (7.20) and using the

representation (7.33). So we only need to prove (7.44).

Following the line in the proof of Lemma 7.4.1, we know

PTf(x) = EPρTf(Xx
T ) and PTf(y) = EPf(Y y

T )

where

ρT = exp

(∫ T

0

〈γ̃u, dWu〉0 −
1

2

∫ T

0

|γ̃u|20 du
)

with γ̃ = R1/2γ.

Then we have

|PTf(x)− PTf(y)| = |EPf(ρTX
x
T )− EPf(Y y

T )|
= EP|(ρT − 1)f(Y y

T )| ≤ ‖f‖∞EP|ρT − 1|.
(7.46)
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By (7.30), we know EPρ
2
T = exp(CT,γ,x−y). Using the elementary inequality

er−1 ≤ r er for all r ≥ 0, we have(
EP|ρT − 1|

)2 ≤EP(ρT − 1)2 = EPρ
2
T − 1

= exp
(
CT,γ,x−y

)
− 1 ≤ CT,γ,x−y exp(CT,γ,x−y).

The proof is completed by substitute the estimate above into (7.46).

Now we can state the following theorem on the strong Feller property at a

moment.

Theorem 7.5.4. Assume that there exist a t0 > 0 such that

St(H) ⊂ Q
1/2
t (H), for all t ≥ t0.

Then Pt is strongly Feller at moment t0. Moreover, we have the following estimate

|Ptf(x)− Ptf(y)| ≤ ‖f‖∞ |Γt(x− y)| exp(|Γt(x− y)|2/2).

for all x, y ∈ H, t ≥ t0 and f ∈ Bb(H).

Remark 7.5.5. By (7.44) we can get explicit estimates of |Ptf(x) − Ptf(y)| by

choosing explicit null controls for the system (7.20).

7.5.2 Heat Kernel Bounds

We assume in this section that the Ornstein-Uhlenbeck processes are defined on

[0,∞). We will apply the Harnack inequalities obtained in the previous sections

to study norm bounds of the transition density.

We will need the following assumption.

Assumption 7.5.6. Pt has an invariant probability measure µ.

This assumption holds if the following conditions are satisfied (see [FR00,

Theorem 3.1]):

(1) supt>0 TrQt <∞;

(2) ∫ ∞
0

dr

∫
H

(1 ∧ |Srx|2) ν(dx) <∞,
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(3) b∞ := limt→∞(b
(1)
t + b

(2)
t ) exists in H, where for any t ≥ 0,

b
(1)
t =

∫ t

0

Srb dr,

b
(2)
t =

∫ t

0

dr

∫
H

Srx (1B(Srx)− 1B(x)) ν(dx),

where B = {x ∈ H : |x| ≤ 1}.

In this case the invariant measure is an infinite divisible measure with char-

acteristic triplet (b∞, Q∞, ν∞). Here ν∞ is given by

ν∞ =

∫ ∞
0

ν ◦ S−1
r dr.

The following lemma is from [RW03a, Lemma 2.2]. We include the proof here

for completeness.

Lemma 7.5.7. Let E be a Polish space and E the Borel σ-algebra of E. Let Pt
be a transition semigroup on (E,E ) with invariant measure µ. If there exists a

constant α > 1 and a measurable function Φ(x, y) : E × E → (0,∞) such that

|Ptf |α(x) ≤ Φ(x, y)Pt|f |α(y) (7.47)

for every x, y ∈ E and bounded measurable function f on E. Then the semigroup

Pt has a transition density pt(x, y) with respect to µ.

Moreover, the transition density pt(x, y) satisfies the following estimate

‖pt(x, ·)‖Lβ(E,µ) ≤
(∫

H

µ(dy)

Φ(x, y)

)−1/α

(7.48)

for any x ∈ E, where β =
α

α− 1
.

Proof. Denote by Pt(x, ·), x ∈ E, the transition probability measure correspond-

ing to Pt. That is,

Pt(x,A) = Pt1A(x), x ∈ E, A ∈ Bb(E).

We first show that Pt(x, ·) is absolutely continuous with respect to µ. Let
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A ∈ Bb(E) with µ(A) = 0. Inequality (7.47) implies

(Pt1A)α(x) ≤ Pt1A(y)Φ(x, y).

Hence by integrating both sides of the inequality above with respect to µ we can

get

(Pt1A)α(x)

∫
E

µ(dy)

Φ(x, y)
≤
∫
E

Pt1A(y)µ(dy) = µ(A) = 0.

Therefore Pt(x,A) = Pt1A(x) = 0. This proves that Pt(x, ·) is absolutely contin-

uous with respect to µ.

By (7.47), for every bounded measurable function f on E, we have

|Ptf |α(x)
1

Φ(x, y)
≤ Pt|f |α(y)

Integrate the inequality above with respect to µ(dy), we obtain

|Ptf |α(x)

∫
H

µ(dy)

Φ(x, y)
≤ ‖f‖αLα(E,µ).

Hence we have

〈pt(x, ·), f〉L2(E,µ) =

∫
E

f(y)Pt(x, dy) = Ptf(x) ≤ ‖f‖α
(∫

E

µ(dy)

Φ(x, y)

)−1/α

.

Then the estimate (7.48) follows from the inequality above.

Let Pt denotes the Lévy driven Ornstein-Uhlenbeck transition semigroup. By

applying Theorem 7.4.4 and Lemma 7.5.7 we can obtain the following norm bound

for the transition density of the Lévy driven Ornstein-Uhlenbeck transition semi-

group.

Corollary 7.5.8. Assume that St(H) ⊂ Q
1/2
t (H) holds for every t ≥ 0. Then

Pt is strongly Feller. Hence Pt(x, dy) has a density pt(x, y) with respect to µ.

Moreover,

‖pt(x, ·)‖Lβ(H,µ) ≤
[∫

H

exp

(
−β

2
|Γt(x− y)|2

)
µ(dy)

]−1/α

holds for every x ∈ H, α, β > 0 satisfying 1/α + 1/β = 1.

By Corollary 7.4.7 and Lemma 7.5.7, we have the following result.
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Corollary 7.5.9. Suppose that St(H) ⊂ R1/2(H) holds for all t ∈ [0,+∞). Then

Pt is strongly Feller. Hence Pt(x, dy) has a density ρ(x, y) with respect to µ.

Moreover,

‖pt(x, ·)‖Lβ(H,µ) ≤

∫
H

exp

−β
2

∫ T
0
|Su(x− y)|20 ξ2

u du(∫ T
0
ξu du

)2

 µ(dy)


−1/α

(7.49)

holds for every x ∈ H, α, β > 0 satisfying 1/α + 1/β = 1, and for every positive

continuous function ξ on [0, t].

Especially, if

|Sux|0 ≤
√
ξ(u)−1|x|0, u ∈ [0, T ],

then

‖pt(x, ·)‖Lβ(H,µ) ≤

[∫
H

exp

(
− β|x− y|20

2
∫ T

0
ξ(u) du

)
µ(dy)

]−1/α

.

Remark 7.5.10. In [RW03a, Corallary 1.2], only the case α = β = 2 was studied.

7.5.3 Hyperboundedness

Let µ be a probabilistic measure on (H,B(H)). Let p, q ∈ (0,∞). The operator

norm of a linear bounded operator T from Lp(H, µ) to Lq(H, µ) is defined by

‖T‖p→q = sup{‖Tf‖q : ‖f‖p = 1}.

We say that T is hyperbounded if ‖T‖p→q <∞ for some 1 < p < q <∞.

If the operator T is contractive on L1(H, µ), then by the Riesz-Thorin inter-

polation theorem (see for example, [Dav89, Page 3]), T is hyperbounded if and

only if ‖T‖2→4 <∞.

Hyperboundedness is a useful concept. For example, for a strongly continuous

symmetric diffusion semigroup of contraction, we can deduce a defective Loga-

rithmic Sobolev inequality from the hyperboundedness of the semigroup. We

refer to [Wan04b] and references therein for more information.

In the following, we are going to consider the hyperboundedness of the Lévy

driven Ornstein-Uhlenbeck semigroup defined by (7.3). We assume that the in-

variant measure of Pt exist and denote it by µ.

For completeness, we first recall two assertions from [RW03a]. The following
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proposition is essentially from [RW03a, Theorem 1.5].

Proposition 7.5.11. Consider the situation of Theorem 7.3.2. If there exists a

ε > 0 such that

C(t, β, ε) :=

∫
H

(∫
H

Φt,β(x− y)−αµ(dy)

)−(1+ε)

µ(dx),

then

‖Pt‖α 7→(1+ε)α ≤ C(t, β, ε)1/(1+ε)α. (7.50)

Proof. The proof of (7.50) is the same as in the proof of [RW03a, Theorem 1.5].

We include it in the following. For every f ∈ Lα(H, µ), by (7.12), we have

(Ptf)α(x) ≤ Φt,β(x− y)αPtf
α(y), (7.51)

Suppose µ(|f |α) = 1 and integrate both sides of (7.51) with respect to µ(dy), we

have

|Pt|αf(x)

∫
H

Φt,β(x− y)−α µ(dy) ≤ 1.

Hence

|Ptf |α(1+ε)(x) ≤
(∫

H

Φt,β(x− y)−α µ(dy)

)−(1+ε)

.

By integrating the inequality above with respect to µ(dx), (7.50) follows imme-

diately.

We will work with the following null controllability condition

St(H) ⊂ Q
1/2
t (H) (7.52)

for some t > 0. The following proposition is from [RW03a, Proposition 1.6].

Proposition 7.5.12. Consider the situation of Theorem 7.3.2. If (7.52) and

C(t, β, 0) <∞ hold for some t > 0 and β ∈ (1,∞], then Ps is compact on Lα(µ)

for every s > t.

Proof. By (7.12), for every f with ‖f‖α = 1, we have

|Ptf |α(1+ε)(x) ≤
(∫

H

Φt,β(x− y)−α µ(dy)

)−(1+ε)

.
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If C(t, β, 0) < ∞, then {Ptf : ‖f‖α ≤ 1} is uniformly integrable in Lα(H, µ).

Moreover, by Corollary 7.5.8, we know Pt has a density with respect to µ, hence

by [GW02, Lemma 3.1], it follows that Ps is compact in Lp(H, µ) for s > t.

Similar to Propositions 7.5.11 and 7.5.12, by using Harnack inequality (7.35),

we can state the following assertion.

Proposition 7.5.13. Assume (7.52) hold for some t > 0. Let α, β > 1 satisfying

1/α + 1/β = 1. If there exist some ε > 0 such that

C̃(t, β, ε) :=

∫
H

[∫
H

exp

(
−β

2
|Γt(x− y)|2

)
µ(dy)

]−(1+ε)

µ(dx) <∞, (7.53)

then

‖Pt‖α→(1+ε)α ≤ C̃(t, β, ε)
1

α(1+ε) .

Especially if C̃(t, β, 0) < ∞ for some t > 0, then Ps is compact on Lα(H, µ)

for every s > t.

By (7.52), we know Γt = Q
−1/2
t St is a bounded operator on H and there exist

some C(t) > 0 such that (refer to Subsection 5.2.2)

‖Γt‖ ≤
√
C(t), t ≥ 0. (7.54)

We will use the assumption (7.54) to study the integrability condition (7.53).

Proposition 7.5.14. Assume (7.54). Let r(x) be a positive measurable function

on H. Suppose that for some ε > 0 and t > 0,∫
H

1[
µ
(
Br(x)(x)

)](1+ε)
exp

(
β(1 + ε)

2
C(t)r(x)2

)
µ(dx) <∞,

where Br(x) = {x ∈ H : |x| ≤ r} for any x ∈ H and r > 0. Then (7.53) hold.

Especially, it is the case if ∫
H

µ(dx)[
µ
(
Br(x)

)](1+ε)
<∞

for some r > 0.
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Proof. ∫
H

[∫
H

exp

(
−β

2
|ΓT (x− y)|2

)
µ(dy)

]−(1+ε)

µ(dx)

≤
∫
H

[∫
Br(x)(x)

exp

(
−β

2
C(t)r(x)2

)
µ(dy)

]−(1+ε)

µ(dx)

=

∫
H

1[
µ
(
Br(x)(x)

)](1+ε)
exp

(
β(1 + ε)

2
C(t)r(x)2

)
µ(dx)

<∞.

In the following, we intend to look at the integrability condition (7.53) by

using the structure of µ. Recall that µ is an infinite divisible measure with

characteristic triplet (b∞, R∞, ν∞). Refer to Subsection 7.5.2 for the structure of

µ.

We denote by µ(1), µ(2) for the infinite divisible measure with characteristic

triplet (b∞, R∞, 0) and (0, 0, ν∞) respectively. That is, µ(1) = N(b∞, R∞) is a

Gaussian measure and µ(2) = D(0, 0, ν∞) is an infinite divisible measure with

µ̂(2)(u) =

∫
H

[
1− exp(i〈z, u〉) + i〈z, u〉1{|z|≤1}(z)

]
ν∞(dz).

By the well known Fernique’s Theorem (see for example, [DPZ92, Proposition

2.16]), there exist some δ > 0 such that∫
H

exp(δ|x|2)µ(1)(dx) <∞. (7.55)

In fact we can take any δ ∈ (0, δR∞) with

δR∞ = inf
λ∈σ(R∞)

1

2λ
=

1

‖R∞‖
.

Here σ(R∞) is the spectrum of R∞.

From the integrability of µ(1) and µ(2) we can get the integrability of µ easily.

Lemma 7.5.15. Assume that∫
H

exp
(
δ|x|2

)
µ(2)(dx) <∞. (7.56)
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Then ∫
H

exp

(
δ

2
|x|2
)
µ(dx) <∞.

Proof.∫
H

exp

(
δ

2
|x|2
)
µ(dx) =

∫
H

∫
H

exp

(
δ

2
|x+ y|2

)
µ(1)(dx)µ(2)(dy)

≤
∫
H

∫
H

exp
(
δ(|x|2 + |y|2)

)
µ(1)(dx)µ(2)(dy)

=

∫
H

exp(δ|x|2)µ(1)(dx)

∫
H

exp(δ|y|2)µ(2)(dy)

<∞.

Now we can prove the following theorem on the hyperboundedness of the

semigroup Pt.

Theorem 7.5.16. Assume (7.52), (7.54) and (7.56). Then ‖Pt‖p→q(t) <∞ hold

for every p > 1, t > 0 and q(t) =
δ(p− 1)

2C(t)
.

Proof. Let f ∈ Lp(H, µ) with ‖f‖p = 1. By Theorem 7.4.4, we have

(Ptf)p(x) exp

(
− p

2(p− 1)
|Γt(x− y)|2

)
≤ Ptf

p(y) (7.57)

for every x, y ∈ H and t ≥ 0.

By using (7.54) we see

|Γt(x− y)|2 ≤ C(t)|x− y|2 ≤ 2C(t)(|x|2 + |y|2).

Therefore, we can deduce from the inequality (7.57) to get

(Ptf)p(x) exp

(
−pC(t)

p− 1

(
|x|2 + |y|2

))
≤ Ptf

p(y).

By integrating both sides of the inequality above with respect to µ(dy) over the

ball B1(0) := {x ∈ H : |x| ≤ 1}, we can obtain

(Ptf)p(x) exp

(
−pC(t)

p− 1

(
1 + |x|2

))
µ
(
B1(0)

)
≤ µ(Ptf

p).
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Note that µ is an invariant measure of Pt, we have

(Ptf)p(x) ≤
[
µ
(
B1(0)

)]−1
exp

(
pC(t)

p− 1

(
1 + |x|2

))
.

Taking power q(t)
p

and then integrating with respect to µ(dx) for both sides of the

inequality above, we get

‖Pt‖q(t)q(t) ≤
[
µ
(
B1(0)

)]−1/p
∫
H

exp

(
q(t)C(t)

p− 1

(
1 + |x|2

))
µ(dx)

=
[
µ
(
B1(0)

)]−1/p
∫
H

exp

(
δ

2

(
1 + |x|2

))
µ(dx)

< ∞.

This finishes the proof.





Chapter 8

Harnack Inequalities for

Multivalued Stochastic Equations

The gradient system considered in Subsection 5.5.2 inspires us to consider Har-

nack inequalities for the transition semigroups associated with general multival-

ued stochastic equations.

Recently, multivalued stochastic equations have attracted the interest of many

researchers. For historic notes and more information about multivalued stochas-

tic differential equations we refer to Krée [Kré82], Cépa [Cép94, Cép95, Cép98],

Bensoussan and Rascanu [BR97], Cépa and Lépingle [CL97] and [Zha07] etc..

In this chapter, we first give a general introduction to multivalued maximal

monotone operators in Section 8.1. Then we study Harnack inequalities for mul-

tivalued stochastic differential equations in finite dimension in Section 8.2.

We devote the remaining sections to multivalued stochastic evolution equa-

tions in Banach spaces. In Section 8.3 we recall the existence and uniqueness

theorem for the evolution equations due to Zhang [Zha07]. Zhang [Zha07, The-

orem 5.8] has proved finiteness second moment of the invariant measure of the

transition semigroup associated with evolution equations. In Section 8.4 we prove

stronger concentration properties of the invariant measure.

We study Harnack inequalities in Section 8.5 and their applications in Sec-

tion 8.6 for the transition semigroups associated with evolution equation. In

particular, we prove the invariant measure is fully supported on the domain of

the underlying multivalued maximal monotone operator; and we also prove the

strong Feller property, the hyperboundedness, ultraboundedness and compactness

for the transition semigroup.
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8.1 Multivalued Maximal Monotone Operator

Denote by 2H for the set of all subsets of H. Let A : H → 2H be a set-valued

operator∗. Define the domain of A by

D(A) = {x ∈ H : Ax 6= ∅}.

The multivalued operator A can be characterized by its graph defined by

Gr(A) = {(x, y) ∈ H×H : x ∈ H, y ∈ Ax}.

Definition 8.1.1. (1) A multivalued operator A on H is called monotone if

〈x1 − y1, x2 − y2〉 ≥ 0, for all (x1, y1), (x2, y2) ∈ Gr(A).

(2) A monotone operator A is called maximal monotone if it must be (x1, y1) ∈
Gr(A) for any (x1, y1) ∈ H×H satisfying the following property:

〈x1 − x2, y1 − y2〉 ≥ 0, for all (x2, y2) ∈ Gr(A).

That is, A is maximal monotone if Gr(A) is not contained in the graph of

any other monotone operator.

The following is a fundamental example of a maximal monotone operator.

Example 8.1.2. Let U : H→ (−∞,∞] be a lower semi-continuous convex func-

tion on H such that its domain

D(U) = {x ∈ H : U(x) <∞}

is not empty.

We define the sub-differential of U by

∂U(x) = {y ∈ H : U(x) ≤ U(z) + 〈y, x− z〉, z ∈ H}.

Then we see ∂U is a maximal monotone operator on H.

We refer the reader to Brézis [Bré73] for more details of maximal monotone

operators. We only note in the following some properties about D(A) since it

∗We used A to denote the generator of St in the previous chapters. We use A here for
convenience.
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will be the state space of solutions of the multivalued stochastic equations we will

consider. We know D(A) is a closed and convex subset of H. It is a complete

and separable metric space under the norm | · |H.

8.2 Harnack Inequalities for Multivalued Sto-

chastic Differential Equations

Consider the following multivalued stochastic differential equation

dXt + AXtdt 3 b(Xt)dt+ σ(Xt) dWt, X0 = x ∈ D(A), (8.1)

where A is a maximal monotone operator on Rd with D(A)o 6= ∅, Wt is a

Wiener process on a filtered probability space (Ω,F , (Ft)t≥0,P), b : Rd → Rd

and σ : Rd → Rd ×Rd are continuous.

We first formulate the definition of the solution of the multivalued stochastic

differential equation (8.1)

Definition 8.2.1. A pair of continuous Ft-adapted process (X,K) is called a

solution of (8.1) if

(1) X0 = x ∈ D(A), Xt ∈ D(A), P-a.s.;

(2) X0 = 0 and K is of locally finite variation;

(3) Xt is a solution of the following stochastic differential equation

dXt = b(Xt) dt+ σ(Xt) dWt − dKt, 0 ≤ t <∞

with initial condition X0 = x;

(4) For every continuous Ft-adapted function (p, q) with (pt, qt) ∈ Gr(A) for

all t ≥ 0, the measure

〈Xt − pt, dKt − qt dt〉 ≥ 0, P-a.s..

The following proposition will play a basic role.

Proposition 8.2.2. Let A be a multivalued maximal monotone operator and

(X,K), (X ′, K ′) be continous functions with X,X ′ ∈ D(A), K,K ′ be of finite

variation. Let (p, q) be contiuous functions satisfying

(pt, qt) ∈ Gr(A) for all t ≥ 0.
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If

〈Xt − pt, dKt − qt dt〉 ≥ 0 and 〈X ′t − pt, dK ′t − qt dt〉 ≥ 0,

then

〈Xt −X ′t, dKt − dK ′t〉 ≥ 0.

We consider the multivalued stochastic differential equation (8.1) with the

following assumption.

Assumption 8.2.3. (1) σ ≡ I is the unit operator on Rd;

(2) There exist some K ∈ R such that for all x, y ∈ Rd,

〈x− y, b(x)− b(y)〉 ≤ ω|x− y|2. (8.2)

Then by [RWZ08, Thorem 2.8], the solution Xt exists. The associated transi-

tion semigroup is given by

Ptf(x) = EPf(Xt), t ≥ 0, f ∈ Bb(R
d).

We will use the coupling method and Girsanov transformation to study the

Harnack inequalities for Pt. We note that Ren et. al. [RWZ08] used this method

and apply it to study the ergodicity of multivalued stochastic differential equa-

tions.

Theorem 8.2.4. Suppose Assumption 8.2.3 hold. Then

(PTf)α(x) ≤ exp

(
βω|x− y|2

1− e−2ωT

)
PTf

α(y). (8.3)

holds for every x, y ∈ D(A), T > 0, f ∈ C +
b (D(A)) and α, β > 1 with 1/α+1/β =

1.

Proof. We turn to consider the following coupled multivalued stochastic differen-

tial equationdXt + AXt dt 3 dWt + b(Xt) dt− ξt|x− y|
Xt − Yt
|Xt − Yt|

1{t<τ} dt, (8.4a)

dYt + AYt dt 3 dWt + b(Yt) dt, (8.4b)

with initial data X0 = x and Y0 = y, where Wt is a Wiener process on a filtered

probability space (Ω,F , (Ft)t≥0,P), τ is the coupling time of Xt and Yt defined
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by τ = inf{t > 0: |Xt − Yt| = 0}, and ξt is a deterministic positive continuous

function satisfying ∫ T

0

ξs e−ωs ds ≥ 1.

Note that for any u, v ∈ Rd \ {0} we have∣∣∣∣ u|u| − v

|v|

∣∣∣∣ =
1

|u||v|
∣∣|v|u− |v|v + |v|v − |u|v

∣∣
≤ 1

|u||v|
· 2|v| |u− v| = 2

|u|
|u− v|.

We see the function

Rd ×Rd 3 (u, v) 7→ u− v
|u− v|

is bounded and locally Lipschitz off the diagonal Rd ×Rd.

Hence by [RWZ08, Thorem 2.8], we know the equation (8.4) has a solution

up to the coupling time τ . That is, there exist continuous processes (X,K) and

(Y, K̃) up to τ satisfyingdXt = dWt + b(Xt) dt− dKt − ξt|x− y|
Xt − Yt
|Xt − Yt|

1{t<τ} dt, (8.5a)

dYt = dWt + b(Yt) dt− dK̃t, (8.5b)

for t < τ with initial values X0 = x and Y0 = y. But it is clear that the solution

to Equation (8.4b) (or (8.5b) equivalently) can be extended to all time t ≥ 0

which is still denoted by (Y, K̃). Then the solution of (8.4a) (or (8.5a)) can be

defined in the following way:

Xt := Yt, Kt := K̃t

for all t ≥ τ .

First applying Itô’s formula to
√
|Xt − Yt|2 + ε and then letting ε ↓ 0, by

using the assumption (8.2) and Proposition 8.2.2 we can obtain for all t < τ

d|Xt − Yt| ≤
〈
Xt − Yt
|Xt − Yt|

, b(Xt)− b(Yt)− ξt|x− y|
Xt − Yt
|Xt − Yt|

〉
dt

−
〈
Xt − Yt
|Xt − Yt|

, dKt − dK̃t

〉
dt

≤ω|Xt − Yt| dt− ξt|x− y| dt.
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Therefore,

d
(
|Xt − Yt| e−ωt

)
≤ −ξt|x− y| e−ωt dt, t < τ.

If T < τ , then by integrating both sides of the inequality above from 0 to T

we get

0 < |XT − YT | e−ωT ≤ |x− y|
(

1−
∫ T

0

ξt e−ωt dt

)
≤ 0.

This contradiction implies that T ≥ τ and hence we must have

XT = YT . (8.6)

As in Section 4.3, for every 0 ≤ t ≤ T , set

Nt =

∫ t∧τ

0

〈
ξt|x− y|

Xt − Yt
|Xt − Yt|

, dWs

〉
,

and

Rt = exp

(
Nt −

1

2
[N ]t

)
.

It is obvious that E(RT ) = 1. So we can define a new probability measure Q

on (Ω,FT ) by setting Q|FT
= RTP.

By Girsanov’s theorem, we know

W̃t := Wt −
∫ t

0

ξs|x− y|
Xs − Ys
|Xs − Ys|

1{t<τ} ds

for t ∈ [0, T ] is still a Wiener process on (Ω,FT , (Ft)0≤t≤T ,Q). Therefore, on

the new probability space (Ω,FT , (Ft)0≤t≤T ,Q), the process Xt also solves the

equation

dXt + AXtdt 3 dW̃t + b(Xt) dt, X0 = x.

By the uniqueness of the solution of the equation, we obtain PTf(x) =

EQf(XT ). Combining (8.6) with the obvious fact PTf(y) = EPf(YT ), and us-

ing Hölder’s inequality, we have

PTf(x) = EQf(XT ) = EQf(YT ) = EPRTf(YT )

≤
(
EPR

β
T

)1/β(
EPf

α(YT )
)1/α

=
(
EPR

β
T

)1/β(
PTf

α(y)
)1/α

.
(8.7)

Since (Rt)t∈[0,T ] is a Ft-martingale with respect to P, we have (refer to (4.21))
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EPR
β
T ≤

[
EP exp

(
1

2
βq(βp− 1)[N ]T

)]1/q

. (8.8)

where p, q > 1 satisfying 1/p+ 1/q = 1.

Note that

[N ]T = |x− y|2
∫ T

0

ξ2
t dt,

we can deduce from (8.8) by by letting p go to 1 to obtain

EPR
β
T ≤ exp

(
1

2
β(β − 1)|x− y|2

∫ T

0

ξ2
t dt

)
. (8.9)

Substitute (8.9) into (8.7) we have

(PTf)α(x) ≤ exp

(
β|x− y|2

2

∫ T

0

ξ2
s ds

)
PTf

α(y). (8.10)

Now we can get (8.3) by taking

ξt =
e−ωt∫ T

0
e−2ωs ds

, 0 ≤ t ≤ T. (8.11)

Remark 8.2.5. From the calculation in Remark 4.5.4 we see the choice of (8.11)

is optimal.

Remark 8.2.6. (1) We can study Harnack inequalities for multivalued stochastic

differential equations with more general drift as we have done in Chapter 4.

(2) We can also apply the Harnack inequalities we obtained for multivalued

stochastic differential equations to study the strong Feller property, hyper-

boundedness etc. of the transition semigroup associated with the multival-

ued stochastic differential equations. Refer to the procedure in Subsection

8.6.

8.3 Multivalued Stochastic Evolution Equations

LetV be a separable and reflexive Banach space which is continuously and densely

embedded in a separable Hilbert space H. Then we have an evolution triplet
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(V,H,V∗) satisfying

V ⊂ H = H∗ ⊂ V∗,

where V∗ is the dual space of V and we identify H with its own dual H∗.

Denote by | · |V, | · |H, | · |V∗ the norms in V, H and V∗ respectively; by 〈·, ·〉H
the inner product in H, and V〈·, ·〉V∗ the dual relation between V and V∗. In

particular, if v ∈ V and h ∈ H, then

V〈v, h〉V∗ = 〈v, h〉H.

Let Wt be a cylindrical Wiener process on H with respect to a filtered prob-

ability space (Ω,F , (Ft)t≥0,P).

Let A be a multivalued maximal monotone operator on H and B a single

valued operator from V to V∗; and σ a operator from R+ × Ω×H to H⊗H.

We consider the following multivalued stochastic evolution equation{
dXt ∈ −AXt dt+BXt dt+ σ(t,Xt) dWt,

X0 = x ∈ D(A).
(8.12)

Before we explain the meaning of a solution to the equation (8.12), we intro-

duce two sets:

(1) VT (H): the set of all H-valued functions of finite variation on [0, T ].

(2) AT : the space of all [u,K] such that u ∈ C([0, T ];D(A)), K ∈ VT (H) with

K(0) = 0, and for all x, y ∈ C([0, T ],H) satisfying [x(t), y(t)] ∈ Gr(A), the

measure

〈u(t)− x(t), dK(t)− y(t) dt〉H ≥ 0.

Definition 8.3.1. A pair of Ft-adapted random processes (Xt, Kt) is called a

solution of Equation (8.12) if

(1) [X(·, ω), K(·, ω)] ∈ AT for almost all ω ∈ Ω;

(2) For some q > 1, X(·, ω) ∈ Lq([0, T ];V) for almost all ω ∈ Ω;

(3) It holds that

Xt = X0 −Kt +

∫ t

0

BXs ds+

∫ t

0

σ(s,Xs) dWs,

for all t ∈ [0, T ] almost surely.

For the existence and uniqueness of the equation (8.12), we have the following

theorem which is due to Zhang [Zha07, Theorem 4.6].
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Theorem 8.3.2. Assume the following conditions.

(H1) 0 ∈ D(A)o, where D(A)o denotes the interior of D(A);

(H2) B is hemicontinuous: for every x, y, z ∈ V,

[0, 1] 3 ε 7→ V〈x,B(y + εz)〉V∗ is continuous;

(H3) For every x, y ∈ V,

V〈x− y,Bx−By〉V∗ ≤ 0;

(H4) There exists γ > 0, ω ∈ R and q > 1 such that for every x, y ∈ V,

V〈x− y,Bx−By〉V∗ ≤ −γ|x− y|qV + ω|x− y|2H; (8.13)

(H5) There exists a C > 0 such that for every x ∈ V,

|Bx|V∗ ≤ C(1 + |x|q−1
V ),

where q is the same as in (8.13);

(H6) Let M be the set of all progressively measurable sets with respect to Ft.

Assume σ is M× B(H)/B(H ⊗ H) measurable and there exists a positive

constant Cσ such that for all (t, ω) ∈ R+ × Ω and x, y ∈ H,

‖σ(t, ω, x)− σ(t, ω, y)‖H⊗H ≤ Cσ|x− y|H,
‖σ(t, ω, x)‖H⊗H ≤ Cσ(1 + |x|H).

Then there exists a unique solution to equation (8.12) in the sense of Definition

8.3.1.

Remark 8.3.3. The following notes are remarked in [Zha07, Remark 3.1].

(1) Condition (H1) can be replaced by D(A)o 6= ∅.
(2) Condition (H2) and (H3) implies that B is demicontinuous [Zei90, Proposi-

tion 2.6.4]. That is, if vn converges strongly to v in V, then Bvn converges

to Bv in V∗. In particular, B is strongly measurable.

By Zhang [Zha07, Theorem 5.5], the process Xt is a Markov process.

We recall here the following proposition which will play an important role.

We refer to Zhang [Zha07, Proposition 3.3] for a proof.

Proposition 8.3.4. Let [u,K], [ũ, K̃] ∈ AT . Then the measure

〈u(t)− ũ(t), dK(t)− dK̃(t)〉H ≥ 0.
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8.4 Concentration of Invariant Measures

Suppose that Conditions (H1)-(H6) hold. By Theorem 8.3.2, the equation (8.12)

has a unique solution Xt. Define

Ptf(x) = EPf(Xt)

for every f ∈ Bb(D(A)). Let σ is deterministic and time independent. Then Pt
is a Markov semigroup (see [Zha07, Theorem 5.5]).

Zhang [Zha07, Theorem 5.8] has studied the the existence, uniqueness of the

invariant measures associated with Pt. He also proved that the invariant measure

µ satisfies

µ(|x|2H) <∞.

Here we aim to study stronger concentration property for the invariant measures.

Theorem 8.4.1. Assume that (H1)–(H6) holds with q ≥ 2 and σ deterministic

and independent of time. Assume further that V is compactly embedded in H. If

q = 2, then suppose in addition that σ is uniformly bounded and λω < γ, where

λ is the constant such that | · |H ≤ λ| · |V. Then there exist an invariant measure

associated with Pt in the sense that∫
D(A)

Ptf(x)µ(dx) =

∫
D(A)

f(x)µ(dx), f ∈ Bb(D(A)).

Moreover, ∫
D(A)

|x|qV µ(dx) <∞. (8.14)

If σ is always uniformly bounded, then for every q ≥ 2, there exist some θ > 0

such that ∫
D(A)

eθ|x|
q
H µ(dx) <∞. (8.15)

Proof. (1) The existence of the invariant measures has been proved in [Zha07,

Theorem 5.8 (i)] for the case q > 2. The extension to the case q = 2 is not hard.

We skip the proof here since the main technical can be found below.

(2) From (H3) we know for all x ∈ V,

V〈x,Bx〉V∗ ≤ −γ|x|qV + ω|x|2H + V〈x,B0〉V∗ . (8.16)
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If q = 2, then

ω|x|2H ≤ λω|x|2V < γ|x|2V. (8.17)

If q > 2, then by Young’s inequality,

ω|x|2H ≤ λω|x|2V ≤
2εq

q
|x|qV +

(λω)p
′

p′εp′
, (8.18)

hold for every ε > 0, where p′ satisfying 1/p′ + 2/q = 1.

Use the estimate (8.17) and (8.18) in (8.16) for q = 2 and q > 2 (by taking

ε small enough in this case) respectively, we know there are constants C1, γ
′ > 0

such that

V〈x,Bx〉V∗ ≤ C1 − 2γ′|x|qV + V〈x,B0〉V∗ . (8.19)

By Young’s inequality again, we know for any ε̃ > 0,

V〈x,B0〉V∗ ≤ |x|V · |B0|V∗ ≤
ε̃q

q
|x|qV +

1

pε̃p
|B0|pV∗ , (8.20)

where p = q
q−1

.

Therefore, we can deduce from (8.19) and (8.20) by taking ε̃ small enough to

get

V〈x,Bx〉V∗ ≤ C2 − γ′|x|qV (8.21)

for some constant C2, γ
′ > 0.

Now we fix a y in the set A0. Let (Xt, Yt) be the solution to the multivalued

stochastic evolution equation (8.12). By definition, we have

〈X(t)− 0, dK(t)− y dt〉 ≥ 0, (8.22)

By Itô’s formula, using (8.21) and (8.22) and Young’s inequality again, we

can obtain

1

2
d|Xt|2H

≤− V〈Xt, BXt〉V∗ dt− 〈Xt, dKt〉H dt+
1

2
‖σ‖2

H⊗H dt+ 〈Xt, σdWt〉

≤(C3 − γ′|X(t)|qV) dt+ |y|H · |Xt|H dt+ 〈Xt, σdWt〉

≤(C4 −
γ′

2
|X(t)|qV) dt+ 〈Xt, σdWt〉,

(8.23)

where C3, C4 > 0 are some constants.
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In the calculation of (8.23) we also used Young’s inequality to get control for

‖σ(x)‖H×H ≤ Cσ(1 + |x|H) if q is strictly greater than 2. If q = 2, we use the

assumption that σ uniformly bounded.

Therefore, by (8.23), we get∫ 1

0

γ′

2
Ex|Xs|qV ds ≤ C4 +

1

2

(
|x|2H − Ex|X1|2H

)
. (8.24)

Consequently we have ∫ 1

0

Ps| · |qV(x) ds ≤ 1

γ′
(2C4 + |x|2H).

Hence we have µ(| · |qV) <∞. This proves (8.14).

(3) For every θ > 0, by (8.23) we have

d eθ|Xt|
q
H

=
1

2
θq|Xt|q−2

H eθ|Xt|
q
H d|Xt|2H

+
1

2

(
1

2
θq eθ|Xt|

q
H

)(
1

2
θq|Xt|2(q−2)

H +
q − 2

2
|Xt|q−4

H

)
d〈|Xt|2H, |Xt|2H〉

=
1

2
θq|Xt|q−2

H eθ|Xt|
q
H

(
d|Xt|2H + 2θq|σ|2H⊗H|Xt|qH dt+ (q − 2)|σ|2H⊗H dt

)
≤1

2
θq|Xt|q−2

H eθ|Xt|
q
H

(
C5 − γ′|X(t)|qV + 2θq|σ|2H⊗H|Xt|qH

)
dt+ dMt

(8.25)

for some constant C5 > 0 and some local martingale Mt.

Since | · |H ≤ λ| · |V, for small enough θ, we have

d eθ|Xt|
q
H ≤ 1

2
θq|Xt|q−2

H eθ|Xt|
q
H

(
C5 −

γ′

2
|X(t)|qV

)
dt+ dMt. (8.26)

For convenience, let us focus at the drift of the right hand of (8.26).

By the fact | · |H ≤ λ| · |V and Young’s inequality,

1

2
θq|Xt|q−2

H

(
C5 −

γ′

2
|X(t)|qV

)
≤1

2
θqC5|Xt|q−2

H − 1

2
θq · γ

′

2
λ−q|X(t)|qH · |Xt|q−2

H

≤C6 − γ′′|Xt|2(q−1)
H

(8.27)
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for some constant C6, γ
′′ > 0.

Now let

G =

{
|Xt|2(q−1)

H ≥ 1 +
C6

γ′′

}
.

Note that on Gc, both |Xt|2(q−1)
H and eθ|Xt|

q
H are bounded. Therefore(

C6 − γ′′|Xt|2(q−1)
H

)
eθ|Xt|

q
H

=− γ′′
(
|Xt|2(q−1)

H − C6

γ′′

)
eθ|Xt|

q
H

≤− γ′′ eθ|Xt|
q
H 1G − γ′′

(
|Xt|2(q−1)

H − C6

γ′′

)
eθ|Xt|

q
H 1Gc

≤− γ′′ eθ|Xt|
q
H +γ′′ eθ|Xt|

q
H 1Gc − γ′′

(
|Xt|2(q−1)

H − C6

γ′′

)
eθ|Xt|

q
H 1Gc

≤C7 − γ′′ eθ|Xt|
q
H

(8.28)

for some constant C7 > 0.

Therefore, from (8.27) and (8.28), we can get an estimate of the drift of the

right hand side of (8.26). Consequently, from (8.26), we see

d eθ|Xt|
q
H ≤

(
C7 − γ′′ eθ|Xt|

q
H

)
dt+ dMt (8.29)

By integrating the inequality (8.29) from 0 to n, we get

eθ|Xn|
q
H ≤ eθ|X0|qH +C7n− γ′′

∫ n

0

eθ|Xs|
q
H ds+Mn. (8.30)

Then we take expectation for both side of (8.30) with respect to P0, we get

E eθ|Xn|
q
H ≤ 1 + C7n− γ′′

∫ n

0

δ0Ps eθ|·|
q
H ds. (8.31)

It follows that

µn(eθ|·|
q
H) ≤ C7

γ′′
+

1

nγ′′
, n ≥ 1, (8.32)

where

µn =
1

n

∫ n

0

δ0Ps ds, n ≥ 1.

Note that µ is the weak limit of µn (refer to the proof of [Zha07, 5.8]), we can

deduce from (8.32) to get µ(eθ|·|
q
H) <∞. This proves (8.15).
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8.5 Harnack Inequalities

In the following we assume conditions (H1)–(H5) in Theorem 8.3.2 and instead

of (H6) we suppose that

(H6′) σ : [0,∞) × Ω → H ⊗ H be a nondegenerate Hilbert-Schmidt operator

uniformly bounded in time t ∈ [0,∞) and ω ∈ Ω.

For every x ∈ H, define

|x|σt =

|y|H if x = σty for some y ∈ H,
∞, otherwise.

The distance associated with | · |σt is called the intrinsic distance induced by

σt. We refer to Page 19 for more details.

By Theorem 8.3.2, the equation (8.12) has a unique solution and we define

Ptf(x) = EPf(Xt) for every f ∈ Bb(D(A)). We are going to prove the following

Harnack inequality for the semigroup Pt.

Theorem 8.5.1. Assume (H1)–(H5) and (H6 ′). Suppose that there exists some

nonnegative constant r ≥ q− 4, and some strictly positive continuous function ζt
on [0,∞) such that

ζ2
t |x|2+r

σt · |x|
q−2−r
H ≤ |x|qV, for all x ∈ V, t ≥ 0 (8.33)

holds on Ω. Then for every T > 0, x, y ∈ D(A), α, β > 1 satisfying 1/α+1/β = 1

and f ∈ C +
b (D(A)), the following inequality holds

(PTf
α)(x) ≤ exp

(
β

2
ΘT |x− y|

2(4+r−q)
2+r

H

)
PTf

α(y), (8.34)

where

ΘT = Θ(T, δ, γ, ω, ζt) = 4δ−
2(3+r)
2+r γ−

2
2+r

(∫ T
0
ζ2
t e−δωt dt

) r
2+r(∫ T

0
ζt e−δωt dt

)2 (8.35)

with

δ = 1− q

4 + r
. (8.36)

Assume the diffusion coefficient σ is independent of (t, ω) and the function ζt
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in (8.33) is taken as constant ζ. Then ΘT is simplified as

Θ̃T = 4δ−1γ−
2

2+r ζ−
4

2+r

[
ω−1(1− e−δωT )

]− 4+r
2+r . (8.37)

Proof. We divide the proof into six steps since it is quite long. We outline the

main procedure of the proof of (8.34) in the first step and then realize the idea

in the next four steps. The simplification from (8.35) to (8.37) is obtained in the

last step.

(1) Main Idea.

Consider the following coupled multivalued stochastic evolution equation{
dXt ∈ −AXt dt+BXt dt+ σ(t) dWt − Ut dt, (8.38a)

dYt ∈ −AYt dt+BYt dt+ σ(t) dWt (8.38b)

with initial conditions X0 = x ∈ D(A), Y0 = y ∈ D(A), and the drift Ut in

(8.38a) is of the following form

Ut =
ηt(Xt − Yt)
|Xt − Yt|δH

1{t<τ}, (8.39)

where the stopping time τ in (8.39) is the coupling time of Xt and Yt defined by

τ = inf{t ≥ 0: Xt = Yt},

the power δ in (8.39) is a constant in (0, 1) (see (8.36)) and ηt is a deterministic

function on [0,∞). Both δ and ηt in (8.39) will be specified later such that the

following two crucial conditions

XT = YT a.s. (8.40)

and

EP exp

(∫ T

0

η2
t

2

|Xt − Yt|2σt
|Xt − Yt|2δH

1{t<τ} dt

)
<∞. (8.41)

are satisfied.

By (8.41) we know

Rt = exp

(∫ t

0

〈σ−1
s Us, dWs〉 −

1

2

∫ t

0

|σ−1
s Us|2H ds

)
, t ∈ [0, T ]

is a martingale on (Ω,FT , (Ft)0≤t≤T ,P). Therefore, we can define a new proba-
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bility measure Q on (Ω,FT , (Ft)0≤t≤T ) by setting Q|FT
= RTP.

By Girsanov’s theorem,

W̃t := Wt −
∫ t

0

σ−1
s Us ds

is still a cylindrical Wiener process on (Ω,FT , (Ft)0≤t≤T ,Q). Hence Equation

(8.38a) can be rewritten in the following way

dXt ∈ −AXt dt+BXt dt+ σ(t) dW̃t

with initial condition X0 = x.

By the uniqueness of the solution, the transition law of (Xt)t∈[0,T ] under Q

is the same with the transition law of (Yt)t∈[0,T ] under P. So by the fact (8.40)

which will be verified, we have

PTf(x) = EQf(XT ) = EQf(YT ) = EPRf(YT ). (8.42)

Note that we also have PTf(y) = EPf(YT ), therefore by applying Hölder’s in-

equality to (8.42), we can get

(PTf)α(x) ≤
(
EPR

β
T

)α/β
PTf

α(y). (8.43)

Then we can finish the proof by an additional estimate of EPR
β
T .

(2) Existence of the solution of the coupled equation (8.38).

Note that the function

(u, v) 7→ u− v
|u− v|δH

satisfies the monotone condition off the diagonal (see Appendix of [Wan07]).

Therefore we can apply Theorem 8.3.2 and see that the coupled equation (8.38)

has a solution up to the coupling time τ . So there exists continuous processes

(X,K) ∈ AT∧τ and (Y, K̃) ∈ AT∧τ such that for all t < τ ,
Xt = x−Kt +

∫ t

0

BXs ds+

∫ t

0

σ(s) dWs −
∫ t

0

Us ds, (8.44a)

Yt = y − K̃t +

∫ t

0

BYs ds+

∫ t

0

σ(s) dWs. (8.44b)

On the other hand, it is obvious that the solution of Equation (8.38b) (or
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equivalently, Equation (8.44b)) can be extended to be a solution for all time

[0,∞). Let (Yt, K̃)t≥0 solves Equation (8.38b). Now we can also solve Equation

(8.38a) (or (8.44a)) by defining Xt = Yt, Kt = K̃t for all t ≥ τ .

(3) Verify (8.40).

Apply Itô’s formula (see [KR79] (or [KR07]), [PR07], or Zhang [Zha07, The-

orem A.1] etc.) to
√
|Xt − Yt|2H + ε and then let ε ↓ 0, by using condition (H4)

we have for t < τ

d|Xt − Yt|2H ≤− 〈Xt − Yt, dKt − dK̃t〉H dt
+ (−γ|Xt − Yt|qV + ω|Xt − Yt|2H − ηt|Xt − Yt|2−δH ) dt.

By Proposition 8.3.4, for all t < τ we have

d|Xt − Yt|2H ≤ (−γ|Xt − Yt|qV + ω|Xt − Yt|2H − ηt|Xt − Yt|2−δH ) dt.

Then

d
(
|Xt − Yt|2H e−ωt

)
≤ − e−ωt

(
γ|Xt − Yt|qV + ηt|Xt − Yt|2−δH

)
dt. (8.45)

Hence by (8.45) we get

d
(
|Xt − Yt|2H e−ωt

)δ/2
≤ δ

2

(
|Xt − Yt|2H e−ωt

)δ/2−1 ·
(
− e−ωt ηt|Xt − Yt|2−δH

)
dt

=− δ

2
e−

δ
2
ωt ηt dt.

(8.46)

We take

ηt = ϑT ζt e−
δ
2
ωt (8.47)

with

ϑT =
2δ−1|x− y|δH∫ T
0
ζt e−δωt dt

.

Then it must be T ≥ τ . Otherwise, if T < τ , then by taking integral from 0 to T

for both sides of the inequality (8.46), we can obtain

|XT − YT |δH e−
δ
2
ωT ≤ |x− y|δH −

δ

2

∫ T

0

e−
δ
2
ωt ηt dt. (8.48)

By (8.47) the right hand side of (8.48) equals to 0. So we can conclude XT = YT
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from (8.48). But this is contradict with the assumption that T < τ . Therefore,

it must be T ≥ τ and hence XT = YT .

(4) Verify (8.41).

From (8.45) and the assumption (8.33) we can get for all t ≤ τ

d
(
|Xt − Yt|2H e−ωt

)δ
=δ
(
|Xt − Yt|2H e−ωt

)δ−1
d
(
|Xt − Yt|2H e−ωt

)
≤− δγ e−δωt |Xt − Yt|2(δ−1)

H · |Xt − Yt|qV dt

≤− δγζ2
t e−δωt

|Xt − Yt|2+r
σt

|Xt − Yt|2+r−2(δ−1)−q
H

dt.

(8.49)

Let

δ = 1− q

4 + r
.

Then

2 + r − 2(δ − 1)− q = δ(2 + r).

Hence, from (8.49) we see

d
(
|Xt − Yt|2H e−ωt

)δ ≤ −δγζ2
t e−δωt

|Xt − Yt|2+r
σt

|Xt − Yt|δ(2+r)
H

dt. (8.50)

According to (8.47), we have ζ2
t =

η2
t

ϑ2
T

e−δωt.

By integrating both sides of the inequality (8.50) from 0 to T , we get (note

that XT = YT )
δγ

ϑ2
T

∫ T

0

η2
t |Xt − Yt|2+r

σt

|Xt − Yt|δ(2+r)
H

dt ≤ |x− y|2δH .

By Hölder’s inequality, we have∫ T

0

η2
t |Xt − Yt|2σt
|Xt − Yt|2δH

dt

≤

(∫ T

0

η2
t |Xt − Yt|2+r

σt

|Xt − Yt|δ(2+r)
H

dt

) 2
2+r (∫ T

0

η2
t dt

) r
2+r

≤
(
ϑ2
T

δγ
|x− y|2δH

) 2
2+r

· ϑ
2r

2+r

T

(∫ T

0

ζ2
t e−δωt dt

) r
2+r

=(δγ)−
2

2+rϑ2
T |x− y|

4δ
2+r

H ·
(∫ T

0

ζ2
t e−δωt dt

) r
2+r

.
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Note that

ϑ2
T =

4δ−2|x− y|2δH(∫ T
0
ζt e−δωt dt

)2 ,

we obtain ∫ T

0

η2
t |Xt − Yt|2σt
|Xt − Yt|2δH

dt

≤4δ−2(δγ)−
2

2+r

(∫ T
0
ζ2
t e−δωt dt

) r
2+r(∫ T

0
ζt e−δωt dt

)2 |x− y|
2δ+ 4δ

2+r

H

=4δ−
2(3+r)
2+r γ−

2
2+r

(∫ T
0
ζ2
t e−δωt dt

) r
2+r(∫ T

0
ζt e−δωt dt

)2 |x− y|
2(4+r−q)

2+r

H .

(8.51)

It is clear now that (8.41) holds.

(5) Estimate of ERβ
T .

By the martingale property of RT (with respect to P), we see (refer to (4.21))

(EPR
β
T )α/β = EP exp

(
β

2

∫ T

0

η2
t |Xt − Yt|2σt
|Xt − Yt|2δH

dt

)
.

We can get (8.34) by using the estimate (8.51).

(6) Suppose that σ is independent of (t, ω). And we take ζt in (8.33) as a

constant ζ. Then we can simplify ΘT as follows.

ΘT =4δ−
2(3+r)
2+r γ−

2
2+r

(
ζ2
∫ T

0
e−δωt dt

) r
2+r(

ζ
∫ T

0
e−δωt dt

)2

=4δ−
2(3+r)
2+r γ−

2
2+r ζ−

4
2+r

[
(δω)−1(1− e−δωT )

]− 4+r
2+r

=4δ−1γ−
2

2+r ζ−
4

2+r

[
ω−1(1− e−δωT )

]− 4+r
2+r = Θ̃T

Remark 8.5.2. Our proof is similar to the proof of [Wan07, Theorem 1.1].

Remark 8.5.3. We refer to [Wan07, Corollary 1.3] for sufficient conditions for

(8.33).
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8.6 Applications of Harnack Inequalities

We apply (8.34) to study the strong Feller property, full support of the invari-

ant measure, heat kernel bound and hyperboundedness etc. properties of the

semigroup Pt.

Zhang [Zha07, Corollary 5.3] studied Feller property of Pt. We can prove

strong Feller property (and even more) for Pt under additional conditions.

Theorem 8.6.1. Assume (H1)–(H5), (H6 ′) and (8.33) with q < 4 + r. Then for

every f in Lp(D(A), µ) with p > 1, Ptf is continuous on D(A). In particular,

the semigroup Pt is strongly Feller. Moreover, the following estimate holds

|Ptf(x)− Ptf(y)| ≤ ‖f‖∞Θ
1/2
t |x− y|

4+r−q
2+r

H · exp

(
1

2
Θt|x− y|

2(4+r−q)
2+r

H

)
. (8.52)

for every t > 0, x, y ∈ D(A) and f ∈ Bb(D(A)).

Proof. The first statement follows directly from the Harnack inequality (8.34)

and Proposition 5.3.2. Now we prove the estimate (8.52).

Use the notation in the proof of Theorem 8.5.1 and we prove (8.52) for fixed

T > 0. By (8.42), we see

|PTf(x)− PTf(y)| = |EQf(XT )− EPf(YT )| = |EPRTf(XT )− EPf(XT )|
= EP|f(XT )(1−RT )| ≤ ‖f‖∞EP|1−RT |.

(8.53)

It is clear (
EP|1−RT |

)2 ≤ EP(1−RT )2 = EPR
2
T − 1. (8.54)

By (7.30), we know

EPR
2
T = exp

(
ΘT |x− y|

2(4+r−q)
2+r

H

)
. (8.55)

Using the elementary inequality

er−1 ≤ r er for all r ≥ 0,

we can deduce from (8.54) and (8.55) to get

(
EP|1−RT |

)2 ≤ exp

(
ΘT |x− y|

2(4+r−q)
2+r

H

)
− 1
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≤ΘT |x− y|
2(4+r−q)

2+r

H · exp

(
ΘT |x− y|

2(4+r−q)
2+r

H

)
.

Substitute the estimate above into (8.53) we can obtain (8.52).

Remark 8.6.2. The strong Feller property can also be observed immediately by

the dominated convergence theorem:

lim
y→x

EP|RT − 1| = EP lim
y→x
|RT − 1| = 0.

From now on, we assume that σ is independent of (t, ω). In this case, Pt is a

Markov semigroup (see [Zha07, Theorem 5.5]) and the Harnack inequality (8.34)

holds for Θ̃T in place of ΘT .

We also assume that the invariant measure, denote by µ, of the semigroup Pt
exist. See Subsection 8.4 for the study of the concentration property the invariant

measure.

Theorem 8.6.3. Assume (H1)–(H5), (H6 ′) and (8.33). Then

(1) The invariant measure µ is fully supported on D(A).

(2) For every x ∈ D(A), t > 0, the transition density pt(x, ·) (with respect to

µ) exist and for every α > 1

‖pt(x, ·)‖Lα(D(A),µ) ≤
[∫

D(A)

exp

(
−α

2
Θ̃t|x− y|

2(4+r−q)
2+r

H

)
µ(dy)

]−(α−1)/α

.

(3) Suppose K ≤ 0.

(i) If q = 2 and λω < γ, where λ is the constant such that | · |H ≤ λ| · |V,

then Pt is hyperbounded .

(ii) If q > 2, then Pt is ultrabounded. More precisely, there exist some

constant c > 0 such that

‖Pt‖2→∞ ≤ exp
(
c(1 + t−

q
q−2 )

)
. (8.56)

Consequently, Pt is compact for large t > 0 for both cases.

Proof. (1) If suppµ 6= D(A), then there exists some x0 ∈ D(A), r > 0, such that

µ(Br(x0)) = 0, where Br(x0) = {y ∈ D(A) : |y − x0| ≤ r}.
Applying (8.34) to the function 1Br(x0) for α = 2 and t ≥ 0, we have

(Pt1Br(x0))
2(x) exp

(
−Θ̃t|x− y|

2(4+r−q)
2+r

H

)
≤ Pt1Br(x0)(y). (8.57)
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Hence, by integrating both sides of (8.57) with respect to µ(dy), we can obtain

(Pt1Br(x0))
2(x)

∫
D(A)

exp

(
−Θ̃t|x− y|

2(4+r−q)
2+r

H

)
µ(dy)

≤µ(Pt1Br(x0)) = µ(1Br(x0)) = 0.

This implies Pt(x0, Br(x0)) = 0 for all t ≥ 0. Therefore,

P(‖Xt(x0)− x0‖H ≤ r) = 0, t > 0, (8.58)

where Xt(x0) denotes the solution to (8.12) with X0(x0) = x0.

Since Xt is continuous on H, by letting t→ 0 in (8.58), we have

P(‖X0(x0)− x0‖H ≤ r) = 0.

But obviously this is impossible. So it must be suppµ = D(A).

(2) It follows immediately from the Harnack inequality (8.34) and Lemma

7.5.7.

(3) Since K ≤ 0, for any t > 0, we know

K

1− e−δKt
≤ 1

δt
.

Therefore, by Theorem 8.5.1, there exist some constant C8 such that for every

x, y ∈ D(A) and t > 0,

(Ptf)2(x) exp

−C8|x− y|
2(4+r−q)

2+r

H

t
4+r
2+r

 ≤ Ptf
2(y), (8.59)

where f ∈ L2(D(A), µ) with µ(f 2) = 1.

By integrating the both sides of (8.59) with respect to µ(dy) over B1(0) =

{x ∈ D(A) : |x|H ≤ 1}, we obtain for every x ∈ D(A) and t > 0,

(Ptf)2(x) ≤ 1

µ
(
B1(0)

) exp

C8

(
1 + |x|H

) 2(4+r−q)
2+r

t
4+r
2+r

 . (8.60)

(i) If q = 2, then by taking square and integration with respect to µ(dx) for
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both sides of the equation (8.60), and using Theorem 8.4.1, we have

∫
D(A)

(Ptf)4(x)µ(dx) ≤ 1

µ
(
B1(0)

) ∫
H

exp

(
C8

(
1 + |x|H

)2

t
4+r
2+r

)
µ(dx) <∞

for t > 0 big enough. This proves ‖Pt‖2→4 < ∞ for sufficiently big t > 0. That

is, Pt is hyperbounded.

(ii) Assume q > 2. Then the inequality (8.26) implies

d eθ|Xt|
q
H ≤

(
C9 − γ′′′|X(t)|2(q−1)

H eθ|Xt|
q
H

)
dt+ dMt (8.61)

for some constant C9, θ, γ
′′′ > 0.

Let g(t) be the solution to the following equation

dg(t) =

(
C9 − γ′′′θ−

2(q−1)
q g(t)

[
log g(t)

] 2(q−1)
q

)
dt

with g(0) = eθ|x|
q
H .

By the comparison theorem, we have

E eθ|Xt(x)|q
H ≤ g(t) ≤ exp

(
C9(1 + t−

q
q−2 )

)
(8.62)

for some constant C9 > 0. By inequality (8.60) we have

‖Ptf‖∞ = ‖Pt/2Pt/2f‖∞ ≤ C10 sup
x∈D(A)

E exp

[
C11

t
4+r
2+r

∣∣Xt/2(x)
∣∣ 2(4+r−q)2+r

H

]
(8.63)

for some constants C10, C11 > 0.

By using Young’s inequality, we see

C10 sup
x∈D(A)

E exp

[
C11

t
4+r
2+r

∣∣Xt/2(x)
∣∣ 2(4+r−q)2+r

H

]
≤ ε · |Xx

t/2|
q
H + ε′t−

q
q−2 (8.64)

for arbitrary ε > 0. By considering small enough ε > 0, it follows from the

inequality (8.64) above and (8.62) and (8.63) we can obtain (8.56). This proves

that Pt is ultrabounded.

Since Pt has transition density with respect to µ, we know Pt is compact in

L2(D(A), µ) for large t > 0 for these two cases (q = 2 or q > 2) by [GW02,

Lemma 3.1].
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Remark 8.6.4. We refer to [Zha07, Section 6.2] for an example of multivalued

stochastic evolution equation satisfying the conditions we used.



Chapter 9

Functional Inequalities for

Ornstein-Uhlenbeck Processes

In the previous chapters, we have concentrated on dimension free Harnack in-

equalities. It is also interesting to look at other functional inequalities.

Various functional inequalities, for instance, Poincaré and log-Sobolev inequal-

ities (see [CM87, DPZ02, RW03a] etc.), have been well studied for Ornstein-

Uhlenbeck processes driven by Wiener processes. For stochastic processes related

to Lévy noise, only a few functional inequalities are known. We only know, for ex-

ample, Poincaré inequalities were obtained under a strong condition on the Lévy

measure in [RW03a]; and (modified) log-Sobolev inequalities etc. were considered

in [Wu00, CM02, GI08, GI09] etc..

This chapter is on entropy cost and HWI inequalities. These functional in-

equalities have attracted the interest of many people recently. See the monograph

Villani [Vil09] and the bibliography therein for more details.

We prove entropy cost and HWI inequalities for Gaussian Ornstein-Uhlenbeck

semigroups. They are not new for experts. But it may be considered as a com-

plement of this thesis and a first step to these functional inequalities for Lévy

driven Ornstein-Uhlenbeck processes.

9.1 Entropy Cost and HWI Inequalities

Let H be a real separable Hilbert space with inner product 〈·, ·〉 and norm | · |.
We assume that R is a bounded self-adjoint and nonnegative definite operator

on H and A generates on H a strongly continuous semigroup St. Consider the
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following linear partial differential equation

dXt = AXtdt+R1/2dWt, X0 = x, (9.1)

where Wt is a standard cylindrical Wiener process on H.

Suppose that

Assumption 9.1.1. (1)

Q∞ =

∫ ∞
0

SuRS
∗u du

is of trace class.

(2) For all t ≥ 0, StR = RS t.

(3) There exist M,ω > 0 such that for all t ≥ 0,

|St| ≤M e−ωt . (9.2)

We will denote

α(t) = M2 e−2ωt, t ≥ 0.

By item (1) of Assumption 9.1.1, the equation (9.1) has a mild solution

Xt = Stx+

∫ t

0

St−uR
1/2dWu, t ≥ 0.

The process Xt is Gaussian and Markov with transition semigroup

Ptf(x) = Ef(Xt),

where f is a bounded measurable function on H. Moreover, by item (1) of

Assumption 9.1.1, we know the semigroup Pt has an invariant measure µ =

N(0, Q∞). See [DPZ92].

By item (2) of Assumption 9.1.1, the semigroup Pt is symmetric. We refer to

[CMG02] for more characterization of the symmetry of Pt.

We will establish entropy cost and HWI inequalities for Pt. First let us intro-

duce these concepts.

Let ν1 and ν2 be two probability measures on (H,B(H)). A coupling of ν1 and

ν2 is a probability measure π on (H ×H,B(H) × B(H)) such that the marginal

distributions of π are ν1 and ν2 respectively. That is,

π(A×H) = ν1(A), π(H×B) = ν2(B).
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for every A, B ∈ B(H).

Now we can introduce the following useful Wasserstein distance between the

probability measures ν1 and ν2.

Definition 9.1.2. The Wasserstein distance between two probability measures

ν1 and ν2 on (H,B(H)) is defined by

W2(µ, ν) := inf
π∈C (µ,ν)

{∫
H×H

ρ(x, y)2π(dx, dy)

}1/2

,

where C (µ, ν) is the space of all couplings of ν1 and ν2, and ρ is the intrinsic

distance on H defined by (see (1.1)):

ρ(x, y) =

|x− y|0 = |R−1/2(x− y)|, if x− y ∈ H0 = R1/2(H);

∞, otherwise.

Wasserstein distance describes the cost of transporting ν1-distributed mass to

ν2-distributed mass. Hence this distance is also called transportation cost.

Definition 9.1.3. Let ν1, ν2 be two probability measures on (H,B(H)) with ν2 =

fν1.

(1) The entropy of f with respect to ν1 is defined by

H(ν2|ν1) = Entν1(f) = ν1(f log f) = ν1(f log f)− ν1(f) log ν1(f).

(2) The Fisher information (or Fisher-Donsker-Varadhan information) of f is

defined as

I(f) = 4ν1(〈RD
√
f,D

√
f〉).

The main results of this chapter are the following theorem. The entropy cost

inequality (9.3) deals with the connection between entropy and transportation

cost. The HWI inequality inequality (9.4) relates three quantities, i.e. entropy,

transportation cost and Fisher information. Here “H” stands for the entropy,

“W” for the Wasserstein distance, and “I” for the Fisher information.We need

to mention that Shao [Sha07] also considered these two inequalities for classical

Ornstein-Uhlenbeck semigroups on Wiener spaces.

Theorem 9.1.4. Suppose Assumption 9.1.1 holds and µ = N(0, Q∞). Then for

every t ≥ 0, and nonnegative f ∈ B(H) with µ(f) = 1, we have
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(1) entropy cost inequality

Entµ(Ptf) ≤ Mω

2(e2ωt−1)
W2(fµ, µ)2. (9.3)

(2) HWI inequality

Entµ(f) ≤M
√
I(f)W2(fµ, µ)− Mω

2
W2(fµ, µ)2. (9.4)

We will prove these two inequalities in the next two sections respectively.

9.2 Proof of Entropy Cost Inequality

We will need to use the following estimation by assumption (9.2)

Lemma 9.2.1. For every ϕ ∈ EA(H) and x, y ∈ H, we have

|(R1/2DPtϕ)(x)|2 ≤ α(t)Pt(|R1/2Dϕ|2)(x) (9.5)

and for every s ∈ [0, t]

〈DPs logPt−sϕ, y − x〉 ≤ ρ(x, y)α1/2(s)
[
Ps|R1/2D(logPt−sφ)|2

] 1
2 . (9.6)

Proof. The estimate (9.5) is from [DPZ02, Equation (10.5.18)]. The proof of (9.6)

is similar to [RW03a, (2.5)]):

〈DPs logPt−sϕ, y − x〉
= inf

z∈(R1/2)−1(x−y)
〈DPs logPt−sϕ,R

1/2z〉

≤ρ(x, y)
[
|R1/2DPs(logPt−sφ)|2

]1/2
≤ρ(x, y)α1/2(s)

[
Ps|R1/2D(logPt−sφ)|2

]1/2
.

We introduce some facts related to the transition semigroup Pt. We refer to

[DP04] for the proof.

The transition semigroup Pt can be uniquely extended to be strongly contin-

uous semigroup of contractions on Lp(H, µ) for any p ≥ 1. We denote by Lp the

infinitesimal generator of Pt in Lp(H, µ) and D(Lp) its domain. It is easy to verify



9.2. Proof of Entropy Cost Inequality 197

that EA(H) is stable under the action of Pt and L. Moreover, we know is EA(H)

dense in Lp(H, µ). Hence EA(H) is a core for Lp.

Fix p = 2. For every ϕ ∈ EA(H), we have

Γ(ϕ, ϕ) =
1

2

(
L2ϕ

2 − 2ϕL2ϕ)
)

= 〈RDϕ,Dϕ〉.

We call Γ(·, ·) the square field operator.

For any function Φ with continuous second order derivatives, we have

L2Φ(ϕ) = Φ′(ϕ)L2ϕ+ Φ′′(ϕ)Γ(ϕ, ϕ). (9.7)

For fixed t > 0 and f ∈ EA(H), consider the function

s 7→ Ψ(s) = Ps
(
Φ(Pt−sf)

)
, s ∈ [0, t]

By the chain rule formula (9.7), for any s ∈ [0, t] we see

Ψ′(s) = Ps[L2Φ(Pt−sf)− Φ′(Pt−sf)L2Pt−sf ]

= Ps[Φ
′′(Pt−s)Γ(Pt−sf)].

(9.8)

To prove (9.3), we first prove the following lemma.

Lemma 9.2.2. For any t ≥ 0, x, y ∈ H, and nonnegative bounded measurable

function f on H, we have

Pt log f(y) ≤ logPtf(x) +
ρ(x, y)2

4
∫ t

0
α(r)−1 dr

.

Proof. We prove it following the line of [BGL01]. Define

γ(s) = x+
s

t
(y − x) =

(
1− s

t

)
x+

s

t
y, s ∈ [0, t].

Take

g(s) =
t
∫ s

0
α(r)−1dr∫ t

0
α(r)−1dr

, s ∈ [0, t].

Then g(s) is a speed function such that g(0) = 0 and g(t) = t.

Without loss of generality, we assume f ∈ EA(H) and f is strictly positive.

Set

φ(s) = Ps logPt−sf
(
γ (g(s))

)
for every s ∈ [0, t]..



198 Chapter 9. Functional Inequalities for Ornstein-Uhlenbeck Processes

By (9.8) and using the estimate in (9.6) we have

φ′(s) =− Ps
∣∣R1/2D logPt−sf

∣∣2 (γ (g(s))
)

+
g′(s)

t

〈
DPs logPt−sf(γ(g(s))), y − x

〉
≤− Ps

∣∣R1/2D logPt−sf
∣∣2 (γ (g(s))

)
+
g′(s)

t
α1/2(s)

[
Ps
∣∣R1/2D logPt−sf

∣∣2 (γ (g(s))
)]1/2

ρ(x, y)

≤g
′(s)2α(s)ρ(x, y)2

4t2
=

ρ(x, y)2

4α(s)
(∫ t

0
α(r)−1dr

)2 .

The proof is completed by integrating the inequality above with respect to s

over [0, t].

Now we can prove the entropy cost inequality.

Proof of (9.3). Replacing f by Ptf in Lemma 9.2.2 we obtain

Pt logPtf(y) ≤ logP2tf(x) +
ρ(x, y)2

4
∫ t

0
α(r)−1 dr

. (9.9)

First integrate the inequality (9.9) above with respect to a coupling measure of

µ(dx) and f(y)µ(dy), by using the invariance of Pt with respect to µ and then

making infimum over all couplings of µ(dx) and f(y)µ(dy), we get the following

inequality

µ(fPt logPtf) ≤ µ(logP2tf) +
W2(fµ, µ)

4
∫ t

0
α(r)−1dr

. (9.10)

By Jensen’s inequality and the invariance of the measure µ with respect to

Pt, we see

µ(logP2tf) ≤ log µ(P2tf) = log µ(f) = 0. (9.11)

Moreover, by using the symmetry of Pt with respect to the invariant measure

µ, we know

µ(fPt logPtf) = µ(Ptf logPtf) = Entµ(Ptf). (9.12)

Hence from the facts (9.11) and (9.12), we deduce from (9.10) to get

Entµ(Ptf) ≤ W2(fµ, µ)

4
∫ t

0
α(r)−1dr

.
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9.3 Proof of HWI Inequality

Proof of Theorem (9.4). Without loss of generality, we can assume f ∈ EA(H)

and that f is bounded below by a strictly positive constant.

Since the semigroup Pt is symmetric with respect to µ, we know∫
H

L2F dµ = 0,

∫
H

FL2Gdµ =

∫
H

GL2F dµ

for every F,G ∈ D(L2). Using these facts, we have

− d

ds

(∫
H

(
Psf

)(
logPsf

)
dµ

)
=−

∫
H

[(
L2Psf

)(
logPsf

)
+ Psf ·

L2Psf

Psf

]
dµ

=
1

2

∫
H

[
L2

(
Psf logPsf

)
−
(
L2Psf

)(
logPsf

)
−
(
Psf

)(
L2 logPsf

)]
dµ

=

∫
H

Γ
(
Psf, logPsf

)
dµ

=

∫
H

〈
R1/2DPsf,R

1/2D logPsf
〉
dµ.

Hence

Entµ(f) =

∫
H

f log f dµ

= −
∫ t

0

d

ds

(∫
H

(
Psf

)(
logPsf

)
dµ

)
ds+ Entµ(Ptf)

=

∫ t

0

∫
H

〈
R1/2DPsf,R

1/2D logPsf
〉
dµ ds+ Entµ(Ptf)

=

∫ t

0

∫
H

|R1/2DPsf |2

Psf
dµ ds+ Entµ(Ptf).

(9.13)

By the fact that Ps is a Markov kernel, we have, for any measurable function

F and G,

(PsG)2 ≤ Ps

(
G2

G

)
PsF. (9.14)

Applying the inequality (9.14) and using the estimate (9.5), we can obtain

∣∣R1/2DPsf
∣∣2 ≤ α(s)

(
Ps|R1/2Df |

)2 ≤ α(s)

(
Ps
|R1/2Df |2

f

)
Psf. (9.15)
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Therefore, by substituting the estimate (9.15) into (9.13), and applying the en-

tropy cost inequality (9.3), we have

Entµ(f) ≤
(∫ t

0

α(r) dr

)
I(f) + Entµ(Ptf)

≤
(∫ t

0

α(r) dr

)
I(f) +

1

4
∫ t

0
α(r)−1 dr

W2(fµ, µ)2

=
M(1− e−2ωt)

2ω
I(f) +

ω

2M(e2ωt−1)
W2(fµ, µ)2.

(9.16)

The proof will be completed by minimizing the right side of the above inequality.

The minimizing procedure is explained in the following.

Denote a = I(f), b = [W2(fµ, µ)]2,

η(t) =
M(1− e−2ωt)

2ω
and ξ(t) =

ω

2M(e2ωt−1)
.

We need to minimize h(t) := aη(t) + bξ(t)−1. Solve the equation h′(t) = 0 we

obtain √
a

b
[1− e−2ωt] = ω.

Consequently, we have

η(t) =
1

2

√
a

b
M and ξ(t)−1 =

1

2
M

(√
a

b
− ω

)
.

Therefore

h(t) = ah(t) + bξ(t)−1 = M
(√

ab− ω

2
b
)
.



Appendix A

Controllability of Infinite

Dimensional Linear System

This appendix is based on the book by Zabczyk [Zab08, Part IV, Chapter 2].

See also the books by Da Prato and Zabczyk [DPZ92, Appendix B] or [DPZ02,

Appendix B].

We briefly introduce the comparison of the images of linear operators, and

some basic results on null controllability of linear control system.

Let H be a real separable Hilbert space with inner product 〈·, ·〉 and norm | · |.
Let T1 and T2 be two linear and bounded operators onH.

The following theorem can be found, for example, [Zab08, Part IV, Theorem

2.2] or [DPZ92, Proposition B.1].

Theorem A.0.1. The inclusion T1(H) ⊂ T2(H) holds if and only if there exists

a constant c > 0 such that |T ∗1 x| ≤ c|T ∗2 x| for every x ∈ H.

Consider the following linear control system on H{
dxt = Ayt dt+But dt,

x0 = x ∈ H,
(A.1)

where A is the generator of a semigroup of operators St for t ≥ 0 on H, B is

a linear bounded operator on H, and u(·) is a H-valued Bochner integrable (see

[PR07, Appendix A]) function on [0, t] for every t ≥ 0.

A weak solution of the control equation (A.1) is given by

xt = Stx+

∫ t

0

St−sBus ds, t ≥ 0. (A.2)
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For every t ≥ 0, the variable xt denotes the state of the system in H, the

variable ut represent a control, strategy or input of the system .

We say that a control u transfers a state x to a state y at the time T > 0 if

xT = y with initial condition x0 = x. We also say that the state x can be steered

to state y at time T or that the state y is reachable or attainable from x at time

T .

We are especially interested at the case when the state is transferred to state

0 at some fixed time T ≥ 0.

Define

QTx =

∫ T

0

StBB
∗S∗t x dt, x ∈ H. (A.3)

We call QT as controllability operator .

For every x ∈ H, the function u : u 7→ SuBB
∗Su x is continuous on [0, T ] and

the Bochner integral in (A.3) is well defined. Moreover, it is obvious that the

operator QT is linear, continuous, self-adjoint and positive definite.

The following theorem is a special case of [Zab08, Part IV, Theorem 2.3].

Theorem A.0.2. (1) There exists a strategy u(·) which is square (Bochner)

integrable on [0, T ] transferring state x to 0 in time T if and only if

STx ∈ Q1/2
T (H).

(2) Among the strategies transferring state x to 0 in time T , there exists ex-

actly one strategy û(·) which minimizes the functional JT (u) =
∫ T

0
|u(s)|2 ds.

Moreover,

JT (û) = |ΓTx|2, (A.4)

where ΓT = Q
−1/2
T ST .

(3) If STx ∈ QT (H), then the strategy û(·) is given by

ût = −B∗S∗T−tQ−1
T ST x t ∈ [0, T ].

We say that the system (A.1) is null controllable in time T if arbitrary state

x ∈ H can be transferred to 0 in time T . JT (u) is the energy for driving x to 0

under the control u.

By Theorem A.0.2, we have the following characterizations ([Zab08, Part IV,

Theorem 2.6]).

Theorem A.0.3. The following conditions are equivalent to each other.
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(1) Control system (A.1) is null controllable in time T > 0.

(2) There exists a constant c > 0 such that for all x ∈ H∫ T

0

|B∗S∗t x|2 dt ≥ c|S∗T x|2.

(3) The image of ST is included in the image of Q
1/2
T :

ST (H) ⊂ Q
1/2
T (H). (A.5)
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[Bré73] H. Brézis, Opérateurs maximaux monotones et semi-groupes de con-

tractions dans les espaces de Hilbert, North-Holland Publishing Co.,

Amsterdam, 1973, North-Holland Mathematics Studies, No. 5. Notas
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[Cép98] E. Cépa, Problème de Skorohod multivoque, Ann. Probab. 26 (1998),

no. 2, 500–532.

[Cha99] T. Chan, Pricing contingent claims on stocks driven by Lévy pro-
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[CM02] D. Chafäı and F. Malrieu, A note on functional inequalities for some
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curvature condition, 70
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entropy cost inequality, 194

Fisher information, 193
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see Fisher information

fractional Brownian motion, 126
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Gaussian probability space, 130
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generalized Mehler semigroup, 139
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for Lévy process, 38

for Wiener process, 38

gluing lemma, 57
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one dimensional OU process, 68

OU process driven by fractional

Brownian motion, 129



220 INDEX

OU process driven by Wiener pro-
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OU process, see Ornstein-Uhlenbeck

process

Poisson random measure, 28

compensated, 29

pseudo inverse, 19
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skew convolution semigroup, 27

Skorokhod space, 35

square field operator, 195

state of the system, 200

stochastic convolution, 95, 97

stochastic heat equation, 156

stochastic heat equation with Lévy
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stochastic integral
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strong Feller at a moment, 157
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sub-differential, 116, 168

symmetric α-stable

process, 32

random variable, 32

trace class, 17

transportation cost, 193

ultraboundedness, 187

Wasserstein distance, 193





Notations

N set of positive integer numbers {1, 2, 3, . . . }.
a ∨ b the larger of numbers a and b in R.

f+ = f ∨ 0, the positive part of f .

α, β are conjugate number 1/α + 1/β = 1.

Sn all n× n symmetric nonnegative definite real matrix.

Rd d-dimensional Euclidean space.

H real separable Hilbert space.

〈·, ·〉 the usual inner product on Rd or H.

| · | the norm on H corresponding with respect to 〈·, ·〉.
H0 the Cameron-Martin space

〈·, ·〉0 an inner product on H0 (See Page 19).

| · |0 the norm corresponding with 〈·, ·〉0 on H0.

Bx(r) = {y ∈ H : |x− y| ≤ r}, ball with radius r and center x.

B(H) the Borel σ-algebra on H.

B(H) the space of bounded measurable functions on H.

Bb(H) the space of bounded measurable functions on H.

B+
b (H) the space of positive bounded measurable functions on H.

C (H) the space of continuous functions on H.

Cb(H) the space of bounded continuous functions on H.

C n(H) the space of n-th continuously differentiable functions on H.

C +
b (H) the space of positive bounded and continuous functions on H.

C∞(H) the space of smooth functions on H.

C∞0 (H) the space of compact supported smooth functions on H.

‖f‖p =
( ∫

H
|f |p dµ

)1/p
for p ≥ 1.

‖f‖∞ = inf{C > 0: |f(x)| ≤ Calmost every}.
Lp(H, µ) the space of measurable functions on H such that ‖f‖p <∞.

(V,H,V∗) evolution triple.

T ∗ adjoint operator of linear bounded operator T .
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Q1/2 square root of Q.

T−1 pseudo inverse of T .

A generator of St (a multivalued operator in Chapter 8)

St C0-semigroup on H.

Qt =
∫ t

0
SuRS

∗
u du, controllability operator.

Γt = Q
−1/2
t St.

σ2 � σ1 σ2 is absolutely continuous with respect to σ1.

σ2⊥σ1 σ2 is singular (orthogonal) to σ1.

σ2 ≈ σ1 σ2 is equivalent with σ1.

dσ2/dσ1 the Radon-Nikodým derivative of σ2 with respect to σ1.

σac the absolute continuous part of measure σ.

σs the singular part of measure σ.

µ̂ Fourier transformation of measure µ.

EP expectation with respect to measure P.

N(m,Q) Gaussian measure with mean m and covariance Q.

(b, R, ν) characteristic triplet of some Lévy process

or infinite divisible measure

with drift b, covariance R and Lévy measure ν.

D(b, R, ν) infinite divisible measure with characteristic triplet (b, R, ν).

Wt standard or cylindrical Wiener processes.
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